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Abstract

Optical wireless communication (OWC) is an innovative and promising technology intro-

duced in recent decades, and it can be used for both indoor and outdoor applications. Outdoor

OWC is also an attractive solution to the access network bottle-neck. However, challenges can

arise for OWC links with increased atmospheric turbulence levels due to time-varing tempera-

tures and pressures, resulting fading or scintillation. This thesis studies and analyzes the block

error rate performance of subcarrier intensity modulation based OWC systems employing both

noncoherent and coherent binary modulations over various atmospheric turbulence channels.

The block error rate is a meaningful performance metric in the slow fading turbulence chan-

nels because the fading coefficients are constant over the duration of a block of bits. For the

Gamma-Gamma turbulence channels, we obtain highly accurate block error rate expressions in

terms of an infinite series for noncoherent binary modulations. With coherent binary phase shift

keying, we first propose a new sum of exponentials approximation of the Gaussian Q-function,

and then develop the corresponding block error rate expression. For the lognormal turbulence

channels, we use the Gauss-Laguerre quadrature method to obtain an accurate estimation of

the block error rate.
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Chapter 1

Introduction to OWC

1.1 Background and Motivation

Optical wireless communication (OWC) is a technology that uses light to transmit infor-

mation bits through a free-space channel between two points. The first optical wireless com-

munication experiment over an unguided channel was performed by Alexander Graham Bell in

1880, and this invention was called photophone [1]. Although the photophone was an impor-

tant invention, it was influenced by the ambient light sources in the course of light transmission.

The fortune of OWC changed in the 1960s with the introduction of the semiconductor laser,

which is the most important discovery of optical sources. Around 1970, Nippon Electric Com-

pany (NEC) built the first laser link to handle commercial traffic in Japan. Since then, OWC

has been an active research area. This technology was also applied to deep space applica-

tions by National Aeronautics and Space Administration (NASA) and European Space Agency

(ESA) with programmes such as the Mars Laser Communication Demonstration (MLCD) and

the Semiconductor-laser Inter-satellite Link Experiment (SILEX). With the development and

maturity of optoelectronic devices, OWC has again drawn recent research interests. In the last

few years, several successful field trials have further encouraged renewed investigations within

the OWC research community. These activities have led to broader scale of commercialization

and wider deployment of OWC equipment infrastructures.

In recent years, OWC is becoming an alternative technology to optical fiber and radio

frequency (RF) communications. OWC technology is also a viable solution to the ‘last mile’

bottleneck problem, providing a license-free high data rate service. The OWC infrastructures
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1.2. Literature Review

are relatively low cost and have much lower deployment cost than that of fibre optic networks.

The outdoor OWC, also known as free-space optical (FSO) communication, can be divided

into long-range free space links and short-range links [2]. The long-range free space links are

mainly used in the area of intersatellite links. The short-range links are typically used as the

first or last mile access by taking broadband services to home or providing backhaul solution.

These links are also used as a high bandwidth bridge between the local area networks (LANs),

metropolitan area networks (MANs), and wide area network (WANs).

In spite of a number of advantages of OWC systems, challenges remain to fully exploit the

potentials of OWC technology. One main challenge encountered in OWC is the atmospheric

attenuation caused by absorption, scattering and fluctuation of the optical signals. Eye safety,

wavelengths noise, fog, rain and snow can also be concerns. Another important challenge is the

atmospheric scintillation, which is caused by atmospheric turbulence. The atmospheric turbu-

lence is a random effect that is considered as the most serious effect on propagating laser beams

through the atmospheric channels. In OWC, the turbulence fading channel is typically slow;

therefore, we propose to use the block error rate (BLER) to evaluate the error rate performance

of OWC systems. In this thesis, we will focus on analysing the BLER performance on various

digital modulations operating on several commonly used atmospheric turbulence channels.

1.2 Literature Review

OWC has great potentials for applications in fourth-generation (4G) wireless systems and

can be a key building block for future wide-area wireless data networks [3], [4]. Such net-

works are being deployed and will include several complementary access technologies with

high channel capacities, multiple transceivers, and gigabit per second (Gbit/s) data rates [4].

Fig. 1.1 shows the block diagram of an optical communication system through the atmo-

sphere. The information generated by a source is modulated into an electrical waveform by

an electrical modulator. In the optical modulator, the intensity of a light source is modulated

2



1.2. Literature Review

by the output signal of the electrical modulator. A laser diode generates optical signals, and

a telescope is typically used at the transmitter to determine the direction and size of the laser

beam. The receiver includes an optical front end, a photodetector, and a demodulator. The

optical front end has lenses which are used to focus the received optical field onto a photode-

tector. The photodetector converts the received optical field to an electrical signal, which is

then demodulated. The demodulated bits are fed into an information sink.

Figure 1.1: Block diagram of an optical communication system through atmospheric turbu-
lence channels.

On-off keying (OOK) is the most widely used signal modulation for OWC systems with

direct detection (IM/DD) due to its simplicity in design and low cost [5], [6]. In atmospheric

turbulence, however, an OOK based system requires time-varying adaptive detection thresh-

olds. Such systems are also subject to channel estimation errors. In practice, for simplicity,

OOK based systems are often implemented with a predetermined fixed detection threshold [7].

In the presence of atmospheric turbulence, the bit error rate (BER) of OOK modulation is de-

termined by both the turbulence level and the fixed detection threshold, and it cannot be made

arbitrarily small by increasing signal-to-noise ratio (SNR) [7]. To overcome the drawbacks

of OOK optical modulations, PPM has been proposed as an alternative to the OOK modula-
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1.2. Literature Review

tion. The performance of pulse position modulation (PPM) has been extensively studied in

atmospheric turbulence channels in [8], [9], [10]. The PPM improves the power efficiency

compared to the OOK. However, the PPM modulation needs a complex transceiver design be-

cause of the tight synchronization technique, and it also has a higher bandwidth requirement

than the OOK modulation technique. Another attractive modulation technique is subcarrier

intensity modulation (SIM), which was first proposed for OWC systems in [11]. The authors

studied the error rate performance for differential phase shift keying (DPSK) and M-ary phase

shift keying (MPSK) modulations over lognormal turbulence channels both theoretically and

experimentally. The error rate performance of SIM based OWC systems for various modula-

tions over different atmospheric turbulence channels was studied in [7], [12], [13], [14].

An optical wave typically experiences irradiance fluctuations when it is propagated through

the atmosphere. This phenomenon is referred to as the optical scintillation or turbulent-induced

fading. The optical scintillation is caused by the random fluctuations of refractive index due

to the temperature and pressure variations along the optical signal propagation. In weak turbu-

lence regimes, the resulting irradiance fluctuations can be characterized by the Rytov variance,

which is defined for a plane wave or a spherical wave, respectively, as [15], [16]

σ2
p = 1.23C2

nk7/6L11/6 (1.1)

and

σ2
l = 0.5C2

nk7/6L11/6 (1.2)

where L is the link distance, k = 2π/λ , λ is the wavelength, and C2
n denotes the index of

refraction structure parameter and varies form 10−13m−2/3 for strong turbulence to 10−17m−2/3

for weak turbulence. Under the assumption of plane wave propagation, we define the weak

turbulence channel when the Rytov variance is much less than unity (σ2
p < 0.3), while the

strong turbulence channel or the saturation regime is corresponding to the Rytov variance much
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1.2. Literature Review

greater than unity (σ2
p ≫ 1). Moderate turbulence channel is defined as σ2

p ≈ 1 [17].

