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Abstract 

The usual approach to the process modeling of thermoset matrix composites is to divide 

the analysis into two distinct and sequential steps, first of flow-deformation behaviour 

and then of stress-deformation. In the current processing models, each of these two 

aspects is dealt with in a separate sub-model, typically called the flow module and stress 

module respectively. The flow module is relevant to the pre-gelation behaviour of resin, 

while the stress module is valid for the post-gelation composite material.  

In this thesis, the framework to integrate the flow and the stress modules into a unified 

module in finite element processing models is presented. The work is based on a two-

phase model for analysis of resin flow and its resulting deformations in the composite 

material. Special measures are introduced to provide for additional capability of this 

model to account for the development of stresses in the curing composite material. These 

modifications are needed to ensure the accuracy of the model in both of resin flow and 

stress development regimes, and include the introduction of consistent compressibility in 

the mass conservation equation of the two-phase system, and a special decomposition of 

stresses of the system. 

The formulation is implemented for a pseudo-viscoelastic stress model in a 2D plane 

strain FE code in MATLAB . The approach may readily be extended to fully viscoelastic 

models. Various examples from single-element problems dealing with the development 

of residual stresses throughout a single-hold cure cycle to more geometrically complex 

composite laminates undergoing standard cure cycles are modeled by the integrated 

model and comparisons are made in one extreme to the flow-compaction behaviour by 

the standard flow models, and in the other extreme to the results obtained by the pseudo-

viscoelastic approach. 

The model developed here is a promising tool for simulating processing of large-scale 

composite structures continuously from the very early stages of the process when the 

resin behaves in a fluid-like manner all the way to the final stage when it behaves as a 3D 

solid. 
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Chapter 1: Introduction 

1.1.  Background 

Fibre-reinforced plastic composites are replacing traditional materials in engineering 

applications. The growing popularity of these materials is due to advantages such as high 

strength to weight ratio, high stiffness to weight ratio, and impressive durability. 

Manufacturing of composite structures is distinct from that of metallic structures in that a 

complex and large-scale structure is processed from the raw materials in one step in order 

to create otherwise unachievable geometries and to reduce manufacturing cost. The focus 

of this work is on the high-performance structural components made of advanced 

thermoset matrix composites that are mainly used in the aerospace industry. The making 

of such structures is commonly performed by autoclave processing. This process involves 

stacking of pre-impregnated sheets of unidirectional fibres (prepreg) at specially designed 

orientations over a tool of desired shape. The whole assembly is then subjected to a 

controlled cycle of temperature and pressure change inside an autoclave. The end result 

of this process is the compaction and curing of the composite part. Finally, the cured 

composite part is removed from the tool However, development of residual stresses 

during the curing process leads to difficulty and uncertainty in prediction of the precise 

shape and dimensions of the part after tool removal. It is essential to have a good 

understanding of the phenomena that the material undergoes throughout the processing 

cycle. In the past three decades as the popularity of composite materials  has increased, 

efforts to numerically simulate the processing cycle of composite materials have 

increasingly gained more traction in order to curb the costs of production. 

A bagging schematic for a typical autoclave processing system is shown in Figure 1.1 (a). 

The prepreg plies are placed on a hard tool to form the desired shape of the laminate. A 

typical prepreg ply has a thickness of 0.2 mm and a fibre volume fraction of 0.5-0.6. The 

plies can be oriented in different directions to achieve the target mechanical properties. 
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Typical tooling materials include aluminum, steel, invar, and even composite. Dams are 

placed around the perimeter of the laminate to control resin flow from the edges of the 

plies. In many cases, a release film is used on top of the laminate to allow for easy 

removal of adjacent bagging material. For laminates that need resin bleed, an absorbing 

cloth forming the bleeder is placed on top and around the laminate. Inserts and 

honeycomb cores may be included in the laminate for moulding purposes or structural 

requirements. A breather cloth covers the assembly to provide a path for air flow. The 

whole assembly consisting of the tool, laminate, bleeder, and breather is placed in a 

vacuum bag and is sealed. A vacuum plug connects the interior of the bag to an external 

vacuum pump. The cycle of curing the part is shown in Figure 1.1 (b). At this stage, the 

tool-laminate assembly is put in an autoclave and the sealed bag is attached to the 

vacuum system. The vacuum is applied in order to debulk the composite laminate, 

partially motivate the flow of excess resin out of the laminate, and remove any excess air 

that is trapped between the plies. In order to cure the part, pressure and temperature are 

applied in a pre-determined cure cycle. The temperature cycle is crucial to trigger the 

reaction of resin polymerization. The pressure is applied to conform the laminate to the 

tool surface, and to compact the laminate to the target value for fibre volume fraction and 

collapse any voids that may develop and grow during resin cure. At the end of the 

processing, the cured part is debagged and removed from the rest of the assembly and the 

tool and is ready for any finishing processes. In an ideal curing process, the cure cycle, 

the tool, and the bagging procedure should be designed in a way that leads to a fully 

cured, void free and undistorted final part in the shortest time and most economical 

fashion. 

The processing of composite materials is a complex event during which various physical 

and chemical changes occur simultaneously or at different stages. These phenomena 

include melting of resin, flow of resin through the fibre-bed, heat transfer, thermo-

chemical changes and curing of resin, and development of residual stresses in the 

composite material. This complexity has led many researchers to use an óintegrated sub-

modelô to model the processing of composites. Based on this approach, the complex 

process model is divided into several sub-models that may be studied quite 

independently. The sub-model approach is shown schematically in Figure 1.2. As shown 
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in the schematics of this approach, the modeling procedure includes several modules each 

responsible for one aspect of the material behaviour during cure. The modules that are of 

interest in this work are the stress module and the flow module.  

In chronological order some of the notable work on the application of this method to 

autoclave process modeling were done by Loos and Springer (1983), Bogetti and 

Gillespie (1991, 1992), White and Hahn (1992a, 1992b), Johnston et al. (2001), and Zhu 

et al. (2001). Zobeiry (2006) presents a more comprehensive review of the relevant 

literature. The processing models range from very simple one-dimensional elastic 

analyses to very complicated 3D viscoelastic models. One of these models was developed 

at UBC in the form of a multi-physics, 2D finite element code, COMPRO, to analyze 

industrial autoclave processing of composite materials of intermediate size and 

complexity [Hubert (1996), Hubert et al. (1999), Johnston (1997), Johnston et al. (2001)]. 

The model predicts a number of essential processing parameters and the development of 

residual stresses and deformations. It also accounts for the effects of tool/part interaction 

in the development of residual stresses. COMPRO has been used in the past two decades 

to solve many practical problems in autoclave processing faced by the industry. To 

expand on the capabilities of COMPRO to different material constitutive behaviour and 

more importantly 3D modeling, Arafath (2007) introduced the concept of COMPRO 

Component Architecture (CCA) and incorporated it into ABAQUS. CCA is a modular 

approach that consists of all the different material subroutines in COMPRO that can be 

incorporated into many commercial finite element codes using a specific interface 

module. In this work, we refer to the CCA approach as COMPRO 3D. 

It is very common that the literature on modeling of autoclave processing focus either on 

resin flow during processing or on stress development throughout cure and residual 

deformations in the final part. The same was true in the development of COMPRO as 

Hubert (1996) developed the flow module while Johnstonôs (1997) focus was on the 

stress development side. Even the current version of COMPRO 3D approaches the 

modeling of autoclave processing in two distinct steps. Initially, the flow of resin and the 

compaction of composite laminate are modeled using the flow module in COMPRO. 

Once the flow analysis is performed, the geometry and fibre volume fraction of the 
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laminate are updated. Then the laminate is re-meshed in FE and the new mesh is used in 

the prediction of development of stresses during the processing cycle. 

The reason for this separation could be that resin flow is typically formulated by Darcyôs 

law and is modeled by two-phase elements in a FE code, while modeling of stress 

development requires the use of common solid finite elements. 

1.2.  Resin Flow during Processing 

Curing of a polymer resin may be defined as the gradual formation of a 3D network made 

out of the polymer molecules. During the processing, resin transforms from a vitrified 

fluid to a viscous fluid (upon heating up from the room temperature) and eventually to a 

viscoelastic material after gelation. Pre-gelation resin may be considered a viscous fluid 

with its viscosity a function of temperature and degree of cure. Therefore flow 

phenomena play a major role in defining the behaviour of resin and the composite 

material at early stages of processing (See Figure 1.3). Figure 1.4 shows how the resin 

viscosity changes in typical cure cycle. It is evident form the figure that lower viscosity 

values of resin occur during the first isothermal hold in the autoclave temperature history. 

In fact the first hold in temperature is typically designed to provide enough time for fluid 

resin to flow and also allow for air transport as a result. Figure 1.5 shows a schematic 

presentation of flow of resin through the porous structure consisting of the fibres and its 

resulting compaction in the composite laminate. 

Hubert and Poursartip (1998) did a comprehensive review of the modelling approaches in 

the literature regarding flow and compaction in the processing of thermoset matrix 

laminates. Springer (1982) studied the relationship between the applied pressure and resin 

flow and observed that the layers consolidated in a wavelike manner. He developed the 

sequential compaction model based on those experimental results. Loos and Springer 

(1983) developed a one-dimensional resin flow model for the curing process. The resin 

velocity was related to the pressure gradient, fibre-bed permeability, and resin viscosity 

through Darcyôs law. Gutowski et al. (1987) presented 3D flow and 1D consolidation 

models for the processing of composites, where the resin flow was modeled using 
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Darcyôs law for an anisotropic porous medium. Their consolidation model was based on 

the application of the effective stress theory of soil mechanics [Terzaghi(1943), 

Biot(1941)] to the compaction of fibre-beds. Davé (1990) derived the general flow 

equation applicable to all composite processes which accounted for the presence of both 

resin and air in the fibre-bed. Cai and Gutowski (1992) developed a general 3D 

deformation model of lubricated fibre bundle subjected to a multidirectional stress state. 

Smith and Poursartip (1992) showed that the sequential compaction model is an special 

case of the effective stress formulation. Gutowski and Dillon (1997) reviewed the stresses 

of an aligned fibre bundle and compared the response for transverse compression coupled 

with axial extension in a 3D fibre deformation model. 

