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Abstract

The usual approach to the process modeling of thermoset matrix composites is to divide
the analysis into two distin@nd sequentiasteps, firstof flow-deformationbehaviour

and then of stressdeformation In the current processing models, each of these two
aspects is dealt with in a separate-sudalel,typically called thflow module and stress
modulerespectively The flow modules relevant to the prgelation behaviour of resin,

while the stress made is valid for the posgelationcomposite material.

In this thesisthe framework to integrate the flow and the stress maednte a unified
module infinite elementprocessing magls is presentedrhe work is based on a two
phase model for analysis of resin flow and its resulting deformations in the composite
material. Special measures are introduced to provide for additional capability of this
model to account for the developmentstresses in the curing composite material. These
modificationsare neeakd to ensure the accuracy of the model in both of resin flow and
stress development regimesidinclude the introduction of consistent compressibility in
the mass conservation egoat of the twephase system, and a special decomposition of
stresses of the system.

The formulation is implementefbr a pseudeviscoelastic stress model a 2D plane

strain FE code iMATLAB . The approach may readily be extended to fully viscoelastic
mocdels. Various examples from singkdement problems dealing with the development

of residual stresses throughout a sidghkd cure cycle to more geometrically complex
composite laminates undergoing standard cure cycles are modeled by the integrated
model aad comparisons are made one extreme to the flowompaction behaviour by

the standard flow models, and in the other extremtbe results obtained by the pseudo
viscoelastic approach.

The model developed here is a promising tool for simulating process$itargescale
composite structures continuously from the very early stages of the process when the
resin behaves in a fluitke mannerall the way to the final stage whérbehaves as a 3D

solid.
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Chapterl:l nt roducti on

1.1. Background

Fibrereinforced plastic composites are replacing traditional materials in engineering
applications. The growing popularity of these materials is due to advasiagesas high
strength to weight ratio, high stiffness to weight ratio, and impressive durability.
Manufacturing of composite structures is distinct from that of metallic structures in that a
complex and largscale structure is processed from the raw nasein one step in order

to create otherwise unachievable geometries amedioce manufacturing cost. The focus

of this work is on the higjperformance structural components made of advanced
thermoset matrix composites that are mainly used in the a@m®sapdustry. The making

of such structures is commonly performed by autoclave processing. This process involves
stacking of prampregnated sheets of unidirectional fibres (prepreg) at specially designed
orientations over a tool of desired shape. The wladsembly is then subjected to a
controlled cycle of temperature and pressure change inside an autoclave. The end result
of this process is the compaction and curing of the composite part. Finally, the cured
composite part is removed from the tool Howewveevelopment of residual stresses
during the curing process leads to difficulty and uncertainty in prediction of the precise
shape and dimensions of the part after tool removal. It is essential to have a good
understanding of the phenomena that the natendergoes throughout the processing
cycle. In the past three decades as the popularity of composite matea&screase,

efforts to numerically simulate the processing cycle of composite materials have

increasingly gained more traction in ordectob the costs of production.

A bagging schematic for a typical autoclave processing system is shéigurel1.1 (a).
The prepregliesare placed o a hard tool to form the desired shape of the lamirate.
typical prepreg ply has a thickness of 0.2 mm and a fibre volume fraction-0f6@)Ehe

plies can be oriented in different directions to achieve the target mechanical properties.
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Typical tooling materials include aluminum, steel, invar, and even composite. Dams are
placed around the perimeter of the laminate to control resin flow from the edges of the
plies. In many cases, a release film is used on top of the laminate to allow for easy
removal ofadjacent bagging material. For laminates that need resin bleed, an absorbing
cloth forming the bleeder is placed on top and around the laminate. Inserts and
honeycomb cores may be included in the laminate for moulding purposes or structural
requirements. Areather cloth covers the assembly to provide a path for air flow. The
whole assembly consisting of the tool, laminate, bleeder, and breather is plaaed
vacuum bag and is sealed. A vacuum plug connects the interior of the bag to an external
vacuum purp. The cycle of curing the part is shownFigure 1.1 (b). At this stage, the
tool-laminate assembly is put in an autoclave and the sealed bag is attached to the
vacuum systemThe vacuum is applied in order to debulk the composite laminate,
partially motivate the flow of excess resin out of the laminaté,ramove any excess air

that is trapped between the plies. In order to cure the part, pressure and temperature are
applied in a praletermined cure cycle. The temperature cycle is crucial to trigger the
reaction of resin polymerization. The pressure idiagdo conform the laminate to the

tool surface, and to compact the laminate to the target value for fibre volume fraction and
collapse any voids that may develop and grow during resin cure. At the end of the
processing, the cured part is debagged andvethfrom the rest of the assembly and the
tool and is ready foany finishing processes. In an ideal curing process, the cure cycle,
the tool, and the bagging procedure should be designed in a way that leads to a fully
cured, void free and undistorted dinpart in the shortest time and most economical

fashion.

The processing of composite materials is a complex event during which various physical

and chemical changes occur simultaneously or at different stages. These phenomena
include melting of resin, fl@ of resin through the fibrbed, heat transfer, thermo

chemical changes and curing of resin, and development of residual stresses in the
composite material. This complexity lessmany r esearchers to0o use a
model 6 t o mo d eof compbsées. Basedcoa this iapprgach, the complex

process model is divided into several subdels that may be studied quite

independently. The sumodel approach is shown schematicallyFigure1.2. As shown

2
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in the schematics of this approach, the modeling procedure includes several modules each
responsible for one aspect of the material behaviour during cure. The modules that are of

interest in thisvork are the stress module and the flow module.

In chronological order some of the notable work on the application of this method to
autoclave process modeling were done by Loos and Springer (1983), Bogetti and
Gillespie (1991, 1992), White and Hahn (2891992b), Johnston et al. (200dndZhu

et al. (2001) Zobeiry (2006) presents a more comprehensive review of the relevant
literature. The processing models range from very simpledonensional elastic
analyses to very complicated 3D viscoelastic et@dOne of these models was developed

at UBC in the form ofa multi-physics, 2D finite element code, COMPRO, to analyze
industrial autoclave processing of composite materials of intermediate size and
complexity [Hubert (1996)Hubert et al. (1999Yohnsbtn (1997) Johnston et al. (2001)

The model predicts a number of essential processing parameters and the development of
residual stresses and deformations. It also accounts for the effects of tool/part interaction
in the development of residual stres€@®@MPRO has been used in the past two decades
to solve many practical problems in autoclave processing faced by the industry. To
expand on the capabilities of COMPRO to different material constitutive behaviour and
more importantly 3D modeling, Arafath (@D) introduced the concept of COMPRO
Component Architecture (CCA) and incorporated it into ABAQUS. CCA is a modular
approach that consists of all the different material subroutines in COMPRO that can be
incorporated into many commercial finite element sodssing a specific interface
module. In this workwe refer to the CCA approach as COMPRO 3D.

It is very common that the literature on modeling of autoclave processing focus either on

resin flow during processing or on stress development throughout cdreesidual

deformations in the final part. The same was true in the development of COMPRO as
Hubert (1996) devel oped the flow modul e whi
stress development side. Even the current version of COMPRO 3D approaches the
modding of autoclave processing in two distinct steps. Initially, the flow of resin and the
compaction of composite laminate are modeled using the flow module in COMPRO.

Once the flow analysis is performed, the geometry and fibre volume fraction of the
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laminae are updatedihenthe laminate is reneshed in FE and the new mesh is used in

the prediction of development of stresses during the processing cycle.

The reason for this separatioauld bet hat resin flow is typicall.
law and is mdeled by twephase elements in a FE code, while modeling of stress

development requires the usecommon solid finite elements.

1.2. ResinFlow during Processing

Curing ofa polymermresin may be defined as the gradual formation of a 3D netwmade

out of the polymer molecules. During the processing, resin transforms fromfiad

fluid to a viscous fluid (upon heating uppin the room temperature) and eventually to a
viscoelastic material after gelatioAregelation resin may be consideradriscous fluid

with its viscosity a function oftemperature andlegree of cure.Therefore flow
phenomena play a major role in defining the behaviour of resin and the composite
materialat early stages of processi(@eeFigure 1.3). Figure 1.4 shows how the resin
viscosity changes in typical curgdte. It is evident form the figure that lower viscosity
values of resin occur during the first isothermal hold in the autoclave temperature history.
In fact the first hold in temperaturetigically designed to provide enough time for fluid
resin to flowand also allow for air transport as a resklgure 1.5 shows a schematic
presentation oflow of resin through the porous structure consistingheffibres and its

resulting compaction in the composite laminate.

Hubert and Poursartip (1998) did a comprehensive review of the modelling approaches in

the literature regarding flow and compaction in the processing of thermoset matrix
laminatesSpringer(1982)studied the relationship between the applied pressure and resin

flow and observed that the layers consolidated in a wavelike maneateveloped the

sequential compaction model based on those experimental résdts.and Springer

(1983) developa& a onedimensional resin flow model for the curing process. The resin

velocity was related to the pressure gradient, filwé permeability, and resin viscosity
through Darcyds | aw. Gut ows ki et a lon (1987)

modek for the processing of composites, where the resin flow was modeled using
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Darcyds | aw f or an arheir soosolidabignimodel pvasrbasedson me d i u |
the application of the effective stress theory of soil mechanics [Terzaghi(1943)
Biot(1941) to the ®mmpaction of fibrebeds. Davé (1990) derived the general flow

equation applicable to all composite processes which accounted for the presence of both

resin and air in the fibrbed. Cai and Gutowski (1992) developed a general 3D
deformation model of lubrated fibre bundle subjected to a multidirectional stress state.

Smith and Poursartip (1992) showed that the sequential compaction model is an special

case of the effective stress formulati@utowski and Dillon (1997) reviewed the stresses

of an alignedibre bundle and compared the response for transverse compression coupled

with axial extension in a 3D fibre deformation model.

Hubert (1996) andHubert et al(1999) developed a 2D plane strain floampaction FE

model as part of COMPRO to simulate resiowf in autoclave processing of fibre
reinforced composite laminateBhey adapted an incremental, quéisear elastic model
assuming infinitesimal straingdubert and Poursartip (2001) presented a method the
fibre-bed compaction curve directly from compgesprepregs.Li and Tucker(2002)
developed a twghase continuum basguocess model assuming hyperelasticity for the
fibre-bedstress, which is valid fdarge deformationsThe advantage of their work over

the model of Hubert et al. (1999) is that the large deformation formulation allows them to
update the mesh geometry and fibre orientation during the course of probesss
especially important for composites with lower viscosity resins such as AS463301

and Tucker (2002) stated that their formulation has another advantage in that it accounts
for spatial variation ofluid volume fractionwhile that of Hubert(296) and Hubert et al.
(1999) does not. This is ho corr ect as Hubertos (1996)
conservation equation includes an error that hasHemado unnecessarily assume that the
spatial variation ofvolume fractionbe negligible. As a mattesf fact, the two models
practically use the same mass conservation equation, and therefore both account for

spatial variatiosin volume fraction.

