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Abstract

Errors in seed placement during low dose rate prostate brachythesapgsult
in over-treating healthy tissue and/or under-treating cancer cells. Imdasth
treatment procedure, seeds are implanted according to a planned dgbudtiia.
This pre-operative plan (pre-plan) is created using an ultrasoundheatcan taken
about two weeks earlier. Errors in seed placement can occur due ngehan
prostate structure during those two weeks, and from seed displaceuneg dand
after the actual operation.

This thesis presents methods of seed localization that are suitable for Istth po
operative and intra-operative use. The techniques can be applied todabag
modalities used in the current operation setup to implement a method of intra-
operative planning. This involves using Transrectal Ultrasound (T)RId8 C-arm
X-ray Fluoroscopy (fluoro) data to monitor the seed positions relative toutrent
target volume during an operation.

Towards this goal, an automatic method of assigning seeds to their cordespon
ing insertion needle tracks has been developed to match seeds betwedh moda
ties so that seed displacements can be computed. This method can be applied to
measure intra-operative misplacement, by comparing the desired positiors to th
actual positions computed from fluoro data, or post-implant movement, corgpar
the fluoro seed positions to those from post-implant Computed Tomograghy (C
data. For the intra-operative and post-implant data, 99.31% and 99.418¢ of
seeds were correctly assigned, respectively. An average intrativgeseed dis-
placement of 4.942.42 mm and a further 2.971.81 mm of post-implant move-
ment is measured. This information reveals several directional trendsaanide
used to preemptively correct the pre-operative plan (pre-plan).



An extension of the seed matching algorithm is used to register fluoro to intra-
operative ultrasound so that the seed positions and displacements ceawbd v
with respect to soft tissue features. An ultrasound volume can be adduinee-
diately prior to or during an operation, instead of weeks before, remdhengrrors
in the pre-plan.

Looking to the future, an absolute elastography system is tested whichaan p
vide automatic delineation of the target volume and segmentation of the soft tissue
features which is required to complete the intra-operative planning puceed
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Chapter 1

Introduction

Prostate cancer is the most common cancer in men in the Americas and Africa. It
is also the leading cause of cancer deaths in Africa and in the low to middle income
regions of the Americas [44].

There are a wide range of treatment techniques for prostate canggngan
from active surveillance to radical prostatectomy. Low dose, permamgtént,
prostate brachytherapy is a procedure that has been shown toveffetteat men
with prostate cancer [49]. It involves the insertion of radioactive saggisg nee-
dles, into the prostate through the perineum. In most current proceduii@an-
srectal Ultrasound (TRUS) scan - taken several days to weekshefoachyther-
apy procedure - is used to create a pre-operative plan (pre-plaet) défines how
the seeds are to be distributed within the prostate and surrounding redibas.
plan is made under the constraint of placing individual seeds at vargpths
along several parallel lines so that it can be replicated intra-operatigailg nee-
dle insertions.

The treatment relies on accurate placing of the radioactive seeds taesulffic
irradiate tumours while sparing non-cancerous tissue. Errors in seg@tpdead
to poor implant quality and can arise from a number of different readeinstly,
there can be variations in the shape and position of prostate, as well aarthe ¢
cerous regions within it, at the time of an operation as compared to the pre-plan
conditions. The prostate structure can change due to muscle relaxaticheafe-
tient is under anaesthesia, anti-androgen hormone therapy that is sometedes



to shrink the prostate volume, or aggressive tumour growth. Secondly,veith a
perfect pre-plan, misplacement of seeds can occur due to prostateneruvilO]
and/or needle deflection during insertion. Lastly, movement of the sdtsisan
operation (post-implant movement) can occur due to prostate inflammat onr[83] o
change in patient position.

Research has suggested that one of the ways of reducing the errdgismad
above is to uséntra-operative planning52, 59]. This is the process where a
plan is made and modified in the Operating Room (OR) compensating for any
unexpected misplacements or predictable movements during the operation. This
necessarily requires that position and size of the tumours, as well as #i®ioc
of the seeds with respect to the tumours, be known at any givendimieg an
operation. Clearly this means that man&ra-operativedata (data acquired during
the operation) needs to be collected and processed. When collectingpetiatioe
data, it must not take too much time or space so that the implantation procedure
itself is affected as little as possible. It is worth while therefore, to examinesat th
current brachytherapy setup to identify potential improvements in seeeméatt
accuracy.

During a regular brachytherapy procedure, TRUS imaging is usedifdagce
with the occasional use of C-arm X-ray Fluoroscopy (fluoro) imagepi(Es 2.2
and 3.1 show the brachytherapy setup with fluoro and TRUS) . The two igpagin
modalities are used together because they can both be incorporated inpethe o
ing procedure without limiting the space and accessibility to the patient bubtann
individually provide all the information needed. The prostate and othétissiie
structures are easily visible in TRUS images but the brachytherapy seedsta
easy to identify. This is because they are highly acoustically reflectivsizaxibw
each other and are easily confused with reflections from calcificatinrcanitrast,
the seeds are clearly visible in fluoro images, which also have a much lalgker fi
of view, but the soft tissue features are not visible. The two imaging modalities
therefore compliment each other perfectly. Figure 1.1 shows example funak
ultrasound images of the prostate. It would be useful to make use of trentdyr
used imaging modalities to enhance the intra-operative data in order to minimize
the displacement errors. This would improve the quality of the implants without
complicating the standard procedure.
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Figure 1.1: Example fluoro (left) and sagittal ultrasound (right) images that
are taken during a routine brachytherapy procedure. The brachpthe
seeds can clearly be seen in the fluoro image, as well as the ultrasound
transducer, but the prostate itself is not visible. In the TRUS image the
prostate is visible (in the bottom right corner of the image) but there is
a limited field of view.

It is possible to include other imaging modalities in the prostate brachytherapy
procedure to provide intra-operative data such as the use of Magregt@nRnce
Imaging (MRI) [70, 72] but these require a drastically different OR getther
solutions include the use of new flat panel C-arm fluoroscopy detectansple-
ment cone-beam Computed Tomography (CT) imaging which provides bdth hig
quality imaging of soft-tissue and accurate seed reconstruction [3(B66].cone-
beam CT and MRI are likely to become a standard part of future proesdwt
are more expensive in comparison to the currentimaging modalities and redywid
available. Therefore, it is valuable to assess the feasibility of using thentlyr
used technology to help reduce the seed displacement errors. Fomtiader of
this document, the only intra-operative imaging modalities that will be analyzed
will be TRUS and fluoro.

Returning to the issues that lead to errors in implant quality, the first concern
is the possibility of the pre-plan being “out of date” due to changes in thpesha
and size of the prostate and the target regions within it. The solution to this is to



have a method of identifying these regions in the OR right before and daring
operation. Since fluoro cannot image soft tissue this can only be dorge TRIIS.
Several groups have studied a method of using TRUS volumes taken immediately
before an operation to create a plan [47], called “Intra-operativ@lamening” by

the American Brachytherapy Society (ABS) [52], and found it to dosimedtyic
favourable in comparison to the traditional pre-plan [12, 25, 64, 81{vaver, this
approach requires manual contouring of the prostate which takes wgblaltime

in the OR and only provides intra-operative information of the prostate atthe

target regions within it.

It has been shown that the stiffness of abnormal tissue masses irscoesse
to change in cell density [39] and so several research groups hesstigated
the use of elastography to detect cancer [38, 54, 56, 63]. This teahciould
allow automatic segmentation of the prostate as well as delineation of tumours in
real-time. An extension to this is to use Local Frequency Estimators (LFE) or a
Travelling Wave Expansion (TWE) to solve the inversion problem to obtain the
absolute viscoelastic properties of the tissue described by Baghahi[9, 10].
Being able to locate target regions in real-time during brachytherapy a¢stwsape
door to treatment techniques such as focal therapy (2, 18, 50] whidd &arther
improve the treatment of prostate cancer by treating subregions of thetprosta
rather than the whole gland preserving healthy tissue.

Once the issue of an “out of date” pre-plan is solved the remaining issaks th
need addressing are seed misplacement during an operation and sesdemiov
afterwards. In order to address these there needs to be a way oftigripe un-
desirable seed displacements. Post-implant dosimetry for Quality Assy{@Age
is recommended by the American Brachytherapy Society [51] and is implemented
at most medical clinics. Regular CT scans are used to look at post-impéahdise
tributions. If substantial implant errors are found, post-operative areaxan be
taken but this can lead to even more complications. It would be more bengdicial
duce implant errors by using intra-operative planning [52, 55, 59]tieal@and cor-
rect the errors during the operation. The most ideal form of intraativerplanning
is “dynamic dose calculation” which requires continual localization of indiaid
seeds [52, 59] to compare the real seed distribution with the desired tuwo F
imaging can used to perform the intra-operative seed localization. Thefwase o
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few fluoro images taken over a narrow angle to reconstruct the intnatpeseed
positions has been performed by numerous groups successfully1267473—
75]. In most cases. the reconstruction algorithms assume that the C+raaimse
translationally fixed during the image acquisition. However, Dehg#aal. have
developed a method of performing the reconstruction which compensattgfo
small amounts of motion that can be expected [16].

Once the intra-operative seed positions have been obtained, it is then nec-
essary to identify the same seeds in pre-plan, intra-operative and pdatimp
conditions. Comparing pre-plan positions to intra-operative positions wgivd
immediate feedback as to whether the seeds are implanted as expected. Intra-
operative data and post-implant data can also be used to compute trends in both
intra-operative misplacement and post-implant movement that can be uséddo g
future brachytherapy operations.

The final component needed for intra-operative planning is to registéntita-
operative datasets to each other. More specifically, the computed 3Pastdns
must be registered to the prostate volume. Registration between ultrasadind an
fluoro is a viable solution [21., 23, 68] to this. Moraeli al. present a complete
method of computing partial seed volume reconstructions in ultrasound and us
ing needle track detection to match the dataset to fluoro data without the need for
fiducials or manual segmentation [48].

1.1 Thesis Objectives

This thesis describes techniques that use the current imaging modalitiesdtatp
brachytherapy to: observe the target volume in real time, predict likely dise
placement just before insertion, and detect misplacements immediately after inse
tion. All of these processes are needed to provide true intra-opepédinaing for
prostate brachytherapy. The main thesis objectives are as follows:

1. To develop a method to compute seed displacements by comparing seed clus-
ters reconstructed from different modalities. Any displacement trendsifo
from this study can be compensated during needle placement and the same
algorithms can be used in real time to detect unexpected misplacements im-
mediately.



2. To provide a method to register fluoro to ultrasound so that seeds and dis
placements can be viewed with respect to patient anatomy.

3. To develop an imaging system to display real-time viscoelastic properties
of the prostate using ultrasound to allow delineation of the prostate and the
cancerous regions within it.

For each of these objectives, the combinatiospdedaccuracyand degree of
automatismmeeds to be analyzed to test the feasibility of intra-operative planning.
These criteria are enforced by the high intensity setting that exists in the OR.

1.2 Thesis Outline

A major requirement for intra-operative planning is the ability to compute seed
distributions during a procedure. Chapter 2 describes the setup usddaio o
intra-operative patient data and the algorithm used to obtain the 3D posifions o
the brachytherapy seeds. For the system to be efficient in the OR it teebds
fully automatic. The steps taken to automatically process the images are described
Descriptions of the planned and post-implant datasets are also provided.

Chapter 3 describes a “Needle Track detection algorithm”. It covers thie-me
ods used to group the seeds into their corresponding needles. Thisrgrak-
lows seed matching to be performed by identifying corresponding neeallpg)r
in different datasets rather than identifying individual seeds. The &atufe of
this algorithm is that it can be applied over a wide range of datasets, including
intra-operative fluoro data, to allow matching of seeds at different timesako
between imaging modalities.

Chapter 4 presents two applications of the needle track detection algorithm.
The first application is the computation of intra-operative and post-implat se
displacement. Intra-operative seed misplacement is measured by conmipaeang
operative seed positions from fluoro data to those from the pre-plan. 8iymila
post-implant seed movement is calculated by comparing the intra-operatige se
positions to those from post-implant CT data. The displacement values lgre on
truly useful if the reconstructed seed clouds are registered to the ferastalf,
which is not visible in the fluoro or CT images. The second application of the



needle track detection algorithm is a method of performing this registration.aOnly
few strands are detectable in the ultrasound volume but registration is stilblgoss
[4€].

Once the seed positions are found and registered to an ultrasound volume it
is still necessary to segment the prostate, and the cancerous regionsityitiin
order to complete the planning process. An existing inversion algoritnm 48] w
used to reconstruct the viscoelastic properties of the prostate which ddiptirs
segmentation. Chapter 5 describes how this algorithm was used for thiinfiest
with a BK Medical ultrasound machine (BK Medical, Herlev, Denmark) to obtain
both phantom and patient data.

Finally, Chapter 6 describes the conclusions and contributions of this teesis
well as the future research directions.



