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Abstract 

The gastrointestinal tract harbors complex bacteria which plays an important role in health and 

disease.  Gut microbial antigens, in conjunction with ingested dietary components, are important 

in intestinal immune homeostasis. High omega-6 polyunsaturated fatty acid (n6 PUFA) can 

induce oxidative stress and inflammation in the gut. In contrast, omega-3 (n3 PUFAs) 

supplementation can cure several inflammatory diseases. However, the relationship between 

dietary PUFAs and the intestinal microbiota remain unknown. Our study was to determine the 

effect of high fat diets with varying n6 and n3 PUFA on mice microbiota and host responses. We 

used 20% corn oil (high n6 PUFA), corn + fish oil (19% wt/wt corn oil added to 1% wt/wt fish 

oil; high n6 PUFA + long chain n3 PUFA), 20% canola oil (low n6 PUFA) as diets keeping 5% 

wt/wt corn oil as a chow control. After feeding mice the high fat diets for 5 weeks, Quantitative 

Polymerase Chain Reaction (qPCR) was used to examine the gut microbiota. 

Immunofluorescence was carried out to examine immune and redox responses. All high fat diets, 

regardless of composition, significantly reduced Bacteroides spp. and increased in intestinal 

epithelial cell death. Mice fed 20% corn oil had high levels of bacteria from the Clostridium and 

Enterobacteriaceae; associated with inflammatory bowel disease (IBD). In contrast, mice fed 

corn oil diets supplemented with fish oil, had enriched beneficial microbe Lactobacillus and 

lower levels of Enterobacteriaceae and Clostridia species. Fish oil also reduced neutrophil 

infiltration as well suggesting that n3 PUFA is anti-inflammatory. In addition, unexpectedly, fish 

oil supplementation induced oxidative stress in the colon evident by the increased presence of 4-

hydroxy-2-nonenal, a lipid peroxide product, and dual oxidase 2, which generates H2O2. In 

addition, catalase, an antioxidant was also low in the fish oil group. Canola oil, which contains 

n3, n6 PUFAs and a monounsaturated fat oleic acid, alters the microbiota similar to the corn oil 
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group. Overall, our research suggests that n6 PUFA alters the microbial composition, enriching it 

with detrimental microbes. Fish oil supplementation can reverse this effect.  However, we also 

provide evidence of fish oil supplementation increasing oxidative stress.  
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Chapter 1: Introduction 

1.1  Literature review 

1.1.1 The intestinal microbiota 

 

The gastrointestinal tract (GI) has the most diverse microbial population co-existing in 

equilibrium in a defined region. The intestinal tract of a human harbors a complex bacterial 

ecosystem. Actinobacteria, Bacteroidetes, Proteobacteria, and Firmicutes are the major phyla of 

the GI tract, with most being facultative aerobic and obligate anaerobes (Macfarlane et al., 2004; 

Wang et al., 1996). Humans and mice share most of their genes and GI microbiota, and the 

above mentioned phyla bacteria of human GI tract are similar to those of  the  mice GI tract 

(Spor et al., 2011). The gut microbiota population can vary in gut regions. For example, the 

stomach and duodenum (aerobic environment) of healthy adults contain aerobic bacteria to an 

extent of 10
2-3

 colony forming units (CFU)/ml. The acidic environment of the stomach and the 

high bile acid concentration (and relatively low transit time) of the duodenum are responsible for 

determining bacterial counts in these regions. The jejunum and ileum contain 10
4-8

 CFU of 

bacteria/ml with continuously increasing counts of facultative aerobes to the distal region of 

ileum. The colon contains a larger population to the extent of 10
10-13

 CFU of bacteria/ml with 

most bacteria being strict anaerobes (Cummings et al., 1991; Macfarlane et al., 1998). The gut 

resident microbes are very important to the host’s health. For example, the microbiota are critical 

for maintaining balanced immune responses, synthesizing anti-microbial peptide, displacing 

pathogens or colonization resistance, and regulating mucus synthesis (Blaser, 2006).  

The intestinal epithelial cells are a physical barrier, and act as protective layer against 

invading bacteria, as well as other luminal antigens from systemic circulation. These intestinal 

epithelium barriers control the communication between the lymphoid tissue and gut microbiota. 
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This communication is crucial to determining the mucosal immune responses. The intact 

epithelial barrier depends on tight junction proteins which must be tightly packed in the epithelial 

cells (Yu et al., 2012). In addition, some specialized cells present in the epithelial layer are 

paneth cells and goblet cells. A paneth cell secretes alpha-defensin anti-microbial peptides 

(Ouellette et al., 1996) and goblet cells regulate the synthesis of mucus (Deplancke et al., 2001). 

This mucus layer on the epithelium lineage controls physical and chemical abrasion of the 

epithelia by the luminal contents.  

 The intestinal physiology and the host defense may contribute to determining the overall 

composition and distribution of microbes in the GI tract. Physiological conditions include the 

digestion process, pH, substrate availability, redox potential, and transit time. Host defenses 

include antigen recognition, antibody secretion, mode of birth, early infections, and antibiotic 

exposures (Marques et al., 2010). Although not yet confirmed, various disease conditions altered 

in the intestinal physiology, and altered in the host defenses, may result in changes in the GI tract 

microbiota population. It is possible then, that studying the gut microbiota could lead to 

increased understanding of how to maintain or control the overall health status of the host.   

 

1.1.2 Intestinal microbiota dysbiosis and early colonization 

An alteration or imbalance in the intestinal gut microbiota ecology is called dysbiosis. It 

is becoming increasingly evident that environmental factors play an important role in altering the 

GI microbiota composition. Intestinal dysbiosis was caused by environmental factors including 

age (Agans et al., 2011), diet (Turnbaugh et al., 2009), and disease (Seksik et al., 2003). This 

altered microbiota composition is the prime contributor to determine the early stage of 

maturation of a child’s immune system.  Thus, the relationship of environmental factors, resident 
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microbiota, and mucosal surfaces are of primary importance to the maintenance of gut integrity. 

During gestation, a fetus develops in a sterile environment. After birth, the infant is exposed to 

the bacteria-rich environment and intestinal colonization occurs thereafter (Marques et al., 2010). 

Early colonization during the post-natal period may be a crucial factor that determines the overall 

immune status of an adult. From 2-4 years of age, a child’s microbial imprint resembles that of 

an adult (Palmer et al., 2007). In addition, recent reports suggest that a wide range of conditions 

during gestation (gestational age, maternal illness, delivery mode and hospitalization) and early 

colonization (breast feeding, infection, and antibiotic use) determine an adult’s GI tract 

microbiota composition (Marques et al., 2010). Interestingly, preterm birth also shows dysbiosis 

of specific gut microbiota. For example, low levels of strict anaerobes (Bifidobacterium and 

Bacteroides) and high levels of  pathogenic bacteria such as Enterobacteria, Escherichia coli,  

Bacteroides spp., Clostridia, Staphylococci, Enterococci, and Streptococci were observed in the  

gut of preterm infants (Jacquot et al., 2011; Mshvildadze et al., 2008). Therefore, the 

composition of GI microbiota, such as proportion of beneficial and pathobiont microbes, may 

reveal the health status of the host. 

 

1.1.3 Diseases and microbiota  

  GI microbiota species from different phyla must be present in the right proportion in 

order to maintain gut homeostasis. Healthy subjects have been observed to have a different 

proportion of microbiota than GI diseased patients. An alteration of the microbiota in disease 

conditions raises the question of whether microbiota dysbiosis is a main cause or a side effect of 

a disease.  Emerging studies highlight various diseases associated with GI microbiota dysbiosis, 

including autoimmune diseases, such as inflammatory bowel disease (IBD) (Schwiertz et al., 
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2010; Seksik et al., 2003) and celiac disease (Collado et al., 2007) other diseases including colon 

cancer (Scanlan et al., 2008), IBS (Salonen et al., 2010), stress (Cryan et al., 2011), alcoholic 

liver disease (Abu-Shanab et al., 2010) and metabolic diseases such as obesity (Di Baise et al., 

2008; Hildebrandt et al., 2009; Santacruz et al., 2009) and diabetes (Giongo et al., 2011).  

Our recent study suggests that transferring fecal microbiota from disease resistant mice to 

disease susceptible mice reduces the disease susceptibility (Ghosh et al., 2011). This transfer 

from the resistant to susceptible mice results in a reduction in colonic pathology and reduced 

systemic spread of infectious colitis induced by an enteric pathogen Citrobacter rodentium. 

These observations suggest that beneficial microbes may be associated with increased host-

protection against inflammation. Thus, our study demonstrates the critical role gut microbiota 

plays during enteric disease susceptibility. 

The immune homeostasis is needed to balance the GI immune responses of the host. 

Thus, host health and GI microbes play a major regulatory role. This regulation can be observed 

in diseases associated with the GI tract, where intestinal immune homeostasis is deregulated or 

up-regulated. This altered condition is characterized by the inappropriate activation of the 

immune cells, resulting in high levels of pro-inflammatory interleukin (IL) and chemotactic 

mediators. These mediators may contribute to enhancing the inflammation process and to 

destroying host tissues. The overall gut homeostasis mainly depends on the GI bacterial 

metabolism. The gut microbiota is known to produce lipopolysaccharides, or endotoxins, which 

alter the intracellular signal cascades by binding with specific cell receptors. Thus, metabolic 

activities of gut microbiota can have both beneficial and detrimental effects on the host. 

Interestingly, a relatively abundant change in gut microbiota and the presence of pro-

inflammatory mediators from circulating immune cells can contribute to the etiology of GI tract 
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diseases. One such example is IBD. During IBD, a high level of pro-inflammatory mediator and 

tissue destruction are observed (Brandtzaeg et al., 1997). In addition, the proportion of intestinal 

microbiota also varies with higher levels of the family Enterobacteriaceae and lower levels of the 

phyla Bacteroidetes, and Firmicutes (Frank et al., 2007). Yet, the relationship between the altered 

microbiota and inflammatory mediators is quite unclear and still needs to be studied.  

 

1.1.4 Diet and microbiota 

From a nutritional standpoint, a diet should contain all essential nutrients in the right 

proportion in order to ensure normal metabolic function. Recent evidence suggests that high fat 

diets contribute to various diseases. Several studies have revealed that diet can alter the microbial 

ecology of the gut, at least transiently. Recently, three different diverse groups of fecal samples 

were analyzed to identify the gut microbial communities. Three “enterotypes”, dominated by 

Bacteroides, Prevotella, and Ruminococcus groups, were observed (Arumugam et al., 2011). In 

addition, a diet rich in protein and animal fats was associated with the Bacteroides enterotype, 

whereas a carbohydrates diet was associated with the prevotella enterotype were observed in 

fecal samples (Wu et al., 2011). Thus, diversity and dietary habit are associated with specific gut 

microbiota with corresponding enterotypes. In addition, an altered microbiota was observed in a 

single day when diet was switched from low fat to high fat, and plant polysaccharide to high-

sugar in mice (Turnbaugh et al., 2009). When overweight men were fed a reduced carbohydrate 

diet, the specific bacterial population in their gut changes (Walker et al., 2011). Another study 

shows that diet influences the diversity manifested by the significant enrichment in Bacteroidetes 

and depletion in Firmicutes and Enterobacteriaceae in African rural children compared to 

European children (De Filippo et al., 2010). In addition, a calorie-restricted diet has an influence 
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on the gut microbiota in over weight adolescents (Santacruz et al., 2009). Both before and after 

intervention, levels of bacteria such as Bacteroides fragilis, Clostridium leptum and 

Bifidobacterium cantenulam counts were significantly higher in the high weight-loss groups; 

while levels of bacteria such as Clostridium coccoides, Lactobacillus, Bifidobacterium, 

Bfidobacterium breve, and Bifidobacterium bifidum were significantly lower (Santacruz et al., 

2009). In general, the gut microbiota is relatively stable in one’s life span once it has been 

colonized in the GI tract. Thus, a once held view that the microbiota was stable throughout one’s 

life appears to be in question and continues to be investigated. While there is evidence that the 

microbiota can be altered with dietary influence, we still do not know how long these ecological 

changes last or what type of effect they have on the host’s intestinal immune responses and 

overall GI health. 

