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Abstract 

The usual approach to the process modeling of thermoset matrix composites is to divide 

the analysis into two distinct and sequential steps, first of flow-deformation behaviour 

and then of stress-deformation. In the current processing models, each of these two 

aspects is dealt with in a separate sub-model, typically called the flow module and stress 

module respectively. The flow module is relevant to the pre-gelation behaviour of resin, 

while the stress module is valid for the post-gelation composite material.  

In this thesis, the framework to integrate the flow and the stress modules into a unified 

module in finite element processing models is presented. The work is based on a two-

phase model for analysis of resin flow and its resulting deformations in the composite 

material. Special measures are introduced to provide for additional capability of this 

model to account for the development of stresses in the curing composite material. These 

modifications are needed to ensure the accuracy of the model in both of resin flow and 

stress development regimes, and include the introduction of consistent compressibility in 

the mass conservation equation of the two-phase system, and a special decomposition of 

stresses of the system. 

The formulation is implemented for a pseudo-viscoelastic stress model in a 2D plane 

strain FE code in MATLAB. The approach may readily be extended to fully viscoelastic 

models. Various examples from single-element problems dealing with the development 

of residual stresses throughout a single-hold cure cycle to more geometrically complex 

composite laminates undergoing standard cure cycles are modeled by the integrated 

model and comparisons are made in one extreme to the flow-compaction behaviour by 

the standard flow models, and in the other extreme to the results obtained by the pseudo-

viscoelastic approach. 

The model developed here is a promising tool for simulating processing of large-scale 

composite structures continuously from the very early stages of the process when the 

resin behaves in a fluid-like manner all the way to the final stage when it behaves as a 3D 

solid. 
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Chapter 1: Introduction 

1.1.  Background 

Fibre-reinforced plastic composites are replacing traditional materials in engineering 

applications. The growing popularity of these materials is due to advantages such as high 

strength to weight ratio, high stiffness to weight ratio, and impressive durability. 

Manufacturing of composite structures is distinct from that of metallic structures in that a 

complex and large-scale structure is processed from the raw materials in one step in order 

to create otherwise unachievable geometries and to reduce manufacturing cost. The focus 

of this work is on the high-performance structural components made of advanced 

thermoset matrix composites that are mainly used in the aerospace industry. The making 

of such structures is commonly performed by autoclave processing. This process involves 

stacking of pre-impregnated sheets of unidirectional fibres (prepreg) at specially designed 

orientations over a tool of desired shape. The whole assembly is then subjected to a 

controlled cycle of temperature and pressure change inside an autoclave. The end result 

of this process is the compaction and curing of the composite part. Finally, the cured 

composite part is removed from the tool However, development of residual stresses 

during the curing process leads to difficulty and uncertainty in prediction of the precise 

shape and dimensions of the part after tool removal. It is essential to have a good 

understanding of the phenomena that the material undergoes throughout the processing 

cycle. In the past three decades as the popularity of composite materials  has increased, 

efforts to numerically simulate the processing cycle of composite materials have 

increasingly gained more traction in order to curb the costs of production. 

A bagging schematic for a typical autoclave processing system is shown in Figure 1.1 (a). 

The prepreg plies are placed on a hard tool to form the desired shape of the laminate. A 

typical prepreg ply has a thickness of 0.2 mm and a fibre volume fraction of 0.5-0.6. The 

plies can be oriented in different directions to achieve the target mechanical properties. 
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Typical tooling materials include aluminum, steel, invar, and even composite. Dams are 

placed around the perimeter of the laminate to control resin flow from the edges of the 

plies. In many cases, a release film is used on top of the laminate to allow for easy 

removal of adjacent bagging material. For laminates that need resin bleed, an absorbing 

cloth forming the bleeder is placed on top and around the laminate. Inserts and 

honeycomb cores may be included in the laminate for moulding purposes or structural 

requirements. A breather cloth covers the assembly to provide a path for air flow. The 

whole assembly consisting of the tool, laminate, bleeder, and breather is placed in a 

vacuum bag and is sealed. A vacuum plug connects the interior of the bag to an external 

vacuum pump. The cycle of curing the part is shown in Figure 1.1 (b). At this stage, the 

tool-laminate assembly is put in an autoclave and the sealed bag is attached to the 

vacuum system. The vacuum is applied in order to debulk the composite laminate, 

partially motivate the flow of excess resin out of the laminate, and remove any excess air 

that is trapped between the plies. In order to cure the part, pressure and temperature are 

applied in a pre-determined cure cycle. The temperature cycle is crucial to trigger the 

reaction of resin polymerization. The pressure is applied to conform the laminate to the 

tool surface, and to compact the laminate to the target value for fibre volume fraction and 

collapse any voids that may develop and grow during resin cure. At the end of the 

processing, the cured part is debagged and removed from the rest of the assembly and the 

tool and is ready for any finishing processes. In an ideal curing process, the cure cycle, 

the tool, and the bagging procedure should be designed in a way that leads to a fully 

cured, void free and undistorted final part in the shortest time and most economical 

fashion. 

The processing of composite materials is a complex event during which various physical 

and chemical changes occur simultaneously or at different stages. These phenomena 

include melting of resin, flow of resin through the fibre-bed, heat transfer, thermo-

chemical changes and curing of resin, and development of residual stresses in the 

composite material. This complexity has led many researchers to use an „integrated sub-

model‟ to model the processing of composites. Based on this approach, the complex 

process model is divided into several sub-models that may be studied quite 

independently. The sub-model approach is shown schematically in Figure 1.2. As shown 
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in the schematics of this approach, the modeling procedure includes several modules each 

responsible for one aspect of the material behaviour during cure. The modules that are of 

interest in this work are the stress module and the flow module.  

In chronological order some of the notable work on the application of this method to 

autoclave process modeling were done by Loos and Springer (1983), Bogetti and 

Gillespie (1991, 1992), White and Hahn (1992a, 1992b), Johnston et al. (2001), and Zhu 

et al. (2001). Zobeiry (2006) presents a more comprehensive review of the relevant 

literature. The processing models range from very simple one-dimensional elastic 

analyses to very complicated 3D viscoelastic models. One of these models was developed 

at UBC in the form of a multi-physics, 2D finite element code, COMPRO, to analyze 

industrial autoclave processing of composite materials of intermediate size and 

complexity [Hubert (1996), Hubert et al. (1999), Johnston (1997), Johnston et al. (2001)]. 

The model predicts a number of essential processing parameters and the development of 

residual stresses and deformations. It also accounts for the effects of tool/part interaction 

in the development of residual stresses. COMPRO has been used in the past two decades 

to solve many practical problems in autoclave processing faced by the industry. To 

expand on the capabilities of COMPRO to different material constitutive behaviour and 

more importantly 3D modeling, Arafath (2007) introduced the concept of COMPRO 

Component Architecture (CCA) and incorporated it into ABAQUS. CCA is a modular 

approach that consists of all the different material subroutines in COMPRO that can be 

incorporated into many commercial finite element codes using a specific interface 

module. In this work, we refer to the CCA approach as COMPRO 3D. 

It is very common that the literature on modeling of autoclave processing focus either on 

resin flow during processing or on stress development throughout cure and residual 

deformations in the final part. The same was true in the development of COMPRO as 

Hubert (1996) developed the flow module while Johnston‟s (1997) focus was on the 

stress development side. Even the current version of COMPRO 3D approaches the 

modeling of autoclave processing in two distinct steps. Initially, the flow of resin and the 

compaction of composite laminate are modeled using the flow module in COMPRO. 

Once the flow analysis is performed, the geometry and fibre volume fraction of the 
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laminate are updated. Then the laminate is re-meshed in FE and the new mesh is used in 

the prediction of development of stresses during the processing cycle. 

The reason for this separation could be that resin flow is typically formulated by Darcy‟s 

law and is modeled by two-phase elements in a FE code, while modeling of stress 

development requires the use of common solid finite elements. 

1.2.  Resin Flow during Processing 

Curing of a polymer resin may be defined as the gradual formation of a 3D network made 

out of the polymer molecules. During the processing, resin transforms from a vitrified 

fluid to a viscous fluid (upon heating up from the room temperature) and eventually to a 

viscoelastic material after gelation. Pre-gelation resin may be considered a viscous fluid 

with its viscosity a function of temperature and degree of cure. Therefore flow 

phenomena play a major role in defining the behaviour of resin and the composite 

material at early stages of processing (See Figure 1.3). Figure 1.4 shows how the resin 

viscosity changes in typical cure cycle. It is evident form the figure that lower viscosity 

values of resin occur during the first isothermal hold in the autoclave temperature history. 

In fact the first hold in temperature is typically designed to provide enough time for fluid 

resin to flow and also allow for air transport as a result. Figure 1.5 shows a schematic 

presentation of flow of resin through the porous structure consisting of the fibres and its 

resulting compaction in the composite laminate. 

Hubert and Poursartip (1998) did a comprehensive review of the modelling approaches in 

the literature regarding flow and compaction in the processing of thermoset matrix 

laminates. Springer (1982) studied the relationship between the applied pressure and resin 

flow and observed that the layers consolidated in a wavelike manner. He developed the 

sequential compaction model based on those experimental results. Loos and Springer 

(1983) developed a one-dimensional resin flow model for the curing process. The resin 

velocity was related to the pressure gradient, fibre-bed permeability, and resin viscosity 

through Darcy‟s law. Gutowski et al. (1987) presented 3D flow and 1D consolidation 

models for the processing of composites, where the resin flow was modeled using 
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Darcy‟s law for an anisotropic porous medium. Their consolidation model was based on 

the application of the effective stress theory of soil mechanics [Terzaghi(1943), 

Biot(1941)] to the compaction of fibre-beds. Davé (1990) derived the general flow 

equation applicable to all composite processes which accounted for the presence of both 

resin and air in the fibre-bed. Cai and Gutowski (1992) developed a general 3D 

deformation model of lubricated fibre bundle subjected to a multidirectional stress state. 

Smith and Poursartip (1992) showed that the sequential compaction model is an special 

case of the effective stress formulation. Gutowski and Dillon (1997) reviewed the stresses 

of an aligned fibre bundle and compared the response for transverse compression coupled 

with axial extension in a 3D fibre deformation model. 

Hubert (1996) and Hubert et al. (1999) developed a 2D plane strain flow-compaction FE 

model as part of COMPRO to simulate resin flow in autoclave processing of fibre-

reinforced composite laminates. They adapted an incremental, quasi-linear elastic model 

assuming infinitesimal strains. Hubert and Poursartip (2001) presented a method the 

fibre-bed compaction curve directly from composite prepregs. Li and Tucker (2002) 

developed a two-phase continuum based process model assuming hyperelasticity for the 

fibre-bed stress, which is valid for large deformations. The advantage of their work over 

the model of Hubert et al. (1999) is that the large deformation formulation allows them to 

update the mesh geometry and fibre orientation during the course of process. This is 

especially important for composites with lower viscosity resins such as AS4/3501-6. Li 

and Tucker (2002) stated that their formulation has another advantage in that it accounts 

for spatial variation of fluid volume fraction while that of Hubert(1996) and Hubert et al. 

(1999) does not. This is not correct as Hubert‟s (1996) simplification of mass 

conservation equation includes an error that has lead him to unnecessarily assume that the 

spatial variation of volume fraction be negligible. As a matter of fact, the two models 

practically use the same mass conservation equation, and therefore both account for 

spatial variations in volume fraction.  

Larsson et al. (2004) presented a biphasic continuum model with large deformation 

capabilities for resin flow and deformation in a family of forming processes for fibre-

reinforced composites. Liquid composite moulding (LCM) processes such as resin 
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transfer moulding (RTM), vacuum assisted RTM (VARTM), and injection/compression 

liquid composite moulding (I/C-LCM) also involve resin flow phenomena. These include 

infusion of resin through the dry fibrous reinforcement, and also flow-compaction of the 

system under vacuum or applied pressure. Some relevant work on modeling the resin 

flow phenomena in LCM processes include Bruschke and Advani (1990), Gebart (1992), 

Trochu et al. (1993, 2006), Tucker and Dessenberger (1994), Pillai and Advani (1998), 

Pillai et al. (2000,2001), Pillai (2002), Bréard et al. (2003a, 2003b), and Tan and Pillai 

(2012a, 2012b) in chronological order. 

1.3.  Stress Development during Cure 

At gelation, a 3D network of molecules has formed all over the body of thermoset resin. 

This network causes the resin to attain elastic properties, and therefore from this point on 

it can develop residual stresses. By the progress of cure, the network of molecules gets 

more intricate and strong and the elastic moduli of the resin grow exponentially. This 

does not contradict the general understanding that the mechanical behaviour of polymer 

resins at any stage of cure is best represented by viscoelastic behaviour as viscoelastic 

formulation includes both viscous and elastic behaviour. 

In early process models such as the works done by Loos and Springer (1983) and Nelson 

and Cairns (1989) very simple elastic relationship were used to represent the behaviour of 

the composite material. The next generation of stress models made the assumption that at 

every time-step of the simulation the material behaviour may be considered elastic, but 

the moduli increase with the progress of cure. Some examples include the works of White 

and Hahn (1992), Bogetti and Gillespie (1992), Johnston et al (2001), Fernlund et al. 

(2002a, 2002b, 2003), and Antonucci et al. (2006). These models are referred to as Cure 

Hardening Instantaneously Linear Elastic or CHILE models, where the modulus of 

elasticity changes as a function of the instantaneous temperature and degree of cure.  

As a part of COMPRO, Johnston et al. (2001) presented a plane strain FE model for 

simulation of the development of process-induced deformation during autoclave 

processing of composites. A CHILE model to represent the mechanical behaviour of the 
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composite matrix resin, and micromechanics models were used to determine composite 

ply mechanical properties and behaviour, including thermal expansion and cure-

shrinkage. The effect of tooling on the final shape of the composite were also considered 

through simulation of tool-part interfaces and post-processing tool removal. Twigg et al. 

(2004a, 2004b) performed an experimental investigation into the effects of tool-part 

interaction on the final shape of cured composite parts, and presented analytical and 

numerical simulations to validate the experimentally obtained relationships. Osooly 

(2008) developed large deformation and contact capabilities applicable to the numerical 

simulation of stress development and deformation of curing composites, and numerically 

modeled the  experiments done by Twigg et al. (2004a, 2004b) on tool-part interaction. 

Arafath et al. (2008, 2009) presented a cost-effective analytical solution for the process 

induced stresses and deformation in composite parts with flat and curved geometries 

cured on a solid tool.  

According to Zobeiry (2006) and Zobeiry et al. (2010), since the polymer spends 

considerable time in the viscoelastic regime during cure, it is important to check the 

validity and generality of a CHILE constitutive model relative to a full viscoelastic 

model. Using fundamental principles of viscoelasticity Zobeiry et al. (2010) showed that 

in a large majority of cases CHILE model is quite accurate and efficient in predicting the 

behaviour of the composite during processing leading to accurate predictions of residual 

stresses and/or dimensional distortions of the composite after tool removal. Using 

viscoelastic formulations to model the stress development during the cure of composites 

has gained more popularity during the past two decades. Some examples of these 

investigations include White and Kim (1998), Adolf and Martin (1996), Prasatya et al 

(2001), and Zhu et al. (2001), and Melo and Radford (2004). For these models, 

viscoelastic characterization of the behaviour of thermosetting polymers is crucial. Kim 

and White (1996) used dynamic mechanical analyzer (DMA) to characterize the 

relaxation behaviour of 3501-6 resin at different degrees of cure ranging from 0.57 to 

0.98. Prasatya et al. (2001) presented a similar viscoelastic model for the bulk behaviour 

of Hexcel 8551-7 resin. 
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Zobeiry (2006) and Zobeiry et al. (2006) presented a differential implementation of the 

viscoelastic response of curing thermoset composites to predict the residual stresses and 

the final geometry of the composite part. A viscoelastic solid behaviour based on 

generalized Maxwell elements were assumed for the resin, and a solid micromechanics 

scheme was applied in the Laplace space. The results were then transferred back to time 

domain to obtain the coefficients of a generalized Maxwell model for the composite 

material. Zobeiry (2006) and Zobeiry et al. (2010) also presented a pseudo-viscoelastic 

formulation as an efficient approximation to fully viscoelastic models for the behaviour 

of thermoset resins during typical autoclave cycles. Zobeiry et al. (2010) showed that 

CHILE model is merely one form of the pseudo-viscoelastic approach where the modulus 

of resin is assumed to be instantaneously elastic, but the value of the modulus is set equal 

to the relaxation modulus of resin at a variable time, or its storage modulus at a certain 

frequency. In the current work, we will use the „variable time‟ version of the pseudo-

viscoelastic approach. 

1.4.  Motivation 

As it was mentioned before, the current approach to process modeling is to first run the 

flow module until the gelation of resin, then the geometry and volume fractions of the 

system are updated and the laminate is remeshed if needed. The final step is to run the 

stress model from the beginning of the processing cycle to capture the development of 

stresses in the composite system. There are a few drawbacks in the above approach; one 

is that there is an overlap in the simulation process as both flow model and stress model 

need to simulate the processing before the gelation of resin leading to an inherent 

inefficiency in the above method. Another disadvantage is that considering cases (e.g. 

sandwich panels) where at a certain time during the processing resin has gelled at one 

side of the composite structure but it is still a viscous fluid at the other side the 

identification of a gelation point for the system may prove to be difficult. More 

importantly, using the two-step approach does not capture the interaction of resin flow 

and its effects on how the stresses develop in the composite laminate. 
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If the flow model and stress model can be integrated into a unique model that 

simultaneously captures and simulates both the resin flow and stress development, the 

new integrated model would not have any of the disadvantages mentioned above for the 

separate application of the two models. This integrated approach would result in a more 

realistic representation of the complex phenomena which occur during the processing of 

composite. Not only does this method capture the development of the state variables 

relevant to flow and stress at the same time, but it will also predict the interactions of 

these phenomena during the processing. 

1.5.  Research Objectives and Thesis Outline 

The main objective of this thesis is to integrate the resin flow and stress development 

modules in COMPRO into a unique module that can capture both of these effects at the 

same time and in seamless fashion. In order to make this integration happen, we need to 

have a set of governing equations that encompasses both the two-phase formulation for 

flow through porous media (governing equations for flow) and the equilibrium equation 

(governing equation for stress development). To that end, we base our framework on a 

two-phase system for resin flow through the fibre-bed and identify and implement the 

necessary adjustments so that it also accurately predicts the stress development response 

of the composite material during cure. 

The most common approach to FE analysis of flow in porous media is the so-called „u-p‟ 

formulation, where the displacement of the solid skeleton and the pressure of the fluid 

phase are assumed to be main variables. In the u-p formulation pressure values are 

required to be pre-defined as boundary conditions at any permeable boundary. This may 

cause problems in our efforts to utilize the two-phase formulation for stress development 

in cured composites, as the fluid pressure values in that context are in fact a part of the 

total stress of the system. Also as will be discussed later, the finite elements based on u-p 

formulation are susceptible to pressure oscillations at the start of analysis which is likely 

to cause convergence problems whenever a nonlinear solution scheme is needed. These 

issues has led us to investigate the derivation of the governing equations for the two-

phase media and an alternative FE approach in u-v-p formulation. The additional 
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variable, v, represents the velocity of the fluid phase. The u-v-p formulation is superior to 

u-p formulation in the above-mentioned issues. It also accommodates the inclusion of 

shear stress components for the fluid phase that enables the approach to also model 

purely viscous fluids and their boundary layer with a two-phase system. 

In this work, we present the framework of integration in modeling of flow and stress for 

the pseudo-viscoelastic formulation presented by Zobeiry (2010). However, the 

framework can readily be adapted to the more comprehensive differential viscoelastic 

formulation introduced by Zobeiry (2006) and Zobeiry et al. (2006). 

Based on the above discussion, the thesis is organized as follows: 

Chapter 2 - Governing Equations and FE Model of Two-phase Media 

Derivation of the equations governing the behaviour of two-phase media involving 

distinct phases of fluid and solid constituents is reviewed. Specialized FE elements are 

introduced and formulated to model the two-phase behaviour based on a u-v-p 

formulation. 

Chapter 3 - Validation and Verification of Two-phase model 

Through examples varying from general porous flow problems to problems pertaining to 

flow of resin in the processing of composite laminates , the response of the developed FE 

model is validated. Also, the capability of the proposed formulation at capturing the flow 

behaviour at a boundary between a viscous fluid and a porous wall is demonstrated. 

Chapter 4 - Integration of Modeling from Fluid to Cured Resin 

The necessary modifications in the two-phase model in order to capture stress 

development as well as resin flow are identified and developed. These include but are not 

limited to modifications in the mass conservation equation to account for a 

compressibility consistent with the stress models for cured composites, introduction of a 

modified concept of effective stress, and modifications to the numerical solution 

technique. 
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Chapter 5 - Numerical Applications 

In the first section of this chapter, the application of the current two-phase model to stress 

behaviour in cured elastic composite materials is verified. The second part involves 

various examples from single-element problems dealing with the development of residual 

stresses in curing composite materials throughout a single-hold cure cycle to more 

geometrically complex composite laminates undergoing standard cure cycles. The 

response of the current integrated approach is compared with those obtained by common 

pseudo-viscoelastic approach. 

Chapter 6 - Conclusions and Further Work 

A discussion of the significance and contributions of the present work is provided. 

Recommendations for improvements and further development of the current framework 

are also presented. 
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1.6.  Figures 

 

 

(a) 

 

(b) 

Figure 1.1: Autoclave processing steps, (a) lay-up, (b) cure with a controller loop (adapted from 

Hubert, 1996) 
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Figure 1.2: Integrated sub-model approach in process modeling (adapted from Johnston et al., 

2001) 

 

Figure 1.3: Different regimes of resin behaviour during a typical autoclave processing history 
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Figure 1.4: Time-history of changes in resin viscosity during a typical autoclave processing 

history 

 

 

Figure 1.5: Schematic representation of resin flow through the fibre-bed 
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Chapter 2: Governing Equations and FE Model of Two-phase 

Media 

2.1.  Introduction 

Deformation and flow analysis of porous media using the finite element method has been 

carried out extensively during the past four decades. The pioneering works on this subject 

were due to Sandhu and Wilson (1969) on a linear displacement-pressure (u-p) 

formulation for seepage analysis, and Ghaboussi and Wilson (1972) on a variational 

formulation for the dynamic response of elastic porous solids. Both approaches dealt with 

elastic solid structures with the latter formulation leading to a displacement-relative 

velocity (u-v) FE treatment. Since then, the common agreement in the work of various 

authors has been to use the u-p representation in quasi-static problems such as 

consolidation (of porous media, specifically soils), and the u-v formulation in analysing 

the dynamic response of porous media such as liquefaction of soils under earthquake 

loading. This viewpoint, even though representing the common trend among the relevant 

articles published so far, does not seem to have entered the notable textbooks on the finite 

element method, as the u-p formulation seems to be the only FE representation of porous 

media discussed and documented in the FE textbooks for either quasi-static or dynamic 

analyses.  

Prevost (1983) presented displacement-pressure FE formulation for the linear and 

nonlinear analysis of consolidation. He also developed displacement-velocity 

formulations for the transient response of saturated porous media [Prevost(1982,1985)]. 