Chapter 2

Intra-operative Seed Localization

2.1 Introduction

The success of intra-operative planning is heavily dependent upoav#ilabil-

ity and reliability of the intra-operative data. Several different typesatadire
required to provide intra-operative planning for prostate brachyplyerghis data
includes the ultrasound imaging used to view the prostate as well as the various
methods of obtaining localized seed positions. Chapter 5 will address tbesgsro

in which the prostate itself can be imaged while this chapter describes the tech-
niques used to obtain pre-plan, intra-operative and post-implant itegotiens of

the seed positions. The focus will be on the intra-operative seed postrassthis

area has the most potential for improvement since pre-operative atrdrgdant
reconstructions are already accurate and do not need to be perforneadttime.

All the data for the seed reconstruction as well as the seed displacena¢ént an
ysis (Chapters 3 and 4) was taken from a patient study of 8 patientsgaiaigr
low dose, permanent implant, prostate brachytherapy at the British Colurahia C
cer Agency (BCCA), Vancouver, Canada. Institutional ResearcitEBoard ap-
proval and patient consent were acquired.

The Variseed planning software (Varian Medical, Palo Alto, CA) was tsed
export both the pre-plan seed positions as well as the post-implant CTpesed
tions. In some cases the radiation oncologists changed the plan addiript/oo
(not part of the pre-plan) seeds and these were included in the predatasets



Table 2.1: Summary of the seed reconstruction data types and their uses.

Seed cloud Time Use
reconstruction | of
data type Acquisition

Used to compute misplacement
Pre-plan pre-operative | during insertion by comparing with
intra-operative fluoro data
Provides a complete reconstruction

Fluoro intra-operative| of the seed positions
immediately after insertion
TRUS intra-operative| Used to register intra-operative

fluoro and ultrasound data
Used to compute post-implant seed
CT post-implant | movement trends by comparing with
intra-operative fluoro data

used for this study.

Table 2.1 summarizes all the types of seed reconstructions datasets. @he thir
column describes what each dataset is used for. It can be seen tbhattadke
analyses require the use of the seed localization from intra-operativesktopic
data. These are the seed positions immediately after they are inserted, while the
patient is still in the operating position. These positions can be computed in the
middle of an operation and do not necessarily need to be computed aftee all th
seeds are implanted.

The seed localization process in ultrasound will be presented first falltwe
a step-by-step description of the process required to reconstructatigssitions
in fluoro.

2.2 Method for Seed Localization in TRUS Volumes

Intra-operative seed positions computed from ultrasound data wetiaedbfeom a
concurrent study by Moradit al. [48]. Since it is extremely difficult to reconstruct
all the seeds using ultrasound, even when manual segmentation is Usedd8é&
seed positions are not used to compute displacements. They can beavsexk
to register the ultrasound and fluoro datasets to each other so that displdse



Figure 2.1: A comparison of a Reflected Power image (left) and a B-mode
image (right) used to detect seeds in ultrasound images of a patient.
This image is taken from published work by Moradial. [4&]

can be viewed with respect to the anatomy (see Chapter 4, Section 4.2.5).

The seed reconstruction algorithm is applied to TRUS volumes that were ac-
quired immediately after the seeds were implanted into a patient. The seed posi-
tions are calculated by computing a Reflected Power (RP) image from raw Rad
Frequency (RF) data (see Figure 2.1) before applying template matchirmgdto fi
the seeds [80]. The reconstruction process take3 ms per 2D frame [48] which
is fast enough for use in intra-operative planning. A complete volumesisamb-
tained by collecting 270 frames from rotation angles of 4&+ 50° at 21 frames
per second so the total acquisition time~i&5 seconds. The TRUS robot used to
roll the TRUS probe is described in Section 5.5.

2.3 Method for Seed Localization in Fluoro

Research dating back to the early 1980s has shown that it is possible nstreico
the 3D position of a seed using 3 fluoroscopic images [4, 5, 13, 62]. Siece
several improvements have been made by incorporating C-arm calibraticoa
recting for errors in the C-arm pose [16] which allow for accurate metraction
of the complete seed cloud. For this study a GE Series 9800 mobile C-arm was
used to acquire 5 images at angles ranging froeb®° to +10° for each patient.
The exact angle of rotation was measured using a digital protractor. athens
collected after all the needles were inserted so that the standard preeezkinot
interrupted. However, the methods used for reconstruction can bexttiaag time
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Figure 2.2: The use of a C-arm in prostate brachytherapy to obtain intra-
operative fluoroscopic data. The coordinate system that is used in this
document is also shown. Inset: An example 2D CT cross section image
for comparison.

in the middle of a procedure - when there are still more needles to inserteids w
be done with intra-operative planning. Figure 2.2 shows the setup used tioeg
fluoro data.

The main steps required for intra-operative seed reconstruction fuonofare:

1. Segment the brachytherapy seeds in each fluoro image.
2. “Back-project” the segmented seeds to compute the 3D locations.

3. Repeat the process in an iterative manner using the computed recbostru
to correct for C-arm motion each time.

Each of these steps will be described in the following subsections.
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2.3.1 Real-Time Seed Segmentation in Fluoro Images

Segmenting a fluoro image involves creating a binary image by assigning a value
of 1 (or TRUE) to all pixels that are part of a seed and a value of 0 (SH

to all pixels that are not. Figure 2.4 shows how a fully segmented image can be
created from a raw fluoro image.

The presence of a seed is determined by thresholding: a local maximum and
average is computed in a small window around each pixel to assign a ahaoff
determines whether it is a seed pixel or not. A majority of the processing &sidon
Matlab (Mathworks, Natick, MA) which has several useful image prsicgstools.
However, this algorithm requires large nested loops to move the small window
through the entire image which takes30 seconds per image when using pure
Matlab code. This would make it very inconvenient to use intra-operatamdyso
required optimization. To speed the process up, the nested loops weritesrin
C and re-compiled to be used as Matlab functions using the Matlab “mex” functio
This change allowed the code to run up to 40 times faster making it suitablesfor us
in the OR. Note that it is assumed that there is a method of retrieving the images
directly onto an external computer once they are acquired.

Although the small window used to compute local thresholds works well to de-
tect seeds, it also detects false positive seed pixels in large unifornmsdgieater
than the size of the window) or at sharp boundaries. In Figure 2.3, falsidve
seed pixels that are found outside the detector circle and around the gaob
be seen. To solve this, either manual or automatic selection of a Region of In-
terest (ROI) that removes the probe and detector edge from the imagedsd
Note that the image of the probe would obscure the seeds if it was left fully in-
serted. Therefore, the probe is retracted during fluoro image acquisitialfow
the complete seed cluster to be visible. This creates problems when tryingsto reg
ter fluoro and ultrasound datasets since the prostate deforms when seetpby
the TRUS probe and returns to its original shape when the probe is reftrattis
issue has been addressed by Moradi et al. [48](see Section 4.2.5).
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Figure 2.3: False positive seed pixels (white) found outside the detector circle
in a segmented image (right). The unsegmented image (left) is also
shown.
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Figure 2.4: Manual selection of a ROI to select a “seed only” region. The
top-left corner is first selected (left), followed by the bottom right to
define the ROI used to produce a truly segmented image.

Manual ROI Selection

A ROI that does not include the ultrasound transducer (or probe) aidteetor
edge can easily be defined manually. The user can use a mouse click tdtselec
top-left corner followed by the bottom-right corner of a rectangulaetsenly”
region. This process, shown in Figure 2.4, produces a truly segmentgd.ima

This works well to produce consistent segmented images but may be inconve
nient in the OR especially when it has to be done for 5 images. It is worth while
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Figure 2.5: The full probe tip detection algorithm: a) The original image
(with the coordinate system used), b) horizontal blurring, ¢) contrast
adjustment d) gradient of the y-projection e) final image with horizontal
line defining the bottom of the ROI.

therefore to consider methods to automate the selection of a ROI.

Automatic ROI Selection

There are two main components that need to be considered for identifyewda s
only region. Firstly, it must be inside the detector edge. There is no image®uts
this circle and the local threshold algorithm does not work here. Secahdiyst
remove the ultrasound probe from the image which has regions of shaimaso

that can be mistaken for seeds. The first part is fairly trivial since ttect® edge

is always in the same place in the image and can just be masked out. It is more
complicated, however, to remove the probe from the image since its locaties var
between images and patients.

The approach taken is to find a horizontal line that is tangent to the tip of the
probe and select the region above this as the seed only region. A Seinesge
processing is performed including horizontal blurring and contrassadgnt be-
fore the gradient of the y-projection is used to find the probe tip. Figurstivs
all the intermediary stages for the probe tip detection algorithm, with the cotedina
system used, and Figure 2.6 shows the complete automatic segmentatios.proces

With the presented algorithms, the seed segmentation process can bepdrfor
automatically and quickly for all 5 images which makes it more feasible to use
fluoro data to obtain seed positions for intra-operative planning.
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Figure 2.6: The complete automatic seed segmentation process. The seeds
are segmented from the original image (left) by first finding the trans-
ducer tip (middle) and then thresholding the seeds.

Figure 2.7: An illustration of the 5 backprojected lines for a single seed in-
tersecting at the original 3D location of the seed.

2.4 Backprojection Algorithm and User Interface (Ul)

Once the segmented images are obtained they can be used to recons8Dqbthe
sitions of the seeds since the angles of acquisition as well as the detectuneaioe
locations are known. Rays originating from seed pixels in a given segthante
age can b&ack-projectedo the source from the location of the detector. This can
be done for each of the 5 segmented images and will create intersection®in a 3
volume where the seeds would have been. Figure 2.7 shows the 5 lmgekted
seed pixel groups for a single seed intersecting at a point.

A Graphical User Interface (GUI) was developed in C++ that incaeat the
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Figure 2.8: The GUI used for 3D reconstruction of seed positions from intra-
operative fluoro data. On the left, the red box shows the options for man-
ual and automatic segmentation as well as suppressing the segmented
image display. The final result is displayed on the right.

segmentation and back-projection algorithms to reconstruct the seed poaitidon
display the results in real time. The seed coordinates are taken to be attiuecce
of a voxel cluster that is formed at an intersection. Seed shaped c@iadethen
displayed at these locations. Figure 2.8 shows the GUI layout. Optionstor b
manual and automatic segmentation are provided. This kind of visualizatidd wou
be useful to look at seed distributions inside the OR.

To summarize the above sections, a GUI was developed that can automatically
or manually segment fluoro images and then reconstruct the 3D positions of th
seeds in real time. The backprojection algorithm used, however, db&skednto
account errors in the C-arm position due to oscillation or sagging of theeesou
downward, which greatly reduces the quality of the reconstruction. Aerdifft
method must be used to compensate for such motion.

2.5 C-arm Motion Compensation and Seed Matching for
Robust Reconstruction

Dehgharet al. presented a method of compensating for C-arm motion by using
the reconstructed seed positions to improve C-arm pose estimates iterdttiely [
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This algorithm still requires a complete, though potentially incorrect, reassstr
tion of the seeds which cannot be done using the back projection method whic
relies on complete intersections to find the seed positions. Instead, a symbolic in
tersection is found, which is the point that achieves the minimum distance betwee
back projected lines. Seed matching is done by minimizing this distance for all
the projections for every seed. A suitably fast and accurate method callédRX
SHAL has been developed by Ket al. to do this while also taking into account
hidden seeds in the segmented images [37]. These methods are notlyaen
of the current GUI but can replace the backprojection code followingtib@matic
segmentation to provide real-time seed localization from fluoro data.

Seed displacement calculations and registration of fluoro to ultrasound, de
scribed in Chapter 4, both rely heavily on accurate seed reconstruaiorflfioro
data. The automatic segmentation algorithm, combined with fast and accurate
matching, as well as C-arm motion compensation provide this. Accurate seed
cloud reconstructions, performed by Dehgtetral, from the patient study de-
scribed in Section 2.1 are used in this thesis. The reconstructed seedsdsiti@
a localization error of less than 0.9 mm [17] and are computed in under 20 sec
onds per patient [17]. This accuracy and speed of this process rhakéable for
intra-operative planning.
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Chapter 3

Simplifying Dataset
Representation Using Needle
Track Detection

3.1 Introduction

The measurement of seed displacements and the registration of fluoro towritlas
(see Chapter 4) both require an in depth analysis of the seed cloudteions
from Chapter 2. Referring back to Table 2.1, a wide range of datasistsfex
the seed reconstruction which are all required for intra-operativenjpign Seed
matching is required between all the datasets which can have up to 150cseed p
tions in each. This chapter describes a method of simplifying the represaraétio
the seed clusters to make the seed matching process easier.

The seed matching problem can be very complex when dealing with so many
cluttered points in several datasets. However, incorporating informabioumt any
known spacial relationships between the seeds can drastically reduzmpkex-
ity of the matching problem. During a standard brachytherapy procetheea-
dioactive seeds are deposited in groups using needles. With this kneyliédg
seems intuitive to group seeds into their corresponding needle trackstdbeha
matching problem is then reduced to matchivigb needle groups instead ©fL50
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seeds. The methods presented in this chapter describe a new algoritthrio use
assign seeds to their corresponding needle tracks.