 

1.2 The Western diet 

The Western lipid diet has shifted from saturated fats to polyunsaturated fatty acids 

(PUFAs) due to agricultural business, economical, and industrial growth (Simopoulos, 2011). In 

Canada, consumption of PUFAs has increased by 54% during the past few decades (Canada 

statistics, 2005). We acquire PUFAs from plant and fish oils (Das, 2006). PUFAs mainly consist 

of linoleic acid (n6) and α-linolenic acid (n3). This composition varies depending on the source 

from which PUFAs are obtained. The ratio of n6 and n3 in the present lipid diet is 10:1 to 20-

25:1, which deviates significantly from the proportions consumed by our ancestors, who 

consumed lipids in a nearly in 2:1 ratio (Simopoulos, 2011). In the Western world, a correlation 

exists between the high lipid diet consumption and disease (Ortega et al., 2012). Infectious 

diseases have been successfully controlled but new autoimmune, allergic and inflammatory 
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diseases have been observed in children and adults (Bach, 2002; Blaser, 2006). Emerging 

evidence suggests that diet has a role in determining the health of the Western world. It is 

currently unknown if a PUFAs diet has an effect on gut microbiota and this diet may have 

implications for gut health. 

1.3 Polyunsaturated fatty acids in inflammation 
 

Linoleic acid (n6) and α-linolenic acid (n3) are essential components of dietary PUFAs. 

Humans and mammals must acquire these fatty acids from their diet, because they cannot be 

synthesized on their own in mammalian cells. In humans, enzymes ∆6 desaturase and ∆5 

desaturase convert n6 PUFA and n3 PUFA into their distinctive long-chain metabolites (Das, 

2006; Simopoulos, 2006). Human breast milk contains a significant amount of all PUFAs which 

mainly depends upon the maternal diet. Vegetable oils rich in n6 PUFA come from corn, 

sunflower, soybean, rapeseed, and flax seed oils, whereas n3 PUFA is found in fish and fish 

products. The Inuit people have traditionally had a lower incidence of inflammatory disorders 

than the western population, presumably because of their dietary fats, which mainly come from 

fish, which are rich in n3 fatty acids including eicosapentaenoic acid (EPA; 20:5 n3) and 

docosahexaenoic acid (DHA; 22:6 n3), as well as saturated fats. 

The two major fatty acids in PUFA, n6 and n3, are important energy sources and cell 

membrane structural components (Calder, 2009). They are signaling molecules and precursors of 

potent active metabolite-like eicosanoids, which have a pivotal role in the regulation of 

inflammation (Calder, 2009). Eicosanoids derived from n6 PUFA contribute to pro-inflammatory 

functions, whereas eicosanoids from n3 PUFA such as EPA and DHA have anti-inflammatory 

attributes (Burghardt et al., 2010; Calder, 2003). The proportion of n3 to n6 PUFAs in dietary oil 

is very important. For example, n3 PUFA has a distinct property that inhibits the inflammatory 
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eicosanoids generated by the n6 PUFA. Thus, n3 PUFA is known to be beneficial during 

inflammation conditions. 

 

1.4 Polyunsaturated fatty acids in disease 

A Western diet has a higher ratio of n6 PUFAs than n3 PUFAs.  The higher ratio of n6 

PUFAs and this type of lipid diet have gradually increased in the last few decades. The increased 

ratio of essential fatty acids (n3 and n3 PUFA) in the western diet has been suggested to be 

responsible for the  increased incidence of many chronic inflammatory diseases and metabolic 

diseases such as IBD (Mane et al., 2009; Siguel et al., 1996; Tjonneland et al., 2009), diabetes, 

obesity (Das, 2006), and colon cancer (Singh et al., 1997). 

One well known inflammatory disease associated with the GI tract is IBD with unknown 

etiology. Immunological dysfunction and microbial dysbiosis are believed to be the main causes. 

IBD has been increasing along with the increased uptake of dietary PUFAs. A recent study 

shows that excessive consumption of linoleic acid, a n6 PUFA, increases the risk of ulcerative 

colitis by 30%, whereas consumption of DHA (n3 PUFAs) is associated with a 77% disease 

reduction (Tjonneland et al., 2009). The association between n6 PUFAs and IBD has been 

demonstrated experimentally in interleukin-10 (IL) knockout mice that reveal an increased 

incidence of colitis correlates with an increased intake of n6 PUFAs. A reduced incidence of 

colitis is associated with a lower intake of a n6 PUFA diet (Mane et al., 2009).   

Fish oil is a rich source of n3 PUFAs. In a colitis model, mice fed with n3 PUFAs 

experienced reduced colonic inflammation when compared to mice fed with a corn oil rich in n6 

PUFA (Chapkin et al., 2007). In addition, IBD patients who were treated with fish oil sustained a 

remission (Belluzzi et al., 1996). In a recent clinical trial, the intake of n3 PUFAs lowered pro-
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inflammatory markers (tumor necrosis factor- alpha [TNF-α], C-reactive protein) and increased 

the level of anti-inflammatory markers (IL-10, transforming growth factors [TGF-β]) in living 

subjects (Ferrucci et al., 2006). The beneficial action of n3 PUFA is due to production of anti-

inflammatory eicosanoids such as EPA and DHA (James et al., 2000). Meanwhile, ingestion of 

n3 PUFA rich diets may benefit IBD patients since it is known that n3 PUFA reduces the activity 

of the pro-inflammatory eicosanoids generated by n6 PUFA (Calder, 2009; Wall et al., 2010). 

Thus, an increased intake of n3 PUFA which increases the membrane content of n3 PUFA can 

change the eicosanoids production, ultimately affecting T cell reaction and antigen presentation 

on gut-associated lymphoid tissue. The EPA and the DHA of n3 PUFA potentially contribute to 

down-regulation of immune responses, which include lymphocyte proliferation, cytokine 

production, and antigen presentation on antigen presenting cells (Calder, 2003; Chambers et al., 

1999). In addition, n3 PUFA alters the production of the cytokine profile. This can be mediated 

by inflammatory gene expression and transcription factors such as nuclear factor κ B (NF κ B) 

(Zeyda et al., 2003) and peroxisome proliferator activated receptor (PPAR-γ). NF κ B is known 

to be a principle transcription factor contributing to the production and regulation of cytokines, 

adhesion molecules, and cyclooxygenase genes (Sigal, 2006). PPAR-γ is expressed in the 

colonic tissues and PPAR-γ agonist acts in an anti-inflammatory fashion as shown in the colitis 

mice model. A low level PPAR-γ expression in mice increases susceptibility to chemical colitis 

in the PPAR-γ knockout mice model (Desreumaux et al., 2001). Fish oil supplementation is 

known to be beneficial in inflammatory conditions but in normal base line conditions the role of 

fish oil is not known. This suggests the importance of studying the effect of fish oil 

supplemented with n6 PUFA. 
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1.5 Overview of oxidative stress 
 

Oxidative stress is the imbalance between generation and the removal of reactive 

molecules in the biological system. Free radicals include reactive oxygen species (ROS) and 

reactive nitrogen species (RNS) which are the natural by products of the normal metabolism; in 

mild oxidative conditions, tissues often respond by producing more antioxidants enzymes such 

as glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) and, glutathione 

peroxidase (GPO) to normalize the free radicals in the biological system. However, severe 

persistence of oxidative stress conditions depletes antioxidant capacity that leads to lower 

antioxidant levels in the inflamed tissues. Generation of reactive free radicals such as ROS and 

RNS are essential to kill invading pathogens by immune cells such as dendritic cells and 

macrophages (Clark et al., 2001). 

 

1.6  Oxidative stress-mediated tissue damage and sources  

Reactive molecules have a very short half-life and are difficult to measure in the 

biological system. It is possible to measure reactive species via indirect methods. Oxidative lipid 

products can be measured in tissues and body fluids by thiobarbituric acid reactive substances 

(TBARS), isoprostanes, diene conjugation, and alkane levels in the breath. Oxidative DNA 

damage is generally measured by the concentration of 8-hydroxy-2’-deoxyguanosine (8OHdG). 

Free radicals are generated upon oxidation and attack proteins to produce a 3-nitrotyrosine, 3-

chlorotyrosine, and parahydoxy-phenylacetaldehyde. In addition, reactive molecules are usually 

neutralized by antioxidants in the biological systems (Shah et al., 1999). Further, redox 

imbalance is known to initiate a biological response signal, such as cell death or cell survival 

(Miura et al., 2010). Cell death is by apoptosis or necrosis, and survival is through molecular 
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repair or enhanced defense and repair systems (Miura et al., 2010). Furthermore, NADPH 

oxidase 1 (Nox1) and dual oxidase 2 (Duox2) are two homologues of the catalytic core of 

phagocyte NADPH oxidase. This enzyme is highly expressed and identified as a major source of 

ROS in the GI tract. This superoxide-producing enzyme has a potential role in the 

immunopathology of the GI tract. Nox1 has the highest level of mRNA in the colon and is often 

called “colon NADPH oxidase”. Duox2 protein is expressed in the colon, duodenum and small 

intestine and may have a role in inflammation and host defense due to its intrinsic Ca
2+

-, 

NADPH- dependent H2O2-generating activity (Rokutan et al., 2008).  Production of H2O2 by 

Duox2 supports lactoperoxidase-mediated antimicrobial defense mechanisms on the mucosal 

surface. In addition, dietary PUFAs have a double bond in their structure which is more prone to 

oxidize and produce a wide variety of oxidative products. Therefore, these products are generally 

used as a biomarker for protein damage; their measurement indicates the overall redox status of 

the host. 

 

1.7 Anti-oxidants in the gut 

In general, anti-oxidant enzymes can scavenge free radicals. Glutathione peroxidase 

(GPX) catalyzes the reduction of a variety of hydroperoxides (ROOH and H2O2) using GSH, 

thus it protects mammalian cells against oxidative damage. SOD destroys the free radical 

superoxide by converting it to peroxide that can in turn be destroyed by CAT and GPX reactions. 

SOD converts the highly reactive superoxide radical to less reactive H2O2. CAT is one of the 

most efficient enzymes known; even higher concentration H2O2 can not saturate CAT. It reacts 

with H2O2 to form water and molecular oxygen to neutralize the oxidative response. Immune 

cells such as neutrophils and macrophages produce ROS and NO, which increase the levels of 
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oxidative stress in a localized area. While these processes function to eliminate pathogens or 

dying cells, this can also be a source of cellular damage if unchecked. Under normal 

circumstances, host cells have antioxidants (thiols, ascorbate, α-tocopherol) and anti-oxidant 

enzymes (SOD, CAT, GSH peroxidase) to minimize the damage to host cells in close proximity 

to the antigen. However, a combination of continuous inappropriate inflammatory activation or a 

weakened host anti-oxidant response can result in oxidative stress damage to the host cells of the 

GI tract. Furthermore, dietary anti-oxidants such as vitamins, carotenoids, and polyphenols 

reduce oxidative damage to the body by depleting or preventing ROS. Vitamin C has been 

implicated to help reduce oxidative damage and increase total antioxidant capacity (Hermsdorff 

et al., 2011). Vitamin E prevents lipid peroxidation and small intestinal hypersecretions (Lindley 

et al., 1994). Carotenoids are plant pigments with anti-oxidant properties, and can be converted 

into vitamin A. Therefore, host anti-oxidant defense enzymes as well as dietary antioxidants are 

important in the context of minimized effect of reactive substances (RNS, ROS) in the biological 

system.  

1.8 Polyunsaturated fatty acids and oxidative stress 

Double bonds present in PUFAs are more prone to oxidize and produce oxidized fatty 

acids and hydoxy fatty acids as unstable intermediate compounds known as oxylipin, including 

both free and esterified forms. Upon oxidation, n6 PUFA produce trans-4-hydroxy-2-nonenal 

(HNE) and n3 PUFA (DHA and EPA) to produce trans-4-hydoxy-2-hexenal (HHE) 

intermediates (Spickett et al., 2010). These oxidized products of PUFAs enhance the production 

of iNOS, RNS, ROS, and induce NF κ B, apoptosis, and generate protein, phospholipid adducts, 

all of which reduce the level of glutathione (GSH) in the tissues and fluids. We can measure 
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these products in order to understand the mechanism of dietary PUFA’s effects on the biological 

system (Long et al., 2010). 

Research has shown that epithelial cell damage (Rao et al., 1997), inflammation, and 

mucus deficiency are associated with GI disease due to excessive production of free radicals 

(Ding et al., 2005; Holmes et al., 1998; Kruidenier et al., 2003). The harmful effects of these 

reactive radicals may be associated with the initiation and propagation of the disease (Tuzun et 

al., 2002). Another study shows that fish oil supplement given to ulcerative colitis patients 

decreases the level of oxidative stress (Barbosa et al., 2003). Nitric oxide (NO) is another free 

radical produced by three isoforms of nitric oxide synthase (neuronal-nNOS, endothelial-eNOS 

and inducible-iNOS). Two of these (nNOS and eNOS) are important in the gut because they 

have a pivotal role in peristalsis and control of mucosal blood flow (Karpuzoglu et al., 2006). 

The iNOS produces a significant amount of NO which is involved in innate immunity; sustained 

and excess NO generation is accompanied by IBD (Middleton et al., 1993; Tripathi et al., 2007). 

