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Abstract(
Before robot-assisted therapy regimens can be included in clinical practice, one of the major 

challenges to overcome is maintaining the patient’s engagement in the therapy during the lengthy 

functional recovery period. Game designers and psychologists have theorized the mechanics of 

sustaining an individual’s engagement in a task. In a motor learning context, to maintain 

motivation to continue an exercise, one must be kept exercising at one’s desirable difficulty by 

manipulation of the task challenge over the course of treatment. Thus, this work was aimed to 

design a robotic therapy regimen that can automatically adjust the difficulty to motivate users to 

continue with the exercise. The main contributions of this thesis are to develop a method to 

predict the user’s desirable difficulty and validate the effects of adaptively adjusting a robotic 

exercise on the user’s perception of the task. 

The theory of desirable difficulty relies on three main factors: meaningful levels of difficulties, 

knowledge of the user’s challenge preference, and positive effects of exercising a task under the 

desirable difficulty conditions. Studies to develop implementations of the first two factors in the 

context of an upper-limb reaching task were conducted, and investigated the effects of practicing 

this task under the desirable difficulty conditions.  

The first study implemented five error amplification (EA) methods for a reaching task and 

validated that users perceive each with a different challenge level. In the second study, users’ 

physiological and motor performance metrics were collected, as well as self-reports of the user’s 

challenge preference after exercising with each of the EAs. The efficiency of different machine 

learning methods in predicting a user’s challenge preference based on different combinations of 

physiological and motor performance attributes were analyzed. In the third study, the control 

group received EAs in predefined random order while the experimental group received EAs 

based on the predictions of the trained machine learning algorithm. The experimental group 

reported statistically significant higher scores on the metrics that assessed satisfaction, 

attentiveness, and willingness to continue the task. These results support the approach of 

designing a robotic system capable of adjusting exercises to prolong individuals’ engagement in 

stroke therapy. 
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1 Introduction(

1.1 Stroke:(Prevalence(and(Impacts((

A cerebrovascular accident, or stroke, is a localized reduction in blood supply to a region of the 

brain and causes neurons in the affected area to die. Thus, a stroke typically causes loss of brain 

function. Ischemic strokes, which account for 80% of the total incidence, are caused by a 

blockage of vessels from a blood clot and interruption of blood flow. About 20% of strokes are 

caused by the rupture of blood vessels in the brain (hemorrhagic strokes) [1].  The effects of a 

stroke mainly depend on the location and size of the blood flow disturbance. Strokes 

predominantly involve one of the cerebral hemispheres, a condition that can affect one’s ability 

to perform basic functions such as to move, see, remember, speak, reason, read and/or write.  

In North America, approximately 610,000 people experience their first stroke each year [2]. In 

Canada, over 50,000 strokes are reported each year and 300,000 Canadians are living with the 

effects of stroke [1]. Hospital and physician services, lost wages, and decreased 

productivity associated with stroke cost the Canadian economy $3.6 billion per year. The health 

care cost for stroke survivors was estimated $18.8 billion in the United States in 2008, while an 

additional cost of $15.5 billion is associated with the lost productivity and premature mortality 

caused by stroke [3].  

According to the World Health Organization, stroke is the leading cause of disability worldwide, 

with 80% of first time strokes leading to upper-extremity impairment [4]. While a third of this 

population recovers with minor disability, the majority of stroke survivors have moderate to 

severe impairments. Since the majority of daily life activities involve use of one’s upper limbs 

[5], effective rehabilitation for both gross and fine motor movements is crucially needed in order 

to return stroke survivors back to their independent daily lives. 

1.2 Upper(Extremity(Motor(Rehabilitation(After(Stroke(and(Use(of(Robots((

About half of upper limb functional recovery after stroke is spontaneous. Any additional 

recovery can be achieved only from intensive, repetitive therapy over months of time, and by 

stimulating neuroplastic changes in the brain’s motor control pathways. Physical therapy is the 

traditional method of treatment after the first stage of recovery, aiming to improve function in 

impaired individuals.   
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In physical therapy, a form of exercise treatment, a caregiver works one-on-one with a stroke 

survivor (Figure 1.1) with a focus on maximizing movement potential by restoring motor skills 

and passive range of motion. Physiotherapy takes advantage of the brain’s neuroplasticity, the 

brain’s ability to reorganize and rewire neural pathways, with techniques such as massed practice 

of skills and constraint-induced therapy. In massed practice therapy the patient executes 

thousands of repetitions of simple tasks to stimulate neuroplasticity in the brain and initiate the 

brain’s reorganization of motor pathways. However, in constraint-induced therapy the patient’s 

unaffected limb is restrained to prevent compensatory actions and to overcome the learned non-

use of the affected limb. Increased time in therapy, and thus the number of repetitions of 

therapeutic tasks, is correlated with functional recovery [6, 7]. 

 
Figure 1.1: In conventional physiotherapy a care giver works one-on-one with a client to help maintain function. Photo 

credit Jupiterimages/Creatas/Getty Images. 

The risk of having a stroke doubles every 10 years for people older than 55 [1]. The ageing trend 

of the population in developed countries, in addition to increasing the risk factors for stroke, also 

projects a reduction in the ratio of working-age people to elders from 6:1 today to 3:1 in the next 

40 years [8]. To meet the growing need for effective physical therapy regimens, the use of 

robotics to develop unconventional therapies has gained popularity in the past three decades. As 

an example, a 12-week, robot-assisted, upper-limb stroke therapy program was shown to have 

similar cost and efficacy to a conventional program [9].  

Most of the research in the field of robot-assisted rehabilitation has been focused on replicating 

conventional therapy paradigms (e.g., repetitive movement training or massed practice) with 
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robots [10]. The majority of applications in upper-extremity rehabilitation are dedicated to 

recovery of gross motor movement, mainly defined as reaching tasks using the shoulder and 

elbow. A well-known example is MIT-Manus [11] (commercially available as InMotion2; 

Interactive Motion Technologies, Inc., Boston, MA), which uses an active assistive strategy. 

This system provides low-impedance force cues to correct the motion of the patient’s arm, in 

planar, straight-line, point-to-point reaching tasks. 

Recovery of fine motor movement (e.g., finger movement and grasping) also plays a significant 

role in restoring daily life quality and independence of stroke survivors. Interactive Motion 

Technologies introduced InMotion3 as a wrist rehabilitation robot, which uses the same 

neurorehabilitation principles as InMotion2. Studies have demonstrated improvement of wrist 

and finger function using the upper-limb subcomponent of the Fugl-Meyer scale [12]. 

Alongside more conventional rehabilitation paradigms, such as active assistive/resistive 

strategies, bilateral training of the paretic and non-paretic arms is another strategy. The Mirror 

Image Movement Enabler (MIME) system was among the first robotic systems that used this 

approach, guiding the paretic arm to move along the same 3D trajectory, in mirror image to the 

non-paretic arm. A group of subjects training with this system showed larger improvement in the 

proximal movement portion of the Fugl-Meyer test compared with a control group undergoing 

conventional therapy [13]. The MIME system has recently been augmented with the hand-

function-exercise, RiceWrist [14], and is undergoing clinical trials similar to those using the 

inMotion3 system. 

One of the advantages of robotic systems over a human therapist is that robots can be 

programmed to deliver unconventional therapies. These include use of virtual environments and 

gaming interfaces, distortion of visual feedback and augmentation of error via force fields. The 

GENTLE/s system uses a HapticMASTER robot (MOOG FCS Robotics Inc., Nieuw-Vennep, 

The Netherlands) as a means to interact with a virtual environment. Training with this system led 

to improvement of function (measured by upper limb section of Fugl-Meyer scale) in chronic 

stroke subjects [15]. The Driver’s SEAT project incorporated a constraint-induced therapy 

paradigm into a gaming interface (simulation of steering a car) to increase subject motivation 

and promote coordinated bilateral movement in the upper limbs [16].  
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Feedback distortion, a growing unconventional therapy paradigm, refers to the use of 

intentionally inaccurate feedback. In recent studies in the labs of Patton [17, 18] and O’Malley 

[19], subjects were asked to use a robotic manipulator to move a round spot to a visual target 

presented to them on a monitor. Since the robot and the subject’s hand were obscured, the only 

visual feedback was from the moving spot on the monitor. Three target points were placed 

radially from the starting point and subjects were asked to move to a target when it was 

highlighted and then go back to the starting point. In this repetitive movement training in a 

virtual environment, subjects showed faster learning when the position of the point was shown 

further away from the actual position of it by augmenting the initial trajectory error (measured as 

deviation from the straight line between starting point and target). Subjects also showed the 

ability to adapt to a visual distortion (implemented by rotating the subject’s actual hand position 

around the starting point) without a visual error augmentation. This type of training was shown 

to lead to persistent functional changes with hemiparetic post-stroke subjects [17]. A more 

detailed discussion of this kind of training is presented in Chapter 2 of this thesis. 

1.3 Engagement(in(Therapy:(Importance(and(Contributing(Factors(

Therapy by nature is hard work. During therapy exercises, in order to regain motor function, 

patients are required to push themselves beyond their abilities. Therapy regimens are based on 

our understanding of neuroscience and motor learning principles. To stimulate patients’ brain 

neuroplasticity and reorganization of motor pathways, therapy exercises comprise of numerous 

repetitions of simple physical tasks. This necessary repetitive nature of therapy exercises makes 

the hard work of therapy boring, which can negatively affect the patient’s motivation to continue 

therapy [20, 21].  

Motivation of the stroke survivor to continue and stay engaged in therapy exercises is clearly a 

contributing factor to the success of therapy programs. In fact, a qualitative study has shown that 

patients with low motivation believe they do not have the strength to complete exercise tasks, 

which in turn will lead to therapy abandonment [22]. Additionally, depression is a common 

symptom post-stroke and studies have shown that depression negatively affects a patient’s self-

efficacy for sustained therapy [23, 24], emphasizing the need to find ways of improving patients’ 

engagement during rehabilitation exercises. Sustaining motivation and engagement becomes 

even more critical as therapy sessions shift from being therapist-based to robot-based; a therapist 

can observe a patient’s physical and emotional condition and shape the exercise task 
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accordingly, while giving positive and motivating verbal feedback. However, programming this 

into a robot is a difficult challenge. 

To address this issue, robotic therapy research is currently being extended to make it more 

engaging. For example, virtual reality-based interfaces, video games and immersive experiences 

increase the patient’s engagement in the therapy process. This method, also known as implicit 

learning, has been proven to be more effective than the conventional paradigm of explicit 

learning [10, 25].  

By utilizing new neurorehabilitation strategies such as error augmentation, the use of robotics in 

stroke therapy has improved the effectiveness of therapy sessions. Additionally, robot-assisted 

therapy has the potential of increasing task engagement via the use of aesthetics of virtual reality 

environments. However, robotic therapy regimens are still completely dependent on the presence 

of a therapist to set up appropriate exercise protocols based on each patient’s strength, 

performance and emotional state. 

Although therapy exercises are difficult, research in psychology and game design suggests that 

this physical challenge can be used to make therapy more engaging. A large body of research in 

the fields of psychology and game design has been dedicated to the study of the process of 

engagement in a task. This knowledge is widely used in the design of games in order to increase 

gamers’ engagement and satisfaction with games, and thus, sell more copies of each game.  

Csikszentmihalyi’s theory of “flow” explains the mechanics of engagement in a task in addition 

to what makes a task engaging [26]. Flow is defined in positive psychology literature as the 

satisfying feeling of heightened functioning in a task with full concentration to finish it. A task 

that is capable of delivering a flow state has clear goals, as well as a clear feedback system to 

help the person involved in the task with refining his/her perception of the task challenge and 

his/her skill.  

According to Russell’s “Circumplex Model of Affect” [27], every emotional state can be stated 

in a linear combination of arousal (intensity of the feeling, i.e., low or high) and valence (being 

positive or negative) as shown by Figure 1.2. A person in the flow condition experiences a state 

of full attention (high arousal) and joyful immersion (positive valence) in the task at hand. Based 

on this, flow as a positive affective state is the opposite of several negative affective states such 

as anxiety (high arousal, negative valence) and apathy (low arousal, neutral valence). These 
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negative affective states during a task are functions of the task’s challenge level and the level of 

skill of the person involved in the task [28]. For example, individuals involved in a task get 

bored (low arousal, negative valence) when their skill sets are superior to the skills required to 

fulfill the task. In this case, the individual can be moved out of the boredom state and into the 

state of flow by increasing the challenge of the task. This will challenge the person at a desirable 

level, allowing for acquisition of new skills in addition to practice of old skills. 

Guadagnoli and Lee [29] have proposed the “Challenge Point” framework to conceptualize the 

effects of different practice conditions (i.e., task difficulty) from a motor learning point of view. 

By looking at the combination of task difficulty and performance instead of task difficulty and 

skill level, their framework qualitatively defines optimal challenge points. Individuals practicing 

at these optimal challenge points (i.e., an individual’s desirable difficulty) will have the highest 

potential for learning. It can be argued that at these optimal challenge points, the individual is 

properly challenged and will learn new skills with a sustainable level of engagement in the 

practice session. This can be an equivalent to the state of flow. 

 
Figure 1.2: Russell’s “Circumplex Model of Affect” 

1.4 Purpose(and(Overview(of(This(Thesis(
While the main goal of physical therapy is to accelerate stroke survivors’ motor function 

recovery (i.e., motor learning), a therapy regimen cannot be prescribed solely based on a 

patient’s motor abilities; patients’ engagement in therapy also plays a vital role in success of 

stroke rehabilitation programs. According to the flow theory and the challenge point framework, 

practicing at one’s desirable difficulties ensures both learning of new skills and engagement 

during each exercise session. Furthermore, these desirable difficulties are dependent on one’s 
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performance and affective state during that task. Seeing one’s improvement in an engaging task 

will increase one’s self-efficacy with the task, and in the case of stroke therapy, will lead to a 

lower chance of therapy abandonment and faster recovery.  

Implementation of the idea of desirable difficulty relies on two main factors: having an exercise 

with several different difficulty levels, and offering the exercise to individuals at their desirable 

difficulty. One of the advantages of robot-assisted therapies is that parameters of a robotic 

exercise can be easily and quantitatively altered to manipulate exercise challenge. This suggests 

that the idea of desirable difficulties can be fit into robot-assisted therapy regimens. In that case, 

the main challenge will be to enable a robotic system to predict the user’s desirable difficulty 

during exercise. As mentioned before, these desirable difficulties depend on the user’s 

performance and affective state during the task. While robots provide the ability to quantify the 

user’s performance, assessing the user’s affective state requires more effort and can only be done 

indirectly.  

With the well-established literature on the relationship between emotional state and 

physiological signals, in the recent years it has been suggested that the engagement level of 

robotic rehabilitation can be increased by monitoring the patient's physiology during therapy. 

Real-time analysis of physiological signals, such as electrocardiography, respiration rate, skin 

conductance and breathing rate, is one way to characterize different aspects of affect. Kulić and 

Croft developed methods to estimate human affective state in real time using interpretation of 

physiological signals in a two-dimensional valance-arousal representation [30] using Hidden 

Markov Models [31] and a Fuzzy Inference Engine [32]. In a recent study, Pan et al. investigated 

the viability of a physiologically-triggered bookmarking paradigm [33]. In this study, orienting 

responses (derived through monitoring of the subject’s galvanic skin response) to a disruption of 

attention were used to bookmark  electronic media with 84% success, so subjects could resume 

listening to the media after attending to the interruption. Zoghbi et al. developed an explicit 

method of real time affective state reporting [34]. In this method, the subjects were asked to 

express their emotions via an in-house developed hand-held joystick called Affective State 

Reporting Device (ASRD). A more detailed discussion of studies involving affective computing 

using physiological signals is presented in Chapter 3.  

A possible issue with using physiological signals in rehabilitation can be that such signals are 

determined by both a person’s psychological state and physical activity. However, investigations 
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by Munih [35, 36] suggest that physiological signals can reliably describe a person’s 

psychological state even in the presence of physical activity, and thus they can be useful in 

designing a bio-cooperative exercise system.  

A good example of such a system is demonstrated by the work of Liu et al. in using 

psychophysiological signals in a closed-loop exercise system [37]. A robot-based basketball task 

was designed with the speed of the basket’s motion in 3D space (the basket is placed on the 

robot’s end-effector) as the basketball throwing task difficulty.  In this study, the robotic coach 

(i.e., the robot) can change task difficulty based on anxiety (changes aimed to lower the anxiety 

level) or performance (changes aimed to increase the performance level) of the human player. 

This study showed that determining challenge level in a human-robot interaction task based on a 

human’s affective state leads to higher performance improvement compared to setting the 

challenge based only on the person’s performance. 

This thesis investigated the feasibility of implementing the idea of desirable difficulties in a 

robot-assisted motor rehabilitation exercise to improve users’ engagement in the exercise. This 

design process was split into three main steps: 1) design of an effective (i.e., leading to motor 

learning) robotic exercise with meaningful and distinguishable levels of difficulty, 2) 

development of a method to predict the user’s desirable difficulty during the robotic exercise, 

and 3) evaluation of the effects of adjusting the exercise based on the user’s desirable difficulties 

on the user’s perception of the exercise. The results of each step are presented in the following 

chapters. 

Chapter 2 investigates the ways of adding meaningful levels of challenge into a robot-assisted 

reaching task. Mussa-Ivaldi, Patton, and O’Malley [17-19] have investigated the use of error 

augmentation (versus teaching via reducing a patient’s trajectory error in the conventional hand-

over-hand guidance) in a robotic exercise for reaching motion. Their studies have shown that 

practice with error augmentation leads to faster improvements in motor function. Building on 

these findings, in a human user study, this thesis investigated the possibility of using different 

levels of error amplification (EA) as different difficulty levels of reaching motion exercise (i.e., 

EAs as effective and distinguishable difficulty levels). The results, presented in Chapter 2, 

showed that while EAs are an effective way of improving the speed of motor adaptation, study 

participants reported different levels of perceived challenge for each EA level. 
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Chapter 3 presents the development of a method to predict the direction of change to reach a 

user’s desirable difficulty during the robot-assisted reaching exercise. Participants’ physiological 

data were collected and their motor performance during reaching exercise with different levels of 

EA was calculated. After practicing with each EA, participants reported the direction of change 

to reach their desirable level of difficulty (i.e., whether they want an easier or a harder next trial). 

The efficiency of three different machine learning methods were investigated to be able to 

predict a user’s challenge preference based on different combinations of physiological data and 

motor performance attributes. The choice to include physiological data in this process was 

inspired by Liu’s robotic basketball study [37] (similar to Liu’s study, in the studies presented in 

this thesis, participants performed a hand-eye coordination task with different difficulties in a 

distorted environment).  

In a final study presented in Chapter 4, the effects of practicing under the desirable difficulty 

condition were studied. In this study, the control group received EAs in predefined random 

order, while the experimental group received EAs based on the predictions of the trained 

machine learning algorithm. A post-experiment questionnaire was used to assess user preference 

between these two conditions. The experimental group reported statistically significant higher 

scores on the metrics that assessed satisfaction, attentiveness, perceived performance, and 

willingness to continue the task. Additionally, this study examined fidelity of our desirable 

difficulty prediction algorithm based on accuracy of its predictions for the experiment group.  

Chapter 5 discusses the implications of this work in the field of robot-assisted therapy, with a 

focus on summarizing the findings of this work, as well as covering recommendations for future 

work. 