There are actually two main implant types used: Suture-embeddgthoded
implants (RAPIDStrand; Oncura, Plymouth Meeting, PA) éoaseseeds deliv-
ered using the Mick applicator (Mick Nuclear, Bronx, NY). Howeverd#ts have
shown that stranded seeds provide better dose coverage[20] arsgézbloss[60]
without compromising the biochemical No Evidence of Disease (bNED)[28] -
bNED is defined as having a sufficiently low Prostate-Specific Antigen {Rsal
for a period of greater than one year. Indeed, stranded seedseatinuabout 50%
of cases in the United States and in over 80% of cases around the worde Th
is therefore an incentive to focus seed matching methods on stranded &sed
ing so takes advantage of the fact the the seeds are more physicallyagwtsin
stranded implants allowing tighter, more robust restrictions for seed spabielgy
detecting needle tracks. It should be noted that the methods presentedtirethis
sis are still applicaple, with fewer contraints, to loose seeds since thegaaéyu
inserted in needles and evenly spaced.

In Chnget al, seeds segmented from CT data were automatically grouped into
their respective needle tracks using a minimum cost network flow algorithia[3
following a coarse registration performed by iterating through all trajecogftes
of every seed. The cost function consisted of complex correspoadanctions
used to compute the positional error, trajectory angle error and the spacthg
error [15]. This algorithm worked well to detect needle tracks in post-inipla
datasets. This chapter describes a method of extending this approactk twitio
intra-operative fluoro data as well as post-implant and pre-plan daienpjifying
the cost functions used and making use of a different coarse registadgiorithm.

3.2 Methods

The datasets were simplified by grouping seeds into their correspondaatiene
tracks. This makes the seed matching problem needed for seed displacainen
culation and registration of fluoro to ultrasound easier. The following sestio
explain the methods used to perform the needle grouping.
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Figure 3.1: An illustration of the brachytherapy procedure. A square face
needle guide template used to guide needle insertion. (This images was
taken from www.roboticprostatecentre.co.uk)

3.2.1 Orientation of the Datasets to Allow Fine Tuned Needle
Searching

In order to use a needle track detection algorithm on all the datasets it ssaege
to first rotate each dataset into a recognizable orientation. In other wibrels
dataset must be rotated so that all the needle tracks are in the same dizaetiah
which makes it easier to then search for the strands.

In a standard brachytherapy procedure, needles are insertedhha@aguare-
faced needle guide template (see Figure 3.1). This creates a genectibdiid
insertion, perpendicular to the square-faced template, that will be edféoras
the implantation axis Excluding the pre-plan dataset where all the seeds are in
pre-defined tracks parallel to ta@xis by design (see Figure 2.2 for the coordinate
system used), the implantation axis is different for each dataset andhdbkse
up with any axis. This is because the reconstructions in fluoro and CToae d
with respect to their own coordinate systems independent of the implantatgn ax
Orienting of the datasets to allow the needle tracks to be detected can done by
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finding the implantation axis in each dataset and then rotating the entire cluster
so that the implantation axis is parallel to thaxis. This means the tracks can

be found by searching for lines or curves that are in the same genegalich

as thez axis. With this method, detection of the implantation axis for the fluoro
and CT data can be done independently without having to perform a rigitgei
registration to the pre-plan which has been done by Girad. [15].

For the implantation axis detection, an “iterative best line detection” algorithm
is used to obtain a ranked list of potential needle tracks in images. This atgorith
is similar to the RANdom Sample Consensus (RANSAC) [22] algorithm which
involves fitting lines to pairs of randomly chosen points and scoring eachtiitile u
a threshold score is reached.

The algorithm steps are described below:

1. Select a pair of seeds to define a straight line.

2. If the angle between the line and thexis is greater than a pre-defined
threshold angle then reject it and return to step 1. Otherwise go to step 3.

3. Compute ascorefor the line based on a set of cost functions that take into
account information on what needle tracks are expected to look like. iRetur
to step 1 until all possible pairs of points have been chosen.

4. Rank each line according to the score and pick the top 8 lines to determine
the implantation axis.

Since it is not computationally demanding to extensively search through all
pairs of points, it is not necessary to randomly pick pairs of points. A fulked
list of all possible lines is instead created. For example, for 150 sé%,:
11175 pairs of points can be defined and a majority of these would be deemed
implausible at step 2 of the algorithm saving unnecessary calculationsefofreer
it is acceptable to search all possible pairs of points.

The cost functions used in step 3 are tuned to find needle tracks. The total
score for a potential needle track is computed by summing the contributioffis of a
the seeds that fall within a Gaussian cone and are appropriately spaced:
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Figure 3.2: A Gaussian tolerance region used to score a potential needle
track. Several possible needle track curvatures are shown.

Score= e (3.1)
{i:di<w;,|sp;—101<2Vj}

Here,d is the distance of seddrom the potential needle axis asg; is the
spacing between seédnd an adjacent segdThe exponential component favours
seeds that are closer to the potential line so that straighter lines are fsigked
so that the implantation axis is not affected by extremely curved needle trEoks
conditions beneath the summation define the components of the cost function.

The first component of the cost functiath & w;) takes into account the number
of seeds that fall within a certain threshold radiMsfrom the defined line. A
fixed threshold radius cannot be used since the needle tracks cait sigmilficant
curvature which varies from track to track. Instead a Gaussian congeis to
define a tolerance region for the line which is being scored, as seen ireEdu

Any seed that falls within the tolerance region contributes towards the score
of the potential track. The radius or “waistf, of the Gaussian cone expands in-
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creasingly with distance, from the insertion plane. The insertion plane is defined
as thez location of the most inferior seed (the seed closest to the perineum once
inserted). A Gaussian cone was chosen for the tolerance region sisagséful

to be able to tune both the waist and the rate of expansion of the cone to find the
needle tracks. The curved surface of the Gaussian cone make itlpdedieep a
sharper cut-off at further distances while still having a relatively langal fivaist

(at the farthest point from the insertion plane). The waistfor a given seedi,
depends on the distanag, of the seed from the insertion plane:

Wi = Wor /1+% (3.2)

W is the minimum waist size andis the distance at whicl; = wp\v/2. These
two parameters are used to control the minimum waist (at the insertion plashe) an
the rate of expansion of the Gaussian tolerance cone.

The second component of the scofep — 10| < 2Vj) takes into account
knowledge of the expected spacing between the seeds. For strandedténgsda
pecially, the seeds can only be a multiple of 10 mm from each other. Seeds must
therefore fall within the Gaussian cone and also satisfy the spacing eatgrit
with a tolerance oft2 mm to be counted in the score. This eliminates the cases
when seeds from other needle tracks fall within the Gaussian cone.

As shown in section 3.3.1, the iterative best line detection algorithm correctly
assigns a majority of the seeds to their corresponding needle tracks.vetpae
higher accuracy is needed to allow the possibility of intra-operative plgniiine
methods fails to assign all the seeds in most cases mainly due to the large variation
in the curvatures of the different tracks which cannot be fully accalioteusing a
line fitting method. Still, since the seed assignment is still accurate for the highest
ranked needles, averaging their directions does consistently find the tatjlan
axis in both the fluoro and the CT datasets. The top 8 needles were chdsapto
the number consistent between datasets. Once the datasets are rotatedthealig
implantation axis to the axis, a network flow algorithm that is not affected by the
existence of intense curvature in the lines is used.
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Figure 3.3: A simplified flow network with a source producing 5 flow lines
that must flow though a cluster of transshipment nodes to a sink node.

3.2.2 Minimum Cost Network Flow Algorithm for Needle Track
Detection

Rotating the datasets to align the implantation axis witlztivas simplifies needle
detection process by reducing the search angle needed to find tramkevet, the
tracks are still severely curved in some cases and cannot be paratheliare-
fore, the problem is changed from a line detection problem to a networksfigw
tem. Each seed is considered a node that can transfer a single unindfttftough
it. Thus, they will be referred to as “transshipment” nodes. A single ‘ssunode
is created that feedd flow lines into the system along with a “sink” node which
receives them. The problem is then solved by finding the most efficienfavélye
flow lines to go from the source to the sink through all the transshipmentsnode
Figure 3.3 illustrates a simplified version of the network flow system wNer&
This problem is analogous to finding the most efficient design for a watergyig-
tem with a single provider feeding several units. For the case of the nadle
detection problem, thi flow lines correspond to the number of needles inserted.
In order to find a most efficient network, the cost of a every potentiaheotion
between two nodes must be computed. The costs are computed as follows:

1. Each transshipment node (or seed) is assigned the same cost seytlzaeth
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each equally likely to be used.

2. For a given node, the costs of making connections to every otherarede
computed using a function that favours well spaced nodes that are @1 a re
sonable direction.

3. Step 2 is repeated for every node so that each node has a list dicc@sish
connection it can make.

Since each arc or connection is independent of the previous one aifeen®
restrictions as to the direction of the flow based on the shape of the cuore biee
node. This allows for the sudden changes in direction that sometimes ddwaur.
function used to compute the costs in Step 2 has two components that are similar
to the ones defined in Section 3.2.1. The first component penalizes flowtHetes
deviate from that direction of the implantation axis. The angle &43{, between
two nodes andj is computed as:

AG; = (el%l/® _ 14 (3.3)

where@;; is the angle from the implantation axis afglis a parameter used to
tune how strict the function is. A higher value @f increases the acceptable range
of angles. The 4th power for the angle cost ensures that the cosasesreapidly
for increasing angles.

The second component of the cost function favours nodes or seaidaréh
multiples of 10 mm apart, as is expected for needle implants and especially for
stranded implants. Higher multiples of 10 mm becomes increasingly unlikely these
are considered less efficient in the flow network. The spacing 8Gst,is defined
as:

SGj = —e /% (( (s — nsp)) ke (SI/%)) (3.4)

n
wheres; is the spacing between nodend nodej and|6;| is the absolute
value of angle the line between the two nodes makes witla thés. The spacing
cost is defined as a Gaussian peak with a variane®.oThe symbol denotes
convolution which is just used to reproduce the function at integer multipl&® of
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Figure 3.4: Graphs of the angle (left) and spacing (right) components of the
cost function. Connections with smaller angles and acceptable spacing
(multiples of 10 mm) are favoured. The tunable parameters for the angle
variance 6y, and the spacing toleranc®, are shown with a box around
them. The spacing constansg,andsy are also shown.

(so = 10 mm) using a train of delta functions. The decaying exponential with a
variance ofsy = 10 mmis aimed at penalizing larger seed spacing. It decreases the
magnitude of the spacing cost by a factge for every successive integer multiple

of the spacingp. Note that the contribution of each successive Gaussian peak to the
cost decreases exponentiallyrasicreases. However, in practice, it is extremely
unlikely that the seed spacing in a given needle is 40 mm or more so the sum was
only done untiln = 3. s, is another tunable parameter used to set the deviation
allowed for the spacing.

Figure 3.4 graphically shows the angle and seed spacing cost functitins w
the different parameters and constants. Complex forms of these contp@nen
derived in Chneet al. [15]. The simplification of the functions allows the algo-
rithm to easily be re-tuned for seed clusters reconstructed from differeging
modalities.

For the fluoro datafy was set to 43.0 degrees agdo 1.2 mm. A large angle
variance was needed since several needle tracks were visibly angedtated but
tighter restrictions on the seed separation ensured that true tracks eetiéied.
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In contrast, for the post-implant CT dati,was setto 31.5 degrees agdo 3 mm.
Here, the seeds migrated a little so the seed separation requirement wed.rétax
both cases the same parameters were used for all the patients.

A final tuning parametery is used to weight which of the two components
affects the total cost most. The total cost is obtained by summing the two costs
with a weighting parameteg, on the angle cost term. This parameter controls
which component affects the cost most. For the intra-operative fluatgast-
implant CT datay was set to 0.3. This increased the sensitivity to the spacing of
the seeds and relaxed the dependence on the angle which was netesdaw
for the large changes in direction seen these datasets. For pre-plathdaaeds
are defined along tracks that are parallel to the implantation axis. Any deviatio
from this axis is therefore penalized and the cost is heavily weighted to tie an
componentyis set to 1.2). The final objective function is:

Cij = yAG; + SG; (3.5)

The Matlab Toolbox “MATLOG” developed by Kagt al. is used to perform
the minimization after the costs are computed [34] (North Carolina State Univer-
sity, Raleigh, NC; http://www.ise.ncsu.edu/kay/matlog/).

It is possible to defindN, the number of needles inserted, before the com-
putation. However, this may be tedious or inconvenient during a braataythe
procedure. Here, the number of needles that have been insertesl depiending
on when the oncologist wants to check the placement. Therefore, thélahgds
made to automatically compute the number of needles inserted. This is done by
setting an arbitrarily high number of “flow lines” initially which results in several
connections directly between the source and the sink without going thimmgh
seed nodes. The number of needles can then be reduced to the nunvldarefto
that contain at least two seed nodes (the minimum number in a given needle) an
then the whole process is repeated until only flow lines with at least two ssledn
are found.
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Table 3.1: Needle track detection using the iterative best line detection algo-

rithm.

