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Abstract

Binary-coded modulation techniques such as bit-interleaved coded modu-

lation (BICM) and multilevel coding (MLC) are pragmatic methods to

achieve both high power and bandwidth efficiencies in digital communi-

cations. These techniques enable the combination of powerful and popular

off-the-shelf binary codes with bandwidth-efficient multilevel signaling with-

out considerable performance loss compared to joint coding and modulation

designs. Today, binary-coded modulation has become almost universal in

digital communication systems.

This thesis concerns several aspects of binary-coded modulation and its

applications. For BICM, we study the use of approximate decoding metrics

to reduce detection complexity. Specifically, we propose metric correction

functions which can improve achievable rates. We further propose a metric

scaling which can improve throughput performance of symbol-by-symbol

(SBS) decoding, which is the basis of state-of-the-art error-control coding

systems. To this end, we also discover an intriguing relationship between

the generalized Gallager function and the performance of sum-product SBS

decoding. For MLC, we develop the concept of reduced-layer coding that

facilitates a trade-off between performance and structural complexity. We

then propose a novel rateless MLC scheme which can seamlessly adapt to
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Abstract

the instantaneous channel quality and achieve throughput gains compared to

BICM in a number of transmission scenarios. Finally, we apply binary-coded

modulation techniques to free-space optics (FSO). FSO is an interesting

transmission technology which has recently emerged as a low-cost solution

to a range of communication challenges. We consider advanced signaling

schemes such as channel coding diversity with mismatched decoding metrics

and multipulse pulse-position modulation (MPPM). Combined with binary

codes, these schemes are practical means to improve rate and reliability in

FSO systems.
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Chapter 1

Introduction

Digital communication has become an essential part of our daily lives. The

last decade has seen an explosive growth in the number of communication

devices and the volume of data traffic. This growth is likely to continue

over the coming years. Today, cheaper, faster, and more environmentally

friendly communication systems are in ever greater demand.

The two primary resources of a communication system are channel band-

width and transmit power [1]. Channel bandwidth utilization can often be

increased by using larger multilevel constellations. Transmit power require-

ment can be minimized by error-control coding (ECC). However, non-binary

codes for multilevel constellations are usually harder to design and imple-

ment, and thus binary codes are much more popular in practice. A prag-

matic approach to achieve both high power and bandwidth efficiencies is to

combine binary ECC with multilevel constellation signaling. Bit-interleaved

coded modulation (BICM) [2,3] and multilevel coding (MLC) [4,5] are two

popular techniques that offer such a combination. In Chapter 2 and 3, we

make a number of contributions to the development of these techniques.

Our contributions focus on the use of suboptimal designs and decoding met-

rics which, with a small trade-off in the achievable rate, greatly reduce the
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detection and decoding complexity. This complexity reduction can in turn

be exploited in several ways. For example, it can be translated into lower

hardware cost and consumption power, or into higher throughput for a given

computational complexity constraint.

Recently, free-space optics (FSO) has regained attention as a secure, low

cost, rapidly deployable, and license-free wireless connectivity, e.g. [6,7]. We

investigate this interesting communication technology in Chapter 4. Due to

the high frequency of optical waveform signal, practical FSO transmission

often uses intensity modulation with direct detection (IM-DD) like fiber

optics. However, unlike in the fiber medium, FSO signal suffers from fading

similar to radio-frequency (RF) signal in wireless communications. These

combined characteristics pose a unique technical challenge to achieve both

high rate and reliability with FSO. To address this challenge, we consider the

use of advanced signaling schemes and apply coding techniques developed

in earlier chapters to FSO systems.

Our contributions are organized as follows:

• Chapter 2 – BICM with Mismatched Decoding Metrics: BICM is cur-

rently the de facto coding standard for digital communication. Re-

cently, BICM has been cast as a mismatched decoding scheme due to

the assumption of independent bit metrics [8, 9]. In addition to this

inherent mismatch, practical demodulators may produce mismatched

decoding metrics to reduce computational complexity. In this chapter,

we investigate BICM with such metrics. In line with recent works on

this topic, we adopt the generalized mutual information (GMI) [10,11]

2
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as the pertinent performance measure. First, we show that level-

dependent scaling of logarithmic bit metrics can improve the BICM

GMI. Second, we consider the effect of metric scaling on symbol-by-

symbol (SBS) decoding, which is used in a number of modern capacity-

approaching ECC systems. We propose a uniform metric scaling which

can lead to an improved performance of mismatched sum-product SBS

decoding, even if the GMI is not changed. Third, we investigate gen-

eral metric-mismatch correction functions and analyze their effects in

terms of the GMI. We then provide extensive numerical evidence to

demonstrate that our proposed metric manipulation methods can sig-

nificantly increase the performance of mismatched BICM.