In addition, eNOS and iNOS are essential for mucus producing colonic goblet cell functions, and 

thereby protect against inflammatory stimulation and bacterial translocation (Vallance et al., 

2004). Different DNA adducts may be formed from n3 PUFA oxidation and nearly fifteen 

oxidative products identified from the oxidation of DHA (Marnett, 2002; Nath et al., 1994). 

Oxygenated α, β-unsaturated aldehydes (O-αβUAs) of n3 PUFA are potentially carcinogenic. 

DHA supplemented (0.8 and 1.6g/day) for two weeks in a human study caused significant 

increases in plasma 4-hydroxy-hexenal (4-HHE), a peroxidized product of DHA (Calzada et al., 

2008). It was reported that n3 PUFA peroxidation products were related to the risk of chronic 

hepatitis C and chronic obstructive pulmonary disease (Kitase et al., 2005; Rahman et al., 2002). 

Furthermore, orally administrated 4-hydroxy-trans-2-nonenal (4-OHE, 3 mg) in mice showed 
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adducts such as 4-OHE-deoxiguanidine (4-OHE-dG), 4-OHE-deoxycytidine (4-OHE-dC), and 4-

OHE-methyl-dC in esophageal, gastric, and intestinal DNA (Kasai et al., 2005). Therefore, a 

correlation between a rich PUFA diet and oxidative stress can be assumed. However, the role of 

gut microbiota in oxidative stress is still unclear. 

 

1.9   The gut microbiota and oxidative stress 

The gut has a diverse population of bacteria in different regions. Our recent evidence 

suggests that gut commensal bacteria significantly modulates  redox responses in the gut (Ghosh 

et al., 2011). It is known that attaching/effacing (A/E) luminal enteric pathogens, like 

enteropathogenic and enterohemorrahgic E. coli, induces iNOS. The expression of iNOS is 

involved in the host defenses in the epithelial cells lining of the intestinal crypts (Vallance et al., 

2002).  In crypt epithelial cells of C57BL/6 mice, C. rodentium induces iNOS expression. This 

iNOS expression has been linked with oxidative stress and enhances pathogen clearance (Gibson 

et al., 2008; Vallance et al., 2002). Other in vitro studies have found that bacterial LPS of 

Salmonella tryphimurium can induce iNOS and cyclooxigenase-2 (COX-2) expression in the 

mouse RAW 264.7 macrophages cell line (Shiratori et al., 2005). In addition, the ex vivo 

production of cytokines and NO in the spleen, peritoneum, and peyer’s patch leukocytes of mice 

were analyzed after oral administration of viable lactic acid bacteria. There was no alteration of 

cytokines or NO in the peyer’s patch or spleen cell cultures, but in the peritoneal culture, L. 

acidophilus increased the IFN-γ, IL-6, IL-12, and nitric oxide production whereas L. helveticus, 

L. gasseri, L. reuteri and Bifidobacterium impaired the production of IFN-γ, IL-6, and NO 

(Tejada-Simon et al., 1999). Conclusively, the resident microbiota plays an important role in the 

redox status of the gut in both infected and non-infected conditions. 
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While traditionally it is thought that NO promotes protection of host cells against 

pathogens, NO can also act as a signaling molecule in bacteria to promote their survival as well 

as modulate host responses, which can be either beneficial or harmful for the host or the microbe 

(Gusarov et al., 2005). NO derived from bacterial nitric oxide synthase (bNOS) or from host 

iNOS promotes growth of NO-resistant bacteria (Gusarov et al., 2009). NO generation during 

oxidative stress has been shown to alter gene expression in E.coli  (Mukhopadhyay et al., 2004; 

Nunoshiba et al., 1993) and in B.subtilis (Nakano, 2002). As well, Salmonella’s DNA base 

excision repair system is required for resistance against the genotoxic effects mediated by NO in 

vivo (Richardson et al., 2009). The above studies suggest that some bacteria have adapted to 

utilize the host’s protective defenses of NO production for their own advantage and survival.  

Bacteria and their cytoplasmic components may contribute to the induction of oxidative 

stress in host tissues. Commensal products from heat killed Bifidobacterium and Lactobacillus 

were shown to induce NO as well as TNF-α and IL-6 in RAW264.7 macrophage cell lines 

(Tejada-Simon et al., 1999). This suggests that although these commensal strains are normally 

considered beneficial, if they cross the epithelial barrier they can induce inflammatory and 

oxidative responses in the underlying immune cells. Other studies reveal the damaging effects of 

superoxide radicals of bacterial origin on colonic cells. For example, H2O2 produced from 

Lactobacillus induces cell death in the human epithelial cell line HT-29 (Strus et al., 2009). This 

suggests that gut microbiota capable of producing H2O2 could be involved in the damage 

associated with chronic inflammatory diseases, such as inflammatory bowel disease (IBD), by 

contributing to H2O2 production in the inflamed mucosa. In support of this concept, biopsies and 

stool samples from IBD patients were shown to contain H2O2 producing Enterococci, 

Streptococci, and Lactobacilli. As well, in the mucosa of IBD patients, the total populations of 
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aerobic bacteria increased, revealing a higher oxygen tension present in inflamed tissues (Strus,  

et al., 2009). 

 Additional studies reveal that some intestinal bacteria can produce extracellular 

superoxide, hydrogen peroxide, or hydroxyl radicals which arise from O2. For example, while 

stool and clinical enterococcal isolates including Enterococcus faecalis, Enterococcus faecium, 

Enterococcus casselijlavus, and Enterococcus gallinarum produce extracellular superoxide, 

other commensal bacteria like streptococci, staphylococci, and aerobic gram-negative bacilli do 

not. In addition, production of extracellular superoxide by E. faecalis is more common than 

production by E. faecium (Huycke et al., 1996). Among enterococci, E. faecalis is most 

commonly associated with invasive infections (Jett et al., 1994), which indicates that 

extracellular superoxide is a potential virulence factor. In appropriate vivo conditions, 

extracellular superoxide favors the growth of enterococci in the intestinal tract, thereby 

facilitating colonization, and possibly, overgrowth (Miller et al., 1995). E. faecalis also induces 

IBD in germ free IL-10 knockout mice, suggesting that E. faecalis could induce IBD in 

genetically susceptible individuals (Balish et al., 2002). Thus, the ability of invasive strains such 

as E. faecalis to produce extracellular superoxide, and then thrive in this microenvironment, 

suggests that these microbes may not only be associated with chronic inflammatory conditions 

but could also contribute to disease etiology by damaging host cells.  

 

1.10 Research overview and hypothesis 

            Linolenic acid (n6 PUFA) is one of the predominant fatty acids in the dietary oils of 

Western diets and has been linked to IBD (Tjonneland et al., 2009). In addition, it produces the 

pro-inflammatory eicosanoids which are found in elevated levels during inflammatory 
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conditions. Furthermore, fish oil (rich in n3 PUFA) supplementation reduces the inflammatory 

markers during IBD and blocks the generation of pro-inflammatory eicosanoids from n6 PUFA 

(Calder, 2003; Ferrucci et al., 2006). Therefore, we assigned 20% corn oil as predominant  in the 

n6 PUFA group because of the higher ratio of n6 PUFA compared to n3 PUFA (nearly >10:1). 

Another group is the fish oil supplementation group (19% corn oil + 1% fish oil). We assumed 

that fish oil (rich in n3 PUFA) reduces the inflammatory eicosanoids produced by n6 PUFA and 

reverses the intestinal microbiota of n6 PUFA that could potentially be associated with GI 

inflammatory disease. The third diet group, 20% canola oil, was included in our study because 

this diet has a nearly 2:1 ratio of n6 and n3 PUFA. This ratio refers to the diet consumed by our 

ancestors in ancient days (Simopoulos, 2006, 2011), and considered as a high fat control group in 

this study. In addition, canola oil has high ratio of a monounsaturated fat, oleic acid,  compared 

to corn and the fish oil supplementation group. We hypothesized that the canola oil group would 

produce intermediate or beneficial effects compared to 20% corn oil and  similar results as the 

19% corn oil + 1% fish oil. Finally, 5% corn oil group was considered as a low fat diet (normal 

chow). Therefore, we hypothesized that a diet rich in n6 PUFA would cause dysbiosis, which 

would increase the intestinal immune responses and have an effect on the redox responses. 

We hypothesized that fish oil supplementation would reverse these effects.  

 

1.10.1  Objectives 

a. Determine the gut microbial ecology of mice fed with different proportions of n6 and n3 

PUFA diets (corn oil, corn + fish oil, canola oil, and low fat). 

b. Examine aspects of immunity and redox status of GI tract from mice fed different n6 and 

n3 PUFA diets (corn oil, corn + fish oil, canola oil, and low fat).  
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Chapter 2: Methodology 

2.1 Animal studies and diet experiment 

Four weeks old female C57BL/6 mice were randomly sorted into four groups. Each 

group had 5 to 6 mice. Three groups of mice were fed with three high lipid diets (corn oil, corn + 

fish oil, canola oil) and one group was fed with a low fat diet (5% wt/wt of corn oil). The high fat 

diets were isocaloric and isonitrogenous in nature and were prepared by adding 200 grams of oils 

to 800 grams of basal mix obtained from Harlan Teklad, USA (TD.88232). Appendix B provides 

additional details. The oils used were 20% w/w canola oil (low n6 PUFA group), 20% w/w corn 

oil (high n6 group) or 19% corn oil supplemented with 1% w/w fish oil (long chain n3 PUFA 

group). The fatty acid compositions of the various oils are given in Table 1. The mice were fed 

the above mentioned diets for five weeks, after which the mice were sacrificed, and luminal 

content and tissues were collected for microbiota and host inflammatory analysis. The collected 

samples were stored at -80 °C until processing.  

The basal Mix was composed of protein at 21.2% wt/wt (19Kcal % energy) and 

carbohydrates at 44.4% wt/wt (39Kcal % energy). The 5% corn oil group has 22.6% wt/wt 

protein (26.4Kcal % energy) and carbohydrates 51.2 % wt/wt (60.1Kcal % energy). Therefore, 

all 20% wt/wt PUFAs gave 4.53Kcal energy/gm of diet whereas 5% corn oil gave 3.41Kcal 

energy/gm of diet. For the detailed compositions of Harlan Teklad Basal Mix see Appendices A 

and B. Respective diets were administered to mice for 5 weeks; food and water were freely 

accessible for all mice. All of these experiments were performed at the Child and Family 

Research Institute by Dr. Deanna Gibson, Dr. Sanjoy Ghosh and Ben Dai following the 

guidelines of Animal Care set out by the University of British Columbia.  
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2.2 Quantitative polymerase chain reactions (qPCR) for microbiota    

            Analysis 
 

About 60 to 80% of microbes are predicted to be non-cultivatable (Suau et al., 1999). 

Today, 16S rRNA gene probe hybridization has become widely adopted to detect specific 

bacterial groups or species in a mixed population. The 16S rRNA sequence contains conserved, 

variable, and hyper-variable regions which can be used to detect phyla or families at a lower 

resolution, and genus or species at a higher resolution. A quantitative polymerase chain reaction 

(qPCR) is another commonly used method to detect the bacteria in a mixed population. In this 

method, 16S rRNA directed synthetic oligo deoxynucleotide primers are used to amplify the 16S 

rRNA gene of our bacteria of interest.  

 

2.2.1 Bacterial primer selection 

To select the bacterial primers, we conducted a comprehensive literature survey to find 

primers in published journals. We chose primers that had been successfully used to study the 

microbiota by qPCR method and were important in the context of diet, GI disease, and 

inflammation (Table1 and refer Appendix C). We then confirmed the primers specificity using 

the insillico PCR database (http://insilico.ehu.es/) as well as in the Ribosomal Database Project 

(http://rdp.cme.msu.edu/). For Segmented Filamentous Bacteria (SFB), I designed our own 

primer by using the NCBI primer blast tool against Candidatus Arthomitus spp. SFB-mouse-

Japan, complete genome (GenBank-AP012202.1). The forward primer was used to amplify the 

region from 186099 - 186118 and the reverse primer was used to amplify the region from 

186317-186298 of 16S ribosomal RNA gene of SFB. This SFB primer was also validated using 

the above mentioned database. The primers were synthesized by Integrated DNA Technologies 

(IDT), Canada. 
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2.2.2 Bacterial genomic DNA extraction 

The bacterial genomic DNA was extracted from the collected luminal contents of all 

mice. PBS homogenized luminal content at ~400 mg was used to extract a bacterial genomic 

DNA by using Qiagen stool kit and each step were performed according to the manufacturer 

instructions. All extracted DNA concentrations were measured by NanoDrop 2000 (Thermo 

scientific) and aliquoted at ~50 ng/µl in water (molecular grade water, Fisher scientific, 

BP2819100) for qPCR analysis. 

