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Abstract

Errors in seed placement during low dose rate prostate brachytherapy can result

in over-treating healthy tissue and/or under-treating cancer cells. In a standard

treatment procedure, seeds are implanted according to a planned seed distribution.

This pre-operative plan (pre-plan) is created using an ultrasound volume scan taken

about two weeks earlier. Errors in seed placement can occur due to changes in

prostate structure during those two weeks, and from seed displacement during and

after the actual operation.

This thesis presents methods of seed localization that are suitable for both post-

operative and intra-operative use. The techniques can be applied to theimaging

modalities used in the current operation setup to implement a method of intra-

operative planning. This involves using Transrectal Ultrasound (TRUS) and C-arm

X-ray Fluoroscopy (fluoro) data to monitor the seed positions relative to thecurrent

target volume during an operation.

Towards this goal, an automatic method of assigning seeds to their correspond-

ing insertion needle tracks has been developed to match seeds between modali-

ties so that seed displacements can be computed. This method can be applied to

measure intra-operative misplacement, by comparing the desired positions to the

actual positions computed from fluoro data, or post-implant movement, comparing

the fluoro seed positions to those from post-implant Computed Tomography (CT)

data. For the intra-operative and post-implant data, 99.31% and 99.41% ofthe

seeds were correctly assigned, respectively. An average intra-operative seed dis-

placement of 4.94±2.42 mm and a further 2.97±1.81 mm of post-implant move-

ment is measured. This information reveals several directional trends andcan be

used to preemptively correct the pre-operative plan (pre-plan).
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An extension of the seed matching algorithm is used to register fluoro to intra-

operative ultrasound so that the seed positions and displacements can be viewed

with respect to soft tissue features. An ultrasound volume can be acquired imme-

diately prior to or during an operation, instead of weeks before, removingthe errors

in the pre-plan.

Looking to the future, an absolute elastography system is tested which can pro-

vide automatic delineation of the target volume and segmentation of the soft tissue

features which is required to complete the intra-operative planning procedure.
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Preface

Material from Chapter 2 was published in the International Journal of Medical

Physics in Research and Practice: “Prostate implant reconstruction fromC-arm

images with motion-compensated tomosynthesis”. The work was co-authored by

Ehsan Dehghan (first author), Mehdi Moradi, Xu Wen, Daniel French, Julio Lobo,

W. James Morris, Septimiu E. Salcudean, and Gabor Fichtinger1. The original

back-projection code was written by Daniel French before being optimizedto run

in real time and incorporated into a Graphical User Interface by the author. The

seed reconstruction results from the patient study presented in this work were pro-

vided by Ehsan Dehghan and used for further investigation in Chapters 3and 4 of

this thesis.

A summary of the methods and results from Chapter 3 and 4 was accepted

for publication in the conference for Medical Image Computing and Computer

Assisted Intervention (MICCAI) under the title “Quantifying stranded implantdis-

placement following prostate brachytherapy”. The work was co-authored by Mehdi

Moradi, Nick Chng, Ehsan Dehghan, William J. Morris, Gabor Fichtinger,Septi-

miu Salcudean2. A detailed algorithm description and further analysis was later

published by IEEE in the journal IEEE Transactions on Medical Imaging under

the title “Use of Needle Track Detection to Quantify the Displacement of Stranded

Seeds Following Prostate Brachytherapy” with the same authors3. The author

1E. Dehghan, M. Moradi, X. Wen, D. French, J. Lobo, W. J. Morris, S. Salcudean and G.
Fichtinger. Prostate implant reconstruction from C-arm images with motion-compensated tomosyn-
thesis.Medical Physics, pages 5290-5303, 2011

2J. Lobo, M. Moradi, N. Chng, E. Dehghan, W. J. Morris, G. Fichtingerand S. Salcudean. Quan-
tifying stranded implant displacement following prostate brachytherapy.Medical Image Computing
and Computer Assisted Intervention, pages 307-314, 2011

3J. Lobo, M. Moradi, N. Chng, E. Dehghan, W. J. Morris, G. Fichtingerand S. Salcudean.
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assisted in patient data collection and performed the data analysis and algorithm

development described in these chapters.

The fluoro to ultrasound registration described in Chapter 4 was acceptedfor

publication in the conference for Medical Image Computing and Computer As-

sisted Intervention (MICCAI) under the title “Towards intra-operative prostate

brachytherapy dosimetry based on partial seed localization in ultrasound and regis-

tration to C-arm fluoroscopy”. The work was co-authored by Mehdi Moradi (first

author) Sara Mahdavi, Sanchit Deshmukh, Julio Lobo, Ehsan Dehghan, Gabor

Fichtinger, W. James Morris and Septimiu Salcudean4. The algorithms were ex-

tended and applied to a larger dataset and then published by IEEE in IEEE Trans-

actions on Biomedical Engineering under the title “Seed localization in Ultrasound

and Registration to C-Arm Fluoroscopy Using Matched Needle Tracks forProstate

Brachytherapy” with the same authors5. The author provided fluoro needle inter-

sections and developed initial 2D registration techniques for this process.

Fluoro images, CT scans, and ultrasound data was collected from patients un-

dergoing prostate brachytherapy as part of a study for Visualization and Real-Time

Dosimetry for Prostate. This study was approved by the University of British

Columbia (UBC) Research Ethics Board. The UBC CREB number of this study

is H06-70146. Tim Salcudean is the principle investigator for this study and co-

investigators include Reza Zahiri, Xu Wen, W. James Morris, and Daniel French.

Nick Chng assisted with coordination of the patient study, with data collection and

provided pre-plan and CT reconstructions.

The code used to compute and save data required for elastography computation

in Chapter 5 was written by Ali Baghani, Hani Eskandari, Weiqi Wang, Daniel Da

Costa and Neerav Patel. The algorithms used were co-developed by Ali Bahgani,

Use of Needle Track Detection to Quantify the Displacement of Stranded Seeds Following Prostate
Brachytherapy.IEEE Transactions on Medical Imaging, volume 31, issue 3, pages 738-748, 2012

4M. Moradi, S. Mahdavi, S. Deshmukh, J. Lobo, E. Dehghan, G. Fichtinger, W. J. Morris, S. E.
Salcudean. Towards intra-operative prostate brachytherapy dosimetry based on partial seed localiza-
tion in ultrasound and registration to C-arm fluoroscopy.Medical Image Computing and Computer
Assisted Intervention, pages 291-298, 2011

5M. Moradi, S. Mahdavi, S. Deshmukh, J. Lobo, E. Dehghan, G. Fichtinger, W. J. Morris, S. E.
Salcudean. Seed localization in Ultrasound and Registration to C-Arm Fluoroscopy Using Matched
Needle Tracks for Prostate Brachytherapy.IEEE Transactions on Biomedical Engineering, volume
59, issue 9, pages 2558-2567, 2012
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Hani Eskandari, Septimiu Salcudean and Robert Rohling. The author contributed

to implementation of this code for a specific ultrasound machine and incorporated

it within a complete system used to collect patient data in real time. This includes

the use of multi-frequency excitation, strain imaging, phasor displacement visual-

ization, and a new user interface specific for use with the new system.

The ultrasound data used for the elastography analysis was collected from pa-

tients undergoing radical prostatectomy as a part of a study for Optimization of

Elastography Imaging of the Prostate. This study was approved by the UBCRe-

search Ethics Board. The UBC CREB number of this study is H08-02696. Septi-

miu Salcudean is the principal investigators for this study and co-investigators in-

clude Alex Kavanagh, Mehdi Moradi, Larry Goldenburg and Christopher Nguan.

Omid Mohareri assisted with coordination of the patient study and data collection.
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Chapter 1

Introduction

Prostate cancer is the most common cancer in men in the Americas and Africa. It

is also the leading cause of cancer deaths in Africa and in the low to middle income

regions of the Americas [44].

There are a wide range of treatment techniques for prostate cancer ranging

from active surveillance to radical prostatectomy. Low dose, permanentimplant,

prostate brachytherapy is a procedure that has been shown to effectively treat men

with prostate cancer [49]. It involves the insertion of radioactive seeds, using nee-

dles, into the prostate through the perineum. In most current procedures, a Tran-

srectal Ultrasound (TRUS) scan - taken several days to weeks before a brachyther-

apy procedure - is used to create a pre-operative plan (pre-plan) which defines how

the seeds are to be distributed within the prostate and surrounding regions.The

plan is made under the constraint of placing individual seeds at varying depths

along several parallel lines so that it can be replicated intra-operativelyusing nee-

dle insertions.

The treatment relies on accurate placing of the radioactive seeds to sufficiently

irradiate tumours while sparing non-cancerous tissue. Errors in seed position lead

to poor implant quality and can arise from a number of different reasons.Firstly,

there can be variations in the shape and position of prostate, as well as the can-

cerous regions within it, at the time of an operation as compared to the pre-plan

conditions. The prostate structure can change due to muscle relaxation after the pa-

tient is under anaesthesia, anti-androgen hormone therapy that is sometimesused
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to shrink the prostate volume, or aggressive tumour growth. Secondly, even with a

perfect pre-plan, misplacement of seeds can occur due to prostate movement [40]

and/or needle deflection during insertion. Lastly, movement of the seedsafter an

operation (post-implant movement) can occur due to prostate inflammation [83] or

change in patient position.

Research has suggested that one of the ways of reducing the errors mentioned

above is to useintra-operative planning[52, 59]. This is the process where a

plan is made and modified in the Operating Room (OR) compensating for any

unexpected misplacements or predictable movements during the operation. This

necessarily requires that position and size of the tumours, as well as the location

of the seeds with respect to the tumours, be known at any given timeduring an

operation. Clearly this means that moreintra-operativedata (data acquired during

the operation) needs to be collected and processed. When collecting intra-operative

data, it must not take too much time or space so that the implantation procedure

itself is affected as little as possible. It is worth while therefore, to examine at the

current brachytherapy setup to identify potential improvements in seed placement

accuracy.

During a regular brachytherapy procedure, TRUS imaging is used for guidance

with the occasional use of C-arm X-ray Fluoroscopy (fluoro) images (Figures 2.2

and 3.1 show the brachytherapy setup with fluoro and TRUS) . The two imaging

modalities are used together because they can both be incorporated into the operat-

ing procedure without limiting the space and accessibility to the patient but cannot

individually provide all the information needed. The prostate and other soft tissue

structures are easily visible in TRUS images but the brachytherapy seeds are not

easy to identify. This is because they are highly acoustically reflective andshadow

each other and are easily confused with reflections from calcifications. In contrast,

the seeds are clearly visible in fluoro images, which also have a much larger field

of view, but the soft tissue features are not visible. The two imaging modalities

therefore compliment each other perfectly. Figure 1.1 shows example fluoro and

ultrasound images of the prostate. It would be useful to make use of the currently

used imaging modalities to enhance the intra-operative data in order to minimize

the displacement errors. This would improve the quality of the implants without

complicating the standard procedure.
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Figure 1.1: Example fluoro (left) and sagittal ultrasound (right) images that
are taken during a routine brachytherapy procedure. The brachytherapy
seeds can clearly be seen in the fluoro image, as well as the ultrasound
transducer, but the prostate itself is not visible. In the TRUS image the
prostate is visible (in the bottom right corner of the image) but there is
a limited field of view.

It is possible to include other imaging modalities in the prostate brachytherapy

procedure to provide intra-operative data such as the use of Magnetic Resonance

Imaging (MRI) [70, 72] but these require a drastically different OR setup. Other

solutions include the use of new flat panel C-arm fluoroscopy detectorsto imple-

ment cone-beam Computed Tomography (CT) imaging which provides both high

quality imaging of soft-tissue and accurate seed reconstruction [30, 66].Both cone-

beam CT and MRI are likely to become a standard part of future procedures but

are more expensive in comparison to the current imaging modalities and not widely

available. Therefore, it is valuable to assess the feasibility of using the currently

used technology to help reduce the seed displacement errors. For the remainder of

this document, the only intra-operative imaging modalities that will be analyzed

will be TRUS and fluoro.

Returning to the issues that lead to errors in implant quality, the first concern

is the possibility of the pre-plan being “out of date” due to changes in the shape

and size of the prostate and the target regions within it. The solution to this is to
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have a method of identifying these regions in the OR right before and duringan

operation. Since fluoro cannot image soft tissue this can only be done using TRUS.

Several groups have studied a method of using TRUS volumes taken immediately

before an operation to create a plan [47], called “Intra-operative pre-planning” by

the American Brachytherapy Society (ABS) [52], and found it to dosimetrically

favourable in comparison to the traditional pre-plan [12, 25, 64, 81]. However, this

approach requires manual contouring of the prostate which takes up valuable time

in the OR and only provides intra-operative information of the prostate and not the

target regions within it.

It has been shown that the stiffness of abnormal tissue masses increases due

to change in cell density [39] and so several research groups have investigated

the use of elastography to detect cancer [38, 54, 56, 63]. This technique could

allow automatic segmentation of the prostate as well as delineation of tumours in

real-time. An extension to this is to use Local Frequency Estimators (LFE) or a

Travelling Wave Expansion (TWE) to solve the inversion problem to obtain the

absolute viscoelastic properties of the tissue described by Baghaniet al. [9, 10].

Being able to locate target regions in real-time during brachytherapy also opens the

door to treatment techniques such as focal therapy [2, 18, 50] which could further

improve the treatment of prostate cancer by treating subregions of the prostate

rather than the whole gland preserving healthy tissue.

