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Abstract

We present an updated analysis of pulse profiles and their arrival-times
from PSR B1534+12, a 37.9-ms pulsar that is orbiting a neutron star. Such
“double-neutron-star” systems are expected to undergo various relativistic
effects, such as orbital decay and precession, due to the strong-field nature
of the local gravitational field (Damour & Taylor, 1992). A high-precision
timing model is derived that accounts for all astrophysical processes that
systematically affect pulse arrival-times. In the process of generating this
model, we constrain parameters that characterize the interstellar environ-
ment, relative motion of the pulsar, its spin properties, and binary parame-
ters. We measure five “post-Keplerian” parameters that represent relativis-
tic corrections to the standard Keplerian quantities that describe a binary
orbit. These relativistic parameters are then used to test general relativity
by comparing the measured values with those predicted by Einstein’s grav-
itational theory. We conclude that general relativity is confirmed to within
∼ 0.35% of its predictions. The measurement of orbital decay contains a
bias due to relative acceleration in the Galactic potential, and cannot be
corrected for at this time due to an unreliable measure of distance; however,
we can use this bias as a means to constrain the distance the pulsar should
be from Earth in order for general relativity to be the correct theory of grav-
ity. We find this distance to be dGR = 1.037 ± 0.012 kpc. We also present
evidence for pulse “jitter” in PSR B1534+12, which indicates short-term
magnetospheric activity and has significant implications for the long-term
improvement of timing precision. In a separate study, we present an analy-
sis on pulse-profile evolution that has been previously linked to relativistic
spin precession (Stairs et al., 2004). The current results of our precession
analysis cannot confirm general relativity using this relativistic effect, but
future studies and observations are needed constrain the precession rate of
PSR B1534+12.

ii



Preface

Several parts of our data set were acquired and used in previous studies of
PSR B1534+12:

• The “Mark III data set” consists of pulse arrival-times and profiles
that were recorded at Arecibo Observatory with the Mark III observ-
ing system, with a central observing frequency of 1400 MHz . This set
was collected and prepared by Z. Arzoumanian, A. Wolszczan, and J.
H. Taylor. Results obtained with this data set were published by Ar-
zoumanian (1995) and Stairs et al. (1998), and a more recent analysis
of this set was performed by Stairs et al. (2002).

• The “Mark IV data set” consists of pulse arrival-times and profiles that
were recorded at the Arecibo Observatory with the Mark IV observing
system, with central observing frequencies of 430 MHz and 1400 MHz.
The set was collected and prepared by I. H. Stairs, S.E. Thorsett,
J. H. Taylor, and A. Wolszszcan. Further observational support was
given by K. Xilouris, D. Lorimer, D. Nice, E. Splaver, A. Lommen, P.
Freire, and I. Hoffman. Results obtained with Arecibo Mark IV data
taken up to early 2002 were published by Stairs et al. (2002). Several
additional years of Mark IV data (up to late 2004) were presented in
a preliminary version of the timing analysis described in this thesis
(Stairs, 2005).

The global pulsar-timing and profile-evolution analyses presented below were
carried out entirely by E. Fonseca. Moreover, this manuscript was written
by E. Fonseca with invaluable commentary and feedback from I. H. Stairs
and B. Gladman.
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Chapter 1

Introduction

The discovery of pulsars (Hewish et al., 1968) marked the beginning of a
productive and insightful era in high-precision pulsar astronomy. Indeed,
these rapidly-rotating, compact objects are among the most versatile tools
in modern physics and astrophysics, lending themselves to a wide variety
of studies and applications. For instance, the first confirmed extra-solar
planets were discovered orbiting a millisecond pulsar (Wolszczan & Frail,
1992). Pulsars have also been used to estimate the distribution of free
electrons in the Galaxy, which can then be used to infer distances to these
objects from dispersive delays in multi-frequency pulsar signals (e.g. Taylor
& Cordes, 1993). In a more recent application, high-precision mass estimates
of pulsars in binary orbits have been used to constrain the equation of state
of condensed stars (Demorest et al., 2010), as well as provide constraints
on possible mass-transfer histories and subsequent evolutionary scenarios of
massive binary systems (e.g. Stairs, 2004).

Pulsars are particularly powerful laboratories for measuring relativis-
tic effects and testing alternate theories of gravitation. The discovery of
PSR B1913+16, commonly known as the “Hulse-Taylor” pulsar (Hulse &
Taylor, 1975), provided the first case where such an object in a strong grav-
itational field could be used to place substantial constraints on relativistic
gravity. A significant measurement of orbital decay in the Hulse-Taylor bi-
nary system inferred the existence of gravitational radiation, a previously
unconfirmed prediction of general relativity at that time (Taylor & Weis-
berg, 1982). Several other tests have since been performed using pulsars in
different astrophysical environments, examining possible violations in rel-
ativistic equivalence principles and precession of pulsars about their spin
axes; see Stairs (2003) for a review.

This thesis describes several analyses of PSR B1534+12, a pulsar in a
binary orbit with another neutron star, and the implications these studies
have on gravitational theory. In order to provide clarity and context for
the details of this work, this chapter provides a comprehensive introduction
and overview of the pulsar model used, as well as the modern techniques
for studying pulsars that are applied to the studies outlined in the following
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1.1. Cosmic Lighthouses

chapters. A review of pulsars in binary systems and tests of general relativity
is also provided below.

1.1 Cosmic Lighthouses

A typical pulsar model is comprised of a rotating neutron star, formed from a
supernova explosion, that emits beamed electromagnetic radiation at both
magnetic poles. The magnetic axis is misaligned with the star’s rotation
axis and occasionally points in the direction of Earth, leading an observer
to see “pulsed” emission. The compact object is highly magnetized, with a
typical surface magnetic-field strength of ∼ 1010 Gauss, and is surrounded
by a dense magnetosphere of charged particles that rotates with the star
(Goldreich & Julian, 1969). Moreover, this dipolar misalignment induces
electromagnetic waves that radiate away from the magnetosphere and result
in a loss of rotational energy, or “spin-down”, of the pulsar. Spin-down
rates for “normal” (i.e. isolated) pulsars are typically ∼ 10−15 s/s, whereas
binary and millisecond pulsars can have rates as low as ∼ 10−20 s/s; this
discrepancy is believed to indicate past interaction between the pulsar and
a binary companion (Lorimer & Kramer, 2005).

All neutron-star models describe a spherical, stellar object whose mass
is contained within a characteristic radius of ∼ 10 km. These objects are
among the densest objects in the universe. Models of neutron-star structure
indicate that pulsar masses can range between 0.1 and ∼ 3 M�, although
the upper limit is less certain due to complications from a general-relativistic
treatment of the neutron-star equation of state (Lattimer & Prakash, 2004).
A typical, theoretical structure of neutron stars depicts a thin outer crust
and superfluid interior, with the star’s matter density varying by six orders of
magnitude from the star’s surface to its center (Lyne & Smith, 2004). High-
precision mass estimates of the most massive pulsars continue to provide
sizable constraints on possible equations of state that govern the structure
of such compact objects.

1.2 Overview of Pulsar Timing

Pulsars are often renowned for their rapid and stable rotation, which is
reflected in the radio-pulse period. However, the key property of radio pul-
sars is the long-term stability of the pulse shape, or “profile”, over time.
Individual pulses are recorded as noisy profiles and vary dramatically in
appearance. These irregularities vanish when one averages these individual

2



1.2. Overview of Pulsar Timing

profiles together to form an average (or “integrated”) pulse profile. See Fig-
ure 1.1 for a comparison of integrated profiles from PSR B1534+12 – the
pulsar that is subject to this study – averaged over different time scales.
The overall shape of the integrated profile remains remarkably stable and
becomes sharper as more individual profiles are folded together, which allows
it to serve as a type of “standard template” for the purposes of determining
pulse arrival-times. In fact, integrated pulse profiles are crucial for studying
the deviations between a pulsar signal’s time of arrival (or “TOA”) and all
subsequent TOAs; this type of analysis is commonly referred to as “pulsar
timing”.

1.2.1 Basic timing model

The goal of pulsar timing is to account for every rotation of the neutron star
and, by extension, model every physical process that systematically affects
each TOA. In practice, the construction of a “timing model” for a given
pulsar incorporates important details of the object and its local environment,
as well as the Earth’s motion about the Sun and its own spin axis. Pulse
TOAs are initially recorded at a local-observatory time t and are subjected
to these various forms of timing bias. Such analyses are therefore carried out
in a stepwise manner by initially transforming the arrival-times measured
at the observatory to an inertial reference frame1, and assuming that the
pulsar is isolated and slowing down due to magnetic dipole radiation. This
permits the pulse phase φ that is recorded at a transformed arrival-time τ to
be modeled using a simple Taylor expansion (e.g. Lorimer & Kramer, 2005),

φ = φ0 + ν(τ − τ0) +
1

2!
ν̇(τ − τ0)2 +

1

3!
ν̈(τ − τ0)3 + ... (1.1)

where ν is the pulsar rotation frequency, dots denote time-derivatives, and
φ0 and τ0 are a reference phase and time, respectively. Additional astro-
physical processes will manifest themselves as systematic delays in pulse
TOAs. Parameters that characterize these delays can be measured with
high precision by incorporating their theoretical timing-delay models into
the arrival-time transformation. Furthermore, non-physical effects can oc-
cur due to instrumental deficiencies and/or differences in instrumental spec-
ifications when using timing data recorded with different signal processors
(Taylor & Weisberg, 1989). It is usually necessary for the timing model to
include arbitrary timing offsets when using data taken with multiple observ-
ing machines.