 

10 

2 Study( I:( Error( Amplification( to( Promote( Motor( Adaptation,( Alter(

Affective(States,(and(Create(Differences(in(Challenge((
The first step to implement a system capable of delivering therapy exercises at users’ desirable 

difficulties is presented in this chapter. Focusing on reaching motions that only involve the use 

of shoulder and elbow joints, reaching trajectory error amplification via visual or/and force 

feedback was proposed as a way to increase the efficiency (i.e., accelerating motor adaptation 

and adding several challenge levels) of a simple massed-practice, point-to-point robotic reaching 

exercise. 

In the study presented in this chapter, 10 healthy participants completed blocks of reaching tasks 

similar to those of [17-19] with different levels and methods of error amplification (i.e., low gain 

vs. high gain and visual vs. visual plus force feedback), and reported their satisfaction, 

attentiveness and dominance over the robot and the task during each block. Section 2.2 presents 

a literature review of reaching motion planning in stroke and healthy populations and available 

ways of robot-assisted rehabilitation of those motions. Details of the experimental and analytical 

methods used in this study are presented in Section 2.3. Section 2.4 covers results, and Sections 

2.5 and 2.6 discuss the results and provide conclusions of the study. 

2.1 Introduction(

2.1.1 Reaching(Motions(in(Healthy(and(Stroke(Populations(
The use of wrist, elbow, and shoulder are involved in reaching to targets within one’s arm 

length; however, reaching to targets beyond arm’s length requires recruiting hip and trunk 

motions in addition to moving wrist, elbow, and shoulder joints [38]. Healthy individuals use 

these joints in coordination with each other to accurately place their hands over a target. The 

excess of degrees of freedom (DOF) in the human arm (i.e., 7 DOF) enables the central nervous 

system to utilize an infinite number of paths in reaching to a target. Nevertheless, healthy 

individuals use largely the same joint motions during reaching to targets in a similar reaching 

condition (i.e., holding the start and end position and hand orientation constant) [38, 39]. 

In the healthy population, the central nervous system controls the motion of hand by 

transforming sensory signals into hand trajectories, and subsequently into matching joint 

trajectories, required muscle torque, and finally into a pattern for activating muscles [40]. Hogan 
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et al. [41] characterized the normal reaching motion to targets within one’s arm length. These 

motions follow a bell-shaped velocity profile, in which a peak velocity occurs between the start 

and end point. The position of this peak velocity is an indication of one’s strategy in increasing 

accuracy versus speed of reaching.  

A straight or slightly curved hand path is generally followed when reaching for targets within 

arm’s length [41, 42]. To assess performance of individuals in performing reaching tasks, 

different measures for the straightness of the hand path have been proposed. Bastian has used the 

ratio of the actual hand path length to the direct path between the start and end points of reaching 

[43]. Research groups led by Patton and O’Malley [18, 19] have used the maximum deviation of 

the actual hand path from the direct path as a measure of straightness. Deviations from these 

straight paths, a predominant condition in stroke survivors, are caused by spasticity, decreased 

range of motion, reduced elbow-shoulder coordination, and muscle weakness. Altering this 

condition in stroke survivors and enabling them to use their elbow and shoulder in performing 

reaching tasks is usually one of the goals in stroke physical therapy.  

2.1.2 Use(of(Robotics(in(Motor(Rehabilitation(of(Reaching(Motions(
Therapy robotics is mainly focused on providing a means of delivering the physical part of the 

therapy. Most of the available robots for therapy can be used in either passive, assistive, or 

resistive modes [10]. To rehabilitate the reaching motion in a passive exercise session, a patient’s 

paretic arm is moved by the robot without requiring any muscle input by the patient. This is a 

proper exercise for patients with low range of motion and higher degrees of muscle weakness. 

As a patient improves, training changes from passive to assistive. In assistive training, the 

robotic system provides extra motion to help patients complete a task they themselves have 

initiated. Finally, in resistive training, the robot resists the motion of the arm, requiring patients 

to increase their physical effort. Different studies using different robotic systems have shown the 

effectiveness of training with robotic systems in motor rehabilitation after stroke (see Section 

1.2).  

With the advancements in haptics technology and the development of immersive virtual-reality 

interfaces, robotic therapy regimens that supersede therapists’ physical exercises are being 

developed.The MIME system and the MIT-MANUS are two of the well-known robotic exercises 

that can be used to augment conventional rehabilitation techniques either independently or in 



 

12 

conjunction with virtual reality training. The MIME system utilizes a bimanual training approach 

and the MIT-MANUS provides a high dose unimanual massed-practice approach. 

To implement bilateral training, two robotic arms are used in the MIME system [13]. Each of the 

participant’s hands is strapped to one of the robotic arms via a splint. One of the robotic arms 

follows the non-paretic arm to capture its trajectory in real-time, while the other robotic arm 

guides the paretic arm by mirroring the motion of the non-paretic arm. This guidance can be 

either passive or assistive. On the other hand, the MIT-Manus robotic exercise is a unimanual 

reaching exercise involving the paretic arm of participants [11], delivering a massed practice 

exercise. For the exercise task, the robot is programmed to control the motion of a cursor on a 

monitor. During an exercise session, participants are asked to move the cursor to presented target 

points on the screen by manipulating the robot’s end-effector. Similar to the MIME system, the 

MIT-Manus robot is used to guide the participant’s motion either actively or passively. 

While a human therapist initiates the motor learning by showing the correct trajectory of motion 

to the participant (reducing the trajectory deviation), in robotic therapy exercises, a promising 

teaching strategy is to emphasize the amount of trajectory deviation (augmenting the trajectory 

deviation). Research in both artificial intelligence (e.g., Neural Network design) and motor 

learning proposes an error-driven process that supports learning [44, 45], suggesting that error 

augmentation can be used to maximize the effect of massed practice. 

Use of feedback distortion and error augmentation in motor learning and adaptation has been 

extensively studied for both fine and gross motor functions. In a study focusing on the learning 

of fine motor movements (i.e., grasping), Matsuoka et al. demonstrated that distortion of the 

visual feedback improves the pinching movement patterns of healthy participants [46]. Building 

on this study, the same group showed that such distortion of visual feedback can also be used to 

improve grasping function in the post-stroke population [47]. 

Wei et al. compared the effects of two error augmentation methods – visual error offsetting and 

visual error amplification – in learning of reaching motion as a gross motor function [18]. 

Introducing maximum deviation from the ideal straight path in a reaching motion as a 

performance measure, they studied speed and amount of adaptation to a rotational visual field in 

a robotic point-to-point reaching exercise. This study showed that these methods significantly 

increase the speed of motor adaptation in healthy subjects and improves the speed of motor 
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learning in stroke survivors. With the same task and environment, Celik et al. compared 

progressive visual error offsetting, their novel error augmentation method, and the two methods 

used by Wei [19]. They used target hit time as a second measure of performance, in addition to 

the maximum lateral deviation in the reaching trajectory, and modified definitions for “speed” 

and “amount” of learning to further supplement the findings of Wei. 

In addition to these visual distortion methods, a physical reaching environment can also be 

distorted by force feedback. Patton et al. showed that training the same point-to-point task, 

where force feedback in the direction of trajectory errors was provided via the robot’s end-

effector, facilitated a higher rate of motor adaptation to a force field in a healthy population and a 

higher rate of reaching trajectory improvement in a clinical population [17]. Note that this kind 

of force feedback in the direction of trajectory deviation is different than the force feedback in 

resistive training that is opposite the direction of motion. His study also demonstrated that after 

removing the force field (i.e. reaching in a non-distorted environment) the clinical population 

retains the functional improvement gained from practicing with the force feedback. However, 

this was not true for the healthy population, and the effects of practicing with the force feedback 

were washed out in the follow-up study. Moreover, Patton et al. showed that practicing with 

error augmentation, reinforced by the therapist’s verbal feedback, leads to a higher range of 

motion and elicits performance improvement as measured by the arm motor section of the Fugel-

Meyer (AMFM) scores for post-stroke participants (using p < 0.1) [48]. 

2.1.3 Purpose(and(Overview(of(the(Study(
The repetitive nature of massed practice of simple movements (like robot-assisted reaching to 

visual targets) to achieve any measurable functional gain can be considered a downside to the 

aforementioned error-augmenting exercises proposed by prior work. While use of feedback 

distortion can lead to faster improvement of reaching movements, participants’ engagement 

within such exercises, as well as the level of perceived task challenge, has not been studied.  

This study investigates the effects of combining force feedback and visual error amplification on 

adaptation to a visually distorted environment, similar to [18, 19], in performing robot-assisted 

point-to-point reaching motions in a healthy population. The study of retention or wash-out of 

this kind of adaptation was not performed and thus, is not included in this chapter. Moreover, as 

error amplification makes the repetitive reaching task more challenging, it is expected to see a 

higher engagement during reaching with error amplification. Based on this, this study aimed to 
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measure the relative effectiveness of each error amplification method in promoting motor 

adaptation to a visually distorted environment and increasing participants’ engagement in the 

task, in comparison with the control condition (i.e., no error amplification).  

A real-time controller for a robotic manipulandum was modified to study the effects of different 

feedback error amplification methods on a participant’s upper-limb motor learning and affect 

during a point-to-point reaching exercise (Appendix A). We conducted a study in which the 

reaching environment was visually distorted by implementing a 30° rotation between the 

coordinate systems of the robot’s end-effector and the visual display. Feedback error 

amplification was provided to participants as they trained to learn reaching within the visually 

rotated environment. Error amplification was provided either visually or through both visual 

means and force feedback, each method with two different amplification gains. Participants’ 

performance (i.e., trajectory deviation) was used to study the speed and amount of adaptation 

promoted by each error amplification method. Self-reports to a questionnaire were used to study 

participants’ affective state changes caused by each error amplification method. 

2.2 Methods(

2.2.1 Research(Ethics(and(Study(Participants(
Ten healthy participants participated in this study: five males and five females, one left-handed, 

with an age range of 19-27. Participants provided informed consent as approved by the Clinical 

Research Ethics Board (CREB) of the University of British Columbia. To make sure participants 

were cognitively intact and free of any significant neurological impairment, all participants were 

required to score higher than 24 on the Folstein Mini-Mental State Test. All the participants had 

normal or corrected vision to eliminate any correlation between task performance and vision in 

the hand-eye coordination task used in this study. 

2.2.2 Hardware(
A five-bar robotic manipulandum previously developed at UBC was used in this study [49]. 

Figure 2.1 shows a participant interacting with the robotic manipulandum by holding onto its 

end-effector. The manipulandum’s controller runs at 1 kHz and its end-effector sweeps a two 

DOF horizontal working area of approximately 50 cm × 35 cm. Two motors (Parker-

Compumotor Dynaserv DR1060B) located at the base (robot’s shoulders) actuate the robot, and 

the two “elbow” joints are passive and not actuated. The robot’s end-effector is a handle 
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instrumented with a 6-axis force-torque sensor (ATI Industrial Automation Inc. “Mini” sensor). 

In the schematic drawing of Figure 2.1, the active and passive joints as well as the end-effector 

are illustrated by yellow dots and the blue lines show the robot’s links. 

In the control architecture of the robot only forces in the horizontal plane (i.e., the robot’s work 

space) are used. Encoders integrated with the motors supply position feedback. Using 

TargetDisplay (MathWorks Inc.), the position of the end-effector is visually rendered on a flat 

screen monitor as a moving dot at 20 Hz. In this study, the robot’s original controller was 

modified and re-programmed to deliver reaching exercises with visual distortion and error 

amplification. More details are given in Appendix A. 

 
Figure 2.1: Left: a participant interacts with the robotic manipulandum. Right: a schematic top view of the reaching 

environment. 

2.2.3 The(Reaching(Task,(Visual(Distortion,(and(Error(Amplification(Levels(
To complete the robotic reaching task, participants were instructed to move the movable dot (i.e., 

the cursor) to visual targets presented on the monitor by manipulating the robot handle with their 

non-dominant hand. In this massed-practice training, the 17” monitor was mounted in front of 

the participant, with a cover occluding the reaching space. The goal of this occlusion was to 

make sure that the only visual feedback available to the participants was through the monitor and 

not by observing one’s hand during the reaching exercise (Figure 2.2). Participants were told that 

the moving dot exactly follows their hand position and shows the actual position of the handle. 

Three targets were placed radially, 120° apart, at a constant radius from the start position (i.e., 

middle of the screen). When a target was highlighted, participants had to move the robot handle 

to place the moving dot over the target, and then move back to the start position. Each reaching 

motion covers approximately 17 centimetres. Each three consecutive reaches is called a cycle, in 

which the three targets appear in random order. 
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In order to ensure all participants completed reaching motions in a relatively consistent manner 

(i.e., speed and accuracy of reaching), reaching duration was fixed at 0.5 seconds. This means 

that participants were asked to complete each reaching motion in 0.5 seconds. Each target was 

visually presented as a filled blue square surrounded by a green square (Figure 2.3). As soon as a 

participant started to move the cursor toward the blue target square, the green square would start 

to shrink at a constant rate to disappear into the blue square after 0.5 seconds. In order to assist 

the participants with timing of their reaching motions, they were instructed to reach to the blue 

square in a single motion and stop on the target just as the green square disappeared. They were 

asked to remain at the location of achieved target and wait for the next target.  

 
Figure 2.2: A participant completes a reaching task while her hand is occluded by a cover. 

To make the task more entertaining to the participants, 1, 2, or 3 points were awarded for each 

reaching motion based on the participant’s motion timing accuracy: 3 points for a reaching time 

within 10 milliseconds of the target time of 0.5 seconds (i.e., reaching time between 0.49-0.51 

seconds), 2 points for being within 50 milliseconds of the target time, and 1 point for being 

within 100 milliseconds of the target time.  A score counter displayed on the screen showed the 

session’s total score, and participants were encouraged to try to achieve a high score (i.e., more 

consistent reaching time, which means a more consistent reaching trajectory planning). Figure 

2.3 shows a screenshot of the manipulandum’s monitor: the red circle is the cursor and 

participants were asked to move its centre into the blue square (i.e., target point) by using the 

green square to time the motion. A counter shows the session’s cumulative score. 
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Figure 2.3: A print-screen of the manipulandum’s monitor to show the relative sizes of the cursor and target point. These 
sizes were kept constant for all participants.  

The goal of this thesis is to show viability of the “desirable difficulties” method in addressing the 

issue of engagement in a repetitive task. As stroke survivors are harder to recruit and studies 

with them are more time consuming, they were deemed a less desirable population to test during 

methodology validation studies such as this one. Thus, healthy participants were recruited 

instead. 

After several trials of the robotic reaching task, healthy participants generally demonstrated an 

ability to complete the task with minimum deviations from the target time and the ideal straight 

path. Studying motor adaptation to visuomotor distortions in healthy participants in methodology 

validation studies is proposed as an alternative to studying motor learning in stroke survivors 

[18, 19]. In that case, visuomotor distortions can be considered as a proxy for stroke survivors’ 

damaged neural pathways and muscle synergies (for instance completing reaching tasks in a 

force field can be analogous to muscle tightness following stroke). 

 Motor adaptation can be considered as a special case of motor learning that can happen over a 

short period of time, during which a healthy individual learns to carry out a task in a distorted 

environment. The main difference of motor adaptation in a healthy population and motor 

learning in stroke survivors is in retention of the gained functional improvements from training. 

For able-bodied participants, adaptation is quickly followed by a wash-out of the distortion 

effects. However, a study in Patton’s lab showed that for hemiparetic post-stroke participants, 

this type of training can lead to persistent functional changes, evidencing adult neural plasticity.  
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Adaptation in healthy participants occurs in a short period of time (a one-hour training session). 

The rapidity of this process allows for the characterization of adaptation by measures such as 

amount and speed of improvement, and performance after training session (see Section 2.3.2). 

On the other hand, motor learning in the stroke population is a very slow process. Performance 

during the motor rehabilitation period is measured on standard clinical scales such as the Fugl-

Meyer Assessment or the Wolf Motor Function Test. Their scores change over weeks of practice 

(compared to performance scores for motor adaptation that can be calculated after each training 

block). 

To increase participants’ trajectory deviation and to initiate motor adaptation a visual distortion 

was implemented. To implement this visual distortion, actual hand movement (handle position) 

was rotated 30°, and then the rotated position was presented as the moving dot on the monitor. 

This means that a hand motion toward the right of the screen to achieve a target would be 

presented by a cursor path that is 30° off toward the bottom of the screen (Figure 2.4). 

Participants were told that the cursor follows their hand position, thus visual distortion acts as a 

deception. 

 
Figure 2.4: In a visually distorted environment cursor does not follow the actual hand paths. θ=30° is the amount of 

distortion. 

As expected, during the first few reaching trials in the visually distorted environment (i.e., first 

exposure) participants were not able to follow the straight path and their reaching path was 

curved. Participants trained in the visually distorted environment to adapt to the distortion and be 

able to follow a straight reaching path between the start and end position. Reaching without error 

amplification was used as a control condition in the analysis of motor adaptation to the visually 

distorted environment.  

At each point on the reaching path, the deviation vector from the straight path is called reaching 

trajectory deviation (Figure 2.5). In training with visual error amplification, an augmented error 

vector (by a gain of α) was added to the vector of hand path in the distorted environment. Then 
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this error-amplified hand trajectory was used to update the cursor position. In addition to the 

visual error amplification, force feedback can also be utilized to amplify the trajectory deviation. 

In that case, the deviation vector was used to calculate an augmentation force vector.  

 
Figure 2.5: The deviation from the straight path between the start and end points of reaching motion was used as an 

deviation vector and was amplified via visual means and force feedback.  

Visual error amplification was implemented as described above and similar to the methods 

presented in work of Celik et al. in [19]. Two amplification gains of α were used in this study: a 

low gain of 0.30 and a higher gain of 0.65. In this error amplification condition, vector 

summation of rotated hand position and amplified error vectors was used to calculate cursor 

location: 

xcursor =xhand, rotated + (visual EA gain) × e                                 (2.1) 

In addition to the visual error amplification, force feedback was provided to the participants 

based on their instantaneous trajectory deviation vector. The error amplification force vector, 

perpendicular to the vector from starting point to the visually presented target, was calculated 

using the following equation: 

FFeedback = (Force Feedback EA gain) × e                                  (2.2) 

This force was exerted onto the participant’s hand via the robot’s end-effector during reaching 

motions. Force feedback error amplification gains were designed to map the trajectory deviations 

to force ranges of 0-5 N and 0-8 N, for low gain and high gain, respectively. 

The efficiency of force feedback error amplification in improving the recovery speed has been 

validated in the stroke population [17, 48]. The effects of different visual error augmentation 

methods have been extensively studied by the O’Malley and Patton research teams [17-19]. 

Building on these studies, one of the contributions of this thesis is implementing and assessing 
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the combination of the two ways of implementing error amplification (i.e., visual and force 

feedback) on motor adaptation in the healthy population. 

2.2.4 Study(Protocol(
After the participants signed the consent form, the Folstein Mini-Mental State Test was 

administered (Appendix C). All of the participants scored higher than 24 on this test, indicating 

that they are free from major neurological dysfunctions and were able to complete the study. 

After this, the robot, the reaching task, and the scoring scheme used to reflect the timing of each 

reaching trial were explained to the participants. Before starting the study, the participants were 

seated in front of the robot, facing the robot with their trunk parallel to the robot’s monitor at an 

approximate distance of 30 cm from the robot’s end-effector. The participants were asked to sit 

at this position to make sure the effects of visual distortion were the same for all of them (sitting 

non-parallel to the monitor can be viewed as adding/decreasing the visual distortion). Also, the 

approximate distance of 30 cm ensured that the participants did not need to go beyond their arm 

length to reach for the visually presented targets. Participants were instructed to only use their 

shoulder and elbow to move the robot’s handle and avoid using their trunks to control the end-

effector motion more accurately. On average, each experiment session took 90 minutes to 

complete. 

