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Abstract

Many bioinformatics studies require combined use of data sets and software developed by differ-
ent research labs. At the current time, accomplishing such studies requires the development of
custom scripts that act as “glue” for the independent resources, performing transformations on
the data sets that will allow them to be loaded into a single database and/or shuttled through
different pieces of software. Due to the tedium and inefficiency of manual data/software integra-
tion, many institutions and research groups have sought to find a more reliable and automatic
approach. The most significant integration project in recent years has been the Semantic Web
activity of the World Wide Web Consortium (W3C), which aims to automate data integration
not only in bioinformatics, but on the WWW as a whole. The goal of the Semantic Web is to
interlink data on the web in a manner that is similar to the way that HTML pages are linked,
while at the same time making the data available in a universal form that can be easily processed
by software. In this thesis, the author describes a distributed query system called SHARE (Se-
mantic Health and Research Environment) which demonstrates how the available standards and
tools of the Semantic Web can be assembled into a framework for automating data and software
integration in bioinformatics. We find that while SHARE has a similar architecture to existing
query systems, the use of Semantic Web technologies has important advantages for the imple-
mentation, maintenance, and addition of new data sources to the system. After reviewing the
mechanics of SHARE, we examine the crucial problem of optimizing queries in an environment
where statistics about the data sources are typically not available. A query evaluation procedure
called GREEDY is presented that addresses this challenge by: i) interleaving the planning and
execution phases of a query, and ii) learning statistics from the execution of previous queries.
We conclude by highlighting the unique strengths of SHARE and GREEDY in relation to other
integration systems, and review important areas for future work.
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Preface

The design of SHARE was a joint effort of the Wilkinson laboratory. The majority of the
programming work for the system, including the core query engine and the live web demonstra-
tion, was done by Luke McCarthy, a full-time employee of the Wilkinson laboratory. My own
contributions to the programming were the query optimizer and the ability to query SPARQL
endpoints as data sources.

Chapter 2, which describes the mechanics of the SHARE system, is an expanded and more
up-to-date version of material published in: Ben P. Vandervalk, E. Luke McCarthy, and Mark
D. Wilkinson, “SHARE: A Semantic Web Query Engine for Bioinformatics,” in The Semantic
Web (ASWC 2009), vol. 5926, pp. 367-369, 2009. The text and figures for Chapter 2 were
created from scratch.

Chapter 3, which describes the optimization algorithm for SHARE, is a further development
of work published in: Ben P. Vandervalk, E. Luke McCarthy, and Mark D. Wilkinson, “Opti-
mization of Distributed SPARQL Queries Using Edmonds’ Algorithm and Prim’s Algorithm,”
in 12th IEEE International Conference on Computational Science and Engineering (CSE 2009),
vol. 4, pp. 29-31, 2009. In particular, the idea for the GREEDY algorithm is based on Section
7 of that paper, titled “Adaptive query execution using Prim’s algorithm”. The text and figures
for Chapter 3 were created from scratch.
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Chapter 1

Introduction

1.1 The Motivation for Data and Software Integration in
Bioinformatics

The development of high-throughput methods in molecular biology, such as next generation
sequencing [1], microarrays [2], and chromatin immunoprecipitation [3], has led to an explosion
in the quantity and diversity of biological data that is available on the web. In turn, the new
data has driven the development of new computational tools for tasks such as gene prediction [4]
and protein structure prediction [5, 6]. The rapid growth of bioinformatics data and software is
evidenced by the annual “database issue” and “web server issue” of the Nucleic Acids Research
(NAR) journal, which have now published papers describing ∼ 1200 online databases and ∼
1400 online analysis tools, respectively. NAR provides an online list of the databases [7], while
the analysis tools have been catalogued by the Bioinformatics Links Directory [8].

One of the most intriguing things about the body of available bioinformatics resources is
the large number of logical interconnections. In general, the resources describe entities that are
closely related (such as genes [9], transcripts[10], and proteins [11]) or describe different aspects
of the same entities (such as the sequence [11], localization [12, 13], interaction partners [14–16],
or structure of a protein [17]). As such, there are many motivations for integrating datasets and
software that have been produced by different laboratories. Some applications of integration
include:

assembling comprehensive datasets For most studies or reviews, researchers will want to
obtain the most complete dataset possible, which usually requires extracting and merging
data from many publications and websites. This need has led to the development of many
databases that play the role of shared repositories for a single type of information. Such
repositories exist for mutations in cancer [18], antibody sequences [19], protein interac-
tions [15, 16, 20], protein structures [17], drug targets[21], microarray experiments [22–24],
and biological pathways [25–27], to name a few.

combining evidence Many activities in bioinformatics involve combining evidence in order to
increase the confidence of predictions. One such task is the annotation of a newly-sequenced
genome, where researchers must integrate direct experimental evidence, computational
predictions, and known information about related organisms in order to identify gene-
coding regions, non-coding RNAs, synteny blocks, and putative protein functions [28].
There are many other areas of study for which the integration of evidence is essential,
such as the reconstruction of phylogenetic trees[29], the prediction of subcellular protein
localization [30], and the prediction of protein-protein interactions [20, 31].

interpreting experimental results Genome-wide association studies [32] and microarray ex-
periments identify potentially long lists of genes that have a significant role in a particular
disease or experimental condition. However, these experiments do not explain why these
“hits” are significant or how they are biologically related. The researcher may have a

1



1.2. Fundamental Problems of Data and Software Integration

large number of questions about the top-ranked genes which require external datasets or
analysis, such as:

⇒ “For what other diseases or conditions was this gene found to be significant?”

⇒ “What papers have been published on this gene?”

⇒ “What metabolic, signaling, and regulatory pathways does this gene participate in?”

⇒ “Where do the protein product(s) of this gene localize within the cell?”

⇒ “What other tissues is the gene transcribed in?”

⇒ “What are known interaction partners for the protein product(s) of this gene?”

⇒ “Is this gene alternatively spliced?”

⇒ . . .

Such contextual information is crucial for forming hypotheses and for prioritizing genes for
further study or validation. In fact, several data integration systems have been designed
specifically for prioritizing gene lists [33–35].

comparing experiments Meta-analyses of microarray experiments are an important example
of data integration in bioinformatics. The most common goal of such analyses is to validate
differentially expressed genes for a certain disease or set of experimental conditions across
experiments [36]; this method of validation is promising because it is significantly more
cost-effective than experimentally validating results by PCR. Other types of meta-analyses
have been conducted to determine the reliability of microarray results across platforms [37]
and to validate pairs of coexpressed genes [38].

executing multi-step data analyses Many analyses in bioinformatics are conceptualized as
pipelines or workflows, in which each step performs a different transformation on the data.
For instance, a “first-pass” phylogenetic tree for a gene or protein is typically constructed
by: (i) identifying the homologs of the gene/protein with a BLAST search, (ii) creating a
multiple sequence alignment (MSA) of the homologs, and (iii) using a phylogenetic tree
program to infer evolutionary distances from the MSA [39]. Other tasks that are frequently
implemented as pipelines are genome annotation, drug discovery, and microarray analysis.

1.2 Fundamental Problems of Data and Software
Integration

The current body of websites, databases, and software that is available to bioinformaticians
has been produced by a large number of research groups acting independently and without a
shared set of standards. This has inevitably resulted in a large number of incompatible schemas
and software interfaces that make the combined use of resources unnecessarily difficult and
time-consuming [40]. As the field has grown, the bioinformatics community has recognized the
need for standardization, and many XML formats have been developed for the exchange of data
within specific domains such as microarrays, molecular interations, and biological pathways [41].
Unfortunately, there are several integration-related problems which XML alone cannot solve, as
will be discussed in Section 1.3.

While all of the problems related to data and software integration can be (and typically are)
solved manually on a case-by-case basis, the principal goal of integration systems is to resolve
these problems automatically. In particular, the main tasks that integration systems seek to
automate are:

2



1.2. Fundamental Problems of Data and Software Integration

discovery of relevant resources The first of step of integration is to identify the available
databases and software that need to be combined for the desired analysis. In current prac-
tice, resources are usually discovered manually through internet search engines, literature,
and link directories.

matching entities across datasets Whenever two related datasets are combined, the com-
mon entities (e.g. genes) between those datasets must be identified and merged. The ideal
solution to this problem is to establish a system of globally-shared identifiers for biological
entities; however, no such system yet exists. The LSID [42] identifier and resolution scheme
was recently proposed for this purpose, but unfortunately it has failed to gain widespread
acceptance by the community. LSID identifiers were based on a URN scheme, and aimed
to support guaranteed persistence of identifiers and immutability of data records, among
other features. The most common objection to the LSID system was that the resolution of
identifiers required specialized software and could not be performed with a standard web
browser (for example, see [42, 43]). In the absence of a global identifiers, more sophisticated
methods must be employed for matching entities across datasets, based on the content of
the records. A variety of methods for entity matching have been studied within the field
of database research, including rule-based systems, decision trees, and other supervised
learning methods [44].

schema integration Data models such as the relational model, XML, and RDF impose only
general constraints on the structure of a dataset. Under these models, a dataset must be
encoded as a set of cross-referenced tables, a tree, or a directed graph, respectively. Any
remaining decisions about structure are left to the data owner, and so the same dataset
may be organized according to a multitude of different schemas. A fundamental problem
arises when two parties wish to share datasets that are logically related, but whose schemas
are mutually incompatible. Data cannot be transferred directly from one database to the
other, but must first be mapped between the two schemas. Typically this mapping must
be worked out by hand, and the complexity of the problem grows with the number of
databases to be integrated. Schema integration is the central problem of data integration,
and has been widely studied in the context of relational databases [45], XML (e.g. [46]),
and OWL [47].

connecting software interfaces In order to accomplish multi-step analyses, an integration
system must be able to route data from the output of one program to the input of another
in an automated fashion. Pipes[48] are a well-known facility of the Unix command line
that was designed precisely for this purpose. A standard Unix program reads its input data
from a special file descriptor called STDIN, and writes its output to a special file descriptor
called STDOUT. When a series of programs is connected by Unix pipes, the STDOUT of
each program is sent to the STDIN of the next, thereby creating a continuous processing
pipeline. While the Unix command line is a sturdy and versatile tool, specialized workflow
systems have been developed for bioinformatics that go beyond the functionality of Unix
pipes in a number of ways. Typically, the functional units of such systems are Web Ser-
vices rather than locally installed programs, and this obviates the need for downloading,
installing, and configuring software on the user’s local machine. More importantly, work-
flow frameworks automate (or partially automate) a number of fundamental tasks such
as service discovery, service invocation, identification of services that may be connected,
and execution of an overall pipeline. Beyond this, the most advanced workflow systems
are capable of translating an abstract, query-based representation of a workflow into a
concrete implementation. SHARE, the subject of this thesis, is one such system.

3



1.3. Integration Technologies and Related Research Projects

1.3 Integration Technologies and Related Research
Projects

In this section we introduce the main technologies that have been developed for data and software
integration, discuss the advantages and disadvantages of each, and highlight related systems that
have been developed for use in bioinformatics.

1.3.1 Data Warehouses

Conceptually, warehousing is the most straightforward approach to data integration. Data ware-
houses are constructed by combining a set of related sources into a single database with a unified
schema [49, 50]. Beyond the task of designing an unified schema, the creators of a warehouse
must develop scripts for extracting data from the original sources, transforming the data to fit
the schema, and loading the data into the warehouse. In the database literature, this is known
as the Extract-Transform-Load (ETL) cycle. Procedures for extraction and transformation must
typically be written by hand after detailed study of the original sources.

Warehousing is a popular methodology in bioinformatics, and numerous warehouses have
been constructed for specific types of data such as structural families of proteins [51], sequences
of fungal species [52], ligands [53], and crop-related data [54], to name a few. In addition,
several warehouses have been built to integrate popular databases such as GenBank, UniProt,
and GO; two warehouses of this type are Atlas [55] and SeqHound [56]. The most widely known
warehousing system in biology is the Sequence Retrieval System (SRS) [57]. SRS is a framework
for integrating databases that are encoded as collections of plain text files (one file per record),
and can be configured to parse a wide variety of syntaxes. The principal functionality offered by
SRS is the ability to execute efficient, field-specific keyword searches across a large collection of
databases. (EBI maintains a publicly-accessible installation of SRS that currently includes 280
different databases [58].) Some recent data warehousing efforts have utilized RDF as their data
model, such as the Neurocommons Knowledge Base [59] and the Pathway Knowledge Base [60];
this approach serves to simplify some aspects of the schema integration problem, as will be
discussed in Section 1.3.

The warehousing approach to integration is often compared to the opposing methodology
of view integration that is used by mediator systems; mediator systems function by translating
a user query into a number of subqueries that are issued against the databases in their native
locations. The principal advantages of warehouses over mediators are speed and reliability;
warehouse users need not rely on the availability or performance of numerous remote data
sources, and query processing is not delayed by the transfer of data across the network. A further
advantage of warehouses is that the provider has complete control over the organization of the
data. This allows him/her/them to include additional processing steps that result in a cleaner
and simpler database, such as filtering, entity-matching, and translation to a uniform identifier
scheme. However, centralized control is also a disadvantage in the sense that it places the full
burden of maintenance on the warehouse provider. Warehouses must be updated regularly from
the original sources, and data extraction scripts must be repaired whenever the schemas of the
original sources change.

1.3.2 XML

XML (eXtensible Markup Language) [61] is a framework for defining application-specific data
formats. All XML files are text-based and share a general syntax consisting of tags (URIs en-
closed by angle brackets) and content organized in a hierarchical manner. Listing 1.1 shows an
example XML file that encodes pathway information, in accordance to a hypothetical schema
called PathwayML. (Hypothetical schemas are used in this section to avoid unnecessarily com-
plicated examples; however, the examples used here are valid XML.) The central standard of

4



1.3. Integration Technologies and Related Research Projects

XML is XML Schema[46], which allows the user to rigorously specify the rules of an XML
format. An XML schema primarily specifies structural relationships between tags, such as the
parent/child relationships, the relative order of sibling tags, and the number of legal occurrences
for a tag in a given context. It also describes the type of content (i.e. datatype) for each tag,
and specifies an analogous set of rules for XML attributes (such as “reactionID” in listing 1.1).
Listing 1.2 shows the XML Schema for the PathwayML file of listing 1.1.

<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<pathway pathwayID=”KEGG:hsa00234” xmlns=” h t t p : //www. pathwayml . org /schema”>

<r e a c t i o n react ionID=”KEGG:R00335”>
<enzyme enzymeID=” UniProt:P04035 ”>

<s ub s t r a t e>PubChem:3649</ su bs t r a t e>
<product>PubChem:3708</ product>

</enzyme>
<r e a c t i o n>

</pathway>

Listing 1.1: Example XML file describing part of a metabolic pathway

<xsd:schema xmlns:xsd=” ht t p : //www. w3 . org /2001/XMLSchema”>
<xsd :e l ement name=”pathway” type=”pathwayType”/>
<xsd:complexType name=”pathwayType”>

<xsd : s equence>
<xsd :e l ement name=” r e a c t i o n ” minOccurs=”0” maxOccurs=”unbounded”>

<xsd:complexType>
<xsd : s equence>

<xsd :e l ement name=”enzyme” minOccurs=”1” maxOccurs=”
unbounded”>
<xsd:complexType>

<xsd : sequence>
<xsd :e l ement name=” s ub s t r a t e ” type=”

x s d : s t r i n g ”/>
<xsd :e l ement name=” product ” type=” x s d : s t r i n g ”

/>
</ xsd : sequence>
<x s d : a t t r i b u t e name=”enzymeID” type=” x s d : s t r i n g ”

use=” requ i r ed ”/>
</xsd:complexType>

</ xsd :e l ement>
</ xsd : sequence>
<x s d : a t t r i b u t e name=” react ionID ” type=” x s d : s t r i n g ”
use=” requ i r ed ”/>

</xsd:complexType>
</ xsd :e l ement>

</ xsd : sequence>
<x s d : a t t r i b u t e name=”pathwayID” type=” x s d : s t r i n g ” use=” requ i r ed ”/>

</xsd:complexType>
</ xsd:schema>

Listing 1.2: Example XML Schema (“PathwayML”) describing the XML file of listing 1.1

One of the principal features of XML Schema is that schema files are “machine readable”.
This means that, in contrast to a natural language description of the schema, an XML Schema
file has a simple and rigid structure that makes automated processing by software a relatively
straightforward task. (XML data files are themselves machine readable, as are many other
formats such as ASN.1 [62] and RDF [63].) The machine-readability of XML schema has enabled
the development of software libraries (e.g. [64]) that are capable of validating and parsing XML
files with respect to any user-defined schema. Thus, XML has eliminated the need to create a
custom file parser for every application.

Many XML standards have been developed for the exchange of specific types of data within
bioinformatics, such as sequence annotations [65, 66], structures [67, 68], alignments [69], protein
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interations [70], expression data [71, 72], and pathways [73, 74]. While initially there was a multi-
tude of competing XML formats for each type of data, most areas of bioinformatics appear to be
consolidating. For instance, there was once a number of different XML standards for annotating
sequences such as SBML, AGAVE, GAME, and BioML; however, EMBL, NCBI, and DDBJ now
offer their annotations for download in a common XML format called INSDSeq (International
Nucleotide Sequence Database). Another example of consolidation is the fact that several pro-
tein interaction databases such as DIP[14], MINT [75], and IntAct [76] now publish their data
in a common XML format called PSI-MI [70]. Similarly, the pathway standard SBML [73] is
now being utilized by a large number of simulation systems and databases [77]. One important
area where standarization has not yet been fully achieved is the sharing of microarray expres-
sion data. In spite of ongoing standardization work by the MGED society [78], including the
development of the MAGE-ML [71] and MAGE-TAB [79] formats, the three largest microarray
repositories [22–24] still publish their datasets and descriptions of experimental conditions in
different (although highly similar) text-based formats. Only ArrayExpress is currently using the
standards developed by MGED.

The establishment of XML standards is an important step forward for bioinformatics because
it greatly facilitates the exchange of data between databases. While database owners might still
need to develop scripts for importing and exporting XML, in most cases they will only need
worry about mapping their database schema to one or two XML schemas, rather than a myriad
of possible formats. However, it is important to note that the existence of XML standards does
not address the problem of integrating different types of data. For example, suppose that in
addition to the PathwayML file of listing 1.1, a researcher also has a TargetML file containing
data about putative drug targets, as shown in Fig. 1.1. The integration of XML schemas is no
easier to automate than the integration of relational schemas [80], and thus in order to create
an XML file that incorporates both datasets, the researcher must design a new XML schema
by hand. This barrier to merging the two datasets prevents a researcher from readily answering
questions such as “What are the natural substrates of enzymes that are targeted by the drug
Pravastatin?”

<?xml version="1.0" encoding="UTF-8"?>
<pathway pathwayID="KEGG:hsa00234" xmlns="http://www.pathwayml.org/schema">
        <reaction reactionID="KEGG:R00335">
                <enzyme enzymeID="UniProt:P04035">
                        <substrate>PubChem:3649</substrate>
                        <product>PubChem:3708</product>
                </enzyme>
        <reaction>
</pathway>

<?xml version="1.0" encoding="UTF-8"?>
<drug drugbankID="DB00175" xmlns="http://www.drugml.org/schema">
     <drugname>Pravastatin</drugname>
     <target>UniProt:P04035</target>
     <target>UniProt:P01234</target>
</pathway>

???

Figure 1.1: An example illustrating the problem of merging two XML datasets. One dataset
identifies the targets of the drug Pravastatin (top), while the other dataset gives pathway infor-
mation (bottom). Although the datasets are related (by the common protein UniProt:P04035),
there is no automated procedure for merging them into a single, integrated dataset.
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1.3.3 The Semantic Web

The vision of the Semantic Web is the establishment of a global, interconnected network of
machine-readable data, analogous to the network of human-readable documents that currently
populates the World Wide Web (WWW) [81]. The idea was first conceived by the inventor
of the WWW (Tim Berners-Lee), and under his direction, a large amount of work has been
conducted by the World Wide Web Consortium (W3C) [82] in order to develop the requisite
standards [83]. Although the standards work is largely complete, the Semantic Web is still more
a dream than reality; the vast majority of data owners on the web have not yet shown an interest
in participating [84].

Regardless of its long term success, the Semantic Web effort has provided a number of
valuable tools for addressing the data and software integration problems that currently exist in
bioinformatics. In this section, we provide an introduction to RDF and OWL, the core standards
for the Semantic Web. We highlight the main advantages of the RDF/OWL framework for
data integration, in comparison to the prevailing models of relational databases and XML, and
describe several bioinformatics projects where the standards are being used.

RDF

RDF (Resource Description Framework) is the data model for the Semantic Web. Un-
der the RDF model, a dataset is encoded as a set of triples, where each triple rep-
resents an atomic statement or “fact”. Each triple consists of a subject, a predicate,
and an object, and each of these three parts is identified by a URI (Uniform Resource
Identifier). URIs are globally unique identifiers for the WWW; in the context of RDF,
URIs may represent anything (people, material objects, categories, types of relationships,
etc.)1. For instance, supposing that http://www.genome.jp/R00335 represents a certain re-
action, http://www.genome.jp/hasEnzyme represents the reaction-to-enzyme relationship, and
http://www.uniprot.org/P04035 represents a certain protein, the following triple asserts that
the protein is an enzyme for the reaction:

(kegg:R00335, kegg:hasEnzyme, uniprot:P04035)2

A set of such triples constitutes an RDF dataset, and can be visualized as a graph where
the subjects and objects are nodes, and the predicates are edges, as in Fig. 1.2. Thus, RDF is
a graph-based data model, whereas the relational model is table-based, and the XML model is
tree-based. RDF datasets are typically serialized as TURTLE [85] or RDF/XML [86], and may
be stored in specialized databases called triple stores [87]. Triple stores are typically queried via
the SPARQL query language [88], which will be introduced in Section 2.2.