1This is usually taken to be the Solar-system barycenter.
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Figure 1.1: Two folded pulse profiles of PSR B1534+12 recorded with the Mark IV signal processor at the 305-m
Arecibo Observatory. These two plots illustrate the long-term stability of pulse profiles, a property seen in nearly
all radio pulsars.
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1.3. Pulsars in Binary Systems

1.3 Pulsars in Binary Systems

A pulsar undergoing binary motion with a massive object2 will exhibit ap-
parent changes in its rotation period and pulse TOA due to the Doppler
effect. Such binary systems can be readily identified as periodic changes
in the observed rotation period after transforming pulse TOAs to an iner-
tial reference frame and fitting Equation 1.1 to the recorded (transformed)
TOAs. Binary pulsars, with their spin and spin-down rates, can then be
further characterized by the orbital elements of the binary system. This can
be done by examining the variation of observed rotation period (Pobs) from
its intrinsic value (P ) over time due to Doppler motion:

Pobs = P

(
1 +

V1(Ae)

c

)
(1.2)

where

V1(Ae) =
2π

Pb

a sin i√
1− e2

[cos(ω +Ae) + e cosω] (1.3)

is the projected, line-of-sight orbital velocity of the pulsar. The remaining
parameters are further related to the orbital elements of interest through
“Kepler’s equations”,

ω = ω0 +

(
Pbω̇

2π

)
Ae(u) (1.4a)

Ae(u) = 2 arctan

[(
1 + e

1− e

)1/2

tan
u

2

]
(1.4b)

u− e sinu = 2π

[(
t− T0
Pb

)
− Ṗb

2

(
t− T0
Pb

)2]
(1.4c)

where u is the “eccentric” anomaly, Ae(u) is the corresponding “true” anomaly,
and the remaining orbital parameters are summarized as follows: x = a sin i
is the projected semi-major axis; e is the orbital eccentricity; Pb is the orbital
period; ω is the longitude of periastron3; and T0 is an epoch of periastron.

2Typical binary companions are other massive stars. However, several Earth-mass
planets have been discovered through pulsar-timing studies (Wolszczan & Frail, 1992).

3In pulsar astronomy, ω is measured between the ascending node (the point where the
pulsar crosses the plane of the sky and moves away from an observer) and the location of
periastron.
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1.3. Pulsars in Binary Systems

Several quantities of interest – the pulsar mass (m1), the companion mass
(m2), and inclination angle of the orbital plane relative to the plane of the
sky (i) – usually cannot be measured directly through pulsar-timing studies.
However, these parameters can be related to one another by the nominal
mass function,

fm =
(m2 sin i)3

(m1 +m2)2
=

4π2

G

x3

P 2
b

(1.5)

where the right-hand-side of Equation 1.5 can be readily computed. A mini-
mum mass of the companion star can be approximated by assuming a typical
pulsar mass of m1 = 1.35 M� and an edge-on orbital inclination (i ≈ 90◦).

Equations 1.2, 1.3, 1.4 can generally be used to obtain initial estimates
of the orbital parameters, and adequately describe non-relativistic binary
systems. In practice, high-precision measurements of orbital parameters
are made by modeling the differences in pulse times-of-flight across the or-
bit as further systematic delays in pulse TOAs (Lorimer & Kramer, 2005).
Furthermore, relativistic binary systems – where a pulsar orbits another
compact object – will exhibit effects that are not accounted for in the above
expressions. Additional models are needed to characterize the strong-field
nature of such a system, and these are presented in Chapter 2 for the case
of PSR B1534+12.

1.3.1 System evolution and double-neutron-star binaries

The combination of spin and orbital properties can also be used to infer
the evolutionary history of the binary system (Lorimer, 2001). Many evolu-
tionary scenarios involve the more-massive binary star evolving faster than
its companion and eventually undergoing a supernova event, the remnant
of which is a neutron star. Any bound, post-supernova binary system is
therefore expected to become significantly more eccentric than its progen-
itor system due to the injection of post-explosion energy into the system.
The most common of subsequent, interactive processes for these systems is
the transfer of mass between stars, which can occur as the orbit shrinks in
size. Moreover, a binary star will expand as it evolves during its sub-giant
and giant phases of its lifetime. Both cases eventually lead the compan-
ion star to overflow the gravitational equipotential of the binary system, or
“Roche lobe”, where its mass is then streamed onto the compact object.
This mass-accretion phase will result in an increase of angular momentum,
or “spin-up”, of the compact object, as well as damping of its magnetic-field
strength and circularization of the orbit.

6



1.4. Pulsars and General Relativity

The end-products of these evolution schematics sensitively depend on
several initial conditions, the more important of which are the masses of
the two binary components (Stairs, 2004). A binary system with two very
massive stars (each with a mass m ≥ 8 M�) is thought to produce a neu-
tron star and He star that is stripped of its main-sequence envelope after
mass transfer; the He star will eventually explode and form another neu-
tron star, finally leaving two neutron stars closely orbiting one another in
an eccentric orbit. These kinds of systems are observationally rare, with
only ten double-neutron-star binaries known (Lorimer, 2005). Nevertheless,
these binary systems are near-ideal candidates for experimental gravity with
high-precision pulsar timing.

1.4 Pulsars and General Relativity

Several modern tests of gravitational theory have been carried out within the
Solar System and have confirmed general relativity with considerable preci-
sion (Everitt et al., 2011). However, these tests probe gravitation in a con-
siderably “weak” gravitational field. A dimensionless parameter that quan-
tifies gravitational-field strength at an object’s surface is given by Damour
& Taylor (1992) as

α =
GM

c2R
(1.6)

where G is Newton’s constant, M is the mass of the object, c is the speed
of light, and R is the radius of the object. The Sun has a strength value of
α ∼ 10−6 and is thus characterized as a “weak-field” object. In contrast, a
neutron star has a typical value of α ≈ 0.2 and is subsequently considered
a “strong-field” object. Pulsars therefore provide a significant and unique
astrophysical laboratory for measuring relativistic effects in the strong-field
regime of gravity, especially if they are in binary systems with other compact
objects (Damour & Deruelle, 1985, 1986).

These strong-field effects are hereafter referred to as “post-Keplerian”
(PK) parameters, which represent relativistic corrections to the standard
Keplerian parameters defined in Section 1.3 above. The orbital decay of
a relativistic binary system, which was first observed in the Hulse-Taylor
binary system, is an example of such PK effects. In a given theory of gravity,
these parameters will depend on a variety of orbital parameters. In the case
of general relativity, the PK parameters can be expressed as functions of the
binary-component masses which are not usually accessible through standard
pulsar-timing procedures:

7



1.4. Pulsars and General Relativity

PKj = fj(m1,m2) (1.7)

where the left-hand-side of Equation 1.7 is the jth PK parameter, and fj
is the corresponding equation for that parameter. The masses of the bi-
nary system can therefore be uniquely determined if two PK parameters are
measured and expressions for these parameters are available within a given
theory of gravity. Measurement of three PK parameters leads to an overde-
termination of the system, meaning that the combination can be used to
test the gravitational theory under consideration. The Hulse-Taylor pulsar
provided the first test of general relativity in the strong-field regime, where
orbital decay (Ṗb), the time-rate of change of the periastron longitude (ω̇),
and time-average gravitational redshift parameter (γ) were measured with
significance (Taylor & Weisberg, 1982, 1989).

8



Chapter 2

High-Precision Pulsar
Timing of PSR B1534+12

2.1 A Brief History

PSR B1534+124, a bright 37.9-ms pulsar, was discovered in 1990 and im-
mediately noted to undergo binary motion with another object of stellar
mass (Wolszczan, 1991). The companion star is believed to be another neu-
tron star, based on the observed facts that: the size of the orbit is small
(∼ 1R�); there is no eclipsing event shown in the pulsar’s residuals, despite
a highly-inclined orbit with i ≈ 74◦; and the measured spin-down rate of
PSR B1534+12 is consistent with a model of an old pulsar having under-
gone an accretion process with its massive companion, resulting in a spun-up
pulsar and another compact object orbiting one another (e.g. Stairs, 2004).
As noted in the previous chapter, such binary systems can serve as critical
laboratories for testing gravitational physics in the strong-field regime of
gravity.

Indeed, a follow-up timing analysis of PSR B1534+12 demonstrated that
the system was undergoing orbital decay at a measured rate that is in accor-
dance with the predictions of general relativity (Stairs et al., 1998). More-
over, this analysis provided the first instance where up to five PK parameters
were measured with favorable precision: the familiar ω̇− Ṗb−γ parameters,
as well as the r and s parameters that characterize the Shapiro time-delay
(Shapiro, 1964; Damour & Taylor, 1992). Thus, unlike the Hulse-Taylor
pulsar, several tests of gravitational theory can be extracted from high-
precision timing measurements of PSR B1534+12. Moreover, this pulsar
provided the first case where a “non-mixed” test of relativity theory was ob-
tained by only considering PK parameters that characterize the quasi-static
(i.e. non-radiative) nature of the relativistic binary system (Taylor et al.,
1992).

4“PSR” stands for “pulsating source of radio”, the “B” indicates the B1950 coordinate-
reference epoch, and the 1534+12 indicates the right ascension + declination of the object.
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2.2. Data Acquisition and Reduction

A more recent timing analysis of this pulsar, published in 2002, presented
extensive measurements of astrometric, spin, and environmental parameters
of the pulsar, as well as Keplerian and PK elements of the binary system
(Stairs et al., 2002); the latter were used to confirm general relativity and
obtain estimates of the pulsar and companion masses with favorable preci-
sion.

This chapter presents an updated, high-precision timing analysis of PSR
B1534+12, using a data set that spans over twenty-two years in time. A
description of the data acquisition and reduction, implementation of several
timing models, and estimation of the ionized interstellar medium and its
behavior across the time series is provided below. The results and their
interpretation are presented in the last section.

2.2 Data Acquisition and Reduction

All data utilized in this analysis were obtained with the 305-m Arecibo
radio telescope in Puerto Rico, using several generations of pulsar signal
processors. Observations with Arecibo began as early as August 1990, and
occurred as recently as February 2012. Data were recorded using two 430-
MHz5 receivers, as well as two 1400-MHz6 (“L-band”) observatory receivers.
All observing systems described below collected data in the standard “tim-
ing” mode of pulsar observations: a series of recorded, consecutive pulses
were folded modulo the apparent (or “topocentric”) pulse period in order to
generate raw, unweighted profiles measured at different polarization states.
These polarization profiles are then weighted through flux calibrations, and
then added to produce the total-intensity profiles used for the timing anal-
ysis.

5A line feed Carriage House 430-MHz receiver was used for observations carried out
between MJD 48126-52965, 52967-53063, and on 53102. An upgraded, Gregorian Dome
430-MHz receiver was used for MJD 52966, 53064-53101, and 53103-55974. 430 MHz data
acquired between MJD 48126-49430 were not used in this analysis, for reasons described
in the text.

