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Abstract

Arrow’s Impossibility Theorem is a classical result in social choice theory (a branch

of economic theory), which states that any system of rules for combining (“aggre-

gating”) individual preference relations into a single representative relation results

in a “dictatorship” where the combined preference only reflects the wishes of a

single individual (provided that the aggregation rule satisfies two basic criteria).

Since the 1980s, this result has been reformulated and understood using algebraic

topology. The topological approach offers some geometric intuition as to why Ar-

row’s theorem holds, and can also be used to find alternative hypotheses which

may escape the dictatorship outcome. A thorough examination of such topological

models constitutes the main body of this thesis.

Recently, social choice theory has been generalized (resulting in a field called

“judgment aggregation”), and results analogous to Arrows theorem have been es-

tablished. The second part of this thesis introduces this field of study, and studies

how some of the techniques from topological social choice theory can be extended

to understand dictatorship outcomes in the theory of judgment aggregation. Al-

though the analysis is restricted to a rather simple case, it nonetheless highlights

the potential for a more general topological model of judgment aggregation, and

exposes the main challenges that must be overcome in constructing such a theory.
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Chapter 1

Introduction

This thesis studies various topological approaches to so-called aggregation prob-

lems in economic theory. We will be interested in two strands of aggregation the-

ory: that of preferences, and that of “judgments”. The theory of preference ag-

gregation is now a classic component of economic theory. It asks how individual

preference relations (orderings) might be combined to give a single ordering which

captures the overall wishes of the group of individuals. Of course, there are certain

properties that one would like such an aggregation rule to have, and these will be

discussed in detail. We also discuss some motivating examples of how this theory

might be useful in practical situations (such as the design of voting systems), but

will quickly encounter the famous Impossibility Theorem due to Kenneth Arrow.

This is a rather negative result, as it states that any aggregation system satisfying

two basic (and desirable) criteria will be “dictatorial”. The topological approaches

to studying this result yield interesting insights as to why this dictatorship outcome

holds true, and also offers a useful framework for identifying aggregation systems

which are non-dictatorial.

The other type of aggregation problem studied in this thesis is that of judgment

aggregation. This is a relatively new branch of theory (having been formulated

less than ten years ago), and is currently a very active area of research. In contrast

to preference aggregation, judgment aggregation revolves around the problem of

aggregating choices that individuals make. Specifically, there is some common set

of alternatives, and each individual chooses some subset (subject to the constraint
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that only some subsets are allowed). In this setting, the aggregation problem asks

whether some particular subset can be taken to represent the overall choices of the

individuals. This seemingly simple setup actually encompasses a large variety of

situations, including that of preference aggregation (we will show that preference

aggregation is a special case of judgment aggregation). As the name suggests, judg-

ment aggregation problems were originally motivated by problems in the design

of legal systems, and there is also much interplay between judgment aggregation

models and the theory of formal systems and languages.

We begin in section 2 by presenting the classic theory of preference aggregation

(also called social choice theory), including a simple proof of Arrow’s Impossibil-

ity Theorem and a brief discussion of how this outcome can be avoided. Next,

we present the “continuous” approach to social choice theory. This is a model of

preference aggregation analogous to Arrow’s setup, but not formally equivalent.

We will see that the problem of finding nice aggregation maps can be fully char-

acterized in this setting using the tools of algebraic topology. Next, we present

a topological approach to Arrow’s theorem; that is, we will give a valid proof

of Arrow’s theorem by employing methods of algebraic topology. This approach

is interesting in its own right, and also reveals useful geometric insights into the

classic aggregation problem; insights which can be used to (correctly) formulate

conjectures about ways to escape the dictatorship outcome. Finally, in chapter 4

we show how these techniques might be extended to the theory of judgment ag-

gregation. Although we do not present a complete theory of topological judgment

aggregation, the analysis we give is encouraging and seems to indicate that a fairly

general theory is possible. It also provides some insight into how such a theory

might look and what the relevant obstacles to its construction might be.
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Chapter 2

Classical Social Choice Theory

Suppose a group of k individuals must decide how to rank a (finite) number of

alternatives. Each individual (which we will also refer to as an agent or a voter)

has his or her own personal choice of how to rank the alternatives, and different

individuals may have very different orderings. A central question of social choice

theory (also called preference aggregation) is whether such individual rankings

may be combined in a way which “reasonably” represents the overall wishes of the

entire collection of agents.

A classic example is that of voting systems, where the alternatives to be ranked

are political candidates, and the agents are the general populace, each with their

own preferences regarding the desirability of the different candidates running for

office. This is the most commonly used example, but it is not ideal since usually

the only relevant characteristic of an agent’s ordering is which candidate is ranked

at the very top (that is, you vote for one candidate only; you do not necessarily

submit your entire ordering of the candidates).

One might also imagine a situation where a government has proposed a num-

ber of public projects, and wishes to ascertain how important the different projects

are to the public. Once such a ranking has been achieved, the government can

set about implementing the most desirable project. This differs from the voting

example in that the government may face various constraints at different points

in time. The purpose of gathering individual rankings (and formulating a “social

ranking”) is to have a reasonable idea of what people want. Then, once uncer-
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tainty has been resolved regarding, say, financial constraints, the government can

set about implementing the most desirable project which is actually feasible (given

the constraints), and this may or may not coincide with the highest-ranked project

in the social ranking.

Alternatively, a group of colleagues (graduate students, perhaps) might be col-

laborating on a series of projects (joint papers; homework assignments; etc), each

of which requires their joint effort. They must decide the order in which to com-

plete these projects, and each of them may have different preferences regarding the

order. Can a “fair” ordering be achieved?

2.1 Arrow’s Impossibility Theorem
To answer these sorts of questions, social choice theory begins by fixing a finite

set X of alternatives (to be ranked) which, for convenience, we will often assume

to be the set [n] = {1, . . . ,n}. There is also a finite collection of k agents, each

of which is represented by some preference relation % over X . Such relations are

assumed to be complete (for all i, j ∈ X , at least one of i % j or j % i is satisfied)

as well as transitive. The statement i % j should be interpreted as “alternative i is

weakly preferred over alternative j”. If both i % j and j % i, we write i ∼ j and

say that the agent is indifferent between i and j. Obviously ∼ is an equivalence

relation on X . If it happens that i % j but not j % i, then the individual is said to

strictly prefer i over j. Corresponding to every preference relation % is a strict

part �, where i � j if and only if i is strictly prefered over j. We take R to be

the entire collection of preference relations on X , and let P ⊂R denote the set of

strict preference relations (those without any indifferences; or equivalently, those

preference relations which coincide with their strict part). Letting A be either Rk

or Pk, we define a profile of preferences to be a k-tuple of preference relations

belonging to A . Finally, a social choice function (also called an aggregation map)

is a function f : A → R; that is, it is a rule which assigns to each k-tuple ~% =

(%1, . . . ,%k) of (arbitrary or strict, depending on A ) preference relations a social

ranking (or aggregated preference) f (~%) ∈R. For such a function, we call A the

domain of preferences.

There are various properties that one might want an aggregation map f to have,
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one of which is the following:

Definition 2.1.1 (Pareto Property). An aggregation map f : A →R satisfies the

Pareto property (we also say f is Paretian) if for all x,y ∈ X and all profiles ~% =

(%1, . . . ,%k)∈A , we have that %:= f (~%) satisfies x� y whenever x�i y for every

agent i.

The Pareto criterion is one of the most basic properties we might expect a

reasonable aggregation map to satisfy. It says that if every single agent strictly

prefers an alternative x over another alternative y, then the social preference relation

must also rank x strictly above y. It can be interpreted as an “agreement” property:

if everyone agrees about the ranking between two alternatives, then there is no

reason why the social ranking between those two alternatives should not satisfy

each individual’s ranking. A slightly more controversial property is the following:

Definition 2.1.2 (Independence of Irrelevant Alternatives). An aggregation map

f : A →R satisfies the Independence of Irrelevant Alternatives (IIA) axiom if for

all x,y ∈ X and all profiles (%1, . . . ,%k),(%′1, . . . ,%
′
I) ∈ A (denoted ~% and ~%

′
,

respectively), we have that

%i |{x,y} = %′i |{x,y} for all i ⇒ % |{x,y} =%′ |{x,y} ,

where %:= f (~%) and %′:= f (~%
′
).

In words, this says that the social ranking between two alternatives x,y ∈ X

should only depend on how these two alternatives (and not some other alternative

z) are ranked by the individuals. That is, if ~% and ~%
′
are two profiles of preferences

where no individual has changed their ranking of x and y, then the corresponding

social rankings should rank x and y the same way. This seems harmless at first, but

we will see that it is in fact quite a powerful axiom.

One property which any desirable map f should not satisfy is the following:

Definition 2.1.3 (Dictatorship). An aggregation map f : A →R is Dictatorial if

there is an agent d such that for all x,y ∈ X and all preference profiles ~% = (%1

, . . . ,%I) ∈ A , we have that %:= f (~%) satisfies x � y whenever x �d y. (If this

happens, agent d is the “dictator”).
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A dictatorial map is one where the social ranking always agrees with the strict

part of the dictator’s ranking. That is, agent d is free to submit any preference

relation %d , but if (for any x,y ∈ X) x �d y, then the corresponding social ranking

will put x strictly above y as well, regardless of how all other agents rank x and

y. This is obviously an undesirable property, since it conflicts with practically

any sense of “fairness”: all other voters could have y � x, but the social ranking

will place x strictly above y as long as x �d y. The only situation where other

voters could (potentially) influence the social ranking of two alternatives is when

the dictator is indifferent between those alternatives.