At the current time, RDF is not a widely used format for publishing data within bioin-
formatics [89]. In fact, the author is aware of only one data provider that natively publishes
RDF: the UniProt protein database [11]. However, several projects have endeavoured to provide
publically accessible, third-party translations of existing bioinformatics resources in RDF form.
The largest and longest-standing effort in this area is the Bio2RDF [90] project, which provides
“RDFized” versions of popular databases such KEGG [25], Entrez Gene [9], and PDB [17].
More recently, the LODD (Linked Open Drug Data) project [91] has produced RDF versions
of drug-related resources such as DrugBank [21], DailyMed [92], and SIDER [93]. Bio2RDF
and LODD house the RDF versions of each database in a separate triple store; however, there
have also been several projects that have built RDF-based data warehouses, such as the Neu-
rocommons Knowledge Base [59] (neuroscience resources), the Pathway Knowledge Base [60]

1The most widely used form of URIs in RDF are URLs (Uniform Resource Locators, such as
http://www.yahoo.com.)

2These URIs, and the others that are used in the examples of this section are hypothetical. At the current
time, the majority of data providers in bioinformatics do not yet publish their data in RDF, and thus they do
not have established URI schemes for referencing their database records. UniProt is an exception.

7

http://www.genome.jp/R00335
http://www.genome.jp/hasEnzyme
http://www.uniprot.org/P04035
http://www.yahoo.com


1.3. Integration Technologies and Related Research Projects

@pref ix kegg : <h t t p : //www. genome . jp /> .
@pre f ix u n i p r o t : <h t t p : // un iprot . org /> .
@pre f ix pubchem: <h t t p : //pubchem . ncbi . nlm . nih . gov/> .

kegg :hsa00234 kegg :hasReact ion kegg:R00335 .
kegg:R00335 kegg:hasEnzyme uniprot :P04035 .
uniprot :P04035 kegg :hasSubs t ra te pubchem:C3649 .
uniprot :P04035 kegg:hasProduct pubchem:C3708 .

(a) RDF serialized as TURTLE

<?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
<rdf:RDF
xmlns:kegg=” h t tp : //www. genome . jp /”
xmlns :un iprot=” h t tp : // un iprot . org /”
xmlns:pubchem=” ht tp : //pubchem . ncbi . nlm . nih . gov/”
xmlns : rd f=” h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#”>

<r d f : D e s c r i p t i o n rd f : abou t=” h t t p : //www. genome . jp / hsa00234 ”>
<kegg :hasReact ion r d f : r e s o u r c e=” h t t p : //www. genome . jp /R00335”/>

</ r d f : D e s c r i p t i o n>

<r d f : D e s c r i p t i o n rd f : abou t=” h t t p : //www. genome . jp /R00335”>
<kegg:hasEnzyme r d f : r e s o u r c e=” h t t p : // un iprot . org /P04035”/>

</ r d f : D e s c r i p t i o n>

<r d f : D e s c r i p t i o n rd f : abou t=” h t t p : // un iprot . org /P04035”>
<kegg :hasSubs t ra te r d f : r e s o u r c e=” ht t p : //pubchem . ncbi . nlm . nih . gov/C3649”/>
<kegg:hasProduct r d f : r e s o u r c e=” ht tp : //pubchem . ncbi . nlm . nih . gov/C3708”/>

</ r d f : D e s c r i p t i o n>

</rdf:RDF>

(b) RDF serialized as RDF/XML

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035

kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

(c) RDF visualized as a graph

Figure 1.2: An example RDF dataset describing part of a metabolic pathway
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(pathway resources), and BioGateway [94] (general resources such as Uniprot and GO). RDF
has proven useful in warehouse construction because it greatly simplifies the merging of datasets
from different sources, as will be described below.

The use of globally unique identifiers in RDF provides a mechanism for matching entities
across datasets, which is essential for data integration (see “entity matching” in 1.2). However,
the manner in which these global identifiers should be assigned to entities is not entirely clear.
URIs were chosen to play the role of identifiers in RDF because it is a scheme that guarantees
uniqueness and is already well established on the WWW. In addition, its connection to the
DNS framework gives a clear mechanism for the ownership of URLs, in which a single party has
control of each URL and the data that it resolves to. However, the use of URLs in RDF has also
been ongoing source of confusion [89, 95]. For instance, RDF providers have tended to invent
their own URLs for every entity that they reference in their data, regardless of whether URLs
for those entities already exist elsewhere. This behaviour has arisen from the fact that an HTTP
URL can only resolve to one network location, and thus the use of a “foreign URL” to identify
an entity (e.g. a protein) will prevent browsing or crawling to the providers own unique data
about that entity. An additional problem is that, even in cases where an RDF data provider is
willing to use external URL for an entity, he/she has no straightforward method for determining
if such an URL exists. These problems (and several others) motivated the recent development of
the LSID (Life Science IDentifier) [42] identifier and resolution system. LSID utilizes features of
the DNS system to implement resolution to multiple sources, and in addition seeks to guarantee
the persistence and immutability of identifiers and their associated data records. However, there
has been a great deal of argument about whether specialized resolution mechanisms are truly
necessary for the Semantic Web (e.g. [42, 43]), and LSID has not seen widespread acceptance.
At the current time, the issues surrounding the creation and resolution of identifiers in RDF
remain unresolved.

The principle advantage of RDF as a data model is that it supports an automated procedure
for merging data sets. To perform an RDF-merge, one simply adds the set of triples in one
dataset to the set of triples in another dataset (discarding duplicates), as depicted in Fig. 1.3.
An RDF-merge will yield a coherent dataset provided that:

1. common entities and common relationships are identified by the same URIs, and

2. whenever the same type of data is encoded in both datasets (e.g. reactions), the graph
structures used for representing that data are the same.

For instance, Fig. 1.4 shows a scenario where different graph structures are used to encode
biochemical reactions. The merged dataset is not coherent and cannot be uniformly queried to
extract information. The problem illustrated in Fig. 1.4 is a variant of the schema integration
problem, which also exists under the relational model and the XML model. On the Semantic
Web, the problem is addressed through the use of OWL ontologies, as will be discussed in the
following section. Although RDF does not provide a universal solution to the schema integration
problem, it is important to note that RDF does provide a solution when the domains of the two
datasets differ and common identifiers are used, as in Fig. 1.3.

OWL

OWL (Web Ontology Language) is a standard for defining ontologies for use with the Semantic
Web. An ontology is often defined as a “formal conceptualization of a domain” [96]. In this
context, a “conceptualization” is a set of classes of things (e.g. proteins, genes, chromosomes),
together with the relationships that connect them (e.g. a protein is encoded by a gene); a
“domain” is any possible area of study (e.g. tertiary structures of proteins). OWL ontologies on
the Semantic Web serve two purposes:
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kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035

kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

uniprot:P04035

drugbank:targetOfdrugbank:targetOf

drugbank:DB003946drugbank:DB00175

(kegg:hsa00234, kegg:hasReaction, kegg:R00335)
(kegg:R00335, kegg:hasEnzyme, uniprot:P04035)
(uniprot:P04035, kegg:hasSubstrate, pubchem:C3649)
(uniprot:P04035, kegg:hasProduct, pubchem:C3708)

(uniprot:P04035, drugbank:targetOf, drugbank:DB00175)
(uniprot:P04035, drugbank:targetOf, drugbank:DB003946)

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035 kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

drugbank:targetOfdrugbank:targetOf

drugbank:DB003946drugbank:DB00175

(kegg:hsa00234, kegg:hasReaction, kegg:R00335)
(kegg:R00335, kegg:hasEnzyme, uniprot:P04035)
(uniprot:P04035, kegg:hasSubstrate, pubchem:C3649)
(uniprot:P04035, kegg:hasProduct, pubchem:C3708)
(uniprot:P04035, drugbank:targetOf, drugbank:DB00175)
(uniprot:P04035, drugbank:targetOf, drugbank:DB003946)

Figure 1.3: An example of a successful RDF-merge.
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kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035

kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

(kegg:hsa00234, kegg:hasReaction, kegg:R00335)
(kegg:R00335, kegg:hasEnzyme, uniprot:P04035)
(uniprot:P04035, kegg:hasSubstrate, pubchem:C3649)
(uniprot:P04035, kegg:hasProduct, pubchem:C3708)

(kegg:hsa00234, kegg:hasReaction, kegg:R00335)
(kegg:R00335, kegg:hasEnzyme, uniprot:P07096)
(kegg:R00335, reactiondb:reactant, pubchem:C3649)
(uniprot:R00335, reactiondb:product, pubchem:C3708)

(kegg:hsa00234, kegg:hasReaction, kegg:R00335)
(kegg:R00335, kegg:hasEnzyme, uniprot:P04035)
(uniprot:P04035, kegg:hasSubstrate, pubchem:C3649)
(uniprot:P04035, kegg:hasProduct, pubchem:C3708)
(kegg:R00335, kegg:hasEnzyme, uniprot:P07096)
(kegg:R00335, reactiondb:reactant, pubchem:C3649)
(uniprot:R00335, reactiondb:product, pubchem:C3708)

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P07096

kegg:hasEnzyme

reactiondb:productreactiondb:reactant

pubchem:3708pubchem:3649

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035

kegg:hasEnzyme

pubchem:3708pubchem:3649

kegg:hasProductkegg:hasSubstrate

uniprot:P07096

kegg:hasEnzyme

reactiondb:productreactiondb:reactant

Figure 1.4: An example of an unsuccessful RDF-merge. The two original datasets represent
data reactions using different graph structures. uniprot:P04035 and uniprot:P07096 represent
two alternate enzymes that catalyze the same reaction.
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1. They provide the vocabulary and structural rules for encoding an RDF dataset for a given
domain. In this respect, OWL ontologies are the functional analog of schemas for relational
databases and XML.

2. They encode knowledge about a domain in machine-readable form, such that it can be
used to make automated inferences about RDF data. For example, an OWL reasoner
might infer that an instance of the class Ligase has at least one substrate and at least one
product, given that the class Ligase is a subclass of Enzyme.

An OWL ontology represents a set of axioms in a description logic [97], and so it is necessary
to understand the basic principles of description logics in order to understand the manner in
which OWL ontologies achieve the two tasks above. Every description logic represents four kinds
of elements:

Individuals Individuals are the entities that are described and related within the data. In the
RDF/OWL framework, individuals are represented by the subject and object URIs of the
triples in an RDF dataset.

Properties Properties are relationships between individuals, and are also referred to as pred-
icates or roles. An OWL ontology provides a vocabulary of predicate URIs that may be
used when encoding RDF triples in a given domain; for instance, a pathway ontology cor-
responding to the dataset in Fig. 1.2 would contain the predicate URIs kegg:hasReaction,
kegg:hasEnzyme, etc. In addition, the pathway ontology could assert axioms about predi-
cates such as: “the subject URI of any triple with the kegg:hasReaction predicate belongs
to the class Pathway”:

Pathway(x)⇔ hasReaction(x, y)

In a description logic, classes are represented as unary predicates (e.g. Pathway(x)) and
properties are represented as binary predicates(e.g. hasReaction(x,y)). (Classes will be
discussed below.) Many other types of axioms regarding predicates are also possible, such
as the assertion that one property is the inverse of another:

isReactionOf(y, x)⇔ hasReaction(x, y)

Assertions Assertions are statements about individuals. In the RDF/OWL framework, asser-
tions are represented by the triples of an RDF dataset.

Classes Classes are sets of individuals, and are also referred to as concepts. Classes constitute
another part of the vocabulary that is provided by an OWL ontology. The members of
a class may be specified explicitly; however, classes may also be defined more generally
in terms of axioms. Such axioms describe either necessary or necessary and sufficient
conditions regarding individuals that are members of a class. For instance, a class axiom
may assert that whenever an individual x belongs to class X, it also belongs to class Y:

Y (x) ⊆ X(x)

This axiom asserts that Y is a subclass of class X. More complex relationships between
classes can also be encoded in description logics, by building expressions involving the
intersection, union, and complement of classes. Classes may also be defined in terms of the
properties of an individual. For instance, one might define a class called Enzyme as the set
of individuals that have at least one hasSubstrate property and at least one hasProduct
property:

Enzyme(x)⇔ ∃yhasSubstate(x, y) ˆ ∃yhasProduct(x, y)
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In OWL, the atoms ∃yhasSubstate(x, y) and ∃yhasProduct(x, y) are called property restrictions.
More specifically, they are existential property restrictions. Other types of property restrictions
are universal restrictions, which assert that all values of a property must belong to certain class,
and cardinality restrictions, which assert that an individual must have a certain number of
distinct values for a particular property.

The use of axioms to define classes and properties makes it possible to automatically find
contradictions within an ontology; this operation is called consistency checking, and it is one of
the principal tasks that can be performed by an OWL reasoner (e.g. [98–100]). It is also possible
to use consistency checking to test whether a given RDF dataset conforms to the rules of an
ontology; thus, an OWL ontology can be used to the specify structural rules of RDF data in
a very sophisticated manner. Beyond consistency checking, an OWL reasoner may be used to
deduce facts that are not explicitly stated in the data. Typical questions that an OWL reasoner
can answer are:

⇒ Are all instances of class X also instances of class Y? (Subsumption)

⇒ Does individual x belong to class X? (Realization)

⇒ Is it possible for any individual to be a member of class X? (Satisfiability)

⇒ Are there any logical contradictions in the ontology? (Consistency)

While this type of “reasoning” may seem somewhat limited, the ability to automatically
apply a classification system to biological data has many applications. For instance, an OWL
ontology can be used to group proteins into families according to their domains, as described
in [101], or to organize a database of small molecules by their functional groups, as in [102].

Description logics are distinguished by the particular constructs (e.g. existential restrictions)
that they permit in the construction of their axioms. For example, there are several variants of
OWL based on different description logics; the most widely used variant, OWL DL, is a repre-
sentation of the description logic SHOIN (D). Each letter in indicates one or more constructs:

S indicates the constructs of the description logic ALC , which include negation of class expres-
sions, intersections of classes, universal restrictions, and existential quantification.

H subproperty axioms

O ordinals (classes may be defined as enumerated lists of individuals)

I inverse properties

N cardinality restrictions

(D) datatype properties (properties which take a number or string as their value, rather than
an individual)

The set of constructs used by a description logic determines its expressivity. One of the main
subjects of research in description logics is the tradeoff between expressivity and computational
complexity of reasoning. It is generally understood that the more expressive a logic, the more
computationally expensive are its inferencing services (e.g. subsumption), with undecidability
as the worst case [103].

Several projects have created OWL ontologies for specific domains of bioinformatics, such as
BioPAX [104] for modelling pathways and interactions, OBI [105] for modelling experimental
procedures and conditions, and the MGED ontology[78] for modelling microarray experiments.
Larger OWL ontologies have also been constructed that cover multiple domains. For instance,
the NCI (National Cancer Institute) Thesaurus [106] models many areas of biology and clinical
science such as diseases, genes, drugs, pathways, taxonomy, and cancer diagnoses. In addition, a
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number of description logic ontologies predate OWL, such as the GALEN [107] and SNOMED-
CT [108] ontologies for medical terms, and the TAMBIS ontology [109] for general biological
concepts.

It is worth noting here that the word “ontology” is more commonly used in bioinformatics
as a synonym for controlled vocabularies (simple hierarchies of terms) such as the GO (Gene
Ontology) [110]. GO has been a very successful means of ensuring that scientists use consistent
terms when annotating data records, and has enabled the querying of databases using only one
standardized term per concept (e.g. “transcription”).

As it relates to data integration, the principal advantage of the RDF/OWL framework
over the relational and XML models is that a single dataset can conform to multiple schema
(ontologies) at the same time. For example, the dataset of Fig. 1.3 could be queried using
two independently developed ontologies for drug targets and enzymes, as shown in Fig. 1.5.
This “mixing and matching” of ontologies is possible under OWL because class definitions do
not require individuals to have a fixed number of property types; in the example, an instance
of the class DrugTarget is permitted to have any number of other properties in addition to
“targetOf” (such as “hasSubstrate” and “hasProduct”). Figure 1.5 demonstrates how the RDF/
OWL framework solves the schema integration problem when two ontologies describe different
types of data about the same entities. However, if the domains of two ontologies overlap (e.g.
two ontologies that describe pathways), the representation of common entities must agree (as
demonstrated in Fig. 1.4).

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035 kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

drugbank:targetOfdrugbank:targetOf

drugbank:DB003946drugbank:DB00175

Enzyme

(a) uniprot:P04035 as an instance of the class Enzyme

kegg:hsa00234

kegg:hasReaction

kegg:R00335

uniprot:P04035 kegg:hasEnzyme

kegg:hasProductkegg:hasSubstrate

pubchem:3708pubchem:3649

drugbank:targetOfdrugbank:targetOf

drugbank:DB003946drugbank:DB00175

DrugTarget

(b) uniprot:P04035 as an instance of the class Drug-
Target

Figure 1.5: An example illustrating how different OWL ontologies may be used to provide
alternate interpretations of the same RDF dataset. In the first case (left), uniprot:P04035 is
identified as an instance of the class Enzyme, whereas in the second case (right), uniprot:P04035
is identified as an instance of the class DrugTarget.

1.3.4 Web Services

The fundamental idea underlying web services is to make the functionality of software accessible
over a network. This can be accomplished by setting up a server that listens for input messages
from remote clients, performs computations on those input messages, and responds with output
messages that contain the results. The client-server model is already widely used for a large
number of internet applications such as web servers and FTP servers; the idea is merely to
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extend the pattern to other types of software. It important to note that the intended “users”
of web services are not people but rather machines; web services are a mechanism for accessing
external software from within a program that is analogous to a procedure call. Thus, there is a
strong emphasis on machine-readability and automation.

A number of standards have been developed to promote uniform interaction, description,
and discovery of web services, which together form the WS-* stack. First, SOAP (Simple Object
Access Protocol) [111] is a simple XML “wrapper” that allows control information to be attached
to web service messages, for purposes such as application-specific routing and security. Second,
WSDL (Web Service Description Language) [112] is an XML standard for describing the message
formats, calling pattern, location, and protocol (e.g. HTTP) for a web service. WSDL files
describe message formats using XML schema. Lastly, UDDI (Universal Description, Discovery
and Integration) [113] is a distributed, XML-based registry system for web services, which can
itself be queried as a web service. Apart from the WS-* stack, an alternative model for web
services also exists in the literature called RESTful services. Requests to RESTful services are
typically encoded as HTTP GET URLs and are invoked by a simple request-response pattern;
in other words, RESTful services are invoked in the same manner that a web browser retrieves
a web page. The term REST (REpresentational State Transfer) describes a general set of
design principles for distributed systems that were employed in the development of the HTTP
protocol; the essential characteristics of a REST system are the separation of interactions into
clients and servers, the statelessness of servers, the use of global identifiers for resources, and
the support of a generic interface for retrieving representations of resources [114]. Currently,
there is an ideological battle being waged between supporters of the RESTful model and the
“Big Services” model [115]; however, the two views are in many ways compatible, because the
WS-* stack supports a superset of the behaviour described by RESTful services.

The majority of web services in bioinformatics communicate via SOAP, are described in
WSDL, and behave in a RESTful manner (in the sense that they are stateless, have a simple
request-response calling pattern, and operate over HTTP). Examples include EBI’s dbfetch [116]
service, the KEGG API [117], BioMoby [118], and BioMart’s “MartServices” [119]. While the
WSDL and SOAP standards are widely used in bioinformatics, the UDDI standard is not; in
current practice, bioinformaticians usually discover web services through papers, internet search
engines, and word of mouth. In an effort to fill this gap, a number of projects have created
specialized registries for bioinformatics services with capabilities beyond that of UDDI. For
example, the BioMoby [118] registry includes a shared ontology of XML datatypes that represent
common entities such as DNA sequences and GO terms. Services that wish to participate in
the BioMoby framework must consume and generate one of the BioMoby datatypes (or extend
the shared ontology), and thus the framework encourages the creation of interoperable services.
The Feta [120] registry takes an alternate, annotation-based approach. Feta service providers
annotate services and their parameters with terms from the myGrid ontology [121], enabling
users to discover services based on the types of parameters they consume/generate (e.g “Protein
Sequence”), and the types of analyses they perform (e.g. “Sequence Alignment”). Most recently,
the BioCatalogue [122] provides an open web-based service registry which can be searched by
keyword, service categories (e.g. “Phylogeny”), and user annotated tags. The BioCatalogue
now contains more than 1000 services.

Beyond the basic tasks of locating and invoking individual services, it is also possible to chain
services into workflows to perform complex analyses. (Fig. 1.6 depicts an example workflow,
constructed in Taverna [123].) Workflows are useful for a number of tasks in bioinformatics. For
example, one might build a workflow to automate the mapping of differentially expressed genes
to pathways [124], the retrieval of gene information for a QTL [125], or the construction of a
phylogenetic tree [126]. A number of software tools have been developed to aid in the (man-
ual) construction of workflows, such as Taverna [123] and Kepler [127]. Unfortunately, building
workflows is still not easy. Chaining services from different providers tends to be difficult and
time-consuming [128] for the same reason that merging data from different providers is dif-
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Workflow Inputs

Workflow Outputs

Fail_if_false_DNA

Is_DNA_RNA

Fail_if_false_Protein

MergeUserList toLowerCaseSetting_fastaNot_Protein_Sequence

Not Protein Sequence

Get_Protein_FASTA

MergeString

It is a DNA or RNA sequence

Fail_if_true_Protein

FlattenImage

Image Alignment

Fail_if_true_DNA

Condition_Protein

Split_by_newline

insert_query_seq

Extract_Duplicates

fneighbor

extract_number_sequences

Extract_Seq_Description ClustalW

Extract_GI_Evalue

searchSimple

Protein Description

Condition_DNA_RNA

blastsimplifier

fdrawgram

Rooted_Tree

fprotdist

fdrawtree

Output Tree (N or UPGMA)Distance Outfile Unrooted_Tree

prettyplot

Blast Report

Input_Sequence ListUser N-J or UPGMA

Figure 1.6: Example Taverna workflow which generates a BLAST report, multiple sequence
alignment, and phylogenetic tree for an input protein sequence.
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ficult: the schema integration problem. Virtually all web services utilize XML-based message
formats, and the XML schema for these formats are developed independently by different service
providers. Thus, at the current time, building analysis pipelines with web services has few ad-
vantages over building pipelines with locally installed software. One advantage that web services
do have over ordinary software is platform independence; a web service may be invoked from
virtually any programming language on any operating system, and requires no downloading,
installation, or configuration prior to use. (The price of this convenience is dependency on a
remote server.) In addition, web services are a useful mechanism for “wrapping” a related set
of databases and software packages, so that they are exposed with a uniform set of interfaces.