The scintillation index is another important parameter related to the atmospheric turbulence

level, and it is defined as the normalized variance of irradiance fluctuations

σ2
I =

Var[I]

(E[I])2 =
E[I2]− (E[I])2

(E[I])2 =
E[I2]

(E[I])2 −1 (1.3)

where I is the optical irradiance, and E[·] is the expectation operation. The scintillation index

for a plane wave and that for a spherical wave with negligible inner scale are related to the

Rytov variance through [18]

(σ2
I )plane = exp

 0.54σ2
p(

1+1.22σ
12
5

p

) 7
6
+

0.509σ2
p(

1+0.69σ
12
5

p

) 5
6

−1 (1.4)

and

(σ2
I )sphere = exp

 0.17σ2
l(

1+0.167σ
12
5

l

) 7
6
+

0.225σ2
l(

1+0.259σ
12
5

l

) 5
6

−1. (1.5)

In order to evaluate the performance of OWC systems, several statistical models have been

proposed to describe the irradiance fluctuation. The lognormal turbulence model has been

studied in [19], [20], [21]. The lognormal distribution is one of the most widely used turbu-

lence models, but it is only applicable for weak turbulence conditions. The Gamma-Gamma

distribution has recently emerged as a useful turbulence model because it provides a good fit

to the experimental measurements of irradiance for both weak and strong turbulence channels

[16]. The Gamma-Gamma turbulence model also has the K-distributed model and negative

exponential model as the special cases. The K-distribution is commonly used to model the

irradiance in strong turbulence channels, and the negative exponential distribution can be used

5



1.3. Thesis Outline and Contributions

to describe the saturated irradiance fluctuations [22].

1.3 Thesis Outline and Contributions

This thesis is arranged into five chapters. Chapter 1 presents a brief background and recent

development of OWC. As the demand for bandwidth and capacity increases, OWC becomes a

promising alternative technology for both indoor and outdoor applications. However, the signal

scintillation introduced by atmospheric turbulence is one of the greatest challenges encountered

in OWC systems. To evaluate the performance of OWC systems, it is imperative to analyze the

performance of BLER over different atmospheric turbulence models.

Chapter 2 provides detailed technical background for the entire thesis. Firstly, we introduce

some basic modulation techniques. Most practical OWC systems are based on the IM/DD

scheme. There are three popular modulation techniques: OOK, PPM, and SIM. However, we

will mainly focus on SIM OWC in the following Chapters. Secondly, we present and classify

four atmospheric turbulence models, namely, lognormal, Gamma-Gamma, K-distributed and

negative exponential turbulence channels. Finally, the basic concepts of block error rate are

introduced.

In Chapter 3, we analyze the BLER performance of different digital modulations over the

Gamma-Gamma family turbulence models. We perform the BLER for noncoherent frequency

shift keying (NCFSK) and DPSK modulations. In terms of binary phase shift keying modula-

tion (BPSK), we consider approximation of the Gaussian Q-function in order to simplify the

BLER. We propose to approximate the Gaussian Q-function using a sum of three exponentials

with the trapezoidal rule. The BLER is derived for NCFSK/DPSK over the Gamma-Gamma

turbulence channels using a series approach. A detailed truncation error analysis is also pre-

sented. Finally, we perform the asymptotic error rate analysis to examine the behavior of

BLER.

In Chapter 4, we analyze the performance of BLER of SIM systems over the lognormal tur-

6



1.3. Thesis Outline and Contributions

bulence models assuming NCFSK/DPSK and BPSK modulations. Gauss-Laguerre quadrature

approach is used to approximate the BLER because it is challenging to derive the closed-form

expression of BLER.

Chapter 5 summarizes the whole thesis and lists our contributions in this work. In addition,

future work related to our current research is suggested.

7



Chapter 2

Modulation Techniques and Channel

Modeling

In this Chapter, several digital modulation techniques for outdoor OWC applications are in-

troduced first. The SIM will be described in great details. Several important turbulence channel

models used to describe the probability density function (PDF) of the irradiance fluctuation are

discussed. Finally, we will introduce basic concept of BLER, which will be employed as the

performance metric for this thesis.

2.1 Modulation Techniques

A number of digital modulation techniques have been proposed for OWC over atmospheric

turbulence channels. These modulation techniques include OOK, PPM and SIM. When choos-

ing a modulation scheme, power efficiency, bandwidth efficiency, and design complexity of

both the transmitter and the receiver are all important factors to consider. OOK is the most

commonly used modulation technique for OWC systems due to its simplicity of design and im-

plementation. However, an OOK with optimum error rate performance requires time-varying

adaptive thresholds, and thus perfect knowledge of instantaneous channel state information is

required. The PPM has advantage over the OOK in a sense that the PPM does not require

adaptive detection thresholds. Moreover, the PPM has enhanced power efficiency compared

to the OOK. The drawback is that the PPM has a complex transceiver design due to tight

synchronization requirements and has higher bandwidth requirements. Recently, the SIM was

8



2.1. Modulation Techniques

introduced as an attractive alternative to the OOK because it does not require adaptive detec-

tion thresholds, and the SIM has lower bandwidth requirement than the PPM. For this reason,

in this thesis, we will mainly focus on the SIM as the digital modulation for our OWC study.

2.1.1 On-Off Keying

OOK is a widely used digital modulation technique for OWC with IM/DD due to its sim-

plicity. The transmission of an optical pulse which occupies part of or entire bit duration

represents a data bit “1”, while the absence of an optical pulse represents a data bit “0”. The

OOK includes return-to-zero (RZ) and non-return-to-zero (NRZ) pulse formats. For the RZ

scheme, a pulse with duration which only occupies a part of the bit duration is transmitted

to represent “1”; however, the pulse duration is equal to the bit duration in the NRZ scheme.

The RZ-OOK has improved power efficiency over the NRZ-OOK at the expense of increased

bandwidth [23]. Nevertheless, the NRZ-OOK is used in most commercial OWC systems.

2.1.2 Pulse Position Modulation

The PPM is an alternative digital modulation to the OOK, and it has improved power ef-

ficiency. However, PPM requires higher bandwidth and greater implementation complexity.

One characteristic of the PPM is the elimination of decision threshold dependence on the input

signal power. In PPM, every pulse is used to represent one or more bits of a pulse with constant

power accounting for one slot. The pulse position is determined according to the decimal value

of the log2 M data bits, where M is the cardinality of the symbol set. Therefore, the information

bits are encoded by the pulse position for each symbol. In order to demodulate the information

bits, both slot and symbol synchronization are required at the PPM receiver. However, tight

timing synchronization requirement is one key drawback of the PPM. Because the data detec-

tion is based on the exact pulse position, timing jitters can significantly degrade its error rate

performance. The PPM is mainly deployed in intersatellite OWC systems [10].

9



2.1. Modulation Techniques

2.1.3 Subcarrier Intensity Modulation

In SIM systems, an RF signal s(t), which is pre-modulated with the data source and prop-

erly biased, is used to modulate the irradiance of a continuous wave optical beam at the trans-

mitter laser. We normalize the power of s(t) to be unity. At the receiver, the photodetector

converts the received optical intensity to an electrical signal through direct detection. The

photocurrent at the output of photodetector can be written as [24]

i(t) = RI(t)A[1+ξ s(t)]+n(t) = RI(t)A[1+ξ cos(ωt +ϕ)]+n(t) (2.1)

where R is the photodetector responsivity, I(t) is assumed to be a stationary random process

describing the irradiance fluctuation caused by the atmospheric turbulence, A is the photode-

tector area, ω represents the frequency of the RF subcarrier signal, the phase ϕ ∈ (0,π) denotes

the bit information, n(t) is an additive white Gaussian noise (AWGN) process due to thermal

and/or background noise, and ξ is the modulation index satisfying −1 < ξ s(t)< 1 in order to

avoid overmodulation. Assuming the sample time is t0, then the sample I(t0) at the time instant

t = t0 is a random variable (RV) I. The instantaneous signal-to-noise ratio (SNR) at the input

of the electrical demodulator is given by [25]

γ =
Instantaneous signal power

Total noise power
=

(RAξ )2

σ2 I2 =
(RAξ )2

σ2
s +σ2

b +σ2
t

I2 (2.2)

where σ2 is the total noise variance, σ2
s denotes the variance of the shot noise induced by the

intended optical signal, σ2
b represents the variance of the ambient light induced shot noise,

and σ2
t stands for the variance of the thermal noise. For a practical receiver using a p-i-n

photodiode, the ambient induced shot noise and the thermal noise dominate the performance

of the receiver, i.e., σ2
b ≫ σ2

s and σ2
t ≫ σ2

s . Therefore, we can neglect the signal induced shot

10



2.2. The Atmospheric Turbulence Models

noise component. Then the instantaneous SNR becomes [24, eq. (4)]

γ =
(RAξ )2

σ2
b +σ2

t
I2 =

(RAξ )2

2∆ f (qRIb +2kbTk/RL)
I2 (2.3)

where Ib is the background light irradiance, q is the electronic charge, ∆ f is the noise equivalent

bandwidth of the photodetector, kb is the Boltzmann’s constant, Tk is the temperature in Kelvin,

and RL is the load resistance.