To the best of the author‟s knowledge, he was the first to use a penalty parameter to 

eliminate the pressure for the case of incompressible fluids. He also suggested that the 

fluid contribution to the equilibrium equations be always treated implicitly in order to 

remove the stringent time-step size restriction associated with the presence of a stiff fluid 

[Prevost(1985)].  
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Simon et al. (1986a) evaluated and compared u-p and u-v formulations in modeling the 

dynamic response of saturated porous media in 1D problems. In a dynamic analysis, they 

concluded that the u-v method is slightly more accurate than the u-p formulation. In the 

derivation of the u-p formulation, one needs to rewrite the momentum balance equation 

of the fluid phase to express the relative velocity (or relative displacement) as a function 

of the other two major variables (u & p) to be substituted into the mass conservation 

equation. This procedure leads to the elimination of the relative velocity from the 

governing equations of the system. In order to rewrite the fluid phase equilibrium 

equation in the above fashion, it is commonly assumed that in the generalized Darcy‟s 

law the inertial terms containing the time derivative of fluid relative velocity are 

negligible. This should play a major role in the u-p formulation‟s slightly inferior results 

compared to those of u-v in the dynamic behaviour of flow in porous media. 

Simon et al. (1986b) reviewed and compared the u-v, u-v-p, u-v-p-σ formulations among 

others for the dynamic analysis of saturated porous media. They concluded that compared 

to u-v formulation, u-v-p and u-v-p-σ approaches result in slightly more accurate results 

for fluid pressure and total stress with a minimal loss in efficiency. In their representation 

of the sub-matrices for the u-v-p approach, however, it seems that there is a typographical 

error: the vp component of the stiffness matrix includes the divergence of the pressure 

shape functions which is not consistent with their relevant force term as it includes the 

applied pressure on the boundary of the system. As we will see in the formulation 

presented here, to avoid C0 continuity for pressure degrees of freedom between elements, 

we use integration by parts to eliminate any spatial differentiation of the pressure shape 

functions, and it is only then that the applied pressure on the boundary of the system 

appears in the relevant force term. To derive the u-v formulation, one needs to substitute 

the mass conservation equation into the equilibrium equations of the system. Pressure is 

solved with respect to the other variables and is then substituted into the generalized 

Darcy‟s law and the total equilibrium equation. If the system is incompressible, a u-v 

formulation cannot be achieved since there is no pressure term in the mass conservation 

equation. In order to derive u-v formulations for incompressible cases, some researchers 

have introduced a large penalty parameter into the mass conservation of the system as the 

bulk modulus of the system, and thus incorporating pressure in the continuity equation. 
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Depending on the elimination of pressure at the differential equations level or after FE 

implementation, these approaches have been called penalty and mixed-penalty methods 

respectively by Spilker and Maxian (1990). They developed a so-called mixed-penalty 

FE formulation for linear biphasic response of soft tissues and compared it with a penalty 

form previously proposed. They found the mixed-penalty method to be superior over the 

penalty method in locking issues and sensitivity to mesh irregularities. However, they 

also noted that the two methods produce the same equations for four-node quadrilaterals. 

In a two-part paper, Almeida and Spilker (1997,1998) used the so-called mixed penalty 

method and also velocity-pressure (similar and equivalent to u-p) FE formulations to 

solve non-linear biphasic equations including strain-dependent permeability and a 

hyperelastic behaviour for the solid phase. They found their velocity-pressure method to 

be more efficient computationally due to the lower number of DOFs involved. However, 

they observed that the velocity-pressure formulation produces fluid and relative velocity 

fields that are not as accurate as the ones from the mixed-penalty method. They also 

reported some difficulties with the velocity-pressure formulation associated with 

oscillations of the stress and strain fields at early times and near the loaded surface that 

prevented the convergence of the nonlinear solution. However, considering the 

computational time, they gave the advantage to the velocity-pressure formulation at least 

for quasi-static problems. They considered dynamic problems the turf in which mixed-

penalty formulation would fare stronger than the velocity-pressure formulation. In 

dynamic problems such as wave propagation, the extension of the velocity-pressure 

formulation would mean that either the fluid inertia terms be neglected or the fluid 

momentum equation be integrated in time. They argued that the former option is 

acceptable in soil mechanics with porosities around 0.3, but would not be very suitable 

for soft tissues with porosities in the range of 0.75 or more. 

Chan et al. (2000) presented a mixed-penalty finite element model for the behaviour of 

articular cartilage in the biomechanics of diarthrodial joints. Using mixture theory, they 

added a viscous shear term to the hydrostatic pressure to have a complete stress tensor for 

the fluid phase. They argue that this change makes it possible to model a single-phase 

continuum as a limiting case of biphasic material if the solid or fluid volume fraction is 
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set to zero. This characteristic is helpful in modeling the interfacial response and 

interaction of porous flow and viscous flow. By the help of special assembly 

considerations on the interface, and using their FE model, they simulated Taylor‟s 

problem of Couette flow over a rigid (or deformable) porous layer. 

Here, volume averaging technique is used to derive the complete set of governing 

equations for the response of a two-phase system including a solid structure and fluid 

matrix. The shear stress terms of the fluid phase are not neglected leading to the Darcy-

Brinkman equation for the momentum balance of the fluid phase. Neither fluid pressure 

nor relative velocity of fluid are eliminated from the formulation to have a complete u-v-

p representation of the behaviour.  

2.2.  Volume Averaging Method 

In the general case of a two-phase medium where a fluid interacts with a porous structure, 

one needs to know how the fluid is transported through the pores from one point to 

another in the domain of the problem. The direct analysis of this problem in terms of 

transport equations that are valid within the pores is practically impossible due to the 

complex structure of the typical porous medium. Rather than tackle this problem in the 

form of equations that are valid in the pores, the equations relevant to each phase can be 

spatially averaged to produce equations that are valid within the domain of the two-phase 

medium. The method of volume averaging is a technique developed to rigorously 

generalize continuum equations to multiphase media [Whitaker (1998)]. Tucker and 

Dessenberger (1994) applied this method to the composite processing method of resin 

transfer moulding (RTM). They developed the governing equations for flow and heat 

transfer through stationary fibre-beds. Considering the solid phase to be stationary, is a 

very relevant assumption in RTM. By defining a phase function, it is possible to have a 

formal description of the microscopic geometry of the porous medium. The phase 

function for the   phase in a multi-phase medium is  

 





phase- in the liet doesn'  if0

phase- in the lies  if1
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x
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Three distinct average values for a variable in a multi-phase medium may be defined. The 

spatial average is the average value of a parameter in all phases within a representative 

volume V 

 
V

BdV
V

B
1

 (2.2) 

Phase average is defined as the average value of a parameter at points that lie within a 

single phase α, but still over the entire volume V 
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 (2.3) 

Intrinsic phase average is defined as the average value of a parameter at points that lie 

within a single phase α over the volume occupied by that phase. It can be represented as 
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 (2.4) 

Volume fraction of the α-phase is defined as 

 dVX
VV

V

V

 



1

 (2.5) 

The phase and intrinsic phase averages for an arbitrary α-phase are related by 

 
   BB  (2.6) 

In the following, we review some useful theorems of volume averaging that are very 

useful in deriving the averaged governing equations of a two-phase system. If B is 

continuous within the α-phase, the first theorem of volume averaging states that the 

average of gradient of B in the α-phase may be expressed as [Gray and Lee (1977), 

Whitaker (1998)] 
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dSB
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1

 (2.7) 
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where   denotes the other phase of the two-phase medium. S  is the interfacial surface 

between α-phase and β-phase, and n  is the unit vector normal to S directed from α- 

to β-phase. A similar equation can be written for the average of divergence of a tensor as 

follows [Whitaker (1998)] 

 .
1
 





S

dS
V

nAAA  (2.8) 

2.3.  Governing Equations 

Assuming a two-phase system consisting of a fluid phase and a solid porous structure 

where each phase is incompressible, the microscopic equations for mass conservation of 

the fluid phase and the solid phase may be written as 

 
0

,0





f

m

v

v
 (2.9) 

where v is the vector of velocity, and f and m represent the solid phase (fibres) and the 

fluid phase (resin matrix) respectively. Taking the phase average of the microscopic 

equation of mass conservation of the fluid phase in (2.9) and incorporating the theorem 

presented in (2.8) leads to 

 0
1

 
mfS

mfmm dS
V

nvv  (2.10) 

where mfS is the interfacial surface between the fluid and solid phase, and mfn  is the unit 

vector normal to mfS  directed from the fluid phase to the solid phase. Using the transport 

theorem, Tucker and Dessenberger (1994) showed that the second term on the left-hand-

side of the above equation is equal to the rate of resin volume fraction, i.e. 
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Therefore, the macroscopic form of the mass conservation equation of the fluid phase 

may be written as 

 0



m

m

t
v


 (2.12) 

The same procedure may be performed to obtain the macroscopic form of the mass 

conservation equation of the solid phase in the form of 

 0



f

f

t
v


 (2.13) 

Assuming that the pores are fully saturated by the fluid phase, the volume fractions of the 

fibre-bed and the matrix are related by 

 1 mf   (2.14) 

Adding the two mass conservation equations in (2.12) and (2.13) together and combining 

the result with (2.14) leads to the mass conservation equation of the two-phase system 

 0 mf vv  (2.15) 

Assuming that the inertia is not of consequence and the effect of body forces including 

gravity is negligible, the microscopic equations for equilibrium equation of the fluid 

phase and the solid phase take the simple form of 

 
0ζ

0ζ





f

m ,
 (2.16) 

where ζ represent the stress tensor. Taking the phase average of the microscopic 

equilibrium equation of the fluid phase in (2.16) and incorporating the theorem presented 

in (2.8) leads to 

 0nζζ  
mfS

mfmm dS
V

1
 (2.17) 

The total stress tensor of the fluid phase may be decomposed into a hydrostatic pressure 

term Pm and a deviatoric stress tensor ηm 
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 Iηζ mmm P  (2.18) 

where I  is the second-order unit tensor. Thus, the first term on the left-hand-side of 

(2.17) may be written in the form of 

 m

m

m

m

mmmmmm PPP   ηηζ  (2.19) 

Substituting (2.19) into (2.17) leads to 

 0nζη  
mfS

mfmm

m

mm

m

mm dS
V

PP
1

  (2.20) 

If the vector of drag forces between the fluid phase and the solid phase is defined as 

  

mfS

mfmm

m

md dS
V

P nζf
1

  (2.21) 

the equilibrium equation of the fluid phase takes the final form of 

 0fη  dm

m

mm P  (2.22) 

Taking the phase average of the microscopic equilibrium equation of the solid phase in 

(2.16) and incorporating the theorem presented in (2.8) leads to 

 0nζζ  
mfS

fmff dS
V

1
 (2.23) 

If we assume that the surface tension between the fluid and solid particles may be 

neglected, then we may write [Tucker and Dessenberger (1994)] 

 mfmfmfmf Son        0nζnζ   (2.24) 

which leads to 

  

mfmf S

mfm

S

fmf dS
V

dS
V

nζnζ
11

 (2.25) 

Considering the definition of drag force in (2.21, the above equation may be rewritten as 
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 (2.26) 

Substituting (2.26) into (2.23) leads to the following form of the equilibrium equation of 

the solid phase 

 0fζ  m

m

mdf P   (2.27) 

Assuming that the absolute value of pressure is directly transferred to the solid particles 

one may decompose the intrinsic phase average of the fibre-bed stress tensor into 

hydrostatic pressure of the fluid (which is transferred to the fibres) and f

f η  

 Iηζ
m

m

f

f

f

f P   (2.28) 

where f

f η  represents a stress component dependent on the deformation of the fibre-

bed and may be related to the effective stress of the fibre-bed,  fη , by (2.6). Applying 

(2.6) to the left-hand-side of the above equation leads to 

 Iηζ
m

mf

f

fff P    (2.29) 

Substituting (2.14) in (2.29), we arrive at 

  Iηζ m

m

mff P  1  (2.30) 

which leads to 
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η

ηζ
 (2.31) 

Substituting (2.31) into (2.27) leads to 

   0fη  m

m

mdf P 1  (2.32) 

The mass conservation equation in (2.15) combined with the equilibrium equations of the 

two phases in (2.22) and (2.32) leads to the system of governing equations of the two-

phase system 
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 (2.33) 

The constitutive behaviour of the fibre-bed could be expressed as 

   Tf

f

f

ff  uuCη
2

1
 (2.34) 

where u is the displacement vector, and C is the material stiffness tensor of the fibre-bed. 

For the shear stress in a viscous fluid, we may write 

  T

mmm )( vvη    (2.35) 

where μ is the viscosity of the fluid phase. The volume-averaged form of the above 

equation is 

  T

mmm  vvη   (2.36) 

in which, for  mv , we may rewrite the volume averaging theorem in (2.7) to have 

 dS
V

mfS

mfmmm  nvvv
1

 (2.37) 

It is commonly assumed that the slip velocity at the interface is zero [Tucker and 

Dessenberger (1994)], and therefore 

 mffm Son            vv   (2.38) 

Thus, the integral term on the right-hand-side of (2.37), may be rewritten as 

 dS
V

mfS

mffmm  nvvv
1

 (2.39) 

Arguing that the changes in the solid phase velocity fv  are small in comparison to the 

changes in fluid phase velocity 
mv , we assume that fv  on the interface can be 
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approximated with f

f v . Incorporating this assumption into the integral term in (2.39), 

we have 

 













  dS

V
dS

V
dS

V
mfmfmf S

mf

f

f

S

mf

f

f

S

mfm nvnvnv
111

 (2.40) 

Applying the averaging theorem in (2.7) to the phase function Xm leads to 

 

mfS

mfmmm dSX
V

XX n
1

 (2.41) 

Within the fluid phase, Xm is equal to unity and 
mX  equals zero. Also, it is readily 

deduced from (2.3) that  mX  is simply the fluid volume fraction 
m . Therefore, (2.41) 

may be simplified to [Tucker and Dessenberger (1994)] 

 dS
V

mfS

mfm  n
1

  (2.42) 

Substituting (2.42) into (2.40) results in 

 
m

f

f
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mfm dS
V

mf

 vnv
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 (2.43) 

which in turn, if substituted in (2.39) leads to 

 m

f

fmm  vvv  (2.44) 

Substituting the above into (2.36) and neglecting the approximations, we get 

   f

fmm

f

f

T

mmm  vvvvη   (2.45) 

Rewriting the above equation leads to 

     T

m

f

fmm

f

fmm   vvvvη  (2.46) 

The drag force between the matrix and fibre-bed may be written in the following form 

that is consistent with Darcy‟s law [Whitaker (1998), Tucker and Dessenberger (1994)] 
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  f

f

m

mmd  
vvSf

12  (2.47) 

where S is the matrix of permeability of the fibre-bed. Substituting (2.34) and (2.47) into 

(2.32), we arrive at the final form of the solid phase equilibrium equation 

        0vvSuuC  
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1 12
 (2.48) 

Substituting (2.46) and (2.47) into the second equation of (2.33) leads to the final form of 

the fluid matrix equilibrium equation 
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Thus, the set of equations (2.33) may be expressed in the form 
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 (2.50) 

In order to simplify the above equation, we define the velocity vector of the composite 

system (which is essentially equal to the velocity vector of the fibre-bed) as 

 f

fc  vv  (2.51) 

and the volume-averaged relative velocity (or flow velocity) of the resin as 

  f

f

m

mmflow  vvv   (2.52) 

The above definition of flow velocity is commonly used in the literature in FE 

formulation of flow in porous media [e.g. Lewis and Schrefler (1998)]. Based on (2.51) 

and (2.52) we may write the following relationships between the different velocity fields 
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Using the above equations, one may easily arrive at the governing equations with respect 

to the new velocity variables 
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where 

 
cc uv   (2.55) 

and uc is the composite displacement field. For the sake of convenience, variables uc, 

vflow, m

mP  , and 
m  are replaced with u, v, P, and   respectively, i.e. 
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 Using index notations, the set of governing equations (2.54) may be written in the form 

 0,,  iiii vu  (2.57) 

       01

,,,,,,  

jijjijijjijii vSuvuvP    (2.58) 

      01
2

1
,

1

,,,  

ijijjkllkijkl PvSuuC   (2.59) 

Adding up the two equilibrium equations of (2.58) and (2.59), leads to the total 

equilibrium equation of the domain 
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          0
2

1
,,,,,,,,,  ijijijjijijkllkijkl PuvuvuuC    (2.60) 

The mass conservation equation in (2.57), along with the equilibrium equation of the 

matrix in (2.58), and the total equilibrium equation (2.60) constitute the set of governing 

equations 
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that will be used in formulating the finite element discretization equations. The complete 

form of the governing equations presented above is especially useful in modeling the 

interaction at the boundary of a two-phase system with a neighbouring viscous fluid. As 

the shear stress of the fluid is not neglected, a few adjustment in the element leads to a 

correct representation of a purely viscous fluid. This will be discussed more in a later 

section. Also, the complete presentation of the stress components of the fluid phase helps 

in establishing the theoretical framework to extend the two-phase formulation to the 

cured composite material in which the resin phase is capable of carrying shear stress. 

In many cases of real-life porous media, the terms involving the shear stresses of the fluid 

phase are usually negligible compared to the terms involving the permeability of the 

system [Tucker and Dessenberger (1994)]. Therefore, the above set of governing 

equations in (2.61) may be commonly found in the literature in the following simplified 

form where the shear stress contributions of the fluid phase are neglected. 
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2.4.  Finite Element Implementation 

In this section, the general set of governing equations in (2.61) is implemented in the 

finite element method. Two different elements are introduced and formulated based on a 

u-v-p formulation where the main degrees of freedom are displacement of the system, 

relative fluid velocity, and the pressure of the fluid phase. 

2.4.1.  Q2P-1 element 

A 2D Q2P-1 finite element is developed considering the set of governing equations in 

(2.61) compared to the regular finite elements based on the u-p formulation utilized for 

modeling flow in porous media in the commercial FE codes (such as ABAQUS). 

In the FE modeling of incompressible Navier-Stokes equations, the terminology of QmP-n 

is related to 2D quadrilateral and 3D hexahedral elements. It indicates that the velocity is 

approximated by a continuous piecewise polynomial of degree m in each direction and a 

pressure approximation that is a discontinuous piecewise polynomial of degree n (not of 

degree n in each direction, for 2D quadrilaterals as if the pressure is represented by a 

triangle within the quadrilateral). This element passes the LBB condition for stability and 

is considered to be one of the most accurate 2D elements in incompressible viscous flow  

[Gresho and Sani (2000)]. The Q2P-1 element used in FE representation of incompressible 

Navier-Stokes flow is the inspiration for the namesake element developed in this work 

where the kinematic degrees of freedom (system displacement and fluid velocity) are 

approximated by 2
nd

 degree polynomials in each direction and the fluid pressure is 

approximated by linear distribution over the element. 

The Q2P-1 element presented here is a 2D bi-quadratic isoparametric element with 9 

nodes for the system displacement and relative velocity of the fluid phase. As depicted in 

Figure 2.1, three internal nodes are assigned to pressure of the fluid phase, therefore 

enabling every element to represent its internal pressure distribution as a linear surface. 

For simplicity, we will also refer to this element as the 9-3 element.  
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2.4.2.  Galerkin finite element equations 

Integrating the equations in (2.61) over a domain Ω using some weight functions wp, and 

using integration by parts on occasion we arrive at 

 0)( ,, 
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  (2.63) 

 
0)()(

)(              

1

,,,

,,,,,























dwnPdwvSdwuu

dwvvdPwdPw

pjijijpjijjpijji

jpijjipiip


 (2.64) 

 
0)()(

)()(            

,,,,

,,,,,,2
1



















dwnPdPwdwuu

dwvvdwuuC

pjijijijipjpijji

jpijjijpkllkijkl


 (2.65) 

where Γ denotes the boundary of the domain and Γσ is the portion of the boundary where 

tractions are specified. The components of effective stress tensor in the fibre-bed are 

defined by 

 )(
2

1
,, kllkijklij uuC   (2.66) 

and the components of shear stress tensor in the resin are expressed as 

     
ijijjijiij uvuv ,,,,

    (2.67) 

The term jijijij nP )(    in (2.65) appears as the result of the application of 

integration by parts to all the three terms in the last equation of (2.61) and represents the 

vector of total traction force applied at the boundary of the system. The term 

jijij nP )(    in (2.64) appears as the result of the application of integration by parts to 

the first and second terms in the second equation in (2.61) and represents the fluid-phase 

share of the vector of total traction force applied at the boundary of  the system.  
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Writing Equations (2.65), (2.64), and (2.63) respectively in matrix form for the 9-3 finite 

element depicted in Figure 2.1, we arrive at 
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where 
118u , 

118v , and 
13p  are the vectors of the degrees of freedom relating to the total 

displacement field, relative resin velocity, and resin pressure respectively. Defining the 

traction vector on the boundary of the two-phase medium as 

   jijijij

n

i nPt  )(  (2.69) 

we may rewrite (2.65) to have 
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 (2.70) 

which leads to the equation in the first row of (2.68). Hence, we may arrive at the 

definitions of some of the components of the matrices in (2.68) 
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 318 0Cup
 (2.76) 
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dnT

d tNfu  (2.77) 

Where t is the total traction vector on the boundary of the medium with components in x- 

and y-directions in the form of 
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xn

t

t
t  (2.78) 

and Nd is defined as 

 









N0

0N
Nd  (2.79) 

where N is the matrix of shape functions which interpolate the displacement and relative 

velocity fields on the element. For a bi-quadratic 9-node element, N is expressed in the 

form 

  921 ... NNNN  (2.80) 

and assuming that the element has three internal nodes for pressure interpolation, we may 

introduce the matrix of pressure shape functions as 

  pppp NNN 321N  (2.81) 

The displacement, resin relative velocity, and the pressure fields are interpolated on the 

domain of the element using the following equations 
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The displacement shape functions may be written as follows 
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The definition presented in (2.79) is relevant if the vector of main variables is defined as 

 

139























p

v

v

u

u

y

x

y

x

 (2.84) 



Chapter 2: Governing Equations and FE Model of Two-phase Media 

 34 

while we are interested to present the vectors of displacement and relative resin velocity 

degrees of freedom in the form 
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vu  (2.85) 

which leads to rewriting (2.79) so that 
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B is a matrix containing the spatial derivatives of the shape functions defined in (2.83), 

and may be expressed in the form 
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B1 is another matrix containing the spatial derivatives of the shape functions defined in 

(2.83), and is defined as  
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δ is defined by 

  T011δ  (2.89) 
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To calculate the spatial derivatives of the shape functions, we need to establish a 

relationship between the general (x,y) coordinates and the local (ξ,η) coordinates through 

the Jacobian matrix J as follows 
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As the element is isoparametric, the geometry is interpolated over the element by the 

same shape functions as displacement and velocity fields, thus leading to 
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which upon substitution in (2.90) yields 
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Using the inverse of Jacobian matrix, we may define a matrix consisting of the spatial 

derivative of the shape functions as 
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 (2.94) 

where the inverse of Jacobian can be easily written as 
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B  facilitates the definition of B based on the components of B  as 
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To determine the pressure shape functions N
p
, let‟s assume that the coordinates of the 

three pressure nodes are 

      333222111 ,   ,,   ,,  PPP  (2.97) 

To find the shape function for the first pressure node, we write the equation of the straight 

line that passes through nodes 2 and 3 to have 
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We may set the first shape function for pressure to be 
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and the parameter a may be calculated by setting   1, 111 N . Substituting the 

calculated value of a into (2.99) leads to 
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 (2.100) 

The other two pressure shape functions of the 9-3 element can be derived in a similar 

approach 
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We choose the location of the pressure nodes to be 

      31,0   ,31,31   ,31,31 321 PPP   

which leads to the simplification of the equations for the pressure shape functions as 

follows 
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In equation (2.71) DT is the matrix of tangent moduli of the fibre-bed, which in the case 

of a 2D isotropic plane strain problem may be described as 
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with E being the Young‟s modulus and  the Poisson‟s ratio of the fibre-bed. 