6A narrow-band, line feed 1400-MHz receiver was used between MJD 48178-49379.
1400-MHz data acquired from MJD 51022 up to January 2004 were obtained with a
Gregorian Dome “L-narrow” receiver, and all other 1400-MHz data after this period were
recorded using a Dome “L-wide” receiver.

10
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Parameter Mark III Mark IV Mark IV ASP ASP ASP ASP ASP

Frequency (MHz) . . 1400 430 1400 424 428 432 436 1400
Bandwidth (MHz) . 40 5 5 64 64 64 64 64
Spectral Channels . . 32 1* 1** 1 1 1 1 16***
Number of TOAs . . 1185 3102 664 1438 1444 1474 1468 312
Dedispersion type . Incoh. Coh. Coh. Coh. Coh. Coh. Coh. Coh.
Integration time (s) 300 190 190 180 180 180 180 180
Date span (years) . 1990-94 1998-2005 1998-2005 2004-12 2004-12 2004-12 2004-12 2004-12
RMS residual, σrms 6.44 4.75 7.15 4.91 4.86 5.20 5.54 8.56

Table 2.1: Logistics of data sets used in this pulsar-timing analysis of PSR B1534+12. All data were collected
using the Arecibo Observatory. * Four sub-bands centered at 430 MHz were taken when the Mark IV data were
originally recorded, but were averaged together to build signal strength. ** Two sub-bands centered at 1400
MHz were taken when the Mark IV data were originally recorded, but were also averaged together to build signal
strength. *** The number of actual channels recorded sometimes varied due to computational limitations, so this
value represents a typical number of channels used.
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2.2. Data Acquisition and Reduction

2.2.1 Observing Machines

A portion of the data used for this thesis were recorded with the Mark III
(Stinebring et al., 1992) and Mark IV (Stairs et al., 2000a) pulsar observing
systems. The Mark III system employed a “brute-force” approach of pulse
de-dispersion7 by separating the receiver’s bandpass into distinct spectral
channels using a filter bank, detecting the signal within each channel, and
shifting the pulse profile by the theoretical amount of dispersive delay for
alignment and coherent averaging. As an upgrade from this system, the
Mark IV machine employed the now-standard coherent de-dispersion tech-
nique (Hankins & Rickett, 1975) that samples and filters the data stream
prior to detection of the radio pulse. A series of digital filters applied in
the frequency domain completely remove the predicted dispersion signatures
while retaining even greater precision than the Mark III counterpart. See
Stairs et al. (1998, 2002) for more details on these observing systems and
reduction of data obtained with these machines.

The majority of data used in this study were obtained with the Arecibo
Signal Processor (ASP), a further upgrade from the Mark III/IV systems
(Demorest, 2007). The ASP retains the coherent de-dispersion technique for
shifting pulse profiles to a common phase, but first decomposes the signals
across a bandwidth of 64 MHz into a number of 4-MHz spectral channels
that depends on the observing frequency. We used data collected with the
four inner-most spectral channels centered on 430 MHz, and typically six-
teen channels centered on 1400 MHz, due to limits in computer processing
and the limited receiver bandpass. This decomposition is carried out with
even greater data sampling than its Mark IV predecessor: the Mark IV
machine used 4-bit data sampling in 5-MHz-bandpass observing mode and
2-bit sampling in 10-MHz-bandpass observing mode, whereas ASP always
used 8-bit sampling. The coherent de-dispersion filter is then applied to the
raw, channelized data, which is then folded modulo the topocentric pulse pe-
riod within each channel and recorded to disk. Table 2.1 presents technical
information on the TOAs acquired with these three observing systems.

It is important to note that there is a slight overlap in pulse TOAs
between the Mark IV and ASP data sets. This overlap occurs between
MJD 53358 and 53601. Despite this overlap in data, we incorporated TOAs
acquired from both machines during this era due to the substantially larger
ASP bandwidth and argued that this bandwidth difference does not produce
many redundant data points.

7The effects of a tenuous, ionized interstellar medium on pulsar signals are discussed
in Section 2.2.2.
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2.2. Data Acquisition and Reduction

2.2.2 Data Processing and Determination of TOAs

We used an in-house suite of programs and subroutines that embody the
reduction methodology developed by Ferdman (2008) for further reduction
of our raw, uncalibrated data. This collection of algorithms automate the
statistical excision of radio-frequency interference, as well as the application
of appropriate flux and polarization calibrations in order to obtain the true
shape and intensity of pulse profile. A bright, unpolarized quasar8 was
observed at nearly every epoch in order to obtain data for flux calibration;
comparison with the signal strength on and off the quasar and the signal
strength of a noise diode pulsed at 25 MHz yielded the proper conversion
from machine counts to pulse flux density.

We employed the standard procedure for calculating TOAs and observed
pulse phases from our processed data. This involves the cross-correlation –
in the frequency domain – between an integrated pulse profile and a stan-
dard template determined from initial observations (Taylor, 1992). This
template-matching method assumes that the folded profile P (t) is essen-
tially equivalent to the standard template S(t), where both P and S are
defined over one whole pulse period; the most general expression that links
the two is then given by

P (t) = a+ bS(t− φobs) + c(t) (2.1)

where a characterizes a shift in baseline, b a change in amplitude, φobs a shift
in pulse phase, and c(t) characterizes noise across the pulse phase. A least-
squares fitting procedure is used to determine φobs and its uncertainty for
every integrated profile used in the analysis described in the following sec-
tions. The TOA for a given integrated profile is then determined by adding
the phase shift φobs to its time-stamp near the middle of the integration.

The noise parameter c is minimized when using folded profiles, permit-
ting a stronger determination of φobs and its corresponding TOA. As such,
we employ an integration-time scheme that is outlined in Table 2.1. A stan-
dard template was derived for the Mark III and IV pulsar backends, and at
each of the two frequencies. ASP 430-MHz TOAs were derived using the
Mark IV standard templates shown in Figure 2.1 for each of the four in-
nermost frequency channels centered at 430 MHz. TOAs derived from ASP
1400-MHz data were generated by collapsing all channelized data into one
set of pulse profiles, in order to increase signal strength.

8The Arecibo Observatory list this quasar with (B1950) coordinates α = 14h42s, δ =
10◦1′.
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Figure 2.1: Standard templates used for determining ASP TOAs. These were derived by I. H. Stairs from data
acquired with the Mark IV observing system, and were the same standard templates used in the Stairs et al.
(1998, 2002) studies.
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2.3. The timing model

2.2.3 Data Weights and Pulse Jitter in PSR B1534+12

Taylor & Weisberg (1989) noted that uncertainties in TOAs determined by
the least-squares fitting procedure described above only characterize ran-
dom scatter in their estimation. Differences in instrumental specifications,
whether with observatory receivers or signal processors, will introduce sys-
tematic errors that need to be allowed for or removed. We therefore assign
a minimum error to each TOA data set by computing the goodness-of-fit χ2

statistic for each set taken with the same receiver at the same frequency us-
ing a fixed timing solution. The amount of minimum error is then adjusted
until χ2/n ∼ 1.0, where n is the number of free parameters in the model,
for all TOA data sets used.

We believe that the minimum-error strategy is justified since it allows
us to retain the random contributions of TOA uncertainty (to some extent)
while addressing possible sources of systematic error. While differences in
instrumental properties are often the source for such uncertainties, another
probable source of systematic error is illustrated in Figure 2.2. Post-fit resid-
uals of unweighted PSR B1534+12 data obtained on MJD 53545 are plotted
against orbital phase, where there is an overlap in timing data recorded by
the Mark IV and ASP observing systems. The TOAs between machines
unambiguously track each other across the orbit, despite substantial differ-
ences in instrumental specifications. We thus interpret this primarily as a
reflection of physical instabilities, or “jitter” (Cordes & Shannon, 2012), in
the magnetosphere of the pulsar. The jitter itself is a random process, but
is essentially present across the entire data set and produces a spread in
residuals about zero. The application of the minimum error per TOA allows
this residual jitter to be accounted for while producing a timing solution
that yields conservative estimates of parameter uncertainties.

2.3 The timing model

We used Equation 1.1 as our pulsar timing model for PSR B1534+12. How-
ever, it is important to note that the time τ in Equation 1.1 is a time of
pulse emission in the rest frame of the pulsar, and not pulse TOAs that are
initially measured at a telescope on Earth. Furthermore, many physical pro-
cesses will affect every pulse and its corresponding TOA as it travels across
the interstellar medium up until the moment of its detection. We therefore
employ the time-coordinate transformation derived by Damour & Deruelle
(1985, 1986) and used by Stairs et al. (1998, 2002) for PSR B1534+12,
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2.3. The timing model

Figure 2.2: A plot of post-fit, pulse-phase residuals as a function of or-
bital phase for PSR B1534+12 at the epoch MJD 53545. Black points
represent (unweighted) Mark IV 430 MHz data. Red, blue, orange, and
magenta points represent (unweighted) ASP 424/428/432/436 MHz data,
respectively. The Mark IV and ASP points generally track one another dur-
ing the course of the orbit, despite substantial differences in technological
specifications of the two observing systems. Moreover, all relevant processes
are modeled in this unweighted fit. We therefore interpret this jitter as an
indicator of short-term magnetospheric activity around the pulsar.
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2.3. The timing model

τ = t− t0 + ∆C −∆DM + ∆R� + ∆E� −∆S� −∆R −∆E −∆S (2.2)

to derive the barycentric arrival-time of pulse emission τ from the topocen-
tric arrival-time t. The remaining terms and corrections are summarized
as follows: t0 is a reference epoch; ∆C is the timing offset between the
local (observatory) master clock and the reference standard of terrestrial
time (taken as UTC(NIST)); ∆DM characterizes the time delay associated
with frequency-dependent pulse dispersion due to intervening material; the
∆�terms represent the “Roemer”, “Einstein”, and “Shapiro” relativistic
time delays in the Solar system; and the ∆R,∆E ,∆S terms are the analo-
gous relativistic corrections for the pulsar binary system.