Patient| Number of| Number of | Percent seeds
incorrectly seeds correctly
assigned | inserted assigned

seeds
1 21 105 80%
2 14 105 86.67%
3 16 102 84.31%
4 25 122 79.51%
5 8 104 92.31%
6 13 115 88.70%
7 21 100 79%
8 8 118 93.22%
3.3 Results

This section presents the results of the needle track detection algorithnpéer 8
tients. The implantation axis detection results are presented first, followeakby th
needle track detection results.

3.3.1 Implantation Axis Detection Results

The iterative best line detection algorithm was first validated by testing its ability
to assign seeds to needle groups. The results, reported in Table 3a theito
79.0% to 93.22% of seeds that were correctly assigned. Figure 3.7n(grpat

the end of this chapter) shows the results for patient 4 which producsdtvely

low percentage assignment of 79.51%.

The implantation axis was found by averaging the vector directions of the eigh
highest scoring needles. The datasets were then rotated so that the itigplanta
axis was aligned with the axis. Figure 3.5 shows this alignment for both intra-
operative fluoroscopic data and post-implant CT data. Although Figurerys
shows the sagittal view, it is worth noting that the algorithm performed 3D roistio
and not just a single rotation about theaxis.
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Figure 3.5: Finding the implantation axis using an iterative best line detection
for intra-operative fluoro data (top) and post-implant CT data.

3.3.2 Needle Track Detection Results

The full algorithm was tested on 8 patient datasets. Figure 3.8 (appenitiecad
of this chapter) shows the results from a single patient for all three data.typ

The total number of needles found as well as the correctness of theémseed
needle assignments was checked by comparing the needle groups to-ganpre
This was done by first comparing the intersections of detected needle fittes a
insertion plane with those from the pre-plan, looking at the number of geerds
needle as well as the expected relative positions. This simplified the finding of
potentially incorrectly assigned seeds. Figure 3.6 shows an example ofa pla
comparison. The black ellipses show how the comparison can be used tifyiden
which seeds were not assigned correctly.

The needle matching for the pre-plan data, not surprisingly, correctigraed
all the seeds in all patients. The results for the intra-operative and poktringged
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Figure 3.6: Comparison of fluoroscopic intersection data (green) with pre-
plan data (red). The same images were used for CT to pre-plan com-
parison. The black ellipses show where there are incorrectly assigned
seeds in the fluoro data.

to needle assignment are summarized in Table 3.2 which shows the peragintage
seeds that were correctly assigned.

It is worthwhile to note that patients 3 and 5 had two special load needles
(needles with irregular seed spacing) each. As expected, this made itliffictdt
to find those needles and accounted for the incorrect seed assignimehtgH
these patients. However, the number of needles was correctly fousd @Dthe
time for all types of data. Summarizing the needle assignment results, agavera
of 99.31% of the seeds were correctly assigned for the intra-opedstag while
an average of 99.41% of the seeds were correctly assigned for tharmbant
data. Once again, no pre-plan information is used in the needle detectigheand
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Table 3.2: Summary of needle track results for the both intra-operative and
post-implant data, on 8 patients.

Patient| Number of Percent Percent
seeds intra-op seeds post-imp seeds
inserted correctly correctly
assigned assigned
1 105 100% 100%
2 105 100% 98.10%
3* 102 98.04% 98.04%
4 122 98.36% 98.18%
5* 104 98.08% 100%
6 115 100% 100%
7 100 100% 100%
8 118 100% 100%

* patients with special load needles
(needles with irregular seed spacing)

algorithm takes between 1 to 2.5 seconds to rotate the cluster and find thesneed

3.4 Conclusion

Two techniques have been combined to formulate a method to group seeds into
their corresponding needle tracks. The novelty of this method is its versatility in
terms of the range of datasets it can be used for. The complete procels®ihv
implantation axis detection, and needle track detection.

The iterative best line detection algorithm accurately found the implantation
axis from rotated seed clusters in all the datasets. Detecting the implantation axis
was used primarily to focus the search space required for the minimumeest n
work flow algorithm. However, this algorithm also plays a crucial role thésreg
tration of pre-plan, fluoro and CT datasets. This is described Sectionid 2dre
detail.

With the detected implantation axis, seed assignment based on a minimum cost
network flow algorithm has an accuracy of 99.3% and 99.4% in the intreatipe
and post-operative data. The correct number of needles insertetbteased every
time. The complete needle track detection algorithm has been shown to provide
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fast automaticandreliable seed grouping. All of these are necessary requirements
for intra-operative planning.

The grouping of seeds into their corresponding needle tracks cresitepk
fied representation of the data. This reduces the complexity of the seedmgatch
problem that is required for both seed displacement measurement amal thuo
ultrasound registration as described in Chapter 4.
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Figure 3.7: Using the iterative best line detection algorithm to rank possible
needle tracks. The ordered needles are graphed above and artitinstra
of the best ranked needle tracks and the corresponding seed assignme
is shown below.
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Meedle detection results from pre-plan data
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Figure 3.8: Needle track detection results for patient 4 for pre-plan, intra-
operative and post-implant data
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Chapter 4

Measuring Intra-operative and
Post-implant Displacement of
Seeds With Registration to
Ultrasound Volumes

4.1 Introduction

This chapter describes how the needle track detection algorithm explaiGadp

ter & can be used to compute seed displacements and also to register tHase-disp
ment values to an ultrasound volume. Measuring seed displacements wehtresp
to the patient anatomy can be used to determine potential displacement trémds or
allow intra-operative planning when used during an operation.

Several research groups have reported studies that involve meppost
implant displacement of seeds. In most cases manual seed matching is used to
compute seed migration [24, 23, 46, 61, 71]. It is more convenient, reawky
have an automatic method of matching the seeds. This is true for pure postiimplan
dosimetry but is particularly important for intra-operative planning wheeeetlis
not enough time to perform manual matching.

Pinkawaet al. investigated post-implant seed migration by looking at the dose
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levels over a 30 day period instead of looking at individual seecs [&]7, Bhis
removed the need to match seeds in successive datasets but manualtiocaliza
and contouring was still required which is not feasible in an intra-oper&tiwi-
ronment.

One method of automatically measuring the displacements is to monitor in-
dividual seed displacements relative to fiducials that are also inserted mto th
prostate. Usmaret al. performed a study using this idea, localizing seed positions
relative to fiducial markers in repeated post-implant CT images [77]. Rreoise
changes could be computed based on the seed positions but addinddidacibe
considered unnecessarily more invasive and errors can be credtedfiducials
themselves migrate.

Other fully automatic methods for plan reconstructior: [6, 15] for post-implant
dosimetry have been studied. In Chegal. a needle track detection algorithm,
similar to the one in Chaptear 3, was used to group the seeds. The “graphsid
by the needle track networks were then matched in successive post-irgdlant
images using a non-linear optimization algorithm called “Graduated Assignment”
[1E].

The use of post-operative data alone limits the conclusions that can be.draw
The migrations measured are caused mainly by post-implant inflammation of the
prostate. Although it is valuable to know if any migration trends exist before a
operation is performed, there are two other factors that could lead talsgdace-
ment that need to be measured or known for intra-operative planningrto \Wp
misplacement at the time of the implant aiiyl change in patient pose from dor-
sal lithotomy (see Figure 4.1) during the implant procedure to supine dufing C
imaging. In order measure these types of displacement, seed matching ésl need
with intra-operativedata. The matching of seeds in pre-plan data to those from
intra-operative data gives information on seed misplacement during aatiope
while the comparison of intra-operative to post-implant seed positions inseestig
movement due to change in patient pose.

Intra-operative dosimetry requires that any seed distributions or despkats
be known with respect to the target volume. In order to analyze and pdigntia
modify a plan intra-operatively, it is crucial to know what the effect of alis-
placements are in terms of coverage of the prostate and target regiods.tHfis,
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Figure 4.1: A patient in a mock setup at the BC Cancer Agency illustrating
dorsal lithotomy position.

the seed reconstructions must be registered to a dataset that can relethlg soft
tissue. The prostate and surrounding anatomical features are all visibRUB

images which is currently used in standard brachytherapy operationsgria&im
ideal imaging modality for this.

Research has been done to detect all the seeds using TRUS lalon&]j27, 8
which would in itself allow intra-operative planning without the need for ftuor
data, but even with manual segmentation, up to 25% of the seeds cannoabe lo
ized 27]. Therefore, TRUS to fluoro fusion is a suitable alternative.

Various methods of fluoro to ultrasound fusion have been tried [23, &8, 6
75, 76]. One method could be to use Digitally Reconstructed RadiographgDR
to simulate fluoro images of the TRUS probe using a pre-operative CT volume
to determine its position relative to the seeds [65, 84]. This has yet to be tested
for prostate brachytherapy. Another method is to use seed basedatgisty
registering incomplete datasets from ultrasound data to complete datasetsan fluo
[4€, 68, 75, 76]. The main issue with this method is the dependence on a temple
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reconstruction from the fluoro dataset. Moradial. present such a registration
[4€] using complete fluoro reconstructions with C-arm motion compensatiin [1

In this process, the needle track detection algorithm makes it possible to match th
detected seeds between the datasets so that they can be rigidly registered.

4.2 Methods

This section explains how the needle track detection algorithm describedam Ch

ter & are used to match seeds in fluoro, CT, ultrasound, and pre-plaedtaia
compute seed displacements with respect to the prostate. Sections 4.2.1, 4.2.2,
4.2.3 ancd 4.2/4 describe how the seed displacements are computed and Section
4.2.5 explains how the fluoro data can be registered to TRUS data so thad-the d
placements can be known relative to patient anatomy.

4.2.1 Registration of the Pre-plan, Fluoro and CT Seed Clust's

Seed displacements are computed by looking at the difference in position of a
given seed before, during and after an operation. To do these cisomsrthe
coordinates of the seeds in the different datasets must be defined vadttrés
the same set of axes and so the pre-plan, fluoro and CT seed clustegisbered.

Figure 4.2 summarizes the registration process that is used, which allowat actu
seed displacements to be measured. It starts by setting the origin of easdt data
the seed cluster centroid position. Usmeainal. show that the seed cluster centroid
position can be used to register the datasets since it remains at the same position
even with considerable post-implant migration[77]. This means that the @ntro
position is the same in all the datasets.

The next step takes advantage of the implantation axis detection algorithm de-
scribed in Section 3.2.1. This algorithm aligns the implantation axis withethe
axis to help with needle track detection. This alignment in effect also corrects
for global rotations about the andy axis which almost completely registers the
datasets. Note that both the centroid computation and the implantation axis detec-
tion can be done on each dataset separately. The datasets can ¢hieegbok into
correspondence without having to do a rigid point set registration, ussnafile
Closest Point (ICP) [1.1] for example, by comparing two full datasets.
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Figure 4.2: An illustration of the two-step global registration technique used.
Step 1. Compute the seed cluster centroid locations and move them to a
global origin. Step 2. Rotate each dataset so that the implantation axis
is aligned with the globat axis. Post-processing is used to correct for
roll offsets. Once all the datasets are put in the same coordinate system,
actual seed displacements can be measured.

Any offset rotations about the implantation axis (which is now alsazthes)
are not removed. This rotation, called the “roll”, is corrected using pastgssing
as explained in section 4.2.4.

4.2.2 Needle Matching

The reason the needle track detection algorithm described in Chapter 8 thake
seed displacement computation more feasible is because it simplifies a matching
of up to 150 seeds to one 620 needles. This section explains how the needle
matching across datasets is carried out.

Chnget al. use a graph theory method called “Graduated Assignment” to
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match entire networks in successive post-implant datasets [15]. A differethod
is presented here.

After rotating the seed clusters and grouping the seeds into needles, the inte
section of each needle track with timsertion planeis computed. The insertion
plane is the transverse plane passing through the most inferior seee @idh
of the prostate). The needle intersections are then matched between tasislata
using a network flow system. This network is different from the netwodcdbed
in Sectior: 3.2.2. In this case, every node in one dataset is defined axa sode
that feeds 1 unit of flow into the system. Similarly, every node in the otheretatas
is defined as a sink node that receives 1 unit of flow. The 846, of connecting
a given source node, to a sink nodej, depends on the Euclidean distandg,
between the two needle intersecti@swell asthe the number of seeds that are in
the needledy; andN;:

MCij = dij + (Ni = Nj + 1)%; (4.1)

The termN; —N; 41 has a 1 added to it so that even if the difference is only 1,
it will be penalized heavily by the fourth power. The cost is therefore tyif
the needle intersections are close to each ahdithey have the same number of
seeds. Figure 4.3 demonstrates why it is necessary to include the nunsieedsf
in the matching cost. The red lines show some of the correct matches that would
not have been assigned if a simple closest-to match had been used.