Defining the resin‟s share of the applied traction vector on the boundary of the system as 

   jijiji

n

m nPt  )(  (2.107) 
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we may rewrite (2.64) to have 
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Equation (2.108) then leads to the system of equations related to the second row of 

matrices in Eqn. (2.68). Thus, we may arrive at the definition of the components on the 

second row of the matrices in (2.68) 
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Where B2 is a matrix consisting of the displacement shape functions and the spatial 

derivatives and the resin volume fraction  in the form of 
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With the assumption of incompressibility of the phases, we may write the following 

equations for the initial and current values of the resin volume fraction 

 
mc

mm

c

m

VV

VV

V

V






0

0

0

0

0            ,   (2.117) 

where 
0  is the initial value of resin volume fraction, Vm0 is the initial volume of the 

resin, and ΔVm is the change in the volume of resin due to flow which is the only source 

of any change in the volume of the system. Vc0 is the initial total volume of the composite 

system. Dividing the numerator and denominator of the second equation in (2.117) and 

taking into account that that the volumetric strain of the system is defined as  
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leads to the following equation for the volume fraction of resin 
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Substituting the relationship between the volumetric strain and the total displacement 

field results in 
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  (2.120) 

To obtain the spatial differentiation of the fluid phase volume fraction on the domain of 

an element from the values of   at the Gauss points, we introduce a special set of shape 

functions with base points located at the 3×3 set of Gauss points (0, 515 ) as 
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Using the above set of shape functions we may write an equation for the field of fluid 

volume fraction in the form of 

 i

i

iN   



9

1

θN  (2.122) 

where θ  is the vector of the values of fluid volume fraction at Gauss points. Spatial 

gradients of   may be obtained by 

 θNθN yyxx ,,,,        ,     (2.123) 

The system of equations in the last row of the matrix equation (2.68) represents the mass 

conservation equation (2.63) that may be rewritten as: 

 0,,  


dwudwv piipii
  (2.124) 

which then leads to defining the components on the last row of the matrices in (2.68) 

 183 0CK pvpu  (2.125) 
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183

  dTTp
BδNCK pupv  (2.126) 

 33 0CK pppp  (2.127) 

Hence, the matrix equation (2.68) may be written in the following simplified form 
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2.4.3.  Q1P0 element 

A Q1P0 element is also developed based on the same set of governing equations as the 

previous element. As the naming system suggests, the kinematic degrees of freedom are 

approximated by a linear polynomial in each direction and the pressure is approximated 

by a constant value over the surface of the element. This element is a bi-linear 

isoparametric element with 4 nodes for the system displacement and relative velocity of 

the fluid phase, and only one central node assigned to pressure of the fluid phase. This 

element is depicted schematically in Figure 2.2. This element will also be referred to as 

the 4-1 element. The matrix of shape functions, N, is expressed in the form 

  4321 NNNNN  (2.129) 

where the kinematic shape functions are defined as 
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For this element, there is only one shape function for pressure values which is defined as 

unity since the pressure node is located at the origin of ξ and η axes. 

 1pN  (2.131) 

The vector of main variables for this element consists of 8 displacement variables, 8 

relative velocity values, and only one variable representing pressure of the fluid phase. 
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Similar to the case of 9-3 element, we introduce a special set of shape functions with base 

points located at the 2×2 set of Gauss points ( 33 ) as 
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The rest of the matrices and vectors relevant to the 4-1 element, are calculated in a similar 

fashion to those of the 9-3 element. One would find the only difference in the size of 

these matrices, and therefore we avoid repeating the formulas here. 

2.4.4.  Boundary conditions 

Due to the inclusion of shear stress components in the stress tensor of the fluid phase in 

the current formulation, we need to specify a complete set of boundary conditions for the 

fluid phase as well as the whole medium. The BC‟s relevant to the fluid phase are 

essentially similar to the BC‟s used in the FE analysis of 2D incompressible viscous flow, 
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and the BC‟s relevant to the whole medium are the same as the ones introduced in FE 

treatment of 2D elastic solids. 

Effectively, the two-phase problem is treated as a superposition of two problems; the 

whole medium with displacement/traction force boundary conditions, and the fluid phase 

with relative velocity/traction force boundary conditions. Distinct combinations of BC 

may be assumed, including: 

 Free and impermeable BC, where the total traction vector on the system and the 

relative velocity of the fluid are pre-determined: 

 .

)(

appl

n

i ft   

 
.defii vv   

 Free and permeable BC, where the total traction vector on the system and also 

the traction vector on the fluid phase are set to the applied external forces on the 

system and the matrix phase respectively: 

 .

)(

appl

n

i ft   

 
mappli

n

m ft .

)(   

If the only applied force on the boundary is due to air pressure, then the share of 

the matrix phase of the applied force on the boundary is proportional to the area 

occupied by the matrix phase on the relevant boundary surface. In the case of 

isotropic materials, this ratio is equal to the volume fraction of the matrix phase, 

and therefore we have 
.. applmappl ff   . 

 Constrained and impermeable BC, where both the displacement vector of the 

system and the relative velocity of the matrix phase are set to pre-defined values: 

 
.defii uu   

 
.defii vv   
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 Constrained and permeable BC, where the displacement vector of the system is 

set to pre-defined values. Also, the traction vector applied to the matrix phase is 

set to the share of that phase of the total traction applied to the boundary: 

 
.defii uu   

 
mappli

n

m ft .

)(   

Since in this case, the only plausible applied traction is due to ambient air pressure 

on the boundary, we may write 
.. applmappl ff    for isotropic two-phase 

materials. 

 

2.4.5.  Time integration 

To discuss the numerical solution of (2.128), we rewrite the equation in a short form to 

have 

 FXCKX    (2.134) 

where 

 


















p
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u

X  (2.135) 

is the generalized vector of main variables. Using the generalized mid-point integration 

rule, we may write the values of X and its time derivative at an arbitrary time between tn 

and tn+1 in the form 

   tnnn   XXX 1
  (2.136) 

   11   nnn XXX   (2.137) 
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where 10  . A few well-known special cases of the above scheme are Forward Euler 

( 0 ), Backward Euler ( 1 ), and Crank-Nicholson scheme ( 5.0 ). Writing 

equation (2.134) at time tn+θ leads to 

    nnnnn FXCXK   (2.138) 

Substituting (2.136) and (2.137) into the above equation, we have 

          nnnnnnn t FXXCXXK 111  (2.139) 

which after some manipulations, leads to a system of equations for the vector of main 

variables at the current time tn+1 

          nnnnn ttt FXKCXKC 11
 (2.140) 

or in an expanded form as 
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 (2.141) 

Due to irregularities in the coefficient matrices K and C, such as zero values on the 

diagonals and huge numerical difference between the terms, care needs to be exercised in 

the selection of the parameter θ for the solution to be stable in time. In all the numerical 

examples discussed in this work, the backward Euler approach was used and led to stable 

results in all the cases. 

2.4.6.  Non-linear solution scheme 

To implement the step-wise approach for the solution of the displacement vector, the 

component of the first term in (2.138) that includes Kuu i.e. 
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     nn
uKuu

 (2.142) 

is replaced by the step-wise description 

        nnnnn
uuKff uuuu    intint

 (2.143) 

 
nKuf  is an accumulated load vector at step n from previous time-steps obtained by the 

following recursive relationship 

        nnnnn
uuKff uuuu   11int1int

 (2.144) 

Let us choose the backward Euler scheme ( 1 ) as the method of solution in time 

domain. As a result, the first row in (2.128) at t=tn+1 may be written in the form 

            uuuupuvuuu fuCpKvKuuKf   11111111int nnnnnnnnnn
  (2.145) 

At every time step, an iterative solution is performed. At the k
th

 iteration, the matrix 

equation of the system is 
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2.5.  Treatment of Discontinuity in Volume Fraction 

In some cases, there may be a jump in the distribution of fluid volume fractions. This 

could be due to the placement of two layers of porous structure with different compaction 

amounts beside each other. In the composite processing, such cases may arise when resin 

flows out of the fibre-bed and pools in a corner leading to the presence of a purely 

viscous resin adjacent to the composite system consisting of fibre-bed and resin. As we 

will observe in an example in the next chapter, the discontinuity could also arise as a 

result of fluid flow motivated by s specific loading situation. Here, we introduce the 

measures that are required in the FE formulation of such discontinuities. 
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In the derivation of the weak form of the fluid phase equilibrium in the second equation 

of (2.61), integration by parts (or Gauss theorem) is applied on the pressure term as 

follows 
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We should remind the reader that the assumption for performing integration by parts in 

the general form of 
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vduuvudv  (2.148) 

is that both u and v be continuously differentiable in the relevant domain. Equation 

(2.147) holds for any smooth distribution of volume fraction over the domain, but it does 

not hold in cases such as layered media with different volume fractions, where a sudden 

jump occurs in the volume fraction. Here, we assume that any jump in   values happens 

only at the boundary between elements, and calculate a general formula for the amount of 

this error in case of a jump in volume fraction. To this end, we assume a 1D case 

involving two elements with a jump in the distribution of volume fraction at their 

interface. The schematic diagram of the pressure and volume fraction functions in this 

example is depicted in Figure 2.3. 

Let us assume that the volume fraction functions depicted in the diagram are in fact equal 

to the multiplication of the actual volume fraction distribution by the FE shape functions 

wp. We calculate the value of the left-hand-side integral in (2.147) over the length of each 

of the two elements, and add them up to arrive at the actual value of the above-mentioned 

integral over the domain obtained without using integration by parts. The distribution of 

pressure along the domain is assumed to take the following form 
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with a jump equal to α at the interface of the two elements. Differentiating the pressure 

function along the length of the domain leads to 
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  (2.150) 

At this point, it is helpful to review the following formula regarding integration of Dirac 

delta function 

 )()()( dd xfdxxxxf 




  (2.151) 

Therefore, the actual value of the above-mentioned integral term obtained without 

integration by parts will take the form 
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Taking advantage of (2.151), and considering the symmetry of δ function, we may 

conclude that 
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We now calculate the value of the same integral term that the current FE approach with 

the integration by parts would result 
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Expanding the above relationship leads to 
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and applying integration by parts on the integral terms in the above, we have 
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After simplifications, we arrive at 
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The difference between I1 and I2 represents the term that should be added to the FE 

formulation to account for any discontinuity of volume fraction distribution between 

elements. Considering that )()( 12 dd xPxP   and after simplifications, we arrive at the 

correction term for the 1D case 

      
dxxavgdddd PxxxPxPII


  )()( )()(

2

1
212121  (2.158)  

where [[ ]] represents the jump of a function. Taking into account the point that in the 

above derivation of the correction term,   represents the multiplication of fluid volume 

fraction by shape functions wp, one may argue that the correction term for a general 2D or 

3D problem takes the form of 

   




d

dwnP piavg   (2.159) 

for all inter-element boundaries, 
d  where fluid volume fraction incurs a discontinuity. 

As a matter of fact, the above correction term is a force term that should be applied on 

any inter-element boundary where a jump in volume fraction occurs in order to avoid any 

discontinuity in the pressure distribution over the domain of the problem. If efficiency is 

of no concern, one may also implement this term into the code so that it is applied on all 

the inter-element boundaries and it would work just the same since if there is no jump in 

the volume fraction the above term will be equal to zero. As it is obvious from (2.159), 

this force term is a function of fluid pressure, a main degree of freedom of any two-phase 

problem, and therefore it is best to introduce this term not as an applied force but as some 

extra coefficients in the stiffness matrices of the relevant elements. Since these extra 

coefficients are related to the equilibrium equation of the fluid phase and are to be 
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multiplied by pressure degrees of freedom, they contribute to the 
vpK components of the 

stiffness matrix. Assuming a general interface between the elements m1 and m2, we may 

rewrite (2.159) in the form 
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The corrections needed in vpK  (or additional vpK matrices) for the two involved 

elements may then be defined as 
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The above integrals are estimated using 3 Gauss points along the specified boundary 

located at 515,0or   . n
N  represents the product of the shape functions by the 

normal vector to the boundary of each element, and is written as 

  992211 NnNnNnNnNnNn yxyxyx

n N  (2.162) 

The normal vector on the boundary is in fact the outward normal to m1 element. The 

effect of this correction will be demonstrated here through numerical examples. 

2.6.  Interfaces with Purely Viscous Fluids 

The need to model the interface of a two-phase porous system with a purely viscous fluid 

arises quite often in the field of biomechanics, e.g. the lubrication mechanics of joints. 

Some of the work done on modeling such interfaces in biomechanics include Mow et al. 

(1980), Hou et al. (1989), Spilker and Maxian (1990), Almeida and Spilker (1997,1998), 

Ateshian and Wang (1998), and Chan et al. (2000). As was mentioned in the previous 

section, in the processing of composite laminates with curved geometry such interfaces 

may arise when resin flows out of the fibre-bed and pools in a space provided by the 

complex geometry. 
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To model a viscous medium using the current two-phase approach, we assume fluid 

volume fraction of unity, and very small values for the moduli of the solid structure. At 

the boundary between a viscous fluid and two-phase medium, the shear force, which is 

carried only by the viscous fluid on one side, is transferred partly to the viscous fluid 

flowing through the porous medium on the other side and partly to the porous solid 

structure. The actual (phase-averaged) value of shear stress carried by the fluid on both 

sides is the same, but there is a jump in the volume-averaged values of the fluid shear 

stress at the boundary. Assuming that the ratio of the areas of the two phases on the 

boundary is the same as the ratio of their volumes (which is the case for isotropic 

materials), the boundary condition between the two media with distinct volume fractions 

may be described as [Hou et al. (1989)]: 
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  (2.163)  

Assuming that 1 represent the viscous fluid and therefore 11  , one may remove the 

subscript from 2  and rewrite (2.163) to have 

           
2,,221

1111 ijjiijijij vv    (2.164) 

To apply the above condition to the FE approach, a virtual traction force equal to 

     jijji tvv
2,,11    (2.165) 

is applied to the fluid phase at the boundary between the two media. jt  represent the 

components of the tangent vector of the inter-media boundary. We assume a general 

interface between the elements m1 and m2, with the latter being the one representing a 

purely viscous fluid. Once implemented in the current FE approach, the virtual force in 

(2.165) contributes to the components of 
vvK matrix for element m1 as follows 
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where 
3B  is defined by 
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2.7.  Figures 

 

Figure 2.1: Schematic representation of Q2P-1 (9-3) element 

 

 

Figure 2.2: Schematic representation of Q1P0 (4-1) element 
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Figure 2.3:  The schematic diagram of the pressure and volume fraction distribution for a 1-D 

system consisting of 2 elements with a jump at their interface 
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Chapter 3: Verification of the Two-phase Model 

The FE approach presented in the previous chapter is implemented into a MATLAB code 

using 9-3 and 4-1 elements. These two elements are based on the u-v-p formulation. To 

validate the two-phase model, a few examples are solved numerically with the code and 

the results are compared to analytical solutions (if available) and other numerical 

predictions cited in the literature. Also, for the sake of more in-depth comparison, the u-p 

formulation is implemented in a 9-4 element which is rated to behave in a very similar 

fashion to the 8-4 standard element in ABAQUS for multi-phase porous materials. The 

naming criterion is based on the number of nodes used to discretize the kinematic degrees 

of freedom and the number of nodes assigned to the pressure of the fluid phase. In the u-p 

formulation, continuity of pressure must be satisfied. 

The examples chosen for the purpose of verification of the flow aspect of analysis 

include: (1) a column of porous material undergoing a uniform load at the top with 

permeable BC at the top surface, (2) a column of porous material undergoing a uniform 

load at and mid-height with impermeable BC all around, (3) flow in a channel with a 

porous wall, and (4) flow-compaction in processing of composite angle laminates. 

3.1.  General Two-phase Problems 

3.1.1.  Column of saturated porous medium under loading at the top 

Here, we consider an example to verify the predictions of the developed two-phase model 

and also demonstrate the phenomenon of initial oscillations in the pressure distribution. 

Figure 3.1 shows the schematic representation of a column of saturated porous medium 

with permeable BC at the top surface under vertical load at the top (left figure). The 

dimensions of the problem, boundary conditions, material properties and the loading 

conditions are depicted in Figure 3.1. The total load of f0 is applied from t = 0. Two FE 

meshes are assumed; one with 10 9-3 elements and another with 20 9-4 elements along 
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the height of the column. Note that 10 9-3 elements lead to 20 independent pressure 

DOFs along the height while 20 9-4 elements have 21 independent pressure DOFs along 

the height of the column. We will be comparing the pressure response in this example, 

and that is why the number of the 9-4 elements is chosen to be twice that of the 9-3 

element. Figure 3.3 and Figure 3.4 depict the time-history of pressure distribution along 

the height of the column for a fluid viscosity equal to 5×10
3
 Pa.s predicted respectively 

by 10 9-3 elements and 20 9-4 elements. Figure 3.5 to Figure 3.12 present the same data 

but for lower viscosities that gradually decrease from 5×10
3
 Pa.s to 0.5 Pa.s by 

increments of one order of magnitude. By changing the viscosity of the fluid, we change 

the time scale in that higher values for viscosity represent the behaviour at earlier stages 

of compaction and vice versa. It is evident that in the case of 9-4 elements the oscillations 

happen at the very start of the analysis while the 9-3 element initially does not show any 

significant oscillations but they develop to a maximum value at a critical time. The values 

of the observed oscillations are much smaller in the case of 9-3 elements.  

There is an analytical model for the case of 1D consolidation that applies to the current 

example. Terzaghi (1943) presented a closed form solution for the distribution of fluid 

pressure along the height of the column as a function of time. That formula may be 

written in terms of the material parameters introduced in the current work as 
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 (3.1) 

where Sy is the permeability of the porous material along the height of the column and E 

represents the Young‟s modulus of porous structure. 

Figure 3.13 shows the pressure distribution at an early time during the consolidation of 

the column predicted by both the 9-3 and 9-4 elements, comparing them with the 

analytical solution in (3.1). Superiority of the 9-3 element‟s prediction is due to the fact 

that using this element there is no need to enforce the value of pressure (to zero here) at 

the permeable boundary. Figure 3.14 to Figure 3.17 present the pressure distribution at 

the same time but for cases with gradually decreasing viscosity respectively. These 

diagrams represent later stages of consolidation of the porous column. The oscillations 
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related to the 9-4 elements gradually vanish as we move further from the initial stages of 

compaction. In all the cases a very good match is observed between the distribution 

predicted by the FE code and the closed form solution. 

Let us focus on the vicinity of the permeable BC to investigate how the oscillations of 

pressure develops in the case of 9-3 elements. Figure 3.18 shows the pressure surface of 

the top two 9-3 elements at an early stage of compaction. Figure 3.19 presents the same 

data at a time that the oscillation is more pronounced. It is evident that when the point of 

maximum curvature of the analytical solution is located between the pressure nodes of 

the top element, the oscillations are more pronounced in the 9-3 elements.  

The u-p approach (implemented in the 9-4 element) in FE formulation of the governing 

equations of two-phase media is to substitute the equilibrium equation of the fluid phase 

(2
nd

 equation in (2.62)) into the mass conservation(1
st
 equation in (2.62)); leading to the 

following set of two equations: 
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As a result, the pressure undergoes a second-order differentiation in space, and inter-

element continuity of pressure becomes necessary. This is not the case in the present u-v-

p formulation where all three of the mass conservation equation, fluid equilibrium 

equation, , and the total equilibrium equation (3
rd

 equation in (2.62)) are formulated into 

the finite element technique. Discontinuity of pressure gives the 9-3 element some 

advantages over the common elements in terms of stability and observed initial 

oscillations in pressure profile. 

 

3.1.2.  Column of saturated porous medium under loading at mid-height 

To demonstrate the effect of the treatment of jumps in the volume fraction, an example 

will be presented here in the form of a column of saturated incompressible porous 

medium under uniform loading at its mid-height with impermeable B.C. all around. The 
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dimensions of the problem, boundary conditions, material properties and the loading 

conditions are depicted in Figure 3.2. The total load of f0 is applied from t = 0. Resin 

flows from the bottom half to the top half of the column, therefore gradually causing a 

discontinuity in the volume fraction of the porous medium. Figure 3.20 and Figure 3.21 

depict the prediction of the 9-3 element for the time-history of pressure distribution along 

the height of the column for μ= 5×10
-2

 Pa.s and μ= 5×10
-3

 Pa.s, respectively. The gradual 

formation of an unrealistic jump in the pressure profile as the flow of the fluid occurs is 

evident. Figure 3.21 shows a clear jump in the pressure distribution at the final state of 

equilibrium. Figure 3.22 and Figure 3.23 present the same predictions where no 

discontinuities are observed after taking the corrective measure discussed in the previous 

chapter regarding the jump in volume fraction. 

3.1.3.  Taylor and Beavers-Joseph problems 

Here we consider the unidirectional flow of a viscous fluid over and through a rigid 

porous wall due to a constant velocity applied to the top surface of the fluid. The constant 

velocity V0 is applied to the fluid via a moving rigid wall at the top boundary of the fluid 

layer as it is depicted in Figure 3.24(a). This problem has indeed a Couette-type 

behaviour as the only distinction between the two is the porous wall underneath the 

viscous fluid in the current configuration, and one would imagine if the porous wall 

happens to be impermeable enough, then unidirectional Couette flow is a limiting case of 

the problem at hand. Another problem of interest may be described by the unidirectional 

flow of a viscous fluid over and through a porous wall sustained by pressure gradient in a 

2D channel (Figure 3.24(b)). This case may be considered as a Poiseuille-type flow, as its 

limiting case when the permeability of the porous structure diminishes to zero is in fact 

the Poiseuille flow. 

Hou et al. (1989) refer to the two above-mentioned problems as the Taylor problem 

[Taylor (1971)] and the Beavers-Joseph problem [Beavers and Joseph (1967)], 

respectively. They established a set of boundary conditions for such interface problems in 

their work. They also presented an analytical solution for fluid velocity profile for the 

Beavers-Joseph problem based on their choice of interfacial boundary conditions. Also, 



Chapter 3: Verification of the Two-phase Model 

 59 

the solution of Taylor problem was presented via graphs depicting the flow profile. 

However, their original differential equations were based on the fluid‟s phase-averaged 

velocity (absolute value of velocity) compared to volume-averaged fluid velocity in this 

work, and also drag coefficient for the porous medium as opposed to the permeability 

coefficient in this work. Here, we present the analytical solution for the two problems 

using the nomenclature of the current work. Considering the assumptions involved in the 

Taylor problem, the equilibrium equation of the fluid phase for the case of this 

unidirectional flow problem may be written as 
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where v is the volume-averaged velocity of the fluid in the x direction. The boundary 

conditions may be readily identified as v(h1)=V0, and v(-h2)=0. As for the interfacial 

boundary conditions between the viscous fluid at the top and the underlying two-phase 

system, we use the relationships derived by Hou et al. (1989) 
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Solving the set of differential equations in (3.3) with their assigned boundary conditions, 

and the specified interfacial conditions in (3.4) leads to the analytical solution for the 

volume-averaged velocity of fluid along z axis 
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In a very similar fashion to the Taylor problem, the equilibrium equations of the fluid 

phase for the case of Beavers-Joseph problem may be introduced as 
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where v is the volume-averaged velocity of the fluid in the x direction. The boundary 

conditions may be identified as v(h1)=v(-h2)=0. The interfacial boundary conditions 

between the viscous fluid at the top and the underlying two-phase system are the same as 

the ones introduced in (3.4), since the system geometry of the two problems are identical. 