Once the issue of an “out of date” pre-plan is solved the remaining issues that

need addressing are seed misplacement during an operation and seed movement

afterwards. In order to address these there needs to be a way of computing the un-

desirable seed displacements. Post-implant dosimetry for Quality Assurance(QA)

is recommended by the American Brachytherapy Society [51] and is implemented

at most medical clinics. Regular CT scans are used to look at post-implant seed dis-

tributions. If substantial implant errors are found, post-operative measures can be

taken but this can lead to even more complications. It would be more beneficialre-

duce implant errors by using intra-operative planning [52, 55, 59] to detect and cor-

rect the errors during the operation. The most ideal form of intra-operative planning

is “dynamic dose calculation” which requires continual localization of individual

seeds [52, 59] to compare the real seed distribution with the desired one. Fluoro

imaging can used to perform the intra-operative seed localization. The use of a
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few fluoro images taken over a narrow angle to reconstruct the intra-operative seed

positions has been performed by numerous groups successfully [31, 41, 67, 73–

75]. In most cases. the reconstruction algorithms assume that the C-arm remains

translationally fixed during the image acquisition. However, Dehghanet al. have

developed a method of performing the reconstruction which compensates for the

small amounts of motion that can be expected [16].

Once the intra-operative seed positions have been obtained, it is then nec-

essary to identify the same seeds in pre-plan, intra-operative and post-implant

conditions. Comparing pre-plan positions to intra-operative positions wouldgive

immediate feedback as to whether the seeds are implanted as expected. Intra-

operative data and post-implant data can also be used to compute trends in both

intra-operative misplacement and post-implant movement that can be used to guide

future brachytherapy operations.

The final component needed for intra-operative planning is to register the intra-

operative datasets to each other. More specifically, the computed 3D seedpositions

must be registered to the prostate volume. Registration between ultrasound and

fluoro is a viable solution [21, 23, 68] to this. Moradiet al. present a complete

method of computing partial seed volume reconstructions in ultrasound and us-

ing needle track detection to match the dataset to fluoro data without the need for

fiducials or manual segmentation [48].

1.1 Thesis Objectives

This thesis describes techniques that use the current imaging modalities for prostate

brachytherapy to: observe the target volume in real time, predict likely seed dis-

placement just before insertion, and detect misplacements immediately after inser-

tion. All of these processes are needed to provide true intra-operativeplanning for

prostate brachytherapy. The main thesis objectives are as follows:

1. To develop a method to compute seed displacements by comparing seed clus-

ters reconstructed from different modalities. Any displacement trends found

from this study can be compensated during needle placement and the same

algorithms can be used in real time to detect unexpected misplacements im-

mediately.
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2. To provide a method to register fluoro to ultrasound so that seeds and dis-

placements can be viewed with respect to patient anatomy.

3. To develop an imaging system to display real-time viscoelastic properties

of the prostate using ultrasound to allow delineation of the prostate and the

cancerous regions within it.

For each of these objectives, the combination ofspeed, accuracyand degree of

automatismneeds to be analyzed to test the feasibility of intra-operative planning.

These criteria are enforced by the high intensity setting that exists in the OR.

1.2 Thesis Outline

A major requirement for intra-operative planning is the ability to compute seed

distributions during a procedure. Chapter 2 describes the setup used to obtain

intra-operative patient data and the algorithm used to obtain the 3D positions of

the brachytherapy seeds. For the system to be efficient in the OR it needsto be

fully automatic. The steps taken to automatically process the images are described.

Descriptions of the planned and post-implant datasets are also provided.

Chapter 3 describes a “Needle Track detection algorithm”. It covers the meth-

ods used to group the seeds into their corresponding needles. This grouping al-

lows seed matching to be performed by identifying corresponding needle groups

in different datasets rather than identifying individual seeds. The key feature of

this algorithm is that it can be applied over a wide range of datasets, including

intra-operative fluoro data, to allow matching of seeds at different times and also

between imaging modalities.

Chapter 4 presents two applications of the needle track detection algorithm.

The first application is the computation of intra-operative and post-implant seed

displacement. Intra-operative seed misplacement is measured by comparingintra-

operative seed positions from fluoro data to those from the pre-plan. Similarly,

post-implant seed movement is calculated by comparing the intra-operative seed

positions to those from post-implant CT data. The displacement values are only

truly useful if the reconstructed seed clouds are registered to the prostate itself,

which is not visible in the fluoro or CT images. The second application of the
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needle track detection algorithm is a method of performing this registration. Onlya

few strands are detectable in the ultrasound volume but registration is still possible

[48].

Once the seed positions are found and registered to an ultrasound volume it

is still necessary to segment the prostate, and the cancerous regions withinit, in

order to complete the planning process. An existing inversion algorithm [9] was

used to reconstruct the viscoelastic properties of the prostate which allowsfor this

segmentation. Chapter 5 describes how this algorithm was used for the firsttime

with a BK Medical ultrasound machine (BK Medical, Herlev, Denmark) to obtain

both phantom and patient data.

Finally, Chapter 6 describes the conclusions and contributions of this thesisas

well as the future research directions.
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Chapter 2

Intra-operative Seed Localization

2.1 Introduction

The success of intra-operative planning is heavily dependent upon theavailabil-

ity and reliability of the intra-operative data. Several different types of data are

required to provide intra-operative planning for prostate brachytherapy. This data

includes the ultrasound imaging used to view the prostate as well as the various

methods of obtaining localized seed positions. Chapter 5 will address the process

in which the prostate itself can be imaged while this chapter describes the tech-

niques used to obtain pre-plan, intra-operative and post-implant reconstructions of

the seed positions. The focus will be on the intra-operative seed positionssince this

area has the most potential for improvement since pre-operative and post-implant

reconstructions are already accurate and do not need to be performedin real-time.

All the data for the seed reconstruction as well as the seed displacement anal-

ysis (Chapters 3 and 4) was taken from a patient study of 8 patients undergoing

low dose, permanent implant, prostate brachytherapy at the British Columbia Can-

cer Agency (BCCA), Vancouver, Canada. Institutional Research Ethics Board ap-

proval and patient consent were acquired.

The Variseed planning software (Varian Medical, Palo Alto, CA) was usedto

export both the pre-plan seed positions as well as the post-implant CT seedposi-

tions. In some cases the radiation oncologists changed the plan adding “voodoo”

(not part of the pre-plan) seeds and these were included in the pre-plan datasets
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Table 2.1: Summary of the seed reconstruction data types and their uses.

Seed cloud Time Use
reconstruction of
data type Acquisition

Used to compute misplacement
Pre-plan pre-operative during insertion by comparing with

intra-operative fluoro data
Provides a complete reconstruction

Fluoro intra-operative of the seed positions
immediately after insertion

TRUS intra-operative Used to register intra-operative
fluoro and ultrasound data
Used to compute post-implant seed

CT post-implant movement trends by comparing with
intra-operative fluoro data

used for this study.

Table 2.1 summarizes all the types of seed reconstructions datasets. The third

column describes what each dataset is used for. It can be seen that allof these

analyses require the use of the seed localization from intra-operative fluoroscopic

data. These are the seed positions immediately after they are inserted, while the

patient is still in the operating position. These positions can be computed in the

middle of an operation and do not necessarily need to be computed after all the

seeds are implanted.

The seed localization process in ultrasound will be presented first followed by

a step-by-step description of the process required to reconstruct the seed positions

in fluoro.

2.2 Method for Seed Localization in TRUS Volumes

Intra-operative seed positions computed from ultrasound data were obtained from a

concurrent study by Moradiet al. [48]. Since it is extremely difficult to reconstruct

all the seeds using ultrasound, even when manual segmentation is used [31], these

seed positions are not used to compute displacements. They can be used, however,

to register the ultrasound and fluoro datasets to each other so that displacements
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Figure 2.1: A comparison of a Reflected Power image (left) and a B-mode
image (right) used to detect seeds in ultrasound images of a patient.
This image is taken from published work by Moradiet al. [48]

can be viewed with respect to the anatomy (see Chapter 4, Section 4.2.5).

The seed reconstruction algorithm is applied to TRUS volumes that were ac-

quired immediately after the seeds were implanted into a patient. The seed posi-

tions are calculated by computing a Reflected Power (RP) image from raw Radio

Frequency (RF) data (see Figure 2.1) before applying template matching to find

the seeds [80]. The reconstruction process takes∼13 ms per 2D frame [48] which

is fast enough for use in intra-operative planning. A complete volume sweep is ob-

tained by collecting 270 frames from rotation angles of - 45o to + 50o at 21 frames

per second so the total acquisition time is∼15 seconds. The TRUS robot used to

roll the TRUS probe is described in Section 5.5.

2.3 Method for Seed Localization in Fluoro

Research dating back to the early 1980s has shown that it is possible to reconstruct

the 3D position of a seed using 3 fluoroscopic images [4, 5, 13, 62]. Sincethen

several improvements have been made by incorporating C-arm calibration and cor-

recting for errors in the C-arm pose [16] which allow for accurate reconstruction

of the complete seed cloud. For this study a GE Series 9800 mobile C-arm was

used to acquire 5 images at angles ranging from−10◦ to +10◦ for each patient.

The exact angle of rotation was measured using a digital protractor. The data was

collected after all the needles were inserted so that the standard procedure was not

interrupted. However, the methods used for reconstruction can be usedat any time
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Figure 2.2: The use of a C-arm in prostate brachytherapy to obtain intra-
operative fluoroscopic data. The coordinate system that is used in this
document is also shown. Inset: An example 2D CT cross section image
for comparison.

in the middle of a procedure - when there are still more needles to insert - as would

be done with intra-operative planning. Figure 2.2 shows the setup used to get the

fluoro data.

The main steps required for intra-operative seed reconstruction from fluoro are:

1. Segment the brachytherapy seeds in each fluoro image.

2. “Back-project” the segmented seeds to compute the 3D locations.

3. Repeat the process in an iterative manner using the computed reconstruction

to correct for C-arm motion each time.

Each of these steps will be described in the following subsections.
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2.3.1 Real-Time Seed Segmentation in Fluoro Images

Segmenting a fluoro image involves creating a binary image by assigning a value

of 1 (or TRUE) to all pixels that are part of a seed and a value of 0 (or FALSE)

to all pixels that are not. Figure 2.4 shows how a fully segmented image can be

created from a raw fluoro image.

The presence of a seed is determined by thresholding: a local maximum and

average is computed in a small window around each pixel to assign a cut-offthat

determines whether it is a seed pixel or not. A majority of the processing is done in

Matlab (Mathworks, Natick, MA) which has several useful image processing tools.

However, this algorithm requires large nested loops to move the small window

through the entire image which takes∼30 seconds per image when using pure

Matlab code. This would make it very inconvenient to use intra-operativelyand so

required optimization. To speed the process up, the nested loops were re-written in

C and re-compiled to be used as Matlab functions using the Matlab “mex” function.

This change allowed the code to run up to 40 times faster making it suitable for use

in the OR. Note that it is assumed that there is a method of retrieving the images

directly onto an external computer once they are acquired.

Although the small window used to compute local thresholds works well to de-

tect seeds, it also detects false positive seed pixels in large uniform regions (greater

than the size of the window) or at sharp boundaries. In Figure 2.3, falsepositive

seed pixels that are found outside the detector circle and around the probe can

be seen. To solve this, either manual or automatic selection of a Region of In-

terest (ROI) that removes the probe and detector edge from the image, is needed.

Note that the image of the probe would obscure the seeds if it was left fully in-

serted. Therefore, the probe is retracted during fluoro image acquisitionto allow

the complete seed cluster to be visible. This creates problems when trying to regis-

ter fluoro and ultrasound datasets since the prostate deforms when compressed by

the TRUS probe and returns to its original shape when the probe is retracted. This

issue has been addressed by Moradi et al. [48](see Section 4.2.5).
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Figure 2.3: False positive seed pixels (white) found outside the detector circle
in a segmented image (right). The unsegmented image (left) is also
shown.

Figure 2.4: Manual selection of a ROI to select a “seed only” region. The
top-left corner is first selected (left), followed by the bottom right to
define the ROI used to produce a truly segmented image.

Manual ROI Selection

A ROI that does not include the ultrasound transducer (or probe) or thedetector

edge can easily be defined manually. The user can use a mouse click to select the

top-left corner followed by the bottom-right corner of a rectangular “seed only”

region. This process, shown in Figure 2.4, produces a truly segmented image.

This works well to produce consistent segmented images but may be inconve-

nient in the OR especially when it has to be done for 5 images. It is worth while

13



Figure 2.5: The full probe tip detection algorithm: a) The original image
(with the coordinate system used), b) horizontal blurring, c) contrast
adjustment d) gradient of the y-projection e) final image with horizontal
line defining the bottom of the ROI.

therefore to consider methods to automate the selection of a ROI.

Automatic ROI Selection

There are two main components that need to be considered for identifying a seed

only region. Firstly, it must be inside the detector edge. There is no image outside

this circle and the local threshold algorithm does not work here. Secondly, it must

remove the ultrasound probe from the image which has regions of sharp contrast

that can be mistaken for seeds. The first part is fairly trivial since the detector edge

is always in the same place in the image and can just be masked out. It is more

complicated, however, to remove the probe from the image since its location varies

between images and patients.