Larsson et al. (2004) presented a biphasic continuum model with large deformation
capabilities for resin 8w and deformation in a family of forming processes for fibre

reinforced composites.Liquid composite moulding (LCM) processes such as resin
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transfer moulding (RTM), vacuum assisted RTM (VARTM), amgction/compression
liquid composite moulding (I/@€.CM) also involve resin flow phenomena. These include
infusion of resin through the dry fibrous reinforcement, and also-¢lewpaction of the
system under vacuum or applied press@ame relevant work omodelingthe resin
flow phenomena in LCM processes lume Bruschke and Advani (199@ebart (1992),
Trochu et al. (1993, 2006J,ucker and Dessenberger (199RB)lJai and Advai (1998),
Pillai et al. (2000,2001)Rillai (2002),Bréard et al. (2003a, 2003@nd Tan and Pillai
(2012a, 2012hbin chronologicabrder.

1.3. StressDevelopment during Cure

At gelation, a 3D network of molecules has formed all over the body of thermoset resin.
This network causes the resin to attain elastic properties, and therefore from this point on
it can develop residual stresses. By the progress of cure, the netwodtecliles gets

more intricate and strong and the elastic moduli of the resin gxpenentially This

does not contradict the general understanding that the mechanical behaviour of polymer
resins at any stage of cure is best represented by viscoelastiGobeles viscoelastic

formulation includes both viscous and elaséhaviour.

In early process models such as the works done by Loos and Springer (1983) and Nelson
and Cairns (1989) very simple elastitationship were used to represent the behaviour of

the composite material. The next generation of stress models made the assumption that at
every timestep of the simulation the material behaviour may be considered elastic, but
the moduli increase with the progress of cure. Some examples include theoiwitise

and Hahn (1992)Bogetti and Gillespie (1992), Johnston et(2001), Fernlund et al.
(2002a, 2002b, 2003), and Antonucci et al. (2008gse modelarereferred to as Cure
Hardening Instantaneously Linear Elastc CHILE models, where the moduis of

elasticity changes as a function of the instantaneous temperature and degree of cure

As a part of COMPRO, Johnston et al. (2001) presented a plane strain FE model for
simulation of the development of procesduced deformation during autoclave

processing of composites. CHILE modelto represent the mechanical behaviour of the
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composite matrix resin, and micromechanics models were used to determine composite
ply mechanical properties and behaviour, including thermal expansion and cure
shrinkage. Th effect of tooling on the final shape of the composite were also considered
through simulation of togbart interfaces and peptocessing tool removalwigg et al.
(2004a, 2004b) performed an experimental investigation into the effects gbatdol
interaction on the final shape of cured composite parts, and presented analytical and
numerical simulations to validate the experimentally obtained relationsGipsoly
(2008) developed large deformation and contact capabilities applicable to the numerical
simulation of stress development and deformation of curing composites, and numerically
modeledthe experimentdone by Twigg et al. (2004a, 2004dm tookpart interaction.
Arafath et al. (2008, 2009) presented a -@&ctive analytical solution for thergress
induced stresses and deformation in composite parts with flat and curved geometries

cured on a solid tool.

According to Zobeiry (2006) andZobeiry et al. (2010)since the polymer spends
considerable time in the viscoelastic regich&ing cure it is importantto check the
validity and generality of a CHILEonstitutive model relative to a full viscoelastic
model.Using fundamental principles of viscoelastictgbeiry et al. (2010) showed that

in a large majority of casé€SHILE modelis quite accuate and efficient in predicting the
behaviour of the composite during processing leadirecturate predictions of residual
stresses and/or dimensional distortions of the composite after tool renusiab
viscoelastic formulations to model the stresgeffl@oment during the cure of composites
has gained more popularity during the past two decades. Some examples of these
investigations includ&Vhite and Kim (199), Adolf and Martin (1996), Prasatya et al
(2001), and Zhu et al. (2@ and Melo and Radford2004). For these models,
viscoelastic characterization of the behaviour of thermosetting polymers is crucial. Kim
and White (1996) used dynamic mechanical analyzer (DMA) to characterize the
relaxation behaviour of 3564 resin at different degrees of cumnging from 0.57 to

0.98 Prasatya et al. (2001) presented a similar viscoelastic model for the bulk behaviour
of Hexcel 85517 resin.
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Zobeiry (2006) and Zobeiry et al. (2006) presentedifferential implementation dhe
viscoelastic response of curitigermoset composites to predibetresidual stresses and

the final geometry of the composite part. A viscoelastic solid behaviour based on
generalized Maxwell elements were assumed for the resin, and a solid micromechanics
scheme was applied in the Laggaspace. The results were then transferred back to time
domain to obtain the coefficients of a generalized Maxwell model for the composite
material.Zobeiry (2006) and Zobeiry et al. (2010) also presentpdeano-viscoelastic
formulation as an efficiersipproximation to fully viscoelastic models for the behaviour

of thermoset resins during typical autoclave cycksbeiry et al. (2010) showed that
CHILE model is merely one form of the psewdscoelastic approach whettee modulus

of resin is assumed to be instantaneously elastic, but the value of the modetes)isl

to the relaxation modulus of resin at a variable time, or its storage modulus at a certain
frequency. In the current work, weill us e t he i dmnedr ivaebrlse oth of t he

viscoelastic approach.

1.4. Motivation

As it was mentioned before, the current approach to process modeling is to first run the
flow module unti the gelation of resin, then the geometry and volume fractions of the
system are updategthd the laminate is remeshed if needed. The final step is to run the
stress model from the beginning of the processing cycle to capture the development of
stresses in the composite system. There are a few drawbacks in the above approach; one
is that theras an overlap in the simulation process as both flow model and stress model
need to simulate the processing before the gelation of resin leading to an inherent
inefficiency in the above methodnother disadvantage is that considering cases (e.g.
sandwichpanels) where at a certain time during the processing resin has gelled at one
side of the composite structure but it is still a viscous fluid at the other side the
identification of a gelation point for the system may prove to be difficult. More
importantly, using the twestep approach does not capture the interaction of resin flow

and its effects on how the stresses develop in the composite laminate.
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If the flow model and stress model can be integrated into a unique model that
simultaneously captures antomsilates both the resin flow and stress development, the
new integrated model would not have any of the disadvantages mentioned above for the
separate application of the two models. This integrapgmoachwould result ina more
realistic representationf the complex phenomena which occur during the processing of
composite. Not onlydoesthis methodcapture the development of the state variables
relevant to flow and stress at the same time, bwuilit also predictthe interactions of

these phenomerduring the processing.

1.5. Research Objectiveand Thesis Outline

The main objective of this thesis is to integrate the resin flow and stress development
modules in COMPRO into a unique module that can capture both of these effects at the
same time and in seamlesshion.In order to makehis integrationhappen, we need to

have a set of governing equations that encompasses both tHphda® formulation for

flow through porous media (governing equations for flow) andetpelibrium equation
(governing equationofr stress developmenf)o that endwe base our framework on a
two-phase system for resin flow through the fibexl andidentify and implementhe
necessary adjustments so thailso accurately predicts the stress development response

of the composite material during cure.

The most common approach to FE analysis of flow in porous media is-thedol-g@ o6 u
formulation, where the displacement of the solid skeleton and tlssyse=of the fluid

phase are assumed to be main variabieshe up formulation pressure values are
required to be prdefined as boundary conditions at any permeable boundary. This may
cause problems in our efforts to utilize the tpltase formulationdr stress development

in cured composites, as the fluid pressure values in that context are in fact a part of the
total stress of the system. Also as will be discussed later, the finite elements baged on u
formulation are susceptible to pressure osafet at the start of analysis which is likely

to cause convergence problems whenever a nonlinear solution scheessbid. These
issues has led us favestigate the derivation of the governing equations for the two
phase media and an alternative FE appinoin uv-p formulation. The additional

9
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variable, v, represents the velocity of thed phaseThe uv-p formulation is superior to

u-p formulation in the abovmentioned issues. It also accommodates the inclusion of
shear stress components for thedlyghase that enables the approach to also model
purely viscous fluids and their boundary layer with a-phase system.

In this work, we present the framework of integration in modeling of flow and stress for
the pseud-viscoelastic formulation presented yb Zobeiry (2010). However, the
framework can readily be adapted to the more comprehensive differential viscoelastic
formulation introduced by Zobeiry (2006) and Zobeiry et al. (2006).

Based on the abowiscussionthe thesis is organized as follows:
Chaper 2- Governing Equations and FE Model of Towbase Media

Derivation of the equations governing the behaviour of-pwvase media involving
distinct phases of fluid and solid constituents is revievmkcialized FE elements are
introduced and formulatedot model the twephase behaviour based on av-p

formulation.
Chapter 3- Validation and Verification of Twphase model

Through examples varying from general porous flow problems to problems pertaining to
flow of resin in the processing of compodaeiinates , the response of the developed FE
model is validated. Also, the capability of the proposed formulation at capturing the flow

behaviour at a boundary between a viscous fluid and a porous wall is demonstrated.
Chapter 4- Integration of Modelingrbm Fluid to Cured Resin

The necessary modifications in the tplbase model in order to capture stress
development as well as resin flow are identified and developed. These include but are not
limited to modifications in the mass conservation equation ¢oount for a
compressibility consistent with the stress models for cured composites, introduction of
modified concept of effective stress, and modifications to the numerical solution

technique.

10
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Chapter 5 Numerical Applications

In the first section ofhtis chapter, the application of the current {wase model to stress
behaviour in cured elastic composite materials is verified. The second part involves
various examples from singidement problems dealing with the development of residual
stresses in ging composite materials throughout a sinlgdd cure cycle to more
geometrically complex composite laminates undergoing standard cure cycles. The
response of the current integrated approach is compared with those obtained by common
pseudeviscoelastic aproach.

Chapter 6- Conclusions and Further Work

A discussionof the significance and contributions of the present work is provided.
Recommendations for improvements and further development of the current framework

are also presented.
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1.6. Figures
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Figure 1.1: Autoclave processing steps, (a)-l@y, (b) cure with a controller loop (adapted from
Hubert, 1996)
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Figure 1.2: Integrated sutimodel approach in process modeling (adapted from Johnston et al.,

2001)
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Figure 1.3: Different regimes of resin behaviour during a typical autoclave processing history
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Chapter 2. Governing Equati on-ph aasned
Medi a

2.1. Introduction

Deformation and flow analysis of porous media usifinite element methotias been
carried out extensively during the past four decades. The pioneering works on this subject
were due to Sandhu and Wilsqi969) on a linear displacemeptessure (+p)
formulation for seepage analysis, and Ghaboussi and W({E®r2) on a variational
formulation for the dynamic response of elastic porous solids. Both approaches dealt with
elastic solid structures with the latter formulation leading to a displacewilatitve
velocity (uwv) FE treatment. Since then, the common agreement in the work ofiwario
authors has been to use thep uepresentation in quasiatic problems such as
consolidation (of porous media, specifically soils), and #weformulation in analysing

the dynamic response of porous media such as liquefaction of soils under earthquake
loading. This viewpoint, even though representing the common trend among the relevant
articles published so far, does not seem to have entered the notable textbooks on the finite
element method, as thepuformulation seems to libe only FE representatioof porous

media discussed and documented in the FE textbooks for eitherstatasior dynamic

analyses.

Prevost (1983) presented displacemeptessure FE formulation for the linear and
nonlinear analysis of consolidation. He also developed displaterktity
formulations for the transient response of saturated porous firéiost(1982,1985)].