2.3.1 Solar-system corrections and astrometric parameters

The three solar-system timing delays in Equation 2.2 transform the arrival-
times measured at the telescope to the inertial reference frame of the solar-
system barycenter (SSB). Both the Shapiro and Einstein delays require care-
ful consideration of local celestial bodies whose masses prominently affect
the propagation of radio pulses by means of time dilation and gravitational
redshift. These two delays are given by Lorimer & Kramer (2005) as

∆S� = −2
∑
i

GMi

c3
ln

[
ŝ · ~rEi + rEi
ŝ · ~rPi + rPi

]
(2.3a)

d∆E�
dt

=
∑
i

GMi

c2rEi
+
v2E
2c2
− constant (2.3b)

whereMi is the mass of the ith body, ~rEi is the position vector of the telescope
relative to the body, ~rPi is the position vector of the pulsar relative to the
body, ~vE is the velocity of the Earth at that instant, and ŝ is a unit vector
that points from the SSB to the pulsar. In practice, the Sun and the most
massive planet - Jupiter - have measurable effects on pulsar timing (Backer &
Hellings, 1986). Thus, we use the JPL DE414 planetary ephemeris (Konopliv
et al., 2006) in this study, with its high-precision relative positions of these
massive objects throughout the years, in order to properly transform our
TOAs over the course of our data set to the SSB reference frame.

The position of PSR B1534+12 is measured through the annual variation
of the Roemer timing delay, also given by Lorimer & Kramer (2005) as
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2.3. The timing model

∆R� = −1

c

(
~rSSB + ~rEO

)
· ŝ (2.4)

where ~rSSB is a position vector that points from the SSB to the center of the
Earth, and ~rEO is the position vector that points from the Earth’s center to
the telescope. The vector ~rSSB as a function of time is given by the DE414
ephemeris, and the ~rEO positions are provided through UT1 corrections
of the Earth’s non-uniform rotation, calculated by the International Earth
Rotation and Reference Systems Service9. Moreover, rates of change in the
position coordinates are measured through the relative motion between the
binary system and the SSB. A timing parallax is also fitted for in the overall
timing procedure.

2.3.2 DM Variation over Time

Radio pulses emitted simultaneously at different frequencies will be recorded
at different arrival times on Earth. This delay arises from the frequency
dependence of the pulse’s group velocity as it traverses a tenuous interstellar
medium. Therefore, pulsars with broadband radio emission will exhibit
timing delays between TOAs measured at two different observing frequencies
due to the dispersive nature of the electronic material along the line of sight.
This offset between TOAs must be taken into account when applying the
model in Equation 2.2 to multi-frequency data sets.

This timing delay ∆DM due to intervening material permits the calcula-
tion of a “dispersion measure” (DM),

DM =

∫ d

0
ne(l, t)dl (2.5)

where d is the distance to the pulsar and ne(l, t) is the mean electron density
along the line of sight l at a particular time t, by using the relation

∆DM =
DM

2.41× 10−4f2
(2.6)

where f is the observing frequency with units of MHz and the delay is in
units of seconds (Manchester & Taylor, 1977). Observed values of DM range
between∼ 3−1500 cm−3 pc10. This quantity is of particular interest because
a distance to the pulsar can be inferred purely by its DM through Equation
2.5, given a model for the electron density along the path (Lyne et al., 1985;

9http://hpiers.obspm.fr
10http://www.atnf.csiro.au/people/pulsar/psrcat/
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2.3. The timing model

Parameter Value

Right Ascension, α (J2000) . . . . . . . . . . . . . 15h37m09s.961716(6)
Declination, δ (J2000) . . . . . . . . . . . . . . . . . . 11◦55′55′′.43372(14)
Proper motion in R.A., µα (mas yr−1) . . 1.494(15)
Proper motion in Decl., µδ (mas yr−1) . . -25.27(3)
Timing parallax, π (mas) . . . . . . . . . . . . . . . 0.7(4)
Parameter reference epoch (MJD) 52077

Rotational frequency, ν (Hz) . . . . . . . . . . . . 26.3821327768945(2)
First frequency derivative, ν̇ (10−15 Hz2) -1.686089(4)
Second freq. derivative, ν̈ (10−29 Hz3) . . 9.8(1.7)
Third freq. derivative,

...
ν (10−36 Hz4) . . . -3.0(4)

Dispersion measure, DM 1 (cm−3 pc) . . . 11.61944(2)*
DM derivative 1 (cm−3 pc yr−1) . . . . . . . . -0.000316(10)*
Bin 1 range, epoch (MJD) . . . . . . . . . . . . . . 48126-50774, 48778*

DM 2 (cm−3 pc) . . . . . . . . . . . . . . . . . . . . . . . . 11.61631(3)
DM 2 derivative (cm−3 pc yr−1) . . . . . . . . -0.000039(18)
Bin 2 range, epoch (MJD) . . . . . . . . . . . . . . 50775-52600, 51687.5

DM 3 (cm−3 pc) . . . . . . . . . . . . . . . . . . . . . . . . 11.61544(4)
DM 3 derivative (cm−3 pc yr−1) . . . . . . . . -0.000298(14)
Bin 3 range, epoch (MJD) . . . . . . . . . . . . . . 52601-54300, 53450.5

DM 4 (cm−3 pc) . . . . . . . . . . . . . . . . . . . . . . . . 11.615712(6)
DM 4 derivative (cm−3 pc yr−1) . . . . . . . . 0.00085(4)
Bin 4 range, epoch (MJD) . . . . . . . . . . . . . . 54301-55125, 54713

DM 5 (cm−3 pc) . . . . . . . . . . . . . . . . . . . . . . . . 11.61641(14)
DM derivative 5 (cm−3 pc yr−1) . . . . . . . . -0.00038(8)
Bin 5 range, epoch (MJD) . . . . . . . . . . . . . . 55126-56000, 55563

Table 2.2: Fitted astrometric, spin, and DM parameters for PSR B1534+12.
Values in parentheses denote the uncertainty in the preceding digit(s).
* These values are taken from Stairs et al. (2002), but the date range is
extended so that bins 1 and 2 are contiguous. See text for a brief discussion
of this bin extension.
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2.3. The timing model

Taylor & Cordes, 1993; Cordes & Lazio, 2002). The time dependence of the
electron density ne is generally negligible when considering time series that
span days or weeks.

Stairs et al. (1998, 2002) noted that a measurable change in DM of PSR
B1534+12 could be extracted from their time series, which incorporated over
ten years of timing data. They argued that, while the measured value of DM
at a particular epoch is subject to biases in several forms (e.g. difference in
standard profiles between the several signal processors), the DM evolution
over time is real and reflects physical changes in the electron content along
that direction. It is therefore important to account for these long-term
changes in DM and remove the appropriate amount in the transformation
given by Eq. (2.2) in order to obtain accurate estimates of parameters with
the most favorable precision. An initial, ideal strategy for TOA de-dispersion
was to fit for offsets of DM from a pre-defined value in small bin sizes of 80
days across the Mark IV and ASP data sets11. However, the numerous free
parameters resulting from this strategy led to a lack of desirable precision,
as well as noticeable covariances with several model parameters.

We ultimately decided to employ the same technique used by Stairs
et al. (2002) of measuring DM in large bins and fitting for time-derivatives
within each bin. Five DM bins are applied to our data set, with each bin
reporting an average epoch, a DM at that epoch, and a first-derivative that
characterizes linear change within the entire bin. A nominal value of DM can
then be determined for any TOA within that bin through a straightforward
linear calculation. Due to the exclusion of Mark III 430-MHz data, we used
and fixed the values of the Mark III DM bin while allowing all other bins and
their parameters to float. We also extended the original Mark III bin used in
Stairs et al. (1998) so that it was contiguous with the first Mark IV bin; there
are no timing data in this extension region, so increasing the bin size has no
effect on DM measurements in this analysis. See Figure 2.3 for a graphical
representation of DM evolution for PSR B1534+12, as well as Table 2.2 for
values and their quoted uncertainties. The timescale and magnitude of DM
evolution in PSR B1534+12 are comparable to changes seen in other pulsars
in different directions (e.g. Kaspi et al., 1994; Ramachandran et al., 2006).

In principle, the solar wind can contribute to the dispersive delay of
a radio pulse as it traverses the local Solar System, and the contribution

11The Mark III 430-MHz data set is excluded from this timing analysis due to systematic
errors attributed to imperfections in pulse-dispersion removal prior to coherent folding of
profiles (Stairs et al., 1998). However, it was still used by Stairs et al. (1998, 2002) to
determine the evolution of DM across the Mark III data set; we use their result for the
Mark-III DM parameters, while fitting for the other DM blocks.
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2.3. The timing model

Figure 2.3: DM variation with time. Solid lines indicate linear change in DM
across the bin, while dashed lines indicate the time span of data acquired
with a labeled observing system. We extended the upper-bound of the Mark
III bin from the last day of Mark III data acquired (MJD 49430) to the day
before Mark IV data was first taken (MJD 50774) in order to make the bins
contiguous; no data exists in this extension period, and so the extension of
the bin does not affect DM measurements. The points and their error bars
are estimated by fixing all newly-determined parameters, and fitting for DM
in uniform block sizes of 80 days using the TEMPO pulsar timing software.
The large DM bins were used to obtain global timing solution, and the data
points were fitted separately to confirm that this choice in DM modeling
was valid.
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2.3. The timing model

is dependent on the location of the observatory over the course of Earth’s
orbit about the Sun (You et al., 2007). This solar-DM component is most
prominent for pulsars that lie close to the ecliptic plane. The position of PSR
B1534+12 in Table 2.2 indicates that the object lies ∼ 30◦ above the ecliptic
plane. Moreover, the expected solar contribution to DM was calculated to
be much lower than was seen in the actual scatter of the 80-day DM points
in Figure 2.3. A further motivation for neglecting the solar-wind component
was an unexpected covariance with the timing parallax; a non-zero solar
component caused the inferred distance to be twice as small than the value
expected from theoretical estimates (see section 2.4.2). We therefore chose
to ignore the solar contribution to DM, while acknowledging that our timing
parallax is likely not reliable as a fitted parameter.

2.3.3 Theory-Independent Binary Model

The orbital elements of interest are coded within the three relativistic time
delays for the pulsar binary system, given by Damour & Deruelle (1986) as

∆R = x sinω(cosu− e) + x(1− e2)1/2 cosω sinu (2.7a)

∆E = γ sinu (2.7b)

∆S = −2r ln
(
1− e cosu− s[sinω(cosu− e)

+ (1− e2)1/2 cosω sinu]
)

(2.7c)

where the eccentric anomaly u is further related to the desired orbital pa-
rameters through Kepler’s equations shown in Equations 1.4.