At this point, it is worth asking whether this setup (that is, attempting to find

non-dictatorial aggregation maps which are Paretian and satisfy IIA) is “reason-

able”; does it successfully capture real situations? In the voting example above,

the Paretian property is reasonable, but the IIA axiom seems unnecessary since,

as we have mentioned, the only issue of relevance in most voting systems is who

each individual’s “most preferred” candidate is. However, the other two examples

do seem to warrant both the Pareto and IIA axioms. There is also the issue of

transitive preferences: it is well documented in psychology and experimental eco-

nomics that, in various situations, individuals may exhibit preferences which fail

to be transitive. Yet, there are also many situations where transitive preferences

do make sense (including all three examples at the start of this section). There are

other potential shortcomings as well which we do not discuss here. The purpose

of this discussion, however, is to point out that an economic model differs from a

purely mathematical model in that it consists of a formal model together with an

interpretation. As we have seen, any formal model permits several interpretations,

some of which may or may not raise doubts about basic assumptions in the formal

model. Thus, the “reasonableness” of a theoretical model cannot be evaluated by

examining only its formal properties, nor by examining its properties in the con-

text of any single interpretation. No model will ever be completely reasonable in

each of its conceivable interpretations; we will be content knowing that there are,

at least, many interesting situations where this model is quite reasonable, and focus

our attention on the formal properties. Of these, the most famous is the following

theorem due to Arrow [1]:
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Theorem 2.1.1 (Arrow’s Impossibility Theorem). Suppose |X | ≥ 3 and

A ∈ {Rk,Pk}. If f : A →R is Paretian and satisfies the IIA condition, then f is

dictatorial.

Most proofs of Arrow’s theorem are rather long and complicated (the topolog-

ical proof we present in section 3.2 is no exception). There is, however, a fairly

brief proof given by Geanakoplos [6], which we now present.

Lemma 2.1.2 (Geanakoplos, “Extremal Lemma”). Let b ∈ X. Suppose ~% is a

profile where, for each i = 1, . . . ,k, %i either has b at the very top (meaning b�i x

for every b 6= x ∈ X) or at the very bottom (x �i b for every b 6= x ∈ X). Then

%:= f (~%) also ranks b at the very top or the very bottom.

Proof. Suppose (toward a contradiction) that there are distinct a,b,c ∈ X and that

% satisfies a % b % c. We modify ~% to give a profile ~%
′

by making the following

changes to each individual profile %i :

• if b�i c�i a, make no changes;

• if b�i a�i c or b�i c∼i a, move c so that b�′i c�′i a;

• if a�i c�i b or a∼i c�i b, move c so that c�′i a�′i b.

Notice that ~%|{a,b} = ~%
′
|{a,b} and ~%|{b,c} = ~%

′
|{b,c} (that is, no agents change their

rankings between a and b, or between b and c). So, by IIA, %′:= f (~%
′
) also

satisfies a %′ b %′ c (hence a %′ c). However, each order %′i has c�′i a, so that the

Pareto property gives c�′ a, a contradiction.

Proof of Arrow’s Theorem (Geanakoplos). The proof is given in three steps.

Step 1. Let b ∈ X . We claim there is a voter d∗ = d(b) who, for some profile
~% where f (~%) ranks b at the very bottom, can change his preference (yielding a

modified profile ~%
′
) so that f (~%

′
) ranks b at the very top. To see this, let ~% be a

profile where every voter has b at the very bottom of their ranking. By the Pareto

property, %:= f (~%) ranks b at the very bottom as well. Now let individual voters

successively move b from the bottom to the top, leaving other relative rankings

unchanged. Let d∗ be the first agent for which the corresponding social ranking

of b changes (such an agent exists because if all agents have b at the very top,
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then so does the corresponding social ranking). Let ~%
1

denote the profile where

agents 1, . . . ,d∗−1 have moved b to the top, and let ~%
2

be the profile where agents

1, . . . ,d∗ have moved b to the top. By the lemma, %2:= f (~%
2
) ranks b at the very

top.

Step 2. Agent d∗ = d(b) is a dictator over any pair {a,c} with a 6= b 6= c.

To see this, define ~%
3

from ~%
2

by having d∗ move a above b (thus voter d∗ now

ranks a at the very top, so that a�3
d∗ b�3

d∗ c), and let the other voters arrange their

relative rankings of a and c arbitrarily (but leaving b in its extreme position). The

individual rankings of a and b in ~%
3

agree with those in ~%
1
, and ~%

1
ranks b at the

very bottom, so we have a �3 b. The individual rankings of b and c agree with

those in ~%
2
, we also have b �3 c. Thus a �3 c. Since we chose a arbitrarily from

{a,c} (that is, we could perform the same procedure above with c in place of a),

this proves the claim.

Step 3. We prove d∗ is a dictator over every pair {a,b} (hence d∗ is a dictator

in the usual sense). Take some c /∈ {a,b}, and place c at the bottom of each social

ranking (just as in Step 1). Applying Step 2 to this case, we see that there is a voter

d(c) who is a dictator over any pair {x,y} with c /∈ {x,y}. In particular, {a,b} is

such a pair. Since d∗ is a dictator for {a,b}, and since dictators must obviously be

unique, this proves that d(c) = d∗; that is, d∗ is a dictator.

Arrow’s theorem is a rather negative result, especially because the hypotheses

of the theorem are quite basic and could easily apply to many different situations.

Moreover, it is not obvious which requirements should be changed to allow non-

dictatorial aggregation maps. The Pareto property is clearly quite desirable, and

the IIA axiom is also quite natural. Another alternative, and the one which has

received the most attention in the literature, is to restrict the domain A of possible

preferences. A suitable restriction is found by considering singe-peaked prefer-

ences, which we now describe.

Given a set [n] = {1, . . . ,n} of alternatives, fix a linear order ≥ on [n] (this

means ≥ is reflexive, transitive, and complete; we also let > denote the strict part

of the relation). A preference relation % on [n] is said to be single-peaked with

respect to ≥ if there is an x ∈ [n] so that for all y,z ∈ [n], x ≥ z > y⇒ z � y and

y > z ≥ x⇒ z � y. The idea is that if we line up the alternatives in [n] according
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to the order ≥, then the preference relation has some maximal element x ∈ [n] so

that % is “increasing” as we approach x from either side. For example, suppose

n = 3 and that ≥ is the strict order 1 > 2 > 3. The set P≥ of strict preference

relations which are single-peaked with respect to ≥ must satisfy either 1 � 2 � 3,

1 ≺ 2 � 3, or 1 ≺ 2 ≺ 3. The second form does not put any restrictions on the

relative rankings of 1 and 3, so that both 2 � 3 � 1 and 2 � 1 � 3 qualify. Thus

P≥ = {1� 2� 3,2� 3� 1,2� 1� 3,3� 2� 1}.
Interestingly, single-peaked domains do escape the dictatorship result. In fact,

if k is odd and preferences are strict, pairwise majority voting gives the desired ag-

gregation map. We do not prove these results here, but remark that, at first glance,

there is no obvious reason why single-peaked domains are a suitable restriction for

escaping Arrow’s theorem. Indeed, the condition might seem somewhat random

or miraculous. We will see in section 3.2, however, that the topological approach

to Arrow’s theorem provides appropriate geometric intuition to anticipate single-

peaked domains quite easily.
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Chapter 3

Topological Social Choice Theory

At first glance, social choice theory does not appear to have any connection to

topology whatsoever. Indeed, the central ingredients of the theory are quite primi-

tive. Thus far, we have only encountered “combinatorial” arguments in the theory,

in that all proofs are given from first principles without any need to introduce more

advanced mathematical concepts, let alone the formidable tools of algebraic topol-

ogy. How is algebraic topology able to help us understand problems of social

choice?

One possibility is to alter the classical model -that is, to investigate slightly

different aggregation problems- so that the model may be more readily susceptible

to a topological analysis. Initiated by Chichilnisky [3], this so-called “continuous

social choice” model was in fact the first approach taken to understanding results

such as Arrow’s Impossibility Theorem in a topological framework, and it has

received the most attention in the literature. In section 3.1, we present the main

results of this theory, due to Chichilnisky and Heal [4] (an extended version of

Chichilnisky’s 1980 paper).

One may well wonder if the classical theory can be understood in a topological

setting without modifying the aims of the original model. Can Arrow’s theorem,

as originally stated, be understood through topological means? As we shall see,

a discrete form of Arrow’s theorem (that is, one in which the choice space X is

finite) permits a very natural and interesting topological formulation. A hint as to

why this is so is the IIA assumption, which can be interpreted as a sort of “sta-
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bility” condition: if one does not modify a profile of preferences “too much” (in

that the individual rankings of some pair are unchanged in the profile), then the

resulting social preference will not change the ranking of that pair. This suggests

that the aggregation map f may be continuous in some topology. Indeed, section

3.2 presents a remarkable paper by Baryshnikov [2], where the IIA axiom is ex-

ploited to construct a nontrivial topological space (via nerves) to represent agent

preferences, transform f to a continuous map, and examine issues of social choice.

Hence, we will have faithfully formulated the classical problem in a useful topo-

logical setting. It is Baryshnikov’s technique that we will extend in chapter 4 to the

theory of judgment aggregation.

3.1 Continuous Social Choice
To understand the setup for the continuous social choice model, it is necessary to

introduce some ideas and terminology from microeconomic theory. Given a ratio-

nal preference relation % on a set X , a utility function is a map u : X → R such

that for all x,y ∈ X , u(x) ≥ u(y)⇔ x % y; that is, it is an order-preserving em-

bedding of (X ,%) in the reals. The level sets of u, given by {x ∈ X | u(x) = c}
for all choices of c ∈ u(X), are called indifference curves. It is easy to see that if

I ⊆ X is an indifference curve, then x ∼ y for all x,y ∈ I, so that the collection of

indifference curves inherits a strict linear ordering from %. Of course, any given

relation % has infinitely many utility representations (simply compose u with any

strictly increasing function f : R→ R to form a new utility function). It is com-

mon in microeconomic theory to consider the choice space X to be some subset

of Rn (often the positive orthant), with the interpretation that each axis measures

the quantity of some particular good. Under various technical assumptions which

we will not discuss here, a utility function u can then be realized as a continuously

differentiable function.