To the best othe authos knowledge, he was the first tsea penalty parameter to
eliminate the pressure for the case of incompressible fluids. He wigested that the
fluid contribution to the equilibrium equations be always treated implicitly in order to
remove the stringent tirrgtep size restriction associated with the presence of a stiff fluid
[Prevost(1985)].
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Chapter 2: Governing Equations and FE Model of Iptase Media

Simon et al(198&) evaluated and eopared gp and uv formulations in modeling the

dynamic response of saturated porous media in 1D problems. In a dynamic analysis, they
concludel that the wv method is slightly more accurate than thp formulation. In the

derivation of the tp formulatian, one needs to rewrite tmeomentum balancequation

of the fluid phase to express the relative velocity (or relative displacement) as a function

of the other two major variables (u & p) to be substituted into the mass conservation
equation. This procederleads to the elimination of the relative velocity from the

governing equations of the system. In order to rewrite the fluid phase equilibrium
equation in the above fashion, it i's common
law the inertial terms caaining the time derivative of fluid relative velocity are

negligible. This should plagmajor role inthetp f or mul ati onds sl ightl"
compared to those ofwin the dynamic behaviour of flow in porous media.

Simon et al(1986b)reviewedand compared thewy u-v-p, uv-p- f or mul ati ons ar
others for the dynamic analysis of saturated porous media. They concluded that compared

to wv formulation, uv-pand uv-p- approaches result in slight
for fluid pressure ahtotal stress with a minimal loss in efficiency. In their representation

of the submatrices for the w-p approach, however, it seethatthere is a typgraphical

error. the vp component of the stiffness matrix includes the divergence of the pressure

shape functions which is not consistent with their relevant force term as it includes the

applied pressure on the boundary of the system. As we will see in the formulation
presented here, to avoig €ontinuity for pressure degrees of freedom between elament

we use integration by parts eliminateany spatial differentiation of the pressure shape

functions, and it is only then that the applied pressure on the boundary of the system
appears in the relevant force term. To derive thvefermulation, one needto substitute

the mass conservation equation into the equilibrium equations of the system. Pressure is

solved with respect to the other variables @then substituted into the generalized
Darcyds | aw and the total seimtampressible, awm equat
formulation cannot be achieved since there is no pressure term in the mass conservation
equation. In order to derivewformulations for incompressible cases, some researchers

have introduced a large penalty parameter into the omaservation of the system as the

bulk modulus of the system, and thus incorporating pressure in the continuity equation.

16
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Depending on the elimination of pressure at the differential equations level or after FE
implementation, these approaches have bedadcpenalty and mixepenalty methods
respectivelyby Spilker and Maxian (1990 hey developed a soalled mixedpenalty

FE formulation for linear biphasic response of soft tissues and compared it with a penalty
form previously proposed. They found the mixezhalty method to be superior over the
penalty method in locking issues and sevisy to mesh irregularities. However, they

also noted that the two methods produce the same equations footteiguadrilaterals.

In a twopart paper, Alimeida and Spilkér997,1998)used the sealled mixed penalty
method and also velocHygressure (milar and equivalent to-p) FE formulations to
solve nonrlinear biphasic equations including stra@iependent permeability and a
hyperelastic behaviour for the solid phase. They found their velpriigsure method to

be more efficient computationally duo the lower number of DOFs involved. However,
they observed that the velocipyessure formulation produces fluid and relative velocity
fields that are not as accurate as the ones from the +pexaalty method. They also
reported some difficulties withthe velocitypressure formulation associated with
oscillations of the stress and strain fields at early times and near the loaded surface that
prevented the convergence of the nonlinear solution. Howesemsidering the
computational time, they gave thdvantage tdhe velocity-pressure formulation at least

for quasistatic problems. They considered dynamic problems the turf in which mixed
penalty formulation would fare stronger than the velepityssure formulation. In
dynamic problems such as wave pgation, the extension of the veloefiyessure
formulation would mean that either the fluid inertia terms be neglected or the fluid
momentum equation be integrated in time. They argued that the former option is
acceptable in soil mechanics with porositsund 0.3, but would not be very suitable

for soft tissues with porosities in the range of 0.75 or more.

Chan et al(2000) presented a mixedenalty finite element model for the behaviour of
articular cartilage in the biomechanics of diarthrodial joiktsing mixture theory, they

added a viscous shear term to the hydrostatic pressure to have a complete stress tensor for
the fluid phase. They argue that this change makes it possible to model gobmgge

continuum as a limiting case of biphasic matefighe solid or fluid volume fraction is

17
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set to zero. This characteristic is helpful in modeling the interfacial response and
interaction of porous flow and viscous flow. By the help of special assembly
considerations on the interface, and using theirrk& d e | they simul atec

problem of Couette flow over a rigid (or deformable) porous layer.

Here, volume averaging technique is used to derive the complete set of governing
equations for the response of a tplmase system including a solid structared fluid
matrix. The shear stress terms of the fluid phase are not neglected leading to the Darcy
Brinkman equation for the momentum balance of the fluid phase. Neither fluid pressure
nor relative velocity of fluid are eliminated from the formulatiorhve a complete-u-

p representation of the behaviour.

2.2. Volume Averaging Method

In the general case of a typtase medium where a fluid interacts with a porous structure,
one needs to know how the fluid is transported through the pores from one point to
arother in the domain of the problemhe direct analysis of this problem in terms of
transport equations that are valid within the pores is practically impossible due to the
complex structure of the typical porous medium. Rather theklethis problem inthe

form of equations that are valid in the pores, the equations relevant to each phase can be
spatiallyaveragedo produce equations that are vakdhin the domain of the twphase
medium. The method of volume averaging is a technique developed toouisjy
generalize continuunequations to multiphase medisVhitaker (1998]. Tucker and
Dessenbergef1994) applied this method to the composite processing method of resin
transfer maolding (RTM). They developed the governing equations for flow and heat
transfer through stationary fidbeds. Considering the solid phase to be stationary, is a
very relevant assumption in RTM. By defining a phase function, it is possible to have a
formal description of the microscopic geometry of the porous medium. The phase
function for thea phase in a mukphase medium is

el if xliesin thea - phase

X, (X) =]

. - (2.1)
{0 if xdoesntlie in thea - phast
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Three distinct average values for a variable in a aptiiise medium may be defined. The
spatial averagas the average value of a parameter in all phases within a representative

volumeV
. 1
aBo=— ﬁSdV (2.2
V \Y

Phase averages defined as the average value of a parameter at points that lie within a

single phaeU, but still over the entire volumé
R 1 1
aB,0== MB.dV ==, X,dV (2.3)
Vi vV,

Intrinsic phase averages defined as the average value of a parameter at points that lie
within a single phasBover the volume occupied by that phase. It can be represented as

. X.dV
BF=—mpdv=LY—— 2.4
Vfﬁ f?< ry (2.4)
Volume fraction of thé}phase is defined as
_Vv, 1
V \7 X.dv (2.5)

The phase and intrinsic phase averages for an arbiljainase are related by

3B, 5=f,8B,5 (2.6)

In the following, we review some useful theorems of volume averaging that are very
useful in deriving the averaged governing equations of aptvase systemlf B is
continuous within theJphase, the first theorem of volume averaging states tleat th
avergie of gradient o in the Uphase may be expressed[@say and Lee (1977),
Whitaker (1998)]

4 B6=D 836+\% FB.N, £S @.7)

Sa b
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where b denotes the other phase of the {@ltase mediumS, , is the interfacial surface
betweenUphase and-phase, and, , is the unit vector normal t&, ,directed fromU-

to b-phase. A similar equation can be written for the average of divergence of aagnsor
follows [Whitaker (1998)]

A @\aézDCﬁAafﬂ\% A, O, s 2.8)

Sa b

2.3. Governing Equations

Assuming a twephase system consisting of a fluid phase and a polidus structure
whereeach phase is incompressibleg microscopic equatiafor mass conservation of

the fluid phasend the solid phase may be written as

bQ,, =0,

] 2.
P&, =0 (29)

wherev is the vector of velocity, antlandm represent the solighase(fibres) and the
fluid phase (resin matrix) respectivelyaking the phase average of the microscopic
equation of mass conservation of the fluid phas@®) andincorporating the theorem

presentedhn (2.8) leads to

P, 5+~ v, B, dS=0 (2.10)
v S

where S, is the intefacial surface between the fluid and solid phase, @pds the unit
vector normal toS,, directed from the fluid phase to the solid phassing the transport

theorem, Tucker and Dessenberger (1994) showed thaetioad term on the leffiand

side of the above equation is equal to the rate of resin volume fraction, i.e.

1 .. g
— O _dS=—"= 2.11
V ﬁ/m mf ut ( )

Sine

20



Chapter 2: Governing Equations and FE Model of Iptase Media

Therefore, the macroscopic form of the mass conservation equation déithgHase

may be written as

%%u+adwma=o 2.12)

The same procedure may be performed to obtain the macroscopic form of the mass
conservation equation of the solid phase in the form of

yr y B
F+E)Ci|s/f6—0 (2.13

Assuming that the pores are fully saturated by the fluid phase, the volume fractions of the

fibre-bed and the matrix are related by

fo+f =1 (2.14)

Adding the two mass conservation equation@ih2) and(2.13) togetter and cabining

the result with(2.14) leads to the mass conservation equation of theptvase systa
PGv,.6+DGv, 6=0 (2.15

Assuming that thénertia is not of consequence and the effedbady forces including
gravity is negligible, the microscopic equations @auilibrium equationof the fluid

phase and the solid phase take the simple form of

bdi =0,

5a =0 (2.16)

where 0 represent the stress tensdiaking the phase average of the microscopic
equilibrium equation of the fluid phase [@&16) and incorporating the theorem presented
in (2.8) leads to

pan, o+ L fi ,,dS=0 2.17)
Vs,

The totalstress tensor of thituid phasemay be decomposed into a hydrostatic pressure

termP,, and a deviatoric stress tendgr
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a,.=U0 - Pl (2.18)
where | is the secon@rder unit tensorThus, he first term on the lefthandside of
(2.17) may be written in the form of

P&l 6=p&GJ - DR O=DA) S F PRI -PIDF, (2.19)
Substituting(2.19) into (2.17) leads to

_F DRI +DA] 5 P DS, +\% i O, dS=0 (2.20)
S

If the vector ofdrag force between the fluid phase and the solid phase is defined as
f, =P, d"Df , - 1 Hm @ dS (2.22)
Vi,

theequilibrium equation of the fluid phase takes the final form of

- PRI +DAGI B f, =0 (2.22)

Taking the phase average of the microscopic equilibrium equation of the solid phase in

(2.16) and incorporating the theorem presenteRi@) leads to
P, o+ Fi, i, dS=0 2.23)
Vs

If we assume that the surface tension between the fluid and solid particles may be

neglected, then we may write [Tucker and Dessenberger (1994)]

O O, +0, Dy = on Sy (2.24)
whichleads to
Lo o, ds=-1 i on,ds (2.25
V f " V Sﬂf " "

Considering the definition of drag force(ia21, the above equation may be reveit as
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\% /i, i ds=f, - &P, &Df, (2.26)
Sint

Substituting(2.26) into (2.23) leads to thedilowing form of the equilibrium equation of

the solid phase

P&, 8+f, - P 3DF, =0 (2.27)

Assuming that the absolute value of pressure is directly transferred to the solid particles

one may decompose the intrinsic phase average of thebflorestress tensor into

hydrostatic pressuref the fluid (which is transferred to the fibres) aétd &

&,8 =d), 8 - P J (2.28)

where aJ. 8 represents a stress component dependent on the deformation of the fibre
bed andmaybe related to the effective stress of the fibea, aJ, 8, by (2.6). Applying