The experimental protocol (Figure 2.6) was designed as six exercise blocks. In the first block, 

participants performed 14 cycles of reaching tasks without any rotational distortion (i.e., plain 

motions). Each cycle comprises of one reaching motion from the center point of the screen to 

each of the three visual targets in a predefined random order. This block aimed to get 

participants familiar and comfortable with the robotic reaching task. Following the 

familiarization block, there were five training blocks. Participants were given a rest period upon 

request at any time, in addition to one-minute rest periods between the training blocks. 

Within each of the training blocks, participants practiced 10 cycles of plain motion (de-

adaptation), and 13 cycles of reaching with one of the designed challenges “within” the visually 

distorted environment (exercise with challenge). Visual distortion was implemented as either a 

−30° or a +30° rotational field (randomly chosen) in each of the exercises with challenge sub-

blocks. According to prior work, adaptation to a visual distortion only depends on the degree of 

rotation (30° or 45°) and does not depend on the direction of the rotation (-30° or +30°) [17]. 

This change in the direction of rotation was to reduce the possibility for participants to figure out 
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what is causing their performance to decrease at the beginning of each exercise with challenge. 

This further ensures that visual distortion remains a deception to the participants. 

 
Figure 2.6: Top: Detailed break-out of the experiment protocol. Participants were given this information prior to the start 

of the experiment. Bottom: A break-out of a training block. 

The five challenges (one per training block) utilize different methods of error amplification to 

promote motor learning. Each participant practiced the challenges in random order. The de-

adaptation cycles at the beginning of each training block are designed to washout the learning 

effects (i.e., adaptation to the visual distortion) of the previous training block, so adaptation does 

not carry over from one challenge to the next challenge. Pilot studies showed that participants 

become de-adapted after 7.3±1.1 cycles. Using a 95% confidence interval, the number of 

required de-adaptation cycles was calculated to be 10. 

At the end of each training block, a Self-Assessment Manikin (SAM) affect questionnaire was 

administered [50], asking the participants to self-report their satisfaction, attentiveness, and level 

of control over the task and the robot (see Appendix B). Satisfaction scores ranged from 9 for 

being annoyed to 1 for being pleased. However, in the results section (Section 2.3.4) satisfaction 

scores are not presented as an inverse item. Attentiveness scores ranged from 9 (stimulated) to 1 

(relaxed). Scores for level of control ranged from 9 from being in control of the robot to 1 for 

being dominated by the robot. 

The SAM questionnaire is based on the model for affect proposed by Russell [27, 30]. Russell’s 

“affect grid” is used to express human emotions in two dimensions: valence and arousal. 

Valence quantifies if a feeling is positive or negative and arousal quantifies how strong that 

feeling is. In the SAM questionnaire, the words “valence” and “arousal” are changed to two 

more familiar words: satisfaction and attentiveness. The SAM questionnaire also adds a third 

dimension, that is, level of control, to the two-dimensional model proposed by Russell. It is more 

common to use questionnaires that only use the two dimensions of valence and arousal in 

human-robot interaction studies to extract data about a user’s feelings. However, in this thesis 
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the SAM questionnaire was used to collect data about the participant’s perceived level of 

control, in addition to the participant’s satisfaction and attentiveness. This third dimension of 

affect was used to study the level of perceived challenge in each of the training blocks. 

Five conditions of error amplification (EA) were used as challenges in training exercises for 

adaptation to the rotational field: reaching without EA (control), reaching with low-gain visual 

EA, reaching with high-gain visual EA, reaching with low-gain visual plus force feedback EA, 

and reaching with high-gain visual plus force feedback EA. This blocked experimental design 

was used to assess the effects of each training challenge (i.e., error amplification condition) on 

motor adaptation and the participant’s perception of challenge, as well as the affective state of 

the participants. 

2.3 Analysis(and(Results(

2.3.1 Measure(of(Reaching(Accuracy(
In order to study motor adaptation, measures of reaching accuracy (Section 2.3.1) and 

performance (Section 2.3.2) are introduced. Each reaching cycle comprises of a motion to each 

of the three targets (i.e., three trials). In each of these trials, the actual hand trajectory is 

measured by the position of the robot’s end-effector. For each of the trials, the maximum 

absolute deviation of the hand path from the line between start and target point was calculated 

(i.e., the maximum deviation (e) value in Figure 2.5). The average of this value in a cycle (i.e., 

mean of a cycle’s maximum deviations) was assigned as the measure of reaching accuracy for 

that cycle. 

2.3.2 Measures(of(Motor(Adaptation(and(Performance(
The data from the “exercise with challenge” cycles (Figure 2.6, bottom) were used in analyzing 

different aspects of adaptation. In each of the challenge exercises, participants practice the 

reaching task in the visually distorted environment while receiving a randomly chosen error 

amplification method. Figure 2.7 shows reaching paths of participant 4 in the first challenge 

exercise. Dashed red lines are the participant’s hand path in the first cycle of reaching motions in 

this challenge exercise (i.e., first exposure to the distortion). Blue solid lines are indications of 

the participant’s hand path in the last two reaching cycles of the challenge exercise (i.e., adapted 

motions).  
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Figure 2.7: Hand path of participant #4 during one of the challenge exercises: the dashed red line shows the reaching path 

during the first reaching cycle, and the blue solid lines show those of the last two reaching cycles.  

Figure 2.7 qualitatively shows the adaptation to the rotational field: at the first exposure to the 

visual distortion, the participant shows relatively large deviations from the ideal hand path. With 

practicing the reaching task within the visually distorted environment, the participant adapts to 

the distortion and adjusts his hand path to go back to the straight line between the start and end 

points of reaching. This decline in the deviation from the ideal path can be a measure of motor 

adaptation. 

For each of the five challenge conditions (i.e., error amplification), each participant completes 

thirteen cycles of reaching to the three targets. For each of these thirteen cycles a value for the 

measure of reaching accuracy (see Section 2.3.1) was calculated. Figure 2.8 shows a plot of 

reaching accuracy versus reaching cycle number for participant #4 in the first challenge exercise 

shown in Figure 2.7. As the participant gets more practice in the distorted environment and 

adapts to it, the average deviation from the straight line decays over the practice time. Practice 

time is measured by the number of reaching cycles. Wei [18] proposed that an exponential 

function, such as in Equation 2.3, can be fit to the data. 

y=ae –t/b+ c                                                               (2.3) 

In Equation 2.3, y is the average deviation in cycle and t is the cycle number (numbers between 

0-12). Based on this, c will be the convergence value of the reaching accuracy showing the final 

performance (i.e., the best performance level after training within a specific error amplification 

condition), b represents the time constant of converging to the c value and can be presented as 
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the speed of adaptation (higher b implies slower learning), and a represents the total amount of 

improvement (i.e., a is the amount of decrease in the maximum deviation after practicing within 

a specific condition). These definitions are visually presented in Figure 2.8. Note that although 

performance plateaus after cycle number 8, 13 cycles of reaching exercise were performed in 

order to extend the exercise time without the functional improvement being apparent for the 

participant. This is a usual condition in therapy sessions that leads to boredom and frustration for 

patients.   

 
Figure 2.8: Average trajectory deviation in reaching cycles decays exponentially as the participant adapts to the 

distortion field with practice. 

The parameters a, b, and c are used as measures of motor adaptation and performance during a 

training sub-block with challenge (i.e., reaching within the distorted environment with an error 

amplification method). As mentioned in the study protocol (Section 2.2.4), each participant 

completes one training sub-block for each of the five error amplification methods. From the data 

collected from each participant 5 sets of a, b, and c’s (one per error amplification method) were 

extracted.  

2.3.3 Do( Different( Error( Amplification( Levels( Lead( to( Different( Levels( of( Motor(

Adaptation?(

Figure 2.9 provides an example of a qualitative comparison of a participant’s (participant #4) 

adaptation to a visual distortion with practice in different error amplification conditions. For this 

participant, the visual distortion was implemented by a ±30° rotation between the robot’s end-

effector coordinates and the display coordinates. As learning is independent of the direction of 

rotational field, the rotation angle was randomly varied between challenges (either −30° or +30°) 
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to reinforce deception of the visual distortion. Dashed red lines are the initial hand paths and 

blue solid lines are paths of learned motions. It is noticeable that the two visual plus force 

feedback error amplification methods cause higher initial trajectory deviations compared to the 

other conditions. This implies that the total amount of improvement “a” is higher in these two 

conditions. However, practice in all five conditions leads to adaptation to the distortion, and 

toward the end of each challenge block the participant was able to follow the ideal path.  

In order to investigate the significance of these trends and to quantitatively compare the effects 

of different error amplification methods on adaptation, a set of a, b, and c as measures of motor 

adaptation and performance was calculated per participant per exercise with challenge. This 

provided a set of 10 (i.e., the number of participants) within-subject measurements of a, b, and c 

for each of the five error amplification methods. These repeated measures were used to 

statistically compare adaptation under the different error amplification conditions. 

The average of the performance metrics a, b, and c and curve fittings are given in Figure 2.10. 

The following trends can be observed from Figures 2.10 and 2.11: Low-gain visual plus force 

feedback EA shows the highest amount of improvement (a=45 mm), followed by high-gain 

visual plus force feedback EA, high-gain visual EA, and control. Low-gain visual plus force 

feedback EA also has the fastest learning rate (i.e., lowest b), followed by the other EA types in 

the same order as the amount of learning. However, this order is reversed for the final 

performance “c”. Low-gain visual EA has the poorest learning characteristics.  

To compare the effects of different EA conditions on a, b, and c, a within-subjects multivariate 

ANOVA was performed (Table 2.1). It was found that training with different EA methods does 

not lead to a significantly different rate of learning and final performance (b and c). 

Nevertheless, high-gain visual plus force feedback EA leads to a significantly larger amount of 

improvement a, in comparison with both of the visual EA methods (p < 0.05). The results 

presented in Table 2.1 are based on a multivariate repeated-measures ANOVA and post-hoc 

analysis with Bonferroni correction. A significance level of α = 0.05 was used for all inferential 

statistics.  
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Figure 2.9  
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Figure 2.10 

Table 2.1: Repeated-measures ANOVA results comparing motor adaptation metrics across error amplification types. 

Measure ANOVA (EA type) Post-hoc Analysis 

a 
F(1.700, 0.001) = 2.724, 

p = 0.104 

High-Gain Vis&Force and Low-Gain Vis EAs:  p = 0.007 

High-Gain Vis&Force and High-Gain Vis EAs:  p = 0.008 

b 
F(2.601, 2.371) = 0.416, 

p = 0.706 
No significant differences 

c 
F(2.940, 6.09E-5) = 2.221, 

p = 0.110 
No significant differences 

 

 
Figure 2.11: Overview of motor adaptation measures demonstrating trends in amount of improvement (a), speed of 

adaptation (b), and final performance (c) across error amplification types. 

2.3.4 Do( Different( Error( Amplification( Levels( Lead( to( Different( Levels( of( Task(

Satisfaction(and(Attentiveness?(

At the end of each exercise with challenge (i.e., practice with different error amplification 

conditions) participants’ self-reports of satisfaction and attentiveness during the period of 

training were collected. This provided a set of 10 (i.e., number of participants) within-subjects 

measures of satisfaction and attentiveness for each of the five error amplification methods. These 

repeated measures were used to statistically compare the effects of exercise with an error 

amplification method on eliciting different levels of task satisfaction and attentiveness in the 
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participants (Table 2.2). From control to visual EA to visual and force feedback EA, and from 

low gain to high gain, the error amplification methods are abbreviated as follows: No EA, Low 

Vis EA, High Vis EA, Low Vis&Force EA, and High Vis&Force EA.  

Table 2.2: Repeated-measures ANOVA results comparing self-reports of satisfaction, attentiveness, and level of control 
over the task across error amplification types as the within subjects condition. Post-hoc analysis shows significant 
differences between most of the pairs. Only pairs with non-significant differences are presented in the table. Measures 
showing significant ANOVA results are indicated with the following suffix: *** p< 0.001. 

Measure ANOVA (error amplification type) Post-hoc Analysis 

Satisfaction*** 

(all pairs sig. except 

two pairs) 

F(2.301, 46.157) = 43.054, 

p < 0.001 

No EA and Low Vis EA:  p = 0.484 

Low and High Vis&Force EAs:  p = 0.187 

Attentiveness*** 

(all pairs sig. except 

two pairs) 

F(3.005, 48.456) = 65.520, 

p < 0.001 

No EA and Low Vis EA:  p = 0.085 

Low and High Vis&Force EAs:  p = 0.107 

Level of control*** 

(all pairs sig. except 

one pair) 

F(2.320,47.330) = 44.514, 

p < 0.001 
High Vis EA and Low Vis&Force EA:  p = 1  

 

Figure 2.12 shows the overall trend in the level of participants’ task satisfaction and 

attentiveness in practicing with different error amplification conditions. The self-reports to the 

SAM questionnaire (satisfaction was collected in reverse scale, presented in Figure 2.12 as a 

score) showed an increase in the levels of satisfaction with the task and attentiveness during the 

task as the EA methods changed from control to visual EA to visual plus force feedback, and 

from the lower gain to the higher. A within-subjects multivariate ANOVA and post-hoc analysis 

showed that the means of each of these two affect measures are significantly different between 

almost all pairs of EA conditions (at highest p < 0.05). The exceptions are the following four 

pairs: 1) level of satisfaction between control and low-gain visual EA, and the two visual plus 

haptic EA methods, 2) level of attentiveness between control and low-gain visual EA, and the 

two visual plus force feedback EA methods. The p values for these pairs are given in Table 2.2. 

2.3.5 Do(Participants(Associate(Different(Error(Amplification(Levels(with(Different(

Challenge(Levels?(

At the end of each exercise with challenge, participants’ self-reports of perceived dominance 

(i.e., level of control) during the period of training were collected. This provided a set of 10 (i.e., 

number of participants) within-subject measures of perceived task control for each of the five 
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error amplification methods. These repeated measures were used to statistically compare the 

effects of exercise with an error amplification method on changing the participants’ perception 

of control over the task and thus, perception of task challenge (Table 2.2). 

Figure 2.13 shows the overall trend in the level of perceived task control during practice with 

different error amplification conditions. The scores of self-reports to this measure showed a 

decrease as the EA methods changed from control to visual EA to visual plus force feedback, 

and from the lower gain to the higher. Post-hoc analysis of a within-subjects multivariate 

ANOVA showed that the means of dominance scores are significantly different between almost 

all pairs of EA conditions (at highest p < 0.05). The only exceptions are (1 pair): high-gain visual 

EA and low-gain visual plus force feedback EA methods. 

 
Figure 2.12: Overview of self-reports for satisfaction and attentiveness across error amplification types. 

 
Figure 2.13: Overview of self-reports for perceived level of control across error amplification types 
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2.4 Discussion(of(Results(and(Limitations(

The results presented in the previous section support both of the study hypotheses: 1) combining 

visual and force feedback error augmentation can improve motor adaptation (amount of 

improvement a) compared to control condition, 2) different error amplification methods are 

perceived as different levels of task difficulty. 

The post-hoc analysis results presented in the previous section were corrected with the 

Bonferroni confidence interval adjustment method to deal with the problem of multiple 

comparisons and false positives (type I errors). The Bonferroni method is the simplest and most 

conservative method of correcting family-wise error rates. Mauchly’s test of sphericity (a 

condition of data distribution that is required to conduct repeated measures ANOVA) was 

conducted to validate the repeated measures ANOVAs and all significant sphericity violations 

were corrected using the Greenhouse-Geisser method. Violation of sphericity refers to the case 

in which the variances of the differences between combinations of the ANOVA conditions are 

not equal [51, 52]. 

Comparing the means of adaptation speed and amount of improvement, low-gain visual-force 

feedback EA proved to be the best (Figure 2.10: higher amount of improvement a and faster 

speed of adaptation b), followed by high-gain visual and high-gain visual and force feedback 

EAs. Low-gain visual EA led to the worst adaptation pattern, suggesting that an amplification 

gain of 1.3 is not high enough to initiate learning, but it is high enough to make participants 

confused and decrease their performance. The ANOVA failed to find significant differences 

between the final performance “c” of participants after training with different EA methods, 

which is acceptable due to the fact that human motor function is not perfect and cannot fully 

follow ideal straight-line paths. In accordance with [19], the study presented in this chapter could 

not show significant differences between adaptation properties promoted by each EA, which the 

author believes could be reversed by a more careful tuning of the EA gains. The only exception 

was the high-gain visual and force feedback EA, which significantly improved the amount of 

improvement “a” in comparison to control and visual EA methods. This alone is not of high 

importance in terms of functional gain (the difference in final performance “c” is not significant 

for different EAs, different “a” values mean that different EAs cause different degrees of initial 

deviation). However, the difference in “a” values can be a contributing factor to increase 

satisfaction and attentiveness of the participants by inducing a feeling of improvement. 
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Several methodological differences between the Wei [18] and Celik [19] studies contributed to 

the fact that the ANOVA failed to show significant differences in the speed of motor adaptation 

measures “b” between EA methods. Wei and Celik used higher amplification gains (2 and 3.1) 

and compared error amplification using these gains with error offsetting (i.e., augmenting the 

cursor position by adding a constant value) in a between-subjects design. In these studies, 

adaptation was characterized using catch-trials (both distortion and EA are turned off: plain 

motion) placed in between exercise with challenge trials that ran for over 50 cycles. This study 

protocol design is well suited for studying only motor adaptation. In the study presented in this 

chapter, the low resolution of the robot’s display (640 × 480) prevented using higher gains, such 

as 2 and 3.1, that were validated in other studies. The study reported here intentionally avoided 

using a between-subjects design with long and extended exercise blocks to simulate a condition 

close to an actual therapy session; a participant experiences different tasks in rather short periods 

of time.  

The focus of this study was to propose error amplification methods as a way of adding 

“meaningful” difficulty “levels” to the robotic reaching task. “Meaningful” in this case means 

“leading to motor learning/adaptation”. Results of this study support the idea that EA methods 

can be used as a meaningful tool for motor rehabilitation. A “level of difficulty” implies that the 

users are able to differentiate between the amount of challenge involved in doing a task at each 

of the levels. 

Participants tended to be more satisfied with and more attentive during the visual plus force 

feedback EA methods, compared with the visual EA methods. The control condition had the 

lowest score for satisfaction and attentiveness. High satisfaction and attentiveness can be 

associated with high engagement in the task. Dominance followed a trend in the opposite 

direction, meaning that comparing the control condition with visual EA methods and also visual 

plus force feedback EA methods, the participants reported that the reaching task becomes more 

difficult and challenging to accomplish. It is arguable that a more difficult challenge in the 

reaching tasks compromises their repetitive nature and can thus lead to a higher satisfaction with 

the task. Similarly, completing a more challenging task requires a higher level of attentiveness. 

This study investigated the changes in participants’ affective states with only one question for 

each affect dimension (i.e., satisfaction, attentiveness, and dominance). Although the Self 
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Assessment Manikin questionnaire is a validated questionnaire, it is recommended to use 

multiple measures to evaluate human subjects’ affective states. 

2.5 Conclusion(
The goal of this thesis is to apply the “desirable difficulties” methodology to robot-assisted 

reaching exercise and evaluate its efficiency in addressing the issue of engagement in stroke 

therapy. In a first step to this design process, this chapter presented trajectory error amplification 

as a way to promote motor adaptation, as well as to induce a perception of task difficulty. 

Results from this study provide strong statistical evidence, with at least 95% likelihood, that a 

participant will report that increasing the gain of error amplification and including additional 

means of amplifying error increases the difficulty of the reaching task. 