Chichilnisky and Heal [4] begin by noting that if the gradient ∇(u) of a utility

function u : X→R does not vanish on X , then the relation which % represents may

be characterized by normalizing ∇(u(x)) to length 1 at every point x ∈ X . Since u

is a real-valued utility function, the gradient ∇(u(x)) indicates the “most preferred”

direction at a point x ∈ X ; however, we are interested only in the ordinal properties
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of u (that is, the ordering % which u represents), so that by normalizing to length

1 we are ignoring information about the “intensity” of preferences. Obviously a

nowhere-vanishing gradient is required to carry out this construction; this means

the function u must have no critical points, which (interpreting the underlying eco-

nomic framework) means there is no satiation (so “more is always better”).

For convenience, we take the choice space X to be the closed unit ball in Rn, for

some choice of n. Let V (X) denote the space of all C1 vector fields on X , equipped

with the C1 topology. Motivated by the above discussion, we define a preference

to be a map p : X → Rn such that for every x ∈ X , ||p(x)|| = 1 and there exists

a real-valued utility function u : X → R so that p(x) is locally the gradient of u.1

Our objective is to examine problems of social choice for various collections P of

such preferences (viewed as subspaces of V (X)).

Given a space P ⊆ V (X) of preferences and a collection of k individuals, a

social choice rule is a map φ : Pk→P . If φ(p1, . . . , pk) = φ(pσ(1), . . . , pσ(k)) for

every permutation σ of the agents, φ is said to be anonymous. If φ(p, . . . , p) = p

for every p ∈P , then φ is unanimous. Note that unanimity is weaker than the

Pareto criterion. Of course, φ is required to be continuous.

3.1.1 Chichilnisky and Heal (1983)

In this section, we present the main results of Chichilnisky and Heal [4]. In par-

ticular, we give a complete characterization of the continuous topological choice

problem for the case where P is a CW complex of finite-type.2

Theorem 3.1.1 (C.H. Theorem 1). Suppose P (as a subspace of V (X)) is a con-

nected CW complex of finite type. Then there exists a continuous, unanimous, and

anonymous social choice rule φ : Pk →P for every k ≥ 2 if and only if P is

contractible.

Proof. (⇐). If P is contractible, then each homotopy group πi(P) is trivial. We

may therefore extend the identity map i : P→P to a map r :V (X)→P by results

1That is, p is a continuously differentiable, locally integrable vector field. Note that p(x) is not,
strictly speaking, equal to the gradient ∇(u(x)) (since we normalize ||p(x)||= 1), but p(x) is assumed
to be in the direction of ∇(u(x)).

2By this, we mean a CW complex with a finite number of cells in each dimension. Such CW
complexes are sometimes called parafinite in the topological social choice literature.
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of obstruction theory (see, for example, section 8.4 of Spanier [8]). This means r is

a retract of V (X) onto P . Let f : Pk→V (X) be given by f (p1, . . . , pk)=
1
k ∑

k
i=1 pi

(this is well-defined because V (X), the space of all vector fields on X , is convex).

Define φ : Pk →P by φ = r ◦ f . Then, if p ∈P , we have φ(p, . . . , p) = r ◦
f (p, . . . , p) = r(p) = p, so that φ is unanimous. We also have φ(pσ(1), . . . , pσ(k)) =

r ◦ f (pσ(1), . . . , pσ(k)) = r ◦ f (p1, . . . , pk) = φ(p1, . . . , pk), so that φ is anonymous,

as required.

(⇒). We will prove that all homotopy groups πi(P) are trivial; for then the

constant map f : P → {p0} (p0 ∈P) induces an isomorphism f∗ : πn(P)→
πn({p0}) for each n. Since P is connected, we may then apply Whitehead’s the-

orem to conclude f is a homotopy equivalence. Hence P is homotopy equivalent

to {p0}, which means P is contractible.

To see that the homotopy groups are trivial, suppose (toward a contradiction)

that some minimal index i satisfies πi(P) 6= 0.

Case 1: i = 1. Let k ≥ 2; by hypothesis, we have a continuous, anonymous,

unanimous map φ : Pk→P inducing a homomorphism of groups φ∗ : π1(Pk)→
π1(P). It is clear by definition that φ∗ inherits the unanimity property of φ , so that

φ∗(x, . . . ,x) = x for every x∈ π1(P); similarly, φ∗ must also be anonymous. Hence

φ∗(x, . . . ,x) = φ∗((x,e, . . . ,e) · (e,x,e, . . . ,e) · . . . · (e, . . . ,e,x))

= φ∗(x,e, . . . ,e) · . . . ·φ∗(e, . . . ,e,x)

= φ∗(x,e, . . . ,e) · . . . ·φ∗(x,e, . . . ,e)

= φ∗(x,e, . . . ,e)k .

So, for all x,y ∈ π1(P), we have

x · y = φ∗(x,e, . . . ,e)k ·φ∗(e,y,e . . . ,e)k

= φ∗(xk,yk,e, . . . ,e)

= φ∗(yk,xk,e, . . . ,e)

= y · x .

Thus π1(P) is abelian. By the Hurewicz theorem, H1(P) is isomorphic to the
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abelianization of π1(P); hence H1(P) ∼= π1(P). From cellular homology (and

its equivalence to singular homology), we know that H1(P) is generated by at most

d elements, where d is the number of 1-cells of P . By assumption, P has finitely

many cells in each dimension, so that H1(P) (hence π1(P)) is finitely generated.

Let x be a generator of any of the (free part) groups Z in this decomposition. From

the calculation above (employing additive notation), we have x = φ∗(x, . . . ,x) =

kφ∗(x); as k was arbitrary, this must hold for every k ≥ 2, forcing x = 0. Similarly,

if x ∈ Zp j is a generator for some j, the same condition implies x = 0. Hence all

generators of π1(P) are zero, implying π1(P) = 0, a contradiction.

Case 2: i≥ 2. By the Hurewicz Isomorphism Theorem and minimality of i, we

have πi(P)∼= Hi(P). As above, this implies πi(P) is finitely generated. So, the

proof for Case 1 above carries through to this case as well (simply let φ∗ denote the

induced homomorphism on the ith homotopy group instead of the first group), and

we conclude that πi(P) = 0.

Hence all homotopy groups of P are trivial.

Remark. The proof above is the one given by Chichilnisky and Heal. How-

ever, it can be simplified and shortened by observing that all homotopy groups of a

connected, finite-type CW complex must be finitely generated. This can be shown

using a simplicial approximation argument (see section 2.C of Hatcher [7]).

The key idea behind this theorem is that if P is a contractible subspace of

V (X), then we may perform an “averaging” operation in V (X) and compose this

with a deformation retract r : V (X)→P to yield a continuous, anonymous, and

unanimous choice rule (provided P is a CW complex of finite type). In fact, the

contractibility hypothesis ensures that any continuous, anonymous, and unanimous

choice rule must be “equivalent” to a rule derived from such a convex averaging

procedure, because contractibility of P implies that any two maps φ ,ψ : Pk→P

are homotopic. To see this, suppose h : [0,1]×P →P is a homotopy, where

h0 = idP and h1(p) = p0 for all p ∈P , where p0 is a point of P . Take H :
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[0,1]×Pk→P given by

Ht(p) =

{
h2t ◦φ(p) for 0≤ t ≤ 1

2

h2(1−t) ◦ψ(p) for 1
2 ≤ t ≤ 1

.

Clearly H is continuous with H0 = φ and H1 = ψ , so that φ and ψ are homotopic.

Hence, we have the following theorem:

Theorem 3.1.2 (C.H. Theorem 2). If P (as a subspace of V (X)) is a connected,

contractible CW complex of finite type, then any continuous, anonymous, and

unanimous social choice rule ψ is homotopic to a convex averaging rule φ .

Proof. By Theorem 3.1.1 and its proof, we have a continuous, anonymous, and

unanimous rule φ : Pk→P which is given by convex averaging. If ψ : Pk→P

is any other continuous, anonymous, and unanimous rule, then the above argument

shows that ψ is homotopic to φ .

Corollary 3.1.3 (C.H Corollary 1). Suppose P is a connected CW complex of

finite type and let k≥ 2. Then P is contractible if and only if Pk admits4(Pk) =

{(p, . . . , p) ∈Pk | p ∈P} ∼= P as a deformation retract.

Proof. If P is a deformation retract of Pk, then P and Pk are homotopy equiv-

alent, so that for each i we have πi(P) ∼= πi(Pk). But πi(Pk) ∼= ⊕k
j=1πi(P), so

that πi(P) ∼= ⊕k
j=1πi(P). Since the homotopy groups πi(P) are finitely gener-

ated, this implies πi(P) = 0. As in the proof of Theorem 3.1.1, this implies P is

contractible.

Conversely, suppose r : P→{p0} (p0 ∈P) is a deformation retract. The map

(idP ,r, . . . ,r) : Pk→Pk is continuous and sends Pk to the set

Q = {(p, p0, . . . , p0) | p ∈P} ,

which is homeomorphic to P .

Combining the results of Theorems 3.1.1 and 3.1.2, we arrive at an alter-

nate characterization of the social choice problem: a continuous, unanimous, and

anonymous choice rule exists for each k ≥ 2 if and only if for every k ≥ 2, Pk

retracts onto the “unanimous” profiles4(Pk) = {(p, . . . , p) ∈Pk | p ∈P}.
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We may also use the result of Theorem 3.1.1 to examine the social choice

problem when P is not connected.