4.2.3 Seed Displacement Computation

Each seed position is compared to its corresponding seed from a diffiettertype
to obtain a displacement vector. This can be done intra-operatively tot delec
misplacements by comparing actual seed positions to planned seed posiéinys at
given time during the procedure. It is also valuable to quantify the intraatipe
misplacement or post-implant movement to see if any trends exist. In ordedto fin
potential trends, an in-depth study was carried out on the patient dataextq

An complete list of all the displacement vectors from every seed in eacimpatie
was created and used to compute trends. Displacement vectors welatedicu
both for intra-operative misplacement and for post-implant movement.
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Figure 4.3: Intra-operative and post-implant insertion plane intersections for
one patient. The red lines show situations where a purely closest-to
match would not work without also taking into account the number of
seeds per needle.

Scalar distances were used to quantify the absolute motion. The total @averag
distance was computed for each patient as well as for all the patientsvé@itaga
distance was also computed for different regions of the prostate byirdjvitle
entire volume into 27 subregions, where each axis was divided into 3 section

Directional information was also recorded. This was done my computing an
average displacement vector in each of the 27 subregions. Thesecdiaplat
vectors were used to analyze the trends in the direction of motion in each.regio

4.2.4 Post-processing to Correct for Differences in Roll Beteen
Datasets

In Section 4.2.1, the seed cluster centroid and the implantation axis are used to
register pre-plan, fluoro and CT datasets. This corrects for all gldifiatences
except for differences in roll. A global offset is defined as one thapjslied to
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Figure 4.4: Graphs showing how the average displacement distances varied
with different roll values for the intra-operative data. The pre-plan to
intra-operative comparisons are shown on the left and intra-opetative
post-implant comparisons are shown on the right.

the entire dataset rather than a small subregion. If there is a global sl dofé-
tween two datasets then all the computed local trends are influenced byridein o
to remove this offset an automatic post-processing method is used. Tlgaver
displacement distance can be computed for each patient as in Section 4.2.3 fo
range of different roll values for the intra-operative data. Figurshews how the
average displacement distance varied with roll angle for each patientinirhe
operative dataset is chosen since it is used in both comparisons. Tlangtgl
which gives the lowest average displacement distance is taken to be thall"no
This completes the registration process since all 6 global degrees dbineare
put into correspondence. The displacement results presented in Sé&igrare
roll offset corrected.

4.2.5 Registration of Fluoro to Ultrasound

The second objective of this thesis was to develop an algorithm to registen flu
datasets to ultrasound volumes. This is required to properly assessisgledet
ments for intra-operative planning. It allows changes in the seed distnibiatioe
viewed with respect to the prostate and any other soft tissue featuresehasible
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in ultrasound.

The technique used to register the two volumes demonstrates another appli-
cation for the needle track detection algorithm presented in Chapter 3, tHere
simplified “needle grouping” representation of the fluoro seed clustered tcs
compare and match seeds to the ultrasound volume. The seeds act assfiducia
since they are visible in both imaging modalities and this allows the fusion of the
two.

Needle intersections are computed from the seed clusters reconstnucted f
fluoro data, as described in Section 4.2.2. Similarly, needle intersections with th
insertion plane are computed for the ultrasound volumes using needlefvaokls
using the Hough transforrn [48, 80]. Registration is then performed by mimigiz
the following cost function:

Nus

Cost= 5 d (4.2)

whereNys is the total number of ultrasound needle intersectionsdarslEu-
clidean distance to the nearest fluoro needle intersection from the uliciseadle
intersection.

Since a complete ultrasound seed reconstruction dataset is rarely ayalfieble
alone is not enough to put the two datasets in full correspondence. ldgwev
is still required to determine which fluoro seeds are also found in the ulmdsou
data so that rigid point set registration can be performed to fully registeniine
datasets.

Moradi et al. continue from this method using the ICP [11] method as well
as a Gaussian Mixture Model (GMM) [32] to complete the registration psoces
In addition, the warping of the prostate when the TRUS is fully inserted as com-
pared to when it is retracted to allow the seeds to be visible in the fluoro images
is accounted for [7]. Validation of the needle matching and registration is don
using a “leave-one-needle-out” method where all the seeds from ngexip are
removed to check if the results change [48]. If the results change samtifjavith
the removal of a needle, it indicates the presence of a local minimum making the
registration invalid.
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Figure 4.5: Intra-operative to post-implant needle matching results for one
patient. Matching needles are connected with the red lines.

4.3 Patient Study Results

The patient study presented in this section was performed to verify if the gdgetho
described in Section 4.2 can be used to compute real-time seed misplacements
with respect to the target volume to allow intra-operative planning. In additien
various displacements are analyzed to determine possible trends in misplacemen
or movement which can help influence future plans. The results of a stu@y o
patients are presented for inter-dataset needle matching and seededismiss.

The seed displacements are divided into two types of displacement: intratiope
misplacement and post-implant movement.

4.3.1 Inter-Dataset Needle Matching

Figure 4.5 shows how the intersection data displayed in Figure 4.3 wasttprre
matched. The red lines connect needles that are matched by the algoritem. Th
needle track detection results presented in Section 3.3.2 show corrigeinasst
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Figure 4.6: Displacements of seeds for a single needle. The intra-operative
misplacement is seen from red to green and might be the kind of visu-
alization that can be used in the OR for intra-operative planning.

for over 99% of the seeds. In order to fairly test the needle mathchingithligor
the few incorrectly assigned seeds in the various datasets were manijadiieed
to be grouped with the correct needle. After this adjustment all the neeéles w
correctly matched between all the datasets in under 2 seconds per patient u
unoptimized Matlab code.

4.3.2 Seed Displacement Results

With the needles correctly identified and matched in corresponding datasets f
given patient, the seeds themselves could be directly compared to calc@dte se
displacements. The time taken to obtain the displacements once the seeds are
matched is negligible since it merely a subtraction of 3D coordintates. Figwe 4.1
(appended at the end of this chapter) shows the movements of the steelsrbidne
pre-plan and intra-operative data and between the intra-operatiygoatdmplant

data for one of the patients. The usefulness of the displacement calculation
intra-operative planning is shown in Figure 4.6 which shows actual displant

results for all three sets of data for a single needle.

Average Displacement Magnitude Results

The three-dimensional Euclidean distance that every seed moved betatasats
was computed. For each single patient the average distance was congpthed a
sum of all the distances moved divided by the total number of seeds ingeided
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Table 4.1: Pre-plan to intra-operative and intra-operative to post-implant seed

displacement results.

Patient | Av. misplacemen{ Av. movement
distance distance
(pre to (intra-op
intra-op) to post-imp)
/mm /mm
1 4.56+2.10 3.76+1.89
2 6.17+2.44 3.93+2.45
3 4.3941.78 3.16+1.78
4 4.08+2.25 2.39+1.41
5 5.59+2.25 2.85t1.73
6 4.89+2.18 2.38+1.09
7 4.824-2.46 1.72+0.75
8 5.12+3.02 3.57+1.72
Average 4.94+2.42 29181

the patient. The total average over all eight patients was also computdd 4Thb
summarizes the results.

From Table 4.1 the average displacement was significantly larger fqylane-
to intra-operative case than intra-operative to post-implant dat@.(d, n= 871).

The error in localization of the seeds in intra-operative fluoroscopy @ata,
reported to be less than 0.9 mm [17]. The calculated displacement is tteerefor
not due to errors in seed localization. The result suggests seed displaicdue
to oncologist preferences, needle deflection and prostate movemeng dee-
dle insertion, seen from pre-plan to intra-operative misplacement aseaagavof
4.94 mm, is higher than displacement caused by a change in patient pose and im-
mediate inflammation (measured as intra-operative to post-implant movement, an
average of 2.97 mm).

Regional Displacement Magnitude Results

The average displacement was computed for each of the 27 subreatgfined by
dividing each axis into 3 sections, to quantify the motion in each region. Tables
4.2 and 4.3 show these distances. In the table, the different translieesease
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Table 4.2: Intra-operative seed misplacement results for different prostate re-

gions

Average misplacement distance (mm)

|

left

| midy

| right

inferior

anterior
mid X
posterior

542+ 1.41
411+ 2.19
425+ 1.52

6.52+ 2.63
5.79+ 2.41
5.23+1.76

481+2.41
4.01+2.44
416+ 2.05

mid z

anterior
mid x
posterior

513+ 1.51
465+ 2.14
3.81+1.68

6.58+ 3.07
6.15+ 3.17
5.07+1.97

5.38+ 2.92
4.89+ 2.36
4144 2.88

superior

anterior
mid X
posterior

5.84+1.25
5.06+ 2.20
4.03+1.93

6.70+ 2.76
5.55+ 2.58
5.24+ 2.36

5.71+ 2.09
5.14+ 251
496+ 3.01

Table 4.3: Post-implant seed movement results for different regions within

the prostate volume

Average distance moved (mm)

|

left

| midy

| right

inferior

anterior
mid x
posterior

296+ 1.71
2.99+1.76
2.66+ 1.55

3.67£2.34
2.82+1.57
2.58+ 1.60

3.16£1.81
3.34+1.85
3.26+£ 1.76

mid z

anterior
mid X
posterior

2.68+ 2.30
3.03+ 2.01
3.15+1.42

3.29+ 2.45
1.604+ 0.86
2.30+1.30

3.13+2.14
2.594+1.90
2.98+1.53

superior

anterior
mid X
posterior

3.28+ 2.36
3.04+1.82
3.10+1.35

2.89+1.67
2.16+0.98
2.34+1.18

3.85+2.31
2.56+1.70
3.04+1.02

presented from inferior to superior. Each transverse slice has 9 ckstaiues.

For the pre-plan to intra-operative displacement, the seeds near the hmedial
of the prostate (theaxis) moved slightly more on average. Note that no directional
information can be drawn from this. For intra-operative to post-implantatisp
ments, there were no significant differences in the amount of motion between th
different subregions. In agreement with the average patient datattheiperative
misplacement was greater than the post-implant movement in all regions.
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Table 4.4: Pre-plan to intra-operative misplacement direction results. Values
with a mean value to standard deviation ratio greater than 0.95 are in

boldface

Average misplacement direction vectoxs/(z) (mm)

|

left \

midy \

right

inf

ant

(0.33,0.543.87)
+(2.36,2.851.79

(-0.01,-1.47-4.14)
+(2.59,2.55.20

(-0.51,-1.59,-2.88
+(2.05,2.06,3.15

mid X

(-0.24,0.02,0.31
+(1.55,2.01,3.92

(0.94,0.31,2.03)
)4(1.48,2.16,5.56

(-0.70,-0.73,0.31
+(1.96,2.14,3.56

post

(0.41,1.01,1.87)
+(2.43,1.85,2.67

(0.21,-0.053.47)
)+£(3.33,1.142.55

(1.40,0.07,0.55)
+£(2.61,1.78,3.22

mid z

ant

(1.630.15,3.83
+(1.532.471.85

(1.90,-0.69,-3.71
+£(2.31,2.73,4.82

(0.42,-0.044.06
+(2.48,1.823.46)

mid X

(0.10,-0.97,0.70
+(2.09,1.87,4.15

(-0.13,-0.28,3.21
)+(1.86,2.36,5.75

(-0.79,0.96,0.57
+(2.52,2.49,3.92

post

(0.29,-0.07,1.45
+(2.12,2.12,2.57

(-0.60,0.543.46)
)+£(2.83,1.412.74

(0.00,1.15,0.96)
+(1.84,2.08,4.01

sup

ant

(3.07-1.48:3.5])
+£(2.022.471.51)

(2.58-0.60,-3.56)
+(2.31,3.16,4.28

(1.68,2.342.79
+(2.64,2.62.86

mid X

(0.12,-1.79,0.36
+(2.60,2.12,4.02

(0.11,0.62,2.58)
)£(2.36,2.35,4.72

(-0.70,2.07,0.51
+(2.77,2.80,3.53

post

(-0.41,-0.40,1.35
+(1.99,2.45,2.88

(-2.07,0.443.76
)£(2.25,1.5%.69

(-1.26,1.76,0.87
+(1.99,2.97,4.01

Displacement Vector Results

It was noted that different magnitudes of displacement occurred ineliffeegions
of the prostate. The average displacement vectors for each of theoBagmns
was computed. Tables 4.4 and 4.5 summarize the general displacementirectio
seen. The displacement vectors are visually illustrated in Figures 4.7 anth&8
standard deviation ellipsoids are drawn in separate plots where eachidliipso
centered in its respective region. Note that for the post-implant movemetorse
the axis labels indicate the position of the sub-regions but the vectors thesselv
have been scaled by 2 so that they can be seen. The intra-operatiVecersent
vectors are to scale.