• Chapter 3 – Multilevel Coding: Reduced-Layer, General Decoding Met-

rics, and Rateless Transmission: MLC is the main contender to the

celebrated BICM technique for combining binary ECC with multilevel

constellations. Although MLC has a more complex encoding-decoding

structure, it can achieve a larger rate in a number of important sce-

narios such as multiple-input multiple-output (MIMO) and orthogo-

nal modulation transmission. In this chapter, we make three distinct

contributions to MLC. First, based on a previous work [12], we de-

velop the concept of reduced-layer MLC (RL-MLC), which includes

both conventional MLC and BICM as special cases. This new concept

facilitates a trade-off between achievable rates and MLC structural

complexity, which is measured by the number of decoding layers. Sec-

ond, we present rate analysis and metric-mismatched correction for

3
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MLC with general decoding metrics. This contribution is an exten-

sion of the results for BICM from Chapter 2. Third, we consider

the combination of MLC with rateless codes, e.g. [13]. Such a com-

bination eliminates the need to carefully design code rate for each

layer. Furthermore, in slow fading environments, rateless coding can

seamlessly adapt to the instantaneous channel quality and achieve an

increased average throughput compared to fixed-rate MLC transmis-

sion. However, despite these great potential benefits, we show that a

careless combination of MLC and rateless coding would lead to sig-

nificant rate loss. Thus, we propose a novel rateless scheme which

preserves the rate advantage of MLC over BICM. We provide relevant

examples with MIMO, noncoherent carrier-modulated orthogonal sig-

naling, and IM-DD pulse-position modulation (PPM) to demonstrate

that our scheme can achieve throughput gains compared to BICM in

a variety of transmission scenarios.

• Chapter 4 – Applications in Free-Space Optics: In the first half of

this chapter, in light of results from Chapter 2, we revisit the rateless

BICM scheme with hybrid FSO-RF transmission [14]. Hybrid FSO-RF

is an example of channel coding diversity [15]. The use of an RF link

in conjunction with the FSO link is promising to improve communica-

tion reliability because these links are complementary in a wide variety

of weather-induced fading conditions. We show a new achievable rate

analysis for channel coding diversity with general decoding metrics.

We then demonstrate the applicability of our analytical result in rele-

4
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vant examples. In the second half of this chapter, we design a balanced

power-bandwidth efficient modulation format for FSO. Currently, the

two most popular FSO signaling formats are on-off keying (OOK) and

pulse-position modulation (PPM). OOK is more bandwidth-efficient,

but it has several drawbacks such as the need to select an appropriate

decision threshold at the receiver and more complex synchronization.

PPM, on the other hand, is more power-efficient, but its bandwidth ef-

ficiency rapidly declines with increasing constellation size. We consider

multipulse pulse-position modulation (MPPM) [16] as an alternative

modulation for FSO. It is a generalization of PPM with more than one

pulse per symbol. We design decimated MPPM constellations that are

suitable for combining with binary codes and have both high power

and bandwidth efficiencies.

Concluding remarks are given in Chapter 5. Chapter 2 is self-contained

and can be read independently of the other chapters.

5



Chapter 2

BICM with Mismatched

Decoding Metrics

BICM is a technique to combine binary ECC with multilevel constellations.

Invented in 1992 by Zehavi [2], it has become the de facto coding standard

for modern digital communication systems. The key advantages of BICM

are its excellent performance and its flexibility in allowing separate code and

modulation design. An up-to-date overview of BICM can be found in [8].

