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Abstract

Vision researchers have created an incredible range of algorithms and sys-
tems to detect, track, recognize, and contextualize objects in a scene, using
a myriad of internal models to represent their problem and solution. How-
ever in order to effectively make use of these algorithms sophisticated expert
knowledge is required to understand and properly utilize the internal mod-
els used. Researchers must understand the vision task and the conditions
surrounding their problem, and select an appropriate algorithm which will
solve the problem most effectively under these constraints.

Within this thesis we present a new taxonomy for the computer vision
problem of image registration which organizes the field based on the con-
ditions surrounding the problem. From this taxonomy we derive a model
which can be used to describe both the conditions surrounding the problem,
as well as the range of acceptable solutions. We then use this model to cre-
ate testbenches which can directly compare image registration algorithms
under specific conditions. A direct evaluation of the problem space allows
us to interpret models, automatically selecting appropriate algorithms based
on how well they perform on similar problems. This selection of an algo-
rithm based on the conditions of the problem mimics the expert knowledge
of vision researchers without requiring any knowledge of image registration
algorithms. Further, the model identifies the dimensions of the problem
space, allowing us to automatically detect different conditions.

Extending beyond image registration, we propose a general framework of
vision designed to make all vision tasks more accessible by providing a model
of vision which allows for the description of what to do without requiring
the specification of how the problem is solved. The description of the vision
problem itself is represented in such a way that even non-vision experts can
understand making the algorithms much more accessible and usable outside
of the vision research community.
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Preface

Appendix B which formally defines a general model for the field of computer
vision was developed primarily by Dr. Gregor Miller, with help from the
author, Dr. Sidney Fels and Dr. Daesik Jang. Appendix A which attempts
to formally define the problem of image registration was adapted from this
general model by the author with help from Dr. Miller.

Similarly, the representation, conditions, and expression of face detection
presented in Chapter 8 were adapted from a model created by Dr. Daesik
Jang, with support from the author, Dr. Gregor Miller, and Dr. Sidney
Fels.

Publications related to this thesis include: [74] (Chapter 4), [72, 73]
(Chapter 7), and [40, 64, 65, 90] (Chapter 8)
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Chapter 1

Introduction

“The eye sees only what the mind is prepared to comprehend.”

– Henri Bergson

Vision is an innate part of the human experience, crucial to our ability
to comprehend the world around us. One month after birth our eyes begin
to focus on objects around us. Within three months we can recognize our
parents and siblings. Vision provides a significant source of the information
used by our brain to create an internal model, or representation, of the world
around us. In order to share our internal model with another, we must
come to an agreement about the different aspects of our particular model
or representation. This consistency of representation across internal models
is essential in order to facilitate the meaningful sharing of information. Our
sharing of models with one another most often takes the form of a language.

Computer Vision is the study of how computers and machines see and
understand the world. This ‘understanding’ is similarly achieved: by cre-
ating models or representations of a scene. Vision researchers have created
an incredible range of algorithms and systems to detect, track, recognize,
and contextualize objects in a scene, using a myriad of internal models to
represent their problem and solution. In order to effectively make use of
these algorithms sophisticated expert knowledge is required to understand,
and properly utilize, the internal models used. Researchers must understand
the vision task and the conditions surrounding their problem, and select an
appropriate algorithm which will solve the problem most effectively under
these constraints.

In part, this expert knowledge is required because the predominant
model surrounding computer vision problems is algorithm centric, describing
and organizing vision problems according to how an algorithm solves them.
While this type of taxonomy provides an excellent basis for the comparison
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Chapter 1. Introduction

amongst researchers of different methods, it does not directly address the
conditions surrounding the problems themselves. Information regarding the
set of conditions a given algorithm performs best under is difficult to convey
without an agreed upon model which represents the problem space itself.
Conversely, knowledge of which algorithm best suits a particular set of con-
ditions in the problem space is also difficult to determine without a model to
represent those conditions by. For most problem domains computer vision
is without a unifying model or representation from which to describe the
conditions of the problem and the range of desired solutions.

This thesis presents a new taxonomy for image registration based on
the common conditions surrounding the problem. From this taxonomy we
derive a model which can be used to describe both the common conditions
surrounding the problem, as well as the range of acceptable solutions. In ad-
dition to the reasons mentioned above, descriptive methodologies are prefer-
ential to purely algorithmic representations in a number of ways. First, they
give non-experts access to advanced image processing techniques without
requiring specific knowledge of the underlying algorithms that implement
them. Second, they allow improved algorithms to seamlessly replace older
implementations providing those using a problem centric software library
with an instantaneous upgrade path, without reprogramming or integrating
a new implementation. Finally, if as often happens the conditions around
the problem change, the programmer can automatically select a more ap-
propriate algorithm simply by changing their description.

Extending beyond image registration, our proposed general framework
of vision is designed to make all vision tasks more accessible to developers,
by providing a model of vision which allows for the description of what the
developer wants to achieve, without requiring the specification of how the
problem is solved. In order to provide this accessibility a common represen-
tation for the significant conditions surrounding a given vision problem must
be established, and the solution space must be well defined. This is a diffi-
cult task, and requires an in depth understanding of the field, however once
established, vision researchers who are developing new algorithms see sig-
nificant benefits to the widespread understanding of this knowledge. First,
they can identify and represent the conditions under which their algorithms
perform well, allowing for much more robust comparison of algorithms. The
existence of a problem space which models all of the possible conditions
under which a vision task may be performed allows for the creation of test
sets which span well defined problem conditions, allowing for a more direct
comparison of performance. Second, by examining the problem space and
the existing algorithms that support it researchers can identify niches within
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1.1. Understanding Image Registration

Figure 1.1: Input images taken from a panorama, and the corresponding
rendered image derived by stitching the aligned pair using a feature based
method.

the problem space which are useful but do not have solutions. Finally, the
description of the vision problem itself is represented in such a way that
even non-vision experts can understand making the algorithms much more
accessible and usable outside of the vision research community.

Reorganizing computer vision in this way requires a deep understand-
ing of individual vision problems. Within this thesis we have focused on
image registration problems, providing a starting point for our proposed de-
scriptive language model of vision, OpenVL. Image registration was chosen
because it is a mature problem with a wide range of solutions that work well
under specific conditions. This exploration provides a pathway for further
development of our language through expansion into other areas of vision.

1.1 Understanding Image Registration

Image registration is the process of calculating spatial transforms which align
a set of images to a common observational frame of reference, often one of
the images in the set. Registration is a key step in any image analysis or
understanding task where different sources of data must be combined. It
is a critical component of computational photography [2], remote sensing
[16, 49], automated manufacturing processes, and medical image processing
[55, 80]. More recently it has been used to create navigable models of a
scene from a database of photographs [91], to remove unwanted objects
from overlapping images, and in video stabalization. Figure 1.1 shows a
pair of images, and the corresponding image that can be created by properly
registering them.

Seminal surveys of registration by Brown [14], Zitová and Flusser ,[103]
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and most recently by Szeliski [93] all divide the field algorithmically, fo-
cussing on how registration is accomplished. While this approach provides
a good basis for classifying and comparing algorithmic similarity, it does
little to illuminate the problem of registration itself, particularly to pro-
grammers who are unfamiliar with specific registration techniques and their
applicability.

When the images vary by more than just alignment the proper selec-
tion of appropriate algorithm is critical in calculating the correct spatial
transform. Figure 1.2 introduces some common types of image registration
problems: panoramas, focal stacks, high-dynamic-range images, and finally
super-resolution images. Both focal stacks and high-dynamic-range images
vary in parameters other than simply alignment.

Several important image registration techniques and strategies have been
developed since Zitová and Flusser first published the most recent survey.
The increased computational power of the past decade has made automatic
methods the norm, and under optimal conditions modern algorithms are
able to align image pairs more accurately than can be detected by the hu-
man eye [5]. In Chapter 2 we organize these new methods according to the
traditional algorithm centric taxonomy, providing an up to date survey of
image registration that forms the basis for our understanding of the field.
This algorithm-centric taxonomy reflects the current means by which re-
searchers must determine the appropriate registration algorithm for their
particular problem.

From this understanding of algorithms, a new taxonomy is proposed
in Chapter 3, which divides the field of image registration into taxa based
on the conditions of the problem being solved. By rethinking the problem
in this way we change the abstraction from one requiring knowledge and
expertise about particular algorithms, both in how they work and when
to use them, to one requiring expertise about the registration problem it-
self. A significant advantage of this problem centric methodology is that
the conditions surrounding the image registration problem rarely change,
whereas new algorithms for image registration are constantly being devel-
oped. This can cause problems for non-experts in determining which of
these algorithms is most appropriate because the knowledge of algorithmic
appropriateness is empirical and constantly changes as new algorithms are
developed. Within our taxonomy image pairs are categorized according to
the categories: non-varying, intensity varying, focus varying, sensor varying,
and structure varying based on their reported performance in the literature.

Within the literature algorithms and systems are most often described as
useful for one particular application area. In most cases, however, the meth-
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Figure 1.2: Image pairs representative of image registration problems com-
mon to computational photography. Determining the appropriate regis-
tration algorithm under each set of conditions currently requires extensive
research into the literature.
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ods used in these applications can be applied to a limited subset of problems
from other applications. This distinction between image registration meth-
ods and image registration problems is important. Binary classification of a
problem type does not allow for the level of distinction required to know how
effective a given algorithm will be within a particular range of the problem
space. Instead, we utilize these forms of variation as the major dimensions
of the image registration problem space, forming the basis for a model of
registration which we present in Chapter 4. Using a formal definition of im-
age registration and a well defined model of the conditions surrounding the
image registration problem space and the array of possible solutions we cre-
ate a mechanism by which vision researchers can define both the conditions
and solutions that their algorithm supports, and the conditions and desired
range of solutions of particular instances of an image registration problem.
Within our model, individual image registration algorithms can be thought
of as supporting a volume of solutions across the entire space. Similarly
the common types of image registration problems can also be thought of
as occupying a volume. By decoupling algorithms from common types of
image registration problems through this mapping, we gain insight into the
comparative performance of algorithms and an understanding of where algo-
rithms support a problem space well, and what areas are not well supported.

This common model of the problem and solution space is critical in
order to be able to compare algorithms in a well defined way. Chapter 5
outlines a methodology for creating image registration testbenches which
span the problem space, allowing for the direct comparison of algorithms.
Three testbenches of 5000 image pairs which explore different volumes of the
problem space are then created and an analysis of how well each algorithm
performs in the face of variation in transform parameters, image size, overlap
between images, exposure, and focus is performed. Analysis of variance
techniques are then used to analyze which of the testbench parameters affect
the quality and likelihood of a solution.

Combining the mappings of algorithm and problem specification with our
understanding of how well different algorithms perform in the different areas
of the image registration problem space, our model can then interpreted and
appropriate algorithms can be selected based on the problem representation
and conditions. The interpretation of the model of the image registration
problem, and the selection of appropriate algorithms is discussed in Chapter
6. Our proof of concept interpreter is based on our testbench for image
registration problems using a direct evaluation of the performance of image
registration algorithms under similar problem conditions.

In addition, when the conditions surrounding image registration prob-
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lems can be detected it becomes possible to create a system that is able to
automatically populate the model, and select the most appropriate image
registration algorithm to align a pair of images purely from the image pair
themselves. In Chapter 7 we explore two such methods. First a simple rule
based expert system is examined, which provides a one to one classification
of whether it expects a given image pair to be appropriate for a variety
of algorithms. A second system was developed which uses support vector
machines to classify between panoramas, high-dynamic-range images, focal
stacks, super-resolution, and unrelated image pairs. Each of these types
of image registration problems can be thought of as representing a volume
clustered around a point in our n-dimensional problem space. By classify-
ing the type of registration problem and choosing an appropriate method
the system significantly improves the flexibility and accuracy of automatic
registration techniques.

1.2 Towards A Descriptive Language of
Computer Vision

Expanding upon the methodology explored through our creation of a model
for image registration, we propose the development of a general model of
computer vision. This project is the work of several researchers, who are
collaborating to develop the Open Vision Language (OpenVL) which we in-
troduce in Chapter 4 for image registration, and generalize in Chapter 8.
The goal of OpenVL is to provide a similar abstraction over the algorith-
mic and implementation specific aspects of vision by providing a language
capable of expressing vision problems. The proposed abstraction supports
code reuse, hardware acceleration, exploitation of advanced techniques and
extensions to the language or algorithms.

One of the significant problems preventing widespread adoption of com-
puter vision is the lack of a framework that separates the need for knowledge
of a vision concept from knowledge of specific vision algorithms. There have
been many attempts to create open repositories of software supporting the
vision community [12, 15, 32, 67, 99], however they provide vision compo-
nents and algorithms without any context of how these may be applied. In
order to implement sophisticated systems users of these libraries still need
expert vision knowledge, both of which algorithms and settings are applied
to solve particular problems, and also of how the components and algorithms
combine. As we found with image registration, the knowledge surrounding
vision problems as a whole is largely empirical.
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By way of example, a widely used computer vision library, OpenCV [12],
provides all of the components necessary to implement face detection in sev-
eral ways, and even includes an example of how this can be done using Haar
descriptors. In order to modify the example in a meaningful way however a
developer implementing a face detector needs some knowledge about Haar
descriptors. If this implementation doesn’t fit their problem, for example
if their problems contain more occlusion than the OpenCV algorithm can
handle, another detection algorithm must be researched, implemented, and
integrated until one that fits their particular problem has been solved. By
implementing several algorithms the developer may begin to gain some un-
derstanding of the problem of face detection, however their significant efforts
have made them somewhat expert in the field. More likely a developer with
no vision experience will simply accept the available implementation as is
and will make do with the limited functionality or performance.

Instead we propose to illuminate the common issues and context of vision
problems directly in the problem model itself, providing developers with a
direct understanding of the different types of conditions and tradeoffs that
necessitate the use of particular algorithms or settings, without requiring
knowledge of all of the algorithms capable of the task. If they understand
these concepts and can describe their problem sufficiently well within a suit-
able framework, then an interpreter should be able to infer from the descrip-
tion which algorithm to use. This strategy leverages the expert knowledge
of vision researchers, who better understand the problem domain and the
various algorithms that are used to solve within it, while simultaneously in-
creasing the knowledge of important vision concepts amongst non-experts.
Although this creates a group of vision developers who do not understand
how underlying algorithms are solving their problem, we would argue that
this is a common and significant advancement in any field. Few individuals
understand how compression algorithms work, but a wide range of individ-
uals, including photographers and artists use it extensively. In compression
the important concepts from a usability perspective can be broken down
into the quality and size of the image, a tradeoff that non-compression ex-
perts can understand and make use of. While these models of the problem
space, and their corresponding mapping into vision algorithms do not neces-
sarily exist for all vision problems, they certainly exist for many, and would
make computer vision accessible to a much wider audience if properly im-
plemented. This is one of the main goals of OpenVL.

Our desire with OpenVL is to provide access to sophisticated computer
vision algorithms and datatypes through descriptions of the problem. The
OpenVL interface is descriptive, unlike the usual procedural interface which
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Figure 1.3: OpenVL mimics the approach taken by experienced vision re-
searchers, providing a context within which non-experts can describe aspects
of their problem which are important in the selection of an appropriate al-
gorithm. The OpenVL machine can then interpret the context, selecting
one of the already implemented algorithms designed to solve this particular
part of the problem domain.

is specific to algorithms and data structures. A programmer specifies what
it is they want to do, instead of how they want something done, which pro-
vides an abstraction layer above algorithmic details. Our interface allows
the application programmer to specify what type of scene their data rep-
resents and the result they require. This is consistent with overcoming the
usability problems associated with image understanding as discussed in the
RADIUS project [27], which used manipulable 2D/3D models of the scene
to help guide the choice of image processing algorithms for non vision ex-
perts. Likewise, the Image Understanding Environment Project (IUE) [67]
attempted to provide high level access to image understanding algorithms
in order to make them accessible and easier to reuse, however this approach
was algorithm centric. Differentiation of our proposed framework from these
systems is explored in Section 2.2.

Much of our motivation comes from the success of similar endeavors in
computer graphics. Frameworks such as OpenGL and DirectX provide an
abstraction which offers the use of advanced graphics techniques to a large
user base, not just specialists in graphics. The abstraction gives program-
mers access to conceptual processes (e.g. drawing a textured triangle) but
hides the complexity of the operation from the programmer. These frame-
works have been designed to work on different hardware without requiring
additional effort by the application programmer, providing a model for sim-
ilar acceleration in vision. However, graphics is a structured problem and is
more easily represented in both concept and hardware. The image under-
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standing problem is unstructured and requires a higher level of sophistication
to extract meaningful models. Our language model attempts to bring con-
trol of sophisticated concepts such as image registration, tracking, and even
object recognition onto a level similar to the drawing of a simple shape in
graphics.

OpenVL gives programmers who are not vision specialists access to ad-
vanced processing techniques without specific knowledge of the underlying
algorithms that implement them. Algorithms are provided by specialized
vision researchers who integrate their work by evaluating or describing the
conditions under which their technique operates well. In order to make
this interpretive leap developers must be able to identify where within the
problem space their particular version of the problem lies. Similarly, vision
researchers developing algorithms to be used within OpenVL must be able
to map the performance of their algorithm in the different parts of the n-
dimensional problem space. The proper identification and development of a
problem model is critical to this process and is quite a difficult undertaking,
however this process illuminates the problem space in a way that incremen-
tal research and advancement fails to, and can provide insight and direction
for the computer vision community. Integration of algorithms is discussed
in more detail Section 8.2.

‘Expert’ vision researchers also stand to gain significantly from the use
of OpenVL. Vision research commonly relies on well established vision com-
ponents and algorithms as precursors or parts of an overall system. The
choice of component algorithms can have a significant impact on the over-
all system, affecting the performance of novel components of the research
significantly. Specialist researchers are often experts in one or more vision
problems, but rarely understand all areas of vision. The development ef-
forts required to explore all of the various algorithms and options available
and their impact on the novel portions of the research is significant enough
that most researchers are forced to forgo this level of investigation and work
with algorithms that are available. In addition the comparison of novel
components or algorithms to existing methods is often another difficult as-
pect of research. Without models to define the space of a particular vision
problem, the examples used in the comparison of algorithms may not be
equivalent or representative of the whole problem space. Through the use
of common model based representations of problems and testbenches, such
as those seen in Chapter 6, OpenVL provides a mechanism for researchers
to directly compare their novel component across the entire problem space.

The abstraction OpenVL provides over algorithms has several advan-
tages for the vision community. If application developers use OpenVL to
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describe their problem then the code written can be reused with newer im-
plementations of OpenVL, utilizing the latest computer vision algorithms
as research evolves. Another advantage is the separation of hardware imple-
mentations, which allows continued improvement of performance through
new acceleration technologies without the need to recompile or target ap-
plications to a specific device. We firmly believe that an abstraction which
separates application developers from specific algorithms and supports hard-
ware acceleration will allow research in computer vision techniques to ad-
vance more quickly and be more easily shared.

1.3 Contributions

The contributions of this thesis are as follows:

• First, an up to date survey of image registration techniques was carried
out using an existing taxonomy of image registration.

• From this initial mapping a new taxonomy was developed and existing
techniques were again mapped according to the new taxa.

• A model of the image registration problem space was developed based
on this taxonomy, allowing vision researchers and non experts to de-
scribe the representation and conditions of image registration problems
in a well defined manner.

• A method for automatically creating testbenches was developed for
the image registration problem space.

• Three testbenches of 5K image pairs were created and tested, with five
image registration methods evaluated for performance under the set
of conditions that each testbench encompassed.

• A method of interpretation was developed which allows for the se-
lection of appropriate algorithm(s) based on a given problem space
description.

• Two methods of automatic detection of common types of image reg-
istration problems were developed, allowing for the automatic classifi-
cation of image registration problems.

• Finally, the methodology used to create a model for image registration
was extrapolated providing a starting point for a general model of
computer vision.
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Publications related to this thesis include: [40, 72–75, 90]
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Chapter 2

Related Work

“Every man takes the limits of his own field of vision for the
limits of the world.”

– Arthur Schopenhauer

In this chapter we perform a detailed examination of image registration
algorithms and existing frameworks. This is an important step in under-
standing the problem space of image registration. Surveys of image regis-
tration [14, 93, 103] divide the field algorithmically, focussing on how regis-
tration is accomplished. This approach provides a good basis for classifying
and comparing algorithmic similarity. These models also begin to illuminate
the conditions important to the problem of registration, guiding the creation
of our novel taxonomy in Chapter 3.

Several important image registration techniques and strategies have been
developed since the most recent image registration survey. The increased
computational power of the past decade has made automatic methods com-
mon, and under optimal conditions modern algorithms are able to align
image pairs more accurately than can be detected by the human eye [5].
Following the most recent taxonomization [103] we have differentiated these
new methods into the categories of area based, feature based methods, mu-
tual information based methods, and non-rigid methods. As with Zitová
and Flusser we do not examine details of particular algorithms or perform
comparative experiments, but instead attempt to map and summarize the
main approaches used in registration today. The direct comparison of image
registration algorithms is a difficult concept rarely addressed in literature.
Section 2.1.4 explores this concept in more detail.

To support our goal of a general model of computer vision we examine
both past and current attempts at the development of computer vision li-
braries and frameworks. Early attempts at vision such as automatic image
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understanding had similar goals to OpenVL in that they were an attempt to
make vision more accessible to non-vision experts. Unfortunately complete
automation of vision tasks has thus far proven unfeasible. Conversely, most
current vision libraries provide extensive functionality without any inference
or context about how individual algorithms may be used. OpenVL seeks a
middle ground between these extremes, and as such the examination of ex-
amples of each type of vision frameworks is critical to its success. Visual
programming environments were an attempt at simplifying vision tasks by
representing them through data-flow maps, although significant knowledge
of algorithms was still necessary, and are worth examining. Finally, previ-
ous instances of declarative languages for image processing provide insight
into how a language can be structured so that the application developer is
describing what the program should accomplish, rather than describing how
to go about accomplishing it, one of the main tenants of OpenVL.

2.1 Image Registration

Past image registration surveys provide a methodological taxonomy for un-
derstanding the different algorithms used to solve the registration problem.
Brown [14] divides registration into four components: feature space, search
space, search strategy, and similarity metric. The later work of Zitová and
Flusser [103] divides the field into area and feature based methods, and
their model reflects the shift towards feature based methods that occurred
between the two papers. The four basic steps of image registration under
their model are: feature detection, feature matching, mapping function de-
sign, and image transformation and resampling. Like Brown we have chosen
to leave image transformation and resampling out of our taxonomy; these
steps, though important for applications involving image registration, are
rendering problems, and are independent of spatial alignment. Szeliski [93]
similarly divides the field into direct (pixel) based registration and feature
based registration. Maintz [55] provides insight into the use of registration
in medical imaging, providing important methods and variations relevant
to that field. The taxonomy divides both algorithmically and based on the
modality of the data, again providing a similar mapping. Pluim et al. [80]
also survey medical imaging, focusing on Mutual-Information-Based reg-
istration techniques. Their taxonomy classifies algorithms into two main
categories: methodological aspects and aspects of application.

Although the field is rapidly moving towards automatic image regis-
tration, algorithms and systems are most often limited to a single applica-
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tion area such as stitching panoramas, super-resolution, high-dynamic-range
(HDR) imaging, focal stacking, multimodal imaging, etc. In most cases the
methods used in these applications can be used on a limited subset of prob-
lems from other applications. This distinction between image registration
methods and image registration problems becomes important in Chapter 3
as we explore our new taxonomy of image registration. It is important to
note that no single algorithm exists that will solve all types of registration
problems.

Brown’s framework outlines how knowledge of the types of variation
that occur in image sets can be used to guide selection of the most suit-
able components for a specific problem. Variations are divided into three
classes: variations due to differences in acquisition that cause the images
to be misaligned, variations due to differences in acquisition that cannot
be easily modeled (such as lighting or camera extrinsics), and finally vari-
ations due to movement of objects within the scene. These are labeled by
Brown “corrected distortions”, “uncorrected distortions”, and “variations
of interest” respectively. Zitová and Flusser provide a model of variation
according to the manner in which the images were acquired: different view-
points, different times / conditions, different sensors, and finally scene to
model registration. Within their survey they do not use this mapping di-
rectly, however in many cases they discuss the type of problem each method
has been designed to solve, allowing a similar mapping of methodology from
situation. Similarly Pluim et al.’s “aspects of the application” entail image
modalities, subject of the registration, and the object of registration. This
delineation provides an excellent starting point for variations that are im-
portant within the medical imaging community. As we will see in Chapter
3 it is this concept of variations that we have chosen to base our taxonomy
on, extending these initial ideas into specific variations common in image
registration and exploring the successful algorithms under different problem
conditions.

As with Zitová and Flusser we do not examine details of particular al-
gorithms or perform comparative experiments here, but instead attempt to
map and summarize the main approaches used in registration today. It
would be impossible to provide an evaluation of every image registration
algorithm, or even every type of registration problem. In Chapter 6 we in-
troduce a testbench which allows for the evaluation of a variety of image
registration problems. Finally, although we include multimodal image reg-
istration in our taxonomy, there is not space to cover the whole of medical
image registration; the field is so vast and has grown so significantly over
the same period that an entire survey and taxonomy could easily be devoted
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2.1. Image Registration

to that subject alone.

2.1.1 Area-Based Methods

The first attempt at image registration was performed by an area based
method developed by Lucas and Kanade [53]. Area based methods work by
comparing some measure of the aligned pixel values as an error function to
be minimized. Typically a sum of square difference of the pixel intensity is
used. The process proposed in [53] is an iterative gradient descent: at each
iteration calculate the current error, and using the slope of the error space
at that point and an estimate of the Jacobian calculate the next position.

This method is susceptible to local minima, but works reasonably well
for images with a similar intensity, particularly when applied at multiple
scales via image pyramids, and assuming the spatial overlap is significant.
In the case of focus stacks it is particularly successful, often outperform-
ing feature-based methods which cannot find features in the same location
across images. Significant spatial overlap is often the case for focus stack-
ing problems, particularly those composed of microscope data where sensor
movement is minimal between images. Bradley et al. [11] make use of nor-
malized cross correlation in their virtual microscopy system requiring an
overlap of at least 45% between image pairs and ignoring results that fall
outside their expected solution area.

Extending beyond direct metrics of intensity, Schechner and Nayer [87]
presented an alignment method based on pyramids of maximum likelihood
as a part of their approach to generalize panorama images to incorporate
HDR. According to the authors, the addition of uncertainty into the intensity
based search space allows for a ‘better’ alignment under these conditions.
Figure 2.1 shows the corresponding mosaic regions of an unaligned, intensity
aligned, and maximum likely aligned set of images.

Ward [82, 100] introduced a method specifically designed to align images
with significant variations in intensity. The technique thresholds image pairs
into pyramidal bitmaps, creating binary images that represent regions that
are neither over nor underexposed. The bitmaps are analyzed and aligned
for translation errors using shift and difference operations at each level of the
pyramid. With this method 3 megapixal image sets are aligned in a fraction
of a second. Unfortunately their method deals solely with translation errors,
although they discuss the possibility of solving for rotation errors, suggesting
that 10% of their data set failed as a result. This binary ‘pass’ / ‘fail’
evaluation of the registrations is indicative of the poor evaluation techniques
used by researchers in the field. Section 2.1.4 goes into this problem in
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2.1. Image Registration

Figure 2.1: Corresponding mosaic regions. (a) Attempting to register the
raw images by minimizing their squared difference fails. (b) Compensat-
ing for the spatially varying attenuation without accounting for uncertainty
amplification does not lead to a good registration. (c) Accounting for spa-
tially varying uncertainties due to the attenuation compensation leads to
successful image registration. [87]

more detail. In addition, a method that performs two dimensional search of
what would traditionally be a 6d (affine) or 8d (perspective) solution space
leads the author to believe that their data set was somewhat tailored to the
algorithm. Still, the method remains one of the more successful instances of
intensity invariant registration to date indicating the difficulty level of the
problem.

Sharma and Paval [89] apply traditional area based techniques to over-
come differences in intensity and gradient common in multimodal images by
making the images as similar as possible, transforming images into repre-
sentations invariant to polarity reversals. Irani and Anandan [37] similarly
transform images into high-pass energy images which are significantly less
sensitive to sensor variations. These methods have been further developed
by Liu et al. [50, 51] who use Gabor filtering as their local frequency repre-
sentation. More recently, Henn and Witsch [34] define two nonlinear distance
functions and minimize these to find the optimal alignment.
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2.1. Image Registration

In the field of medical imaging, maximization of mutual information,
developed simultaneously by Viola and Wells [98] and by Collignon et al.
[54], is another area based method which uses an error function other than
differences of intensity. Successive methods were comprehensively surveyed
by Pluim, Maintz and Viergever [80]. Bardera, Feixas and Boada [7] pro-
posed two new similarity measures based off of Jensen’s difference applied
to Rẽnyi and Tsallis-Havrda-Charvãt entropies claiming that their proposed
measures are more robust than the normalized mutual information for some
modalities and a determined range of the entropy parameter. Gan et al. [31]
suggest using Kullback-Leibler distance if a priori knowledge of the joint in-
tensity distribution is available. Makela et al. [57] provide an overview of
further methods focusing specifically on cardiac images.

2.1.2 Feature Based Methods

When dealing with images which only vary spatially feature based methods
[61] are the most common technique applied, and are generally faster and
considered more accurate unless the image pairs contain little high-frequency
information from which to find and match features.

Feature based methods work by matching a similar set of features across
two images. Different strategies are available for the selection of feature sites,
known as ‘interest regions,’ however features are most commonly selected at
points of interest throughout the image, usually using some sort of corner
detector. Adaptive non-maximal suppression [61], among other strategies,
has been used with significant success to prevent the selector from picking
all of its points in the same spot in the image, helping in instances where
the images contain busy regions that are non overlapping. An implicit as-
sumption in the selection process is that these sites of interest will occur in
the same place in both images. While this is be true for some images, it is
not necessarily the case when intensity, focus, sensor or structure change.
When this occurs the feature sets of the two images are likely to be different,
and matching is difficult at best. Some methods attempt to solve specific
instances of this problem by selecting feature sites that are meant to be
invariant across one or more of these dimensions, however few of these are
successful.

A hotly debated and active area of research in feature based image regis-
tration is the choice of feature descriptor. The descriptors must be distinc-
tive and at the same time robust to changes in viewing conditions as well as
to errors of the detector. The comparison of different feature descriptors has
been recently made by Mikolajczyk and Schmid [63]. In their survey they
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compare shape context [8], steerable filters [30], PCA-SIFT [43], differential
invariants [45], spin images [48], SIFT [52], complex filters [86], moment
invariants [97], and cross-correlation for different types of interest regions,
concluding that the ranking of the descriptors is mostly independent of the
interest region detector and that the SIFT-based descriptors perform best.

While features based on mutual information have been used in pattern
recognition [78, 95] they have not to our knowledge been used successfully
for registration of multimodal images.

Sand and Teller [85] attempt to handle registration of image pairs for
high-dynamic-range images by only selecting features from parts of the im-
age that can be more easily matched while avoiding parts that are difficult.
A combination of area based methods and feature based methods are used
to iteratively align the images, ignoring feature points that occur in over
or under exposed regions of the image. Their technique was designed for
matching two video sequences, reporting good results with the limited spa-
tial variation that entails, however it was not tested on still photographs.
More recently Tomaszewska and Mantiuk [94] presented a similar idea, re-
porting a high quality alignment such that the “photographs were aligned
with sufficient accuracy so that there are no visible artifacts in the final
HDR image” by using only features that occur across all images in the set.
These methods of culling features that are inappropriate only work when
enough features remain to make a proper alignment.

Once features have been detected they must be matched across images.
Approximate nearest neighbor matching using k-d trees is the dominant
method of matching and is widely used by a number of researchers [61].
Exact nearest neighbor approaches are computationally intractable for large
numbers of features and dimensions, and provide a limited advantage over
approximate methods [58].

Once each feature has been matched to a corresponding feature in the
other image, alignment is found by solving the overconstrained system cre-
ated by the feature pairs. The ideal solution should minimize the distance
between features once the two images have been aligned. Random Sample
and Consensus (RANSAC) is commonly used [61] because of its robustness
and efficiency, however other solvers such as nonlinear least squares fitting
have also been applied with success. Yang et al. propose using an Iterative
Closest Point Dual Bootstrap method [102] which was reported to perform
favorably to RANSAC for difficult image pairs.
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2.1.3 Non-Rigid Methods

Image pairs can vary significantly in the structure of the scene they depict,
either because objects within the scene have moved, or more commonly in
medical imaging because objects have changed over time. Aligning images
in spite of these changes often requires non-rigid transforms that solve for
the alignment of regions or at the extreme of individual pixels. The selection
of points on the grid of solutions, and interpolation of values between those
points, along with the algorithms used to solve for the global and local
solutions vary from algorithm to algorithm and are the main differentiating
factors within this type of registration.

Bookstein proposed one of the seminal concepts of non-rigid models for
image registration: using thin plate splines to interpolate affine transforms
[9]. Moshfeghi proposed an alternative model based on elasticity [66]. Chris-
tensen et al. introduce the idea of viscous fluid representations of deformable
registration [19], while Bro-Nielson and Gramkow [13] significantly acceler-
ate this concept using a fast fluid model. McInerney and Terzopoulos [62]
provide a good survey of early non-rigid techniques and their application
within the medical imaging community.

Rueckert et al. [84] present a non-rigid method that uses a global affine
transform, followed by a local B-spline matching of normalized mutual in-
formation voxels, applying their technique to the registration of breast MR
images. Rohde et al. [83] make several contributions to the field: use of
radially symmetric basis functions rather than B-splines to model the defor-
mation field; a metric to identify regions that are poorly registered and over
which the transformation needs to be improved; partitioning of the global
registration problem into several smaller ones; and a new constraint scheme
that allows them to produce transformations that are topologically correct.
They compare the proposed approach to more traditional ones listed above
and show that their new algorithm compares favorably to those in current
use. More recently D’Agostino et al. [22] propose modeling the registration
as a viscous fluid that deforms under the influence of forces derived from
the gradient of the mutual information registration criterion, validating their
method by matching simulated T1-T1 weighted magnetic resonance imag-
ing (MRI) images, T1-T2 weighted MRI and T1 weighted to Proton Density
(PD) MRI images.

Kang et al. [42] describe a technique for creating high dynamic range
video from a sequence of alternating variable intensity exposures. Their
sophisticated HDR stitching process uses local area based alignment and
non-rigid motion estimation to compensate for camera movement and object
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motion within the scene, a technique tailored to their input data.
Crum, Hartkens and Hill present a more recent survey of nonrigid image

registration [21] providing a more in depth analysis of this subject.

2.1.4 Evaluation of Registration Accuracy

In order to be able to compare results from different registration methods an
evaluation of the accuracy of the registration is necessary. Some registration
methods minimize error functions which they hope are representative of the
actual error in registration, however this mapping is not always accurate. For
example the sum of square difference of intensity used by Lucas and Kanade
[53] does not represent the actual error of registration when aligning images
which vary significantly in intensity or modality.

Zitová and Flusser [103] identify three measures of registration accu-
racy in their survey that are independent of error space: localization error,
matching error, and alignment error. Localization error represents mistakes
in the location of feature based methods’ interest regions, usually expressed
as the average distance in pixels. Matching error is measured as the number
of false matches between features, and is another measure of performance
which can only be used to evaluate feature based methods. Finally, align-
ment error measures the difference between the proposed alignment and the
actual between-image geometric distortion. Alignment error is ultimately
what researchers must be concerned with when comparing across all pos-
sible methods, however this requires ground truth information about the
transform which aligns the images.

This ground truth transform is seldom used in the evaluation of image
registration algorithms both because it is difficult to create an image pair
with a known transform which conforms to particular conditions of a prob-
lem, and because image pairs which conform to these conditions but whose
transform is unknown are relatively easy to obtain. Each of the image regis-
tration algorithms presented in Chapter 2 were evaluated using image pairs
that were created by the researchers, and most are evaluated in a visual man-
ner, examining for artifacts or misalignments manually. The comparison of
such evaluations is difficult even when researchers directly compare their
algorithm to another using the same images since the images chosen could
play a role in performance. Examples of this have been included throughout
the related work section to give the reader a sense of the type of performance
reporting common in the field today.

Azzari et al. [5] recently propose the use of a set of synthetic data
rendered using image interpolation techniques and computer graphics tools.
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Their “Virtual Camera” simulates the geometric image formation process,
taking into account internal parameters, pose and position, sensor size and
resolution, focal length, and sensor noise. Their system creates a chain of
images with a known homography of ground truth transforms which they
have made available online. This method provides an excellent starting
point for a testbench of image registration techniques, however their image
sets are low resolution (320×240), limited to translation and rotation, and
contain no variation in intensity, focus, sensor modality, or scene structure.

One of the key limitations on the resolution of the synthetic images
is due to the interpolation of the reference image under the ground truth
transform, an issue which Azzari calls the ‘pixelation effect.’ In order to
avoid pixelation a minimum distance and maximum rotation of the virtual
camera with respect to the scene, given the texture resolution, are estimated
beforehand and used as thresholds. Presumably these thresholds were cho-
sen to limit the possibility that a pixel in the synthetic image was being
interpolated without enough available data.

To evaluate the performance of algorithms with this ground truth dataset
Azzari suggests three performance metrics. First, the mean square error
(MSE) of intensity values is used, which is problematic in instances where
intensity, sensor modality, or structural variations have taken place. As we
saw above MSE of intensity cannot be used directly to evaluate all types of
image registration. Second, they measure the average geometric distance of
a grid of control points, calculating the alignment error of the transformed
points in comparison to the ground truth as suggested in [103]. Finally, they
calculate the “number of misplaced pixels,” a measure which calculates the
number of missing and redundant pixels for a given transform and normalizes
across image size. This method involves a thresholding at the pixel level,
and “is often a very small number which must be scaled by 103”, calling its
usefulness into question.

A much more robust and high resolution set is necessary for evaluation of
modern registration algorithms, and is explored within this thesis in Chapter
5. The creation of such a test set allows for a much more detailed mapping
of the image registration problem space. By creating image pairs with both
ground truth transforms and known variations in intensity, sensor modality,
structure, etc. the performance of algorithms in different parts of the image
registration problem space can be measured.
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2.1.5 Automatic Classification

Chapter 7 introduces two methods of automatic classification based on de-
tection of the types of variation presented above. Other systems for auto-
matic image registration exist, however they are limited to single application
domains such as stitching panoramas [61], super-resolution [29, 104], high
dynamic range (HDR) imaging [87, 100], or focal stacking [2]. These tech-
niques can be used on a limited subset of problems from other domains,
however no single algorithm exists that will solve all types of registration.
Yang et. al [102] extend the flexibility of their algorithm within other prob-
lem domains by analyzing the input image pairs and setting parameters
accordingly, however the single underlying algorithm still fails in a number
of their test cases.