Hubert (1996) and Hubert et al. (1999) developed a 2D plane strain flow-compaction FE 

model as part of COMPRO to simulate resin flow in autoclave processing of fibre-

reinforced composite laminates. They adapted an incremental, quasi-linear elastic model 

assuming infinitesimal strains. Hubert and Poursartip (2001) presented a method the 

fibre-bed compaction curve directly from composite prepregs. Li and Tucker (2002) 

developed a two-phase continuum based process model assuming hyperelasticity for the 

fibre-bed stress, which is valid for large deformations. The advantage of their work over 

the model of Hubert et al. (1999) is that the large deformation formulation allows them to 

update the mesh geometry and fibre orientation during the course of process. This is 

especially important for composites with lower viscosity resins such as AS4/3501-6. Li 

and Tucker (2002) stated that their formulation has another advantage in that it accounts 

for spatial variation of fluid volume fraction while that of Hubert(1996) and Hubert et al. 

(1999) does not. This is not correct as Hubertôs (1996) simplification of mass 

conservation equation includes an error that has lead him to unnecessarily assume that the 

spatial variation of volume fraction be negligible. As a matter of fact, the two models 

practically use the same mass conservation equation, and therefore both account for 

spatial variations in volume fraction.  

Larsson et al. (2004) presented a biphasic continuum model with large deformation 

capabilities for resin flow and deformation in a family of forming processes for fibre-

reinforced composites. Liquid composite moulding (LCM) processes such as resin 
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transfer moulding (RTM), vacuum assisted RTM (VARTM), and injection/compression 

liquid composite moulding (I/C-LCM) also involve resin flow phenomena. These include 

infusion of resin through the dry fibrous reinforcement, and also flow-compaction of the 

system under vacuum or applied pressure. Some relevant work on modeling the resin 

flow phenomena in LCM processes include Bruschke and Advani (1990), Gebart (1992), 

Trochu et al. (1993, 2006), Tucker and Dessenberger (1994), Pillai and Advani (1998), 

Pillai et al. (2000,2001), Pillai (2002), Bréard et al. (2003a, 2003b), and Tan and Pillai 

(2012a, 2012b) in chronological order. 

1.3.  Stress Development during Cure 

At gelation, a 3D network of molecules has formed all over the body of thermoset resin. 

This network causes the resin to attain elastic properties, and therefore from this point on 

it can develop residual stresses. By the progress of cure, the network of molecules gets 

more intricate and strong and the elastic moduli of the resin grow exponentially. This 

does not contradict the general understanding that the mechanical behaviour of polymer 

resins at any stage of cure is best represented by viscoelastic behaviour as viscoelastic 

formulation includes both viscous and elastic behaviour. 

In early process models such as the works done by Loos and Springer (1983) and Nelson 

and Cairns (1989) very simple elastic relationship were used to represent the behaviour of 

the composite material. The next generation of stress models made the assumption that at 

every time-step of the simulation the material behaviour may be considered elastic, but 

the moduli increase with the progress of cure. Some examples include the works of White 

and Hahn (1992), Bogetti and Gillespie (1992), Johnston et al (2001), Fernlund et al. 

(2002a, 2002b, 2003), and Antonucci et al. (2006). These models are referred to as Cure 

Hardening Instantaneously Linear Elastic or CHILE models, where the modulus of 

elasticity changes as a function of the instantaneous temperature and degree of cure.  

As a part of COMPRO, Johnston et al. (2001) presented a plane strain FE model for 

simulation of the development of process-induced deformation during autoclave 

processing of composites. A CHILE model to represent the mechanical behaviour of the 
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composite matrix resin, and micromechanics models were used to determine composite 

ply mechanical properties and behaviour, including thermal expansion and cure-

shrinkage. The effect of tooling on the final shape of the composite were also considered 

through simulation of tool-part interfaces and post-processing tool removal. Twigg et al. 

(2004a, 2004b) performed an experimental investigation into the effects of tool-part 

interaction on the final shape of cured composite parts, and presented analytical and 

numerical simulations to validate the experimentally obtained relationships. Osooly 

(2008) developed large deformation and contact capabilities applicable to the numerical 

simulation of stress development and deformation of curing composites, and numerically 

modeled the  experiments done by Twigg et al. (2004a, 2004b) on tool-part interaction. 

Arafath et al. (2008, 2009) presented a cost-effective analytical solution for the process 

induced stresses and deformation in composite parts with flat and curved geometries 

cured on a solid tool.  

According to Zobeiry (2006) and Zobeiry et al. (2010), since the polymer spends 

considerable time in the viscoelastic regime during cure, it is important to check the 

validity and generality of a CHILE constitutive model relative to a full viscoelastic 

model. Using fundamental principles of viscoelasticity Zobeiry et al. (2010) showed that 

in a large majority of cases CHILE model is quite accurate and efficient in predicting the 

behaviour of the composite during processing leading to accurate predictions of residual 

stresses and/or dimensional distortions of the composite after tool removal. Using 

viscoelastic formulations to model the stress development during the cure of composites 

has gained more popularity during the past two decades. Some examples of these 

investigations include White and Kim (1998), Adolf and Martin (1996), Prasatya et al 

(2001), and Zhu et al. (2001), and Melo and Radford (2004). For these models, 

viscoelastic characterization of the behaviour of thermosetting polymers is crucial. Kim 

and White (1996) used dynamic mechanical analyzer (DMA) to characterize the 

relaxation behaviour of 3501-6 resin at different degrees of cure ranging from 0.57 to 

0.98. Prasatya et al. (2001) presented a similar viscoelastic model for the bulk behaviour 

of Hexcel 8551-7 resin. 
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Zobeiry (2006) and Zobeiry et al. (2006) presented a differential implementation of the 

viscoelastic response of curing thermoset composites to predict the residual stresses and 

the final geometry of the composite part. A viscoelastic solid behaviour based on 

generalized Maxwell elements were assumed for the resin, and a solid micromechanics 

scheme was applied in the Laplace space. The results were then transferred back to time 

domain to obtain the coefficients of a generalized Maxwell model for the composite 

material. Zobeiry (2006) and Zobeiry et al. (2010) also presented a pseudo-viscoelastic 

formulation as an efficient approximation to fully viscoelastic models for the behaviour 

of thermoset resins during typical autoclave cycles. Zobeiry et al. (2010) showed that 

CHILE model is merely one form of the pseudo-viscoelastic approach where the modulus 

of resin is assumed to be instantaneously elastic, but the value of the modulus is set equal 

to the relaxation modulus of resin at a variable time, or its storage modulus at a certain 

frequency. In the current work, we will use the óvariable timeô version of the pseudo-

viscoelastic approach. 

1.4.  Motivation 

As it was mentioned before, the current approach to process modeling is to first run the 

flow module until the gelation of resin, then the geometry and volume fractions of the 

system are updated and the laminate is remeshed if needed. The final step is to run the 

stress model from the beginning of the processing cycle to capture the development of 

stresses in the composite system. There are a few drawbacks in the above approach; one 

is that there is an overlap in the simulation process as both flow model and stress model 

need to simulate the processing before the gelation of resin leading to an inherent 

inefficiency in the above method. Another disadvantage is that considering cases (e.g. 

sandwich panels) where at a certain time during the processing resin has gelled at one 

side of the composite structure but it is still a viscous fluid at the other side the 

identification of a gelation point for the system may prove to be difficult. More 

importantly, using the two-step approach does not capture the interaction of resin flow 

and its effects on how the stresses develop in the composite laminate. 
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If the flow model and stress model can be integrated into a unique model that 

simultaneously captures and simulates both the resin flow and stress development, the 

new integrated model would not have any of the disadvantages mentioned above for the 

separate application of the two models. This integrated approach would result in a more 

realistic representation of the complex phenomena which occur during the processing of 

composite. Not only does this method capture the development of the state variables 

relevant to flow and stress at the same time, but it will  also predict the interactions of 

these phenomena during the processing. 

1.5.  Research Objectives and Thesis Outline 

The main objective of this thesis is to integrate the resin flow and stress development 

modules in COMPRO into a unique module that can capture both of these effects at the 

same time and in seamless fashion. In order to make this integration happen, we need to 

have a set of governing equations that encompasses both the two-phase formulation for 

flow through porous media (governing equations for flow) and the equilibrium equation 

(governing equation for stress development). To that end, we base our framework on a 

two-phase system for resin flow through the fibre-bed and identify and implement the 

necessary adjustments so that it also accurately predicts the stress development response 

of the composite material during cure. 

The most common approach to FE analysis of flow in porous media is the so-called óu-pô 

formulation, where the displacement of the solid skeleton and the pressure of the fluid 

phase are assumed to be main variables. In the u-p formulation pressure values are 

required to be pre-defined as boundary conditions at any permeable boundary. This may 

cause problems in our efforts to utilize the two-phase formulation for stress development 

in cured composites, as the fluid pressure values in that context are in fact a part of the 

total stress of the system. Also as will be discussed later, the finite elements based on u-p 

formulation are susceptible to pressure oscillations at the start of analysis which is likely 

to cause convergence problems whenever a nonlinear solution scheme is needed. These 

issues has led us to investigate the derivation of the governing equations for the two-

phase media and an alternative FE approach in u-v-p formulation. The additional 
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variable, v, represents the velocity of the fluid phase. The u-v-p formulation is superior to 

u-p formulation in the above-mentioned issues. It also accommodates the inclusion of 

shear stress components for the fluid phase that enables the approach to also model 

purely viscous fluids and their boundary layer with a two-phase system. 

In this work, we present the framework of integration in modeling of flow and stress for 

the pseudo-viscoelastic formulation presented by Zobeiry (2010). However, the 

framework can readily be adapted to the more comprehensive differential viscoelastic 

formulation introduced by Zobeiry (2006) and Zobeiry et al. (2006). 

Based on the above discussion, the thesis is organized as follows: 

Chapter 2 - Governing Equations and FE Model of Two-phase Media 

Derivation of the equations governing the behaviour of two-phase media involving 

distinct phases of fluid and solid constituents is reviewed. Specialized FE elements are 

introduced and formulated to model the two-phase behaviour based on a u-v-p 

formulation. 

Chapter 3 - Validation and Verification of Two-phase model 

Through examples varying from general porous flow problems to problems pertaining to 

flow of resin in the processing of composite laminates , the response of the developed FE 

model is validated. Also, the capability of the proposed formulation at capturing the flow 

behaviour at a boundary between a viscous fluid and a porous wall is demonstrated. 