An alternative definition of SNR is the electrical SNR, which is defined as [15]

γe =
(RAξ )2

σ2 I2 = γ̄I2 (2.4)

where γ̄ is the average electrical SNR under the assumption of E[I] = 1.

2.2 The Atmospheric Turbulence Models

In this section, we will introduce some background knowledge of several widely used at-

mospheric turbulence models. For outdoor OWC, several statistical models have been pro-

posed to describe the irradiance fluctuation. The lognormal is widely used to describe the

weak turbulence channels [26]. The Gamma-Gamma distribution has recently emerged as a

useful turbulence model because it provides a good fit to the experimental measurements of

irradiance for both weak and strong turbulence channels [16]. As the special cases of the

Gamma-Gamma model, the K-distribution is commonly used to model the irradiance in strong

turbulence regimes, and the negative exponential distribution can be used to describe the satu-

ration regimes [22].

2.2.1 Lognormal Turbulence Model

The optical irradiance can be modeled as the lognormal distribution when the optical signal

is propagated through an atmospheric turbulence channel with several hundred meters link

11



2.2. The Atmospheric Turbulence Models

distance in a clear sky environment [19]. For a lognormal turbulence channel, the optical

irradiance I is given by

I = k exp(X), k > 0 (2.5)

where k is a positive scalar, and X is a Gaussian RV with mean µ and variance σ2. In OWC,

the scintillation level σ has typical values between 0.02 and 0.5 [5], and it can never be greater

than 0.75 [27]. The lognormal RV I has the PDF [20]

fL(I) =
1√

2πσ I
exp
[
−(ln I −µ)2

2σ2

]
, I > 0 (2.6)

where µ is a log-scale parameter defined as µ = logk. The nth moment of the lognormal PDF

is E[In] = knen2σ2/2 [7]. With a normalized mean, i.e., E[I] = 1, one has k = exp(−σ2/2), and

the PDF of I can be re-written as

fL(I) =
1√

2πσ I
exp
[
−(ln I +σ2/2)2

2σ2

]
, I > 0. (2.7)

The PDF of inrradiance I is shown in Figure 2.1 for several different values of σ2. From the

definition in (1.3), the scintillation index for lognormal distributed irradiance is

σ2
I =

E[I2]

(E[I])2 −1 = k2en2σ2/2 −1 = exp(σ2)−1. (2.8)
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Figure 2.1: Lognormal probability density function for optical irradiance with variances σ2 =
0.1,0.5,0.8.

2.2.2 Gamma-Gamma Turbulence Model

For a wide range of turbulence conditions (weak to strong), the Gamma-Gamma turbulence

model has recently emerged as a useful turbulence model for OWC applications. Andrews

et al. first proposed this model based on the modulation process that the fluctuation of light

radiation propagating through the turbulent atmosphere is due to the large-scale and small-

scale atmospheric effects [18]. The small-scale contributions to scintillation are according to

the turbulent cells smaller than the Fresnel zone RF =(L/k)1/2 or the coherence radius ρ0 of the

optical wave, whichever is smaller. Here, L is the propagation path length between transmitter

and receiver, k is the optical wave number. On the other hand, the large-scale fluctuations are

generated by turbulent cells larger than that of the first Fresnel zone or the scattering disk L
kρ0

,
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2.2. The Atmospheric Turbulence Models

whichever is larger [16]. The scattering disk is defined by the refractive cell size l at which the

focusing angle θF ≈ l/L is equal to the average diffraction angle θD ≈ 1
kρ0

[28]. The small-scale

cells are assumed to be modulated by the large-scale cells. For Gamma-Gamma distributed

irradiance, the irradiance of the received optical wave is defined as a product of I = IxIy, where

Ix and Iy are two statistically independent random variables, and arise from large-scale and

small-scale turbulent cells, respectively. Both of them obey the Gamma distribution with PDFs

given by [16]

P(Ix) =
α(αIx)

α−1

Γ(α)
exp(−αIx), Ix > 0, α > 0 (2.9)

and

P(Iy) =
β (β Iy)

β−1

Γ(β )
exp(−β Iy), Iy > 0, β > 0 (2.10)

where the positive parameters α and β are, respectively, the effective number of large-scale and

small-scale cells of the scattering environment. By fixing Ix and using a change of variable,

Iy = I/Ix, we obtain the conditional PDF

P(I | Ix) =
β (β I/Ix)

β−1

IxΓ(β )
exp(−β I/Ix), I > 0 (2.11)

in which Ix is the conditional mean value of I. To obtain the unconditional irradiance distribu-

tion, we average (2.11) over the Gamma distribution of (2.9) and obtain the Gamma-Gamma

PDF as

fGG(I) =
∫ ∞

0
P(I | Ix)P(Ix)dIx =

2
Γ(α)Γ(β )

(αβ )
α+β

2 I
α+β

2 −1Kα−β (2
√

αβ I), I > 0 (2.12)

where Γ(·) denotes the Gamma function, and Kα−β (·) is the modified Bessel function of the

second kind of order α −β . Assuming plane wave propagation, α and β can be defined as [15]

14
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α =

exp

 0.49σ2
p(

1+1.11σ12/5
p

)7/6

−1


−1

(2.13)

and

β =

exp

 0.51σ2
p(

1+0.69σ12/5
p

)5/6

−1


−1

. (2.14)

On the other hand, if we assume spherical wave propagation, the parameters α and β are given

by [6], [15]

α =

exp

 0.49σ2
l(

1+0.18d2 +0.56σ12/5
l

)7/6

−1


−1

(2.15)

and

β =

exp

 0.51σ2
l

(
1+0.69σ12/5

l

)−5/6

(
1+0.9d2 +0.62d2σ12/5

l

)5/6

−1


−1

(2.16)

where d = (kD2/4L)1/2, D is the diameter of the receiver collecting lens aperture. Under the

assumption of plane wave and negligible inner scale, the inequality α > β always holds for

OWC applications [29]. Without loss of generality, this inequality condition is assumed to be

true in this work. From the Gamma-Gamma PDF in (2.12) , we find

E[I2] = (1+1/α)(1+1/β ). (2.17)

15



2.2. The Atmospheric Turbulence Models

According to the PDFs of Ix and Iy in (2.9) and (2.10), the second moment of the irradiance I

is

E[I2] = E[I2
x ]E[I

2
y ] = (1+σ2

x )(1+σ2
y ) (2.18)

where σ2
x and σ2

y represent the normalized variances of Ix and Iy, respectively. Normalizing

E[I] = 1, using (1.3) and (2.18), the scintillation index becomes

σ2
I = (1+σ2

x )(1+σ2
y )−1 = σ2

x +σ2
y +σ2

x σ2
y . (2.19)

From (2.17) and (2.18), we use the following relationships

α =
1

σ2
x
, β =

1
σ2

y
(2.20)

to express the scintillation index as

σ2
I =

1
α
+

1
β
+

1
αβ

. (2.21)

The PDF in (2.12) can be alternatively expressed in series with the aid of a series expansion

of the modified Bessel function [30, eq. (6)]

Kν(x) =
π

2sin(πν)

∞

∑
p=0

[
(x/2)2p−ν

Γ(p−ν +1)p!
− (x/2)2p+ν

Γ(p+ν +1)p!