(2.6) to the lefthandside of the above equation leads to

a.o6=rf a8 -rf P I (2.29
Substituting(2.14) in (2.29), we arrive at

&, 0= 6 P 3@ 1) (2.30)
which leads to

p i, 5=p a0, o- DR, &"(- £,))

o (2.31)
=@, 8- b R J(1- £, )+aP,8DF,
Substituting(2.31) into (2.27) leads to
D&0 o+f, - DR J(- 7, )=0 (2.32)

Themass conservation equation(ix15) combined with the equilibrium equations of the
two phases ir{2.22) and(2.32) leads to the system gbverning equations dhe twc

phase system
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é PGy, 8+DQv, 8=0
| - DR IT+DA) S f, =0 (2.33)
D@0, 3+f, - D& J(1- 7,)=0

The constitutive behaviour of the fisbed could be expressed as

A a:%c[a 4,8 +pa,s )T] (2.34)
whereu is the displacement vect@andC is the material stiffness tensor of the filtred

For the shear stress in a viscous fluid, we may write

G, = mpv,, +®v,)"] (2.35)
where ¢ is the viscosity of the fluid phas&he volumeaveraged form of the@bove
equation is

A 6= nfa B,0+a 0,7 | (2.36)
in which, fora ©,8, we may rewrite the volume averaging theorer(Ri) to have

3 B,0=D #,0+ > F/, Ny dS 2.37)
v S

It is commonly assumed that the slip velocity at the interface is [Aercker and
Dessenberger (1994 4ndtherefore

V, =V on S (2.38)

Thus, the integral term on the righdndside of(2.37), may be rewritten as

3 ©,0=D &,0+ > fj/,n,dS (2.39)
v St

Arguing that the changes in the solid phase velagitare small in compason to the

changes in fluid phase velocity, , we assume thav, on the interface can be
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approximated withév &' . Incorporating this assumption into the integral terni89),

we have

1 o 1 f -2 f%‘ g
vsﬁ/mnmfds vsmm/fé n,dS=av,0 a&7 ﬁ1mde¢ (2.40)
me f C Sw =
Applying the averaging theorem (8.7) to the phase functioX,, leads to
AR 6=D a<ma+\% XN, dS (2.41)

Sine

Within the fluid phaseXn is equal to unity andX,  equals zeroAlso, it is readily
deduced from(2.3) that ax 8 is simply the fluid volume fractiorf . Therefore (2.41)

may be simplified to [Tucker and Dessenberger (1994)]
1
bf =-= f.dS (2.42)
Vs
Substituting(2.42) into (2.40) results in

VN dS° - @ 8 DF, (2.43

1
VS

which in turn, if substituted i(2.39) leads to
amo°baod aobr, (2.44)
Substituting the above in{@.36) and neglecting the approximations, we get
A) 6= mp &,0+b &,8 - (v, 8 Df, +Bf, a8 ) (2.45)
Rewriting the above equation leads to
a0,0= P a,5- av, &' Of, )+ (D &, av, &' 0F, ) | (2.46)

The drag force between the matrix and fibeel may be written in thillowing form

that i s consistent with Darcyés | aw [ Whitake
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fo=f2ns (v, 3 - a, o) (2.47)

whereS is the matrix of permeability of the fibiteed. Substituting(2.34) and(2.47) into
(2.32), we arrive at theial form of the solid phasequilibriumequation

%Dc‘ﬁc{a a8 +pa,d )T}]+ffﬂnsl(a/m6" w8 )-DRIA-£,)=0 (249

Substituting(2.46) and(2.47) into the second equation (#£.33) leads to the final form of

the fluid matrixequilibriumequation

- DR, +Ddlp &,5 &, 507, )+[p &0 av, 50, ) |

(2.49
- f2ns v, 8 - av, 8 )=0
Thus, the set of equatio(@33) may be expressed in the form
e . .
T bQv,0+bQ@v, 0=0
PR +E>c'£n{(£> &8 &, Df,)+[D &, s av, afafm)T}]
! (2.50)
i

-f2ns v, 3 - v, 8 )=0
%DC{C{D 4,8 +[pa,d )T}]+f;ns-1(a/m6“ w8 )-DR,&(-£,)=0

—) —)

In order to simplify the above equation, we define the velocitforeof the composite

system (which is essentially equal to the velocity vector of the-fibdd as
v.=v, & (251
and the volumeaveraged relative velocity (or flow velocity) of the resin as
Vo = Frldv, 8- &, &) (2.52)

The above definition of flow velocity is commonly used in the literature in FE
formulation offlow in porousmediale.g. Lewis and Schrefl§1998). Based on(2.51)
and(2.52) we may write the following relationships between the different velocity fields
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. & =v,
v, 0=7v,
a\/maﬂ = (Vﬂow+fmvc)/fm

aVmaz vflow + fmvc

(2.53)

Using the above equations, one may easily arrive at the governing equations with respect

to the new velocity variables

ié bQ, +DQy,, =0

i- me @mam +DCE/7{(DV flow +meVC)+ (DV flow +meVC)T}]-fm”S_1V flow = 0 (254)
i %DC&Z{DUC +(DUC)T}]+fmnS‘1Vﬂ0W : (1' fm)D &9 =0

where

V. = H, (2.59)

and u; is the composite displacement fieléor the sake of convenience, variables

Viiow, aF, 8", andf  are replaced with, v, P, andf respectivelyi.e.

u tu

Vflow1 v
P 1P
fo1f

(2.56)

Using index notations, the set of governing equat{@rsl) may be written in the form

#, +v,; =0 (257)
- 1P |y, +re )+ vy, e B - 7 g =0 (259
%[Cijkl (uk,l +u|,k)]‘j +f @}lV,- B (1' f)P,i =0 (259

Adding up the twoequilibrium equations of(2.58) and (2.59), leads to the total
equilibriumequation of the domain
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%[Cijkl (Uk,l +Ul,k)],,~ +[”{(Vi,j +fl#,])+(vj,i + 1 )}], - P =0 (2.60)

The mass conservation equation(#157), along with theequilibrium equation of the
matrix in (2.58), and the totaéquilibrium equation(2.60) constitute lhe set of governing
equations

D:

#, +v,; =0
- P+ [l +re ) (v, + e, N - gt =0 (2.61)

%[C”kl Uiy * 1) ] +[n{(v,j +fl#$,j)+(vj’i +f‘#J,i)}],j - P =0

—_——) —) ——) —)

that will be used iformulating thefinite elementdiscretization equationdhe complete

form of the governing equations presented above is especially useful in modeling the
interaction at the boundary of a typhase system with a neighbouring viscous fluid. As

the shear stress of the fluid is not neglected, a few adjustmerd gldiment leads to a
correct representation of a purely viscous fluid. This will be discussed more in a later
section. Also, the complete presentation of the stress components of the fluid phase helps
in establishing the theoretical framework to extend tthe-phase formulation to the

cured composite material in which the resin phase is capable of carrying shear stress.

In many cases of redife porous media, the terms involving the shear stresses of the fluid
phase are usually negligible compared to #wens involving the permeability of the
system [Tucker and Dessenberger (1994)[herefore, the above set of governing
equationdn (2.61) may be commonly found in tHaerature in the following simplified

form where the shear stress contributions of the fluid phase are neglected.

D:

#, +v,; =0
-fP - f @ltlv. =0 (2.62)

%[Cukl(ukl +u|k)] - P =0

—) — —— —
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2.4. Finite Element Implementation

In this section, the general set gdverning equations i(2.61) is implemented in the
finite element method. Two different elements are introduced and formulated based on a
u-v-p formulation where thenain degrees of freedom are displacement of the system,

relative fluid velocity, and the pressure of the fluid phase.

2.4.1. Q,P.; element

A 2D QP finite element is developed considering the set of governing equations in
(2.61) compared to the regular finite elements based on-{néoamulation utilized for

modeling flow in porous media in the commercial FE codes (such as ABAQUS).

In the FE modeling of incompressible NawStokesequations, théerminology of QP

is related to 2D quadrilateral and 3D hexahedral eleminislicates that the velocity is
approximated by a continuous piecewise polynomial of degrieeach direction and a
pressure approximation thatasdiscontinuous piecewise polynomial of degng@aot of
degree n in each directiofgr 2D quadrilateralsas if the pressure is represented by a
triangle within the quadrilaterallhis element passes the LBB condition for stability and

is considered to be one of the most accurate 2D elements in incompressible viscous flow
[Gresho and Sani (2000)The QP.; element used in FE representation of incompressible
NavierStokes flowis the inspiration for the namesake element developed in this work
where the kinematic degrees of freedom (system displacement and fluid velocity) are
approximated by ? degree polynomials in each direction and the fluid pressure is
approximated by lineatistribution over the element.

The QP.; elementpresentechereis a 2D bi-quadratic isoparametric element with 9

nodes for the system displacement and relative velocity of the fluid phase. As depicted in
Figure 2.1, three internal nodes are assigned to pressure of the fluid phase, therefore
enabling every element to represent its internal pressure distribution as a linear surface.

For simplicity, we willalso refer to this element as th& @lement.
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2.4.2. Galerkin finite element equations

Integrating the equatione (261)over a domai n q usi\wgndsome

using integration by parts on occasion we arrive at

e, +vi;)w,dW=0 (2.63)
w

ffPw,; dW+ i , Pw,dW- fyr(v, ; +v,;)w, ,dW
W W W (2.64)
- Y A+ )w, dW- 7 &'V, w dW+ f{t, - fPd,)n,w,dG=0
w G

W

- %Fpijm Uy, Uy W, dW- v, ; +v;)w,  dW
v W (2.65)
- ﬁ‘ ,@%j +l#j,i)Wp,de+ ﬁpr’idW+ ﬁsii + - Pa’ij)njwpdG:O
w W G

wherelh denotes t he boungistheyortor of thenbeunddryg whare n
tractions arespecified The components of effective stress tensor in the -filek are
defined by

1
S = Ecijkl (U, +U ) (2.66)

and the components of shear stress tensor in the resin are expressed as
ty =mv, +rd )+ v, +re ) (2.67)

The term (sj+¢; - Pd)n, in (2.65 appears as theesult of the application of

integration by parts to all thtaree terms in the last equation(8f61) and represents the
vector of total traction force applied at the boundary tfe system.The term

(¢; - Pd))n; in (2.64) appears as the result of the application of integration by parts to

the first and second terms in the second equati¢®.6i) and represents the flughase
share of the vector of total traction force applied at the boundary of the system.
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Writing Equationg2.65), (2.64), and(2.63) respectively in matrix form for the-3finite

element depicted iRigure2.1, we arrive at

&K, K., K, @Uﬁ e, C, C,2 aug &,0

< e upeo &0

ZK vu K vV vp Lmlo-'- e-vu va Cvp [‘JE%IO_ év 0 (268)
4 o} 0] 0

g<pu va Kppkg:ﬁ- gpu va ppu 8% 8%*391

whereu,,,, V,4,, andp,, are the vectors dhedegres of freedom relating to the total

displacement field, relative resin velocity, and resin pressure respectively. Defining the

traction vector on the boundary of ttveo-phasemedium as
" = (Sij +1; - Pq )ni (2.69)
we may rewritg2.65) to have

%Fpijkl (Uk,l + U )Wp,de+ mvi,j +Vj,i )Wp,idW
w w

- o (2.70)
+ n‘ /MIEJ +l#j,i )Wp,de- ﬁ:’wp’id\N: ﬁi WpdG
w w G

which leads to the equation in the first row (#68). Hence, we may arrive at the

definitions ofsome otthe components of the matrice268)