The approach taken is to find a horizontal line that is tangent to the tip of the

probe and select the region above this as the seed only region. A series of image

processing is performed including horizontal blurring and contrast adjustment be-

fore the gradient of the y-projection is used to find the probe tip. Figure 2.5shows

all the intermediary stages for the probe tip detection algorithm, with the coordinate

system used, and Figure 2.6 shows the complete automatic segmentation process.

With the presented algorithms, the seed segmentation process can be performed

automatically and quickly for all 5 images which makes it more feasible to use

fluoro data to obtain seed positions for intra-operative planning.
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Figure 2.6: The complete automatic seed segmentation process. The seeds
are segmented from the original image (left) by first finding the trans-
ducer tip (middle) and then thresholding the seeds.

Figure 2.7: An illustration of the 5 backprojected lines for a single seed in-
tersecting at the original 3D location of the seed.

2.4 Backprojection Algorithm and User Interface (UI)

Once the segmented images are obtained they can be used to reconstruct the3D po-

sitions of the seeds since the angles of acquisition as well as the detector andsource

locations are known. Rays originating from seed pixels in a given segmented im-

age can beback-projectedto the source from the location of the detector. This can

be done for each of the 5 segmented images and will create intersections in a 3D

volume where the seeds would have been. Figure 2.7 shows the 5 back-projected

seed pixel groups for a single seed intersecting at a point.

A Graphical User Interface (GUI) was developed in C++ that incorporated the
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Figure 2.8: The GUI used for 3D reconstruction of seed positions from intra-
operative fluoro data. On the left, the red box shows the options for man-
ual and automatic segmentation as well as suppressing the segmented
image display. The final result is displayed on the right.

segmentation and back-projection algorithms to reconstruct the seed positions and

display the results in real time. The seed coordinates are taken to be at the centroid

of a voxel cluster that is formed at an intersection. Seed shaped cylinders are then

displayed at these locations. Figure 2.8 shows the GUI layout. Options for both

manual and automatic segmentation are provided. This kind of visualization would

be useful to look at seed distributions inside the OR.

To summarize the above sections, a GUI was developed that can automatically

or manually segment fluoro images and then reconstruct the 3D positions of the

seeds in real time. The backprojection algorithm used, however, does not take into

account errors in the C-arm position due to oscillation or sagging of the source

downward, which greatly reduces the quality of the reconstruction. A different

method must be used to compensate for such motion.

2.5 C-arm Motion Compensation and Seed Matching for
Robust Reconstruction

Dehghanet al. presented a method of compensating for C-arm motion by using

the reconstructed seed positions to improve C-arm pose estimates iteratively [16].
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This algorithm still requires a complete, though potentially incorrect, reconstruc-

tion of the seeds which cannot be done using the back projection method which

relies on complete intersections to find the seed positions. Instead, a symbolic in-

tersection is found, which is the point that achieves the minimum distance between

back projected lines. Seed matching is done by minimizing this distance for all

the projections for every seed. A suitably fast and accurate method called XMAR-

SHAL has been developed by Konet al. to do this while also taking into account

hidden seeds in the segmented images [37]. These methods are not currently part

of the current GUI but can replace the backprojection code following theautomatic

segmentation to provide real-time seed localization from fluoro data.

Seed displacement calculations and registration of fluoro to ultrasound, de-

scribed in Chapter 4, both rely heavily on accurate seed reconstruction from fluoro

data. The automatic segmentation algorithm, combined with fast and accurate

matching, as well as C-arm motion compensation provide this. Accurate seed

cloud reconstructions, performed by Dehghanet al., from the patient study de-

scribed in Section 2.1 are used in this thesis. The reconstructed seed positions have

a localization error of less than 0.9 mm [17] and are computed in under 20 sec-

onds per patient [17]. This accuracy and speed of this process makesit suitable for

intra-operative planning.
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Chapter 3

Simplifying Dataset

Representation Using Needle

Track Detection

3.1 Introduction

The measurement of seed displacements and the registration of fluoro to ultrasound

(see Chapter 4) both require an in depth analysis of the seed cloud reconstructions

from Chapter 2. Referring back to Table 2.1, a wide range of datasets exist for

the seed reconstruction which are all required for intra-operative planning. Seed

matching is required between all the datasets which can have up to 150 seed posi-

tions in each. This chapter describes a method of simplifying the representation of

the seed clusters to make the seed matching process easier.

The seed matching problem can be very complex when dealing with so many

cluttered points in several datasets. However, incorporating information about any

known spacial relationships between the seeds can drastically reduce thecomplex-

ity of the matching problem. During a standard brachytherapy procedure,the ra-

dioactive seeds are deposited in groups using needles. With this knowledge, it

seems intuitive to group seeds into their corresponding needle tracks so that the

matching problem is then reduced to matching∼25 needle groups instead of∼150

18



seeds. The methods presented in this chapter describe a new algorithm used to

assign seeds to their corresponding needle tracks.

There are actually two main implant types used: Suture-embedded orstranded

implants (RAPIDStrand; Oncura, Plymouth Meeting, PA) andlooseseeds deliv-

ered using the Mick applicator (Mick Nuclear, Bronx, NY). However, studies have

shown that stranded seeds provide better dose coverage[20] and less seed loss[60]

without compromising the biochemical No Evidence of Disease (bNED)[28] -

bNED is defined as having a sufficiently low Prostate-Specific Antigen (PSA) level

for a period of greater than one year. Indeed, stranded seeds are used in about 50%

of cases in the United States and in over 80% of cases around the world. There

is therefore an incentive to focus seed matching methods on stranded seeds. Do-

ing so takes advantage of the fact the the seeds are more physically constrained in

stranded implants allowing tighter, more robust restrictions for seed spacingwhen

detecting needle tracks. It should be noted that the methods presented in thisthe-

sis are still applicaple, with fewer contraints, to loose seeds since they are usually

inserted in needles and evenly spaced.

In Chnget al., seeds segmented from CT data were automatically grouped into

their respective needle tracks using a minimum cost network flow algorithm [3, 14]

following a coarse registration performed by iterating through all trajectoryangles

of every seed. The cost function consisted of complex correspondence functions

used to compute the positional error, trajectory angle error and the strandspacing

error [15]. This algorithm worked well to detect needle tracks in post-implant

datasets. This chapter describes a method of extending this approach to work with

intra-operative fluoro data as well as post-implant and pre-plan data by simplifying

the cost functions used and making use of a different coarse registration algorithm.

3.2 Methods

The datasets were simplified by grouping seeds into their corresponding needle

tracks. This makes the seed matching problem needed for seed displacement cal-

culation and registration of fluoro to ultrasound easier. The following sections

explain the methods used to perform the needle grouping.
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Figure 3.1: An illustration of the brachytherapy procedure. A square face
needle guide template used to guide needle insertion. (This images was
taken from www.roboticprostatecentre.co.uk)

3.2.1 Orientation of the Datasets to Allow Fine Tuned Needle
Searching

In order to use a needle track detection algorithm on all the datasets it is necessary

to first rotate each dataset into a recognizable orientation. In other words, the

dataset must be rotated so that all the needle tracks are in the same generaldirection

which makes it easier to then search for the strands.

In a standard brachytherapy procedure, needles are inserted through a square-

faced needle guide template (see Figure 3.1). This creates a general direction of

insertion, perpendicular to the square-faced template, that will be referred to as

the implantation axis. Excluding the pre-plan dataset where all the seeds are in

pre-defined tracks parallel to thezaxis by design (see Figure 2.2 for the coordinate

system used), the implantation axis is different for each dataset and doesnot line

up with any axis. This is because the reconstructions in fluoro and CT are done

with respect to their own coordinate systems independent of the implantation axis.

Orienting of the datasets to allow the needle tracks to be detected can done by
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finding the implantation axis in each dataset and then rotating the entire cluster

so that the implantation axis is parallel to thez axis. This means the tracks can

be found by searching for lines or curves that are in the same general direction

as thez axis. With this method, detection of the implantation axis for the fluoro

and CT data can be done independently without having to perform a rigid point set

registration to the pre-plan which has been done by Chnget al. [15].

For the implantation axis detection, an “iterative best line detection” algorithm

is used to obtain a ranked list of potential needle tracks in images. This algorithm

is similar to the RANdom Sample Consensus (RANSAC) [22] algorithm which

involves fitting lines to pairs of randomly chosen points and scoring each line until

a threshold score is reached.

The algorithm steps are described below:

1. Select a pair of seeds to define a straight line.

2. If the angle between the line and thez axis is greater than a pre-defined

threshold angle then reject it and return to step 1. Otherwise go to step 3.

3. Compute ascorefor the line based on a set of cost functions that take into

account information on what needle tracks are expected to look like. Return

to step 1 until all possible pairs of points have been chosen.

4. Rank each line according to the score and pick the top 8 lines to determine

the implantation axis.

Since it is not computationally demanding to extensively search through all

pairs of points, it is not necessary to randomly pick pairs of points. A full ranked

list of all possible lines is instead created. For example, for 150 seeds,
(150

2

)

=

11175 pairs of points can be defined and a majority of these would be deemed

implausible at step 2 of the algorithm saving unnecessary calculations. Therefore

it is acceptable to search all possible pairs of points.

The cost functions used in step 3 are tuned to find needle tracks. The total

score for a potential needle track is computed by summing the contributions of all

the seeds that fall within a Gaussian cone and are appropriately spaced:
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Figure 3.2: A Gaussian tolerance region used to score a potential needle
track. Several possible needle track curvatures are shown.

Score= ∑
{i:di<wi ,|spi j−10|<2∀ j}

e
−d2

i
w2

i (3.1)

Here,di is the distance of seedi from the potential needle axis andspi j is the

spacing between seedi and an adjacent seedj. The exponential component favours

seeds that are closer to the potential line so that straighter lines are rankedhigher

so that the implantation axis is not affected by extremely curved needle tracks. The

conditions beneath the summation define the components of the cost function.

The first component of the cost function (di <wi) takes into account the number

of seeds that fall within a certain threshold radiuswi from the defined line. A

fixed threshold radius cannot be used since the needle tracks can exhibit significant

curvature which varies from track to track. Instead a Gaussian cone is used to

define a tolerance region for the line which is being scored, as seen in Figure 3.2.

Any seed that falls within the tolerance region contributes towards the score

of the potential track. The radius or “waist”,w, of the Gaussian cone expands in-
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creasingly with distance,a, from the insertion plane. The insertion plane is defined

as thez location of the most inferior seed (the seed closest to the perineum once

inserted). A Gaussian cone was chosen for the tolerance region since itis useful

to be able to tune both the waist and the rate of expansion of the cone to find the

needle tracks. The curved surface of the Gaussian cone make it possible to keep a

sharper cut-off at further distances while still having a relatively large final waist

(at the farthest point from the insertion plane). The waist,wi for a given seed,i,

depends on the distance,ai , of the seed from the insertion plane:

wi = w0

√

1+
ai

r
(3.2)

w0 is the minimum waist size andr is the distance at whichwi = w0
√

2. These

two parameters are used to control the minimum waist (at the insertion plane) and

the rate of expansion of the Gaussian tolerance cone.

The second component of the score (|spi j − 10| < 2∀ j) takes into account

knowledge of the expected spacing between the seeds. For stranded implants es-

pecially, the seeds can only be a multiple of 10 mm from each other. Seeds must

therefore fall within the Gaussian cone and also satisfy the spacing requirement

with a tolerance of±2 mm to be counted in the score. This eliminates the cases

when seeds from other needle tracks fall within the Gaussian cone.

As shown in section 3.3.1, the iterative best line detection algorithm correctly

assigns a majority of the seeds to their corresponding needle tracks. However, a

higher accuracy is needed to allow the possibility of intra-operative planning. The

methods fails to assign all the seeds in most cases mainly due to the large variation

in the curvatures of the different tracks which cannot be fully accounted for using a

line fitting method. Still, since the seed assignment is still accurate for the highest

ranked needles, averaging their directions does consistently find the implantation

axis in both the fluoro and the CT datasets. The top 8 needles were chosen tokeep

the number consistent between datasets. Once the datasets are rotated to align the

implantation axis to thez axis, a network flow algorithm that is not affected by the

existence of intense curvature in the lines is used.
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Figure 3.3: A simplified flow network with a source producing 5 flow lines
that must flow though a cluster of transshipment nodes to a sink node.

3.2.2 Minimum Cost Network Flow Algorithm for Needle Track
Detection

Rotating the datasets to align the implantation axis with thezaxis simplifies needle

detection process by reducing the search angle needed to find tracks. However, the

tracks are still severely curved in some cases and cannot be parametrized. There-

fore, the problem is changed from a line detection problem to a network flowsys-

tem. Each seed is considered a node that can transfer a single unit of “flow” through

it. Thus, they will be referred to as “transshipment” nodes. A single “source” node

is created that feedsN flow lines into the system along with a “sink” node which

receives them. The problem is then solved by finding the most efficient wayfor the

flow lines to go from the source to the sink through all the transshipment nodes.

Figure 3.3 illustrates a simplified version of the network flow system whereN=5.

This problem is analogous to finding the most efficient design for a water pipe sys-

tem with a single provider feeding several units. For the case of the needletrack

detection problem, theN flow lines correspond to the number of needles inserted.

In order to find a most efficient network, the cost of a every potential connection

between two nodes must be computed. The costs are computed as follows:

1. Each transshipment node (or seed) is assigned the same cost so that they are

24



each equally likely to be used.

2. For a given node, the costs of making connections to every other nodeare

computed using a function that favours well spaced nodes that are in a rea-

sonable direction.