]
(2.22)

where ν /∈ Z (Z is the set integers) and |x|< ∞. Substituting (2.22) into (2.12), we have

fGG(I) =
∞

∑
p=0

[
ap(α,β )Ip+β−1 +ap(β ,α)Ip+α−1

]
, I > 0 (2.23)
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where (α −β ) /∈ Z and

ap(x,y) =
π(xy)p+y

sin(π(x− y))Γ(x)Γ(y)Γ(p− x+ y+1)p!
. (2.24)

Using the Euler reflective identity π/sin(π(x− y)) = Γ(x− y)Γ(1− x+ y) [31, eq. 8.334 (3)],

we can rewrite (2.24) as

ap(x,y) =
(xy)p+yΓ(x− y)Γ(1− x+ y)
Γ(x)Γ(y)Γ(p− x+ y+1)p!

. (2.25)

A plot of the Gamma-Gamma PDF is given in Fig. 2.2 for three representative turbulence

conditions: α = 11.7,β = 10.1 (weak), α = 4.1,β = 1.4 (moderate), and α = 4.6,β = 1.2

(strong), where the corresponding Rytov variance σ2
p are 0.2, 3, and 5, respectively. It can

be shown that the distribution spreads out more when the turbulence increases from weak to

strong, which implies an increase in the range of possible irradiance values.

2.2.3 K-distributed Turbulence Model

The K-distributed turbulence channel is another useful turbulence model describing irra-

diance fluctuations in strong turbulence conditions [18], [32], [33]. In OWC systems, if the

normalized scintillation index is confined to the range (2,3) or the propagation distance is ap-

proximately 1km, the resulting turbulence channel is characterized by a K-distributed model

[34], which is a special case of the Gamma-Gamma model when β = 1. The PDF of a K-

distributed RV I is [24, eq. (8)]

fK(I) =
2

Γ(α)
α

α+1
2 I

α−1
2 Kα−1(2

√
αI), I > 0. (2.26)
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Figure 2.2: Gamma-Gamma probability density function for weak, moderate and strong turbu-
lence regimes.
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Alternatively, it can be written in a series form by letting β = 1 in (2.23) as

fK(I) =
∞

∑
p=0

[
ap(α ,1)Ip +ap(1,α)Ip+α−1] , I > 0. (2.27)

The typical values of the parameter α lie within (1,2) [35]. It is easily shown that the resulting

scintillation index is

σ2
I =

2
α
+1. (2.28)

2.2.4 Negative Exponential Turbulence Model

The negative exponential atmospheric turbulence channel is used to describe the limiting

case of saturated scintillation [16], [13]. The PDF of the irradiance is given by

fNE(I) =
1
I0

exp
(
− I

I0

)
, I > 0 (2.29)

where E[I] = I0 is the mean received irradiance, and it is assumed to be unity. Thus we have

fNE(I) = exp(−I), I > 0. (2.30)

We will now show the negative exponential model is a special case of the K-distributed model.

In the K-distributed turbulence model, the irradiance I can be considered as a product of two

statistically independent RVs, I =UV , where U and V follow the exponential distribution and

the Gamma distribution, respectively [14],[36]. Therefore, we have

fU(u) = exp(−u), u > 0 (2.31)
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2.2. The Atmospheric Turbulence Models

and

fV (v) =
ααvα−1

Γ(α)
exp(−αv), v > 0 (2.32)

where α is the effective number of discrete refractive scatterers. By first fixing V = v and

writing U = I/v, we obtain the conditional PDF of RV I as

fK(I | v) =
(

1
v

)
fU

(
I
v

)
=

(
1
v

)
exp
(
− I

v

)
(2.33)

where v is the conditional mean value of I. When the parameter α approaches ∞, the PDF of

Gamma RV given in (2.32) converges to the Dirac delta function located at 1, i.e.,

lim
α→∞

fV (v) = δ (v−1). (2.34)

Therefore, the PDF of K-distributed model can be written as

lim
α→∞

fK(I) = lim
α→∞

∫ ∞

0

(
1
v

)
exp
(
− I

v

)
fV (v)dv

=
∫ ∞

0

(
1
v

)
exp
(
− I

v

)
δ (v−1)dv

=exp(−I), I > 0.

(2.35)

The negative exponential PDF is shown in Fig. 2.3 for different values of I0.
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Figure 2.3: Negative exponential probability density function for I0 = 0.5,1,2.

2.3 Probability of Block Error Rate

In OWC, the turbulence fading channel typically changes slowly. Despite the received

optical intensity suffers from random fluctation, the coherence time of atmospheric turbulence

channels is typically on the order of 1 msec, while the data rate of OWC systems can be

on the order of Gbps [37]. Here, the channel coherence time is the time duration in which

the channel can be considered as constant. As a result, the same channel fading coefficient

will affect a large block of data bits. Therefore, the bit-errors will have dependance, i.e., the

slow turbulence fading channel has memory. The traditional BER is inadequate to assess the

performance of such system, and BLER is a more meaningful performance metric.

For a nonfading channel, the bit errors are independent and identically distributed, and the
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2.3. Probability of Block Error Rate

errors in a block of N bits are binomially distributed. We denote P(M,N) by the probability of

block error rate or simply the block error, and it is defined as the probability of having more

than M bit errors within a block of N bits. Thus, P(M,N) is calculated by

P(M,N) =
N

∑
m=M+1

(
N
m

)
pm(1− p)N−m (2.36)

where p is the probability of bit error.

Block error rate has several important applications. For examples, if a simple automatic

repeat request system is used, the system performance is determined by the probability of

occurrence of one or more bit errors in a block, i.e., P(0,N). On the other hand, if an error-

correction code is to be employed to correct up to M errors in each block of N bits, the system

performance is governed by P(M,N). In the special case when we set both M and N equal to 1,

block error rate becomes the BER. Therefore, BLER is a generalized performance metric that

is more suitable for slowly changing turbulence-induced fading channels.

In RF wireless communication literature, block error rate was studied for slow Rayleigh

fading [38], and for slow Rayleigh fading with diversity reception [39]. Both works focused

on noncoherent binary signalings, and did not treat the block error rate of binary phase shift

keying. Despite most atmospheric fading channels are slowly changing, to our best knowl-

edge, block error rate performance has not been studied for OWC systems in slow atmospheric

turbulence channels.
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Chapter 3

BLER Analysis for Gamma-Gamma

Family Turbulence Models

In this Chapter, the block error performance of SIM OWC systems over the Gamma-

Gamma family turbulence models will be analyzed. We compare four sum of exponentials

approximations to the Gaussian Q-function, and choose the most suitable one to evaluate the

average block error rate of SIM using BPSK modulation. The asymptotic error rate is presented

to examine the behavior of block error rate in high SNR regimes.

The average block error rate for SIM over a slow fading channel can be written as

P(M,N) =
∫ ∞

0
P(M,N;γ) f (γ)dγ (3.1)

where P(M,N;γ) is the conditional block error probability, and f (γ) denotes the PDF of the in-

stantaneous SNR. Applying γ = γ̄I2 to (2.23), (2.27) and (2.30), the PDFs of the instantaneous

SNR of the Gamma-Gamma, K-distributed and negative exponential channels can be obtained,

respectively, as

fGG(γ) =
1

2
√

γγ̄

∞

∑
p=0

ap(α ,β )
(

γ
γ̄

) p+β−1
2

+ap(β ,α)

(
γ
γ̄

) p+α−1
2

 (3.2)

and

fK(γ) =
1

2
√

γγ̄

∞

∑
p=0

[
ap(α,1)

(
γ
γ̄

) p
2

+ap(1,α)

(
γ
γ̄

) p+α−1
2
]

(3.3)
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and

fNE(γ) =
1

2
√

γγ̄
exp
(
−
√

γ
γ̄

)
. (3.4)

3.1 BLER for NCFSK/DPSK Modulation

The conditional probability of bit-error for noncoherent modulations is

p(γ) =
1
2

exp(−ηγ) (3.5)

where η = 1/2 for NCFSK and η = 1 for DPSK.