ﬁs D, Bdw (2.7
1818

mB B,dW (272
1818

K, =-p'u Ndw (273
w 183

C. =ff & B, dwW (2.74)
W 1818

Cuw =051 (2.79)
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Cup =053 (2.76)
f, = fNgt™dw .77
G 181

Wheret is the total traction vector on tf@undary of thenedium with components in x

and ydirections in the form of

“e (n) ~
t" = Ftﬁn)ﬂ (2.79)
t
Ity'y
andNy is defined as
eN Og
d=é U (2.79
&0 Nyg

whereN is the matrix of shape functions which interpolate the displacement and relative
velocity fields on the element. For adpiadratic 9node elementN is expressed in the

form
N=[N, N, .. N (2.80)

and assuming that the element has three internal nodes for pressure interpolation, we may

introduce the matrix of pressure shape functions as
NP =[NP NP NZ| (2.81)

The displacement, resin relative velocity, and the pressure fields are interpolated on the

domain of the element using the following equations
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9
uX = NUX = a NIlei
i=1
S
u, =NU, :_a_l N;U,,
2
VX = N\_/X = a NI_Xi
i=1
2
Vy:NVy:Q-lNI Yi
_ 2
pP=Np =a N b

1
U

The displacement shape functions may be written as follows

(2.82)

(2.83)

The definition presented {{2.79) is relevant if the vector of main variables is defined as

x

ol O: O O O O OO

Q
g

8 B BAY

O

(2.84)
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while we are interested to present the vectors of displacement and relative resin velocity

degrees of freedom in the form

au, § av, o
&0 &0
adh, 0 &y 0
0 0
$_2xt') &isz
U =a8l,,qQ V=a¥,,0 (2.85)
aezf-(')' 89&'6
a&e.’.0 & .0
%IQXQ WQXQ
E%-ng E‘%ng
which leads to rewriting2.79) so that
eN, 0N, 0:i3 N, Og
NoZ€o N0 N, i3 0 N (289
e 1t 2 : ol

B is a matrix containing the afial derivatives of the shape functions definedarg3),

and may be expressed in the form

eN,, 0 !N, 0 i3 !N,, 0

é ; Lo | u
B=g O Nl’yg 0 Nz,y§3§ 0  Ngyy (2.87)

gNl,y Nl,x N2 N2,x 3 N

u
Wy 9y Ngvx Us1s

B1 is another matrix containing theatial derivatives of the shape functions defil in
(2.83), and is defined as

&N, 0 i2N,, 0 i3 i2N,, 0 @

~

B,=g 0 2N, 0 0 2N, i3 0 2Ny (2.89)
SNl,y Nl,x H N2,y N2x 3 N9,y N9,x 83318
U is defined by
i=[ 1 of (2.89)
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To calculate the spatial derivatives of the shape functions, we need to establish a
relationship between the general (x,y) coordinates andthedcalj coor di nat es

the Jacobian matri¥ as follows

elX  Wyo
e u
J=e¥ WXy (2.90)
gX WYy
éuhr phg

As the element is isoparametric, the geometry is interpolated over the element by the
same shape functions as displacement and velocity fields, thus leading to

9 o
x=a Nx, y=a Ny, (2.9

i=1 i=1

which upon substitution i(2.90) yields

s J
_ g‘]ﬂ 120 (2.92)
&)1 o
where
2 2
Ji=a N X, Jo=a NV,
i=1 i=1
5 5 (2.93)
J21:a NIXX’ ‘JlZ:a Ni,xyi'

1
=

i=1

Using the inverse of Jacobianatrix, we may define a matrix consisting of the spatial

derivative of the shape functions as

— eN,g eN, o
B=g, @:J'lgN’ 0 (2.94)
yu AU

where the inverse of Jacobian can be eagiitfen as
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3= 1 é,‘]zz - ‘]12“a

= (2.95
‘]11‘Jzz' J12J21g_ J21 ‘]11 H
B facilitates the definition oB based on the componentsBfas
¢8, 0B, 03B, 0o
e 5 g : 5 U
B _é_o ?21 _O ?22 :3 _O ?29[] (2.96)
8821 B,iBy B,i3 By Blgl‘i“g
To determine the pressure shape functilfis | et 6 s assume that
three pressure nodes are
Rba./). Rler) RBlehs) (297)

To find the shape function for the first pressure node, we writeginetien of the straight

line that passes through nodes 2 and 3 to have

o=@ pip - x G M28 g (2.98)
8¢ 27 X 8
c 3™ X+ C 3™ Xo -

We may set the first shape function for pressure to be

o

€h.- h,0 ah.- h, @
NP =age>——2&- h+h, - x,@8>2—2Q) 2.99
1 @%3_){2@’( 2 29%3_)(2% ( )

and the parametea may be calculated by settingxll(xl,hl):l. Substituting the

calculated value dd into (2.99) leads to

Nlp: X3- X5 %/73-/72%(-/7+/72-X2éh3-h2$
(XZhl ) thz)"'(xﬁz ) X2h3)+(X1/73 B X3h1) g(s - X+ (%(3 - XA

(2.100

The other two pressure shape functions of #&&ement can be derived in a similar

approach
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X - X &n - h,4 an - h, @

NP = 173 L Bax- h+h,- X (2.109)
= o ) U, )+ ey ) B, 81 X
X, - X, &n,- h 0 an, - h. @

NP = 2 e h+h, - x@21q) (2.102
= )+, - x) ey ) B, B A T

We choose the location of the pressure nodes to be
Rl ¥V3-143) RWV3.-1V3) Rl01v3)

which leads to the simplification of the equations for the pressure shape functions as

follows
NP :§§ae 2x - %g (2103
NP :§%x- h+%§ (2.104
ND =§§@ %g (2.105

In equation(2.71) Dy is the matrix of tangent moduli of the fibbed, which in the case
of a2D isotropic plane strain problem may be described as

e e1 n n 0 2
D, = en 1-n 0 g (2.106)
(L+n)1- 2")@' 0 0 (t-2n)2y

withEbei ng the Younghe Poidud aasdo sbeddati o of t he

Definingther e si n 6 s s h a trastioroviectot dm the yngaty iof ébgstemas

t® =(¢, - Pd, )n, (2.107)
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we may rewritg2.64) to have

~ ~. -1, ~.
rY7(Vi,1 +vj’i)wp'de+ rf q vjwde- rfPWp’idW
w W W

N N (2108
- 7 Pw,dW+ i A+ w, dW= {2 w,dG
W w G

Equation (2.108) then leads to the system of equations related to the second row of
matrices in Eqn(2.68). Thus, we may arrive at the definition of the components on the

second row of the matrices (B.698)

K = 01818 (2 109)

vu

K., = {78 B,dW+ ff M[S'N,dW= fjB'B, +/NIS N, Jaw (2110
w w W

1818

K., =- ffB"U NdW- Bt Ndw=- f{/B" +1B] i Ndw (2.112)
W W W 183

C.. = ff BB, dw (2112

W 1818
va = 018‘18 (2113
Cvp = 0183 (2114)
f, = fNgt&dw (2119

G 181

Where B, is a matrix consisting of the displacementsh functions and the sfal

derivatives and the resin volume fractfom the form of

&f N, 0 [2/,N, 0 i3 i2/,N, 0 @

X

B,=¢ 0 2/,N,; O 2/ N,i3: 0 2f Nt 2.116)
§F N, FN L AN, N, 13 EFN, FNG
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With the assumption oincompressibility ofthe phases, we may write the following

equations for the initial and current values ofréginvolume fraction

_ Vi, tDV,

= 211
VCO + DVm ( 7)

V
fy =m0
V.,

where £, is the initial value of resin volume fractioN is the initial volume of the

resin, andp W is the change in the volume of resin due to flow which is the only source
of any change in the volume of the syst&fg.is the initial total volume of the coropite
system.Dividing the numerator and denominator of the second equati¢hlih?7) and

taking into account that that the volumetric strain of the system is defined

e =—m" (2.118

F=lo*8 (2.119

Substituting the relationshipetween the volumetric strain and the total displacement

field results in

f,+u
f =;+—u"”" (2.120

To obtain the spatial differentiation of the fluid phase volume fraction on the domain of

an element fromhie values off at the Gauss points, we introduce a special set of shape

functions with base points located at #x@ set of Gauss points (04/15/5) as
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N/ —3—)( 15/5- xJ\15/5- 1)

N/ =- —x A/15/5+ x)15/5- h)
N/ :—x A15/5+ x)J15/5+1)

N =- —x A/15/5- x)J15/5+h)

NY =- —h(3/5- x*)Vis/5- ) (2121)
N{ :—x(J_5 5+x)3/5- h?)

N/ :—/7(3/5- x*)Vis/5+5)
N/ =- —x(ﬁ/s x)(3/5 h?)

N, :3(3/5- x?)3/5- h?)

Using the above set of shape functions we may write an equation for the field of fluid

volume fraction in the form of

F=NTG=3 N'f, (2.122

where U is the vector of the valgeof fluid volume fraction at Gauss points. Spatial

gradients off may be obtained by

£, =N G, F,=N,i (2.123

The system of equations the last row of the matrix equati¢268) represents the mass

conservation equatiof2.63) that may be rewritteas:

ﬁ/, w,dW+ ﬁa,;iwde: 0 (2124

i"p
which then leads to defining the components on the last row of the matr{@e83)n

K. =C,, =05, (2.125

pu pv
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§<UU KUV
e

éo K.
80 va

2.4.3. Q;Py element

K, ZﬁUC) eC

u
vplﬁelo-'_e w O O F
0 ifp? &, 0

(2.126)

(2.127)

A Q:P, element is also developed based on the same set of governing equations as the

previous elementAs the naming system suggedts kinematic degrees of freedom are

approximated by a linear polynomial in each direction and the pressure is approximated

by a constant value over the surface of the elemdinis element is a Hinear

isoparametric element with 4 nodes for the system displacement and relative velocity of

the fluid phase, and only one central node assigned to pressure of the fluid phase. This

element is depicted schematically Figure 2.2. This element will also be referred to as

the 41 elementThe matrix of shape functionN, is expressed in the form

wherethe kinematic shape functions are defined as

N=[N, N, Ny N

N, = (- x)a- 7)
N, = %(1+x)(1- h)
N =5 (14 x)+ 1)
N, = %(1- x)(1+h)

(2.129

(2.130
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For this element, there is only one shape functiompfessure values which is defined as

unity since the pressure node islocaaedhe ori gin of 3 and d@ axes.
NP =1 (2.13))

The vectorof main variables for this element consists of 8 displacemanables, 8

relative velocity values, and only one variable representing pressure of the fluid phase.

x

<

(2.132)

B 383 BAY

O
©
4l O O O O: O: OO

~»
[y

Similar to the case of-9 elementwe introduce a special set of shape functions with base

points located at thex2 set of Gauss points (\/5/3) as

Ny = 2(J3/3- xla/s- 1)

N; :g(\/é/3+x)(\/_/3 n)
3 (2133

N; =2 (/334 x)3/3+)

N; = 2(J3/3- xf3/3+h)

The rest of the matrices and vectors relevaihéod1 element, are calculated in a similar
fashion to those of the-® element. One would find the only difference in giee of

these matrices, and therefore we avoid repeating the formulas here.