Corollary 3.1.4 (C.H. Corollary 2). Suppose P (as a subspace of V (X)) is a CW

complex of finite type. Then a continuous, anonymous, and unanimous choice rule

exists for each k≥ 2 if and only if each connected component of P is contractible.

Proof. (⇒). Let k ≥ 2, and suppose φ : Pk→P is continuous, anonymous, and

unanimous. If C is a connected component of P (hence a finite type CW complex

as well), then the map φ̃ = φ |Ck →P inherits the unanimity property of φ , and so

φ̃ maps any unanimous profile (p, . . . , p) ∈Ck to p ∈C. But φ̃ is also continuous,

so by connectedness of Ck, we have φ̃(Ck) ⊆ C. It is also clear that φ̃ inherits

anonymity from φ . Thus, for every k ≥ 2, we have a continuous, anonymous, and

unanimous map Ck→C, so that Theorem 3.1.1 implies that C must be contractible.

(⇐). Let k ≥ 2 and suppose each connected component of P is contractible.

Since P has finitely many cells in each dimension, P must have only finitely

many connected components Cα , which we enumerate C1, . . . ,Cn. Each compo-

nent is itself a CW complex of finite type, so that by Theorem 3.1.1 we have a

continuous, anonymous, and unanimous map φα : Ck
α → Cα for each α . Fix an

element p∗α in each component Cα , and define a map φ : Pk →P as follows: if

p = (p1, . . . , pk) ∈Pk belongs to some Ck
α , set φ(p) = φα(p). Otherwise, sup-

pose pi ∈ Cαi , and let α be the smallest such αi (according to our enumeration

C1, . . . ,Cn). Consider the profile p′ = (p′1, . . . , p′k), where p′i = pi if pi ∈ Cα , and

p′i = p∗α otherwise. Then set φ(p) = φα(p′). It is easy to see that φ must be anony-

mous and unanimous. To see that φ is continuous, let p = (p1, . . . , pk) ∈Pk and

let V be an open neighborhood of φ(p). We must find an open neighborhood U of

p for which φ(U) ⊆ V . By continuity of the maps φα , this can clearly be done if

p ∈Ck
α for some α . So, suppose (without loss of generality) that p1, . . . , pm belong

to the minimal component α , and that m < k (so that all other pi belong to compo-

nents Cαi with αi > α). By definition, then, φ(p) = φα(p1, . . . , pm, p∗α , . . . , p∗α). So

φ(p) = φ(p1, . . . , pm, p∗α , . . . , p∗α) as well. By continuity of φα , there is a neighbor-

hood Uα of (p1, . . . , pm, p∗α , . . . , p∗α) with φα(Uα) ⊆ V . Hence there are open sets

W1, . . . ,Wk ⊆Cα with (p1, . . . , pm, p∗α , . . . , p∗α) ∈W1× . . .×Wk ⊆Uα , so φα(W1×
. . .×Wk) ⊆ V as well. Now define U = W1× . . .×Wm×Cα1 × . . .×Cαk−m , where
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Cαi is the connected component containing pm+i. Then Cα is still the minimal com-

ponent for any q = (q1, . . . ,qk) ∈U , and so φ(q) = φα(q1, . . . ,qm, p∗α , . . . , p∗α) ∈V

since (q1, . . . ,qm, p∗α , . . . , p∗α) ∈W1× . . .×Wk. Since U is an open neighborhood of

p, this completes the proof.

We conclude this section with a simple example. Consider the set of all lin-

ear preference relations on the unit ball B ⊂ Rn. This means each utility function

u : B→ R has the form u(x1, . . . ,xn) = a1x1 + . . .+anxn for some constants ai, not

all 0. Since such a function can be identified with its gradient vector (a1, . . . ,an),

the set of all such linear functions corresponds to the set of all nonzero vectors of

Rn. Recall, however, that we normalize gradient vectors to length 1 since we are

only interested in ordinal information. So, in this case our preference space will

consist of all unit vectors of Rn; that is, P = Sn−1. Obviously this space is not

contractible. If, however, we remove a single point (so that we are ignoring all

linear utility functions with gradient a multiple of this particular unit vector), the

resulting space will be contractible, so we will have continuous, anonymous, and

unanimous social choice rules Pk →P for every k ≥ 2. An even wilder restric-

tion would be to consider only those points on the sphere where each coordinate

is positive, which will obviously be a contractible space as well. Is such a restric-

tion reasonable? This, of course, depends on the interpretation. If the xi indicate

quantities of (desirable) goods, then it might be reasonable that all coefficients ai

are positive.

3.2 Discrete Social Choice via Nerves
One consequence of the IIA axiom is that it allows the aggregation problem to be

studied in terms of sets of preference relations, rather than individual relations. For

example, suppose f is an IIA social choice function, and that we wish to understand

how f ranks alternatives 1 and 2 for different profiles. The IIA axiom tells us that

the social ranking of 1 and 2 only depends upon the rankings of 1 and 2 submitted

by the voters, and not on how any other alternatives are ranked. That is, each voter

could submit a different preference relation, but so long as the rankings of 1 and

2 are unchanged, the social ranking of 1 and 2 will be the same. So, to study the

relevant properties of such a function f (for example, dictatorship issues), it will
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suffice to study how f behaves on sets of profiles where the ranking of pairs is fixed.

This is precisely the approach taken by Baryshnikov [2]. We will see that Arrow’s

theorem may be understood topologically by studying the intersection properties of

these sets; in fact, the main motivation for Baryshnikov’s approach is to develop an

alternate proof of Arrow’s theorem which lends itself well to geometric intuition.

3.2.1 Baryshnikov (1993)

As in the original framework, let [n] denote the set {1, . . . ,n} of alternatives, and

let R denote the set of all rational preference relations over [n]. Assume there are

k≥ 2 individuals. We will be interested in the set P ⊂R of strict relations (those

without any indifferences). To see why, consider the following lemma:

Lemma 3.2.1 (Baryshnikov Lemma 1). Suppose f : Rk → R is a social choice

rule satisfying the Pareto property and IIA. Then f (Pk)⊆P .

Since we are interested in proving Arrow’s theorem, this lemma shows that

it will suffice to prove that any map f : Pk →P satisfying the Pareto property

and IIA is dictatorial. For if a non-dictatorial, Pareto, and IIA map f : Rk → R

exists, then f |Pk would be a non-dictatorial map f : Pk →P satisfying IIA and

the Pareto property.

Proof. Suppose toward a contradiction that there are distinct elements a,b ∈ [n]

and some profile ~� = (�1, . . . ,�k) ∈Pk with %= f (~�) satisfying a ∼ b. Since

n ≥ 3, there is some element c ∈ [n] with c /∈ {a,b}. Let ~�′ be a profile which

agrees with ~� on {a,b}, but where each individual �′i ranks c immediately below

b (by this we mean a �′i b⇒ a �′i b �′i c, and b �′i a⇒ b �′i c �′i a). Since ~�′

agrees with ~� on {a,b}, the IIA axiom tells us %′= f (~�′) satisfies a∼′ b as well.

Similarly, let ~�′′ agree with ~� on {a,b}, but suppose each individual �′′i ranks

c immediately above b. Letting %′′= f (~�′′), we once again have a ∼′′ b. The

above construction, together with the Pareto property, tells us that b �′ c, so that

a ∼′ b �′ c, giving a �′ c. But the Pareto property also implies c �′′ b, so that

c �′′ b ∼′′ a and so c �′′ a. But, as is easily verified, ~�′ and ~�′′ agree on {a,c}.
The IIA axiom, then, implies that %′ and %′′ must agree on {a,c}, contradicting

our calculation above.
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With this lemma in place, we will henceforth restrict attention to maps f :

Pk →P . As alluded to above, we will focus on sets of preferences where the

ranking of two alternatives is fixed. For i, j ∈ [n] with i < j, define U+
i j = {�∈

P | i � j} and U−i j = {�∈P | j � i} (since we are restricting to preferences in

P , we could equally well define U−i j = P\U+
i j ). Although we have only defined

these sets for i < j, for notational convenience we will take Uσ
ji to mean the set U σ̄

i j

(where σ and σ̄ are opposite signs in {+,−}). Let U = {Uσ
i j | i < j, σ ∈ {+,−}}

denote the entire collection of sets Uσ
i j . We will be interested in the topology of the

nerve of U (more specifically, its geometric realization NP ).

Theorem 3.2.2 (Baryshnikov Proposition 1). The simplices of maximal dimension

in NP are in one-to-one correspondence with orders in P; these simplices have

dimension (n+1)(n−2)
2 , and NP coincides with the union of these simplices.

Proof. We know that
(

n
2

)
is the number of ways of choosing a set {i, j} of two

elements from [n]. In a strict linear order �, any two elements of [n] must be

comparable, so every set {i, j} must be accounted for (that is, either U+
i j or U−i j

must contain �). So, provided that the appropriate σ ’s are chosen for the sets Uσ
i j ,

the order � will be the only element in the intersection of these Uσ
i j ’s. Therefore �

will correspond to a simplex of dimension
(

n
2

)
−1 = (n+1)(n−2)

2 . The intersection

of more than
(

n
2

)
sets must be empty, because some set {i, j} will be represented

twice (and U+
i j ∩U−i j = /0). Therefore, the simplices corresponding to orders are

of maximal dimension in NP . Finally, note that any nonempty intersection S of

less than
(

n
2

)
sets corresponds to a (strict) partial order on [n]. But any strict

partial order can be extended to a linear order3, so that S belongs to at least one

of the simplices of maximal dimension. Hence NP is the union of the maximal

simplices.