As with the scalar measurements, the directional displacements from intra-
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Table 4.5: Intra-operative to post-implant movement direction results. Values
with a mean value to standard deviation ratio greater than 0.95 are in

boldface

Average movement direction vectorsy;2) (mm)

|

left \

midy \

right

inf

ant

(0.71,0.57,-0.38
+(1.99,1.16,2.37

(1.20,-0.00,-0.09
+(1.56,0.85,3.83

(0.29,-0.27,-0.41
)+(1.91,0.77,3.03

mid X

(0.38,0.48,0.18)
+(2.39,1.13,2.19

(1.75,-0.05,0.12
+(2.18,0.98,1.35

(0.39,-0.40,0.93
)+(2.00,1.29,2.81

post

(-0.011.090.36)
+(1.401.152.31)

(0.66,0.04,0.86)
+(2.05,0.68,1.89

(0.08;1.67,1.04)
)+(1.731.442.30)

mid z

ant

(-0.38,-0.12,-1.13
+(1.31,1.06,2.91

)(0.70,-0.06,-1.29
+(1.26,0.74,3.59

(0.10,0.29,-1.12
)+(1.31,0.98,3.27

mid X

(-1.12,0.72,-0.34
+(1.80,1.53,2.42

(-0.02,0.15,-0.66
+(0.46,0.74,1.57

(-0.72,-0.33,0.68
)+(1.01,0.95,2.72

post

(-0.79,0.97,0.98
+(1.12,1.67,2.37

(-0.59,0.03,1.36
+(0.99,0.75,1.85

(-0.66:1.390.97)
)-(1.741.351.82)

sup

ant

(0.53,-0.35,-1.65
+(1.25,1.24,3.22

(1.11,0.08,-0.63)
+(1.11,0.99,2.78

(1.340.59,-0.50)
+(1.331.31,3.85

mid X

(-0.69,0.11,-0.98
+(2.07,1.26,2.32

(-0.72,0.07,-1.03
+(1.41,0.94,1.26

(-0.11,-0.15,0.10
)(1.63,1.14,2.36

post

(-0.08,0.49,0.14
+(2.01,1.40,2.32

(-0.34,-0.05,0.23
+(1.42,0.93,1.99

(-0.48,-1.00,0.41
)(1.97,1.46,1.75

operative to post-implant were smaller than in the pre-plan to intra-opecase
The significant intra-operative misplacement results can be summarizatbasf

(i) inferior displacement of lateral anterior see(ii$,superior displacement of me-
dial posterior seeds ar{di) anterior misplacement of superior anterior seeds. For
the post-implant movement there (§: inward lateral movement of inferior poste-
rior seeds andii) anterior movement of superior anterior seeds.

4.3.3 Preliminary Fluoro to Ultrasound Registration Resuts

Needle matching is required as a preliminary step towards registering the fluor
seed reconstructions to ultrasound volumes. This needle matching is sbown f
patients 9 and 13 in Figure 4.9. The needle matching was used to match the avail-

49



Intra-operative misplacement direction vectars
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Figure 4.7: Intra-operative misplacement vectors (above) and the standard
deviation ellipsoids (below).

able seeds found in ultrasound with the corresponding seeds founaiao.flihe

unmatched seeds were then removed so that rigid point set registratilhbeou
performed on the remaining seeds.

Moradi et al. completed the registration process by accounting for prostate
warping with the TRUS probe fully inserted and then using both the ICP method a

well as the GMM method to perform the registration. An average post-ratjcsir
distance of~3 mm was found in both cases. The results did not change signifi-

cantly using the “leave-one-needle out” validation method [48]. This verifiat
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Post-implant movement direction vectors
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Figure 4.8: Post-implant movement vectors (above) and the standard devia-
tion ellipsoids (below). The units in brackets correspond to the vector
lengths and not the subregion positions. They are used to remind the
reader that these vector lengths are doubled to make them visible.

the needle matching method used to for initial seed matching that is needed to
perform full registration works.

4.4 Conclusions and Displacement Trend Hypotheses

A chain of techniques have been presented that allow seed displaceiteitation
as well as registration of fluoro to ultrasound. The needle track detedgjorithm
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Figure 4.9: Needle matching used to align the fluoro and ultrasound data
match the detected seeds

described in Chapter 3 plays a crucial role in achieving both these olggctiv

The “leave-one-needle-out” method performed by Motdil. validates the
needle matching method that is used to register fluoro data to ultrasound. With this
registration the true potential of intra-operative planning can be realized.

The seed displacement computation, like the needle track detection algorithm,
has been shown to meet all of the intra-operative planning requiremests (f
automatic and reliable). It is therefore a perfectly viable method to detect intra-
operative misplacements especially with registration of fluoro to ultrasound.

Part of the first objective of this thesis was to determine if trends existed that
could be compensated for before a needle is inserted. The next seiafisions
are hypotheses for potential trends seen in the displacement data.

For the pre-plan to intra-operative comparison, several regional desplents
were noted. The larger amount of misplacement for seeds near the medial lin
is most likely due to the fact that this is the longest part of the prostate giving
the oncologist more leeway to steer the needles. There is no directiondltéren
this placement which suggests that it is not due to needle or prostate movement.
Similarly, the inferior misplacement of anterior seeds and superior misplatemen
of posterior seeds is also likely due to oncologist tendencies. There i& aflac
implantable tissue in the anterior superior quadrant (close to the bladdegoan
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seeds are deliberately placed more inferiorly. The greater retractiotecdllante-
rior seeds is due to the presence of the pubic arch which forces a séilloplant.
The divergence of the rectum from the prostate in the superior postgramrant
leads to a tendency to “over-plan” the medial superior region on the postete.

The anterior misplacement of superior anterior seeds can be explained eith
by prostate rotation or needle deflection. Any transverse displacemtd séeds
could be due to needle deflection. It is expected that this effect would ls¢ mo
visible with superior seeds. However, this does not explain the anterggtidin
of the misplacement. Therefore, assuming that it is due to prostate movement, the
base would have to rotate posteriorly during insertion to observe this despéatt.

This would suggest that the prostate is held more rigidly by the TRUS probe -
which is on the posterior side, allowing downward rotation of the gland and so
upward motion once the needle is removed - than the pubic arch.

For the intra-operative to post-implant comparison the first directionallaen
sion can be drawn from the lack of a global outward seed displacemens. Th
suggests that inflammation has little or no effect for immediate post-implant seed
movement. The only outward motion is seen with anterior movement of superior
anterior seeds. This could be due to pressure from the bladder onpirecsiside
of the gland when the patient pose changes from dorsal lithotomy to sujpine.
ward lateral movement of inferior posterior seeds must also be due tgelan
patient pose although further analysis of the forces on the gland dugrghténge
is needed to verify this.

In general the results show that intra-operative seed misplacement és larg
than post-implant movement. This confirms results from Cahgl[15], who
explain the large impact that both prostate rotation and needle deflection have
This also agrees with work done by Wanhal. to evaluate needle deflecticn [79]
and by Lagerburget al. who evaluate prostate rotation during the insertion of
needles![40]. Swet al. performed a study on the effect of seed misplacement
on the delivered dose using random noise to model the misplacement in§tead o
actual measurements [69] and found minimal changes in the D90 measure with
misplacements of up to 4mm. However, the random noise model does not include
the trends presented here. The seed displacement trends foundiidréherefore
but incorporated into a similar study to verify these results.
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Regional, directional displacement measurement techniques have leeen pr
sented for seeds in prostate brachytherapy. The hypotheses dddueile need
further confirmation from more specialists and more data may be neededtto dete
mine real trends. However, the seed displacement measurement metbwads pr
all the tools needed to automatically compute displacements in a larger patient
study to further understand variations in dose distributions from thelpre-phe
techniques described can be used to collect and measure trend dath a&s tove
accurately detect misplacements intra-operatively. Measuring seedcdisydats
is needed for intra-operative planning so that an oncologist can caaeither
before insertion to allow for known displacement trends or immediately after-ins
tion if misplacement is detected. However, this is only possible if change in dose
coverage due to these displacements are known relative to the target vtsetie
The verified fluoro to TRUS registration method presented in this chaptepuaish
to be a suitable solution to this issue. It should be noted that the same registration
technique can be used to register CT to TRUS (including the warp compensatio
[7,48]) which would be needed to make sense of post-implant movememiand
gration. The significance of being able to do this registration is that the target
volume is visible in the ultrasound images while not in fluoro or CT. However,
the relatively low image quality, characteristic of regular B-mode ultrasound im-
ages can make it difficult to delineate the prostate and especially difficultwo vie
tumours. In fact, the registration would not be very useful if the prostatidc
not be segmented in the ultrasound images. It would be convenient tleetefo
provide a potential intra-operative planner with a more intuitive display otithe
trasound images with automatic delineation of the target areas. Chapteribegsc
an approach to complete the intra-operative planning process usinguhchslas-
tography to enhance the target volume visualization.
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Intra—operative misplacement

Figure 4.10: Pre-plan to intra-operative seed misplacement results for patient
4,
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Chapter 5

Ultrasound Elastography for
Prostate and Tumour Delineation

5.1 Introduction

Delineation of the target volume in ultrasound is required for intra-operalan-
ning and is addressed in this chapter. Prostate segmentation in ultrasownd is ¢
rently required during the pre-plan stage of most prostate brachytherape-
dures. Contouring is needed to determine how and where to place sabdstbe
prostate will be sufficiently irradiated. For intra-operative planning tokwtbis
process must be brought into the operating room. In fact, even withatecumis-
placement detection and registration of fluoro to TRUS (see Chapter 49siigpe
segmentation in the ultrasound images is not possible then the whole planning pro
cess cannot work.

Providing a method to delineate the target region intra-operatively alsossolve
another issue that leads to errors in seed positioning. Chepter 4 praseathod
of computing errors that arise from needle or prostate movement, prodtata-in
mation or change in patient pose. However, the first of the issues sumcharize
Chapter 1 has not been addressed yet. This is the fact that the sligpesition
of the prostate may have changed in the time between the pre-plan scan and the
operation itself. Intra-operative prostate segmentation and cancetidetsould
allow for an “Intra-operative pre-plan” [52] which would remove thisicern and
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Figure 5.1: A sagittal B-mode ultrasound image of the prostate with (right)
and without (left) manual contouring.

has been shown to produce better results that regular pre-plans [47].

Figure 5.1 illustrates how it is not trivial to segment the prostate in a traditional
B-mode image due to low resolution and blurred boundaries. Accurate segme
tation in ultrasound has therefore been studied widely [1, 7, 29, 42, 46pr-
porating this into an intra-operative planning environment requires thédattee
performed rapidly with as little manual interaction with the software as possible.

Active Shape Modeling (ASM) [29], deformable shape modeling [2@]iae
growing [45] and warped ellipse fitting [7. 42] are all automatic segmentation a
gorithms that could work for the purpose of intra-operative planningwéver,
all these methods require some sort of manual initialization. This could still work
since the user input is minimal but more research would have to be donexon ho
feasible it is.

In this chapter, another technique that removes the initialization problem is
presented. Quantitative or absolute ultrasound elastography is usedsormead
display the stiffness of the different regions which inherently delineatsatiget
region since the prostate tissue has different elastic properties fronrissisding
region. Another incentive to use elastography is that computing the stfbidse
tissue also allows for potential visualization of tumourous regions within prostate
as well as the gland itself. Knowledge of the location of the cancerousn®gio
can help plan a more case-specific seed distribution. It could even allalizied
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treatment by boosting dose levels in tumourous regions or sparing moreyhealth
tissue as is proposed in the field of focal therapy [2, 18, 50].

Krousoupet al. suggest that there is a direct relationship between tissue stiff-
ness and the cell density in tissue [39]. Since cancerous tissue hasea tédjh
density (more cells per unit volume) than non-cancerous tissue, it foll@avstba-
surement of the rigidity of the tissue should help with cancer detection. dinties
use of elastography in targeted prostate biopsies has already bedigateek[53].
Methods to compute the relative elasticity (stiffness is measured in comparison
to surrounding tissue) in real time have been studied previously [38.65863%.
However, it would be more useful to compute the absolute elasticity (measuring
the Young’s modulus) of the different regions so that results donit t@s much
between cases. This also allows for better comparison between diftEtasets
for further investigation. The implementation of an algorithm used to compute the
Young’s modulus using ultrasound imaging will be presented in the following se
tions. Mahdaviet al. have presented a fully automatic approach for prostate seg-
mentation which uses elasticity measurement to initialize the segmentation [43].

A real-time stiffness display, or elastogram, provides a more intuitive view of
the prostate region. Overlaying registered intra-operative or pre-pkassvould
then give an oncologist immediate feedback on the quality of a given implant with
out having to explicitly segment the target region. Alternatively, the elaatogr
could be used to initialize any of the automatic segmentation algorithms described
so that the dose coverage can be measured.

5.2 Computing Absolute Elastography in Ultrasound

The basis of the elastography algorithm is that materials with different stfese
respond differently to external stress, whether it be static compressiymamic
excitation. The idea is to measure this response and then convert it into arereas
ment of the rigidity of the material.