Chapter 4 - Integration of Modeling from Fluid to Cured Resin 

The necessary modifications in the two-phase model in order to capture stress 

development as well as resin flow are identified and developed. These include but are not 

limited to modifications in the mass conservation equation to account for a 

compressibility consistent with the stress models for cured composites, introduction of a 

modified concept of effective stress, and modifications to the numerical solution 

technique. 
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Chapter 5 - Numerical Applications 

In the first section of this chapter, the application of the current two-phase model to stress 

behaviour in cured elastic composite materials is verified. The second part involves 

various examples from single-element problems dealing with the development of residual 

stresses in curing composite materials throughout a single-hold cure cycle to more 

geometrically complex composite laminates undergoing standard cure cycles. The 

response of the current integrated approach is compared with those obtained by common 

pseudo-viscoelastic approach. 

Chapter 6 - Conclusions and Further Work 

A discussion of the significance and contributions of the present work is provided. 

Recommendations for improvements and further development of the current framework 

are also presented. 
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1.6.  Figures 

 

 

(a) 

 

(b) 

Figure 1.1: Autoclave processing steps, (a) lay-up, (b) cure with a controller loop (adapted from 

Hubert, 1996) 
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Figure 1.2: Integrated sub-model approach in process modeling (adapted from Johnston et al., 

2001) 

 

Figure 1.3: Different regimes of resin behaviour during a typical autoclave processing history 

State 

Variables

Database

Output 

module

Stress 

module

Autoclave 

controller module

Thermo-chemical 

module

Flow 

module

Input 

module

State 

Variables

Database

Output 

module

Stress 

module

Autoclave 

controller module

Thermo-chemical 

module

Flow 

module

Input 

module

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

Time (min)

T
e

m
p

e
ra

tu
re

(°
C

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
re

e
 o

f 
c
u

re

Autoclave Temp.

Part Temp.

Degree of cure

Flow regime

Stress development

regime

0

20

40

60

80

100

120

140

160

180

0 50 100 150 200 250 300 350

Time (min)

T
e

m
p

e
ra

tu
re

(°
C

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
e

g
re

e
 o

f 
c
u

re

Autoclave Temp.

Part Temp.

Degree of cure

Flow regimeFlow regime

Stress development

regime

Stress development

regime



Chapter 1: Introduction 

 14 

 

Figure 1.4: Time-history of changes in resin viscosity during a typical autoclave processing 

history 

 

 

Figure 1.5: Schematic representation of resin flow through the fibre-bed 
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Chapter 2: Governing Equations and FE Model of Two-phase 

Media 

2.1.  Introduction 

Deformation and flow analysis of porous media using the finite element method has been 

carried out extensively during the past four decades. The pioneering works on this subject 

were due to Sandhu and Wilson (1969) on a linear displacement-pressure (u-p) 

formulation for seepage analysis, and Ghaboussi and Wilson (1972) on a variational 

formulation for the dynamic response of elastic porous solids. Both approaches dealt with 

elastic solid structures with the latter formulation leading to a displacement-relative 

velocity (u-v) FE treatment. Since then, the common agreement in the work of various 

authors has been to use the u-p representation in quasi-static problems such as 

consolidation (of porous media, specifically soils), and the u-v formulation in analysing 

the dynamic response of porous media such as liquefaction of soils under earthquake 

loading. This viewpoint, even though representing the common trend among the relevant 

articles published so far, does not seem to have entered the notable textbooks on the finite 

element method, as the u-p formulation seems to be the only FE representation of porous 

media discussed and documented in the FE textbooks for either quasi-static or dynamic 

analyses.  

Prevost (1983) presented displacement-pressure FE formulation for the linear and 

nonlinear analysis of consolidation. He also developed displacement-velocity 

formulations for the transient response of saturated porous media [Prevost(1982,1985)]. 

To the best of the authorôs knowledge, he was the first to use a penalty parameter to 

eliminate the pressure for the case of incompressible fluids. He also suggested that the 

fluid contribution to the equilibrium equations be always treated implicitly in order to 

remove the stringent time-step size restriction associated with the presence of a stiff fluid 

[Prevost(1985)].  
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Simon et al. (1986a) evaluated and compared u-p and u-v formulations in modeling the 

dynamic response of saturated porous media in 1D problems. In a dynamic analysis, they 

concluded that the u-v method is slightly more accurate than the u-p formulation. In the 

derivation of the u-p formulation, one needs to rewrite the momentum balance equation 

of the fluid phase to express the relative velocity (or relative displacement) as a function 

of the other two major variables (u & p) to be substituted into the mass conservation 

equation. This procedure leads to the elimination of the relative velocity from the 

governing equations of the system. In order to rewrite the fluid phase equilibrium 

equation in the above fashion, it is commonly assumed that in the generalized Darcyôs 

law the inertial terms containing the time derivative of fluid relative velocity are 

negligible. This should play a major role in the u-p formulationôs slightly inferior results 

compared to those of u-v in the dynamic behaviour of flow in porous media. 

Simon et al. (1986b) reviewed and compared the u-v, u-v-p, u-v-p-ů formulations among 

others for the dynamic analysis of saturated porous media. They concluded that compared 

to u-v formulation, u-v-p and u-v-p-ů approaches result in slightly more accurate results 

for fluid pressure and total stress with a minimal loss in efficiency. In their representation 

of the sub-matrices for the u-v-p approach, however, it seems that there is a typographical 

error: the vp component of the stiffness matrix includes the divergence of the pressure 

shape functions which is not consistent with their relevant force term as it includes the 

applied pressure on the boundary of the system. As we will see in the formulation 

presented here, to avoid C0 continuity for pressure degrees of freedom between elements, 

we use integration by parts to eliminate any spatial differentiation of the pressure shape 

functions, and it is only then that the applied pressure on the boundary of the system 

appears in the relevant force term. To derive the u-v formulation, one needs to substitute 

the mass conservation equation into the equilibrium equations of the system. Pressure is 

solved with respect to the other variables and is then substituted into the generalized 

Darcyôs law and the total equilibrium equation. If the system is incompressible, a u-v 

formulation cannot be achieved since there is no pressure term in the mass conservation 

equation. In order to derive u-v formulations for incompressible cases, some researchers 

have introduced a large penalty parameter into the mass conservation of the system as the 

bulk modulus of the system, and thus incorporating pressure in the continuity equation. 
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Depending on the elimination of pressure at the differential equations level or after FE 

implementation, these approaches have been called penalty and mixed-penalty methods 

respectively by Spilker and Maxian (1990). They developed a so-called mixed-penalty 

FE formulation for linear biphasic response of soft tissues and compared it with a penalty 

form previously proposed. They found the mixed-penalty method to be superior over the 

penalty method in locking issues and sensitivity to mesh irregularities. However, they 

also noted that the two methods produce the same equations for four-node quadrilaterals. 

In a two-part paper, Almeida and Spilker (1997,1998) used the so-called mixed penalty 

method and also velocity-pressure (similar and equivalent to u-p) FE formulations to 

solve non-linear biphasic equations including strain-dependent permeability and a 

hyperelastic behaviour for the solid phase. They found their velocity-pressure method to 

be more efficient computationally due to the lower number of DOFs involved. However, 

they observed that the velocity-pressure formulation produces fluid and relative velocity 

fields that are not as accurate as the ones from the mixed-penalty method. They also 

reported some difficulties with the velocity-pressure formulation associated with 

oscillations of the stress and strain fields at early times and near the loaded surface that 

prevented the convergence of the nonlinear solution. However, considering the 

computational time, they gave the advantage to the velocity-pressure formulation at least 

for quasi-static problems. They considered dynamic problems the turf in which mixed-

penalty formulation would fare stronger than the velocity-pressure formulation. In 

dynamic problems such as wave propagation, the extension of the velocity-pressure 

formulation would mean that either the fluid inertia terms be neglected or the fluid 

momentum equation be integrated in time. They argued that the former option is 

acceptable in soil mechanics with porosities around 0.3, but would not be very suitable 

for soft tissues with porosities in the range of 0.75 or more. 

Chan et al. (2000) presented a mixed-penalty finite element model for the behaviour of 

articular cartilage in the biomechanics of diarthrodial joints. Using mixture theory, they 

added a viscous shear term to the hydrostatic pressure to have a complete stress tensor for 

the fluid phase. They argue that this change makes it possible to model a single-phase 

continuum as a limiting case of biphasic material if the solid or fluid volume fraction is 
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set to zero. This characteristic is helpful in modeling the interfacial response and 

interaction of porous flow and viscous flow. By the help of special assembly 

considerations on the interface, and using their FE model, they simulated Taylorôs 

problem of Couette flow over a rigid (or deformable) porous layer. 

Here, volume averaging technique is used to derive the complete set of governing 

equations for the response of a two-phase system including a solid structure and fluid 

matrix. The shear stress terms of the fluid phase are not neglected leading to the Darcy-

Brinkman equation for the momentum balance of the fluid phase. Neither fluid pressure 

nor relative velocity of fluid are eliminated from the formulation to have a complete u-v-

p representation of the behaviour.  

2.2.  Volume Averaging Method 

In the general case of a two-phase medium where a fluid interacts with a porous structure, 

one needs to know how the fluid is transported through the pores from one point to 

another in the domain of the problem. The direct analysis of this problem in terms of 

transport equations that are valid within the pores is practically impossible due to the 

complex structure of the typical porous medium. Rather than tackle this problem in the 

form of equations that are valid in the pores, the equations relevant to each phase can be 

spatially averaged to produce equations that are valid within the domain of the two-phase 

medium. The method of volume averaging is a technique developed to rigorously 

generalize continuum equations to multiphase media [Whitaker (1998)]. Tucker and 

Dessenberger (1994) applied this method to the composite processing method of resin 

transfer moulding (RTM). They developed the governing equations for flow and heat 

transfer through stationary fibre-beds. Considering the solid phase to be stationary, is a 

very relevant assumption in RTM. By defining a phase function, it is possible to have a 

formal description of the microscopic geometry of the porous medium. The phase 

function for the a phase in a multi-phase medium is  
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Three distinct average values for a variable in a multi-phase medium may be defined. The 

spatial average is the average value of a parameter in all phases within a representative 

volume V 

 ñ=ðà
V

BdV
V

B
1

 (2.2) 

Phase average is defined as the average value of a parameter at points that lie within a 

single phase Ŭ, but still over the entire volume V 
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 (2.3) 

Intrinsic phase average is defined as the average value of a parameter at points that lie 

within a single phase Ŭ over the volume occupied by that phase. It can be represented as 
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Volume fraction of the Ŭ-phase is defined as 

 dVX
VV

V

V

ñ== a
a

af
1

 (2.5) 