 

2.2.3 Primer efficiency check 

A temperature gradient PCR was carried out to initially to determine the annealing 

temperature of each primer set and standardize the initial PCR conditions. The annealing 

temperature of primers was achieved by performed PCR reactions in different temperatures. 

Furthermore, the real-time machine not only monitors DNA synthesis during the PCR, it also 

determines the melting point of the product at the end of the amplification reactions. The melting 

temperature of a DNA double strand depends on its base composition. All PCR products for a 

particular primer pair should have the same melting temperature - unless there are contamination, 

mispriming, primer-dimer artifacts. Since SYBR green fluoroscence dye does not distinguish 

between one DNA and another, an important means of quality control is to check that all samples 

have a similar melting temperature. 

Primer efficiencies were then calculated and efficiency was checked according to the 

minimum information for publication of quantitative real-time PCR experiments (MIQE) 

guidelines (Bustin et al., 2009). We were successful in obtaining efficiencies in an acceptable 

range (80-120% as shown in Table 3) with the exception of Enterobacteriaceae, Clostridia spp. 
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and E. feacalis primers. To determine the primer efficiency, a serial dilution of a template DNA 

was used to carry out the PCR reaction. The serial dilution Ct value was used to generate a 

standard curve. The co-efficient correlation (R
2
) or Pearson’s correlation coefficient from the 

linear regression line were used to check the primers efficiency. Amplification efficiency E is 

calculated from the slope of the standard curve. For example, efficiency for 10 fold dilution of 

template DNA is calculated by following formula according to the biorad manual and MIQE 

guidelines (Bustin et al., 2009) 

E = 10 
-1/slope 

% Efficiency = (E-1) x 100 

2.2.4 qPCR 

Once we standardized the PCR condition, real-time PCR was performed. Bacterial DNA 

quantification was achieved on a CFX96 real-time PCR machine (Bio-Rad) using Sso Fast Eva 

Green Supermix (Bio-Rad) under conditions suggested by the supplier, and one reaction volume 

is 10 µl. All PCR reactions were carried out in duplicate at 10µl volume. High-profile white 

tubes and ultra clear sealing tapes (Bio-Rad) were used. One reaction volume (10µl) consists of 

the following materials, which were used under conditions suggested by the supplier. 

Sso Fast Supermix   - 5 µl 

Forward primer           - 0.3µl (5µM) 

Reverse primer   - 0.3 µl (5µM) 

Deionized water   - 3.4 µl 

Template DNA   - 1 µl (50 ng/ µl) 

 

The following final conditions were used set in the PCR machine to perform the PCR 

reactions. Initial denaturation at 98°C for 2 minutes followed by 39 cycles of denaturation at 

98°C for 30 s, annealing for 30 s (refer to Table 2 for each annealing temperature of each 
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bacteria) and extension at 72°C for 30 s. Melting curve analyses were carried out from 65 °C to 

95°C. Within this temperature range, after every 1°C increase, the plate was read and the 

temperature was held for 10 s. The CFX manager version2 software was used to analyze our 

results (Balamurugan et al., 2008). A relative quantification method was used to quantify our 

bacteria of interest. In this method eubacteria primers were considered as a reference gene for a 

relative quantification of our microbiota analysis. We have used efficiency values of each 

bacterial primer (Table 3). 

 

2.3 Immunofluorescence staining 

2.3.1 Procedure 

Transverse sectioned, 5 µm thickness of Paraffin-embedded colon tissue sections were 

deparaffinized with xylene and gradually rehydrated with decreasing concentrations of alcohol 

following standard techniques as previously described (Ghosh et al., 2011; Gibson et al., 2008). 

Antigen retrieval was performed in rehydrated tissues with a 1 mg trypsin (Sigma) tablet in 1 ml 

of water for 20-30 minutes at room temperature. The tissues were washed and non-specific sites 

were blocked with 5% Bovine Serum Albumin (BSA) in PBS (Sigma). The specific primary 

antibody was diluted in 5% BSA in PBS (we followed the instruction according to the specific 

antibody supplier). Incubation was performed for 1 ½ hours at room temperature or overnight at 

4 °C followed by washing with PBS. The specific secondary antibody in 5% BSA in PBS (1: 150 

to 1:200) conjugated with fluorophore was incubated for 1 hour at room temperature. Finally, 

tissue sections were mounted with Fluoroshield with DAPI (Sigma) and visualized by using an 

Olympus 1X81 Q-Imaging camera with a built in Meta Morph advanced version 7.7.7.0. This 

procedure was used to perform the following experiments. 
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2.3.2 Quantification of macrophages and neutrophils  

The procedure mentioned in the section 2.3.2 was followed and tissues section were 

incubated in a primary antibody made against F4/80 (Cedarlane laboratories anti-rat monoclonal 

antibody) or myeloperoxidase (Neomarkers, Fremont, CA) used for macrophags and neutrophil 

analysis respectively. Secondary antibody was incubated with Goat-anti-Rat, labeled with green 

fluorescent Fluor 488 for macrophage and Goat-anti-Rabbit IgG, Hilyte Fluor 594 labeled-Red 

for neutrophil. We the instructions suggested by the supplier. Positively stained macrophage and 

neutrophil cells were counted manually at 400X time magnification under the microscope, on 

entire colon tissue section of each mouse (5 to 6 mice in the group) and subsequently cells counts 

of each mouse were averaged to make the graphs. 

  

2.3.3 Apoptosis - TUNEL assay 

We examined apoptosis since it is also a marker for oxidative damage of tissues and cells 

(Sweeney et al., 2005) and followed the procedure mentioned in the section 2.3.1. We measured 

the apoptotic cells using the Terminal deoxynucleotidyl transferase dUTP nick end labeling 

assay (TUNEL). This method, commonly used to detect apoptosis, results in DNA fragmentation 

where the presence of fragmented DNA-3’OH end can be identified by terminal deoxynucletidyl 

transferase (TdT). TdT is an enzyme that helps incorporate the deoxythymidine analog 

deoxyuridine 5´-triphosphate (dUTPs) that is tagged with a fluorophore marker which gives a 

signal to detect apoptotic cells. We used a FragEL DNA Fragmentation Detection Kit from 

Calbiochem (product # QIA39-EA) to visualize apoptotic cells. Positively stained apoptotic cells 

were counted manually at 400X time magnification under the microscope, on 5 to 6 regions of 
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10 intact crypts of each mouse tissue section in the group (5 to 6 mice in the group) and then 

averaged values of each mouse were used to make the graphs (Gibson et al., 2008). 

 

2.3.4 HNE staining 

 The procedure mentioned in the section 2.3.1 was followed. For the primary antibody for 

HNE staining, we used 1 µl of polyclonal Goat anti- Hydroxynoneal (1µg/µl, abm-Applied 

Biological Materials, Inc) in 50 µl 5% BSA in PBS that specifically binds to HNE modified 

protein or detects HNE modified proteins in tissue sections. One µl of secondary antibody 

conjugated with red fluorophore (Goat-anti-Rabbit IgG, Hilyte Fluor 594 labeled-Red) in 150 µl 

of 5% BSA in PBS was used to detect the HNE signal in the colon section under the microscope. 

 

2.3.5 DUOX2 staining 

We followed the basic procedure mentioned in the section 2.3.1 and for specific DUOX2 

staining we used 1 µl of purified rabbit polyclonal antibody raised against DUOX2 of mouse 

origin (200 µg/1 ml, sc-134442, Santa Cruz Biotechnology, Inc) in 50 µl of 5% BSA in PBS was 

used and 1 µl of secondary antibody conjugated with red flurophore (Goat-anti-Rabbit IgG, 

Hilyte Fluor 594 labeled Red) in 150 µl of 5% BSA in PBS was used to observe the DUOX2 

expression in colon of the mice. 

 

2.3.6 Catalase staining 

 The procedure mentioned in the section 2.3.1 was followed. For specific catalase 

staining we used 1µl of purified rabbit polyclonal antibody raised against catalase of human 

origin (200µg/1ml, sc-50508, Santa Cruz Biotechnology, Inc) in 50 µl of 5% BSA in PBS was 

used and 1µl of the secondary antibody conjugated with red fluorophore (Goat-anti-Rabbit IgG, 
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Hilyte Fluor 594 labeled Red) in 150 µl of 5% BSA in PBS was used to find the catalase 

expression in colon of the mice.  

 

2.3.7 Glutathione peroxidase-2 (GPX2) 

We followed the procedure mentioned in the section 2.3.1. For specific GPX2 staining 

we used 1 µl of primary purified goat polyclonal antibody raised against GPX2 of human origin 

(200µg/1ml, sc-54604, Santa Cruz Biotechnology, Inc) in 50 µl of 5% BSA in PBS was used and 

1 µl of secondary antibody conjugated with red fluorophore (Rabbit-anti Goat IgG, Hilyte Fluor 

594 labeled Red) in 150 µl of 5% BSA in PBS was used to observe the expression of GPX2 in 

the colon of the mice. 

 

2.4 Statistical analysis 

GrapPad Prism4 software was used to performed one-way analysis of variance 

(ANOVA) with tukey's multiple comparison test to compare the diet treatment group means; and  

p values less than 0.001(***<p), 0.01 (**<p) and 0.05(*<p)  were considered to be significant. 

Each diet treatment group had 5 to 6 mice. 

 

 

 

 

 

 

 



 26 

Table 1: Major fatty acids of dietary oils used in this study (Lipids gms/100 gms of chow) 

Fatty acids  Corn oil 

20% wt/wt 

Canola oil 

20% wt/wt 

19% Corn + 

1% Fish oil 

(wt/wt) 

Corn oil 

5% wt/wt  

(Normal Chow) 

Saturated FA 2.56 1.38 2.75 0.64 

Linoleic acid (n6) 11.46 3.88 10.9 2.87 

Arachidonic acid 0 0 0.025 0 

α-Linolenic acid (n3) 0.24 1.5 0.231 0.06 

Oleic acid 5.36 12.92 5.31 1.34 

DHA/EPA 0 0 0.34 0 

 

All 20% wt/wt high PUFAs diets were isocaloric. The diets were composed of: 20% wt /wt corn 

oil (high in n6 PUFA), 20% wt/wt canola oil (2.5: 1 of n6 and n3 PUFA), 19% wt /wt of corn oil 

+ 1% wt/wt of fish oil (high n6 PUFA supplemented with n3 PUFA) and a low fat normal chow 

control (5% wt/wt corn oil). 
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Table 2: List of bacterial primers used in this study 

 Bacterial Name Forward primer Reverse primer Annealing 

 Temp (°C) 

Reference 

1. Bacillus spp. GCGGCGTGCCTAATACATGC  CTTCATCACTCACGCGGCGT 
 

60 (Petnicki et al., 2009) 

2. Lactobacillus spp. AGCAGTAGGGAATCTTCCA CACCGCTACACATGGAG 
 

60 (Walter et al., 2001) 

3. Enterococcus faecalis CCCTTATTGTTAGTTGCCATC

ATT 
ACTCGTTGTACTTCCCATTG

T 
60 (Rinttila et al., 2004) 

4. Clostridium coccoides 

gp. 