For the Gamma-Gamma turbulence channel model, we substitute (2.36), (3.5), (3.2) into

(3.1), and obtain the average block error rate as

Pnc
GG(M,N) =

1
2

N

∑
m=M+1

∞

∑
p=0

(
N
m

)[
ap(α,β )γ̄−( p+β

2 )
∫ ∞

0

(
1
2

e−ηγ
)m(

1− 1
2

e−ηγ
)N−m

×γ
p+β−2

2 dγ +ap(β ,α)γ̄−( p+α
2 )
∫ ∞

0

(
1
2

e−ηγ
)m(

1− 1
2

e−ηγ
)N−m

γ
p+α−2

2 dγ

]
.

(3.6)

Using the binomial expansion formula, we obtain

(
1
2

e−ηγ
)m(

1− 1
2

e−ηγ
)N−m

=
N−m

∑
k=0

(
N −m

k

)
(−1)k

(
1
2

)m+k

e−(m+k)ηγ . (3.7)

Substituting (3.7) into (3.6) and using an integral identity [31, eq. 3.326 (2.10)], which is

∫ ∞

0
xm exp(−βxn)dx =

Γ(r)
nβ r (3.8)
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where r = m+1
n , we solve for the integral

∫ ∞

0

(
1
2

e−ηγ
)m(

1− 1
2

e−ηγ
)N−m

γ
p+x−2

2 dγ =
N−m

∑
k=0

(
N −m

k

)
(−1)k

(
1
2

)m+k

× (η(m+ k))−
p+x

2 Γ
(

p+ x
2

)
.

(3.9)

Applying (3.9) to (3.6), we obtain a series solution to the average block error rate as

Pnc
GG(M,N) =

N

∑
m=M+1

N−m

∑
k=0

∞

∑
p=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k+1 [
ap(α ,β )γ̄−

p+β
2 [η(m+ k)]−

p+β
2

×Γ
(

p+β
2

)
+ap(β ,α)γ̄−

p+α
2 [η(m+ k)]−

p+α
2 Γ
(

p+α
2

)]
.

(3.10)

The analytical result obtained in (3.10) is new, and it can be used to compute the block error

rate of SIM systems employing noncoherent modulations over the Gamma-Gamma turbulence

channels. The series solution in (3.10) is a converging series and a detailed proof is given in

Appendix A.

Using (3.10), one can straightforwardly obtain the average block error rate over the K-

distributed turbulence model by setting β = 1 as

Pnc
K (M,N) =

N

∑
m=M+1

N−m

∑
k=0

∞

∑
p=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k+1 [
ap(α,1)γ̄−

p+1
2 [η(m+ k)]−

p+1
2

×Γ
(

p+1
2

)
+ap(1,α)γ̄−

p+α
2 [η(m+ k)]−

p+α
2 Γ
(

p+α
2

)]
.

(3.11)

For the negative exponential turbulence channel model, substituting (2.36) and (3.4) into
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(3.1) and using the binomial expansion formula, we obtain the average block error rate as

Pnc
NE(M,N) =

N

∑
m=M+1

(
N
m

)
1

2
√

γ̄

∫ ∞

0

(
1
2

e−ηγ
)m(

1− 1
2

e−ηγ
)N−m

exp
(
−
√

γ
γ̄

)
γ−

1
2 dγ

=
N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k+1

γ̄−
1
2

×
∫ ∞

0
exp
(
−ηγ(m+ k)−

√
γ
γ̄

)
γ−

1
2 dγ.

(3.12)

We let x =
√γ , then the integral part of (3.12) becomes

∫ ∞

0
exp
(
−ηγ(m+ k)−

√
γ
γ̄

)
γ−

1
2 dγ = 2

∫ ∞

0
exp
(
−η(m+ k)x2 − γ̄−

1
2 x
)

dx. (3.13)

To solve (3.13), using [31, eq. 3.322(2)], i.e.,

∫ ∞

0
exp
(
− x2

4β
− γx

)
dx =

√
πβ exp(βγ2)

[
1−Φ(γ

√
β )
]

(3.14)

we simplify the integral in (3.12) and obtain a series solution for the negative exponential

channel as

Pnc
NE(M,N) =

N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k√ π
ηγ̄(m+ k)

× exp
(

1
4ηγ̄(m+ k)

)
Q

(√
1

2ηγ̄(m+ k)

) (3.15)

where Q(x) =
∫ ∞

x exp(−u2/2)/
√

2π du is the Gaussian Q-function.

3.2 BLER for BPSK Modulation

For coherent BPSK modulation, the conditional bit-error rate is p(γ) = Q(
√

2γ). Substitut-

ing this bit-error rate into (2.36) and using the binomial expansion formula, the average block
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error rate can be written as

Pc(M,N) =
∫ ∞

0

N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
Q(
√

2γ)
)m+k

fγ(γ)dγ . (3.16)

It is analytically challenging to find an exact expression from (3.16) because it involves inte-

gration of the (m+ k)th power of the Gaussian Q-function. Therefore, we consider an approx-

imation of the Gaussian Q-function to further evaluate the average probability of error.

In the wireless communication literature, there exist numerous approximations to the Gaus-

sian Q-function. One analytically tractable approximation is the sum of exponentials approxi-

mation. The infinite sum of exponentials approximation is given by [40]

Q(x) = lim
N→∞

1
N

N

∑
i=1

1
2

e−ãix2
(3.17)

where ãi = (1/2)sin−2 (π(i−1)/(2N −2)), and this approximation is only accurate when

N is asymptotically large. Recently, based on a Prony approximation approach, Loskot and

Beaulieu proposed two new sum of exponentials approximations involving only two terms or

three terms respectively as [40]

Q(x)≈ 0.208e−0.971x2
+0.147e−0.525x2 (3.18)

and

Q(x)≈ 0.168e−0.876x2
+0.144e−0.525x2

+0.002e−0.603x2
. (3.19)

It was shown in [40] that both (3.18) and (3.19) can provide adequate approximation of the

Gaussian Q-function without having a large number of exponential terms. Using an upper

bound of the complementary error function erfc(x) and the trapezoidal rule, Chiani et al. pro-
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posed the following two-term approximation [41]

Q(x)≈ 1
12

exp
(
−1

2
x2
)
+

1
4

exp
(
−2

3
x2
)
. (3.20)

Using a similar approach, we propose the following new sum of three exponentials approxima-

tion of the Q(x) as

Q(x)≈ 5
24

exp
(
−2x2)+ 4

24
exp
(
−11

20
x2
)
+

1
24

exp
(
−1

2
x2
)
. (3.21)

A detailed derivation of (3.20) and (3.21) are given as follows. The complementary error

function is defined as

erfc(x) =
2√
π

∫ ∞

x
e−t2

dt (3.22)

and the Gaussian Q-function can be expressed in terms of the erfc(·) as

Q(x) =
1
2

erfc
(

x√
2

)
. (3.23)

In the following, we will first focus on the approximation of erfc(·). From [42], we have the

following integral of an exponential form for the erfc(x) as

erfc(x) =
2
π

∫ π/2

0
exp
(
− x2

sin2 θ

)
dθ , x ≥ 0. (3.24)

It is observed that exp
(
− x2

sin2 θ

)
is a monotonically increasing function in θ for 0 ≤ θ ≤ π/2.