Drozd et. al [25] proposed the creation of an expert system based tool
for autonomous registration of remote sensing data, and outline a plan to
use information derived from image metadata and user tags to select from
amongst correlation based, mutual information based, feature based, and
wavelet based methods. Unfortunately their description is more of a pre-
liminary proposal and doesn’t provide results of the performance of their
expert system or of how appropriate the registration techniques selected
were at solving the problems they were chosen for. To our knowledge no
other attempts at classifying registration have been made, either by rule
based systems or by learning methods.
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2.2 Computer Vision Libraries and Frameworks

Many attempts have been made to develop computer vision or image pro-
cessing frameworks that support rapid development of vision applications.
Image Understanding systems attempted to make use of developments in ar-
tificial intelligence to automate much of the vision pipeline. Visual program-
ming languages that allow the creation of vision applications by connecting
components in a data flow structure were another important attempt to
simplify vision development. Medical image processing libraries have been
developed which support a community of developers whose knowledge of
computer vision is not a given. Declarative programming languages also
represent another attempt to provide vision functionality to non vision ex-
perts. Finally, open source computer vision libraries or sdks that provide
common vision functionality have been critical in providing a base of knowl-
edge from which many vision applications have been developed. These three
approaches to vision are examined in detail below.

In addition to providing components and implementations of common
vision algorithms, the currently available libraries also provide a number
of supporting features that are useful in the development of vision appli-
cations but often are operating system, data format, or network specific.
This combination of features suggests that these frameworks suffer from a
lack of sufficient conceptual organization of the vision problem’s constituent
tasks. Makarenko et. al [56] demonstrate that lack of scope definition and
overlap across frameworks leads to a breakdown in component reusability,
suggesting that proper isolation of different components could prove both
insightful and useful.

Reexamining the elements necessary for vision application development
we propose the following classification of scope for computer vision:

Access : Retrieval of data
Transfer : Mediation between devices
Convert : Conversion into required format
Modify : Applying filters, crop, transforms, etc.
Analyze : Using vision to model a scene

Decomposing the problem in this way promotes code re-use as well as
focussing development effort on well-defined parts of computer vision. Under
this classification we focus on the analysis problem. The other components
in the computer vision pipeline have various example solutions, such as
Quicktime7TM for access, Hive[1] or snBench[71] for transfer, ImageMagick
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[36] or IUE Data Exchange [46] for conversion and CoreImageTM [3] for
modification.

2.2.1 Image Understanding

Image Understanding (IU) represents an important early approach to com-
puter vision frameworks. The goal of image understanding systems is to
interpret images by locating, characterizing, and recognizing objects and
other features in the scene. This convergence of Artificial Intelligence (AI)
and Image Processing techniques was popular in the mid to late nineties.
While few of the frameworks or libraries are still in use today, they are exam-
ined in order to understand what was being attempted, what was achieved,
and what lessons can be learned from their successes and failures. Although
our general model of computer vision presented in Chapter 8 is not an im-
age understanding framework, it relies on similar techniques in order to infer
the best method solution, using the developer’s description of the problem
rather than attempting to automatically interpret the scene. As we will
see in Chapter 7 image understanding methodologies can also be applied to
supplement or even replace the problem and scene description.

The Image Understanding Environment

The Image Understanding Environment (IUE) [46] was an early attempt at
creating a unified image understanding library. The goal of the IUE was to
support research productivity through a standard object-oriented interface,
supporting technology transfer via a platform for demonstrating the ben-
efits of IU algorithms in the context of user applications. Education and
development were encouraged by providing standardized formats for encod-
ing algorithms, and computational models were developed that provided
the basic data representations and associated operations that all IU archi-
tectures must support. Funded by ARPA from 1991-96 and consisting of a
consortium of ten companies with a vested interest in vision, an extensive
set of functionality was developed. Figure 2.2 outlines the major partitions
of the IUE.

Functionality was intended to include Image Enhancement, Shape from
X, Stereo, Motion, Colour, Surface Organization, Edge Detection, Pho-
togrammetry, Object Recognition, Model Matching, Perceptual Grouping,
Texture Analysis, Image Based Modelling, and Region Segmentation, pro-
viding it with a robust collection. Additionally, the IUE included compo-
nents to describe and access various sensor types, as well as data exchange
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Figure 2.2: Major partitions of the image understanding environment. [46]

components, allowing it to perform the Access and Convert layers of our
scope of computer vision.

The IUE class hierarchy provided a broad coverage of IU constructs, al-
lowing multiple representations in order to offer flexibility to the user. The
framework was also designed to be extensible and customizable in order to
allow researchers to integrate their algorithms and data structures. Major
branches of the class hierarchy include: Base Classes, Spatial Objects, Coor-
dinate Systems and Transforms, Images, Image Features, and finally Scenes
and Sensors. Figure 2.3 shows an example of the image feature classes rep-
resentable using the IUE.

While the IUE functionally covered many of the problems within com-
puter vision which we are interested in, it remains a library focused on
providing functionality and does not provide the abstraction over vision al-
gorithms that is the key to our approach. The IUE failed to capture the
interest of the computer vision community, and ceased to be supported fol-
lowing 1996.
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Figure 2.3: Example classes for image features within the image understand-
ing environment. [46]

SIGMA

SIGMA [59] is a framework and control structure of an image understanding
system designed for aerial image processing. SIGMA consists of three ex-
perts: a Geometric Reasoning Expert (GRE) for spatial reasoning. A Model
Selection Expert (MSE) for appearance model selection, and a Low Level
Vision Expert (LIVE) for knowledge based picture processing. Figure 2.4
shows the framework of the system.

The focus of SIGMA is within quite a narrow application domain, how-
ever each of the component experts provide an example of automation of
computer vision techniques, and particularly how these can be combined to
create useful functionality.
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Figure 2.4: The Framework of the SIGMA image understanding environ-
ment designed for aerial image processing. [59]

BORG

Borg [20] is a knowledge-based system for the supervision of a library of
image processing operators used mainly in biomedical applications. It was
designed following the prescriptions of a study on knowledge-based system
for operator supervision in image processing. Borg can perform several
image-processing tasks in widely varying application domains. Its role is
to build a chain of operators that can process every image of a given class.
The notion of image class is here restricted to a series of images of the same
scene, taken with the same camera and in the same acquisition conditions.
In particular, all images have the same resolution. To ensure that the same
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chain of operators can process every images of the class, such a chain of
operators must integrate control structures to adjust its behavior.

Designing an application involves the active participation of two types of
experts: an expert from the domain of application (biology, geography...) to
set the problem, and an expert in image processing to formulate the corre-
sponding request by selecting relevant tasks and judicious quantitative and
qualitative image features. This problem/request translation is not straight-
forward; several comings-and-goings are generally needed to get a satisfac-
tory request. In this respect, the system can be seen as an experimentation
tool because it allows rapid production of results and favors dialogue and
cooperation between both protagonists. The design of an application with
Borg follows a three-stage process:

1. Initialization This first step aims at getting a realistic vision of the
difficulties of the tasks to be performed and at identifying relevant
image features. From a summary description of the application, given
by the domain expert, the image-processing expert can suggest a first
version of the request. Accordingly, a first version of the chain of
operators can then be built by the system and first output images
produced;

2. Improvement Through visual assessment of these results, the domain
expert is now in a position to refine the request. As a matter of fact,
images are the best communication medium between both experts.
The request can then be progressively refined, by analyzing various
results corresponding to slight variations on its formulation;

3. Validation Once results are judged satisfactory for several images,
the validation step consists in testing this same request on the whole
set of images representative of the application, to make sure of its
robustness. If necessary, the request may be further refined, to take
into account particular cases not encountered before.

At the end of this third step, the hope is that the chain of operators
actually represents the application under study. The generator of C++
code then produces a program corresponding to this application. Borg of-
fers user-friendly interfaces allowing experts to add new knowledge and new
operators in the system as well as the visualization of all potential trees
that it can produce to help expert to maintain the knowledge base and the
library of operators. Figure 2.5 shows the plan for a BORG cytological ap-
plication. Clearly significant expert knowledge and collaboration of experts
across multiple fields is required to build an application.
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Figure 2.5: The plan for a BORG cytological application. Image data flow at the functionality level and at the
operator level are by drawn with gray arrows. [20]
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Figure 2.6: Knowledge sources used in the cytology application. [20]

Each small action contributing to the construction of a plan is performed
by applications of successive knowledge sources. In the Borg knowledge base,
there are five categories of knowledge sources: planning, instantiation, ex-
ecution, description, and evaluation. With these categories of knowledge
sources, correcting the plan is done by proposing new decompositions for
tasks that failed, and assessing results is done in two steps: a step when
evaluations rules for each task are defined by description, and a step when
results are built and evaluated by evaluation. Figure 2.6 shows the knowl-
edge sources used in the cytology application.

2.2.2 Computer Vision Libraries

There have been many attempts at creating a computer vision library that
meets the needs of the vision community. The libraries examined below were
developed with vision experts in mind, and require significant knowledge of
which components to use and how components can be combined to create
vision systems. The functionality that they provide is significant, and each
has contributed in major ways to the field of computer vision. By examining
this functionality, and the method by which it is organized and interfaced,
we hope to provide a similar set of image processing and computer vision
techniques through a context aware, problem-centric language model.
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The IPI includes functionality to do: , while specifically excluding:

primitive image manipulation computer graphics
image enhancement pattern recognition
image restoration image understanding
image analysis multimedia
image classification (basic) communications
image visualisation (basic) specific implementations
standard colour models window systems
image transport sensor image acquisition
image compression and decompression image presentation

device control

Table 2.1: Scope of the Image Processing and Interchange standard.

Image Processing and Interchange

Image Processing and Interchange (IPI) provides a programming interface
and an image transfer specification that may be used for a variety of image
processing applications; it is not intended specifically for vision applications.
It was published as an international standard in 1995. IPI comprises three
parts. The first part defines IPI’s main architectural features. The second
part is concerned with processing images; and the third part considers image
interchange. The standard defines a ‘functional specification,’ a detailed
description of the image processing functions that must be provided without
reference to any programming language; a separate standard describes how
the functional specification is mapped onto a specific programming language.

Images that may be processed by the Programmer’s Imaging Kernel
System (PIKS), the image processing part of IPI, may be thought of as
comprising five dimensions: the usual two spatial dimensions; depth (for
representing voxel data); time (for moving imagery); and band (for colour
or multispectral data). Multi-sensor data can also be represented by means
of the band dimension. Several pixel representations are supported, includ-
ing unsigned byte, integer, floating-point, and complex. The range of image
processing functions is mainly limited to image processing application. Def-
initions are such that hardware can be built to implement many of the
operations. Table 2.1 outlines the scope of the IPI standard. Comparing
it with our proposed scoping model for computer vision it seems very well
thought out as far as modularity.

Processing operators within IPI perform one of three possible conver-
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sions:

• image to image

• image to non-image

• non-image to non-image Converting non-image data to images is the
domain of computer graphics and is excluded from IPI.

VISTA

Vista [81] is a software environment supporting the modular implementa-
tion and execution of computer vision algorithms developed by Lowe et al.
around 1994 at the University of British Columbias Laboratory for Compu-
tational Intelligence. It was designed to be extensible, portable, and freely
available, and was proposed as an appropriate medium for the exchange of
standard implementations of algorithms. Unlike systems that are designed
principally to support image processing, Vista provides for the easy creation
and use of arbitrary data types, such as are needed for many areas of com-
puter vision research. It uses a flexible, self describing file format so that
objects of many types, including custom ones, can be represented for storage
and interchange.

Operations were provided both as a stand-alone UNIX program and as
library routine. The functionality of Vista included:

• Viewing data: interactive programs for viewing images and edge vec-
tors; toolkit for generating such programs; widget for displaying im-
ages with overlaid edges and other graphics; routines for allocating a
standard palette of display colors; routine for popping up a window
displaying an image.

• Basic image processing: scale, crop, flip, transpose or rotate an image;
adjust image brightness and contrast; perform an arithmetic or logical
operation on each pixel of an image; convert an image from one pixel
representation to another; convert a color image to gray-scale; compute
pixel statistics; generate test images; corrupt an image with Gaussian
noise.

• Image filtering: convolve an image with a 2D or 3D kernel; convolve
an image with a separable filter, such as a Gaussian or its derivative.
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• Fourier analysis: build a complex image from real and imaginary com-
ponents; compute the. Fourier transform of an image; compute the
magnitude or phase of a complex image.

• Edge detection: estimate image gradient in 2D or 3D; decompose gra-
dient into magnitude and orientation; mark zero crossings; Cannys
edge detector.

• Edge organization: link edge pixels into curves; decompose curves into
straight line segments.

• Data file manipulation: combine multiple files into a single, multi-
object file; combine multiple images into a single, multi-band image;
select specified objects from a file; select specified bands from an image.

• Format conversion: convert images to/from Portable Gray Map (PGM)
format; read image from a text file.

• Printing: render images, edge vectors, and flow fields as Encapsu-
lated PostScript (EPS) documents; program for arranging multiple
EPS documents on a page; routines for generating PostScript docu-
ments.

• Other: estimate optical flow; camera calibration.

OpenCV

OpenCV is a computer vision library originally developed by Intel. It is
free for commercial and research use under the open source BSD license.
The library is cross-platform, and runs on Windows, Mac OS X, Linux,
PSP, VCRT (Real-Time OS on Smart camera) and other embedded devices.
It focuses mainly on real-time image processing, using Intel’s Integrated
Performance Primitives if available to accelerate itself.

Officially launched in 1999, the OpenCV project was initially an Intel
Research initiative to advance CPU-intensive applications, part of a series
of projects including real-time ray tracing and 3D display walls. The main
contributors to the project included Intels Performance Library Team, as
well as a number of optimization experts in Intel Russia. In the early days
of OpenCV, the goals of the project were described as:

• Advance vision research by providing not only open but also optimized
code for basic vision infrastructure. No more reinventing the wheel.
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OpenCV’s application areas include:

2D and 3D feature toolkits
Ego-motion
Gesture Recognition
Human-Computer Interface (HCI)
Mobile robotics
Motion Understanding
Object Identification
Segmentation and Recognition
Stereopsis Stereo vision: depth perception from 2 cameras
Structure from motion (SFM)
Motion Tracking

Table 2.2: Application areas of OpenCV.

• Disseminate vision knowledge by providing a common infrastructure
that developers could build on, so that code would be more readily
readable and transferable.

• Advance vision-based commercial applications by making portable,
performance-optimized code available for free with a license that did
not require commercial applications to be open or free themselves.

It has since grown to include over 500 algorithms centred around com-
puter vision. Table 2.2 outlines OpenCV’s main application areas, while
Table 2.3 shows some of the additional functionality beyond image process-
ing that is included in order to support these areas.

With functions available to access cameras, convert into different for-
mats, modify the images, and some limited capability for image understand-
ing, OpenCV[12] is commonly used in both academia and industry. Useful
function calls such as CornerHarris, CalcHist, Filter2D, Sobel, etc. are pro-
vided, however these require considerable knowledge about how to solve a
particular image processing problem and offer little insight into what the
problem is, making it difficult to adjust when the problem changes. We see
our general model of vision as an abstraction that builds on top of algo-
rithmic approaches such as OpenCV to leverage the specialized knowledge
contained in their impressive scale of algorithms. Thus, implementations of
our model could use OpenCV effectively and allow non-specialists to take
advantage of it easily.
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Machine Learning components of OpenCV

Boosting
Decision Trees
Expectation Maximization
k-nearest neighbor algorithm
Naive Bayes classifier
Artificial neural networks
Random forest
Support Vector Machine

Table 2.3: To support some of the above areas, OpenCV also includes
a statistical machine learning library that contains the functionality listed
above.

As can be seen in Table 2.2 OpenCV does not separate out the differ-
ent elements into thin layers of abstractions. Based on Marenko et al.’s
work [56], this also presents challenges for reuse and scalability in real-world
contexts, as has been encountered numerous times by the author.

2.2.3 Medical Image Processing Libraries

Medical image processing is an important subset of the vision community,
which has developed a number of image processing libraries specific to the
medical field. These libraries are specifically designed to deal with the multi-
sensor, often 3-dimensional data that is common in the field. Although
OpenVL does not initially intend to support this functionality, many algo-
rithms are common to both computer vision and medical image processing,
and it is a logical path of future development. Additionally, a significant
proportion of the medical imaging community are medical experts and not
vision experts, providing us with insight as to how to provide functionality
in a way that is useful to non-vision specialists.

NA-MIC

The National Alliance for Medical Imaging Computing (NA-MIC) is a multi-
institutional, interdisciplinary team of computer scientists, software engi-
neers, and medical investigators who develop computational tools for the
analysis and visualization of medical image data. The purpose of the cen-
ter is to provide the infrastructure and environment for the development
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of computational algorithms and open source technologies, and then over-
see the training and dissemination of these tools to the medical research
community.

The NA-MIC Kit [69] is a free open source software platform. The NA-
MIC Kit is distributed under a BSD-style license without restrictions or give-
back requirements and is intended for research, but there are no restrictions
on other uses. It consists of the 3D Slicer application software, a number
of tools and toolkits such as VTK and ITK, and a software engineering
methodology that enables multiplatform implementations. It also draws
on other best practices from the community to support automatic testing
for quality assurance. The NA-MIC kit uses a modular approach, where the
individual components can be used by themselves or together. The NA-MIC
kit is fully-compatible with local installation (behind institutional firewalls)
and installation as an internet service. Significant effort has been invested
to ensure compatibility with standard file formats and interoperability with
a large number of external applications.

Users of the NA-MIC Kit will typically use a combination of its many
modular components. 3D Slicer is a general purpose application. Biomedical
researchers use this software tool to load, view, analyze, process and save
image data. Slicer has been implemented to interoperate with many other
tools, including XNAT, which is an open source image database. Slicer
modules, which are dynamically loaded by Slicer at run-time, can be used to
extend Slicer’s core functionality including defining graphical user interfaces.
Modules are typically used by algorithms and application developers. Figure
2.7 shows the slicer gui.

Application and algorithms developers may also use NA-MIC Kit toolk-
its and libraries. The Insight Segmentation and Registration Toolkit ITK
can be used to develop slicer modules for medical image analysis. The Visu-
alization Toolkit can be used to process, visualize and graphically interact
with data. KWWidgets is a 2D graphical user interface toolset that can be
used to build applications. Teem is a library of general purpose command-
line tools that are useful for processing data.

The ITK registration toolkit [68] is of particular interest as it provides
image registration functionality to a number of researchers working within
the medical imaging community. In Chapter 6 we use several of these al-
gorithms in our testbench, exploring how well each is able to provide a
solution to a range of image registration problems. Within ITK registration
is modeled as a series of components which combine to create a registration
algorithm. Figure 2.8 introduces this model. A metric measures the error in
alignment, an optimizer iterates, solving for a transform which contains the
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Figure 2.7: The NA-MIC 3-D Slicer tool gui. [69]

minimum error between the two images. This transform is applied to the
moving image using an interpolator, which interpolates the moving image
within the fixed image’s space. The process iterates until a solution is found
or certain criteria are met.

The components of this process are designed to be interchangable, the-
oretically allowing a developer to select a different image type, metric, op-
timizer, transform, and interpolator as is appropriate for their problem. In
practice this turned out to be much more difficult as many components are
incompatible or unimplemented in the current version of ITK, necessitating
major changes to the source code whenever one of these was changed. Fur-
ther obfuscating the process was the lack of documentation and meaningful
error reporting in instances where components were incompatible.

2.2.4 Visual Programming Environments for Vision

Visual programming for computer vision was developed as an attempt to
simplify development, making it both faster and more accessible to non-
experts. These environments allow developers to piece together computer
vision or more commonly image processing components in a visual flow chart,
rather than through code, connecting the outputs of one module to the in-
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Figure 2.8: The ITK Model of Image Registration. [68]

puts of the next to create an application. Knowledge of the components
and how they must be connected in order to achieve the desired applica-
tion, particularly when dealing with data types other than images, means
that developers must still understand a considerable amount of expert vi-
sion knowledge. To counteract this requirement image processing functions
dominate these environments, with the majority of components taking an
image as input and similarly outputting an image, making them more suit-
able to the Modify layer of the CV scope, however insight can be gained by
examining the functionality and methods within.

Khoros

Khoros [47] is an integrated software development environment for infor-
mation processing and visualization on SUN machines, developed by Kon-
stantinides et al. at the University of New Mexico in the late eighties and
early nineties. Khoros components include a visual programming language,
code generators for extending the visual language and adding new applica-
tion packages to the system, an interactive user interface editor, interactive
image display programs, surface visualization, an extensive library of image
processing, numerical analysis and signal processing routines, and 2D/3D
plotting packages. The data processing libraries contain over 260 programs,
in the following categories: arithmetic, classification, color conversion, data
conversion, file format conversion, feature extraction, frequency filtering,
spatial filtering, morphology filtering, geometric manipulation, histogram
manipulation, statistics, signal generation, linear operations, segmentation,
spectral estimation, subregion, and transforms.

The Khoros system provides a high-level, abstract visual programming
language, Cantata that allows the researcher to control the data flow of
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Arithmetic

Unary Arithmetic Scale, Normalize, Invert, Clip, etc.
Binary arithmetic Add, Subtract, Multi ply. , Blend, etc.
Logical Operations And, Or, Xor, Shift.

Image Processing

Spatial Filter Sobel, Median, 2-D convolution, Edge Extraction, etc.
Morphology Erosion, Dilation, Skeletonization, etc.
Transforms FFT, Hadamard.
Frequency Filters LPF, BPF, HPF, Band-Reject, Inverse, Wiener Restoration, etc.
Geometric Manipulation Shrink, Rotate, Transpose, Interactive image warping, etc.
Subregion Extract, Insert, Pad, etc.

Image Analysis

Segmentation Threshold, Medial Axis Transf., etc.
Feature Extraction Shape analysis, Region Matching, Fractal Analysis, Texture Extraction, etc
Classification K-means, Labeling, LRF-classifier, etc.

Table 2.4: Khoros Routines for image processing.

images. Central to the Khoros system is the need for a consistent yet flexi-
ble user interface development system that provides cohesiveness to the vast
number of programs that make up the Khoros system. Automated tools were
developed to assist in maintenance as well as development of programs. The
software structure that embodies this system provides for extensibility and
portability, and allows for easy tailoring to target specific application do-
mains and processing environments. Table 2.4 outlines the image processing
functionality provided by the Khoros system.

Cantata is the visual programming environment built within the Khoros
system. Cantata contains many features not typically found in visual pro-
gramming environments such as visual hierarchy, iteration, control struc-
tures, expression-based parameters and program encapsulation. In Cantata,
visual programs are created as directed graphs, where each node of the graph
is an iconic element representing a program and each directed arc represents
a path over which data flows. By connecting the data paths between pro-
grams user can interactively draw out a solution in a more natural way that
matches their mental representation of the problem. By providing a visual
environment for problem solving, their claim is that Cantata increases the
productivity of both researchers and application developers, regardless of
their programming experience. Although the visual programming language
provides an easier mechanism for quick development of image processing
applications from existing algorithms, we would argue that developers still
require significant expert knowledge of which algorithms to use when, and
how to combine components.
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Figure 2.9: The Cantata GUI running a vision processing program using
the Khoros System. [47]

Icons called glyphs represent programs from the Khoros system. Each
of the hundreds of stand-alone data processing and scientific visualization
programs in the Khoros system can be represented in Cantata as glyphs.
When accessed in the visual language, a Khoros program is referred to as an
operator. To create a visual program, the user selects the desired programs,
places the corresponding glyphs on the workspace, and connects the glyphs
to indicate the flow of data from program to program, forming a network
within a workspace. Control structures can be used to branch and merge
data flow, or to implement loops. Workspaces can be executed, saved and
restored to be used again or modified later. Workspaces may also be encap-
sulated into independent applications with a very simplifled graphical user
interface so that they may be treated as stand-alone Khoros applications.
Figure 2.9 shows the Cantata GUI running a vision processing program.

Visual hierarchy, iteration, flow control, and expression-based parame-
ters extend the data flow paradigm to make Cantata a powerful simulation
and prototyping system. Data and control-dependent program flow is pro-
vided by control structure glyphs such as if/else, while, count, and trigger.
Visual subroutines, or procedures are available to support the development
of hierarchical data flow graphs. Variables may be set interactively by the
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user, or calculated at run time via mathematical expressions tied to data
values or control variables within the visual network.

Apple CoreImage and CoreVideo

Apple provides an abstracted image processing pipeline using its collection of
components including CoreImage and CoreVideo combined in Quicktime7.
These components support access, conversion and modification operations
of image data coupled to a rendering framework. CoreImage abstracts pixel-
level manipulations into stackable plugins, allowing applications to take ad-
vantage of acceleration of image processing without requiring the addition
of hardware-specific code. Each image unit specifies a filter, transform, or
other effect which can be applied to the original pixel data without modi-
fying the original data. CoreVideo provides mechanisms to convert media
data coming from image sources into representations suitable for rendering
in a media player. These two components are accessible through Apple’s
Quartz Composer [4], which provides a visual programming environment
which simplifies the development of simple Vision applications. While this
framework is effective for viewing and modifying media content, it lacks an
abstraction for the analysis component of computer vision, which OpenVL
attempts to fill.

Mac OS X 10.4 includes 100 standard Image Units, including the follow-
ing:

• Median, Gaussian, Motion and Zoom blurs

• Noise Reduction

• Color adjustment: Exposure, gamma, hue, and white point

• Distortions: Pinch, hole, displacement, glass, torus Lens, twirl, vortex,
circle splash and circular warp

• Generators: Star shine, sunbeams, checkerboard and lenticular halo

• Color blends: burn, darken, difference, exclusion, hard light, hue,
lighten, luminosity, multiply, overlay, saturation, screen, soft light

• Geometry: Crop, scale, rotation, Affine transformation

• Halftone, tile, and style filters

• Transitions: Swipe, flash, page curl, copy machine, disintegrate, and
dissolve

42



2.2. Computer Vision Libraries and Frameworks

2.2.5 Declarative Languages for Image Processing

One important aspect of OpenVL is that it provides a language model to
programmers to describe what they want done rather than how to do it. In
this way, it behaves somewhat like a declarative approach to problem solving.
Examining previous attempts at declarative image processing provides us
with significant insight into the possibilities and challenges of a language
model of this nature.

ShapeLogic

ShapeLogic[88] is an open source toolkit for declarative programming, im-
age processing and computer vision. It has two main applications: The
Color Particle Analyzer will find and categorize particles on a relatively uni-
form background then make a report of geometric properties for each of
the particles. The main application is for recognizing cells in medical im-
age processing. The Letter Matcher is a general categorizer for skeletonized
lines.

While ShapeLogic’s declarative programming system was initially de-
veloped for image processing and computer vision, it is widely applicable.
ShapeLogic is intended as basic plumbing software that turns a logic engine
or a neural network into a simple plugin component to ease entry into vision
and image analysis. ShapeLogic also fills gaps missing from current Java
image processing libraries.

ShapeLogic takes a more literal approach and uses a logic language to im-
plement their declarative constructs for vision processing. OpenVL specifies
a language model and state machine but does not require implementation in
any particular language or an inference engine to do constraint satisfaction
making it simpler to implement and accelerate.

FVision

FVision is a functional reactive programming (FRP) library written in Haskell
that targets visual tracking. Low level vision processing functionality is
provided through links to XVision C++ libraries, allowing the system to
maintain 90% of the speed of the purely C++ implementation. The re-
sulting system combines the overall efficiency of C++ with the software
engineering advantages of functional languages: flexibility, composability,
modularity, abstraction, and safety. Figure 2.10 shows the feedback loop of
a primitive tracker built in XVision.
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Figure 2.10: Feedback loop of a primitive tracker built in XVision.

A similar primitive FVision tracker, the SSD tracker, has been developed
that is fully declarative. Given a reference image, the observer pulls in a
similar sized image from the video source at the current location. The
stepper then compares the image from the current frame with the reference,
returning a new location and a residual. This particular tracker uses a very
simple location: a 2-D point and an orientation. The SSD observer is an
XVision primitive. Figure 2.11 shows source code for a composite tracker
built in FVision.

44



2.3. Summary

Figure 2.11: A composite tracker built in FVision.

2.3 Summary

This chapter provides a literature review of both image registration tech-
niques and of computer vision libraries and frameworks, attempting to cover
both of these topics in sufficient detail that readers gain an understanding
of the research that this thesis is built upon. While this is not an exhaustive
survey, the libraries and frameworks discussed in this chapter represent a
broad sampling of prior work and existing computer vision tools available
to developers.
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Chapter 3

A New Taxonomy of Image
Registration

“I had a lot of trouble with engineers, because their whole back-
ground is learning from a functional point of view, and then
learning how to perform that function.”

- Brian Eno

Existing taxonomies of image registration [14, 93, 103] summarized in
Chapter 2 divide the field algorithmically, focussing on how registration is
accomplished. This approach provides a good basis for classifying and com-
paring algorithmic similarity, however it does not focus on the conditions im-
portant to the problem of registration. Although the field is rapidly moving
towards automatic image registration, algorithms are often targeted towards
a single application area such as stitching panoramas, super-resolution, high-
dynamic-range imaging, focal stacking, multimodal imaging, video summa-
rization and stabilization, or satellite image analysis.

The registration methods required for these applications can also be used
on a limited subset of problems from the other domains. Understanding
where algorithms perform well and where they fail is crucial when design-
ing a system which requires registration. Under the previous framework
and taxonomy this knowledge was largely empirical, with each algorithm
roughly mapped to a single corresponding application whose problem con-
ditions are (again empirically) well known, although often not well defined.
Knowledge of which algorithm performs best from amongst those that tar-
get the conditions of a particular application area is similarly empirical and
is often contentious as the conditions or images used to represent those con-
ditions are often not the same. Binary classification of a problem type does
not allow for the level of distinction required to know how effective a given
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algorithm will be within a particular range of the problem space. This in-
formation also changes regularly as new algorithms are developed. Without
a model of the image registration problem space, expressing the conditions
of a given problem is not a well defined process.

The taxonomy proposed within this chapter maps the registration prob-
lem space based directly on the conditions of the registration problem being
solved. The most appropriate method of registration of a set of images
can be determined by examining how the properties of the images or data
being registered vary in comparison to one another. By taxonomizing the
problem in this way we change the abstraction of registration from one re-
quiring knowledge and expertise about particular algorithms, both in how
they work and when to use them, to one requiring expertise about the con-
ditions surrounding the registration problem itself, which is much simpler
for programmers who are not vision experts to understand and specify. We
provide a binary mapping of the papers and techniques explored in Chapter
2 into our n-dimensional space of problem variances, based on their reported
problem area and performance within the literature. Even though they are
typically designed to solve problems along a single dimension of variation,
individual algorithms can be thought of as supporting a volume of solutions
within the problem domain. The dimensions of this volume are difficult
to determine, however, without doing a direct evaluation of the algorithm
under different conditions.

Within our framework image pairs are organized according to the cat-
egories: non varying, intensity varying, focus varying, sensor varying, and
structure varying. In practice, examining the types of variations that occur
in a pair or sequence of images allows photographers to select an appropri-
ate application or researchers to select an appropriate algorithm in order to
find the best alignment. Basing our taxonomy around this understanding
of the image registration problem space makes the field more accessible to
non-experts, and as we will see in Chapter 7 allows for further automation
of image registration.

An examination of the literature provides some guidance as to which
problem types a particular algorithm should be good at, but reporting is
often based on a visual analysis of the alignment of a small number of im-
age pairs chosen by the authors. The problem is even greater for non-
experts, who must navigate an algorithm centric model and rely on these
reports when selecting an algorithm. Image registration methods are often
presented directly in relation to particular applications which require this
functionality. Examining applications that rely on image registration from
a data centric perspective provides insight into the relative success of indi-
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vidual algorithms when particular conditions occur. Our main dimensions
of variation are examined below in detail and algorithms that are invariant
across each dimension are presented. The result is a taxonomy in which
algorithms do not occur in a single place, but rather occur in multiple cat-
egories. In fact, categories are crudely representative of the n-dimensional
problem space that registration algorithms are attempting to cover, while
specific algorithms support a volume of solutions within the n-dimensional
problem space. In Chapter 5 we examine the development of a testbench
which allows for a more sophisticated evaluation of algorithm performance
under particular conditions. As we will see in Chapter 6, by identifying the
position of registration problems within this n-dimensional problem space it
is possible to select one or more algorithms that were appropriate on other
problems with similar conditions.

Brown’s framework touches on how knowledge of the types of variation
that occur in image sets can be used to guide selection of the most suitable
components for a specific problem. These variations are divided into three
classes: variations due to differences in acquisition that cause the images
to be misaligned, variations due to differences in acquisition that cannot
be easily modeled (such as lighting or camera extrinsics), and finally vari-
ations due to movement of objects within the scene. These are labeled by
Brown “corrected distortions”, “uncorrected distortions”, and “variations
of interest” respectively. Zitová and Flusser provide a model of variation
according to the manner in which the images were acquired: different view-
points, times, conditions, sensors, and finally scene to model registration.
Within their survey they do not use this mapping directly, however in many
cases they discuss the type of problem each method has been designed to
solve, allowing a similar mapping of methodology from situation. Similarly
Pluim et al.’s “aspects of the application” entail image modalities, subject of
the registration, and the object of registration. This delineation provides an
excellent starting point for variations that are important within the medical
imaging community. It is this concept of variations that we have chosen to
base our taxonomy on, extending these initial ideas into specific variations
common in image registration and exploring the successful algorithms under
different problem conditions.

Image registration problems are mapped below into the following cat-
egories: non varying, intensity varying, focus varying, sensor varying, and
structure varying. Each categorization represents a dimension of the image
registration problem space.
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Figure 3.1: Input images which contain only spatial variation, and the cor-
responding rendered image derived by stitching the set using a feature based
method.

3.1 Only Spatial Variations

The problem of image registration is one of finding the spatial variation
between a pair of images. Image pairs that differ purely spatially are the
most common type of image registration problem. Figure 3.1 shows a num-
ber of example image pairs that feature spatial variation. Applications that
require registration of images that vary spatially include panorama stitch-
ing, super resolution, and remote sensing. Area based methods derivative
of Lucas and Kanade [53] are capable of solving these types of registration
problems, however feature based methods are the most common technique
applied and are generally faster and considered much more accurate unless
the image pairs contain little high-frequency information from which to find
and match features.

Brown et al [61] represents a sophisticated approach to feature based im-
age registration, using SIFT [52] features to align the images. Other feature
descriptors have been attempted including shape context [8], steerable fil-
ters [30], PCA-SIFT [43], differential invariants [45], spin images [48], SIFT,
complex filters [86], and moment invariants [97], however a comparison by
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Mikolajczyk and Schmid [63] suggested that SIFT-based descriptors perform
best.

3.2 Intensity Variations

Image pairs that contain significant intensity variations include those used
for high dynamic range (HDR) imaging, pairs with varying illumination, and
even panorama sequences where light sources shine directly into the lens.
Figure 3.2 shows two example images and the resulting HDR image created
by aligning and combining them.

Figure 3.2: Input images taken from an HDR set, and the corresponding
rendered image derived by combining the aligned pair using a simple tone
mapping algorithm.

Feature based methods listed in Section 2.1.2 work for small variations in
intensity, particularly if their feature descriptors are gradient based. How-
ever for image pairs with significant intensity variation, the interest regions
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of feature based methods do not occur in the same location. Sand and Teller
[85] attempt to handle intensity varying pairs by only selecting features from
parts of the image that can be more easily matched while avoiding parts that
are difficult. A combination of area based methods (described below in Sec-
tion 3.3) and feature based methods are used to iteratively align the images,
ignoring feature points that occur in over or under exposed regions of the
image. Their technique was designed for matching two video sequences,
achieving good results with the limited spatial variation that entails, how-
ever it was not tested on still photographs. More recently Tomaszewska and
Mantiuk [94] presented a similar idea, reporting a high quality alignment
such that the “photographs were aligned with sufficient accuracy so that
there are no visible artifacts in the final HDR image” by using only features
that occur across all images in the set. These methods of culling features
that are inappropriate only work when enough features remain to make a
proper alignment.

Schechner and Nayer [87] presented an alignment method based on pyra-
mids of maximum likelihood as a part of their approach to generalize panorama
images to incorporate variations in intensity. The addition of uncertainty
into the intensity based search space allows for a much better alignment un-
der these conditions. Figure 2.1 shows the corresponding mosaic regions of
an unaligned, intensity aligned, and maximum likely aligned set of images.
Kang et al. [42] also described a technique for creating high dynamic range
video from a sequence of alternating variable intensity exposures. Their
sophisticated HDR stitching process uses local alignment and motion esti-
mation to compensate for camera movement and object motion within the
scene, a technique tailored to their input data.

Finally, Ward [82, 100] introduced a method specifically designed to align
images with significant variations in intensity. The technique thresholds
image pairs into pyramidal bitmaps, creating binary images that represent
regions that are neither over nor underexposed. The bitmaps are analyzed
and aligned for translation errors using shift and difference operations at
each level of the pyramid. With this method three megapixel image sets are
aligned in a fraction of a second. Unfortunately their method deals solely
with translation errors, although they discuss the possibility of solving for
rotation errors, stating that 10% of their data set failed as a result. This
binary ‘pass’ / ‘fail’ evaluation of the registrations is indicative of the poor
evaluation techniques used by researchers in the field.
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3.3. Focus Variations

3.3 Focus Variations

Focus variations can occur in image pairs deliberately as is the case with
focus stacking, or through motion blur due to movement of the camera or
objects in the scene as can sometimes be the case in super resolution imaging.
Figure 4.9 shows two images from a focal stack, and the corresponding image
creating from combining the two to maximize the in focus regions.

Figure 3.3: two images from a focal stack, and the corresponding image
creating from combining the two to maximize the in focus regions.