A number of projects have been dedicated to building more sophisticated infrastructure
on top of the existing web service standards. For example, grid architectures seek to unify a
collection of distributed servers and allow them to be used as a single computational resource.
Thus, the functionality that is supplied by a grid system is analogous to the functionality
supplied by an operating system: job control (running, pausing, or killing a program), job
monitoring, file storage/transfer, and security. In contrast to users of stand-alone web services,
grid users must supply both the input data and the software to be run as a job on the grid. The
general architecture and functionality of a grid system is described in the OGSA (Open Grid
Services Architecture) Architecture document [129], and the de facto standard implementation of
OGSA is the Globus Toolkit [130]. Both the BIRN (BIoinformatics Research Network) [131] and
caGrid [132] grid projects are based on the Globus Toolkit, as well a number of other grid projects
outside of bioinformatics. A related term, cloud computing, is used to describe grid-like services
that have recently become available from Amazon [133], Google [134], and Microsoft [135];
these services allow application developers to run multiple instances of an application on virtual
machines that are supplied by the vendor. The main feature of cloud computing services is that
the number of virtual machines running at any given time may be readily increased or decreased
(in some cases automatically). The most common target application of cloud computing is the
creation of websites that can readily scale in response to increasing popularity.

Another area of research related to web services is Semantic Web Services [136], which seeks
to apply Semantic Web standards to the problem of automatically constructing workflows. The
general approach taken in this field is borrowed from the planning domain [137] of artificial
intelligence, in which the condition of the world before and after any action is modeled by a
set of state variables. The user’s goal in executing the workflow is expressed as a desired set of
values for the state variables, and the job of a service broker (e.g. [138]) is to find a path from
the initial conditions, through a number of web service invocations, to the goal. Two standards-
in-progress have emerged for describing web services along these lines, called OWL-S [139] and
WSMO[140].

1.3.5 Mediator Systems

A mediator system (also called a multidatabase system or a data integration system) provides
a common query interface to a collection of data sources that are distributed across a network.
A mediator answers a query by translating it into a set of subqueries that are issued against the
individual data sources (Fig. 1.7). Typically, users formulate their queries against a “virtual”
schema or ontology that provides a coherent view of all available data; thus, designing the virtual
schema, and mapping it to the schemas of the individual sources, is one of the central tasks
of implementing a mediator system. This design/mapping work is yet another instance of the
schema integration problem that has been encountered under several different scenarios in this
chapter. As in the previous instances, the mappings must be made manually after careful study
of the sources. One common technique for distributing the work of schema integration is for
each participant to implement a wrapper interface (i.e. a web service) over his/her data source,
as depicted in Fig. 1.7. The wrapper layer also masks other types of heterogeneity, such as the
different interfaces used for invoking an analytical program and querying a database.
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Wrapper

Mediator

User Query

Subquery Subquery Subquery

Analytical SoftwareDatabase Database

Wrapper Wrapper

Figure 1.7: Mediator architecture

A number of mediator systems have been developed for bioinformatics. One of the earliest
systems was Kleisli [141]. Kleisli uses a query language called CPL (Collections Programming
Language) [142] that allows for the querying and transformation of nested data structures con-
sisting of lists and sets 3. This is particularly suitable for bioinformatics resources, which tend
to have complex structures, such as the sequence features (e.g. exon regions within a DNA se-
quence) that are embedded in a GenBank record. In the late 90’s, a library of Kleisli “drivers”
(i.e. wrappers) was built [143] that enabled querying across a number of important bioinformat-
ics resources such as GenBank, GDB, and BLAST. One caveat of Kleisli is that it requires the
user to be aware of the complete set of available data sources, and the particular record struc-
tures of each; in other words, there is no virtual schema. The TAMBIS [144] project addressed
this issue by mapping Kleisli drivers to the concepts and relationships of a large description logic
ontology[109] for bioinformatics. In addition, TAMBIS provided an intuitive graphical user in-
terface for composing queries against the ontology. (The TAMBIS project is no longer active.)
BioFlow [145] is another bioinformatics mediator system, which implements extensions to SQL
syntax that allow for the mapping of remote XML files to tables, and the mapping of web forms
to SQL functions.

The mediator approach to data integration is often contrasted with the data warehousing
approach. On one hand, mediators are not affected by the “staleness” issue of data warehouses,
because they obtain their data directly from the original sources. On the other hand, interaction
with the original sources often requires large data transfers across the network, and thus mediator
queries are generally slower than warehouse queries. In addition, mediators depend on the
availability and performance of remote servers, which may be unpredictable. Both the warehouse
approach and the mediator approaches typically require the creation of complex schemas and
schema mapping rules, which entail a significant investment of human labour. In addition,
ongoing maintenance of the schema and associated mappings is required, as new data sources

3CPL is similar in syntax to Javascript Object Notation (JSON).
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are added and the schemas of existing sources change. One advantage of the mediator approach
with respect to maintenance is that the work can be distributed across data providers, if each
provider is responsible for maintaining the wrapper of his/her own resource.

1.4 Thesis Outline

This thesis describes the design and implementation of SHARE (Semantic Health and Research
Environment), a general-purpose mediator system for bioinformatics. The objective of SHARE is
to provide a framework that allows for flexible and efficient querying across distributed databases
and software, while at the same time allowing for the ongoing addition of resources by third
parties. The principal challenges of implementing a successful mediator system relate to schema
integration and query performance. In the following chapters, we propose new approaches for
addressing these problems based on the use of Semantic Web technologies. In Chapter 2, we
describe the system architecture for SHARE, with an emphasis on the design decisions that
support open addition of resources, while avoiding the requirement for centralized development
and maintenance of an overarching schema. In Chapter 3, we investigate the problem of opti-
mizing queries in SHARE. We describe an adaptive query execution algorithm called GREEDY,
which has been designed to cope with the problem of planning queries in the absence of statis-
tics about the data sources. Chapter 4 concludes by highlighting the contributions of SHARE
to bioinformatics and the Semantic Web, and also the weaknesses of the system and areas for
future work.
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Chapter 2

SHARE System Architecture

2.1 Introduction

SHARE (Semantic Health and Research Environment) is a mediator system that enables si-
multaneous querying of databases and analytical programs that are distributed across the web.
SHARE differs from other mediators, both inside and outside of bioinformatics, because its
design is based entirely on Semantic Web standards. All services (i.e. data sources) consume
and generate RDF [63], input/output datatypes are matched using OWL [146] reasoning, and
user queries are expressed in SPARQL [88], the standard query language for RDF. In this chap-
ter, we will demonstrate how these standards can be employed to simplify the implementation,
maintenance, and addition of data sources to a mediator system. In particular, there are two
characteristics that are unique to SHARE:

1. There is no master schema.

2. If there is a chain of service calls that will convert datatype A to datatype B, that chain
can be discovered and invoked automatically.

We will return to these two claims and discuss their implications after describing the mechan-
ics of the system. We begin by introducing SPARQL, the language for SHARE user queries, in
Section 2.2. Section 2.3 describes the different types of data sources that are queried by SHARE,
and Section 2.4 explains the process of query resolution. Section 2.5 describes the online demon-
stration of SHARE, and Section 2.6 concludes by discussing the main strengths and weaknesses
in the design of the system.

2.2 The SPARQL Query Language

?structure ?ligand ?name

pdb:2DN1 pdb:OXY “OXYGEN MOLECULE”
pdb:2DN1 pdb:MBN “TOLUENE”

Table 2.1: The results for the SELECT query of
Fig. 2.2, when issued against the dataset in Fig. 2.1.

A SPARQL [88] SELECT query searches an RDF dataset for a subgraph with a specified
structure, as demonstrated by the example query in Fig. 2.2. The subgraph of interest is defined
by a set of triple patterns in the WHERE clause, in the same manner that an RDF graph is
described by a set of triples. The difference between an RDF triple and a triple pattern is that
a triple pattern may have a variable (denoted by a ‘?’ prefix) in any combination of its three
positions. Variables denote placeholders for unknown values, and the result of a SPARQL query
is a table of bindings for the variables. A set of triple patterns forms a basic graph pattern,
which may be combined with the UNION (logical OR) and OPTIONAL operators to build
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PREFIX : <h t t p : // sadiframework . org / o n t o l o g i e s / p r e d i c a t e s . owl#> .
PREFIX u n i p r o t : <h t t p : // l s r n . org / UniProt :> .
PREFIX pdb: <h t t p : // l s r n . org /PDB:> .

un iprot :P00214 :has3DStructure pdb:1FRI .
uniprot :P68871 :has3DStructure pdb:2DN1 .
pdb:1FRI :hasLigand pdb:F3S .
pdb:F3S :hasChemicalName ”FE3−S4 CLUSTER” .
pdb:2DN1 :hasLigand pdb:OXY .
pdb:OXY :hasChemicalName ”OXYGEN MOLECULE” .
pdb:2DN1 :hasLigand pdb:MBN .
pdb:MBN :hsaChemicalName ”TOLUENE” .

(a) target dataset (N3 format)

uniprot:P68871

pdb:2DN1

:has3DStructure

:hasLigand

:hasChemicalName:hasLigand

:hasChemicalName

pdb:OXY

pdb:MBN

"OXYGEN MOLECULE"

"TOLUENE"

uniprot:P00214

pdb:1FRI

:has3DStructure

:hasChemicalName:hasLigand

pdb:F3S

"FE3-S4 CLUSTER"

(b) target dataset (graph visualization)

Figure 2.1: An example RDF dataset, shown in N3 and graph form.

PREFIX : <h t t p : // sadiframework . org / o n t o l o g i e s / p r e d i c a t e s . owl#>
PREFIX u n i p r o t : <h t t p : // l s r n . org / UniProt :>

SELECT ? s t r u c t u r e ? l i gand ?name
WHERE {

uniprot :P68871 :has3DStructure ? s t r u c t u r e .
? s t r u c t u r e :hasLigand ? l i gand .
? l i gand :hasChemicalName ?name .

}

Figure 2.2: A SPARQL SELECT query which asks “What are the ligand(s) of Hemoglobin
subunit beta (UniProt protein P68871)?”. The results for the query, when issued against the
dataset in Fig. 2.1, are shown in Table 2.1.
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PREFIX : <h t t p : // sadiframework . org / o n t o l o g i e s / p r e d i c a t e s . owl#>
PREFIX u n i p r o t : <h t t p : // l s r n . org / UniProt :>

CONSTRUCT {
uniprot :P68871 :hasLigand ? l i gand .
? l i gand :hasChemicalName ?name .

}
WHERE {

uniprot :P68871 :has3DStructure ? s t r u c t u r e .
? s t r u c t u r e :hasLigand ? l i gand .
? l i gand :hasChemicalName ?name .

}

(a) example CONSTRUCT query

uniprot:P68871

:hasLigand

:hasChemicalName

:hasLigand

:hasChemicalName

pdb:OXY

pdb:MBN

"OXYGEN MOLECULE"

"TOLUENE"

(b) result graph for CONSTRUCT query

Figure 2.3: A SPARQL CONSTRUCT query which tells the system to “Construct an RDF
graph in which Hemoglobin subunit beta is directly annotated by its ligands.” The resulting
RDF graph for this query, when issued against the dataset in Fig. 2.1, is depicted in part (b).
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up complex query expressions. The PREFIX syntax at the top of Fig. 2.2 is used to declare
abbreviations for URIs that are used in the query.

A SPARQL CONSTRUCT query generates an RDF graph as output, rather than a table of
variable bindings. CONSTRUCT queries are useful for performing structural transformations
on RDF, as demonstrated by Fig. 2.3. For further details about SPARQL query syntax, see [88];
however, the explanation provided here is sufficient for the remainder of the discussion in this
chapter.

2.3 SHARE Data Sources

2.3.1 SADI Services

SADI BLAST service
uniprot:P04637

owl:hasAminoAcidSequence

"MEEPQSDPV..."

uniprot:P04637

owl:hasHomolog

owl:hasHomolog

owl:hasHomolog

uniprot:P56424

uniprot:P13481

uniprot:Q9TTA1

Input OWL Class: owl:ProteinWithSequence ≡ (≥1 owl:hasAminoAcidSequence)

HTTP POST Response

Output OWL Class: owl:HomologSet ≡ (≥1 owl:hasHomolog)

Generated Property: owl:hasHomolog

Input RDF Document Output RDF Document

Figure 2.4: An example SADI service which performs a BLAST search. The structure of the
input and output data is simplified; a real BLAST service would likely provide additional data
such as expect values, pairwise sequence alignments, etc. Note that the output RDF file does not
need to include statements (triples) about the input URIs that were given in the input RDF doc-
ument, because these facts are already known to the client. For example, the output document
need not specify that (uniprot:P04637, owl:hasAminoAcidSequence, ”MEEPQSDPV...”).

SADI (Semantic Automated Discovery and Integration) services are stateless web services
that are invoked by issuing an HTTP POST request. Both the request and the response consist
of a single RDF document. The input RDF document contains one or more input URIs, and
may contain any number of statements (i.e. triples) about those URIs; the purpose of these
statements is to provide the service with the information that is required to process the inputs.
For instance, the example BLAST service in Fig. 2.4 requires one or more amino acid sequences
associated with each input protein, in addition to the URIs identifying the proteins themselves
4. The set of properties (i.e. predicates) that must be supplied for each input URI are encoded
by the input OWL class of the SADI service. Each SADI service also has an output OWL class
that serves a similar function; it specifies the set of properties that are attached to the input
URIs as a result of the service call. In the example service of Fig. 2.4, the input OWL class is
the set of nodes having one or more hasAminoAcidSequence properties, and the output class is
the set of nodes with one or more hasHomolog properties. While knowledge of the input OWL
class is required to successfully invoke a SADI service, knowledge of the output OWL class is
required to determine the type of data that the service generates.

4It would be preferable to specify that each input protein has exactly one amino acid sequence. However,
standard OWL reasoners can never deduce instances of a class that is defined by an exact cardinality restriction,
due to the open world assumption [147].
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The input and output OWL classes for a SADI service are specified by the service provider as
part of the service description, and this description is accessed by performing an HTTP GET on
the service URL. The service description is encoded in RDF using the myGrid service ontology,
and may include other details such as a natural language description of the service. An example
service description is provided in Appendix A. Any third party may register their service with
the central SADI registry by submitting the service URL to http://sadiframework.org/registry;
the SADI registry then obtains all other necessary information about the service by downloading
and processing the service description.

In most respects, the SADI standard is a straightforward application of RDF and OWL to the
domain of web service messaging. The key constraint of SADI is that both the input and output
OWL classes are defined with respect to the input URIs. As a result, the difference between
the input and output classes can be computed to determine the set of generated properties for a
service. For example, the service in Fig. 2.4 has one generated property, which is hasHomolog.
The SADI registry stores the generated properties for each service, and allows clients to retrieve
services based on a property of interest. The discovery of services by individual properties
is unique to the SHARE system, and is responsible for its ability to automatically assemble
workflows from SPARQL queries, as will be discussed in Section 2.4.

The SADI services that are currently available in the registry generate properties for a num-
ber of common identifier types in bioinformatics, such as UniProt [11], GO [110], KEGG [117],
and PDB [17]; these identifiers must be expressed as URIs according to the LSRN URI
scheme (e.g. http://lsrn.org/UniProt:P68871). The generated properties for each identifier
type are depicted in the predicates diagram at http://biordf.net/cardioSHARE/predicates.html

(Fig. 2.5), which represents the schema for querying the system. A user may extend the
pool of queriable services/properties by registering his or her own SADI service at http:

//sadiframework.org/registry. Provided that the service has been implemented correctly ac-
cording to the SADI standard, the service will be immediately available for use during query
resolution. Instructions for building SADI services are available at http://sadiframework.org.

2.3.2 SPARQL Endpoints

SPARQL endpoints are HTTP forms that accept SPARQL queries as input. Virtually all triple
stores (e.g. Jena [148], Sesame [149], Virtuoso [150]) can be configured to act as SPARQL
endpoints, and there are a growing number of SPARQL endpoints on the web that provide
access to RDF versions of biological databases. At the current time, these endpoints are not
hosted by the original data providers but are rather supplied by third parties such as Bio2RDF
[90] and the Linked Open Drug Data (LODD) [91] project. Bio2RDF provides RDF mirrors
of general resources such as the UniProt [11] protein database and the KEGG [117] pathway
database, while LODD provides mirrors of drug-related resources such as DrugBank [21] and
the SIDER database of side effects [93].

The SHARE query engine is capable of querying across SPARQL endpoints. SHARE im-
plements this functionality by means of a mediator-side service wrapper for each SPARQL
endpoint. Viewed from the query engine side, each service wrapper makes a SPARQL endpoint
appear as if it is a SADI service; just as for a SADI service, each SPARQL endpoint has a set
of generated properties and may be invoked using one or more URIs as input. On the network
side, the service wrapper translates the input URIs to CONSTRUCT queries and sends them
to the relevant endpoint, as depicted in Fig. 2.6.

The set of generated properties for a SPARQL endpoint is the set of predicates that are
occur in one or more triples in the endpoint. In principle, this list of predicates can be obtained
automatically by issuing the following query to the endpoint:

SELECT DISTINCT ?p WHERE { ? s ?p ?o }
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Figure 2.5: The generated properties for the SADI services that are currently available through
the public registry http://sadiframework.org/registry. Currently, this diagram is maintained
by hand, but in future work it will constructed automatically from the contents of the registry.
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Triple Store

CONSTRUCT {
    uniprot:P68871 ?p ?o 
}
WHERE {
    uniprot:P68871 ?p ?o 
}
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SPARQL
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RDF
Document

RDF
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SPARQL
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SHARE
Query
Engine

uniprot:P68871

Figure 2.6: Querying of remote SPARQL endpoints in SHARE. Generated properties for the
remote SPARQL endpoint are indicated in green.

However, this is a relatively expensive query, because it requires iterating through all of
the triples in the database. In practice, it tends to fail for large triple stores because the HTTP
POST request that issues the query expires before the database finishes processing the query.
A further problem is that SPARQL endpoints may disallow the execution of queries that are
deemed to be too expensive. At the current time, such endpoints are instead indexed based
on a single URI representing a “typical” database record (e.g. http://bio2rdf.org/uniprot:

P05067); in order to accomodate complex record structures, the RDF graph rooted at the URI is
crawled using a breadth first search. Clearly, this is not an ideal solution, because it is not fully
automatic and is not guaranteed to be complete. In future work, the author plans to develop
scripts for different types of SPARQL endpoints (e.g. Virtuoso [150], D2R [151]) that will build
standardized indices on the endpoint side. In addition to a list generated properties, SHARE’s
indices for SPARQL endpoints also contain regular expressions for the subject/object URIs that
occur in the endpoint. As with generated properties, the regular expressions can be built by
querying the endpoints, but for large endpoints must be constructed using the record-based
approach.

The SPARQL endpoint registry for SHARE currently contains indices for the LODD and
Bio2RDF endpoints, as listed in Table 2.2. These indices are rebuilt on a weekly basis. A map
of the generated properties for the endpoints is shown in Fig. 2.7; as the map is very large,
only a small portion is shown in detail here5. The map was generated by performing a series of
breadth first traversals across the data in the endpoints, with a depth limit of 7 edges for each
traversal. The root URIs for the traversals were chosen by querying for a list of distinct record
types (i.e. rdf:types) from each endpoint, and then randomly sampling 3 URIs of each type. As
with the SPARQL indexes, the map is not guaranteed to be complete; improved methods for
constructing the map will be a subject of future work.

5To view the map in full detail, files may be downloaded in N3, Cytoscape, SVG, and PNG formats from
http://sadiframework.org/sparqlmap. Viewing the map with Cytoscape or Inkscape (SVG viewer) is
recommended, as PNG requires too much memory to be loaded in most image viewers.
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SPARQL Endpoint URL Provider

http://www4.wiwiss.fu-berlin.de/dailymed/sparql LODD
http://www4.wiwiss.fu-berlin.de/diseasome/sparql LODD
http://www4.wiwiss.fu-berlin.de/sider/sparql LODD
http://www4.wiwiss.fu-berlin.de/drugbank/sparql LODD
http://www4.wiwiss.fu-berlin.de/medicare/sparql LODD
http://www4.wiwiss.fu-berlin.de/stitch/sparql LODD
http://uniprot.bio2rdf.org/sparql Bio2RDF
http://omim.bio2rdf.org/sparql Bio2RDF
http://reactome.bio2rdf.org/sparql Bio2RDF
http://mesh.bio2rdf.org/sparql Bio2RDF
http://ec.bio2rdf.org/sparql Bio2RDF
http://hgnc.bio2rdf.org/sparql Bio2RDF
http://inoh.bio2rdf.org/sparql Bio2RDF
http://mgi.bio2rdf.org/sparql Bio2RDF
http://protein.bio2rdf.org/sparql Bio2RDF
http://unists.bio2rdf.org/sparql Bio2RDF
http://obo.bio2rdf.org/sparql Bio2RDF
http://uniparc.bio2rdf.org/sparql Bio2RDF
http://cpd.bio2rdf.org/sparql Bio2RDF
http://affymetrix.bio2rdf.org/sparql Bio2RDF
http://irefindex.bio2rdf.org/sparql Bio2RDF
http://kegg.bio2rdf.org/sparql Bio2RDF
http://cpath.bio2rdf.org/sparql Bio2RDF
http://biocyc.bio2rdf.org/sparql Bio2RDF
http://chebi.bio2rdf.org/sparql Bio2RDF
http://taxonomy.bio2rdf.org/sparql Bio2RDF
http://homologene.bio2rdf.org/sparql Bio2RDF
http://pubchem.bio2rdf.org/sparql Bio2RDF
http://biocarta.bio2rdf.org/sparql Bio2RDF

Table 2.2: List of SPARQL endpoints currently indexed by SHARE
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Figure 2.7: A map of the generated properties for SPARQL endpoints available under SHARE. The callouts show sections of the map containing
predicates about chemical reactions, proteins, and drugs. Each node represents a distinct record type (i.e. rdf:type) that occurs in one or more
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2.4 SHARE Query Resolution

2.4.1 Overview

Standard SPARQL query engines [148, 150] have limited capabilities for querying remote
data [152]. Users may include “FROM” clauses at the beginning of a SPARQL query that
indicate the URLs of target RDF files, and these files will be downloaded in bulk as the first
step of query processing.The main caveat of this approach is that it does not work well for
large datasets. In addition, it precludes the possibility of querying data that is generated by
analytical software.