The phase and intrinsic phase averages for an arbitrary Ŭ-phase are related by 

 a
aaa f ðà=ðà BB  (2.6) 

In the following, we review some useful theorems of volume averaging that are very 

useful in deriving the averaged governing equations of a two-phase system. If B is 

continuous within the Ŭ-phase, the first theorem of volume averaging states that the 

average of gradient of B in the Ŭ-phase may be expressed as [Gray and Lee (1977), 

Whitaker (1998)] 

 ñ+ðÐà=ðàÐ

ab

abaaa

S

dSB
V

BB n
1

 (2.7) 
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where b denotes the other phase of the two-phase medium. abS  is the interfacial surface 

between Ŭ-phase and ɓ-phase, and abn  is the unit vector normal to abS directed from Ŭ- 

to ɓ-phase. A similar equation can be written for the average of divergence of a tensor as 

follows [Whitaker (1998)] 

 .
1
ñ Ö+ðàÖÐ=ðÖàÐ

ab

abaaa

S

dS
V

nAAA  (2.8) 

2.3.  Governing Equations 

Assuming a two-phase system consisting of a fluid phase and a solid porous structure 

where each phase is incompressible, the microscopic equations for mass conservation of 

the fluid phase and the solid phase may be written as 

 
0

,0

=ÖÐ

=ÖÐ

f

m

v

v
 (2.9) 

where v is the vector of velocity, and f and m represent the solid phase (fibres) and the 

fluid phase (resin matrix) respectively. Taking the phase average of the microscopic 

equation of mass conservation of the fluid phase in (2.9) and incorporating the theorem 

presented in (2.8) leads to 

 0
1

=Ö+ðàÖÐ ñ
mfS

mfmm dS
V

nvv  (2.10) 

where mfS is the interfacial surface between the fluid and solid phase, and mfn  is the unit 

vector normal to mfS  directed from the fluid phase to the solid phase. Using the transport 

theorem, Tucker and Dessenberger (1994) showed that the second term on the left-hand-

side of the above equation is equal to the rate of resin volume fraction, i.e. 
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Therefore, the macroscopic form of the mass conservation equation of the fluid phase 

may be written as 

 0=ðàÖÐ+
µ

µ
m

m

t
v

f
 (2.12) 

The same procedure may be performed to obtain the macroscopic form of the mass 

conservation equation of the solid phase in the form of 

 0=ðàÖÐ+
µ

µ
f

f

t
v

f
 (2.13) 

Assuming that the pores are fully saturated by the fluid phase, the volume fractions of the 

fibre-bed and the matrix are related by 

 1=+ mf ff  (2.14) 

Adding the two mass conservation equations in (2.12) and (2.13) together and combining 

the result with (2.14) leads to the mass conservation equation of the two-phase system 

 0=ðàÖÐ+ðàÖÐ mf vv  (2.15) 

Assuming that the inertia is not of consequence and the effect of body forces including 

gravity is negligible, the microscopic equations for equilibrium equation of the fluid 

phase and the solid phase take the simple form of 

 
0ů

0ů

=ÖÐ

=ÖÐ

f

m ,
 (2.16) 

where ů represent the stress tensor. Taking the phase average of the microscopic 

equilibrium equation of the fluid phase in (2.16) and incorporating the theorem presented 

in (2.8) leads to 

 0nůů =Ö+ðàÖÐ ñ
mfS

mfmm dS
V

1
 (2.17) 

The total stress tensor of the fluid phase may be decomposed into a hydrostatic pressure 

term Pm and a deviatoric stress tensor Űm 
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 IŰů mmm P-=  (2.18) 

where I  is the second-order unit tensor. Thus, the first term on the left-hand-side of 

(2.17) may be written in the form of 

 m

m

m

m

mmmmmm PPP ff Ððà-ðÐà-ðàÖÐ=ðÐà-ðàÖÐ=ðàÖÐ ŰŰů  (2.19) 

Substituting (2.19) into (2.17) leads to 

 0nůŰ =Ö+Ððà-ðàÖÐ+ðÐà- ñ
mfS

mfmm

m

mm

m

mm dS
V

PP
1

ff  (2.20) 

If the vector of drag forces between the fluid phase and the solid phase is defined as 

 ñ Ö-Ððà=

mfS

mfmm

m

md dS
V

P nůf
1

f  (2.21) 

the equilibrium equation of the fluid phase takes the final form of 

 0fŰ =-ðàÖÐ+ðÐà- dm

m

mm Pf  (2.22) 

Taking the phase average of the microscopic equilibrium equation of the solid phase in 

(2.16) and incorporating the theorem presented in (2.8) leads to 

 0nůů =Ö+ðàÖÐ ñ
mfS

fmff dS
V

1
 (2.23) 

If we assume that the surface tension between the fluid and solid particles may be 

neglected, then we may write [Tucker and Dessenberger (1994)] 

 mfmfmfmf Son        0nůnů =Ö+Ö  (2.24) 

which leads to 

 ññ Ö-=Ö

mfmf S

mfm

S

fmf dS
V

dS
V

nůnů
11

 (2.25) 

Considering the definition of drag force in (2.21, the above equation may be rewritten as 
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m

m

md

S

fmf PdS
V

mf

fÐðà-=Öñ fnů
1

 (2.26) 

Substituting (2.26) into (2.23) leads to the following form of the equilibrium equation of 

the solid phase 

 0fů =Ððà-+ðàÖÐ m

m

mdf P f  (2.27) 

Assuming that the absolute value of pressure is directly transferred to the solid particles 

one may decompose the intrinsic phase average of the fibre-bed stress tensor into 

hydrostatic pressure of the fluid (which is transferred to the fibres) and f

fðàŰ  

 IŰů
m

m

f

f

f

f P ðà-ðà=ðà  (2.28) 

where f

fðàŰ  represents a stress component dependent on the deformation of the fibre-

bed and may be related to the effective stress of the fibre-bed, ðàfŰ , by (2.6). Applying 

(2.6) to the left-hand-side of the above equation leads to 

 IŰů
m

mf

f

fff P ðà-ðà=ðà ff  (2.29) 

Substituting (2.14) in (2.29), we arrive at 

 ( )IŰů m

m

mff P f-ðà-ðà=ðà 1  (2.30) 

which leads to 
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Űů
 (2.31) 

Substituting (2.31) into (2.27) leads to 

 ( ) 0fŰ =-ðÐà-+ðàÖÐ m

m

mdf P f1  (2.32) 

The mass conservation equation in (2.15) combined with the equilibrium equations of the 

two phases in (2.22) and (2.32) leads to the system of governing equations of the two-

phase system 
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 (2.33) 

The constitutive behaviour of the fibre-bed could be expressed as 

 ( )[ ]Tf

f

f

ff ðÐà+ðÐà=ðà uuCŰ
2

1
 (2.34) 

where u is the displacement vector, and C is the material stiffness tensor of the fibre-bed. 

For the shear stress in a viscous fluid, we may write 

 [ ]T

mmm )( vvŰ Ð+Ð=m  (2.35) 

where ɛ is the viscosity of the fluid phase. The volume-averaged form of the above 

equation is 

 [ ]T

mmm ðàÐ+ðàÐ=ðà vvŰ m  (2.36) 

in which, for ðàÐmv , we may rewrite the volume averaging theorem in (2.7) to have 

 dS
V

mfS

mfmmm ñ+ðÐà=ðàÐ nvvv
1

 (2.37) 

It is commonly assumed that the slip velocity at the interface is zero [Tucker and 

Dessenberger (1994)], and therefore 

 mffm Son            vv =  (2.38) 

Thus, the integral term on the right-hand-side of (2.37), may be rewritten as 

 dS
V

mfS

mffmm ñ+ðÐà=ðàÐ nvvv
1

 (2.39) 

Arguing that the changes in the solid phase velocityfv  are small in comparison to the 

changes in fluid phase velocity 
mv , we assume that fv  on the interface can be 
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approximated with f

fðàv . Incorporating this assumption into the integral term in (2.39), 

we have 
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 (2.40) 

Applying the averaging theorem in (2.7) to the phase function Xm leads to 

 ñ+ðÐà=ðàÐ

mfS

mfmmm dSX
V

XX n
1

 (2.41) 

Within the fluid phase, Xm is equal to unity and 
mXÐ  equals zero. Also, it is readily 

deduced from (2.3) that ðà mX  is simply the fluid volume fraction 
mf . Therefore, (2.41) 

may be simplified to [Tucker and Dessenberger (1994)] 

 dS
V

mfS

mfm ñ-=Ð n
1

f  (2.42) 

Substituting (2.42) into (2.40) results in 

 
m

f

f

S

mfm dS
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fÐð-àºñ vnv
1

 (2.43) 

which in turn, if substituted in (2.39) leads to 

 m

f

fmm fÐðà-ðÐàºðàÐ vvv  (2.44) 

Substituting the above into (2.36) and neglecting the approximations, we get 

 ( ){ }f

fmm

f

f

T

mmm ðàÐ+Ððà-ðÐà+ðÐà=ðà vvvvŰ ffm  (2.45) 

Rewriting the above equation leads to 

 ( )( ){ }T

m

f

fmm

f

fmm ffm Ððà-ðÐà+Ððà-ðÐà=ðà vvvvŰ  (2.46) 

The drag force between the matrix and fibre-bed may be written in the following form 

that is consistent with Darcyôs law [Whitaker (1998), Tucker and Dessenberger (1994)] 
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 ( )f

f

m

mmd ðà-ðà= -
vvSf

12mf  (2.47) 

where S is the matrix of permeability of the fibre-bed. Substituting (2.34) and (2.47) into 

(2.32), we arrive at the final form of the solid phase equilibrium equation 
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 (2.48) 

Substituting (2.46) and (2.47) into the second equation of (2.33) leads to the final form of 

the fluid matrix equilibrium equation 
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Thus, the set of equations (2.33) may be expressed in the form 
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In order to simplify the above equation, we define the velocity vector of the composite 

system (which is essentially equal to the velocity vector of the fibre-bed) as 

 f

fc ðà=vv  (2.51) 

and the volume-averaged relative velocity (or flow velocity) of the resin as 

 ( )ff

m

mmflow ðà-ðà= vvv f  (2.52) 

The above definition of flow velocity is commonly used in the literature in FE 

formulation of flow in porous media [e.g. Lewis and Schrefler (1998)]. Based on (2.51) 

and (2.52) we may write the following relationships between the different velocity fields 
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Using the above equations, one may easily arrive at the governing equations with respect 

to the new velocity variables 
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where 

 
cc uv #=  (2.55) 

and uc is the composite displacement field. For the sake of convenience, variables uc, 

vflow, m

mPðà , and 
mf  are replaced with u, v, P, and f respectively, i.e. 
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vv
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 (2.56) 