Here again feature based methods surveyed in Section 3.1 have utility to a
point, however image pairs with no overlapping regions of focus do not work;
the same interest points are not detected across images with different focal
planes. Flusser, Zitová and Suk attempt to overcome this by finding blur
invariant interest regions using complex moments [29, 104]. Their presented
evaluation consists of a single 128×128 pixel image using the distance of
30 control points candidates from their target positions as their measure of
accuracy. This makes it difficult to provide significant conclusion about the
quality of registration this provides, although the measured points were at
best 3 Euclidean pixels off, and at worst over 8 pixels, leading the author to
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believe that it is quite poor.
An alternative commonly used in focal stacking applications are clas-

sic intensity based area methods. Lucas and Kanade [53] based sum of
square difference area methods are reasonably successful, assuming the spa-
tial overlap between images is significant. This is often the case for focus
stacking problems, particularly those composed of microscope data where
sensor movement is minimal between images. Bradley et al. [11] make use
of normalized cross correlation in their virtual microscopy system requiring
an overlap of at least 45% between image pairs and ignoring results that fall
outside their expected solution area.

Area based methods work by comparing some measure of the aligned
pixel values as an error function to be minimized. Typically for focus stack-
ing a sum of square difference of the pixel intensity is used. The process is
an iterative gradient descent: at each iteration calculating the current error,
and using the slope of the error space at that point and an estimate of the
Jacobian to calculate the next position. This method is susceptible to local
minima, but works surprisingly well, particularly when applied at multiple
scales via image pyramids.

3.4 Sensor Variations

Image pairs taken using different sensors are commonly referred to as mul-
timodal image pairs. They are common to both medical imaging and to
remote sensing applications, where proper alignment of two or more modal-
ities provides significant additional information. When sensors differ there
is no guarantee that intensities, gradients, or edges will be similar, and both
feature based and intensity based methods fail to find alignments. Figure 3.4
shows an example of a multimodal image pair which contains T1 weighted,
T2 weighted and PD weighted MRI scans of the human brain.

Sharma and Paval [89] propose to overcome this difference in intensity
by making the images as similar as possible, transforming images into rep-
resentations invariant to polarity reversals before applying traditional area
based techniques. Irani and Anandan [37] similarly transform images into
high-pass energy images which are significantly less sensitive to sensor varia-
tions. These methods have been further developed by Liu et al. [50, 51] who
use Gabor filtering as their local frequency representation. More recently,
Henn and Witsch [34] define two nonlinear distance functions and minimize
these to find the optimal alignment.

In the field of medical imaging, maximization of mutual information,
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Figure 3.4: Three types of MR image: the T1 weighted image depicts rela-
tively bright grey matter and dark CSF; the T2 weighted image highlights
the CSF, while the PD weighted image shows little contrast between tissues.
[41]

developed simultaneousely by Viola and Wells [98] and by Collignon et al.
[54], is the most common method used and was comprehensively surveyed by
Pluim, Maintz and Viergever [80]. Bardera, Feixas and Boada proposed two
new similarity measures based off of Jensen’s difference applied to Rẽnyi and
Tsallis-Havrda-Charvãt entropies claiming that their proposed measures are
more robust than the normalized mutual information for some modalities
and a determined range of the entropy parameter. Gan et al. [31] suggest
using Kullback-Leibler distance if a priori knowledge of the joint intensity
distribution is available. Makela et al. [57] provide an overview of further
methods focusing specifically on cardiac images. While features based on
mutual information are being used in pattern recognition [78, 95] they have
not to our knowledge been used successfully for registration of multimodal
images.

Automatic registration of 3D shapes and volumetric slices of sensor data
are common within the medical imaging community, however they fall out-
side the scope of this thesis.

3.5 Variations in Structure

Image pairs can vary significantly in the structure of the scene they depict,
either because objects within the scene have moved, or more commonly
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in medical imaging because objects have changed over time. Figure 3.5
demonstrates an the alignment of an MR taken before a surgery and PET
scan taken after. Aligning images in spite of these changes often requires
non-rigid transforms that solve for the alignment of regions or at the extreme
of individual pixels. The selection of points on the grid of solutions, and
interpolation of values between those points, along with the algorithms used
to solve for the global and local solutions vary from algorithm to algorithm
and are the main differentiating factors within this type of registration.
Methods discussed here can include a variety of other variations, although
sensor variations are most common. This concept of multiple dimensions of
variation is discussed further in Section 3.6.

Figure 3.5: Alignment of an MR taken before a surgery and PET scan taken
after. [24]

Bookstein uses thin plate splines to interpolate affine transforms [9], re-
porting significant success, while Moshfeghi’s model is similar, but based on
elasticity [66]. Christensen et al. utilize a viscous fluid representations of
deformable registration [19], and Bro-Nielson and Gramkow [13] have accel-
erated this concept using a fast fluid model. McInerney and Terzopoulos [62]
have surveyed nonrigid techniques and their application within the medical
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imaging community.
Rueckert et al. [84] present a nonrigid method that uses a global affine

transform, followed by a local B-spline matching of normalized mutual in-
formation voxels, applying their technique to the registration of breast MR
images. Rohde et al. [83] make several contributions to the field, pioneer-
ing use of radially symmetric basis functions rather than B-splines to model
the deformation field, a metric to identify regions that are poorly registered
and over which the transformation needs to be improved, partitioning of the
global registration problem into several smaller ones, and creating a new
constraint scheme that allows transformations that are topologically cor-
rect. They compare the proposed approach to more traditional ones listed
above and show that their new algorithm compares favorably to those in
current use. More recently D’Agostino et al. [22] propose modeling the
registration as a viscous fluid that deforms under the influence of forces
derived from the gradient of the mutual information registration criterion,
validating their method by matching simulated T1-T1, T1-T2 and T1-PD
MRI images.

3.6 Summary

Our mapping of the image registration problem domain focuses on the types
of variation that occur between images to be registered. Conceptualizing
these forms of variation as dimensions of the image registration problem,
we have an abstraction which allows us to think of algorithms as volumes
within the n-dimensional problem space. Existing algorithms have been in-
troduced into this mapping according to the main form of variation that
they have been designed to support. Instances where these algorithms have
been reported as supporting other forms of variation have been outlined,
providing an initial mapping of the space that is summarized below in Ta-
ble 3.1. The reorganization of image registration into our variation-centric
taxonomy provides a basis for several opportunities that advance the field
of image registration:

First, using variations as a starting point it is possible to create a model
with which to describe registration problems. By describing problems in
terms of the variations that exist in their images instead of their algorithmic
details it becomes possible to compare image registration problems across
different algorithms. With this comparison of which algorithm performs best
under a given set of conditions we can create a system that automatically
selects the most appropriate algorithm from those available. This model for
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image registration is explored in detail in Chapter 4, while the method for
interpreting it is outlined in Chapter 6.

In Chapter 7 this concept is extended further into the fully automatic
classification of registration problems [72, 73]. Many of the variations ex-
plored in this chapter can be automatically detected from the image pairs,
allowing for an estimation of where the pairs exist in problem space. This
allows for the selection of an algorithm appropriate to the given conditions
of the problem. Such an automated system would come close to the ‘ul-
timate registration method’ described by Zitová and Flusser at the end of
their survey; a system able to recognize the type of task and to decide by
itself about the most appropriate solution.

In addition, most image registration methods are designed to work along
a single dimension, however the combination of these is becoming more
common, particularly in sensor / structure combinations for multimodal
non-rigid medical imaging. Another notable multidimensional example is
Schechner and Nayer’s HDR panorama stitching method [87]. The exami-
nation of other combinations of variation such as focus and structure could
prove interesting.

Finally, with this taxonomy, and the subsequent model built from it,
it becomes possible to develop a testbench for image registration problems
that spans a wide range of problem domain. An attempt at this testbench
has been undertaken and is introduced in Chapter 5.
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Type of Variation Invariant Capable Barely Capable

Purely Spatial Belongie02[8], Brown03[61], Freeman91
[30], Ke04 [43], Koenderink87 [45],
Lazebnik03 [48], Lowe04 [52], Ma-
neewongvatana01 [58], Schaffalitzky02
[86], Gool96 [97], Yang07 [102]

Baker04 [6], Gan04
[31], Henn03 [34], Lu-
cas81 [53], Maes97 [54],
Viola97 [98]

Intensity Kang03 [42], Reinhard05 [82], Sand04
[85], Schechner03 [87], Tomaszewska07
[94], Ward03 [100]

Brown03 [61], Gan04
[31], Henn03 [34],
Lowe04 [52], Maes97
[54], Viola97 [98]

Baker04 [6], Irani98
[37], Liu00 [50], Liu02
[51], Lucas81 [53],
Sharma97 [89]

Focus Baker04 [6], Bradley05 [11], Flusser99
[29], Lucas81 [53], Zitov99 [104]

Henn03 [34], Maes97
[54], Viola97 [98],
Ward03 [100]

Sensor Henn03 [34], Irani98 [37], Liu00 [50],
Liu02 [51], Maes97 [54], Sharma97 [89],
Viola97[98]

Peng05 [78],
Torkkola03 [95]

Structure Bookstein89 [9], Nielsen96 [13], Chris-
tensen96 [19], Crum04 [21], Agostino02
[22], McInerney96 [62], Moshfeghi91
[66], Rohde03 [83], Rueckert99 [84]

Brown03 [61], Gan04
[31], Henn03 [34],
Lowe04 [52], Maes97
[54], Viola97 [98]

Table 3.1: A summary of the mapping of image registration algorithms (by reference) according to the forms of
variation that they claim to support. Algorithms are placed within the five major dimensions of our taxonomy
into three broad categories: algorithms invariant to that form of variation, algorithms that are capable at most
problems with that form of variation, and finally algorithms that are barely capable of problems with that form
of variation. Capable and barely capable mappings are made on the basis of results mentioned either within the
corresponding paper or an equivalent paper with similar properties. This initial mapping provides insight into the
capability of each image registration algorithms within the registration problem space.
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Chapter 4

Modeling Image Registration

“There’s no sense in being precise when you don’t even know
what you’re talking about.”

– John von Neumann

Image registration is the process of calculating spatial transforms which
align a set of images to a common observational frame of reference, usually
one of the images in the set. While some approaches to the problem are
able to find a solution under a wide range of conditions, no single “best”
image registration algorithm exists which solves all types of registration
problems. There are many different algorithms that solve the problem in
a variety of ways and perform differently under a variety of conditions. In
Chapter 3 we introduced a taxonomy of image registration which mapped
image registration algorithms according to the major dimensions of these
variations. In this chapter we attempt to extend this mapping by providing
a model of image registration which allows for the well defined specification
of the conditions surrounding the problem and of the range of the desired
solution, abstracting away from the functional specification of how to solve
for a registration transform.

The goal when abstracting the image registration problem is not to pro-
vide a “black box” solution, but rather to provide a mechanism by which
a description of the problem leads to the solution, with better descriptions
leading to better solutions. Existing registration techniques and taxonomies
have been examined in depth in order to to encapsulate the variations that
allow the important aspects of the registration problem to be described. In
creating a model which is based around these variations we have had to
balance the flexibility of the model with ease of use and understandability.

A key aspect of our abstraction is that it be interpretable. In order to
facilitate a clear interpretation of the model its components must be well
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defined. In Appendix A we provide a formal definition of image registration
and extend this definition into the applied domain. This formal definition
uses set theory notation to specify the image registration problem. In Sec-
tion 4.1 we explore the representation of the inputs and outputs used in the
problem of image registration. Section 4.2 explores the different conditions
of the problem of image representation, presented as forms of variation. Sec-
tion 4.3 introduces the necessary concepts and types used in our model, and
provides a mapping of the representations and conditions of registration into
a formal model through which image registration can be expressed. Finally
Section 4.4 expresses several common image registration problems under our
model. These layers: Problem Definition, Problem Representation, Problem
Conditions, and Problem Expression, represent our framework of accessible
computer vision, and are presented below and explored in more detail in
Chapter 8.

This model is a fundamental contribution of the thesis, providing a
framework from which image registration problems can be described, and
against which image registration algorithms may be measured. The n-
dimensional problem space mapped by the model allows for the description
of a problem, either as a point or as a volume, while the coverage and per-
formance of a particular algorithm can similarly be modeled as a volume
within this space.

A Registration Example: Panorama Stitching

As an introduction to the model we present an example panorama stitching
registration problem in order to provide a context for the concepts explained
below. The problem has been expressed relatively as the relationship be-
tween two images. Table 4.1 introduces a set of expectations and require-
ments for this problem: images are similar in exposure, aperture, etc, how-
ever they vary spatially. Exposure, aperture, and other properties are not
specified below; properties which are not expressed are assumed to be the
same under our model.

In our example we have specified that we expect that the images are
overlapping by between 5% and 60%. We have also limited the solution
space to transforms which result in an overlap between 5% and 50% based
on the assumption that our dataset will be made up of images which vary
by at least half an image.

Each of the concepts presented in the model are explained in detail below.
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Image 1-2 Relative Expectations Range / Value Dist.

Overlap [0.05,0.60] +Quad

Image 1-2 Relative Requirements Range Dist.

Overlap [0.05,0.50] +Quad

Table 4.1: Example panorama stitching registration problem expressed as
the relative relationship between a pair of images. +Quad = Quadratic
Distribution

4.1 Representation of Image Registration
Solutions

Every image registration problem is attempting to discover the spatial vari-
ation between two images. The two most common forms of spatial variation
found in computational photography are stitching, where significant spatial
variation occurs and images are being combined to expand the field of view,
and stacking, where images are overlapping and are being combined to in-
crease some other form of information such as dynamic range or focus. In
addition, the extrinsic camera model affects the spatial alignment of images,
and is listed below.

In order to account for spatial variation, a transform which aligns the
images must be calculated. This transform provides a mapping from points
in one image’s coordinate system into the other’s. The transform A from our
definition of image registration represents this mapping and is a theoretical
and exact mapping from one image space into the other.

4.1.1 Applied Representations

Applied transforms are most often represented using a 3×3 matrix, and a
number of different transform types are used to solve for different problem
conditions. Affine transforms are among the most common used in compu-
tational photography and medical imaging, and allow the rectangular image
plane to be transformed into any parallelogram. The more flexible projective
transform based representation is also used which allows the image plane to
be transformed into any trapezoidal shape. These two transform types are
outlined below.
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Affine Transform

One of the most common representations of the solution space of image
registration is the affine transform. Affine transforms approximate a pla-
nar mapping between two images through the relative translation, rotation,
scale, and a skew which is used to approximate rotation in x and y. Trans-
lation refers to a horizontal (x) or vertical (y) shift between the two images
within the representative image planes. Rotation refers to a rotation (in
z) about the centre point or change in orientation between the two images
within the representative image planes. Scale refers to a change in size (in
both x and y) between the images. Finally skew refers to a difference in shear
between the two image planes. Each of these forms of spatial variation is
demonstrated individually below in Figure 4.1. Equation (4.1) demonstrates
how an images’ coordinates can be calculated using the matrix.

x′ = x(Scale cos θ + y(sin θ +XSkew) +XTranslation (4.1)
y′ = x(− sin θ + YSkew) + yScale cos θ + YTranslation

Perspective Transform

The perspective projection maps points in the three dimensional physical
world onto an image plane using a set of projection lines which all meet
at a single point referred to as the centre of projection. Perspective trans-
formations define the relationship between two different projective planes,
providing a mapping from one image plane into the other. In order to
calculate the projection of one plane onto another a third parameter ‘w’,
representing the distance of the point from the centre of projection must
be solved for in addition to x and y. Each of the parameters specified for
affine transformations can be expressed similarly in a perspective transform.
Additionally the image can be rotated in the x and y dimensions, however
the combination of these with the other operations into a single matrix is
not easily expressible in an intuitive form. Figure 4.2 demonstrates a pair
of images which differ by a perspective transform, and their corresponding
alignment.

4.1.2 Extrinsic Camera Parameters

Changes of the position or orientation of the camera with respect to the
scene also cause spatial variation, however they violate the assumption that
the images correspond to a planar mapping of the same scene. If only
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Figure 4.1: Individual elements that make up the affine transform. From
top to bottom: Translation (both X & Y), Rotation, Scale, and Skew (both
X & Y).
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Figure 4.2: Demonstration of the perspective transformation

orientation changes then an affine or perspective transform can be used
to solve for the matrix which aligns the image frames. As demonstrated
by Figure 4.3, in the case of changes in camera position no transform can
be found which will align the two images, although special cases such as
perpendicular camera movement do exist. These images can however be
aligned to a sparse (non-planar) 3d model of the scene using structure from
motion techniques to create 3d photo collections[91]. Rough alignments are
also possible for small movements of the camera with respect to its subject.
The extrinsic camera parameters are those that define the position of the
camera with respect to a particular frame of reference in the real world.
This frame of reference is often taken from one of the images themselves
when no known world frame is available. Extrinsic parameters define the
camera’s position in x, y, and z, as well as the orientation of the camera in
the x, y, and z plane.

4.1.3 Overlap of Images

In many image registration problems the range of transforms which represent
a possible solution space is unknown or is difficult to express as a range
of possible transform parameters. In those situations however it is often
still possible to estimate the amount of overlap between the two images.
Particularly within the field of computational photography the overlap of
image registration problems can be well estimated. Focus stacks, HDR
image set, super-resolution image sets, and medical images should contain
a high degree of overlap, while panoramas are likely to contain overlaps as
high as 50% and as low as 5%. Figure 4.4 below highlights several image
pairs which contain similar levels of overlap. Overlap can be calculated as
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Figure 4.3: Eiffel Tower photographed from two camera positions. No affine
or perspective transform can be found which will align these images because
the positional extrinsic parameters of the camera are different for each image,
violating the planar assumption of both the affine and perspective solution
spaces.
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Figure 4.4: Four examples image pairs with similar levels of overlap. Overlap
is calculated as the relationship between the number of overlapping pixels
and the number of overlapping and non-overlapping pixels.

the relationship between the number of overlapping pixels and the number
of overlapping and non-overlapping pixels.

In order to calculate overlap we calculate the area of the shape created
by the intersection of the reference and synthetic images, dividing by the
area of the reference to normalize. The vertices of intersection are calculated
using the method developed by Toussaint [96] which finds the convex hull
of intersection between the two images by determining whether a line from
the point on one hull to the centre of the other hull intersects any lines.
The area is calculated using Equation (4.2) which calculates the area of a
polygon from known vertices; in our case between four and eight depending
on the transform. xn refers to the x value of the nth vertex, while yn refers
to its y value.

(x1y2 − y1x2) + (x2y3 − y2x3)...+ (xny1 − ynx1)
2

(4.2)
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As we will see in Chapter 6, when we explore the impact that over-
lap has on the alignment of images, this concept is provides another useful
abstraction of the image registration solution space. By evaluating the per-
formance of image registration algorithms across a range of overlap we are
able to better understand the limitations of particular algorithms and select
appropriately when those conditions arise.

4.1.4 Algorithm runtimes

Another aspect of image registration problems which is sometimes impor-
tant in the selection of algorithm is the length of time the algorithm takes to
find a valid solution. For most algorithms a tradeoff can be made between
performance and accuracy by varying parameter settings. Determining how
long a given algorithm will take to come to a solution under a given set of pa-
rameters and images is a very difficult. Estimates based purely on algorithm
are unreliable because image content can drastically affect runtime.

More accurate methods of estimation are necessary in order to begin to
include this concept directly as a part of our model, however big O notation
estimations of performance do give some indication of runtime, often high-
lighting parameters which may be limited or decreased in order to decrease
it. The computation cost of one iteration of the Lucas-Kanade algorithm
is O(n2N + n3), where n is the number of warp parameters (6 for affine or
8 for projective), and N is the number of pixels in the template image T
which is being aligned. The most expensive step by far is the computation
of the Hessian, which alone takes time O(n2N). In the case of megapixel
sized image alignment the image size becomes a dominant factor in the
process, and subsampling the image, or using image pyramids can greatly
reduce computation time. Rearranging the problem into an inverse compo-
sitional arrangement can also reduce the computation cost per iteration to
O(nN + n3). To further limit the computation cost we can place an upper
bound on the number of steps taken by the solver.

Feature based methods vary in computational cost, depending upon their
feature calculation cost, the time taken to match features, and the time taken
to solve for a universal solution which provides the best alignment. Reducing
the number of features calculated is one method of drastically reducing the
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computational cost, because the matching and solving stage are a function
of this value. For example matching can be done using a k-d tree, which
is O(n log n) per iteration, where n is the number of features. It is also
possible to limit the maximum number of nearest neighbor checks to further
reduce cost. Solving is frequently done using RANSAC [28], which is of order
O(nf) per iteration, where n is again the number of features, and f is the
dimensionality of the feature. In order to further improve the computational
cost the number of iterations of the algorithm can be reduced.

4.2 Conditions of Image Registration

The conditions under which image registrations occur have been explored
in Chapter 3 through our novel taxonomy of image registration. Brown’s
concept of variation was extended, using it as suggested: as a basis for di-
viding the algorithms in the field. The variation, or differences, between
two images form a basis for selecting an image registration algorithm. Ta-
ble 4.2 revisits Brown’s categorization of variations between images to be
registered, and introduces these as specific conditions under which image
registration commonly takes place. Also included in this table is the spatial
variation referred to in our representation of image registration. Note that
none of the variations listed in the table are tied to a particular algorithm
or implementation.
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Corrected Distortions
Translation Misalignment due to translation Proportional to the scale of geometry
Rotation Misalignment due to rotation Proportional to the scale of geometry
Scale Misalignment due to scale Proportional to the scale of geometry
Skew Misalignment due to skew Proportional to the scale of geometry
Camera Extrinsics Misalignment due to changes in camera position Position/Orientation of the Camera
Overlap Overlap between images Percentage of the reference image

Uncorrected Distortions
Relative luminance Luminance of the scene, relative to reference image Proportional to the reference image
Focal Depth Range over which images are sufficiently in focus Distance (Hyperbolic Scale)
Scene Lighting Changes in lighting between images Descriptive Lighting Model
Camera Intrinsics Model of the camera’s intrinsic properties Focal Length, Shutter Speed, Aperture,

Lens Distortion, Sensor Model

Variations of Interest
Object Models Objects within the scene Shape, Appearance
Object Motion Amount of movement of objects between images Local Motion Model

Table 4.2: Categorization of Variations between Images to be Registered. “Corrected distortions”, “uncorrected
distortions”, and “variations of interest” are categories of variation specified in Brown [14].
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These variations must be able to be specified by a programmer in order
to describe the conditions of their registration problem, or by a researcher
who is expressing the bounds of their algorithms’ capabilities within the
problem space. Following Brown’s framework “corrected distortions” can be
used to determine the type of transformation required, while “uncorrected
distortions” and “variations of interest” can be used as the basis for selecting
between registration methods.

Each of the dimensions of variation proposed in our taxonomy of regis-
tration are presented below. In Section 4.3 the individual properties that
these forms of variation consist of are outlined in detail and their values,
scale, and ranges are specified.

4.2.1 Intensity Variation

Intensity can vary between images for a number of reasons. Image pairs
taken for high dynamic range (HDR) imaging have been deliberated manip-
ulated to vary in exposure through changes in the intrinsic camera parame-
ters, most often the shutter speed of the camera. This difference in exposure
due to the change in intrinsic camera properties is the intensity variation we
are attempting to provide a model for. Intrinsic properties which influence
the exposure of the scene include aperture, shutter speed, and ‘film’ speed.

Other forms of variation often exhibit an effect on images which can
cause changes in intensity within a pair of images. Pairs with varying il-
lumination often also vary in intensity. A complex lighting model speci-
fying the conditions of the lighting is possible through computer graphics
representations, however we have yet to integrate this level of illumination
specification into our model because of the complexity and the limitations
of its usefulness in registration. Models for future computer vision prob-
lems, such as those mentioned in Chapter 8, may require such a model more
directly. We provide a basic outline, using camera white balance settings
as our basis, however its full specification and implementation is left as fu-
ture work. Panorama sequences where light sources shine directly into the
lens also represent another case where the intensity can vary significantly
between a pair of images. Modeling this effect similarly requires a lighting
model and is left as future work. Variations in sensor can also cause changes
in both the intensity value of images as well as the gradient of the images.
Our sensor model is outlined below in Section 4.2.3.

These other forms of variation should be specified directly when they
are the cause of the changes in intensity in the image pairs. Specification of
these variations as a variation in intensity can lead to incorrect classification
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of the type of image registration problem, although as we will see in Chapter
7 these types of variation are often distinguishable from intensity variations
directly by examining the images themselves.

Although variations in shutter speed are the most common source of in-
tensity variations, many other intrinsic camera parameters can cause changes
in variation. Below we outline the absolute properties of aperture, shutter
speed, and film speed, which are associated with the luminance of an image.
These values combine to form the overall exposure of an image. Assum-
ing that the images are from the same scene as defined in Appendix A the
calculation of the relative exposure of an image pair is straightforward. If
an image pair is from a different scene then registration of that pair is an
impossible task because an alignment between the two images does not exist.

Aperture

The aperture of a camera, or more accurately of a lens, is the opening
through which light is exposed onto the film or sensor. Apertures are mea-
sured in f/stops, a fractional ratio of the diameter of the opening in com-
parison to the focal length of the lens. On a 50mm lens, an aperture of f/2
means that the diameter of the aperture is 25mm. The ratio is: 50/25 = 2.
The area of aperture can be calculated as:

area = π ∗ r2, (4.3)

or in the case of our example, π ∗ 12.52 = 490.9 mm2. The amount of light
exposed onto the film or sensor is proportional to this area. In order to half
the amount of light that the aperture allows, this area must be decreased
by half. An aperture of 2.8 will have a diameter of 17.9mm, which when
plugged into Equation (4.3) reveals an area of 250 mm2. Table 4.3 outlines
the relationship between traditional f/stop values and the corresponding area
for a 50mm lens. As aperture values increase the size of the area and hence
the amount of light let onto the sensor decreases. Doubling the amount
of light is known as stepping up an f/stop or increasing the f/stop by a
‘stop,’ while halving the light is referred to as stepping down the aperture
by a ‘stop.’ Since aperture values are expressed in proportion to the focal
length of the lens the same amount of light reaches the sensor or film of a
camera for a given f/stop, regardless of the lens. Figure 4.5 approximates
two aperture settings, f/2.8 and f/22 and demonstrates how each lets light
onto the film/sensor plane.

As we will see below in Section 4.2.2 changes in aperture also affect the
depth of field of an image.
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Sensor/Film
plane

Aperture F/2.8

Sensor/Film
plane

Aperture F/22

Figure 4.5: Aperture controls the amount of light that reaches the sensor.
Smaller aperture values, measured in f-stops allow in more light.

Shutter Speed

Shutter speed is the amount of time that the sensor or film of the camera is
exposed to light. For hand held photography the minimum desired shutter
speed is usually the inverse of the focal length of the lens, thus a 300mm
telephoto lens requires a minimum shutter speed of 1/300 of a second, while
a 50mm lens requires only 1/50th of a second for the picture to contain
no motion blur due to movement of the camera. The relationship between
the shutter speed and the amount of light which reaches the film or sensor
is direct: doubling the shutter speed allows twice as much light to reach
the film/sensor plane. Table 4.4 demonstrates a sequence of shutter speed
/ f/stop combinations which allow the same amount of light to reach the
sensor or film of a camera.
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f/stop Diameter (mm) Radius (mm) Area (mm2)

f/1.0 50.0 25.0 1,963
f/1.4 35.7 17.9 1,002
f/2.0 25.0 12.5 491
f/2.8 17.9 8.9 250
f/4 12.5 6.3 123

f/5.6 8.9 4.5 63
f/8 6.3 3.1 31
f/11 4.5 2.3 16
f/16 3.1 1.6 8
f/22 2.3 1.1 4

Table 4.3: Aperture’s F/stop in relation to area for a 50mm lens

Shutter Speed (s) f/stop

1/4 f/45
1/8 f/32
1/15 f/22
1/30 f/16
1/60 f/11
1/125 f/8
1/250 f/5.6
1/500 f/4
1/1000 f/2.8
1/2000 f/2
1/4000 f/1.4

Table 4.4: Shutter Speed and Aperture combinations which allow the same
amount of light to reach the sensor or film of the camera. When the shutter
speed is halved the aperture must be stepped up a stop, or changed to
a lower value, while a doubling of shutter speed requires the aperture be
stepped down a stop, setting it to the next highest stop.
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Film Speed

Film speed is the measure of a film’s sensitivity to light. These values are
determined by sensitometry and measured on various numerical scales, the
most common being the ISO system. Insensitive film, with a low speed
index requires more exposure to light to produce the same image as a more
sensitive film, and is thus commonly termed a slow film. Highly sensitive
films (those with a high ISO) are likewise referred to as fast films. A closely
related ISO system is used to measure the sensitivity of digital imaging
systems.

The relationship between film speed and the amount of light of a par-
ticular exposure is similarly direct, that is a doubling of the film or sensor’s
ISO will effectively allow twice as much light to reach the sensor since the
sensor will be twice as sensitive to light.

Exposure Value

For the purposes of our model of image registration exposure values represent
the amount of exposure that the sensor or film will receive when the shutter
is opened. For a given scene under the same lighting conditions a change in
these values will result in an illumination variation. Traditionally exposure
values can be calculated as a combination of aperture, and shutter speed,
however film speed affects the sensitivity of the sensor and has been included
in our calculation of exposure values. Table 4.5 outlines the exposure values
for several common lighting situations. Exposure value can be calculated
using equation (4.4) [39], where N is the aperture value relative to f/1.0 and t
is the exposure time in seconds. In equation (4.5) we factor in the addition
of film or sensor sensitivity S, providing a relative value of the expected
exposure that is independent of scene.

EV = log2

(
N2

t

)
(4.4)

EV = log2

(
N2

t

)
+ log2

(
S

100

)
(4.5)

A similar but more complex method of calculating exposure values which
includes representations of the scene luminance and incident light luminance
has also been examined [44]. The Additive System of Photographic Expo-
sure combines: exposure time (shutter speed), aperture, exposure , ISO
speed (film or digital imager sensitivity), Metered scene luminance (bright-
ness), and Metered incident light illuminance (illumination).
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For the problem of image registration the brightness Bv (measured in
candelas/m2) and incident illumination Iv (measured in lux) of the scene
should remain constant, barring changes to the scene’s lighting. As men-
tioned above we have chosen to include these types of variation within a
scene lighting model from which these values can be derived. Equation
(4.6) outlines how these values are incorporated into equation (4.5) to give
a complete model of exposure. If no lighting model is provided then the
scene is assumed to contain constant lighting and equation (4.5) can be
used to calculate the exposure of the images as terms 3 & 4 of equation
(4.6) will be the same for all images of that scene.

EV = log2

(
N2

t

)
+ log2

(
S

100

)
+ log2

(
Bv

3.4

)
+ log2

(
Iv

67

)
(4.6)

4.2.2 Focus Variation

Focus in an image can vary for a variety of reasons. Many aspects of the
camera’s intrinsic properties affect the regions within the image which are
considered to be in focus. When the aperture, or hole through which light
is let into the sensor, changes the focal depth and focus of the image also
changes. The focal length of the lens also affects this measure of focus.
The distance of the subject from the lens plays a key role in focus as well,
changing exponentially as the subject gets very close to the lens as is often
the case in macro photography.

In photography the range of an image that is acceptably in focus is
referred to as its depth of field [39]. Typically, photographers vary depth of
field within an image by changing a camera’s aperture, the size of the hole
that lets light reach the sensor. Smaller holes let in less light, however the
rays passing through the hole are less divergent, resulting in a greater depth
of field. Figure 4.6 illustrates this principle.

The sharpness of an image is also potentially affected by both lens ab-
berations and the diffraction limits of the sensor. Lens abberations occur at
low f-stop values when light from a single point on the subject takes multiple
paths through the optical chain, some of which do not converge to a single
point on the sensor. Most single lens reflex (slr) camera lenses contain five
or more optical elements and limit the amount of abberation in the optical
pathway, however abberation in point and shoot cameras is common. We
have chosen not to include abberation in our model of focus.
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EV TYPE OF LIGHTING SITUATION

-6 Night, away from city lights, subject under starlight only.
-5 Night, away from city lights, subject under crescent moon.
-4 Night, away from city lights, subject under half moon. Meteors

(during showers, with time exposure).
-3 Night, away from city lights, subject under full moon.
-2 Night, away from city lights, snowscape under full moon.
-1 Subjects lit by dim ambient artificial light.
0 Subjects lit by dim ambient artificial light.
1 Distant view of lighted skyline.
2 Lightning (with time exposure). Total eclipse of moon.
3 Fireworks (with time exposure).
4 Candle lit close-ups. Christmas lights, floodlit buildings, foun-

tains, and monuments. Subjects under bright street lamps.
5 Night home interiors, average light. School or church auditoriums.

Subjects lit by campfires or bonfires.
6 Brightly lit home interiors at night. Fairs, amusement parks.
7 Bottom of rainforest canopy. Brightly lighted nighttime streets.

Indoor sports. Stage shows, circuses.
8 Las Vegas or Times Square at night. Store windows. Campfires,

bonfires, burning buildings. Ice shows, football, baseball etc. at
night. Interiors with bright florescent lights.

9 Landscapes, city skylines 10 minutes after sunset. Neon lights,
spotlighted subjects.

10 Landscapes and skylines immediately after sunset. Crescent moon
(long lens).

11 Sunsets. Subjects in open shade.
12 Half moon (long lens). Subject in heavy overcast.
13 Gibbous moon (long lens). Subjects in cloudy-bright light (no

shadows).
14 Full moon (long lens). Subjects in weak, hazy sun.
15 Subjects in bright or hazy sun (Sunny f/16 rule).
16 Subjects in bright daylight on sand or snow.
17 Rarely encountered in nature. Some man made lighting.
18 Rarely encountered in nature. Some man made lighting.
19 Rarely encountered in nature. Some man made lighting.
20 Rarely encountered in nature. Some man made lighting.
21 Rarely encountered in nature. Some man made lighting.
22 Extremely bright. Rarely encountered in nature.
23 Extremely bright. Rarely encountered in nature.

Table 4.5: Exposure Values for various lighting conditions at ISO 100 [76].
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Conversely at high f-stop values, light passing through smaller holes
is normally considered to be less divergent, however diffraction begins to
become an issue as the circumference of the small hole admitting light causes
a greater number of light rays to interfere with each other [39]. If this
diffraction pattern spreads beyond the width of a pixel in the sensor, the
resulting image will be less in focus. When values for colour are calculated
using the bayer pattern [39] the diffraction limit is usually considered to be
the f-stop that causes an interference pattern with a width of two pixels.
This limit typically falls around f/22 for digital single lens reflex (DSLR)
cameras, but can be as low as f/5.6 for smaller point and shoot cameras
because of their small pixel size. Photographing at f-stop values higher than
the diffraction limit results in an image that is less focused over the entire
image, however it does not affect the image’s depth of field.

Circle of Confusion

When a pair of images shares no overlapping regions which are ‘in focus’
then they are difficult to align by feature based methods, and other methods
which are focus invariant must be selected in order to align the pair. This
common notion of a part of the image being ‘in focus’ or ‘out of focus’ is
a significant simplification of the concept of focus. In fact how ‘in focus’ a
part of the image is can be calculated. If a part of the image is considered
to be ‘in focus’ it means that part is sufficiently in focus: the focus value
is greater than some specific value. This threshold value depends on the
size and shape of pixels on the camera’s image sensor, the resolution of the
printer, as well as the distance from which an image is meant to be viewed.

Measures of focus center around the concept of a circle of confusion,
which represents the smallest circle that a person can distinguish from a
specific distance. Focus within an image is a continuum, and the circle of
confusion measure acts as a threshold; details in the image that meet the
criteria are considered to be “in focus,” while those that don’t are labeled
“out of focus.” In digital photography this value is set to the size of a pixel
on the camera’s sensor, as that is the smallest element which will be resolved
in the digital image.

Aperture

The size of the aperture, or hole, through which light is let into the sensor
plays a key role in how much of the image will be in focus. Figure 4.6
demonstrates how smaller aperture values have a narrower depth of field,
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Depth of Focus
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Figure 4.6: In addition to controlling the amount of light which reaches
the sensor, aperture also controls the depth of field of the image. Smaller
aperture values have a narrower depth of field, while larger values have a
deeper depth of field.

while larger values have a deeper depth of field. Figure 4.7 demonstrates
this principle photographically.

Subject Distance

The depth of field of the image, as well as the region of the image which
is sufficiently in focus is dependent upon the distance of the subject being
focused from the camera. Focus on closer subjects result in a narrower depth
of field, while subjects at a greater distance have a greater depth of field.

Hyperfocal Distance

The hyperfocal distance is the nearest focus distance at which the depth
of field of the image extends to infinity; the sensor or film is no longer
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Figure 4.7: In addition to controlling the amount of light which reaches
the sensor, aperture also controls the depth of field of the image. Smaller
aperture values have a narrower depth of field, while larger values have a
deeper depth of field. The image on the left has an aperture of f/2 while the
one on the right has an aperture of f/8.

capable of rendering detail beyond this distance. Focusing the camera at
the hyperfocal distance results in the largest possible depth of field for a
given f-stop . Focusing beyond the hyperfocal distance does not increase
the far depth of field but rather decreases the depth of field in front of
the subject, effectively decreasing the total depth of field. The hyperfocal
distance can be approximated as:

H =
F 2

F#C
(4.7)

where F is the focal length of the lens (in mm), F# is the aperture value of
the camera (in F-stops), and C is the size of the circle of confusion (in mm).

Depth of Field

The majority of professional photographers shoot in a mode known as aper-
ture priority, which fixes aperture at a specific value and dynamically adjusts
the exposure time (shutter speed) to allow in the amount of light required
by the sensor to properly expose the image. By fixing the aperture, the
depth of field of the images is also relatively fixed, affording more control
over the image.

The approximate equation governing depth of field and exposure is given
below:
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DOF =
2SD2F#C

F 2
(4.8)

where SD is the subject distance (in mm) F# is the aperture value of the
camera (in F-stops), C is the size of the circle of confusion (in mm) and F
is the focal length of the lens (in mm).

For a subject which is 2500mm from the camera, photographed with an
aperture of F2.8 on a digital camera with a pixel size of 0.15 and a lens of
focal length 50mm the depth of field is calculated as:

DOF =
2 ∗ 25002 ∗ 2.8 ∗ 0.15

502
= 14m

A subject which is 50mm from the camera photographed with the same
properties:

DOF =
2 ∗ 502 ∗ 2.8 ∗ 0.15

502
= 0.84mm

has a much lower depth of field of 0.84mm.