The Damour-Deruelle (DD) timing model we used to describe the delay
in pulse propagation due to orbital motion incorporates up to 10 free param-
eters that are implicitly defined in Equations 1.4 and 2.7. These expressions
were derived with minimal consideration to a particular theory of gravity,
allowing for direct comparisons and tests of various frameworks that predict
certain values for the relativistic corrections to the orbit (Damour & Taylor,
1992). Five of these parameters are the conventional Keplerian parameters:
the orbital period Pb; the projected semi-major axis x = a sin i/c; the or-
bital eccentricity e; and the longitude ω and epoch T0 of periastron. The
remaining five parameters are the PK effects that characterize the radiative
and quasi-static nature of the relativistic binary system: the orbital decay
Ṗb; the advance of periastron ω̇; the time-dilation and gravitational-redshift
parameter γ; and the range r and shape s of the Shapiro time delay.
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Parameter DD Model DDGR Model

Projected semimajor axis, x (s) . . . . . . . . . . . . 3.7294637(12) 3.7294639(3)
Eccentricity, e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.27367743(16) 0.27367734(8)
Epoch of periastron, T0 (MJD) . . . . . . . . . . . . . 52076.82711327(2) 52076.82711327(4)
Orbital Period, Pb (days) . . . . . . . . . . . . . . . . . . . 0.420737298876(6) 0.420737298877(2)
Argument of periastron, ω (deg) . . . . . . . . . . . . 283.30601(3) 283.30602(2)

Rate of periastron advance, ω̇ (deg yr−1) . . . 1.755792(4) 1.7557927∗

Time-averaged gravitational redshift, γ (ms) 2.072(1) 2.0709∗

Orbital decay, (Ṗb)
obs (10−12) . . . . . . . . . . . . . . -0.1367(6) -0.19244∗

Shape of Shapiro delay, s = sini . . . . . . . . . . . . 0.978(3) 0.97469∗

Range of Shapiro delay, r = T�m2 (µs) . . . . . 6.5(6) 6.628∗

Companion mass, m2 (M�) . . . . . . . . . . . . . . . . 1.3(1) 1.3458(4)
Pulsar mass, m1 (M�) . . . . . . . . . . . . . . . . . . . . . n/a 1.3326(4)*
Total mass, M = m1 +m2 (M�) . . . . . . . . . . . n/a 2.678456(8)

Excess Ṗb (10−12) . . . . . . . . . . . . . . . . . . . . . . . . . . n/a 0.0556(6)

Table 2.3: Experimental and theoretical values of orbital elements for PSR B1534+12. Note that the values in
parentheses denote the uncertainty in the preceding digit(s).
∗ derived quantity
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2.3. The timing model

2.3.4 Fitting Procedure

In accordance with modern pulsar-timing techniques, the solution to the
timing model given by Equations 1.1 and 2.2 is determined by minimizing
the expression

χ2 =
∑
i

(
φ(τi)− φobs(τi)

σi

)2

(2.8)

where τi is the transformation of the ith TOA, φ(τi) and φobs(τi) are the
corresponding expected and measured pulses phases, respectively, and σi
is the uncertainty in the corresponding TOA. The uncertainties in fitted
parameters are determined by the covariance matrices computed from the
algorithms applied during the global fit for the timing solution.
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2.3. The timing model

Figure 2.4: Postfit residuals for PSR B1534+12. Top panel indicates the
data subsets by color, and the bottom plan plots residuals over the time
span of our total set. Light-blue points represent Mark III 1400 MHz data;
medium-blue and black points represent Mark IV 1400 MHz and 430 MHz
data, respectively; red, blue, orange, magenta and green points represent
ASP 424/428/432/436 MHz and 1400 MHz data, respectively. Later data
(particularly the ASP 1400-MHz set) are more scattered due to smaller
spectral channels at ASP 430 MHz, and a decreasing flux density over time
at 1400 MHz. The global-fit reduced-χ2 = 1.043. The weighted root-mean-
square residual is σrms = 5.25 µs.
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2.4 Results and Interpretation

We used the TEMPO pulsar-timing software package12, a comprehensive
analysis tool that incorporates all of the aforementioned processes, ephemeri-
des, and clock corrections when determining our timing model. TEMPO also
provides various binary models that users can choose to include into their
timing model; in our case, we chose the DD model as the binary description.
Pulse-phase residuals for the global fit are displayed in Figure 2.4. The large
amount of scatter seen in the ASP 1400-MHz data is due to a decreasing flux
density at that observing frequency. Furthermore, the DM measurements
during this era come almost entirely from the four ASP 430-MHz channels, so
the (less numerous) ASP 1400-MHz points receive less weight in our fit, and
are therefore slightly offset from zero. This offset likely reflects unmodeled
frequency-dependent changes in the pulse profile.

Previous timing studies of PSR B1534+12 used the DE200 planetary
ephemeris (Standish, 1990), the standard timing ephemeris during that era.
We switched to the newer DE414 ephemeris and fitted our timing model so
that the parameter values were extracted and reported with respect to a
certain epoch, which we took as the midpoint of our data set. Therefore,
direct comparison between parameter values presented in Tables 2.2, 2.3 and
previously reported results will not be consistent. As a check, we carried
out a global fit using the DE200 ephemeris and were able to reproduce
the timing solution reported by Stairs et al. (2002). The key difference
between solutions was the improved precision from our analysis, mainly due
to a significantly extended data set that was collected from the upgraded
ASP observing machine. All fitted-parameter errors reported by TEMPO
are subsequently doubled, in accordance with previous timing analyses of
this pulsar. This is strictly because our TOA uncertainties have effectively
been increased when using the minimum-uncertainty approach mentioned
above; this doubling is standard practice in pulsar timing when arrival-time
uncertainties have been increased significantly. We therefore believe that
uncertainties reported Tables 2.2, 2.3 reflect conservative estimates of the
true 68%-confidence uncertainties.

2.4.1 Tests of General Relativity

A key advantage of the DD timing framework is that its derivation has min-
imal consideration to any particular theory of gravity (Damour & Deruelle,

12http://tempo.sourceforge.net
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1985, 1986; Damour & Taylor, 1992). Therefore, the values of orbital ele-
ments presented in Table 2.3 can be directly compared to values predicted
by any theory where expressions for the PK parameters are available. In
the case of general relativity, the five PK parameters can be expressed in
terms of the standard Keplerian parameters, the pulsar mass m1, and the
binary-companion mass m2:

ω̇ = 3

(
Pb
2π

)−5/3
(T�M)2/3(1− e2)−1, (2.9a)

Ṗb = −192π

5

(
Pb
2π

)−5/3(
1 +

73

24
e2 +

37

96
e4
)

(1− e2)−7/2

× T 5/3
� m1m2M

−1/3, (2.9b)

γ = e

(
Pb
2π

)1/3

T
2/3
� M−4/3m2(m1 + 2m2), (2.9c)

r = T�m2, (2.9d)

s = x

(
Pb
2π

)−2/3
T
−1/3
� M2/3m−12 = sin i (2.9e)

where M = m1 + m2 is the total mass of the binary system in solar units,
and T� = GM�/c

3 = 4.925490947 µs.
The two stellar masses are the only a priori unknowns, as the Keplerian

and PK quantities are readily measurable to high precision through proce-
dures outlined in the previous section. Moreover, the masses of the binary
components can be uniquely derived if two PK parameters are measured
with significance. Consistency checks can be performed if additional PK pa-
rameters are extracted, and these checks are physically interpreted as tests
of the gravitational theory under consideration.

A standard representation of such tests is shown in Figure 2.5. Equations
2.9 are functions of the system masses, and all other parameters are fitted
for in our DD-model timing solution. It follows that each equation can be
inverted to put one mass as a function of the other. An m1 −m2 plane can
then be defined, where each inverted equation represents a curve on such a
plane (Taylor & Weisberg, 1989). For consistency in the strong-field regime,
all curves must intersect at a common point. In practice, each curve has
an upper and lower bound as dictated by the determined uncertainty in the
measurement; all curves must therefore overlap a common area in this mass-
mass space in order for the theory to be self-consistent. Figure 2.5 shows
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2.4. Results and Interpretation

Figure 2.5: Mass-mass plot for PSR B1534+12. Nearly all five curves inter-
sect at a common area on the space, producing two stringent tests of general
relativity. The filled circle represents the theoretical (DDGR) masses of the
two binary components: [m1,m2]DDGR = [1.3458(4), 1.3326(4)] M�. The Ṗb
curve is corrected for relative acceleration in the Galactic potential, which
depends on an independent measure of distance. The uncertainty in this
corrected curve is dominated by the uncertainty in the distance used. See
the text for our interpretation of the non-agreement in the Ṗb measurement.
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2.4. Results and Interpretation

that four of the five curves intersect a common area, therefore producing
two positive tests of general relativity13.

The TEMPO software provides an additional relativistic binary model
that assumes that general relativity is the correct theory of gravity. This
“DDGR” binary model uses the DD-model values of the PK quantities as
fixed parameters, as well as Equations 2.9, in order to determine the theo-
retical values of the two component masses. It also calculates the theoretical
values of the PK parameters that are associated with the fitted masses, as
well as an “excess” Ṗb to allow for the discrepancy between the expected
and measured values of orbital decay. These values are reported in Table
2.3, and show strong agreement between experiment and theory within the
quoted uncertainties.

In terms of precision, the ω̇−γ−s combination provides the strongest test
from the PSR B1534+12 system. The range in Shapiro delay is measured
with significant but comparatively less favorable precision, and the measured
rate of orbital decay is known to contain biases due to relative motion in the
Galactic potential (see next section). A quality of this test can be inferred
by considering the relative errors of the three ω̇ − γ − s parameters, which
suggests that this test constrains general relativity to within ∼ 0.35 % of its
predictions. This crude estimate is nearly an order of magnitude larger than
the tests performed on the double-pulsar system (Kramer et al., 2006), and
so the test serves as a less stringent but still useful, independent check of
gravitational theory. The derived mass estimates of PSR B1534+12 and its
companion are among the most precise stellar masses measured to date, and
rival those of the Hulse-Taylor system in precision (Weisberg et al., 2010).
The significant difference in stellar mass between these two neutron stars
advocates the possibility of mass inversion during the mass-transfer stage of
binary evolution (Stairs et al., 2002).