The findings of this chapter support the idea that error amplification can be used as a way to 

introduce meaningful levels of difficulty into a robot-assisted reaching task. However, referring 

back to the main objective of this thesis to implement the “desirable difficulties” methodology in 

robot-assisted therapy, the following questions remain to be answered: Is it possible to predict a 

participant’s desirable difficulty (desired level of error amplification)? How accurately can this 

be done? What is the best method to do so? And finally, what kind of information do we need to 

make such a prediction? These questions are investigated in an empirical study of machine 

learning methods in the next chapter. 
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3 Study( II:( An( Empirical( Study( of( Machine( Learning( Methods( for(

Prediction( of( the( User’s( Challenge( Preference( in( A( RobotSAssisted(

Reaching(Task(
Although robot-assisted rehabilitation regimens can be as effective, functionally, as conventional 

therapies, they still lack features to increase patients’ engagement in the regimen. Providing 

rehabilitation tasks at a “desirable difficulty” is one of the ways to address this issue and increase 

the motivation of a patient to continue with a therapy program. In that case, one of the problems 

that needs to be addressed is to design a system that is capable of estimating the user’s desirable 

difficulty, and ultimately, modifying the task based on this prediction.  

This chapter presents the results of a study to compare the performance of three machine learning 

algorithms in predicting the direction of change to reach a user’s desirable difficulty during a 

typical reaching motion rehabilitation task. Also, the usefulness of using participants’ motor 

performance and physiological signals during the reaching task in prediction of their desirable 

difficulties was explored. Different levels of error amplification were used as different levels of 

task difficulty. 

Section 3.2 gives an overview of the study goals and important factors that need to be considered 

in predicting desirable difficulties. Section 3.3 reviews the methodology of the study. Section 3.4 

presents the results, followed by a discussion of the results in Section 3.5 and chapter conclusion 

in Section 3.6.   

3.1 Introduction((

As it was mentioned in the first chapter, recent neuroscience findings indicate that to stimulate 

brain plasticity and acquisition of new motor skills, intensive training and high dose of repetition 

are required [53].  The field of robot-aided stroke therapy has steadily progressed in the past two 

decades by incorporating this principle. Studies with different upper extremity rehabilitation 

robots such as MIT-Manus [11], Mirror Image Movement Enabler (MIME) [13], and GENTLE/s 

[15] have validated the positive effects of training with such devices on motor recovery and 

functional improvement. Additionally, in robotic therapy interventions, the rehabilitation process 

and the patient’s progress can be quantified. This suggests the potential of these robotic devices 

to be utilized as a mainstream motor rehabilitation tool. 
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Research in both artificial intelligence and motor learning proposes an error-driven process that 

supports learning [44, 45] and can possibly maximize the effect of robot-assisted repetitive 

training. The previous chapter presented results showing that combining visual and force 

feedback error amplification with repetitive training improves the rate of motor adaptation in 

healthy individuals [54]. This can be generalized to the stroke population [18, 48].  

Also, Chapter 1 discussed that while therapy is based on motor learning principles to increase a 

patient’s motor function, prolonged engagement in the exercise is also a key factor in the success 

of a therapy regimen [22]. The mechanics of sustaining a user’s engagement in a task has been 

theorized in the fields of game design and psychology. From a motor learning point of view, to 

avoid boredom or frustration, one needs to be kept at one’s challenge point [29], or desirable 

difficulty, by meaningful manipulation of exercise difficulty. These desirable difficulties can be 

dependent on both task performance and a person’s affective state. While quantifying task 

performance in robotic therapy regimens is relatively easy (Chapter 2), measuring affect is more 

challenging. Physiological signals processing to gauge affect has gained popularity in recent 

years. Chapter 1 provides a brief background of this emerging research field, and a more in-depth 

review follows.  

Efficiency of several machine learning methods in predicting affect based on physiological 

signals is presented in [55]. In this study, Rani et al. used a human-robot interaction task to elicit 

different affective states. In a systematic comparison of the weaknesses and strengths of four 

machine learning algorithms, K-Nearest Neighbour, Bayesian Network, Regression Tree, and 

Support Vector Machine, the study showed that all the methods performed competitively.  

Liu et al. [37, 56] have studied the relation between affective state and physiological responses. 

In separate studies, they proposed methods for prediction of a participant’s affective state by 

using physiological responses and artificial intelligence. They showed that modifying tasks based 

on participant affect (e.g., anxiety and liking) leads to higher performance [37] and lower anxiety 

in an autistic population [56]. Wang et al. [57], using a performance-based assist-as-needed 

robotic training, have reported higher overall performance for participants training in an adaptive 

exercise program in comparison with a control group.  

Novak et al. [58] used performance metrics and physiological measurements to design a 

biocooperative stroke rehabilitation system. In order to reduce dependency of robotic regimens to 
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human therapists to set up the tasks, Novak used different flavours of Discriminant Analysis to 

design a system that can predict a therapist’s recommended changes for task difficulties. This 

work demonstrated greater performance of adaptive algorithms that can adjust their decision 

making process for each individual user compared to algorithms that work based on a generic 

model of the users. However, such systems will be more complex and computationally 

expensive.  

Chapter 2 showed that doing a reaching exercise with different levels of error amplification leads 

to different levels of motor adaptation and affective states [54]. Moreover, participants reported 

different levels of perceived difficulty for each error amplification level. Building on these 

findings and using the methodologies of [55] and [58], the goal of this chapter is to investigate 

the potential of predicting the direction of change to reach a user’s desirable difficulty. This 

chapter presents a comparison of three machine learning approaches with different degrees of 

complexity – Neural Networks, K-Nearest Neighbour, and Discriminant Analysis – in predicting 

participants’ desirable difficulty in a robotic reaching task. These methods were applied to 

different input sets comprising of participants’ motor performance and physiological signals. 

Results of this study can be used in future work to design a closed-loop control system that is 

capable of predicting the direction of change to reach the user’s desirable difficulty to study the 

effects of exercising under desirable difficulty condition. 

3.2 Methods(

3.2.1 Research(Ethics(and(Study(Participants(
This study was approved by the Clinical Ethics Research Board (CREB) of the University of 

British Columbia, and all participants provided written informed consent. Twenty-four healthy 

adult participants with an average age of 23.8 took part in this study. The male/female ratio of 

the participants was 12/12. In order to confirm participants were free of neurological impairment, 

a minimum score of 24 on the Folstein Mini-Mental Test was required. In addition, only 

participants with normal or corrected eyesight were recruited to make sure changes in 

participants’ performance was not attributable to anything but changes in task difficulty (visual 

distortion and error amplification method). 
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3.2.2 Experimental(Setup(and(Rehabilitation(Task(
Physiological signals were captured at 256 Hz using a ProCompInfiniti Physiology Suite 

(Thought Technology, Inc.). This study includes three physiological signals: skin temperature 

(Temp), skin conductance response (SCR), and respiration rate (Resp). Temperature was 

measured using a sensor strapped around the distal phalange of the ring finger of participant’s 

dominant hand. SCR was recorded using two electrodes strapped around the distal phalanges of 

the index and middle fingers of the dominant hand. As in the previous study, participants 

controlled the robot with their non-dominant hand. The breathing rate sensor was placed on a 

strap around the participant’s chest. Figure 3.1 shows a participant wearing the SCR sensor while 

doing the robotic rehabilitation task. 

 
Figure 3.1: A participant holds robot’s handle with his non-dominant hand while SCR data is being recorded from his left 

hand’s fingertips 

The custom-built five-bar robot that was used in the study presented in the second chapter was 

also used in this study. The robot was used to exercise reaching to targets in the horizontal plane 

as a motor learning task. Three targets were placed radially, with the same distance from the 

middle of the monitor and the other targets. When a target was presented, participants had to 

move the robot’s handle with their non-dominant hand to place the moving dot over the target. 

Once the target was reached, they had to move the cursor back to the center of the screen. The 

term “cycle” is used for the consecutive reaching motions (i.e., trials) to the three targets. The 

order of the targets was predefined with a random number generator.  

Participants were told the cursor represents the robot’s end-effector position. The participants’ 

hands were concealed with a cover in order to ensure that visual feedback was only provided via 

the monitor. Note that this cover is not shown in Figure 3.1. 
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To cause an initial deviation in healthy participants’ reaching path and a decrease in their 

reaching performance, and thus to initiate motor learning and motor adaptation, a visual 

distortion was implemented during training blocks. This visual distortion was implemented as a 

±30° rotation between the end-effector coordinates (i.e., actual hand position) and the monitor 

coordinates (i.e., visual target). Participants practiced with five different error amplification 

levels to learn reaching within this visual distortion.  

Ordered from the easiest perceived difficulty by participants to the hardest (Chapter 2), the 

following five error amplification (EA) levels used were: control (no EA), low gain visual EA, 

high gain visual EA, low gain visual/force feedback EA, high gain visual/force feedback EA. 

More details about the robot-assisted reaching task, visual distortion and error amplification 

methods can be found in Chapter 2. 

3.2.3 Data(Collection(Protocol(
After providing consent to participate in the study, participants were introduced to the robotic 

manipulandum and the reaching task. Participants were then seated in front of the robot and 

physiological sensors were put on them. Each experiment, on average, took 80 minutes. 

Participants were given rest times (in addition to the existing rest periods) upon request. They 

were told that they could stop participating in the experiment at any point. 

The experiment comprised of six exercise blocks (Figure 3.2, top). In the first block, participants 

practiced reaching in the virtual environment to become familiar with the task. This 

familiarization block comprised of 14 cycles in which both visual distortion and error 

amplification were turned off (i.e., plain motion). The familiarization block was followed by five 

training blocks (exercise blocks 2-6). 

Each training block was divided into four sub-blocks (Figure 3.2, bottom): de-adaptation, rest 

period, exercise with challenge, and self-report of the direction of change to reach desirable 

difficulty. The de-adaptation sub-blocks comprised of 10 cycles of plain motion. This was to 

ensure training effects (i.e., adaptation to visual distortion) from previous training blocks did not 

carry over to the following challenge. In the rest period, participants were asked to remain seated 

and with the least possible motion for one minute. Physiological signals recorded in this period 

were used as a baseline in computing physiological measures. In an attempt to reduce possible 

distractions and physiological responses to these unwanted stimuli (i.e., noise in the 
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physiological data), the study room was kept quiet and the participants were asked to not initiate 

any conversations during these rest periods. Finally, the challenge sub-block comprised of 

reaching to visual targets within the visually distorted environment with one of the five EA levels 

(13 cycles). The order of appearance of the five EA levels throughout the training blocks (blocks 

2 to 6) was random and changed for each participant.  

 
Figure 3.2: Top: Detailed break-out of the experiment protocol. Participants were given this information prior to the start 

of the experiment. Bottom: A break-out of a training block. 

At the end of each of the training blocks (after finishing challenge sub-blocks), participants were 

asked to report whether they wanted their next trial to be easier (recorded as −1) or harder (+1), 

in other words, whether their “desirable difficulty” for the next training block was easier or 

harder than the challenge they had just practiced. To make the question clear, an example was 

given: “Assume that you want to play chess. If you play with a five-year-old, you will be 

winning all the time without feeling any challenge, and you will get bored. If you play with the 

world champion, you will be losing all the time without any hope for a win and that will make 

you frustrated. But, if you play with an average player the game will be engaging to you and you 

will enjoy the game. We call that desirable difficulty.” The participants were not allowed to stay 

at the same level of difficulty, although it is likely that a participant finds a difficulty level as 

his/her desirable level of difficulty. Pilot studies showed that participants are inclined to stay at 

the same level of difficulty even if they are under- or over-challenged.  

3.2.4 Motor( Performance( and( Physiological( Measures( as( Challenge( Preference(

Prediction(Attributes(

Motor performance is measured by motor adaptation and reaching accuracy. As mentioned, a 

cycle consists of consecutive reaching trials to the three target points. For each cycle, the 

reaching accuracy measure is defined as the average of the maximum deviations of each of the 

three trials (Section 2.3.2). This maximum is calculated as the maximum deviation of the 

reaching trajectory from the line between the start point and the target point (i.e., the error vector 
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that is used for EA, section 2.3.1) in each trial. Figure 3.3 shows a plot of these maximum 

deviations over the course of exercise block number 2 (first training block) for participant 7. In 

this challenge sub-block, the participant trained with low gain visual/force feedback EA. As this 

dataset presents the first training block (no prior exposure to visual distortion), the de-adaptation 

period merely acts as more familiarization practice and there is no evidence of de-adaptation.   

 
Figure 3.3: Left: following the familiarization block and during the first de-adaptation sub-block, the participant shows 
little variation in maximum trajectory deviation (about ±1mm). Right: during practice with challenge, as the participant 

adapts to the visual distortion with more practice, deviation decays. 

As shown in Figure 3.3, right side, at the beginning of exposure to visual distortion, performance 

decreases (i.e., large initial deviation). With more practice, the participant adapts to the distortion 

and learns to perform reaching within the distorted environment with lower deviation from the 

straight line. As discussed in Chapter 2, adaptation can be modeled with an exponential decay 

function of this form: 

y = ae –x/b + c                                                           (3.1) 

In equation 3.1, y is the maximum trajectory deviation in a cycle, x is the cycle number, a is the 

total decrease in the maximum deviation (i.e., the difference between the maximum deviation in 

the first cycle and the last cycle), b is the time constant and represents the speed of adaptation, 

and finally c can be interpreted as the final maximum deviation after many cycles of practice 

(i.e., maximum deviation will eventually converge to c). For each challenge sub-block, a set of a, 

b, and c is calculated and used as 3 features of motor performance in predicting the direction of 

change to reach the participant’s desirable difficulty. 

During each rest period and challenge sub-block, three physiological signals were recorded: skin 

temperature (TEMP), respiration rate (RESP), and skin conductance rate (SCR) [32, 55, 58]. 
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From these raw signals, 11 physiological features (those used in [58]) were extracted and used in 

predicting the direction of change to reach the participant’s desirable difficulty. Figure 3.4 shows 

a plot of these raw signals over the course of exercise block number 2 (first training block) for 

participant 7. In this challenge sub-block, the participant trained with low gain visual/force 

feedback error amplification. Note the increase in the absolute value and variability of these 

signals progressing from the rest period to the exercise with challenge period. 

From the SCR signal, 5 features were extracted: normalized SCR, defined as mean SCR in the 

challenge period divided by mean SCR in the rest period, SCR peak value, defined as the 

difference between minimum SCR and maximum SCR during the challenge period, normalized 

derivative of SCR (dSCR), defined as mean dSCR in the challenge period divided by mean 

dSCR in the rest period, SCR change, defined as the difference between the mean SCR in rest 

period and mean SCR during the challenge period, and dSCR variability, defined as the 

standard deviation of dSCR in the challenge period. 

 
Figure 3.4: Raw physiological responses recorded from participant 7 during the first training block. Top-left: raw SCR 

signal. Top-right: raw respiration rate signal. Bottom: raw skin temperature signal. 

From the respiration rate (Resp) signal, 3 features were extracted: normalized respiration rate, 

defined as mean Resp in the challenge period divided by mean Resp in the rest period, 

respiration rate change, defined as the subtraction of mean Resp during the rest period from 
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mean Resp during challenge period, and respiration rate variability, defined as the standard 

deviation of respiration rate in challenge period. 

From the skin temperature (Temp) signal, 3 features were extracted: normalized skin 

temperature, defined as mean Temp in the challenge period divided by mean Temp in the rest 

period, skin temperature change, defined as the subtraction of mean Temp during the rest 

period from mean Temp during the challenge period, and skin temperature variability, defined 

as the standard deviation of skin temperature in the challenge period. 

For each challenge sub-block completed by a participant, a set of 11 physiological features were 

extracted and used in predicting the participant’s desirable difficulty. 

3.2.5 Applied(Machine(Learning(Algorithms(
The goal of this study was to investigate the potential of predicting the reported direction of 

change to reach the desirable difficulty of the reaching task (easier or harder, −1 or +1) based on 

motor performance and physiological features. This was framed as a classification problem with 

the direction of difficulty change to achieve desirable difficulty (easier/harder) as the target 

function or output and motor performance and physiological features as the predictor variables or 

inputs. The relationship between the input and output datasets is non-linear and the high 

dimensionality of the input set increases the probability of having irrelevant variables in the input 

data. Then the two questions to be answered are: 1) What is the best machine learning algorithm 

to model the non-linear relationship between the input dataset and the target outcome? 2) Which 

of the performance and physiology metrics are better predictors of the direction of change to 

reach the user’s desirable difficulty?  

To answer these two questions, this study compared the accuracy of three machine learning 

algorithms in this classification problem by using four sets of predictor variables. The machine 

learning algorithms are k-Nearest Neighbour, Neural Network, and Discriminant Analysis, each 

having a different working principle and level of complexity associated with them.  

The four sets of predictor variables are the motor performance features (3 attributes), 

physiological features (11 attributes), a hybrid of performance and physiological features (14 

attributes in a one layer combination of the two feature sets), and a fuzzy combination 

(prediction based on the estimation confidence of each of the two feature sets). Comparing the 
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results of prediction based on each of these predictor variable sets informs us about the 

usefulness of including or excluding each of the feature sets from the prediction process. 

The following is an overview of the machine learning algorithms and the fuzzy combination that 

are used in this study. 

K-Nearest Neighbour (k-NN) Classification Method: 

K-Nearest Neighbour (k-NN) is a non-parametric machine learning algorithm that requires 

storing of the entire training set. To classify a new instance, k (usually an odd number) nearest 

training samples to the new instance are considered to calculate a similarity score for the new 

instance. This similarity score is then used in assigning the new instance to one of the two 

outcome classes. k-NN is an improved variation of a lookup table and is sensitive to noisy and 

irrelevant data. 

In this work, each new instance was assigned to the class with the highest sum of similarity 

scores (similarity score summing method): 

C(X) = argmaxm Sim X, Xj y(Xj,cm)Xj�!k-NN                                      (3.2) 

In Equation 3.2, X is a new instance, m is the number of classes (here m = 2: easier or harder next 

trial), and Xj is one of the k neighbours in the training set. y(Xj, cm) is either zero or one and 

indicates if Xj belongs to class m (i.e., cm) and Sim (X, Xj) is a measure of similarity calculated as 

the inverse of Euclidean distance between the two instances. The new instance is assigned to 

class m that has the highest sum of similarity scores with a probability p. p is calculated by 

dividing the sum of similarity scores for class m by the total of similarity scores for all classes. 

Different k values were tried to find a value that resulted in the highest prediction accuracy [59].  

Neural Networks: 

Neural Networks are a combination of weighted linear transformations that map the input space 

to the output space. A Neural Network (NN) is a parametric algorithm that does not require 

storing of the training data set.  

Inspired by the structure and working principles of the human brain, a NN is a collection of units 

called neurons or nodes that are connected together by input and output links. A link propagates 

activation value ai from unit i in a downstream node layer to unit j in a upstream node layer. Each 
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link has a numeric bias weight wi,j. Unit j computes a weighted sum of its inputs (input j equals 

sum of all wi,j × ai) and then applies an activation function g to its weighted sum of inputs to 

derive the output of the node. g is usually a logistic function (sigmoid perceptron).  

During a learning phase, NN changes the values of its links’ numeric bias weights wi,j to fit the 

relationship between the inputs and outputs. This learning of weights can be stated as an 

optimization problem. A method called back propagation of errors provides a mathematical 

solution to this problem.  

Neural Networks is an active research area in the field of artificial intelligence. It is 

recommended to use Neural Networks with three layers of nodes [60]. The number of nodes in 

the first layer (input layer) is defined by the number of input variables. Nodes in this layer do not 

have an input link and each of them is set to output one of the input values. Additionally, each 

node in this layer is linked to all the nodes in the second layer. The second layer is called hidden 

layer and has at least the same number of nodes as the first layer [60]. Each of the sigmoid 

perceptron nodes in this layer is linked to all the nodes in the third layer. The third layer or the 

output layer also uses sigmoid perceptron nodes. The output value of node k in this layer can be 

used as a classification probability, showing the chance that the input set used belongs to class k. 