In a recent work by Martinez et al. [9], the BICM decoder has been

cast as a mismatched decoder [10, 11] and the GMI [10] has been used as

a performance measure. This new perspective readily enables the study

of BICM with mismatched demodulators, that is, when a twofold mismatch

occurs. The first mismatch is due to the assumption of independent bit met-

rics and is inherent to BICM. The second mismatch occurs because of some

approximation in the computation of bit metrics. The use of approximate

metrics is common in practice to reduce detection and decoding complexity,

e.g. [17–23]. Following this direction, Jaldén et al. [24] have recently de-

vised and analyzed a metric correction method for BICM with mismatched

demodulation.

6
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In this chapter, we extend this new line of work. In particular, we study

the manipulation of mismatched bit metrics to improve the performance of

BICM. We start in Section 2.1 by first revisiting the concept of random

coding and introducing the “I-curve,” whose maximum is the GMI. In Sec-

tion 2.2, we establish that the BICM I-curve is equal to the sum of the

binary I-curves of the levels. This relation suggests that the GMI of BICM

can be increased by aligning the binary I-curves so that their peaks are

added in a totally constructive manner. In Section 2.3.1, we show that this

alignment can be achieved by scaling the log-likelihood ratio (LLR) metrics

with suitable constant factors. In Section 2.3.2, we investigate the effect of

metric scaling on SBS decoding where the concept of GMI does not apply.

SBS decoding is used in a number of state-of-the-art ECC systems such as

repeat-accumulate [25], low-density parity check (LDPC) [26–31], and Rap-

tor codes [13, 32, 33]. Based on the properties of the I-curve, we propose

a scaling rule which can lead to rate improvements in sum-product SBS

decoding, even if the GMI remains unchanged. Finally, in Section 2.3.3,

we consider the BICM demodulator as part of a cascaded channel. This

point of view naturally leads to metric correction methods that increase

the BICM GMI, including the scalar function used in [24], and new vector

functions which provide different performance-complexity trade-offs. Using

four specific application examples in Section 2.4, we provide extensive nu-

merical evidence that the proposed metric manipulations can improve the

performance of mismatched BICM.

7



2.1. Random Coding with A Given Decoding Rule

2.1 Random Coding with A Given Decoding

Rule

A digital communication system can be divided into the transmitter, the

channel, and the receiver as illustrated in Figure 2.1.

x
channel

pY |X(y|x)
y

receivertransmitter

decoded

bits

message

bits

Figure 2.1: Elements of a digital communication system.

We consider a discrete-time memoryless channel whose random input

and output variables are denoted X and Y , respectively. Input symbols

are drawn from the discrete alphabet X with the probability mass function

pX(x). The discrete or continuous output alphabet is denoted Y. The chan-

nel can be fully described by the transition probability function pY |X(y|x).

At the receiver, given the received symbol y ∈ Y, a symbol metric of the

general form qX,Y (x, y) can be calculated for each x ∈ X . We assume that

qX,Y (x, y) > 0, ∀x ∈ X , y ∈ Y. Consider a code with the codebook C

that consists of M length-N codewords x = [x0 . . . xN−1]. Each codeword

in C is equally likely chosen for transmission. Given the received sequence

y = [y0 . . . yN−1], for each codeword x ∈ C, the word metric is calculated as

qX,Y (x,y) =
N−1∏
k=0

qX,Y (xk, yk) . (2.1)

8
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The decoder output is determined by

x̂ = argmax
x∈C

qX,Y (x,y) . (2.2)

The symbol metric qX,Y (x, y) is called a matched metric if it is propor-

tional to the channel transition probability pY |X(y|x). It is called a mis-

matched metric otherwise [10, 11]. With matched metrics, (2.2) coincides

with the maximum-likelihood (ML) decoding rule and, since all codewords

are equally likely, becomes

x̂ = argmin
x∈C

(
1− pX|Y (x|y)

)
.

That is, it minimizes the word error probability [34, p. 120].