Solving the set of differential equations in (3.6) with the appropriate boundary and 

interfacial conditions leads to the analytical response for the volume-averaged velocity of 

fluid along z axis in the Beavers-Joseph problem 
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  (3.7) 

The above result matches the analytical solution obtained by Hou et al. (1989) for the 

profile of the phase-averaged velocity of the viscous fluid. The closed-form solutions in 

(3.5) and (3.7) will be used here for verification of the approach presented in this work. 

Chan et al. (2000) compared the results of their FE approach with the analytical solutions 

for the Taylor problem, but they did not report any numerical results for the Beavers-

Joseph problem. We present numerical results for both of the above problems.  
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It is assumed that mmhh 421  , and viscosity of the fluid, μ, is equal to 5 Pa.s. Three 

different values for the permeability of the porous layer are assumed to capture the limits 

of velocity profile that could be obtained in these two problems. Two uniform FE meshes 

are considered; one with four 9-3 elements through the thickness, and another with eight. 

As these problems are 1D and we have constrained the degrees of freedom in the z 

direction, the number of elements in the x direction is irrelevant. Figure 3.25 to Figure 

3.27 present the velocity profiles (for decreasing values of permeability of the porous 

wall) obtained by the current approach for the Taylor problem and compares them with 

the analytical solution in (3.5). The convergence of the results even with these relatively 

small number of elements is clear, and an essentially perfect match is observed between 

the numerical and analytical solutions.  

Figure 3.28 to Figure 3.30 show the velocity profiles (for decreasing values of 

permeability of the porous wall) obtained by the current approach for the Beavers-Joseph 

problem and compares them with the close form solution in (3.7). In a similar fashion to 

the Taylor problem, convergence of the response is evident, and a very good match is 

observed between the numerical and analytical response.  

Chan et al. (2000) added a viscous shear term to the hydrostatic pressure to have a 

complete stress tensor for the fluid phase. Here, we compare their formulation with the 

current study. A very important distinction is in the differential equation pertaining to the 

equilibrium equation of the fluid phase. Rewriting Chan et al.‟s version of the fluid 

equilibrium equation using the notation of the current work for the sake of comparison, 

we arrive at a form equivalent to 

         01

,,,,,,  

jijjijijjijii vSuvuvP    (3.8) 

The major difference between the above and the fluid equilibrium equation in the current 

study in (2.58) is in the first term which includes a form of pressure gradient. Equation 

(2.58) used in the current approach is consistent with the governing equations of porous 

media presented in the prominent literature in this field (e.g. Lewis and Schreffler, 1998) 

while equation (3.8) is not. Furthermore, if one assumes that the velocity terms vanish in 
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(3.8), it would lead to an equilibrium state with variable pressure for a case with variable 

volume fractions throughout the domain, an unrealistic and undesirable outcome.  

Another difference between the work by Chan et al. and the current approach is that they 

based their set of differential equations on the phase-averaged velocity of fluid while the 

volume-averaged relative velocity of the fluid is the velocity parameter chosen in this 

work. Not only does the latter choice lead to a very straight-forward presentation of the 

mass conservation equation as in (2.57), but also it allows for the continuity of the fluid 

velocity degrees of freedom at the interface of a purely viscous fluid and a two-phase 

medium. However, the use of phase-averaged fluid velocity in the formulation presented 

by Chan et al. (2000) leads a discontinuity in the velocity field at the interface which 

requires special assembly considerations that are not desirable in a robust code. 

 

3.2.  Flow-compaction in Processing of Composite Angle Laminates 

Hubert (1996) and Hubert et al. (1999) performed simulations involving resin flow and 

compaction of angle shaped laminates. Hubert et al. developed a 4-4 element in 

COMPRO based on the u-p formulation. Of two-phase media. They carried out a 

comprehensive parametric study of the numerical response and the sensitivity of the 

effect of various constitutive properties on the compaction behaviour of the laminates. 

Hubert (1996) also performed an experimental study on the compaction of unidirectional 

angle laminates on convex and concave tools. The samples were made of two different 

materials including AS4/3501-6 and AS4/8552. He numerically simulated examples 

closely representative of the geometry of the actual specimens made for the experiments. 

The change in the thickness of the final products at the corner and along the flat part were 

studied and compared with the results predicted by the simulations. The numerical 

predictions of the final thickness changes for the specimens made of AS4/3501-6 

compared much better than AS4/8552 specimens with those obtained from the 

corresponding experiments. Here, the 9-3 element is used to model the same problem 
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with the same material properties assumed in Hubert‟s work to compare the results from 

the two approaches (See Table 3.1 and Table 3.2). 

Figure 3.31 shows the geometry and boundary conditions of the problem assuming a 

convex tool and the time-history of autoclave conditions. Since the current code does not 

deal with heat transfer analysis, we have assumed that the temperature of the laminate 

changes uniformly throughout the process and follows the temperature history of point A 

obtained from Hubert‟s numerical run for the same problem. Two different FE meshes 

are presented in Figure 3.32 to ensure convergence of the results. Point A is located on 

the top corner of the laminate, and point B is located on the top surface of the laminate at 

the mid-length of the flat section. The normal displacements at A and B are compared to 

those results reported by Hubert. Figure 3.33 shows the time-history of the normal 

displacement at points A and B for the case of the AS4/3501-6 [0°] unidirectional angle 

laminate on a convex tool and compares the response with those reported by Hubert. 

Figure 3.34 presents the same comparison for the case of AS4/8552 [0°] unidirectional 

angle laminate. The convergence of the response is verified and a good match is observed 

between the current predictions and those reported by Hubert for both materials. Any 

observed difference in the history of normal displacements especially in the case of 

AS4/3501-6 material is attributed to the fact that in the present work the temperature is 

assumed to be uniform over the domain. 

It was observed that for cases involving [90°] unidirectional angle laminates, the current 

predictions did not match the response reported by Hubert. Investigating further into this 

matter made it clear that in the runs for [90°] cases, Hubert‟s code had erroneously set the 

permeability matrix equal to those of a [0°] laminate. In a modified version of COMPRO, 

we fixed that error and reanalyzed the [90°] cases. The response histories that will be 

presented in Figure 3.35 and Figure 3.36 as Hubert‟s are in fact the results obtained by 

the updated version of COMPRO. 

Figure 3.35 presents the time-history of the normal displacement at points A and B for 

the case of the AS4/3501-6 [90°] unidirectional angle laminate on a convex tool and 

compares the response with those reported by our version of Hubert‟s approach. Figure 
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3.36 shows the same comparison for the case of convex AS4/8552 [90°] unidirectional 

angle laminate. In both of the above figures, the convergence of the response is clear and 

a good match is obtained between the displacement history predicted by the 9-3 element 

and the response obtained by the corrected version of Hubert‟s approach. 

The 4-4 element developed by Hubert et al. (1999) approximates the displacement and 

pressure degrees of freedom in the same fashion by continuous linear polynomials in each 

direction. Due to having the same level of discretization for displacement and pressure, 

the 4-4 element sustains instability issues and also its accuracy is conditional. Vermeer 

and Verruijt (1981) presented an accuracy condition for such finite elements. The 

condition sets a minimum size for the time steps or a maximum for mesh size to ensure 

accuracy and avoid excessive pressure oscillations. This issue led Hubert et al. to run the 

COMPRO flow module once the viscosity of resin fell below 1000 Pa.s. In the present 

work, there are no such limitations but since the goal here was to compare the results of 

the 9-3 with the predictions of Hubert et al., for viscosity values above 1000 Pa.s the resin 

viscosity was artificially increased to 1×10
7
 Pa.s to prevent any resin flow. This explains 

the plateau observed at the beginning of the displacement time-history predictions in 

Figure 3.33 to Figure 3.36. 
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3.3.  Tables 

Table 3.1: Resin and fibre-bed properties for the AS4/3501-6 angle laminate  

 

 

 

Table 3.2: Resin and fibre-bed properties for the AS4/8552 angle laminate 
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3.4.  Figures 

 

Figure 3.1: A column of saturated porous medium under uniform loading at the top, and meshes 

of 10 9-3 elements and 20 9-4 elements 

 

Figure 3.2: A column of saturated porous medium with impermeable BC all around with uniform 

loading at mid-height, and mesh of 10 9-3 elements 
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Figure 3.3: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. μ=5×10
3
Pa.s 

 

 

Figure 3.4: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. μ=5×10
3
 Pa.s 
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Figure 3.5: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. μ=5×10
2
 Pa.s 

 

 

Figure 3.6: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. μ=5×10
2
 Pa.s 
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Figure 3.7: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. μ=50 Pa.s 

 

 

Figure 3.8: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. μ=50 Pa.s 
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Figure 3.9: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. μ=5 Pa.s 

 

 

Figure 3.10: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. μ=5 Pa.s 
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Figure 3.11: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-3 (u-v-p) elements. μ=0.5 Pa.s 

 

 

Figure 3.12: Time-history of pressure distribution along the column with top permeable BC and 

under applied load at the top, obtained by 9-4 (u-p) elements. μ=0.5 Pa.s 
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Figure 3.13: Pressure distribution at t=3 s, along the column with top permeable BC and under 

applied load at the top. μ=5×10
3
 Pa.s 

 

Figure 3.14: Pressure distribution at t=3 s, along the column with top permeable BC and under 

applied load at the top. μ=5×10
2
 Pa.s 
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Figure 3.15: Pressure distribution at t=3 s, along the column with top permeable BC and under 

applied load at the top. μ=50 Pa.s 

 

Figure 3.16: Pressure distribution at t=3 s, along the column with top permeable BC and under 

applied load at the top. μ=5 Pa.s 
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Figure 3.17: Pressure distribution at t=3 s, along the column with top permeable BC and under 

applied load at the top. μ=0.5 Pa.s 

 

Figure 3.18: Pressure surfaces of the two end elements at a very early stage of consolidation of 

the column 
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Figure 3.19: Pressure surfaces of the two end elements at a time that oscillation is well-

pronounced 

 

Figure 3.20: Time-history of pressure distribution along the column with impermeable BC under 

applied load at the mid-height, obtained without the correction for discontinuity 

of volume fraction. μ=5×10
-2

 Pa.s 
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Figure 3.21: Time-history of pressure distribution along the column with impermeable BC under 

applied load at the mid-height, obtained without the correction for discontinuity 

of volume fraction. μ=5×10
-3

 Pa.s 

 

Figure 3.22: Time-history of pressure distribution along the column with impermeable BC under 

applied load at the mid-height, obtained with the correction for discontinuity of 

volume fraction. μ=5×10
-2

 Pa.s 
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Figure 3.23: Time-history of pressure distribution along the column with impermeable BC under 

applied load at the mid-height, obtained with the correction for discontinuity of 

volume fraction. μ=5×10
-3

 Pa.s 

 

Figure 3.24: Schematic diagram of two unidirectional flow problems over and through a porous 

wall; (a) Taylor problem, (b) Beavers-Joseph problem 
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Figure 3.25: Profile of volume-averaged velocity for the Taylor problem with μ=5 Pa.s, and 

S=4.5×10
-6

 m
2 

 

Figure 3.26: Profile of volume-averaged velocity for the Taylor problem with μ=5 Pa.s, and 

S=4.5×10
-8
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Figure 3.27: Profile of volume-averaged velocity for the Taylor problem with μ=5 Pa.s, and 

S=4.5×10
-10

 m
2 

 

Figure 3.28: Profile of volume-averaged velocity for the Beavers-Joseph problem with μ=5 Pa.s, 

and S=4.5×10
-6
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Figure 3.29: Profile of volume-averaged velocity for the Beavers-Joseph problem with μ=5 Pa.s, 

and S=4.5×10
-8

 m
2 

 

Figure 3.30: Profile of volume-averaged velocity for the Beavers-Joseph problem with μ=5 Pa.s, 

and S=4.5×10
-10
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Figure 3.31: Geometry, BC, and processing cycle used for compaction of a unidirectional angle 

laminate on a convex tool 

 

Figure 3.32: (a) 8×4 mesh and (b) 16×6 mesh of the angle laminate using symmetry 
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Figure 3.33: Time-history of normal displacement for unidirectional AS4/3501-6 angle with [0°] 

fibres on a convex tool 

 

Figure 3.34: Time-history of normal displacement for unidirectional AS4/8552 angle with [0°] 

fibres on a convex tool 
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Figure 3.35: Time-history of normal displacement for unidirectional AS4/3501-6 angle with 

[90°] fibres on a convex tool 

 

Figure 3.36: Time-history of normal displacement for unidirectional AS4/8552 angle with [90°] 

fibres on a convex tool 
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Chapter 4: Integration of Modeling from Fluid to Cured Resin 

Having verified our FE approach in modeling porous flow in the previous chapter, we 

embark on identification and implementation of necessary modifications in the two-phase 

model in order to capture stress development as well as resin flow. To that end, we 

review the pseudo-viscoelastic stress model developed by Zobeiry et al. (2010) and 

present the formulation for adapting that into the current approach. 

4.1.  Pseudo-viscoelastic Stress Model 

In the pseudo-viscoelastic or PVE formulation [Zobeiry (2006), Zobeiry et al. (2010)], it 

is assumed that the moduli of resin are constant at any instant of time, but changing as a 

function of temperature and degree of cure. The moduli however, are derived so that the 

response will be approximately equivalent to a fully viscoelastic approach. In order to do 

that, Zobeiry et al. (2010) compared the CHILE (cure hardening instantaneously linear 

elastic) model [Johnston et al. (2001)]with a viscoelastic model. In their work, Zobeiry et 

al. (2010) presented the following mathematical formulation for stress development in 

1D: 
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where ft  is the time at the onset of cool-down, f  is the degree of cure at the onset of 

cool-down , m is the rate of cool-down, and Ta  is the shift factor that relates the reduced 

time, ξ, to the time variable by the following equation 

 dt
a

t

T


0

1
  (4.3) 

The shift factor, Ta , is given by 

       21log cTcaT   (4.4) 

where the coefficients 1c  and 2c  are defined as 
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In the case of 3501-6 epoxy resin; Ca  /4.11 , Ca  /0712.02 , and CT  300  [Kim 

and White (1996)]. 0T  is the reference temperature. 

The instantaneous elastic moduli for the resin (namely the shear and bulk moduli, G and 

K) are obtained from the following equations 
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where superscripts r and u denote the fully relaxed and un-relaxed moduli of resin, 

respectively.   and W  are the stress relaxation times and their associated weight factors 

for the th  Maxwell element in a generalized Maxwell model consisting of n elements. 

The relaxed and un-relaxed values of moduli for the 3501-6 resin are assumed to be 
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independent of degree of cure and temperature. For this material, the weight factors are 

also assumed to be constant during cure [Kim and White (1996)]. The stress relaxation 

times change with the degree of cure according to the following relationship 

      )log()()()(log)(log 00

   f  (4.9) 

where 0  is the reference degree of cure (equal to 0.98 in the case of 3501-6 resin). Also, 

 f   for this resin is defined as 

   21347.96089.03694.9  f  (4.10) 

  is given by 

 
 
 0

0










p
  (4.11) 

where p  is the peak relaxation time. The relaxation times and their associated weight 

factors for 3501-6 resin are obtained from Kim and White (1996) and presented in Table 

4.1. 

4.2.  Constitutive Equations 

In this section, we will review the elastic constitutive equations for isotropic and 

transversely isotropic materials. 

4.2.1.  Isotropic materials 

The elastic constitutive equation for 2D isotropic materials is written in the form of 

 
KG KG εεζ  2  (4.12) 

in term of stress and strain tensors, ζ and ε, or 

 
KGKG KG    (4.13) 
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in vector form where a single underscore denotes a vector quantity. Assuming pseudo-

viscoelastic formulation for the behaviour of resin, leads to a PVE representation for the 

composite material as well. Thus, at any time-step the behaviour of the composite is 

elastic and the rates of the two components of stress may be written as 

 GG G    (4.14) 

 KK K    (4.15) 

Summation of the above two equations leads to 

 
KG

KG     (4.16) 

which could also be written in the form 

   D  (4.17) 

where D  is the elastic constitutive stiffness matrix (note that double underscore denotes a 

matrix quantity) given by 
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4.2.2.  Transversely isotropic materials 

We review the formulation presented by Zobeiry (2006) for the constitutive behaviour of  

transversely isotropic materials. Based on a system of decoupled moduli presented by 

Hashin (1972) for use in micromechanics, the constitutive equation is written as 

 
23122 23122 GGK GGK εεεεεζ    (4.19) 

or 
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In the expanded form , we may rewrite (4.19) in the following form 
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where 2K  is the in-plane bulk modulus of the material in its plane of isotropy (2-3 plane). 

It may be calculated by the following relationship 
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  (4.22) 

It can also be written in a format similar to the relationship for the in-plane bulk modulus 

of an isotropic material as 

 
 2112

2
212  


E

K  (4.23) 

where 
32 EEE   is the transverse modulus, and 

23   is the Poisson‟s ratio in the 

plane of isotropy. 12G  is the axial shear modulus, and 
23G  is the transverse shear modulus 

(shear modulus in the plane of isotropy). The two new moduli   and   are defined 

respectively as 

 
2

1221 4  KE   (4.24) 

 1222 K  (4.25) 

In the case of pseudo-viscoelastic formulation, the material behaviour at any time-step 

may be written in the form of 
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Summing the equations in (4.26) and taking into account (4.20), we may write 

 
12232 12232 GGK GGK  


   (4.27) 

which could also be written in the form 

   D  (4.28) 

where 
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 (4.29) 

In this work, the material properties of the composite material are obtained from the 

equations of micromechanics adapted from Bogetti and Gillespie (1992). 

4.3.  Two-phase Model for Stress Development in Cured Materials 

An important aspect of this work is to implement the modifications required in the two-

phase element so that it can model the different stages of the cure of the material from a 

fluid resin to a completely cured polymer matrix. It is naturally expected of the element 

to successfully model the initial stages of the process consisting of resin flow and 

compaction of the sample. This was verified in the previous chapter, and also will be 

discussed in examples later in this work. 
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4.3.1.  Consistent compressibility in mass conservation equation 

In order for the two-phase element to successfully model the cured composite, a few 

critical implementations are required. Many times in the modeling of flow, satisfactory 

results are obtained by assuming that the solid particles and the fluid phase (or one of 

them) are incompressible. As a matter of fact, Hubert et al. (1999) made both of the 

above-mentioned assumptions in his flow-compaction model. However, in the analysis of 

solid materials such assumptions would introduce considerable errors in obtaining the 

strain and stress fields. Therefore, compressibility of the phases needs to be considered in 

the governing equations implemented in the finite element scheme.  

Assuming small strains, the equations of mass conservation for compressible fibres and a 

compressible resin matrix may be written as [Lewis and Schrefler (1998)] 

   01
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and 
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respectively, where ρf and ρm denote the density of fibres and resin matrix. vc is the 

velocity vector of the composite system defined in (2.51) and vflow is the volume-

averaged relative velocity (or flow velocity) of the resin given by (2.52). In the derivation 

of the above, it is assumed that the spatial gradients of the density of the phases are 

negligible. The summation of (4.30) and (4.31) results in the mass conservation equation 

of the system 
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which may be rewritten in the indicial form of 
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where the following notation is used for simplicity 

 
iflowiici vvvu          ,  (4.34) 

Lewis and Schrefler (1998) introduce the following relationships for the mechanical 

components of the last two terms of the above equation 
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 (4.36) 

where 
mK  and fK  are bulk moduli of resin and fibre respectively. ζ , the effective stress 

tensor related to the skeleton of the porous media (in this case; the fibre-bed), is defined 

by 

 Iζζ P  (4.37) 

where it is assumed that fm PPP  . 

Here, it is worthwhile to note that if the solid grains (in this case; individual fibres) are 

compressible, we introduce “Biot effective” stress tensor as [Biot (1941), Terzaghi 

(1943)] 

 Iζζ bP  (4.38) 

where b is Biot coefficient and is defined by 

 
f

fb

K

K
b 1  (4.39) 

where fbK  is the bulk modulus of the fibre-bed (solid skeleton in general). Lewis and 

Schrefler (1998) introduce the following constitutive equation 
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which is then substituted in (4.36) to result in 
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  (4.41) 

Incorporating (4.35) and (4.41) into (4.33) leads to the following mass conservation 

equation used in the treatment of porous soils: 
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In this work, we aim to introduce the micromechanics of the interaction of the phases and 

their load sharing settlement at the latest stage possible. To that end, we introduce the rate 

of volumetric strain of the two-phase system as 
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  (4.43) 

which enables us to write the mass conservation equation in (4.33) in the following 

compact form 

 0,, 
sviiii vu   (4.44) 

In the presence of thermochemical strains, the rate of volumetric strain is divided into 

mechanical and free components and the above equation is rewritten as 

 0,, 
free

sv

mech

sviiii vu    (4.45) 

Having augmented the contributions of the phases into a single value for the volumetric 

strain rate of the composite, we are then able to attribute a constitutive equation to 
mech

cv  

that is consistent with the micromechanical formulation that we opt for at the extreme end 

of cured composite. Assuming that the phases and the composite material are isotropic, a 
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general micromechanics formulation may be written in the form of the following two 

equations 

  ,, fmGc GGfG   (4.46) 

  ,, fmKc KKfK   (4.47) 

where the index c refers to the properties of the composite material. The constitutive 

equation for the bulk behaviour of the composite in 3D would be simply written in the 

form 
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  (4.48) 

where 
sζ  is the total stress of the two-phase system, and basically equal to the total stress 

ζ  in (4.38). In a format more familiar to the mass conservation equations frequent in the 

formulation of porous soils, one may write 
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  (4.49) 

The above equation is mentioned here just for the sake of comparison between the 

consistent treatment of the rate of volumetric strain presented here and the usual poro-

mechanics formulations. The very small discrepancy that the consistent (with the solid 

micromechanics) approach would introduce into the model‟s poro-elasticity aspect of 

modeling, is a reasonable penalty to pay considering the gains in the consistency of the 

results for the analysis of solid composite with cured resin. 

In 2D plane strain however, the constitutive equation for the rate of volumetric strain 

needs to be expressed in a slightly different way than in (4.48). The reason is that in 2D 

plane strain (or plane stress for that matter!), the stiffness coefficient relating the 

volumetric strain and 
iitr ζ  is not equal to 

cK . For 2D plane strain, the constitutive 

equation for the rate of the volumetric strain is 
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  (4.50) 

 

4.3.2.  The concept of modified effective stress (‘s-p’ stress) 

In the treatment of flow through porous media, an equilibrium equation is written for 

each of the solid and fluid phases that are related together with a common drag force. The 

equilibrium equation for the fluid resin, which was presented in (2.22), may be written in 

indicial form as 

 0
,, 

idjijmi fP   (4.51) 

where 
idf  are the components of the drag force that, if defined as follows, leads to the 

Darcy‟s law. 

 jijid vSf 1   (4.52) 

and 
ijm  represent the deviatoric stress components of the resin matrix. Here, it should be 

reminded that, in the current notations, Darcy‟s law may be written as 

 0, 
idi fP  (4.53) 

while the resin equilibrium equation in (4.51) that we intend to use here, is the Darcy-

Brinkman (or Brinkman) equation [Brinkman (1949)]. The second term in (4.51) (i.e. the 

divergence of the deviatoric stress of the resin matrix) is usually much smaller than the 

drag force, so in most applications, it is enough to incorporate (4.53) in the governing 

equations [Tucker and Dessenberger (1994)]. However, in this work we aim for the 

porous flow equations to be able to model the behaviour of the cured composite at one 

extreme. Having that in mind, we choose to use (4.51) as the resin equilibrium equation. 

This will lead to a total equilibrium equation with all components of stress for the resin 

phase, which is consistent with the behaviour of the cured composite. We will later see 

that once any micromechanics scheme is incorporated in the total equilibrium equations 
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of the system, the term containing the deviatoric stresses of resin will not appear 

explicitly anymore, and it will be implicitly considered in a decomposition of total stress. 