The highest probability decides the classification outcome.  

Discriminant Analysis: 

Discriminant Analysis (DA) is a parametric statistical method that uses a linear combination of 

attributes to calculate the probability of a data point belonging to a class. In DA the dependent 

variable (output) is categorical and the independent variables (input attributes) are continuous 

numerical quantities. Note that ANOVA and regression analysis are statistical methods that are 

used to express a numeric dependent variable as a linear combination of input attributes. Logistic 

regression is more similar to DA (both classifiers of categorical variables) and is preferable in 

applications where it is not reasonable to assume that the independent variables are normally 

distributed. 

The discriminant function to classify data points into classes 1 and 2 can be formulated as [58, 

59]: 

D(X) = b + !! .!                                                        (3.3) 
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b =  −!! .!!!! ! . (!! !+ !!!)                                                 (3.4) 

w =  (!! + !!!)!!!. (!! − !!!)                                             (3.5) 

C(X) = 1 if D(X) < 0 or 2 if D(X) ≥ 0                                        (3.6) 

In these equations, X is a new instance, D(X) is a Discriminant function, µk is the matrix of the 

mean values of the input features for class k, Sk is the covariance matrix for class k, and C(X) is 

the class to which X is assigned. 

Fuzzy Combination of Performance-based and Physiological-based Predictions: 

According to the theory of flow and the challenge point framework discussed in the first chapter, 

a user’s task performance will initiate the engagement and learning process, which in turn will 

shape affective state (performance defines level of learning and engagement). This suggests that 

a simple hybrid of the performance and physiological metrics [58] might not be the best way to 

combine the two metrics. In a novel approach and to implement the main points of the flow 

theory and the challenge point framework, this thesis proposes a fuzzy combination of the 

performance and physiological metrics.  

In this fuzzy combination approach, for each of the three machine learning algorithms, two 

decision making models based on the performance metrics and the physiological metrics are 

built. As mentioned before, all of the machine learning algorithms that are used in this study use 

a probabilistic approach in splitting data points into classes. New instances were fed to the 

performance-based model at first and if the performance-based classification outcome had a 

confidence greater than 70%, the class (as decided by the performance-based model) was 

reported. If the confidence of the performance-based classification was lower than 70%, the new 

instance would be fed to the physiological-based model. If the physiological-based classification 

outcome had a confidence greater than 70%, the class (as decided by the physiological-based 

model) was reported. If the confidence of the physiological-based classification was lower than 

70%, the new instance would be classified randomly. This random assignment happened only 

twice during the training and validation phases.   
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3.3 Results(

3.3.1 Training(Machine(Learning(Algorithms(
From the human-subject study (24 participants) a dataset with a total of 107 instances was 

collected. Each instance comprises of 14 numeric values for the predicting variables (i.e., 3 

motor performance metrics and 11 physiological features as the input variables) and one self-

report for the direction of change to reach desirable difficulty (−1 or +1 for an easier or harder 

next trial) as the outcome variable. The self-reports for an easier or harder next trial were split 

45% to 55%.  

To implement a k-fold cross-validation to compare the performance of different algorithms and 

input sets, the collected dataset was divided into 6 folds (i.e., k = 6). The recommended number 

of folds is 5-10 [59]. k = 6 was chosen to avoid a long training time. Four prediction models (one 

for each prediction variable set) were trained for each of the three machine learning algorithms 

using the data in each selection of 5 out of 6 folds (4×3×6 = 72 prediction models). The fold that 

was not used in training of the algorithms was used for validation of the trained models and 

comparison of their prediction accuracy. 

To train the k-Nearest Neighbour models, k = 7 neighbours with Euclidean distances and equal 

distance weighting was used. After experimenting with different flavours of Discriminant 

Analysis methods, Diagonal Quadratic Discriminant Analysis yielded the best prediction 

accuracy. Finally, Neural Networks with one hidden layer were used. The number of nodes in the 

hidden layer that led to the best results (i.e., best training and validation accuracies resulted from 

a pre-test using hold-out cross-validation) is 6 nodes for performance-based model, 11 nodes for 

physiological-based model, and 14 nodes for the hybrid model. 

After training each of the 12 prediction models for each selection of 5 out of 6 folds, the same 

instances of prediction variables that were used for training were fed to the algorithm. The 

number of correct predictions calculated from this process was used in defining the algorithm’s 

ability to learn the training set. This was defined as a percentage and calculated as the ratio of the 

number of correct predictions divided by the total number of instances in the 5 folds. The results 

are presented in Table 3.1. 
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Table 3.1: Results of all prediction models’ ability to learn the training sets (average accuracy ± standard deviation). 

Machine 
Learning 

Algorithm 

Prediction Variable Set 
Performance 

features 
Physiological 

features 
Hybrid of all 

features 
Fuzzy 

combination 
K-Nearest 
Neighbour 79.0±1.1% 67.0±1.5% 75.2±1.3% 80.1±1.3% 

Neural Network 80.1±1.0% 66.3±1.4% 77.2±1.5% 89.3±1.1% 

Discriminant 
Analysis 76.8±1.4% 65.8±1.8% 75.6±1.5% 84.1±1.7% 

 

3.3.2 Validation(of(the(Trained(Models(
To validate the trained models and investigate their ability to generalize, in each of the six folds 

of training the instances in the fold that was not used in training of the algorithms were fed into 

each of the 12 models and their prediction accuracies were calculated (k-fold cross-validation). 

Results of this process are presented in Table 3.2.  

To provide a common ground in comparing prediction accuracies, a random number generator as 

the baseline predictor model was used. Twenty sets of 107 random (−1, +1) pairs were generated 

and used as the output of the predictor for desirable difficulties. On average, the accuracy of 

randomly guessing the direction of change to reach a participant’s desirable difficulty was found 

to be 49±2.3%, close to the expected value of 50%. 

Table 3.2: Results of all prediction models’ accuracy in predicting new validation instances (average accuracy ± standard 
deviation). 

Machine 
Learning 

Algorithm 

Prediction Variable Set 

Performance 
features 

Physiological 
features 

Hybrid of all 
features 

Fuzzy 
combination 

K-Nearest 
Neighbour 70.2±2.5% 54.5±3.7% 67.5±2.3% 72.8±3.5% 

Neural Network 72.8±2.6% 61.6±2.7% 71.0±2.0% 85.3±3.1% 

Discriminant 
Analysis 71.8±2.9% 59.2±3.8% 67.5±1.63% 78.5±2.3% 

Random Number 
Generator 49±2.3%a 

aAverage of 20 trials using all 107 instances 

3.4 Discussion(
K-Nearest Neighbour (k-NN) is a simple non-parametric classification method that searches for 

similarities between the input data and the existing training data. However, this method showed 

the lowest ability to learn the training set using three of the variable sets (i.e., performance and 
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hybrid feature sets and fuzzy combination). On the other hand, it showed comparable results 

when it was tested with the validation dataset, especially using performance metrics or hybrid of 

all metrics. Neural Network (NN) is a parametric machine learning method. It showed the 

highest rate in learning the training dataset (except for the condition of physiological features as 

input), which resulted in better generalization of the data and thus better performance in the 

validation process. Discriminant Analysis (DA) showed slightly lower performance compared to 

NN (Figure 3.5).  

Row by row comparison of the average accuracy values given in the Table 3.1 and 3.2 can be 

used to compare the performance of the three machine learning algorithms in training and 

validation phases using different input sets. Although the three methods showed different levels 

of ability to learn the dataset, they demonstrated competitively close accuracies in predicting 

desired difficulties based on new data. NN, followed by DA and k-NN, had the best average 

accuracies in learning the training dataset and predicting the direction of change to achieve 

participants’ desirable difficulties in the validation phase.  

To evaluate the trained models and assess their ability to generalize to new input data, the k-fold 

cross-validation method was used. Leave-one-out cross-validation (LOOCV) is more common in 

the evaluation of machine learning methods used for affect recognition or prediction of a user’s 

preference [55, 58]. However, given the dataset size, use of LOOCV would be more 

computationally expensive compared to the use of the k-fold cross-validation method (training 

107 models vs. 6 models for each of the 12 conditions). Additionally, the k-fold cross-validation 

method gives a more objective estimate of accuracy and generalizability by providing both 

average and standard deviation of prediction accuracy. 

To assess the usefulness of the four different prediction variable sets, results presented in Table 

3.2 were compared column by column. Prediction based on motor performance features has a 

high accuracy rate (highest 72.8%) among all three machine learning methods, and it is followed 

by prediction based on a hybrid of all the features (highest 71%) and then physiological features 

alone (highest 61.6%). The fuzzy combination has the highest accuracy rate in comparison to the 

other input sets (highest 85.3%). This overall trend for the usefulness of different input sets in 

improving prediction accuracy is also demonstrated in Figure 3.5.  
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The machine learning algorithms used in this study are the most popular methods of predicting a 

user’s preference or affective state in the literature [32, 55, 58]. However, there has not been a 

study to systematically compare these methods in predicting a user’s preference. Note that the 

Neural Network and Discriminant Analysis methods can optimize their structure to give the least 

value to the attributes that do not contribute to the prediction of the target function (non-relevant 

attributes) and thus, exclude them from the prediction process. On the other hand, the k-Nearest 

Neighbour method performs poorly if part of the input data is noisy or non-relevant. Therefore, 

the lower accuracy of prediction based on physiological features alone can be attributed to the 

noisy nature of these features (compared to the motor performance features). Future work can 

include investigation of the usefulness of each of the 11 physiological features introduced in this 

study, in order to exclude the non-informative and non-relevant features in training the machine 

learning algorithms. 

 
Figure 3.5: Comparison of all 12 combinations of input sets and machine learning algorithms. Error bars show two 

standard deviations (95% confidence intervals). The most conservative estimate of the best method (best worst line) is the 
combination of Neural Network and fuzzy combination of the features. 

The noticeable superiority of prediction based on motor performance compared to physiological 

features (73% vs. 62%) may suggest the possibility of simplifying the robotic therapy system by 

removing the physiological sensors and avoiding the physiological signal analysis altogether. 

However, the results of the fuzzy combination of the two feature sets prove the usefulness of this 

type of physiological computing and the fact that physiological signals can provide 

supplementary information in predicting the direction of change to reach a user’s desirable 

difficulty. This can be demonstrated by drawing the best worst line for prediction accuracy 

(using a 95% confidence interval) between all of the 12 combinations of input sets and machine 
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learning algorithms (blue horizontal line in Figure 3.5). This line passes through the lowest 

expected accuracy of prediction using Neural Network algorithm and fuzzy combination of input 

features. This line is above the performance ranges of all of the other three input sets and only 

crosses the performance ranges of prediction using DA and k-NN with fuzzy combination of 

input features. However, as the computational expenses of the three machine learning algorithms 

are the same, prediction using a Neural Network approach and the fuzzy combination of the 

input features can be the most appealing combination for further investigation (i.e., closed-loop 

studies to measure the effects of practicing under desirable difficulties). This is due to the fact 

that this combination has the highest average prediction accuracy.  

Nevertheless, a more conservative test to choose the input set plus algorithm combination that 

leads to higher accuracies would be to define the significance of the differences between the 12 

combinations by running ANOVA tests. This analysis was replaced by the best worst line 

analysis as the k-fold cross-validation with k = 6 does not produce enough sample points (i.e., 6 

accuracies per condition; recommended minimum sample size for ANOVA tests N = 10 [51]). 

Performing a k-fold cross-validation with k = 10 would excessively increases the computation 

time.  

Future work following this phase will include the exploration of more sophisticated machine 

learning methods such as Support Vector Machines (SVM). SVMs have three properties that 

make them a popular choice [59]: 1) the ability to construct a maximum margin separator (i.e., 

decision boundaries with the largest possible distances from training instances) that improves the 

generalizability to new instances, 2) using the “kernel trick”, SVMs embed the data into a higher 

dimensional space and create a linear separating hyperplane. This means that SVMs are able to 

expand the hypothesis space, and 3) being resistant to overfitting. SVMs have been used in an 

affective computing and human-robot interaction study by Rani et al. [55], yielding an accuracy 

rate of 85% in classifying human-subjects’ affective states.  

3.5 Conclusion(

To investigate the possibility of estimating the direction of change to reach a user’s desirable 

difficulty during a rehabilitation exercise, this chapter presented the accuracy of three commonly 

used machine learning algorithms in a comparative study. Data from a human subject study with 

24 healthy participants were used to train models that map participants’ motor performance and 

physiological signals to their desirable difficulties. To elicit different responses (i.e., motor 
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performance and physiological changes) participants were asked to exercise with a robotic 

rehabilitation reaching task. From the most accurate to the least accurate, the three machine 

learning algorithms are Neural Network, Discriminant Analysis, and k-Nearest Neighbour. All 

three methods performed competitively and showed superior performance in comparison with 

random prediction. Additionally, results showed use of a fuzzy combination of motor 

performance and physiological attributes yields higher prediction accuracy compared to using 

only one of the two input sets. The best prediction accuracy was achieved by using a Neural 

Network model and fuzzy combination of the motor performance and physiological metrics.  

The findings of this chapter support the idea that it is possible to predict the direction of change 

to reach a user’s desirable difficulty for the next training task with a high accuracy. However, 

going back to the goal of this thesis to implement the “desirable difficulties” methodology in 

robot-assisted therapy, the following questions remain to be answered: Does practicing under 

desirable difficulty condition lead to a more positive training experience for the users? What are 

the measures to quantify this possible positive experience? These questions are investigated in a 

between-subjects study in the next chapter. 
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4 Study( III:( Evaluating( the( User’s( Experience( while( Exercising( under(

Adaptive(Desirable(Difficulty(Conditions(
The results of the studies presented in the last two chapters show that error amplification can be 

used as a way to introduce levels of challenge into a robotic reaching task, and the direction 

toward a user’s desired level of challenge can be estimated with 85% accuracy. Building on 

those findings, this chapter presents the results of a study to investigate the impacts of practicing 

under desirable difficulty conditions. 

Section 4.1 reviews the purpose of this study, followed by study methods in Section 4.2. Section 

4.3 presents the results of this study, and finally Section 4.4 discusses the results and concludes 

the chapter. 

4.1 Introduction((

4.1.1 Overview(and(Purpose(of(the(Study(
The first chapter presented a methodology to increase users’ engagement in a motor learning 

task. To achieve higher task engagement, this methodology involved delivering physical exercise 

at the user’s desirable difficulty level. As discussed in Chapter 1, implementing this method 

involves two main steps: introducing meaningful levels of difficulty into the physical exercise 

and designing a system that is capable of estimating the user’s desirable difficulty (to deliver the 

exercise at the user’s desired level of challenge).  

To investigate the feasibility of implementing this methodology, this thesis has focused on the 

practice of reaching motions using a robotic manipulandum. Chapter 2 discussed the effects of 

practicing reaching motions with error amplification. The study presented in that chapter showed 

that different levels of error amplification lead to motor adaptation and that these levels were 

experienced by the study participants as different levels of task difficulty. Chapter 3 presented 

Study II, an empirical evaluation of different methods of predicting the direction of change to 

reach a user’s desirable difficulty level. The results of that study showed that this direction of 

change for the next training block can be estimated by a pre-trained Neural Network algorithm 

up to 85% of the time. These two studies provide strong empirical evidence that the “desirable 

difficulties” methodology can be implemented in a robotic reaching task.  
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However, these studies did not explore the impacts of practicing the task under desirable 

difficulty conditions. Considering the larger goal of increasing task engagement during a motor 

learning task, this chapter investigates whether a user will have a more positive perception of the 

robot and the physical exercise when the robot delivers the reaching exercise at the user’s 

desirable difficulty. This positive perception covers different affective states such as motivation 

and engagement, as well as the users’ opinion about the task and robot. 

In a between-subjects study, participants completed 5 training blocks of reaching motions. 

Participants in a control group received the training blocks in a predefined random order while 

participants in an experimental group received the training blocks based on predictions of the 

participant’s desirable difficulty performed by a machine learning algorithm. To quantify the 

experience of the two groups, the SAM questionnaire (introduced in Chapter 2) and a post-

experiment questionnaire were used. Participants’ responses to these two questionnaires were 

studied to investigate if the experience of the robot-assisted training session as well as the users’ 

perception of the robot and the task is different between the two groups. The following section 

provides more details about the use of these questionnaires.  

4.1.2 Questionnaire(Design(
There are several standard questionnaires used in the two neighboring fields of Human-Robot 

Interaction (HRI) and Human-Computer Interaction (HCI) to gauge human experience and 

human perception of tasks and tools (i.e., interfaces). This study was specifically interested in 

three items of perception: 1) users’ perceptions of the reaching task and the task load, 2) users’ 

perceptions of the robot’s responsiveness and usefulness as a trainer, and finally 3) users’ 

perceptions of their experience of the entire training session. These human perception factors 

were measured using a post-experiment questionnaire and the SAM questionnaire.  

The U.S. National Aeronautics and Space Administration (NASA) has developed a subjective 

workload assessment tool known as the NASA Task Load Index (NASA-TLX) [61, 62]. This 

tool has been used to evaluate workload in various human-machine systems in several different 

contexts. NASA-TLX is a multi-dimensional rating tool that measures six metrics using five-

point Likert scale questions. These metrics are: mental demand, physical demand, temporal 

demand, own performance, effort, and frustration. To measure users’ perceptions of the reaching 

task and the task load, five of the six subscales of the NASA-TLX were included in the post-

experiment questionnaire. The temporal demand subscale was not included in this study as the 
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timing of the task was not a variable between the two participant groups (from the beginning of 

the reaching motion, a participant has only 0.5 seconds to complete the task; see Section 2.2.3 for 

details). 

Users’ perceptions of the robot were measured by using two components of the God-speed 

questionnaire [63], a standard HRI questionnaire. Five-point Likert scale questions were used in 

the post-experiment questionnaire to measure the robot’s usefulness and responsiveness. 

O’Brien has studied the process of user engagement in HCI [64] and has proposed a universal 

instrument for measuring user engagement called the User Engagement Scale [65]. To quantify 

the user experience over the entire training session, five metrics of the User Engagement Scale 

were used in the post-experiment questionnaire presented as five-point Likert scale questions: the 

task’s interestingness (engagingness), the user’s willingness to continue the training, the user’s 

focused attention, motivation, and control and feedback.   

In addition to the post-experiment questionnaire, the Self Assessment Manikin (SAM) 

questionnaire [50] was used to gauge the level of change in participants’ satisfaction with and 

attentiveness during the task from the beginning of the experiment to the end of it.  

4.2 Methods(

4.2.1 Research(Ethics(and(Study(Participants(
This study was approved by the Clinical Research Ethics Board (CREB) of the University of 

British Columbia, and all participants provided informed written consent. Twenty-three healthy 

adult participants with an average age of 24.3 and a male/female ratio of 11/12 took part in this 

study. In order to confirm participants were free of neurological impairment, a minimum score of 

24 in Folstein Mini-Mental Test was required. Moreover, only participants with normal or 

corrected eyesight were recruited to make sure changes in participants’ performance were not 

attributable to anything but changes in the presence of visual distortions and the error 

amplification methods. 

The study participants were put into a control group and an experimental group: 13 participants 

in the control group and 10 participants in the experimental group. The male/female ratio in the 

control group was 6/7 and in the experimental group was 4/6. The age averages of the two 

groups were 24.2 years for the control group and 24.3 years for the experimental group. For the 
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experimental group, error amplification level of the reaching exercise varied based on predictions 

of a trained machine learning algorithm. The level of error amplification was varied randomly for 

the control group.  