2.4.2 A Theoretical Distance Estimate to PSR B1534+12

Equation 2.9b gives the value of Ṗb as measured in the reference frame of bi-
nary center-of-mass (Damour & Taylor, 1992). However, the observed value
of Ṗb that we extracted from our time series is measured with respect to the
SSB. Therefore, we corrected the observed value of Ṗb to the value measured
in the binary center-of-mass reference frame via the transformation provided
by Nice & Taylor (1995),

13The reason why Ṗb does not intersect the same area is explained in the next section.
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(
Ṗb
Pb

)gal

= −az sin b

c
− v20
cR0

cos b

(
cos l +

β

sin2 l + β2

)
+ µ2

d

c
(2.10)

prior to applying the tests and generating Figure 2.5 discussed that are
in the previous subsection. Here, az is the vertical component of Galactic
acceleration as modeled by Kuijken & Gilmore (1989), (b, l) = (0.8437181,
0.3464022) radians are the Galactic coordinates of PSR B1534+12, v0 is the
solar-system velocity about the Galactic center, R0 is the distance of the Sun
to the Galactic center, d is the distance to the pulsar, β = (d/R0) cos b −
cos l, and µ is the pulsar’s proper motion. The last term in Equation 2.10
represents the “Shklovskii” correction (Shklovskii, 1970). An estimate of
the pulsar distance was determined by assuming a model of the electron
number density in the direction of the pulsar (Taylor & Cordes, 1993), as
well as using the determined value of DM and Equation 2.5; using this
model, d = 0.7 ± 0.2 kpc. The pulsar coordinates and proper motion µ
were determined through the pulsar timing techniques outlined above. The
Galactic parameters were taken to be: v0 = 254±16 km s−1; R0 = 8.4±0.6
kpc; and az/c = (1.60±0.13)×10−19 s−1. Values for the Galactic parameters
were taken from Weisberg et al. (2010).

We then determined the “true” value of Ṗb by subtracting the Galactic
contribution found in Equation 2.10 from the observed value reported in
Table 2.3:

(Ṗb)
true = (Ṗb)

obs − (Ṗb)
gal (2.11)

Upper and lower bounds on (Ṗb)
true are plotted in Figure 2.5. As is shown

in the figure, the transformed value of Ṗb still cannot be brought into agree-
ment with the other four PK quantities. We attributed this discrepancy
to a deficiency in the electron-content model used to determine the pulsar
distance by means of DM. A more recent electron number-density model
was developed by Cordes & Lazio (2002), but cannot be used as it sets
the theoretical distance to PSR B1534+12 calculated by Stairs et al. (2002)
as a calibrating distance for their model. The bloated uncertainty in the
transformed value is dominated by the rough DM-estimate of the pulsar’s
distance.

Bell & Bailes (1996) first noted that observed orbital-period derivatives
could be used to determine precise distances to binary pulsars that are more
reliable than distances from DM measurements or from timing parallaxes.
For PSR B1534+12, this can be done by assuming that general relativity is
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2.4. Results and Interpretation

Figure 2.6: Monte-Carlo sampling of Galactic and pulsar-timing parameters
used in the kinematic correction in Equation 2.10.
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2.4. Results and Interpretation

Figure 2.7: Distribution of theoretical distance to PSR B1534+12. We
combined Equations 2.10 and 2.11, used the value of (Ṗb)

GR obtained from
the DDGR fit of our timing data, and solved for the distance required so
that the measured value of Ṗb could be brought into agreement with general
relativity. We estimated this distance and its uncertainty through Monte-
Carlo sampling of input parameters shown in Figure 2.6.
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2.4. Results and Interpretation

the correct description of gravity. This means that (Ṗb)
true = (Ṗb)

GR, where
the latter quantity is the value of Ṗb obtained by Equation 2.9b. We then
combined Equations 2.10 and 2.11 to solve for a theoretical distance of PSR
B1534+12, which we found to be

dGR = 1.037± 0.012 kpc (2.12)

This value and its uncertainty were estimated by using a Monte Carlo sam-
pling method: we randomly sampled az, R0, v0, and the “excess” Ṗb from
normal distributions associated with each parameter’s mean value and in-
put uncertainty, as shown in Figure 2.6. We repeated this process 100,000
times, calculating a theoretical distance for each set of input parameters
which lead to a normal-like distribution in dGR shown in Figure 2.7. The
distance obtained in this analysis agrees with the distance found by Stairs
et al. (1998, 2002), but with greater precision and was computed without the
small systematic mistakes that affected those measurements. Moreover, the
relative uncertainty of this derived distance (∼ 1.2 %) is slightly smaller than
that of the derived distance estimate of PSR J0437-4715 made by Verbiest
et al. (2008) and rivals high-precision distances from parallaxes measured
with VLBA interferometry (Torres et al., 2007, 2009, 2012) and the Hawaii
Infrared Parallax Program (Dupuy & Liu, 2012).

A downfall of the theoretical-distance method is that the orbital-decay
measurement cannot be used as an unbiased test of gravitational theory until
a significant, independent measurement of distance can be obtained. High-
precision astrometry with the VLBA can provide possibly tighter constraints
on the proper-motion contribution of the Galactic bias in Ṗb measured for
PSR B1534+12, which will have sizable implications for the inclusion of
another reliable test of relativity theory (Chatterjee et al., 2009).

2.4.3 Pulsar Jitter and Instrumental Limits on Timing
Precision

Repeated observations and updated timing analyses of pulsars will lead to
substantial improvements in their timing solutions. As demonstrated above,
long-term timing observations and analyses of PSR B1534+12 provided a
considerable refinement in relativistic parameters and tests of gravitational
theory. However, unmodelable processes that affect pulse TOAs will serve as
a limiting agent in high-precision timing. Figure 2.2 displays random pulsar
jitter seen in PSR B1534+12, which we attributed to physical instabilities
in neutron-star magnetosphere. We used this jitter as a means to justify
our weighting of data with a minimum-error approach. This inherently
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2.4. Results and Interpretation

random process will persist even as more data is accumulated, meaning
that the timing solution we present in this work will not be substantially
improved in precision with further upgraded observing systems for data
taken at 430 MHz. We are still limited at 1400 MHz by significantly smaller
signal-to-noise, so updated observing machines can help mitigate this low-
signal issue. Uncertainties in TOAs are still expected to decrease as more
long-term data are accumulated. One method of approximating jitter is to
average consecutive TOAs together; however, this will minimize coverage of
the orbit and weaken constraints on the Keplerian and PK parameters.
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Chapter 3

Profile Evolution and
Relativistic Spin Precession
in PSR B1534+12

A massive, isolated sphere with a well-defined vector of (spin) angular mo-
mentum will carry the same orientation relative to a distant observer. A
similar “gyroscope” undergoing binary motion with another massive object
will, in stark contrast, experience a systematic change in orientation due to
the warped space-time in which this vector is being carried through (de Sit-
ter, 1916). This effect, commonly referred to as “de-Sitter” or “geodetic”
precession, will amount to a misalignment between the initial and final spin-
angular momentum vector of the gyroscope relative to a distant observer af-
ter one full orbit. Another analogous effect, known as “Lense-Thirring” pre-
cession14, will cause the orbit to precess given a rotating companion (Lense
& Thirring, 1918). The resultant effect from both contributions is hereafter
referred to as relativistic spin precession. Recent experiments carried out
by the Gravity B probe measured geodetic and Lense-Thirring precession
rates of several Earth-orbit gyroscopes that are in good agreement with the
predictions of general relativity (Everitt et al., 2011).

In theory, binary pulsars serve as ideal candidates for studies on rela-
tivistic spin precession (Damour & Ruffini, 1974; Barker & O’Connell, 1975).
These rapidly-rotating, compact objects can generally be approximated as
point-like masses with large spin-angular momenta. Therefore, pulsars in
binary orbits will undergo the same gravitational effects that gyroscopes ex-
perience as they orbit the Earth, but in a considerably stronger gravitational
field. In practice, the precession of the pulsar’s radio beam is detected as
secular changes in the pulse profile over time; long-term evolution of pulse-
profile components due to relativistic spin precession can then be seen as
shifts in component amplitudes and/or locations across the pulse phase. The
Hulse-Taylor pulsar provided the first evidence of relativistic spin precession

14this is also known as “frame dragging”.
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Chapter 3. Profile Evolution and Relativistic Spin Precession in PSR B1534+12

in a pulsar binary system (Weisberg et al., 1989). A subsequent study was
able to derive the full geometry of the pulsar by assuming a cone-like ra-
dio beam structure, and associate each profile at a particular epoch as a
slice of the beam model (Kramer, 1998). More recently, relativistic spin
precession was inferred in the double-pulsar system (Lyne et al., 2004) by
modeling the observed time-dependent flux decrement pattern of pulsar A
at superior conjunction with the precessing pulsar B as a magnetospheric
eclipsing event (Breton et al., 2008). The measured precession rate in the
double-pulsar system agrees with general relativity to within ∼ 13% of its
predictions.

This chapter presents the current results15 of an updated profile-evolution
analysis using PSR B1534+12. Relativistic spin precession in PSR B1534+12
was first discovered by Arzoumanian (1995), although he was not able to
measure orbital aberration with significance. A following analysis by Stairs
et al. (2004) was able to derive a geodetic precession rate ΩGR

1 for the pulsar
that was in accordance with the prediction of general relativity (Barker &
O’Connell, 1975),

ΩGR
1 =

1

2
T
2/3
�

(
Pb
2π

)−5/3 m2(4m1 + 3m2)

(1− e2)(m1 +m2)4/3
(3.1)

where the quantities on the right hand side are the usual Keplerian and
mass parameters as discussed in Chapter 2. The precession rate for PSR
B1534+12 measured by Stairs et al. (2004) was Ω1 = 0.44+4.6◦

−0.2 yr−1 with
95% confidence. Using the high-precision timing measurements presented
above, the expected precession rate for PSR B1534+12 is ΩGR

1 = 0.51◦ yr−1.
The study confirmed general relativity by examining a different physical ef-
fect, but did so with limited precision. Moreover, their study developed a
general method for measuring the precession rate by simultaneously measur-
ing the secular change in pulse-profile shape and relativistic aberration16 of
the profile across the orbit due to binary motion. This combination of effects
allowed for direct measurement of the precession rate without the need for a
beam-structure model, which is a key strength of the method. We therefore
hoped that the inclusion of more pulse-profile data would better constrain
the precession rate and even count as an additional test of relativity theory.