AAATGACGGTACCTGACTAA 
 

CTTTGAGTTTCATTCTTGCG

AA  
60 (Matsuki et al., 2004) 

5. Eubacterium rectale ACTCCTACGGGAGGCAGC 
 

GCTTCTTAGTCAGGTACCGT

CAT 
60 (Barman et al., 2008) 

6. Clostridia spp. GCTGCTAATACCGCATGATA

TGTC 
CAGACGCGAGTCCATCTCAG

A  
60 (Deloris et al., 2006) 

7. SFB CGGAGCATGTGGTTTAATTC GCTGTCTTCGCTAAAGTGCT

C 
55                                         This study 

8. Bacteroides spp. GAGAGGAAGGTCCCCCAC 
 

CGCTACTTGGCTGGTTCAG 
 

60 (Petnicki et al., 2009) 

9. Bacteroides fragilis AYAGCCTTTCGAAAGRAAG

A 
CCAGTATCAACTGCAATTTT 
  

60 (Matsuki et al., 2004) 

10. Enterobacteriaceae GTGCCAGCMGCCGCGGTAA 
 

GCCTCAAGGGCACAACCTCC

AAG 
60 (Barman et al., 2008) 

 11. Bifidobaacterium spp. CTCCTGGAAACGGGTGG GGTGTTCTTCCCGATATCTA

CA 
60 (Matsuki et al., 2002) 

12. Enterococcus faecium CCACCGGAGATTGCTCCACC

GGAAA 
CCGTCAAGGGATGAACAGTT

ACTCTCA 
53.4 (Kang et al., 2010) 

13. Eubacteria CGGTGAATACGTTCCCGG 
 

TACGACTACCTTGTTACGAC

TT 
60 (Sokol et al., 2009) 

 SFB – Segmented Filamentous Bacteria 

The list of bacterial primers used in this study. These primers were retrieved from other microbiota studies using qPCR in published 

journals and were important in the context of diet, GI disease and inflammation (see appendix C).
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Table 3: Bacterial primer's efficiencies and their phylum 

 Bacterial Primer Efficiency Value at 60°C Phylum 

1 Bacillus spp. 114.0 % Firmicutes 

2 Lactobacillus spp. 113.9 % " 

3 Enterococcus faecium                118.1 % " 

4 Enterococcus faecalis 137.6 % " 

5 Clostridium coccoides gp. 105.9 % " 

6 Eubacterium rectale 99.4 % " 

7 Clostridia spp. 123.1 % " 

8 SFB 92.2 % " 

9 Bacteroides spp. 100.1 % Bacteroidetes 

10 Bacteroids fragilis 104.7 % " 

11 Enterobacteriaceae 140.7 % Proteobacteria 

12 Bifidobacterium spp. 96.6 % Actinobacteria 

13 Eubacteria 111.5 % - 

 

The minimum information for publication of quantitative real-time PCR experiments (MIQE) 

guidelines suggests that primer’s efficiency should lie between 80-120%. 
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Chapter 3: Results 

3.1 Dietary corn oil increases Clostridia spp. in the gut    

To determine the effects of the high fat diets fed to mice we examined microbial 

dysbiosis using specific primers to 16S RNA and qPCR. We examined Clostridium coccoides 

gp., Clostridia spp. and Eubacterium rectale of clostridium cluster XIVa (Firmicutes phylum) 

because these species are opportunistic pathogens or pathobionts (Lozupone et al., 2012) 

associated with IBD (Duck et al., 2007) and IBS (Jeffery et al., 2011; Schoepfer et al., 2008) and 

can cause systemic infection (Decousser et al., 2007; Elsayed et al., 2004; Finegold et al., 2005). 

In our study, we found that the ileum of mice fed with dietary corn oil group, rich in n6 PUFAs, 

was enriched with the Clostridium coccoides gp. (ANOVA, df=3, F=4.393, *p< 0.0195; Tukey’s 

post-hoc *p< 0.05; Figure 1B, panel b1) and Clostridia spp. (ANOVA, df=3, F=5.298,**p< 

0.01; Tukey’s post-hoc *p< 0.05; Figure 1B, panel b2) when compared to ileum of mice fed with 

corn + fish oil diets and 5% corn oil.  All high fat diets promoted the Clostridia spp. in the colon 

when compared to 5% corn oil but not statistically significant (ANOVA, df=3, F=3.42, p> 

0.0492; Tukey’s post-hoc, p> 0.05; Figure 1A, panel a2). Furthemore, only 20% corn oil rich 

diets enhanced this species in the ileum compared to mice fed with corn + fish oil and 5% corn 

oil (ANOVA, df=3, F=5.298,**p< 0.01; Tukey’s post-hoc *p< 0.05; Figure 1B, panel b2). There 

was no difference in Eubacterium rectale in the colon (ANOVA, df=3, F=0.4953, p> 0.6901; 

Tukey’s post-hoc, p> 0.05; Figure 2A, panel a3), in the ileum of high and low fat fed mice 

(ANOVA, df=3, F=2.598, p> 0.0882; Tukey’s post-hoc, p> 0.05; Figure 2B, panel a3). 

Therefore, high fat diets composed of corn oil increase the opportunistic pathogens such as 

Clostridium coccoides gp., Clostridia spp. in the ileum of gut but fish oil supplementation with 

corn oil reduces these bacterial species. 



 

Figure 1: Dietary corn oil enriches 

of the gut.  

A. Colons of mice fed with high fat diets

oil) show a high level of Clostridia s

amplification in 5% corn oil fed mice. 

PUFA intake with the occurrence of 

Clostridium coccoides gp. and Clostridia s

diets rich in corn oil when compared to corn + fish oil and 5% corn oil

0.05)], and Eubacterium rectale 

fat diet (panel b3). Tukey’s multiple comparison test 

each group had 5 to 6 mice. 
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of mice fed with high fat diets (20% of corn oil, canola oil and 19 % corn + 1% fish 

Clostridia spp. when compared to 5% corn oil (panel a2)

amplification in 5% corn oil fed mice. There was no correlation between dietary differences in 

with the occurrence of Eubacterium rectale (panel a3). ND= not detected

Clostridia spp. were significantly higher in the ileum of mice fed 

diets rich in corn oil when compared to corn + fish oil and 5% corn oil [panel b1 &

 was not significantly higher in mice fed high fat 

Tukey’s multiple comparison test was performed to test the significance and 
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Clostridia spp. in the ileum 

(20% of corn oil, canola oil and 19 % corn + 1% fish 

(panel a2). There was no 

There was no correlation between dietary differences in 

ND= not detected B. 
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high fat diets and low 

was performed to test the significance and 
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3.2 Fish oil supplementation increases Lactobacillus spp.  in the colon. 
 

We analyzed several important immune modulating microbes from the Firmicutes phyla. 

Segmented Filamentous Bacteria (SFB) is gram positive and non-culturable bacteria of the gut 

microbiota. SFB is important in T helper 17 cell maturation (Ivanov et al., 2008; Umesaki et al., 

1999) and high levels of Th17 cells are infiltrated in IBD patient’s intestines (Monteleone et al., 

2012). Therefore, we have studied how different dietary PUFAs affect SFB levels in the gut. 

Normally, SFB are abundant in the terminal ileum of GI tract (Ivanov et al., 2009). Our results 

indicated that mice fed a diet rich in corn oil appear to have increased SFB in the colon when 

compared to mice fed a diet of 5% corn oil (low fat or normal chow, Figure 2A, panel a1), 

Although the difference was not significant (ANOVA, df=3, F=1.593, p> 0.2242; Tukey’s post-

hoc, p> 0.05; Figure 2A, panel a1).  Fish oil supplementation to corn oil diets was able to reverse 

this trend showing similar levels of SFB as compared to normal chow (Figure 2A, panel a1]. 

While there was no difference in SFB in the ileum of mice fed with high fat diets and low fat diet 

(ANOVA, df=3, F=1.021, p> 0.4096; Tukey’s post-hoc, p> 0.05; Figure 2B, panel b1). The 

Bacillus spp. is a gram positive, spore producing, and facultative anaerobe or obligate aerobe of 

gut microbiota. Anti-microbial peptides from the Bacillus spp. have a probiotic activity against 

GALT maturation (Abriouel et al., 2011; Hamdache et al., 2011). Due to the known beneficial 

properties of Bacillus spp., we examined the effect of the high fat diets on changing their 

quantity in the gut.  There was no significant impact of Bacillus spp.  in the colon (ANOVA, 

df=3, F=2.587, p> 0.0832; Tukey’s post-hoc, p> 0.05; Figure 2A, panel a2) or in the ileum of 

high fat and low fat fed mice (ANOVA, df=3, F=2.293, p> 0.117; Tukey’s post-hoc, p> 0.05; 

Figure 2B, panel b2). The Lactobacillus spp. is gram positive and a facultative anaerobe, and has 

many beneficial probiotic properties (Foye et al., 2012; Ohashi et al., 2009), like improving the 
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mucosal barrier function (Hamer et al., 2008; Ivanov et al., 2009; Schlee et al., 2008). In our 

results, Lactobacillus spp. was found to be enriched in the colons of mice fed with corn + fish oil 

compared to the colons of mice fed with corn oil (ANOVA, df=3, F=6.095,**p< 0.0044; 

Tukey’s post-hoc, *p< 0.05; Figure 2A, panel a3 ), canola oil (ANOVA, df=3, F=6.095,**p< 

0.0044; Tukey’s post-hoc, *p< 0.05; Figure 2A, panel a3 ], and 5% corn oil (ANOVA, df=3, 

F=6.095,**p< 0.0044; Tukey’s post-hoc, *p< 0.05; Figure 2A, panel a3 ]. There was no 

significant change of Lactobacillus in the ileum. These results suggest that fish oil 

supplementation may modulates the populations of several important immune-modulating 

microbes by depleting TH17 inducing microbes known to promote colitis (SFB) and enriching 

protective microbes (Lactobacillus) in the colon. This suggests that fish oil supplementation may 

have an effect on the inflammatory status of the host through the microbes.  
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Figure 2: Immune-modulating Firmicutes are altered in the gut as a result of fish oil 

supplementation to corn oil diets fed to mice. 

A.SFB levels trend was higher in the colons of corn oil rich diet fed mice compared to corn + 

fish oil fed mice (panel a1) as well as compared to the colons of 5% corn oil fed mice (panel a1) 

There was no significant impact of Bacillus spp. high fat fed mice and low fat mice colon (panel 

a2). Mice fed with corn oil+ fish oil show higher levels of Lactobacillus spp. proportions [panel 

a3 (*p< 0.05)] when compared to corn oil, canola oil and 5% corn oil fed mice. B. SFB levels 

were not significantly higher in the ileum of mice fed with high fat diets rich and low fat diet 

(panel b1). Bacillus spp. levels trends similar like SFB and were not significant among high fat 

and low fat. For Lactobacillus species trend in the ileum is similar to colon but not significant 

(panel b2). Tukey’s multiple comparison test was performed to test the significance and each 

group had 5 to 6 mice. 
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3.3 High fat diets, regardless of type, decrease Bacteroides species   

Bacteroidetes species are the second dominating phylum of gut microbiota and in general 

are considered beneficial. These species are gram negative anaerobes and a reduction of 

Bacteroidetes species has been observed in IBD patients (Frank et al., 2007). All high fat diets 

(corn oil, corn oil + fish oil and canola oil) decreased the appearance of Bacteroides spp. in the 

gut. This was expected because high fat diets and conditions like obesity have been linked to 

reduction in this group of bacteria (Hildebrandt et al., 2009; Mozes et al., 2008). All of our mice 

were obese with the most significant weight gain in the n6 PUFA group (data not shown).  

Interestingly, trends of Bacteroides spp.  was the same in the ileum and in the colon. The colons 

of mice fed with all high fat show significantly low levels of Bacteroides spp. when compared to 

5% corn oil fed mice (ANOVA, df=3, F=22.79,***p< 0.0001; Tukey’s post-hoc ***p< 0.001;  

Figure 3A, panel a1], as well as in the ileum (ANOVA, df=3, F=15.53,**p< 0.0001; Tukey’s 

post-hoc ***p< 0.001; Figure 3B, panel b1]. In addition, Bacteroides fragilis, another species 

from the Bacteroidetes phylum associated with colon cancer (Sears, 2009; Sinkovics, 2012). Our 

microbiota results showed that Bacteroides fragilis were not significant impact of all high fat 

diets in the colon (ANOVA, df=3, F=0.4548, p> 0.07184; Tukey’s post-hoc, p> 0.05; Figure 3A, 

panel a2 and only detected in two mice of 5% corn oil group). In addition, in the ileum of all 

high fat fed mice shown similar trend of Bacteroides fragilis (ANOVA, df=3, F=0.7392, p> 

0.5450; Tukey’s post-hoc, p> 0.05; Figure 3B, panel b2) as same as  colon but in the 5% corn oil 

group, where none was amplified (ND= not detected). Therefore, while all high fat diets 

promoted the growth of this microbe, the composition of the fat had no effects. 
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Figure 3:  All high fat diets, regardless of type, decrease Bacteroides spp. in the gut.  

A.  Bacteroides spp. in the colons of mice fed an all 20 % high fat diet (corn oil, corn +fish oil, 

canola oil) were significantly lower when compared to the colons of mice fed 5% corn oil [panel 

a1 (***p < 0.001)]. Similarly, Bacteroides fragilis were not significant impact in the ileum of all 

high 20% fat diet fed mice but this species was only detected in two mice of the 5% corn oil 

group [panel a2] B. Similar to the colon, the ileum of mice fed an all 20% high fat diet (corn oil, 

corn +fish oil, canola oil) were significantly lower the Bacteroides spp. compared to 5% corn oil 

[panel b1 (*** p < 0.001)] fed mice. In addition, differences in Bacteroides fragilis were 

observed in mice fed high fat diet group, compared to mice fed a 5% corn oil diet [panel b2]. 