The correspondence between preference relations and maximal simplices of

NP given by theorem 3.2.2 will be quite useful throughout this section. For ex-

3This is precisely the statement of Szpilrajn’s Extension Theorem, which is the main theorem
given in Szpilrajn [9].
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Figure 3.1: The nerve NP for n = 3.

ample, consider the case n = 3; the geometric realization of NP is given in figure

3.1.

There are six cells of dimension 2 = (n+1)(n−2)
2 , each of which clearly cor-

responds to a strict order on [n] (we use the notation (pqr) to represent the or-

der p � q � r). Notice that for n = 3, the nerve NP is homotopy equivalence to

S1 = Sn−2. In fact, this relationship holds for every n≥ 3:

Theorem 3.2.3 (Baryshnikov Theorem 1). The simplicial complex NP is homo-

topy equivalent to the (n−2)-dimensional sphere Sn−2.

Proof. Our strategy is to specify a topological space M (homotopy equivalent to

Sn−2) and an open cover V of M with the exact same intersection properties as U ,

so that NP = NV . The cover V will be chosen so that it satisfies all requirements

of the nerve theorem (see section 4.G of Hatcher [7]), so that we may conclude

NP = NV ' M ' Sn−2. We take M = Rn\4, where 4 = {x1 = . . . = xn} is the

diagonal of Rn. For i < j, define V+
i j = {(x1, . . . ,xn) ∈ Rn | xi > x j} and V−i j =

{(x1, . . . ,xn) ∈ Rn | xi < x j}. It is clear that the collection V of all such sets V σ
i j

covers M, and that a subcollection of the V σ
i j ’s has nonempty intersection if and
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only if the corresponding sets Uσ
i j (just replace the symbol V with U to get the

corresponding set) have nonempty intersection. So NV = NP . It is also clear that

the sets V σ
i j are each convex (hence contractible), so that any intersection of them

is either empty or contractible as well. Thus we may apply the nerve theorem to

conclude NV ' M. Finally, M can be shown to be homotopy equivalent to Sn−2

as follows. First, we may rotate M to get M ' Rn\{x1 = . . . = xn−1 = 0}, and

then perform a linear homotopy to get M ' Sn−1\{(0, . . . ,0,1),(0, . . . ,0,−1)}. A

stereographic projection gives M ' Rn−1\{0}, so that another linear homotopy

gives M ' Sn−2.

Naturally, we expect a similar topological construction to work for the profile

space Pk. Let ~σ = (σ1, . . . ,σk) be a vector of signs in {+,−}, and for i < j define

U~σ
i j = {(�1, . . . ,�k) ∈Pk | ∀m �m∈Uσm

i j }=Uσ1
i j × . . .×Uσk

i j .

Clearly, the collection of all such U~σ
i j covers Pk. Let NPk denote the nerve of this

covering. A similar argument to that of Theorem 3.2.2 establishes the following

result:

Theorem 3.2.4 (Baryshnikov Proposition 3). The simplices of maximal dimen-

sion in NPk are in one-to-one correspondence with profiles of orders in Pk; these

simplices have dimension (n+1)(n−2)
2 , and NPk coincides with the union of these

simplices.

One might suspect that the nerve corresponding to the profile space is homo-

topy equivalent to (Sn−2)k. This is not the case; indeed, it appears that NPk is

rather complicated. However, at least up to dimension n−2, the homology of NPk

behaves like such a product. We record this result in the next theorem, but omit the

proof.

Theorem 3.2.5 (Baryshnikov Proposition 4). The (singular) homology groups of

NPk are zero in positive dimensions up to dimension n−3, and the (n−2)-th group

is isomorphic to Zk.

To complete the transformation of the original social choice model into a topo-

logical one, we must determine how a map f : Pk →P transforms into a map
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between nerves NPk → NP . This is straightforward; the IIA axiom ensures that

for each i< j and each ~σ , f maps the vertex U~σ
i j to exactly one vertex of NP (either

U+
i j or U−i j ). We also know that if (�1, . . . ,�k) ∈Pk is a profile (corresponding to

some simplex in NPk ), then f (�1, . . . ,�k) is a relation � (corresponding to some

simplex in NP ). Thus f , being defined on the vertices of NPk , may be extended

linearly to yield a simplicial map NPk → NP ; we will simply call this map f .

Naturally, f is continuous because it is a well-defined simplicial map. We will

see that the dictatorship property is closely related to the way f maps generators

(basis elements) of Hn−2(NPk) ∼= Zk to elements of Hn−2(NP) ∼= Z. To under-

stand this relation, we must first give a useful characterization of the generators of

Hn−2(NP), followed by those of Hn−2(NPk).

Suppose a graph g is a simple unoriented loop of length n with vertices in [n]

(for example, g might be the graph 1− 2− 3− . . .− n− 1). If we choose some

orientation for the arrows (yielding an oriented graph ~g), we may identify a corre-

sponding set of vertices Uσ
i j , where an arrow 1→ 2 corresponds to U+

12, the arrow

1← 2 corresponds to U−12, and so on. This gives a collection of n vertices (one

for each edge of g). The simplex S(~g) spanned by these vertices may or may not

belong to the nerve NP ; indeed, if the oriented graph is 1→ 2→ . . .→ n→ 1

(we will call such a graph an oriented cycle), then the simplex will not belong to

the nerve (the intersection of the corresponding sets will be empty since ~g induces

relations which do not satisfy transitivity). However, such a simplex will belong to

the “total” simplex 4tot (it contains every simplex spanned by any set of vertices

in U ). So, if we let the chain h(~g) = ∂S(~g) denote the boundary of S(~g), we must

have that h(~g) is a cycle in 4tot (that is, ∂h(~g) = 0; this is clear since ∂ 2 = 0).

In fact, h(~g) is a cycle in Hn−2(NP), and represents a generator whenever ~g is an

oriented loop:

Theorem 3.2.6 (Baryshnikov Proposition 2). Suppose~g is an oriented graph on [n]

whose unoriented support g is a simple loop of length n. Then the cycle h(~g) is an

(n−2)-dimensional cycle of NP (that is, h(~g) represents some class of Hn−2(NP)).

If~g is an oriented cycle, then h(~g) represents a generator of Hn−2(NP); otherwise,

h(~g) is trivial in Hn−2(NP).

Proof. Since S(~g) is spanned by n vertices, S(~g) is a simplex of dimension n− 1;
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hence the boundary h(~g) is a sum of (n− 2)-dimensional simplices. Each sim-

plex in this sum corresponds to the simplex given by ~g, but with one arrow re-

moved; hence, the vertices corresponding to each (n− 2)-dimensional simplex in

the sum give a partial order on [n], which may be extended to a linear order. But

then every such simplex must belong to NP , because the simplices of NP cor-

respond to linear orders on [n]. Hence [h(~g)] ∈ Hn−2(NP). Similarly, the order

corresponding to ~g may be extended to a linear order whenever ~g is not an ori-

ented cycle. But then h(~g) is the boundary of some maximal simplex in NP ,

so that h(~g) is trivial in Hn−2(NP) if ~g is not an oriented cycle. Finally, sup-

pose ~g is an oriented cycle. For each arrow i → j in ~g, we have a half-space

W+
i j = V+

i j = {(x1, . . . ,xn) ∈ Rn | xi > x j}. Consider the collection W of all such

half-spaces given by ~g. Clearly ∪W ⊆ M (recall M = Rn\4 from the proof of

theorem 3.2.3); if there is some ~x = (x1, . . . ,xn) ∈ M which does belong to any

of the W σ
i j , then ~x belongs to the complement of each W σ

i j . Supposing (without

loss of generality) that ~g is the oriented cycle 1→ 2→ . . .→ n→ 1, this implies

x1 ≤ x2 ≤ . . .≤ xn ≤ x1; that is, we have~x = (x, . . . ,x) ∈4, contradicting the fact

that ~x ∈M. Hence W is a cover of M. Since W ⊂ V , the nerve theorem yields a

commutative diagram

NW NV

M

ι

g h

where ι is injection and g and h are homotopy equivalences. Let g−1 and h−1

denote the homotopy inverses of g and h, respectively. Since g = h ◦ ι , we have

h−1 ◦ g = h−1 ◦ h ◦ ι ' 1 ◦ ι = ι . But h−1 ◦ g is a homotopy equivalence, so that ι

is also a homotopy equivalence. Clearly, [h(~g)] generates Hn−2(NW ). Thus h(~g) =

ι(h(~g)) represents a generator of Hn−2(NV ) = Hn−2(NP).

The graph-based approach to characterizing generators can also be used to

find useful representations of basis elements of Hn−2(NPk). In particular, let

~g = (~g1, . . . ,~gk) be a tuple of oriented graphs on [n] where each ~gi has the same

unoriented loop (of length n) as its unoriented support (say 1− 2− . . .− n− 1).
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From~g, we can extract n vertices U~σ1

12 , . . . ,U
~σn−1

n−1,n,U
~σn

n1 as follows: for U~σ i

i,i+1, define
~σ i = (σ i

1, . . . ,σ
i
k) by

σ
i
` =

{
+ if~g` has arrow i→ i+1

− if~g` has arrow i← i+1
.

So, we can think of the vertex U~σ i

i,i+1 as keeping track of how the k graphs rank i and

i+1. Notice that any subset of n−1 of these vertices gives a simplex in NPk : fixing

some coordinate `, the intersection of n−1 sets (for example, Uσ1
`

12 , . . . ,U
σ

n−1
`

n−1,n) will

result in a transitive partial order on [n], because the unoriented support 1− 2−
. . .−n−1 implies that an intransitivity can arise only if n arrows (hence n vertices)

are present. Thus each component will correspond to a partial order on [n], so that

the (n−2)-dimensional simplex spanned by the n−1 vertices will belong to NPk .