3. Step 2 is repeated for every node so that each node has a list of costsfor each

connection it can make.

Since each arc or connection is independent of the previous one, thereare no

restrictions as to the direction of the flow based on the shape of the curve before the

node. This allows for the sudden changes in direction that sometimes occur.The

function used to compute the costs in Step 2 has two components that are similar

to the ones defined in Section 3.2.1. The first component penalizes flow linesthat

deviate from that direction of the implantation axis. The angle cost,ACi j , between

two nodesi and j is computed as:

ACi j = (e|θi j |/θ0 −1)4 (3.3)

whereθi j is the angle from the implantation axis andθ0 is a parameter used to

tune how strict the function is. A higher value ofθ0 increases the acceptable range

of angles. The 4th power for the angle cost ensures that the cost increases rapidly

for increasing angles.

The second component of the cost function favours nodes or seeds that are

multiples of 10 mm apart, as is expected for needle implants and especially for

stranded implants. Higher multiples of 10 mm becomes increasingly unlikely these

are considered less efficient in the flow network. The spacing cost,SCi j , is defined

as:

SCi j =−e−si j /sd((∑
n

δ (si j −ns0))⋆e−(si j /sv)
2
) (3.4)

wheresi j is the spacing between nodei and nodej and |θi j | is the absolute

value of angle the line between the two nodes makes with thez axis. The spacing

cost is defined as a Gaussian peak with a variance ofsv. The symbol⋆ denotes

convolution which is just used to reproduce the function at integer multiples of10
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Figure 3.4: Graphs of the angle (left) and spacing (right) components of the
cost function. Connections with smaller angles and acceptable spacing
(multiples of 10 mm) are favoured. The tunable parameters for the angle
variance,θ0, and the spacing tolerance,sv, are shown with a box around
them. The spacing constants,s0 andsd are also shown.

(s0 = 10 mm) using a train of delta functions. The decaying exponential with a

variance ofsd = 10mmis aimed at penalizing larger seed spacing. It decreases the

magnitude of the spacing cost by a factor 1/e for every successive integer multiple

of the spacings0. Note that the contribution of each successive Gaussian peak to the

cost decreases exponentially asn increases. However, in practice, it is extremely

unlikely that the seed spacing in a given needle is 40 mm or more so the sum was

only done untiln = 3. sv is another tunable parameter used to set the deviation

allowed for the spacing.

Figure 3.4 graphically shows the angle and seed spacing cost functions with

the different parameters and constants. Complex forms of these components are

derived in Chnget al. [15]. The simplification of the functions allows the algo-

rithm to easily be re-tuned for seed clusters reconstructed from different imaging

modalities.

For the fluoro data,θ0 was set to 43.0 degrees andsv to 1.2 mm. A large angle

variance was needed since several needle tracks were visibly curvedand rotated but

tighter restrictions on the seed separation ensured that true tracks were identified.
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In contrast, for the post-implant CT data,θ0 was set to 31.5 degrees andsv to 3 mm.

Here, the seeds migrated a little so the seed separation requirement was relaxed. In

both cases the same parameters were used for all the patients.

A final tuning parameter,γ is used to weight which of the two components

affects the total cost most. The total cost is obtained by summing the two costs

with a weighting parameter,γ, on the angle cost term. This parameter controls

which component affects the cost most. For the intra-operative fluoro and post-

implant CT data,γ was set to 0.3. This increased the sensitivity to the spacing of

the seeds and relaxed the dependence on the angle which was necessary to allow

for the large changes in direction seen these datasets. For pre-plan data, the seeds

are defined along tracks that are parallel to the implantation axis. Any deviation

from this axis is therefore penalized and the cost is heavily weighted to the angle

component (γ is set to 1.2). The final objective function is:

Ci j = γACi j +SCi j (3.5)

The Matlab Toolbox “MATLOG” developed by Kayet al. is used to perform

the minimization after the costs are computed [34] (North Carolina State Univer-

sity, Raleigh, NC; http://www.ise.ncsu.edu/kay/matlog/).

It is possible to defineN, the number of needles inserted, before the com-

putation. However, this may be tedious or inconvenient during a brachytherapy

procedure. Here, the number of needles that have been inserted varies depending

on when the oncologist wants to check the placement. Therefore, the algorithm is

made to automatically compute the number of needles inserted. This is done by

setting an arbitrarily high number of “flow lines” initially which results in several

connections directly between the source and the sink without going throughany

seed nodes. The number of needles can then be reduced to the number flow lines

that contain at least two seed nodes (the minimum number in a given needle) and

then the whole process is repeated until only flow lines with at least two seed nodes

are found.
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Table 3.1: Needle track detection using the iterative best line detection algo-
rithm.

Patient Number of Number of Percent seeds
incorrectly seeds correctly
assigned inserted assigned

seeds

1 21 105 80%
2 14 105 86.67%
3 16 102 84.31%
4 25 122 79.51%
5 8 104 92.31%
6 13 115 88.70%
7 21 100 79%
8 8 118 93.22%

3.3 Results

This section presents the results of the needle track detection algorithm for 8pa-

tients. The implantation axis detection results are presented first, followed by the

needle track detection results.

3.3.1 Implantation Axis Detection Results

The iterative best line detection algorithm was first validated by testing its ability

to assign seeds to needle groups. The results, reported in Table 3.1, show that

79.0% to 93.22% of seeds that were correctly assigned. Figure 3.7 (appended at

the end of this chapter) shows the results for patient 4 which produced a relatively

low percentage assignment of 79.51%.

The implantation axis was found by averaging the vector directions of the eight

highest scoring needles. The datasets were then rotated so that the implantation

axis was aligned with thez axis. Figure 3.5 shows this alignment for both intra-

operative fluoroscopic data and post-implant CT data. Although Figure 3.5only

shows the sagittal view, it is worth noting that the algorithm performed 3D rotations

and not just a single rotation about they axis.
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Figure 3.5: Finding the implantation axis using an iterative best line detection
for intra-operative fluoro data (top) and post-implant CT data.

3.3.2 Needle Track Detection Results

The full algorithm was tested on 8 patient datasets. Figure 3.8 (appended at the end

of this chapter) shows the results from a single patient for all three data types.

The total number of needles found as well as the correctness of the seedto

needle assignments was checked by comparing the needle groups to the pre-plan.

This was done by first comparing the intersections of detected needle lines at the

insertion plane with those from the pre-plan, looking at the number of seedsper

needle as well as the expected relative positions. This simplified the finding of

potentially incorrectly assigned seeds. Figure 3.6 shows an example of a plan

comparison. The black ellipses show how the comparison can be used to identify

which seeds were not assigned correctly.

The needle matching for the pre-plan data, not surprisingly, correctly assigned

all the seeds in all patients. The results for the intra-operative and post-implant seed
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Figure 3.6: Comparison of fluoroscopic intersection data (green) with pre-
plan data (red). The same images were used for CT to pre-plan com-
parison. The black ellipses show where there are incorrectly assigned
seeds in the fluoro data.

to needle assignment are summarized in Table 3.2 which shows the percentageof

seeds that were correctly assigned.

It is worthwhile to note that patients 3 and 5 had two special load needles

(needles with irregular seed spacing) each. As expected, this made it moredifficult

to find those needles and accounted for the incorrect seed assignments for both

these patients. However, the number of needles was correctly found 100% of the

time for all types of data. Summarizing the needle assignment results, an average

of 99.31% of the seeds were correctly assigned for the intra-operativedata, while

an average of 99.41% of the seeds were correctly assigned for the post-implant

data. Once again, no pre-plan information is used in the needle detection andthe
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Table 3.2: Summary of needle track results for the both intra-operative and
post-implant data, on 8 patients.

Patient Number of Percent Percent
seeds intra-op seeds post-imp seeds

inserted correctly correctly
assigned assigned

1 105 100% 100%
2 105 100% 98.10%
3∗ 102 98.04% 98.04%
4 122 98.36% 98.18%
5∗ 104 98.08% 100%
6 115 100% 100%
7 100 100% 100%
8 118 100% 100%

∗ patients with special load needles
(needles with irregular seed spacing)

algorithm takes between 1 to 2.5 seconds to rotate the cluster and find the needles.

3.4 Conclusion

Two techniques have been combined to formulate a method to group seeds into

their corresponding needle tracks. The novelty of this method is its versatility in

terms of the range of datasets it can be used for. The complete process involved:

implantation axis detection, and needle track detection.

The iterative best line detection algorithm accurately found the implantation

axis from rotated seed clusters in all the datasets. Detecting the implantation axis

was used primarily to focus the search space required for the minimum cost net-

work flow algorithm. However, this algorithm also plays a crucial role the regis-

tration of pre-plan, fluoro and CT datasets. This is described Section 4.2.1in more

detail.

With the detected implantation axis, seed assignment based on a minimum cost

network flow algorithm has an accuracy of 99.3% and 99.4% in the intra-operative

and post-operative data. The correct number of needles inserted wasdetected every

time. The complete needle track detection algorithm has been shown to provide
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fast, automaticandreliableseed grouping. All of these are necessary requirements

for intra-operative planning.

The grouping of seeds into their corresponding needle tracks creates asimpli-

fied representation of the data. This reduces the complexity of the seed matching

problem that is required for both seed displacement measurement and fluoro to

ultrasound registration as described in Chapter 4.
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Figure 3.7: Using the iterative best line detection algorithm to rank possible
needle tracks. The ordered needles are graphed above and an illustration
of the best ranked needle tracks and the corresponding seed assignments
is shown below.
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Figure 3.8: Needle track detection results for patient 4 for pre-plan, intra-
operative and post-implant data
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Chapter 4

Measuring Intra-operative and

Post-implant Displacement of

Seeds With Registration to

Ultrasound Volumes

4.1 Introduction

This chapter describes how the needle track detection algorithm explained inChap-

ter 3 can be used to compute seed displacements and also to register these displace-

ment values to an ultrasound volume. Measuring seed displacements with respect

to the patient anatomy can be used to determine potential displacement trends orto

allow intra-operative planning when used during an operation.

Several research groups have reported studies that involve measuring post-

implant displacement of seeds. In most cases manual seed matching is used to

compute seed migration [24, 33, 46, 61, 71]. It is more convenient, however, to

have an automatic method of matching the seeds. This is true for pure post-implant

dosimetry but is particularly important for intra-operative planning where there is

not enough time to perform manual matching.

Pinkawaet al. investigated post-implant seed migration by looking at the dose
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levels over a 30 day period instead of looking at individual seeds [57, 58]. This

removed the need to match seeds in successive datasets but manual localization

and contouring was still required which is not feasible in an intra-operative envi-

ronment.

One method of automatically measuring the displacements is to monitor in-

dividual seed displacements relative to fiducials that are also inserted into the

prostate. Usmaniet al. performed a study using this idea, localizing seed positions

relative to fiducial markers in repeated post-implant CT images [77]. Precise dose

changes could be computed based on the seed positions but adding fiducials can be

considered unnecessarily more invasive and errors can be created ifthe fiducials

themselves migrate.

Other fully automatic methods for plan reconstruction [6, 15] for post-implant

dosimetry have been studied. In Chnget al. a needle track detection algorithm,

similar to the one in Chapter 3, was used to group the seeds. The “graphs” created

by the needle track networks were then matched in successive post-implantCT

images using a non-linear optimization algorithm called “Graduated Assignment”

[15].

The use of post-operative data alone limits the conclusions that can be drawn.

The migrations measured are caused mainly by post-implant inflammation of the

prostate. Although it is valuable to know if any migration trends exist before an

operation is performed, there are two other factors that could lead to seeddisplace-

ment that need to be measured or known for intra-operative planning to work: (i)

misplacement at the time of the implant and(ii) change in patient pose from dor-

sal lithotomy (see Figure 4.1) during the implant procedure to supine during CT

imaging. In order measure these types of displacement, seed matching is needed

with intra-operativedata. The matching of seeds in pre-plan data to those from

intra-operative data gives information on seed misplacement during an operation

while the comparison of intra-operative to post-implant seed positions investigates

movement due to change in patient pose.

Intra-operative dosimetry requires that any seed distributions or displacements

be known with respect to the target volume. In order to analyze and potentially

modify a plan intra-operatively, it is crucial to know what the effect of any dis-

placements are in terms of coverage of the prostate and target regions. Todo this,
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Figure 4.1: A patient in a mock setup at the BC Cancer Agency illustrating
dorsal lithotomy position.

the seed reconstructions must be registered to a dataset that can reliably see the soft

tissue. The prostate and surrounding anatomical features are all visible inTRUS

images which is currently used in standard brachytherapy operations making it an

ideal imaging modality for this.

Research has been done to detect all the seeds using TRUS alone [27, 82],

which would in itself allow intra-operative planning without the need for fluoro

data, but even with manual segmentation, up to 25% of the seeds cannot be local-

ized [27]. Therefore, TRUS to fluoro fusion is a suitable alternative.

Various methods of fluoro to ultrasound fusion have been tried [23, 48, 68,

75, 76]. One method could be to use Digitally Reconstructed Radiography (DRR)

to simulate fluoro images of the TRUS probe using a pre-operative CT volume

to determine its position relative to the seeds [65, 84]. This has yet to be tested

for prostate brachytherapy. Another method is to use seed based registration by

registering incomplete datasets from ultrasound data to complete datasets in fluoro

[48, 68, 75, 76]. The main issue with this method is the dependence on a complete
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reconstruction from the fluoro dataset. Moradiet al. present such a registration

[48] using complete fluoro reconstructions with C-arm motion compensation [17].