4.2.2 Experimental(Setup(and(Motor(Adaptation(Task(
This study employed the same experimental setup as for the study presented in Chapter 3. The 

two main devices used in this study were the robotic manipulandum to deliver the reaching task 

with different levels of error amplification and a suite of physiological signals sensors to collect 

participant physiological responses.  

Physiological signals were captured at 256 Hz using a ProCompInfiniti Physiology Suite 

(Thought Technology, Inc.). Three physiological signals were included in this study: skin 

temperature, skin conductance response and respiration rate. The positions of physiological 

signals sensor straps on participants’ bodies were similar to those of the study presented in 

Chapter 3. The physiological responses were used in determining participants’ levels of desirable 

difficulty. 

The custom-built five-bar robot used in the studies presented in the previous two chapters was 

also used in this study. The robot was used to exercise reaching to targets in the horizontal plane 

as a motor learning task. Three targets were placed radially (equally spaced), with the same 

distance from the middle of the monitor. When a target was presented, participants had to move 

the robot’s handle with their non-dominant hand to place the moving dot over the target. Once 

the target was reached, they had to move the cursor back to the center of the screen. The order of 

target presentation was predefined with a random number generator. 

The participants’ non-dominant hand was concealed with a cover in order to ensure visual 

feedback was only provided via the monitor. Participants were told the cursor represents the 

robot’s end-effector position. To cause an initial deviation in healthy participants’ reaching path 

and to initiate motor adaptation, a 30° rotation was used as visual distortion. Ordered from the 

easiest perceived difficulty to the hardest (Chapter 2), the five error amplification (EA) levels 

used were: control (no EA), low gain visual EA, high gain visual EA, low gain visual/force 

feedback EA, high gain visual/force feedback EA.  

More details about the physiological signals sensors, the robot-assisted reaching task, visual 

distortion, and error amplification methods can be found in Chapters 2 and 3. 
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4.2.3 Adjusting( Training( Block( Challenges( Based( on( Prediction( of( Participants’(

Preference(

The study presented in Chapter 3 investigated methods of desirable difficulty prediction and the 

most informative inputs for this process in an open-loop validation process. The results showed 

that using Neural Networks algorithm and a fuzzy combination of the motor performance and 

physiological metrics (see Section 3.2.4 for definitions of these metrics) leads to the highest 

prediction accuracy.  

In the open-loop validation study presented in the previous chapter, a k-fold cross-validation 

method with k = 6 was implemented. In this study, all 107 data points that were collected in the 

study presented in Chapter 3 were used in a fuzzy combination to train a new Neural Network. 

After training this new Neural Network (NN) model, the same 107 instance set that was used for 

training was fed back to the NN model. The model’s prediction of the direction of change to 

achieve desirable difficulty for 96 of the data points matched the known direction of desirable 

difficulty. The number of correct predictions can be used to define the algorithm’s ability to learn 

the training set, a measure for goodness of training. This is defined as a percentage and 

calculated as the ratio of the number of correct predictions (i.e., 96) divided by total number of 

predictions (i.e., 107), which in this case equals 89%. 

This new Neural Network model was used for predicting the direction of change to achieve 

desirable difficulties for the experimental group in this study. 

4.2.4 Data(Collection(Protocol(
After providing consent to participate in the study, participants were introduced to the robotic 

manipulandum and the reaching task. Participants were then seated in front of the robot, and the 

physiological signal sensors were put on them. Each experiment, on average, took 80 minutes. 

Participants were given rest times at any time upon request (in addition to the scheduled rest 

periods in the exercise blocks). They were told that they could stop participating in the 

experiment at any point. 

The data collection protocol used for this study was similar to that of the study presented in 

Chapter 3. The experiment comprised of six exercise blocks (Figure 4.1, top). In the first block, 

participants practiced reaching in the virtual environment to become familiar with the task. This 

familiarization block comprised of 14 cycles in which both visual distortion and error 
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amplification were turned off (i.e., plain motion). The familiarization block was followed by five 

training blocks (exercise blocks 2 to 6). 

Each training block was divided into four sub-blocks (Figure 4.1, bottom): de-adaptation, rest 

period, exercise with challenge, and self-report of desirable direction of change in difficulty. 

Similar to the previous studies, the goal of the de-adaptation sub-blocks was to remove training 

effects of previous training blocks and each de-adaptation sub-block comprised of 10 cycles of 

plain motion. In the rest period, participants were asked to remain seated and with the least 

possible motion for one minute. Physiological signals recorded in this period were used as a 

baseline in computing physiological measures. In an attempt to reduce possible distractions and 

physiological responses to any unwanted stimulus, the study room was kept quiet.  

The “exercise with challenge” sub-block comprised of reaching to visual targets within the 

visually distorted environment with one of the five EA levels (13 cycles). For the control group, 

the order of appearance of the five EA levels throughout the training blocks was random and 

changed for each participant. However, for the experimental group, only the EA level of the first 

training block was chosen randomly; the level of EA for the rest of the training blocks was 

changed based on the predictions of a trained machine learning algorithm. The Neural Network 

algorithm with fuzzy combination of motor performance and physiological metrics validated in 

the previous chapter was employed for prediction of desirable direction of change in difficulty in 

this study. At the end of each training block, the machine learning algorithm was used to predict 

whether the user’s desirable difficulty for the next training block should be easier or harder than 

the challenge of the just-completed training block. Based on this prediction, the appropriate EA 

level was implemented for the next training block. 

 
Figure 4.1: Top: Detailed break-out of the experiment protocol. Participants were given this information prior to the start 

of the experiment. Bottom: A break-out of a training block. 

At the end of each of the training blocks (after finishing the challenge sub-blocks), all 

participants were asked to report whether they wanted their next trial to be easier (recorded as 
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−1) or harder (+1), in other words, whether their “desirable difficulty” for the next training block 

was easier or harder than the challenge they just practiced. To make the question clear, the same 

example used in the study presented in Chapter 3 was given. The answers of the experimental 

group to this question were compared with the output of the desirable change in difficulty 

prediction algorithm for closed-loop validation of the machine learning method. 

4.3 Results(

4.3.1 Demographics(
Twenty-three participants were involved in this study: 13 participants in the control group and 10 

participants in the experimental group. The male/female ratio in the control group was 6/7 and in 

the experimental group was 4/6. A t-test failed to show any difference between the almost 

identical age averages of the two groups: 24.2 years for the control group and 24.3 years for the 

experimental group.  

Participants in both groups were asked to report their level of familiarity with robots on a scale of 

1 (not familiar) to 5 (very familiar). The control group on average reported a score of 1.92 for 

familiarity with robots. This score was 1.80 for the experimental group. A t-test failed to show a 

significant difference between the averages of the reported values for familiarity with robots 

between the two groups. This suggests that the effects of robotic task novelty is same for both 

groups and possible differences in the reported scores for human perception of the task and robot 

cannot be attributed to participants’ level of familiarity with robots.  

4.3.2 ClosedSloop( Validation( of( the( Machine( Learning( Algorithm( for( Prediction( of(

Desirable(Difficulties(

Using the Neural Networks algorithm with a fuzzy combination of the motor performance and 

physiological metrics yielded the highest prediction accuracy in the open-loop hold-out cross-

validation presented in the previous chapter. As mentioned earlier, a new Neural Network (NN) 

model was trained for this closed-loop study (training accuracy of 89%). A closed-loop 

validation of the new model was performed to demonstrate that this method of prediction can be 

used as an online decision making feedback loop for task adaptation. 

Each of the 10 participants in the experimental group completed 5 training blocks and after each 

block reported whether their desirable difficulty for the next block was easier or harder than the 
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challenge they just completed. The self-reports of the experimental group for an easier or harder 

next trial were split 44% to 56% (45% to 55% for the control group). 

This produced 50 new data points: a pair of motor performance and physiological metrics plus 

self-report of challenge preference. The new NN model was used to predict the participants’ 

preferred change of difficulty for on-line adjusting of the next training block. These predicted 

challenge preferences were compared against the reported challenge preferences to perform a 

closed-loop validation of the trained NN model.  

Overall, the new NN model’s prediction was correct for 39 of the 50 new data points (78%). 

Considering the participants individually, the accuracy ranged from a minimum of 3 out of 5 

correct predictions for participants #16 and #18, to 5 out 5 correct predictions for participant #17 

(Figure 4.2). 

 
Figure 4.2: Accuracy of the machine learning algorithm in predicting desirable difficulties for the participants in the 

experimental group. 

4.3.3 Participants’(Perceptions(of(the(Reaching(Task(and(the(Task(Load(
The two groups’ perception of the reaching task and the task load was collected using five 

subscales of the NASA Task Index: mental demand, physical demand, task performance, 

perceived effort, and frustration. The mean and standard deviation of these five measures are 

reported in Table 4.1 and presented graphically in Figure 4.3. 

Summarized in Table 4.2 are the results of pair-wise comparisons of the five task perception 

measures between the control and experimental groups. The pair-wise comparison was done 

using a two-tailed t-test and assuming unequal variances (a condition of the data in this study). 

Performing t-test with this assumption involves adjusting degrees of freedom df to a lower value, 

which increases the critical t-value for p < 0.05 and makes the test more conservative [51, 52].  
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Table 4.1: The means and standard deviations, in parentheses, of the participants’ perception of the task and task load 
measures for each of the participant groups. Measures showing trending or significant differences between the two groups 
are indicated with the following suffixes: t p < 0.10, * p < 0.05. 

Measure Control Group Experimental Group 
Mental Demand 2.84 (1.21) 2.80 (1.13) 

Physical Demand 2.69 (1.18) 2.40 (1.34) 
Task Performance * 2.54 (0.96) 3.40 (0.97) 
Perceived Effort * 3.85 (0.89) 3.00 (0.94) 

Frustration t 3.15 (1.28) 2.30 (0.95) 
 

 
Figure 4.3: Overview of the participants’ perception of the task and task load scores collected from five-point Likert scale 
questions. Measures showing trending or significant differences between the two groups are indicated with the following 

suffixes: t p < 0.10, * p < 0.05. 
 

Table 4.2: Two-tailed t-test results for pair-wise comparison of the participants’ perception of the task and task load 
measures between the two participant groups. Measures showing trending or significant differences between the two 
groups are indicated with the following suffixes: t p < 0.10, * p < 0.05. 

Measure t-value (df) p-value 
Mental Demand 0.09 (20) 0.92 

Physical Demand 0.54 (18) 0.59 
Task Performance * 2.12 (20) 0.04 
Perceived Effort * 2.17 (19) 0.04 

Frustration t 1.83 (21) 0.08 
 

The results of pair-wise comparison of the reported scores using two-tailed t-test failed to show 

any significant difference in the reported scores for perceived mental and physical demands of 

the task between the two groups. Additionally, the results also showed that the experimental 

group reported a higher score of task performance and a lower score for perceived effort 

compared to the control group. Both of these differences are statistically significant. Although 

this analysis demonstrated a trend in the score for frustration (lower for experimental group), the 

t-test failed to prove the significance of the trend seen in the data (p = 0.08).  
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4.3.4 Description(of(the(Robot(
The Godspeed and the User Engagement Scale questionnaires were used in this study to collect 

metrics that quantify participants’ perceptions of the robot and the training session (Section 

4.1.2). Both questionnaires were designed to collect multiple metrics of the same measure in 

order to increase the trustworthiness of the data. In this study, the metrics of a same measure 

were aggregated and their mean value was used as the score for that measure. Thus, it was 

required to ensure that the collected data for each measure is internally reliable. This was done 

by calculating Cronbach’s alpha value, an estimate that shows the consistency of the reported 

values for different metrics that quantify one measure (Table 4.3).  

Table 4.3: Internal reliability of the measures used to quantify participants’ descriptions of the robot and the training 
session. 

 Measures Cronbach’s alpha Metrics 

Description 

of the 

Robot 

Usefulness 0.709 Independent (reverse), Helpful 

Dominance 0.712 Assertive, Competitive, Dominant, Forceful 

Description 

of the 

Experience 

of the 

Entire 

Interaction 

Engagingness 0.776 Boring (reverse), Enjoyable, Engaging 

Willingness to 

Continue 
N/A 

If time was not a constraint, how many more 

training blocks would you do? 

Focused 

Attention 
0.522 

Lost myself in the experience, I lost track of 

time 

Motivation 0.843 

The experience was fun, I felt discouraged 

during the interaction (reverse), I felt 

frustrated during the interaction (reverse) 

Feedback 0.554 

I felt involved in the experience, The 

interaction did not work as I planned 

(reverse), I felt in control of the experience 
 

Table 4.3 summarizes the metrics that were used to quantify different measures and the value of 

Cronbach’s alpha for each measure. Measures with Cronbach’s alpha value below 0.7 are not 

considered internally reliable and were excluded from further analysis (i.e., t-test). Both of the 

measures for quantifying participants’ descriptions of the robot – robot’s usefulness and robot’s 

dominance over the participant (reverse of responsiveness) – were internally reliable. The mean 

and standard deviation of these two measures are reported in Table 4.4 and presented graphically 

in Figure 4.4. 
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Table 4.4: The means and standard deviations, in parentheses, for the reported scores of the robot’s usefulness and 
dominance for each participant group. Measures showing significant differences between the two groups are indicated 
with the following suffix: ** p < 0.01. 

Measure Control Group Experimental Group 

Usefulness** 2.31 (0.85) 3.40 (0.94) 

Dominance 3.31 (0.56) 2.92 (0.80) 
 

 
Figure 4.4: The reported scores of the robot’s usefulness and dominance for each participant group collected from five-

point Likert scale questions. Measures showing significant differences between the two groups are indicated with the 
following suffix: ** p < 0.01. 

Summarized in Table 4.5 are the results of pair-wise comparison of the two descriptions of the 

robot measures between the control and experimental groups. The pair-wise comparison of the 

two participant groups was done using a two-tailed t-test and assuming unequal variances. 

Although the difference in the scores of the robot’s usefulness is statistically significant, the 

difference in the dominance scores is not.  

Table 4.5: Two-tailed t-test results for pair-wise comparison of the reported scores of the robot’s usefulness and 
dominance for each participant group. Measures showing significant differences between the two groups are indicated 
with the following suffix: ** p < 0.01. 

Measure t-value (df) p-value 

Usefulness ** 2.88 (19) p < 0.01 

Dominance 1.29 (15) p  = 0.22 
 

4.3.5 Description(of(the(Interaction(
As mentioned above, Table 4.3 summarizes the five measures that were used to quantify 

participants’ experience during the five training blocks. Only three of the measures 

(engagingness of the experience, willingness to continue the exercise, motivation) were 

internally reliable, while the other two (focused attention and available feedback) had a 

Cronbach’s alpha value lower than 0.7 and were excluded from the subsequent pair-wise 



 

62 

comparison of the two groups. The mean and standard deviation of these five measures are 

reported in Table 4.6 and presented graphically in Figure 4.5. 

Table 4.6: The means and standard deviations, in parentheses, for the measures quantifying participants’ experience over 
the duration of the five training blocks. Measures of focused attention and feedback were not internally reliable and t-
tests were not performed on them. Measures showing significant differences between the two groups are indicated with 
the following suffix: * p < 0.05, *** p < 0.001. 

Measure Control Group Experimental Group 

Engagingness * 3.13 (0.99) 3.83 (0.57) 

Willingness to Continue *** 1.23 (1.48) 4.60 (1.83) 

Focused Attention 2.62 (1.02) 2.80 (0.97) 

Motivation * 3.23 (1.13) 4.03 (0.61) 

Feedback 3.23 (0.90) 3.67 (0.68) 
 

 
Figure 4.5: The reported scores for describing the experience of completing five training blocks of the reaching task for 

each participant group collected from five-point Likert scale questions. Measures showing significant differences between 
the two groups are indicated with the following suffix: * p < 0.05, *** p < 0.001. 

The results of pair-wise comparison between the control and experimental groups of the three 

internally reliable descriptions of the experience measures are summarized in Table 4.7. The 

pair-wise comparison of the two participant groups was done using a two-tailed t-test and 

assuming unequal variances. Differences between the two groups in all three of the measures are 

statistically significant: the experiment group reported higher scores.  

Table 4.7: Two-tailed t-test results for pair-wise comparison of the reported scores for the internally reliable experience 
measures between the two participant groups. Measures showing significant differences between the two groups are 
indicated with the following suffixes: * p < 0.05, *** p < 0.001. 

Measure t-value (df) p-value 

Engagingness* 2.13 (20) p = 0.04 

Willingness to Continue *** 4.73 (17) p < 0.001 

Motivation* 2.16 (19) p = 0.04 
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4.3.6 Changes(in(Participants’(Task(Satisfaction(and(Attentiveness(between(the(First(

and(Last(Training(Blocks(

The SAM questionnaire was used to gauge the changes in participants’ task satisfaction and 

attentiveness in the duration of the exercise with the robot. Participants’ in both groups reported 

their satisfaction and attentiveness scores after the first and the last (i.e., fifth) training blocks. 

The differences between the scores at the beginning and the end of the experiment were used for 

analysis. The mean and standard deviation of the changes in task satisfaction and attentiveness 

are reported in Table 4.8 and presented graphically in Figure 4.6. 

Table 4.8: The means and standard deviations, in parentheses, for the changes in task satisfaction and attentiveness after 
five training blocks of reaching tasks. Measures showing significant differences between the two groups are indicated with 
the following suffix: * p < 0.05. 

Measure Control Group Experimental Group 

Task Satisfaction * 1.08 (1.44) 2.50 (1.72) 

Task Attentiveness * 0.78 (1.59) 2.2 (1.55) 
 

 
Figure 4.6: The changes in task satisfaction and attentiveness after five training blocks of reaching tasks for each 

participant group. Measures showing significant differences between the two groups are indicated with the following 
suffix: * p < 0.05. 

A pair-wise comparison of the changes in task satisfaction and attentiveness after completing the 

training blocks between the two participant groups was done using two-tailed t-test assuming 

unequal variances. The control group reported statistically significant lower changes for both of 

the measures. Table 4.9 summarizes the results of performed t-tests. 

Table 4.9: Two-tailed t-test results for pair-wise comparison of the changes in task satisfaction and attentiveness. 
Measures showing significant differences between the two groups are indicated with the following suffix: * p < 0.05. 

Measure t-value (df) p-value 

Task Satisfaction * 2.11(18) 0.04 

Task Attentiveness * 2.17 (20) 0.04 
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4.4 Discussion(and(Conclusion(

This chapter presents the results of a study in which an experimental group (participants received 

training blocks of a robotic reaching task at their desirable difficulty levels) was compared with a 

control group (order of training blocks was predefined randomly). The findings from this study 

demonstrate that a Neural Network model that uses a fuzzy combination of a participant’s motor 

performance and physiological metrics can predict the direction of change to achieve the 

participant’s desirable difficulty with an accuracy of 78% in real-time. Additionally, the results 

of this study show that the experimental group perceived the trio of the reaching task, the robotic 

manipulandum, and the experience of training with the robot as being significantly different, 

compared to the control group. In all the significant cases, the reported scores suggest that the 

experimental group’s perception of the three items mentioned above is more positive than the 

control group. 

The Neural Network (NN) model used to predict participants’ desirable difficulties was trained 

using a data set of 107 instances. The training accuracy of this model was 89% and the closed-

loop validation of it in this study yielded an accuracy rate of 78%. The training data set was built 

by offering the reaching task to participants at a random difficulty level in order to collect their 

motor performance and physiological metrics, as well as their preferred change in challenge level 

for the subsequent training block. Accordingly, in this study the experimental group received 

reaching tasks based on the output of the NN model. Although lower accuracy rate of the NN 

model in the closed-loop validation was expected, the high training accuracy rate of 89% can be 

an indicator of possible over-fitting in the training stage, an amplifying factor to deteriorate the 

accuracy of the predictions.  