 Using index notations, the set of governing equations (2.54) may be written in the form 

 0,, =+ iiii vu#  (2.57) 

 ( )( ){ }[ ] 01

,,,,,, =-++++- -

jijjijijjijii vSuvuvP fmffmf ##  (2.58) 

 ( )[ ] ( ) 01
2

1
,

1

,,, =--++ -

ijijjkllkijkl PvSuuC ffm  (2.59) 

Adding up the two equilibrium equations of (2.58) and (2.59), leads to the total 

equilibrium equation of the domain 
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 ( )[ ] ( )( ){ }[ ] 0
2

1
,,,,,,,,, =-+++++ ijijijjijijkllkijkl PuvuvuuC ## ffm  (2.60) 

The mass conservation equation in (2.57), along with the equilibrium equation of the 

matrix in (2.58), and the total equilibrium equation (2.60) constitute the set of governing 

equations 
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that will be used in formulating the finite element discretization equations. The complete 

form of the governing equations presented above is especially useful in modeling the 

interaction at the boundary of a two-phase system with a neighbouring viscous fluid. As 

the shear stress of the fluid is not neglected, a few adjustment in the element leads to a 

correct representation of a purely viscous fluid. This will be discussed more in a later 

section. Also, the complete presentation of the stress components of the fluid phase helps 

in establishing the theoretical framework to extend the two-phase formulation to the 

cured composite material in which the resin phase is capable of carrying shear stress. 

In many cases of real-life porous media, the terms involving the shear stresses of the fluid 

phase are usually negligible compared to the terms involving the permeability of the 

system [Tucker and Dessenberger (1994)]. Therefore, the above set of governing 

equations in (2.61) may be commonly found in the literature in the following simplified 

form where the shear stress contributions of the fluid phase are neglected. 
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2.4.  Finite Element Implementation 

In this section, the general set of governing equations in (2.61) is implemented in the 

finite element method. Two different elements are introduced and formulated based on a 

u-v-p formulation where the main degrees of freedom are displacement of the system, 

relative fluid velocity, and the pressure of the fluid phase. 

2.4.1.  Q2P-1 element 

A 2D Q2P-1 finite element is developed considering the set of governing equations in 

(2.61) compared to the regular finite elements based on the u-p formulation utilized for 

modeling flow in porous media in the commercial FE codes (such as ABAQUS). 

In the FE modeling of incompressible Navier-Stokes equations, the terminology of QmP-n 

is related to 2D quadrilateral and 3D hexahedral elements. It indicates that the velocity is 

approximated by a continuous piecewise polynomial of degree m in each direction and a 

pressure approximation that is a discontinuous piecewise polynomial of degree n (not of 

degree n in each direction, for 2D quadrilaterals as if the pressure is represented by a 

triangle within the quadrilateral). This element passes the LBB condition for stability and 

is considered to be one of the most accurate 2D elements in incompressible viscous flow  

[Gresho and Sani (2000)]. The Q2P-1 element used in FE representation of incompressible 

Navier-Stokes flow is the inspiration for the namesake element developed in this work 

where the kinematic degrees of freedom (system displacement and fluid velocity) are 

approximated by 2
nd

 degree polynomials in each direction and the fluid pressure is 

approximated by linear distribution over the element. 

The Q2P-1 element presented here is a 2D bi-quadratic isoparametric element with 9 

nodes for the system displacement and relative velocity of the fluid phase. As depicted in 

Figure 2.1, three internal nodes are assigned to pressure of the fluid phase, therefore 

enabling every element to represent its internal pressure distribution as a linear surface. 

For simplicity, we will also refer to this element as the 9-3 element.  
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2.4.2.  Galerkin finite element equations 

Integrating the equations in (2.61) over a domain ɋ using some weight functions wp, and 

using integration by parts on occasion we arrive at 

 0)( ,, =W+ñ
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where ũ denotes the boundary of the domain and ũů is the portion of the boundary where 

tractions are specified. The components of effective stress tensor in the fibre-bed are 

defined by 

 )(
2

1
,, kllkijklij uuC +=¡s  (2.66) 

and the components of shear stress tensor in the resin are expressed as 

 ( )( ){ }
ijijjijiij uvuv ,,,,
## ffmt +++=  (2.67) 

The term jijijij nP )( dts -+¡  in (2.65) appears as the result of the application of 

integration by parts to all the three terms in the last equation of (2.61) and represents the 

vector of total traction force applied at the boundary of the system. The term 

jijij nP )( dft-  in (2.64) appears as the result of the application of integration by parts to 

the first and second terms in the second equation in (2.61) and represents the fluid-phase 

share of the vector of total traction force applied at the boundary of  the system.  
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Writing Equations (2.65), (2.64), and (2.63) respectively in matrix form for the 9-3 finite 

element depicted in Figure 2.1, we arrive at 
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where 
118³u , 

118³v , and 
13³p  are the vectors of the degrees of freedom relating to the total 

displacement field, relative resin velocity, and resin pressure respectively. Defining the 

traction vector on the boundary of the two-phase medium as 

 ( )jijijij

n

i nPt dts -+¡=)(  (2.69) 

we may rewrite (2.65) to have 
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which leads to the equation in the first row of (2.68). Hence, we may arrive at the 

definitions of some of the components of the matrices in (2.68) 
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 318³=0Cup
 (2.76) 
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Where t is the total traction vector on the boundary of the medium with components in x- 

and y-directions in the form of 
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and Nd is defined as 
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where N is the matrix of shape functions which interpolate the displacement and relative 

velocity fields on the element. For a bi-quadratic 9-node element, N is expressed in the 

form 

 [ ]921 ... NNN=N  (2.80) 

and assuming that the element has three internal nodes for pressure interpolation, we may 

introduce the matrix of pressure shape functions as 

 [ ]pppp NNN 321=N  (2.81) 

The displacement, resin relative velocity, and the pressure fields are interpolated on the 

domain of the element using the following equations 
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The displacement shape functions may be written as follows 
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The definition presented in (2.79) is relevant if the vector of main variables is defined as 
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while we are interested to present the vectors of displacement and relative resin velocity 

degrees of freedom in the form 
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which leads to rewriting (2.79) so that 
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B is a matrix containing the spatial derivatives of the shape functions defined in (2.83), 

and may be expressed in the form 
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B1 is another matrix containing the spatial derivatives of the shape functions defined in 

(2.83), and is defined as  
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ŭ is defined by 

 [ ]T011=ŭ  (2.89) 
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To calculate the spatial derivatives of the shape functions, we need to establish a 

relationship between the general (x,y) coordinates and the local (ɝ,ɖ) coordinates through 

the Jacobian matrix J as follows 
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As the element is isoparametric, the geometry is interpolated over the element by the 

same shape functions as displacement and velocity fields, thus leading to 
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which upon substitution in (2.90) yields 
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Using the inverse of Jacobian matrix, we may define a matrix consisting of the spatial 

derivative of the shape functions as 
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where the inverse of Jacobian can be easily written as 
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B  facilitates the definition of B based on the components of B  as 
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To determine the pressure shape functions N
p
, letôs assume that the coordinates of the 

three pressure nodes are 

 ( ) ( ) ( )333222111 ,   ,,   ,, hxhxhx PPP  (2.97) 

To find the shape function for the first pressure node, we write the equation of the straight 

line that passes through nodes 2 and 3 to have 
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We may set the first shape function for pressure to be 
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and the parameter a may be calculated by setting ( )1, 111 =hxN . Substituting the 

calculated value of a into (2.99) leads to 
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The other two pressure shape functions of the 9-3 element can be derived in a similar 

approach 
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We choose the location of the pressure nodes to be 

 ( ) ( ) ( )31,0   ,31,31   ,31,31 321 PPP ---  

which leads to the simplification of the equations for the pressure shape functions as 

follows 
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In equation (2.71) DT is the matrix of tangent moduli of the fibre-bed, which in the case 

of a 2D isotropic plane strain problem may be described as 
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with E being the Youngôs modulus and n the Poissonôs ratio of the fibre-bed. 

Defining the resinôs share of the applied traction vector on the boundary of the system as 
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we may rewrite (2.64) to have 
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Equation (2.108) then leads to the system of equations related to the second row of 

matrices in Eqn. (2.68). Thus, we may arrive at the definition of the components on the 

second row of the matrices in (2.68) 
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Where B2 is a matrix consisting of the displacement shape functions and the spatial 

derivatives and the resin volume fraction f in the form of 
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With the assumption of incompressibility of the phases, we may write the following 

equations for the initial and current values of the resin volume fraction 
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where 
0f is the initial value of resin volume fraction, Vm0 is the initial volume of the 

resin, and ȹVm is the change in the volume of resin due to flow which is the only source 

of any change in the volume of the system. Vc0 is the initial total volume of the composite 

system. Dividing the numerator and denominator of the second equation in (2.117) and 

taking into account that that the volumetric strain of the system is defined as  
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leads to the following equation for the volume fraction of resin 
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Substituting the relationship between the volumetric strain and the total displacement 

field results in 
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To obtain the spatial differentiation of the fluid phase volume fraction on the domain of 

an element from the values of f at the Gauss points, we introduce a special set of shape 

functions with base points located at the 3×3 set of Gauss points (0, 515° ) as 
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Using the above set of shape functions we may write an equation for the field of fluid 

volume fraction in the form of 
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where ű is the vector of the values of fluid volume fraction at Gauss points. Spatial 

gradients of f may be obtained by 

 űNűN yyxx ,,,,        , ff ff ==  (2.123) 

The system of equations in the last row of the matrix equation (2.68) represents the mass 

conservation equation (2.63) that may be rewritten as: 
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which then leads to defining the components on the last row of the matrices in (2.68) 

 183³== 0CK pvpu  (2.125) 
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Hence, the matrix equation (2.68) may be written in the following simplified form 
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2.4.3.  Q1P0 element 

A Q1P0 element is also developed based on the same set of governing equations as the 

previous element. As the naming system suggests, the kinematic degrees of freedom are 

approximated by a linear polynomial in each direction and the pressure is approximated 

by a constant value over the surface of the element. This element is a bi-linear 

isoparametric element with 4 nodes for the system displacement and relative velocity of 

the fluid phase, and only one central node assigned to pressure of the fluid phase. This 

element is depicted schematically in Figure 2.2. This element will also be referred to as 

the 4-1 element. The matrix of shape functions, N, is expressed in the form 

 [ ]4321 NNNN=N  (2.129) 

where the kinematic shape functions are defined as 

 

( )( )

( )( )

( )( )

( )( )hx

hx

hx

hx

+-=

++=

-+=

--=

11
4

1

11
4

1

11
4

1

11
4

1

4

3

2

1

N

N

N

N

 (2.130) 



Chapter 2: Governing Equations and FE Model of Two-phase Media 

 42 

For this element, there is only one shape function for pressure values which is defined as 

unity since the pressure node is located at the origin of ɝ and ɖ axes. 