Summing (with appropriate coefficients) over all possible subsets of size n− 1

therefore gives the boundary h(~g) of some (n−1)-dimensional simplex; since each

simplex in the sum belongs to NPk , this proves that [h(~g)] ∈ Hn−2(NPk).

Next, we define projection maps p` : NPk → NP , for 1 ≤ ` ≤ k. Obviously,

for a profile of preferences we must have p`(�1, . . . ,�k) =�`. So, for a vertex U~σ
i j

of NPk , we see that the `th projection is Uσ`
i j ∈ NP . Extending this map linearly

gives our projection map NPk
p`−→ NP , which is clearly simplicial and therefore

continuous. To see how p` maps the cycle h(~g), consider S = [U~σ1

12 , . . . ,U
~σn−1

n−1,n]

(that is, S is one of the (n− 2)-dimensional simplices in the sum h(~g)). Then

p`(S) = [Uσ1
`

12 , . . . ,U
σ

n−1
`

n−1,n], an (n−2)-dimensional simplex in NP . The projections

of other simplices in h(~g) are computed in a similar fashion, so that p`(h(~g)) is a

sum of (n−2)-dimensional simplices in NP . By construction, p`(h(~g)) is a cycle,

and therefore belongs to some class of Hn−2(NP). Note that p`(h(~g)) = h(~g`).

Theorem 3.2.7 (Baryshnikov Proposition 5). Suppose ~g = (~g1, . . . ,~gk) is a tuple

of oriented graphs where ~g` is the oriented cycle 1→ 2→ . . .→ n→ 1, and all

other ~gi are acyclic with the same unoriented support 1− 2− . . .− n− 1. Define

h` = h(~g). Then the set {h1, . . . ,hk} represents a basis for Hn−2(NPk)∼= Zk.

Proof. Consider h`. Since each graph~gi (i 6= `) is acyclic, each such h(~gi) is trivial

in Hn−2(NP), and since ~g` is an oriented cycle, h(~g`) represents a generator of
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Hn−2(NP) ∼= Z. This means h` projects to 0 under pi (i 6= `) and to a generator

under p`. So, the collection {h1, . . . ,hk} represents a basis for Hn−2(NPk).

With these characterizations in place, we are now prepared to establish the

relationship between dictators and generators. We begin with the following lemma:

Lemma 3.2.8. Suppose~g = (~g1, . . . ,~gk) has an associated cycle h(~g) representing

a generator h` in Hn−2(NPk) (so ~g` is an oriented cycle with unoriented support

1− 2− . . .− n− 1). Then f∗(h(~g)) ∈ Hn−2(NP) and corresponds to a graph ~g f

with the same unoriented support.

Proof. By IIA, the map f : NPk → NP sends a vertex U~σ
i j to Uσ

i j for some σ ∈
{+,−}. We also know that h(~g) ∈ Hn−2(NPk) is a sum of (n− 2)-dimensional

simplices of the form [U~σ1

12 . . .U~σn

n1 ] (where one of the vertices U~σ i

i j is dropped).

Therefore f∗(h(~g)) is a sum of simplices of the form [Uσ1
12 . . .U

σn
n1 ] where each

σi ∈ {+,−} and, again, some vertex Uσi
i j is dropped. Each of these simplices is

an (n− 2)-dimensional simplex belonging to Hn−2(NP) (because such a simplex

will represent a partial order on [n], and therefore belong to one of the maximal

simplices), and so f∗(h(~g)) ∈ Hn−2(NP). Notice also that f∗(h(~g)) will have ver-

tices [Uσ1
12 . . .U

σn
n1 ], so that the corresponding graph~g f will have unoriented support

1−2− . . .−n−1.

An immediate consequence of this lemma is that f∗(h(~g)) is either a generator

or is trivial in Hn−2(NP), according to whether ~g f is an oriented cycle or not. In

fact, these two cases correspond to whether or not agent ` is a dictator:

Theorem 3.2.9 (Baryshnikov Proposition 7). Agent ` is a dictator if and only if

f∗(h`) is a generator.

Proof. Suppose first that agent ` is a dictator. By the previous lemma, we may

assume that h` is represented by a cycle h(~g), where ~g = (~g1, . . . ,~gk) is a tuple of

graphs with unoriented support 1−2− . . .n−1,~g` is an oriented cycle, and all other

~gi are acyclic. It will suffice to show that the graph ~g f corresponding to f∗(h(~g))

is an oriented cycle. Consider alternatives i and i+1 in [n]. Corresponding to ~g is

the vertex U~σ i

i,i+1 in NPk ; in particular, we must have σ i
` =+ since~g` has the arrow

i→ i+ 1. Since ` is a dictator, this implies f maps U~σ i

i,i+1 to U+
i,i+1, which means

25



~g f must have the arrow i→ i+1. Since i was chosen arbitrarily, this means ~g f is

actually equal to the graph ~g`, so that ~g f is an oriented cycle. Hence f∗(h`) is a

generator.

Next, suppose f∗(h`) is a generator. Take any distinct i, j ∈ [n]; it will suffice to

show that f maps U~σ
i j to Uσ`

i j for any vector ~σ of signs. For concreteness, suppose

σ` = +. Obviously there is some oriented cycle (call it ~g`) of length n on [n]

which has the arrow i→ j. This allows us to represent h` by a tuple of graphs

~g= (~g1, . . . ,~g`, . . . ,~gk), where each~gi (i 6= `) is acyclic and has the same unoriented

support as ~g`. Suppose we modify one arrow in one of the ~gi’s (i 6= `) in such a

way that ~gi remains acyclic (since n≥ 3, this can obviously be done). This means

one agent has reversed his preference between i and j. By the IIA axiom, the

resulting social preference will either be unchanged or it will reverse the order of

i and j; thus at most one arrow of ~g f will be reversed, and all others will remain

the same. By hypothesis, however, ~g f must be an oriented cycle (the modified

tuple ~g still represents h`, which means ~g f must still represent a generator). If

one arrow of ~g f were reversed, then ~g f would no longer be a cycle; thus ~g f is

actually unaffected by changing one arrow in one ~gi (i 6= `). Because of this, we

may (without affecting ~g f ) modify the tuple ~g, one arrow at a time, until each ~gi

has the arrow i→ j (the obvious procedure is to just reverse any i← j arrows; if

doing so causes an oriented cycle, some other arrow in the same graph will need to

be reversed beforehand). Corresponding to this modified ~g is the vertex U (+,...,+)
i j

which, by the Pareto property, must be mapped to U+
i j by f . This means~g f has the

arrow i→ j. As the above argument shows, any vector ~σ can be achieved (with

σ` =+) without changing any arrows of ~g f ; in particular, the arrow i→ j of ~g f is

fixed, so that for any vector ~σ , f will map U~σ
i j to U+

i j . Thus ` is a dictator.

In view of theorem 3.2.9, Arrow’s theorem will be immediate if we can prove

the existence of some h` which f∗ maps to a generator. We will give a simple

algebraic proof that this is, indeed, the case.

Consider a map NP → NPk which sends a vertex Uσ
i j to U (σ ,...,σ)

i j . We can

extend this map linearly to get a simplicial map D : NP → NPk (the diagonal

map). Clearly, D∗(h) = (h, . . . ,h) for any generator h ∈ Hn−2(NP). Consider the

following diagram:
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Z︷ ︸︸ ︷
Hn−2(NP)

Zk︷ ︸︸ ︷
Hn−2(NPk)

Z︷ ︸︸ ︷
Hn−2(NP)

Hn−2(NP)︸ ︷︷ ︸
Z

. . . Hn−2(NP)︸ ︷︷ ︸
Z

D∗ f∗

i1 ik

Here, the maps i` are canonical injections 1
i`7→ (0, . . . ,1, . . . ,0), where the 1

is in the `th spot. We call such a setup purely separated (in dimension n− 2). By

lemma 3.2.8, f∗◦ i` sends a generator of Hn−2(NP) to either 0 or 1. Notice also that

the Pareto property implies that f ◦D is the identity map, so that f∗ ◦D∗ = ( f ◦D)∗

is the identity map as well. So, we have

f∗ ◦D∗(1) = f∗(1, . . . ,1)

= f∗(1,0, . . . ,0)+ . . .+ f∗(0, . . . ,0,1)

=
k

∑
j=1

f∗(i j(1))

=
k

∑
j=1

d j ·1 ,

where each d j is either 0 or 1. But since f∗ ◦D∗ is the identity map, we must

have ∑
k
j=1 d j ·1 = 1; this implies that exactly one d j is 1, which means f∗(h j) is a

generator. By theorem 3.2.9, then, this agent is a dictator, and the proof of Arrow’s

theorem is complete.

This is obviously not the easiest way to prove Arrow’s theorem (indeed, the

short proof we gave in section 2 is much simpler). The advantage of this topolog-

ical approach, however, is that it gives at least some intuition for why the theorem

is true. Namely, the domain of preferences, together with the IIA axiom, yields

a nontrivial topological space, and this nontriviality seems to be responsible for

the dictatorship outcome. If one wishes to identify restricted domains where non-

dictatorial maps are possible, then the topological model can be used to generate

hypotheses about which domains might be suitable. Consider again the diagram of

NP for the case n = 3. Since dictators map to generators (more or less), one can

try to remove the possibility of dictatorship by removing enough orders from P
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to make the nerve contractible. Looking at the diagram, we see that the space will

be contractible if we remove the simplices corresponding to the orders 3 � 1 � 2

and 1 � 3 � 2. The remaining preferences coincide with the single-peaked pref-

erences described in section 2. Remarkably, any contractible subcomplex of NP

will correspond to a (sub)domain of single-peaked preferences! This makes the

single-peaked condition almost obvious, whereas the classical framework does not

provide any obvious intuition whatsoever as to why single-peaked domains may

escape the dictatorship result. Note that our topological framework does not prove

that single-peaked domains permit non-dictatorial aggregation maps; the relation-

ship “` is a dictator⇔ f∗(h`) is a generator” is built on the premise that the domain

is unrestricted, and it is not at all clear that this relationship could hold without that

assumption. Still, the topology offers enough intuition that it can be a useful aid in

formulating possible candidates for restricted domains. Moreover, the topological

construction is, on its own, a very interesting approach to this branch of theory.
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Chapter 4

Judgment Aggregation

Judgment aggregation is a new branch of economic theory which studies the way

individual choices (not necessarily preferences) may be aggregated into a single

collective choice. One usually begins with some finite set A containing n alterna-

tives and some subset X ⊆ P(A) of “acceptable choices”. There are k agents, and

each selects some member of X (one usually represents members of X as vectors

x = (x1, . . . ,xn) with entries in {0,1}, indicating which members of A have been

selected).