The word error probability, averaged over all codewords and random

codebook realizations, can be upper-bounded by [34, Ch. 5], [10, Sec. 2], [8,

Sec. 3.1.2], cf. [35]

P ≤MρEX,Y
{(∑

x∈X
pX(x)

[
qX,Y (x, Y )

qX,Y (X,Y )

]s)ρ}N
(2.3)

for all 0 ≤ ρ ≤ 1 and s > 0. Alternatively,

P ≤ 2
−NEr

qX,Y
(R)
, (2.4)

where R , logM
N (notation log(·) denotes logarithm with base 2) is the code

rate,

Er
qX,Y

(R) , max
0≤ρ≤1

max
s>0

(
E0
qX,Y

(ρ, s)− ρR
)

(2.5)

9



2.1. Random Coding with A Given Decoding Rule

is the random coding exponent, and

E0
qX,Y

(ρ, s) , − log EX,Y
{(∑

x∈X
pX(x)

[
qX,Y (x, Y )

qX,Y (X,Y )

]s)ρ}
(2.6)

is the generalized Gallager function. If Er
qX,Y

(R) > 0, the error probability

vanishes with increasing N and the rate R is said to be achievable. The

maximum achievable rate that can be inferred from (2.5) and the properties

of the generalized Gallager function E0
qX,Y

(ρ, s), cf. [34, Theorem 5.6.3], is

the GMI, which is defined as [10]

Igmi
qX,Y

, max
s>0

IqX,Y (s) , (2.7)

with

IqX,Y (s) ,
∂E0

qX,Y
(ρ, s)

∂ρ

∣∣∣∣∣
ρ=0

= lim
ρ→0

E0
qX,Y

(ρ, s)

ρ

= −EX,Y
{

log
∑
x∈X

pX(x)

[
qX,Y (x, Y )

qX,Y (X,Y )

]s}
. (2.8)

We call the plot of IqX,Y (s) vs. s the I-curve of the symbol metric

qX,Y (x, y). The peak value of the I-curve is the GMI. Figure 2.2 illustrates

a typical picture of the generalized Gallager function E0
qX,Y

(ρ, s). The I-

curve is the intersection of the plane ρ = 1 and the surface which is tangent

to the generalized Gallager function at ρ = 0. With matched metrics, the

line E0
qX,Y

(ρ, 1
1+ρ) is the conventional one-dimensional Gallager function,

10



2.2. BICM and Mismatched Decoding

tangent surface
GMI

I−curve

generalized

Gallager function

s

ρ

Figure 2.2: Example of the generalized Gallager function E0
qX,Y

(ρ, s).

the I-curve peaks at s = 1, and the GMI is the average mutual information

I(X;Y ) [34, Ch. 5], which is

I(X;Y ) = −EX,Y
{

log
∑
x∈X

pX(x)
pY |X(Y |x)

pY |X(Y |X)

}
. (2.9)

2.2 BICM and Mismatched Decoding

We now focus on the BICM scheme [3, 8], whose transmitter and receiver

are presented in Figure 2.3. The BICM transmitter consists of a binary

encoder and a mapper (or modulator) which maps coded bits into transmit

symbols. The BICM receiver consists of a detector (or demodulator) and a

binary decoder. The detector produces bit metrics for the binary decoder.
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decoded

bits
y

binary

decoderdetector

bit

metrics

binary

encoder

coded bits
mapper

message

bits x

BICM transmitter

BICM receiver

Figure 2.3: BICM transmitter and receiver.

We note that, despite the “bit-interleaved” part in the name of BICM, bit

interleaving is immaterial for the random coding argument [9] and also not

needed in many practical situations1. Therefore, we do not include such bit

(de)interleavers in our discussion.

Let 2m be the size of the constellation X and B0, . . . , Bm−1 be the m

binary random variables for the labeling bits of the transmit symbol. Fur-

thermore, let bi(x) be the i-th bit in the label of symbol x. The probability

mass functions pBi(b), b ∈ B , {0, 1}, and pX(x), x ∈ X , are related by

pBi(b) =
∑
x∈X bi

pX(x) , (2.10)

1When using LDPC codes, for example, bit interleaving is equivalent to re-ordering
the columns of the parity-check matrix, which does not affect the decoding outcome.
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2.2. BICM and Mismatched Decoding

where X bi , {x ∈ X : bi(x) = b}, and

pX(x) =

m−1∏
i=0

pBi(bi(x)) . (2.11)