In Focus Distances from an Image

The minimum distance from the camera which will be sufficiently in fo-
cus can be approximated by subtracting half of the depth of field from the
subject distance. Similarly the maximum subject distance which will be
sufficiently in focus can be approximated by adding this value. While this
approximation works for lenses of 100mm focal length and above, the dis-
tribution of front and rear depth of field is not always symmetric. Table
4.6 outlines the distribution of depth of field for lenses of a variety of focal
lengths.

Using this table as a basis, we are able to estimate with reasonable
accuracy the minimum and maximum distance from the camera which will
be in focus. This allows us to compare these values across different images,
allowing our model to express focus variation.

Focus Value

In an attempt to make focus variations easier to specify we have developed
an abstraction of focus known as a focus value which can be calculated from
the in focus distances of two images. This value is a representation of the
degree to which two images contain overlapping in focus regions, and is
measured as the ratio of the sum of the depth of field (DOF) in each image

80



4.2. Conditions of Image Registration

Distribution of depth of field
Focal Length (mm) Rear Front

10 70.2 % 29.8 %
20 60.1 % 39.9 %
50 54.0 % 46.0 %
100 52.0 % 48.0 %
200 51.0 % 49.0 %
400 50.5 % 49.5 %

Table 4.6: Approximate distributions of depth of field from rear to front for
different lens focal lengths.

to twice the distance between the nearest and furthest in focus pixel from
both images. Equation (4.9) demonstrates the method of calculating our
focus value.

Focus =
DOF1 +DOF2

2(max(far1, far2)−min(near1, near2))
(4.9)

Under this abstraction image pairs with entirely overlapping in focus
distances have a focus value of 1.0, while pairs whose in focus distances
connect but do not overlap have a focus value of 0.5.

4.2.3 Sensor Variation

Sensor variations occur in a variety of situations most often identified with
particular research areas. In medical image processing images taken with
different sensors are combined in order to provide a more detailed under-
standing of the patient or subject. The algorithm used in the alignment
of these images is dependent upon the type of sensor data. When sensors
vary the gradient direction, intensity representation, and range of possible
values all change. In this section we provide an initial and very basic model
of sensors in order to allow for the expression of problems which are sensor
varying.

Remote sensing also commonly features images taken with different modal-
ities, allowing for more sophisticated analysis of a scene or environment. As
with medical imaging these multimodal images require image registration
algorithms which are invariant to the change in sensor.

Finally, sensor variation can also occur when different cameras of the
same sensor type, but with different sensor properties are used to capture
views from the same scene. In this case the gradient and intensity repre-
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Sensor Type

Film
CCD
CMOS
Infrared
Magnetic Resonance Imaging (MRI)
Electron Microscopy
Ultrasound
Projection Radiography
Fluoroscopy
Photoacoustic Imaging
Tomography
X-radiation (XRAY)
Electroencephalography (EEG)
Magnetoencephalography (MEG)
Electrocardiography (EKG)
Positron Emission Tomography (PET)
Interferometric Synthetic Aperture Radar

Table 4.7: Types of sensors available under our simplified model of sensor
variation.

sentations are unlikely to change, however the sensor size, pixel size, colour
model, etc. all play a significant role in the capture of an image, and know-
ing these differences a priori can be beneficial when mapping from one image
space into another. In most cases this information can be derived directly
from the intrinsic camera model if available.

Sensor Modality

Fundamental to the determination of whether two images are sensor vary-
ing is the type of sensor used. While future sensor model may provide a
mechanism for converting between sensor types, we use a simple list of pos-
sible sensor types, requiring that these match between images in order for
an image to not be sensor varying. This approach is crude, but allows for
the expression of sensor variation in instances where this is critical to the
selection of appropriate algorithms to align the images. Table 4.7 lists the
types of sensors available in our model. A more sophisticated sensor model
is left as future work for researchers who are focused on medical imaging or
remote sensing.
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4.2.4 Scene Variation

Scene variations occur between pairs or sets of images for a number of rea-
sons. Sets of images from a scene are by necessity captured over time,
allowing for changes in the scene between images. In photography this fre-
quently occurs as people or objects in a scene move between images. In
medical imaging these variations can be growths in tumors or changes in
muscle mass. We have grouped these forms of variation into two distinct
categories: Local motion of objects between capture, and deformation of
objects within the scene.

In addition to changes in the scene between images, if exposure times
are not fast enough to capture the scene both local (subject) and global
(camera) motion are possible within an individual image. These latter two
forms of scene variation are within individual images however, and are not
included in our model. Development of a global motion model to compensate
for camera blur is feasible, but not applicable to image registration. A local
model of motion is much more complex and requires more thought regarding
the representation of the subject and its range of possible motion more suited
to object tracking.

Local Motion Between Capture

As mentioned above, a sophisticated local model of motion is much more
complex and requires more thought regarding the representation of what
is moving and its range of possible motion more suited to object tracking.
However for the task of image registration, knowing that some objects in
the scene are moving can potentially allow for more leniency in the global
matching of segments.

Our model for local motion between capture focuses on this simpler
description, allowing the expression of the percentage of the image which
has changed between images, and the distance that objects have moved,
expressed in relation to the scene.

Deformation

Deformation of an object within the scene is common within medical imag-
ing. Again, if this is to be modeled with sophistication, a representation
both of the object, and of the possible range of changes over time is neces-
sary. The development of such a model is outside the scope of this thesis and
is left as future work for researchers within the medical imaging community
who have a deep understanding of the objects being imaged.
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Our model for deformation is simpler, once again allowing the expression
of the percentage of the image which has changed between images, and the
amount that objects have changed, expressed in relation to the original size
of the object. This provides a very crude basis for describing deformation
that makes developers of image registration algorithms aware of these con-
ditions between the images. If these deformations are the desired output
of the system, then the representation of the transform must change to one
that solves for local spatial alignments between pairs, either on a per pixel
basis as in optical flow, or using a grid of affine or perspective transforms.

4.3 The Expression of Registration

In Appendix A and Section 4.2 we have defined the problem of image regis-
tration. In order to create an interpretable model of image registration we
must provide a means of specifying both the desired representation of the
problem, as well as the conditions under which the registration is occurring.

In this section we introduce our model of image registration and reex-
amine our example of the expression of a panorama stitching problem. To
create a model for image registration a number of basic concepts must first
be defined. When combined with our definition of representation and condi-
tions, these concepts allow for the creation of an expressive model of image
registration. Primarily these concepts deal with the specification of value
or difference of the various parameters that make up the image registration
problem space.

4.3.1 Expectations and Requirements

In order to allow a greater degree of flexibility in the description of vision
problems we allow application developers to specify the conditions of the
problem and limitations of the solution both in terms of their expectations
and their requirements. Expectations are conditions or limitations that are
believed likely (are expected) to occur, while requirements are hard limits
on either the input conditions or on the solution space. The differences in
interpretation of expectations and requirements by our interpreter is detailed
in Chapter 6.

84



4.3. The Expression of Registration

Expectations

Expectations are suppositions that a developer has on the conditions of the
problem or limitations of the solution space. These are not hard or limiting
in any way, however, knowing these allows the interpreter to determine which
algorithms are going to be appropriate to use when finding a solution. As
an example, the expectation that the exposure has changed between two
images can guide in the selection of exposure invariant algorithms. This
process of describing what kind of information a developer is expecting is
meant to mimic the expert knowledge that a vision researcher uses when
selecting an algorithm.

Requirements

Requirements are limitations that the developer wishes to place on either
the input conditions of the problem, or more likely on the solution space to
the vision problem being solved. These limitations are considered ‘hard’ by
the system and any detectable conditions or solutions that don’t meet these
specifications are considered to be invalid. By way of example a developer,
knowing that they are doing a high-dynamic-range image stack can require
that the resulting registration transform produced by OpenVL contain only
very small changes in rotation or scale or an overlap of at least 90%. This
requirement can be used to both guide in the selection of algorithms that use
constraints based solvers, and in the selection of a solution in the instance
where multiple solutions have been produced.

4.3.2 Properties

In order to describe both the expectations and the requirements of the prob-
lem space the developer must be able to express the conditions and the
representation or solution of their problem. In most cases these conditions
and representations can be expressed through properties; the aspects of an
image that can be specified as a value or range of values. Each property has
a specific unit of measure and scale which can be compared relatively across
image pairs or sets.

Using the automatic classification techniques described in Chapter 7,
EXIF information, Dicom metadata, or camera specific metadata formats
it is also possible to automatically fill in many of the properties and models
of a given image, particularly those related to camera intrinsics. The image
registration model, however, has been designed to be flexible enough to deal
with cases where this information is not available, allowing the application
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developer to specify the conditions of their problem manually, and vision
researchers to be able to specify the conditions under which their algorithms
work in a well defined manner.

Properties are any aspects of an image, image pair, or image set that can
be expressed using a numerical value. There are two main types of model
properties: absolute and relative. Absolute properties are those which can be
calculated or measured as a single numerical value or range of values. They
represent a property of the image or scene. Working from the premise that it
is possible that a developer will not know the exact value of given properties,
we allow the specification of properties using distributions. These distribu-
tions express the range of allowable or suspected values for the property and
can add a bias to the representation.

A Uniform distribution is the default, giving every value within the spec-
ified range an equal likelihood, but under our current framework we also sup-
port Exponential, +Quad & ∪-Quadratic, Gaussian and Inverse Gaussian
distributions allowing for much more complex descriptions of the problem.
This variety is designed to provide flexibility in design and development of
vision application. In practice the specification of these distributions could
be done through easy to use macros or developers who don’t require this
flexibility could rely on default values. Absolute properties can also be ex-
pressed directly as a histogram, allowing developers to describe or calculate
a property with a biased range of expected values. Examples of absolute
properties include intrinsic camera parameters such as shutter speed or ISO,
Luminance, and the individual parameters of the transform which aligns the
image pair. Table 4.8 outlines the parameters which must be specified for
each type of distribution.

For image registration the variation between images defines the main
dimensions of the problem space. Absolute properties specify the properties
of a single image, such as the aperture or shutter speed of the camera, the
luminance of the image, or the focus of the image. Relative properties specify
relationships between an image pair, such as the translation, rotation, scale,
or skew of an affine transformation, the relative luminance or the relative
focus. Relative properties may either be differences or ratios depending
upon the property.

As we saw above in Section 4.2 some of the properties in our model
of image registration are calculated using equations which rely on other
properties, summarizing multiple properties into a single range of values for
ease of expression and understanding. It is much simpler, for example, to
specify the exposure of an image, rather than specifying the shutter speed,
aperture, and ISO, from which the exposure can be calculated. Similarly the
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Distribution Equation

Uniform f(x|a, b) = 1, for x ∈ [a, b], 0 otherwise

Inverse Uniform f(x|a, b) = 0, for x ∈ [a, b], 1 otherwise

-Quadratic f(x|a, b, α, β) = α(x− β)2, for x ∈ [a, b];
α = 12

(b−a)3 , β = b+a
2

+Quadratic f(x|a, b, α, β) = (β−x)2
α , for x ∈ [a, b];

α = 12
(b−a)3 , β = b+a

2

Exponential f(x|µ, λ) = λe−λx

Gaussian f(x|µ, σ) = 1
µφ(x−µσ )

Inverse Gaussian f(x|µ, σ) = µ

φ( x−µσ )

Table 4.8: Distribution types supported in the expression of properties.

overlap is easier to express than the combination of all possible transform
ranges. In most cases the equations of our model are designed to take
advantage of available metadata embedded within images, however they
work equally well with properties which have been specified as distributions
by the developer. If metadata is available for a property, then that property
is specified as a uniform distribution with a range of 0. In the case where a
derivable property has been specified, the specified value is used.

We also allow the creation of sets of images. In order for the interpreter
to be able to properly select image pairs from the set and understand the
relationship between those images, sets of images require that every pairwise
relative property be known. For value properties this can take the form of a
specification of properties relative to a single reference image, from which the
unspecified properties can be calculated. Relative range properties require
a complete mapping of all possible pairwise combinations. For convenience
we provide functionality within our model to test the completeness of a set.

4.3.3 Absolute Properties

Absolute properties, both values and ranges, are represented by a distri-
bution. The specifications of the aspects of particular distribution types is
outlined above in Table 4.8. Because they are estimates, absolute properties
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can also be represented by multiple distributions which combine with each
other into a mixture of distributions. This added flexibility allows developers
to express more complex representations of a given property. The specifi-
cation of the absolute properties used in our model of image registration is
discussed in Section 4.3.

We also define the allowable ranges of the properties of our image reg-
istration model. Application developers do not need to supply a complete
model, only supplying those classifications and constraints that are impor-
tant to their problem. When values are known they are specified using a
Uniform distribution with a delta of zero, as is done in the case of values
known or calculated using metadata.

4.3.4 Relative Properties

When combining two images into a pair their relative properties are either
expressed as a distribution or calculated as the integral of the two absolute
properties of the images. A relative difference property is calculated as the
possible distribution of differences between the two absolute properties of
the image pair. The relative relationship between properties may also be
represented as a ratio. Relative ratio properties are calculated as the ratio of
the distributions of the absolute property, as this intersection describes the
places where the ranges of the images overlap. This relative ratio property
is calculated using the reference (or first) image as the denominator.

In order to facilitate easier description relative properties can either ei-
ther be set by combining distributions specified as absolute properties at
the individual image level, or by specifying the relative property directly
at the pair level. For sets of images every pairwise combination of relative
properties must be known in order to properly interpret the set. Thus for
a set of N images, N! relative properties must be either specified or calcu-
lated. When an image is added to a set which has been specified absolutely
the relative properties can be calculated directly from these values. If the
developer chooses to specify the relationship between the images relatively
a more complete specification is required. For ratio properties the relative
properties can all be specified in relation to a single reference image, from
which the other unspecified properties can be calculated. In order to specify
difference properties relatively we require all pairwise combinations of the
images to be specified as the differences cannot be calculated relative to a
single reference. For convenience we provide functionality within our model
to test the completeness of a set of images.
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4.3.5 Belief

In the case of expectation, a belief value can be used to weight the combi-
nation of distributions, allowing the developer to specify that a particular
range is more or less likely. Weighted distributions are combined and then
normalized so that the total likelihood sums to 1.

4.3.6 Categories

In a number of instances a more complex model for a particular condition
or representation is possible, but not necessary for the problem of image
registration. In those cases a simple category based model is used to provide
a crude means of expression, allowing later researchers who are more invested
in the model to create it.

Absolute categories are specified according to whichever category an im-
age corresponds to. Relative categories are expressed as the categories of
both of the images in the corresponding image pair, essentially creating cat-
egories for every categorical combination. This is done to allow an algorithm
with the ability to convert or prepare the images for image registration to
be selected by the interpreter, and to properly set up the problem.

4.3.7 A Model for Image Registration

From the conditions and representation specified above we have developed a
model to express image registration problems. In the problem of image regis-
tration the variation between the properties of images to be aligned provides
the context through which appropriate algorithms may be selected. As men-
tioned above the properties can be specified absolutely for individual images,
or relatively for image pairs. For sets of images all pairwise combinations
must be calculable either through a reference image or through specifica-
tion of the complete set. Table 4.9 provides the model for the expression
of the properties of a single image relevant to image registration. In Table
4.10 these properties are relative, compared between pairs of images, and a
representation of the range of possible transforms between the pair can be
expressed. These relative values can either be specified directly or derived
from the absolute properties of each image. In the creation of a set of images
all pairwise combinations of relative properties must specified or derived. In
Section 4.4 each of these means of problem expression is explored using a
variety of image registration problems.

The models introduced in Tables 4.9 and 4.10 can be specified as both
expectations and as requirements, allowing the expression of both possible
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Conditions Units Model Type

Exposure EV AP
Region of Focus Range of Distance (in m) AP
Scene Lighting AM
Intrinsics.ShutterSpeed Seconds AP
Intrinsics.Aperture FStops AP
Intrinsics.FilmSpeed ISO Units AP
Intrinsics.FocalLength Millimetres AP
Intrinsics.DepthOfField Range of Distance (in m) AP
Intrinsics.SubjectDistance Distance (in metres) AP
Intrinsics.CircleOfConfusion Diameter (in mm) AP
Intrinsics.Sensor Type AC
Region of Focus Range of Distance (in m) RP
Extrinsics.Position.X Distance (in m) from Scene Origin RP
Extrinsics.Position.Y Distance (in m) from Scene Origin RP
Extrinsics.Position.Z Distance (in m) from Scene Origin RP

Table 4.9: Absolute Image Model for the expression of the conditions of a
single image. No representation of transformation is possible with a single
image. A = Absolute, R = Relative, P = Property, M = Model, C =
Category
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Representation Units Model Type

Translate.X Image Widths RDP
Translate.Y Image Heights RDP
Scale.X Image Size RTP
Scale.Y Image Size RTP
Rotation.Z # of Clockwise Revolutions RDP
Rotation.X # of Clockwise Revolutions RDP
Rotation.Y # of Clockwise Revolutions RDP
Skew Image Widths RDP
TransformDensity.X Num per Image Width AP
TransformDensity.Y Num per Image Height AP

Conditions Units Model Type

∆ Exposure EV RDP
∆ Region of Focus Range of Distance (in m) RDP
∆ Scene Lighting RDM
Deformation Percentage RTP
Scene Movement Percentage RTP
Intrinsics.ShutterSpeed Seconds / Seconds RTP
Intrinsics.Aperture FStops / FStops RTP
Intrinsics.FilmSpeed ISO Units / ISO Units RTP
Intrinsics.FocalLength Millimetres / Millimetres RTP
Intrinsics.DepthOfField Range of Distance (in m) - RDP
Intrinsics.SubjectDistance Distance (in m) RTP
Intrinsics.CircleOfConfusion Diameter (in mm) RTP
Intrinsics.Sensor Type RC
Extrinsics.Position.X Distance (in m) RTP
Extrinsics.Position.Y Distance (in m) RTP
Extrinsics.Position.Z Distance (in m) RTP
Overlap Percentage RTP
Focus Focus Value RTP

Table 4.10: Relative Pairwise Model for the expression of the registration
of a pair of images. The necessary representation and possible conditions
surrounding registration of the two images can be specified or derived using
this model. A = Absolute, R = Relative, D = Difference, T = raTio, P =
Property, M = Model, C = Category
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and necessary representations and conditions of an image registration prob-
lem. The model is extensible, but hopefully provides enough coverage in its
initial form to allow for the mapping of all known forms of image registration
problems. In Chapter 6 we will explore the interpretability of the model.

4.4 Example Image Registration Problems

In this section we explore the expression of common image registration prob-
lem classes, including: panorama stitching, focal stacking, high-dynamic-
range imaging, multimodal imaging, and super-resolution imaging. Prob-
lems can be expressed either as a combination of individual images, as pairs,
or as sets, and we examine each of these types within the examples below.
Additionally both expectation and requirements can be specified, allowing
a full range of expression of the image registration problem space. The in-
terpretation of the expectations and requirements placed on the problem
conditions and representation can be found below in Chapter 6.

In all of our examples, the geometry of images are defined using a scale
of between [0.0,1.0] on each axis. Thus a translation of 0.5 between two
images translates the second image so that its centre is at the edge of the
first. Rotations, Scales, and Skews are similarly defined on a [0.0,1.0] scale:
1.0 represents a full clockwise rotation, while -0.25 represents a 90 degree
counterclockwise rotation; 0.0 difference in scale representing an image of
the same size, and -1.0 representing an image half as large (a difference
in size of 1.0); and 0.25 representing an image skewed by a quarter of the
image’s width respectively.

There are many ways of determining the model values including problem
analysis, visual analysis of image pairs, and use of metadata to calculate
model values directly. We present examples of each below as we demonstrate
our model.

4.4.1 Panorama Stitching

As an introduction to the model we present an example panorama stitching
registration problem in Figure 4.8. The problem has been expressed rela-
tively as the relationship between two images. Table 4.11 introduces a set
of expectations and requirements for this problem: images are similar in ex-
posure, aperture, etc, however they vary spatially. Exposure, aperture, and
other properties are not specified below; properties which are not expressed
are assumed to be the same under our model.
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Figure 4.8: Input images which contain only spatial variation.

In our example, based on a visual inspection of the images, we have
specified that we expect that the images are overlapping by between 35 &
5%. This broad range is meant to mimic the uncertainty of non-experts who
are specifying problems using the model. We have also directly specified that
there is no change in exposure and that the in focus regions of both images
is the same.

Image 1-2 Relative Expectations Range / Value

Overlap [0.05,0.35]
∆ Exposure 0 EV
Focus Value 1.0

Table 4.11: Example panorama stitching registration problem expressed as
the relative relationship between a pair of images. Distribution

The interpretation of this model and the selection of an appropriate
algorithm with which to find a solution is discussed in detail in Chapter 6.

4.4.2 Focal Stacking

For our focal stacking example below in Table 4.12 we express the absolute
properties of three images individually, allowing for the creation of a set of
images where the relative properties are calculated rather than specified.
Figure 4.9 demonstrates two of the images from the set. Each image is de-
fined by its intrinsic properties of shutter speed, aperture, film speed, focal
length, subject distance, and circle of confusion. In this example these val-
ues were derived or calculated directly from exif metadata that was included
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with the images when the photograph was taken. From these values the ab-
solute values of exposure, depth of field, and in focus can be calculated.
The relative properties of each pairwise combination can be calculated from
these absolute values. Table 4.13 demonstrates the relative properties cal-
culated between each possible pair. These absolute and relative properties
are expressed as expectations that we have regarding the conditions which
surround the problem.

Figure 4.9: Input images which contain focal variation.

Notice how all of the properties in this example were of fixed value,
assumed to be derived from exif information. In the next example we will
examine how absolute properties expressed as distributions are integrated
into their corresponding relative difference and ratio properties.

4.4.3 High-Dynamic-Range Imaging

For our high-dynamic-range we express a case where the system using our
model must be flexible in order to deal with a variety of input conditions.
Exact exposure values for the images are not known, requiring specification
of the expected conditions using a range of possible values. The expecta-
tions are expressed as absolute properties in Table 4.14 and are used to
calculate the relative expectations derived in Table 4.15. The range of pos-
sible transforms is also expressed as a requirement of this problem, limiting
the solution space to that common to a stacking problem. The requirements
on the representation are specified below in Table 4.16. Figure 4.10 shows
images one and two from the example.
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Image 1 Expectations Value Dist.

Intrinsics.ShutterSpeed 1/250 Second U
Intrinsics.Aperture F2.8 U
Intrinsics.FilmSpeed 100 ISO U
Intrinsics.FocalLength 50 mm U
Intrinsics.SubjectDistance 0.8 U
Intrinsics.CircleOfConfusion 0.15 mm U

Calculated.Exposure 11 EV U
Calculated.DepthOfField 215 mm U
Calculated.InFocus [692.48, 907.52] mm U

Image 2 Expectations Value U

Region of Focus U
Scene Lighting U
Intrinsics.ShutterSpeed 1/250 Second U
Intrinsics.Aperture F2.8 U
Intrinsics.FilmSpeed 100 ISO U
Intrinsics.FocalLength 50 mm U
Intrinsics.SubjectDistance 1.0 U
Intrinsics.CircleOfConfusion 0.15 mm U

Calculated.Exposure 11 EV U
Calculated.DepthOfField 336 mm U
Calculated.InFocus [832, 1168] mm U

Image 3 Expectations Value

Intrinsics.ShutterSpeed 1/250 Second U
Intrinsics.Aperture F2.8 U
Intrinsics.FilmSpeed 100 ISO U
Intrinsics.FocalLength 50 mm U
Intrinsics.SubjectDistance 1.60 U
Intrinsics.CircleOfConfusion 0.15 mm U

Calculated.Exposure 11 EV U
Calculated.DepthOfField 860 mm U
Calculated.InFocus [1169.92, 2030.08] mm U

Table 4.12: Expression of three images that are part of a focal stack. Abso-
lute properties are specified. U = Uniform Distribution
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Image 1-2 Relative Expectations Value Dist.

∆ Exposure 0 EV U
Range of Focus [832,907] mm U
Intrinsics.ShutterSpeed 1.0 U
Intrinsics.Aperture 1.0 U
Intrinsics.FilmSpeed 1.0 U
Intrinsics.FocalLength 1.0 U
Intrinsics.DepthOfField 121 mm U
Intrinsics.SubjectDistance 0.2 m U
Intrinsics.CircleOfConfusion 1.0 U

Image 2-3 Relative Expectations Value Dist.

∆ Exposure 0 EV U
Range of Focus 0 mm U
Intrinsics.ShutterSpeed 1.0 U
Intrinsics.Aperture 1.0 U
Intrinsics.FilmSpeed 1.0 U
Intrinsics.FocalLength 1.0 U
Intrinsics.DepthOfField -524 mm U
Intrinsics.SubjectDistance 0.6 m U
Intrinsics.CircleOfConfusion 1.0 U

Image 1-3 Relative Expectations Value Dist.

∆ Exposure 0 EV U
Range of Focus 0 mm U
Intrinsics.ShutterSpeed 1.0 U
Intrinsics.Aperture 1.0 U
Intrinsics.FilmSpeed 1.0 U
Intrinsics.FocalLength 1.0 U
Intrinsics.DepthOfField -645 mm U
Intrinsics.SubjectDistance 0.8 m U
Intrinsics.CircleOfConfusion 1.0 U

Table 4.13: Derived expression of the pairwise relationship of a set of pho-
tographs. Some overlap exists between Images 1 & 2 as seen in the relative
range of focus. The relative depth of field in this example is negative because
the reference images (the first image of the two) contain less depth of field.
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Image 1 Expectations Value Dist.

Exposure [8, 10] EV U

Image 2 Expectations Value U

Exposure [9, 11] EV U

Image 3 Expectations Value

Exposure [10, 15] EV U

Table 4.14: Expression of three images that are part of a high-dynamic-range
image. Absolute properties are specified. U = Uniform Distribution

Image 1-2 Relative Expectations Value Dist.

Exposure [-3, 1] EV U

Image 2-3 Relative Expectations Value U

Exposure [-6, 1] EV U

Image 1-3 Relative Expectations Value

Exposure [-7, 0] EV U

Table 4.15: Derived expression of the expected pairwise relationship of a
high-dynamic-range image set. Absolute properties are specified. U = Uni-
form Distribution

4.4.4 Multimodal Medical Imaging

Figure 6.4 demonstrates a T1 weighted magnetic resonance imaging slice
which is to be aligned with a brain proton density scan. Within the scope
of this example this information is read directly from the medical image
metadata. Deformation of less than 10% is expected in the structure of these
images based on a visual inspection. Using our category based sensor model
defined above in Section 4.2.3, we have expressed this example multimodal
image registration problem in Table 4.17.

It should be noted that the medical imaging examples and problems
possible under our model are a very limited and trivial subset of the range of
possible problem conditions. In order to create a model which also maps the
problem of image registration within medical imaging a more sophisticated
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Figure 4.10: Input images which contain an unknown exposure variation.

Image 1-2 Relative Expectations Range / Value Dist.

Translation.X [-0.15, 0.15] +Quad
Translation.Y [-0.15, 0.15] +Quad
Skew.X [-0.15, 0.15] +Quad
Skew.Y [-0.15, 0.15] +Quad
Scale [0.95, 1.05] +Quad
Rotation [-0.05, 0.05] +Quad

Table 4.16: Derived expression of the required pairwise relationship of a
high-dynamic-range image set. +Quad = Quadratic Distribution

model must be created.

4.4.5 Super-Resolution Imaging

Super-Resolution images contain nearly identical images which are already
almost aligned. Figure 4.12 demonstrates a super-resolution pair. Knowl-
edge of the nature of solution that we desire, and the similarity of images
in super-resolution problems allows us to specify the problem conditions di-
rectly. Table 4.18 outlines the strict requirements that limit the possible
solution space of the aligning transform.

4.5 Summary

Using the new variation centric taxonomy of image registration developed in
Chapter 3, we have created a model allowing for the specification of image
registration problems. In Appendix A we introduced a formal definition of
image registration and extend this definition into the applied domain. In
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Figure 4.11: A brain T1 slice (L) and a brain proton density slice(R) with
possible deformation between images.

Image 1-2 Relative Expectations Value

Intrinsics.Sensor T1 / PD
Deformation [0,10]%

Table 4.17: Expression of the expected pairwise relationship of a multimodal
image set.

Section 4.1 we explored the representation of the inputs and outputs used
in the problem of image registration, allowing developers and researchers to
specify the type of solution that they are expecting. Section 4.2 explored
the different conditions of the problem of image representation, presented
as forms of variation. Section 4.3 introduced the necessary concepts and
types used in our model, and provided a mapping of the representations and
conditions of registration into a formal model through which image regis-
tration can be expressed. Finally Section 4.4 demonstrated several common
image registration problems under our model. The layers of our framework
of accessible computer vision: Problem Definition, Problem Representation,
Problem Conditions, and Problem Expression are explored in more detail in
Chapter 8.

Our model allows image registration problems to be quantified and clas-
sified, providing a framework from which existing algorithms may be inves-
tigated. This investigation, which we explore next in Chapter 5, relies upon
the framework when mapping the performance of algorithms under different
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Figure 4.12: Super resolution input images which contain very little spatial
variation, and no other variation.

Image 1-2 Relative Requirement Range / Value

Overlap [0.95,1.00]
∆ Ev 0
Focus Value 1.0

Table 4.18: Required pairwise relationship of a super-resolution image set.
Absolute properties are specified.

conditions. This mapping further allows us to interpret image registration
problem descriptions, selecting the algorithm which performed best under
similar conditions.
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Chapter 5

A Testbench for Image
Registration Algorithms

“The real voyage of discovery consists of not in seeking new land-
scapes but in having new eyes.”

– Marcel Proust

As described in Section 2.1.4, the evaluation of image registration al-
gorithms is currently ad hoc. Researchers use their own images, and often
perform a visual analysis of whether the registration ‘worked.’ Although an
attempt has been made [5], no relevant testbench which evaluates image reg-
istration across a single sub-problem (such as panoramas) exists, let alone
one which covers a range of possible problem spaces and their combinations.
The reason for this, in part, is because of the difficulty in creating a test-
bench which contains ground truth information about the transform which
will align the corresponding images. In order to generate a true ground
truth transform the images must be synthetically generated, which is a dif-
ficult undertaking when taking into account changes in illumination, focus,
sensor, and the other forms of variation introduced in Chapter 4.

The testbench outlined within this chapter is not capable of generating
perfect synthetic images that exactly mimic these variations for use in inter-
polated images. Instead it has been designed to create images and ground
truth transforms which allow for the analysis of the impact that each type
of measured variation has on algorithmic performance. Image pairs are not
meant to be directly representative of common image registration problems
such as focal stacks or HDR stacks. The testbench contains a significant
number of problems which are representative, however no attempt has been
made to bias the testbench towards this type of problem. This allows for the
mapping of image registration problems which extend beyond the range of
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common usage, providing us with a greater understanding of how each form
of variation affects performance. Each type of synthetic variation is visually
compared directly with images which contain true variation to validate that
they are similar.

The range of alignment error of solutions provided by each algorithm
across the entire test set is presented to provide a starting point for evalua-
tion. From this basis, the effect that each parameter of the testbench has on
the alignment error of an algorithm is measured using a linear regression-
based analysis of variance (ANOVA)[38]. ANOVA results consist of two
components: a t-value, calculated as the square root of the ratio of the vari-
ance between groups to the variance within groups, and a p-value which
represents the probability that this variation is due to random factors. For
a relationship to be considered statistically significant the p-value must be
less than 0.05, and ideally less than 0.01. The magnitude of the t-value
indicates the degree to which variation between groups is greater than the
variation within groups, with large t-values indicating statistically signifi-
cant variation.

In addition to the alignment error, the success ratio of the algorithm
is significant. Failure can occur in some algorithms if the transform maps
the active image completely outside the reference. Similarly, if the feature
matching step of feature based methods fail to find enough matches between
features, or if the solver step fails to find an acceptable solution, a feature
based method may fail. The effect of each test parameter on the success
ratio of the algorithm is measured using a logistic regression-based Wald’s χ2

test [79], which calculates the statistical significance of individual regression
coefficients. The magnitude of χ2 similarly indicates the degree to which the
test parameter has an impact on the likelihood of belonging to the successful
group of results.

This provides an analysis of whether test parameters impact the quality
of the solution, the likelihood that a solution will be found by the algo-
rithm, or both. The effect on alignment error is calculated directly using
the alignment error of successful solutions. The impact on the success ra-
tio of the algorithm is calculated by dividing the results into two groups
based on whether the algorithm provided a solution or not, regardless of
the quality of that solution. A one-way ANOVA is calculated for each test
parameter, algorithm combination. While this technique does not look for
interaction between parameters, insight can still be gained into expected
performance based on how significantly each algorithm is impacted by an
individual parameter. For each algorithm we present both the t-value and p-
value for one-way analysis of variance on each parameter. This is presented
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separately for both success ratio and alignment error.
Our testbench tests four algorithms that cover a variety of methods each

described within the literature as being useful for solving a different type of
registration problem. First, we examine a gradient descent intensity-based
method [70] which utilizes the forwards additive method introduced by Lu-
cas and Kanade [53], to solve for the transform, minimizing the square error
between aligned image intensities. This was the first method developed for
image registration and is described as working reasonably well for image reg-
istration problems where intensity remains the same between both images.
Second, we test a median-based method developed by Ward et al [100], and
modified to work with affine transforms rather than their published transla-
tion only transforms, which performs gradient descent on binary maps of the
images’ median values. This algorithm is described as suitable for exposure
varying images. Third, a mutual-information-based method [60] is investi-
gated which also uses gradient descent and is described as being developed
to align sensor varying images. While we are not testing sensor variations
in our testbench it is possible that this method is capable of solving other
types of image registration problems. Finally a feature-based method which
utilizes Harris corner detection [33], scale invariant feature transform (SIFT)
features [61], and random sample and consensus (RANSAC) [28] to solve for
alignment is described as performing well on spatially varying images, and to
a lesser extent exposure varying images. These four algorithms were specif-
ically chosen because they should be impacted by different test parameters
and have been described in the literature as solving a subset of problems that
do not overlap. Although we eventually plan to add more, these methods
are sufficient to validate the testbench. Table 5.1 highlights the four al-
gorithms, the settings used in their implementation, and the abbreviations
used to represent these algorithms in the graphs and tables below.

The selection of settings is important to the success of an algorithm, and
is an area for future research. By evaluating an individual algorithm across
the range of image registration problems available in the testbench it would
be possible to determine not only the best settings for the algorithm under
a given set of conditions, but also the sensitivity of the algorithm to param-
eter settings. Although initially a computationally intensive and arduous
process, this form of testing would only need to be done once, assuming a
single testbench which covers the entire problem space of computer vision
could be developed. This information could prove invaluable to algorithm
developers who often develop an intuition or process surrounding parameter
setting, but rarely are able to convey this information in a meaningful way
to those who wish to use the algorithm.
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Algorithm Details Settings Abbreviation

Forwards additive Lukas Kanade gradient descent max iterations = 300, search epsilon = 2E-4f LKSSE
Sum of square intensity difference error metric

Multiscale regular step gradient descent num levels = 5, Max iterations = 100 ITKSSE
Sum of square intensity error metric

Multiscale regular step gradient descent num levels = 5, Max iterations = 100 MEDIAN
Binary threshold of median intensity pixels error metric

Multiscale regular step gradient descent num levels = 5, Max iterations = 100 MUTUAL
Mutual information error metric

Harris corner detection max features = 500 FEATURE
SIFT Features histogram bins = 8, sigma = 1.6
KD-Tree matching max nearest neighbor checks = 200
RANSAC Solver forward matching, inlier error tolerance = 0.01

Table 5.1: Details of the algorithms investigated in the testbench.
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By examining the results of the testbench we gain an understanding of
the performance of these image registration algorithms, and the impact on
performance under different problem conditions. The method of examina-
tion within this thesis is one dimensional, exploring the effect that each
transform parameter or condition has on the alignment error and success
ratio. While more sophisticated methods of analysis exist which would al-
low for the investigation of interactions between parameters, or of particular
classes of image registration problems, they are unnecessary for a basic un-
derstanding of algorithmic performance under different problem conditions.
Understanding these interactions across the entire problem space for each al-
gorithm would require significant effort and would be difficult to explain and
demonstrate given the high dimensionality of the space. Instead we extend
beyond our basic understanding of performance in the development of our
image registration model interpreter which we explore in Chapter 6. This
proof of concept interpreter selects algorithms using the mean of testbench
results from a specified multidimensional volume within the problem space,
ensuring that these higher dimensional interactions are taken into account
when selecting an algorithm, even if they are not demonstrated or well un-
derstood. A biased testbench which focuses on common classes within the
problem space would allow for greater resolution within those regions, but
would not operate any differently from our proof of concept.

5.1 Testbench Construction Methodology

Rather than create a fixed set of specific images whose ground truth trans-
forms are known we have created a testbench application which randomly
generates known transforms and the corresponding interpolated image pairs.
15K different pairs were created and tested with all algorithms. Algorithms
are examined individually, and then a comparison of performance is pro-
vided for specific conditions where success ratio and alignment error are
significantly impacted.

During the test, parameter data for each transform and image pair is
recorded, along with the performance of each of the algorithms, allowing
future algorithms to be tested with the same set of transforms and condi-
tions. Images are selected randomly from amongst a set of 40 images which
were taken under a variety of conditions, but which are all primarily in fo-
cus across the entire image to allow for synthetic focus variation. Figure
5.1 demonstrates a single pair of images, and the corresponding transform
which aligns them. These synthetic images are meant to test the effect that
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Figure 5.1: Example reference (left) and active (right) image pair from our
testbench. The active image corresponds to a transform of: Translation X
= -218.87, Translation Y = 29.63, Rotation = -74.27, Scale X = 0.371, Scale
Y = 0.557, Skew = 0.179, Overlap = 0.2904.

each form of variation has across the image registration problem space. By
testing 15K randomly generated image pairs it is hoped that there will be
coverage of a range of problems distributed across the entire volume of the
problem space, including both common and uncommon problem conditions.

Table 5.2 presents the range under which each dimension was tested.
Limitations in the creation of the transformed image used in this ground
truth test limit the range under which some dimensions can be explored.
Several of these bounds are based on the limitations of interpolation when
rendering images, outlined below in Section 5.1.1. We further limit the
testbench to transformations which can be solved by an affine transform.