The equilibrium equation for the solid skeleton (here; fibre-bed) may be written in the 

form 

   01 ,, 
iidjij Pfσ   (4.54) 

where ζ is the effective stress tensor of the fibre-bed. Summation of the two equilibrium 

equations in (4.51) and (4.54) leads to the total equilibrium equation of the system 

 0,,, 
ijijmjij Pσ   (4.55) 

which could also be written in terms of Biot effective stress, to yield a more general form 

covering for the compressibility of solid particles 

 0,,, 
ijijmjij bPσ   (4.56) 

We may now revisit the governing equations in(2.61) and rewrite them in the form 
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 (4.57) 

As was mentioned earlier in this section, in most cases the term involving the deviatoric 

stress of the matrix (i.e. 
ijm ) are negligible compared to 

idf  in the matrix phase 

equilibrium equation (second equation of the above). Based on the total equilibrium 

equation in (4.56) the total stress of the system may be defined as 

 
ijijmijijs bPσ    (4.58) 

Let us define the „s-p‟ stress as 

 
ijmijijijsijps σbPσ  

 (4.59) 

Combining the deviatoric components of matrix stress with the stress components of the 

porous structure paves the way toward a formulation for the porous two-phase system 
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that is consistent with the micromechanics representation of choice for the final solid 

composite material. Considering the above points, we may rewrite (4.57) as 
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vu





 (4.60) 

Assuming elastic behaviour for the fibre-bed, a constitutive relationship for Biot effective 

stress tensor may be written as 

 
klijklfbij C    (4.61) 

where 
ijklfbC  represent the stiffness moduli of the fibre-bed. Equation (4.56) should be 

representative of the equilibrium state of the composite material throughout the different 

stages of processing during which the resin matrix cures and goes through thermo-

chemical changes from fluid to a solid cross-linked state.  

Conceptually, this new stress tensor 
ijps  can be looked at from two different 

viewpoints. Chronologically, the first viewpoint should be based on the porous flow side 

of the behaviour, and is explained by considering 
ijps  as an “improved” fibre-bed 

stress since the shear stress contribution from the resin is added to Biot effective stress. 

Therefore, one could observe that a very viscous resin would naturally contribute to 

“non-bulk” components of the modified fibre-bed stiffness. 

The second viewpoint is from the other extreme of the process, i.e. the solid 

micromechanics of the composite. Here, 
ijps  is viewed as (as the symbol suggests 

presently!) the components of the composite stress excluding a share of the total pressure. 

This suggests that any micromechanical model that we would use for the regular solid 

composite could be introduced for the components of 
ijps  except for its hydrostatic 

pressure (bulk) component. Further development will show that 
ijps  plays an essential 

role in linking the modeling of the porous flow-compaction and the fully solid behaviour 

using micromechanics.  
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4.3.3.  Elastic moduli for isotropic materials 

Let‟s assume that the fibre-bed (solid skeleton would make more sense here!) is isotropic 

for the time being. A reasonable representation for the equivalent elastic moduli relevant 

to 
ijps  may be assumed in the form of 

 fbps KK   (4.62) 

for the bulk modulus, and 

 fbcps GGG   (4.63) 

for the shear modulus. The index fb  represents the fibre-bed or the solid skeleton of the 

system, and 
cG  is the shear modulus of the composite obtained from a micromechanics 

scheme. To further elaborate, the new bulk modulus is equal to the bulk modulus of the 

fibre-bed since there is no contribution from the resin pressure in the relevant stress 

tensor, 
ijps . However, in shear we have a combination of two load sharing 

mechanisms; one is the interaction of resin with individual fibres, and the other could be 

considered as a load sharing system between the previous mechanism and the fibre-bed.  

Taking a similar approach to (4.13), we write the constitutive equation in vector form 

 
KpsGpsKpsGpsps KG     (4.64) 

The fibre-bed is assumed to be elastic. The constitutive relations for the two stress 

components may be written as 

   GfbcGps GG     (4.65) 

and 

 
KfbKps K   

 (4.66) 

Summation of the above two equations leads to 

   KfbGfbcps KGG     (4.67) 
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which could also be written in the form 

  
psps D

   (4.68) 

where 
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 (4.69) 

When the resin is a viscous fluid any elastic contributions from the resin to the shear 

modulus of the composite is negligible. As a result Gc tends to be much smaller than Gfb, 

and therefore Gs-p obtained from (4.63) presents a very good approximation of Gfb (Gs-p ≈ 

Gfb). This effectively means that for pre-gelation composite, the mechanical behaviour of 

the „s-p‟ system is a very good approximation of the behaviour of the actual fibre-bed and 

therefore the flow-compaction behaviour can be captured by this formulation.  

At the other extreme when the composite is cured, Gc is much larger than Gfb which, once 

considered in (4.63), leads to Gs-p≈ Gc. The question now is whether the total stress of the 

system obtained by such a two-phase model is equivalent to the stress response predicted 

by a regular stress model. This will be referred to as the consistency of the approach and 

will be addressed in the next section. 

4.3.4.  Consistency of constitutive equations for isotropic materials 

Disregarding free strains: Rewriting the decomposition of the stresses of the composite 

system in (4.59) leads to 

 
ijijpsijs bPσ   

 (4.70) 
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Let us investigate whether the following constitutive equation, obtained by expanding 

(4.70) for 2D plane strain, is equal to the constitutive equation of a solid composite once 

the mass conservation equation is also applied.  

 bP
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 (4.71) 

Note that we are considering elastic constitutive equation as the PVE response is elastic 

during every time-step. Stress and strain components and resin pressure in the above 

equation are in fact representative of the change of these parameters during an arbitrary 

time-step. Therefore, during this arbitrary time-step equation (4.50) may be written 

without the time differentiation as 

 
 32
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sv
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tr




ζ
  (4.72) 

which upon considering the components of ζs in (4.71) results in 
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21

cc
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sv
GK 





  (4.73) 

In the absence of flow and free strains, the mass conservation equation then becomes 

 
 32

21
21

cc GK 





  (4.74) 

Combining the mass conservation in the above equation with (4.71) we have 

       bPGKGK cfbcc 23232 2121    (4.75) 

which after simplification leads to 

   21   cfb KKbP  (4.76) 
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If the above equation for the pressure is substituted into (4.71), we will arrive at 
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 (4.77) 

which is essentially the constitutive equation of elastic solid composites in 2D plane 

strain. This proves the consistency of our approach with the elastic behaviour of solid 

isotropic composites. 

Including free strains: In the presence of free strains, the above derivations are slightly 

different. We assume that the porous skeleton does not undergo any thermochemical 

strains and therefore equation (4.71) remains the same. This assumption makes sense as 

the majority of the thermochemical effects occur in the resin, and using the total strains in 

(4.71) facilitates the flow of resin through the porous skeleton due to its volume change. 

Equations (4.72) and (4.73) remain the same, but the mass conservation equation is 

written as 
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  (4.78) 

where f  is the free strain in either 1 or 2 directions. Combining the above with (4.71) 

we eventually arrive at 

      f

cccfb GKKKbP  3221   (4.79) 

Again, if the above equation is substituted into (4.71) we will have 
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which is the constitutive equation of elastic solid composites in 2D plane strain including 

free strains. This proves the consistency of our approach with the elastic behaviour of 

solid isotropic composites in the presence of free strains. 

4.3.5.  Elastic moduli for transversely isotropic materials 

For anisotropic materials, we need to present the components of the composite stress 

tensor in a slightly different format from (4.59) to have 

 
ijIijpsijs Pb   

 (4.81) 

where Ib  represent the components of the vector of Biot coefficients, b, associated with 

the anisotropic porous structure. The index I takes the same value as i, and is presented in 

upper-case form to indicate that the summation rule in index algebra is not to be applied. 

In the case of transversely isotropic materials, b can be presented as follows [Coussy 

(2004)] 

 


















b

b

b1

b  (4.82) 

where b is the Biot coefficient in the plane of isotropy, and b1 is the Biot coefficient in the 

direction of the fibres. In this work, we assume that b may be defined by 

 
f

fb

K

K
b

2

2
1  (4.83) 

Due to the very high stiffness of the fibre-bed in the longitudinal direction, the value of b1 

has no discernable effect on the phenomena related to the porous flow of the resin 

through the system and the resulting compaction. However, as we will see later, the value 

of b1 plays an important role in making the approach consistent with the regular 

constitutive model for cured composite materials. If the tensors of stress and strain are 

represented as vectors in Voigt notation, (4.81) may be expressed as 
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 (4.84) 

for transversely isotropic materials. With a slight change from the 3
rd

 equation in (4.60), 

the total equilibrium equation of the system is now written as 

   0,,
 iIjijps Pb  (4.85) 

Taking a similar approach to the isotropic case, we decompose the „s-p‟ stress to have 

 
23122 GpsGpsKpspspsps   ζζζζζζ


 (4.86) 

In vector form, we may write the foregoing equation as 

 

23122

23122

23122        GpsGpsKpspsps

GpsGpsKpspspsps

GGK 




















 (4.87) 

A reasonable representation for the elastic moduli related to „s-p‟ stress may be assumed 

in the form 

 
fbps

KK 22 


 (4.88) 

 fbps    (4.89) 

for the moduli dealing with the bulk behaviour of the material, and 

   cps  (4.90) 

as the bulk response has a small role in the value of η evident from (4.24). Finally, the 

shear moduli are introduced similar to the formulation of shear modulus in the isotropic 

system. 

 
fbcps

GGG 121212 


 (4.91) 
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fbcps

GGG 232323 


 (4.92) 

As it is seen here, the concept is the same as in the isotropic case. Assuming pseudo-

viscoelastic behaviour for the resin, and therefore the composite, and that the fibre-bed is 

elastic, we write 

 
22

2 KfbKps K   
 (4.93) 
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 (4.94) 

 
  fbps   (4.95) 
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1212 GfbcGps GG   
 (4.96) 

  
2323

2323 GfbcGps GG   
 (4.97) 

Summation of the five components of the rate of „s-p‟ stress vector leads to 

  
psps D

   (4.98) 
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Similar to the arguments made in the case of isotropic materials, when the resin is a 

viscous fluid the shear moduli of the „s-p‟ system obtained from (4.91) and (4.92) are 

good approximations of the corresponding shear moduli of the fibre-bed. Therefore, the 

2D plane strain version of (4.99) for a pre-gelation unidirectional [0°] composite system 

may be written as 
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 (4.100) 

The only difference between the material stiffness matrix of the „s-p‟ system in the above 

equation and its counterpart for the fibre-bed is in the 11 component where ηfb is replaced 

by ηc+Δη. However, both of these values are typically in the order of 100 GPa, and much 

larger than the other component of the material stiffness matrix. Therefore, the above 

difference will not have any discernable effect on the compaction response of the system. 

Similar to the isotropic case, this means that for pre-gelation composite the mechanical 

behaviour of the „s-p‟ system is a very good approximation of the behaviour of the actual 

fibre-bed and hence the flow-compaction behaviour is correctly represented.  

At the other extreme of cured composite, using similar arguments made for isotropic 

materials, the shear moduli of the „s-p‟ system are very good approximations of the 

corresponding shear moduli of the composite obtained by micromechanics. Therefore, the 

2D plane strain version of (4.99) for a cured unidirectional [0°] composite system may be 

written as 
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 (4.101) 

The consistency of the approach using (4.101) for predicting the stress response of 

transversely isotropic materials will be addressed in the next section. 

4.3.6.  Consistency of constitutive equations for transversely isotropic 

materials 

Disregarding free strains: Similar to the isotropic case, let us focus on an arbitrary time-

step and investigate the consistency of the approach for the elastic behaviour during that 

time-step. The following is the constitutive equation of a unidirectional solid composite 

with [0°] fibres in 2D plane strain. 
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Let us investigate whether the following constitutive equation obtained by expanding 

(4.81) could be equal to the above relationship once the mass conservation equation is 

also applied. 
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 (4.103) 

The change in the longitudinal modulus   is considered in a general form as   is 

defined by (4.24) where the second term is a function of both K2 and  . As both of these 

values are changed, it is not easily intuitive (as we will see later) to obtain the consistent 

change in the longitudinal modulus. Therefore, we have opted to apply an arbitrary 

change to the value of longitudinal modulus. 

We set the stresses from the two matrix equations in (4.102) and (4.103) to be equal and 

obtain 
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The above may be rewritten as 
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As the above should be valid for any combination of strain components, the following 

must be always correct 
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that leads to the values for b1 and   that are consistent with the two constitutive 

equations being equivalent, i.e. 

 b
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 (4.107) 
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Substituting the above results into (4.103), the constitutive equation may be written as 
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  (4.109) 

If we can demonstrate that applying the mass conservation equation to the above will lead 

to the same definition for bP that was obtained in (4.105), we have proved that the two 

approaches are equivalent. The normal components  of strain are calculated as 
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 (4.110) 

Adding the two normal components of strain, the volumetric strain of the system is 

obtained as 
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  (4.111) 

We substitute the stress components in the above equation with the relationships obtained 

by our approach in (4.109) to arrive at 
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  (4.112) 

which after extensive manipulations leads to 

     2221 
cfbcfb KKbP    (4.113) 

therefore proving that the two constitutive equations in (4.102) and (4.103) are in fact 

equivalent. 

Including free strains: Assuming the presence of free strains, the above proof is still 

valid providing that we substitute 1  and 2  with f

11    and f

22    respectively. 

Using an identical approach to the above, it is readily proved that applying the mass 

conservation equation in its simplified form in the absence of resin flow as below 
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to the constitutive equation of two-phase systems in the form of 
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 (4.115) 

leads to an approach equivalent to using the common constitutive equation of 

transversely isotropic materials which follows 
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This ensures that in the absence of flow, the predictions of the current approach for the 

development of residual stresses of the composite system are equivalent to the response 

observed using the regular approach. However, in modeling resin flow, using (4.115) 

practically means that we have assumed that the free strain of the system (predominantly 

due to thermal expansion of resin in the stages that flow occurs) occurs in the fibre-bed. 

Therefore using this approach, the thermal free strains will not provide a motivation for 

flow of resin as the effective fibre-bed does not undergo any stress due to the system 

thermal expansion and hence does not put the resin under pressure to flow. This is clearly 

in contrast with the micromechanical behaviour of the system at the early stages of 

processing when the resin can move relative to the fibre-bed and the thermal strains of the 

fibre-bed are practically negligible compared to those of the resin. In such conditions, it is 

expected that the thermal expansion of the resin will cause the fibre-bed to expand as well 

initially. This leads to tensile stresses in the fibre-bed, which in turn puts the resin under 

pressure that leads to flow of resin out of the system until the pressure is vanished and the 

whole system reaches equilibrium. 

One should base the two-phase approach on (4.103) to capture the flow of resin correctly 

since the stresses of the effective fibre-bed are independent of the free strains of the 

system. To correctly predict the development of stresses due to cure, applying the mass 

conservation equation to (4.103) must lead to (4.116). If we set the stresses from the two 

matrix equations in (4.103) and (4.116) to be equal, we have 
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that may be rewritten as 
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As was argued before, the above should be valid for any combination of strain 

components and free strain components, and therefore the following must be always 

correct 
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which leads to 4 inconsistent equations to obtain the two unknowns of b1 and  . This 

shows that (4.103) and (4.116) cannot be consistent with each other. 

The inconsistency demonstrated above for transversely isotropic composites has led us to 

an approach including a switch at a nominal point of gelation for the resin system. We 

start the analysis based on (4.103) and past the gelation point we include the free strains 

in the behaviour of the effective fibre-bed, and therefore use (4.115) from that point 

forward. This ensures consistency of the approach at both stages of uncured fluid resin 

and cross-linked resin with the actual behaviour of the composite system at those stages 

respectively. 

4.3.7.  Decomposition of stresses in 3D 

The fibres could be placed in any direction in the plane of the composite laminate. If the 

laminate coordinate system subtends an angle,  , with the material coordinate system in 

the 1-2 plane of the laminate, the transformation tensor between the two coordinate 

systems is then expressed by 
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n  (4.120) 

The transformation between the stress tensor in the laminate coordinates, ζ̂ , and the 

stress tensor in the material coordinate systems takes the form 

 ζnnζ
Tˆ  (4.121) 

or in indicial notations 

 klljkiij nn  ˆ  (4.122) 

Using the Voigt notation, the stress vector in the laminate coordinates 321   may be 

written as  
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where the transformation matrix is defined by 
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To transform the stress vector back to the material coordinate system we need to have 
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 (4.125) 

The stress vector in the laminate coordinates 321   may be written as  

 

































































12

13

23

33

22

11

1

12

13

23

33

22

11

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ


























T  (4.126) 

where 
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The matrix of elastic moduli in the laminate coordinate system may be written in the form 
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  (4.128) 

The decomposition of stress to „s-p‟ stress and resin pressure is applied in the material 

coordinate system. Therefore, to obtain the total stress of the composite, one needs to 

transfer the „s-p‟ stress into the material coordinate system to be added to resin pressure 

components, and then transfer the result back to the laminate coordinate system. As a 

result, (4.84) may be written in the form 
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 (4.129) 

 

4.4.  Modifications in the Numerical Technique 

The additional implementations in order to capture the integration of flow and stress in 

the FE formulation are discussed in this section. The FE equations for the isotropic and 

transversely isotropic conditions are presented. Also, the required modifications in the 

non-linear solution scheme and the updating procedure of the resin volume fraction are 

discussed. 



Chapter 4: Integration of Modeling from Fluid to Cured Resin 

 112 

4.4.1.  FE implementation in 2D plane strain 

Isotropic materials: Assuming 2D plane strain conditions, the „s-p‟ matrix of elastic 

moduli is expressed as 
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 (4.130) 

The most important changes need to be applied in the FE implementation of the mass 

conservation equation. Integrating (4.45) over the domain Ω using some weight functions 

wp we arrive at 

 0,,  


dwdwdwudwv p
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svp
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svpiipii    (4.131) 

where 
mech

sv  can be obtained from (4.50). Substituting (4.59) into (4.50) leads to 
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Incorporating (4.132) in (4.131) and discretization of the result for a 9-3 element gives 

the components of the last row of matrices of coefficients as 
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There is a new force term defined as a function of the rate of free strains is introduced in 

the FE form of the mass conservation equation 
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Also in the FE formulation of the third equation in (4.60), an additional term is added to 

the force term on the right-hand side of the matrix equations 
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 (4.139) 

Combining the above with the implementation of the other two governing equations leads 

to the matrix equations of an element in the form of 
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Transversely isotropic materials: In 2D, the global x-y plane is equivalent to 31   plane 

in the 3D laminate coordinate system. Thus, we may obtain the full 3D matrix of elastic 

moduli from (4.128), and extract the relevant components to have (note that we have 

dropped the “hat” symbol for simplicity in this section.) 
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In special cases, we may be able to simplify the above equation, e.g. 
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In the x-y plane, (4.129) is simplified to 
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 (4.144) 

As the plane strain conditions are assumed (i.e. 0  ;0 
free

z

mech

z  ), the volumetric 

strain of the composite and its rate are respectively expressed by 
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Using the expanded form of the constitutive equation of the composite material, we may 

write 
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We expand the first two rows of (4.144) to have 
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and then the above is substituted into (4.147) to result in 
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where 
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Substituting the above into (4.131) and discretization of the result for a 9-3 element gives 

the modified form of some of the components in of the FE matrices compared to the 

isotropic case as 
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to be utilized in the matrix equations of the finite element presented in (4.140). 

 

4.4.2.  Modifications in the non-linear solution scheme 

With the new matrix equations in (4.140), we need to revisit the nonlinear solution 

scheme. The iterative matrix equation for the solution of the system is therefore slightly 

modified from (2.146) to be presented as 
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  (4.154) 

 

4.4.3.  Calculation of volume fractions 

With the assumption of compressible phases and also considering the free strains, it is 

essential to revisit our method for obtaining the values of fluid volume fraction over the 

domain. The formula used to update the fluid volume fraction in (2.119) and (2.120) is 
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based on the assumption that the phases are incompressible and therefore the volumetric 

strain of the system is solely dependent on the volume of fluid flowing into or out of the 

domain. The mass conservation equation in the 1
st
 equation of (2.62) may be rewritten in 

the form 

 
flowvviiii vu    or      ,,

 (4.155) 

Integrating the above equation through time leads to  
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,   (4.156) 

As it is evident from (4.156), if the phases are assumed to be incompressible, the 

volumetric strain of the system is equal to the component of volumetric strain that 

happens as a result of fluid flow. Therefore, using the total volumetric strain in (2.119) 

and (2.120) is correct. Here, the mass conservation equation has the general form as in 

(4.45), and as a result, the flow-dependent component of volumetric strain may be 

obtained from 
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and substituted into the following equation (similar to (2.119)) for updating the fluid 

volume fraction 

 
flowv

flowv
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 (4.158) 

In the models dealing with cured material and stress development, the change of volume 

in the phases is assumed to have no effect on the volume fractions of the composite 

material. For our approach to be consistent with that, we need to obtain the component of 

volumetric strain of the system that is only due to flow of the fluid phase, and incorporate 

that into updating the volume fractions. That is the reason why in (4.158), we have opted 

for an equation that assumes that the phases are incompressible. If one decides to 

consider the effect of volume change of the phases in updating the volume fraction 
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values, even when no flow occurs, a non-zero change in the volume fraction of the phases 

will be predicted which is not consistent with the models only dealing with stress 

development in curing composites. 

4.5.  Resin Properties during Cure 

Even though quite a lot of work has been done in the literature to characterize the 

properties of resin during cure, a material model with consistent viscosity and viscoelastic 

properties of resin was nonexistent at the start of this work. Typically, the thermo-

mechanical characterization of resin is focused either on finding the relationship between 

degree of cure and viscosity or developing formulas for resin properties as a viscoelastic 

or cure-hardening elastic solid. Therefore in this work we have opted to use separate set 

of data for the viscosity and the moduli of resin. Ideally, comprehensive rheological and 

mechanical experiments should be performed on the resin at various states of temperature 

and cure to capture the full range of behaviour of resin from a viscous fluid to a 

viscoelastic solid. Having full-range data, ensures that the evolution of viscosity during 

cure is consistent with how the viscoelastic properties of the resin change throughout 

processing. Very close to the completion of this thesis, Thorpe (2012)  presented a 

consistent material model that predicts the viscoelastic liquid and viscoelastic solid 

behaviour of a commercially available thermoset resin, MTM45-1 epoxy, for the full 

range of degree of cure. This development is very promising as this material 

characterization is designed to be directly fed into the current integrated approach for 

resin flow and stress modeling. 
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4.6.  Tables 

 

Table 4.1: Relaxation times and weight factors for 3501-6 resin for α
0
 = 0.98 

 

 

 

 

 

 

ω τω (min) Wω

1 2.92E+01 0.059

2 2.92E+03 0.066

3 1.82E+05 0.083

4 1.10E+07 0.112

5 2.83E+08 0.154

6 7.94E+09 0.262

7 1.95E+11 0.184

8 3.32E+12 0.049

9 4.92E+14 0.025
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Chapter 5: Numerical Applications 

To verify the current approach toward integrating the numerical modeling throughout the 

processing of composite materials a few examples are presented. These examples will 

verify some or all the modeling aspects (such as compaction behaviour, resin flow, 

residual stress development) that are of consequence in processing problems. 