Instead of directly producing 2m symbol-metric values for each possible

transmit symbol x given the received symbol y, the BICM detector produces

2m bit-metric values corresponding to the m levels. Bit metrics for the i-th

level have the general form qBi,Y (b, y). We assume qBi,Y (b, y) > 0, ∀b ∈ B,

∀y ∈ Y. The BICM symbol metric is then calculated as

qX,Y (x, y) =
m−1∏
i=0

qBi,Y (bi(x), y) . (2.12)

Even if qBi,Y (b, y) matches to the binary-input channel with input Bi

and output Y , i.e., it is proportional to the transition probability

pY |Bi(y|b) =
∑
x∈X bi

pY |X(y|x)pX(x) , (2.13)

the BICM symbol metric (2.12) still does not match to the channel with in-

put X and output Y . Therefore, BICM is inherently a mismatched decoding

scheme [8,9].
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2.2. BICM and Mismatched Decoding

2.2.1 Log-Likelihood Ratio

The binary decoder is fed with the 2m bit-metric values per received symbol,

or alternatively, with m log-metric ratios

ΛqBi,Y (y) , ln
qBi,Y (0, y)

qBi,Y (1, y)
, (2.14)

since they are sufficient statistics for Bi given qBi,Y (b, y) (notation ln(·) de-

notes the natural logarithm). Conventionally, ΛqBi,Y (y) is the log-likelihood

ratio (LLR) only when qBi,Y (b, y) is proportional to the likelihood pY |Bi(y|b).

However, for convenience and brevity, we will refer to ΛqBi,Y (y) as an LLR

even when qBi,Y (b, y) is not proportional to pY |Bi(y|b).

2.2.2 Independent Binary Channel Model

The classical approach to analyze BICM is to use the independent binary

channel model [3], in which transmission is performed in m parallel channels

with inputs Bi, i = 0, . . . ,m− 1, and output Y . This model is equivalent to

multilevel coding (MLC) with parallel decoding of levels [5]. For level i and

its bit metric, the binary generalized Gallager function is defined as

E0
qBi,Y

(ρ, s) , − log EBi,Y
{(∑

b∈B
pBi(b)

[
qBi,Y (b, Y )

qBi,Y (Bi, Y )

]s)ρ}
(2.15)

= − log EX,Y
{(∑

b∈B
pBi(b)

[
qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s)ρ}
, (2.16)

where the transition from EBi,Y {·} to EX,Y {·} is possible because the term

inside the expectation in (2.16) is the same for all transmit symbols x that
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2.2. BICM and Mismatched Decoding

have the same i-th labeling bit, and

∑
x∈X bi

pX,Y (x, y) = pBi,Y (b, y) . (2.17)

The function E0
qBi,Y

(ρ, s) gives rise to the binary random coding exponent

Er
qBi,Y

(R), the I-curve function IqBi,Y (s), and the GMI Igmi
qBi,Y

for the i-th

level, applying (2.5), (2.8), and (2.7), respectively. In particular,

IqBi,Y (s) = −EBi,Y
{

log
∑
b∈B

pBi(b)

[
qBi,Y (b, Y )

qBi,Y (Bi, Y )

]s}

= −EX,Y
{

log
∑
b∈B

pBi(b)

[
qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s}
, (2.18)

and

Igmi
qBi,Y

= max
s>0

IqBi,Y (s) . (2.19)

For the special case of uniform input, from (2.14) and (2.18), the binary

I-curve function IqBi,Y (s) can be expressed in terms of the LLR as

IqBi,Y (s) = 1− EX,Y
{

log(1 + exp(− sgn(bi(X))ΛqBi,Y (Y )s))
}
, (2.20)

where the function sgn(·) is defined for the labeling bits as sgn(0) = 1 and

sgn(1) = −1.

2.2.3 BICM and Binary I-curves

Substituting (2.11) and (2.12) into (2.8) and considering (2.18), we obtain

(cf. [9, proof of Theorem 2])
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2.3. Metric Manipulation

IqX,Y (s) = −EX,Y
{

log
∑
x∈X

m−1∏
i=0

pBi(bi(x))

[
qBi,Y (bi(x), Y )

qBi,Y (bi(X), Y )

]s}

= −EX,Y
{

log
m−1∏
i=0

∑
b∈B

pBi(b)

[
qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s}

= −
m−1∑
i=0

EX,Y
{

log
∑
b∈B

pBi(b)

[
qBi,Y (b, Y )

qBi,Y (bi(X), Y )

]s}

=

m−1∑
i=0

IqBi,Y (s) . (2.21)

That is, the BICM I-curve equals the sum of the binary I-curves IqBi,Y (s).