An aggregation map f : Xk→ X assigns to each k-tuple~x = (x1, . . . ,xk) of Xk

a vector ~y = f (~x) of X . If, for every `, we have that y` = 1 (resp. 0) whenever

xi
` = 1 (resp. 0) for each i = 1, . . . ,k, then f satisfies the Pareto property. The IIA

axiom can also be adapted to this framework: suppose that for each ` = 1, . . . ,n

and any two profiles ~y,~z ∈ Xk where yi
` = zi

` for each i, we have that f (~y) and

f (~z) agree on the `th coordinate (that is, the collective decision regarding the `th

element of A depends only on the individual judgments of the `th element). Then f

is Independent of Irrelevant Alternatives. Finally, f is Dictatorial if there is some

agent d such that for every~x ∈ Xk, f (~x) = xd (that is, the aggregated choice always

coincides with the choice of individual d, regardless of what others choose).

This framework is clearly very similar to that of the social choice setup. In

fact, social choice models are a special case of the judgment aggregation model.

To see this, suppose R is the set of rational preference relations over [m]. Since

a preference relation % is determined by comparisons between pairs of elements
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Table 4.1: The doctrinal paradox

P Q R

Judge 1 T T T
Judge 2 T F F
Judge 3 F T F

Σ T T F

of [m], we can take the set A to be the set of all possible pairwise comparisons;

that is, A = {i % j : i, j ∈ [m], i 6= j}. Then X will be the set of vectors for

which the corresponding chosen pairwise relations give a preference relation on

[m]. It is easy to see that the Pareto and IIA definitions of the judgment aggregation

model agree with those of the social choice model; in the case of strict preferences,

the Dictatorship axioms agree as well (recall that the dictatorship axiom of social

choice only requires that the strict part of the aggregated preference agrees with

that of the dictator; in the judgment aggregation setup, the aggregated preference

must equal the dictator’s preference).

The social choice case is a good example of why only certain subsets of A

may be admissible. Another possibility is that elements of A may represent logical

propositions, and formal relationships between the propositions may force some

subsets to be excluded on the grounds of logical consistency. The canonical exam-

ple is the “doctrinal paradox”. Suppose three judges (J1, J2, and J3) must decide

whether a defendant is guilty of a series of crimes (P, Q, and R). Due to legal defini-

tions, one is guilty of R if and only if one is guilty of both P and Q. In this scenario,

then, we have A = {P,Q,R} and X = {(0,0,0),(1,0,0),(0,1,0),(1,1,1)}, since

these are the only logically consistent assignments. To see the difficulty in ag-

gregating the choices of J1, J2, and J3, suppose the aggregation map f is simply a

propositionwise majority vote. Then two out of three judges will find the defendant

guilty of P (and similarly for Q), but only one of the three will find the defendant

guilty of R. But then the aggregated judgment is (1,1,0), which is absurd. Situ-

ations such as this make the problem of judgment aggregation considerably more

delicate than that of preference aggregation (incidentally, this example is also what

motived the name “judgment aggregation” for this branch of theory).
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Despite these difficulties, the problem of characterizing all impossibility do-

mains (those domains X for which every aggregation map f : Xk → X satisfying

the IIA and Pareto properties is Dictatorial) has recently been resolved. Specifi-

cally, Dokow and Holzman [5] have shown that X is an impossibility domain if

and only if X is totally blocked and is not an affine subspace (over F2). We will

not discuss this result (nor the definition of total blockedness), but remark that their

result has been helpful for identifying some simple examples for use in this section.

Our objective is to explore the potential for understanding such generalized

impossibility results in a topological fashion, just as Baryshnikov has done for

Arrow’s theorem in social choice. Keeping in mind the judgment aggregation form

of preference aggregation, we proceed as follows: given A = [n] (we can make this

identification since A is assumed finite) and X ⊆ {0,1}n, we define for each i ∈ A

and σ ∈ {+,−} the sets Uσ
i by

U+
i = {x = (x1, . . . ,xn) ∈ X | xi = 1} and U−i = {x = (x1, . . . ,xn) ∈ X | xi = 0} .

The analogy with Baryshnikov’s approach is clear; indeed, the above sets coincide

in a 1-1 fashion with the sets Uσ
i j in Baryshnikov’s model when A is the set of all

strict relations i � j. Naturally, we are interested in the collection U of all such

sets Uσ
i , and the corresponding nerve NX .

Notice that a vector (x1, . . . ,xn)∈ X will be the only element in the intersection

of sets Uσi
i , where σi = + if and only if xi = 1, and that any intersection of more

than n sets must be empty (because then some index i is repeated, so that sets U+
i

and U−i are in the family; but obviously these two sets are disjoint). This means the

simplices of maximal dimension in NX will be in one-to-one correspondence with

vectors in X , and that these simplices will have dimension n− 1 (being simplices

spanned by n vertices). In a similar fashion, we may define sets U~σ
i (where ~σ is a

vector of k signs in {+,−}) by

U (σ1,...,σk)
i =Uσ1

i × . . .×Uσk
i .

The nerve corresponding to the collection of all such sets U~σ
i is denoted NXk . The

maximal simplices of NXk correspond to k-tuples of vectors in X , and therefore are
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also of dimension n− 1. Finally, any aggregation map f : Xk → X satisfying the

IIA axiom induces a simplicial map NXk → NX (which we also call f ), just as in

Baryshnikov’s model.1

At this stage, one encounters the first major difficulty in constructing a general

topological theory of judgment aggregation: using this setup, not every impossibil-

ity domain X yields a nontrivial nerve NX . For example, take

XI = {(0,0,0,0),(0,1,0,1),(1,0,0,1)(1,1,1,1)} .

This is Example 4 in Dokow and Holzman [5], and it is easily shown (using their

theorem) that XI is an impossibility domain. However, the nerve corresponding to

this domain is contractible, and therefore of no use in our setting. A similar prob-

lem occurs if one tries to use our procedure for the case of preference aggregation

when preferences need not be strict (that is, when the entire domain R of prefer-

ence relations is permitted). In that case, A consists of all possible pairwise com-

parisons i % j; in particular, the vector (1, . . . ,1) (corresponding to the indifference

relation 1∼ 2∼ . . .∼m) will belong to every set U+
i ; in general, the possibility of

indifferences add enough vectors to each set Uσ
i that the resulting nerve is trivial

(due to the increased number of nonempty intersections). This is why Barysh-

nikov’s model considers only the case of strict preferences. Can a similar domain

restriction be found for judgment aggregation models? This is probably a difficult

task: even if one removes (1,1,1,1) or (0,0,0,0) (or both) from XI , the resulting

nerve is still trivial. Recently, however, Tanaka [10] has modified Baryshnikov’s

approach by adding vertices Ūi j containing those orders where the relation i ∼ j

is not satisfied. In the judgment aggregation model, the set Ūi j would consist of

those vectors where (for some particular s, t) s = t = 1 is not satisfied. This cer-

tainly yields a nontrivial nerve (indeed, Tanaka only studies the case where there

are three elements to be ordered, but the result is a somewhat complicated space).

1There is a small subtlety here. The IIA axiom tells us that a set U~σ
i is mapped to either U+

i
or U−i . This suggests the following problem: suppose X = {(0,0),(1,1)} and that k = 2. What

if U (+,−)
1

f7→ U+
1 and U (+,−)

2
f7→ U−2 ? The problem is that U+

1 ∩U−2 = /0, but U (+,−)
1 ∩U (+,−)

2 =
{((1,1),(0,0))} is nonempty, so that f cannot be a simplicial map. But, by hypothesis, f maps every

vector in Xk to some element of X . So it cannot be the case that U (+,−)
1

f7→U+
1 and U (+,−)

2
f7→U−2 ; f

will always send intersecting vertices to intersecting vertices.
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It seems plausible that a similar approach could be successful in judgment aggrega-

tion models. However, by introducing additional vertices, the overall study of the

problem becomes significantly more complicated; in particular, we lose the simple

correspondence between maximal simplices and vectors of X , which will make it

difficult to characterize homologically trivial chains. Although we do not develop

these ideas in this thesis, this nonetheless seems like a (possibly) fruitful avenue

for future research.

We now turn our attention to a simple impossibility domain which does yield a

nontrivial nerve. Our examination of this space serves as a prototype for a (possi-

bly) more general theory. Let A be a finite set with n elements (n≥ 3), and take X to

be those subsets of A consisting of only one element. This means we can represent

members of X by the “basis” vectors (1,0, . . . ,0),(0,1,0, . . . ,0), . . . ,(0, . . . ,0,1).

Although we will not give a proof here, the theorem of Dokow and Holzman can

easily be applied to verify that X is, in fact, an impossibility domain.