The starting size of both images is scaled by a factor of ‘Image Size’ to
prevent bias from using images of a particular size. The amount of overlap
between the two images is limited by cropping the images from different
parts of the source image such that the ratio of overlapping to non overlap-
ping regions in the combined images varies between 0 and 100%. Relative
exposure is varied between -3 and +3 exposure values, in 1/3 EV stops,
however as with all relative difference properties the absolute value of the
difference is used in the ANOVA calculation. Finally, focus varies from 1 to
-0.5. Images with a negative focus value are used to represent the alignment
of images where no pixels in either image are in perfect focus.

5.1.1 Interpolation Effects

When creating a testbench of synthetic image pairs, special attention must
be paid to the interpolation of pixels within the transformed image. With
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Parameter Range Units

Translation X [-250,250] pixels
Translation Y [-167,167] pixels
Rotation [-90,90] degrees
Scale [0.25,1] image size
Skew [0.0,0.5] image size
Image Size [0.25,1] image size
Overlap [0.0,100.0] percent
Exposure [-3,3] EV
Focus [-0.5,1] focus measure

Table 5.2: Bounds of the testbench parameters. Parameter values were ran-
domly generated, with three configurations of fixed value settings: Exposure
= 0 & Focus = 1, Focus = 1, Exposure = 0, to bound the test to particular
regions of the problem space.

the exception of whole pixel translations and 90 degree rotations an image
which has been transformed will suffer from some degradation and loss of
sharpness because pixels in the synthetic image must be interpolated from
a weighted average of multiple pixels in the reference image. Figure 5.2 and
Equation 5.1 demonstrate how the transformed image’s pixels are calculated
when using bilinear interpolation while Figure 5.3 provides example images
where this pixelation is evident.

Pt(x, y) = (1− d)(1− d′)P1,1 + (d)(1− d′)P1,2 (5.1)
+(1− d)(d′)P2,1 + (d)(d′)P2,2

In order to limit this type of pixelation we impose two restrictions on
our test set. First, in order to ensure that both images are similarly affected
we interpolate both the synthetic image and the reference image to roughly
the same degree. In order to establish a minimum level of interpolation the
reference and synthetic images are scaled to at least 1/2 the resolution of
the input image used to generate the test. This results in a similar bicubic
interpolation of both images, with both reference and synthetic pixel inter-
polated from at least nine neighboring pixels. Unfortunately exact matching
of the interpolation effect is impossible as the ground truth transform results
in a different ratio of reference pixels per synthetic pixel across the image.

The second restriction placed on our test set in order to limit the pixe-
lation effect is a bound on the size of pixels generated by the application of
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Figure 5.2: Bilinear Interpolation. Transformed pixel value Pt is made up
of the weighted sum of the four closest pixels P1,1, P1,2, P2,1, and P2,2 of the
transformed image.

the transform. Transforms are limited such that the size of a pixel in the
synthetic image does not exceed the pixel size of the input image used in
the creation of the testbench. Rotation in Z and translation in X and Y do
not cause these conditions, however scaling, and to a lesser extent skew and
rotations in X or Y (as seen in projective transforms) can cause this type
of pixelation. Scale is limited by only scaling the synthetic image such that
it is smaller than the reference image. Although this would seem to limit
the testbench, the labeling of images once created is arbitrary; by using the
synthetic image as the reference in our image registration tests and invert-
ing the ground truth transform we can test images which are scaled both up
and down. Skew between images that are part of a panorama, focal stack,
hdr image, or multimodal image set is most often limited to within 50% of
the image dimensions, and normally found to be within 10%. Skews of this
magnitude do not result in pixelation under the conditions previously set
up. The difference between X and Y scale follows a similar limitation, and is
also limited to within 50% of the image dimensions. Finally rotation in the
X or Y-axis, used in projective transforms, can result in transformed pixels
which are much closer to the virtual camera, however our testbench focuses
on the affine transform. As we will see in our validation of overlap below we
also crop the test image to obtain a specific degree of overlap, limiting the

108



5.1. Testbench Construction Methodology

Figure 5.3: Demonstration of pixelation effects due to interpolation. The
original image (left) is sharper than the interpolated image (right). Differ-
ences between the two images are highlighted in the lower image.

effect that these rotations have.

5.1.2 Synthesizing Exposure Value Variations

As outlined in Section 4.2.1, variations in intensity can be summarized with
the concept of exposure values. In order to synthesize variations in exposure
that model those expected from an actual change in exposure we utilize the
work of Debevec and Milak [23], a seminal work in the creation of high dy-
namic range images, which calculates the response curve of a camera using
a sequence of low dynamic range images, using these camera curves to then
create a high dynamic range radiance map of the scene. In our synthesis of
exposure variations we instead use these response curves to simulate changes
in exposure by calculating the expected value of a pixel based on a particular
change in exposure. Although these synthetic images are not exactly equiv-
alent to actual exposure varying photographs, making them unsuitable for
the creation of an HDR image, they are similar in appearance particularly
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Figure 5.4: Actual variation in exposure in comparison to our synthetic vari-
ation. First and third row of images demonstrate actual exposure variations
of 0 to +/- 3 in 1/3ev steps. The second and fourth row demonstrate images
created using our synthetic image variation process.

with regards to image intensity. Figure 5.4 shows one of the original images
which was photographed using a tripod, along with the corresponding actual
and synthetic images for exposure variations of 0 to +/- 3 in 1/3 ev steps.
From a visual inspection of a range of images our expectation is that the
relative performance of image registration algorithms should also be similar.

5.1.3 Synthesizing Focus Variations

In Section 4.2.2 a model of focus was presented, demonstrating the means by
which the overlapping in focus regions from an image pair can be calculated.
Although depth from focus algorithms which only require a single image [26]
would allow us to reconstruct a crude depth map of an image, these depth
maps could not be used in the synthesis of images with different depth maps
because out of focus regions of the image can not be accurately reconstructed
to make them in focus. As an alternative we instead start our synthetic focus
variation with an image which is entirely in focus, using an artificial depth
map unrelated to image content to create an image which has overlapping
regions of focus. Focus is simulated by Gaussian blurring images on a pixel
by pixel basis based on the degree to which that given pixel should be out
of focus.

Figure 5.5 shows a series of example greyscale depth maps used in or-
der to calculate images with different amounts of overlapping focus. The
greyscale values are used to represent a psuedo ‘distance’ from the camera,
or an artificial depth map of the scene. For each image pair the in focus
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regions of the image are calculated by multiplying a focus measure which
varies from -0.5 to +1.0 by 255 to get a focus offset between -127 and +255.
Pixels in focus for the active image are those from 0 to 255 - focusOffset,
while those from the reference image are those from focusOffset to 255.
Pixels which fall outside this range are out of focus.

In order to simulate the effect of a camera where focus increases exponen-
tially as a function of subject distance we calculate how out of focus a pixel
is based on its distance from the nearest in focus range. This is calculated by
taking the weighted average of two gaussian blurred images blurred by kernel
of size 2i + 1 and 2i+1 + 1 where i is calculated from the difference between
the pixel and the focus range using the equation i = floor((dif ∗8)0.25), and
weights are calculated as w2 = (dif ∗ 8)0.25 − i and w1 = 1− w2. Thus for
a focus measure of 0.5, the active image is entirely in focus from depth map
pixels of value 0 to 128, while the reference image is in focus from pixels of
value 128 to 255. Focus decreases in a gaussian blur such that depth map
pixels of value 255 have a difference of 127 for the active image, thus i =
5 and the pixel is constructed from images that are gaussian blurred by a
kernel of size 25 + 1 = 33 and 26 + 1 = 65 weighted by w1 = 0.354 and
w2 = 0.657.

Under this schema image pairs which vary by a focus of 1.0 are entirely in
focus, those that vary by a focus of 0.5 contain a small region of overlapping
focus dictated by pixels with a value of 127 in the focus pattern. Images
from a pair that has a focus value of 0.0 are only in focus themselves for
pixels with a value of 0 or 255. In order to amplify the effect we also explore
negative focus values up to -0.5. Image pairs that vary by -0.5 contain
no in focus pixels, and each image is blurred by a gaussian kernel of sizes
varying between 33 and 257 over the range of the depth map. Figure 5.6
demonstrates an example synthetic focus image pair representative of the
images which are used in the testset.

As we saw in Section 4.2.2 focus varies with subject distance and aperture
making it extremely difficult to exactly calculate the true amount of focus
overlap in an image without a sophisticated setup and equipment. The
verification of this synthetic focus variation is therefore left as future work.
A visual inspection of the images however shows that they are indeed similar
to those used in focus stacks, particularly those where the stack is composed
of two images. Comparing the images seen in Figure 5.6 to those in Figure
5.7 we see a distinct similarity. If images with narrower regions of focus
such as those seen in multi image focal stacks are required the same method
could be modified to create those images by narrowing the range of pixels
from the depth map in which the active and reference image are in focus
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Figure 5.5: Example focus patterns used in the creation of synthetic focus
varying images. These patterns simulate distance from the camera, allowing
an artificial depth of field to be calculated for the image.

(currently focusOffset to 255 and 0 to 255-focusOffset).

5.1.4 Measuring Algorithm Performance

Testbench error is measured as the alignment error from the resulting trans-
form across the four representative algorithms. Alignment error is measured
by projecting a 100 × 100 pixel grid, spaced 10 pixels apart using both the
solved transform and the ground truth, and comparing the average differ-
ence across pixels between the solutions. This method of analysis is similar
to that performed in [5], which also uses known ground truth alignments to
solve for the average per pixel alignment error across a grid.
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Figure 5.6: Example focus image pair created using our synthetic focus
variation. Parameters of the problem are as follows: Translation X = -
171.079, Translation Y = 128.034, Rotation = 37.4233, Scale X = 0.839434,
Scale Y = 0.799562, Skew = 0.0636235, Image Size = 1, Overlap = 0.957465,
and Focus Value = 0.00895718.

In addition to the alignment error, the success ratio of the algorithm,
which measures the ratio of solutions found to the total number of tests, is
important. Attempts which failed to provide a solution were flagged during
the test for further analysis, in order to determine the effect that each test
parameter had on the likelihood of success. Failure to find a solution occurs
differently depending upon the algorithm being tested. Gradient descent
based algorithms are considered to have failed if the resulting transform
maps the active image completely outside the reference image. Other mea-
sures of success could be developed based on a thresholding of alignment
error, however these methods are not a part of the algorithms, which cannot
determine whether they have found a correct solution or not. In the case
of feature based methods if the feature matching step fails to find enough
matches between features, or if the RANSAC step fails to find an acceptable
solution, these algorithms report that they have failed, providing meaning-
ful feedback. This measure of success in no way indicates the quality of the
alignment found. In order to represent this difference we report alignment
error and success separately.
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Figure 5.7: Example focus image pair provided for comparison to our syn-
thetic method.

5.2 Testbench Results

Each algorithm was tested with 15K image pairs using a random transform,
image, and set of problem parameters in an attempt to provide some cover-
age across a region of the high dimensional problem space. Three separate
sets were created which explore different regions. The first examines 5K
image pairs which contain no variation other than overlap, image size, and
the aligning transform. In our second test we explore the effect of exposure
variations, testing another 5K image pairs which vary in alignment, overlap,
image size, and exposure. Finally our third test examines the effect of focus
on the available algorithms, testing an additional 5K image pairs which vary
in alignment, overlap, image size, and focus. Combining the three of these
tests together provides us with a robust mapping of three common regions
of the image registration space for a wide range of misalignments, allowing
us to measure the impact on performance that each of the test parameters
have.

The alignment errors of each algorithm across the entire testbench, or-
dered from lowest error to highest, are presented in Figure 5.8, giving an
idea of the overall expected performance of each algorithm on an unknown
problem, i.e. regardless of test parameters. The values of error in Figure
5.8 are surprising for some algorithms, and are discussed in detail in each
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Figure 5.8: The alignment errors of each algorithm across the entire test-
bench, ordered from lowest error to highest. The success ratio of each algo-
rithm, determined by the number of successful solutions for each algorithm,
is highlighted with a dark grey bar.

subsection.

5.2.1 Interpreting Results

As mentioned above, ANOVA results consist of two components: a t-value,
calculated as the square root of the ratio of the variance between groups to
the variance within groups, and a p-value which represents the probability
that this variation is due to random selection. For a relationship to be
considered statistically significant the p-value must be less than 0.05, and
ideally less than 0.01.

The magnitude of the t-value indicates the degree to which variation
between groups is greater than the variation within groups, with large t-
values indicating statistically significant variation. The sign of the t-Value
indicates the nature of the relationship. Positive t-values indicate that align-
ment error (or the success ratio) increases as the variable increases, while
negative t-values indicate that alignment error (or success ratio) decreases
as a function of the variable. This becomes significant when examining pa-
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rameters which cause an increase in alignment error in some algorithms, and
a decrease in others.

For relative values such as translation in X and Y, rotation, and ex-
posure value, a positive relationship is expected, with greater difference in
these values resulting in a higher alignment error. Results for scale in X
and Y, and image size are not as straightforward, as they affect the size
of the two image pairs, and hence the magnitude of alignment error. The
relationship here is likely to be positive with larger images resulting in larger
alignment error, unless the algorithm doesn’t perform well on small images.
Overlap is expected to relate negatively to alignment error, with a decrease
in overlap resulting in an increase in alignment error. Finally, the focus
value of the image pairs, which varies from -0.5 for the least focused image
pairs to 1.0 for the most, could have a different effect depending on the algo-
rithm. It is expected that gradient descent algorithms would see a positive
relationship between focus and alignment error, with more in focus images
resulting in more alignment error due to the simplification of the search
space. Conversely the feature based approach should be negatively related,
with a decrease in focus resulting in an increase in alignment error.

The magnitude of χ2 similarly indicates the degree to which the test
parameter has an impact on the likelihood of belonging to the successful
group of results. Negative values indicate that as the parameter increases
the likelihood decreases, while positive values indicate that the likelihood of
success grows as the parameter increases.

5.2.2 Gradient Descent Intensity Based Method

Our sum of square error (SSE) intensity based gradient descent based method
uses the forwards additive method developed by Lucas and Kanade [53], to
solve for the transform which minimizes the square error between aligned im-
age intensities. According to the literature it should be capable of providing
a solution to problems where the intensities are similar.

When initially examining results from the gradient descent intensity
based method, some concern was raised as to whether the results were valid.
The median alignment error of the algorithm over the course of experimen-
tation was 317.5, with a success ratio of 98.5%. The top 10% of solutions
still had an alignment error of 111 pixels; higher than expected. To that
end a second implementation of sum of square error gradient descent was
also tested using the ITK Toolkit source [68]. In an attempt to improve
upon the previous performance a five level multi scale search was used.
Reexamining Figure 5.8 demonstrates the alignment error of the ITK im-
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plementation ordered by error. As we can see it performs similarly to, but
slightly worse than the Lucas Kanade gradient descent implementation with
a median alignment error of 557.3, and has a lower success ratio of 83.3%.
While the results from the ITK based algorithm are worse, they validate the
performance of the other intensity based gradient descent algorithm, indi-
cating that gradient descent based sum of square error algorithms are not
especially well suited to image registration problems which differ by a large
affine transform. Future investigation into the performance of this algorithm
for a small sub-region of the problem space which more closely represents
its typical application area could provide insight into the exact limitations
of the algorithm.

Examining the impact that each transform parameter has upon the Lu-
cas Kanade algorithm in Table 5.3 reveals that its alignment error is ex-
tremely sensitive to rotation, image size, overlap, and exposure, and some-
what sensitive to translation in X and Y, and focus. An increase in align-
ment error due to image size is logical if incorrect alignments are being
found, given that the amount of possible alignment error increases as im-
ages get larger. Surprisingly the algorithm positively associates alignment
error and overlap, meaning that images with higher overlap contain more
alignment error. This could again be due to the fact that they synthesis
of overlap results in a larger image, which when misaligned contains higher
alignment error. The algorithm’s sensitivity to focus is positively related,
meaning that the less in focus an image is, the lower the alignment error
will be. This makes sense intuitively as out of focus images should be easier
for the gradient descent algorithm to search. Its success ratio, presented in
the right half of Table 5.3, is similarly affected by changes to overlap and
exposure value, and is somewhat affected by changes to translation, scale,
and rotation. It is not affected by focus or image size.

Table 5.4 demonstrates the impact that each transform parameter has
upon the ITK implementation of gradient descent showing that its alignment
error is similarly extremely sensitive to rotation, and image size, and is
somewhat sensitive to translation in X, Scale in X, and Overlap. Curiously,
it is slightly negatively sensitive to scale in Y, meaning that as scale in
Y decreases the alignment error increases. It is not sensitive to exposure,
focus, or skew. Its success ratio, demonstrated in the right half of Table
5.4 is extremely affected by changes to image size, followed by changes to
overlap and translation. It is only slightly affected by rotation. Success of
this algorithm is unaffected by other test parameters.
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Alignment Error Success Ratio
Test Parameter t-Value p-Value χ2 p-Value

Translation X 7.04 0.000 -7.26 0.000
Translation Y 5.59 0.000 -4.95 0.000
Rotation 45.56 0.000 -3.44 0.000
Scale X 3.10 0.002 2.33 0.020
Scale Y 1.77 0.077 5.45 0.000
Skew 0.34 0.734 -1.59 0.112
Image Size 27.82 0.000 -0.60 0.548
Overlap 20.80 0.000 11.37 0.000
Exposure Value 16.90 0.000 -10.18 0.000
Focus 4.24 0.000 -1.79 0.073

Table 5.3: Linear regression-based ANOVA evaluation of alignment error vs.
each of the test parameters and logical regression-based Wald test of success
ratio vs. each of the test parameters for the sum of square error forwards
additive Lucas Kanade based gradient descent method.

Alignment Error Success Ratio
Test Parameter t-Value p-Value χ2 p-Value

Translation X 17.73 0.000 -10.89 0.000
Translation Y 3.13 0.002 -19.350 0.000
Rotation 29.36 0.000 -3.140 0.002
Scale X 14.02 0.000 -0.720 0.475
Scale Y -3.96 0.000 -2.270 0.023
Skew -0.46 0.647 0.62 0.533
Image Size 31.34 0.000 35.620 0.000
Overlap 16.01 0.000 17.810 0.000
Exposure Value 0.61 0.541 2.380 0.017
Focus -0.33 0.744 -0.490 0.622

Table 5.4: Linear regression-based ANOVA evaluation of alignment error
vs. each of the test parameters and logical regression-based Wald test of
success ratio vs. each of the test parameters for the ITK gradient descent
method.
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5.2.3 Gradient Descent Median Based Method

The median based gradient descent approach, modified from the method
proposed by Ward et al. [100] to use affine transforms instead of translation
only transforms, was designed to align high dynamic range images. Exam-
ining this algorithm’s plot in Figure 5.8 we see that it performs much worse
than the other algorithms, following a similar trend as the ITK gradient de-
scent method, however with a higher slope. With a median alignment error
of 807.1, and a mean alignment error of 268.0 for the top 10% of solutions
it is questionable whether this method is able to provide a correct align-
ment for problems with significant affine transforms. The overall success
ratio for the algorithm is 81.3% We speculate that the error metric used in
this method is not suitable when solving for the six dimensions of the affine
transform, explaining why a translation based transform was chosen in their
initial implementation of median based gradient descent. Error reporting
in [100] was also based on their own image set, which may have been more
suitable in terms ranges of overlap.

Table 5.5 demonstrates the impact that each transform parameter has
upon Ward’s method. Examining the t-values of the graph we see that its
alignment error is also extremely sensitive to image size and overlap. The
median method is also somewhat sensitive to rotation, and slightly sensitive
to translation in X, scale in X, and exposure. It is not sensitive to focus,
or skew. The effect on success ratio, seen in the right half of Table 5.5
is most affected by changes to image size, followed by changes to overlap
and translation. It is only slightly affected by rotation and exposure value.
Success is unaffected by other test parameters.

5.2.4 Mattes Mutual Information Based Method

As with the median based gradient descent method, the Mattes Mutual
Information based method, implemented using ITK, was not expected to
perform as well as other algorithms. The cyan line in figure 5.8 represents
the alignment error of the Mattes Mutual Information based algorithm or-
dered by error. Performance is quite similar to the median based approach
which also used the itk gradient descent method suggesting that without
an appropriate error function the search algorithm dominates performance.
With a median alignment error of 801.9, and a mean alignment error of 268.9
for the top 10% of solutions it is questionable whether this method is able
to provide a correct alignment on image pairs of the type tested. Overall
success ratio of the algorithm is 83.3%
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Alignment Error Success Ratio
Test Parameter t-Value p-Value χ2 p-Value

Translation X -14.89 0.000 -9.58 0.000
Translation Y -4.48 0.000 -22.02 0.000
Rotation 41.49 0.000 -3.37 0.001
Scale X -11.73 0.000 1.080 0.282
Scale Y -2.40 0.016 -1.63 0.104
Skew 0.41 0.685 -0.77 0.442
Image Size 149.47 0.000 37.28 0.000
Overlap 108.18 0.000 19.27 0.000
Exposure Value 6.94 0.000 -4.62 0.000
Focus 1.94 0.053 -1.67 0.095

Table 5.5: Linear regression-based anova evaluation of alignment error vs.
each of the test parameters and logical regression-based wald test of success
ratio vs. each of the test parameters for the median filtered ITK gradient
descent method.

In Table 5.6 we once again see the impact that each transform parameter
has, this time upon the ITK implementation of mutual information based
gradient descent, showing that its alignment error is extremely sensitive to
image size and overlap, which is unsurprising as the amount of possible
alignment error increases as these values increase. The median method is
also sensitive to rotation, and slightly sensitive to translation in X, scale in
X, exposure, and focus. It is not sensitive to skew. The effect on success
ratio, again shown in Table 5.6 is most affected by changes to image size,
followed by translation in Y, overlap, and translation in X. It is slightly
affected by rotation, and is unaffected by other test parameters.

5.2.5 SIFT Feature Based Method

The SIFT feature based method was expected to perform well on the image
pairs of the first test set, given that they correspond to the type of images
that this algorithm is commonly used to solve. As we see returning to the
purple line in Figure 5.8, the plot of the SIFT based method demonstrates
its success at this type of problem. The slope of the alignment error is long
and flat, although the ratio of success of the algorithm is worse than the
Lucas Kanade method. With a median alignment error of 5.44, and a mean
alignment error of 1.21 for the top 10% of solutions it is clear that this
method is able to provide a correct alignment for a range of problems. The
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Alignment Error Success Ratio
Test Parameter t-Value p-Value χ2 p-Value

Translation X -15.58 0.000 -10.88 0.000
Translation Y -4.09 0.000 -19.35 0.000
Rotation 42.22 0.000 -3.14 0.002
Scale X -10.71 0.000 -0.72 0.473
Scale Y -3.56 0.000 -2.27 0.023
Skew 0.82 0.411 0.62 0.533
Image Size 152.65 0.000 35.62 0.000
Overlap 111.60 0.000 17.80 0.000
Exposure Value 8.88 0.000 2.38 0.017
Focus 3.29 0.001 -0.49 0.624

Table 5.6: Linear regression-based anova evaluation of alignment error vs.
each of the test parameters and logical regression-based wald test of success
ratio vs. each of the test parameters for the ITK mutual information metric
gradient descent method.

overall success ratio of the algorithm is 73.64% across the entire solution set,
which was higher than expected given the range of test parameters.

Examining the impact that each transform parameter has upon the fea-
ture based algorithm in Table 5.7 reveals that its alignment error is most
sensitive to the amount of overlap between images, with less overlap result-
ing in more alignment error. It is also sensitive to focus, with less focused
images resulting in a higher alignment error. Image size and scale in Y and
X, have a similar negative relationship meaning that smaller images contain
more alignment error than larger ones. This is likely an indication that
there is a lower bound on size of images that this feature based method is
capable of solving, which is intuitive given that smaller images will contain
less features, and those features will be more difficult to match. Exposure is
positively related, with an increase in exposure difference resulting in an in-
crease in alignment error as expected. Other parameters are not statistically
significant contributors the changes in alignment error.

Its success ratio, presented in the right half of Table 5.7, is most affected
by changes in overlap. It is also significantly affected by focus and image size,
and moderately affected by exposure and scale in X and Y. It is somewhat
affected by translation, and only slightly affected by rotation and skew.
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Alignment Error Success Ratio
Test Parameter t-Value p-Value χ2 p-Value

Translation X 0.45 0.651 -6.24 0.000
Translation Y 1.78 0.076 -10.32 0.000
Rotation 2.90 0.004 -2.74 0.006
Scale X -8.40 0.000 13.15 0.000
Scale Y -10.48 0.000 11.29 0.000
Skew 1.66 0.098 -5.75 0.000
Image Size -16.94 0.000 29.01 0.000
Overlap -35.03 0.000 46.74 0.000
Exposure Value 13.22 0.000 -15.42 0.000
Focus -18.69 0.000 29.61 0.000

Table 5.7: Linear regression-based anova evaluation of alignment error vs.
each of the test parameters and logical regression-based wald test of success
ratio vs. each of the test parameters for the feature based method.

5.2.6 Summary

Using analysis of variance techniques we are able to measure the effect that
each of our testbench parameters has on the alignment error and success
ratio of the algorithms tested. The three gradient descent based algorithms
did not perform as expected, producing solutions with per pixel alignment
errors that were not acceptable for use in most applications. From this we
are lead to believe that the use of gradient descent based algorithms for an
affine solution space is not tenable. This is supported by the occurrence
of translation only, and combined translation and scale transforms within
medical imaging and focal stacking applications, where gradient descent
based methods are most often used. We have nonetheless evaluated the
sensitivities of alignment error and success ratio of these algorithms to each
of the testbench parameters, providing an understanding of which conditions
are likely to affect the quality of solution on affine problems. A future
investigation into the performance of these algorithms for sub-regions of the
problem space which more closely represents their typical application area
could provide insight into the algorithm’s exact limitations.

The feature based method performed better than expected, achieving
high quality successful solutions for approximately 2/3 of the dataset. Its
alignment error was most affected by overlap, focus, and image size, which
matched our intuition about how it would perform. Its success ratio was
dramatically affected by exposure value, however it was successful in ˜75%
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LKSSE ITKSSE MEDIAN MUTUAL FEATURE
Test Parameter

Translation X * * * * -
Translation Y * ˜ ˜ ˜ -
Rotation ! ! ! ! ˜
Scale X ˜ * * * *
Scale Y - ˜ - ˜ *
Skew - - - - -
Image Size ! ! ! ! !
Overlap ! * ! ! !
Exposure Value * - ˜ * *
Focus ˜ - - ˜ !

Table 5.8: Summary of the effect of each parameter on the alignment er-
ror of the testbench algorithms, categorized as significant (!), somewhat(*),
slight(˜) and no effect (-).

of the test cases, 1/3 of which included exposure variation, indicating that
it has some success at exposure variations within a particular range.

Table 5.8 summarizes the effect each parameter has on the alignment
error of the five testbench algorithms. Table 5.8 summarizes the effect each
parameter has on their success ratio.

5.3 Examining Problem Space Dimensions
Directly

Section 5.2.1 highlighted the sensitivities of the algorithms tested to the
different parameters examined in our testbench. In this section we exam-
ine several parameters of interest, dividing the testbench results into groups
based on parameter values, and measuring the mean alignment error and
success ratio within these groupings to gain a better understanding of algo-
rithmic performance within the problem space. Dividing testbench results
based only on the value of a single parameter can conceptually be thought of
as taking a one-dimensional slice through the n-dimensional problem space.
Although these divisions only examine one dimension, with all other param-
eters containing any possible value, they still provide insight into the effect
that parameter has on the alignment error and success ratio.

Based on the sensitivities of all algorithms, we have investigated the
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Success Ratio
LKSSE ITKSSE MEDIAN MUTUAL FEATURE

Test Parameter

Translation X * * * * ˜
Translation Y * ! ! ! ˜
Rotation ˜ ˜ ˜ ˜ ˜
Scale X - - - - *
Scale Y ˜ - - - *
Skew - - - - ˜
Image Size - ! ! ! !
Overlap * ! ! ! !
Exposure Value * - ˜ - *
Focus - - - - !

Table 5.9: Summary of the effect of each parameter on the success ratio
of the testbench algorithms, categorized as significant (!), somewhat(*),
slight(˜) and no effect (-).

parameters exposure, overlap, focus, and image size, providing graphs of
the mean alignment error for each of the algorithms, and the success ratio
of the algorithms, for testbench problems which have been sorted by each
parameter respectively.

5.3.1 Exposure Value Variations

The performance of the testbench on the synthetic set of exposure varia-
tions can be see in Figure 5.9. As can be seen the mean alignment error
of each of the algorithms does change significantly across exposure varia-
tions. The Lucas Kanade gradient descent based algorithm and the feature
based algorithm have a clear upward trend, with alignment error increasing
significantly as exposure variation approaches 3 EV. The median based ap-
proach and mutual information based approach both change sporadically,
but overall increase slightly as exposure variation increases. Finally, the
ITK gradient descent approach is unaffected by exposure value, as indicated
in its anova evaluation.

Surprisingly the SIFT feature based method’s solutions contain signifi-
cantly lower alignment error than the other algorithms for problems with 0
to 2 EV exposure variation. The median based approach proposed by Ward
et al. [100] which was specifically implemented to solve this type of problem
performed much worse than expected, with the worst mean alignment error
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Figure 5.9: Plot of alignment error vs. exposure value across a range of 0 to
3 EV exposure variance. Each of the test results has been sorted into one
of ten bins based on exposure value difference, and is graphed separately by
algorithm.

of all algorithms. We previously speculated that the gradient descent algo-
rithm used in this method is not capable of solving for the six dimensions
of the affine transform, explaining why a translation based transform was
chosen in their implementation of median based gradient descent.

The success ratio across the same range of exposure variance is given in
Figure 5.10. Examining each algorithm individually we see that the ITK
gradient descent and mutual information methods are both unaffected by
changes in exposure, while the Lucas Kanade and Median methods’ success
ratios are slightly affected at extreme changes of exposure. The SIFT feature
based method is most affected by changes in exposure, which is unsurprising
given that it was not designed with this type of problem in mind and relies on
a match between features which are composed of gradients. For exposure
increases of ±1 the algorithm’s success only decreases slightly from 85%
to 80%. As exposure increases to ±2 this declines to 63%, and drops even
further to 25% at±3 EV. Still, for variations of exposure up to 2EV the SIFT
feature based method is 63% likely to find a good alignment between the
image pair, which was a greater range than we originally thought possible.

Based on this analysis it is clear that for most changes in exposure SIFT
feature based algorithms are the best choice for aligning image pairs. When
they fail, or when exposure variation is great, the Lucas Kanade gradient
descent based method should be used. The median based algorithm de-
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Figure 5.10: Plot of success ratio vs. exposure value across a range of 0 to
3 EV exposure variance. Each of the test results has been sorted into one
of ten bins based on exposure value difference, and is graphed separately by
algorithm.

signed specifically for high dynamic range images performed much worse
than expected and is not likely to be useful in our interpreter.

5.3.2 Overlap

Figure 5.11 graphs the error as a function of overlap for each of the algo-
rithms individually, providing a sense of whether particular algorithms are
more sensitive to particular dimensions of the solution space or whether
overlap is an algorithm independent concept as is hoped. As expected the
SIFT feature based algorithm’s mean error is significantly higher for images
with 0-4% overlap. As the amount of overlap increases to 24% we begin to
see the performance of the algorithm approach the expected range. A spike
in mean alignment error exists at the 16-20% range of overlap, most likely
due to the corresponding increase in success ratio in that area; the algorithm
is finding more solutions, but they’re of a mediocre quality. Both of the SSE
gradient descent methods are relatively unaffected by overlap, increasing
in error slightly as the amount of overlap increases. The median gradient
descent and mutual information methods increase significantly as overlap
increases; more so than would be expected from the increase in success.
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Figure 5.11: Plot of alignment error vs. overlap. Testbench results has been
sorted into 25 bins based on overlap value and are graphed separately by
algorithm.

Figure 5.12 presents the success ratio of each algorithm as a function of
overlap. Most striking here is the effect that overlap has upon the SIFT
algorithm. This is expected as fewer matching features are available as the
overlap between the two images decreases. At the lowest overlap bin of 0-
4% overlap we see that the success ratio of SIFT decreases to 16%. This
graph provides an excellent overview of the limitations of the algorithm,
suggesting that for overlap between the two images greater than 36% it
is 95% successful at finding a solution, however this performance quickly
degrades. As expected the other algorithms exhibit a similar decrease in
success at low overlap, albeit not to the same degree. In particular the
Lucas-Kanade SSE based solver maintains a high success ratio and its mean
error is unaffected over the lower range of overlap demonstrating a potential
region within the problem space where it should be selected when the SIFT
based solver fails.

5.3.3 Focus Variation

The performance of each algorithm on the testbench across the range of
possible focus ranges is tested by varying the synthetic focus from -0.5 to
+ 1.0. Figure 5.13 demonstrates the performance of the testbench on the

127



5.3. Examining Problem Space Dimensions Directly

Figure 5.12: Plot of success ratio vs. overlap. Testbench results has been
sorted into 25 bins based on overlap value and are graphed separately by
algorithm.

synthetic set of exposure variations. The mean alignment error for each of
the algorithms across this range of focus variation is plotted. As can be seen
from the graph, none of the algorithms’ mean alignment errors are affected
as focus varies. Once again the SIFT feature based method’s solutions con-
tain significantly lower alignment error than the other algorithms, even at
negative focus values when neither image is in focus.

Examining the success ratio of the testbench across focus variations we
begin to see why. Figure 5.14 plots the success ratio of each tested algorithm
as a function of our synthetic focus variation. As expected the Lucas Kanade
based algorithm’s success ratio is unaffected by focus variation. The three
ITK based algorithms, which use sum of square error, median, and mu-
tual information, all report similar success ratios, decreasing slighty as the
amount of focus between the images approaches extreme values. Finally the
SIFT feature based algorithm is the most impacted, with a 30% success ratio
for images with strongly differing focus regions. Surprisingly for image pairs
which contain even a slight amount of overlapping in focus regions, shown
in our graph as a focus variance of 0.5, SIFT is able to find a solution with
a success ratio of 79%. This is significantly higher than we expected, and
shows that a SIFT based algorithm may actually prove feasible for solving
some focus stacking problems.

Based on this analysis it is clear that for some variations in focus SIFT
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Figure 5.13: Plot of alignment error vs. focus value. Testbench results has
been sorted into 25 bins based on overlap value and are graphed separately
by algorithm.

feature based algorithms are still the best choice for aligning image pairs.
When they fail, or when focus variation is great, our Lucas Kanade gradient
descent based method should be used.

5.3.4 Image Size

In order to avoid unknown bias to our system by only using images of a
specific size, each test pair is also scaled by a random image size varying
between 0.25 and 1.0. Both images are scaled equally before any cropping
or image synthesis steps are taken. As we see in Figure 5.15, image size
plays little role in the mean error of our Lucas Kanade method, the itk
sum of square error method, and the SIFT feature based method. Both the
median based and mutual information based methods were, however deeply
affected, likely due to the mismatch between their error function and the
solution space. The gradient of alignment error as an image is translated,
rotated, scaled, or skewed does not correspond to the error function gradient
of each of these methods. As images grow in size, the possible error between
them increases, and both of these methods are affected, demonstrating the
poor quality of solution that these algorithms provide.

Examining the success ratio of each algorithm across the same range
of image size in Figure 5.16 we see that the Lucas Kanade method slightly
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Figure 5.14: Plot of success ratio vs. focus value. Testbench results has
been sorted into 25 bins based on overlap value and are graphed separately
by algorithm.

decreases in success as the images get larger, while the other four algorithms
are significantly impacted, increasing in success ratio as image size grows. At
the smallest image size the SIFT feature based method is half as successful as
it is for full sized images. The three remaining ITK based methods are even
more affected, with a success ratio of only 5% for images of 0.25 image size,
explaining the lower mean amongst those algorithms for images of that size.
Based on the starting size of the testbench and the range of possible image
scaling due to the transform these image pairs would be between 250×375
pixels and 63×94 pixels in size. This knowledge of which algorithms are
affected by image size, and what their lower bound on image size is allows
for the better selection of algorithms under those conditions as we begin to
develop an interpreter.

5.4 Actual Error vs. Reported Error

As a final exploration of the algorithms evaluated by our testbench we ex-
amined the actual alignment error in comparison to the error function of
the algorithm. SIFT does not measure error directly in this way, and thus
was excluded from the process. Figure 5.17 demonstrates the actual align-
ment error on the x axis of the graph, while the error predicted by the error
function of the algorithm returned as part of its error function reporting is
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Figure 5.15: Plot of alignment error vs. image size. Testbench results has
been sorted into 25 bins based on overlap value and are graphed separately
by algorithm.

contrasted on the y axis. As can be seen there is little correlation between
actual error and reported error. From this we propose that drawing con-
clusions about algorithm performance based on these reported error rates is
not possible.

5.5 Conclusions

In this chapter a method for creating image registration testbenches was
detailed, which uses synthetic variations and a ground truth transform to
create image registration pairs with known transform and image parameters.
Three testbenches of 5K image pairs were created, each of which covers a
range of problems with a common form of variation. No variation, exposure
variation, and focus variation regions of the image registration problem space
were tested.

Our testbench tests four algorithms that cover a variety of registration
methods: a gradient descent intensity-based method [70]; a modification of a
median-based method [100] that performs gradient descent on binary maps
of the images’ median values; a mutual-information-based method [60]; and
finally a SIFT feature-based method [61] which uses RANSAC [28] to solve
for alignment. Although we eventually plan to add more algorithms, and
to test the effect of the modification of algorithm parameters, the method-
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Figure 5.16: Plot of success ratio vs. image size. Testbench results has been
sorted into 25 bins based on overlap value and are graphed separately by
algorithm.

ology will be identical and these algorithms and settings are sufficient to
validate the testbench. Sensitivities of each algorithm to the test parame-
ters were measured using ANOVA, and the impact of several key parameters
was explored directly, giving an indication of algorithmic performance along
specific problem dimensions.