2.4.4. Boundary conditions

Due to the inclusion of shear stress components in the stress tensor of the fluid phase in
the current formulation, we need to specify a complete set of boundary conditions for the
fluid phase as well as the whol e senaeedi um.

essentially similar to 2DinreomBré€ssitde viaceusfiow,i n t he
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and the BCOs rel evant to the whole medium a

treatment o2D elastic solids.

Effectively, the twephase problem isreated as a superposition of two problems; the
whole medium with displacement/traction force boundary conditions, and the fluid phase
with relative velocity/traction force boundary conditions. Distinct combinations of BC

may be assumed, including:

1 Free ard impermeable BC where the total traction vector on the system and the
relative velocity of the fluid are préetermined:

t.(”) =f

appl

Vi = Viger

1 Free and permeable BC where the total traction vector on the system and also
the traction vector on the fluid phase are set to the applied external forces on the
system and the matrix phase respectively:

ti(n) = f

appl

(n) —
tm i fapplm

If the only applied force on the boundary is due to air pressure, then the share of
the matrix phase of the applied force on the boundary is proportional to the area
occupied by the matrix phase on the relevant boundary surface. In the case of
isotropic materials, this ratio is equal to the volume fraction of the matrix phase,

and therefore @ have f =fCr

applm appl

1 Constrained and impermeable BC where both the displacement vector of the

system and the relative velocity of the matrix phase are set-ttefireed values:

U = U g

Vi = Viger.
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1 Constrained and pemeable BG where the displacement vector of the system is
set to predefined values. Also, the traction vector applied to the matrix phase is

set to the share of that phase of the total traction applied to the boundary:

U = Uiger

(n) —
tm i fapplm

Since in this case, the only plausible applied traction is due to ambient air pressure

on the boundary, we may writef =fc for isotropic twoephase

applm appl

materials.

2.4.5. Time integration

To discuss the numerical solution (@128), we rewrite the equation in a short form to

have
KX +CX=F (2.139
where
aug
&0
X=a¥p (2.139
0
g -

is the generalized vector of main variables. Usmggeneralized migboint integration
rule, we may write the values ¥fand its time derivative at an arbitrary time between t

and t+1in the form
X0 = (X - X,)/D0 (2.136)

Xn+q = (1_ q)xn +q>(n+1 (2137)
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where0¢ g ¢ 1. A few wellFknown special cases of the above scheme are Forward Euler
(g=0), Backward Euler =1), and CrankNicholson scheme ¢=0.5). Writing
equation(2.134) at time t, . leads to

+C_X (2.138

n+q n+g ntg/Nneg =
Substituting(2.136) and(2.137) into the above equation, we have
K n+g ((l' q)xn +qxn+1)+Cn+q (Xn+1 - Xn)/u = I:n+q (2139)

which after some manipulations, leads to a system of equations for the vector of main

variables at the current time 1
[C+qDiK],., X,.. =[C- (- g)DIK],,, X, +DiF,, (2.140

n+q

or in an expanded form as

ECUU +d]K uu MK thK Upﬂ éapg
g Cvu QE)tK vv QE)tK vpU %_/0 =
2 C u djtK Y O u %9 +:
e < i hig € (2.14))
& (1 q) - (1_ q)DtK uw (1_ q)DtK upg éUG é:fu 0
e u &0 & 0
¢ e, g, g, w6+
8 CDU - (1- q)DtK pv 0 Hn.,.qé% ‘n @gnﬂy

Due to irregularities in the coefficient matricksand C, such as zero values on the
diagonals and huge numerical difference between the terms, castmbecdexercised in

the selection of the parameter d for the
examples discussed in tigrk, the backward Euler approach was used and led to stable

results in all the cases.

2.4.6. Non-linear solution scheme

To implement the stepvise approach for the solution of the displacement vector, the
component of the first term {{2.138) that includes I i.e.
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(K wu Jnsg Unvg (2142
is replaced by the stepise description

(fuint)n+q = (fuint)n + (K uu )n+q (Un+q - Un) (2143)

(qu)n is an accumulated load vector at step n from previousgie® obtained by the

following recursive relationship

(fuint)n+1 = (fuint)n + (K uu )n+1(Un+1 - Un) (2144)

Let us chooseghe backward Euler schenfeg=1) as the method of solution in time

domain.As a result, the first row i(2.128) at t=t,.1 may be written in the form
(fuint )n + (K uu )n+1(Un+1 - Un ) + (K uv )n+1\_/n+1 + (K up )n+15n+1 + (Cuu )n+1ﬁn+l = fu (2143

At every timestep, an iterative solution is performed. At tH& iteration, the matrix

equation of the system is

&C,, +DK,, DK, DK,g &o<t-u.6 & ().-(.) o
é uu uu uv upl‘J ) n+l n lo o2 u/n+l uint /n 0
é CVU DK v DK vp l‘J & vﬁﬁ O: év n+1 + Cvu (Un - U;+1)0(214@
4 y & —ka 0 &8 (R — 0
8 Cpu DK pv 0 Hn+1g P + C Cpu (un - l"In+1) =

2.5. Treatment of Discontinuity in Volume Fraction

In some cases, there may be a jump in the distribution of fluid volume fractions. This
could be due to the placement of two layers of porous structure with different compaction
amounts beside each other. In the composite processing, such cases mayearigsiwh
flows out of the fibrebed andpools ina cornerleading to the presence ofparely
viscous resiradjacent to the composite system consisting of fitm@ and resin. As we

will observe in an example in the next chapter, the discontinuity costd alse as a
result of fluid flow motivated by s specific loading situation. Here, we introduce the

measures that are requiredhe FE formulation of such discontinuities.
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In the derivation of the weak form of the fluid phaspiilibriumin the seconaquation
of (2.61), integration by parts (or Gauss theorem) is applied on the pressure term as

follows

- FfPW,dW=- FfPRw,dG+ fP(fw,) dw
v s W (2.147)
=- ffPnw,dG+ ffPw,,dW+ Y , Pw,dW
G w w
We should remind the reader ththe assumption for performing integration by parts in

the general form of

t;’pdv: [uv]? - t|;1/du (2.148)

is that bothu and v be continuously differentiable in the relevant domain. Equation
(2.147) holds for any smooth distribution of volume fraction over the domain, but it does
not hold in cases such as layered media with different volume fraciesea sudden

jump occurs in the volume fraction. Here, we assume that any jumhpradues happens

only at the boundary between elements, and calculate a general formula for the amount of
this error in case of a jump in volume fractioro This end, we assume a 1D case
involving two elements with a jump in the distribution of volume fraction at their
interface. The schematic diagram of the pressure and volume fraction functions in this

example is depicted iRigure2.3.

Let us assume that the volume fraction functions depicted in the diagram are in fact equal
to the multiplication of the actual volume fraction distribution by the FE eslfiapctions
wp. We calculate the value of the Kifandside integral in(2.147) over the length of each
of the two elements, and add them up to araivihe actual value of the abereentioned
integral over the domain obtained without using integration by parts. The distribution of
pressure along the domain is assumed to take the following form

eR(x) X <X<Xy

P(x) :} B.() . <x<x. (2.149
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with a jump equal tdJ at the interface of the two elements. Differentiating the pressure

function along the length of the domain leads to

eRi(x) X <X<Xy
Pi(x):ia @x- xy) X = X, (2.150
t Pi(x) Xy < X< X

At this poirt, it is helpful to review the following formula regarding integration of Dirac

delta function

+ a

Af ()a(x- x;)dx= f(xy) (2.15))

Therefore, the actual value of the abawentioned integral term obtained without

integration by parts will take the form

XR

L= 1Y PidX=X%fl(X)Fii(X)dHXF”fz(x)Pzi(x)dx+XF“f(x)a @x- x,)dx (2152

XL

Taking advantage 0€2.151) , and considering the symmetry

conclude that

Xq XR
1, = (ORI AX+ 7> (%) P2i(x)dx+%[fl(xd) +£,(%,)] (2.153
Xd

XL

We now calculate the value of the same integrahtthat the current FE approach with

the integration by parts would result

Xr Xd Xr
I, = ffPidx=[fP} - ff Pdx- ffPdx (2.154)

Expanding the above relationship leads to

Xd

L, =[PL7 - FIR()AX- iR (x)dx (2155
XL X4
and applying integration by parts on the integral terms in the above, we have
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|, =[Pl - [£,R]C - [F.R]F +X%r1<x>a(x>dx+xﬁrz(x) Pi(¥dx (2156

XL Xd

After simplifications, we arrive at

I = i (O RI(X)dx+ r”f LRI X- £, (% )R (%) +F,(x)P (%) (2.157)
Xd

XL

The difference betweeh and I, represents the term that should be added to the FE
formulation to account for any discontinuity of volume fraction distribution between

elements. Considering that=P,(x,)- B(Xx,) and after simglications, we arrive at the

correction term for the 1D case

- 1= Re)+ RO - )= P Al @159

where[[ ]] represents the jump of a function. Taking into account the point that in the
above derivation of the correction term,represerdg the multiplication of fluid volume
fraction by shape functiong,, one may argue that the corieatterm for a generaD or

3D problem takes the form of
Pl I w,dG (2.159
Gy

for all interelement boundariesg, where fluid volume fraction incurs a discontinuity.

As a matter of fact, the above correction term is a force term that should be applied on
any interelement boundary where a jump in volume fracbooursin order to avoid any
discontinuity in the presse distribution over the domain of the probldfrefficiency is

of no concernone may also implement this term into the code so that it is applied on all
the interelement boundaries and it would work just the same since if there is no jump in
the volune fraction the above term will be equal to zero. As it is obvious {@ib9),

this force term is a function of fluid pressure, a main degree ofdneed any twephase
problem, and therefore it is best to introduce this term not as an applied force but as some
extra coefficients in the stiffness matrices of the relevant elements. Since these extra

coefficients are related to thequilibrium equation © the fluid phase and are to be

49



Chapter 2: Governing Equations and FE Model of Iptase Media

multiplied by pressure degrees of freedom, they contribute t&tjeomponents of the

stiffness matrix. Assuming a general interface between the elemeatsdn,, we may

rewrite (2.159) in the form
1 1
55(% +P, JIflnw,de= > cf{P“ +B, o - £ WG (2.160)

The corrections needed K, (or additional K, matrice$ for the two involved

elements may then be defined as

(Kpany = i - 7 N (0°), 00

G 183
(2.161)
(K Vpextra)mz = df m f m, )(N " )mz (N p)mz dG
Gy 183

The above integrals are estimated using 3 Gauss points along the specified boundary
located atxor/s=0,°/15/5.N" represents the product of the shape functions by the

normal vector to the boundary of each element, and is written as

N"=[nN, nN, inN, nN, 3 nN, nN,] (2.162)

The normal vectoon the boundary is in fact the outward normaintpelement. The

effect of this correction will be demonstrated here through numerical examples.

2.6. Interfaces withPurely ViscousFluids

The need to model the interface of a {pltase porous system withparely viscous fluid

arises quite often in the field of biomechaniegy. the lubrication mechanics of joints
Some of the work done on modeliagchinterfaces in biomechanics inclutéow et al.