We can arbitrarily choose N+1 values of θ between 0 and π/2, 0 = θ0 ≤ θ1...≤ θN = π/2, to

obtain the following exponential upper bound as

erfc(x)≤ 2
π

N

∑
i=1

∫ θi

θi−1

exp
(
− x2

sin2 θi

)
dθ . (3.25)
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We choose N = 2 for an arbitrary point θ and use the trapezoidal rule, and obtain

erfc(x)≈ g(x,θ) =
(

1
2
− θ

π

)
exp(−x2)+

1
2

exp
(
− x2

sin2 θ

)
. (3.26)

Parameter θ is chosen to minimize the integral of the relative error over a specified range [0,R],

i.e.,

θopt = argmin
θ

1
R

∫ R

0

|g(x,θ)− erfc(x)|
erfc(x)

dx (3.27)

where the optimum values are chosen in the range from 0 to R= 13 dB [41]. Substituting (3.24)

and (3.26) into (3.27), the optimum value has been calculated numerically to be θopt ≈ π/3,

leading to

erfc(x)≈ g(x,θopt) =
1
6

exp
(
−x2)+ 1

2
exp
(
−4

3
x2
)
. (3.28)

In the case of N = 3, we let θ⃗ = (θ1,θ2)
T . Making a use of the trapezoidal rule, we obtain

erfc(x)≈ g(x, θ⃗) =
θ2

π
exp
(
− x2

sin2 θ1

)
+

(
1
2
− θ1

π

)
exp
(
− x2

sin2 θ2

)
+

(
1
2
− θ2

π

)
exp
(
−x2) .

(3.29)

To determine the optimum value in the same range [0,R], we use the similar approach as in

(3.27), i.e.,

θ⃗ opt = arg min
θ1,θ2

1
R

∫ R

0

∣∣∣g(x, θ⃗)− erfc(x)
∣∣∣

erfc(x)
dx. (3.30)

We substitute (3.24) and (3.29) into (3.30), we find (θ1)opt ≈ π/6 and (θ2)opt ≈ 5π/12. There-
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3.2. BLER for BPSK Modulation

fore, we obtain the following approximation

erfc(x)≈ g(x, θ⃗ opt) =
5

12
exp
(
−4x2)+ 1

3
exp
(
−11

10
x2
)
+

1
12

exp
(
−x2) . (3.31)

From (3.23), we derive the sum of two-term and three-term exponentials approximations of the

Gaussian Q-function as (3.20) and (3.21), respectively.

To assess the accuracy of (3.18)-(3.21), we plot the relative error of these approximations

in Fig. 3.1. Here, the relative error can be given by

e(x) =
Q(x)−appro.Q(x)

Q(x)
(3.32)

where appro.Q(x) is expressed as (3.18), (3.19), (3.20) and (3.21) in different cases. It is

shown from Fig. 3.1 that none of (3.18)-(3.21) can provide a uniform accurate approximation

to Q(x). The Prony approximations in (3.18) and (3.19) can provide better approximation

for a large argument especially when x > 2, while our new approximation in (3.21) is more

accurate for small argument (e.g., x < 1) of Q(x). Since the average error rate performance is

a weighted average of Q(x) with the respect to the fading PDF, the asymptotic large SNR error

rate performance will largely depend on the behavior of the fading channel PDF near its origin

[43]. Therefore, the accuracy of Q(x) with smaller argument will play more significant role in

the small error rate regime. For this reason, we will choose (3.21) to obtain a more accurate

estimation of the block error rate for coherent BPSK signaling.
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Figure 3.1: The relative error for various sum of exponentials approximations of the Gaussian
Q-function.

Now substituting (3.21) into the Q-function of (3.16) and using the multinomial expansion

formula, we have

(
5

24
e−4γ +

1
6

e−11γ/10 +
1

24
e−γ
)m+k

=
m+k

∑
t=0

t

∑
l=0

(
m+ k

t

)(
t
l

)(
1

24

)m+k−t( 5
24

)t−l(1
6

)l

× exp
(
−γ
(

m+ k+3t − 29
10

l
))

.

(3.33)

Finally, substituting (3.2) and (3.33) into (3.16) and using [31, eq. 3.381(4)], we obtain a

simplified series solution to the average block error rate of coherent BPSK in the Gamma-
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3.2. BLER for BPSK Modulation

Gamma turbulence channels as

Pc
GG(M,N)≈

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

∞

∑
p=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)k 1

2

(
1

24

)m+k−t

×
(

5
24

)t−l(1
6

)l
ap(α ,β )γ̄−

p+β
2

(
m+ k+3t − 29

10
l
)− p+β

2

Γ
(

p+β
2

)

+ap(β ,α)γ̄−
p+α

2

(
m+ k+3t − 29

10
l
)− p+α

2

Γ
(

p+α
2

)]
.

(3.34)

Similarly, we can obtain the average block error rate of coherent BPSK in K-distributed

and negative exponential turbulence channels, respectively, as

Pc
K(M,N)≈

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

∞

∑
p=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)k 1

2

(
1

24

)m+k−t

×
(

5
24

)t−l(1
6

)l
[

ap(α ,1)γ̄−
p+1

2

(
m+ k+3t − 29

10
l
)− p+1

2

Γ
(

p+1
2

)

+ap(1,α)γ̄−
p+α

2

(
m+ k+3t − 29

10
l
)− p+α

2

Γ
(

p+α
2

)]
(3.35)

and

Pc
NE(M,N)≈

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)kγ̄−

1
2

(
1

24

)m+k−t

×
(

5
24

)t−l(1
6

)l√ π
m+ k+3t −29l/10

exp
(

1
4γ̄(m+ k+3t −29l/10)

)
×Q

(√
1

2γ̄(m+ k+3t −29l/10)

)
.

(3.36)

32



3.3. Asymptotic Error Rate Analysis

3.3 Asymptotic Error Rate Analysis

From the truncation error analysis (see Appendix A), we note that our series solution is

increasingly accurate in high SNR regimes. Therefore, we can perform asymptotic error rate

analysis to examine the behavior of error rate in high SNR regimes. Assuming α > β > 0,

so the term γ̄−
p+α

2 decreases faster than the term γ̄−
p+β

2 in (3.10) for the same p value as the

average SNR γ̄ increases. Consequently, when γ̄ approaches ∞, the second part of (3.10) can

be neglected. Then, the block error rate of NCFSK/DPSK modulations in high SNR regimes

can be approximated by

Pnc
GG,asym =

N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k+1

a0(α ,β )γ̄−
β
2 [η(m+ k)]−

β
2 Γ
(

β
2

)
.

(3.37)

Alternatively, the asymptotic BLER in (3.37) can be obtained by a Mellin transformation of

the conditional BLER and the derivation is presented in Appendix B.

Similarly, the second part of (3.34) can be neglected as γ̄ approaches ∞; therefore, the

asymptotic block error rate of BPSK modulation can be expressed as

Pc
GG,asym =

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)k 1

2

(
1

24

)m+k−t

×
(

5
24

)t−l(1
6

)l

a0(α,β )γ̄−
β
2

(
m+ k+3t − 29

10
l
)− β

2

Γ
(

β
2

)
.

(3.38)

From (3.37) and (3.38), we observe the diversity order of both systems is β
2 or 1

2 min (α ,β ),

which is the same diversity order as the corresponding BER plots.

3.4 Numerical Results and Discussions

In this section, we compare the block error rate performance of SIM over different atmo-

spheric turbulence models. The approximate block error rates are obtained by eliminating the
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infinite terms after the first L+ 1 terms in the series solutions. We have chosen L = 60 for

all numerical results. We consider weak (α = 3.78,β = 3.74), moderate (α = 2.5,β = 2.06),

and strong (α = 2.04,β = 1.1) turbulence conditions when describing the Gamma-Gamma

turbulence models. The exact results are calculated by numerical integration using (2.36) and

(2.12).

Figure 3.2 shows the block error rate for NCFSK over several representative block lengths.