5.1.  Cured Materials 

In this section, we focus our attention towards analysing fully cured, linear elastic, 

isotropic composites using the approach developed in this thesis and comparing the 

results with the classical approach for elastic solids. As benchmark solution, we will 

decouple the solution of the problem in the MATLAB code so that it will just solve the 

elastic solid problem using the classical approach, and then compare the results with the 

response obtained by running the code in the coupled multi-physics mode for the same 

example. We will also use the commercial code ABAQUS to verify the results, and 

compare the convergence rate of the two approaches. Other than using 9-3 elements, we 

will also apply the above approach to regular bi-quadratic 9-4 element based on the u-p 

formulation and compare their response with the 9-3 element. All the examples are 

assumed to be under 2D plane strain conditions. 

We will start with a very simple example, whose exact solution can be obtained 

theoretically, and move along to further complicated problems. We assume the following 

relationship between the fibre-bed and composite bulk moduli 

 cKfb KCoeffK   (5.1) 

where CoeffK provides a simple representation of the value of fibre-bed bulk modulus. 
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5.1.1.  Cured composite sample under uni-axial strain conditions 

A rectangular sample of an isotropic two-phase composite material, as shown in Figure 

5.1, is constrained on 3 sides, and is put under a constant distribution of normal pressure 

load. The input properties for this problem are 
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For simplicity, we assume that the phases act in series together in both shear and 

volumetric responses. Thus, the composite shear and bulk moduli may be obtained by 
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The matrix of elastic moduli is then expressed as 
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There is a state of uniform stress in the sample under uni-axial strain conditions, so we 

just apply the boundary conditions to the constitutive equation to have 
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and solve for the unknowns in stress and strain fields 
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The strain energy of the system may be calculated by 
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 mNEs .002767.0  

This example was run using the developed 9-3 elements for flow through deforming 

porous media. Due to the simplicity of the stress and strain fields in this specific problem, 

the exact results are obtained using any number of elements. Different meshes were 

chosen including: 1 element, 3×2 elements, 6×4 elements, and 9×6 elements all giving 

the exact results in terms of stress and strain components and also the calculated value for 

the strain energy. It is also very important to note that the elastic response of the 

composite system using this approach is independent of the value of the bulk modulus of 

the fibre-bed Kfb. This point numerically confirms the capability of the integrated 

approach to model the stress response of the post-gelation composite, which was proved 

theoretically in the section on the consistency for isotropic materials in Chapter 4.  

5.1.2.  Cured composite sample under linear distribution of pressure 

A sample with the same geometry and constitutive properties as the previous example is 

under a linear distribution of pressure load as shown in Figure 5.2. The new loading 

condition is defined by 

 .1000       ,400 21 kPafkPaf   

The linear distribution of the load introduced significantly more complexity into the 

stress and strain fields of the sample compared to the previous problem. Shear 

deformation occurs in the whole domain, and the stress and strain fields are functions of 

the location of the point on the domain. Figure 5.3 shows the profile of the vertical 

displacement at the top surface of the sample for different meshes of 9-3 elements. In 

Table 5.1, the value of strain energy for the system is reported for the combination of 

different values of CoeffK, mesh densities, and the conditions on relative velocity of 
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resin. The convergence of the results with refining the mesh and decreasing the value of 

CoeffK is very fast in this case.  

It is noteworthy to remind the reader that assigning unity to CoeffK in 9-3 element leads 

to the regular approach of solid mechanics. Since the total bulk modulus of the two-phase 

medium is considered in the total equilibrium equation, there is no motivation for flow of 

resin. In other words, setting CoeffK=1 leads to a very stiff fibre-bed (with a precise 

stiffness) that would carry all the hydrostatic pressure in the system, leading to the 

pressure of the resin to take zero values on the domain and thus eliminating the cause of 

flow. 

Here, since we aim to solve the solid composite problem using the formulation of flow in 

deforming porous media, the relative velocity of resin should be zero. For efficiency of 

the solution and also to converge to the exact response of the solid composite, one may 

constrain all the DOFs corresponding to the resin relative velocity. However, this would 

mean that in process modeling we would have to change the essential boundary 

conditions midway of the analysis at gelation point. We expect that introduction of a high 

value for the “viscosity” of solid resin leads to practically zero values for relative velocity 

of resin, and therefore omitting any specific need for constraining the velocities at 

gelation. Table 5.1 confirms the above deduction as the values of strain energy are very 

close in the two cases of constrained and free relative velocities. It should be noted that 

even with high values of viscosity, given enough time resin will eventually flow out of 

the system if the relative velocity DOFs are not constrained. This would be considered 

undesirable when we intend to model a solid composite problem. In the numerical 

examples in this work with free conditions on relative resin velocity, we have assumed 

the following for viscosity of resin and the end-time of analysis 

 stsPa 18       ,.101 7   

An interesting observation is that refining the mesh not only does not reduce the very 

small difference between free and constrained conditions, but also increases it. One may 

explain this using the argument that by refining the mesh the number of velocity DOFs 

increases, leading to a softer response on part of the relative flow of resin. 
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5.1.3.  Cured Composite sample under pressure gradient 

A rectangular sample of an isotropic two-phase composite material, as shown in Figure 

5.4, is constrained at top and bottom surfaces, and is put under a pressure gradient in the 

horizontal direction. The properties of the problem are the same as previous examples 

except for 

 .100       ,700 21 kPafkPaf   

Using axial symmetry half of the problem will be modeled using meshes of 9-3 and 9-4 

elements. To have a schematic shape of the deformation of the sample under these 

loading conditions, Figure 5.5 shows the displacement profiles of the two vertical sides of 

the specimen. The combination of the large difference in the pressure values on the two 

sides and the geometry of the problem force all points of the domain to move to the right. 

The displacement values on the right side are much smaller than the left. These smaller 

displacements resulted in a slower convergence of the numerical results on the right side. 

Consequently, we opt to focus our attention on the displacement profile and the 

maximum displacement of the right side for comparison and discussion. 

Table 5.2 reports the obtained values of the maximum horizontal displacement (uA at 

point A shown in Figure 5.4) using ABAQUS and also the 9-3 element under various 

conditions. In terms of comparing the free and constrained conditions on relative resin 

velocity, the observations made in the previous example are applicable again. In short, 

the results of the free and constrained conditions are practically the same given that the 

viscosity of the resin is assumed high enough for the time-scale of modeling. Assuming 

values for the viscosity of the solid resin that are too high could possibly introduce 

numerical instabilities due to ill-conditioning of the matrices of coefficients.  

The ABAQUS results are obtained using the 2D plane strain 8-noded element. This 

element is specialized for solid problems, and takes the regular approach of discretizing 

the total equilibrium equation. As it is seen in Table 5.2, the convergence of the 

displacement values with refining the mesh happens quite slowly (using a uniform mesh). 
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As was mentioned earlier, with CoeffK=1 the results of the porous media approach to the 

solid problem at hand, are comparable to the regular approach (ABAQUS results for 

instance), since in this case only the total equilibrium equation (among the three 

governing equations) is effectively considered. In the case of the 6×4 mesh, if we 

compare the displacement values obtained from ABAQUS 8-noded element and 9-3 

element with CoeffK=1, while both values are in the same range, the result from the latter 

is closer to the converged value (~1.649 using ABAQUS). This can be attributed to the 

advantage of 9-noded over 8-noded element.  

Due to limitations of the developed MATLAB code the finest mesh that we have 

modeled is 12×8. Figure 5.6 to Figure 5.8 show the convergence of the displacement 

profiles with decreasing values of CoeffK using various meshes. Figure 5.9 shows the 

convergence of the displacement profiles with refining the FE mesh for the case of 

CoeffK=0.01. Figure 5.10 represents the same information but for CoeffK=1. Comparing 

the two graphs, it is evident that the convergence of the displacement response as a whole 

is very quick for CoeffK=0.01 compared to CoeffK=1 (which effectively represents the 

regular solid mechanics approach as was mentioned before). 

Reducing CoeffK from unity introduces tangible improvement in the rate of convergence 

of the displacement results by refining the mesh. For the composite materials that we deal 

with, CoeffK~0.0001-0.01 could be a realistic range. Table 5.3 offers similar comparisons 

to the ones made in Table 5.2, but in terms of total strain energy of the system, where 

similar observations can be made. 

Table 5.4 and Table 5.5 report the obtained values of the maximum horizontal 

displacement and total strain energy respectively, using the 9-4 element under various 

conditions. Figure 5.11 and Figure 5.12 compare the displacement profiles for 9-3 and 9-

4 elements for the case of CoeffK=0.01. It is evident that the results obtained using 9-4 

elements assuming permeable B.C. on the two sides, are not satisfactory. Yet, they show 

improvement with mesh refinement. In the impermeable case, the displacement and 

energy results are satisfactory but slightly inferior to 9-3 results in terms of rate of 

convergence both with refining the mesh and reducing CoeffK. The common property of 
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the 9-3 and 9-4 elements is the 9-noded representation for the solid structure. As a result, 

we should expect the two elements to produce identical results in terms of displacement 

profiles and strain energy values for the case of CoeffK=1, which is exactly the case here 

(assuming impermeable B.C. for 9-4 elements). 

Discussion: So far, not only we are able to model the cured (isotropic, for the time being) 

composite using the framework that we use for pre-gelation composite with fluid resin, 

but also we achieve improvements in terms of the convergence rate at least for modeling 

challenging examples, such as the last example above. 

As for the reason for the above improvement, It may be attributed to the fact that using 

the integrated approach we introduce an extra condition in the form of mass conservation 

equation. This extra equation, enforces a kinematic constraint on the volumetric 

behaviour of the composite material, which tends to be dominant over the equilibrium 

equation if activated through using CoeffK<1. Having this kinematic constraint explicitly 

in one of the governing equations seems to be a stronger form than its regular implicit 

introduction as a part of constitutive behaviour in total equilibrium equation. This may 

serve as a qualitative explanation for this behaviour at the present time. 

Regarding the 9-4 element and the significant difference between the predictions of the 

results from the case with permeable B.C. and impermeable B.C., the explanation is that 

in the permeable case, we need to force the pressure values at the two boundaries to 

predefined values of pressure loading, and this causes the irregularities that we observe in 

the last example. 

To examine the above theory about the effect of the constraining conditions of pressure 

degrees of freedom on the general response of the problem, we look at the distribution of 

pressure on the surface of the example in Figure 5.4 for various cases. Figure 5.13 

presents the pressure distribution using a 6×4 mesh of 9-3 elements. Figure 5.14 refers to 

the same data and the same mesh but using 9-4 elements assuming permeable B.C. on the 

sides. It is obvious from the comparison of the two surfaces that the permeability 

assumption has deteriorated the pressure surface by forcing the values to be equal to the 

applied pressure on the boundaries. Figure 5.15 shows the pressure distribution for the 
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same mesh of 9-4 elements but with impermeable B.C. on the sides. Without the 

constraints (i.e. permeable B.C.), it is observed that the pressure surface is much closer to 

the one in Figure 5.13 except for the pressure value at the node right on the top-left 

corner of the sample. This improvement in the general distribution of pressure explains 

the improvement that was observed in the displacement and strain energy results 

previously. Figure 5.16 is obtained using a proposed 9-4 element based on the u-v-p 

formulation of the 9-3 element presented in this work rather than the regular u-p 

formulation in FE for porous media. It is clearly seen that the graph in Figure 5.16 is 

practically the same as the one in Figure 5.15. In the 9-3 element‟s formulation, there is 

no essential BC on pressure DOF‟s and that is the reason why the last graph here, is the 

same as the one for the case of 9-4 elements with impermeable BC. Also, the agreement 

between the responses for the two formulations shows that both approaches give the same 

response as expected, and that the negative value in pressure at the top left corner is not a 

problem of the formulation, but is a result of the placement of a pressure node at a 

singular point with a considerable shear deformation. 

5.1.4.  Transversely isotropic samples 

In this section, we use the presented approach to analyse fully cured linear elastic 

transversely isotropic composite samples and compare the results with the classical 

approach used in elastic solids. Having compared the results obtained from 9-3 elements 

with different constraining conditions, and also 9-4 elements having different B.C., we 

opt to focus our attention just on 9-3 elements with constrained relative velocity of resin. 

The major goal here is to examine the results of the specific approach presented for the 

treatment of transversely isotropic composites. We will also use the commercial code 

ABAQUS to verify the results, and compare the convergence rate of the two approaches. 

All the examples are assumed to be under 2D plane strain conditions. 

We will start with a very simple example, whose exact solution can be obtained 

theoretically, and progress to more complicated problems. Similar to the isotropic case, 

we assume the following relationship between the fibre-bed and composite in-plane bulk 

moduli 
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cKfb

KCoeffK 22   (5.2) 

where CoeffK provides a simple representation of the value of fibre-bed in-plane bulk 

modulus.  

Constrained sample under uni-axial strain condition: A rectangular sample of a 

transversely isotropic two-phase composite material, as shown in Figure 5.1, is 

constrained at 3 sides, and is put under a constant distribution of normal pressure load. 

The fibres are placed so that they are along x axis (  0 ). The properties of the 

composite material are 
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Substituting the properties of the composite material into (4.142) leads to the matrix of 

elastic moduli of the problem 
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There is a uniform state of stress all over the sample under uni-axial strain conditions, so 

we can apply the boundary conditions to the constitutive equation to have 
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and solve for the unknowns in stress and strain fields 
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This example was run using the developed 9-3 elements for flow through deforming 

porous media. Due to the simplicity of the stress and strain fields in this specific problem, 

the exact results are obtained using any number of elements. A mesh of 6×4 elements was 

analysed giving the exact results in terms of stress and strain components. It is also very 

important to note that the elastic response of the composite system using this approach is 

independent of the value of the in-plane bulk modulus of the fibre-bed 
fb

K2
. Similar to 

the isotropic case, this can be considered a numerical confirmation of the consistency of 

the integrated approach to regular stress modeling that was proved in the previous 

chapter. 

Constrained sample under pressure gradient: A rectangular sample of a transversely 

isotropic two-phase composite material, as shown in Figure 5.4, is constrained at top and 

bottom surfaces, and is put under a pressure gradient in the horizontal direction. The 

properties of the problem are the same as previous examples except for 

 .100       ,700 21 kPafkPaf   
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Three different situations for the direction of the fibres are assumed;  90 and ,45 ,0 . 

Using axial symmetry, half of the problem will be modeled using meshes of 9-3 

elements. The shape of the deformation profile of the sample under these loading 

conditions was presented in Figure 5.5 for the isotropic case. 

Table 5.6 to  

Table 5.8 report the obtained values of the maximum horizontal displacement (uA) using 

ABAQUS and the 9-3 element under various conditions and different directions of fibres. 

Also, the values of the strain energy of the system are obtained and reported using 9-3 

elements. The ABAQUS results are obtained using the 3D brick elements. This element 

is specialized for solid problems, and takes the regular approach of discretizing the total 

equilibrium equation. The plane strain conditions are forced on the structure using 

appropriate boundary conditions. As was the case for the isotropic material, the 

convergence of the displacement values with refining the mesh happens quite slowly 

(using a uniform mesh). In all cases, there is a considerable improvement in the rate of 

convergence of results with refining the mesh once values smaller than unity are assigned 

to CoeffK. This observation is in accordance with what we have already seen in the 

isotropic case of this problem. 

5.2.  Materials Undergoing Cure 

In this section, various examples with ascending degree of complexity will be presented 

to investigate the response of the integrated model in cases where resin undergoes cure 

and transforms from a fluid to a completely cured and solid form. The interaction of the 

flow behaviour of resin and the stress response of the composites will also be discussed. 

5.2.1.  One-element examples 

Example 1. Fully constrained [0°] uni-directional laminate, assuming constant 

Poisson’s ratio for resin 
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In this example, the stress development response of a fully constrained composite 

material undergoing cure is studied. The sample is a unidirectional [0°] laminate with an 

assumed length of 1 mm and a height of 4 mm. The material is assumed to be AS4/3501-

6. The temperature history and the resulting degree of cure of resin are presented in 

Figure 5.17. Figure 5.18 shows the changes in the viscosity of the resin during the cure 

cycle. The Poisson‟s ratio for the 3501-6 epoxy is assumed constant (see Table 5.9) so 

that the response can be compared with those obtained by Zobeiry (2006). The problem is 

modeled by a single 4-1 element (see Figure 2.2) and the time-step size chosen for the 

numerical solution is 30 seconds. All boundaries are assumed to be impermeable, and 

since all the kinematic DOFs are located on the boundary of the single element resin flow 

is completely constrained. 

Figure 5.19 depicts the time-history of stress in the direction of the fibres using the 

integrated model and compares the response with those reported by Zobeiry. Figure 5.20 

presents the comparison of stress response along the z-axis (through-thickness direction) 

with the results reported by Zobeiry (2006). In both of the above graphs a perfect match 

is obtained. 

Example 2. Fully constrained [30°] uni-directional laminate, assuming constant 

Poisson’s ratio for resin 

The only difference that may be observed between this example and Example 1 is in the 

orientation of the fibres at [30°]. Figure 5.21 presents the time-history of σx using the 

integrated model and compares the response with those reported by Zobeiry (2006). 

Figure 5.20 presents the comparison of stress response along the z-axis with the results 

reported by Zobeiry. Again, in both graphs a perfect match is observed. Since the system 

is fully constrained, the z-axis stress response in this example is the same as the one in 

Example 3. 

Example 3. Fully constrained [0°] uni-directional laminate 

This example is basically the same as Example 1 with the exception that here, the 

Poisson‟s ratio of the 3501-6 is assumed to be evolving based on the pseudo-viscoelastic 
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formulation that was presented in the previous chapter. We assume that both G and K 

evolve with changes in temperature and degree of cure throughout the processing. 

Figure 5.22 depicts the time-history of σx using the integrated model and compares the 

response with those obtained from the stress model. Figure 5.23 presents the comparison 

of stress response along the z-axis with the results obtained from the stress model. In both 

graphs a perfect match is observed. The time-history of developed resin pressure 

predicted by the integrated model is also presented in Figure 5.24. 

Example 4. Fully constrained [30°] uni-directional laminate 

Similar to the previous problem, the only difference here with Example 2 is that the 

Poisson‟s ratio is assumed to be evolving similar to Example 3. Figure 5.25 depicts the 

time-history of σx using the integrated model and compares the response with those 

obtained from the stress model. Figure 5.23 presents the comparison of stress response 

along the z-axis with the results obtained from the stress model. In both directions a 

perfect match is observed. Since the system is fully constrained, the z-axis stress response 

in this example is the same as the one in Example 3. The time-history of developed resin 

pressure predicted by the integrated model is also presented in Figure 5.24. 

Example 5. Fully constrained [0°] uni-directional laminate, with permeable BC 

In the previous single-element examples, the resin velocity was constrained to ensure the 

accuracy of the stress aspect of the integrated model. In this example, all the properties 

match those of Example 3 with the exception that the top boundary is assumed to be 

permeable, so the resin can flow out of the sample.  

Figure 5.26 depicts the changes in the vertical velocity of resin at the top surface of the 

sample through the process. It is evident that after the resin gels, the relative velocity of 

resin approaches zero. At around t=45 min, there is a kink observed in the time-history of 

resin velocity. Since the displacement of the composite system are constrained, any 

volumetric changes in the system instantaneously leads to the flow of resin out of the 

system. Therefore, the velocity of the resin in this case is a direct function of the rate of 

volumetric strain of the system. Figure 5.27 shows the changes in the rate of volumetric 
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strain of the system for t=15-55 min. The pattern of changes in the rate of volumetric 

strain are the same as that of the resin velocity depicted in Figure 5.26. The rate of the 

volumetric strain is a function of the rate of cure, and the model used in this work for rate 

of cure (see Table 3.1) has a discontinuity at α=0.3 which causes the above anomaly. 

The time-history of the changes in the resin volume fraction obtained by the integrated 

model is presented in Figure 5.28, and compared with the initial (and constant) volume 

fraction used in the stress model. Figure 5.29 presents the time-history of the developed 

resin pressure in the system. Figure 5.30 and Figure 5.31 depict the time-history of stress 

response along x and z axes respectively, and compare the results with those obtained by 

the stress model. 

At the early stages of the process, the resin undergoes expansion due to temperature rise 

and, in the presence of a permeable boundary, resin flows out of the system to relieve 

some of the developed pressure. In the first few minutes however, the resin does not have 

the time and opportunity yet to leave the system and the stress response of the integrated 

model more or less follows the response obtained by the stress model. But after those 

initial stages are passed more resin can flow out and no stresses develop in the system 

while resin has not gelled yet and is able to flow. After gelation of resin, the stresses start 

to develop once again with a trend very similar to the one observed by the stress model 

(as the volume fractions in the two cases are quite close in value). 

The above observation explains the notable difference in the final predictions of residual 

stresses in the system between the integrated model and stress model. 

Example 6. Uni-axially constrained [0°] laminate, with permeable BC on top 

In this example, the stress development response of a uni-axially constrained composite 

material undergoing cure is studied. The geometry and B.C. of the problem are the same 

as Figure 5.1 (if y-direction is replaced by z-direction) for the case of f0=0. The sample is 

a unidirectional [0°] laminate with an assumed width of 1 mm and a height of 4 mm. The 

temperature history and the resulting degree of cure of resin are the same as the previous 

examples and are presented in Figure 5.17. The material is assumed to be AS4/3501-6 



Chapter 5: Numerical Applications 

 133 

with the same flow-compaction properties that are listed in Chapter 3. The only exception 

is that in the nonlinear stress-strain behaviour of the fibre-bed, an exponential curve is 

fitted to the steps above the strain value of 0.1. Also, the tensile modulus of the fibre-bed 

is assumed to be equal to the initial compressive modulus to avoid a sudden change of 

modulus. The problem is modeled by a single 4-1 element. The top surface of the sample 

is assumed to be permeable. 

Figure 5.32 depicts the changes in the vertical velocity of resin at the top surface of the 

sample through the process. The time-history of the changes in the resin volume fraction 

obtained by the integrated model is presented in Figure 5.33, and contrasted with the 

constant volume fraction used the stress model. Figure 5.34 presents the time-history of 

the developed resin pressure in the system. The changes in the transverse strain of the 

system are presented in Figure 5.35 and compared with the results of the stress model. 

Figure 5.36 depicts the time-history of stresses along x-axis, and compares it with those 

obtained by the stress model. 

The observations made in the case of the previous example are also valid here. The initial 

agreement between the transverse strain predicted by the stress model and the integrated 

model is more pronounced here and continues for around ten minutes. The reason is that 

the system is not constrained in the z direction and the sample can initially expand until 

enough pressure is developed to motivate the flow of resin out of the system. 

Example 7. Uni-axially constrained [0°] laminate under pressure loading applied on 

the permeable boundary  

This example is basically the same as Example 6 with the exception that there is a 

uniform pressure load applied to the top surface of the sample. The geometry and B.C. of 

the problem can be represented Figure 5.1 (if y-direction is replaced by z-direction) with 

f0=540 kPa. 

Figure 5.37 presents the time-history of the developed resin pressure in the system. 

Figure 5.38 depicts the changes in the vertical velocity of resin at the top surface of the 

sample through the process. The time-history of the changes in the resin volume fraction 
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obtained by the integrated model is presented in Figure 5.39, and compared with the two 

runs of stress model with initial and final volume fractions. The changes in the transverse 

strain of the system are presented in Figure 5.40 and compared with the results of the 

stress model assuming both initial and final volume fractions. Figure 5.41 depicts the 

time-history of stress along the x-axis, and compares the results with those obtained by 

the stress model assuming both initial and final volume fractions. 

The applied pressure provides a significant motivation for the resin flow and leads to a 

maximum resin velocity one order of magnitude larger than that of the previous example. 

This could be a reason why the initial effects observed in the last two examples are non-

existent here. The large amount of resin flow, leads to a large difference between the 

initial and final values of resin volume fraction. This causes the trend of the post-gelation 

behaviour of the system obtained by the integrated model to be different from the 

response predicted by the stress model with the assumption of initial volume fractions. 