For each i, we have

U+
i = {(0, . . . ,0,1,0, . . . ,0)} and U−i = X\U+

i ,

where the 1 is in the ith position of the vector. Notice that U+
i =

⋂
j∈[n]\iU

−
j . Ob-

viously, the intersection over all sets U−j is empty (X does not contain the zero

vector), but (as the above expression for U+
i shows) any collection of n− 1 of

the U−j intersect. This means the nerve NX will consist of the boundary of the

(n− 1)-dimensional simplex [U−1 . . .U−n ], along with a collection of n simplices

(corresponding to the vectors in X), each of which is (n−1)-dimensional and has

exactly one face in common with [U−1 . . .U−n ]. This is illustrated in figure 4.1 for

the case n = 3.

Clearly, the nerve NX is homotopy equivalent to the sphere Sn−2, and the bound-

ary ∂ [U−1 . . .U−n ], being a sum of (n− 2)-dimensional simplices, is a cycle repre-

senting a generator of Hn−2(NX)∼= Z.

Our goal, of course, is to achieve a purely separated setup in dimension n−
2. Rather than attempting to compute Hn−2(NXk), however, we will achieve this

by focusing on the topology of NX instead. This is because (as we have seen

in Baryshnikov’s model) the homology of NXk might be very complicated, and it
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Figure 4.1: The nerve NX for X = {(1,0,0),(0,1,0),(0,0,1)}.

seems that one can only perform the relevant computations by constructing a clever

model for NXk (by this, we mean a collection of sets with the same intersection

properties as the U~σ
i , but which satisfy the requirements of the nerve theorem and

cover a space M for which the homology can be computed). Any theory which

aims to work for a wide array of impossibility domains should, ideally, not require

the formulation of a clever new covering every time a new impossibility domain

presents itself.

In fact, it is quite easy to obtain a purely separated setup without studying the

topology of NXk in depth. First, we define projection maps p` : NXk → NX (` =

1, . . . ,k) similar to those in section 3.2. Namely, we begin with the projection map

(x1, . . . ,xk)
p`7→ x` and extend the map linearly to yield a simplicial map NXk → NX .

Consider a chain S1 = ∂ [U~σ1

1 . . .U~σn

n ] satisfying p1(S1) = ∂ [U−1 . . .U−n ], and where

all other pi send S1 to trivial chains of Hn−2(NX) (such a chain S1 can be constructed

by taking σ
j

1 = − for each j = 1, . . . ,n, and for each ` 6= 1 choosing one value j∗

for which σ
j∗
` =+ and setting all other σ

j
` =−). Since ∂ [U−1 . . .U−n ] is a generator

of Hn−2(NX)∼= Z, this means that (p`)∗ sends the class [S1] ∈ Hn−2(NXk) to 1 ∈ Z,
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and that all other projections send S1 to 0. Similarly, we can define chains S` for

each ` = 2, . . . ,k satisfying p`(S`) = 1 and p j(S`) = 0 for all j 6= `. Thus, the

classes [S1], . . . , [Sk] form a basis for a subgroup G of Hn−2(NXk), with G∼= Zk.

Next, observe that f∗([S`]) ∈ {0,1} for each `. This is because the IIA axiom

implies that for each i, f (U~σ
i )=Uσ

i for some σ ∈{0,1}. Since S`= ∂ [U~σ1

1 . . .U~σn

n ],

this means either f (S`) = ∂ [U−1 . . .U−n ] (so f∗(S`) = 1) or f (S`) = ∂ [Uσ1
1 . . .Uσn

n ],

where exactly one σi is + and all others are − (so that f∗([S`]) = 0). The simpli-

cial map f : NXk → NX induces a homomorphism Hn−2(NXk)→ Hn−2(NX), which

obviously restricts to a homomorphism G→ Hn−2(NX) since G is a subgroup of

Hn−2(NXk) (we will still call this restricted homomorphism f∗). Applying the

Pareto property, we see that f∗(1, . . . ,1) = 1.2 As in Baryshnikov’s model, this

is enough to imply that 1 = ∑
k
`=1 f∗([S`]) = ∑

k
`=1 d`, where each d` ∈ {0,1}, so that

there is exactly one index, d, for which f∗([S`]) = 1.

To see that this agent d is a dictator, we need to show that an agent ` is a dictator

if f∗([S`]) = 1. In fact, the converse also holds:

Theorem 4.0.10. Agent ` is a dictator if and only if f∗([S`]) = 1.

Proof. Suppose first that ` is a dictator. By definition, S` = ∂ [U~σ1

1 . . .U~σn

n ], where

each vector ~σ i has a − sign in the `th coordinate. Since ` is a dictator, f maps U~σ1

1

to Uσ1
`

1 =U−1 ; similarly, f maps each U~σ i

i to U−i . Thus f maps S` to ∂ [U−1 . . .U−n ],

which represents a generator of Hn−2(NX). Thus f∗([S`]) = 1.

Conversely, suppose f maps S` to ∂ [U−1 . . .U−n ]. We prove that for each i, f

maps U~σ i

i to U−i whenever σ i
` = −. Given S` = ∂ [U~σ1

1 . . .U~σn

n ], we can modify

the “ jth coordinate” ( j 6= i) as follows: given U~σ i

i , we can reverse the sign of σ i
j;

if σ i
j was +, then the jth coordinate of all other vectors is −, so we choose some

m 6= i and set σm
j = + (this way, the jth coordinate still projects to a trivial chain

of Hn−2(NX)). If σ i
j was −, then some other σm

j was +; so we change that σm
j to

− (again, this ensures that the jth coordinate projects to 0). These changes give

a modified chain S′` with p`(S′`) = ∂ [U−1 . . .U−n ], and all other projections p j send

2There is a technicality here which needs to be addressed. In order to apply the Pareto property to
reach this conclusion, we need to know that in Hn−2(NXk ), we have [S1]+ . . .+[Sn] = [∂ [U~σ

1 . . .U~σ
n ]],

where ~σ = (−, . . . ,−). That is, the sum of the basis classes should coincide with the class represented
by this particular chain which projects to 1 in each coordinate. This does not seem unreasonable.
We will discuss this (and a related technical problem) later.
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S′` to a trivial chain of Hn−2(NX). By hypothesis, then, f maps S′` to the generator

∂ [U−1 . . .U−n ] as well. Notice that for Ui, the only difference between S` and S′` is

that the jth coordinate of ~σ i has switched signs; but the image under f remains

the same. Repeating this argument, we see that any vector ~σ i can be achieved

(with σ i
` =−) without changing the image of U~σ

i under f . In particular, the vector

(−, . . . ,−) is attainable, and by the Pareto property, f maps U (−,...,−)
i to U−i . Thus,

for all i, we have that f (U~σ i

i ) = − whenever σ i
` = −. This means that for any k-

tuple (x1, . . . ,xk) ∈ Xk with y = f (x1, . . . ,xk), we have that x`i = 0⇒ yi = 0. But

by choice of our domain X , this forces y to equal x`, because each vector in X has

exactly one coordinate equal to one, and all others zero. Hence ` is a dictator.

Combining this theorem with the result above (namely, that there is some agent

d for which f∗([Sd ]) = 1), this gives a topological proof that X is an impossibility

domain.

Remark. The proof of this theorem depends on the fact that any two chains

α,β of the form α = ∂ [U~σ1

1 . . .U~σn

n ],β = ∂ [U~σ1

1 . . .U~σn

n ] (where p`(α) = p`(β ) =

∂ [U−1 . . .U−n ] and all other pm send α and β to trivial chains of Hn−2(NX)) must,

in fact, belong to the class [S`] (this is needed to ensure that f maps the modi-

fied chain S′` to a generator). This does not seem unreasonable at all; in fact, it

would follow easily if we knew that Hn−2(NXk) ∼= Zk (because then each projec-

tion would send the class [α]− [β ] to 0, forcing [α]− [β ] = 0). Despite this, we

have not been successful in finding a rigorous proof. Note that this is essentially

the same difficulty mentioned previously, where we need to be able to represent the

class [S1]+ . . .+[Sk] by the chain ∂ [U~σ
1 . . .U~σ

n ], where ~σ = (−, . . . ,−). There seem

to be two main options. First, one might attempt to give a general proof that, for

nerves constructed in this manner, one always has Hm(NXk) ∼= (Hm(NX))
k, where

Hm(NX) is the top homology group of NX . Such a theorem would be quite valuable

since, as previously discussed, the homology of NXk is difficult to compute directly,

but only information about the top group seems to be required to establish dicta-

torship results. Alternatively, one might attempt to construct an algorithm yielding

a sequence of chains γ1, . . . ,γt (each trivial in Hm(NXk)) with β = α + γ1 + . . .+ γt .

We regard both approaches as avenues for future research (indeed, either result
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would be a significant feature of a generalized topological theory of judgment ag-

gregation).

Note that for our simple space X , we do not rely on any graph-based or other

approaches to identifying generators. This is because the generator ∂ [U−1 . . .U−n ]

is the only one needed to establish the relationship between dictatorship and map-

ping properties of f∗, and no extra language or notation needs to be introduced to

describe it. In general, however, there may not be a simple way to represent the rel-

evant generators in an arbitrary domain X . Finding a convenient way of describing

generators, just as Baryshnikov has done for the case of strict preferences, seems

to be another challenge that must be overcome.

At this stage, there is also nothing to rule out the possibility that some domains

X may have associated nerves with a more complicated topology. This, in turn,

could cause the algebraic portion of the proof to fail. What is the appropriate way

to generalize the purely-separated setup in such situations? How will mapping

properties of the various generators relate to the dictatorship condition? These

questions, and the issues previously mentioned, are quite difficult. Still, the analy-

sis given above of the simple space X is encouraging enough that further research

into these problems seems worthwhile, and that (eventually) a more general theory

might be found.
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