SHARE addresses these issues by acting as a transparent data gathering layer on top of a
standard SPARQL query engine. An overview of the process is depicted in Fig. 2.8. In the first
phase of query resolution, SHARE retrieves the data required to answer the query by issuing a
series of requests to available services (SADI services and SPARQL endpoints); the process by
which SHARE maps a query to a set of service requests will be explained detail in the remainder
of this section. As data from the services is retrieved, it is aggregated in a local triple store.
In the second phase of query resolution, the user’s original query is run against the local triple
store using a standard SPARQL query engine. Conceptually, SHARE provides access to a large
dataset that consists of the output from each SADI service for each possible input URI, together
with all triples stored by all known SPARQL endpoints. Hereafter, we will refer to this dataset
as the virtual graph. The objective of SHARE is to download a subset of the virtual graph that
is sufficient to generate a complete solution for the user’s query. In this context, “complete”
means that the solution set has all of the solutions that would be found by running the user’s
query on a complete, materialized version of the virtual graph.

2.4.2 Resolution Process of an Example SHARE Query

1 : PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
2 : PREFIX uniprot : <http :// l s r n . org /UniProt :>
3 :
4 : SELECT ∗
5 : WHERE {
6 : un iprot : P47989 sad i : isEncodedBy ? gene .
7 : ? gene sad i : i s P a r t i c i p a n t I n ?pathway .
8 : }

Listing 2.1: An example SHARE query which asks: “What biological pathways does
Xanthine dehydrogenase/oxidase participate in?”

To illustrate the process by which SHARE retrieves and assembles a dataset for a SPARQL
query, we will use an example. Consider the SHARE query shown in listing 2.1, which asks:
“What biological pathways does Xanthine dehydrogenase/oxidase participate in?” The PREFIX
lines 1-2 define abbreviations for URIs that make the query easier to read. The “SELECT *”
line indicates that all variables mentioned in the query (?gene and ?pathway) should be included
in the table of solutions. Lines 5-8 define the WHERE clause, which specifies the search criteria
for the query. Here, the WHERE clause consists of two triple patterns (lines 6 and 7), which
together constitute a single basic graph pattern. The criteria specified by each of the triple
patterns are combined with the logical AND operation. Thus, each solution for the query of
listing 2.1 is a combination of values for ?gene and ?pathway such that:

1. Xanthine dehydrogenase/oxidase (uniprot:P47989) is encoded by ?gene, AND
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Figure 2.8: An overview of SHARE query resolution. SHARE acts as a transparent data
gathering layer on top of a standard SPARQL engine. In the first phase of query resolution,
SHARE translates the user’s query to a series of service requests, in order to gather the data
needed to answer the query. This data is accumulated in a local triple store as it is retrieved.
In the second phase of query resolution, the user’s original query is executed against the local
triple store using a standard SPARQL query engine.
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2. ?gene is a participant in ?pathway6

SHARE builds a dataset for a basic graph pattern by retrieving data for each triple pattern
in sequence. Each triple pattern is mapped to a set of service requests, and the output data from
those requests is used to determine bindings for any unbound variables that occur in the pattern.
To illustrate, we will consider the resolution of the example query in listing 2.1. SHARE resolves
the first triple pattern, (uniprot:P47989, sadi:isEncodedBy, ?gene), by the following steps:

1. Matching services are identified. Matching services are services that output triples of
the form (<input URI>, sadi:isEncodedBy, *), where <input URI> is an input URI
in the service request, and * denotes any possible value. Such services are said to “at-
tach”sadi:isEncodedBy to their input URIs, or (equivalently) to have sadi:isEncodedBy as
one of their generated properties.

2. Matching services are invoked. In this case, each service request contains a single input
URI: uniprot:P47989. It is possible to invoke services with more than one input URI;
this would be necessary if the subject of the triple pattern were a variable with multiple
bindings, rather than a constant URI.

3. The output RDF from the services is loaded into the local triple store.

4. Bindings are assigned to any unbound variables in the current triple pattern. SHARE
queries the local triple store for triples of the form (uniprot:P47989, sadi:isEncodedBy, *)
that were loaded in Item 3. The full set of distinct values for “*” become bindings for the
variable ?gene.

After resolving the first triple pattern, SHARE will proceed to gather data for the sec-
ond triple pattern, (?gene, sadi:isParticipantIn, ?pathway), in a similar manner. However,
for the second pattern, the subject is a bound variable (?gene) rather than a constant URI
(uniprot:P47989). The bindings for ?gene, as determined by the resolution of the first triple
pattern, become the input URIs for the service requests that gather data for the second triple
pattern. After performing the service calls for the two patterns, SHARE has aggregated a
dataset that is sufficient to answer the user’s query. The original query is then issued against
the local triple store using a standard SPARQL query engine, and the solutions are displayed.

2.4.3 Pseudocode for SHARE Query Resolution

In the example query of the preceding section, all triple patterns were resolved by using the
bindings (or constant values) of the subjects as input URIs for the service invocations. We will
refer to this as resolving the triple pattern in the forward direction (left-to-right). SHARE is
also capable of resolving triple patterns in the reverse direction (right-to-left). Given a triple
pattern (s, p, o), the system decides which direction to use according to the following rules:

Case 1: s is a bound variable or a URI. The triple pattern is resolved in the forward di-
rection. The value(s) for s are used as input URIs to all services that generate property
p; if o is an unbound variable, then the set of retrieved values for property p become the
bindings of o.

Case 2: s is an unbound variable and o is a bound variable or a URI. The triple
pattern is resolved in the reverse direction. The value(s) for o are used as input URIs to
all services that generate inverse(p), where inverse(p) is the OWL inverse of property p.
The set of retrieved values for inverse(p) become the bindings of s.

6 Readers may observe that the second pattern is not strictly correct; the participants of metabolic pathways
are proteins and metabolites rather than genes. This is an artifact of the way data is modelled in the KEGG
database. In KEGG, the assertion that a gene participates in a metabolic pathway means that the gene codes
for at least one enzyme that participates in the pathway.
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The pseudocode for the data gathering procedure of SHARE is shown in listing 2.2. Note
that the above two cases are the only types of triple patterns that SHARE is capable of resolving.
In particular, it is not possible for the system to resolve a triple pattern in which the predicate
is a variable, or a pattern in which both the subject and the object are unbound variables.
The former case is unresolvable because the predicate URI is the basis for discovering relevant
services, and the latter case is unresolvable become there is no input to send the services in
order to generate data. Solutions for these limitations will be a subject of future work.

2.4.4 Validating Inputs for Services

One aspect of the data gathering process that remains to be explained is the manner in which
SHARE confirms that a URI is a valid input for a service. (This check occurs when getValidIn-
puts is called inside of invokeServicesByProperty, in listing 2.2.) In the case of SADI services,
a URI is a valid input if and only if it is an instance of the service’s input OWL class, and
thus SHARE must use an OWL reasoner to validate an input URI. However, standard OWL
reasoners [98–100] are currently limited to reasoning about locally stored data, just as SPARQL
engines are limited to querying local data. Thus, SHARE must perform an additional data-
gathering procedure to collect properties that are relevant to an OWL class definition. For
example, suppose that the following query were issued to SHARE:

SELECT ?homolog
WHERE {

uniprot : P68871 : hasHomolog ?homolog .
}

Further, suppose that the only hasHomolog-generating service available is the BLAST ser-
vice shown of Fig. 2.4. This service requires that every input URI belongs to the class
ProteinWithSequence, and a URI is an instance of ProteinWithSequence if and only if it
has at least one hasAminoAcidSequence property. However, at the time the triple pattern
(uniprot:P68871, :hasHomolog, ?homolog) is resolved by SHARE, no attempt has been made to
gather hasAminoAcidSequence properties for uniprot:P68871. SHARE addresses this problem
with a secondary, OWL-based data-gathering procedure. This procedure automatically de-
composes the definition for the input OWL class of ProteinWithSequence, determines that the
hasAminoAcidSequence property is required for uniprot:P68871, and invokes all services that
generate hasAminoAcidSequence with uniprot:P68871 as input. The hasAminoAcidSequence-
generating services have their own input OWL classes, which may themselves require additional
data; in this manner, the data-gathering process may proceed recursively through an arbitrarily
long chain of dependent services. A base case is reached when a service is discovered that con-
sumes bare URIs. In theory, such services would have “owl:Thing” as their input OWL class.
(owl:Thing is a special, predefined OWL class that contains all URIs.) In practice, SHARE con-
tains rules to assign bare URIs to OWL classes representing different types of database records,
based on their syntax. For example, uniprot:P68871 is represented as http://lsrn.org/UniProt:

P68871 and is assigned to the OWL class http://purl.oclc.org/SADI/LSRN/UniProt_Record. The
URLs for SHARE are based on the LSRN (Life Sciences Resource Name) URL scheme [153].

The pseudocode for the OWL-based data gathering procedure is shown in listing 2.3. The
main work is performed by the gatherDataForTypePattern procedure; the name for this proce-
dure comes from the convention that instances of an OWL class are indicated by triples of the
form (<subject URI>, rdf:type, <OWL class URI>). gatherDataForTypePattern is recursive
in two ways. First, calling services to gather new data requires resolving the input OWL classes
of those services, which may in turn require gathering additional data (as described in the pre-
vious paragraph). Second, OWL class definitions may themselves be nested. For example, an
AnnotatedProtein might be defined as any URI that has at least one hasAnnotation property
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resolve(query)

b ind ings = empty hash ta b l e

// i n i t i a l i z e v a r i a b l e b ind ings
f o r each t r i p l e pattern t in query

i f ( t . s ub j e c t i s not a v a r i a b l e )
b ind ings [ t . s u b j e c t ] = s i n g l e t o n S e t ( t . su b j e c t )

i f ( t . p r e d i c a t e i s a v a r i a b l e )
e r r o r ” cannot r e s o l v e pattern where p r e d i c a t e i s a v a r i a b l e ”

i f ( t . ob j e c t i s not a v a r i a b l e )
b ind ings [ t . ob j e c t ] = s i n g l e t o n S e t ( t . ob j e c t )

// gather data
f o r each t r i p l e pattern ( s , p , o ) in query

proce s sPat te rn ( s , p , o , b ind ings )

// hand over the gathered data to a standard SPARQL engine
re turn SPARQLEngine . query ( query , l o c a l T r i p l e S t o r e )

processPattern( s , p , o , b ind ings )

s u b j e c t s = bind ings [ s ]
o b j e c t s = bind ings [ o ]

i f ( s u b j e c t s == n u l l && o b j e c t s == n u l l )
warn ” cannot r e s o l v e pattern where both s ub j e c t and ob j e c t are unbound

v a r i a b l e s ”
e l s e i f ( o b j e c t s == n u l l )

invokeServ icesByProperty ( sub j ec t s , p )
e l s e i f ( s u b j e c t s == n u l l )

invokeServ icesByProperty ( ob j ec t s , i n v e r s e (p) )
e l s e

// both s ub j e c t and ob j e c t are a l r eady bound
invokeServ icesByProperty ( sub j ec t s , p )

f o r each t r i p l e t in l o c a l T r i p l e S t o r e . getMatch ingTr ip les ( b ind ings [ s ] ,
b ind ings [ p ] , b ind ings [ o ] )
i f ( s u b j e c t s == n u l l )

b ind ings [ s ] . add ( t . s ub j e c t )
i f ( o b j e c t s == n u l l )

b ind ings [ o ] . add ( t . ob j e c t )

invokeServicesByProperty ( inputURIs , property )

s e r v i c e s = empty s e t
s e r v i c e s . add ( SADIRegistry . getServ icesByProperty ( property ) )
s e r v i c e s . add ( SPARQLRegistry . getServ icesByProperty ( property ) )

f o r each s e r v i c e s in s e r v i c e s
val idInputURIs = getVa l id Inputs ( inputURIs , s )
r e s u l t T r i p l e s = s . invoke ( val idInputURIs )
l o c a l T r i p l e S t o r e . add ( r e s u l t T r i p l e s )

Listing 2.2: Pseudocode for the main data gathering procedure of SHARE. resolve is
the top-level method that answers a SHARE query. resolve invokes processPattern
for each triple pattern in the query, in order to find solutions for unbound variables.
invokeServicesByProperty is a helper procedure for processPattern that invokes services
for a particular generated property and set of input URIs.
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getValidInputs( inputURIs , s e r v i c e )

val idInputURIs = empty s e t

i f s e r v i c e i s SPARQL endpoint
f o r each URI in inputURIs

i f ( s e r v i c e . matchesRegEx (URI) )
val idInputURIs . add (URI)

e l s e
// s e r v i c e i s a SADI s e r v i c e
inputClas s = s e r v i c e . ge t InputClas s ( )

// gather data that i s r e l e v a n t to the
// d e f i n i t i o n o f inputClas s
s = generateNewVariableName ( )
b ind ings [ s ] = inputURIs
gatherDataForTypePattern ( s , inputClass , b ind ings )

// check each URI aga in s t the inputClas s
f o r each URI in inputURIs

i f (OWLReasoner . i s I n s t a n c e (URI , inputClas s ) )
val idInputURIs . add (URI)

re turn val idInputURIs

gatherDataForTypePattern( s , inputClass , b ind ings )

// OWL c l a s s e s may have e x p l i c i t l y dec l a r ed
// parent c l a s s e s and equ iva l en t c l a s s e s
f o r each parent c l a s s P o f inputClas s

gatherDataForTypePattern ( s , P)

f o r each equ iva l en t c l a s s E o f inputClas s
gatherDataForTypePattern ( s , E)

// OWL c l a s s e s may be cons t ruc ted us ing s e t ope ra to r s
i f inputClas s i s a union o f c l a s s e s

f o r each c l a s s C in the union
gatherDataForTypePattern ( s , C)

e l s e i f inputClas s i s an i n t e r s e c t i o n o f c l a s s e s
f o r each c l a s s C in the i n t e r s e c t i o n

gatherDataForTypePattern ( s , C)
e l s e i f inputClas s i s the complement o f c l a s s C

gatherDataForTypePattern ( s , C)
e l s e

// Base c a s e : inputClas s i s de f i ned as a s e t o f property r e s t r i c t i o n s
f o r each property r e s t r i c t i o n r o f inputClas s

p = r . getProperty ( )
o = generateNewVariableName ( )
i f r i s a va lue r e s t r i c t i o n

b ind ings [ o ] = s e t ( r . getValue ( ) )
proce s sPat te rn ( s , p , o , b ind ings )

e l s e i f r i s a c l a s s r e s t r i c t i o n
b ind ings [ o ] = n u l l
p roce s sPat te rn ( s , p , o , b ind ings )
gatherDataForTypePattern ( o , r . g e tC la s s ( ) , b ind ings )

e l s e
// r i s a c a r d i n a l i t y r e s t r i c t i o n
b ind ings [ o ] = n u l l
p roce s sPat te rn ( s , p , o , b ind ings )

Listing 2.3: Pseudocode for validating inputs to services. gatherDataForTypePattern is a
helper method for getValidInputs which gathers all available data that is related to an OWL
class definition. generateNewVariableName generates a new variable name that hasn’t been
in the user’s query or by previous temporary variables.
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with a value (i.e. object URI) from the class GOTerm. (We call this a “class restriction” in the
pseudocode of listing 2.3; in OWL, it is also called a “someValuesFrom” restriction.) In this
case, the OWL data gathering procedure will not only have to retrieve hasAnnotation properties
for the subject URI, but also properties for the values of hasAnnotation that are relevant to the
definition of GOTerm.

In addition to validating inputs for services, gatherDataForTypePattern is also used by
SHARE to directly find instances of OWL classes from within a query. For example, the query

SELECT ? k inase
WHERE {

? k inase rd f : type myOntology : Kinase .
}

will identify instances of the class Kinase, provided that the property restrictions used to define
myOntology:Kinase map to SADI services.

2.5 SHARE Online Demonstration

The SHARE demonstration site allows users to issue queries against a sample set of SADI
services and SPARQL endpoints, and may be accessed at http://biordf.net/cardioSHARE/query.
The main page provides a form for entering SPARQL queries, and a list of example queries is
provided at http://biordf.net/cardioSHARE/queries.html. Fig. 2.9 shows the result of executing
the SPARQL query from listing 2.1.

The SPARQL endpoints provided by the Bio2RDF [90] and Linked Open Drug Data
(LODD) [91] projects are also queriable by the system. Bio2RDF provides SPARQL mirrors for
popular databases such as UniProt [11], KEGG [117], and Pfam [154], while LODD provides
endpoints for drug-related resources such as Drugbank [21] and SIDER [93]. At the current
time, the generated properties of these endpoints is not incorporated in the predicate diagram
of listing 2.2; however, it is feasible to generate a complete diagram automatically from the
SPARQL and SADI service registries, with further work.

2.6 Source Code

The source code for the SHARE query engine may be accessed at http://sadi.googlecode.

com, under the sadi.share folder (i.e. http://sadi.googlecode.com/svn/trunk/sadi.share). The
real methods corresponding to the pseudocode methods of listings 2.2 and 2.3 may be found
within the SHAREKnowedgeBase class (ca.wilkinsonlab.sadi.share.SHAREKnowledgeBase), as
per Table 2.3. The source code for the demonstration servlet and website is available separately
from http://cardioshare.googlecode.com.

2.7 Discussion

At the current time, XML is the de facto standard for encoding data files and for interacting
with web services. Thus, the main caveat of SHARE as an RDF/OWL-based system is that it is
not compatible with the majority of existing data and services on the web. However, the RDF/
OWL data model has significant advantages over XML, with respect to the implementation and
maintenance of a mediator system. In particular, it is possible to automate several tasks that
traditionally require hand-coded schema mappings:

building/maintaining a master schema The query schema for SHARE (Figs. 2.5 and 2.7)
is determined by the generated properties of the available SADI services and SPARQL
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Figure 2.9: A screenshot of the SHARE demonstration site, after running the query from 2.1,
which asks: “What biological pathways does Xanthine dehydrogenase/oxidase participate in?”

Pseudocode Method Real Method

resolve executeQuery
processPattern processPattern
invokeServicesByProperty gatherTriples
getValidInputs filterByInputClass
gatherDataForTypePattern processTypePattern

Table 2.3: The methods in the SHARE source code which correspond to the pseudocode methods
of listings 2.2 and 2.3. All relevant methods members of the SHAREKnowledgeBase class
(ca.wilkinsonlab.sadi.share.SHAREKnowledgeBase), which is located with the sadi.share folder
at http://sadi.googlecode.com.
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2.7. Discussion

endpoints; there is no centralized control of the schema. This is a significant advantage
because the design of a master schema, and the maintenance of mappings to and from
that schema, is one of the largest sources of manual labour involved in implementing
a mediator system. A further advantage is that new SADI services may be added at
any time, and will immediately become queriable by the system. The main drawback of
SHARE’s laissez faire approach is that it will likely to result in a more chaotic schema
than that of a centrally managed system. In particular, it will be essential for service
providers to reuse property URIs when describing the same relationships. For instance,
if three services that retrieve DNA sequences generate the properties hasDNASequence,
hasSequence, and hasNucleotideSequence, then a query referencing hasDNASequence will
only invoke one of those services.Moreover, a schema containing many synonymous pred-
icates will be unnecessarily difficult to navigate and understand.Achieving community
agreement on predicates is a important problem not only for SHARE, but also for the
Semantic Web in general. While several basic RDF voculabaries such as the Dublin Core
Metadata Initiative (document metadata) [155], SKOS (taxonomies) [156], and FOAF (re-
lationships between people) [157] have now gained widespread acceptance, it remains to
be seen whether similar standardization can be achieved in more complex domains such
as bioinformatics.

integrating output data from multiple services During SHARE query execution, the
output of each SADI service is automatically integrated into the local triple store by an
RDF-merge operation. In contrast, integrating the results of an XML-based service into
a relational database requires a hand-coded mapping of the output XML to the database
schema.

matching service input/output datatypes Under the current paradigm of XML-based web
services, connecting the output of a service A to the input of a service B requires that
the output XML schema of A is equal to the input XML schema of B. However, there
are many scenarios where the schema are not equal, despite the fact that the two schemas
describe the same type of entity, and the connection itself would be logical. Consider a
scenario in which a bioinformatician wants to connect the output of an XML-based BLAST
service to the input of an XML-based multiple sequence alignment (MSA) service. The
BLAST output is a collection of sequences and the MSA input is likewise a collection
of sequences. However, the precise information provided/required about each sequence
may differ between the two services. For example, the MSA might require the source
organism of each input sequence in order to improve the quality of the alignment, while
this information might not be included in the output of the BLAST service. In this case,
the two services are not directly compatible, and the bioinformatician must construct
an extra “shim” [128] step to translate between the two schemas. This type of problem
arises because XML schema are atomic, and there is no mechanism by which they can be
automatically decomposed or merged. In contrast, SHARE’s use of the RDF data model
allows it to automatically assemble input datatypes from individual properties, as is done
in the gatherDataForTypePattern method of listing 2.3.