This point, which is clearly observed in Figure 5.41, has led us to include a run of the 

stress model with the final value of resin volume fraction for comparison.  

5.2.2.  Flat unidirectional laminate undergoing cure 

Here, we consider a flat laminate fully constrained on (or bounded to) a rigid tool. All 

material properties remain the same as the previous example. The material is assumed to 

be AS4/3501-6, and the geometry and BC of the problem are depicted in Figure 5.42. 

Due to symmetry, only half of the length of the laminate is shown. The mechanical 

properties of the fibres and resin are presented in Table 5.10. CTEg and CTEr are the 

glassy and rubbery coefficients of thermal expansion, respectively. CSC is the volumetric 

cure shrinkage coefficient. Figure 5.43 shows the time-history of autoclave temperature. 

It also presents the assumed temperature time-history of the part and the resulting degree 

of cure of resin throughout the processing. The predictions obtained by three approaches 

will be analysed and compared here; the integrated model, the stress model using initial 

distribution of resin volume fraction, and finally the stress model using the final 

distribution of resin volume fraction (obtained from the integrated model). We investigate 

3 different directions for the placement of the fibres: [0°], [45°], and [90°]. The applied 
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load on the top and side surfaces of the sample is 540 kPa. The problem is modeled by 

12×6, 16×8, and 20×16 meshes of 4-1 elements to ensure the convergence of results. 

Time-step sizes of 60, 12, and 6 seconds are used and the convergence of results with 

refining the time-steps was confirmed. The 20×16 mesh and time-step size of 6 seconds 

are chosen to report the results and comparisons.  

To verify the stresses predicted by the stress model, the beta version of the commercially 

available COMPRO CCA in ABAQUS [Arafath (2012)] was used incorporating the 

variable time PVE formulation of Zobeiry (2006) and Zobeiry et al. (2010). A 3D 

equivalent of our 2D plane strain was modeled using a mesh of 20×16 elements for [0°] 

and [90°] lay-ups. Figure 5.44 shows the comparison of profiles of σx at section AB for 

[0°] and [90°] lay-ups, and a very good match between the results is observed. Figure 

5.45 presents the distribution of σx at the bottom surface of the [90°] laminate obtained by 

the stress model and compares it with the one predicted by ABAQUS. Again, a very good 

match between the two predictions is observed. Note that in the latter figure, oscillation is 

observed in the distribution of stress in the neighbourhood of the bottom right corner. 

These oscillations occur as a result of the inherent singularity at the bottom right corner 

of the laminate where the fully constrained BC at the bottom meets the free BC on the 

side. 

Due to their simple geometry, in all the lay-ups compaction of the laminate occurs in a 

very uniform fashion. Figure 5.46 shows the original distribution of resin volume fraction 

at sections AB and CD (constant at 0.442) along with the final distributions of volume 

fractions at those sections. Due to uniformity of the compaction, no discernible 

differences are observed between the profiles at sections AB and CD. 

Figure 5.47 to Figure 5.49 present the final distribution of σx over the laminate for [0°], 

[45°], and [90°] lay-ups respectively. It is evident that the oscillation phenomenon that 

was discussed earlier becomes more and more pronounced if we move from [0°] lay-up 

to the case of [90°] lay-up. Figure 5.50 to Figure 5.52 show the profile of σx at section 

AB of the laminate obtained by the three approaches for [0°], [45°], and [90°] lay-ups 

respectively. In Figure 5.50, it is observed that the two stress model approaches lead to a 
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rather large change in the amount of developed stress in the x direction in the 

neighbourhood of the constrained boundary. These sudden changes are accompanied by 

some oscillation that dies down quite rapidly when we move away from the constrained 

boundary. The sudden development of stress in the vicinity of the boundary occurs 

because the constraint on the bottom surface effectively constrains the fibres located at 

the bottom of the laminate from any movement in the x direction. This combined with the 

thermal expansion of resin prior to gelation leads to significant development of stress in 

that region. The response obtained from the integrated model is different in that this 

boundary layer effect is not observed. The predictions of the stress model with the final 

volume fractions agrees very well with the one obtained from the integrated model if we 

move away from the constrained boundary. This shows that the difference between the 

two results (which is located in the vicinity of the constrained bottom surface) is in fact 

due to stresses that are predicted by the stress model to develop before the nominal 

gelation of resin while in the integrated model no significant stresses develop since 

excess amount of resin can flow out of the system when it undergoes thermal expansion. 

Similar observations can be made for the case of the [45°] layup as the high stiffness of 

the system along the x-axis leads to a very similar constrained situation to the [0°] layup 

(see Figure 5.51). Figure 5.52 does not show a significant difference in the predicted 

stresses responses by the three modeling approaches applied to the [90°] layup. There are 

no signs of sudden changes in σx using the two stress models as the fibre directions are 

transverse to the x-axis. 

Figure 5.53 to Figure 5.58 present the final distribution of axial forces and bending 

moments along the length of the laminate for the [0°], [45°] and [90°] layups 

respectively. As a general rule, the results predicted by the stress model with final volume 

fractions are closer to those predicted by the integrated model than the regular stress 

model approach. This is especially more visible in the axial force diagrams. In the case of 

[90°] layup, there is not much difference between the axial force and bending moment 

diagrams predicted by the three approaches. The only difference between the results of 

the integrated model and the two stress models is in the shape of the oscillations in the 

stress distribution (seeFigure 5.57 and Figure 5.58). This difference could be attributed to 

the flow of resin through and out of the system in the integrated approach. 
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5.2.3.  Flow-compaction and stress development in angle laminates 

Here, we basically extend upon the previous study of flow-compaction response of angle 

laminates in Chapter 4, and investigate the interaction of flow-compaction with stress 

development in the composite to predict the final stress distribution of the angle laminate 

undergoing cure. The material is assumed to be AS4/3501-6, and the geometry and BC of 

the problem are presented in Figure 5.59 and Figure 5.60 for the convex and concave 

cases respectively. The mechanical properties of the fibres and resin are presented in 

Table 5.10. Figure 5.43 shows the time-history of autoclave temperature. It also presents 

the assumed time-history of the part and the resulting degree of cure of resin throughout 

the processing. Similar to the previous examples of this section, the response obtained by 

three approaches will be analysed and compared here; the integrated model, the stress 

model using initial distribution of resin volume fraction, and finally the stress model 

using the final distribution of resin volume fraction obtained from the integrated model. 

Figure 5.61 shows the location of key points that are considered as critical points where 

the response of the system is studied and compared for the three different approaches. 

This figure also presents the transformation of the physical coordinates into a rectilinear 

ξη coordinate system in which the geometry can be presented in simplified form as a 

rectangle. 

Five different meshes of 4-1 elements are used to model every case in this example using 

the integrated approach. From coarse to fine as presented in Figure 5.62, these meshes are 

16×8, 20×12, 24×16, 24×16a, and 24×16b. Due to the limitations of the MATLAB code, 

it is not possible to model meshes much finer than 24×16 elements at this time. Since, as 

we will see later, the top and bottom boundaries of the laminate undergo considerable 

amounts of deformation and stress gradients we opted for refining the 24×16 mesh in the 

vicinity of the top and bottom boundaries. 16×8, 20×12, 24×16 are all uniformly meshed 

through the thickness of the laminate. 24×16a mesh is only different from 24×16 mesh in 

the through thickness direction as the first 2 rows of elements on the top and bottom are 

40% the thickness of the elements in the uniform 24×16 mesh. 24×16b is even finer at the 

top and bottom boundaries and the above ratio is reduced to 20% the thickness of the 
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elements in 24×16 mesh. In all the cases, the results obtained from these five meshes 

were compared to ensure the convergence of the numerical response. Time-step sizes of 

60, 12, and 6 seconds were used and the convergence of results with refining the time-

steps was confirmed. The time-step size of 6 seconds was chosen to report the results and 

comparisons. Figure 5.63 compares the final distribution of resin volume fraction along 

the EF cross section located at the interface of the curved part and the flat part of the 

convex [0°] laminate. The convergence of the distribution of resin volume fraction, which 

is a good representation of the deformation field, in this case is quite evident. Similar 

comparisons were made for other layups and also for the concave cases and the 

convergence was verified. The 24×16a mesh was chosen to report the various results 

from all the three approaches.  

Figure 5.64 to Figure 5.66 show the distribution of resin volume fraction, υ, over the 

convex [0°] angle laminate at 3 different times. The combination of these surfaces 

indicates how the flow of resin through the fibre bed has occurred during the processing. 

After 14 minutes, only the elements located at the very top of the specimen have seen 

some resin flow out leading to a decrease in resin volume fraction. At 44 minutes, Figure 

5.65 presents a different picture where two flow patterns may be observed; one is the 

flow of resin in the normal direction to the tool and out of the laminate, and the second is 

flow of resin from the flat part of the laminate to the curved part and out of the system 

through that region. The reason for the latter pattern of flow is that the placement of very 

stiff fibres at the curved part leads to quite a large stiffness normal to the direction of the 

curved part as any normal displacement would induce an axial strain in the fibres. The 

final distribution of resin volume fraction is presented in Figure 5.66 where it is evident 

that the flat part has achieved a uniform compaction while the curved part shows a  non-

uniform compaction with much higher amounts of resin volume fraction. The final 

distribution in this example is obtained at the end of the analysis (344 minutes), but after 

about 70 minutes most of the compaction is completed, and the volume fractions remain 

almost constant except for small changes due to flow of resin caused by thermal effects 

before gelation. 
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Figure 5.67 shows the final distribution of resin volume fractions for the case of convex 

[45°] angle laminate. This surface is very similar to the one in Figure 5.66 because as far 

as flow is concerned [0°] and [45°] layups are quite similar in 2D plane strain as porous 

structures with one direction much stiffer than the other direction. Figure 5.68 presents 

the same distribution but for the convex [90°] angle laminate. In this case, we are 

practically dealing with an isotropic fibre bed and therefore the laminate compacts quite 

uniformly and the resin volume fraction reaches values very close to 0.3 at all locations. 

Figure 5.69, Figure 5.70, and Figure 5.71 present the final distribution of tangential stress 

(the component of stress in the direction of the laminate) for the convex example with 

[0°], [45°], and [90°] layups respectively. Stress distributions follow a similar pattern for 

[0°] and [45°] layups but the values are quite different. As expected, the [90°] layup 

shows much less variance and lower absolute values for stresses than the other two 

layups. 

Figure 5.72, Figure 5.73, and Figure 5.74 show the final distribution of tangential stress 

obtained by the stress model for the convex example with [0°], [45°], and [90°] layups 

respectively. Comparing Figure 5.69 with its counterpart, Figure 5.72, the first difference 

that is observed is the sudden jump in the stress values in the ultimate row of elements at 

the bottom of the laminate by the tool side in Figure 5.72 that is completely eliminated in 

Figure 5.69. In the results obtained from the stress model, initially due to the increase in 

temperature the resin undergoes thermal expansion. As the composite material is 

considered a solid material as a whole throughout the analysis, it undergoes thermal 

expansion considering the thermal volumetric changes in the fibres are negligible 

compared to those of the resin. At the constrained boundary between the composite and 

the (assumed rigid) tool, the situation becomes very similar to that in Example 6. In the 

direction of the fibres the system is practically constrained but any strain in the transverse 

direction is allowed, so the composite material expands in the normal direction to the 

boundary. The Poisson effect would have led to a small contraction in the longitudinal 

direction had it not been for the effect of the constrained boundary. Therefore tensile 

stresses form in the direction of the fibres at a small boundary layer immediate to the 

constrained boundary which is exactly what is observed in Figure 5.72. This is not the 
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case for the integrated model, as early on resin is free to flow with respect to the fibre-bed 

and the system does not see any thermal strains due to the thermal expansion of resin 

prior to its gelation. Figure 5.69 attests to the above argument as there is no sign of a 

boundary layer at the interface with the tool.  

The second difference between the two figures is observed in yet another boundary layer 

effect this time occurring in the stresses (obtained from the integrated model) at the top 

permeable boundary. Figure 5.69 shows considerably larger values for the stress than 

those obtained by the stress model at a thin boundary layer on top of the laminate. This 

effect is not observed on the flat end of the composite and it becomes more pronounced 

when we move toward and into the curved part. This is attributed to the effect of normal 

compaction of the laminate due to resin flow and its effect on the fibres in the form of 

negative longitudinal strains as they move to smaller radii.  

In the case of [45°] layup, comparing Figure 5.70 and Figure 5.73 leads us to similar 

differences as were mentioned above for the [0°] layup. the reasoning is similar when we 

consider that [45°] layup is still extremely anisotropic but with a slightly smaller stiffness 

in the tangential direction compared to the [0°] layup. As a result, the magnitudes of the 

boundary layer effects on the top and bottom boundaries are less than the [0°] case which 

is in harmony with the whole distribution of stresses in [45°] layup if compared with the 

[0°] layup.  

For the [90°] layup, comparing Figure 5.71 and Figure 5.74 leads us to no major 

differences in the distribution of stresses. This makes sense intuitively as all the 

arguments explaining the above-mentioned boundary layer effects are not valid here as 

they were inherently based on the anisotropy caused by the directions of the fibres while 

[90°] layup is fully isotropic in 2D plane strain.  

In order to have a better understanding of these two boundary layer effects, let‟s look at 

the distribution of developed stresses just before the degree of cure reaches 0.5 (nominal 

gelation point) which in this case occurs between 145 and 146 minutes. Figure 5.75 

presents the distribution of tangential stresses in the convex [0°] laminate at 144 minutes 

obtained by the integrated model. The dip in stress in the close proximity of the top 
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permeable boundary is very clear as no significant stress has developed so far in the 

domain. The amount of compressive stress is clearly reduced and dies down as we move 

farther from the curved part. Figure 5.76 shows the equivalent results obtained from the 

stress model. Here, the jump in stress in the first layer of elements located at the interface 

of the laminate with the rigid tool is clearly highlighted as again there is no significant 

development of stress if we move away from this boundary. In both of these cases, the 

localization of the stresses is attributed to the extreme anisotropy in the behaviour of the 

material due to the high stiffness of fibres in one direction and insignificant shear 

modulus to carry the stress deeper into the thickness of the composite laminate. 

Figure 5.77 shows the history of development of tangential stresses at 4 different points 

on the domain of the convex [0°] laminate. These points, as shown in Figure 5.61, are 

located at the top and bottom of the symmetric line at the corner and the top and bottom 

of the centre of the flat part of the laminate. The reported values of stress in this graph 

and similar figures are from the nearest Gauss point on the right-hand-side of these 

points. Figure 5.78 compares the time-history of development of tangential stress at point 

C obtained by three approaches; integrated model, stress model, and stress model using 

the final distribution of volume fractions obtained from the integrated model. The two 

sets of results obtained from the stress model show significant amounts of stress 

development during the pre-gelation period while the integrated model does not. After 

gelation at around 145 minutes, the stress time history of the integrated model behaves as 

an offset of the stress model with final volume fractions. Figure 5.79 shows the same 

comparison as above but for point D. Here, the initial and final volume fractions lead to 

drastically different trends in the development of stresses especially during the cool-down 

period. Using this graph, it is very easy to show that the post gelation trend of stress 

development predicted by the integrated model follows very closely the behaviour 

observed by the stress model using the final volume fractions. Figure 5.80 and Figure 

5.81 present the same comparison as above but for points A and B respectively. As these 

points are located at the top permeable boundary of the laminate, the integrated model 

predicts consistent growth of compressive stresses during the time that resin flow is 

significant. The stress model on the other hand predicts no discernible development of 

tangential stresses before gelation. 
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Figure 5.82 presents the history of development of tangential stresses at 4 different points 

on the domain of the convex [45°] laminate. Figure 5.83 to Figure 5.86 compare the 

results obtained by the three approaches for the time-history of development of tangential 

stresses at points C, D, A, and B respectively. The comparisons here are very similar to 

the case of [0°] layup. Figure 5.87 presents the history of development of tangential 

stresses at 4 different points on the domain of the convex [90°] laminate. Figure 5.88 to 

Figure 5.91 compare the results obtained by the three approaches for the time-history of 

development of tangential stresses at points C, D, A, and B respectively. It is evident that 

in the case of [90°], there is no substantial difference between the responses obtained by 

the 3 different approaches. For this case, we also show the same comparison in Figure 

5.92 for point F (which represents the maximum amount of difference between the 

obtained results) located at the interface of the flat part and curved part of the laminate. 

Even at this point, the predictions are indeed very close. 

Figure 5.93 to Figure 5.95 show the final distribution of the tangential stress in the 

domain of the concave laminate for [0°],[45°], and [90°] layups respectively. The stress 

concentration in the case of concave laminates occurs at point C which is locateed at the 

inside of the corner and adjacent to the permeable boundary. The values of the stress 

concentration are much higher for all the layups compared to their convex counterparts. 

Even in the case of [90°] layup, where in the convex sample no concentration of stress 

was observed, the concave case shows a considerable amount of increase in the final 

value of tangential stress at point C. Figure 5.96 presents the time-history of development 

of tangential stresses at points C,D,A and B for the concave [0°] laminate. Due to its 

sheer magnitude, the development of stress at point C overshadows the history of stress 

development at the other points. Figure 5.97 to Figure 5.100 show and compare the time-

history of tangential stress development obtained by the three approaches at points C, D, 

A, and B respectively. In terms of differences between the predicted results, similar 

observations to the ones made for the convex case can be made here. The only difference 

here, is that the top and bottom boundary conditions are switched in the concave example 

as the bottom surface is permeable and the top is rigidly constrained. 
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Figure 5.101 to Figure 5.112 present the final distribution of axial forces and bending 

moments along the length of the laminate for the 6 combination of convex/concave 

geometry and [0°]/[45°]/[90°] layup. Bending moment diagrams are essential in the 

prediction of the final deformed shape of the laminate after it is removed from the tool. In 

all the cases, the curved geometry of the laminate at the vicinity of the corner plays an 

integral role in the development of residual stress and eventually defining how the axial 

force and bending moment diagrams look like. As a general rule, the results predicted by 

the stress model with final volume fractions are closer to the results predicted by the 

integrated model than the regular stress model approach. This is especially more visible 

in the axial force diagrams. Also in the concave samples the above point is more 

noticeable as compared to the convex cases, the stress concentration at point C 

overshadows the boundary layer differences between the results obtained by the 

integrated model and the stress model.  

The fully constrained boundary at the tool-side leads to some local oscillations in the 

numerical predictions of tangential stresses at the end of flat part of the laminate. This 

effect is especially more visible in the case of [45°] layups, and considerably more so for 

[90°] cases. These oscillations can be seen for instance in Figure 5.74, Figure 5.95, and 

Figure 5.106. The pattern of these oscillations are similar for the two responses predicted 

by the stress model but different for the response obtained by the integrated model. This 

point is showcased more clearly for the case of [90°] layup in Figure 5.105, Figure 5.106, 

Figure 5.111, and Figure 5.112. 
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5.3.  Tables 

Table 5.1: The comparison and convergence of strain energy values (in N.mm) for the isotropic 

sample shown in Figure 5.2, using 9-3 elements 

 

 

 

Table 5.2: The comparison and convergence of uA (×10
-7

 m) for the isotropic sample shown in 

Figure 5.4, using 9-3 elements 

 

 

Strain energy (N.mm)

CoeffK = 1 0.1 0.01 0.001 0.0001

constrained 2.9627 2.9653 2.9656 2.9657 2.9657

free 2.9627 2.9654 2.9658 2.9658 2.9658

constrained 2.9647 2.9652 2.9652 2.9652 2.9652

free 2.9647 2.9654 2.9655 2.9655 2.9655

constrained 2.9651 2.9651 2.9651 2.9651 2.9651

free 2.9651 2.9657 2.9657 2.9657 2.9657

constrained 2.9651 2.9651 2.9651 2.9651 2.9651

free 2.9651 2.9659 2.966 2.966 2.966

6×4

9×6

Mesh
Resin velocity 

conditions

2×1

3×2

CoeffK = 1 0.1 0.01 0.001 0.0001 0.00001

constrained 1.4784 1.6404 1.6835 1.6887 1.6893 1.6893

free 1.4784 1.6404 1.6835 1.6887 1.6893 1.6893

constrained 1.5956 1.6381 1.6484 1.6497 1.6498 1.6498

free 1.5957 1.6382 1.6485 1.6498 1.6499 1.6499

constrained 1.6229 1.6428 1.6477 1.6483 1.6484 1.6484

free 1.6229 1.6428 1.6477 1.6483 1.6484 1.6484

constrained 1.6326 1.6449 1.648 1.6484 1.6484 1.6484

free 1.6328 1.645 1.6481 1.6485 1.6486 1.6486

24×16 1.6404

48×32 1.646

96×64 1.6482

192×128 1.649

12×8

Mesh
uA(×10

-7
m) 

ABAQUS

1.5749

9×6

uA (×10
-7

 m)

3×2

6×4

Resin velocity 

conditions
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Table 5.3: The comparison and convergence of strain energy values (in N.mm) for the isotropic 

sample shown in Figure 5.4, using 9-3 elements 

 

 

Table 5.4: The comparison and convergence of uA (×10
-7

 m) for the isotropic sample shown in 

Figure 5.4, using 9-4 elements 

 

 

Table 5.5: The comparison and convergence of strain energy values (in N.mm) for the isotropic 

sample shown in Figure 5.4, using 9-4 elements 

 

CoeffK = 1 0.1 0.01 0.001 0.0001 0.00001

constrained 1.209 1.2409 1.2496 1.2507 1.2508 1.2508

free 1.209 1.241 1.2496 1.2507 1.2508 1.2508

constrained 1.2366 1.25 1.2535 1.2539 1.254 1.254

free 1.2365 1.2499 1.2535 1.2539 1.2539 1.254

constrained 1.2447 1.2525 1.2545 1.2548 1.2548 1.2548

free 1.2447 1.2526 1.2547 1.2549 1.2549 1.2549

constrained 1.2483 1.2536 1.255 1.2551 1.2552 1.2552

free 1.2481 1.2535 1.2549 1.2551 1.2551 1.2551

Strain energy (N.mm)Resin velocity 

conditions

3×2

12×8

6×4

9×6

Mesh

CoeffK=1 0.1 0.01 0.001 0.0001 1×10
-5

1×10
-6

1×10
-7

Impermeable 1.5956 1.623 1.6276 1.6281 1.6282 1.6282 1.6282 1.6282

Permeable 1.685 2.1044 2.3458 2.3832 2.3871 2.3875 2.3876 2.3876

Impermeable 1.6326 1.6404 1.6419 1.6421 1.6421 1.6421 1.6421 1.6421

Permeable 1.677 1.8907 1.9894 2.0032 2.0047 2.0048 2.0048 2.0048

24×16 1.6404

48×32 1.646

96×64 1.6482

192×128 1.649

Mesh
uA(×10

-7
m) 

ABAQUS

Boundary 

Conditions

12×8

6×4 1.5749

uA (×10
-7

 m)

CoeffK= 1 0.1 0.01 0.001 0.0001 1×10
-5

1×10
-6

1×10
-7

Impermeable 1.2366 1.2452 1.2469 1.2471 1.2472 1.2472 1.2472 1.2472

Permeable 1.159 1.1765 1.1931 1.1959 1.1962 1.1962 1.1962 1.1962

Impermeable 1.2483 1.2517 1.2524 1.2524 1.2525 1.2525 1.2525 1.2525

Permeable 1.2085 1.2204 1.2279 1.2291 1.2292 1.2292 1.2292 1.2292

Strain energy (N.mm)

12×8

Mesh
Boundary 

Conditions

6×4
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Table 5.6: The comparison and convergence of strain energy and uA (×10
-7

 m) for the 

transversely isotropic sample (  0 ) shown in Figure 5.4, using 9-3 elements 

 

 

 

 

Table 5.7: The comparison and convergence of strain energy and uA (×10
-7

 m) for the 

transversely isotropic sample (  90 ) shown in Figure 5.4, using 9-3 elements 

 

 

1 0.1 0.01 0.001 0.0001 0.00001

displacement 9.6715 9.9541 10.0153 10.0223 10.023 10.0231

strain energy 1.1715 1.1956 1.201 1.2016 1.2017 1.2017

displacement 9.8174 9.8784 9.8915 9.893 9.8932 9.8932

strain energy 1.1877 1.1952 1.1968 1.197 1.197 1.197

displacement 9.8434 9.868 9.8732 9.8738 9.8739 9.8739

strain energy 1.1912 1.1948 1.1956 1.1957 1.1957 1.1957

displacement 9.8518 9.8651 9.8679 9.8682 9.8683 9.8683

strain energy 1.1925 1.1947 1.1952 1.1952 1.1952 1.1952

24×16

48×32

96×64 9.8614

192×128

θ = 0°                                                                                                                                           

The displacement values are in 10
-8

 m, and the strain energy values are in 10
-4

 N.m.