A general trend in the questionnaire data showed that practicing the reaching task under a 

desirable difficulty condition was less frustrating for the study participants. By practicing the 

task at their desirable difficulties, participants in the experimental group perceived their 

performance at a significantly higher level and reported lower required effort to complete the 

task. However, since the nature of the task (i.e., reach motions to visually presented targets 

within 0.5 seconds) does not change by practicing it at one’s desirable difficulty, participants in 

both groups associated the task with the same level of mental and physical demand. Additionally, 

experimental group participants perceived the robot – the exercise tool – as more useful 

compared to the control group.  
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One of the main goals of the study presented in this chapter was to investigate the impacts of 

completing reaching tasks at one’s desirable difficulty on the person’s experience of the whole 

training session. The questionnaire data showed that participants in the experimental group were 

willing, on average, to continue the training session for 4.5 more training blocks. This score was 

significantly greater than that of the control group. Moreover, the experimental group found their 

experience both more engaging and more motivating compared to the control group. This is also 

reflected by the higher changes in the experimental group’s task satisfaction and attentiveness 

after completing the training blocks. 

The findings of this study demonstrate the ability of predicting the direction of change to reach a 

user’s desirable difficulty in a motor learning task in real-time. This study also demonstrated the 

possible usefulness of practicing a task at one’s desirable difficulty in improving the training 

experience for individuals, as well as their perception of the task and the robotic exercise tool. 

However, since the study used healthy participants, the effects of practice under a desirable 

difficulty condition on motor performance and motor learning were not studied. 

Nevertheless, this study does not address how the findings of this chapter can be integrated into 

the field of stroke therapy and possibly address the issue of low engagement of patients during 

the functional recovery period. Next chapter concludes this thesis by summarizing the findings of 

the three human-subject studies presented, and a discussion of future work and implications of 

implementing the desirable difficulty methodology for the clinical population.  
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5 Conclusion(
Therapy regimens are based on our understanding of neuroscience and motor learning principles. 

To stimulate patients’ brain neuroplasticity and reorganization of motor pathways, therapy 

exercises comprise of numerous repetitions of simple physical tasks. This necessary repetitive 

nature of therapy exercises makes the hard work of therapy boring, which can negatively affect 

the patient’s motivation to continue therapy. 

In an attempt to address this issue, this thesis grounded its overall goals in the scientific literature 

of the mechanics of human engagement in tasks. According to the flow theory and the challenge 

point framework, completing tasks at one’s desirable difficulty accelerates both learning of new 

skills and engagement during each exercise session. Delivering the therapy exercises at a 

preferred level of challenge has the potential to address the issue of “engagement in therapy 

regimen”: Seeing one’s improvement in an engaging task will increase one’s self-efficacy with 

the task, and in the case of stroke therapy, will lead to a lower chance of therapy abandonment 

and faster recovery. 

Any implementation of the idea of desirable difficulty engagement would rely on two main 

factors: having an exercise with several different difficulty levels, and offering the exercise to 

individuals at their desirable difficulty. These desirable difficulties depend on the user’s 

performance and affective state during the task. While robots provide the ability to quantify the 

user’s performance, assessing the user’s affective state is more challenging and can only be done 

indirectly. Real-time analysis of physiological signals is one way to characterize different aspects 

of affect. 

This thesis investigated the feasibility of implementing the idea of desirable difficulties in a 

robot-assisted motor rehabilitation exercise scenario to improve users’ engagement in the 

exercise. This design process was split into three main steps: design of an effective (i.e., leading 

to motor learning) robotic exercise with meaningful and distinguishable levels of difficulty, 

development of a method to predict the user’s desirable difficulty during the robotic exercise, 

and evaluation of the effects of exercising at one’s desirable difficulty on one’s perception of the 

exercise. The results of each step were presented in detail in Chapter 2 to Chapter 4. Overall, the 

main contributions of this thesis are: 
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1. Study I: Proposing combination of visual and force feedback error amplification as a way to 

promote motor adaptation, as well as demonstrating that error amplification methods can be used 

as a way to introduce levels of challenge into a robotic reaching task. 

2. Study II: An empirical comparison of different machine learning algorithms in estimating 

users’ preference for direction of challenge change, and proposing a fuzzy combination of motor 

performance and physiological metrics as predicting attributes to increase accuracy of preference 

estimation.  

3.  Study III: Providing statistical evidence that participants report a higher level of engagement 

with the exercise when the robot adaptively uses their affect and performance to change task 

difficulty. 

Section 5.1 to Section 5.3 is a review of the findings of each study with a comparison with the 

available literature and Section 5.4 concludes this thesis by presenting recommendations for 

future work. 

5.1 Can(Error(Amplification(in(a(RobotSassisted(Reaching(Task(Be(Viewed(as(

a(Meaningful(Way(of(Altering(Task(Difficulty?(

The study in Chapter 2 investigated the effects of practicing reaching motions with error 

amplification. The focus of this study was to propose error amplification methods as a way of 

adding meaningful difficulty levels to a robot-assisted reaching task. Meaningful in this case 

means “leading to motor learning” and a level of difficulty implies that the users are able to 

differentiate between the amounts of challenge involved in doing a task at each of the levels. 

Performance metrics were introduced to characterize healthy participants’ motor adaptation to a 

visually distorted reaching environment (amount of improvement, speed of learning, path 

deviation after training). Effects of five conditions of error amplification (EA) on motor 

adaptation were studied. Similar to [19], the study presented in Chapter 2 could not show 

significant differences between adaptation properties promoted by each EA. The only exception 

was the high-gain visual and force feedback EA, which significantly improved the amount of 

improvement “a” in comparison to control and visual EA methods. More importantly, the main 

contribution of this study was to investigate the effects of EA levels on participants’ affective 

state, an analysis that has not been performed before. Analyzing participants’ questionnaire 

responses showed that different levels of error amplification are perceived by the study 
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participants as different levels of task difficulty and thus, lead to different levels of task 

satisfaction and attentiveness. This suggests that different levels of EA can be distinguished by 

users as additional challenge to the reaching task. 

Several methodological differences between the Wei [18] and Celik [19] studies contributed to 

the fact that the ANOVA failed to show significant differences in the speed of motor adaptation 

measures “b” between EA methods. Wei and Celik used higher amplification gains (2 and 3.1) 

and compared error amplification using these gains with error offsetting (i.e., augmenting the 

cursor position by adding a constant value) in a between-subjects design. In these studies, 

adaptation was characterized using catch-trials (both distortion and EA are turned off: plain 

motion) placed between exercise-with-challenge trials that ran for over 50 cycles. This study 

protocol design is well suited for studying only motor adaptation. In the study presented in this 

chapter, the low resolution of the robot’s display (640 × 480) prevented using higher gains, such 

as 2 and 3.1, that were validated in other studies. The study reported here intentionally avoided 

using a between-subjects design with long and extended exercise blocks to simulate a condition 

close to an actual therapy session; a participant experiences different tasks in rather short periods 

of time. 

5.2 Can(a(User’s(Desirable(Difficulty(Be(Predicted?(
The study presented in Chapter 3 investigated methods of predicting the direction of change to 

reach a participant’s desirable difficulty and the most informative inputs for this process in an 

open-loop validation process. The use of K-Nearest Neighbour, Neural Networks, and 

Discriminant Analysis methods was proposed as possible means of predicting users’ preference. 

This study also explored the effectiveness of using participants’ motor performance and 

physiological signals during the reaching task in prediction of users’ desirable difficulties. 

The results of this open-loop validation (k-fold cross-validation) showed that using a Neural 

Networks algorithm and a fuzzy combination of the motor performance and physiological 

metrics leads to a high preference prediction accuracy of 85%. In a follow-up study presented in 

Chapter 4, the same method of prediction was validated in a closed-loop setting and yielded an 

accuracy rate of 78%. These results are comparable to and more definitive relative to (standard 

deviation of prediction accuracies can be calculated in k-fold cross-validation) the available 

literature. 
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Efficiency of several machine learning methods in predicting affect based on physiological 

signals is presented in [55]. In that study, Rani et al. used a human-robot interaction task to elicit 

different affective states. In a systematic comparison of the weaknesses and strengths of four 

machine learning algorithms, K-Nearest Neighbour, Bayesian Network, Regression Tree, and 

Support Vector Machine, the study showed that all the methods performed competitively (~80% 

prediction accuracy). However their study used leave-one-out cross-validation, a less objective 

estimate of accuracy and generalizability compared to the k-fold cross-validation method used in 

the study of Chapter 3.   

Novak et al. [58] used performance metrics and physiological measurements of users to design a 

biocooperative stroke rehabilitation system. In the study, Novak used different flavours of 

Discriminant Analysis to design a system that can predict a therapist’s recommended changes for 

task difficulties (a more objective measure in comparison with directly asking the study 

participants). Their work demonstrated greater performance of adaptive algorithms that can 

adjust their decision making process for each individual user compared to algorithms that work 

based on a generic model of the users (open-loop validation 85% vs. 82%). As their study, 

similar to [55], used leave-one-out cross-validation, it is not possible to comment on the 

significance of the differences between the two prediction accuracy values. By investigation of 

the usefulness of each of the physiological features after the open-loop validation and exclusion 

of the non-relevant features, Novak designed a system that demonstrated a closed-loop prediction 

accuracy of 88%. 

5.3 How( Is( a( User’s( Experience( of( the( Robotic( Exercise( Altered( when( the(

Robot(Adjusts(the(Exercise(Based(on(Its(Prediction(of(the(User’s(Challenge(

Preference?(
The studies presented in Chapters 2 and 3 provide strong empirical evidence to support the 

implementation of delivering exercise at users’ desirable difficulties through a robotic reaching 

task. The study presented in Chapter 4 investigated whether a user reports a more positive 

perception of the robot and the physical exercise when the robot delivers the reaching exercise at 

the user’s desirable difficulty. Several previous studies have looked at ways of predicting a user’s 

preference and the success of changing the behaviour of the robot based on such predictions [37, 

56, 58]. However, this is the first study, to the author’s knowledge, that has investigated the 

effects of interacting with a robot under “preferred” conditions. 
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In the study presented in Chapter 4, participants in a control group received training blocks with 

EAs in a predefined random order, while participants in an experimental group received the 

training blocks based on predictions of the direction of change to achieve the participants’ 

desirable difficulty performed by a machine learning algorithm. This study focused on three 

items of the users’ perception: 1) users’ perceptions of the reaching task and the task load, 2) 

users’ descriptions of the robot’s responsiveness and usefulness as a trainer, and finally 3) users’ 

descriptions of their experience of the entire training session. The study participants’ 

questionnaire responses were used to quantify these items.  

The experimental group participants perceived their performance at a significantly higher level 

and reported lower required effort to complete the task. Additionally, they perceived the robot – 

the exercise tool – as more useful than the control group participants did. A general trend in the 

questionnaire data showed that practicing the reaching task under desirable difficulty condition 

was less frustrating for the study participants. Moreover, the questionnaire data showed that 

participants in the experimental group were willing to continue the training session for 

approximately four times longer than the control group. Likewise, the experimental group found 

their experience both more engaging and more motivating compared to the control group. The 

higher changes in the experimental group’s task satisfaction and attentiveness after completing 

the training blocks also imply the positive effects of exercising at one’s desirable difficulties. 

Finally, a general trend in the questionnaire data showed that practicing the reaching task under 

desirable difficulty conditions was less frustrating for the study participants. 

5.4 Recommendations(and(Future(Work(
The findings presented in this thesis are results of human-subject studies with healthy 

participants (i.e., not stroke survivors performing therapy exercises), an acceptable case for 

methodology validation studies. Because of this, one needs to be cautious and thoughtful in 

interpreting the results and generalizing them to clinical populations. 

Chapter 2 of this thesis suggests a framework for adding meaningful levels of difficulty to a 

robotic exercise of reaching motions. The findings of this thesis about the effects of practicing 

with different error amplification conditions in the healthy population agree with the literature. 

Studies have shown that use of error amplification improves motor learning in both healthy 

persons and stroke survivors. As the general definition and perception of physical challenge is 

not affected by stroke, it is plausible to hypothesize that stroke survivors will also recognize 



 

71 

different levels of error amplification as different levels of reaching task challenge. However, the 

error amplification gains used in this study might not be suitable for the clinical population and 

can be too challenging cognitively and physically. Further studies are required to determine 

visual and/or force feedback error amplification gains that lead to better motor performance 

characteristics as well as a more distinctive differentiation of challenge perception in stroke 

population.  

Chapter 3 demonstrated a possible way of predicting the direction of change to achieve a user’s 

desirable difficulty in real-time. The method presented relies on the use of motor performance 

and physiological metrics as input data. The motor performance metrics introduced in this thesis 

characterize motor adaptation to visually distorted environments. Motor adaptation in the healthy 

population can be considered as a very specific case of motor learning; however, it does not alter 

brain motor control pathways. Because of this, motor adaptation happens in a shorter period of 

time compared to motor learning in the stroke population. To implement this method of user 

preference prediction for the stroke population, motor performance metrics suitable to 

characterize the slow process of motor re-learning (e.g., changes in a patient’s Fugl-Meyer score 

over the course of treatment) must be used. Additionally, due to damage caused by stroke to the 

central nervous system, physiological responses are different than responses in the healthy 

population. Additional comparative studies between healthy and clinical populations such a 

Novak’s work [35] may still be required to introduce physiological metrics that best capture the 

changes of affective states in stroke population. Based on the results of a study by Novak [58], it 

is highly recommended to investigate the usefulness of each of the physiological features and 

exclude non-relevant features in order to increase the accuracy of desired difficulty predictions. 

Finally, Chapter 4 of this thesis demonstrated the possible usefulness of practicing a task at one’s 

desirable difficulty in improving the training experience for participants, as well as improving 

their perception of the task and the robotic exercise tool. Physical therapy comprises of numerous 

training sessions; a continuous process of engagement in physical exercise, dis-engagement at 

the end of each exercise session, and re-engagement at the beginning of the next exercise session. 

The study presented in Chapter 4 was mainly focused on the user’s engagement during one 

training session and the questionnaire items used in this study related to how dis-engagement can 

be delayed. To move this work to the clinical environment, it is important to study the impacts of 
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practice under desirable difficulties on the process of re-engagement in therapy tasks and 

patients’ self-efficacy.  

In the study presented in Chapter 4, the presented direction of change in difficulty for the control 

group matched the reported value by the participants (desired direction of change) in 53% of the 

instances. This number was 78% for the experimental group. This difference led to a significant 

difference in the participants’ experience between the two groups. However, the study presented 

in Chapter 4 does not investigate the minimum threshold of participant preference prediction that 

leads to participant satisfaction. This will be an important factor in future work with stroke 

population. In this study participants finished five training blocks and it was shown that one 

wrong prediction in five predictions is not annoying or frustrating to them. A stroke survivor will 

need to complete thousands of repetitions, and with an ~80% prediction accuracy will receive 

over 200 training blocks in the wrong direction of difficulty change, a possibly frustrating 

condition. Future studies need to consider the accumulative effects of such consecutive non-

desired difficulty changes. 

The main goal of physical therapy for stroke survivors is to improve motor ability. Nevertheless, 

the repetitive nature of therapy exercises compromises patients’ motivation to continue their 

therapy regimens. This thesis demonstrated the possibility of increasing task engagement in a 

typical physical therapy exercise by delivering the exercise at the user’s desirable difficulty. 

However, since the study used healthy participants, the effects of practice at one’s desirable 

difficulty on motor performance and motor learning were not studied. The improved engagement 

during an exercise session can make re-engagement in the exercise more probable, leading to an 

increase in the amount of time spent in active therapy.  As the amount of time spent in active 

therapy is a predictor of both speed and amount of recovery, a hypothesis will be that delivering 

therapy exercises at a patient’s desirable difficulty will positively impact patient’s recovery of 

motor abilities. 
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Appendix(A –(Control(Architecture(of(the(Robotic(Manipulandum(
This appendix presents the details of the control architecture of the robotic manipulandum used 

in all of the three studies of this thesis. Section A.1 briefly reviews the specifications of the 

robotic manipulandum. Section A.2 presents how reaching trajectory errors were calculated and 

how error amplification methods were implemented in the control architecture of the robot. 

A.1( Overview(of(the(Robotic(Manipulandum(
The robotic manipulandum that was used in this thesis is a five bar robot that was initially 

developed by Atsma [49] in the Neuromotor Control Laboratory at the University of British 

Columbia to investigate different aspects of motor learning. This robot has two degrees of 

freedom in the horizontal plane. Two direct-drive motors (Parker-Compumotor Dynaserv 

DR1060B) located at the base run the robot and the two “elbow” joints of the robot are passive 

(Figure A.1). Encoders integrated with the motors supply position feedback while a multi-axes 

force sensor (ATI Industrial Automation Inc. “Mini” sensor) at the robot’s end-effector is used to 

measure the interaction forces in the horizontal plane. The robot’s end-effector is also 

instrumented with a handle: Users hold on to this handle and move the robot around. 

 

Figure A.1: The 5 bar manipulandum on left. The diagram on the right shows how an operator interacts with it. This 
figure was originally used in [49] and has been used with permission. 

Figure A.2 shows the hardware configuration of this robotic manipulandum. The controller 

program is run on the main computer workstation which hosts a Digital Signal Processor (DSP) 

board (dSpace Inc. DS1102). This DSP board also provides data logging facilities for the 

MATLAB environment. The DSP acts as a communication port between the main computer and 

the robot’s motors. It receives position feedback from the motor drives and communicates torque 

commands. A second computer runs A program called TargetDisplay (TD) which provides 
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visual feedback to the operator on a flat screen monitor. TD is also used to read the force data 

from the ATI sensor. TargetDisplay communicates with the DSP board on the first computer 

through a serial port.  

 

Figure A.2: Schematic of the control system hardware. This figure was originally used in [49] and has been used with 
permission. 

Figure A.3 presents the original control scheme of the manipulandum. This impedance controller 

outputs a toque command to each of the two motors (Figure A.3 top right) based on the force that 

the operator is applying to the end effector (user’s desired motion measured by the TargetDisplay 

interface), the predesigned perturbation criteria that were used in studies conducted by Atsma 

[49], and the position of the end effector (“bounding box” box in the model the ensures the 

operator stays within the working area). Atsma used velocity-based perturbation criteria in his 

studies. This was modified to implement the position-based perturbation criterion (force 

feedback error amplification) of this thesis. The friction compensation box on the bottom right 

portion of Figure A.3 compensates for high friction and cogging torque in one of the motors. 

A.2( Calculation( of( Trajectory( Error( and( Implementation( of( Error(

Amplification(
In the studies presented in this thesis, participants were instructed to move a cursor to target 

points presented to them on a monitor using the robot. The ideal reaching path would be a line 

between the starting point of the motion and the target point. Lateral deviation from this line at 

each time during the reaching motion was called reaching trajectory error and would be 

augmented via visual means or force feedback to implement the idea of error amplification.  

To amplify reaching trajectory errors, the error vector must be defined. This was done using 

simple vector calculus demonstrated by Figure A.4. In Figure A.4, start point a, target point b, 

and the current cursor position c are defined. Since these points are known the ideal path vector 
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ab and the cursor motion vector ac can be defined. Then the goal is to find the magnitude and 

direction of the error vector cd. 

 

Figure A.3: Screen Capture of the original impedance controller of the manipulandum implemented in MATLAB 
Simulink by Atsma [49]. 