There are a number of areas where future work will be needed, in order to make SHARE
a practical tool for bioinformaticians. First, there will need to be a mechanism to inspect the
precise chain of sources and assertions that have led to each query solution (provenance tracking).
This functionality is particularly important given the ability of any third party to add services
to the system, and thus the potential for sabotage by services that make false or non-sensical
assertions. Second, there will need to be controls for data source selection, algorithm selection,
and algorithm parameters (e.g. gap penalty). It is difficult to incorporate such controls into the
query language itself, as it would destroy the abstraction of property-based service discovery,
and greatly would complicate the query interface. However, SHARE could in principle be used
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to generate a template workflow (e.g. a SCUFL [158] file) to be edited in workflow software such
as Taverna [123]. Although not fully automated, this approach would eliminate a large part of
the manual work involved in identifying and wiring together relevant services for an analysis.
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Chapter 3

An Adaptive Query Evaluation
Algorithm for SHARE

3.1 Introduction

One of the main challenges in implementing a distributed query system is in determining effi-
cient execution plans for queries. The database operations that are used to answer a query (e.g.
selections, projections, joins) can often be rearranged into a large number of logically equiv-
alent plans, and these plans can differ greatly in their overall efficiency. This same problem
is encountered when evaluating queries against standalone relational databases, and has been
studied extensively in this context7. However, in a distributed scenario, the optimization prob-
lem is more difficult for a number of reasons. First, estimating the cost of a query plan is more
complex. Whereas traditional query optimization is based on minimizing the number of I/O
operations (i.e. hard drive reads), the time required to process requests at remote servers and
the time required to transfer data across the network are also significant factors for distributed
systems. Another challenge is that the query system may have little or no statistics about the
data that is available from remote sources, while in standalone databases, such statistics are es-
sential for constructing efficient plans. In addition, for many mediator systems such as SHARE,
the data sources may be software services (e.g. BLAST) for which there is no standard means
of computing statistics.

In this chapter we describe an algorithm called GREEDY that is used by SHARE to evaluate
distributed SPARQL queries in an efficient manner. More specifically, the goal of GREEDY is
to optimize the ordering of joins across distributed RDF data services. GREEDY differs from
the traditional approach to query optimization because the full execution plan for a query is
not determined prior to running the query. Instead, GREEDY performs one join at a time, and
uses the cardinalities of previously completed joins to decide which join to perform next. Thus,
GREEDY is an adaptive optimization algorithm. A further difference between GREEDY and
the standard approach to query optimization is that statistics about the data are learned during
the execution of queries, which are then used to help the optimizer in the planning of future
queries.

We begin by briefly discussing related work in Section 3.2. Next, we review the procedure
used by SHARE to resolve queries in Section 3.3, in order to provide context for the optimization
problem. In Section 3.4, we present the optimization problem by means of an example. In
Section 3.5, we describe a simple optimization relating to the assignment of variable bindings,
and in Section 3.6 we present the main optimization algorithm, GREEDY. We evaluate the
performance of GREEDY using a small set of bioinformatics queries from the literature in
Section 3.7, and we discuss areas for future work in Section 3.8. Finally, we summarize the
strengths and weaknesses of GREEDY in Section 3.9 and provide pointers to the relevant source
code in Section 3.10.

7For an overview of the standard approach to query optimization, see [159] and [160].
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3.2 Related Work

GREEDY is an extension of an idea published in [161], in “Section 7: Adaptive query execution
using Prim’s algorithm”. A key difference between the algorithm described here and the original
pseudocode is that multiple inputs to the same service are batched into a single request8. This
simplifies the pseudocode for the algorithm, and is also more efficient. Another improvement
over the original paper is that specific methods have been developed for gathering and computing
predicate statistics.

Much work has been done on distributed query processing in the context of relational
databases; for a good overview, see [162]. Some of the main techniques that are used in dis-
tributed query processing are dynamic programming (for enumeration of query plans), row
blocking, and semi-joins. Applying the dynamic programming approach to a mediator system
requires that the wrappers expose methods for estimating the costs of queries to the individual
sources. In addition, the enumeration of plans is typically exhaustive, and thus quickly becomes
expensive for complex queries. For these reasons, the dynamic programming approach was
deemed unsuitable for SHARE, and the GREEDY algorithm was developed instead. The tech-
nique of row blocking simply involves sending the rows of table across a network in blocks, rather
than individually, when performing a join across sites. In SHARE, this roughly corresponds to
the batching of inputs to SADI services. The semi-join is a technique for reducing data transfer
when joining two tables at different sites. Rather than transferring an entire table from one
site to another, a semi-join first sends a reduced version of Table A to Site B, which contains
only the join columns. Site B then performs a join against the reduced table to determine the
matching rows in Table B. Finally, the matching rows of Table B are transferred to Site A, and a
join is performed between Table A and the matching rows of Table B. SHARE uses a technique
similar to a semi-join when performing joins, where the values of the join column correspond to
the bindings of a SPARQL variable.

Work has also been done for distributed query optimization in the context of RDF and
SPARQL specifically. Other distributed SPARQL systems that have been described in the litera-
ture are DARQ [152], SemWIQ [163], and the Distributed SAIL Extension [164] for Sesame [149].
The DARQ paper describes a procedure for query planning that is based on the average selec-
tivities of predicates when resolved in either the forward (bound subject) or reverse (bound
object) directions. An important caveat of the DARQ approach is that the selectivity values for
the various predicates are obtained from “service description” files that must be constructed by
the user in advance. Another important difference between GREEDY and the DARQ optimizer
is that GREEDY is adaptive, whereas DARQ follows the more traditional approach of static
query optimization. DARQ implements an additional type of optimization in the form of query
rewriting rules, which perform transformations such as the merging of basic graph patterns
and the pushing of FILTER expressions into subqueries; this type of optimization is currently
not implemented in SHARE. For Sesame, [165] describes a join procedure that makes use of
semi-joins and row blocking. Query optimization is a subject of future work for the SemWIQ
system.

The GREEDY algorithm differs from most query optimizers because the processes for plan-
ning and executing the query are interleaved. In the literature, this type of approach is termed
adaptive query execution. Two prior examples of adaptive query systems are Tukwila [166] and
Telegraph [167], both of which are relational systems. Tukwila uses traditional System R-style
optimization, but additionally allows for the creation of partial plans when adequate statistics
are not available, and for replanning when cardinality estimations prove to be inaccurate. Tele-
graph is a more radical departure from traditional query processing. It replaces the standard
tree-of-operators representation for a query plan with a circular structure called an eddy that
connects all of the operators. The idea of the eddy is to dynamically change the routing of the

8Strictly speaking, this is only true for SADI services; there is no mechanism for batching queries to SPARQL
endpoints.
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tuples between the operators in response to the run-time performance of the operators.

3.3 Key Points of SHARE Query Resolution

3.3.1 Resolving Triple Patterns

In Section 2.4, we described the procedure that SHARE uses to answer a SPARQL query over a
distributed set of services; we summarize the key points of the procedure here. SHARE answers
a query by resolving each triple pattern of the query in sequence. A triple pattern (s, p, o) may
be resolved in either the forward direction or the reverse direction:

• If a triple pattern is resolved in the forward direction, all services that generate p are
invoked using the bindings of s as the input URI(s), and the resulting output data is loaded
into the local triple store. A service generates p if it outputs triples of the form (<input
URI>, p, *), where * represents any URI or literal value. If o is an unbound variable, the
set of distinct values returned for * become the bindings of o.

• If a triple pattern is resolved in the reverse direction, all services that generate inverse(p)
are invoked using the bindings of o as the input URI(s), and the resulting output data is
loaded into the local triple store. inverse(p) represents an inverse property of p, meaning
that statements of the form (X, p, Y) and (Y, inverse(p), X) are logically equivalent 9. A
service generates inverse(p) if it outputs triples of the form (<input URI>, inverse(p), *).
If s is an unbound variable, the set of distinct values returned for * become the bindings
of s.

Once all of the triple patterns have been resolved, the local triple store will contain a sufficient
set of RDF triples to produce the solutions for the query. As the final step, the user’s original
query is issued against the local triple store and the solutions are displayed.

3.3.2 OWL Inferences About Predicates

SHARE implicitly makes use of OWL reasoning during query resolution. Whenever a new
predicate or OWL class is encountered within a triple pattern, the query engine downloads
the OWL ontology file for that predicate/class and loads it into the local reasoner10. One
advantage of using OWL reasoning during query processing is that the mapping from predicates
to services is more intelligent. The system is aware of which predicates are synonyms, inverses,
or connected by a parent/child relationships (i.e. subproperties), and can perform the necessary
translations between related predicates implicitly. For example, if two predicates that describe
the relationship between a drug and a target (e.g. “hasTarget” and “hasDrugTarget”) are
equivalent, the user may use either predicate within a query and be certain that all of the
relevant services will be discovered and invoked.

However, this additional intelligence comes at a cost. First, downloading ontology files during
query resolution entails additional data transfer, and thus additional time when resolving triple
patterns. Second, the computation of inferences can be expensive, depending on the number of
ontology rules (e.g. synonym relationships between predicates) and the amount of data in the
local triple store. For the evaluation of the optimizer in Section 3.7, the author has disabled
OWL inferencing in SHARE. This allows the data retrieval aspect of the optimization problem
to be studied in isolation.

9By convention, the inverse properties of p (if any exist) are defined in the OWL ontology that defines p.
10By convention, the OWL ontology for a given predicate/class may be downloaded by resolving its URI.

41



3.4. The Distributed SPARQL Query Optimization Problem

3.4 The Distributed SPARQL Query Optimization
Problem

3.4.1 An Illustrative Example

The ordering of triple patterns in a query does not affect the logical meaning of the query. For
example, Fig. 3.1a and Fig. 3.2a show two equivalent SPARQL queries with different orderings;
both versions ask the system to “List all motifs that occur in Poecilia reticulata (guppy fish)
proteins” [168]. While the ordering of triple patterns does not change the meaning, it does change
the steps that SHARE uses to gather the required data, and thus it can have a significant effect
on query efficiency. To illustrate, Fig. 3.1b and Fig. 3.2b depict the alternate steps used by
SHARE to resolve the two alternate orderings of the guppy query. The first ordering (Fig. 3.1b)
is a bad strategy for resolving the query because there is a “fan-out” effect in Steps 1 and 2;
there are a large number of PROSITE motifs (1,456), and each of those motifs is found in large
number of proteins. As a result, the query engine sends 166,986 protein URIs to the services
that map proteins to organisms in Step 3, and the query continues running for more than an
hour. (After an hour, the query was manually aborted). In contrast, the second ordering of the
query (Fig. 3.2b) begins by retrieving the 48 proteins that belong to Poecilia reticulata. Only a
small amount of a data is gathered (10,480 triples) to answer the query, and the query completes
successfully in about 30 seconds.

Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve a list of all
PROSITE motifs

(?motif, rdf:type,
prosite:Site)

2,749 ?motif ⇒ 1,456
bindings

2 For each motif from
Step 1, retrieve all
proteins that contain
that motif

(?motif, bio2rdf:xUniProt,
?protein)

170,639 ?protein ⇒
166,986 bindings

3 For each protein
from Step 2, retrieve
the organism it be-
longs to

(?protein, core:organism,
taxonomy:8081)

> 1 hour
(query
aborted)

N/A

Table 3.1: Description of execution steps for an inefficient query ordering, as depicted in
Fig. 3.1b.
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PREFIX b i o 2 r d f : <h t t p : // b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX taxonomy: <h t t p : // b i o 2 r d f . org /taxonomy:>
PREFIX c o r e : <h t t p : // pur l . un iprot . org / core />
PREFIX p r o s i t e : <h t t p : // b i o 2 r d f . org /ns/ p r o s i t e#>
PREFIX r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ? moti f
WHERE {

? mot i f r d f : t y p e p r o s i t e : S i t e .
? mot i f b io2rd f :xUniProt ? p ro t e in .
? p ro t e in core :o rgan i sm taxonomy:8081 .

}

(a) SPARQL query

?motif

rdf:type bio2rdf:xUniProt

prosite:Site ?protein

core:organism

taxonomy:8081

2,749ms
1

(1,456 bindings)

2
170,639ms

(166,986 bindings)

3

> 1 Hour

(b) execution plan as graph traversal

Figure 3.1: Example of an inefficient ordering of triple patterns for a query, along with its
associated execution plan. A textual description of each step in the execution plan is provided
in Table 3.1. The query asks the system to “List all motifs that occur in Poecilia reticulata
(guppy fish) proteins.”
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PREFIX b i o 2 r d f : <h t t p : // b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX taxonomy: <h t t p : // b i o 2 r d f . org /taxonomy:>
PREFIX c o r e : <h t t p : // pur l . un iprot . org / core />
PREFIX p r o s i t e : <h t t p : // b i o 2 r d f . org /ns/ p r o s i t e#>

PREFIX r d f : <h t t p : //www. w3 . org /1999/02/22− rdf−syntax−ns#>

SELECT ? moti f
WHERE {

? p ro t e in core :o rgan i sm taxonomy:8081 .
? mot i f b io2rd f :xUniProt ? p ro t e in .
? mot i f r d f : t y p e p r o s i t e : S i t e .

}

(a) SPARQL query

?motif

rdf:type bio2rdf:xUniProt

prosite:Site ?protein

core:organism

taxonomy:8081

19,099ms

3

(8 bindings)

2
9,112ms

(48 bindings)

1
615ms

(b) execution plan as graph traversal

Figure 3.2: Example of an efficient input ordering for a query, along with its associated execution
plan. A textual description of each step in the execution plan is provided in Table 3.2. The
query asks the system to “List all motifs that occur in Poecilia reticulata (guppy fish) proteins.”
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Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve all proteins
that belong to Poe-
cilia reticulata

(?protein, core:organism,
taxonomy:8081)

615 ?protein ⇒ 48
bindings

2 Retrieve the motifs
contained by each
protein from Step 1

(?motif, bio2rdf:xUniProt,
?protein)

9,112 ?motif ⇒ 8 bind-
ings

3 For each motif from
Step 2, retrieve its
type to determine
if it is a PROSITE
motif1

(?motif, rdf:type,
prosite:Site)

19,099 N/A

1 This step is necessary because the bio2rdf:xUniProt predicate is also used to connect genes to
UniProt proteins.

Table 3.2: Description of query execution steps for an efficient query ordering, as depicted in
Fig. 3.2b.

3.4.2 Assumptions

The goal of the optimization algorithm is to determine the best ordering for the triple patterns in
a distributed SPARQL query; that is, the ordering which will answer the query in the shortest
amount of time. To simplify the problem, we assume that the execution time of a query is
determined solely by:

1. The time spent by services processing requests

2. The time spent transferring data (service requests and responses) over the network

The use of OWL inferencing in SHARE can add a significant amount of local processing time
to query resolution. However, as the optimization of OWL reasoning is a challenging problem on
its own, for the purposes of this chapter we disable OWL reasoning in SHARE and assume that
the cost of local query processing is zero. In addition, we assume that the following constraints
hold for resolving triple patterns:

1. Variables may not appear in the predicate positions of triple patterns.

2. Triple patterns may only be resolved when either the subject or the object is bound.

These constraints are not unique to SHARE; they are also applicable to the earlier
DARQ [152] system, which uses the same predicate-based method for mapping triple patterns
to services. Under constraints 1 and 2 above, the resolution of a distributed SPARQL query may
be visualized as a graph traversal, as depicted in Fig. 3.1b. Each constant in the query acts an
independent starting point for one branch of the traversal, and the traversal is complete when
all edges have been visited. The traversal of an edge is in effect a distributed join operation,
where the outer table is a list of URIs (variable bindings), and the inner table is the set of triples
that are “stored”11 by the relevant services. Thus, the optimization problem discussed in this
paper is a distributed version of the well-known join-order problem [159] [160].

11The word “stored” is quoted here because triples may be generated computationally by the relevant services.
Conceptually, the set of triples “stored” by a computational service is the full set of triples generated by invoking
the service with all possible input URIs.
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3.5 Secondary Optimization: Intersections of Variable
Bindings

This section describes an optimization for the assignment of variable bindings that is independent
of the query evaluation algorithm (GREEDY) presented in Section 3.6. The optimization is
implemented by a small change to the processPattern method from Chapter 2 (listing 2.2), as
shown in Fig. 3.3. In the original method, the bindings for a variable are determined when the
first pattern that references the variable is resolved; thereafter, the bindings of the variable are
fixed. In the optimized method, the bindings that are determined for a variable are intersected
with any existing bindings. To demonstrate the difference, consider answering the query shown
in Fig. 3.4, which asks “What proteins in the post-synaptic membrane are targeted by the
drug Benzthiazide?”, using the original processPattern method. Here the variable of interest
is ?protein, which occurs in three different patterns (patterns 1, 3, and 4). When pattern 1
is resolved, ?protein is assigned 965 proteins that are located in the post synaptic membrane.
When pattern 2 is resolved, ?target is assigned 5 drug target records for Benzthiazide. The
critical step occurs in pattern 3. When pattern 3 is resolved12, the 5 bindings for ?target
(drug target records) are mapped to corresponding UniProt IDs. However, because ?protein
has already been assigned a set of bindings in pattern 1, the 965 existing bindings for ?protein
are left unmodified. As a result, resolving pattern 4 requires retrieving the names (rdfs:label)
of 965 proteins, which requires ∼ 2 minutes. The query time can be significantly reduced if the
system computes the intersection of the bindings for ?protein from patterns 1 and 3. Using this
approach, ?protein is reduced to a single binding and thus pattern 4 is resolved with 1 input.
Fig. 3.5a and Fig. 3.5b depict the execution of the query without and with the variable bindings
optimization, respectively.

12We assume here that pattern 3 is resolved in the forward direction. The reverse direction is also possible,
but it does not make any difference for the purposes of this discussion.
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processPattern( s , p , o , b ind ings )

s u b j e c t s = bind ings [ s ]
o b j e c t s = bind ings [ o ]

i f ( s u b j e c t s == n u l l && o b j e c t s == n u l l )
warn ” cannot r e s o l v e pattern where both s ub j e c t and ob j e c t are unbound

v a r i a b l e s ”
e l s e i f ( o b j e c t s == n u l l )

invokeServ icesByProperty ( sub j ec t s , p )
e l s e i f ( s u b j e c t s == n u l l )

invokeServ icesByProperty ( ob j ec t s , i n v e r s e (p) )
e l s e

// both s ub j e c t and ob j e c t are a l r eady bound
invokeServ icesByProperty ( sub j ec t s , p )

f o r each t r i p l e t in l o c a l T r i p l e S t o r e . getMatch ingTr ip les ( b ind ings [ s ] ,
b ind ings [ p ] , b ind ings [ o ] )
i f ( s u b j e c t s == n u l l )

b ind ings [ s ] . add ( t . s ub j e c t )
i f ( o b j e c t s == n u l l )

b ind ings [ o ] . add ( t . ob j e c t )

(a) original processPattern method

processPatternOptimized( s , p , o , b ind ings )

s u b j e c t s = bind ings [ s ]
o b j e c t s = bind ings [ o ]

i f ( s u b j e c t s == n u l l && o b j e c t s == n u l l )
warn ” cannot r e s o l v e pattern where both s ub j e c t and ob j e c t are unbound

v a r i a b l e s ”
e l s e i f ( o b j e c t s == n u l l )

invokeServ icesByProperty ( sub j ec t s , p )
e l s e i f ( s u b j e c t s == n u l l )

invokeServ icesByProperty ( ob j ec t s , i n v e r s e (p) )
e l s e

// both s ub j e c t and ob j e c t are a l r eady bound
invokeServ icesByProperty ( sub j ec t s , p )

newBindings = empty hash t a b l e

f o r each t r i p l e t in l o c a l T r i p l e S t o r e . getMatch ingTr ip les ( b ind ings [ s ] ,
b ind ings [ p ] , b ind ings [ o ] )
newBindings [ s ] . add ( t . su b j e c t )
newBindings [ o ] . add ( t . ob j e c t )

i f ( s u b j e c t s == n u l l )
b ind ings [ s ] = newBindings [ s ]

e l s e
b ind ings [ s ] = i n t e r s e c t i o n ( b ind ings [ s ] , newBindings [ s ] )

i f ( o b j e c t s == n u l l )
b ind ings [ o ] = newBindings [ o ]

e l s e
b ind ings [ o ] = i n t e r s e c t i o n ( b ind ings [ o ] , newBindings [ o ] )

(b) optimized processPattern method

Figure 3.3: A modification to the processPattern method from Chapter 2 (listing 2.2) which
implements the variable bindings optimization described in Section 3.5. Part a) shows the
original pseudocode and part b) shows the modified pseudocode.
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PREFIX drug : <h t t p : //www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs />
PREFIX drugbank: <h t t p : //www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX r d f s : <h t t p : //www. w3 . org /2000/01/ rdf−schema#>
PREFIX c o r e : <h t t p : // pur l . un iprot . org / core />
PREFIX go : <h t t p : // b i o 2 r d f . org / go :>

SELECT ? proteinName
WHERE {

? p ro t e in c o r e : c l a s s i f i e d W i t h go:0045211 .
drug:DB00562 drugbank : target ? t a r g e t .
? t a r g e t drugbank : sw i s sprot Id ? pro t e in .
? p ro t e in r d f s : l a b e l ? proteinName .