(1980), Hou et al. (1989), Spilker and Maxian (1990), Atlaeand Spilker (1997,1998),
Ateshian and Wang (1998), and Chan et al. (20A8)was mentioned in the previous
section, in the processing of composite laminates with curved geometry such interfaces
may arise when resin flows out of the filved and poolsn a space provided by the

complex geometry.
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To model a viscousnediumusing the current twphase approach, we assume fluid
volume fraction of unity, and very small values for the moduli of the solid structure. At
the boundary between a viscous fluid anmd-phase medium, the shear force, which is
carried only by the viscous fluid on one side, is transferred partly to the viscous fluid
flowing through the porous medium on the other side and partly tpdhsussolid
structure. The actual (phaageraged)alue of shear stress carried by the fluid on both
sides is the same, but there is a jump in the volaveeaged values of the fluid shear
stress at the boundary. Assuming that the ratio of the areas of the two phases on the
boundary is the same as theigabf their volumes (which is the case for isotropic
materials), the boundary condition between the two media with distinct volume fractions
may be described §dou et al. (1989)]:

(2.163

Assuming that 1 represent the viscous fluid and therefprel, one may remove the

subscript from/, and rewritg(2.163) to have

([ij )1 } ([ij )2 :(]/f' 1)([ij )2 :(]/f . 1)”(\4,1 Vi, )2 (2.1649

To apply the above condition to the FE approach, a virtual traction force equal to

- - Oy, v )t (2.165

is applied to the fluid phase at the boundary between the two ntediapresenthe

components of the tangent vector of the im@dia boundary. We assume a general
interface between the elemems and m,, with the latter being the one representing a
purely viscous fluid. Once implemented in the current FE approach, the virtoalifor

(2.165 contributes to the componentsif,, matrix for elementr, as follows

(K wemaly, =AY - YrfB,7),, (BL),, 0G (2.166)
G

1818

whereB, is defined by
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eaN, 0 inN, 0 i3!nN, 0

B3:g 0 nN 0 nN, 3 0 nyNgg (2.167)
81le anl nyNZ anZ 3 nyN9 an9H3318
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2.7. Figures
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Figure 2.1: Schematic representation off3 (9-3) element
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Figure 2.2: Schematic representation offQ (4-1) element
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Figure 2.3: The schematic diagram of the pressure and volume fraction distribution for a 1
system consisting of 2 elements with a jump at their interface
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The FE approach presented in the previous chapter is implemented into a MATLAB code
using 93 and 41 elements. These two elements are based onthe formulation.To
validate thetwo-phase modela few examples are solved numerically with tbdecand

the results are compared to analytical solutions (if available) and other numerical
predictionscited in the literature. Also, for the sake of moral@pth comparison, thep
formulationis implemented in a-@ element whichs rated tobehave ina very similar
fashion to the 8! standard element in ABAQUS for mufthase porous materials. The
naming criterion is based on the number of nodes used to dis¢hetkieematic degrees

of freedom and the number of nodes assigned to the presshedlofd phase. In th up

formulation, continuity of pressure must be satisfied.

The examples chosen for the purpose of verification of the flow aspect of analysis
include (1) a column of porous material undergoinguaiform load at the top with
permeableBC at the top surfac€?) a column of porous material undergoing a uniform
load at and micheight with impermeable BC all around, @w in a channel with a

porouswall, and (4) flowcompaction in processing of composite angle laminates.

3.1. GeneralTwo-phase Problems

3.1.1. Column of saturated porous medium under loading at the top

Here, weconsideran example teerify the predictionsof the developed twphase model

and alsodemonstrate the phenomenon of initial oscillations in the pressure distribution.
Figure 3.1 shows the schematic representation of a column of saturated porous medium
with permeable BC at the top surface under vertical load atofh€left figure). The
dimensions of the problem, boundary conditions, material properties and the loading
conditions are depicted frigure3.1. The tdal load of § is appliedfromt = 0. Two FE

meshes are assumed; one with 1B &lements and another with 2813%lements along
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Chapter 3: Verification ofhe Two-phase Model

the height of the columriNote that 10 8B elements lead to 20 independent pressure
DOFs along the height while 20®elementdhave 21 independent pressure DOFs along
the height of the column. We will be comparing the pressure response in this example,
and that is why the number of the49elements is chosen to be twice that of tH& 9
element.Figure 3.3 and Figure 3.4 depict the timehistory of pressure distribution along

the height of the column for a fluid viscosity equal to 5xR@.s predicted respectively

by 10 93 elements and 209 elementsFigure3.5 to Figure3.12 present the same data

but for lower viscosities that gradually decrease from 5xP@.s t00.5 Pa.sby
increments of one order of magnitu®y changing the viscosity of the fluid, we change

the time scale in that higher values for viscosity represent the behaviour at earlier stages
of compactiorand vice versdt is evident that in the case o#9elements the oscillations
happen at the very steof the analysis while the-3 element initially does not show any
significant oscillations but they develop to a maximum value at a critical time. The values

of the observed oscillations are much smaller in the cas® @&®@ments.

There is a analytcal modelfor the case of 1D consolidation that applies to the current
example. Terzaghi (1943) presentedl@sed form solutiorfor the distribution of fluid
pressure along the height of the column as a function of timat fdohmula may be

written in tems of the material parameters introduced in the current work as

af, 2 (1) &2j-Vpys € (2j-1Pp°SE @
Ply,t)=—2 - Yt 3.1
b= 85 1% o 1% ey OV

whereS§ is the permeability of the porous material along the height of the columi and
represents t hefpausistrigtdre. modul us

Figure 3.13 shows the pressure distribution at an early time during the consolidation of

the column predicted by both the39and 94 elements, comparing them with the

analytical solutionn (3.1). Superiority of the 83 el ement 6 s predi ction i
that using this element there is no need to enforce the value of présszeeo herept

the permeable hundary.Figure 3.14 to Figure 3.17 present thepressure distribution at

the same time but for cases with gradually decreasing viscosity respectively. These

diagrams represent later stages of consolidation of the porous column. The oscillations
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related to the € elements gradually vanish as we mowehier from the initial stages of
compaction.In all the cases a very good match is observed between the distribution

predicted by the FE code and ttlesed form solution

Let us focus on the vicinity of the permeable BC to investigate how the oscillafions
pressure develops in the case & BlementsFigure 3.18 shows the pressure surface of

the top two 93 elements at an early stage of compactigure 3.19 presents theame

dataat a time that the oscillation morepronounced. It is evident thathen the point of
maximum curvature of the analytical solution is located between the pressure nodes of

the top element, the oscillatioase more pnounced in th8-3 elements.

The u-p approach (implemented in the4%lement)n FE formulation of the governing
equations ofwo-phasemediais to substitute the equilibrium equation of the fluid phase
(2" equation in(2.62)) into the mass conservatid equation in(2.62)); leading to the

following set of two equations:

o - (SJ P,J/”),i =0
%[Cijkl (uk,l "'U|,k)]J - P =0

XD:

(3.2)

1
)

— ——

As a result, the pressure undergoes a seootel differentiation inspace, and inter
element continuity of pressure becomes necessary. This is not the case in thaupresent
p formulation where all three of thenass conservation equation, fluauilibrium
equation , and thetotal equilibrium equation (3equation in(2.62)) are formulated into
the finite element technique. Discontinuity of pressure gives9tBeelement some
advantages over the common elements in terms of stalifity observed initial

oscillations in pressure profile.

3.1.2. Column of saturated porous medium under loading at mieheight

To demonstrate the effect of the treatment of jumps in the volume fraction, an example
will be presented here in the form of a columnsaturated incompressible porous

medium undewuniform loading at its mieheight with impermeable B.C. all arounthe
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dimensions of the problem, boundary conditions, material properties and the loading
conditions are depicted iRigure 3.2. The total load of § is applied fromt = 0. Resin

flows from the bottom half to the top half of the column, therefore gradually causing a
discontinuity in the voluméraction of the porous mediurfrigure 3.20 and Figure 3.21

depict the prediction of the-® element for the timaistory of pressure distribution along
theheightof the columrf o r ¢ %2Pa%a nld) ¢ = Pabslresp@ctivelyThegradual
formation of an unrealistic jump in the pressure profile as the flow of the dloadirsis
evident.Figure 3.21 shows a clear jump in the pressure distributat the final state of
equilibrium. Figure 3.22 and Figure 3.23 present the sam@redictions where no
discontinuities are observedter taking thecorrectivemeasuraliscussed in the previous

chapteregarding the jump in volume fraction.

3.1.3. Taylor and Beawers-Joseph problens

Here we consider the unidirectional flow of a viscous fluid over and through a rigid
porous wall due to a constant velocity applied to the top surface of the fluid. The constant
velocity Vy is applied to the fluid via a moving rigid wait the top boundary of the fluid

layer as it is depicted ifrigure 3.24(a). This problem has indeed a Coudiipe
behaviour as the only distinctidmetween the two is the porous wall underneath the
viscous fluid in the current configuration, and one would imagine if the porous wall
happes to be impermeable enoughgenunidirectional Couette flow is a limiting case of

the problem at hand. Another ptem of interest may be described by the unidirectional
flow of a viscous fluid over and through a porous wall sustained by pressure gradient in a
2D channel Figure3.24(b)). This case may be considered as a Poiseyjtle flow, as its
limiting case when the permeability of the porous structure diminishes to zero is in fact
the Poiseuille flow.

Hou et al.(1989) refer to the two aboveentioned probims as the Taylor problem
[Taylor (1971)] and the Beaver3oseph problem[Beavers and Joseph (1967)]
respectively. They established a set of boundary conditions for such interface problems in
their work. They also presented an analytical solution for fuglbcity profile for the

BeaversJoseph problem based on their choice of interfacial boundary conditions. Also,
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the solution of Taylor problem was presented via graphs depicting the flow profile.
However, their original differential equations were based ot he f |-averahéds phas e
velocity (absolute value of velocity) compared to voluaweraged fluid velocity in this

work, and also drag coefficient for the porous medium as opposed to the permeability
coefficient in this work. Here, we present the anefjtsolution for the two problems

using the nomenclature of the current work. Considering the assumptions involved in the

Taylor problem, the equilibrium equation of the fluid phase for the case of this

unidirectional flow problem may be written as

nM 0, 0O¢czcth

1 e (3.3)
Y TN =o ~h,¢z¢0

rm
z S

—o—> —/— (D:
N

wherev is the volumeaveraged velocity of the fluid in thedirection. The boundary
conditions may be readily identified agh;)=V,, andv(-hy)=0. As for the interfacial
boundary conditions between the viscous fluid at the top and the underlyifghase

system, we use the relationships derived by Hou €1289

v =Vv'
S — (3.9
f UZ z=0 UZ z=0*

Solving tte set of differential equations (8.3) with their assigned boundary conditions,
and the specified interfacial conditions (B4) leads to the analyticaolution for the

volumeaveraged velocity of fluid alongaxis

e f_a [fd
S
dt—————————(z-h)
€ fsi g f8+ f g f8
; smt‘@z 52 h, gcosrgl2 §2
¢ . ¢
Y/ S|n)’%/7(z+h )O

& 5 £
fsmr%lz 0+h1 c:os}%2 g8
c -

D:

<

0¢zch

(@ cor e el ent? C}&

(3.5)

-h,¢2z¢0

—_——) =) =) =) =) ) =) —) —) —)
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In a very similar fashion to the Tayl@roblem, the equilibrium equations of the fluid

phase for the case of Beavdisseph problem may be introduced as

-
g 0¢zeh,
I 2
! uz2v t‘lxm uP (36)
lIm“—2-€v=— -h,¢z¢0

Wz X

wherev is the volumeaveraged velocity of the fluid in thedirecion. The boundary
conditions may be identified a#&h)=v(-hy)=0. The interfacial boundary conditions
between the viscous fluid at the top and the underlyingpiase system are the same as
the ones introduced i{3.4), since the system geometry of the two problems are identical.
Solving the set of differential equations {B.6) with the appropriate boundary and
interfacial conditions leads to the analytical response for the vehwei@ged velocity of

fluid alongz axis in the Beaverdoseph problem

8 & & [FG . —f & [fao
i é fhlSInh%lz\/78- 21/fo1— COS@ZJ?%L]
P AP ) ¢ 15 ' ¢ 1S3u 0¢z¢h
;2mx e & [fo [ & [Fo g '
7 6 fs'”h%‘z S0t gCostE 8§
q & * ¢ VS+ g
V=] \
o e L 2 (7]
i efa?c e 80+h1f @-L‘l oo
o e a 0 z+h,) U
}S“Pé ) S|nr§/2(z+h)8 1+e£( "N h,¢z¢0
a Q }
T gf S|nt‘%12\/70+ Q(COS@Z( ¢ ' 3
& ¢ b
(3.7)

The above result matches the analytical solution obtained by Hou (@0a8) for the
profile of the phas@averaged velocity of the viscous fluid. The clo$edn solutions in
(3.5) and(3.7) will be used hertor verification of the approach presented in this work.