In this process, the needle track detection algorithm makes it possible to match the

detected seeds between the datasets so that they can be rigidly registered.

4.2 Methods

This section explains how the needle track detection algorithm described in Chap-

ter 3 are used to match seeds in fluoro, CT, ultrasound, and pre-plan dataset to

compute seed displacements with respect to the prostate. Sections 4.2.1, 4.2.2,

4.2.3 and 4.2.4 describe how the seed displacements are computed and Section

4.2.5 explains how the fluoro data can be registered to TRUS data so that the dis-

placements can be known relative to patient anatomy.

4.2.1 Registration of the Pre-plan, Fluoro and CT Seed Clusters

Seed displacements are computed by looking at the difference in position of a

given seed before, during and after an operation. To do these comparisons, the

coordinates of the seeds in the different datasets must be defined with respect to

the same set of axes and so the pre-plan, fluoro and CT seed clusters beregistered.

Figure 4.2 summarizes the registration process that is used, which allows actual

seed displacements to be measured. It starts by setting the origin of each dataset as

the seed cluster centroid position. Usmaniet al. show that the seed cluster centroid

position can be used to register the datasets since it remains at the same position

even with considerable post-implant migration[77]. This means that the centroid

position is the same in all the datasets.

The next step takes advantage of the implantation axis detection algorithm de-

scribed in Section 3.2.1. This algorithm aligns the implantation axis with thez

axis to help with needle track detection. This alignment in effect also corrects

for global rotations about thex andy axis which almost completely registers the

datasets. Note that both the centroid computation and the implantation axis detec-

tion can be done on each dataset separately. The datasets can therefore be put into

correspondence without having to do a rigid point set registration, using Iterative

Closest Point (ICP) [11] for example, by comparing two full datasets.
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Figure 4.2: An illustration of the two-step global registration technique used.
Step 1. Compute the seed cluster centroid locations and move them to a
global origin. Step 2. Rotate each dataset so that the implantation axis
is aligned with the globalz axis. Post-processing is used to correct for
roll offsets. Once all the datasets are put in the same coordinate system,
actual seed displacements can be measured.

Any offset rotations about the implantation axis (which is now also thez axis)

are not removed. This rotation, called the “roll”, is corrected using post-processing

as explained in section 4.2.4.

4.2.2 Needle Matching

The reason the needle track detection algorithm described in Chapter 3 makes the

seed displacement computation more feasible is because it simplifies a matching

of up to 150 seeds to one of∼20 needles. This section explains how the needle

matching across datasets is carried out.

Chng et al. use a graph theory method called “Graduated Assignment” to
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match entire networks in successive post-implant datasets [15]. A different method

is presented here.

After rotating the seed clusters and grouping the seeds into needles, the inter-

section of each needle track with theinsertion planeis computed. The insertion

plane is the transverse plane passing through the most inferior seed (at the apex

of the prostate). The needle intersections are then matched between two datasets

using a network flow system. This network is different from the network described

in Section 3.2.2. In this case, every node in one dataset is defined as a source node

that feeds 1 unit of flow into the system. Similarly, every node in the other dataset

is defined as a sink node that receives 1 unit of flow. The cost,MCi j , of connecting

a given source node,i, to a sink node,j, depends on the Euclidean distance,di j ,

between the two needle intersectionsas well asthe the number of seeds that are in

the needles,Ni andNj :

MCi j = di j +(Ni −Nj +1)4; (4.1)

The termNi −Nj +1 has a 1 added to it so that even if the difference is only 1,

it will be penalized heavily by the fourth power. The cost is therefore onlylow if

the needle intersections are close to each otherand they have the same number of

seeds. Figure 4.3 demonstrates why it is necessary to include the number ofseeds

in the matching cost. The red lines show some of the correct matches that would

not have been assigned if a simple closest-to match had been used.

4.2.3 Seed Displacement Computation

Each seed position is compared to its corresponding seed from a different data type

to obtain a displacement vector. This can be done intra-operatively to detect any

misplacements by comparing actual seed positions to planned seed positions atany

given time during the procedure. It is also valuable to quantify the intra-operative

misplacement or post-implant movement to see if any trends exist. In order to find

potential trends, an in-depth study was carried out on the patient data acquired.

An complete list of all the displacement vectors from every seed in each patient

was created and used to compute trends. Displacement vectors were calculated

both for intra-operative misplacement and for post-implant movement.
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Figure 4.3: Intra-operative and post-implant insertion plane intersections for
one patient. The red lines show situations where a purely closest-to
match would not work without also taking into account the number of
seeds per needle.

Scalar distances were used to quantify the absolute motion. The total average

distance was computed for each patient as well as for all the patients. The average

distance was also computed for different regions of the prostate by dividing the

entire volume into 27 subregions, where each axis was divided into 3 sections.

Directional information was also recorded. This was done my computing an

average displacement vector in each of the 27 subregions. These displacement

vectors were used to analyze the trends in the direction of motion in each region.

4.2.4 Post-processing to Correct for Differences in Roll Between
Datasets

In Section 4.2.1, the seed cluster centroid and the implantation axis are used to

register pre-plan, fluoro and CT datasets. This corrects for all globaldifferences

except for differences in roll. A global offset is defined as one that isapplied to
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Figure 4.4: Graphs showing how the average displacement distances varied
with different roll values for the intra-operative data. The pre-plan to
intra-operative comparisons are shown on the left and intra-operativeto
post-implant comparisons are shown on the right.

the entire dataset rather than a small subregion. If there is a global roll offset be-

tween two datasets then all the computed local trends are influenced by it. In order

to remove this offset an automatic post-processing method is used. The average

displacement distance can be computed for each patient as in Section 4.2.3 for a

range of different roll values for the intra-operative data. Figure 4.4shows how the

average displacement distance varied with roll angle for each patient. Theintra-

operative dataset is chosen since it is used in both comparisons. The rollangle

which gives the lowest average displacement distance is taken to be the “noroll”.

This completes the registration process since all 6 global degrees of freedom are

put into correspondence. The displacement results presented in Section4.3.2 are

roll offset corrected.

4.2.5 Registration of Fluoro to Ultrasound

The second objective of this thesis was to develop an algorithm to register fluoro

datasets to ultrasound volumes. This is required to properly assess seed displace-

ments for intra-operative planning. It allows changes in the seed distribution to be

viewed with respect to the prostate and any other soft tissue features thatare visible
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in ultrasound.

The technique used to register the two volumes demonstrates another appli-

cation for the needle track detection algorithm presented in Chapter 3. Here, the

simplified “needle grouping” representation of the fluoro seed cluster is used to

compare and match seeds to the ultrasound volume. The seeds act as fiducials

since they are visible in both imaging modalities and this allows the fusion of the

two.

Needle intersections are computed from the seed clusters reconstructed from

fluoro data, as described in Section 4.2.2. Similarly, needle intersections with the

insertion plane are computed for the ultrasound volumes using needle tracksfound

using the Hough transform [48, 80]. Registration is then performed by minimizing

the following cost function:

Cost=
NUS

∑
i

di (4.2)

whereNUS is the total number of ultrasound needle intersections anddi is Eu-

clidean distance to the nearest fluoro needle intersection from the ultrasound needle

intersectioni.

Since a complete ultrasound seed reconstruction dataset is rarely available, this

alone is not enough to put the two datasets in full correspondence. However, it

is still required to determine which fluoro seeds are also found in the ultrasound

data so that rigid point set registration can be performed to fully register thetwo

datasets.

Moradi et al. continue from this method using the ICP [11] method as well

as a Gaussian Mixture Model (GMM) [32] to complete the registration process.

In addition, the warping of the prostate when the TRUS is fully inserted as com-

pared to when it is retracted to allow the seeds to be visible in the fluoro images

is accounted for [7]. Validation of the needle matching and registration is done

using a “leave-one-needle-out” method where all the seeds from needlegroup are

removed to check if the results change [48]. If the results change significantly with

the removal of a needle, it indicates the presence of a local minimum making the

registration invalid.
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Figure 4.5: Intra-operative to post-implant needle matching results for one
patient. Matching needles are connected with the red lines.

4.3 Patient Study Results

The patient study presented in this section was performed to verify if the methods

described in Section 4.2 can be used to compute real-time seed misplacements

with respect to the target volume to allow intra-operative planning. In addition, the

various displacements are analyzed to determine possible trends in misplacement

or movement which can help influence future plans. The results of a study on 8

patients are presented for inter-dataset needle matching and seed displacements.

The seed displacements are divided into two types of displacement: intra-operative

misplacement and post-implant movement.

4.3.1 Inter-Dataset Needle Matching

Figure 4.5 shows how the intersection data displayed in Figure 4.3 was correctly

matched. The red lines connect needles that are matched by the algorithm. The

needle track detection results presented in Section 3.3.2 show correct assignment

44



Figure 4.6: Displacements of seeds for a single needle. The intra-operative
misplacement is seen from red to green and might be the kind of visu-
alization that can be used in the OR for intra-operative planning.

for over 99% of the seeds. In order to fairly test the needle mathching algorithm,

the few incorrectly assigned seeds in the various datasets were manually adjusted

to be grouped with the correct needle. After this adjustment all the needles were

correctly matched between all the datasets in under 2 seconds per patient using

unoptimized Matlab code.

4.3.2 Seed Displacement Results

With the needles correctly identified and matched in corresponding data sets for a

given patient, the seeds themselves could be directly compared to calculate seed

displacements. The time taken to obtain the displacements once the seeds are

matched is negligible since it merely a subtraction of 3D coordintates. Figure 4.10

(appended at the end of this chapter) shows the movements of the seeds between the

pre-plan and intra-operative data and between the intra-operative andpost-implant

data for one of the patients. The usefulness of the displacement calculationfor

intra-operative planning is shown in Figure 4.6 which shows actual displacement

results for all three sets of data for a single needle.

Average Displacement Magnitude Results

The three-dimensional Euclidean distance that every seed moved betweendatasets

was computed. For each single patient the average distance was computed as the

sum of all the distances moved divided by the total number of seeds insertedinto
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Table 4.1: Pre-plan to intra-operative and intra-operative to post-implant seed
displacement results.

Patient Av. misplacement Av. movement
distance distance
(pre to (intra-op

intra-op) to post-imp)
/mm /mm

1 4.56±2.10 3.76±1.89
2 6.17±2.44 3.93±2.45
3 4.39±1.78 3.16±1.78
4 4.08±2.25 2.39±1.41
5 5.59±2.25 2.85±1.73
6 4.89±2.18 2.38±1.09
7 4.82±2.46 1.72±0.75
8 5.12±3.02 3.57±1.72

Average 4.94±2.42 2.97±1.81

the patient. The total average over all eight patients was also computed. Table 4.1

summarizes the results.

From Table 4.1 the average displacement was significantly larger for pre-plan

to intra-operative case than intra-operative to post-implant data (p<0.01, n= 871).

The error in localization of the seeds in intra-operative fluoroscopy data,is

reported to be less than 0.9 mm [17]. The calculated displacement is therefore

not due to errors in seed localization. The result suggests seed displacement due

to oncologist preferences, needle deflection and prostate movement during nee-

dle insertion, seen from pre-plan to intra-operative misplacement as an average of

4.94 mm, is higher than displacement caused by a change in patient pose and im-

mediate inflammation (measured as intra-operative to post-implant movement, an

average of 2.97 mm).

Regional Displacement Magnitude Results

The average displacement was computed for each of the 27 subregions,defined by

dividing each axis into 3 sections, to quantify the motion in each region. Tables

4.2 and 4.3 show these distances. In the table, the different transverse slices are
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Table 4.2: Intra-operative seed misplacement results for different prostate re-
gions

Average misplacement distance (mm)
left mid y right

inferior
anterior 5.42± 1.41 6.52± 2.63 4.81± 2.41
mid x 4.11± 2.19 5.79± 2.41 4.01± 2.44

posterior 4.25± 1.52 5.23± 1.76 4.16± 2.05

mid z
anterior 5.13± 1.51 6.58± 3.07 5.38± 2.92
mid x 4.65± 2.14 6.15± 3.17 4.89± 2.36

posterior 3.81± 1.68 5.07± 1.97 4.14± 2.88

superior
anterior 5.84± 1.25 6.70± 2.76 5.71± 2.09
mid x 5.06± 2.20 5.55± 2.58 5.14± 2.51

posterior 4.03± 1.93 5.24± 2.36 4.96± 3.01

Table 4.3: Post-implant seed movement results for different regions within
the prostate volume

Average distance moved (mm)
left mid y right

inferior
anterior 2.96± 1.71 3.67± 2.34 3.16± 1.81
mid x 2.99± 1.76 2.82± 1.57 3.34± 1.85

posterior 2.66± 1.55 2.58± 1.60 3.26± 1.76

mid z
anterior 2.68± 2.30 3.29± 2.45 3.13± 2.14
mid x 3.03± 2.01 1.60± 0.86 2.59± 1.90

posterior 3.15± 1.42 2.30± 1.30 2.98± 1.53

superior
anterior 3.28± 2.36 2.89± 1.67 3.85± 2.31
mid x 3.04± 1.82 2.16± 0.98 2.56± 1.70

posterior 3.10± 1.35 2.34± 1.18 3.04± 1.02

presented from inferior to superior. Each transverse slice has 9 distance values.