 

Figure A.4: Vector calculus to calculate the reaching trajectory error vector 

Trajectory error is defined as lateral deviation from the ideal path. This means that the error 

vector is perpendicular to the ideal path. Then the normal vector of the error (direction of error) 

can be defined by the following equation: 
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!!" != !
!!!!!!,!!!!!!!!

!" !∗ !!"#$!(!"×!")                                   (A.1) 

Forming a triangle between points d, a, and c: 

sin(!"#) = ! !"!"                                                           (A.2) 

Also: 

sin(!"#) = ! !"!×!!"!" !∗! !"                                                       (A.3) 

Combining Equation A.2 and A.3 gives the error vector’s magnitude: 

!" = ! !"!×!!"!"                                                            (A.4) 

Figure A.5 shows a conceptual representation of the control scheme that was implemented for 

the studies of this thesis. The same way of error vector calculation presented by Equation A.1 to 

Equation A.4 was used in the robot’s control architecture, depicted as “Error Calc.” box in 

Figure A.5. The force sensor on the robot’s handle provides the user’s direction of motion and 

encoders at the robot’s motors measure the rotation of motors (q or joint coordinates). Using 

forward kinematics the Jacobian matrix and end-effector position x are calculated. In the control 

condition (no error amplification), the impedance controller designed by Atsma [49] was used to 

present x  on the screen as the cursor position and to calculate the required motor torques based 

on the force sensor readings. 

End-effector, start and target point coordinates were used to calculate the error vector. To 

implement visual error augmentation, vector summation of end-effector position vector x and the 

amplified error vector (by a gain of α) was calculated and this augmented end-effector position 

was presented on the monitor as the cursor position.  

Visual and force feedback error amplification calculations were very similar. The augmented 

end-effector position was used to visually amplify the error vector. In addition to this vector, an 

augmented force vector was calculated as the scalar product of an amplification gain and the 

error vector. This augmented force vector was added to the sensor reading and was used to 

calculate the required motor torques. 
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Figure A.5: Conceptual Demonstration of the Robot’s Control Architecture to Implement Error Amplification Methods. 
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Appendix(B –(Advertisements,(Consents,(and(Questionnaires(
This appendix presents the details of the study advertisements used to recruit participants, 

consent forms, and the questionnaires used in the human-subject studies of this thesis.  

B.1( Study(Advertisements(

Figure B.1 presents the “call for volunteers” that was posted around the campus of the University 

of British Columbia to recruit participants for the study presented in Chapter 2 of this thesis. 

Figure B.2 presents the “call for volunteers” that was posted around the campus of the University 

of British Columbia to recruit participants for the two studies presented in Chapter 3 and Chapter 

4 of this thesis. 
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Figure B.1: Contents of the “call for volunteers” that was posted around the campus of the University of British Columbia 

to recruit participants for the study presented in Chapter 2.  
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Figure B.2: Contents of the “call for volunteers” that was posted around the campus of the University of British Columbia 

to recruit participants for the studies presented in Chapter 3 and Chapter 4.  
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B.2( Information(Booklet(and(Consent(Form(

The information booklet and consent form presented to the study participants were same for all 

of the three studies presented in this thesis. Figure B.3 to Figure B.8 presents the contents of the 

information and consent form booklet.  
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Figure B.3: Information and consent form booklet used in all of the three studies presented in this thesis (page 1 of 6). 
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Figure B.4: Information and consent form booklet used in all of the three studies presented in this thesis (page 2 of 6). 
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Figure B.5: Information and consent form booklet used in all of the three studies presented in this thesis (page 3 of 6). 
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Figure B.6: Information and consent form booklet used in all of the three studies presented in this thesis (page 4 of 6). 
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Figure B.7: Information and consent form booklet used in all of the three studies presented in this thesis (page 5 of 6). 
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Figure B.8: Information and consent form booklet used in all of the three studies presented in this thesis (page 6 of 6). 
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B.3( Questionnaires(

In all the three studies presented in this thesis, participants were required to score higher than 24 

on a Follestini Mini-Mental test. Figure B.9 to Figure B.11 demonstrates contents of this test. 

The study participants were asked to report their level of satisfaction, attentiveness, and 

perceived control over the robotic manipulandum in the studies presented in Chapter 2 and 

Chapter 4 of this thesis. The Self Assessment Manikin questionnaire was used for this purpose 

(Figure B.12 and Figure B.13). The post-experiment questionnaire used in the study presented in 

Chapter 4 is demonstrated by Figure B.14 to Figure B.17. 
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Figure B.9: Contents of the Follestini Mini-Mental Test used in all three of the studies of this thesis (page 1 of 3). 

  



 

96 

 

Figure B.10: Contents of the Follestini Mini-Mental Test used in all three of the studies of this thesis (page 2 of 3). 
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Figure B.11: Contents of the Follestini Mini-Mental Test used in all three of the studies of this thesis (page 3 of 3). 
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Figure B.12: The Self Assessment Manikin Questionnaire used in the studies presented in Chapter 2 and Chapter 4 (page 
1 of 2). 
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Figure B.13: The Self Assessment Manikin Questionnaire used in the studies presented in Chapter 2 and Chapter 4 (page 
2 of 2). 
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Figure B. 14: The post-experiment questionnaire used in the study presented in Chapter 4 (page 1 of 4). 
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Figure B.15: The post-experiment questionnaire used in the study presented in Chapter 4 (page 2 of 4). 

  



 

102 

 

Figure B.16: The post-experiment questionnaire used in the study presented in Chapter 4 (page 3 of 4). 
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Figure B.17: The post-experiment questionnaire used in the study presented in Chapter 4 (page 4 of 4). 
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Appendix(C S( Cogging( Compensation:( Modeling,( Identification,( and(

Controller(Design((
The robotic manipulandum introduced in this thesis was used as a mean to investigate effects of 

distorted feedback on enhancing motor adaptation. During the pretests of the study presented in 

Chapter 2 (study I), participants complained about a disturbing vibration as they interacted with 

the manipulandum.  

Albeit having excellent features such as high torque to current ratio and fast response, one of the 

motors shows rather high friction and cogging amplitudes as illustrated in Figure C.1. The 

vibration that subjects complained about was caused by high cogging torque of this motor which 

was discovered by moving the end effector in a way that only excited a movement in that motor. 

Friction and cogging forces could bias the proposed studies of this thesis by disturbing 

participants. This appendix looks into modeling and identification of friction and cogging 

torques, followed by implementation of a friction compensation feature on the current controller 

of the robot. 

 
Figure C. 1: One of the motors shows a noticeable cogging torque. 

C.1( Methodology(and(Implementation(
Three main phases of this study are:  

1. Proposing  a model for friction and cogging torques in the motor,  

2. Identification process to find numerical values for coefficients of the proposed model, 
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3. Implementation and tuning of a feedforward compensator based on the previous steps. 

Atsma, designer of the robotic manipulandum, reviews dynamic equations of the manipulandum 

and suggests a linearised extended model for required torque to maintain a desired trajectory 

(position, velocity and acceleration) using Lagrangian method in [C1]. He enhances this model 

with friction and cogging models.  

Atsma formulates dynamics of the manipulandum in a matrix format as: 

     ! = ! ! ! + !(!, !)!                     (C.1) 

where ! is torque applied by motors, !, !, ! represent position, velocity and acceleration, ! !  is 

the inertia matrix and finally !(!, !) has the coriolis and centrifugal components. 

It is more convenient to represent the above equation in a linearised equation as multiplication of 

two matrices, one formed based on data from the encoders (current position) and the reference 

trajectory that the robot is to follow (inferred from the force operator applies on the end effector, 

measured by the ATI sensor), the other containing information on inertia of the links: 

    ! = !!(!, !, !!, !!)!! = ! ! ! + !(!, !)!                (C.2) 

This is implemented in the original impedance controller of the manipulandum (Figure C.2) 

[C2]. This controller outputs a toque command to each of the two motors based on the force 

operator is applying to the end effector (desired motion), predesigned perturbation criteria which 

was used in previous studies conducted by Atsma, and position of the end effector (“bounding 

box” box in the model ensures operator stays within the working area). The original controller 

[C2] does not compensate for friction, as it was assumed that friction and cogging are negligible. 

Equation C.2 is valid only if friction is negligible. To account for effects of friction in actuator i, 

a simple friction model can be added to equation C.2 to compensate for static and viscous 

friction: 

         !!" = !!_!"#$%&#_!!! + !!_!"#"$%_!               (C.3) 

where !!_!"#$%&#_! is the viscous friction in actuator i and !!_!"#"$%_! is the static friction. 
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Assuming that the cogging profile is sinusoidal, the model for cogging torque is then simply the 

sum of a sine and a cosine component with unknown amplitude coefficients and cogging 

frequency, which will be added to equation (C.2) as well: 

    !!"#! = !! cos !! !!"# +!! sin !! !!"#                       (C.4) 

    !!"#! = !! cos !! !!"# +!! sin !! !!"#                             (C.5) 

 

 

Figure C. 2: Simulink model of the original impedance controller of the manipulandum. 

However, after going through identification phase, results (Figure C.1) suggested that it is better 

to model cogging as sum of two sinusoids with two different frequencies: 

        !!"#! = !! cos !! !!"#! +!! sin !! !!"#! + !! cos !! !!"#! +!! sin !! !!"#! (C.6) 

       !!"#! = !! cos !! !!"#! +!! sin !! !!"#! + !! cos !! !!"#! +!! sin !! !!"#! (C.7) 
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This model is linear and simple enough to be implemented. However, to be able to use feed-

forward control to cancel out unwanted dynamic parameters, accurate knowledge of friction and 

cogging parameters are required.  

To design a high performance CNC, Erkorkmaz and Altintas [C3] propose a method to estimate 

dynamics of the feed drives (system) and develop a friction model. In their paper, after modeling 

the linear dynamics of a feed drive and main sources of error, the physics of the friction 

phenomenon is briefly discussed and a model for friction is introduced. 

To find the numerical values of the friction model, the inertia, Coulomb friction and viscous 

friction of each feed axis (previously referred to as dynamics of the feed) are estimated through 

an unbiased least squares technique. ‘Unbiased’ here means that the effects of noise and 

Coulomb friction were considered in discrete time state space equations used for the estimation 

process. Values obtained from biased and unbiased estimation are compared and unbiased 

estimation shows more consistency. 

As our primary solution, we used unbiased least squares estimation to estimate friction and 

cogging coefficients of the manipulandum as modeled by Atsma. To do so, we will use the same 

formulation Erkorkmaz [C3] has used for static and viscous friction.  

Figure C.3 shows the simplified linear dynamics of a typical motor. !! is the torque generated 

by the commanded voltage and current running through the armature. In addition to this torque, 

the motor shaft is also subject to a disturbance torque containing effects of friction and the load. 

Based on this model, discrete state space equations can be written as in Equation C.8. 

 

Figure C. 3: Linear dynamics of a motor 

      ! ! + 1 = !!"! ! + !!" −!!" !! !
! ! ,!!" = !!!!! ,!!" = !!!! .!".!!!!

! (C.8) 
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where ! ! = !!(!)/(!!!!), !! = −!/! and !! = !!!!/!. Erkorkmaz using exactly the same 

equation introduced his unbiased identification method. Assuming that the measurement of axis 

velocity !!(!) is corrupted with Gaussian noise !(!) and the effective input signal !! !  is 

corrupted with uniformly distributed noise !(!) as: 

     
!! ! = ! ! + !(!)
!! ! = ! ! + !(!)                                                (C.9) 

then Equation C.8 can be rewritten as: 

!! ! = !!"! ! + !!"! ! − 1 − !!"! ! − 1 + ! ! − !!"! ! − 1+ !(! − 1)  
(C.10) 

Of the bias sources, the disturbance term of  !!"! ! − 1  has the most severe impact. Assigning 

a constant value to ! !  to model Coulomb friction we will get: 

               !(! ! ) =

0!!"!! ! = 0
!!!!"!! ! > 0!(!! = !!"#$!

!!!!
)

!!!!"!! ! < 0!(!! = !!"#$!

!!!!
)
                          (C.11) 

In the estimation process to distinguish between true non-zero values of velocity and noise in 

measurement a dead band just above the maximum level of noise is used instead of comparing 

the velocity to zero. 

Introducing PV and NV as: 

 
!":!"#$%$&'!!"#$%&'( = 1!!"!!"#$%&'(!!"!!"#$%!!"#$%$&'!!"#!$#%!

!":!!"#$%&!!!"#$%&'( = −1!!"!!"#$%&'(!!"!!"#$%!!"#$%&'"!!"#!$#%!        (C.12) 

Equation C.10 can be rewritten: 

 !! ! = !! ! ! ! − 1 −!"(!! ! − 1 ) −!" !! ! − 1
!!"
!!"
!!"!!
!!"!!

(C.13) 

Equation C.13 can be rewritten for N collected data samples as: 

     !! = ∅!.!! + !!                 (C.14) 
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in which !! is the output vector, !! is the parameter vector, ∅! is the matrix of regression and 

!! is the prediction error vector. Then the parameter vector estimate can be obtained as: 

           !! = ( ∅! !∅!)!! ∅! !!!                          (C.15) 

The first entry of !! will be !!" and the second !!". !! and !! are then obtained by dividing 

the third and fourth entries by !!" respectively. And finally Coulomb friction can be derived 

from these two values by multiplying them with !!!!. From !!" and !!" values for B and J can 

be obtained. For more details see [C3]. 

Identification tests on the cogging motor were conducted. These involved commanding a series 

of step inputs and analyzing the data to find values for J, B and Coulomb friction that can then be 

used as coefficients of Equation C.3.  

The discrete time state space equation of the motor can be written as: 

        
!(! + 1)
! ! + 1 = !!

!(!)
! ! + !! −!! !!(!)

!(!)                          (C.16) 

Considering the noisy measurements, Equation C.16 can be rewritten as: 

   

!(! + 1)
! ! + 1
!(! + 1)

= !
!(!)
! !
!(!)

+ ! ! ! +! ! !
!! !

!!(!)
!! ! = !

!(!)
! !
!(!)

+ ! ! !
! !

                       (C.17) 

Where: 

 ! = !!
0 0

−!!
1 ,! = !!

0 ,! = 1
0

0
1

0
0 ,! =

!! 0
0

0 1
,! = 1 0

0 1       (C.18) 

Values in Equation C.18 can be easily calculated from the results of the identification test; details 

are omitted here. The state space model of Equation C.17 can be used to estimate motor position 

x, velocity ω and disturbance d in terms of a Kalman Filter as: 
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!(! + 1)
! ! + 1
!(! + 1)

= (! − !!"#!)!
!(!)
! !
!(!)

+ (! − !!"#!)! ! ! + !!"#
!! ! + 1
!! ! + 1  (C.19) 

 
Figure C. 4: Comparison between actual data (blue) and fitted model (red), a cogging cycle is 2π/124 rads. 

Cogging torque (position dependent) can be considered as the difference between an estimated 

disturbance value from a Kalman filter and a fitted value (Coulomb friction) from the unbiased 

estimation. Equation C.6 was fitted to resulting data from this operation to find numerical values 

for the coefficients of the cogging model. The cogging frequencies used are 124 and 4*124 

(spatial frequencies), which are the number of poles per revolution and 4 teeth per pole. 

Therefore, a cogging cycle is 2π/124 (rad), almost 3 degrees. Figure C.4compares the data from 

the estimation of cogging and the fitted model. Given the small scale of each cogging cycle, the 

differences between these two values are negligible. 

Results of the identification process for the cogging motor are as follows: 

!! = 146.73 

!! = 1 

! = 0.03762!!"!! 

! = 0.8539!!"# 

!!"#$! = 1.6515!!" 
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!!"#$! = −1.7896!!" 

!! = −0.3401!!" 

!! = −0.7553!!" 

!! = 0.0454!!" 

!! = −0.1702!!" 

Having the numerical values for the coefficients of the friction and cogging models, a 

compensation box was added to the Simulink model of the controller previously shown in Figure 

C.2. Inputs to this compensator are motor position and motor velocity. Output is a feedforward 

(compensating) torque that is added to the commanded torque (see Figure C.5). Figures C.6 and 

C.7 show a breakdown of the compensation box. 

 
Figure C. 5: A friction compensation box was added to the Simulink model based on findings of identification process. 
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Figure C. 6: Details of the cogging compensator box. Based on position and velocity of each motor compensator box sends 

out a commanded torque to compensate for cogging, viscous friction and Coulomb friction. 

Figure C.6shows components within the compensator box. Inputs are the position and velocity of 

the motor. Based on these inputs and using the models introduced above, the compensator box 

sends out a commanded torque as an output to compensate for cogging, viscous friction and 

Coulomb friction. The same identification process was done for the non-cogging motor (!!and 

!"! in Figure C.6) but results are not presented here. As the current performance of this motor is 

satisfactory, no compensation is done for this motor (note a gain of zero is being applied on 

“TAUfriction 2” signal). 

Figure C.7shows components within the “Cogging m1” box in Figure C.6. Box is enabled only if 

the motor is moving. Input is the position (!!) of the cogging motor. !! is scaled down to 

cogging cycles and a phase shift is added to fine tune the compensator to sync the compensator’s 

cycle with the actual cogging cycle, results of which are presented in the next section. 
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Figure C. 7: Details of “Cogging m1” box of Figure C.6. 

C.2( Results(and(Comparison(

To look at the changes in performance of the system, the operator was asked to move the 

representation of the end effector on the system’s monitor (depicted by a cursor) from the 

midpoint to a target point and back to the midpoint. The target point was chosen in such a way 

that moving to it only required rotation of the cogging motor. In theory, measurement of the 

applied force to the end effector to do this task must have a bell shape [C4]. But due to vibration, 

especially in the case where cogging is an active disturbance, this applied force will be jittery, 

causing the standard deviation of the data to grow larger.  

 
Figure C. 8: Phase shift matters! Red curve shows calculated cogging torque and blue curve is actual cogging torque of 
motor. These two have to be exactly 180 degrees out of phase in order for the cogging torque to cancel out (right plot). 

Although the model of the cogging friction is accurate, simply feeding in motor position to this 

model does not work. As Figure C.8shows, the blue curve is the actual cogging torque from the 

motor, while the red curve is the calculated cogging torque based on encoder position. The 
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curves are the same but the red curve has a phase shift compared to the blue one. This phase shift 

can play a significant role in cancelling out the cogging torque. Different phase shifts (5° to 

180°with a step of 5°) have been implemented in the “Cogging m1” box (Figure C.7) to find the 

case yielding the smallest standard deviation in data of force measurement.  

 

Figure C. 9: Results of running the motor without compensation, average standard deviation is 0.8 N. 

As indicated by Figure C.9, initially and without any friction compensation, an average standard 

deviation of 0.8N was observed (the experiment was run four times). By adding compensation, 

the best result was obtained using a phase shift of 80° (Figure C.10). Also, the mean values of 

exerted force in all of the experiments were in the same range (ideally they should be equal), as 

the operator was asked to do the task with a consistent pace throughout the experiment.  

After the tuning process, a compensator with an 80° phase shift was implemented in the 

manipulandum’s controller. Interacting with the manipulandum and moving it around was 

reported by the test subjects to be smoother than without the compensator. 

To further develop this work, it would be beneficial to model cogging parameters as both 

position and velocity dependent. Also, while running the system, it often happened that the 

system became sluggish and acted as is there was no active cogging compensation. This would 

disappear upon restarting the NT machine. This known “bug” is absent in newer versions of 

MATLAB, so a software upgrade is recommended. 
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Figure C. 10: Standard deviation of exerted force for different phase angles. 80 degrees shows the smallest S.D. 
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