We compare the BLER in both fading and nonfading channels. This figure clearly shows

the impact of turbulence fading on the BLER. The performance of block error rate under a

nonfading channel improves rapidly with electrical SNR, while fading can degrade the BLER

performance significantly. We also note a larger block length tends to give higher BLER.

In Fig. 3.3, block error rates are illustrated for NCFSK over the Gamma-Gamma channels

with various turbulence conditions. The results demonstrate excellent agreement between the

exact block error rates and our series solutions. We also observe that the asymptotic block error

rate approaches the exact block error rate faster for strong turbulence condition (α = 2.04,β =

1.10). This is because the asymptotic block error rates are determined only by the smaller

channel parameter β at high SNR level.

In Fig. 3.4, we present block error rates for NCFSK over the K-distributed turbulence chan-

nels with different α values. The results also show excellent agreement between the exact block

error rates and the series solutions with L = 60, where the exact block error rate is calculated by

numerical integration of (2.36) and (2.26). We observe that the slope of K-distributed models

is −1/2 which is determined by β = 1.

Figure 3.5 illustrates block error rates for NCFSK over the negative exponential turbulence

channel. Here, we set α → ∞ and β = 1. The series solution consists of the exponential

function and the Gaussian Q-function, which can simplify the integral of the average block

error rate. From this figure, the results show excellent agreement between the exact block error

rate and the series solution.

Figure 3.6 demonstrates the block error rate of BPSK signalling over the Gamma-Gamma
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Figure 3.2: The block error rate of NCFSK, Pnc
GG(0,N), over an unfaded channel and a faded

Gamma-Gamma channel when α = 2.04,β = 1.10.

channels. Again, our approximate solutions have excellent agreement with the exact block

error rate when we make a use of the three-term approximation of the Gaussian Q-function

in (3.33). As expected, the block error rate performance is better for the weak turbulence

condition. For example, when SNR = 30 dB, the block error rate is at 7 × 10−4 for α =

3.78,β = 3.74, and this BLER degrades to 5×10−2 under a strong turbulence environment for

α = 2.50,β = 2.06.
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Figure 3.3: The block error rate of NCFSK, Pnc
GG(2,53), over the Gamma-Gamma channels

with different turbulence conditions.
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Figure 3.4: The block error rate of NCFSK, Pnc
K (2,53), over the K-distributed channels with

different turbulence conditions.
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Figure 3.5: The block error rate of NCFSK, Pnc
NE(2,53), over the negative exponential turbu-

lence channel.
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Figure 3.6: The block error rate of BPSK signalling, Pc
GG(2,53), over the Gamma-Gamma

channels with different turbulence conditions.
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Chapter 4

BLER Analysis for Lognormal

Turbulence Models

In this Chapter, the block error rate performance will be presented in an atmospheric turbu-

lent channel based on the lognormal model. The NCFSK and DPSK modulated subcarrier will

first be considered, and this will be followed by the BPSK modulation.

To analyze the average block error rate over the lognormal turbulence model, we need to

use the similar approach as to that used in Gamma-Gamma family turbulence models to obtain

the PDF of the instantaneous SNR. We have known that the PDF of the optical irradiance I for

the lognormal turbulence channel can be expressed as (2.7). Applying γ = γ̄I2 into (2.7), we

obtain the PDF of the instantaneous SNR for lognormal turbulence model as

fL(γ) =
1

2
√

2πσγ
exp

−

(
ln
(

γ
γ̄

)
+σ2

)2

8σ2

 (4.1)

which is another lognormal PDF. Since the exact BLER analysis involving the lognormal tur-

bulence channel is analytically intractable, we propose to use the Gauss-Laguerre quadrature

integration method to obtain an accurate estimation of BLER.
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4.1 BLER for NCFSK/DPSK Modulation

In Chapter 3, we have the average block error rate expression in (3.1). Substituting (3.7)

into (3.1), the block error rate over lognormal turbulence model can be written as

Pnc
L (M,N) =

N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k ∫ ∞

0
exp(−γη(m+ k)) fL(γ)dγ .

(4.2)

To solve the integral in (4.2), a general solution for numerical calculation of the integrals in the

form of
∫ ∞

0 e−x f (x)dx is presented in [44, eq. 25.4.45], which is

∫ ∞

0
e−x f (x)dx =

n

∑
i=1

wi f (xi)+Rn (4.3)

where n is the number of sample points used for approximation. The xi is the ith zero of La-

guerre polynomials Ln(x), wi =
xi

(n+1)2[Ln+1(xi)]
2 is the associated weights, and Rn is the reminder

given by (n!)2

(2n)! f 2n(ξ ). Note that f 2n(ξ ) is the (2n)th derivative of f , and ξ is some number be-

tween 0 and ∞. In general, the precise value of Rn is unknown, and the value is small enough

so that it can be ignored. Thus the Gauss-Laguerre quadrature integral can be given by

∫ ∞

0
e−x f (x)dx ≈

n

∑
i=1

wi f (xi). (4.4)

Letting x = γ [η(m+ k)], we can rewrite the integral part of (4.2) as

∫ ∞

0
e−γη(m+k) fL(γ)dγ =

1
η(m+ k)

∫ ∞

0
e−x f (x)dx (4.5)

where f (x) = η(m+k)√
8πσx

exp

(
−
[
ln
(

x
ηγ̄(m+k)

)
+σ2

]2

8σ2

)
according to (4.1).
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Applying (4.4) to the right part of (4.5), we obtain

∫ ∞

0
e−x f (x)dx ≈

n

∑
i=1

wi√
8πσxi

exp

−

[
ln
(

xi
ηγ̄(m+k)

)
+σ2

]2

8σ2

 . (4.6)

After substituting (4.6) into (4.2), we can approximate the block error rate of NCFSK/DPSK

as

Pnc
L (M,N)≈

N

∑
m=M+1

N−m

∑
k=0

n

∑
i=1

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k wi√
8πσxi

× exp

−

[
ln
(

xi
ηγ̄(m+k)

)
+σ2

]2

8σ2

 .

(4.7)

To calculate the above expression, Abramowitz et al. [44, table 25.9] provides a table of

abscissas and weights up to n = 20. Therefore, we can easily obtain an approximation of the

block error rate for NCFSK/DPSK modulation over the lognormal turbulence channels.

4.2 BLER for BPSK Modulation

To obtain the block error rate of coherent BPSK over the lognormal turbulence channels,

we can also use the Gauss-Laguerre quaduature integration method. Substituting (3.33) into

the Q-function of (3.16), we obtain the block error rate as

Pc
L(M,N) =

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)k

(
1

24

)m+k−t( 5
24

)t−l

×
(

1
6

)l ∫ ∞

0
exp
(
−γ
(

m+ k+3t − 29
10

l
))

fL(γ)dγ.

(4.8)
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Letting x = γ(m+ k+3t −29l/10) and using (4.4), we have

∫ ∞

0
exp
(
−γ
(

m+ k+3t − 29
10

l
))

fL(γ)dγ

=
∫ ∞

0
e−x f (x)dx

≈
n

∑
i=1

wi√
8πσxi

exp

−

[
ln
(

xi
γ̄(m+k+3t−29l/10)

)
+σ2

]2

8σ2


(4.9)

where f (x) = 1√
8πσx

exp

(
−
[
ln
(

x
γ̄(m+k+3t−29l/10)

)
+σ2

]2

8σ2

)
. Substituting (4.9) into (4.8), we obtain

the following approximate block error rate of BPSK signaling as

Pc
L(M,N)≈

N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

n

∑
i=1

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
(−1)k

(
1

24

)m+k−t( 5
24

)t−l

×
(

1
6

)l wi√
8πσxi

exp

−

[
ln
(

xi
γ̄(m+k+3t−29l/10)

)
+σ2

]2

8σ2

 .