}

(a) SPARQL query

?protein

core:classifiedWith rdfs:label

go:0045211

drug:DB00562

drugbank:target

drugbank:swissprotId

?target

?proteinName

(b) SPARQL query, depicted graphically

Figure 3.4: An example query for SHARE, used to illustrate variable bindings optimization
described in Section 3.5. The query asks “What proteins in the post-synaptic membrane are
targeted by the drug Benzthiazide?”. go:0045211 is the Gene Ontology term for “post synaptic
membrane”, and drug:DB00562 is the identifier for Benzthiazide.

48



3.5. Secondary Optimization: Intersections of Variable Bindings

?protein

core:classifiedWith rdfs:label

go:0045211

drug:DB00562

drugbank:target

drugbank:swissprotId

?target

?proteinName

(965 bindings)

1

2,949ms

2
3,896ms

(5 bindings)

3

4

2,936ms

128,363ms

(965 bindings)

(a) execution plan without the variable bindings op-
timization

?protein

core:classifiedWith rdfs:label

go:0045211

drug:DB00562

drugbank:target

drugbank:swissprotId

?target

?proteinName

(Step 1: 965 bindings,
Step 3: 1 binding)

1

2,655ms

2
3,673ms

(5 bindings)

3

4

2,936ms

12,020ms

(1 bindings)

(b) execution plan using the variable bindings opti-
mization

Figure 3.5: The execution plans used by SHARE to solve the query from Fig. 3.4, without and
with the variable bindings optimization described in Section 3.5. Textual descriptions of the
two execution plans are given in Table 3.3 and Table 3.4, respectively.
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Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve all proteins
that have been an-
notated with Gene
Ontology term
go:0045211 (post
synaptic membrane)

(?protein,
core:classifiedWith,
go:0045211)

2,949 ?protein ⇒ 965
bindings

2 Retrieve all targets
of the drug DB00562
(Benzthiazide)

(drug:DB00562, drug-
bank:target, ?target)

3,896 ?target ⇒ 5
bindings

3 Retrieve the equiv-
alent UniProt iden-
tifier for each target
from Step 2

(?target, drug-
bank:swissprotId, ?pro-
tein)

2,936 No bindings are
assigned1.

4 For each protein
from Step 1, retrieve
its name.

(?protein, rdfs:label, ?pro-
teinName)

128,363 ?name ⇒ 965
bindings

1 No bindings are assigned to ?protein in this step, because ?protein has already been assigned a
set of bindings in Step 1.

Table 3.3: Description of execution steps without the variable bindings optimization, as depicted
in Fig. 3.5a.

Query
Step

Description Triple Pattern Time (ms) Assigned Vari-
able Bindings

1 Retrieve all proteins
that have been an-
notated with Gene
Ontology term
go:0045211 (post
synaptic membrane)

(?protein,
core:classifiedWith,
go:0045211)

2,655 ?protein ⇒ 965
bindings

2 Retrieve all targets
of the drug DB00562
(Benzthiazide)

(drug:DB00562, drug-
bank:target, ?target)

3,673 ?target ⇒ 5
bindings

3 Retrieve the equiv-
alent UniProt iden-
tifier for each target
from Step 2

(?target, drug-
bank:swissprotId, ?pro-
tein)

2,936 ?protein ⇒ 1
binding1.

4 For each protein
from Step 3 retrieve
the protein’s name2.

(?protein, rdfs:label, ?pro-
teinName)

12,020 ?name ⇒ 1 bind-
ing

1 This step is where the optimization takes place. When the pattern is resolved, 5 distinct values
are obtained for ?protein. This set of 5 solutions is then intersected with the existing 965 bindings
for ?protein from Step 1. The two sets have one value in common, and thus ?protein is assigned
1 binding.

2 For each protein that is both a target of Benzthiazide and located in post synaptic membrane.

Table 3.4: Description of execution steps with the variable bindings optimization, as depicted
in Fig. 3.5b. 50
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GREEDY( queryPatterns )
v i s i t e d P a t t e r n s = empty s e t
whi l e ( v i s i t e d P a t t e r n s . s i z e ( ) < queryPatterns . s i z e ( ) )

bestPattern = n u l l ;
f o r each pattern in queryPatterns

i f ( v i s i t e d P a t t e r n s . conta in s ( pattern ) )
cont inue ;

i f ( bes tPattern == n u l l | | compareCost ( pattern , bes tPattern ) < 0)
bestPattern = pattern ;

r e s o l v ePa t t e rn ( bestPattern ) ;
v i s i t e d P a t t e r n s . add ( bestPattern ) ;

Listing 3.1: Pseudocode for the GREEDY query evaluation algorithm

3.6 The GREEDY Optimization Algorithm

3.6.1 Overview

In this section, we will describe an algorithm for evaluating distributed SPARQL queries called
GREEDY. In the default method of query evaluation for SHARE, which we will hereafter call
BASIC, triple patterns are resolved in the same order that they occur in the query. In addition,
BASIC resolves all triple patterns in the forward (left-to-right) direction by default, unless only
the reverse direction is possible (i.e. the subject is an unbound variable). The pseudocode for the
default query evaluation procedure is shown in listing 2.2. GREEDY uses a more sophisticated
approach for determining the ordering and directions of the triple patterns. At each step, the
costs for all unvisited triple patterns are estimated and compared pairwise, and the pattern that
is cheapest overall is selected for resolution. If a particular pattern is resolvable in both the
forward and reverse directions (i.e. both the subject and object of the pattern are bound), then
the cost for both directions is estimated and the overall cost of pattern is considered to be the
lesser of the two. The pseudocode for the main procedure of GREEDY is shown in listing 3.1.

While the main procedure of GREEDY is straightforward, the operation of compare-
Cost(pattern1, pattern2) remains to be explained. While no statistics about the services are
directly available, the algorithm must somehow estimate the relative costs of the triple patterns.
In GREEDY, the relative cost of a triple pattern is estimated in one of two ways:

1. Using statistics about predicates that have been learned from previous queries

2. Using the number of bindings for the subject/object of the triple pattern

The latter method acts as a fallback in the case where no statistics have yet been learned
from previous queries. In the next section, we describe details for estimating the cost of a triple
pattern.

3.6.2 Cost Estimation for Query Patterns

Cost Equation

GREEDY estimates the cost of retrieving data for a triple pattern by the following equation:

estimatedTime = baseTime(p, dir) + numInputs× timePerInput(p, dir) (3.1)

where

• estimatedTime is the expected time to retrieve the data
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3.6. The GREEDY Optimization Algorithm

• baseTime(p, dir) is the sum of the round-trip network latencies13, for all services that
resolve predicate p in the direction dir

• numInputs is the number of input URIs that are sent to each service

• timePerInput(p, dir) is the time required to receive the response data for a single input
URI, from all services that resolve predicate p in the direction dir

The resolution of a triple pattern (s, p, o) is in effect a join operation between the local triple
store and the triples stored by services that generate p. However, in contrast to traditional cost
estimations for joins, which are based on the sizes of the input tables, Eq. (3.1) is based on
service response times. There are two reasons for this. First, the time required to transfer data
over the network is a significant cost that is not present in a single database scenario, and it is a
cost that may vary for each data source. Second, the data sources can be computational services.
The amount of processing time required by different algorithms is likely to vary greatly (e.g. a
BLAST query vs. a protein structure prediction), and will also vary based on the CPU power
and load of the servers that are used to perform the analyses. These factors are represented in
Eq. (3.1) by the timePerInput(p, dir) factor.

Learning Statistics from Queries

After each triple pattern is resolved, GREEDY records a sample containing the following infor-
mation:

• predicate URI

• direction of resolution (forward or reverse)

• number of inputs (i.e. number of bindings of the subject/object of the triple pattern)

• total response time (in milliseconds)

The total response time is the time required to obtain all data for a triple pattern from
the available services. The information listed above constitutes a single sample in the statis-
tics database. At periodic intervals, the available samples are used to compute the values for
baseTime(p,dir) and timePerInput(p,dir) using linear regression, as depicted in Fig. 3.6. Once
the baseTime and timePerInput values have been computed, GREEDY is able to use them to
estimate the times for resolving triple patterns, as per Eq. (3.1).

Special Cases for Cost Estimation

In order to compute a regression line for a given predicate and direction, at least two samples
with distinct x values (i.e. numInputs values) must be recorded in the statistics database. There
are two cases where summary statistics will not be available for a given predicate/direction
combination (denoted “(p, dir)” below):

1. No samples have been recorded for (p, dir): If available, values for averageBaseTime
and averageTimePerInput will be used instead. averageBaseTime and averageTimePer-
Input are calculated over the baseTime and timePerInput values for all predicates in the
statistics database:

averageBaseT ime =
∑ baseTime(p,dir)

N

13baseTime(p, dir) also includes the cost of establishing a TCP connection.
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Figure 3.6: An example regression line, computed to determine the cost parameters base-
Time(bio2rdf:xUniProt, reverse) and timePerInput(bio2rdf:xUniProt, reverse), as described in
Section 3.6.2. The Bio2RDF project uses the bio2rdf:xUniProt predicate to denote a cross ref-
erence from an entity (e.g. a gene) to a UniProt protein record. The prefix “bio2rdf:” is an
abbreviation for http://bio2rdf.org/ns/bio2rdf#.
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3.7. Evaluation

averageT imePerInput =
∑ timePerInput(p,dir)

N

where N is the number of predicate/direction combinations that have computed values
for baseTime and timePerInput.

These values are intended to represent the characteristics of a predicate with average
performance. averageBaseTime and averageTimePerInput will only be available if a re-
gression line has been computed for at least one predicate / direction combination in the
statistics database. If this is not the case, GREEDY will use numInputs (i.e. the number
of subject/object bindings) as the cost of the triple pattern. This is equivalent to the
assumption that all predicate / direction combinations perform equivalentally when given
the same number of inputs.

2. One or more samples with the same x value (numInputs) have been recorded
for (p, dir): Let the common value of numInputs across the samples be X. An average
response time will be computed for the samples, and this value will be used to estimate the
cost of any future triple patterns where numInputs is exactly equal to X. Otherwise, the
cost of the triple pattern will be computed from averageBaseTime/averageTimePerInput
or numInputs, as per Case 1.

3.7 Evaluation

3.7.1 Evaluation Procedure

At the current time, no benchmarks are available for distributed SPARQL systems. This is not
surprising, given that benchmarking of distributed systems is considerably more difficult than for
monolithic database systems. Whereas the performance of monolithic systems can be measured
independently with standardized data sets, distributed systems must be compared as a group,
in order to control for factors such as changing data sources, server load, connection bandwidth,
and volume of traffic on the network. Here we evaluate the performance of GREEDY in a
simple before-and-after manner; that is, we measure the performance differences between BA-
SIC (optimizer off) and GREEDY (optimizer on) with increasing amounts of training, without
comparison to other systems.

In order to base the evaluation of GREEDY on realistic use cases, the author translated 6
bioinformatics queries found in the literature into equivalent SHARE queries (Fig. 3.7). The
original queries were taken from the publications of other bioinformatics integration projects,
namely TAMBIS [168], GALAXY [169], BioMART [119], and the Linked Open Drug Data
(LODD) [91] project. These systems were the most suitable source for third-party queries
because they target many of the same data sources as SHARE. Nevertheless, some translations
could not be made perfectly. For instance, Query 3 (Fig. 3.7) originally used the UCSC genome
database to obtain exon boundaries and SNP coordinates, while in the SHARE version, the SNP
annotations provided by UniProt are used instead. Notes are provided in Fig. 3.7, indicating
where such differences exist.

To evaluate the learning aspect of the GREEDY algorithm, the queries of Fig. 3.7 were
divided into 3 training queries and 3 test queries. The assignment of queries into the two sets
was based on the overlap in subject matter between the queries. Queries 1 & 2 involve SNPs, and
Queries 3 & 4 involve drugs and associated targets, Queries 5 & 6 involve biological pathways.
For query pairs 1/2 and 5/6, one query was randomly chosen as the training query and the other
became the testing query. For query pair 3/4, Query 3 was explicitly chosen as the training
query because it contains only one constant; this implies that Query 3 has only one possible
execution plan, and thus optimization would have no effect. More will be said about queries
with a single constant in the conclusion (Section 3.9).
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For each training query, 3 additional training variants were generated by substituting the
constants in the query with randomly selected replacement values. For example, the training
variants for Query 1 were generated by changing the target protein. Similarly variants for
queries 3 and 5 were generated by changing the target drug and biological pathway, respectively.
Generating variants of the training queries was necessary in order to provide adequate training
data for GREEDY. If the optimizer were trained by running the same queries repeatedly, the
predicates in the training queries would always be resolved using the same number of subject/
object bindings (i.e. service inputs), and thus no regression lines could be computed. The
variants used for each training query are listed in Appendix B.1. Each training query was run
with GREEDY rather than BASIC. This most accurately reflects the real usage of SHARE,
where the optimizer is enabled for all queries.

PREFIX uniprot : <http :// b i o 2 r d f . org / uniprot :>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

SELECT ? s u b s t i t u t i o n ? s t a r t ?end ? dbCrossRef
WHERE {

uniprot : P01344 core : annotat ion ? annotat ion . # uniprot : P01344 = ”IGF−I I gene ”
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .

? annotat ion r d f s : s eeAl so ? dbCrossRef .
? annotat ion core : s u b s t i t u t i o n ? s u b s t i t u t i o n .

? annotat ion core : range ? range .
? range core : begin ? s t a r t .
? range core : end ?end .

}

(a) Query 1 (training query): “Find non-synonymous single nucleotide polymorphisms (SNPs) within coding
exons of the human insulin-like growth factor II (IGF-II) gene”. The original query from the GALAXY project
[169] did not specify that the SNPs should be non-synonymous; this was a limitation of using UniProt to obtain
SNP information, rather than the UCSC genome database as per the original query.

uniprot:P01344

core:annotation

?annotation

rdf:type rdfs:seeAlso core:substitution core:range

core2:Natural_Variant_Annotation ?dbCrossRef ?substitution ?range

core:begin core:end

?start ?end

(b) Query 1 as graph
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PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE {

# gene IDs

probese t :53701 a t a f f y : xEnsembl ? geneID .

# pro t e in IDs

probese t :53701 a t a f f y : xSwissProt ? prote inID .

# GO terms

probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .

# SNPs

? prote inID core : annotat ion ? annotat ion .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
? annotat ion r d f s : s eeAl so ?snpID .

}

(c) Query 2 (test query): “Map a microarray probeset to associated information: ENSEMBL gene IDs,
SwissProt protein IDs, SNPs, and GO terms.”, a use case from the BioMART project [119]. As in Query 1, the
results are limited to non-synonymous SNPs.

probeset:53701_at

affy:xEnsembl affy:xSwissProtaffy:xGene_Ontology_Biological_Process affy:xGene_Ontology_Cellular_Component affy:xGene_Ontology_Molecular_Function

?geneID ?proteinID

core:annotation

?goProcess ?goComponent ?goFunction

?annotation

rdf:type rdfs:seeAlso

core2:Natural_Variant_Annotation ?snpID

(d) Query 2 as graph
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PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX diseasome : <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome / r e sou r c e / diseasome/>
PREFIX b i o 2 r d f : <http :// b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>

SELECT ? t a r g e t P r o t e i n ? gene ? d i s e a s e ? diseaseName
WHERE {

drug : DB00421 drugbank : t a r g e t ? t a r g e t P r o t e i n .
? t a r g e t P r o t e i n drugbank : hgncId ? gene .
? gene b i o 2 r d f :xOMIM ?omim .
? d i s e a s e diseasome : omim ?omim .
? d i s e a s e r d f s : l a b e l ? diseaseName .

}

(e) Query 3 (training query): “For each target protein of the drug Spironolactone, show the gene that
encodes the protein, and any known disease associations for the gene”, from the Linked Open Drug Data (LODD)
project [91]. The original “query” that appears in [170] is answered interactively, by browsing across the LODD
datasets from within a web browser. The SHARE query answers the same question using a distributed query
across the DrugBank, HGNC, and Diseasome SPARQL endpoints. The subject drug of the original query has
been changed from Varenicline to Spironolactone to avoid overlap of training and testing queries during the
optimizer evaluation.

drug:DB00421

drugbank:target

?targetProtein

drugbank:hgncId

?gene

bio2rdf:xOMIM

?omim

diseasome:omim

?disease

rdfs:label

?diseaseName

(f) Query 3 as graph
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PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE {

drug : DB01273 drugbank : t a r g e t ? t a r g e t . # drug : DB01273 = ” V a r e n i c l i n e ”
? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .

? a l z P r o t e i n r d f s : s eeAl so omim:104300 . # omim:104300 = ” Alzheimer ’ s Disease ”
? a l z P r o t e i n dc : t i t l e ? alzProteinName .

? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t .
? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n .

}

(g) Query 4 (test query): “Are there any protein-protein interactions between Alzheimer-associated proteins
and the targets of Varenicline?”, from the Linked Open Drug Data project. The original “query” posed in
[170] was answered by browsing hypotheses in the AlzSWAN KnowledgeBase [171]. In the SHARE version, the
question is answered by a distributed query across the UniProt and DrugBank SPARQL endpoints.

drug:DB01273

drugbank:target

?target

drugbank:swissprotId

?targetProtein

core:interaction

?alzProtein

rdfs:seeAlso dc:title

omim:104300 ?alzProteinName

?interaction

core:participant

owl:sameAs

?participant

(h) Query 4 as graph
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PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT ? pro t e in ?omim
FROM <http :// dev . b i o r d f . net /˜benv/ i n f e r e n c e s . owl>
WHERE {

? p ro t e in sad i : hasFunction GO:0004872 . # GO:0004872 = ” re c ep to r a c t i v i t y ”
? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0007595 . # GO:0007595 = ” l a c t a t i o n ”
? p ro t e in sad i : i sCausa l lyRelatedWith ?omim .

}

(i) Query 5 (test query): “Retrieve receptor proteins involved in lactation and one or more disease processes”,
from the TAMBIS project [172].

?protein

sadi:hasFunction sadi:isParticipantIn sadi:isCausallyRelatedWith

GO:0004872 GO:0007595 ?omim

(j) Query 5 as graph

PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>
PREFIX UniProt : <http :// l s r n . org /UniProt :>

SELECT DISTINCT ? moti f
FROM <http :// dev . b i o r d f . net /˜benv/ i n f e r e n c e s . owl>
WHERE {

? p ro t e in sad i : isHomologousTo UniProt : Q93038 . # UniProt : Q93038 = LARD pro t e in
? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0006915 . # GO:0006915 = apopto s i s
? p ro t e in sad i : hasMoti f ? mot i f .

}

(k) Query 6 (test query): “Select motifs for proteins that participate in apoptosis and are homologous to the
lymphocyte associated receptor of death (also known as LARD)”, from the TAMBIS project [173]

?protein

sadi:isHomologousTo sadi:isParticipantIn sadi:hasMotif

UniProt:Q93038 GO:0006915 ?motif

(l) Query 6 as graph

Figure 3.7: SHARE translations of six queries from other bioinformatics integration projects,
including TAMBIS, GALAXY, BioMART, and Linked Open Drug Data. These queries are used
for the evaluation of the GREEDY optimization algorithm.
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The overall idea of the evaluation is to measure the performance difference between BASIC
(optimizer off) and GREEDY (optimizer) with increasing amounts of training. However, the
ordering of triple patterns in an input query can have a large effect on what this performance
difference actually is. For example, if a “smart” user composes a query that already has the
optimal ordering of triple patterns, then there will be no difference at all between BASIC and
GREEDY for the performance of that query. For the optimizer evaluation described here, we
will make the simplifying assumption that each input query ordering is equally likely. Ideally,
we would like to compare the performance of BASIC and GREEDY for all possible orderings
of each test query. This would provide us with the complete range of execution times that are
possible for a given query; that is, how slow the query can be and how fast it can be, and how
the possible orderings for the query are distributed between these two extremes. Unfortunately,
the exhaustive approach is not practical, even for the relatively simple queries presented in
Fig. 3.7; for example, Query 2 has 8 triple patterns, and thus has 8! = 40,320 possible orderings.
Instead, execution times were measured for 5 randomly generated test query orderings, with the
understanding that these orderings are merely a sample from the population of possible query
orderings.

The pseudocode for the benchmarking procedure is shown in listing 3.2. Three trials were
recorded for each test query, in order to give an indication of the amount of variance that occurs
between executions of the same query due to varying server load and data transfer times. The
results in the following section demonstrate that this variance is small relative to the changes
in query times that result from reordering triple patterns in the query.

3.7.2 Results

Benchmarking Results

Figure 3.8 shows the execution times for the 5 randomly generated orderings of Test Queries 2,
4, and 6. (For a complete list of generated orderings for each query, see Appendix B.2.) Each
group of bars in Fig. 3.8 represents a set of execution times for one particular ordering of a query.
Within each group, the execution times were generally expected to decrease from left-to-right,
beginning with the execution time for BASIC (optimizer off) and proceeding through execution
times for GREEDY (optimizer on) with increasing numbers of training runs. A timeout of an
hour was imposed on each query to ensure that the overall experiment would complete in a
reasonable amount of time.

The solution sets generated for all trials of Queries 2, 4, and 6 were identical, regardless of
the ordering of triple patterns, and regardless of whether the queries were run under BASIC or
GREEDY with 0-4 training runs. This was verified by recording the solution set for each query
execution to a separate file, and comparing the files with the unix ‘fdupes’ utility for identifying

FOR trainingRun = 0 to 5

IF ( trainingRun > 0)
FOR tra in ingQuery = { Query 1 , Query 3 , Query 5 }

Run var i an t trainingRun o f tra in ingQuery and record s t a t s

FOR testQuery = { Query 2 , Query 4 , Query 6 }
FOR testQueryOrder ing = 0 to 9

IF ( trainingRun == 0)
FOR t r i a l = 0 to 2

Run testQuery with BASIC and time
FOR t r i a l = 0 to 2

Run testQuery with GREEDY and time

Listing 3.2: Pseudocode for the benchmarking procedure for GREEDY
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Figure 3.8: Results of GREEDY evaluation: a comparison of query execution times for Queries
2, 4, and 6 of Fig. 3.7. Each query is executed using 5 randomly generated orderings, and for
each ordering, query times are recorded for BASIC (optimizer off) and GREEDY (optimizer
on) with varying numbers of training runs.
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duplicate files. The lines of each solution file were sorted alphabetically prior to comparison, as
some trials would generate the rows of the solutions table in different orders.