 1=pN  (2.131) 

The vector of main variables for this element consists of 8 displacement variables, 8 

relative velocity values, and only one variable representing pressure of the fluid phase. 
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Similar to the case of 9-3 element, we introduce a special set of shape functions with base 

points located at the 2×2 set of Gauss points ( 33° ) as 
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The rest of the matrices and vectors relevant to the 4-1 element, are calculated in a similar 

fashion to those of the 9-3 element. One would find the only difference in the size of 

these matrices, and therefore we avoid repeating the formulas here. 

2.4.4.  Boundary conditions 

Due to the inclusion of shear stress components in the stress tensor of the fluid phase in 

the current formulation, we need to specify a complete set of boundary conditions for the 

fluid phase as well as the whole medium. The BCôs relevant to the fluid phase are 

essentially similar to the BCôs used in the FE analysis of 2D incompressible viscous flow, 
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and the BCôs relevant to the whole medium are the same as the ones introduced in FE 

treatment of 2D elastic solids. 

Effectively, the two-phase problem is treated as a superposition of two problems; the 

whole medium with displacement/traction force boundary conditions, and the fluid phase 

with relative velocity/traction force boundary conditions. Distinct combinations of BC 

may be assumed, including: 

¶ Free and impermeable BC, where the total traction vector on the system and the 

relative velocity of the fluid are pre-determined: 

 .

)(

appl

n

i ft =  

 
.defii vv =  

¶ Free and permeable BC, where the total traction vector on the system and also 

the traction vector on the fluid phase are set to the applied external forces on the 

system and the matrix phase respectively: 

 .

)(

appl

n

i ft =  

 
mappli

n

m ft .

)( =  

If the only applied force on the boundary is due to air pressure, then the share of 

the matrix phase of the applied force on the boundary is proportional to the area 

occupied by the matrix phase on the relevant boundary surface. In the case of 

isotropic materials, this ratio is equal to the volume fraction of the matrix phase, 

and therefore we have 
.. applmappl ff Ö=f . 

¶ Constrained and impermeable BC, where both the displacement vector of the 

system and the relative velocity of the matrix phase are set to pre-defined values: 

 
.defii uu =  

 
.defii vv =  
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¶ Constrained and permeable BC, where the displacement vector of the system is 

set to pre-defined values. Also, the traction vector applied to the matrix phase is 

set to the share of that phase of the total traction applied to the boundary: 

 
.defii uu =  

 
mappli

n

m ft .

)( =  

Since in this case, the only plausible applied traction is due to ambient air pressure 

on the boundary, we may write 
.. applmappl ff Ö=f  for isotropic two-phase 

materials. 

 

2.4.5.  Time integration 

To discuss the numerical solution of (2.128), we rewrite the equation in a short form to 

have 

 FXCKX =+ #  (2.134) 

where 
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is the generalized vector of main variables. Using the generalized mid-point integration 

rule, we may write the values of X and its time derivative at an arbitrary time between tn 

and tn+1 in the form 

 ( ) tnnn D-= ++ XXX 1q
#  (2.136) 

 ( ) 11 ++ +-= nnn XXX qqq  (2.137) 
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where 10 ¢¢q . A few well-known special cases of the above scheme are Forward Euler 

( 0=q ), Backward Euler ( 1=q ), and Crank-Nicholson scheme ( 5.0=q ). Writing 

equation (2.134) at time tn+ɗ leads to 

 qqqqq +++++ =+ nnnnn FXCXK #  (2.138) 

Substituting (2.136) and (2.137) into the above equation, we have 

 ( )( ) ( ) qqq qq +++++ =D-++- nnnnnnn t FXXCXXK 111  (2.139) 

which after some manipulations, leads to a system of equations for the vector of main 

variables at the current time tn+1 

 [ ] ( )[ ] qqq qq ++++ D+D--=D+ nnnnn ttt FXKCXKC 11
 (2.140) 

or in an expanded form as 
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Due to irregularities in the coefficient matrices K  and C, such as zero values on the 

diagonals and huge numerical difference between the terms, care needs to be exercised in 

the selection of the parameter ɗ for the solution to be stable in time. In all the numerical 

examples discussed in this work, the backward Euler approach was used and led to stable 

results in all the cases. 

2.4.6.  Non-linear solution scheme 

To implement the step-wise approach for the solution of the displacement vector, the 

component of the first term in (2.138) that includes Kuu i.e. 
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 ( ) qq ++ nn
uK uu

 (2.142) 

is replaced by the step-wise description 

 ( ) ( ) ( ) ( )nnnnn
uuKff uuuu -+= +++ qqq intint

 (2.143) 

( )
nKuf  is an accumulated load vector at step n from previous time-steps obtained by the 

following recursive relationship 

 ( ) ( ) ( ) ( )nnnnn
uuKff uuuu -+= +++ 11int1int

 (2.144) 

Let us choose the backward Euler scheme ( 1=q ) as the method of solution in time 

domain. As a result, the first row in (2.128) at t=tn+1 may be written in the form 

( ) ( ) ( )( ) ( ) ( ) uuuupuvuuu fuCpKvKuuKf =+++-+ ++++++++ 11111111int nnnnnnnnnn
#  (2.145) 

At every time step, an iterative solution is performed. At the k
th
 iteration, the matrix 

equation of the system is 
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2.5.  Treatment of Discontinuity in Volume Fraction 

In some cases, there may be a jump in the distribution of fluid volume fractions. This 

could be due to the placement of two layers of porous structure with different compaction 

amounts beside each other. In the composite processing, such cases may arise when resin 

flows out of the fibre-bed and pools in a corner leading to the presence of a purely 

viscous resin adjacent to the composite system consisting of fibre-bed and resin. As we 

will observe in an example in the next chapter, the discontinuity could also arise as a 

result of fluid flow motivated by s specific loading situation. Here, we introduce the 

measures that are required in the FE formulation of such discontinuities. 
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In the derivation of the weak form of the fluid phase equilibrium in the second equation 

of (2.61), integration by parts (or Gauss theorem) is applied on the pressure term as 

follows 
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We should remind the reader that the assumption for performing integration by parts in 

the general form of 

 [] ññ -=

b

a

b

a

b

a

vduuvudv  (2.148) 

is that both u and v be continuously differentiable in the relevant domain. Equation 

(2.147) holds for any smooth distribution of volume fraction over the domain, but it does 

not hold in cases such as layered media with different volume fractions, where a sudden 

jump occurs in the volume fraction. Here, we assume that any jump in f values happens 

only at the boundary between elements, and calculate a general formula for the amount of 

this error in case of a jump in volume fraction. To this end, we assume a 1D case 

involving two elements with a jump in the distribution of volume fraction at their 

interface. The schematic diagram of the pressure and volume fraction functions in this 

example is depicted in Figure 2.3. 

Let us assume that the volume fraction functions depicted in the diagram are in fact equal 

to the multiplication of the actual volume fraction distribution by the FE shape functions 

wp. We calculate the value of the left-hand-side integral in (2.147) over the length of each 

of the two elements, and add them up to arrive at the actual value of the above-mentioned 

integral over the domain obtained without using integration by parts. The distribution of 

pressure along the domain is assumed to take the following form 
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with a jump equal to Ŭ at the interface of the two elements. Differentiating the pressure 

function along the length of the domain leads to 
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At this point, it is helpful to review the following formula regarding integration of Dirac 

delta function 

 )()()( dd xfdxxxxf =-ñ
+¤

¤-

d  (2.151) 

Therefore, the actual value of the above-mentioned integral term obtained without 

integration by parts will take the form 
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Taking advantage of (2.151), and considering the symmetry of ŭ function, we may 

conclude that 
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We now calculate the value of the same integral term that the current FE approach with 

the integration by parts would result 
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Expanding the above relationship leads to 

 [ ] ññ ¡-¡-=
R

d

d

L

R

L

x

x

x

x

x

x dxxPxdxxPxPI )()()()( 22112 fff  (2.155) 

and applying integration by parts on the integral terms in the above, we have 
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After simplifications, we arrive at 
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The difference between I1 and I2 represents the term that should be added to the FE 

formulation to account for any discontinuity of volume fraction distribution between 

elements. Considering that )()( 12 dd xPxP -=a  and after simplifications, we arrive at the 

correction term for the 1D case 

 [ ][ ] [][]
dxxavgdddd PxxxPxPII

=
Ö=-+=- fff )()( )()(

2

1
212121  (2.158)  

where [[ ]] represents the jump of a function. Taking into account the point that in the 

above derivation of the correction term, f represents the multiplication of fluid volume 

fraction by shape functions wp, one may argue that the correction term for a general 2D or 

3D problem takes the form of 

 [][]ñ
G

G

d

dwnP piavg f  (2.159) 

for all inter-element boundaries, 
dG  where fluid volume fraction incurs a discontinuity. 

As a matter of fact, the above correction term is a force term that should be applied on 

any inter-element boundary where a jump in volume fraction occurs in order to avoid any 

discontinuity in the pressure distribution over the domain of the problem. If efficiency is 

of no concern, one may also implement this term into the code so that it is applied on all 

the inter-element boundaries and it would work just the same since if there is no jump in 

the volume fraction the above term will be equal to zero. As it is obvious from (2.159), 

this force term is a function of fluid pressure, a main degree of freedom of any two-phase 

problem, and therefore it is best to introduce this term not as an applied force but as some 

extra coefficients in the stiffness matrices of the relevant elements. Since these extra 

coefficients are related to the equilibrium equation of the fluid phase and are to be 
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multiplied by pressure degrees of freedom, they contribute to the 
vpK components of the 

stiffness matrix. Assuming a general interface between the elements m1 and m2, we may 

rewrite (2.159) in the form 

 ( )[][] ( )( )ññ
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dd

dwnPPdwnPP pimmmmpimm 212121 2

1

2

1
fff  (2.160) 

The corrections needed in vpK  (or additional vpK matrices) for the two involved 

elements may then be defined as 
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The above integrals are estimated using 3 Gauss points along the specified boundary 

located at 515,0or  °=hx . n
N  represents the product of the shape functions by the 

normal vector to the boundary of each element, and is written as 

 [ ]992211 NnNnNnNnNnNn yxyxyx

n 3=N  (2.162) 

The normal vector on the boundary is in fact the outward normal to m1 element. The 

effect of this correction will be demonstrated here through numerical examples. 