For the pre-plan to intra-operative displacement, the seeds near the medialline

of the prostate (thezaxis) moved slightly more on average. Note that no directional

information can be drawn from this. For intra-operative to post-implant displace-

ments, there were no significant differences in the amount of motion between the

different subregions. In agreement with the average patient data, the intra-operative

misplacement was greater than the post-implant movement in all regions.
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Table 4.4: Pre-plan to intra-operative misplacement direction results. Values
with a mean value to standard deviation ratio greater than 0.95 are in
boldface

Average misplacement direction vectors (x,y,z) (mm)
left mid y right

inf

ant
(0.33,0.54,-3.87) (-0.01,-1.47,-4.14) (-0.51,-1.59,-2.88)
±(2.36,2.85,1.79) ±(2.59,2.55,4.20) ±(2.05,2.06,3.15)

mid x
(-0.24,0.02,0.31) (0.94,0.31,2.03) (-0.70,-0.73,0.31)
±(1.55,2.01,3.92)±(1.48,2.16,5.56)±(1.96,2.14,3.56)

post
(0.41,1.01,1.87) (0.21,-0.05,3.47) (1.40,0.07,0.55)
±(2.43,1.85,2.67)±(3.33,1.14,2.55) ±(2.61,1.78,3.22)

mid z

ant
(1.63,0.15,-3.83) (1.90,-0.69,-3.71) (0.42,-0.04,-4.06)
±(1.53,2.47,1.85) ±(2.31,2.73,4.82)±(2.48,1.82,3.46)

mid x
(0.10,-0.97,0.70) (-0.13,-0.28,3.21) (-0.79,0.96,0.57)
±(2.09,1.87,4.15)±(1.86,2.36,5.75)±(2.52,2.49,3.92)

post
(0.29,-0.07,1.45) (-0.60,0.54,3.46) (0.00,1.15,0.96)
±(2.12,2.12,2.57)±(2.83,1.41,2.74) ±(1.84,2.08,4.01)

sup

ant
(3.07,-1.48,-3.51) (2.58,-0.60,-3.56) (1.68,2.34,-2.74)
±(2.02,2.47,1.51) ±(2.31,3.16,4.28) ±(2.64,2.63,2.86)

mid x
(0.12,-1.79,0.36) (0.11,0.62,2.58) (-0.70,2.07,0.51)
±(2.60,2.12,4.02)±(2.36,2.35,4.72)±(2.77,2.80,3.53)

post
(-0.41,-0.40,1.35) (-2.07,0.44,3.76) (-1.26,1.76,0.87)
±(1.99,2.45,2.88)±(2.25,1.59,2.69) ±(1.99,2.97,4.01)

Displacement Vector Results

It was noted that different magnitudes of displacement occurred in different regions

of the prostate. The average displacement vectors for each of the 27 subregions

was computed. Tables 4.4 and 4.5 summarize the general displacement directions

seen. The displacement vectors are visually illustrated in Figures 4.7 and 4.8. The

standard deviation ellipsoids are drawn in separate plots where each ellipsoid is

centered in its respective region. Note that for the post-implant movement vectors,

the axis labels indicate the position of the sub-regions but the vectors themselves

have been scaled by 2 so that they can be seen. The intra-operative misplacement

vectors are to scale.

As with the scalar measurements, the directional displacements from intra-
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Table 4.5: Intra-operative to post-implant movement direction results. Values
with a mean value to standard deviation ratio greater than 0.95 are in
boldface.

Average movement direction vectors (x,y,z) (mm)
left mid y right

inf

ant
(0.71,0.57,-0.38) (1.20,-0.00,-0.09)(0.29,-0.27,-0.41)
±(1.99,1.16,2.37)±(1.56,0.85,3.83)±(1.91,0.77,3.03)

mid x
(0.38,0.48,0.18) (1.75,-0.05,0.12) (0.39,-0.40,0.93)
±(2.39,1.13,2.19)±(2.18,0.98,1.35)±(2.00,1.29,2.81)

post
(-0.01,1.09,0.36) (0.66,0.04,0.86) (0.08,-1.67,1.04)
±(1.40,1.15,2.31) ±(2.05,0.68,1.89)±(1.73,1.44,2.30)

mid z

ant
(-0.38,-0.12,-1.13)(0.70,-0.06,-1.29) (0.10,0.29,-1.12)
±(1.31,1.06,2.91)±(1.26,0.74,3.59)±(1.31,0.98,3.27)

mid x
(-1.12,0.72,-0.34) (-0.02,0.15,-0.66)(-0.72,-0.33,0.68)
±(1.80,1.53,2.42)±(0.46,0.74,1.57)±(1.01,0.95,2.72)

post
(-0.79,0.97,0.98) (-0.59,0.03,1.36) (-0.66,-1.39,0.97)
±(1.12,1.67,2.37)±(0.99,0.75,1.85)±(1.74,1.35,1.82)

sup

ant
(0.53,-0.35,-1.65) (1.11,0.08,-0.63) (1.34,0.59,-0.50)
±(1.25,1.24,3.22)±(1.11,0.99,2.78)±(1.33,1.31,3.85)

mid x
(-0.69,0.11,-0.98) (-0.72,0.07,-1.03)(-0.11,-0.15,0.10)
±(2.07,1.26,2.32)±(1.41,0.94,1.26)±(1.63,1.14,2.36)

post
(-0.08,0.49,0.14) (-0.34,-0.05,0.23)(-0.48,-1.00,0.41)
±(2.01,1.40,2.32)±(1.42,0.93,1.99)±(1.97,1.46,1.75)

operative to post-implant were smaller than in the pre-plan to intra-operativecase.

The significant intra-operative misplacement results can be summarized as follows:

(i) inferior displacement of lateral anterior seeds,(ii) superior displacement of me-

dial posterior seeds and(iii) anterior misplacement of superior anterior seeds. For

the post-implant movement there is:(i) inward lateral movement of inferior poste-

rior seeds and(ii) anterior movement of superior anterior seeds.

4.3.3 Preliminary Fluoro to Ultrasound Registration Results

Needle matching is required as a preliminary step towards registering the fluoro

seed reconstructions to ultrasound volumes. This needle matching is shown for

patients 9 and 13 in Figure 4.9. The needle matching was used to match the avail-
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Figure 4.7: Intra-operative misplacement vectors (above) and the standard
deviation ellipsoids (below).

able seeds found in ultrasound with the corresponding seeds found in fluoro. The

unmatched seeds were then removed so that rigid point set registration could be

performed on the remaining seeds.

Moradi et al. completed the registration process by accounting for prostate

warping with the TRUS probe fully inserted and then using both the ICP method as

well as the GMM method to perform the registration. An average post-registration

distance of∼3 mm was found in both cases. The results did not change signifi-

cantly using the “leave-one-needle out” validation method [48]. This verifies that
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Figure 4.8: Post-implant movement vectors (above) and the standard devia-
tion ellipsoids (below). The units in brackets correspond to the vector
lengths and not the subregion positions. They are used to remind the
reader that these vector lengths are doubled to make them visible.

the needle matching method used to for initial seed matching that is needed to

perform full registration works.

4.4 Conclusions and Displacement Trend Hypotheses

A chain of techniques have been presented that allow seed displacement calculation

as well as registration of fluoro to ultrasound. The needle track detection algorithm
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Figure 4.9: Needle matching used to align the fluoro and ultrasound data
match the detected seeds

described in Chapter 3 plays a crucial role in achieving both these objectives.

The “leave-one-needle-out” method performed by Moradiet al. validates the

needle matching method that is used to register fluoro data to ultrasound. With this

registration the true potential of intra-operative planning can be realized.

The seed displacement computation, like the needle track detection algorithm,

has been shown to meet all of the intra-operative planning requirements (fast,

automatic and reliable). It is therefore a perfectly viable method to detect intra-

operative misplacements especially with registration of fluoro to ultrasound.

Part of the first objective of this thesis was to determine if trends existed that

could be compensated for before a needle is inserted. The next set of conclusions

are hypotheses for potential trends seen in the displacement data.

For the pre-plan to intra-operative comparison, several regional displacements

were noted. The larger amount of misplacement for seeds near the medial line

is most likely due to the fact that this is the longest part of the prostate giving

the oncologist more leeway to steer the needles. There is no directional trend to

this placement which suggests that it is not due to needle or prostate movement.

Similarly, the inferior misplacement of anterior seeds and superior misplacement

of posterior seeds is also likely due to oncologist tendencies. There is a lack of

implantable tissue in the anterior superior quadrant (close to the bladder) and so
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seeds are deliberately placed more inferiorly. The greater retraction of lateral ante-

rior seeds is due to the presence of the pubic arch which forces a shallower implant.

The divergence of the rectum from the prostate in the superior posteriorquadrant

leads to a tendency to “over-plan” the medial superior region on the posterior side.

The anterior misplacement of superior anterior seeds can be explained either

by prostate rotation or needle deflection. Any transverse displacement ofthe seeds

could be due to needle deflection. It is expected that this effect would be most

visible with superior seeds. However, this does not explain the anterior direction

of the misplacement. Therefore, assuming that it is due to prostate movement, the

base would have to rotate posteriorly during insertion to observe this displacement.

This would suggest that the prostate is held more rigidly by the TRUS probe -

which is on the posterior side, allowing downward rotation of the gland and so

upward motion once the needle is removed - than the pubic arch.

For the intra-operative to post-implant comparison the first directional conclu-

sion can be drawn from the lack of a global outward seed displacement. This

suggests that inflammation has little or no effect for immediate post-implant seed

movement. The only outward motion is seen with anterior movement of superior

anterior seeds. This could be due to pressure from the bladder on the superior side

of the gland when the patient pose changes from dorsal lithotomy to supine.In-

ward lateral movement of inferior posterior seeds must also be due to change in

patient pose although further analysis of the forces on the gland during the change

is needed to verify this.

In general the results show that intra-operative seed misplacement is larger

than post-implant movement. This confirms results from Chnget al.[15], who

explain the large impact that both prostate rotation and needle deflection have.

This also agrees with work done by Wanet al. to evaluate needle deflection [79]

and by Lagerburget al. who evaluate prostate rotation during the insertion of

needles [40]. Suet al. performed a study on the effect of seed misplacement

on the delivered dose using random noise to model the misplacement instead of

actual measurements [69] and found minimal changes in the D90 measure with

misplacements of up to 4mm. However, the random noise model does not include

the trends presented here. The seed displacement trends found here could therefore

but incorporated into a similar study to verify these results.
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Regional, directional displacement measurement techniques have been pre-

sented for seeds in prostate brachytherapy. The hypotheses described here need

further confirmation from more specialists and more data may be needed to deter-

mine real trends. However, the seed displacement measurement methods provide

all the tools needed to automatically compute displacements in a larger patient

study to further understand variations in dose distributions from the pre-plan. The

techniques described can be used to collect and measure trend data as well as to

accurately detect misplacements intra-operatively. Measuring seed displacements

is needed for intra-operative planning so that an oncologist can compensate, either

before insertion to allow for known displacement trends or immediately after inser-

tion if misplacement is detected. However, this is only possible if change in dose

coverage due to these displacements are known relative to the target volumeitself.

The verified fluoro to TRUS registration method presented in this chapter is shown

to be a suitable solution to this issue. It should be noted that the same registration

technique can be used to register CT to TRUS (including the warp compensation

[7, 48]) which would be needed to make sense of post-implant movement andmi-

gration. The significance of being able to do this registration is that the target

volume is visible in the ultrasound images while not in fluoro or CT. However,

the relatively low image quality, characteristic of regular B-mode ultrasound im-

ages can make it difficult to delineate the prostate and especially difficult to view

tumours. In fact, the registration would not be very useful if the prostate could

not be segmented in the ultrasound images. It would be convenient therefore to

provide a potential intra-operative planner with a more intuitive display of theul-

trasound images with automatic delineation of the target areas. Chapter 5 describes

an approach to complete the intra-operative planning process using ultrasound elas-

tography to enhance the target volume visualization.
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Figure 4.10: Pre-plan to intra-operative seed misplacement results for patient
4.
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Chapter 5

Ultrasound Elastography for

Prostate and Tumour Delineation

5.1 Introduction

Delineation of the target volume in ultrasound is required for intra-operative plan-

ning and is addressed in this chapter. Prostate segmentation in ultrasound is cur-

rently required during the pre-plan stage of most prostate brachytherapy proce-

dures. Contouring is needed to determine how and where to place seeds sothat the

prostate will be sufficiently irradiated. For intra-operative planning to work this

process must be brought into the operating room. In fact, even with accurate mis-

placement detection and registration of fluoro to TRUS (see Chapter 4), if prostate

segmentation in the ultrasound images is not possible then the whole planning pro-

cess cannot work.

Providing a method to delineate the target region intra-operatively also solves

another issue that leads to errors in seed positioning. Chapter 4 presentsa method

of computing errors that arise from needle or prostate movement, prostate inflam-

mation or change in patient pose. However, the first of the issues summarized in

Chapter 1 has not been addressed yet. This is the fact that the shape and position

of the prostate may have changed in the time between the pre-plan scan and the

operation itself. Intra-operative prostate segmentation and cancer detection would

allow for an “Intra-operative pre-plan” [52] which would remove this concern and
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Figure 5.1: A sagittal B-mode ultrasound image of the prostate with (right)
and without (left) manual contouring.

has been shown to produce better results that regular pre-plans [47].