12×8

Mesh
ABAQUS 

(disp.)            

9.7984

9×6

CoeffK 

3×2

6×4

Output 

type

1 0.1 0.01 0.001 0.0001 0.00001

displacement 0.8639 1.3198 1.4509 1.4673 1.469 1.4692

strain energy 4.4961 4.6509 4.6917 4.6967 4.6972 4.6972

displacement 1.0823 1.1804 1.2037 1.2065 1.2068 1.2069

strain energy 4.6062 4.6673 4.6831 4.685 4.6852 4.6852

displacement 1.131 1.1737 1.1839 1.1851 1.1852 1.1853

strain energy 4.6367 4.6712 4.6801 4.6811 4.6813 4.6813

displacement 1.1481 1.1729 1.179 1.1797 1.1798 1.1798

strain energy 4.6499 4.6727 4.6786 4.6793 4.6794 4.6794

24×16

48×32

96×64 1.1749

192×128

1.0485

θ = 90°                                                                                                                                           

The displacement values are in 10
-8

 m, and the strain energy values are in 10
-4

 N.m.

ABAQUS 

(disp.)            

3×2

12×8

6×4

9×6

Mesh
Output 

type

CoeffK 
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Table 5.8: The comparison and convergence of strain energy and uA (×10
-7

 m) for the 

transversely isotropic sample (  0 ) shown in Figure 5.4, using 9-3 elements 

 

 

Table 5.9: Resin properties in Examples 1 & 2, where Poisson‟s ratio is assumed constant 

Property 3501-6 resin 

E
u
 (GPa) 3.2 

E
r
 (GPa) 0.031 

ν 0.35 

 

Table 5.10: Mechanical properties of fibre and resin in the examples of Section 5.2 

1 0.1 0.01 0.001 0.0001 0.00001

displacement 8.7336 9.1036 9.1848 9.1941 9.195 9.1951

strain energy 1.9287 1.9672 1.976 1.977 1.9771 1.9771

displacement 8.942 9.0248 9.0428 9.0448 9.045 9.0451

strain energy 1.9574 1.9713 1.9744 1.9748 1.9748 1.9748

displacement 8.9808 9.0145 9.0218 9.0227 9.0227 9.0227

strain energy 1.9645 1.9718 1.9735 1.9736 1.9737 1.9737

displacement 8.9935 9.012 9.016 9.0164 9.0165 9.0165

strain energy 1.9674 1.972 1.973 1.9731 1.9731 1.9731

24×16

48×32

96×64 9.0092

192×128

θ = 45°                                                                                                                                           

The displacement values are in 10
-8

 m, and the strain energy values are in 10
-4

 N.m.

9×6

12×8

Mesh
ABAQUS 

(disp.)            

Output 

type

6×4 8.9136

3×2

CoeffK 

Property AS4 fibre Property 3501-6 resin 

12  0.2 K
u
 (GPa) 3.556 

23  0.3 K
r
 (GPa) 0.8 

E1 (GPa) 207 G
u
 (GPa) 1.185 

E2 (GPa) 20.7 G
r
 (kPa) 1 

G12 (GPa) 27.6 CTEg (/°C) 5.76×10
-5

 

CTE1 (/°C) -0.9×10
-6

 CTEr (/°C) 1.854×10
-4

 

CTE2 (/°C) 7.2×10
-6

 CSC (volumetric) -0.05488 
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5.4.  Figures 

 

Figure 5.1: The geometry and specifications of the composite sample under constant pressure 

load (uni-axial strain condition) 

 

 

Figure 5.2: The geometry and specifications of the composite sample under linear pressure load 
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Figure 5.3: The profile of the vertical displacement at the top of the constrained sample under 

linear distribution of pressure load 

 

 

Figure 5.4: Composite sample under pressure gradient
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Figure 5.5: Shape of the displacement profiles of the sample under pressure gradient 

 

Figure 5.6: Comparison of displacement profiles at the right side of the sample in Figure 5.4 for 

different values of CoeffK, obtained using a 3×2 mesh of 9-3 elements 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.00E+00 2.00E-07 4.00E-07 6.00E-07 8.00E-07 1.00E-06 1.20E-06 1.40E-06

ux (m)

y
 (

m
m

)
Left side's displacement profile

Right side's displacement profile

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.00E+00 2.00E-08 4.00E-08 6.00E-08 8.00E-08 1.00E-07 1.20E-07 1.40E-07 1.60E-07 1.80E-07

ux (m)

y
 (

m
m

)

3×2 mesh/ 9-3 elements/ Coeff.K=1

3×2 mesh/ 9-3 elements/ Coeff.K=0.1

3×2 mesh/ 9-3 elements/ Coeff.K=0.01

3×2 mesh/ 9-3 elements/ Coeff.K=0.0001



Chapter 5: Numerical Applications 

 151 

 

Figure 5.7: Comparison of displacement profiles at the right side of the sample in Figure 5.4 for 

different values of CoeffK, obtained using a 6×4 mesh of 9-3 elements 

 

Figure 5.8: Comparison of displacement profiles at the right side of the sample in Figure 5.4 for 

different values of CoeffK, obtained using a 12×8 mesh of 9-3 elements 
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Figure 5.9: Comparison of displacement profiles at the right side of the sample in Figure 5.4 

using different meshes of 9-3 elements, in the case where CoeffK=0.01 

 

Figure 5.10: Comparison of displacement profiles at the right side of the sample in Figure 5.4 

using different meshes of 9-3 elements, in the case where CoeffK=1 
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Figure 5.11: Comparison of displacement profiles at the right side of the sample in Figure 5.4 for 

9-3 and 9-4 elements, obtained using a 6×4 mesh 

 

Figure 5.12: Comparison of displacement profiles at the right side of the sample in Figure 5.4 for 

9-3 and 9-4 elements, obtained using a 12×8 mesh 
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Figure 5.13: Pressure distribution of the sample shown in Figure 5.4, using a 6×4 mesh of 9-3 

elements 

 

Figure 5.14: Pressure distribution of the sample shown in Figure 5.4, using a 6×4 mesh of 9-4 

elements with permeable BC on the sides 
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Figure 5.15: Pressure distribution of the sample shown in Figure 5.4, using a 6×4 mesh of 9-4 

elements with impermeable BC on the sides 

 

Figure 5.16: Pressure distribution of the sample shown in Figure 5.4, using a 6×4 mesh of 9-4 

elements based on the u-v-p formulation 
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Figure 5.17: Time-history of the applied temperature and the resulting degree of cure in 

Examples 1-7 

 

Figure 5.18: Time-history of the applied temperature and the resulting resin viscosity in 

Examples 1-7 
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Figure 5.19: Time-history of the development of longitudinal stress in Example 1. The 

predictions are essentially identical. 

 

Figure 5.20: Time-history of the development of transverse stress in Examples 1 and 2. The 

predictions are essentially identical. 
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Figure 5.21: Time-history of the development of 
x  in Example 2. The predictions are 

essentially identical. 

 

Figure 5.22: Time-history of the development of 
x  in Example 3. The predictions are 

essentially identical. 
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Figure 5.23: Time-history of the development of z  in Examples 3 and 4. The predictions are 

essentially identical. 

 

Figure 5.24: Time-history of the development of resin pressure in Examples 3 and 4 
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Figure 5.25: Time-history of the development of 
x  in Example 4. The predictions are 

essentially identical. 

 

Figure 5.26: Time-history of the changes in resin velocity in the vertical direction at the top 

surface of Example 5 
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Figure 5.27: Time-history of the applied temperature and the changes in the rate of volumetric 

strain during t=15-55 min in Example 5 

 

Figure 5.28: Time-history of the changes in resin volume fraction in Example 5 
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Figure 5.29: Time-history of the development of resin pressure in Example 5 

 

Figure 5.30: Time-history of the development of 
x  in Example 5 
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Figure 5.31: Time-history of the development of z  in Example 5 

 

Figure 5.32: Time-history of the changes in resin velocity in the vertical direction at the top 

surface of Example 6 
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Figure 5.33: Time-history of the changes in resin volume fraction in Example 6 

 

Figure 5.34: Time-history of the development of resin pressure in Example 6 
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Figure 5.35: Time-history of the transverse strain in Example 6 

 

Figure 5.36: Time-history of the development of 
x  in Example 6 
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Figure 5.37: Time-history of the development of resin pressure in Example 7 

 

Figure 5.38: Time-history of the changes in resin velocity in the vertical direction at the top 

surface of Example 7 
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Figure 5.39: Time-history of the changes in resin volume fraction in Example 7 

 

Figure 5.40: Time-history of the transverse strain in Example 7 
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Figure 5.41: Time-history of the development of 
x  in Example 7 

 

 

Figure 5.42: Geometry and BC of the flat laminate undergoing cure 
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Figure 5.43: Time-history of the autoclave and part temperatures and the resulting degree of cure 

in the flat and angle laminate examples 

 

Figure 5.44: Final profiles of σx predicted by the stress model at section AB of the [0°] and [90°] 

flat laminates, and their comparison with response obtained from ABAQUS 
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Figure 5.45: Final distribution of σx predicted by the stress model along the bottom surface of the 

[90°] flat laminates in comparison with response obtained from ABAQUS 

 

Figure 5.46: Comparison of final profiles of resin volume fraction predicted by the integrated 

model at AB and CD sections for different lay-ups of the flat laminate 
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Figure 5.47: Final distribution of σx for the [0°] flat laminate obtained by the integrated model 

 

Figure 5.48: Final distribution of σx for the [45°] flat laminate obtained by the integrated model 

 

Figure 5.49: Final distribution of σx for the [90°] flat laminate obtained by the integrated model 
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Figure 5.50: Final profile of σx at section AB of the [0°] flat laminate 

 

Figure 5.51: Final profile of σx at section AB of the [45°] flat laminate 
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Figure 5.52: Final profile of σx at section AB of the [90°] flat laminate 

 

Figure 5.53: Final distribution of axial force along the length of the [0°] flat laminate 
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Figure 5.54: Final distribution of bending moment along the length of the [0°] flat laminate 

 

Figure 5.55: Final distribution of axial force along the length of the [45°] flat laminate 
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Figure 5.56: Final distribution of bending moment along the length of the [45°] flat laminate 

 

Figure 5.57: Final distribution of axial force along the length of the [90°] flat laminate 
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Figure 5.58: Final distribution of bending moment along the length of the [90°] flat laminate 

 

Figure 5.59: Geometry and boundary conditions of the convex angle laminate 
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Figure 5.60: Geometry and boundary conditions of the concave angle laminate 

 

Figure 5.61: Location of key points on the geometry of the angle laminate, and transformation of 

geometry into the ξη coordinates 
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Figure 5.62: FE meshes used in the analysis of angle laminates 
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Figure 5.63: Final profile of resin volume fraction for the convex [0°] angle laminate at section 

EF obtained by the integrated model with different meshes 

 

 

Figure 5.64: Distribution of resin volume fraction for the convex [0°] angle laminate obtained by 

the integrated model at t = 14 min 
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Figure 5.65: Distribution of resin volume fraction for the convex [0°] angle laminate obtained by 

the integrated model at t = 44 min 

 

 

 

Figure 5.66: Final distribution of resin volume fraction for the convex [0°] angle laminate 

obtained by the integrated model 
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Figure 5.67: Final distribution of resin volume fraction for the convex [45°] angle laminate 

obtained by the integrated model 

 

 

 

Figure 5.68: Final distribution of resin volume fraction for the convex [90°] angle laminate 

obtained by the integrated model 
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Figure 5.69: Final distribution of tangential stress for the convex [0°] angle laminate obtained by 

the integrated model 

 

 

 

Figure 5.70: Final distribution of tangential stress for the convex [45°] angle laminate obtained 

by the integrated model 
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Figure 5.71: Final distribution of tangential stress for the convex [45°] angle laminate obtained 

by the integrated model 

 

 

 

Figure 5.72: Final distribution of tangential stress for the convex [0°] angle laminate obtained by 

the stress model 
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Figure 5.73: Final distribution of tangential stress for the convex [45°] angle laminate obtained 

by the stress model 

 

 

 

Figure 5.74: Final distribution of tangential stress for the convex [90°] angle laminate obtained 

by the stress model 
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Figure 5.75: Distribution of tangential stress for the convex [0°] angle laminate obtained by the 

integrated model at t = 144 min 

 

 

 

Figure 5.76: Distribution of tangential stress for the convex [0°] angle laminate obtained by the 

stress model at t = 144 min 
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Figure 5.77: Time-history of the development of tangential stress at different locations of the 

convex [0°] angle laminate 

 

Figure 5.78: Time-history of the development of tangential stress at point C on the convex [0°] 

angle laminate 
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Figure 5.79: Time-history of the development of tangential stress at point D on the convex [0°] 

angle laminate 

 

Figure 5.80: Time-history of the development of tangential stress at point A on the convex [0°] 

angle laminate 
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Figure 5.81: Time-history of the development of tangential stress at point B on the convex [0°] 

angle laminate 

 

Figure 5.82: Time-history of the development of tangential stress at different locations of the 

convex [45°] angle laminate 
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Figure 5.83: Time-history of the development of tangential stress at point C on the convex [45°] 

angle laminate 

 

Figure 5.84: Time-history of the development of tangential stress at point D on the convex [45°] 

angle laminate 
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Figure 5.85: Time-history of the development of tangential stress at point A on the convex [45°] 

angle laminate 

 

Figure 5.86: Time-history of the development of tangential stress at point B on the convex [45°] 

angle laminate 
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Figure 5.87: Time-history of the development of tangential stress at different locations of the 

convex [90°] angle laminate 

 

Figure 5.88: Time-history of the development of tangential stress at point C on the convex [90°] 

angle laminate 
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Figure 5.89: Time-history of the development of tangential stress at point D on the convex [90°] 

angle laminate 

 

Figure 5.90: Time-history of the development of tangential stress at point A on the convex [90°] 

angle laminate 
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Figure 5.91: Time-history of the development of tangential stress at point B on the convex [90°] 

angle laminate 

 

Figure 5.92: Time-history of the development of tangential stress at point F on the convex [90°] 

angle laminate 
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Figure 5.93: Final distribution of tangential stress for the concave [0°] angle laminate obtained 

by the integrated model 

 

 

Figure 5.94: Final distribution of tangential stress for the concave [45°] angle laminate obtained 

by the integrated model 
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Figure 5.95: Final distribution of tangential stress for the concave [90°] angle laminate obtained 

by the integrated model 

 

 

Figure 5.96: Time-history of the development of tangential stress at different locations of the 

concave [0°] angle laminate 
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Figure 5.97: Time-history of the development of tangential stress at point C on the concave [0°] 

angle laminate 

 

Figure 5.98: Time-history of the development of tangential stress at point D on the concave [0°] 

angle laminate 
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Figure 5.99: Time-history of the development of tangential stress at point A on the concave [0°] 

angle laminate 

 

Figure 5.100: Time-history of the development of tangential stress at point B on the concave [0°] 

angle laminate 
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Figure 5.101: Final distribution of axial force along the length of the convex [0°] angle laminate 

 

Figure 5.102: Final distribution of bending moment along the length of the convex [0°] angle 

laminate 
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Figure 5.103: Final distribution of axial force along the length of the convex [45°] angle laminate 

 

Figure 5.104: Final distribution of bending moment along the length of the convex [45°] angle 

laminate 
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Figure 5.105: Final distribution of axial force along the length of the convex [90°] angle laminate 

 

Figure 5.106: Final distribution of bending moment along the length of the convex [90°] angle 

laminate 
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Figure 5.107: Final distribution of axial force along the length of the concave [0°] angle laminate 

 

Figure 5.108: Final distribution of bending moment along the length of the concave [0°] angle 

laminate 
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Figure 5.109: Final distribution of axial force along the length of the concave [45°] angle 

laminate 

 

Figure 5.110: Final distribution of bending moment along the length of the concave [45°] angle 

laminate 
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Figure 5.111: Final distribution of axial force along the length of the concave [90°] angle 

laminate 

 

Figure 5.112: Final distribution of bending moment along the length of the concave [90°] angle 

laminate 
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Chapter 6: Conclusions and Further Work 

6.1.  Summary and Conclusions 

The main objective of this dissertation was to provide a framework to integrate two 

aspects of process modeling, namely, resin flow through the fibre-bed and development 

of residual stresses and deformations during cure of composite materials into one unique 

numerical model. To achieve that goal, a two-phase model was chosen to be the basis of 

the FE simulations, and an investigation was performed into measures that were 

necessary in order for the model to also be able to simulate the development of stresses in 

a post-gelled curing composite material. The following conclusions may be drawn from 

this work: 

1. The volume averaging method was used to rigorously derive the governing 

equations for a general two-phase system consisting of a solid and fluid phase. 

The effect of shear stresses in the fluid phase were considered along with its 

pressure. This leads to a u-v-p formulation that is shown to be an ideal 

formulation for the ultimate goal of integration of flow and stress modeling. 

2. Two finite elements, namely 9-3 and 4-1, were introduced and formulated using 

the obtained governing equations. Special measures were introduced in order to 

add the capability of modeling jumps in the distribution of volume fractions. 

Additional considerations were also made for the model to successfully represent 

the boundary between a viscous fluid and its adjacent porous structure. 

3. The finite element formulation was implemented in an in-house MATLAB code. 

Other elements such as a 9-4 element based on the more common u-p approach 

were also implemented in a separate MATLAB code for the sake of comparison. 

The current approach was validated in a few numerical examples, and the 

response of the 9-3 and 9-4 elements were compared extensively. 
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4. The proposed two-phase approach was adapted so that it could successfully 

represent the stress development in a curing composite based on the pseudo-

viscoelastic model presented by Zobeiry et al. (2006). To this end, modifications 

such as the introduction of consistent compressibility in the mass conservation 

equation, and a special decomposition of stresses were introduced into the 

formulation of the two-phase model. 

5. Various numerical examples were presented to validate the use of two-phase 

approach to obtain the predictions for the development of stress in cured and 

curing composite materials. The stress model was also separately implemented in 

MATLAB to compare its response with the results reported by the integrated 

approach. ABAQUS runs were also performed separately, to verify the response 

of the implemented stress models. In most of the examples involving curing 

composite, the stress response predicted by the integrated model was compared 

against those reported by the stress model assuming two distinct situations; one 

assuming the initial distribution of volume fractions, and the other with the final 

distribution of volume fractions obtained from the integrated model. Using these 

examples, the effect of resin flow on the development of residual stresses in the 

composite material is analyzed and discussed. 

6.2.  Contributions 

The contributions of the current work include: 

 Use of a rigorous approach in the form of volume averaging technique to derive a 

set of governing equations for the flow-deformation behaviour of two-phase 

systems. 

 Including shear stress contributions of the fluid phase in a two-phase fluid-solid 

system that enables the FE model of two-phase medium to be also capable of 

representing the response of viscous fluids as an individual problem and in the 

neighbourhood of two-phase systems. Comparing the formulation and the 
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approach with the one presented by Chan et al. (2000), and clarifying the 

differences of that work with the current study. 

 Implementation of special measures in the FE technique in order to achieve the 

capability of modeling the correct response in the presence of discontinuities in 

the distribution of the fluid volume fraction. To model the interface between a 

viscous fluid and a two-phase system, extra considerations were also included. 

 The most important contribution of this work is the integration of modeling two 

very different aspects of processing composite materials, namely resin flow-

compaction and stress development in a seamless model. In order to achieve that, 

a few steps were necessary that will be discussed here: 

i. Addition of compressibility of the phases compared to the state-of-the-art 

models of the flow in thermosetting composite materials where the 

individual phases are assumed incompressible. This plays a major role in 

the integration of modeling flow and stress effects in the processing of 

thermosetting composite materials as consideration of compressibility is 

an integral part of the stress analysis of solid materials. 

ii. The mass conservation equation for two-phase materials with 

compressible phases is modified here for the bulk behaviour of the system 

to be consistent with the relevant micromechanics that one decides to be 

appropriate for the cured system. 

iii. In this approach, the correct representation of the bulk behaviour of the 

two-phase system is guaranteed by the consistent mass conservation 

equation. This enables one to use the bulk modulus of the porous structure 

throughout the analysis of cure cycle and still model the correct response 

for the volumetric response of the cured two-phase material. 

 Using this approach, the effect of parameters important in the resin flow and 

deformation of the porous fibre-bed on the final shape and the amount of residual 

stresses and strains of the laminate may be readily studied. 
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6.3.  Further Work 

The approach introduced in this thesis provides the framework for the integration of 

modeling resin flow and stress development. It represents a major step toward an 

integrated and comprehensive model that could tackle complex industrial problems. To 

that end, the following recommendations for further work are introduced here: 

 In order for the approach to be tested along with other CCA modules, the 3D form 

of the current integrated model should be incorporated into COMPRO 3D in 

ABAQUS. This would provide for the current model the capability to analyze 

industrial problems of complex geometry and boundary conditions.
1
  

 Adaptation of this approach to the differential viscoelastic model of is very 

straightforward. The implementation of the integrated model into the model 

presented by Zobeiry et al. (2006) should be another step toward a more 

comprehensive model. 

 Due to the lack of experimental data, two separate sets of data are used for the 

behaviour of resin in terms of viscosity and moduli. Devising experimental 

measures for viscoelastic characterization of thermosetting resins during the full 

range of degrees of cure is crucial to the appropriate application of the current 

work. 
2
 

 Using the model to simulate the processing of real composite structures in order to 

predict their final geometry and residual stresses. This would facilitate the 

identification of the capabilities of the approach and also possibly further 

improvements. 

                                                 

1
 This step has in fact been successfully accomplished by Dr. Abdul R. Arafath and colleagues at 

Convergent Manufacturing Technologies (CMT) [Arafath (2012)]. 

2
 Done by Mr. Ryan Thorpe as a part of his M.Sc. thesis at the UBC Composites Group [Thorpe (2012)]. 
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 Introduction of large deformation formulation to this approach is another 

recommended improvement. With this addition, the model would be able to 

update the geometry of the composite structure as resin flow progresses and 

produce a more realistic representation of the deformations and the stress state in 

the structure. 

 Introduction of the capability of predicting voids formation and transport via a 3-

phase model including solid, fluid and a gas phase. This development would make 

predictions of the integrated approach more realistic as presence of voids in the 

final product, at least in small percentages, occurs quite often and tends to affect 

the properties of the composite part.    
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