This relation will be important for our subsequent discussion.

2.3 Metric Manipulation

We now present and discuss different metric manipulations that can improve

the performance of BICM with a mismatched demodulator.

2.3.1 Metric Scaling and GMI

For the general mismatched decoding scheme from Section 2.1, let sqX,Y be

the critical point of the I-curve IqX,Y (s), i.e. the value of s at which IqX,Y (s)

attains its maximum. Let us consider a new metric q′X,Y (x, y) = [qX,Y (x, y)]c

with some constant c > 0. It follows from (2.6) that the new generalized Gal-

lager function is E0
q′X,Y

(ρ, s) = E0
qX,Y

(ρ, cs) and hence Iq′X,Y (s) = IqX,Y (cs).

That is, the I-curve of the metric q′X,Y (x, y) is simply a compressed (for

c > 1) or expanded (for c < 1) version of the I-curve of the metric qX,Y (x, y)
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shift

IqX,Y
(s)

Iq′
X,Y

(s)

s

sqX,Y
sq′

X,Y
= sqX,Y

/c

Igmi
qX,Y

Figure 2.4: Shift the critical point of the I-curve by metric scaling.

along the s-axis. In particular, the GMI remains unchanged, while the crit-

ical point changes to sq′X,Y = sqX,Y /c. This coordinate shift is illustrated in

Figure 2.4 for an example with c > 1. Since raising symbol metric qX,Y (x, y)

to a power corresponds to scaling with the same factor in the logarithmic

domain, in LLR-based decoding we refer to this operation as “metric scal-

ing.” Metric scaling allows us to control the critical point of the I-curve.

The fact that it does not affect the GMI should not come as a surprise.

Using q′X,Y (x, y), the decoding rule (2.2) becomes

x̂ = argmax
x∈C

[qX,Y (x,y)]c ,

which returns exactly the same codeword as using qX,Y (x, y).
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2.3. Metric Manipulation

We now apply metric scaling to BICM.

Theorem 2.1. Two I-curves are called harmonic if they have the same

critical point. The BICM GMI equals the sum of the binary GMIs if the

binary I-curves are harmonic, and is less than that otherwise. Let sqBi,Y

be the critical point of the binary I-curve of the i-th level. The binary I-

curves can be made harmonic at s∗ > 0 by metric scaling with the factor

ci = sqBi,Y /s
∗ at level i, i = 0, . . . ,m− 1.

Proof. Let q′Bi,Y (b, y) = [qBi,Y (b, y)]ci with some ci > 0. Then, Iq′Bi,Y
(s) =

IqBi,Y (cis), which peaks at (sqBi,Y /ci, I
gmi
qBi,Y

). According to Section 2.2 and

in particular (2.12) and (2.21), BICM with these bit metrics has the symbol

metric

q′X,Y (x, y) =
m−1∏
i=0

q′Bi,Y (bi(x), y)

and the I-curve function

Iq′X,Y (s) =
m−1∑
i=0

Iq′Bi,Y
(s) .

The BICM GMI is upper-bounded as

Igmi
q′X,Y

= max
s>0

m−1∑
i=0

Iq′Bi,Y
(s)

≤
m−1∑
i=0

max
s>0

Iq′Bi,Y
(s) (2.22)

=
m−1∑
i=0

Igmi
qBi,Y

. (2.23)

Equality in (2.22) is achieved if and only if all binary I-curves {Iq′Bi,Y (s),
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2.3. Metric Manipulation

i = 0, . . . ,m − 1}, attain their maximum at the same value of s, i.e. if

they are harmonic. By metric scaling in the logarithmic domain with the

constant factor ci = sqBi,Y /s
∗, all binary I-curves will be harmonic at s∗ for

arbitrary s∗ > 0.