The performance results of the testbench were somewhat surprising.
The gradient descent based algorithms performed poorly outside the limited
‘stacking’ problems which they are described within the literature as being
suitable for. The testbench allows us to examine in detail the effect that each
parameter has upon these types of algorithms, revealing an extreme sensitiv-
ity to rotation, image size, and the amount of overlap between images. The
use of gradient descent for problems with these conditions, particularly if
solving for an affine transform are therefore not recommended. Conversely,
the range of the image registration problem space the SIFT feature based
implementation was able to cover was much greater than expected. As
expected it was sensitive to image size, focus, and overlap, however its per-
formance even under extreme instances of these parameters was surprisingly
good. It was able to find a good alignment in spite of variations of ±2EV
in exposure, almost no focus overlap, and for an image overlap of as little
as 0.04. Although its performance breaks down in a number of regions it is
much more capable of dealing with variation than expected, and is a good
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Figure 5.17: Actual alignment error (x axis) vs. Predicted error (y axis) for
the four algorithms tested which contained an error function.

candidate algorithm if not much is known a priori about potential problem
conditions. The other algorithms tested did not perform as well as expected,
possibly due to difficulties of the gradient descent algorithm at solving the
six dimensional affine transform. Still, for a number of areas within the
image registration problem space the Lucas Kanade intensity based method
proved superior.

This testbench provides a basis from which the limitations due to trans-
form parameters, image size, overlap, exposure variation, and focus variation
of other algorithms and parameter settings can be evaluated. By mapping
the performance of algorithms under these conditions we have created a basis
for the selection of appropriate algorithms under similar conditions. A fur-
ther evaluation of more algorithms, parameter settings, and problem space
regions is necessary to create the ‘ultimate registration method’ described
by Zitová and Flusser at the end of their survey, however this evaluation
should be straightforward using synthetic variaitons based on the model from
Chapter 4, and following the methodology outlined within this chapter.

133



Chapter 6

Interpretation of the Image
Registration Model

“The conventional view serves to protect us from the painful job
of thinking.”

- John Kenneth Galbraith

In order to validate the registration taxonomy and the model derived
from it, interpretability from the problem centric model into appropriate
solutions must be shown. There are many possible ways to interpret the
description; this chapter demonstrates one approach that utilizes our proof
of concept OpenVL machine design. Our interpreter is based on the direct
evaluation of the performance of individual registration algorithms under
different conditions performed in Chapter 5. From this analysis of how
algorithms perform on images which contain similar problem conditions, a
single algorithm can be definitively chosen based on which performed best
on the test images. In cases where no algorithm was decisively best, multiple
algorithms can be selected and executed and their performance compared.
Other interpretation techniques are proposed in Section 8.2.2.

The four algorithms introduced in our testbench have been implemented
and integrated into our interpreter, providing basic but well rounded im-
age registration capabilities. They are: a gradient descent intensity-based
method [70]; a modification of a median-based method [100] that performs
gradient descent on binary maps of the images’ median values; a mutual-
information-based method [60]; and finally a SIFT feature-based method
[61] which uses RANSAC [28] to solve for alignment. Although three of the
algorithms performed poorly across a wide range of the testbench, they each
are targeted towards niches of the problem space which were not necessarily
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well represented. The mutual information based method in particular tar-
gets a region of the problem space not at all explored, while the gradient
descent and median based methods were designed for stacking type problems
which represents a small subset of the problem volume explored. They are
however still included in the interpreter, which will select these algorithms
if the appropriate conditions arise.

Although we eventually plan to add more, these methods are sufficient to
validate the frameworks ability to translate expectations and requirements
into registration solutions. The integration of new algorithms that are more
appropriate under particular situations requires only that they be evaluated
with a similar registration testbench, allowing researchers to contribute novel
algorithms to the interpretation engine of our model easily. The testbench
is made available online as both binary and source in order to encourage the
testing of additional registration algorithms. Further, the testbench can be
extended to include new types of registration problems, and the included
existing algorithms can be evaluated under those new conditions to provide
a point of comparison.

6.1 Interpretation of a Model

In order to create an interpreter of the image registration model we require
an understanding of algorithmic performance across the different ranges of
our model. Our testbench, presented in Section 5.2, provides us with a
detailed understanding of how the different forms of variation available in
our model affect the performance of algorithms. This allows us to select an
appropriate algorithm based on the variation present in the model. There
are many ways of using this information to create an interpreter and we
examine a variety of methods in Section 8.2. As a basic proof of concept we
have implemented a direct, mean alignment error based interpreter which
uses the results of registrations from our testbench to select an appropriate
algorithm.

When described using the expectations of the image registration model
an image registration problem becomes a volume within the problem space.
Unspecified representations are assumed to be unknown and to vary across
the entire solution space, while unspecified conditions are assumed to be
non varying. Using this volume, we determine the mean alignment error,
standard deviation, and success ratio of each of the five algorithms for all
points in the testbench which fall within it. In instances where a single
algorithm’s mean error plus its standard deviation is less than the next
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Algorithm Error Space

Intensity-Based Gradient Descent Sum of square difference of overlapping pixel values
Median-Based Gradient Descent Sum of square difference of thresholded median pixel values
Maximization of Mutual Information Sum of square difference of mutual information metric
SIFT Feature Based Joint intensity of image patches *

Table 6.1: Error metrics of each of the algorithms evaluated by our test-
bench used to determine which algorithm has performed best when multiple
algorithms have arrived at a valid solution.

highest algorithm it is used to solve for the transform. If the algorithm fails
to find a solution that meets any requirements on the solution space the
next best algorithm is run using the same criteria.

When algorithms are similarly capable of solving a problem, measured
by the fact that the mean plus standard deviation of an algorithm is higher
than the mean of the others, then a choice must be made in terms of whether
to simply run one, or whether to compare the results of all viable algorithms.
In order to determine which algorithm has performed best when multiple al-
gorithms have arrived at a valid solution we would require a normalized error
metric that applies across all algorithms. While such a metric is not directly
available, it can be loosely approximated by cross correlating the results from
each algorithm in the error space of the other selected algorithms. For exam-
ple in the case of two algorithms A and B: we calculate A.Error(Solution A),
A.Error(Solution B), B.Error(Solution A), and B.Error(Solution B). These
values can also be weighted by the algorithm’s estimate of how well they
should perform on problems of this type if information on this is available.
The metric space of each of our proof of concept algorithms is outlined in
Table 6.1. Each algorithm is represented by its representative error space,
with the exception of feature based algorithms, whose error space is not
possible to evaluate with only a transform. In that case we use the joint
intensity of image patches to represent the error space.

While this interpretation method provides us with an estimation of algo-
rithmic performance on the problem for regions of the problem space similar
to those covered in our testbench it is unable to estimate for problem ar-
eas not covered such as sensor variations or intersections between exposure
value and focus. The expansion of the testbench to include new regions of
the problem space is an ongoing process. The development of a testbench
which covers the intersection of different forms of variation would require
significant effort as the number of intersections grows exponentially as new
forms of variations are explored, and is left as future work.

Although results vary significantly depending on the volume of problem
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space covered by the model’s description, we can make some general conclu-
sions about which algorithm will be selected by our interpreter based on the
results of our testbench. These inferences are based on our one dimensional
evaluations of the image registration problem space, which does not capture
the interactions of multiple forms of variation that our interpreter uses, as
well as a qualitative analysis of the interpreter.

6.1.1 Purely Spatial Variations

In the case of no variations beyond those found in the transform, SIFT
feature based algorithms are most often selected as the best available algo-
rithm, except in the case where overlap varies between 0 and 8%, where the
Lucas Kanade gradient descent based method is also run and the error of
both solutions is compared. In instances where the SIFT feature based algo-
rithm fails to find a solution the same Lucas Kanade gradient descent based
method is run as the secondary algorithm, along with the ITK gradient de-
scent based algorithm, which has a lower mean alignment error than the
mean alignment error plus standard deviation of the Lucas Kanade method.

6.1.2 Exposure Variations

When exposure variations are present SIFT feature based results are still
often the best choice for finding a solution. If SIFT fails, as is likely to
be the case at extreme instances of exposure variation, then both gradient
descent based methods are used as the secondary algorithms as was the
case of no variation. Ideally another image registration algorithm with less
sensitivity to differences in exposure variation such as [87] could be tested
and integrated to provide coverage within this region of the problem space,
however return to Section 3.2 we see that few other algorithms exist which
deal with this form of variation explicitly. It is our hope that the availabil-
ity of a testbench which measures performance under those conditions will
encourage researchers to develop algorithms which are more accurate and
more successful within this region of the image registration problem space.

6.1.3 Focus Variations

When exposure variations are present SIFT feature based results are once
again the best choice for finding a solution. The accuracy of alignment
when using SIFT is greater than that of the other algorithms. If SIFT fails,
as is likely to be the case at many instances of focus variation, then both
gradient descent based methods are used as the secondary algorithms. This
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once again highlights the need for the examination of more algorithms using
this testbench. Similar to exposure variations we hope that by making a
testbench available we will encourage the development of algorithms which
are more accurate and more successful within the focal varying region of the
image registration problem space.

6.2 Example Problems

Our examples are intended to illustrate that the various models specified by
the expectations and requirements provide a mechanism for the application
programmer to specify the problem they want solved. This specification
sets the context of the OpenVL state machine. While our demonstration
implementation only contains five registration algorithms, the interpretation
of the context illustrates that there is enough information for sophisticated
algorithmic selection approaches. Our proof of concept shows how the solu-
tion to registration problems can be found based on a representative model
which describes the vision problem.

The four example problems we examine are: image stitching (panora-
mas), focal stacking, high dynamic range imaging, and finally a multimodal
medical imaging problem.

6.2.1 Stitching

Our first example examines the image stitching problem; finding the align-
ment between a sequence of images with little spatial overlap. Returning
to Section 4.3, Table 6.2 repeated here, outlines the expectations and re-
quirements used to describe our example stitching problem. In this instance
the overlap has been specified based on an analysis of image pairs from the
problem type. As we saw in Chapter 4 there are many ways of determin-
ing the model values including problem analysis, visual analysis, and use of
metadata to calculate model values directly.

In our proof-of-concept system, the interpreter selected the SIFT feature-
based method to evaluate the transform because its mean alignment error
plus standard deviation was lower than the mean alignment error of the
other algorithms. For the specified amount of overlap it was decisively the
best algorithm of the five available with a mean alignment error of 11.69
plus a standard deviation of 20.20 for a maximum probable error of 31.89
as compared to a mean error 308.974 for intensity-based gradient descent,
1018.25 for median-based gradient descent, and 1004.06 for maximization of

138



6.2. Example Problems

Image 1-2 Relative Expectations Range / Value Dist.

Overlap [0.05, 0.60] +Quad

Image 1-2 Relative Requirements Range Dist.

Overlap [0.05, 0.50] +Quad

Table 6.2: Example panorama stitching registration problem expressed as
the relative relationship between a pair of images. +Quad = Positive
Quadratic Distribution

Figure 6.1: Input images and rendered image derived by stitching two images
together using a feature based method.

mutual information. Figure 6.1 shows two input images aligned using the
feature based method.

6.2.2 Focal Stacking

The focal stacking problem requires transforms from registration of partially
in-focus images. Table 6.3 presents an example expectations and require-
ments based representation. In this case, we have specified the absolute in
focus regions for each of the three images, estimating based on our obser-
vation of the images. We have also specified that the relative transform
that aligns all of the images is of a similar scale, with limited translation
and rotation. As we saw above, the expected limited overlapping regions
of focus is particularly suited for some registration algorithms while likely
problematic for others.

This mapping of focal depth must be converted in the case of our direct
interpreter into a mapping similar to that used in the testbench. For the
three images which make up the focal stack in this model we can convert
the focal depth to similar ranges by using the ratio of coverage of the focal
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Image 1 Absolute Expectations Value

In Focus Regions [0.0,0.05] Uniform

Image 2 Absolute Expectations Value

In Focus Regions [0.05,0.25] Uniform

Image 3 Absolute Expectations Value

In Focus Regions [0.20,0.50]] Uniform

Image 1-2, 2-3, 1-3 Relative Expectations Value

Translation.X [-0.25,0.25] Uniform
Translation.Y [-0.25,0.25] Uniform
Scale [0.95, 1.05] Gaussian
Rotation [-0.05,0.05] Gaussian

Table 6.3: Example state representation for a focal stacking registration
problem.

depths to create focus values which match those used in the testbench. The
focus value for image 1-2 is ((0.05 + 0.20)/0.25)/2 = 0.5, as the combination
of the two images creates a full coverage, but no regions are overlapping.
Focus value for 2-3 is 0.556 (((0.20 + 0.30)/0.45)/2 = 0.556), reflecting the
overlap between the two images, while the focus value for 1-3 is 0.35 (((0.05−
0.30)/0.50)/2 = 0.35).

The relative and relative-dependent properties specified in Table 6.3 lead
to the selection of both the SIFT feature based method as the first choice.
For the specified amount of overlap it was decisively the best algorithm of
the five available with a mean alignment error of 40.58 + standard deviation
of 105.67 for a maximum probable error of 146.25 as compared to a mean
error of 257.17 for intensity-based gradient descent, 924.004 for median-
based gradient descent, and 1004.06 for maximization of mutual information.
However, the SIFT feature based algorithm fails requiring the Lucas Kanade
gradient descent based method descent based method be run. Its standard
deviation is 96.55, for a maximum probable error of 353.72; less than the
mean of the ITK gradient descent based solver. As expected the Lucas
Kanade produces an image with the lowest error when compared across the
error space of the two algorithms. Figure 6.2 shows the results of applying
the transforms aligned by the intensity based solver to a focus-based renderer
for a focal stack of six images.
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Figure 6.2: Rendered image derived from six images aligned using transforms
determined by an image-intensity based algorithm.

Expectation Range / Value Distribution / Model

Relative Luminance [0,0] Uniform
Relative Luminance [-2,-2] Uniform
Translation.X [-0.05, 0.05] Uniform
Translation.Y [-0.05, 0.05] Uniform
Scale [0.98, 1.02] Gaussian
Rotation [-0.02, 0.02] Gaussian

Table 6.4: Example state representation for a high dynamic range registra-
tion problem.

6.2.3 High Dynamic Range Imaging

Table 6.4 presents the expectations of a high dynamic range problem, where
three images of 0, +2, and -2 Ev are to be registered. The values for exposure
in this example are derived from the exif information and as such are exact.
Based on our knowledge of the images we have also specified that the range
of alignments for this problem should cover a very narrow range of likely
solutions. This has been specified as a part of the expectations, however the
solution space is not limited as these are not requirements.

In this case the variation of illuminance leads once again to the selection
of the SIFT feature based method. For the specified amount of overlap it
was decisively the best algorithm of the five available with a mean alignment
error of 14.36 plus a standard deviation of 57.80 for a maximum probable
error of 72.16 as compared to a mean error of 314.41 for intensity-based
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Figure 6.3: Registration of an image pair with a -2.0 exposure variation. Top
left is the reference image, and top right the active image. The solution of
the SIFT feature based algorithm selected by our interpreter is presented on
the bottom. The solution has a mean alignment error of 12.64 pixels/pixel
which can be seen in the misalignment of edges where the bottom right hand
corner of the reference image merges with the transformed active image.

gradient descent, 1339.8 for median-based gradient descent, and 1203.27 for
maximization of mutual information.

In the case of our example the SIFT algorithm found an alignment,
eliminating the necessity of running other algorithms. As we saw above in
Section 5.2 the SIFT algorithm outperforms the median method which was
specifically designed for the problem domain. This helps to illustrate the
advantage our language model provides when programmers unfamiliar with
the field are implementing registration. Figure 6.3 shows the registration
of the image pair with a -2.0 exposure variation by the SIFT feature based
method.
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Expectation Range / Value Distribution / Model

Intrinsics.Sensor T1 Sensor Model
Intrinsics.Sensor Proton Density Sensor Model
Object Model Head Single Patient Brain Model

Table 6.5: Example state representation for a medical imaging registration
problem.

Mutual-B-M Median-B-M Intensity-B-M
Mutual Error 0.081 0.488 0.431
Median Error 0.413 0.292 0.295
Intensity Error 0.440 0.263 0.297
Total Error 0.935 1.042 1.023

Table 6.6: Normalized cross-correlation of results for a medical imaging
registration problem.

6.2.4 Multimodal Medical Imaging

Our final example examines a medical imaging registration problem where
a T1 slice and a proton density slice of a single patient’s brain are being
combined. Metadata from the medical images allows us to directly specify
the model parameters. Although this representation may seem simplistic,
the T1 and proton density representations can each be complex models of the
actual devices used, allowing researchers to develop algorithms which take
this information into account when performing their registration. Complex
models of the patient’s brain can also be represented, however details on
OpenVL’s object models are beyond the scope of this thesis.

This problem falls outside of the range of tests performed in our test-
bench. In instances where no example problems are available from which to
estimate performance we instead implement all algorithms, using the cross
correlation of each result in the available error spaces as mentioned above
in Section 6.1. Table 6.6 shows the resulting normalized error functions and
the cross correlation results for each of the algorithms. As expected, the
mutual-information-based method is a clear winner in it’s own error space,
however in the other two spaces the solution it provides is worse. The
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Figure 6.4: Registration of a brain T1 slice to a brain proton density slice.
Left most image is the reference image(T1). Solutions presented left to right
are: intensity-based, median-based, and mutual-information-based. The
feature-based method did not find a solution.

summed cross correlation results indicate that this solution is considered
best by the system. Figure 6.4 shows the results of the registration for each
of the successful algorithms.

6.3 Summary

Building upon our model of image registration developed in Chapter 4 and
our testbench of the image registration problem space from Chapter 5 we
have developed a proof of concept interpreter which interprets the model of
the problem, selecting the most appropriate algorithm or algorithms to find
an alignment.

When described using the image registration model an image registration
problem becomes a volume within the image registration space. Our inter-
preter uses this volume, and determines the mean alignment error, standard
deviation, and success ratio of each of the four algorithms for all examples
in the testbench which fall within it. In instances where a single algorithm’s
mean error plus its standard deviation is less than the next highest algorithm
it is used to solve for the transform. If the algorithm fails to find a solution
the next best algorithm is run using the same criteria. Using this interpreter
five image registration problems were explored which cover common areas
of the image registration problem space. In each case the interpreter was
able to select the most appropriate algorithm, and provide the best solution
for the particular conditions of the problem.

The improvement of the interpreter to include new volumes of the prob-
lem space or new algorithms relies directly on the testbench methodology
developed in Chapter 5. By improving the testbench we see a direct im-
provement in the interpreter, which is one of the benefits of a direct inter-
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pretation method. The incorporation of new algorithms into expert system
based interpreters requires a reevaluation of the entire problem space to
ensure proper inclusion.
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Chapter 7

Automatic Classification of
Image Registration Problems

“A computer once beat me at chess, but it was no match for me
at kick boxing.”

– Emo Philips

Although the field is rapidly moving towards automatic image registra-
tion, as we saw in Chapter 2 algorithms and systems are most often limited
to a single application domain, such as stitching panoramas [61], super-
resolution imaging [29, 104], high-dynamic-range (HDR) imaging [87, 100],
or focal stacking [2]. When images vary by more than just alignment the
proper selection of appropriate algorithm is critical in calculating the cor-
rect spatial transform. From Chapter 5 we determined that techniques can
often be used on a range of problems from other domains. In our testbench
the feature based method was dominant across a significant volume of the
problem space, however it was outperformed in a number of problem space
volumes, particularly focus variations. No single algorithm exists that will
solve all types of registration. By automatically detecting the important
aspects of the image registration model we can determine the volume of the
problem space that the image pair falls into, providing a basis for the au-
tomatic selection of an appropriate algorithm using our interpreter. Figure
7.1 presents example image pairs from some different types of registration,
demonstrating visually the differences between these image pairs.

This chapter introduces two systems which attempt to automatically
classify registration problems based on the variation between image pairs
identified under the taxonomy of Chapter 3. First, a simple rule based
system [72] is explored which validates the idea that the type of registration
problem can be identified by features derivable from image pairs. A one to
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Chapter 7. Automatic Classification of Image Registration Problems

Figure 7.1: Image pairs representative of the different types of registra-
tion problems that occur in computational photography. From the top left:
panorama, high-dynamic-range, focal stack, and super-resolution.

one classification scheme is used to identify different types of registration
problems, and a 90% positive classification rate is achieved for a dataset of
60 images.

A second learning based system developed using support vector ma-
chines is then examined in greater detail. In this second study 1100 pairs of
images were collected, divided evenly amongst five possible groupings: 220
Panorama pairs, 220 High-Dynamic-Range pairs, 220 Focal pairs, 220 Super-
Resolution pairs, and finally 220 ‘unrelated’ pairs, and are made available
online to support future research [92]. A one to many classifier was trained
which is able to classify between panoramas, high-dynamic-range-images, fo-
cal stacks, super-resolution images, and unrelated image pairs with a 91.18%
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accuracy. One to one classifiers were also developed to classify each of the
categories individually. Classification rates for our one to one classifiers are
as follows: Panorama image pairs are classified at 93.15%, high-dynamic-
range pairs at 97.56%, focal stack pairs at 95.68%, super-resolution pairs at
99.25%, and finally unrelated image pairs at 95.79%.

Using this classification, a model based representation of the problem
can be fed into our interpreter, allowing for the selection of an appropriate
algorithm to solve this type of problem. This approach of using the best algo-
rithm available for each problem type is similar to that used in SATZilla [101]
which solves propositional satisfiability problems by analyzing the problem
to determine the best choice of algorithm for finding a solution. Combining
classification with interpretation, our system significantly improves the flex-
ibility and accuracy of automatic registration, providing a starting point for
what Zitovã and Flusser [103] term ‘the ultimate registration method,’ which
is ‘able to recognize the type of given task and to decide by itself about the
most appropriate solution.’

7.1 Rule-Based Classification

Our first technique for the classification of image registration problems is
a crude rule based system, which examines image pairs based on a set of
features used to represent the differences and similarities of the pair. Each
image pair is analyzed to determine the differences in their intensity his-
tograms and hue/saturation histograms, the normalized power of each im-
age, the number of matching features between the images, and the centroid
of those matches. These features are then examined to determine a set of
rules which allow us to automatically classify image pairs.

7.1.1 Problem Classification

Image registration methods vary significantly depending on the type of reg-
istration being performed. Within our taxonomy image pairs are organized
into the categories: non varying, intensity varying, focus varying, and un-
related, based on their primary form of variation. Examining the types of
variations that occur in a pair or sequence of images allows photographers to
select an appropriate application, or programmers to select an appropriate
algorithm, in order to find the best alignment.

Similarly in our rule based system each image pair is analyzed to deter-
mine the differences in their intensity histograms and hue/saturation his-
tograms, the normalized power of each image, the number of matching fea-
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7.1. Rule-Based Classification

Figure 7.2: Image pairs representative of the different types of variation that
occur in registration problems. A: Purely Spatially Varying B: Intensity
Varying C: Focus Varying D: Unrelated

tures between the images, and the centroid of those matches. Differences
between histograms are measured by their intersection. Figure 7.2 shows
two representative image pairs of each type of registration, and Table 7.1
presents their corresponding values. These values are used by the system
to classify what type of variations occur through the application of simple
heuristic rules that utilize these operators. Our system is capable of running
many algorithms and comparing the results to find the best solution, there-
fore it is much more important to make true positive classifications than it is
to prevent false positives. The basis for these rules within each application
domain is examined in detail below.

Purely Spatial Variations

Image pairs that differ purely spatially, as shown in Figure 7.2A, are the
most common type of image registration problem. Applications that require
registration of images that vary spatially include panorama stitching, super
resolution, and remote sensing. Although area-based methods derivative of
Lucas and Kanade [53] are capable of solving these types of registration
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Image Pair N Feat Centroid I HS Power

A1 (Spatial) 967 (0.76,0.51)(0.22,0.61) 0.765 0.787 3.30%, 3.10%
A2 (Spatial) 605 (0.71,0.65)(0.30,0.65) 0.923 0.878 3.30%, 3.05%
B1 (Intensity) 944 (0.53,0.62)(0.53,0.62) 0.161 0.303 3.79%, 1.80%
B2 (Intensity) 1483 (0.53,0.60)(0.43,0.50) 0.425 0.651 3.60%, 3.24%
C1 (Focus) 139 (0.52,0.53)(0.52,0.53) 0.834 0.812 1.40%, 0.96%
C2 (Focus) 50 (0.52,0.36)(0.58,0.32) 0.862 0.834 0.16%, 0.43%
D1 (Unrelated) 24 (0.49,0.25)(0.44,0.28) 0.898 0.819 3.18%, 2.76%
D2 (Unrelated) 10 (0.47,0.6)(0.58,0.73) 0.746 0.704 1.88%, 1.73%

Table 7.1: Values used in the classification of image pairs corresponding
to images from Figure 7.2. For each pair the number of features (N Feat),
feature centroid (Centroid), overlap of intensity histogram (I), overlap of hue
saturation histogram (HS), and power of each image (Power) is calculated.

problems, feature based methods like Autostitch [61] and Autopano are the
most common technique applied and are generally considered much more
accurate unless the image pairs contain little high-frequency information
from which to find and match features.

Without first aligning the images, calculating the amount of overlapping
high frequency content in the image pairs is difficult, so instead we calculate
the number of matched features [52] directly. Image pairs with on average
more than one matched feature per 75×75 pixel patch are classified as ‘purely
spatial’ because methods unconcerned with other forms of variation (i.e.
feature based methods) are likely to be capable of solving for their alignment.
Stitching problems with low overlap are likely to contain a low number of
matching features, so we also calculate the centroid of the features detected,
allowing us to distinguish these cases. Pairs with feature centroids greater
than 30% translation from the origin are considered purely spatial require
1/5 as many matches. Section 7.1.3 shows how the results of the combination
of these two rules allows us to positively classify purely spatially varying
image pairs within our test set.

From this set of rules it is also possible to create a representative model
of the area of the image registration problem space that they cover. In
this particular case our model is similar to the example presented above in
Section 6.2. This model can be used as an input to the interpreter, allowing
for not just automatic classification, but also automatic implementation of
image registration.

150



7.1. Rule-Based Classification

Expectation Range / Value Distribution / Model

Relative Luminance 1 - 3 Uniform

Table 7.2: Our model of image registration corresponding to the subset of
problems selected by our rule for detection of intensity variations.

Intensity Variations

Significant intensity variations are common amongst high dynamic range
image registration problems, and can also appear in panorama image pairs
where there is a powerful light source in one of the frames. HDR techniques
are predominantly area based; interest points required by feature based
methods are most often detected at edges or corners, and are not consistent
across large differences in intensity. For those image pairs where image
intensity varies significantly, such as those shown in Figure 7.2B, median
thresholding [100] can be used to find a more accurate registration.

Intensity varying image pairs can be easily detected by examining the
differences in intensity histograms, providing a simple basis for their classi-
fication. Pairs with histograms that differ by more than 30% are classified
as intensity varying. Section 7.1.3 demonstrates the effectiveness of this rule
at finding intensity varying image pairs within our test set.

A mapping of model which is representative of this rule can also be
constructed. Table 7.2 presents the model of image registration problems
that correspond to this subset of the problem space.

Focus Variations

Focus variations are found in image pairs used for focus stacking, and in pairs
with motion or gaussian blur, shown above in Figure 7.2C,. According to the
literature, techniques are predominantly area based for the same reason as
HDR techniques; the same edges and corners are not detected across images
with different focal planes. Instead intensity based area methods like those
derivative of Lucas and Kanade [53] are recommended to find the correct
alignment. In our testbench we found this to be true for instances of extreme
focus variation and have chosen to utilize this method in our algorithm
selection, however the feature based method explored in our testbench may
be a more appropriate choice if the expected focus variation in the dataset
is small.

Focus stacking is used to combine images with limited depth of field,
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Image 1-2 Relative Expectations Value Dist.

∆ Exposure 0 EV U
∆ Range of Focus 0 mm U

Table 7.3: Model representative of image pairs selected by our focus variation
detection rule.

so images are likely to have a low amount of high frequency information.
Image pairs are detected by examining the normalized power of each of the
images, a measure proportional to the number of in focus pixels in the image.
In a number of problems, particularly those relating to registering blurred
images, only one of the images is lacking in focus. Image pairs where either
image has a normalized power less the 2.5% are classified as focus varying.
As we will see in Section 7.1.3 this rule is useful for positively classifying
focus varying pairs, however it also classifies a number of other pairs which
are not considered as primarily focus varying in our ground truth.

A similar model to those presented above can be created based on the
rule used to detect focus variations. Table 7.3 presents the model of image
registration problems that correspond to the focus varying subset of the
problem space.

7.1.2 One to Many Classification System

Using the rules described in Section 7.1.1 our system is able to identify the
types of variation occurring between the image pair. Each form of varia-
tion is represented within our interpreter as a volume of the problem space
expressed as a model. If only a single type of variation is identified then
the corresponding model is used by the interpreter to solve for the trans-
form that aligns the pair. When multiple forms of variation are classified
for an image pair the system uses a set of volumes to determine the most
appropriate algorithm or algorithms. Our proof of concept interpreter then
uses one or more of the four algorithms, solving for the best alignment as
described in Section 8.2. If multiple algorithms are selected then normalized
cross correlation of the proposed transforms is then performed, calculating
the error of each transform across all appropriate error spaces to pick the
best.
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7.1.3 Evaluation

To test our classification algorithm we created a set of 64 image pairs from
the categories: spatially varying, intensity varying, focus varying, and un-
related, based on their primary form of variation. These images were then
classified in a user study by six independent photographers. For each pair
we considered the classification to be valid if five of the six photographers
classified the image pairs exactly the same, a process which eliminated four
pairs. This set of classified pairs was then used as a ground truth for eval-
uating the system. For the remaining 60 images the photographers were on
average 96% successful at correctly classifying the main form of variation
using a one to one classification scheme. This allows us to compare how well
our system is able to classify registration problems.

Using our two rules outlined in 7.1.1 we can positively identify 100%
of the purely spatial varying problems within the data set. 38% of pairs
classified as primarily spatially varying were also proposed as being inten-
sity or focus varying. Once normalized cross correlation has been applied
76% of the purely spatial (according to our ground truth) pairs find the
best alignment using the correspond spatial method. Examination of the
remaining 24% of spatial pairs shows that in 60% of cases all error spaces
agreed the solution chosen was the best, while 40% produced conflicting
recommendations.

As expected, intensity varying image pairs can be easily detected by
examining the differences in intensity histograms as proposed in 7.1.1. Us-
ing this rule we are able to find 100% of the intensity varying image pairs
within the data set. 91% of ground truth intensity varying pairs were also
indicated by either the spatial and/or focus varying rules. After NCC how-
ever 81% of the selected solutions were from the intensity varying method.
The remaining 19% were selected from the spatially varying method.

Similarly, using the rule proposed in 7.1.1 we are able to classify 94% of
the focus varying problems in our test set. 16% of ground truth pairs were
also classified as spatially varying, however after NCC all of the solutions
were selected from the focus varying method.

Unclassified image pairs are considered to be unrelated by the system.
38% of the unrelated image pairs were correctly identified by the system.
A single focus varying problem was also indicated as being unrelated. This
poor rate of classification of unrelated image pairs derives from nature of
our rules, which were chosen to identify differences in intensity and focus
between images, a common occurrence in unrelated images.

Overall the system is able to positively classify 90% of the registration
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Figure 7.3: Image pairs that were aligned using a method other than that
suggested by their main form of variation.

problems correctly. Removing unrelated image pairs from the set increases
the correct classification rate to 96%. 55% of the problems were correctly
classified with no alternative variation suggested and were solved using their
appropriate method. A further 32% selected the solution by the correspond-
ing method for their classification through normalized cross correlation. Fi-
nally, for the remaining 13% of image pairs, 71% of the solutions selected
by the system were lowest in all error spaces being considered, suggesting
that they represent a better alignment than that proposed by the ‘correct’
method. Figure 7.3 shows this set of images. Table 7.4 summarizes the
results of our system’s performance classifying the test set.

Ground Truth Classification Identified W No Alt After NCC

Spatial 100% 62% 76%
Intensity 100% 9% 81%
Focus 94% 78% 94%
Unrelated 38% 38% 38%

Total Related 98% 56% 87%

Table 7.4: Summary of the system’s classification rate.
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7.2 Learning-Based Classification

Having validated that it is possible to classify image registration pairs purely
based on features extracted from the images, we now explore the concept of
classification in more depth using a more sophisticated learning based ap-
proach. In our second classification method support vector machines (SVMs)
are used to classify image pairs, determining whether a given pair is from a
panorama, a high-dynamic-range image, a focal stack, a super-resolution set,
or is unrelated. Using this approach we can determine the local volume of
the image registration problem space that the image pair is likely to be con-
tained within, making it possible to select an appropriate method of solution
using our interpreter. This approach is similar to that used in SATZilla [101]
which solves propositional satisfiability problems by analyzing the problem
to determine the best choice of algorithm for finding a solution.

In order to classify amongst the different categories of registration ap-
plication using SVMs a feature vector is needed which describes the image
pairs. In the case of image registration the variation between the images is
one of the most distinguishing features between types. We have evaluated
a wide range of features for this description and present them below in Sec-
tion 7.2.1. Many of the features examined are general representations of the
image as a whole, in the form of histograms or differences of histograms.
These representational features are less likely to be affected by the size of
the images and as such we have examined the effect of the size of images
used to calculate the feature vector on the classification rate of the system.
In addition we look at feature importance, evaluating which features are
best at distinguishing between the different classes of registration.

Support vector machines are a learning based approach and classify
based on a set of training data. A set of 1100 image pairs were created, man-
ually classified according to the type of registration, and used to train and
test the system. This set was used to train both one to many classification
of the registration problem domain, as well as one to one classification of in-
dividual registration problem types, i.e. is this pair likely from a panorama?
This one to one classification is useful for validating the performance of the
one to many classifier which should see similar results. The set of image
pairs used to train the system is made available online [92] for researchers
who wish to improve upon these results.
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7.2.1 Classification of Image Registration Problems Using
Support Vector Machines

Support Vector Machines (SVMs) are a supervised learning technique simi-
lar to neural networks, which can be used for classification. SVMs work by
projecting a description of the element to be classified, known as a feature
vector, into a higher dimensional data space where the different classes be-
come linearly separable. LibSVM [17] and the accompanying scripts were
used to find the appropriate SVM parameters for our problem, normalize
the feature vectors, train the classification models, test the models, cross
validate the results, and explore the relevance of features from our feature
vector. We utilize the recommended Radial Basis Function (RBF) based
kernel, and linearly scale our feature vector data to [-1,1]. A grid search of
the two RBF parameters C and γ was performed to find the best settings
for our problem independently for each classifier. To prevent over-fitting a
five-fold cross-validation scheme was utilized. This method breaks the test
set into five equal subsets, testing each subset on a classifier trained from
the other four subsets.

The development of a feature vector that appropriately describes the
different aspects of the image pairs to be classified is a critical part of the
system. In order to classify image registration we have developed a fea-
ture vector to describe both the images themselves, as well as the variation
between the image pairs.

Additionally, to train and test the system a significant dataset of image
pairs is needed. We have created a set consisting of 1100 image pairs, rep-
resenting the five classifications of: panorama, high-dynamic-range image,
focal stack, super-resolution image, and finally unrelated images. The set is
made available to other researchers on our website [92] in order to allow for
direct comparison when improving upon our classification results.

Feature Vector

The description of the image pairs by the feature vector is critical in the
system’s ability to classify. In order to ensure that the SVM has enough
information about the pair to correctly classify it we include information
about each image, measures of the global relationships between aspects of
the image pair, and also local relationship (pixel-wise) between these aspects.
In Section 7.2.2 we examine the importance of each feature in our feature
vector.

This feature vector is an extension of the one proposed in Section 7.1. For
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each image pair in our rule based system we calculate the average intensity,
hue, and saturation of the image. The power of each image, which serves
as a measure of how in-focus the image is, is calculated by applying a 5×5
Laplace filter to detect edges, squaring the result, and normalizing across
the entire image. Finally the number of SIFT features in each image is
calculated.

As we saw in Section 7.1 these differences between images provides us
with significant insight regarding which category a pair belongs to. Ad-
ditional information could also prove useful in determining what type of
image registration problem the pair relates to. Rather than simply take the
difference between average values we compare the overlap of the images’
histograms, both globally and locally. Intensity and Power histograms are
calculated using 64 bins, and their overlap is calculated as the of intersection
between the two dense histograms. Our joint two dimensional Hue / Satu-
ration histogram has 30×32 bins and is compared similarly. The number of
matched SIFT features, as well as the number matched per pixel is calcu-
lated for the vector. In [61], Brown uses the number of matched features as
a basis for selecting the next image to combine into a panorama, performing
a similar classification, motivating this inclusion. In addition the centroid
of the matched features is calculated for each image.

Finally, to make local image comparisons we divide the images into nine
equal regions, comparing the overlap of local intensity histograms for each
section of the image. Table 7.5 demonstrates the complete feature vector,
and provides example values for a pair of panorama images and a pair of
high-dynamic-range images.

Data Set

To train and test the SVM a set of image pairs which are representative of
each of our classes under various conditions possible is necessary. In our
creation of this test set we have attempted to include image pairs taken in
different lighting conditions and settings so as not to unwittingly bias the
learning system. Photographs were taken in pairs, with a specific single
application in mind, and categorized accordingly. Images were scaled from
3008×2000 pixels to our base size of 1504×1000 pixels in size in order to
accommodate memory limitations of our SIFT feature implementation. As
we will see in Section 7.2.2, which looks at the feature vector’s invariance to
scale, this is unlikely to affect performance of the classification of full sized
images. 1100 pairs of images were taken in total, divided evenly amongst the
five possible groupings: 220 panorama pairs, 220 high-dynamic-range pairs,
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220 focal pairs, 220 super-resolution [10] pairs, and finally 220 ‘unrelated’
pairs. Unrelated pairs consist of images taken from within the same category,
for example both images are from a focal stack, and are distributed evenly
amongst the four application based categories.

The same set of image pairs was used both in the training of our one to
many classifier, which labels across all classes, and our one to one classifiers,
which attempt to classify whether an image is a part of a given class or not
using all other classes as negative training cases.

7.2.2 Evaluation

As mentioned in Section 7.2.1 we have trained and tested our SVM using
five-fold cross validation in order to prevent overfitting of our data set. The
one to many classification rate of the system for full sized images is 91.18%.
This rate of classification makes the automation of image registration tools
feasible, and would allow photographers to reliably group sets of photos
automatically by type and apply an appropriate registration algorithm.

The one to one classifiers were similarly trained and provide a point of
comparison to the one to many classifier. Classification rates for our one to
one classifiers are as follows: Panorama image pairs are classified at 93.15%,
high-dynamic-range pairs at 97.56%, focal stack pairs at 95.68%, super-
resolution pairs at 99.25%, and finally unrelated image pairs at 95.79%.
Table 7.6 summarizes these classification rates.