Tukey’s multiple comparison test was performed to test the significance and each group had 5 to 

6 mice. ND = not detected. 
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3.4 Dietary corn oil increases Enterobacteriaceae and fish oil reverses this trend 

 

Most of the gram negative pathogenic bacteria belong to the Enterobacteriaceae family 

(Zheng et al., 2008). This species is found in elevated levels in mucosa lesions of GI 

inflammatory disease (Lupp et al., 2007; Seksik et al., 2003). Therefore, we investigated the 

Enterobacteriaceae in our microbiota analysis and showed that corn oil (rich in n6 PUFA) fed 

mice colons had significantly higher levels of this bacteria compared to  corn + fish oil fed mice  

(ANOVA, df=3, F=5.028,**p< 0.0105; Tukey’s post-hoc,*p< 0.05; Figure 4A] and compared to 

5% corn oil fed group (ANOVA, df=3, F=5.028,**p< 0.0105; Tukey’s post-hoc,*p< 0.05; 

Figure 4A]. The addition of fish oil to the corn oil diet reverses this effect. However, 

Enterobacteriaceae was not abundant in the ileum of all high fat as well as 5% corn oil fed mice 

(Figure 4B). Our microbiota analysis shows that dietary corn oil (n6 PUFA) enriches 

Enterobacteriaceae in the colon.   

 

 

 

 

 

 

 

 

 

 

 



 37 

 

   

Figure 4: Dietary corn oil increases Enterobacteriaceae in the colon. 

Elevated levels of Enterobacteriaceae were observed in the colon of rich corn oil diet fed mice 

when compared to corn + fish oil fed mice (*p<0.05; panel A), as well as mice fed with 5% corn 

oil (*p< 0.05; panel A). All high fat diets and low fat diets did not alter the Enterobacteriaceae in 

the ileum (panel B). Tukey’s multiple comparison test was performed to test the significance and 

each group had 5 to 6 mice. 
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3.5 All high fat rich diets fed to mice enriches beneficial Bifidobacterium species 

in the gut 
 

The Bifidobacterium species is a gram positive anaerobe. There is overwhelming 

evidence in literature that Bifidobacterium is beneficial (Ivanov et al., 2006; Jeon et al., 2012; 

Philippe et al., 2011; Veiga et al., 2010). Hence, we have examined the Bifidobacterium species 

in our microbiota analysis and we observed that high levels of this species were found in the 

colon (ANOVA, df=3, F=2.771, p< 0.0715; Tukey’s post-hoc, p> 0.05; Figure 5A) as well as in 

the ileum of high fat fed mice compared to low fat fed mice (ANOVA, df=3, F=3.9058,*p< 

0.0461; Tukey’s post-hoc, p> 0.05; Figure 5B). Interestingly, this species was not detected in any 

of the mice in the 5% corn oil group (ND = not detected). 
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Figure 5: All high fat diets enriches the beneficial Bifidobacterium spp. in the gut. 

 All high fat (20% of corn oil,  corn  + fish oil and canola oil) fed mice showed higher level of 

Bifidobacterium spp. in the colons (panel A) as well as in the ileum (panel B) when compared to 

the colon, the ileum of 5% corn oil  fed mice. This species was not detected in 5% corn oil fed 

mice. Tukey’s multiple comparison test was performed to test the significance and each group 

had 5 to 6 mice. ND = not detected.  
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3.6 High fat diets do not significantly alter the levels of Enterococcus species in 

the gut 
 

We analyzed Enterococcus faecium and Enterococcus faecalis of Enterococcus species 

are opportunistic pathogens, and associated with a variety of human infections (Jett et al., 1994). 

Our microbiota analysis of Enterococcus faecium (ANOVA, df=3, F=1.991, p> 0.1495; Tukey’s 

post-hoc, p> 0.05; Figure 6A, panel a1)  and Enterococcus faecalis (ANOVA, df=3, F=1.108, p> 

0.3705; Tukey’s post-hoc, p> 0.05; Figure 6A, panel a2) were not significant impact in the colon 

as well as in the ileum of all high fat fed mice (Enterococcus faecium-ANOVA, df=3, F=0.4073, 

p> 0.7498; Tukey’s post-hoc, p> 0.05; Enterococcus faecalis- ANOVA, df=3, F=0.5703, p> 

0.6426; Tukey’s post-hoc, p> 0.05: Figure 6B, panel b1 & b2). Interestingly, Enterococcus 

faecalis levels are shown to be similar across the colons of all high fat fed mice (Figure 6A, 

panel a2). Thus, all high fat diets (corn oil, corn + fish oil, and canola oil) and their composition 

are not a major influence on Enterococcus species in the gut. 
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Figure 6: High fat diets have no impact on the Enterococcus species in the gut. 

A. Colons of all 20% high fat diet (corn oil, corn + fish oil and canola oil) fed mice show no 

significant changes of Enterococcus faecium and Enterococcus faecalis. B. No significant 

changes of Enterococcus species were observed in the ileum of mice fed with 20% high fat diets 

(corn oil, corn + fish oil and canola oil). Tukey’s multiple comparison test was performed to test 

the significance and each group had 5 to 6 mice. 
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3.7 Dietary fish oil normalize the macrophages similar to low fat in the colon 
 

We decided to focus on the host inflammation responses in the colon because our lab 

research is mainly focusing on IBD. We using a mouse model of colitis which induces 

inflammation and oxidative stress in the colons of mice when they are infected with the bacterial 

pathogen, C. rodentium. Additionally, we examined the redox status in the colon part of the GI 

tract because colon is abundant in anaerobic microbial populations. 

Macrophages and neutrophils are first line immune cells and the study of their presence 

in the submucosa and lamina propria of the colon may reveal the immune status of the gut. Our 

immunofluorescence results suggested that dietary corn oil reduced levels of tissue resident 

macrophages in the colon while fish oil supplementation can normalize this effect similar to 

normal chow (ANOVA, df=3, F=4.342, *p< 0.0341; Tukey’s post-hoc, *p< 0.05; Figure 7, 

A&B). In contrast, while corn and canola oil diets did not alter neutrophil recruitment, compared 

to the normal chow group, but fish oil supplementation appears to have reduced level of 

neutrophil infiltration into the colon but not statistically significant (ANOVA, df=3, F=2.027, p> 

0.1483; Tukey’s post-hoc, p> 0.05; Figure 8, A&B). Our results suggested that dietary fish oil 

supplementation into corn oil normalize the tissue resident macrophages similar to 5% corn oil 

but corn oil alone reversed this effect.  
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Figure 7: Dietary fish oil normalizes the macrophages similar to 5% corn oil in the colon. 

All high fat diets lowered the level of macrophages in the colon compared to 5% corn oil. A rich 

in corn oil fed mice colon macrophages were substantially less in number compared to corn + 

fish oil (*p<0.05) which had similar level of macrophages compared to 5% corn oil. Panel A, 

Macrophage counts were made by counting F4/80 positive cells in the submucosa and lamina 

propria regions of the colon for each tissue section and Panel B, Represents immunofluorescence 

images of respective diets group. Positively stained macrophages cells were counted manually at 

400X time magnification under the microsecope, on entire region of each colon tissue section of 

each mouse (each group had 5 to 6 mice) and then averaged the cells count values of each mouse 

were used to make the graphs. Tukey’s multiple comparison test was performed to test the 

significance.  

 

 

 

Figure 8:  Corn, canola and 5% corn oil recruit similar level of neutrophils in the colon. 

Colon of mice fed with fish oil added to corn oil diet appear to have reduced the number of 

neutrophils compared to diet rich in corn oil and canola oil fed mice colon which had similar 

levels of netrophils as in 5% corn oil fed mice (panel A), Neutrophils counts were made by 

counting MPO positive cells in the submucosal region of the colon for each tissue section and 

Panel B, Represents immunofluorescence images of respective diets group. Positively stained 

macrophages cells were counted manually on 5-7 region of each colon tissue section of each 

mouse (each group had 5 to 6 mice) and then averaged the cells numbers of each section. These 

averaged values of each mouse were used to make the graphs. 
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3.8 All high fat diets induce epithelial cell death 

Measurements of mucosal cell death may demonstrate the influence of high fat diets in 

mucosal homeostasis in two distinctive aspects, such as epithelial integrity and oxidative stress. 

We measured cell death in the crypts region of the colon (Gibson et al., 2008) by using Terminal 

deoxynucleotidyl transferase dUTP nick end labeling assay TUNEL staining and our results 

revealed that  all high fat diets significantly induced epithelial cell death compared to 5% corn oil 

(ANOVA, df=3, F=9.071, **p< 0.0014; corn oil, corn + fish oil vs. 5% corn oil, *p< 0.05-

tukey’s post-hoc; Figure 9) and canola oil vs 5% corn oil, tukey’s post-hoc *p<0.05; Figure 9). 

Therefore, each high fat diet (corn oil, corn + fish oil and canola oil) induced apoptosis in the 

epithelium.  

 

 

Figure 9: All high fats induce epithelial cell death of the colon epithelium. 

Colon of all 20 % high fat diets fed mice (corn oil, corn + fish oil, and canola oil) substantially 

induced epithelial cell death compared to the 5% corn oil fed mice (corn oil, corn + fish oil vs. 

5% corn oil,*p<0.05; canola oil vs. 5% corn oil, *p<0.05). Positively stained apoptotic cells were 

counted manually in 10 intact crypts of each mouse tissue section (each group had 5 to 6 mice) 

and then averaged the positive cells number values of each mouse were used to make the graphs 

(Gibson et al., 2008). Tukey’s multiple comparison test was performed to test the significance. 
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3.9 Supplementation with fish oil to corn oil rich diets increases HNE production, 

as an oxidative stress marker 
 

HNE is the lipid oxidation product of n6 PUFA (Long et al., 2010). We examined this 

because HNE is an oxidative marker and our high fat diets were composed of varied proportions 

of n6 PUFA and n3 PUFA (Table 1). HNE adducts react with proteins and peptides to produce a 

stable compound. Measuring stable oxidized adducts is the best method to determine an 

oxidative status in tissues (Long et al., 2010; Spickett et al., 2010). Higher proportions of n3 

PUFA were present in two diet groups; canola oil and corn + fish oil diet has 1.5 % wt/wt, 0.57 

% wt/wt of n3 PUFAs respectively (Table 1). Using immunofluorescence we analyzed the entire 

region of each colon tissue section of each mouse (each group had 5 to 6 mice) and found that 

the canola oil and fish oil fed groups produced high levels of HNE in the sub mucosa region 

whereas corn oil and 5% corn oil had lower levels of HNE staining (Figure 10). This suggests 

that n3 PUFA increases oxidative responses in the colon. 

 

3.10 Supplementation with fish oil to corn oil rich diets increases dual NADPH 

oxidase in the blood vessels in the submucosa  
 

Dual NADPH oxidase is involved in generation of H2O2 (Rada et al., 2008; Rokutan et 

al., 2008), this enzyme staining was qualitatively observed with immunofluorescence technique 

in the entire region of each colon tissue section of each mouse (each group had 5 to 6 mice). In 

our results, fish oil added to corn oil showed the highest levels of DUOX2 expression in blood 

vessel present in the submocosa compared to (Figure 11) corn oil, canola oil and 5% corn oil fed 

mice colons which have lower level staining of DUOX2 in the sub mucosa regions. This 

suggests that fish oil may have the role of increase H2O2 synthesis through NADPH oxidase 

activity. Thus n3 PUFA increases oxidative responses in the colon. 
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3.11 Supplementation of fish oil to corn oil rich diets reduces catalase expression 

in the colon  
 

Catalase is an enzyme involved in the conversion of harmful H2O2 into water (Gaetani et 

al., 1996; Mueller et al., 1997). This enzyme expression was measured with immunofluorescence 

staining in the colon and we found decreased level of staining in the two diet groups that have n3 

PUFA; canola oil and corn + fish oil diet has 1.5 % wt/wt, 0.57 % wt/wt of n3 PUFAs 

respectively (Table 1). we observed qualitatively in the entire colon tissue section of each mouse 

(each group had 5 to 6 mice) and found that the fish oil added to corn oil and canola oil diet 

resulted in the lowest levels of catalase immunostaining in the muscularis mucosa and circular 

muscle of the colon (Figure 12). High levels of positive catalase staining were observed in the 

colons of mice fed with rich corn oil diets and 5% corn oil.  This suggests that diets rich in n3 

PUFA (corn + fish oil) diminish the expression level of the enzyme catalase and decreases 

responses that protect against oxidative responses in the colon. 

 

3.12 Expression of an antioxidant glutathione peroxidase (GPX2) in the epithelium 

was unaffected by the diet 

 

GPX2 is an antioxidant enzyme involved in the conversion of harmful H2O2 into water as 

well as scavenging free radicals (Chu et al., 1995; Toppo et al., 2009) . This enzyme is unique to 

the GI tract, where it has been reported to be highly expressed in the epithelium of the small 

intestine (Chu et al., 1995).  In our results, we found no differences in the colon of mice fed the 

high fat diet and 5% corn oil (Figure 13). This suggests that diets rich in n3 PUFA or n6 PUFA 

do not alter the expression level of the GPX2 enzyme in the GI tracts. 
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Figure 10: Canola oil and fish oil increase the generation of HNE in muscularis mucosa of 

the colon. Our HNE immunofluorescence results showed fish oil added in to corn oil (2
nd

 row) 

and canola oil (3
rd

 row) fed mice produced a high level of HNE in muscularis mucosa as well as 

in submucosa regions of the colon compared to corn oil (1
st
 row). In addition, 5% corn oil mice 

showed low levels of HNE compared to all high PUFAs (4
th

 row). We observed qualitatively 

HNE expression in the entire colon tissues section of each mouse (each group had 5 to 6 mice). 