Dynamic excitation at a given temporal frequency generates displacements
within a given material. It can be shown that resulting displacements campie re
sented as the sum of the gradient of a scalar potemgjand the curl of a vector
potential,i [9, 36]. @ corresponds to a “dilatational” wave agdcorresponds to
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a “shear” wave. The spatial frequencies, or wavenumbers, of thatilliaal wave,

kg, and the shear wavés, are functions of the Latnparameters of the material
which describe its viscoelastic propertiég.can usually be computed directly and
so the viscoelastic properties (including the Young’s modulus) of spedaifitgin

a volume can be found by computing the local three-dimensional spatiakiney,

ks, from the measured displacement data. The local frequencies camipeteol
using lognormal quadrature filters as Local Frequency Estimators (J1EEB5].
Another method for performing the inversion required to compute the local fre
guency is to use a Travelling Wave Expansion (TWE) model of the solutioreto th
wave equation (a sum of waves travelling in every direction with the same Ispatia
frequency) [9]. Measured displacements can be fitted to the TWE modeh® s
for the spatial frequency and so the Young’s modulus.

The algorithm is implemented as follows: A specific excitation frequefigy,
can be used to generate motion in the tissue. A tissue motion tracking algorithm
[8, 19] is then used to create a series of displacements per pixel as téofunc
of time from N¢pp frames per plane. Assuming linearity, all the motion has the
same temporal frequencys]. Therefore, a complex exponential describing just
the phase and amplitude of the motion at each pixel can be used to rephesent
response of the system. This complex exponential is called a “phasotthisin
way, a single phasor displacement image is generated from the Beppfime
series displacement images which can reveal any travelling waves tlaeated
in the tissue. The waves seen in a phasor displacement image, howeven)yar
2D projections of the actual travelling waves created by the excitation.efdrer
2D phasor images are computed for a seriel g planes creating a 3D volume
sweep. The set dfippe 2D planes are interpolated into a Cartesian grid so that the
3D waves can be seen. The local spatial frequencies of these wasxesapoint
in a given plane are computed using LFE applied to the 3D Cartesian blogk. Th
creates a single elastogram (the “ppe”subscript stands for “planetaséogram”).
This process is repeated for an entire volume produbkaglastograms fronN,
planes. Note thale = Np — Nppe+ 1.

Note that this means that a few planes must be acquired before the first elas
togram is computed since a block of 2D phasor images is needed. However,
relative elasticity or strain image can still be generated directly from eacthab p
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sor image. Therefore the number of strain imalygs=Np.

The described inversion algorithm has been previously implemented #or fre
hand ultrasound [10]. This study includes the use of a Graphical SsimgeUnit
(GPU) which takes advantage of parallel processing to speed up ttesgrao that
it can be used in real-time. The next section describes how it has been inmpéeine
for elasticity measurement of the prostate region.

5.3 System Implementation for Prostate Elastography

This section describes the system design used to implement Bagjledrs algo-
rithm to compute absolute elastography [10] for the prostate. The entiensys
summarized in figures £.6 and 5.7 but is described in the following sectiots firs

5.4 The BK Ultrasound Machine

A BK ultrasound machine (BK Medical, Herlev, Denmark) is used with the 8848
4-12 MHz TRUS linear transducer in this study. It provides extremely higlyéna
resolution which allows better tissue tracking which should increase theiligliab

of the system. It is also already used at the Vancouver Cancer Cafe) (&Ghe
BCCA which makes it possible to use the same ultrasound machine that is used in
standard clinical routine and therefore can shorten significantly the daizsétion
during the procedure.

Raw Inphase Quadrature (IQ) data can be read from the machinetbrriax
control of the acquisition is not possible. Therefore the default imagirapeters
are kept with the highest sampling rate (The depth of acquisition is 5.6 cmand th
sampling rate 42.66 Hz) and the 1Q data is continuously read into an exteZnal P
through a DALSA Xcelera-CL PX4 Full frame grabber card (Teledydd.BA,
Waterloo, ON). Figure 5.2 shows an image of the BK ultrasound machine with the
TRUS probe and the raw data output port.

The main issue with not having an external control of the image acquisition
is with the tissue tracking algorithm. Excitation frequencies are usually around
~100 Hz which arehigher than the sampling rate. The Nyquist criterion states
that the sampling rate must be at least twice the frequency of the signal-to pre
vent aliasing. Therefore, there needs to be a method of increasingripdirsg
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Figure 5.2: The BK ultrasound machine. The raw data output port located at
the back of the machine is shown in the inset image.

frequency. One example of this is to use sector-based acquisition similar to the
acquisition used for Doppler imaging [8]. However this requires contfahe
transducer crystals which is not possible with the constraints of the BK Mledic
Ul. A band pass sampling algorithm described by Eskanefaal. is therefore

used which allows phase and amplitude reconstruction with sampling freégaenc
that are lower than the excitation frequencies. The following equation Ji&in

more accurately describes the limitations for the sampling frequédgcy,

2fo+B 2fe—B
< fs< 5.1
m+1 = °= m G.1)
wherefe is the excitation frequenc is the allowed bandwidth of the excita-
tion frequency, andhis any positive integer. This means that for a given sampling

frequency, the allowable excitation frequencies are restricted to ases lfeom-

61



Table 5.1: Excitation frequencies that allow tissue tracking with band pass
sampling for a frame rate of 42.66 Hz.

Excitation Frequency (Hz)
Minimum | Maximum | Center
69.0 80.3 74.7
90.3 101.7| 96.0
111.7 123.0] 117.3
133.0 144.3| 138.6
154.3 165.6| 160.0

175.6 187.0| 181.3
197.0 208.3| 202.6
218.3 229.6| 2240

puted for different values af). Still, as long as the excitation frequencies do fall
within these bands, the algorithm allows for accurate tissue tracking withir-the a
lowed bands. Table 5.1 summarizes the allowed bands for the BK sampling rate
(42.66 Hz).

Another consideration that needs to be taken into account is the relationship
between the data collected for different planes in a volume. From sectipn 5.2
phasor displacement images are computed for each plane. In orderydrstsd
displacements in 3D, the phasor planes must be in phase with each othigrerin o
words, the excitation cycle must be the same for each plane. If the acquisition
could be turned on and off then this could be achieved by only beginnireatb r
data for a plane when the excitation is at the start of a cycle. Since there is no
control of when the data is to be outputted, post-acquisition phase coniperisa
used. The compensated phasor imde, for planei is computed as:

PG = Pel~2m(ti—to)) (5.2)

whereR is the uncompensated phasor imatyés the time stamp for the first
frame of plane andty is the time stamp of the first frame of the very first plane
[8].

To summarize the collection process for absolute elastography with the BK
ultrasound machineN¢pp=20 frames are collected per phasor imagé,pe=22
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Figure 5.3: The TRUS robot with the BK transducer.

phasor planes are used to compute one elastogram. A tatgFdf00 planes are
collected producingNe=79 elastograms for the entire volume. If strain imaging is
used instead of absolute elastograply=N,=100.

5.5 The TRUS Roll Mechanism

A previously designed TRUS roll robot is used in this study. A cradleifipalty
designed to hold a TRUS probe is attached to a regular TRUS mount. A “roll”
motor is used to sweep the cradle and is equipped with an optical encodeit so th
the position can be accurately controlled by a “TRUS robot control baxhotor
control Figure 5.3 shows a side view of the TRUS robot with the BK transduc
held in the cradle.

A volume sweep is created by rolling the TRUS probe in°dr&crements
N,=100 times. The full sweep angle is therefore Ng*9C° from - 45° (pa-
tient right) to + 45° (patient left). The probe remains at a given roll location until
Nt pp=20 frames have been acquired.
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5.6 The Excitation Mechanisms

A different excitation mechanism is needed for the elastography systeemdiag
on the type of elasticity that is desired.

Strain, or relative elasticity is measured from 2D planes and therefougesq
excitation that is parallel to the imaging direction (any wave propagation that is
not cannot be measured). This requires transrectal excitation whidts weell
because there is close contact with the prostate itself and also takes gévainta
the high image resolution in the axial direction. This method is not suitable for
absolute elastography since the excitation direction changes as the TRidBwb
sweeps. The inversion algorithm requires a static excitation source foh vtlcan
provide a solution for the frequency and direction. Therefore a texirsgal exciter
is used.

5.6.1 Transrectal Strain Vibration

A DC motor with a an offset mass on its shaft is mounted onto the cradle of the
TRUS robot transducer cradle. The offset mass pushes the cragieatdminst a
spring and then releases it as the strain vibration motor rotates forcing itito os
late vertically. This causes the probe itself to oscillate, exciting the tissuerperpe
dicular to imaging direction. The excitation frequency used for strain imaging is
usually much lower than the excitation for absolute elastography system seid is
to ~10 Hz for this system.

5.6.2 Transperineal Shaker

For absolute elastography, a voice coil shaker is used to excite the yrerioke
the patient (or the model of the perineum in a phantom). A CIVCO flexible arm
(CIVCO Medical Solutions, Kalona, 1A) is used to mount the shaker to thieqa
table. The flexible arm can be maneuvered in order to provide good tevithc
the excitation surface and then locked into position using cable locks. Fagdire
displays the shaker together with the CIVCO arm. Figure 5.5 shows the éransp
ineal exciter mechanism with the TRUS robot and BK transducer.

An Agilent U2761A function/generator (Agilent Technologies, Santa&lar
CA) is used to output the desired excitation frequencies. It will be refelw as
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transperineal

@

to transperineal
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Figure 5.4: The voice coil exciter shown alone (left) and mounted to a table
using the CIVO flexible arm (right).

CIvCO Transperineal
flexible shaker
arm

Phantom
prostate

Figure 5.5: The transperineal exciter mechanism, TRUS roll robot, and BK
transducer in a mock setup with a phantom.
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Figure 5.6: The control unit for the elastography with all the required con-
nections.

the “transperineal shaker control box”. Combinations of excitatioruieegies can
also be produced which allow measurement of the elastic modulus usinglsever
frequencies simultaneously. The average modulus would give a moreatecu
result. In this case separate phasor images are computed for eachnfrei
each plane.

Figure 5.6 shows how the control boxes and PC are connected. Figure 5
shows the complete setup during an absolute elastography sweep.

5.7 Phantom and Patient Studies

In order to check how well the elastography system is suited for intreatipe
planning it was tested with both phantom and patient data. Preliminary results
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Figure 5.7: An absolute elastography sweep showing all the different electri-
cal components. The “real-time” elastography image can be seen to be
slightly different from the BK monitor image. This is due to the fact the
22 frames are required to compute one elasticity image so it lags slightly
behind.

only are presented in this thesis to check if the target region is delineated well.
Both strain imaging and absolute elastography was performed on a CIRS pha

tom model 066 (Computerized Imaging Reference Systems, Norfolk, VAQhwh

has 3 simulated hard inclusions. The approximate locations of the inclusi&ns ar

1. In the “patient” right, superior, anterior region of the prostate pharfaira
sweep angle of - 5.9).

2. In the “patient” right, inferior, posterior region of the prostate phanfana
sweep angle of - 4.9).
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3. Inthe “patient” left, central region of the prostate phantom (at a swaegle
of + 22.59).

Absolute elastography was performed on patients who were undergaing r
ical prostatectomy due to prostate cancer at Vancouver General Hs{otd).
Institutional Research Ethics Board approval and patient conseset aogjuired.
Results were compared to qualitative information, provided by medical réside
who viewed the biopsy report, at the time of the surgery. The study waktase
check both the reliability of elastography systamd the feasibility of using it in
an intra-operative environment.

Raw IQ data, time displacements data, phasor displacement data and elasticity
was saved in all cases which can be used in future studies.

5.8 Results

As a demonstration of the full system, time displacements, phasor displacements,
relative elasticity and absolute elasticity images are provided for the phantom. A
solute elastography results are shown for the patients. A volume swespsfaiute
elastography took-1 minute.

In all the images shown below the horizontal axis runs from inferior torsoipe
(i.e. the apex of the prostate is located on the left side of the image and bage on th
right). The vertical axis is the axial line of the ultrasound image and rums fhe
probe (at the bottom of the image) upward.

5.8.1 Phantom Results

The convenience of being able to test the phantom repeatedly allowedaaan
frequencies to be used. Three frequencies were used simultanendsth@sen
such that were each within the allowable bands from Table 5.1 and alsodfagle
apart in baseband to be easily separated when computing phasorsequencies
chosen were 144 Hz, 181 Hz and 208 Hz. These are all “alloweduéegjes
and are measured as 16.0 Hz (343f;), 10.4 Hz (181 4fs) and 5.4 Hz (208—

5fs|; the 180@ phase shift is accounted for in the bandpass algorithm [19]) when
brought to the baseband. Therefore they are far enough apaddorate frequency
reconstruction.
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Displacments for plane 55 time: 234ms

50 100 150 200

Figure 5.8: A time displacement image from plane 55 of the phantom data.