(4.10)

4.3 Numerical Results and Discussions

In this section, the block error rate based on a Gauss-Laguerre quadrature approximation

is plotted in Fig. 4.1 for the lognormal turbulence channel with σ = 0.2. Here we use the 5th-

order Gauss-Laguerre approximation to achieve an accurate estimation of the exact block error

rate for both NCFSK and BPSK modulations. Our approximation solutions agree well with the

exact block error rates over a wide range of SNR values, where the exact result is obtained by

numerical integrations of (2.36) and (4.1).
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Figure 4.1: The block error rate of NCFSK and BPSK, Pnc
L (2,53) and Pc

L(2,53) over the log-
normal channel with σ = 0.2 using a Laguerre polynomial of order n = 5.
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Chapter 5

Conclusions

In this Chapter, we first summarize the contributions of this work, and then propose some

future work related to this thesis.

5.1 Summary of Contributions

It is known that OOK is the most widely used signal modulation technique for OWC sys-

tems with IM/DD. However, the SIM is an attractive alternative to the OOK for data com-

munication over atmospheric turbulence channels. Therefore, in this thesis, we have mainly

analyzed the error rate performance of SIM based OWC systems. The BLER is a meaningful

performance metric for OWC systems because the atmospheric turbulence channels typically

change slowly, and the traditional BER is inadequate in evaluating the performance of such sys-

tems. The BLER performance has been studied extensively for SIM OWC systems employing

various modulations over different atmospheric turbulence channels.

In Chapter 3, we have applied the PDF of the instantaneous SNR to three turbulence models

(including the Gamma-Gamma, K-distributed, and negative exponential turbulence channels),

and have derived the average block error rate for SIM using noncoherent binary modulations

and coherent BPSK. For the BPSK modulation, we have proposed a new three-term approxi-

mation of the Gaussian Q-function to evaluate the average BLER of the SIM systems.

In Chapter 4, we have analyzed the BLER performance for NCFSK and BPSK modula-

tions over the lognormal turubulence channels. Since the exact BLER analysis is analytically

intractable, we have adopted the Gauss-Laguerre quadrature method to achieve an accurate
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approximation of the exact BLER over the lognormal turbulence channels.

5.2 Future work

The Gaussian Q-function plays an important role in the performance analysis of digital

communication systems. As shown in this thesis, it is difficult to obtain a closed-form ex-

pression of BLER for SIM-BPSK system because there exists no accurate approximation of

high order Gaussian Q-function. The problem remains to find a highly accurate approximation

of the Gaussian Q-function for a wide range of argument values. Such an improved approx-

imation will facilitate the development of analytical expressions for the average block error

probabilities.

Efficient numerical methods and infinite series solutions have been proposed for the cal-

culation of the Gaussian Q-function [45]; however, these approximations are mathematically

intractable. Recently, several new approximations of the Gaussian Q-function have been pro-

posed in [41], [46]. A simple and useful approximation which involves the sum of two expo-

nential functions was presented in [41]. These approximations were used to solve the problem

of evaluating the average symbol error rate in fading channels. However, such approximation

is not appropriate for small arguments of the Gaussian Q-function. Two approximations of the

Gaussian Q-function were presented in [46] based on the geometric means of the upper bounds

and the lower bounds. The first approximation is highly accurate but its mathematical form is

intractable. The second one is simple but it does not guarantee sufficient accuracy.

In this thesis, we have compared four approximations of the Gaussian Q-function, while

none of these approximations can provide a uniform of accuracy for all values of the Gaussian

Q-function. Therefore, one possible future research topic is to develop novel, uniformly accu-

rate, and tractable approximations to the high order Gaussian Q-function, and apply these new

approximations to study the BLER for coherent modulations.
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Appendices

Appendix A

Truncation Error Analysis

The truncation error caused by eliminating the infinite terms after the L+1 terms in (3.10)

can be defined as

εL =
N

∑
m=M+1

N−m

∑
k=0

∞

∑
p=L+1

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k+1 1
p!

(
αβ√

ηγ̄(m+ k)

)p

×
[
up1(α,β )+up1(β ,α)

] (A.1)

where

up1(x,y) =
Γ(x− y)Γ(1− x+ y)

Γ(x)Γ(y)Γ(p− x+ y+1)

(
xy√

ηγ̄(m+ k)

)y

. (A.2)

Using the Taylor series expansion of exponential function, we can simplify the summation term

in (A.1) to be

∞

∑
p=L+1

1
p!

(
αβ√

ηγ̄(m+ k)

)p

= exp

(
αβ√

ηγ̄(m+ k)

)
. (A.3)

We then obtain an upper bound of the truncation error of BLER employing NCFSK in (3.10)

as

εL ≤
N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)(
1
2

)m+k+1

max
p>L

[up1(α ,β )+up1(β ,α)]exp

(
αβ√

ηγ̄(m+ k)

)
.

(A.4)
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Appendix A. Truncation Error Analysis

After examing the first term in (A.2), we find that up1(α ,β ) or up1(β ,α) approaches zero

as p tends to infinite. Therefore, the truncation error εL diminishes with increasing index p.

Similarly, we can obtain an upper bound of the truncation error for BLER employing BPSK in

(3.34) as

εL ≤
N

∑
m=M+1

N−m

∑
k=0

m+k

∑
t=0

t

∑
l=0

(
N
m

)(
N −m

k

)(
m+ k

t

)(
t
l

)
1
2

(
1

24

)m+k−t( 5
24

)t−l(1
6

)l

×max
p>L

[up2(α ,β )+up2(β ,α)]exp

 αβ√
γ̄(m+ k+3t − 29

10 l)

 (A.5)

where

up2(x,y) =
Γ(x− y)Γ(1− x+ y)

Γ(x)Γ(y)Γ(p− x+ y+1)

 xy√
γ̄(m+ k+3t − 29

10 l)

y

. (A.6)
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Appendix B

Asymptotic BLER Using Mellin

Transform

An alternative method to obtain the block error rate of NCFSK/DPSK in high SNR regimes

is to use the Mellin transform of the conditional BLER. Recall the PDF of the optical irradiance

I is given by (2.23). Letting Y = I2, the PDF of Y is

fY (y) =
1
2

∞

∑
p=0

[
ap(α,β )y

p+β−2
2 +ap(β ,α)y

p+α−2
2

]
. (B.1)

The instantaneous SNR is γ = γ̄Y . The PDF fY (y) near the origin (i.e., y → 0+) can be approx-

imated by

fY (y) = ayt +o(yt+ε) (B.2)

where ε > 0, and a is a positive constant. The parameter t represents the order of smoothness

of fY (y) at the origin, and both a and t can be determined by the PDF fY (y).

Assuming β < α , as y → 0+, we can neglect the second term of (B.1) and approximate

fY (y) as

fY (y)≈
1
2

a0(α,β )y
β−2

2 . (B.3)

Comparing (B.3) with (B.2), we obtain a = 1
2a0(α,β ) and t = β−2

2 .
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Appendix B. Asymptotic BLER Using Mellin Transform

The Mellin transform of the conditional block error rate in (2.36) can be written as

H(s) =
N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k ∫ ∞

0
xs−1e−xη(m+k)dx (B.4)

where H(s) is the Mellin transform of h(x), and h(x) is the conditional probability of block

error given by

h(x) =
N

∑
m=M+1

(
N
m

)(
1
2

e−ηx
)m(

1− 1
2

e−ηx
)N−m

. (B.5)

Using [31, eq. 3.381(4)], we can simplify (B.4) as

H(s) =
N

∑
m=M+1

N−m

∑
k=0

(
N
m

)(
N −m

k

)
(−1)k

(
1
2

)m+k [ 1
η(m+ k)

]s

Γ(s). (B.6)

According to Proposition 1 described in [47], the asymptotic block error rate in high SNR

regimes can be approximated by

Pnc
GG,asym ≈ aH(t +1)

γ̄ t+1 =
1
2

a0(α ,β )
H(β

2 )

γ̄
β
2

. (B.7)

Substituting (B.6) into (B.7), we can also obtain (3.37).
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