Above immunofluorescence images in each row illustrates typical staining patterns in each 

treatment group. All above pictures were taken at 200x magnification.  
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Figure 11: Fish oil increases DUOX2 enzyme expression which has the ability to increase 

the generation of hydrogen peroxides in vessels present in submucosa of the colon.  

Our DUOX2 immunofluorescence result shows corn + fish oil (2
nd

 row) fed mice have generated 

high levels of DUOX2 in blood vessels present in the submucosa of the colon. Mice fed with 

corn oil (1
st
 row), canola oil (3

rd
 row) and 5% corn oil (4

th
 row) have expressed low or less of 

DUOX2 in the blood vessels in the sub mucosa region of the colon. We have observed manually 

DUOX2 expression in entire colon tissue sections of each mouse (each group had 5 to 6 mice). 

Above immunofluorescence images in each row represent respective diets groups. All above 

pictures were taken at 200x magnification.  
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Figure 12: Fish oil minimizes the catalase expression in the colon.  

Catalase immunofluorescence results in colon tissues suggest, fish oil added to corn oil shows 

low levels of catalase expression in the muscularis mucosa and circular muscle layer (2
nd

 row); 

high levels of expression were observed in corn oil (1
st
 row), 5% corn oil (4

th
 row) and in canola 

oil (3
rd

 row); relatively low levels of catalase activity were noticed compared to corn oil and 5% 

corn oil. We have observed manually catalase expression in entire colon tissue sections of each 

mouse (each group had 5 to 6 mice). Above immunofluorescence images in each row represent 

respective diets groups. All above pictures were taken at 200x magnification. 
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Figure 13: Regardless of type of fats, no changes in the expression of GPX2 in epithelium of 

the colon. Immunofluorescence of GPX2 of colon tissues shows there is no different in the 

expression of GPX2 in the colon epithelial cells [corn oil (1
st
 row), corn oil+ fish oil (2

nd
 row), 

20% canola oil (3
rd

 row), and 5% corn oil (4
th

 row)]. We have observed manually GPX2 

expression in entire colon tissue sections of each mouse (each group had 5 to 6 mice). Above 

immunofluorescence images in each row represent respective diet groups. All above pictures 

were taken at 600x magnification.  
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3.13  Summary of results 

Our study demonstrated that fish oil (n3 PUFA) added into corn oil (n6 PUFA) enhanced 

the presence of beneficial microbes Lactobacillus spp. It also reduced harmful pathobionts such 

as Enterobacteriaceae, Clostridium coccoides gp., and Clostridia spp. which was found in 

elevated levels in rich corn oil fed mice. We unexpectedly found that fish oil induced higher 

oxidative stress in the colon as evidenced by increased HNE and DUOX2 immunofluorescence 

staining and by reduced levels of catalase staining.  
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4    Chapter:  Discussion 

This is the first study to observe that the gut microbiota changes in response to dietary 

PUFAs. In our study we found that rich in corn oil diets (n6 PUFA) enrich the opportunistic 

pathogens such as Enterobacteriaceae, Clostridium coccoides gp, and Clostridia spp. in the GI 

tract. Meanwhile fish oil supplemented to corn oil reverses these patterns and also enriches 

beneficial microbe Lactobacillus. All high fat diets, regardless of the compositions, reduce the 

Bacteroides species and induce epithelial cell death. Dietary corn oil reduces the level of tissue- 

resident macrophages, and fish oil addition normalizes these levels similar to the normal chow 

group. Fish oil supplemented diets appear to reduced neutrophil infiltration. Finally, fish oil 

supplementations unexpectedly induce oxidative-stress, as shown by increased 4-HNE 

expression, dual oxidase 2 (DUOX2) NADPH oxidase expression and decreased catalase 

expression. Overall, our results suggest that there are differential effects of n6 and n3 PUFAs on 

the intestinal microbial ecology, where n6 PUFA enriches detrimental microbes and n3 PUFA 

enrich beneficial microbes. While we have specifically addressed how these microbial 

differences alter the host directly, we did find that there were also differential effects of n6 and 

n3 PUFAs on the host whereby n3 PUFA seems to induce oxidative stress in the colon.  

The gut microbiota of Clostridium clusters IV and XIVa of Firmicutes promote 

production of short chain fatty acids in the colon (Louis et al., 2009; Louis et al., 2007). 

Especially butyrate is known to be essential for colon epithelial cells. It has been shown that 

butyrate may have anti-carcinogenic, anti-inflammatory properties (Hamer et al., 2008). In 

contrast, in rats, butyrate promotes hypersensitivity (Bourdu et al., 2005) and most of species of 

Clostridium cluster XIVa (phylum Firmicutes) are opportunistic pathogens or pathobionts 

(Lozupone et al., 2012). Bacteria such as Clostridium coccoides gp, Clostridia spp. and 
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Eubacterium rectale belong to Clostridium cluster XIVa of Firmicutes. These species are 

associated with pathogenesis of IBD (Duck et al., 2007) and IBS (Jeffery et al., 2011; Schoepfer 

et al., 2008). Similarly, Clostridium difficile, C. perfringens, C.tentani, C. bolteae and C. 

symbiosum are associated with systemic infection (Decousser et al., 2007). In addition, 

C.clostridioforme and C. hathewayi are involved in bacteremia and wound infection (Elsayed et 

al, 2004; Finegold et al., 2005). Furthermore, small intestine and mesenteric lymph nodes of IBD 

patients reportedly have subset species of Clostridium cluster XIVa. In addition, C. bolteae and 

C. symbiosum cause systemic infection through invading the gut mucosa (Decousser et al., 2007; 

Elsayed et al., 2004). We observed that Clostridium coccoides gp. and Clostridia spp. were 

enriched in the ileum of mice fed diets rich in corn oil (n6 PUFA), whereas fish oil supplemented 

with corn oil reduce the presence of each of these species. In the colon, we observed no 

significant changes in Clostridium coccoides gp. and Eubacterium rectale but the trend for 

Clostridia spp.  was the same as in the ileum. Furthermore, we observed that canola oil has no 

significant role in the appearance of Clostridium coccoides gp., Clostridia spp. and Eubacterium 

rectale species in the gut. Another interesting observation of our study is that corn oil increases 

the Enterobacteriaceae in the colon. Surprisingly, the addition of fish oil into corn oil reverses 

the Enterobacteriaceae trend. Most pathogenic bacteria belong to the Enterobacteriaceae family. 

Bacterial cell walls, lipopolysaccharide (LPS), and peptidoglycan of pathogens are recognized by 

the pattern recognition receptors (PRRs) of the immune system in order to maintain the immune 

homeostasis in infection conditions. Furthermore, increased Enterobacteriaceae species have 

been observed during IBD, clinically and experimentally (Gophna et al., 2006; Lupp et al., 2007; 

Tjonneland et al., 2009). In addition, pathogenic microbes of Enterobacteriaceae such as 

Salmonella spp., Sheigella spp. and E.coli, cause enteric infection. Presence of endotoxin 
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systemic circulation is called endotoxemia and is commonly caused by gram negative bacteria of 

the Enterobacteriaceae (Hurley, 2009). These bacterial LPS bind to epithelial cells and activate 

NF-κ B resulting in production of pro-inflammatory cytokines and infiltration of macrophages 

and neutrophils in the infected area (Ogawa et al., 2008; Stecher et al., 2012). Interestingly, 

dietary corn oil (rich in n6 PUFA) is associated with an increased incidence of IBD (Tjonneland 

et al., 2009). We observed a high level of Enterobacteriaceae in the mice fed corn oil. Overall, 

corn oil diets are associated with increased pathobiont bacteria, which suggest that this diet may 

be associated with an increased risk to intestinal disease.  In contrast, fish oil can reverse the 

presence of pathobionts.  

SFB species is involved in Th17 immune responses associated with a mucosal surface. It 

has been shown that Th17 cells can be induced in the small intestines of germ free mice which 

have been colonized with SFB (Ivanov et al., 2009) or gram negative bacteria such as C. 

rodentium and Kebsiella pneumoniea (Happel et al., 2005). Others have shown that SFB protects 

against pathogens like C. rodentium by induction of Th17, IL-22 and epithelial production of 

bactericidal protein (Ivanov et al., 2009; Zheng et al., 2008). In addition, SFB induces MHC II 

molecules in the intestinal epithelium and selectively induces CD4
+
 T cells that produce IL-22 

and IL-17 (Ivanov et al., 2009; Umesaki et al., 1999). In our results, corn oil tends to increases 

the SFB species and addition of fish oil brought this species levels back to normal when 

compared to 5% corn oil (normal chow). Our SFB results provide evidence that corn oil 

promotes SFB in the gut, which could increase pathogenic immune responses in the gut in the 

context of IBD. However, this could also leave the colon more resistant to infection by 

pathogens like C. rodentium. Our lab is currently pursuing the effects of these microbial changes. 
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In this study, fish oil supplementation enriches beneficial Lactobacillus species in the gut. 

Interestingly, our Lactobacillus result resemble those of other studies which show an increase in 

species of Lactobacillus with n3 PUFA consumption and a decrease with n6 PUFA consumption 

(Pachikian et al., 2011; Ringo et al., 1998). This is important because Lactobacillus spp.  are 

known to improve mucosal barrier function (Hamer et al., 2008; Ivanov et al., 2009; Schlee et 

al., 2008). For example, the human β-defensin 2 (hBD2) anti-microbial peptide is induced by 

Lactobacillus species such as Lactobacillus acidophilus PZ1138, L. fermentum, and L paracasei 

subsp. paracasei (Schlee et al., 2008). In addition, L. plantrum, L. delburki and L. acidophilus 

induce mucin secretions in the murine colonic epitheliaum (Caballero-Franco et al., 2007). 

Furthermore, these species modulates cytokine production, dendritic cells maturation, and also 

important for T cell maturation (Christensen et al., 2002). Bifidobacterium species also have well 

known beneficial properties. A reduced level of these species is observed in IBD, IBS, and other 

autoimmune diseases (Collado et al., 2007; Collado et al., 2009; Sokol et al., 2009). In addition, 

an extra-cellular protein, secreted by Bifidobacterium, promotes the GALT and mucosal barrier 

functions. Strains such as Bifidobacterium longum subsp. longum NCC2705, Bifidobacterium 

breve, Bifidobacterium dentium, and Bifidobacterium longum subsp. infantis produce serpin, an 

extra cellular protein which inhibits neutrophils and pancreatic elastase (Ivanov et al., 2006). 

Uncharacterized protein from probiotic cocktail of Bifidobacterium enhances epithelial tight 

junction proteins in order to maintain the barrier functions (Ewaschuk et al., 2008). Furthermore, 

Bifidobacterium play a role in the immune system development by producing extra cellular 

metabolites such as serpin which reduces the infiltration of neutrophils during conditions of 

inflammation, they also produce conjugated linoleic acid which activates peroxisome proliferator 

activated receptor (PPARs) (Benjamin et al., 2009; Coakley et al., 2003; Ewaschuk et al., 2008;  
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Ivanov et al., 2006; Marques et al., 2010). Administration of Bifidobacterium species, which 

induces IL-10, in animal colitis models, results in a reduction of inflammation (Jeon et al., 2012), 

epithelial damage, and pro-inflammatory markers (Philippe et al., 2011), shaping the colitogenic 

microbes which have ability to induces colitis (Veiga et al., 2010). In our results, all high fat 

diets enriched with beneficial Bifidobacteria compared to low fat (5%corn oil). An enrichment of 

beneficial microbes (Lactobacillus and Bifidobacterium) in fish oil supplemented to corn oil was 

associated with the reduction of inflammation may evident by the decreased level of infiltrated 

neutrophils. Neutrophils are one of the first inflammatory cell types to respond to inflammation.  

In our study, fish oil + corn oil group had significantly increase macrophages similar to 

normal chow and corn oil group had lower macrophages compared to normal chow or fish+ corn 

oil group. In addition, a rich corn oil diet reduces the spleen lymphocyte function in rats 

(Kollmorgen et al., 1979). Diets rich in n6 PUFAs alter the membrane structure and signal of the 

immune cells in order to recruit low levels of macrophages in the colon (Calder, 2009; Stulnig et 

al., 2001). Macrophages subset M1 and M2 are important in tissues repair and injury. M1 

(classically activated) are pro-inflammatory and M2 (alternatively activated) are anti-

inflammatory (Kigerl et al., 2009). The ratio of M1/M2 has a vital role in cell repair and injury. 