Figure 5.1 illustrates how it is not trivial to segment the prostate in a traditional

B-mode image due to low resolution and blurred boundaries. Accurate segmen-

tation in ultrasound has therefore been studied widely [1, 7, 29, 42, 45].Incor-

porating this into an intra-operative planning environment requires that it also be

performed rapidly with as little manual interaction with the software as possible.

Active Shape Modeling (ASM) [29], deformable shape modeling [26], region

growing [45] and warped ellipse fitting [7, 42] are all automatic segmentation al-

gorithms that could work for the purpose of intra-operative planning. However,

all these methods require some sort of manual initialization. This could still work

since the user input is minimal but more research would have to be done on how

feasible it is.

In this chapter, another technique that removes the initialization problem is

presented. Quantitative or absolute ultrasound elastography is used to measure and

display the stiffness of the different regions which inherently delineates the target

region since the prostate tissue has different elastic properties from its surrounding

region. Another incentive to use elastography is that computing the stiffness of the

tissue also allows for potential visualization of tumourous regions within prostate

as well as the gland itself. Knowledge of the location of the cancerous regions

can help plan a more case-specific seed distribution. It could even allow localized
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treatment by boosting dose levels in tumourous regions or sparing more healthy

tissue as is proposed in the field of focal therapy [2, 18, 50].

Krousoupet al. suggest that there is a direct relationship between tissue stiff-

ness and the cell density in tissue [39]. Since cancerous tissue has a higher cell

density (more cells per unit volume) than non-cancerous tissue, it follows that mea-

surement of the rigidity of the tissue should help with cancer detection. Indeed, the

use of elastography in targeted prostate biopsies has already been investigated [53].

Methods to compute the relative elasticity (stiffness is measured in comparison

to surrounding tissue) in real time have been studied previously [38, 54, 56, 63].

However, it would be more useful to compute the absolute elasticity (measuring

the Young’s modulus) of the different regions so that results don’t vary too much

between cases. This also allows for better comparison between differentdatasets

for further investigation. The implementation of an algorithm used to compute the

Young’s modulus using ultrasound imaging will be presented in the following sec-

tions. Mahdaviet al. have presented a fully automatic approach for prostate seg-

mentation which uses elasticity measurement to initialize the segmentation [43].

A real-time stiffness display, or elastogram, provides a more intuitive view of

the prostate region. Overlaying registered intra-operative or pre-plan seeds would

then give an oncologist immediate feedback on the quality of a given implant with-

out having to explicitly segment the target region. Alternatively, the elastograms

could be used to initialize any of the automatic segmentation algorithms described

so that the dose coverage can be measured.

5.2 Computing Absolute Elastography in Ultrasound

The basis of the elastography algorithm is that materials with different stiffnesses

respond differently to external stress, whether it be static compression or dynamic

excitation. The idea is to measure this response and then convert it into a measure-

ment of the rigidity of the material.

Dynamic excitation at a given temporal frequency generates displacements

within a given material. It can be shown that resulting displacements can be repre-

sented as the sum of the gradient of a scalar potential,φ , and the curl of a vector

potential,ψ [9, 36]. φ corresponds to a “dilatational” wave andψ corresponds to
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a “shear” wave. The spatial frequencies, or wavenumbers, of the dilatational wave,

kd, and the shear wave,ks, are functions of the Laḿe parameters of the material

which describe its viscoelastic properties.kd can usually be computed directly and

so the viscoelastic properties (including the Young’s modulus) of specific points in

a volume can be found by computing the local three-dimensional spatial frequency,

ks, from the measured displacement data. The local frequencies can be computed

using lognormal quadrature filters as Local Frequency Estimators (LFE)[10, 35].

Another method for performing the inversion required to compute the local fre-

quency is to use a Travelling Wave Expansion (TWE) model of the solution to the

wave equation (a sum of waves travelling in every direction with the same spatial

frequency) [9]. Measured displacements can be fitted to the TWE model to solve

for the spatial frequency and so the Young’s modulus.

The algorithm is implemented as follows: A specific excitation frequency,fe,

can be used to generate motion in the tissue. A tissue motion tracking algorithm

[8, 19] is then used to create a series of displacements per pixel as a function

of time from Nf pp frames per plane. Assuming linearity, all the motion has the

same temporal frequency (fe). Therefore, a complex exponential describing just

the phase and amplitude of the motion at each pixel can be used to representthe

response of the system. This complex exponential is called a “phasor”. Inthis

way, a single phasor displacement image is generated from the set ofNf pp time

series displacement images which can reveal any travelling waves that arecreated

in the tissue. The waves seen in a phasor displacement image, however, are only

2D projections of the actual travelling waves created by the excitation. Therefore,

2D phasor images are computed for a series ofNppe planes creating a 3D volume

sweep. The set ofNppe 2D planes are interpolated into a Cartesian grid so that the

3D waves can be seen. The local spatial frequencies of these waves at every point

in a given plane are computed using LFE applied to the 3D Cartesian block. This

creates a single elastogram (the “ppe”subscript stands for “planes per elastogram”).

This process is repeated for an entire volume producingNE elastograms fromNp

planes. Note thatNE = Np−Nppe+1.

Note that this means that a few planes must be acquired before the first elas-

togram is computed since a block of 2D phasor images is needed. However,a

relative elasticity or strain image can still be generated directly from each 2D pha-
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sor image. Therefore the number of strain imagesNRE=Np.

The described inversion algorithm has been previously implemented for free

hand ultrasound [10]. This study includes the use of a Graphical Processing Unit

(GPU) which takes advantage of parallel processing to speed up the process ao that

it can be used in real-time. The next section describes how it has been implemented

for elasticity measurement of the prostate region.

5.3 System Implementation for Prostate Elastography

This section describes the system design used to implement Baghaniet al.’s algo-

rithm to compute absolute elastography [10] for the prostate. The entire system is

summarized in figures 5.6 and 5.7 but is described in the following sections first.

5.4 The BK Ultrasound Machine

A BK ultrasound machine (BK Medical, Herlev, Denmark) is used with the 8848

4-12 MHz TRUS linear transducer in this study. It provides extremely high image

resolution which allows better tissue tracking which should increase the reliability

of the system. It is also already used at the Vancouver Cancer Care (VCC) at the

BCCA which makes it possible to use the same ultrasound machine that is used in

standard clinical routine and therefore can shorten significantly the data acquisition

during the procedure.

Raw Inphase Quadrature (IQ) data can be read from the machine but external

control of the acquisition is not possible. Therefore the default imaging parameters

are kept with the highest sampling rate (The depth of acquisition is 5.6 cm and the

sampling rate 42.66 Hz) and the IQ data is continuously read into an external PC

through a DALSA Xcelera-CL PX4 Full frame grabber card (Teledyne DALSA,

Waterloo, ON). Figure 5.2 shows an image of the BK ultrasound machine with the

TRUS probe and the raw data output port.

The main issue with not having an external control of the image acquisition

is with the tissue tracking algorithm. Excitation frequencies are usually around

∼100 Hz which arehigher than the sampling rate. The Nyquist criterion states

that the sampling rate must be at least twice the frequency of the signal to pre-

vent aliasing. Therefore, there needs to be a method of increasing the sampling
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Figure 5.2: The BK ultrasound machine. The raw data output port located at
the back of the machine is shown in the inset image.

frequency. One example of this is to use sector-based acquisition similar to the

acquisition used for Doppler imaging [8]. However this requires control of the

transducer crystals which is not possible with the constraints of the BK Medical

UI. A band pass sampling algorithm described by Eskandariet al. is therefore

used which allows phase and amplitude reconstruction with sampling frequencies

that are lower than the excitation frequencies. The following equation from[19]

more accurately describes the limitations for the sampling frequency,fs:

2 fe+B
m+1

≤ fs ≤
2 fe−B

m
(5.1)

where fe is the excitation frequency,B is the allowed bandwidth of the excita-

tion frequency, andm is any positive integer. This means that for a given sampling

frequency, the allowable excitation frequencies are restricted to a set bands (com-
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Table 5.1: Excitation frequencies that allow tissue tracking with band pass
sampling for a frame rate of 42.66 Hz.

Excitation Frequency (Hz)
Minimum Maximum Center

69.0 80.3 74.7
90.3 101.7 96.0

111.7 123.0 117.3
133.0 144.3 138.6
154.3 165.6 160.0
175.6 187.0 181.3
197.0 208.3 202.6
218.3 229.6 224.0

puted for different values ofm). Still, as long as the excitation frequencies do fall

within these bands, the algorithm allows for accurate tissue tracking within the al-

lowed bands. Table 5.1 summarizes the allowed bands for the BK sampling rate

(42.66 Hz).

Another consideration that needs to be taken into account is the relationship

between the data collected for different planes in a volume. From section 5.2,

phasor displacement images are computed for each plane. In order to study these

displacements in 3D, the phasor planes must be in phase with each other. In other

words, the excitation cycle must be the same for each plane. If the acquisition

could be turned on and off then this could be achieved by only beginning to read

data for a plane when the excitation is at the start of a cycle. Since there is no

control of when the data is to be outputted, post-acquisition phase compensation is

used. The compensated phasor image,PCi , for planei is computed as:

PCi = Pie
(−2π fei(ti−t0)) (5.2)

wherePi is the uncompensated phasor image,ti is the time stamp for the first

frame of planei andt0 is the time stamp of the first frame of the very first plane

[8].

To summarize the collection process for absolute elastography with the BK

ultrasound machine:Nf pp=20 frames are collected per phasor image.Nppe=22
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Figure 5.3: The TRUS robot with the BK transducer.

phasor planes are used to compute one elastogram. A total ofNp=100 planes are

collected producingNE=79 elastograms for the entire volume. If strain imaging is

used instead of absolute elastographyNSE=Np=100.

5.5 The TRUS Roll Mechanism

A previously designed TRUS roll robot is used in this study. A cradle specifically

designed to hold a TRUS probe is attached to a regular TRUS mount. A “roll”

motor is used to sweep the cradle and is equipped with an optical encoder so that

the position can be accurately controlled by a “TRUS robot control box”.A motor

control Figure 5.3 shows a side view of the TRUS robot with the BK transducer

held in the cradle.

A volume sweep is created by rolling the TRUS probe in 0.9o increments

Np=100 times. The full sweep angle is therefore 0.9*Np=90o from - 45 o (pa-

tient right) to + 45o (patient left). The probe remains at a given roll location until

Nf pp=20 frames have been acquired.
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5.6 The Excitation Mechanisms

A different excitation mechanism is needed for the elastography system depending

on the type of elasticity that is desired.

Strain, or relative elasticity is measured from 2D planes and therefore requires

excitation that is parallel to the imaging direction (any wave propagation that is

not cannot be measured). This requires transrectal excitation which works well

because there is close contact with the prostate itself and also takes advantage of

the high image resolution in the axial direction. This method is not suitable for

absolute elastography since the excitation direction changes as the TRUS roll robot

sweeps. The inversion algorithm requires a static excitation source for which it can

provide a solution for the frequency and direction. Therefore a transperineal exciter

is used.

5.6.1 Transrectal Strain Vibration

A DC motor with a an offset mass on its shaft is mounted onto the cradle of the

TRUS robot transducer cradle. The offset mass pushes the cradle down against a

spring and then releases it as the strain vibration motor rotates forcing it to oscil-

late vertically. This causes the probe itself to oscillate, exciting the tissue perpen-

dicular to imaging direction. The excitation frequency used for strain imaging is

usually much lower than the excitation for absolute elastography system and isset

to∼10 Hz for this system.

5.6.2 Transperineal Shaker

For absolute elastography, a voice coil shaker is used to excite the perineum of

the patient (or the model of the perineum in a phantom). A CIVCO flexible arm

(CIVCO Medical Solutions, Kalona, IA) is used to mount the shaker to the patient

table. The flexible arm can be maneuvered in order to provide good contact with

the excitation surface and then locked into position using cable locks. Figure5.4

displays the shaker together with the CIVCO arm. Figure 5.5 shows the transper-

ineal exciter mechanism with the TRUS robot and BK transducer.

An Agilent U2761A function/generator (Agilent Technologies, Santa Clara,

CA) is used to output the desired excitation frequencies. It will be referred to as
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Figure 5.4: The voice coil exciter shown alone (left) and mounted to a table
using the CIVO flexible arm (right).

Figure 5.5: The transperineal exciter mechanism, TRUS roll robot, and BK
transducer in a mock setup with a phantom.
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Figure 5.6: The control unit for the elastography with all the required con-
nections.

the “transperineal shaker control box”. Combinations of excitation frequencies can

also be produced which allow measurement of the elastic modulus using several

frequencies simultaneously. The average modulus would give a more accurate

result. In this case separate phasor images are computed for each frequency at

each plane.

Figure 5.6 shows how the control boxes and PC are connected. Figure 5.7

shows the complete setup during an absolute elastography sweep.

5.7 Phantom and Patient Studies

In order to check how well the elastography system is suited for intra-operative

planning it was tested with both phantom and patient data. Preliminary results
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Figure 5.7: An absolute elastography sweep showing all the different electri-
cal components. The “real-time” elastography image can be seen to be
slightly different from the BK monitor image. This is due to the fact the
22 frames are required to compute one elasticity image so it lags slightly
behind.

only are presented in this thesis to check if the target region is delineated well.

Both strain imaging and absolute elastography was performed on a CIRS phan-

tom model 066 (Computerized Imaging Reference Systems, Norfolk, VA) which

has 3 simulated hard inclusions. The approximate locations of the inclusions are:

1. In the “patient” right, superior, anterior region of the prostate phantom(at a

sweep angle of - 5.5o).