Feature Importance

Examining the importance of the individual features with regards to classi-
fication provides insight into how the classifications are taking place. Chen
et al. [18] developed a measure of feature importance known as an ‘FScore’
which measures the discrimination of two sets of real numbers. Table 7.7
presents the FScores of our feature vector for our one to many classifier.

Using the FScore ranking as a basis, features with low FScores can be
removed from the system and the impact on classification measured, provid-
ing a basis for improvement of the speed of the system at a cost of accuracy.
With our complete feature vector we achieved a classification rate of 91.18%.
Reducing the number of features to: 30 results in a 90.90% classification rate,
15 results in a 90.52% classification rate, 7 results in 86.59% accuracy, and
finally using only the top 3 features results in 85.83% classification rate.
Figure 7.4 summarizes these results.

Also of interest is the top three features from each one to one classifier.
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Figure 7.4: Summary of classification rates based on reducing the number
of features in the feature vector. Classification rates of feature vectors of
the 32, 30, 15, 7, and 3 highest F-Score [18] features are shown.

These provide insight into how classification of each type of registration is
being performed. The top three features from each category are summarized
in Table 7.8. As expected the most important features in each class relate
directly to the common forms of variation that are indicative of that class.

Invariance to Scale

Computation time of the feature vector is exponentially (n2) related to the
size of the images from which it is calculated. Many of the elements in our
feature vector are global calculations such as histograms or averages which
are unlikely to be significantly affected by the size of the image. As such, we
have investigated the impact of image size on the classification rate of our
system. To test this feature vectors were generated from 1504 × 1000 pixel
images calculated at: 100%, 80%, 60%, 50%, 40%, 30%, 25%, 20%, 15%,
10%, 5%, 4%, 3%, and 2% scale, and a one to many classifier was trained
using 5-fold cross validation. As we see in Figure 7.5 classification remains
level at ˜91% until the image is scaled down to 10% of its original size (150
x 100 pixels). Decreasing the size of the images to 2% of their original size
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Figure 7.5: Degradation of classification as the size of the input pairs de-
creases. Classification remains level around 91% until the image is decreased
to 10% of its original size (150 x 100 pixels). Decreasing the size of the images
further to 2% of it original size (30 x 20 pixels) still results in a classification
rate of 79.7%

(30 x 20 pixels) results in a classification rate of 79.7%.
This decrease of image size, in combination with the selection of features

based on importance, begins to reduce the computation necessary for classi-
fication to the point where it becomes possible to do on-camera. On-camera
classification would allow photographers to automatically organize panora-
mas, high-dynamic-range images, focal stacks, and super-resolution images
as they are taken, significantly reducing the manual labor currently involved
in their creation.

Investigating feature importance at smaller scales we see that many fea-
tures are unaffected by the change in scale. The number of SIFT features,
both matched and total per image, is a notable exception: as image size
decreases the overall number of SIFT features and the number of matches
drops significantly, even for super-resolution or panorama images, partic-
ularly when images are smaller than 10%. Additionally the focus overlap
becomes much more important in distinguishing between classes, jumping
in importance from #10 to #3.
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7.3 Summary

In Chapter 7 we introduced two novel automatic registration systems that
attempt to automatically classify registration problems based on the varia-
tion between image pairs. A rule based system was validated using a test
set of 60 pre-classified image pairs verified by an independent user study of
photographers. The system was able to identify 98% of the related ground
truth pairs’ main form of variation. 55% of pairs were correctly identified by
a single form of variation allowing immediate selection of an algorithm. A
further 32% of pairs proposed transforms were correctly selected using nor-
malized cross correlation on the solution space of the proposed algorithms.
Visual inspection of the final 13% of pairs suggests that the alignments pro-
posed are superior to the ‘correct’ solution, however verification of this is
difficult without ground truth alignments.

A second rule based system for classification of image pairs according
to the category of registration they belong to was developed using support
vector machines. 1100 pairs of images was collected, divided evenly amongst
the five possible groupings: 220 Panorama pairs, 220 High-Dynamic-Range
pairs, 220 Focal pairs, 220 Super-Resolution pairs, and finally 220 ‘unrelated’
pairs, and is made available online to support future research [92].

A one to many classifier was trained which is able to classify between
panoramas, high-dynamic-range-images, focal stacks, super-resolution im-
ages, and unrelated image pairs with a 91.18% accuracy. One to one clas-
sifiers were also developed to classify each of the categories individually.
Classification rates for our one to one classifiers are as follows: Panorama
image pairs are classified at 93.15%, high-dynamic-range pairs at 97.56%,
focal stack pairs at 95.68%, super-resolution pairs at 99.25%, and finally
unrelated image pairs at 95.79%.

The importance of features was investigated and the one to many clas-
sification rate was measured for feature vectors of various size, taken from a
feature vector ordered by FScore. Classification was somewhat affected by
the reduction in features, and use of the full feature vector is recommended
for maximum accuracy.

Finally the invariance of the classification system towards the scale of
the image used to calculate the feature vector was explored. Feature vectors
were generated at: 100%, 80%, 60%, 50%, 40%, 30%, 25%, 20%, 15%, 10%,
5%, 4%, 3%, and 2% scale, and a one to many classifier was trained using
5-fold cross validation. The classification of our system remains level at
˜91% until the image is scaled to 10% of its original size (scaled to 150×100
pixels), suggesting that our feature vector is image size invariant within that
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range. Decreasing the size of the images to 2% of their original size (30×20
pixels) results in a classification rate of 79.7%.

Improvement of the classifier through the development of a system which
deals with sets of images, rather than image pairs, is left as future work.
Image sets of a particular class are often taken in sequence, allowing the
sequential use of our classifier to combine pairs into sets, however thought
must be put into the system to prevent classification errors from compound-
ing. This set based system would replace Brown’s “Recognizing Panoramas”
[61] providing a solution that is capable of “”Recognizing Panoramas, High-
Dynamic-Range Images, Focal Stacks, and Super-Resolution images.”

In addition, although our system focused on registration problems com-
mon to computational photography, extension into automatic registration
for medical imaging and remote sensing would greatly benefit researchers.
Such a system would require a greater degree of differentiation between
problem types and would likely rely more heavily on image metadata to
distinguish the variations between image pairs.

Finally, by combining our automatic detection of image registration
problem type with the interpreter from our model of image registration
we can accomplish the fully automatic solving of registration problems. Our
automated system begins to approach the idea of the ‘ultimate registration
method’ described by Zitová and Flusser at the end of their survey; a sys-
tem able to recognize the type of task and to decide by itself about the most
appropriate solution.
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Feature Panorama HDR

Intensity(1) 105.415 91.5064
Intensity(2) 109.824 177.419
Hue(1) 23.3616 39.0234
Hue(2) 23.656 46.2149
Saturation(1) 154.964 115.74
Saturation(2) 153.859 74.4806
Power(1) 73.6296 38.6469
Power(2) 80.5668 37.3
Num Features(1) 26403 4982
Num Features(2) 27092 5395
Num Features Per Pixel(1) 0.0175552 0.0033125
Num Features Per Pixel(2) 0.0180133 0.0035871
Intensity Overlap 0.966408 0.40814
Hue Saturation Overlap 0.963122 0.41148
Focus Overlap 0.0596722 0.0180572
Matched Features 4467 594
Matched Features Per Pixel 0.002970 3.94947e-4
Matched-Feat Centroid (1) (0.455,0.594) (0.481,0.419)
Matched-Feat Centroid (2) (0.487,0.548) (0.423,0.427)
Intensity Overlap UL 0.0598358 0.0178404
Intensity Overlap UM 0.0597852 0.0178797
Intensity Overlap UR 0.0599069 0.0179156
Intensity Overlap ML 0.0598524 0.0179641
Intensity Overlap MM 0.0597819 0.0179501
Intensity Overlap MR 0.059732 0.0179681
Intensity Overlap LL 0.0598517 0.018018
Intensity Overlap LM 0.0596769 0.0180459
Intensity Overlap LR 0.059611 0.0180106

Table 7.5: Example of the feature vector and its corresponding values for a
panorama image pair and a high-dynamic-range (HDR) image pair.
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Type Classification Rate

1:1 Panorama 93.15%
1:1 High-Dynamic-Range 97.56%
1:1 Focal Stack 95.68%
1:1 Super-Resolution 99.25%
1:1 Unrelated pairs 95.79%
1:Many Overall 91.18%

Table 7.6: Summary of classification rates for our one to many and one to
one classifiers.
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Ordered features FScore

Hue / Saturation Overlap 2.524745
Intensity Overlap 2.022537
Matched Features 1.269260
Matched Features Per Pixel 1.269115
Intensity Overlap UR 1.199512
Intensity Overlap UM 1.197718
Intensity Overlap UL 1.196403
Intensity Overlap LL 1.195831
Intensity Overlap MR 1.193893
Focus Overlap 1.193237
Intensity Overlap MM 1.192491
Intensity Overlap ML 1.190727
Intensity Overlap LR 1.189334
Intensity Overlap LM 1.187563
Power(1) 0.364715
Power(2) 0.352534
Num Features Per Pixel(1) 0.266387
Num Features(1) 0.260805
Num Features Per Pixel(2) 0.234179
Num Features(2) 0.229223
Intensity(1) 0.227655
Saturation(2) 0.170803
Hue(2) 0.126434
Hue(1) 0.121199
Intensity(2) 0.069913
Saturation(1) 0.066153
Matched-Feat Centroid (2 X) 0.060326
Matched-Feat Centroid (1 X) 0.042694
Matched-Feat Centroid (2 Y) 0.006689
Matched-Feat Centroid (1 Y) 0.002026

Table 7.7: Ordered list of feature importance and corresponding FScore
measure.
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Type # 1 Feature # 2 Feature # 3 Feature

1:1 Panorama Power(1) Power(2) Matched Features
1:1 High-Dynamic-Range Intensity Overlap Intensity (1) Intensity Overlap UR
1:1 Focal Stack Power(1) Power(2) Matched Features
1:1 Super-Resolution Matched Features Matched Features Per Pixel Intensity Overlap UR
1:1 Unrelated pairs Hue / Saturation Overlap Matched Features Matched Features Per Pixel

Table 7.8: Top three features of each one to one classifier. As expected the
most important features in each class relate directly to the common forms
of variation that are indicative of that class.
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Chapter 8

Towards a General
Descriptive Model of Vision

“A different language is a different vision of life.”

– Federico Fellini

In this chapter we extend the work on the creation of an interpretable
model of image registration, presenting a path towards a general approach
to problem-centric computer vision. This proposed model is called the Open
Vision Language (OpenVL). Our desire with OpenVL is to provide access
to sophisticated computer vision algorithms and problem spaces through
descriptions of the problem. It is designed to allow a programmer to specify
what it is they want to do, instead of how they want something done, provid-
ing a layer of abstraction above algorithmic details through the same means
by which algorithmic details have been abstracted away from the problem of
image registration. In addition to simplifying the developers implementation
of computer vision applications, the abstraction also allows for code reuse,
hardware acceleration, exploitation of advanced techniques and extensions
to the language or algorithms.

Building upon the method developed for image registration, the OpenVL
Framework consists of two components: models for describing vision prob-
lems, and a system for interpreting this description. We have explored these
concepts for the problem of image registration in Chapters 4 and 6. Sec-
tion 8.1 reexamines the conceptual elements of the language that allow more
general vision problems to be described. These include the definition, rep-
resentation, conditions, and finally expression of vision problems. We also
explore how the conditions of vision problem, limitations on the solution, ex-
pectations and requirements, mechanisms for describing points and volumes
in problem space, the properties of the image, and finally models, are used

167



8.1. The Open Vision Language

to describe more complex problems. New concepts relating to the interpre-
tation of the language are investigated in Section 8.2. The flexibility of the
language allows for many possible methods of interpretation beyond those
explored in Chapter 6, each with their own advantages and disadvantages.

8.1 The Open Vision Language

The Open Vision Language is a vernacular for describing computer vision
problems. Unlike current vision libraries which provide only functionality
in the form of specific algorithms, OpenVL provides a layer of abstraction
that allows developers to use and combine these algorithms automatically
based on the context of their problem.

In order to accomplish this automation, the description of the vision
problem must be sufficiently detailed so that this context can be inferred.
This section outlines in broad terms the concepts that must be covered in
order to create a complete description of vision problems in general. In the
preceding chapters we explored these concepts in detail as they applied to
the task of image registration.

The fundamental units of description within the Open Vision Language
are models, which are used to describe vision problems. Detailed in Chapters
3, 4, and 6 for the problem of image registration, the creation of an inter-
pretable model for a given problem space is a significant undertaking. As
we saw through our creation of an interpretable model of image registration
however, these concepts combine to create the vocabulary through which
vision problems can be more easily described by users inexperienced in vi-
sion. In this chapter we explore the generalization of this process, moving
towards the creation of the OpenVL language.

Returning to Chapter 4 we see that the model of image registration is
composed of four layers: Definition, Representation, Conditions, and finally
Expression. A definition of our general model of computer vision is presented
in Appendix B

8.1.1 Representation of Vision Problems

In order to know what type of problem is being solved, the desired solution
must be specified. Even for a problem as specific as image registration, a
number of possible transform types exist. Certain tradeoffs in dimensionality
of the solution space allow less computationally intense algorithms to be
selected: For example if the error in image registration is known to be based
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Number of Faces
Location.X Location of the face in X, proportional to the image
Location.Y Location of the face in Y, proportional to the image
Location.Z Location of the face in Z, distance from camera in m

Table 8.1: Representation of the face detection problem space.

on x/y translation alone a much simpler and faster search can be performed
along those two dimensions.

The representation of vision problems is problem dependant: the mod-
els or properties which make up the solution space of vision problems are
determined by the problem itself. Some variation can exist within a field,
such as whether face detection returns an (x,y) point in the image plane, or
an estimation of the (x,y,z) coordinates, the sex of the subject, and whether
they are smiling or not, however, and researchers must take care when de-
veloping a representation that they are not making implicit assumptions
based on their usage or experience. This area has been explored in detail
for image registration, and is left as future work for other researchers as
individual problem areas are explored. For more complex problems such as
object recognition the possible representations of the desired solution, both
in the form of the object to be recognized and in the format of the solution,
are even more diverse.

Specification of the limitations or restrictions that a developer has on
the solution space is important as well. This information could potentially
be useful in the selection of algorithms. It is also extremely important if
constraint based algorithms algorithms are available. They can also help
guide the selection of a solution in the instance where multiple solutions
have been produced.

As an example of an alternate representation of a computer vision prob-
lem we present here our adaptation of a representation of face detection
developed by Dr. Daesik Jang in conjunction with the author, Dr. Gre-
gor Miller, and Dr. Sidney Fels. Our representation, presented in Table
8.1, allows developers to specify the type and range of solution they expect
from the face detection algorithm and researchers to specify the range of the
problem space which their algorithms are capable of solving.
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8.1.2 Conditions of Vision Problems

The important pre existing conditions surrounding the problem must be
specified by the developer in order to differentiate where their problem ex-
ists in n-D problem space. The design of these conditions is a critical process
in the integration of any vision task into OpenVL. Understanding which con-
ditions of the problem are important in the performance of a given algorithm
is the responsibility of vision researchers who are experts in their field. By
identifying these factors and allowing the developer to specify them they en-
able the use of sophisticated context specific algorithms to developers who
would otherwise not have access because they lack expert knowledge of these
methods. As an example, the conditions of a face detection problem might
include the amount of occlusion expected in the images, allowing the system
to determine whether or not occlusion invariant techniques will be required
to detect faces.

As we saw in Section 4.2 when we explored the conditions related to
image registration, these are often derived from and seem specific to the
particular vision task being solved, however this can stem from an implicit
assumption that these conditions do not exist in any other vision tasks. If
the task in the above example were changed to object tracking then ideally
the system will select an algorithm capable of tracking in spite of occlusion.
While many of these problem spaces created by the intersection of differ-
ent problem conditions are unlikely, examining vision in this manner does
lead to some interesting new research opportunities when these assumptions
aren’t always true. More importantly it forces developers to think about
any assumptions they might be making by identifying the conditions of the
problem which affect the solution.

Table 8.2 presents the conditions drawn from the image registration
model, all of which are applicable to vision problems in general. Recall
that absolute conditions relate to a single image, while relative conditions
can be thought of as relating between the image and the model used in the
vision problem. Vision problems make the implicit assumption that none
of these conditions vary between the image and model, however this is not
always the case. Knowing if these conditions occur or not can lead to a
better solution as different algorithms are likely to be more or less invariant
across the different dimensions of the problem space that these conditions
represent. The explicit specification of these conditions can also identify
areas of future research where algorithms which work well under them need
to be developed.

We present a prototype model for the conditions of the problem of face
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Condition

Corrected Distortions
Translation
Rotation
Scale
Skew
Camera Extrinsics
Overlap

Uncorrected Distortions
Relative luminance
Focal Depth
Scene Lighting
Camera Intrinsics

Variations of Interest
Object Models
Object Motion

Table 8.2: Conditions of the image registration problem space that generalize
to all vision problems.

registration in Table 8.3. Knowing these conditions allows for the selection
of algorithms which are most appropriate, but does not change the solution
space of face detection. For example if occlusion is known to be present a face
detection algorithm which is occlusion invariant can be selected. Similarly
if the developer is attempting to detect faces which are posed to face to
the side, away from the camera, specific algorithms which are capable of
detecting those poses can be selected.

Size of Face Minimum and maximum size of face
Pose Relative to camera-face pose
In-place Rotation Rotation of the image
Occlusion of Face Partial occlusion by other objects
Facial Conditions Facial expression, age and gender
Imaging Conditions Color, Illumination and so on

Table 8.3: Conditions of the face detection problem space.
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8.1.3 Expressing Vision Problems

The solving of known vision problems by researchers with expert knowledge
in the field is done on the basis of two main points. First, knowledge of
the important input conditions of the problem is used to select an appropri-
ate algorithm, since the conditions under which the problem is being solved
significantly affects algorithm performance. Second, the representation of
the desired solution helps determine exactly what type of problem is being
solved. This aids not only in the selection of algorithms well suited to spe-
cific solution spaces, but also helps to set parameters within those spaces.
In addition, any limitations on the solution space are similarly used to guide
in the selection of an appropriate algorithm, and possibly also of an appro-
priate solution. Mimicking the process used by vision researchers, OpenVL
relies on the same concepts in its interpretation of the developers problem
description. This process of model expression and interpretation was initial
developed for image registration in Chapters 4 and 6.

The representation and conditions surrounding a particular problem
combine in a model which allows for the expression of the problem. In
order to facilitate expression we have developed a number of key concepts,
which were explored in Chapter 4. Expectations and requirements allow for
the specification of expected and required representations and conditions.
Properties allow for the expression of points, ranges, and volumes within
the problem and solution space. Belief allows for the probabilistic weighting
of properties. Finally models combine these concepts to allow for the spec-
ification of vision problems. These concepts hopefully will help researchers
wishing to generalize their own problem domains as we strive towards a
model of all of computer vision.

Models

Re-examining the concept of ‘model,’ we see that it varies significantly across
problem domains. The application domain within this thesis, registration,
does not require complex models, relying entirely on properties in order
to represent the registration problem. The development of more complex
models is explored briefly below and is a significant part of OpenVL, however
a deep exploration of this concept is beyond the context of this thesis.

When a programmer wishes to specify that they require detection of
“red” objects, a mechanism is required to let them describe what they mean
by “red”, at differing levels of complexity. At one end of the spectrum “red”
could be the vector (1, 0, 0) meaning a 100% red, 0% green and 0% blue mix-
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ture of light, while at the other end it could be a complex gaussian mixture
model specifying a multimodal probability density function of color com-
ponents. Between these extremes could, for example, be distances around
individual components in a Euclidean RGB space. Examples of other model
specifications are shown in Table 8.4.

General language models that allow for the description of objects for the
purpose of object detection or recognition may be difficult to fully achieve as
ambiguities exist in the higher level language concepts that are desirable to
use. While they can work for simple cases, the description of a complex scene
is not yet feasible as we saw in our attempts to describe ‘red’ objects above.
Once developed, however, such a language could become a sort of inverse to
computer graphics, allowing developers to leverage tools and techniques in
the computer graphics community to describe the objects or environments
that are a part of their model.

An alternative approach would be to allow application developers to de-
scribe the dimension along which they are concerned, and to provide exam-
ples that meet their criteria within that context. In that scenario a developer
trying to detect red balls would specify ‘shape’ and ‘colour’ as important
dimensions, and then would provide examples of red balls under various
conditions. This learning based approach, however requires the developer
build a training set, which is a challenging task to do properly.

Problem specific models are more feasible to develop. Returning to our
example of face detection, Table 8.5 below outlines the properties of the ini-
tial face detection model, and provides an example problem representation.
Although the complexity of the problem space is higher than with image
registration, the basic principles and techniques developed within this thesis
have been utilized to create a similar model and problem centric mapping.

8.2 The OpenVL Language Interpreter

Chapter 6 presented a proof of concept interpreter capable of interpret-
ing image registration models and selecting an appropriate algorithm. Due
to the rich representation of expectations and requirements possible under
our system, we anticipate a wide range of approaches for interpreting the
context, ranging from simple case-based statements to highly sophisticated
expert systems, probabilistic methods, and machine learning approaches. Of
critical importance from the perspective of OpenVL as a language is that the
choice of interpreter and vision algorithms are left to the discretion of the
OpenVL vendor, allowing optimization, hardware acceleration, algorithm

173



8.2. The OpenVL Language Interpreter

Model Describes Example Relationship
Abs Rel Dep

Appearance Model of image
region

Color, textures, templates X

Color PDF models of
color regions

RGB space, Euclidean color re-
gions, Gaussian mixture models,
histograms

X

Depth Specification of
depth

Distance from viewpoint X X

Difference Metric space Entropy, Euclidean, Ln norm X
Focus Focal properties Degree of focus, point spread

function
X X

Geometry Coordinate sys-
tem, vertices

Euclidean and polar coordinates,
rectified space, reference frames,
clipping

X

Lighting Lighting models Specular, ambient, diffuse, emis-
sive

X

Motion Transformations
over time

Shape translation over time X

Regions Enclosed areas
of images

Shapes associated with image
patches

X X

Set Set descriptions
between regions

Intersection, union, subset of
property models, i.e. focus, color,
light, etc.

X

Shape Polygonal areas Triangles, circles, polygons, el-
lipses

X X

Transform Mapping be-
tween spaces

Affine transforms, non-linear
warps

X

Table 8.4: OpenVL Models: Illustrative examples (in alphabetical or-
der) of model types for different context parameters used by blocks in the
OpenVL state machine. Models can be defined: on a single image (Abso-
lute), with respect to another (Relative), or dependent on relative properties
between two images (Relative-Dependent). Models vary from from simple,
such as RGB values for Color, to complex such as probability density func-
tions (PDF) to support a large range of expression for expert and novices
programmers.
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Condition Representation Example

Size of Face proportional to image width 0.075 - 0.5
Pose Angles of roll, pitch and yaw -15 - 15 degrees yaw
In-place Rotation Angles of rotated image -45 - 45 degrees
Occlusion of Face Proportion of occlusion 0.2 (20%)
Facial Conditions Labels for gender and age F, 10-25
Imaging Conditions Illumination and Color 10 lux

Table 8.5: The expression of face detection as a model.

evolution and tailored solutions by vision experts. One of the main advan-
tages of OpenVL is that it does not prescribe any particular implementation
to solve the requirements specified by application programmers. Thus, as
hardware and software evolve, applications can immediately take advantage
of them without the need to recode, or even recompile, much like computer
graphics applications do not need to be recompiled when new graphics cards
are developed.

We anticipate different groups will choose different interpretation meth-
ods. For example, one group may focus on rule based interpretation, using
fast, hardware accelerated, efficient algorithms for registration, matching
and decomposition that may not always perform well, but provide real-time
analysis. For the other blocks in the machine which are less important to
their target application, they may use software solutions. Likewise, a sep-
arate group concerned with very low errors for a wide range of registration
problems may implement a variety of registration algorithms to provide an
ensemble solution for that block using learning methods trained on a large
data set of registration problems that allows them to accurately select one
or more algorithms. Further, they may use the same approach for the other
blocks as well.

Our intention within the context of this thesis is to provide an outline of
the possible methods of interpretation, supplemented by an implementation
of a simple proof of concept system seen in Chapter 6. By proving that it is
possible to infer the problem from the developers description using OpenVL
we provide a basis from which further research into the best method of
interpretation can be explored.
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8.2.1 Performance Evaluation Based (Direct)
Interpretation

Problems for which measurable testbenches can be created allow for a direct
mapping of their algorithms’ performance. As we saw in Chapter 5 each
of the image registration algorithms tested were directly evaluated under
a variety of conditions, allowing for an inference of how well they should
perform on similar problems should perform. The creation of a ground truth
test set which covers a broad range of the entire image registration problem
space was a significant undertaking and is not possible in all domains.

The expression of the image registration problem by a developer is either
a point or a volume within the image registration problem space. In the
case of a point a nearest neighbor or small volume about the point can be
used, referring to the closest evaluated point in terms of problem conditions.
Once the appropriate algorithms have been selected the system is capable of
executing multiple algorithms and comparing their results. For volumes an
averaging method is used, evaluating all points in the problem space that
fit within that volume and averaging the algorithmic performance within
the volume. Algorithms are then chosen based on the mean and standard
deviation under the problem conditions. Selection based on the median of
results within the volume may also be appropriate.

This method of interpretation allows for the best algorithm from similar
situations to be used. Unfortunately as we saw the standard deviation of
our alignment error is in some algorithms significant, bringing to question
whether such a method of interpretation truly selects the best algorithm.
Additionally, it is not always possible or feasible to develop testbenches for
an entire problem space.

8.2.2 Rule Based and Learning Based Interpretation

The interpretation of which algorithm to use for a given problem can also be
thought of as a classification problem, using the rich representation of ex-
pected and required representation and conditions possible under our system
as a feature vector. The classification can either be one to one, with each
algorithm independently determining whether it is able to solve the given
problem, or multi-label classification, with one clear algorithm selected as
the one that can best solve this problem. The classification can also be
binary or can return a value. If one to one or non-binary classification are
used then a second layer of logic is required to select either a single algorithm
from amongst several candidates, or a single solution.
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Deterministic methods, such as rule based expert systems, probabilistic
methods, such as Bayesian systems, and learning methods, such as neural
networks, support vector machines or case based reasoning systems, are
all viable options for interpreting which vision algorithms to run. Learn-
ing methods are of particular interest since they could calculate algorithm
performance estimates based on actual algorithm performance from our test-
bench, a technique likely to be more accurate than researchers own heuristic
estimates.

Rule Based Methods

A rule based mapping of algorithmic performance within the image reg-
istration problem space could have been estimated, with each algorithm
expressed as a volume or series of volumes within the image registration
problem space using the model outlined Chapter 4. Where possible we en-
vision researchers using a test set which covers a wide range of problems
within their field, allowing for a direct mapping of their algorithms’ perfor-
mance, however as we saw in Chapter 5 the creation of a ground truth test
set which covers an entire problem space is a significant undertaking and is
not always possible for a given problem. This rule based method relies on
the expert knowledge of researchers, who understand their algorithm well
enough to be able to estimate where it will perform well, and where it is
likely to fail to find a solution.

The expression of the image registration problem by a developer is either
a point or a volume within the problem space. Algorithms whose volumes
encompass or overlap these points or volumes are considered to be viable
choices for finding a solution. Once the appropriate algorithms have been se-
lected the system is capable of executing multiple algorithms and comparing
their results.

Of particular importance in the estimation of these volumes is the map-
ping of the solution space, where multiple properties define the same solution
space. If these representation properties are defined as ranges, then consid-
eration of the combination of properties into all possible volumes within the
solution space is necessary.

Probabilistic Methods

A series of inference rules can be established by specialists on a problem by
problem basis that characterize the criteria of the input state representation
that each candidate algorithm meets. Each algorithm returning an estimate
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(from 0 to 1.0) of how well it will perform based on the description of the
problem. A similar implementation based on joint probabilities that takes
likelihood into account could be used to implement a bayesian selection
system.

Both rule and Bayesian based methods require a vision expert to spec-
ify exactly how different state representations affect the quality of candi-
date algorithms, mapping out the performance of every algorithm in the
n-dimensional problem space. In these situations we rely on the vision re-
searcher integrating the algorithm to implement a function that takes the
description of the problem and returns this estimate of performance. Un-
fortunately this type of self evaluation can lead to ties as comparative per-
formance of algorithms is difficult to quantify without a testbench. This is
particularly true when the estimation of different algorithms are not being
done by the same vision experts. Other interpretation methods are unlikely
to suffer from the same lack of discrimination in performance.

Learning Methods

The classification of algorithm based on learning methods is also possible.
A neural network [35], support vector machine[17], or case based reasoning
system [77] could be used to select which algorithm will perform best, either
using example cases specified by experts to train the system to classify input
state representations that fit each algorithm, or using the results from our
testbench. This somewhat simplifies the requirements of specialists who wish
to add new algorithms without understanding and modifying the existing
system. Learning methods simply require a set of problem descriptions
that accurately describes the conditions under which an algorithm performs
well. This training set can be used to teach the system to make similar
classifications when new descriptions are provided. Again this process relies
on the vision researcher’s ability to describe the conditions under which
their algorithm performs well, and we suspect that the creation of a robust
training set will require significant effort.

Finally, if normalized metrics are available to measure how well each al-
gorithm has performed the vision task, then the learning based methods can
be trained based on actual results. In this approach a series of test images,
along with their corresponding state representation, are evaluated, either in-
dividually (one to one) or across all algorithms simultaneously (multi-label).
This would allow OpenVL to make better algorithmic selections in cases
where algorithms solve similar problems, and would be particularly useful
in the evaluation of new algorithms. Assuming that a set of training data is
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available that is representative of the problem domain, the algorithm can be
automatically integrated into the system and used appropriately, possibly
even utilizing unsupervised learning techniques to continue to improve its
selection after initial training is complete. Unfortunately normalized metrics
that are invariant to all possible conditions of the problem are rare.

8.2.3 Dealing with Multiple Candidate Algorithms

In our proof-of-concept example discussed in Chapter 6 we demonstrate the
interpretation of registration. Our interpreter uses five registration algo-
rithms that are combined and configured differently depending upon the
context. For each of our registration algorithms we directly evaluate how
well the algorithm will perform under the conditions described in the con-
text, performing a value based one to one classification.

With this classification we can either select whichever is indicated as the
best choice, run all candidate algorithms that exceed a certain threshold such
as mean plus variance and pick the best result, selecting from amongst the
algorithms, or run all candidate algorithms that exceed a certain threshold
and select from amongst their solutions. It is also possible to combine the
results, however only makes sense in specific problem domains. Selecting
from amongst several solutions requires a normalized metric to measure
how well the algorithm has performed the vision task.

In our proof of concept system, if an algorithm is deemed appropriate for
the current data then it will be executed with the values and data specified
by the application through the context. Each registration algorithm returns
a solution within the requirements specified by the application, unless none
fit in which case it returns failure.

As discussed in Chapter 6, because these algorithms may have different
error spaces, each algorithm’s performance must be normalized. This can be
done by calculating the registration error of each transform on all candidate
algorithms.

8.2.4 Adding New Algorithms to the Interpreter

The addition of new algorithms to the OpenVL interpreter can be a signifi-
cant process, depending on the type of interpreter. Creators of interpreters
should be aware of the issues that algorithm developers will face when adding
new algorithms. Below we explore the method of adding new algorithms for
each of the interpreters described.
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Deterministic Methods

New algorithms can be easily integrated into deterministic methods, assum-
ing a testbench for the field has been established across the problem space.
By evaluating the new algorithm directly at each point its performance can
be determined, and it can be selected immediately by a deterministic inter-
preter if it outperforms the existing algorithms. This is one of the significant
advantages of deterministic methods.

Rule Based and Probabilistic Methods

Adding new algorithms to either of these systems can be a complex process,
requiring a vision expert to estimate the performance of the new algorithm
across the entire n-dimensional problem space. This is fortunately not as
complex as it initially seems as the majority of algorithms, at least in the
case of image registration, are designed to work under a specific set of input
conditions, and are often assumed to perform poorly if those conditions are
not met. This assumption is not always true and a more robust method
directly tied to the performance of each algorithm across the entire problem
space is desirable. Deterministic and probabilistic methods do however have
the advantage that the knowledge embedded within the system is clearly
defined and is more understandable.

Learning Methods

The addition of algorithms to learning based methods requires a series of
models which cover the dimensions of the n-dimensional problem space that
the algorithm is capable of solving. A one to one classifier can then be
trained to detect when these or similar conditions arise. A one to many
classifier can also be trained by combining the data from all algorithms,
although its accuracy at classifying is likely to be limited if algorithms do
not have some sort of accurate performance estimate beyond whether it
‘works’ or not. As with rule based and probabilistic methods this method
relies on the algorithm developer to accurately describe the conditions and
representations where their algorithm performs well, which they may not
necessarily know beyond.

8.3 Summary

In this chapter we have extented the model of image registration introduced
in Chapter 4, providing a framework for developing models of other com-
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puter vision problems. A second computer vision problem space of face
detection was presented and a basic representation, conditions, and expres-
sion were shown to demonstrate how the process used in the creation of a
model for image registration can be used in other computer vision fields.
In addition, a variety of interpreters were proposed, and the implications of
using these interpretation types was explored, guiding researchers who wish
to create their own OpenVL interpreter, whether for image registration or
for a problem domain of their own. It is our hope that researchers in other
fields will follow the approach presented in this thesis and create models of
their own problem domains, growing the body of computer vision domains
that OpenVL covers.
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Chapter 9

Conclusion and Future Work

“The obscure we see eventually, the completely apparent takes
longer.”

– Edward R. Murrow

Computer Vision is the study of how computers and machines see and
understand the world. This ‘understanding’ is achieved by creating models
or representations of a scene, however as we saw in Chapter 2 under the
current framework sophisticated expert knowledge is required to understand
and properly utilize the internal models used in order to effectively make use
of these algorithms. Researchers must understand the vision task and the
conditions surrounding their problem, and only through significant research
efforts select an appropriate algorithm which will solve the problem most
effectively under these constraints.

Within this thesis we have presented a new taxonomy for image registra-
tion based on this same understanding of the vision task and the conditions
surrounding the problem, with our model of the problem space providing an
abstraction layer over image registration algorithms. This style of problem
centric computer vision allows programmers who are not vision researchers
to access advanced image processing techniques without requiring specific
knowledge of the underlying algorithms that implement them. It also allows
improved algorithms to seamlessly replace older implementations, including
graphics or potentially vision card based implementations, providing pro-
grammers using a problem centric software library with an instantaneous
upgrade path without reprogramming or integrating a new implementation.

Vision researchers who develop algorithms also see significant benefits
to the widespread understanding of this knowledge. First, they can iden-
tify and represent the problem conditions under which their algorithms are
being evaluated, allowing for much more robust comparison of algorithms.
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The existence of a problem space which models all of the possible conditions
under which a vision task may be performed allows for the creation of test
sets which span well defined problem conditions providing a more direct
comparison of performance. Second, researchers can evaluate the conditions
under which their algorithms perform well, providing a deeper understand-
ing of performance and potentially providing insights into how it may be
improved. Third, by examining the problem space and the existing algo-
rithms that support it researchers can identify niches within the problem
space which are useful but do not have solutions. Finally, the description
of the vision problem itself is represented in such a way that non-vision
experts can understand making the algorithms much more accessible and
usable outside of the vision research community.

Extending beyond image registration, our proposed general framework
of vision is designed to make all vision tasks more accessible to developers
by providing a model of vision which allows for the description of what the
developer wants to achieve without requiring the specification of how the
problem is solved. In order to provide this accessibility a common model for
the significant conditions surrounding a given vision problem must be es-
tablished, and the representation of the solution space must be well defined.
This is a difficult task and requires an in depth understanding of the field,
however once established,

Reorganizing computer vision in this way requires a deep understanding
of individual vision problems. In this thesis we have focused on image reg-
istration problems, providing a starting point for our proposed descriptive
language model of vision, OpenVL. Image registration was chosen because
it is a mature problem with a wide range of solutions that work well under
specific conditions. This exploration provides a pathway for further devel-
opment of our language through expansion into other areas of vision.

9.1 Contributions

To summarize, the contributions of this thesis are as follows:

• First, an up-to-date survey of image registration techniques was carried
out using an existing taxonomy of image registration.

• From this initial mapping a new taxonomy was developed and existing
techniques were again mapped according to the new taxa.

• A model of the image registration problem space was developed based
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on this taxonomy, allowing vision researchers and non experts to de-
scribe image registration problems in a well defined manner.

• A testbench was developed for the image registration problem space,
and several image registration methods were evaluated. The impact
of each testbench parameter on the alignment error and success ratio
of the algorithms were also determined.

• A proof of concept method of interpretation was developed which al-
lows for the selection of appropriate algorithm(s) based on a given
problem space description.

• Two methods of automatic detection of common types of image reg-
istration problems were developed, allowing for the automatic classifi-
cation of image registration problems.

• Finally, the methodology used to create model for image registration
was extrapolated providing a starting point for a general model of
computer vision.

We review each of those in detail below, before touching on future work.
Publications related to this thesis include: [40, 64, 65, 72, 73, 90]

An up to date Survey of Image Registration Techniques

Chapter 2 provides a literature review of both image registration techniques
and of computer vision libraries and frameworks. Image registration tech-
niques are presented under the traditional algorithm centric taxonomy, and
the limitations of current methods of evaluation are discussed, motivating
the development of our novel taxonomy, model, and testbench. Existing
and past vision libraries and frameworks are also examined in detail and
contrasted with the proposed problem-centric methodology.

A New Taxonomy of Image Registration

In Chapter 3 we developed a mapping of the image registration problem
domain which focuses on the types of variation that occur between images
to be registered. These forms of variation are presented as dimensions of
the image registration problem, providing an abstraction which allows us to
think of algorithms as supporting volumes within the n-dimensional prob-
lem space. Existing algorithms have been introduced into this mapping
according to the different forms of variation that they have been designed

184



9.1. Contributions

to support, including instances where algorithms support forms of varia-
tion beyond those they are traditionally used for. The reorganization of
image registration into our problem-centric taxonomy provided a basis for
the development of a model of image registration.