15This analysis is not complete and will be an ongoing study.
16To date, no other binary pulsar has exhibited the orbital aberration seen in PSR

B1534+12.

36



C
h

a
p

ter
3
.

P
ro

fi
le

E
vo

lu
tio

n
an

d
R

elativ
istic

S
p

in
P

recession
in

P
S

R
B

1534+
12

Parameter 1998 1999 2000 2001 2003 2005 2008 Other

Observation type camp. camp. camp. camp. camp. camp. camp. ltt
Observation system M-IV M-IV M-IV M-IV M-IV M-IV, ASP ASP M-IV, ASP
Mean date (MJD) 51021 51317 51775 52080 52803 53549 54697 n/a
Orbital phase span 0.01-0.9 0.1-0.8 0.0-1.0 0.0-1.0 0.0-1.0 0.0-1.0 0.0-1.0 n/a
# of binned profiles used 7 4 10 9 9 8, 12 12 16, 20

Table 3.1: Logistics of pulse-profile data sets used in the profile-evolution analysis of PSR B1534+12. All data
were collected using the Arecibo Observatory. The overall data set is comprised of six observational campaigns
(“camp.”; described below), with an overlap of observing machines during the 2005 campaign, along with high
signal-to-noise long-term timing (“ltt”) data.

37



3.1. Data Reduction and Observing Strategy

3.1 Data Reduction and Observing Strategy

We used the same data set presented in Chapter 2 where 430-MHz data
were available, which were the Mark IV and ASP data subsets. In the case
of PSR B1534+12, profile evolution at 430 MHz can be more easily studied
as the signal strength is substantially larger than its 1400-MHz counterpart
(Stairs et al., 2000b). Raw data were processed and calibrated in the same
manner as the data used above for pulsar timing. For this analysis, how-
ever, we were interested in the actual pulse profile itself, as opposed to the
topocentric time at which the profile was observed. We therefore “rotated”
every available profile to a common pulse phase for direct and consistent
comparison. This was done by generating a set of polynomial coefficients
at every epoch for Equation 1.1, using the “prediction” mode of TEMPO,
based on the full timing solution derived in Chapter 2; these coefficients
characterize the variation in observed pulse phase over the time span of our
data set. Based on these sets of coefficients and the time-stamps of every
profile, we shifted each profile to a pulse phase of zero.

Several observing strategies were used when collecting data over the
years; these observing “types” can be broken into two categories: “long-
term timing” and “campaign” observations. Long-term timing observations
occurred on a relatively frequent (∼ bi-monthly) basis, with an average
observing time of forty minutes. These data were necessary for tracking
DM variation over time, as demonstrated in Section 2.3.2 above, as well
as providing an approximately continuous set of TOAs that is crucial for
timing-precision purposes. We used individual long-terming time profiles
with the highest signal-to-noise (S/N ≥ 250) in this precession study. In
contrast, campaign observations were comprised of dense observing sessions
that occurred every day for up to twelve days, and lasted several hours on
each day. The purpose of these campaign sessions was to obtain the highest-
S/N snapshot of the pulse profile at that particular epoch, as well as obtain
pulse-profile data over the course of the pulsar’s orbit. Full coverage of the
orbit is important for studies of orbital aberration of the profile. The effects
of precession and aberration on a pulse profile are generally anticipated to be
measurable, albeit minute in scale. All profiles recorded during a campaign
era were first binned by the orbital phase at which they were emitted, in
order to build S/N as well as obtain a representative profile across different
points of the binary orbit. Profiles within each bin were subsequently folded
together to build S/N of the representative (average) profile. We divided
the orbital phase into twelve bins for this analysis.
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trategyFigure 3.1: Principal-component analyses for the (complete) Mark IV and ASP profiles. The left pair of plots
display the first (P0) and second (P1) principal components derived from 63 Mark IV profiles. The right pair
shows the same two principal components, but derived from 44 ASP profiles. It is not immediately clear why the
two P1 components are different in shape, but possibilities for this difference can include: differences from 8-bit
(ASP) vs. 4-bit (Mark IV) sampling; or physical/nonlinear changes in the pulse profile.
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3.2 Methodology

Profile evolution due to pulsar precession is usually studied by assuming a
model of the two-dimensional beam structure and associating the evolution
with a secular change in beam orientation with respect to a distant observer
(Kramer, 2002). However, Stairs et al. (2004) developed a general method
for measuring a precession rate that is independent of the unknown beam
model. We employed this procedure in this updated profile-evolution study.

The key concept is to measure several profile-evolution effects: the long-
term (relativistic spin) precession of the pulsar; and the periodic aberration
of the profile that is modulated from binary motion of the system. This is
done by deriving a parameter that characterizes the overall shape of a given
pulse profile; this quantity (F ) is generally a function of time t, viewing
angle ζ, and eccentric anomaly u of the orbit,

F (ζ, t, u) = F (ζ) +
dF

dt
(t− t0) + δAF (u) (3.2)

For small changes in the viewing angle, F (ζ) ≈ F (ζ0) + ζF ′, where F ′ =
dF/dζ. Stairs et al. (2004) interpreted the F ′ quantity as the two-dimensional
beam structure, a quantity that is initially unknown but can be assumed
to stay constant across our data span. The time- and orbital-dependent
effects are related to the precession rate and various geometrical quanti-
ties (Damour & Taylor, 1992), where Stairs et al. (2004) presented these
equations as

δAF = F ′
β1

sin i
[− cos ηS(u) + cos i sin ηC(u)], (3.3a)

dF

dt
= F ′Ω1 sin i cos η (3.3b)

Equation 3.3a represents the short-term contribution from orbital aber-
ration: β1 = 2πx/(Pb

√
1− e2) is the characteristic velocity of the pul-

sar, and the Keplerian quantities (x, Pb, e) are measured from the pulsar-
timing analysis presented above; C(u) = cos[ω+Ae(u)]+e cosω and S(u) =
sin[ω + Ae(u)] + e sinω are functions of the periastron argument ω and the
orbital argument u defined in Equations 1.4; i is the inclination of the or-
bit17, which we measured through the Shapiro timing delay; and η is an
angle subtended by the ascending node of the system and the projection

17We measured sin i = 0.978(3) from our timing analysis presented in Chapter 2. How-
ever, there is still an ambiguity of sign for cos i.
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of the pulsar spin axis. See Stairs et al. (2004) for a diagram of their de-
rived spin, orbital geometry for the PSR B1534+12 system. Equation 3.3b
represents the long-term change in profile shape due to relativistic spin pre-
cession. Both quantities are proportional to the unknown function F ′. The
beam-structure dependence can therefore be avoided by measuring and com-
paring both long- and short-term effects, allowing for a model-independent
determination of Ω1.

In accordance with the methodology developed by Stairs et al. (2004), we
derived nominal “reference” (P0) and “difference” (P1) profiles for our sets
of profile data using the principal-component analysis (PCA) method (Press
et al., 1992). The two sets we performed the following precession study on
are: the (complete) Mark IV data set; and the ASP data set. In each case,
the two profiles PCA profiles characterized18 the evolution across our data
span and can be related to each of our observed pulse profiles P as a linear
combination of time- and orbital-phase-dependent coefficients through the
relation

P = c0P0 + c1P1 (3.4)

We determined the (c0, c1) coefficients for every profile by applying this
cross-correlation algorithm in the frequency domain. We then computed
the quantity

F =
c1
c0

(3.5)

which Stairs et al. (2004) defined as an indicator of profile shape that can-
celled interstellar-scintillation effects on the pulse amplitude. We therefore
used Equations 3.3, 3.4, 3.5 in order to solve for the shape F as a function of
time, as well as the C(u), S(u) quantities which characterize the aberration
effect. We used an in-house computer program written by I. H. Stairs that
simultaneously fits for the profile shape as a function of these quantities,
based on the computed value of F and orbital phase of each profile in our
data set.

18It should be acknowledged that an additional non-zero PCA component was obtained
for the ASP data set, which could indicate higher-order evolution in the pulse profile at
430 MHz. However, we chose to only consider the first two principal components by using
Equation 3.5 as the measure for profile shape.
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3.2. Methodology

Figure 3.2: Comparison of profile shapes between the original Mark IV data
set used by Stairs et al. (2004) and our version of 51 (out of 54) of their
profiles. The line represents equality between shapes. The key difference
between our data set and their original set is the timing solution that was
used to rotate the profiles to a pulse phase of zero. We used the timing
solution presented in this updated analysis, whereas they used the timing
solution published by Stairs et al. (2002).
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3.3 Current Results

As a test for this analysis, we ran the simultaneous linear-fitting program
on our (rotated) versions of the same Mark IV profile data used by Stairs
et al. (2004) in their study. Their analysis used a total of 54 profiles, but
raw timing/profile data for three of these (long-term timing) profiles were
not made available in time for this work, as they are stored on a hard disk
at a different university. We therefore only use 51 of their profiles. The
difference between their data and ours is that they rotated their profiles
using the Stairs et al. (2002) timing solution, while we used the timing
solution presented in Chapter 2 of this work. This check was carried out to
confirm their results using an updated timing solution, prior to performing
the full profile-evolution analysis that incorporated even more Mark IV data
and the ASP profiles as well. Figure 3.2 shows that the shapes we calculated
for our rotated set of profiles agree with the shapes of the same profiles used
by Stairs et al. (2004), despite using a newer timing solution. Moreover,
the simultaneous fit yielded a precession rate of Ω1 = 0.52+8.9◦

−0.3 yr−1 with
95% confidence, in agreement with their published results and with the
value predicted by general relativity. The uncertainty in this measurement
is estimated from a standard bootstrap method.