2. In the “patient” right, inferior, posterior region of the prostate phantom(at a

sweep angle of - 4.5o).
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3. In the “patient” left, central region of the prostate phantom (at a sweepangle

of + 22.5o).

Absolute elastography was performed on patients who were undergoing rad-

ical prostatectomy due to prostate cancer at Vancouver General Hospital (VGH).

Institutional Research Ethics Board approval and patient consent were acquired.

Results were compared to qualitative information, provided by medical residents

who viewed the biopsy report, at the time of the surgery. The study was used to

check both the reliability of elastography systemand the feasibility of using it in

an intra-operative environment.

Raw IQ data, time displacements data, phasor displacement data and elasticity

was saved in all cases which can be used in future studies.

5.8 Results

As a demonstration of the full system, time displacements, phasor displacements,

relative elasticity and absolute elasticity images are provided for the phantom. Ab-

solute elastography results are shown for the patients. A volume sweep forabsolute

elastography took∼1 minute.

In all the images shown below the horizontal axis runs from inferior to superior

(i.e. the apex of the prostate is located on the left side of the image and base on the

right). The vertical axis is the axial line of the ultrasound image and runs from the

probe (at the bottom of the image) upward.

5.8.1 Phantom Results

The convenience of being able to test the phantom repeatedly allowed a range of

frequencies to be used. Three frequencies were used simultaneously and chosen

such that were each within the allowable bands from Table 5.1 and also far enough

apart in baseband to be easily separated when computing phasors. The frequencies

chosen were 144 Hz, 181 Hz and 208 Hz. These are all “allowed” frequencies

and are measured as 16.0 Hz (144−3 fs), 10.4 Hz (181−4 fs) and 5.4 Hz (|208−
5 fs|; the 180o phase shift is accounted for in the bandpass algorithm [19]) when

brought to the baseband. Therefore they are far enough apart foraccurate frequency

reconstruction.
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Figure 5.8: A time displacement image from plane 55 of the phantom data.

Intermediary displacement images

A single time displacement image is shown in Figure 5.8 at plane 55 (out of

100(Np)). This corresponds to a sweep angle of + 4.5o). A series of 20 (Nf pp)of

these images are used to compute a phasor displacement image at plane 55 foreach

frequency which is shown in 5.9.

Strain Imaging

To provide an investigation of the use of relative elasticity or strain imaging a

10 Hz excitation signal was used to excite the phantom using the strain vibration

motor. Figure 5.10 shows the strain result at a sweep angle of - 4.5o to show both

inclusions on the phantom right side.
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Figure 5.9: Phasor displacement of plane 55 for 144 Hz (left), 188 Hz (mid-
dle) and 208 Hz (right). The projected wavelengths can be seen to get
smaller for higher frequencies.
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Figure 5.10: A strain image of the phantom at a sweep of - 4.5o. Both of the
inclusions located on the right side of the phantom are visible.
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Figure 5.11: B-mode images (top) are compared to absolute elasticity images
(bottom) for the phantom. The results are shown for a sweep angle of
- 4.5o (left) and + 22.5o (right).

Absolute Elastography

Figure 5.11 shows the absolute elastography result for the angles - 4.5o and + 22.5o

showing all three inclusions. The colourmap for the images is set from 0 kPa(blue)

to 50 kPa (red). The elastic modulus was computed by averaging the results from

transperineal excitation at 144 Hz, 188 Hz and 208 Hz.
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Figure 5.12: Absolute elastography results (bottom images) for patient 1 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The B-mode images (top images) are manually contoured to show the
prostate more clearly.

5.8.2 Patient Results

The absolute elastography results for 2 patients are presented in this section. Exci-

tation frequencies of 58 Hz, 75 Hz and 96 Hz were used. However, onlythe 75 Hz

excitation provided reliable results. The images in this section compare the elas-

tograms to B-mode images of the same slice. Since the prostates are not clearly

visible in B-mode images a manual contour is overlaid on the image to segment it.

The first patient is an older man with a large prostate. According to medical

residents who viewed the biopsy report, several tumours existed on the left side of

the prostate at the base. Figure 5.12 shows the result for this patient. It can be seen

that the left side is much stiffer than the right side, especially at the base of the
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Figure 5.13: Absolute elastography results (bottom images) for patient 2 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The B-mode images (top images) are manually contoured to show the
prostate more clearly.

prostate (on the right side of the images).

The 2nd patient in this study is a younger man whose prostate is therefore much

smaller (prostate volume has been shown to steadily increase with age [78]).The

cancer, according to the nurses, was again located on the left side but more widely

spread. Figure 5.13 displays the results for patient 2. From the absolute elasticity

results, the left side of the prostate is much stiffer than the right side.

For reference, the same results for both patients are shown with uncontoured

B-mode images in Figures 5.14 and 5.15, appended at the end of this chapter.
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5.9 Conclusion

An elastography system has been successfully implemented and shown to work ro-

bustly. The focus of the experiments was on absolute elastography which provides

quantitative results that can be used in future studies but reliable strain imaging

(relative elasticity) is also provided. The strain imaging worked well for the phan-

tom but has not been tested on patients. The system is capable of saving strain data

and so more research can be done in this area.

The new absolute elastography system [9] demonstrated promising results.All

the requirements for the application of intra-operative planning are met. Firstly,

the time taken for a full volume sweep is∼1 minute which is short enough for it to

be used during a brachytherapy procedure.

The software also works well to enhance the target region and separateit from

the surrounding region. For both the phantom and the patient data, the detected

stiffer regions correlated well with the inclusions or expected tumour locations.

Although much more data is required, it is proposed that an elastogram will provide

a more intuitive representation of the prostate and especially of cancerousregions.

When combined with seed matching and registration of fluoro to ultrasound, an

oncologist would be able to view seed positions and potential misplacements with

the respect recognizable stiffer regions (displayed as red) in the elastogram. This in

effect allows intra-operative planning for prostate brachytherapy without the need

to actually segment the prostate.

For a more calculated approach to intra-operative planning, explicit segmenta-

tion is required. Still, the visual delineation provided in the elastograms suggests

that it is possible to use absolute elasticity images to initialize other automatic seg-

mentation algorithms [1, 7, 29, 42, 45]. A fully automatic approach to prostate

segmentation using this approach is described by Mahdaviet al. [42].

More research is still required to further validate the use of elastography. The

software must be tested on prostates that have brachytherapy seeds implanted in-

side them to see what effect that has on the results. A transrectal excitation mecha-

nism that remains fixed as the probe rolls would be beneficial because the excitation

would take place closer to the prostate. Developing an exciter like this would add

another benefit since the majority of the displacements would be in the axial di-
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rection which has the best resolution in ultrasound images. One should also verify

that the seeds do not cause peculiarities in the raw IQ images used to compute elas-

ticity which could negatively impact the result. If this is the case then ultrasound

elastography could not be used in between implants but could still be used in the

OR just prior to the first implant.

Research on multi-frequency excitation on patient data is also needed. A wide

range of frequencies could be tested for the phantom but this was not possible with

the patients. It is worth finding a set a frequencies that work well so that averaging

to further improve the result can be done.

The last area of future research for the use of absolute elastographyfor intra-

operative planning for brachytherapy is to compute true correlations between the

stiffness and the cancerous regions. This can be done by comparing theelastograms

with pathology results from excised prostates. If a strong correlation canbe made

then subregions within the prostate in the elastograms can be identified as cancer-

ous tissue. Combining this with automatic segmentation algorithms would allow

for complete dose coverage of cancerous tissue in real time, using seed reconstruc-

tion from Chapter 2 [17], along with misplacement detection using displacement

techniques from Chapter 4. The current system would rely on oncologist intu-

ition to determine what the different hard and soft regions are so that registered

misplacements can be compensated for. Still, the stiffness map does simplify the

image to enhance the target region.
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Figure 5.14: Absolute elastography results (bottom images) for patient 1 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The elastogram enhances the target regions in the images.
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Figure 5.15: Absolute elastography results (bottom images) for patient 2 (the
excitation frequency is 75 Hz). A slice from the patient right side (left
images) is compared to a slice from the patient left side (right images).
The elastogram enhances the target regions in the images.
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Chapter 6

Conclusions

Interactive intra-operative planning is a method used to reduce misplacement errors

during prostate brachytherapy [52]. The reasons why errors in seed position occur,

as outline in Chapter 1 can actually be split into two types: Those that occur asa

result of changes in the target volume as compared to the pre-plan and those that

occur due to seed displacements during and after implantation.

In order to make intra-operative planning plausible, techniques must be used

to give the oncologist fast and reliable information on the structure of the target

volume as well the positions of seeds relative to the pre-planand the target vol-

ume. Systems and algorithms that address these issues have been presented in this

thesis. The proposed methods are purposefully chosen to make use of theimag-

ing modalities that are already being used in standard procedures. From aclinical

perspective, this is important since it is not easy to make drastic changes to the

standard work flow.

A list of contributions is presented in the next subsection.

6.1 Thesis Contributions

• A real-time GUI has been developed that incorporates automatic segmenta-

tion of fluoro images used to reconstruct the intra-operative seed positions.

A potential graphical display of the reconstruction is also presented. The

availability of this data is crucial for intra-operative planning to work.

78



• A method used to simplify the representation of a 3D seed cluster by finding

needle tracks has been developed. This seed matching is used to compute

seed displacements which can be done in real-time and also for studies to

predict trends. The major contribution of the algorithms presented is that

they work reliably on intra-operative fluoro data.

• Two different registrations are presented. Firstly, implantation axis detection

is used to put full seed reconstructions from fluoro, CT and pre-plan datasets

into correspondence which allows seed displacement calculation. Secondly,

a method to help with the registration fluoro to intra-operative TRUS which

puts the seed positions and displacements into the patient coordinate system.

• A method to compute and display the absolute elasticity of a prostate vol-

ume from ultrasound has been implemented. This provides real time organ

and tumour delineation which justifies the significance of the registration of

fluoro to ultrasound. In addition, this provides a method of viewing the tar-

get region in the OR which means the pre-plan can be done just prior to an

operation so that there are no changes in the prostate volume between the

pre-plan and operating conditions. This method of pre-planning has been

referred to as “intra-operative preplanning” [52].

With the above contributions a proposed intra-operative planning protocol can

be developed. For example a procedure described below could be used:

1. Just prior to the the first needle implant, perform a full absolute elastography

sweep to create an intra-operative preplan.

2. Adjust the intra-operative pre-plan to compensate for pre-calculated, region-

dependent, displacement trends.

3. Insert a few needles (the number is subject to the oncologists discretion) into

key target areas.

4. Reconstruct the seed positions using intra-operative fluoro images from 5

discrete angles. Misplacement vectors can be computed immediately as

compared to the intra-operative pre-plan.
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5. Perform a RP ultrasound sweep to detect seeds in ultrasound and register the

ultrasound volume to the fluoro seed positions.

6. Overlay seeds or displacement vectors on elastograms (either segmented or

just as is) to view misplacements with respect to the target regions.

7. Return to step 2 until all the seeds have been implanted.

Note that during an operation and after seed reconstruction, seed displacement,

registration to ultrasound or elastography can be used independently or inany com-

bination at the oncologists discretion. For example, an oncologist could choose to

only perform an RP ultrasound sweep for registration of fluoro to ultrasound, if the

average computed displacement is greater than a certain value. This could be done

by relying on a good “intra-operative preplan” to assume correct placement for low

displacement measurements. Figure 6.1 provides an example screen image that can

be used to visualize seed displacements relative to the target regions. This would

only be possible with a combination of all the methods presented in this thesis.

After an operation, data collected from all of the algorithms presented can be

used to further analyze displacement trends.

6.2 Future Work

Further studies are needed to fully register seed displacements to prostate volumes.

This could not be done here since two different patient studies were used for the

seed displacement analysis and the absolute elastography study. For this tobe pos-

sible the elastography system must be included in a study with patients undergoing

brachytherapy.

The main issue with the fluoro reconstruction is the availability of real-time

data to compute the seed positions from. In this work, it is assumed that the fluoro

images are immediately available for real-time processing as soon as they are ac-

quired. This is not currently the case and the images have to be imported post-

operatively. This is a serious limitation but proof of the feasibility of intra-operative

planning could lead to the use of machines that do allow real-time data access.

The main improvements for the target volume delineation process lie in the au-

tomation of the segmentation and in the excitation mechanism. Research is needed
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Figure 6.1: A potential intra-operative planning interface. Intra-operative
seed positions and misplacement vectors are registered to and overlaid
on top of an ultrasound slice. The target regions can be inferred by the
oncologist due to the visual enhancement provided by the elastogram.

to develop a transperineal excitation mechanism that acts through the square-faced

template guide or a transrectal excitation mechanism that is is decoupled from the

TRUS probe. As for the automatic segmentation, this has been shown to work

using elastography images to initialize other automatic segmentation algorithms

[7, 42]. The extension of this is to then identify tumourous regions in the prostate

to further aid the planning and placement process. To do this, further research is

needed to determine the correlation of the stiff regions in the prostate to cancer. In

addition, the effect of needle insertion on the quality of elastography results has to

be investigated. Nonetheless, a intra-operative pre-plan is still possible.Even with-

out explicit segmentation, displays such as the one in Figure 6.1 can be provided

which still give an oncologist feedback on the misplacements since they can infer

target regions based on expert knowledge.
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