Since there are pro-inflammatory and anti-inflammatory macrophages it is possible that the 

protective macrophages have been depleted in the corn oil group. The fish oil supplemented 

group had levels of macrophages similar to normal chow. It could be possible that fish oil 

increases anti-inflammatory macrophages. More work is required to determine if the M1 or M2 

macrophage ratio was altered in the diet groups. CD86 (M1 macrophages) is expressed primarily 

on dendritic cells, resting monocytes and macrophages cells whereas CD206 (M2 macrophages) 

is a specific antibody also known as macrophages mannose receptor (MMR), which is expressed 
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during infection and inflammation conditions. Therefore, specific immunofluorescence staining 

with CD86 and CD206 will reveal the ratio of M1 and M2 macrophages.  

The epithelial cell integrity mainly depends on cell death and cell regeneration in order to 

maintain mucosal homeostasis (Wong et al., 1999). Any defects in the GI epithelial cell 

generation leads to reduction in absorption, known as mucosal atrophy and higher new cell 

generation leads to in hyper secretion, known as hyperplasia which increases the risk of cancer 

(Rao et al., 2010). In addition, cell death is also considered as a marker for oxidative stress 

because highly generated free radicals attacking DNA resulted in DNA fragmentation (Rao et al., 

2010; Timmons et al., 2012).  In the present study, fish oil added to corn oil diet reduced the 

death of colon epithelial cells after C.rodentium infection (data not shown), reduced the intestinal 

crypt length (data not shown), and reduced the neutrophils and increases macrophage in the 

colon. Reduced level of epithelial cell death in fish oil fed mice suggests that fish oil alters 

epithelial cell generation during the course of infection and mechanism behind this alteration is 

not well understood. More studies are needed to establish the roles of fish oil on gut homeostasis.  

Unexpectedly, we found that fish oil supplementation increases the oxidative status in the 

colon of the GI tract.  In the context of oxidative stress, HNE is a reactive lipid peroxide product 

that adducts and affects the transduction signal and possesses a mutagenic property (Burcham, 

1998). This product is generated by free radicals degrade the membrane components such as n6 

PUFA and arachidonic acid which are the fatty acid component of the cell membrane (Burcham, 

1998; Esterbauer et al., 1990). In our study, n3 PUFA was found in fish oil, canola oil and corn 

oil. Fish oil contains arachidonic acid, EPA and DHA, which may compete with n6 PUFA for 

the ∆ desaturase enzyme to incorporate into the cell membrane. This incorporation led to higher 

HNE generation in the muscularis mucosa and submucosa of the colon. 
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Dual oxidase 2 (DUOX2) is NADPH oxidase protein which involves in generation of 

H2O2 as a maker for oxidative and inflammation conditions. H2O2 generation via dual oxidase 

(DUOX2) was noticed in the submucosa of the colons of mice fed with fish oil. This oxidase 

plays a role in killing microbes during infection. Lacking this enzyme is associated with more 

susceptibility to infection (Rada et al., 2008; Rokutan et al., 2008). Higher levels of H2O2 

production may be due to a higher level generation of free radicals which is presumably involved 

in the production of H2O2 in the submucosa of the colon. In contrast, catalase is a peroxisome-

specific marker protein of the catalase family which converts H2O2 to H2O in oxidative and 

inflammation conditions. Catalase activity is important to decompose harmful H2O2 and water 

(Gaetani et al., 1996; Mueller et al., 1997). This enzyme expression at low levels was observed 

in the submucosa of the colon of mice fed with fish oil. Therefore, these observations suggest 

that fish oil enhances the production of HNE lipid peroxides production and increases H2O2 

generation while lowering catalase antioxidant activity. Meanwhile, GPX2 is a homolog of 

selenium-containing antioxidant enzyme of glutathione family. This enzyme prevents the lipid 

per-oxidation of cell membrane, and reduces lipid hydroperoxides into alcohols, and reduces 

H2O2 to H2O. The GPX and glutathione synthesis pathway has not been observed in obligate 

anaerobes such as Bifidobacterium, and catalase enzymes are present in aerobes and in 

facultative anaerobes but not in obligate anaerobes (Brioukhanov et al., 2004). In our experiment 

we have not seen any differences in the expression of GPX2 due to diet. Furthermore, Lactic acid 

bacteria (LAB) are sensitive to reactive oxygen species and lack the superoxide dismutase and 

catalase genes. But co-expression of these genes, from other species such as sod A from 

Streptococcus thermophiles and kat A from L. sakei,  enhances the oxidative resistance of 

Lactobacillus rhamnosus (An et al., 2011). This collective evidence possibly suggests that 
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beneficial microbe Lactobacillus spp. alters gene expression system in the host’s oxidative 

environment in order to survive in the GI tract. Another assumption is that these species can 

share their anti-oxidant genes in order to survive in the altered oxidative environment of the GI 

tract. Although not determined here, either the host’s altered redox status favored the growth of 

oxygen-tolerant microbes Lactobacillus spp.  or that the change in the microbes actually altered 

the host’s oxidative responses.  Overall, a fish oil (rich in n3 PUFA) supplemented diet with corn 

oil (rich in n6 PUFA) modulates oxidative responses of the gut but the specific contributions of 

the microbes involved were not determined here. 

We also examined Bacteroides spp., which has been associated with consumption of 

carbohydrates (polysaccharides). In addition, high fat diets associated with obesity and reduced 

levels of Bacteroides species were observed in obesity animal models (Mozes et al., 2008; 

Murphy et al., 2010) as well as in obese people (Ley et al., 2006). We obsreved Bacteroides spp. 

levels were lowered in the ileum and in the colon of mice fed all high fat diets (corn oil, corn + 

fish oil and canola oil). This observation is supported by a study showed that a fish oil (n3 

PUFA) diet has an inhibitory effect on the Bacteroides spp. in mice (Conlon et al., 2009; 

Thompson et al., 1995). However, low fat diets (5% corn oil) favor the growth of Bacteroides 

spp. compared to all high fat diets (corn oil, corn + fish oil and canola oil). Our previous study 

demonstrated that fecal transfer from disease resistant mice to disease susceptible mice alters the 

colonic pathology and immune status of disease susceptible mice with high level of Bacteroides 

spp. (Ghosh et al., 2011).Therefore, lower levels of Bacteroides spp. in the high fat fed mice 

suggest that may lack in  resistant against disease.  A specific species we examined from the 

Bacteroidetes phylum was Bacteroides fragilis. This species has enterotoxigenic properties and 

is associated with colon cancer (Sinkovics, 2012). In contrast, this species has been shown to 
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induce IL-10 and synthesis of polysaccharide A (PSA) which is an immune-modulator 

(Mazmanian et al., 2005). In our study, no differences in Bacteroides fragilis were observed in 

colon of mice fed all high fat diet and low fat. Furthermore, Bacteroides fragilis were not 

significant in the ileum of all high 20% fat diet fed mice but this species was only detected in 

two mice of the 5% corn oil group. In addition,  Enterococcus species are opportunistic and 

nosocomial pathogens (Jett et al., 1994) they generate superoxides in vitro (Huycke et al., 2001) 

and produce hydroxyl ions when incubated with the colonic content of rats (Huycke et al., 2002). 

Enterococcus faecium was highely observed in patients with GI inflammatory disease (Kang et 

al., 2010). We observed that Enterococcus species were not affected by the content of high fat 

diets (corn oil, corn + fish oil, and canola oil). Thus, we conclude that high fat PUFA diets have 

no impact on the colonization of these two Entrococcus species in the gut. 

Overall, our study demonstrates that high fat diets have an impact on intestinal gut 

microbiota. We observed that corn oil (n6 PUFA) increases pathobionts and that fish oil 

supplementation reverses this tendency and can enrich beneficial microbes. These microbial 

changes potentially affect host responses, including immune cell infiltration, where corn oil 

reduces macrophages and, again, fish oil supplementation reverses this effect.  Finally, fish oil 

supplementation induces oxidative stress but more studies are required to determine the 

mechanism and significance behind this observation.  
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5   Chapter:   Conclusion, significance and future 

5.1  Conclusion 

Dietary corn oil increases the opportunistic pathogens (Enterobacteriaceae and 

Clostridium cluster) whereas fish oil supplementation of corn oil reduces theses species and 

increases beneficial bacteria (Lactobacillus) which corresponds to alter in their gene expression 

against higher levels of oxidative status in the gut. Canola oil alters the GI microbiota similar to 

the corn oil group. Furthermore, HNE expression in the canola oil group were observed to be 

similar to those of the fish oil supplemented group but different from those of the corn oil group.  

 

5.3  Significance of finding 

Dietary n6 and n3 PUFA differentially affect the intestinal microbes and associated host 

responses. Diets high in PUFAs (n6 and n3) are prevalent in the Western world; additionally, 

fish oil pills are commonly consumed and many foods are supplemented with fish oil (DHA & 

EPA of n3 PUFA). Therefore, the composition and proportion of dietary PUFAs in Western diets 

alters the GI tract homeostasis.  

  

5.2  Future directions 

Ex vivo and in vitro study of isolated immune cells (macrophages and neutrophils) from 

different regions (spleen, bone marrow and blood) from these high fat diets fed mice will reveal 

mechanisms of n3 and n6 PUFAs effects on immune function. Also, studying different cell 

expression molecules (cytokines) and membrane stability will give us more through 

understanding of dietary oils in promoting host health. 
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Appendices 

Appendix A  : Basal mix compositions 

Formula Corn oil Corn +  fish oil Canola oil 

Casein 240 240 240 

DL-Methionine 3.6 3.6 3.6 

Corn starch 150 150 150 

Sucrose 298.8 298.8 298.8 

Cellulose 50 50 50 

Calcium carbonate 3.6 3.6 3.6 

Mineral Mix
1
 42 42 42 

Vitamin Mix 
2
 12 12 12 

Formula per Kg of all PUFAs high fat diets in gm, Mineral Mix
1 

- AIN-76 (170915),  

Vitamin Mix 
2
- Teklad (40060). 

 

Appendix B  : Macronutrient compostions 

Macro nutrient Corn oil 

 (gm % wt/wt) 

Corn + fish oil 

(gm % wt/wt) 

Canola oil 

(gm % wt/wt) 

5%  Corn oil 

(gm % wt/wt) 

Protein 21.2 21.2 21.2 22.6 

Carbohydrate 44.4 44.4 44.4 51.6 

Fat 20.0 20.0 20.0 5.2 

Total Energy 4.53 Kcal/gm 4.53 Kcal/gm 4.53 Kcal/gm 3.41 Kcal/gm 

Detailed macro nutrient composition and total energy per gm of diet according to manufacturer 

Harlan Teklad Basal Mix, TD.88232, USA.  
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Appendix C: Importance of bacteria selection 

 Bacterial Primer Reason to choice References 

1 Bacillus spp. Beneficial properties as a 

probiotic 

(Abriouel et al., 2011; Hamdache et al., 

2011) 

2 Lactobacillus spp. Immune modulators and 

beneficial properties as a  

probiotic 

(Foye et al., 2012; Ohashi et al., 2009) 

3 Enterococcus faecium Elevated level found inh IBD (Kang et al., 2010). 

4 Enterococcus faecalis Involved in generation of super-

oxides and associated with colon 

cancer  

(Huycke et al., 2001; Huycke et al., 

1996; Huycke et al., 2002) 

5 Clostridium coccoides 

gp. 

High in IBS patients and 

associated with IBD  

(Lozupone et al., 2012; Duck et al., 

2007; Jeffery et al., 2011; Schoepfer et 

al., 2008)   

6 Eubacterium rectale Butyrate producing bacteria  (Duncan et al., 2007; Hamer et al., 2008; 

Louis et al., 2009) 

7 Clostridia spp. associated with IBD (Jeffery et al., 2011; Schoepfer et al., 

2008) 

8 SFB Immune modulator,Th17 cells 

maturation  

(Ivanov et al., 2008; Umesaki et al., 

1999) 

9 Bacteroides spp. Reduced level associated with 

high fat diets and obesity 

(Hildebrandt et al., 2009; Mozes et al., 

2008) 

10 Bacteroids fragilis Associated with colon cancer (Sears, 2009 ; Sinkovics, 2012) 

11 Enterobacteriaceae Pathobiont and associated with 

IBD and  

(Lupp et al., 2007; Zheng et al., 2008 

Seksik et al., 2003) 

12 Bifidobacterium spp. Immune modulators and 

beneficial properties as probiotic 

(Ivanov et al., 2006; Jeon et al., 2012) 

 