2.6.  Interfaces with Purely Viscous Fluids 

The need to model the interface of a two-phase porous system with a purely viscous fluid 

arises quite often in the field of biomechanics, e.g. the lubrication mechanics of joints. 

Some of the work done on modeling such interfaces in biomechanics include Mow et al. 

(1980), Hou et al. (1989), Spilker and Maxian (1990), Almeida and Spilker (1997,1998), 

Ateshian and Wang (1998), and Chan et al. (2000). As was mentioned in the previous 

section, in the processing of composite laminates with curved geometry such interfaces 

may arise when resin flows out of the fibre-bed and pools in a space provided by the 

complex geometry. 
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To model a viscous medium using the current two-phase approach, we assume fluid 

volume fraction of unity, and very small values for the moduli of the solid structure. At 

the boundary between a viscous fluid and two-phase medium, the shear force, which is 

carried only by the viscous fluid on one side, is transferred partly to the viscous fluid 

flowing through the porous medium on the other side and partly to the porous solid 

structure. The actual (phase-averaged) value of shear stress carried by the fluid on both 

sides is the same, but there is a jump in the volume-averaged values of the fluid shear 

stress at the boundary. Assuming that the ratio of the areas of the two phases on the 

boundary is the same as the ratio of their volumes (which is the case for isotropic 

materials), the boundary condition between the two media with distinct volume fractions 

may be described as [Hou et al. (1989)]: 
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Assuming that 1 represent the viscous fluid and therefore 11=f , one may remove the 

subscript from 2f and rewrite (2.163) to have 

 () () ( )() ( )( )
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1111 ijjiijijij vv +-=-=- mftftt  (2.164) 

To apply the above condition to the FE approach, a virtual traction force equal to 

 ( )( ) jijji tvv
2,,11 +-- mf  (2.165) 

is applied to the fluid phase at the boundary between the two media. jt  represent the 

components of the tangent vector of the inter-media boundary. We assume a general 

interface between the elements m1 and m2, with the latter being the one representing a 

purely viscous fluid. Once implemented in the current FE approach, the virtual force in 

(2.165) contributes to the components of 
vvK matrix for element m1 as follows 
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where 
3B  is defined by 
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2.7.  Figures 

 

Figure 2.1: Schematic representation of Q2P-1 (9-3) element 

 

 

Figure 2.2: Schematic representation of Q1P0 (4-1) element 
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Figure 2.3:  The schematic diagram of the pressure and volume fraction distribution for a 1-D 

system consisting of 2 elements with a jump at their interface 
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Chapter 3: Verification of the Two-phase Model 

The FE approach presented in the previous chapter is implemented into a MATLAB code 

using 9-3 and 4-1 elements. These two elements are based on the u-v-p formulation. To 

validate the two-phase model, a few examples are solved numerically with the code and 

the results are compared to analytical solutions (if available) and other numerical 

predictions cited in the literature. Also, for the sake of more in-depth comparison, the u-p 

formulation is implemented in a 9-4 element which is rated to behave in a very similar 

fashion to the 8-4 standard element in ABAQUS for multi-phase porous materials. The 

naming criterion is based on the number of nodes used to discretize the kinematic degrees 

of freedom and the number of nodes assigned to the pressure of the fluid phase. In the u-p 

formulation, continuity of pressure must be satisfied. 

The examples chosen for the purpose of verification of the flow aspect of analysis 

include: (1) a column of porous material undergoing a uniform load at the top with 

permeable BC at the top surface, (2) a column of porous material undergoing a uniform 

load at and mid-height with impermeable BC all around, (3) flow in a channel with a 

porous wall, and (4) flow-compaction in processing of composite angle laminates. 

3.1.  General Two-phase Problems 

3.1.1.  Column of saturated porous medium under loading at the top 

Here, we consider an example to verify the predictions of the developed two-phase model 

and also demonstrate the phenomenon of initial oscillations in the pressure distribution. 

Figure 3.1 shows the schematic representation of a column of saturated porous medium 

with permeable BC at the top surface under vertical load at the top (left figure). The 

dimensions of the problem, boundary conditions, material properties and the loading 

conditions are depicted in Figure 3.1. The total load of f0 is applied from t = 0. Two FE 

meshes are assumed; one with 10 9-3 elements and another with 20 9-4 elements along 
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the height of the column. Note that 10 9-3 elements lead to 20 independent pressure 

DOFs along the height while 20 9-4 elements have 21 independent pressure DOFs along 

the height of the column. We will be comparing the pressure response in this example, 

and that is why the number of the 9-4 elements is chosen to be twice that of the 9-3 

element. Figure 3.3 and Figure 3.4 depict the time-history of pressure distribution along 

the height of the column for a fluid viscosity equal to 5×10
3
 Pa.s predicted respectively 

by 10 9-3 elements and 20 9-4 elements. Figure 3.5 to Figure 3.12 present the same data 

but for lower viscosities that gradually decrease from 5×10
3
 Pa.s to 0.5 Pa.s by 

increments of one order of magnitude. By changing the viscosity of the fluid, we change 

the time scale in that higher values for viscosity represent the behaviour at earlier stages 

of compaction and vice versa. It is evident that in the case of 9-4 elements the oscillations 

happen at the very start of the analysis while the 9-3 element initially does not show any 

significant oscillations but they develop to a maximum value at a critical time. The values 

of the observed oscillations are much smaller in the case of 9-3 elements.  

There is an analytical model for the case of 1D consolidation that applies to the current 

example. Terzaghi (1943) presented a closed form solution for the distribution of fluid 

pressure along the height of the column as a function of time. That formula may be 

written in terms of the material parameters introduced in the current work as 
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where Sy is the permeability of the porous material along the height of the column and E 

represents the Youngôs modulus of porous structure. 

Figure 3.13 shows the pressure distribution at an early time during the consolidation of 

the column predicted by both the 9-3 and 9-4 elements, comparing them with the 

analytical solution in (3.1). Superiority of the 9-3 elementôs prediction is due to the fact 

that using this element there is no need to enforce the value of pressure (to zero here) at 

the permeable boundary. Figure 3.14 to Figure 3.17 present the pressure distribution at 

the same time but for cases with gradually decreasing viscosity respectively. These 

diagrams represent later stages of consolidation of the porous column. The oscillations 
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related to the 9-4 elements gradually vanish as we move further from the initial stages of 

compaction. In all the cases a very good match is observed between the distribution 

predicted by the FE code and the closed form solution. 

Let us focus on the vicinity of the permeable BC to investigate how the oscillations of 

pressure develops in the case of 9-3 elements. Figure 3.18 shows the pressure surface of 

the top two 9-3 elements at an early stage of compaction. Figure 3.19 presents the same 

data at a time that the oscillation is more pronounced. It is evident that when the point of 

maximum curvature of the analytical solution is located between the pressure nodes of 

the top element, the oscillations are more pronounced in the 9-3 elements.  

The u-p approach (implemented in the 9-4 element) in FE formulation of the governing 

equations of two-phase media is to substitute the equilibrium equation of the fluid phase 

(2
nd

 equation in (2.62)) into the mass conservation(1
st
 equation in (2.62)); leading to the 

following set of two equations: 
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As a result, the pressure undergoes a second-order differentiation in space, and inter-

element continuity of pressure becomes necessary. This is not the case in the present u-v-

p formulation where all three of the mass conservation equation, fluid equilibrium 

equation, , and the total equilibrium equation (3
rd

 equation in (2.62)) are formulated into 

the finite element technique. Discontinuity of pressure gives the 9-3 element some 

advantages over the common elements in terms of stability and observed initial 

oscillations in pressure profile. 

 

3.1.2.  Column of saturated porous medium under loading at mid-height 

To demonstrate the effect of the treatment of jumps in the volume fraction, an example 

will be presented here in the form of a column of saturated incompressible porous 

medium under uniform loading at its mid-height with impermeable B.C. all around. The 
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dimensions of the problem, boundary conditions, material properties and the loading 

conditions are depicted in Figure 3.2. The total load of f0 is applied from t = 0. Resin 

flows from the bottom half to the top half of the column, therefore gradually causing a 

discontinuity in the volume fraction of the porous medium. Figure 3.20 and Figure 3.21 

depict the prediction of the 9-3 element for the time-history of pressure distribution along 

the height of the column for ɛ= 5Ĭ10
-2

 Pa.s and ɛ= 5Ĭ10
-3

 Pa.s, respectively. The gradual 

formation of an unrealistic jump in the pressure profile as the flow of the fluid occurs is 

evident. Figure 3.21 shows a clear jump in the pressure distribution at the final state of 

equilibrium. Figure 3.22 and Figure 3.23 present the same predictions where no 

discontinuities are observed after taking the corrective measure discussed in the previous 

chapter regarding the jump in volume fraction. 

3.1.3.  Taylor and Beavers-Joseph problems 

Here we consider the unidirectional flow of a viscous fluid over and through a rigid 

porous wall due to a constant velocity applied to the top surface of the fluid. The constant 

velocity V0 is applied to the fluid via a moving rigid wall at the top boundary of the fluid 

layer as it is depicted in Figure 3.24(a). This problem has indeed a Couette-type 

behaviour as the only distinction between the two is the porous wall underneath the 

viscous fluid in the current configuration, and one would imagine if the porous wall 

happens to be impermeable enough, then unidirectional Couette flow is a limiting case of 

the problem at hand. Another problem of interest may be described by the unidirectional 

flow of a viscous fluid over and through a porous wall sustained by pressure gradient in a 

2D channel (Figure 3.24(b)). This case may be considered as a Poiseuille-type flow, as its 

limiting case when the permeability of the porous structure diminishes to zero is in fact 

the Poiseuille flow. 

Hou et al. (1989) refer to the two above-mentioned problems as the Taylor problem 

[Taylor (1971)] and the Beavers-Joseph problem [Beavers and Joseph (1967)], 

respectively. They established a set of boundary conditions for such interface problems in 

their work. They also presented an analytical solution for fluid velocity profile for the 

Beavers-Joseph problem based on their choice of interfacial boundary conditions. Also, 
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the solution of Taylor problem was presented via graphs depicting the flow profile. 