A Model of Image Registration

Using the new variation centric taxonomy of image registration, Chapter 4
created a model allowing for the specification of image registration problems.
In Appendix A we provided a formal definition of image registration and ex-
tend this definition into the applied domain. In Section 4.1 we explored the
representation of the inputs and outputs used in the problem of image reg-
istration, allowing developers and researchers to specify the type of solution
that they are expecting. Section 4.2 explored the different conditions of the
problem of image representation, presented as forms of variation. Section
4.3 introduced the necessary concepts and types used in our model, and pro-
vided a mapping of the representations and conditions of registration into
a formal model through which image registration can be expressed. Finally
Section 4.4 demonstrated several common image registration problems un-
der our model. These layers represent our framework of accessible computer
vision.

A Testbench for Image Registration

In Chapter 5 a method for creating image registration testbenches was de-
tailed, which uses synthetic variations and a ground truth transform to cre-
ate image registration pairs with known transform and image parameters.
Three testbenches of 5K image pairs were created, each of which covers a
range of problems with a common form of variation. No variation, exposure
variation, and focus variation regions of the image registration problem space
were tested in addition to variations in image size, exposure, and transform
parameters.

Our testbench tests four algorithms that cover a variety of registration
methods: a gradient descent intensity-based method [70]; a modification of a
median-based method [100] that performs gradient descent on binary maps
of the images’ median values; a mutual-information-based method [60]; and
finally a SIFT feature-based method [61] which uses RANSAC [28] to solve
for alignment. Although we eventually plan to add more, these methods are
sufficient to validate the testbench.

Analysis of variance was used to measure the effect of each of the test pa-
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rameters on the alignment error of the algorithms tested, while a χ2 method
was used to measure the effect on success ratio. From this initial investiga-
tion several significant parameters were identified, and their impact within
these areas of the problem space was directly explored. The results of the
testbench were somewhat surprising. The range of the image registration
problem space the our SIFT feature based implementation was able to cover
was much greater than expected. Although its performance breaks down in
a number of regions it is much more capable of dealing with variation than
expected. The other algorithms tested did not perform as well as expected,
possibly due to difficulties of the gradient descent algorithm at solving the
six dimensional affine transform. Still, for a number of areas within the
image registration problem space the Lucas Kanade based method proved
superior. This testbench provides a basis from which the limitations due
to transform parameters, image size, overlap, exposure variation, and focus
variation of other algorithms can be explored.

Automatic Classification

In Chapter 7 we introduced two novel automatic registration systems that
attempt to automatically classify registration problems based on the varia-
tion between image pairs. A rule based system was validated using a test
set of 60 pre-classified image pairs verified by an independent user study of
photographers. The system was able to identify 98% of the related ground
truth pairs’ main form of variation. 55% of pairs were correctly identified by
a single form of variation allowing immediate selection of an algorithm. A
further 32% of pairs proposed transforms were correctly selected using nor-
malized cross correlation on the solution space of the proposed algorithms.
Visual inspection of the final 13% of pairs suggests that the alignments pro-
posed are superior to the ‘correct’ solution, however verification of this is
difficult without ground truth alignments.

A second learning-based system for classification of image pairs according
to the category of registration they belong to was developed using support
vector machines. 1100 pairs of images was collected, divided evenly amongst
the five possible groupings: panorama, high-dynamic-range, focal, super-
resolution, and finally ‘unrelated.’

A one to many classifier was trained which is able to classify between
category with a 91.18% accuracy. One to one classifiers were also devel-
oped to classify each of the categories individually. Classification rates for
our one to one classifiers are as follows: Panorama image pairs are clas-
sified at 93.15%, high-dynamic-range pairs at 97.56%, focal stack pairs at
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95.68%, super-resolution pairs at 99.25%, and finally unrelated image pairs
at 95.79%.

The importance of features was investigated and the one to many clas-
sification rate was measured for feature vectors of various size, taken from a
feature vector ordered by FScore. Classification was somewhat affected by
the reduction in features, and use of at least seven features in the feature
vector is recommended for maximum accuracy.

Finally the invariance of the classification system towards the scale of the
image used to calculate the feature vector was explored. Feature vectors were
generated across different scales, one to many classification was performed
at each level. The classification remains level at ˜91% until the image is
scaled to 10% of its original size (scaled to 150 × 100 pixels), suggesting
that our feature vector is image size invariant within that range. Decreasing
the size of the images to 2% of their original size (30 x 20 pixels) results in
a classification rate of 79.7%.

Mapping our automatic detection of image registration problem type to
a volume within the image registration problem space which corresponds
with the example problem pairs used to create each category, we can use
our interpreter, introduced in Chapter 6 to automatically solve registra-
tion problems using the appropriate algorithm. This level of automation
begins to approach the ‘ultimate registration method’ described by Zitová
and Flusser; a system able to recognize the type of registration task and to
decide by itself about the most appropriate solution.

A General Model of Computer Vision

Finally, in Chapter 8 we generalized the model of image registration in-
troduced in Chapter 4 into a general model of computer vision. A second
computer vision problem space of face detection was presented and a basic
representation, conditions, and expression were shown to demonstrate how
the process used in the creation of a model for image registration can be
used in other computer vision fields. In addition, a variety of interpreters
were proposed, and the implications of using these interpretation types was
explored, guiding researchers who wish to create their own OpenVL in-
terpreter, whether for image registration or for a problem domain of their
own. It is our hope that researchers in other fields will follow the approach
presented in this thesis and create models of their own problem domains,
growing the body of computer vision domains that OpenVL covers.

187



9.2. Future Work

9.2 Future Work

Image registration remains one of the most important tasks in computer
vision when combining information from various sources. Chapter 2 gave an
up to date survey of image registration techniques, building from previous
surveys [14, 80, 93, 103] using the existing framework of the field. The re-
organization of image registration into our variation-centric taxonomy, and
model derived from that reorganization highlighted several additional re-
search opportunities that could significantly advance the field.

Exploring the concept of the different types of variation common to im-
age registration, we found that rather than isolated problem spaces, these
variations represent different dimensions of a single problem space. Most im-
age registration methods are designed to work along a single main dimension,
however the combination of these is becoming more common, particularly in
sensor / structure combinations for multimodal non-rigid medical imaging.
Another notable multidimensional example is Schechner and Nayer’s HDR
panorama stitching method [87]. The examination of other combinations of
variation such as focus and structure, or exposure and sensor could prove in-
teresting, although many of these higher dimensional pairings are likely best
solved by examining the groups of images as a whole and choosing which
pairs to match using conventional methods, a topic not covered within this
thesis. Taking the concept of a standard model of image registration fur-
ther, we envision the creation of image registration methods which take our
model of image registration as input and adjust their parameters or even
their algorithm accordingly, actively using the knowledge of the problem to
aid in its solution.

We also saw how each registration algorithm can be represented as an
n-dimensional volume within this multidimensional space, outlining its util-
ity under various conditions. Such a representation, either specified by the
algorithms’ creator or derived through a testbench, gives researchers who
require registration as a part of their system a better sense of which al-
gorithms are likely to work under the conditions of their problem. The
testbench established in Chapter 5 provides a starting point for the un-
derstanding the impact that these conditions have on the performance of
different registration algorithms. In order to enable a deeper level of under-
standing a number of steps must be undertaken. First, synthetic variations
for each of the other dimensions of the problem space not covered by the
current testbench must be developed in order to allow for the creation of
image pairs with all forms of variation seen under our model. The investiga-
tion into other forms of variation not yet covered by the model may also be
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necessary. In order to extend the methodology to include image registration
within the field of medical imaging significant research must be undertaken
to establish a model which encapsulates the new conditions that occur in
that problem domain. Another important area of future research will be
in the investigation of interactions between the various forms of synthetic
variation. With the ability to create image pairs which span the entire vol-
ume of the image registration problem space it begins to become possible
to create a testbench which accurately measures the performance of image
registration algorithms. Using this improved testbench other image regis-
tration algorithms must be evaluated and explored in order to establish a
suite of algorithms useful in different situations. The sensitivities of each
algorithm to the various parameters of our testbench reveal a lot about
their limitations, and could lead to the development of better algorithms.
In addition to other algorithms, the effect of algorithmic parameters on per-
formance under different conditions must be explored. The combination of
the parameter space of an algorithm and of the image registration problem
space is a high dimensional space, requiring significant computing resources,
however a robust evaluation of performance need only be done once, making
it possible to investigate. This investigation would have to be undertaken
in close conjunction with the algorithm developer however, as the internal
parameters are often abstract and the appropriate range, distribution, and
combination of parameter settings is generally better known by them. Fi-
nally, research into the density of the testbench at various points across the
problem space should be investigated. Volumes which coincide with common
image registration problems should be investigated in detail, while regions
at the extremes of variation interaction can be examined in less detail.

From this improved testbench more sophisticated interpretation tech-
niques, such as those proposed in Chapter 8 can be developed. As more
is known about the image registration problem space, and algorithms rel-
ative performance within it, it becomes possible to create more accurate
interpreters. A direct evaluative interpreter was utilized within this thesis,
however a number of other interpreter methods may improve the overall
selection process, or may be more appropriate for different problem types.
The use of rule based, learning based, or probabilistic methods is therefore
highlighted as an area for future research, particularly where testbenches to
quantitatively measure performance are not available.

A more robust testbench and interpreter would motivate the creation
of new automatic classification techniques which are designed to identify
regions of the image registration problem space which require further differ-
entiation in order to select the most appropriate algorithm. The combination
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of this automatic method of classification, a robust interpreter, and a test-
bench which covers the entire image registration problem space would finally
allow for the creation of the ‘ultimate registration method’ proposed by Zi-
tová and Flusser at the end of their survey [104]. The system would be able
to recognize the type of image registration task and decide by itself about
the most appropriate solution, relieving developers of the burden of classi-
fying their image registration problems. An expert system based approach
and a support vector machine based approach have been explored for the
purposes of classification, however a number of other learning or Bayesian
based methods may improve upon their performance. The development of
new features which measure differences between the image pairs may also
provide a means of improvement of the classification methods.

Finally, the methods developed here to create a model and interpreter
for image registration must be expanded into other problem areas. The cre-
ation of a model for face detection introduced in Chapter 8 is a start, but
our goal is the creation of models which span the majority of problems in
computer vision. The development of such a system across the computer vi-
sion problem space will require significant innovation in the form of detailed
problem models, new and more sophisticated methods of interpretation, and
new methods of classification. This is the work of the entire community of
vision researchers, and could lead to advancements in the field similar to
those seen in computer graphics following the creation of OpenGL. It is
hoped that this thesis provides a starting point for such a significant un-
dertaking, highlighting our philosophy, our initial approach to the problem,
and the challenges that researchers who choose to follow may face.
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[29] Jan Flusser, Barbara Zitová, and Toms Suk. Invariant-based registra-
tion of rotated and blurred images. In Proceedings of the IEEE In-
ternational Geoscience and Remote Sensing Symposium., pages 1262–
1264. IEEE Computer Society, 1999.

[30] W.T. Freeman and E.H. Adelson. The design and use of steerable
filters. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13(9):891–906, Sep 1991.

193



[31] Rui Gan, Jue Wu, Albert C. S. Chung, Simon C. H. Yu, and William
M. Wells Iii. Multiresolution image registration based on kullback-
leibler distance. In In The 7th International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI04,
pages 599–606. SpringerVerlag, 2004.

[32] Gandalf. http://gandalf-library.sourceforge.net/.

[33] C. Harris and M. Stephens. A combined corner and edge detector.
Alvey Vision Conference, pages 147–151, 1988.

[34] Stefan Henn and Kristian Witsch. Multimodal image registration us-
ing a variational approach. SIAM Journal of Scientific Computation,
25(4):1429–1447, 2003.

[35] John Hertz, Richard G. Palmer, and Anders S. Krogh. Introduction
to the Theory of Neural Computation. Perseus Publishing, 1991.

[36] Image Magick. http://www.imagemagick.org.

[37] M. Irani and P. Anandan. Robust multi-sensor image alignment. pages
959–966, Jan 1998.

[38] GR Iversen and H Norpoth. Analysis of variance. Sage Publicalions.
Inc., 1987.

[39] Ralph E. Jacobson, Sidney F. Ray, Geoffrey G. Atteridge, and Nor-
man R. Axford. The Manual of Photography: Photographic and Digital
Imaging 9th Ed. Oxford: Focal Press, 2000.

[40] Daeshik Jang, Gregor Miller, Sidney Fels, and Steve Oldridge. A user
oriented language model for face detection. IEEE Workshop on Person
Oriented Vision, January 2011.

[41] K.P. Maher J.C.P. Heggie, N. A. Liddell. Applied imaging technology.
Australasian Physical and Engineering Science in Medicine, 25:87–87,
2002.

[42] Sing Bing Kang, Matthew Uyttendaele, Simon Winder, and Richard
Szeliski. High dynamic range video. In Proceedings of SIGGRAPH,
pages 319–325, New York, NY, USA, 2003. ACM.

[43] Yan Ke and R. Sukthankar. Pca-sift: a more distinctive representation
for local image descriptors. volume 2, pages II–506–II–513 Vol.2, June-
2 July 2004.

194



[44] Kerr, Doug. APEX - The Additive System of Photographic Exposure.

[45] J J Koenderink and A J van Doom. Representation of local geometry
in the visual system. Journal of Biology and Cybernetics, 55(6):367–
375, 1987.

[46] Charles Kohl and Joe Mundy. The development of the image under-
standing environment. In in Proceedings of the IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition, pages
443–447. IEEE Computer Society Press, 1994.

[47] Konstantinos Konstantinides and John R. Rasure. The khoros soft-
ware development environment for image and signal processing. IEEE
Transactions on Image Processing, 3:243–252, 1994.

[48] S. Lazebnik, C. Schmid, and J. Ponce. A sparse texture representation
using affine-invariant regions. volume 2, pages II–319–II–324 vol.2,
June 2003.

[49] Thomas M. Lillesand and Ralph W. Kiefer. Remote Sensing and Image
Interpretation. Wiley, 6th edition, 2007.

[50] J. Liu, B.C. Vemuri, and F. Bova. Multimodal image registration
using local frequency. pages 120–125, 2000.

[51] J. Liu, B.C. Vemuri, and J.L. Marroquin. Local frequency represen-
tations for robust multimodal image registration. IEEE Transactions
on Medical Imaging, 21(5):462–469, May 2002.

[52] David G. Lowe. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision, 60:91–110, 2004.

[53] Bruce D. Lucas and Takeo Kanade. An iterative image registration
technique with an application to stereo vision (darpa). In Proceedings
of the 1981 DARPA Image Understanding Workshop, pages 121–130,
April 1981.

[54] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens.
Multimodality image registration by maximization of mutual infor-
mation. IEEE Transactions on Medical Imaging, 16(2):187–198, April
1997.

[55] J. Maintz and M. Viergever. A survey of medical image registration.
Medical Image Analysis, 2(1):1–36, 1998.

195



[56] Alexei Makarenko, Alex Brooks, , and Tobias Kaupp. On the benefits
of making robotic software frameworks thin. In International Confer-
ence on Intelligent Robots and Systems, 2007.

[57] T. Makela, P. Clarysse, O. Sipila, N. Pauna, Quoc Cuong Pham,
T. Katila, and I.E. Magnin. A review of cardiac image registration
methods. IEEE Transactions on Medical Imaging, 21(9):1011–1021,
Sept. 2002.

[58] Songrit Maneewongvatana and David M. Mount. The analysis of a
probabilistic approach to. In In Proceedings of the 2001 Workshop on
Algorithms and Data Structures, pages 276–286, 2001.

[59] Takashi Matsuyama and Vincent Hwang. Sigma: a framework for
image understanding integration of bottom-up and top-down analyses.
In Proceedings of the 9th international joint conference on Artificial
intelligence - Volume 2, pages 908–915, San Francisco, CA, USA, 1985.
Morgan Kaufmann Publishers Inc.

[60] David Mattes, David R. Haynor, Hubert Vesselle, Thomas K.
Lewellen, and William Eubank. Nonrigid multimodality image reg-
istration. Proceedings of SPIE., 4322:1609–1620, 2001.

[61] M.Brown and D. G. Lowe. Recognising panoramas. Proceedings of the
Ninth IEEE International Conference on Computer Vision, 2:1218–
1225, 16-16 Oct. 2003.

[62] Tim McInerney and Demetri Terzopoulos. Deformable models in med-
ical image analysis: a survey. Medical Image Analysis, 1(2):91 – 108,
1996.

[63] Krystian Mikolajczyk and Cordelia Schmid. A performance evalua-
tion of local descriptors. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(10):1615–1630, October 2005.

[64] Gregor Miller, Sidney Fels, and Steve Oldridge. Axioms of computer
vision. Canadian Conference on Computer and Robot Vision, May
2011.

[65] Gregor Miller, Steve Oldridge, Daeshik Jang, and Sidney Fels. An
automated problem-to-algorithm mapping using a description model.
IEEE Workshop on Workshop on Person Oriented Vision, January
2011.

196



[66] Mehran Moshfeghi. Elastic matching of multimodality medical images.
CVGIP: Graph. Models Image Process., 53(3):271–282, 1991.

[67] Joseph Mundy. The image understanding environment program. IEEE
Expert: Intelligent Systems and Their Applications, 10(6):64–73, 1995.

[68] National Alliance for Medical Image Computing. http://www.itk.org/.

[69] National Alliance for Medical Image Computing. http://www.na-
mic.org/Wiki/index.php/NA-MIC-Kit.

[70] Jorge Nocedal and Stephen J. Wright. Numerical Optimization.
Springer, August 1999.

[71] Michael J. Ocean, Azer Bestavros, and Assaf J. Kfoury. snbench: pro-
gramming and virtualization framework for distributed multitasking
sensor networks. In Proceedings of the 2nd international conference on
Virtual execution environments, pages 89–99, New York, NY, USA,
2006. ACM.

[72] Steve Oldridge, Gregor Miller, and Sidney Fels. Automatic classifica-
tion of image registration techniques. In Proceedings of the Interna-
tional Conference on Computer Vision, October 2009.

[73] Steve Oldridge, Gregor Miller, and Sidney Fels. Classification of image
registration problems using support vector machines. IEEE Workshop
on Applications of Computer Vision, January 2011.

[74] Steve Oldridge, Gregor Miller, and Sidney Fels. A model for image
registration. Canadian Conference on Computer and Robot Vision,
May 2011.

[75] Steve Oldridge, Gregor Miller, and Sidney Fels. A testbench for image
registration. Submitted to International Conference on Computational
Photography, April 2011.

[76] Parker, Fred. http://www.fredparker.com/.

[77] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[78] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based
on mutual information: Criteria of max-dependency, max-relevance,

197



and min-redundancy. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(8):1226–1238, 2005.

[79] J Peng, KL Lee, and GM. Ingersoll. An Introduction to Logistic Re-
gression Analysis and Reporting, 2007.

[80] J.P.W. Pluim, J.B.A. Maintz, and M.A. Viergever. Mutual-
information-based registration of medical images: a survey. Medical
Imaging, IEEE Transactions on, 22(8):986–1004, Aug. 2003.

[81] Arthur R. Pope and David G. Lowe. Vista: A software environment
for computer vision research. IEEE Conference on Computer Vision
and Pattern Recognition, 1994.

[82] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec. High Dynamic
Range Imaging. Data Acquisition, Manipulation, and Display. Morgan
Kaufmann, 2005.

[83] G.K. Rohde, A. Aldroubi, and B.M. Dawant. The adaptive bases al-
gorithm for intensity-based nonrigid image registration. IEEE Trans-
actions on Medical Imaging, 22(11):1470–1479, Nov. 2003.

[84] D. Rueckert, L.I. Sonoda, C. Hayes, D.L.G. Hill, M.O. Leach, and D.J.
Hawkes. Nonrigid registration using free-form deformations: applica-
tion to breast mr images. IEEE Transactions on Medical Imaging,
18(8):712–721, Aug. 1999.

[85] Peter Sand and Seth Teller. Video matching. ACM Transactions of
Graphics, 23(3):592–599, 2004.

[86] Frederik Schaffalitzky and Andrew Zisserman. Multi-view matching
for unordered image sets, or ”how do i organize my holiday snaps?”. In
Proceedings of the 7th European Conference on Computer Vision-Part
I, pages 414–431, London, UK, 2002. Springer-Verlag.

[87] Yoav Y. Schechner and Shree K. Nayar. Generalized mosaicing: High
dynamic range in a wide field of view. International Journal of Com-
puter Vision, 53(3):245–267, 2003.

[88] ShapeLogic. http://www.shapelogic.org.

[89] Ravi K. Sharma and Misha Pavel. Multisensor image registration.
Journal of the Society for Information Display, pages 951–954, 1997.

198



[90] Changsong Shen, Steve Oldridge, and Sidney Fels. Open source vision
library (openvl) based local positioning system. IEEE Conference on
Advanced Video and Signal Based Surveillance, 0:105, 2006.

[91] Noah Snavely, Rahul Garg, Steven M. Seitz, and Richard Szeliski.
Finding paths through the world’s photos. ACM Transactions on
Graphics (Proceedings of SIGGRAPH 2008), 27(3):11–21, 2008.

[92] Sidney Fels Steve Oldridge, Gregor Miller.
http://www.ece.ubc.ca/ hct/registration/.

[93] Richard Szeliski. Image alignment and stitching: a tutorial.
Foundional Trends in Computational Graphics and Visualization,
2(1):1–104, 2006.

[94] Anna Tomaszewska and Radoslaw Mantiuk. Image registration for
multi-exposure high dynamic range image acquisition. In Proceed-
ings of the International Conference of Central Europe on Computer
Graphics, Visualization, and Computer Vision, 2007.

[95] Kari Torkkola. Feature extraction by non parametric mutual informa-
tion maximization. Journal of Machine Learning Research, 3:1415–
1438, 2003.

[96] Godfried T. Toussaint. A simple linear algorithm for intersecting con-
vex polygons. The Visual Computer, 1:118–123, 1985.

[97] L. Van Gool, T. Moons, and M. Proesmans. Mirror and point sym-
metry under perspective skewing. pages 285–292, Jun 1996.

[98] Paul Viola and Wells. Alignment by maximization of mutual informa-
tion. International Journal of Computer Vision, 24(2):137–154, 1997.

[99] VXL. http://vxl.sourceforge.net/.

[100] Greg Ward. Robust image registration for compositing high dynamic
range photographs from handheld exposures. Journal of Graphics
Tools, 8:17–30, 2003.

[101] Lin Xu, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown.
SATzilla: Portfolio-based Algorithm Selection for SAT. Journal of
Artificial Intelligence Research, 32(1):565–606, 2008.

199



[102] Gehua Yang, C.V. Stewart, M. Sofka, and Chia-Ling Tsai. Registra-
tion of challenging image pairs: Initialization, estimation, and deci-
sion. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 29(11):1973–1989, Nov. 2007.
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Appendix A

A Formal Definition of Image
Registration

In order to create a formal definition of image registration, a number of other
concepts must be defined. These concepts begin to outline a more formal
representation for the essential aspects of computer vision such as scenes,
views, cameras, images, features, and their relationship to one another. The
extension of this set theory based representation into a model for all of
computer vision is introduced in Chapter 8. Once we have a definition of
key vision components we can then formally define the problem of image
registration.

A.1 Notation and Basic Definitions

We will use set notation to define our computer vision problems and com-
ponents. A superscript denotes the view number which that item refers
to, such as V n (in this case, the nth view). A subscript denotes the item
number, such as ok (the kth object).

We use the notation NN to represent the set {1, . . . , N} and WN to
represent the set {0, . . . , N}. For intervals, we use square brackets - [, ] -
for inclusive and round brackets for - (, ) - exclusive. Both may be used
to define one interval e.g. [0, 1) is the interval from 0 to 1 including 0 but
excluding 1. All intervals are subsets of R unless otherwise noted.

We use the following notation for pre-defined sets:

I: The set of all images.

A: The set of all affine transforms.

S: The set of all segments observed by all views.

We begin with the assumption that in the computer vision problem, we
have a set of observations from which to infer metadata.
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Definition A.1 (Scene) The scene is the four-dimensional (3D space plus
1D time) collective spatio-temporal target of the observations.

Definition A.2 (Image) An image is an ordered set of K-dimensional in-
tensities located in a bounded plane.

Definition A.3 (View) A view V = (I, ρ, τ) is an observation of the
scene, where I ∈ I is the image, ρ ∈ P is the parameters of I’s projec-
tion and τ ∈ R is the view’s frame of reference.

We then define the set of views V = {V n}Nn=0, where V 0 is the scene and
the planar observations of the scene are the set {V n}Nn=1.

Definition A.4 (Reference Frame) A reference frame r ∈ S are the pa-
rameters of a projection within a view.

Definition A.5 (Camera) Given a set of views {V n}Nn=1, a camera is a
function of time where C(t) = V n such that V n is the observation at time t.

A.2 Segments

Segments, as we define them, are the lowest level component we actively
work with.

Definition A.6 (Segment) A segment is a distinct region in the image.

Corollary A.1 (Image Representation) Let I be any image and S be
the set of all segments in I. Then I = (S,≤), an ordered set of the segments.

Definition A.7 (Scexel) A scexel (scene element) is a distinct volume in
the scene which corresponds to at least one segment.

Definition A.8 (Segment Relations) Let Sj , Sk be the sets of all seg-
ments observed in views V j , V k respectively. Then the following define the
relations as applied to segments:

• Equality: Any two segments sj ∈ Sj , sk ∈ Sk are equal (sj = sk) if
and only if they are the same observation of the same segment such
that j = k.

• Inequality: Any two segments sj ∈ Sj , sk ∈ Sk are inequal (sj 6= sk)
if and only if they have no shared properties.

202



• Equivalence: Any two segments sj ∈ Sj , sk ∈ Sk are equivalent (sj ≡
sk) if they are observations of the same scexel.

Equivalence satisfies reflexivity, symmetry and transitivity.

A.3 Correspondence

Definition A.9 (Correspondence) Given two views V j and V k, and the
set of observed segments in each view Sj and Sk, the correspondence between
V j and V k is the bijective function:

cj,k : Cj → Ck

where Cj ⊆ Sj, Ck ⊆ Sk, and cj,k(x) = y such that x ≡ y, x ∈ Cj , y ∈ Ck.

Since cj,k is bijective, |Cj | = |Ck|.

A.4 Registration

Registration: 2D affine transform between two views.

Definition A.10 (Registration) Given two views V j and V k, and Cj ⊆
Sj , Ck ⊆ Sk as defined in Definition A.9. Let p : S → R2 such that p(x) = ~w
where ~w is the position of x ∈ S in the image’s reference frame.

Find the transform θ such that ∀x ∈ Cj θp(x) = p(y), y ∈ Ck and
cj,k(x) = y

where cj,k is as defined for correspondence.

A.5 Applied Image Registration

While the definition of image registration presented above defines the prob-
lem in a definite way, it does so through a purely theoretical representation
which is not necessarily applicable or possible in the real world. In order
to facilitate the limitations inherent in the applied representations, approx-
imations of a number of the equations and concepts must be used. In this
subsection we extend the definition of image registration to include functions
and representations which allow for these approximations.
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A.5.1 Applied Segments

Following directly from our representation of segment specified above, we
provide two new equations which allow for the comparison of segments using
a metric other than equivalency. While a theoretical function may provide
a perfect mechanism for determining whether two segments from different
images are equivalent, within the applied space the equivalence of segments
is approximated by measuring their similarity. A segment is determined to
match another if this similarity exceeds some threshold.

Definition A.11 (Segment Similarity) Given two segments sj , sk ∈ S
observed in views V j , V k respectively, their similarity is defined by the func-
tion s : S × S → [0, 1] such that:

s(sj , sk) = 0⇔ sj 6= sk

s(sj , sk) = 1⇔ sj = sk

⇔ j = k

and s(sj , sk) = x, x ∈ (0, 1) is a measure of the shared properties of sj , sk,
such that larger values of x indicate more shared properties.

Definition A.12 (Applied Segment Match) Two segments sj , sk are de-
fined to match if their similarity s(sj , sk) ≥ ε, for some ε such that 0 < ε ≤
1.

A.5.2 Applied Correspondence

Definition A.13 (Applied Correspondence) Given two views V j and
V k, and the set of observed segments in each view Sj and Sk, the corre-
spondence between V j and V k is the bijective function:

cj,k : Cj → Ck

where Cj ⊆ Sj, Ck ⊆ Sk, and cj,k(x) = y such that s(x, y) ≥ ε, x ∈ Cj , y ∈
Ck.

Since cj,k is bijective, |Cj | = |Ck|.

A.5.3 Applied Registration

Registration: 2D affine transform between two views.
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Definition A.14 (Applied Registration) Given two views V j and V k,
and Cj ⊆ Sj , Ck ⊆ Sk as defined in Definition A.13. Let p : F → R2 such
that p(x) = ~w where ~w is the position of x ∈ F in the image’s reference
frame.

Find θ ∈ A such that
∑
θp(x)− p(y) is minimized ∀x ∈ Cj , y ∈ Ck and

cj,k(x) = y
where cj,k is as defined for applied correspondence.
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Appendix B

A Formal Definition of
Computer Vision

One of the fundamental tenements of our interpretable model of computer
vision is a formal definition. Using set theory we present here a formal model
of computer vision developed by Dr. Gregor Miller in conjunction with the
author, Dr. Sidney Fels, and Dr. Daeshik Jang. The undertaking of the
creation of a general model of computer vision, which extends the model
introduced in Chapter 4 is a challenging task and requires collaboration
in order to make it feasible. Our definition of vision is introduced below,
extending the pared down image registration definition to a more general
definition which covers a much broader range of vision problems. Aspects
of the model which were introduced in Chapter 4 are also included here in
order to present the definition in its complete form.

B.1 Notation and Basic Definitions

We will use set notation to define our computer vision problems and com-
ponents. A superscript denotes the view number which that item refers
to, such as V n (in this case, the nth view). A subscript denotes the item
number, such as ok (the kth object).

We use the notation NN to represent the set {1, . . . , N} and WN to
represent the set {0, . . . , N}. For intervals, we use square brackets - [, ] -
for inclusive and round brackets for - (, ) - exclusive. Both may be used
to define one interval e.g. [0, 1) is the interval from 0 to 1 including 0 but
excluding 1. All intervals are subsets of R unless otherwise noted.

We use the following notation for pre-defined sets:

I: The set of all images.

T : The interval of time across which all observations occur; the ordered
set T = [t1, t2] ⊂ R such that t1 marks the beginning of observation
and t2 the end.
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A: The set of all affine transforms.

R: The set of all transformations which consist of rotations and transla-
tions only (for reference frames).

P: The set of all projective transforms.

S: The set of all segments observed by all views over T .

E : The set of all scene elements (scells) observed in the scene over T .

V: The set of all views over T .

We begin with the assumption that in the computer vision problem, we
have a set of observations from which to infer a model or representation of
the scene.

Definition B.1 (Scene) The scene is the four-dimensional (3D space plus
1D time) collective spatio-temporal target of the observations.

This does not limit the scene to a specific physical location, it could
be many locations (as many as there are input images), and so the model
may be something as simple as a classification of these, or something more
sophisticated such as a geometry recovery.

Definition B.2 (Image) An image is a set of oriented and translated re-
gions in a bounded plane.

Definition B.3 (View)
A view is an observation of the scene at an instant in time within T repre-
sented by (I, ρ, τ), where I ∈ I is the image, ρ ∈ P is the parameters of I’s
projection and τ ∈ R is the view’s frame of reference.

A view has a camera. A camera does not have a view given this definition
(the camera is not the image)

All views in a scene are not necessarily synchronous. So we need to
make assumptions on the scene or the views if we require synchronicity for
a problem.

Segments are locally distinct in time, but can change over time.
Cameras could produce segments which don’t change over time.

Definition B.4 (Reference Frame) A reference frame provides a posi-
tion and coordinate basis in the form of a transform. All local reference
frames are defined with respect to a global frame, unless otherwise noted.
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The set of all reference frames is represented by R, and used in this form in
the rest of the document.

Definition B.5 (Camera) A camera is a smooth continuous function c :
T → V which provides the view V captured at time t.

The views returned by a camera have the properties of being smooth
and continuous i.e. the images, projection parameters and reference frame
vary smoothly and continuously.

B.2 Modelling a Scene from Images

Our idea for a generic computer vision tool is to generate a model (of some
kind) of a scene given a set of images as input. The definition we use for
computer vision is as follows:

Definition B.6 (Vision) Given a set of views over T observing a scene S
and within an isolated system, the vision problem is to determine a model
of S.

The model used in this definition is hard to define globally: instead we
define it for each sub-problem as the representation of the problem. For
example, in image registration the model recovered is a transform which
will warp the second image with respect to the first. The isolated system
constraint is applied to maintain scene consistency and to define a natural
boundary to what our idea of vision is. It is defined in Definition B.6,
however we will need to discuss the concepts of segments and scells first to
provide a concrete definition. Finally, we make no assumption on the sensor
or its shape, only that it has some mapping to a planar space (although not
necessarily rectangular).

We also have some guiding principles to adhere to when developing our
vision framework. We constrain the work to not be subjective; this means
we do not refer to vision as ‘Image Understanding’ or anything similar, as we
are deliberately staying away from an image having any meaning. Therefore
we do not allow OpenVL to maintain lists of objects or lists of names, rather
we let the user deal with that themselves if they so wish, and we refer to
examples or other input that has been provided. Although we cannot provide
a strong constraint, we do try to be guided by the principles of determinism
and repeatability in the framework. For example, given an image and asked
to detect a face in that image, the computation taken should be the same
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regardless of the contents of the image. And for the same image, the result
should be the same across multiple executions.

B.3 Segments

One of our major goals with this work is to remove the use of pixels and
frames when performing analysis on images. To accomplish this we have
defined an abstraction over pixels, and attempted to provide the abstraction
with properties from which we can define vision problems. The outcome of
this is a representation of images which we can use to provide meaningful
output to users which is also in a form useable for rendering or further
processing.

Segments, as we define them, are the lowest level component we actively
work with. This does not discount intensity-based or window-based meth-
ods, since the lowest-level segment could be a colour region (intensity) and
windows can be defined using ([0, 1]× [0, 1], aspect ratio).

Definition B.7 (Segment) A segment is a distinct convex region in the
image.

Our definition of a segment forms the foundation of our approach to user-
accessible computer vision. One of our goals is to eliminate the requirement
of dealing with pixels and frames and instead deal with continuous, scaleable
units.

Definition B.8 (Segment Convexity) A region R ⊂ R2 is defined to be
convex if ∀u, v ∈ R and ∀θ ∈ [0, 1]:

(1− θ)u+ θv ∈ R

Definition B.9 (Segment Properties) A segment has the property of shape,
and an additional finite set of properties representing important concepts of
images.

Definition B.10 (Segment Property Relations) Here we define the re-
lations of segments wrt properties:

• Equality: Any two segments u, v have equal properties (u
p
= v) if all

properties (excluding shape) are exactly the same.

• Inequality: Any two segments u, v have inequal properties (u
p

6= v) if
and only if they have no shared properties (excluding shape).
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Corollary B.1 (Point properties) Given the region R ⊂ R2 covered by
a segment s, any point p ∈ R has exactly the same properties (and property
relations) as s. Therefore ∀ p ∈ R, p

p
= s.

There may be many properties for segments, for example colour, texture,
shading, shape, structure. However we do not intend to list them here, all
that is important for now is to state that segments have properties, and
from these we can define new operations, most importantly of which is the
creation of segments given an input image (segmentation). The definition of
segment is based on the idea of being distinct, and with properties we can
now define distinctiveness.

Definition B.11 (Distinctiveness) A region R ⊂ R2 is defined to be dis-
tinct if ∀p1, p2 ∈ R, p1

p
= p2 and all points adjacent to R do not have exactly

the same properties.

Corollary B.2 (Segment Overlap) In a single image no two segments
can spatially overlap.

Proof Prove this using definition and properties of segment i.e. property
equality and segment convexity.

Definition B.12 (Image Representation) Let I be any image and S be
the set of all segments in I. Then I = (s, τ), s ∈ S, τ ∈ R, a set of segments
where each segment has its own reference frame,with respect to the global
image reference frame.

Definition B.13 (Scell) A scell (scene element) is a volume in the scene
which corresponds to at least one feature.

A scell is not necessarily distinct, even though its projection in the image
may be. Distinct implies properties of segments such that the scene is not
one of them.

Definition B.14 (Segment Relations) Let Sj , Sk be the sets of all seg-
ments observed in views V j , V k respectively. Then the following define the
relations as applied to features:

• Equality: Any two segments sj ∈ Sj , sk ∈ Sk are equal (sj = sk) if
and only if they are the same observation of the same segment such
that j = k.
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• Inequality: Any two segments sj ∈ Sj , sk ∈ Sk are inequal (sj 6= sk)
if and only if they have no shared properties.

• Equivalence: Any two segments sj ∈ Sj , sk ∈ Sk are equivalent (sj ≡
sk) if they are observations of the same scell.

• Similarity: Any two segments sj ∈ Sj , sk ∈ Sk are similar (sj s= sk) if
at least one property is exactly the same (excluding contour and shape).

There is a middle ground between equality and inequality, which we will
call similarity. The level of similarity is defined below.

Equivalence relation satisfies reflexivity, symmetry and transitivity.

Definition B.15 (Scell and Segment Equivalence) Let S be the set of
all features observed in view V . Then for some scell o ∈ O, a segment s ∈ S
is equivalent to o (s ≡ o) if s is an observation of o.

This definition also satisfies reflexivity, symmetry and transitivity, and
adds scells to the equivalence class of segments (i.e. any scell and those
segments which observe it are in the same class).

B.4 Objects

Definition B.16 (Object) Let F = {fn}Nn=1 be the set of all features in
the scene. Then an object is defined to be the set O = {(fk, τk) : fk ∈ F , τk ∈
R}Kk=1, K ≥ 2, where τk ∈ R defines the reference frame of fk. The sets
OF , OR are the features and transforms in O, respectively.

This definition states that an object is represented by a set of locally
distinct volumes which are related by affine transforms. The simplest case
is an object which consists of a single f ∈ F and its corresponding transform
is identity.

Definition B.17 (Hierarchical Object) A hierarchical object is an ob-
ject O with the additional constraint that ∀fk ∈ OF , k ∈ NK ,∃h : OF → OF
such that h(fk) = fpk

(fpk
∈ OF , pk ∈ NK) where fpk

is the parent of fk.
Then the transform τk is the reference frame for fk with respect to fpk

. There
is exactly one feature with associated h where h(f) = f (the root).

This definition excludes the possibility of cycles since for each f there
is an h which returns a single feature; if it returned more than one parent
then cycles could exist. The special case of a single cycle is dealt with by
the definition that one node is a root with no parent.
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