In order to fully understand the decisions made by the trained versions of GREEDY in the
discussion below, it is necessary to see the state of the predicate statistics after each training
run. These states are depicted in Fig. 3.9, using two types of graphs:

1. scatterplots (left): show average response times for predicates which only have samples
for a single x (numInputs) value.

2. bar graphs (right): show the slope (timePerInput) and intercept (baseTime) for predicates
that have sufficient samples for a regression line.

The reader will observe from the bar graphs of Fig. 3.9 that for most of the predicates, a
regression line is only ever computed in one of the two possible directions. This happens because
the structure of the training queries (Fig. 3.7) only permits resolving these predicates in one
direction. For example, in Query 3, the drugbank:hgncId predicate is always resolved in the
forward direction because the path of traversal must begin with the sole constant in the query,
drug:DB00421. The sadi:isCausallyRelatedWith is a special case; although it is always resolved
in the forward direction during training, it is its own inverse property, and so the same regression
line describes both directions.

Results for Query 2 (Fig. 3.8a)

Over all trials, we observe 3 distinct query times: ∼ 45 seconds (best), ∼ 100 seconds (fair), and
timeout after 60 minutes (worst). Examination of the query logs shows that it is the treatment
of one particular triple pattern that determines the outcome for each trial:

?annotation rdf:type core2:Natural_Variant_Annotation

One of the conventional uses of rdf:type is to indicate database record types. In this particular
triple pattern, Natural Variant Annotation represents the type of record that is used to store
amino acid sequence variations in the UniProt database14. When the pattern is resolved in the
reverse direction, a service call is made which retrieves all Natural Variant Annotation records
from Bio2RDF’s UniProt SPARQL endpoint. At the current time, there are 70,629 such records,
and retrieving a list of their identifiers requires about 55 seconds. While resolving the rdf:type
pattern in the reverse direction significantly increases the query time, it is not by itself disastrous.
More serious performance problems (i.e. timeouts) occur when the query engine proceeds to
use the 70,629 bindings for ?annotation as input for solving a later query pattern. To illustrate,
Fig. 3.10a shows the sequence of steps used by BASIC for Query Ordering 3 which lead to a
query timeout.

The GREEDY heuristic avoids the use of large input sets when resolving query patterns,
and thus turning on the optimizer for Query Orderings 3 and 4 produces an immediate and sig-
nificant improvement. However, without training, the choices of GREEDY are still not optimal.
The GREEDY heuristic predicts that resolving the rdf:type pattern in the reverse direction will
be an fast operation, since it requires sending only one input (Natural Variant Annotation) to
the relevant services. The implicit assumption of the GREEDY heuristic is that all predicates
will require the same amount of time to resolve, given the same number of inputs. This as-
sumption does not hold true for the rdf:type predicate, and so GREEDY requires training in
order to make the correct decision. Figure Fig. 3.10b and Fig. 3.10c show the steps followed
by GREEDY for Query Ordering 3, without training and with training respectively. In the
trained version, GREEDY delays resolution of the rdf:type pattern until it can be resolved in

14The majority of these variations are single amino acid polymorphisms (SAPs), which are in turn due to
single nucleotide polymorphisms (SNPs) in the coding DNA. In the UniProt database, the category of naturally
occurring mutations also includes disease associated mutations and RNA editing events.
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(g) 4 Training Runs: Regression Line Parameters

Figure 3.9: State of predicate statistics during the experiment. Left: Scatter plots showing
the average response times of various predicates for a fixed number of inputs. The predicate/
direction pairs included these graphs have the same x value (i.e. numInputs) for all samples, and
thus no regression line is computable. Right: Bar graphs depicting the slope (timePerInput)
and intercept (baseTime) for all predicates for which a regression line was computable. Note
that there is no bar graph for 1 training run because a regression line can only be computed
from two or more samples; each predicate is used in only one training query, and so obtaining
adequate samples entails two or more training runs.
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the forward direction. Finally, the reader will notice from Fig. 3.8a (and also Fig. 3.8c) that
GREEDY always requires two training runs before there is any improvement in query times.
The reason for this is that a minimum of two samples are required to compute a regression line.
Until a regression line has been computed for at least one predicate, all patterns are compared
by the number of input bindings.

The results for each random query ordering (i.e. group of bars) in Fig. 3.8a differ only
with respect to the query times under BASIC. In query orderings 0 and 2, the patterns were
ordered such that BASIC resolved the rdf:type in the reverse direction, but did not use the large
number of resulting bindings for ?annotation to resolve a later pattern. In query ordering 1, the
patterns were ordered such that the rdf:type pattern was resolved in the forward direction. In
query orderings 3 and 4, the patterns were ordered such that the rdf:type pattern was resolved
in the reverse direction and the resulting bindings of ?annotation were used as input for a
later pattern. (The complete list of randomly generated query orderings for the experiment is
provided in Appendix B.2.) The results for query ordering 1 illustrate an important caveat of
GREEDY, which is that query times prior to training may actually be worse than for BASIC,
in the case that a “smart” user specifies the query patterns in an optimal order or is simply
lucky.
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probeset:53701_at

affy:xEnsembl affy:xSwissProtaffy:xGene_Ontology_Biological_Process affy:xGene_Ontology_Cellular_Component affy:xGene_Ontology_Molecular_Function

?geneID ?proteinID

core:annotation

?goProcess ?goComponent ?goFunction

?annotation

rdf:type rdfs:seeAlso

core2:Natural_Variant_Annotation ?snpID

4
53,152ms

(70,629 bindings)

1

(1 binding)

 3,696ms

5

 65ms

(1 binding)
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3
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6

(a) The steps followed by BASIC, in an attempt to answer Test Ordering 3 of Query 2 (Appendix B.2.1). The
query times out after 60 minutes.
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(Step 4: 70,629 bindings, Step 7: 2 bindings)

1

(1 binding)

 2,968ms

5

 65ms

(1 binding)

2

 44ms

(1 binding)

3

(1 binding)
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(b) The steps followed by GREEDY with 0 training runs, in order to answer Test Ordering 3 of Query 2
(Appendix B.2.1).
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(c) The steps followed by GREEDY with 2 training runs, in order to answer Test Ordering 3 of Query 2
(Appendix B.2.1).

Figure 3.10: Execution plans for Query 2 under BASIC, untrained GREEDY, and trained
GREEDY. Descriptions of the execution steps for each plan are given in Tables 3.5 to 3.7,
respectively.
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Query
Step

Description Triple Pattern Time (ms) Variable Bindings As-
signed

1 Retrieve GO cellular com-
ponent annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Cellular Com-
ponent,
?goComponent)

3,696 ?goComponent => 1
binding

2 Retrieve GO biological
process annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Biological -
Process,
?goComponent)

55 ?goProcess => 1 bind-
ing

3 Retrieve ENSEMBL
gene cross-references for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xEnsembl,
?geneID)

47 ?geneID => 1 binding

4 Retrieve amino acid se-
quence variation records for
all proteins in the UniProt
database

(?annotation,
rdf:type,
core2:Natural Variant Annotation)

53,152 ?annotation => 70,629
bindings

5 Retrieve GO molecular
function annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Molecular -
Function,
?goFunction)

65 ?goFunction => 1 bind-
ing

6 For each amino sequence
variation record from Step
4, retrieve the associated
SNP ID

(?annotation,
rdfs:seeAlso,
?snpID)

TIMEOUT N/A

Table 3.5: Description of execution steps for Query 2 under BASIC, as depicted in Fig. 3.10a

Query
Step

Description Triple Pattern Time (ms) Variable Bindings As-
signed

1 Retrieve GO cellular com-
ponent annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Cellular Com-
ponent,
?goComponent)

2,968 ?goComponent => 1
binding

2 Retrieve GO biological
process annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Biological -
Process,
?goComponent)

44 ?goProcess => 1 bind-
ing

3 Retrieve ENSEMBL
gene cross-references for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xEnsembl,
?geneID)

48 ?geneID => 1 binding

4 Retrieve amino acid se-
quence variation records for
all proteins in the UniProt
database

(?annotation,
rdf:type,
core2:Natural Variant Annotation)

54,759 ?annotation => 70,629
bindings

5 Retrieve GO molecular
function annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Molecular -
Function,
?goFunction)

65 ?goFunction => 1 bind-
ing

6 Retrieve UniProt protein
identifiers corresponding to
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xSwissProt,
?proteinID)

42 ?proteinID => 1 bind-
ing

7 Retrieve annotations for
each protein from step 6

(?proteinID,
core:annotation,
?annotation)

14,782 ?proteinID => 1 bind-
ing ?annotation => 2
bindings

8 For each annotation from
step 7,
retrieve the corresponding
SNP ID

(?annotation,
rdfs:seeAlso,
?snpID)

1,997 ?annotation => 2 bind-
ings ?snpID => 2 bind-
ings

Table 3.6: Description of execution steps for Query 2 under untrained GREEDY, as depicted
in Fig. 3.10b
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Query
Step

Description Triple Pattern Time (ms) Variable Bindings As-
signed

1 Retrieve GO cellular com-
ponent annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Cellular Com-
ponent,
?goComponent)

2,951 ?goComponent =>1
binding

2 Retrieve GO biological
process annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Biological -
Process,
?goComponent)

44 ?goProcess=> 1 binding

3 Retrieve ENSEMBL
gene cross-references for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xEnsembl,
?geneID)

45 ?geneID => 1 binding

4 Retrieve GO molecular
function annotations for
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xGene Ontology Molecular -
Function,
?goFunction)

65 ?goFunction => 1 bind-
ing

5 Retrieve UniProt protein
identifiers corresponding to
Affymetrix probeset 53701 -
at

(probeset:53701 at,
affy:xSwissProt,
?proteinID)

41 ?proteinID => 1 bind-
ing

6 Retrieve annotations for
each protein from step 6

(?proteinID,
core:annotation,
?annotation)

11,237 ?proteinID => 1 bind-
ing ?annotation => 2
bindings

7 For each annotation record
from Step 5, retrieve it?s
record type

(?annotation,
rdf:type,
core2:Natural Variant Annotation)

14,247 ?annotation => 2 bind-
ings

8 For each Natural Variant
Annotation record, retrieve
the corresponding SNP ID

(?annotation,
rdfs:seeAlso,
?snpID)

165 ?annotation => 2 bind-
ings ?snpID => 2 bind-
ings

Table 3.7: Description of execution steps for Query 2 under trained GREEDY, as depicted in
Fig. 3.10c

In Figs. 3.10a to 3.10c, the reader will observe that many of the triple patterns are resolved
very quickly. For instance, Steps 2, 3, and 5 of Fig. 3.10a are completed in 55, 47, and 65
milliseconds, respectively. This happens because the relevant data for these patterns has already
been gathered by the service invocation for Step 1. In Step 1, SHARE resolves the pattern:
(probeset:53701 at, affy:xGene Ontology Cellular Component, ?goComponent) by issuing the
following query to the Bio2RDF Affymetrix endpoint:

CONSTRUCT {
probese t :53701 a t ?p ?o .

}
WHERE {

probese t :53701 a t ?p ?o .
}

As a result, Step 1 retrieves not only triples with the affy:xGene Ontology Cellular Compo-
nent predicate, but all triples in the Affymetrix endpoint with probeset:53701 at as the subject.
This includes all triples that match the query patterns of Steps 2, 3, and 5, and thus no addi-
tional service invocations need to be made in these steps. The query engine maintains a hash
table to track which services have been invoked with which inputs, in order to avoid redundant
service calls.

Results for Query 4 (Fig. 3.8b)

We see that for Query 4, there is no discernible difference between the performance of BASIC
and GREEDY. The majority of query times are in the range 30-45 seconds, and this variation
occurs across different trials for the same query plan, indicating that it is due to factors separate
from the ordering of triple patterns (e.g. server load, network traffic). Query 4 contains no
exceptionally expensive patterns, and there is no fan-out effect for any path of query traversal.

69



3.7. Evaluation

For example, there are only 2 Alzheimer’s-associated proteins in UniProt and only 2 known
targets for the drug Varenicline. It is more efficient to solve the query by searching the protein-
protein interactions of the Varenicline targets, as there is only 1 known interaction, whereas
there are 58 known interactions for the Alzheimer’s proteins. However, there are relatively few
orderings that would cause BASIC to use the latter strategy, and none of those orderings were
included in the randomly generated test orderings.

Results for Query 6 (Fig. 3.8c)

The results graph for Query 6 shows similar patterns to the results graph for Query 4 (Fig. 3.8a).
Here again, there are 3 distinct query times (∼ 140 seconds, ∼ 1300 seconds, and timeout), and
the performance of each query depends on the handling of a single pattern:

?protein sadi:isParticipantIn GO:0006915

Similarly to rdf:type in Query 4, the sadi:isParticipantIn predicate is unusually expen-
sive to resolve in the reverse direction. Using GO:0006915 (apoptosis) as input, resolving
sadi:isParticipantIn in the reverse direction requires approximately 20 minutes and produces
40,475 bindings for the ?protein variable. It makes intuitive sense that this strategy would
be expensive, because there may be a large number of proteins involved in a given biological
process, particularly when proteins from all species are considered (as is the case here). In
addition, retrieving the proteins associated with a given Gene Ontology term is more computa-
tionally intensive than a typical database lookup, because the results must include proteins that
are annotated with any subterm (i.e. descendant term) of the target GO term. While these
factors have a significant effect on query time, the factor that has the largest effect is the num-
ber of services that map to sadi:hasParticipant (the inverse predicate of sadi:isParticipantIn).
In total, there are 27 services which map GO Terms to various types of database identifiers15

(GenBank, FlyBase, etc.), and the query engine invokes each of these services sequentially.
As in Query 4, enabling GREEDY prevents query timeouts (e.g. Test Ordering 1 of Fig. 3.8c)

that result from resolving a pattern with a large number of inputs. However, without training,
GREEDY can also worsen query times in cases where the ordering of triple patterns is already
efficient (e.g. Test Ordering 3 of Fig. 3.8c). Figs. 3.11a to 3.11c show the steps for Query
Ordering 1 that lead to a timeout under BASIC (> 60 minutes), improved performance under
GREEDY (∼ 20 minutes), and best performance under GREEDY with 2 training runs (∼ 2
minutes), respectively.

15At the time of the experiment, many of the GO services (24 of 27) were not working correctly and were
returning empty result sets. This did not affect the solutions for the query, as only one of the 27 services was
actually relevant (GO⇒ UniProt) in the overall context of the query. If all of the GO services had been working,
the resolution of the sadi:isParticipantIn pattern would have been even more expensive.
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?protein

sadi:isHomologousTo sadi:isParticipantIn sadi:hasMotif

UniProt:Q93038 GO:0006915 ?motif

1
1,197,564ms

(40,475 bindings)

2

 TIMEOUT

(a) The steps followed by BASIC, in an attempt to answer Test Ordering 1 of
Query 6 (Appendix B.2.3). The query times out after 60 minutes.

?protein

sadi:isHomologousTo sadi:isParticipantIn sadi:hasMotif

UniProt:Q93038 GO:0006915 ?motif

1
1,189,735ms

2

(Step 1: 40,475 bindings,
 Step 2: 23 bindings)

56,286ms 27,231ms

(4 bindings)

3

(b) The steps followed by GREEDY with 0 training runs, in order to answer
Test Ordering 1 of Query 6 (Appendix B.2.3).

?protein

sadi:isHomologousTo sadi:isParticipantIn sadi:hasMotif

UniProt:Q93038 GO:0006915 ?motif

2
42,767ms

1

(Step 1: 475 bindings,
 Step 2: 43 bindings)

63,426ms 22,709ms

(4 bindings)

3

(c) The steps followed by GREEDY with 2 training runs, in order to answer
Test Ordering 1 of Query 6 (Appendix B.2.3).

Figure 3.11: Execution plans for Query 6 under BASIC, untrained GREEDY, and trained
GREEDY. Descriptions of the execution steps for each plan are given in Tables 3.8 to 3.10,
respectively.
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Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve proteins an-
notated with apop-
tosis or one of its
subterms

(?protein,
sadi:isParticipantIn,
GO:0006915)

1,197,564 ?protein =>
40,475 bindings

2 Retrieve homologs
for each protein from
Step 1

(?protein,
sadi:isHomologousTo,
UniProt:Q93038)

TIMEOUT N/A

Table 3.8: Description of execution steps for Query 6 under BASIC, as depicted in Fig. 3.11a

Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve proteins an-
notated with apop-
tosis or one of its
subterms

(?protein,
sadi:isParticipantIn,
GO:0006915)

1189735 ?protein =>
40,475 bindings

2 Retrieve homologs
of UniProt:Q93038
(lymphocyte asso-
ciated receptor of
death)

(?protein,
sadi:isHomologousTo,
UniProt:Q93038)

56286 ?protein => 23
bindings

3 For each protein
from Step 2, retrieve
the associated motifs

(?protein,
sadi:hasMotif,
?motif)

27231 ?protein => 23
bindings
motif => 4 bind-
ings

Table 3.9: Description of execution steps for Query 6 under untrained GREEDY, as depicted
in Fig. 3.11b

Query
Step

Description Triple Pattern Time (ms) Variable Bindings
Assigned

1 Retrieve homologs
of UniProt:Q93038
(lymphocyte asso-
ciated receptor of
death)

(?protein,
sadi:isHomologousTo,
UniProt:Q93038)

63,426 ?protein => 475
bindings

2 For each homolog
from Step 1, deter-
mine if it partici-
pates in apoptosis

(?protein,
sadi:isParticipantIn,
GO:0006915)

42,767 ?protein => 43
bindings

3 For each apoptosis
protein from Step 2,
retrieve the associ-
ated motifs

(?protein,
sadi:hasMotif,
?motif)

22,709 ?protein => 43
bindings
?motif => 4
bindings

Table 3.10: Description of execution steps for Query 6 under trained GREEDY, as depicted in
Fig. 3.11c 72
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3.8 Future Work

There are several areas where significant performance improvements to SHARE could be made,
which are separate from the issue of ordering joins. Requests to different services are currently
issued sequentially, whereas in many cases it is possible to issue requests in parallel. In addition,
there are cases where calls to irrelevant services could be avoided, by taking the input and output
datatypes of the services into account. For instance, the resolution of the sadi:isParticipantIn
predicate in Query 6 leads to the invocation of 27 services which map GO terms to various
types of database identifiers. However, only one of the GO services (GO⇒ UniProt) is actually
relevant in the overall context of the query. By matching the input/output datatypes of the
different triple patterns, it should be possible to eliminate such unnecessary service calls. An-
other possible area for improvement is the pipelining of data. Most database systems pipeline
data between query operators, in order to minimize the time-to-first-result, whereas SHARE
determines the full solution set prior to displaying results. The fact that pipelining is not used
in SHARE allows the joins to be freely reordered at any point in the query, which has been
demonstrated in the experiment to be a significant advantage. However, it is possible that some
compromise can be reached between pipelining and flexibility in reordering; for example, this
same issue has been dealt with in the Tukwila system [166] by constructing query plans from
pipelined “query fragments”.

3.9 Conclusion

The unique characteristics of the GREEDY algorithm are that: (1) it is adaptive, and (2) it
can learn from previous queries. The evaluation of the optimizer demonstrates that while the
GREEDY heuristic is successful in avoiding the worst execution plans, training is often necessary
to get the best performance. In particular, the training aspect of the algorithm is important
whenever there is a predicate that is significantly more expensive than average, given the same
number of inputs. In the experiment, the two expensive predicates were rdf:type (when resolved
in the reverse direction) and sadi:isParticipantIn (when resolved in the reverse direction). It
is reasonable to handle rdf:type as a special case because it is part of the RDF standard, and
the conventions surrounding its use are well established. However, there are likely to be many
other types of relationships in the domain of bioinformatics, such as sadi:isParticipantIn, that
must be treated specially in order to answer queries efficiently. For example, any predicates
specifying broad criteria such as a target tissue or cellular location will likely have a high cost
when resolved in the reverse direction. The training aspect of GREEDY provides a uniform and
automatic way of dealing with such predicates that avoids manually coding special cases.

The experiment demonstrates that join ordering is an important factor for the performance
of distributed queries. However, for queries that contain only a single constraint (i.e. only one
triple pattern with a constant in the subject/object position), there is only one possible ordering
of triple patterns, and thus the optimizer cannot produce any improvement. One of six queries
in the evaluation was of this type (Query 3). At this point, it is difficult to say how common
such queries will be under real usage of the system. A more ideal evaluation of the optimizer
would sample real user queries from the logs of the SHARE demo, if/when the SHARE system
is more widely used.

One interesting problem that is not addressed by GREEDY is the question of which query
plan produces the most complete result set. Although the result sets for all queries in the
experiment were verified to be the same, regardless of the execution plan, this is not guaranteed
to be true for all SHARE queries in general. For example, cross references between biology
databases are typically maintained by hand, and so the set of relationships between Database A
and Database B might differ depending on which database is queried (i.e. which direction the
predicate is resolved in). One idea for estimating the relative “completeness” of a predicate in the
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forward and reverse directions would be to use a sampling technique. The system could sample
predicate outputs from previous user queries and try to map them back to their original inputs,
by resolving the same predicate in the opposite direction. In this way, a relative completeness
score could be computed for the forward and reverse directions of each predicate. The scores
could then be used to achieve a tradeoff between efficiency and completeness.