Chan et al(2000)compared the results of their FE approach with the analytical solutions
for the Taylor problem, but theyidinot report any numerical results for the Beavers

Joseph problem. We present numerical results for both of the above problems.
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It is assumed thal, =h, =4mm, and viscosity of the fluicg, is equal to 5 Pa.ghree

different values for the permeability of the porous layer are assumed to capture the limits
of velocity profilethat could be obtained in these two problefso uniform FE me&es

are considered; one with four®elements through the thickness, and another with eight.
As these problems are 18nd we have constrained the degrees of freedom in the z
direction the number of elements in the x direction is irreleviigure 3.25 to Figure

3.27 present the velocity profile§or decreasing values of permeability of the porous
wall) obtained by the current approach for the Taylor problem and compares them with
the analytical solutiomn (3.5). The convergence of thresultseven with these relatively
small number of elements is clear, and an essentially perfect match is obssvwveenb

the numerical and analyticablutions

Figure 3.28 to Figure 3.30 show the velocity profiles(for decreasing values of
permeability of the porous waldbtained by the current approach for the Beaveseph
problem and compares them with ttlese formsolution in(3.7). In a similar fashion to

the Taylor problem, convergence of the response is evident, and a very good match is

observed between the numerical and analytical response.

Chan et al. (2000) added a viscous shear term to the hydrostatic pressure to have a
complete stress tensor for the fluid phase. Here, we contipareformulationwith the

current studyA very important distinction is in the differential equation pertaining to the
equilibrium equation of the fluid phase. Rewriti@h a n e uersioa lof. tiie sfluid
equilibrium equation using the notation of the current work for the sake of comparison

we arive at a form equivalent to

B (fp),i +[”{(Vi,j +f$i£,j)+(vj,i +fl#j,i )}]J -f @Ilvj =0 (3.8)

The major difference between the above and the fluid equilibrium equation in the current
study in(2.58) is in the first termwhich includesa form of pressure gradierEquation

(2.58) used in the current approachconsistent with the governing equations of porous
media preseetin the prominent literaturm thisfield (e.g. Lewis and Schreffler, 1998)

while equation(3.8) is not Furthermorejf one assumes that the velocity terms vanish in
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(3.8), it would lead to an equilibrium state with variable pressure for a case with variable

volume fractions throughout the domain, an unrealistic and undesirable outcome.

Another difference between the work by Chan et al. and the current approacttheyhat
based their set of differential equations on the phaseaged velocity of fluid while the
volumeaveraged relative velocity of the fluid is the velocity parameter chosen in this
work. Not only does the latter choice lead to a very strdigiard pesentation of the
mass conservation equation agarb7), but also it allows for the continuity of the fluid
velocity degrees of freedom at the interface of a puvedgous fluid and a twphase
medium However,the use of phasaveraged fluid velocityn the formulation presented

by Chan et al. (2000)eadsa discontinuityin the velocity field at the interfacehich
requires special assembly considerations that are not desirable in a robust code

3.2. Flow-compaction in Processing of Composiagle Laminates

Hubert(1996) and Hubertet al. (1999) performed simulations involving resin flow and
compaction of angleshaped laminates. Hubert et al. developed a-#4 element in
COMPRO based on the-pu formulation. Of twephase mediaThey carried out a
comprehensive parametric study of the numerical response and the sensitivity of the
effect of various constitutive propers on the compaction behaviour of the laminates.
Hubert(1996)also performed an experimental study on the compaction of unidirectional
angle laminates on convex and concave tools. The samples were made of two different
materials including AS4/35606 and AS4/8552. He numerically simulated examples
closely representative of the geometry of the actual specimens made for the experiments.
The change in the thickness of the final products at the corner and along the flat part were
studied and compared with theesults predicted by the simulations. Themerical
predictions of thefinal thickness changes for the specimens made of AS4/3501
compared much better than AS4/8552 specimens with those obtained thieom

correspondingexperiments. Here, the-® element s used to model the same problem
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with the same materi al properties assumed i1
the two approachgSeeTable3.1 andTable3.2).

Figure 3.31 shows the geometry and boundary conditions of the probéssuminga
convex tooland the timehistory of autoclave conditionSince the current code does not
deal with heat transfeanalysis we have assumed that the temperature of the laminate
changes uniformly throughout the process and follows the temperature history of point A
obt ai ned f numencalfuo foretmets@ne problenfwo different FE meshes
are presented iRigure 3.32 to ensure convergence of thesults Point A is located on

the topcornerof the laminate, and point B is located on the top surface of the lamtinate a
the midlength of the flat sectioimhe normaldisplacements & and Bare compared to
those resultsreported by HubertFigure 3.33 shows the timdistory of the normal
displacement gboints A and Bfor the casef the AS4/35046 [0°] unidirectional angle
laminate on a convex to@nd compares the response with those reported by Hubert.
Figure 3.34 presents the same comparison for the case of AS4/85barilirectional
angle laminateThe convergence of the response is verified agoloa match is observed
betweenthe currentpredictons and those reported by Hubert for both materials. Any
observed difference in the history of normal displacemaspecially in the case of
AS4/35016 material is attributed to the fact that in fhresent workhe temperature is

assumedo beuniform ower the domain.

It was observed that for cases involving [90°] unidirectional angle lamirthgesurrent

predictions did not match the response reported by Hubert. Investigating furtheiignto th

matter made it clear that in the runs for [90°] cases, Hub® s ceoahepushset the

permeability matrix equal to those of a [0°] lamindtea modifiedversion of COMPRQ

we fixed that error and reanalyzed the [90°] cases. The response histories that will be
presentedn Figure3.35andFigure3.36as Hubert 6s are in fact th
theupdatedversion of COMPRQ

Figure 3.35 preserd the timehistory of the normal displacement at points A and B for
the case of the AS4/35@ [90°] unidirectional angle laminate on a convex tool and

compares the response with those reportedursywersion ofHubert s a p.griguvea ¢ h
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3.36 shows the same comparison for the case of convex AS4/8552 [90°] unidirectional

angle laminateln both of the above figures, the convergence of theorese is clear and

a good matchs obtainedoetween the displacement history predicted by tBee®ement

and the response obtained by the corrected v

The 44 element developed by Hubert et @999) approximats the displacement and
pressure degrees of freedom in the same fashion by continuous linear polynomials in each
direction. Due tdhaving the same level of discretization for displacement and pressure,
the 44 element sustains instability issues and alsadtsiracy is conditionaMermeer

and Verruijt (1981) presented an accuracy condition siach finite elements. The
condition sets a minimum size for the time stepg maximum for mesh size ensure
accuracy and avoid excessive pressure oscillatidms.issue ledHubert et al. to run the
COMPRO flow module once the viscosity of resin fell below 1000 Pa.s. In the present
work, there are no such limitations but since the goal here was to compare the results of
the 93 with the predictions of Hubert et gor viscosity values above 108@.sthe resin
viscosity was artificially increased x10’ Pa.s toprevent any resin flowThis explains

the plateau observed at the beginnofgthe displacement timleistory predictions in
Figure3.33to Figure3.36.
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3.3. Tables

Table 3.1: Resin and fibrébed properties for the AS4/35@langle laminate

Resin degree of cure Resin viscosity qu Ul Fibre-bed elastic properties
permeability
€d2 _(c +c,a)i- a)B-a) a¢o0.d m=m eplJ I RT)explk 3
] ddat T m =4.610Pas &L00GPa (0] 0 o
I =Ga-a) a=03 U =114477/mol D=¢ Ee)) 0
k=148 g Symm 0.5MPayj
— - DE, /RT
C =Ae r? @-v,
S.l =_f f
o1 4k Vf2
A =3501710's 5 e 0.67MPa -01<g ¢O0
) . N
A, =-3356710's? s =1 (\Né/\/f - 1) 1333MPa - 0.16<e,¢-01
A, =3.2667% 10°s* AKi (Vai/Vf - 1) E, =11515MPa - 02<eg, ¢-0.16
DE, =80700J/mol vV, =1- 7 14103MIPa e, ¢-02
= mo
= / ki=0.2
B=0.47 N
re =4mm
Table 3.2: Resin and fibrébed properties for the AS4/8552 angle laminate
Resin degree of cure Resin viscosity Fibre-bed permeabilit] Fibre-bed elastic properties
2 3
da _ Ae="a™(1- a)" 5 AvBa s (- v,) .
2 = a, @ =—— &l00G Pa (0] 0O o
Gt o) |meaenle, mrfe g | STacy | 8 ee) o b
(2 - . 5= T é 3\E3 V]
E. =665000/mol _rn’ (W, - 1) g Symm 0.5MPay
A=153 10°s A, =345 10 °Pas aki Vifv, -1
m=0.813 E,,=76536]/mol V. =1 f €2.08MPa - 0.035<¢g, ¢0
n=274 A=38 T 18.65MPa - 0.079<e, ¢ -0.035
c=431 B=25 Vi =068 £ =| 22MPa - 01<e, ¢-0079
4y, =5.48310° a, =047 ki=02 T621MPa e ¢-01
ac; =-019/C e =4m i 6.6MPa e,>0
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3.4. Figures
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Figure 3.1: A column of saturated porous medium undeiformloadingat the
of 10 93 elements and 204elements
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Figure 3.2: A column of saturatedorous medium with impermeable BC all arowvith uniform

loading at mieheight and mesh of 10-9 elements
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0 o025
y (m)

Figure 3.3: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained b 9u-v-p) elementse=5x10Pa.s

0.025 y (m)

Figure 3.4: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained byt 9u-p) elementse=5x1C Pa.s
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0 o025 v m

Figure 3.5: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained ®8 (u-v-p) elementse=5x1F Pa.s

Figure 3.6: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained by 9u-p) elementse=5x1F Pa.s
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Figure 3.7: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained by 9u-v-p) elementse=50Pa.s

y (m)

Figure 3.8: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained by 9u-p) elementse=50Pa.s
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Figure 3.9: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained by 9u-v-p) elementse=5 Pa.s

Figure 3.10: Time-history of pressure distribution along the column withgepmeable BC and
underapplied load at the top, obtained by 9u-p) elementse=5 Pa.s
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