Intermediary displacement images

A single time displacement image is shown in Figure 5.8 at plane 55 (out of
100(Np)). This corresponds to a sweep angle of +%.5A series of 20 K ,p)of
these images are used to compute a phasor displacement image at plaressh for
frequency which is shown in 5.9.

Strain Imaging

To provide an investigation of the use of relative elasticity or strain imaging a
10 Hz excitation signal was used to excite the phantom using the strain vibration
motor. Figure 5.10 shows the strain result at a sweep angle of°>-td.8how both
inclusions on the phantom right side.
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144Hz: 55100 181Hz: 55/100 208Hz: 55100

Figure 5.9: Phasor displacement of plane 55 for 144 Hz (left), 188 Hz (mid-
dle) and 208 Hz (right). The projected wavelengths can be seen to get
smaller for higher frequencies.

100

120

140
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Figure 5.10: A strain image of the phantom at a sweep of -4.Both of the
inclusions located on the right side of the phantom are visible.
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B-mode image; sagittal slice
shewing 2 inclusions{Sweep angle: -4.5 degrees)

50 100 180 200

Absolute Elasticity image: sagittal slice
sheowing 2 inclusions{Sweep angle; -4.5 degress)

50 100 150 200

B-mode image: sagittal slice
showing 1 inclusion {Sweep angle: 22.5 degrees)
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Absolute Elasticity image: sagittal slice
showing 1 inclusion (Sweep angle; 22.5 degrees)
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Figure 5.11: B-mode images (top) are compared to absolute elasticity images
(bottom) for the phantom. The results are shown for a sweep angle of

- 4.5° (left) and + 22.5 (right).

Absolute Elastography

Figure 5.11 shows the absolute elastography result for the angle3adds+ 22.%
showing all three inclusions. The colourmap for the images is set from (bkirg)

to 50 kPa (red). The elastic modulus was computed by averaging the reeuits f
transperineal excitation at 144 Hz, 188 Hz and 208 Hz.



B-mode image; sagitial slice B-mode image; saoitial slice
frem the rght side of the prostate from the left side of the prostate

Ahsclute Elasticity image; sagittal slice Absclute Elasticity image: sagittal slice
fromm the rght side of the prostate from the left side of the prostate

50 100 150 200 50 100 150 200

Figure 5.12: Absolute elastography results (bottom images) for patient 1 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The B-mode images (top images) are manually contoured to show the
prostate more clearly.

5.8.2 Patient Results

The absolute elastography results for 2 patients are presented in this SEsiad

tation frequencies of 58 Hz, 75 Hz and 96 Hz were used. Howevertbaly5 Hz

excitation provided reliable results. The images in this section compare the elas-

tograms to B-mode images of the same slice. Since the prostates are not clearly

visible in B-mode images a manual contour is overlaid on the image to segment it.
The first patient is an older man with a large prostate. According to medical

residents who viewed the biopsy report, several tumours existed on tiselebf

the prostate at the base. Figure 5.12 shows the result for this patiem.déceen

that the left side is much stiffer than the right side, especially at the base of th
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E-mode image. sagittal slice E-mode image. sagillal slice
from the right side of the prostate frorn the left side of the prostate

Absolute Elasticity image: sagittal slice Absolute Elaslicity image: sadittal slice
fram the right side of the prostate from the left side of the prostate
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Figure 5.13: Absolute elastography results (bottom images) for patient 2 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The B-mode images (top images) are manually contoured to show the
prostate more clearly.

prostate (on the right side of the images).

The 2nd patient in this study is a younger man whose prostate is therefone muc
smaller (prostate volume has been shown to steadily increase with ageTi8]).
cancer, according to the nurses, was again located on the left side findely
spread. Figurzs 5.13 displays the results for patient 2. From the abstastieity
results, the left side of the prostate is much stiffer than the right side.

For reference, the same results for both patients are shown with unosehtou
B-mode images in Figures 5.14 and 5.15, appended at the end of this chapter
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5.9 Conclusion

An elastography system has been successfully implemented and shownk t@wo
bustly. The focus of the experiments was on absolute elastography wioikgs
guantitative results that can be used in future studies but reliable strain gnagin
(relative elasticity) is also provided. The strain imaging worked well for thenp

tom but has not been tested on patients. The system is capable of saainglata

and so more research can be done in this area.

The new absolute elastography system [9] demonstrated promising régults.
the requirements for the application of intra-operative planning are mettlyFirs
the time taken for a full volume sweep-sl minute which is short enough for it to
be used during a brachytherapy procedure.

The software also works well to enhance the target region and sefidrate
the surrounding region. For both the phantom and the patient data, tlotediete
stiffer regions correlated well with the inclusions or expected tumour location
Although much more data is required, it is proposed that an elastogram aviitier
a more intuitive representation of the prostate and especially of canaegiass.
When combined with seed matching and registration of fluoro to ultrasound, an
oncologist would be able to view seed positions and potential misplacements with
the respect recognizable stiffer regions (displayed as red) in theglastoThis in
effect allows intra-operative planning for prostate brachytherapyowtitthe need
to actually segment the prostate.

For a more calculated approach to intra-operative planning, explicit sggme
tion is required. Still, the visual delineation provided in the elastograms stgyges
that it is possible to use absolute elasticity images to initialize other automatic seg-
mentation algorithms [1, 7, 29, 42, 45]. A fully automatic approach to prostate
segmentation using this approach is described by Maketali [42].

More research is still required to further validate the use of elastogratey
software must be tested on prostates that have brachytherapy seeddeahjia
side them to see what effect that has on the results. A transrectal excitetha-
nism that remains fixed as the probe rolls would be beneficial becausecitagion
would take place closer to the prostate. Developing an exciter like this wodld ad
another benefit since the majority of the displacements would be in the axial di-
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rection which has the best resolution in ultrasound images. One shouldesigo v
that the seeds do not cause peculiarities in the raw 1Q images used to cotapute e
ticity which could negatively impact the result. If this is the case then ultrasound
elastography could not be used in between implants but could still be useel in th
OR just prior to the first implant.

Research on multi-frequency excitation on patient data is also needed.eA wid
range of frequencies could be tested for the phantom but this was s&ibfsowith
the patients. Itis worth finding a set a frequencies that work well so tleahging
to further improve the result can be done.

The last area of future research for the use of absolute elastogi@pimyra-
operative planning for brachytherapy is to compute true correlationscleatthe
stiffness and the cancerous regions. This can be done by compariigstagrams
with pathology results from excised prostates. If a strong correlatioleanade
then subregions within the prostate in the elastograms can be identified as-canc
ous tissue. Combining this with automatic segmentation algorithms would allow
for complete dose coverage of cancerous tissue in real time, usingesessiruc-
tion from Chapter 2 [17], along with misplacement detection using displacement
techniques from Chapter 4. The current system would rely on oncbliogis
ition to determine what the different hard and soft regions are so thatessd
misplacements can be compensated for. Still, the stiffness map does simplify the
image to enhance the target region.
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B-mode image; sagitial slice B-mode image; sagitial slice
from the right side of the prostate from the left side of the prostate

Ahsclute Elasticity image: sagittal slice Absclute Elasticity image: sagittal slice
from the right side of the prostate from the left side of the prostate

50 100 150 200 50 100 150 200

Figure 5.14: Absolute elastography results (bottom images) for patient 1 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The elastogram enhances the target regions in the images.
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B-mode image. sagittal slice BE-mode image: sagiltal slice
from the right side of the prostate from the left side of the prostate
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Absolute Elasticity image: sagittal slice Absolute Elasticity images: sadittal slice
fram the right side of the prostate from the left side of the prostate
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Figure 5.15: Absolute elastography results (bottom images) for patient 2 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The elastogram enhances the target regions in the images.
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Chapter 6

Conclusions

Interactive intra-operative planning is a method used to reduce misplatenmas
during prostate brachytherapy [52]. The reasons why errors thygestion occur,

as outline in Chapter 1 can actually be split into two types: Those that oceur as
result of changes in the target volume as compared to the pre-plan aedhiabs
occur due to seed displacements during and after implantation.

In order to make intra-operative planning plausible, techniques must ble use
to give the oncologist fast and reliable information on the structure of tigettar
volume as well the positions of seeds relative to the pre-plahthe target vol-
ume. Systems and algorithms that address these issues have been gingbige
thesis. The proposed methods are purposefully chosen to make useimithie
ing modalities that are already being used in standard procedures. Faiamcal
perspective, this is important since it is not easy to make drastic changes to th
standard work flow.

A list of contributions is presented in the next subsection.

6.1 Thesis Contributions

e A real-time GUI has been developed that incorporates automatic segmenta-
tion of fluoro images used to reconstruct the intra-operative seed pasition
A potential graphical display of the reconstruction is also presented. The
availability of this data is crucial for intra-operative planning to work.
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e A method used to simplify the representation of a 3D seed cluster by finding
needle tracks has been developed. This seed matching is used to compute
seed displacements which can be done in real-time and also for studies to
predict trends. The major contribution of the algorithms presented is that
they work reliably on intra-operative fluoro data.

e Two different registrations are presented. Firstly, implantation axis detectio
is used to put full seed reconstructions from fluoro, CT and pre-aséts
into correspondence which allows seed displacement calculation. Sgcond
a method to help with the registration fluoro to intra-operative TRUS which
puts the seed positions and displacements into the patient coordinate system.

e A method to compute and display the absolute elasticity of a prostate vol-
ume from ultrasound has been implemented. This provides real time organ
and tumour delineation which justifies the significance of the registration of
fluoro to ultrasound. In addition, this provides a method of viewing the tar-
get region in the OR which means the pre-plan can be done just prior to an
operation so that there are no changes in the prostate volume between the
pre-plan and operating conditions. This method of pre-planning has been
referred to as “intra-operative preplanning” [52].

With the above contributions a proposed intra-operative planning pratano
be developed. For example a procedure described below could ke used

1. Just prior to the the first needle implant, perform a full absolute elagtbgr
sweep to create an intra-operative preplan.

2. Adjust the intra-operative pre-plan to compensate for pre-calculagion-
dependent, displacement trends.

3. Insert a few needles (the number is subject to the oncologists disgriation
key target areas.

4. Reconstruct the seed positions using intra-operative fluoro imagesSr
discrete angles. Misplacement vectors can be computed immediately as
compared to the intra-operative pre-plan.
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5. Perform a RP ultrasound sweep to detect seeds in ultrasound &stdrtwe
ultrasound volume to the fluoro seed positions.

6. Overlay seeds or displacement vectors on elastograms (either segmente
just as is) to view misplacements with respect to the target regions.

7. Return to step 2 until all the seeds have been implanted.

Note that during an operation and after seed reconstruction, seectdis@at,
registration to ultrasound or elastography can be used independentigror dom-
bination at the oncologists discretion. For example, an oncologist coutiselo
only perform an RP ultrasound sweep for registration of fluoro to ultragoif the
average computed displacement is greater than a certain value. This eaiddé
by relying on a good “intra-operative preplan” to assume correct piaogéfor low
displacement measurements. Figure 6.1 provides an example screen inhage tha
be used to visualize seed displacements relative to the target regions. olthds w
only be possible with a combination of all the methods presented in this thesis.

After an operation, data collected from all of the algorithms presentedean b
used to further analyze displacement trends.

6.2 Future Work

Further studies are needed to fully register seed displacements to prodtates.
This could not be done here since two different patient studies wetkfas¢éhe
seed displacement analysis and the absolute elastography study. Fobthso®-
sible the elastography system must be included in a study with patients uimdgrgo
brachytherapy.

The main issue with the fluoro reconstruction is the availability of real-time
data to compute the seed positions from. In this work, it is assumed that the fluor
images are immediately available for real-time processing as soon as they are ac
quired. This is not currently the case and the images have to be imported post-
operatively. This is a serious limitation but proof of the feasibility of intraratiee
planning could lead to the use of machines that do allow real-time data access.

The main improvements for the target volume delineation process lie in the au-
tomation of the segmentation and in the excitation mechanism. Research is needed
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Pre-planseed position

Intra-operative seed
position

Misplacement vector

Figure 6.1: A potential intra-operative planning interface. Intra-operative
seed positions and misplacement vectors are registered to and overlaid
on top of an ultrasound slice. The target regions can be inferred by the
oncologist due to the visual enhancement provided by the elastogram.

to develop a transperineal excitation mechanism that acts through the $goed
template guide or a transrectal excitation mechanism that is is decoupled ffom th
TRUS probe. As for the automatic segmentation, this has been shown to work
using elastography images to initialize other automatic segmentation algorithms
[7,42]. The extension of this is to then identify tumourous regions in the fgeosta
to further aid the planning and placement process. To do this, furtheanesis
needed to determine the correlation of the stiff regions in the prostate torcince
addition, the effect of needle insertion on the quality of elastographytsdsas to

be investigated. Nonetheless, a intra-operative pre-plan is still posEise.with-

out explicit segmentation, displays such as the one in Figure 6.1 can hdguov
which still give an oncologist feedback on the misplacements since they fean in
target regions based on expert knowledge.
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