However, their original differential equations were based on the fluidôs phase-averaged 

velocity (absolute value of velocity) compared to volume-averaged fluid velocity in this 

work, and also drag coefficient for the porous medium as opposed to the permeability 

coefficient in this work. Here, we present the analytical solution for the two problems 

using the nomenclature of the current work. Considering the assumptions involved in the 

Taylor problem, the equilibrium equation of the fluid phase for the case of this 

unidirectional flow problem may be written as 
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where v is the volume-averaged velocity of the fluid in the x direction. The boundary 

conditions may be readily identified as v(h1)=V0, and v(-h2)=0. As for the interfacial 

boundary conditions between the viscous fluid at the top and the underlying two-phase 

system, we use the relationships derived by Hou et al. (1989) 
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Solving the set of differential equations in (3.3) with their assigned boundary conditions, 

and the specified interfacial conditions in (3.4) leads to the analytical solution for the 

volume-averaged velocity of fluid along z axis 
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In a very similar fashion to the Taylor problem, the equilibrium equations of the fluid 

phase for the case of Beavers-Joseph problem may be introduced as 
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where v is the volume-averaged velocity of the fluid in the x direction. The boundary 

conditions may be identified as v(h1)=v(-h2)=0. The interfacial boundary conditions 

between the viscous fluid at the top and the underlying two-phase system are the same as 

the ones introduced in (3.4), since the system geometry of the two problems are identical. 

Solving the set of differential equations in (3.6) with the appropriate boundary and 

interfacial conditions leads to the analytical response for the volume-averaged velocity of 

fluid along z axis in the Beavers-Joseph problem 
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  (3.7) 

The above result matches the analytical solution obtained by Hou et al. (1989) for the 

profile of the phase-averaged velocity of the viscous fluid. The closed-form solutions in 

(3.5) and (3.7) will be used here for verification of the approach presented in this work. 

Chan et al. (2000) compared the results of their FE approach with the analytical solutions 

for the Taylor problem, but they did not report any numerical results for the Beavers-

Joseph problem. We present numerical results for both of the above problems.  
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It is assumed that mmhh 421 == , and viscosity of the fluid, ɛ, is equal to 5 Pa.s. Three 

different values for the permeability of the porous layer are assumed to capture the limits 

of velocity profile that could be obtained in these two problems. Two uniform FE meshes 

are considered; one with four 9-3 elements through the thickness, and another with eight. 

As these problems are 1D and we have constrained the degrees of freedom in the z 

direction, the number of elements in the x direction is irrelevant. Figure 3.25 to Figure 

3.27 present the velocity profiles (for decreasing values of permeability of the porous 

wall) obtained by the current approach for the Taylor problem and compares them with 

the analytical solution in (3.5). The convergence of the results even with these relatively 

small number of elements is clear, and an essentially perfect match is observed between 

the numerical and analytical solutions.  

Figure 3.28 to Figure 3.30 show the velocity profiles (for decreasing values of 

permeability of the porous wall) obtained by the current approach for the Beavers-Joseph 

problem and compares them with the close form solution in (3.7). In a similar fashion to 

the Taylor problem, convergence of the response is evident, and a very good match is 

observed between the numerical and analytical response.  

Chan et al. (2000) added a viscous shear term to the hydrostatic pressure to have a 

complete stress tensor for the fluid phase. Here, we compare their formulation with the 

current study. A very important distinction is in the differential equation pertaining to the 

equilibrium equation of the fluid phase. Rewriting Chan et al.ôs version of the fluid 

equilibrium equation using the notation of the current work for the sake of comparison, 

we arrive at a form equivalent to 

 ( ) ( )( ){ }[ ] 01

,,,,,, =-++++- -

jijjijijjijii vSuvuvP fmffmf ##  (3.8) 

The major difference between the above and the fluid equilibrium equation in the current 

study in (2.58) is in the first term which includes a form of pressure gradient. Equation 

(2.58) used in the current approach is consistent with the governing equations of porous 

media presented in the prominent literature in this field (e.g. Lewis and Schreffler, 1998) 

while equation (3.8) is not. Furthermore, if one assumes that the velocity terms vanish in 
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(3.8), it would lead to an equilibrium state with variable pressure for a case with variable 

volume fractions throughout the domain, an unrealistic and undesirable outcome.  

Another difference between the work by Chan et al. and the current approach is that they 

based their set of differential equations on the phase-averaged velocity of fluid while the 

volume-averaged relative velocity of the fluid is the velocity parameter chosen in this 

work. Not only does the latter choice lead to a very straight-forward presentation of the 

mass conservation equation as in (2.57), but also it allows for the continuity of the fluid 

velocity degrees of freedom at the interface of a purely viscous fluid and a two-phase 

medium. However, the use of phase-averaged fluid velocity in the formulation presented 

by Chan et al. (2000) leads a discontinuity in the velocity field at the interface which 

requires special assembly considerations that are not desirable in a robust code. 

 

3.2.  Flow-compaction in Processing of Composite Angle Laminates 

Hubert (1996) and Hubert et al. (1999) performed simulations involving resin flow and 

compaction of angle shaped laminates. Hubert et al. developed a 4-4 element in 

COMPRO based on the u-p formulation. Of two-phase media. They carried out a 

comprehensive parametric study of the numerical response and the sensitivity of the 

effect of various constitutive properties on the compaction behaviour of the laminates. 

Hubert (1996) also performed an experimental study on the compaction of unidirectional 

angle laminates on convex and concave tools. The samples were made of two different 

materials including AS4/3501-6 and AS4/8552. He numerically simulated examples 

closely representative of the geometry of the actual specimens made for the experiments. 

The change in the thickness of the final products at the corner and along the flat part were 

studied and compared with the results predicted by the simulations. The numerical 

predictions of the final thickness changes for the specimens made of AS4/3501-6 

compared much better than AS4/8552 specimens with those obtained from the 

corresponding experiments. Here, the 9-3 element is used to model the same problem 



Chapter 3: Verification of the Two-phase Model 

 63 

with the same material properties assumed in Hubertôs work to compare the results from 

the two approaches (See Table 3.1 and Table 3.2). 

Figure 3.31 shows the geometry and boundary conditions of the problem assuming a 

convex tool and the time-history of autoclave conditions. Since the current code does not 

deal with heat transfer analysis, we have assumed that the temperature of the laminate 

changes uniformly throughout the process and follows the temperature history of point A 

obtained from Hubertôs numerical run for the same problem. Two different FE meshes 

are presented in Figure 3.32 to ensure convergence of the results. Point A is located on 

the top corner of the laminate, and point B is located on the top surface of the laminate at 

the mid-length of the flat section. The normal displacements at A and B are compared to 

those results reported by Hubert. Figure 3.33 shows the time-history of the normal 

displacement at points A and B for the case of the AS4/3501-6 [0°] unidirectional angle 

laminate on a convex tool and compares the response with those reported by Hubert. 

Figure 3.34 presents the same comparison for the case of AS4/8552 [0°] unidirectional 

angle laminate. The convergence of the response is verified and a good match is observed 

between the current predictions and those reported by Hubert for both materials. Any 

observed difference in the history of normal displacements especially in the case of 

AS4/3501-6 material is attributed to the fact that in the present work the temperature is 

assumed to be uniform over the domain. 

It was observed that for cases involving [90°] unidirectional angle laminates, the current 

predictions did not match the response reported by Hubert. Investigating further into this 

matter made it clear that in the runs for [90°] cases, Hubertôs code had erroneously set the 

permeability matrix equal to those of a [0°] laminate. In a modified version of COMPRO, 

we fixed that error and reanalyzed the [90°] cases. The response histories that will be 

presented in Figure 3.35 and Figure 3.36 as Hubertôs are in fact the results obtained by 

the updated version of COMPRO. 

Figure 3.35 presents the time-history of the normal displacement at points A and B for 

the case of the AS4/3501-6 [90°] unidirectional angle laminate on a convex tool and 

compares the response with those reported by our version of Hubertôs approach. Figure 
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3.36 shows the same comparison for the case of convex AS4/8552 [90°] unidirectional 

angle laminate. In both of the above figures, the convergence of the response is clear and 

a good match is obtained between the displacement history predicted by the 9-3 element 

and the response obtained by the corrected version of Hubertôs approach. 

The 4-4 element developed by Hubert et al. (1999) approximates the displacement and 

pressure degrees of freedom in the same fashion by continuous linear polynomials in each 

direction. Due to having the same level of discretization for displacement and pressure, 

the 4-4 element sustains instability issues and also its accuracy is conditional. Vermeer 

and Verruijt (1981) presented an accuracy condition for such finite elements. The 

condition sets a minimum size for the time steps or a maximum for mesh size to ensure 

accuracy and avoid excessive pressure oscillations. This issue led Hubert et al. to run the 

COMPRO flow module once the viscosity of resin fell below 1000 Pa.s. In the present 

work, there are no such limitations but since the goal here was to compare the results of 

the 9-3 with the predictions of Hubert et al., for viscosity values above 1000 Pa.s the resin 

viscosity was artificially increased to 1×10
7
 Pa.s to prevent any resin flow. This explains 

the plateau observed at the beginning of the displacement time-history predictions in 

Figure 3.33 to Figure 3.36. 
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3.3.  Tables 

Table 3.1: Resin and fibre-bed properties for the AS4/3501-6 angle laminate  

 

 

 

Table 3.2: Resin and fibre-bed properties for the AS4/8552 angle laminate 
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3.4.  Figures 

 

Figure 3.1: A column of saturated porous medium under uniform loading at the top, and meshes 

of 10 9-3 elements and 20 9-4 elements 

 

Figure 3.2: A column of saturated porous medium with impermeable BC all around with uniform 

loading at mid-height, and mesh of 10 9-3 elements 
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Figure 3.3: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. ɛ=5×10
3
Pa.s 

 

 

Figure 3.4: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. ɛ=5×10
3
 Pa.s 
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Figure 3.5: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. ɛ=5×10
2
 Pa.s 

 

 

Figure 3.6: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. ɛ=5×10
2
 Pa.s 
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Figure 3.7: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. ɛ=50 Pa.s 

 

 

Figure 3.8: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. ɛ=50 Pa.s 
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Figure 3.9: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. ɛ=5 Pa.s 

 

 

Figure 3.10: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. ɛ=5 Pa.s 
























































































































































































































































