3.10 Source Code

The source code for SHARE is publicly available at http://sadi.googlecode.com, and may
be found in the sadi.share folder (i.e. http://sadi.googlecode.com/svn/trunk/sadi.share).
In order to successfully build the project, the user must also check out the sadi.common
and sadi.client projects. (The project build is automated with Maven.) The main proce-
dure for the GREEDY algorithm is implemented in the executeQueryAdaptive method of
the SHAREKnowledgeBase class (ca.wilkinsonlab.sadi.share.SHAREKnowledgeBase) and the
logic for comparing the costs of query patterns is implemented in QueryPatternCompara-
tor, which is an inner class of SHAREKnowledgeBase. The code for recording, comput-
ing, and retrieving statistics about predicates may be found in the PredicateStatsDB class
(ca.wilkinsonlab.sadi.stats.PredicateStatsDB).
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Chapter 4

Conclusion

In the field of bioinformatics, making combined use of data sets and software packages often re-
quires custom scripting work to reconcile incompatible formats, schemas, and interfaces. These
incompatibilities exist because the various databases and programs are developed independently
by different research laboratories, and without reference to a shared set of standards. Unfortu-
nately, achieving standardization within the realm of bioinformatics is a daunting task due to
the numerous, interrelated types of data (e.g. sequences, sequence annotations, molecular struc-
tures, chemical equations, molecular interactions, metabolic pathways, controlled vocabulary
annotations) and analyses (e.g. gene prediction, multiple sequence alignment, protein structure
prediction, subcellular location prediction, motif identification, phylogenetic tree construction)
that exist. However, data/software integration work is mundane, time-consuming, and error
prone, and it impedes scientific studies. The potential benefits of automated data integration in
bioinformatics are widely recognized, as evidenced by the large number of research projects that
have been devoted to solving the problem (e.g. [57, 118, 119, 132, 141, 145, 168, 169, 174, 175]).

In this thesis, we have described a distributed query system called SHARE, which aims to ad-
dress the data and software integration problems that are currently prevalent in bioinformatics.
However, a number of distributed query systems have already been developed for bioinformatics
prior to SHARE, such as Kleisli [141], TAMBIS [168], BioMART [119], BioFlow [145], and
BioMediator [174]. Moreover, all of these systems (including SHARE) are similar in their de-
sign; in each case, the system answers user queries by decomposing them into requests against
data sources that support a common “wrapper” interface, as per the mediator architecture de-
picted in Fig. 1.7. The technical feasibility of these systems has been demonstrated repeatedly;
however, none of the frameworks have been a success in the sense that they are widely used in
bioinformatics work. In addition to the technical challenges, there is also a social aspect to the
problem of integration that must be addressed. In particular, there are two important questions
that need to be answered for any integration framework:

1. What incentive do data and software providers have for participating?

2. Will the framework last?

The main characteristic that distinguishes SHARE from other distributed query systems is
that it is built using Semantic Web standards, and this difference has relevance for both of the
questions above. Data and software providers that implement SADI services will not only be
compatible with SHARE, but will also be compatible with a growing collection of tools [176] (e.g.
triple stores and data browsers) and data sources (e.g. Bio2RDF [90], LODD [91], UniProt [11],
Linked Life Data [177]) that are specifically designed to support data integration tasks. Further,
SHARE has no special requirements for the encoding of RDF data that is consumed/generated
by the data sources. Thus, providers may encode their RDF using any ontology that they wish,
and the data can readily be used outside the context of SHARE.

While the use of Semantic Web technologies has benefits for data providers, the most signif-
icant benefits are related to the implementation of the framework itself. Typically, the creators
of a mediator system must develop and maintain a mediated schema, and the wrappers for
participating data sources must implement mappings to and from that schema. If the wrappers
are implemented on the mediator side, as has been the case for many bioinformatics systems
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(e.g. Kleisli, TAMBIS, BioFlow, and BioMediator), this poses an additional burden of mainte-
nance. In either case, the success of the framework depends upon the continuing diligence of
its creators. Thus, it is a important advantage that SHARE requires no mediated schema or
mappings. This is a unique consequence of using RDF as the medium for data exchange. Triple
stores are capable of storing arbitrary graph structures, and thus when the system aggregates
data during a query, there are no restrictions on the structure of the RDF data that is returned
from each source. Of course, this unconstrained approach also has disadvantages. The effective
“master” schema for SHARE is determined collectively by the data sources, and is likely to
be far more chaotic than a centrally curated system. Moreover, meaningful integration will
only be possible in cases where data sources use the shared identifiers for common entities and
predicates.

The main contribution of this thesis is GREEDY, the query evaluation algorithm for SHARE
that is described in Chapter 3. GREEDY differs significantly from the standard (i.e. System R
style [160]) procedure that is used to process queries in relational databases, in order to address
additional challenges that are present when answering queries across distributed resources. One
of the main difficulties under the distributed scenario is that statistics about the data sources
are usually not available. In a relational database, statistics such as the size of a table and the
number of keys in an index are essential for formulating efficient query plans. The GREEDY
algorithm offers two complimentary solutions for this problem. First, GREEDY employs an
adaptive approach to query planning where one join is executed at a time, and future joins are
selected based on the result sizes of previous joins. Second, GREEDY learns statistics about
predicates as it executes a query, in order to improve the performance of future queries. One of
the advantages of the GREEDY approach is that it is able to optimize queries over web services,
rather than databases with a specific type of query interface16 As a result, the system is capable
of learning statistics about arbitrary software. This is particularly valuable in the bioinformatics
domain, where specialized software tools often play an essential role in data analyses, and where
the available programs are just as diverse as the available data.

While SHARE is a promising prototype, there are number areas where further work is needed
before it is ready for real use by bioinformaticians. One of the most important pieces of missing
functionality is provenance tracking. Bioinformaticians must be able to review a “proof” of
each solution which shows the chain of supporting facts (i.e. triples), and the particular services
that asserted each of those facts. Another requirement for real world use will be fine-grained
configuration of analytical tools. For example, if a “homolog” predicate is resolved by a BLAST
service, users must be able to configure the parameters for the BLAST service, such as the
probability cutoff, the seed size, the similarity matrix, and so on. However, it is not clear how
to best support such configuration through the query interface. Moreover, it runs contrary to
the basic purpose of SHARE, which is to enable users to ask questions without needing to know
the locations and interfaces of the specific services that are used to answer them. Thus, SHARE
may be best suited for simple, ad hoc queries such as “Which biological pathways involve both
protein A and protein B?” or “Which proteins are most frequently targeted by breast cancer
drugs?”. In order to accomplish more sophisticated analyses (e.g. building a phylogenetic tree),
a workflow composition tool such as Taverna [123] is more suitable. One potential method to
combine the strengths of SHARE and Taverna would be to use SHARE for constructing template
workflows, and Taverna for fine-grained configuration. Yet another area for further work will
be developing user interfaces for SHARE. While the query interface to SHARE is powerful, it
requires familiarity with the SPARQL query language, and is not well suited to exploration of
the data. One promising avenue for obtaining new interfaces would be to adapt existing tools
for exploring RDF data, such as RDF browsers [178, 179], graph browsers [180, 181], and faceted
browsers [182, 183], to use SHARE as the underlying data source.

16Recall from Section 2.3.2 that SPARQL endpoints are modelled as SADI services within the query engine.
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Appendix A

Supporting Material for
Chapter 2

A.1 An Example RDF Service Description for a SADI
Service, Obtained by Performing an HTTP GET on
the URL http://sadiframework.org/examples/uniprot2pubmed

<rd f :RDF
xmlns : rd f=” http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : mygrid=” http ://www. mygrid . org . uk/mygrid−moby−s e r v i c e#”>

<mygrid : s e r v i c e D e s c r i p t i o n rd f : about=” http :// sadiframework . org / examples /
uniprot2pubmed”>

<mygrid : hasServ i ceDesc r ipt ionText>Returns PubMed i d s a s s o c i a t e d with a
UniProt record .</mygrid : hasServ i ceDesc r ipt ionText>

<mygrid : hasServiceNameText rd f : datatype=” http ://www. w3 . org /2001/XMLSchema#
s t r i n g ”

>UniProt−to−Pubmed</mygrid : hasServiceNameText>
<mygrid : hasOperation>

<mygrid : opera t i on rd f : about=” http :// sadiframework . org / examples /
uniprot2pubmed#operat i on ”>

<mygrid : outputParameter>
<mygrid : parameter rd f : about=” http :// sadiframework . org / examples /

uniprot2pubmed#output ”>
<mygrid : objectType rd f : r e s ou r c e=” http :// sadiframework . org / examples /

uniprot2pubmed . owl#AnnotatedUniProtRecord”/>
</mygrid : parameter>

</mygrid : outputParameter>
<mygrid : inputParameter>

<mygrid : parameter rd f : about=” http :// sadiframework . org / examples /
uniprot2pubmed#input ”>

<mygrid : objectType rd f : r e s ou r c e=” http :// pur l . o c l c . org /SADI/LSRN/
UniProt Record ”/>

</mygrid : parameter>
</mygrid : inputParameter>

</mygrid : operat ion>
</mygrid : hasOperation>

</mygrid : s e r v i c e D e s c r i p t i o n >
</rd f :RDF>
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Appendix B

Supporting Material for
Chapter 3

B.1 Variants of Training Queries Used to Evaluate the
GREEDY Optimization Algorithm

B.1.1 Variants of Query 1

Variant 0) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX uniprot : <http :// b i o 2 r d f . org / un iprot :>

SELECT ? s u b s t i t u t i o n ? s t a r t ?end ? dbCrossRef
WHERE
{ uniprot : P01344 core : annotat ion ? annotat ion .

? annotat ion core : range ? range .
? range core : begin ? s t a r t .
? range core : end ?end .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
? annotat ion r d f s : s eeAl so ? dbCrossRef .
? annotat ion core : s u b s t i t u t i o n ? s u b s t i t u t i o n

}

Variant 1) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX uniprot : <http :// b i o 2 r d f . org / un iprot :>

SELECT ? s u b s t i t u t i o n ? s t a r t ?end ? dbCrossRef
WHERE
{ ? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .

? annotat ion r d f s : s eeAl so ? dbCrossRef .
un iprot : Q9P126 core : annotat ion ? annotat ion .
? annotat ion core : s u b s t i t u t i o n ? s u b s t i t u t i o n .
? annotat ion core : range ? range .
? range core : begin ? s t a r t .
? range core : end ?end

}

Variant 2) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>
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PREFIX uniprot : <http :// b i o 2 r d f . org / un iprot :>

SELECT ? s u b s t i t u t i o n ? s t a r t ?end ? dbCrossRef
WHERE
{ uniprot :Q9H6R6 core : annotat ion ? annotat ion .

? annotat ion core : range ? range .
? annotat ion r d f s : s eeAl so ? dbCrossRef .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
? range core : end ?end .
? annotat ion core : s u b s t i t u t i o n ? s u b s t i t u t i o n .
? range core : begin ? s t a r t

}

Variant 3) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX uniprot : <http :// b i o 2 r d f . org / un iprot :>

SELECT ? s u b s t i t u t i o n ? s t a r t ?end ? dbCrossRef
WHERE
{ uniprot : Q9H116 core : annotat ion ? annotat ion .

? annotat ion core : range ? range .
? range core : begin ? s t a r t .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
? annotat ion core : s u b s t i t u t i o n ? s u b s t i t u t i o n .
? range core : end ?end .
? annotat ion r d f s : s eeAl so ? dbCrossRef

}

B.1.2 Variants of Query 3

Variant 0) :

PREFIX diseasome : <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome / r e sou r c e / diseasome
/>

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX b i o 2 r d f : <http :// b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? gene ? d i s e a s e ? diseaseName
WHERE
{ drug : DB01038 drugbank : t a r g e t ? t a r g e t P r o t e i n .

? t a r g e t P r o t e i n drugbank : hgncId ? gene .
? gene b i o 2 r d f :xOMIM ?omim .
? d i s e a s e diseasome : omim ?omim .
? d i s e a s e r d f s : l a b e l ? diseaseName

}

Variant 1) :

PREFIX diseasome : <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome / r e sou r c e / diseasome
/>

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX b i o 2 r d f : <http :// b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? gene ? d i s e a s e ? diseaseName
WHERE
{ drug : DB00161 drugbank : t a r g e t ? t a r g e t P r o t e i n .

? t a r g e t P r o t e i n drugbank : hgncId ? gene .
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? gene b i o 2 r d f :xOMIM ?omim .
? d i s e a s e diseasome : omim ?omim .
? d i s e a s e r d f s : l a b e l ? diseaseName

}

Variant 2) :

PREFIX diseasome : <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome / r e sou r c e / diseasome
/>

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX b i o 2 r d f : <http :// b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? gene ? d i s e a s e ? diseaseName
WHERE
{ drug : DB03881 drugbank : t a r g e t ? t a r g e t P r o t e i n .

? t a r g e t P r o t e i n drugbank : hgncId ? gene .
? gene b i o 2 r d f :xOMIM ?omim .
? d i s e a s e diseasome : omim ?omim .
? d i s e a s e r d f s : l a b e l ? diseaseName

}

Variant 3) :

PREFIX diseasome : <http ://www4. wiwiss . fu−b e r l i n . de/ diseasome / r e sou r c e / diseasome
/>

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX b i o 2 r d f : <http :// b i o 2 r d f . org /ns/ b i o 2 r d f#>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? gene ? d i s e a s e ? diseaseName
WHERE
{ drug : DB04896 drugbank : t a r g e t ? t a r g e t P r o t e i n .

? t a r g e t P r o t e i n drugbank : hgncId ? gene .
? gene b i o 2 r d f :xOMIM ?omim .
? d i s e a s e diseasome : omim ?omim .
? d i s e a s e r d f s : l a b e l ? diseaseName

}

B.1.3 Variants of Query 5

Variant 0) :

PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX s s : <http :// s emant i c s c i ence . org / r e sou r c e/>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT ? pro t e in ?omim
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE {

? p ro t e in sad i : hasFunction GO:0004872 . # ” r e c ep to r a c t i v i t y ”
? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0007595 . # ” l a c t a t i o n ”
? p ro t e in sad i : i sCausa l lyRelatedWith ?omim .

}

Variant 1) :

PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX s s : <http :// s emant i c s c i ence . org / r e sou r c e/>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT ? pro t e in ?omim
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
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WHERE
{ ? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0048588 .

? p ro t e in sad i : i sCausa l lyRelatedWith ?omim .
? p ro t e in sad i : hasFunction GO:0004872

}

Variant 2) :

PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX s s : <http :// s emant i c s c i ence . org / r e sou r c e/>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT ? pro t e in ?omim
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0007283 .

? p ro t e in sad i : i sCausa l lyRelatedWith ?omim .
? p ro t e in sad i : hasFunction GO:0004872

}

Variant 3) :

PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX s s : <http :// s emant i c s c i ence . org / r e sou r c e/>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT ? pro t e in ?omim
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : hasFunction GO:0004872 .

GO:0006260 sad i : ha sPar t i c ipant ? p ro t e in .
? p ro t e in sad i : i sCausa l lyRelatedWith ?omim

}

B.2 Randomly Generated Orderings for Test Queries
Used to Evaluate the GREEDY Optimization
Algorithm

B.2.1 Orderings for Query 2

Ordering 0) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE
{ probese t :53701 a t a f f y : xSwissProt ? prote inID .

? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .
? prote inID core : annotat ion ? annotat ion .
? annotat ion r d f s : s eeAl so ?snpID .
probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent .
probese t :53701 a t a f f y : xEnsembl ? geneID

}

Ordering 1) :
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PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE
{ probese t :53701 a t a f f y : xSwissProt ? prote inID .

? prote inID core : annotat ion ? annotat ion .
probese t :53701 a t a f f y : xEnsembl ? geneID .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
? annotat ion r d f s : s eeAl so ?snpID .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .
probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent

}

Ordering 2) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE
{ probese t :53701 a t a f f y : xSwissProt ? prote inID .

? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
? prote inID core : annotat ion ? annotat ion .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .
? annotat ion r d f s : s eeAl so ?snpID .
probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent .
probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
probese t :53701 a t a f f y : xEnsembl ? geneID

}

Ordering 3) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE
{ probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent .

probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
probese t :53701 a t a f f y : xEnsembl ? geneID .
? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .
? annotat ion r d f s : s eeAl so ?snpID .
probese t :53701 a t a f f y : xSwissProt ? prote inID .
? prote inID core : annotat ion ? annotat ion

}

Ordering 4) :

PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
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PREFIX core2 : <http :// b i o 2 r d f . org / core :>
PREFIX a f f y : <http :// b i o 2 r d f . org /ns/ a f f ymet r i x#>
PREFIX probese t : <http :// b i o 2 r d f . org / a f f ymet r i x :>
PREFIX rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>
PREFIX core : <http :// pur l . un iprot . org / core/>

SELECT ? geneID ? prote inID ?snpID ? goProcess ?goComponent ? goFunction
WHERE
{ ? annotat ion rd f : type core2 : Natura l Var iant Annotat ion .

? prote inID core : annotat ion ? annotat ion .
probese t :53701 a t a f f y : xGene Ontology Molecular Funct ion ? goFunction .
probese t :53701 a t a f f y : xGene Ontology Cellular Component ?goComponent .
? annotat ion r d f s : s eeAl so ?snpID .
probese t :53701 a t a f f y : xGene Onto logy Bio log i ca l Proce s s ? goProcess .
probese t :53701 a t a f f y : xEnsembl ? geneID .
probese t :53701 a t a f f y : xSwissProt ? prote inID

}

B.2.2 Orderings for Query 4

Ordering 0) :

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE
{ ? a l z P r o t e i n r d f s : s eeAl so omim:104300 .

drug : DB01273 drugbank : t a r g e t ? t a r g e t .
? a l z P r o t e i n dc : t i t l e ? alzProteinName .
? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .
? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t .
? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n

}

Ordering 1) :

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE
{ drug : DB01273 drugbank : t a r g e t ? t a r g e t .

? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .
? a l z P r o t e i n r d f s : s eeAl so omim:104300 .
? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n .
? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t .
? a l z P r o t e i n dc : t i t l e ? alzProteinName

}

Ordering 2) :

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
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PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE
{ drug : DB01273 drugbank : t a r g e t ? t a r g e t .

? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .
? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n .
? a l z P r o t e i n r d f s : s eeAl so omim:104300 .
? a l z P r o t e i n dc : t i t l e ? alzProteinName .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t .
? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n

}

Ordering 3) :

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE
{ ? a l z P r o t e i n r d f s : s eeAl so omim:104300 .

? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t .
? a l z P r o t e i n dc : t i t l e ? alzProteinName .
drug : DB01273 drugbank : t a r g e t ? t a r g e t .
? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .
? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n

}

Ordering 4) :

PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX r d f s : <http ://www. w3 . org /2000/01/ rdf−schema#>
PREFIX drugbank : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e /drugbank/>
PREFIX owl : <http ://www. w3 . org /2002/07/ owl#>
PREFIX core : <http :// pur l . un iprot . org / core/>
PREFIX omim : <http :// b i o 2 r d f . org /mim:>
PREFIX drug : <http ://www4. wiwiss . fu−b e r l i n . de/drugbank/ r e sou r c e / drugs/>

SELECT ? t a r g e t P r o t e i n ? a l z P r o t e i n ? alzProteinName
WHERE
{ ? a l z P r o t e i n r d f s : s eeAl so omim:104300 .

? a l z P r o t e i n dc : t i t l e ? alzProteinName .
drug : DB01273 drugbank : t a r g e t ? t a r g e t .
? t a r g e t drugbank : sw i s s p r o t I d ? t a r g e t P r o t e i n .
? t a r g e t P r o t e i n core : i n t e r a c t i o n ? i n t e r a c t i o n .
? p a r t i c i p a n t owl : sameAs ? a l z P r o t e i n .
? i n t e r a c t i o n core : p a r t i c i p a n t ? p a r t i c i p a n t

}
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B.2.3 Orderings for Query 6

Ordering 0) :

PREFIX UniProt : <http :// l s r n . org /UniProt :>
PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT DISTINCT ? moti f
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : isHomologousTo UniProt : Q93038 .

GO:0006915 sad i : ha sPar t i c ipant ? p ro t e in .
? p ro t e in sad i : hasMoti f ? mot i f

}

Ordering 1) :

PREFIX UniProt : <http :// l s r n . org /UniProt :>
PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT DISTINCT ? moti f
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0006915 .

? p ro t e in sad i : isHomologousTo UniProt : Q93038 .
? p ro t e in sad i : hasMoti f ? mot i f

}

Ordering 2) :

PREFIX UniProt : <http :// l s r n . org /UniProt :>
PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT DISTINCT ? moti f
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : isHomologousTo UniProt : Q93038 .

? p ro t e in sad i : hasMoti f ? mot i f .
GO:0006915 sad i : ha sPar t i c ipant ? p ro t e in

}

Ordering 3) :

PREFIX UniProt : <http :// l s r n . org /UniProt :>
PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT DISTINCT ? moti f
FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : isHomologousTo UniProt : Q93038 .

? p ro t e in sad i : hasMoti f ? mot i f .
? p ro t e in sad i : i s P a r t i c i p a n t I n GO:0006915

}

Ordering 4) :

PREFIX UniProt : <http :// l s r n . org /UniProt :>
PREFIX sad i : <http :// sadiframework . org / o n t o l o g i e s / p r o p e r t i e s . owl#>
PREFIX GO: <http :// l s r n . org /GO:>

SELECT DISTINCT ? moti f
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FROM <http :// dev . b i o r d f . net /˜benv/ p r o p e r t i e s . owl>
WHERE
{ ? p ro t e in sad i : isHomologousTo UniProt : Q93038 .

GO:0006915 sad i : ha sPar t i c ipant ? p ro t e in .
? p ro t e in sad i : hasMoti f ? mot i f

}
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