The next step was to to include pulse profiles collected after the analysis
performed by Stairs et al. (2004) into this updated precession study. We first
incorporated the remaining Mark IV data collected after their study – which
is comprised of the 2005 Mark IV campaign and several long-term timing
profiles – to our version of their 51 profiles. These profiles were also rotated
to a pulse phase of zero, and selected for use based on their S/N value:
eight of the twelve orbitally-binned 2005 campaign profiles were included in
the analysis, as well as four long-term timing profiles. Therefore, we used a
total of 63 data points for the complete Mark IV profile analysis. The shapes
for each of these profiles were determined using the Mark IV PCA results
shown in Figure 3.1. The results from this analysis are displayed in Figure
3.3, and once again confirm the result published by Stairs et al. (2004) with
a measured precession rate of Ω1 = 0.39+2.8◦

−0.2 yr−1 with 95% confidence, and
a derived angle η = ±108 ± 13◦. The orbital aberration is also shown on
the right-hand-side of Figure 3.3, where Mark IV profile shapes and best-fit
aberration model are plotted against an “aberration angle”,

aberration angle = sin−1(S(u) + ε) (3.6)

where ε is an arbitrary phase in order to shift the values of S(u) to a range
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for which the inverse-sine is well defined. We set ε = 0.26 for all data sets,
and chose to plot shapes against this angle in order to show the periodic
change measured from the simultaneous fit due to orbital aberration of the
profile.

However, computational problems arose when applying the same proce-
dure to the ASP data set. PCA components for ASP profiles are shown
in Figure 3.1, and the P1 component has a noticeably different shape when
compared to its Mark IV counterpart. It is not immediately clear if these
differences reflect physical changes in the profile evolution itself, or the in-
strumental differences in bit sampling between the Mark IV and ASP ma-
chines mentioned in Chapter 2. Moreover, the results from the simultaneous-
fit program using only the ASP profiles indicated that the range of values
for S(u) could not be shifted to a suitable range for calculating the aber-
ration angle. The precession rate derived from this analysis is less con-
sistent with the prediction from general relativity (Ω1 = 0.14+0.2◦

−0.1 yr−1

with 95% confidence), and the results are plotted in Figure 3.4. Four
points were excluded from these plots after the simultaneous fit was ap-
plied to the ASP data, because the values of the quantity (S(u) + ε) lay
outside of the range −1 ≤ S(u) + ε ≤ 1. The best-fit model for long-term
changes in F shows that precession is still occurring, but that the long-term
change in profile shape is occurring at a different rate than indicated from
the Mark IV analysis: the slope of Mark IV long-term shape evolution is
s = (2.14+0.1

−0.1) × 10−3 % day−1 with 95% confidence, while the analogous

ASP slope is s = (2.73+0.1
−0.2)×10−3 % day−1 with 95% confidence. The best-

fit aberration model has a slightly larger amplitude than the Mark IV aber-
ration measurement, but has a comparable phase and yields η = ±137±46◦,
which is consistent with the value derived from the Mark IV analysis. These
issues in computation and discrepancies in PCA/fit results will be investi-
gated further in order to obtain a better understanding of these differences
and, hopefully, allow us to combine these two data sets for a global analysis
of profile evolution over the fourteen-year data span of the Mark IV and
ASP eras.
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Figure 3.3: Measurement of relativistic spin precession in PSR B1534+12 using Mark IV 430-MHz data. The
figure on the left plots the profile shape F = c1/c0 as a function of time; the figure on the right plots the profile
shape F as a function of an aberration angle defined in the text. In both plots, the solid lines represent the best-fit
models for long-term and aberrational precession, respectively. The measured precession rate from this analysis
is Ω1 = 0.39+2.8◦

−0.2 yr−1 with 95% confidence and agrees with the prediction of general relativity.
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Figure 3.4: Measurement of relativistic spin precession in PSR B1534+12 using ASP 430-MHz data. This figure
plots 40 ASP profile shapes F = c1/c0 as a function of time (left) and aberration angle (right); 44 profiles were
used in the analysis, but 4 points were excluded due to an undefined aberration angle (see text). The solid lines
in both plots represents the best-fit model for long-term precession and orbital aberration, respectively. The
derived precession rate – Ω1 = 0.14+0.2◦

−0.1 yr−1 with 95% confidence – is less consistent with the prediction of general
relativity than the Mark IV analysis. See text for a discussion of these results.46
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We presented several analyses that probed relativistic gravity using the PSR
B1534+12 binary system. An updated timing solution was derived by com-
bining data sets collected over the past twenty-two years, and obtained with
several generations of pulsar signal processors. This timing model accounted
for every relevant astrophysical process that systematically affected every
pulse TOA measured at the Arecibo Observatory in Puerto Rico. Such
processes included: relative motion between the pulsar-binary and Solar
systems; relativistic corrections associated with massive bodies within the
Solar system; the (time-dependent) amount of electronic material along the
line of sight to the pulsar; motion of the Earth about the Sun; binary motion
between the pulsar and its companion; and relativistic parameters associ-
ated with the strong-field nature of the pulsar binary system. Five PK
parameters were measured with improved significance, and four of these pa-
rameters were successfully used to confirm general relativity; our best test
was the ω̇− γ− s combination, which confirmed general relativity to within
0.35% of its predictions. The measurement of orbital decay in this system is
biased due to relative motion of the two systems in the Galactic potential;
the transformation between these references frames requires a reliable, inde-
pendent measurement of distance, which we do not yet have. However, we
were able to invert the problem and estimate a “theoretical” distance that
would bring the observed value of orbital decay and the “excess” orbital de-
cay due to the Galactic bias into agreement with the prediction from general
relativity. This theoretical distance was estimated to be dGR = 1.037±0.012
kpc, in agreement with last timing study of PSR B1534+12 published by
Stairs et al. (2002), and with significantly improved precision.

Other timing results were obtained that complemented the general-relat-
ivistic timing studies. We were able to estimate variation in the electron
content of the Galaxy along the line of sight to PSR B1534+12 by binning
pulsar DM across our data span and measuring time-derivatives within these
bins. Furthermore, we examined pulse TOAs during a time-span where the
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Mark IV and ASP observing machines overlapped in acquired data and
obtained evidence for magnetospheric activity in PSR B1534+12. The im-
plications from this pulse jitter are important, as it puts a type of floor on
the lowest amount of timing precision allowed for this system with upgraded
pulsar observing machines, at least at low observing frequencies where this
pulsar is brightest. We argued that better instrumentation will not sig-
nificantly decrease TOA uncertainties. However, future long-term timing
of PSR B1534+12 will gradually produce fitted parameters with improved
precision compared to the solution presented in this timing study.

We also performed tests on long-term changes in the pulse profile at 430
MHz, which previous studies have linked to geodetic precession. We carried
out the same analysis performed by Stairs et al. (2004) on an extended set
of Mark IV profiles, and were able to measure long-term and short-term
changes in profile shape that we attributed to relativistic-spin precession
and orbital aberration of the profile, respectively. We measured a preces-
sion rate of Ω1 = 0.39+2.8◦

−0.2 yr−1 with 95% confidence that is independent of
pulse-beam structure. However, the ASP analysis produced somewhat con-
flicting results and yielded a precession rate of Ω1 = 0.14+0.2◦

−0.1 yr−1 with 95%
confidence, which is less consistent with the predictions of general relativity
than the Mark IV test. The ASP profile still exhibited a long-term change
in profile shape with a time-slope of s = (2.73+0.1

−0.2) × 10−3 % day−1 with
95% confidence, and is significantly different than the corresponding Mark
IV slope of s = (2.14+0.1

−0.1) × 10−3 % day−1 also with 95% confidence. This
may indicate an intrinsic change in profile shape that occurred towards the
beginning of the ASP era, or instrumental differences between the Mark IV
and ASP machines. The issues encountered with the ASP analysis require
further scrutiny of the ASP data, the results obtained with these profiles,
and possible solutions to these computational problems.

Future studies on this pulsar will primarily focus on the long-term evo-
lution of timing parameters and pulse-profile shape, refining the current
precession software, and developing different methods for extracting a pre-
cession rate of the pulsar. Stairs et al. (2004) measured changes in the
polarization of the pulse signal from PSR B1534+12, and were able to in-
fer the complete geometry of the pulsar-binary system by combining results
from the profile-shape analysis mentioned above. This polarization study
will be improved with the additional years’ worth of data acquired since its
publication in 2004. Moreover, long-term timing observations can continue
tracking DM variation over time, as well as provide more insight into pulse
jitter with the prospect of future observing systems. Subsequent astrometry
of PSR B1534+12 with the VLBA or future SKA can provide high-precision
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constraints on the distance to this objects, possibly allowing the inclusion
of the orbital decay as another test of relativistic gravity.
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ApJ, 671, 1813

—. 2009, ApJ, 698, 242

Verbiest, J. P. W., Bailes, M., van Straten, W., Hobbs, G. B., Edwards,
R. T., Manchester, R. N., Bhat, N. D. R., Sarkissian, J. M., Jacoby,
B. A., & Kulkarni, S. R. 2008, ApJ, 679, 675

Weisberg, J. M., Nice, D. J., & Taylor, J. H. 2010, ApJ, 722, 1030

Weisberg, J. M., Romani, R. W., & Taylor, J. H. 1989, ApJ, 347, 1030

Wolszczan, A. 1991, Nature, 350, 688

Wolszczan, A. & Frail, D. A. 1992, Nature, 355, 145

You, X. P., Hobbs, G., Coles, W. A., Manchester, R. N., Edwards, R., Bailes,
M., Sarkissian, J., Verbiest, J. P. W., van Straten, W., Hotan, A., Ord,
S., Jenet, F., Bhat, N. D. R., & Teoh, A. 2007, MNRAS, 378, 493

53


	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Introduction
	Cosmic Lighthouses
	Overview of Pulsar Timing
	Basic timing model

	Pulsars in Binary Systems
	System evolution and double-neutron-star binaries

	Pulsars and General Relativity

	High-Precision Pulsar Timing of PSR B1534+12
	A Brief History
	Data Acquisition and Reduction
	Observing Machines
	Data Processing and Determination of TOAs
	Data Weights and Pulse Jitter in PSR B1534+12

	The timing model
	Solar-system corrections and astrometric parameters
	DM Variation over Time
	Theory-Independent Binary Model
	Fitting Procedure

	Results and Interpretation
	Tests of General Relativity
	A Theoretical Distance Estimate to PSR B1534+12
	Pulsar Jitter and Instrumental Limits on Timing Precision


	Profile Evolution and Relativistic Spin Precession in PSR B1534+12
	Data Reduction and Observing Strategy
	Methodology
	Current Results

	Summary, Conclusions, and the Future
	Bibliography