Remark 1: If the original binary I-curves are already harmonic, no align-

ment is needed and Igmi
qX,Y =

∑m−1
i=0 Igmi

qBi,Y
. This is the case if, for example,

qBi,Y (b, y) ∝ pY |Bi(y|b), for which sqBi,Y = 1 ∀i [9, Corollary 1]. When the

binary I-curves are not harmonic, the above proof provides a constructive

procedure for choosing the scaling factors to increase the BICM GMI. This

requires the computation of sqBi,Y , i = 0, . . . ,m − 1, which can be done

offline, either through analysis or through simulation when closed-form ex-

pressions cannot be obtained.

Remark 2: According to the independent binary channel model, BICM

always achieves a rate equal to the sum of the achievable rates of the levels.

In the context of random coding and the GMI, Theorem 2.1 shows that this

is only conditionally true. We recall that the independent binary channel

model requires m binary encoder-decoder pairs instead of just one as BICM.

2.3.2 Metric Scaling and Symbol-By-Symbol Decoding

We again consider the general mismatched decoding scheme in Section 2.1.

The derivation of the random coding exponent and the GMI is based on the

word decoding rule (2.2). However, some important modern error-correction

schemes employ SBS decoding. That is, given the received sequence y, for
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each position k = 0, . . . , N − 1, the SBS metric

qXk,Y (x,y) ,
∑
x∈Cxk

qX,Y (x,y)

=
∑
x∈Cxk

(
N−1∏
k=0

qX,Y (xk, yk)

)
(2.24)

is computed, where Cxk denotes the set of codewords whose k-th symbol

equals x, and the decoding rule

x̂k = argmax
x∈X

qXk,Y (x,y) (2.25)

is applied. For sparse-graph based codes, (2.25) with metric (2.24) can be ef-

ficiently evaluated (or approximated) using the sum-product algorithm [36].

With matched metrics and equally likely chosen codewords, (2.25) becomes

x̂k = argmax
x∈X

∑
x∈Cxk

pY |X(y|x)

= argmax
x∈X

∑
x∈Cxk

pX|Y (x|y)

= argmax
x∈X

pXk|Y (x|y)

= argmin
x∈X

(
1− pXk|Y (x|y)

)
.

Thus, sum-product SBS decoding with matched metrics minimizes the coded

symbol error probability, cf. word decoding as in [34, p. 120]. This holds

true regardless of the probability mass function pX(x). However, minimizing

the coded symbol error probability may not be the same as minimizing the
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message symbol (or bit) or the word error probability. In particular, the

collection of decoded symbols [x̂0 . . . x̂N−1] is not necessarily a codeword in

C. Therefore, achievable rates, in the sense that the word error probability

can still be driven to zero with increasing code length, further depend on

the translation of the decoded symbols into a valid codeword.

Another popular SBS decoding metric is

qXk,Y (x,y) =


max
x∈Cxk

qX,Y (x,y) , if Cxk 6= ∅

0 , otherwise .

=


max
x∈Cxk

(
N−1∏
k=0

qX,Y (xk, yk)

)
, if Cxk 6= ∅

0 , otherwise .

(2.26)

Metric (2.26) can be estimated by the max-product algorithm, which is

also known as the min-sum algorithm from its form in the logarithmic do-

main [36]. The metric (2.26) is derived from (2.24) by approximating a sum

by its largest term.

As in word decoding, metric scaling does not affect the decoding out-

come in max-product SBS decoding. However, if we replace qX,Y (x, y) by

[qX,Y (x, y)]c in sum-product decoding using (2.25), the decoding outcome

might change. When c → 0, the decoding outcome generally becomes ran-

dom, with exceptions, e.g., repetition codes where the sum (2.24) would

consist of only a single term. On the other hand, when c→∞, sum-product

decoding approaches max-product decoding. With matched metrics, c = 1

is the optimal scaling factor when the coded symbol error probability is the
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performance measure. The I-curve peaks at s = 1 in this case. For mis-

matched metrics, we propose that metric scaling with the factor c = sqX,Y

is applied in sum-product decoding. This scaling shifts the critical point of

the I-curve to 1. In the following, we provide a numerical example which

shows that this scaling yields the largest throughput in a rateless transmis-

sion. Further practical examples which illustrate the benefit of this scaling

are presented in Section 2.4.

Example 2.1. Consider a binary asymmetric channel (BAC) with crossover

probabilities p0 and p1, 0 < p0, p1 < 1, for transmit symbol x = 0 and x = 1,

respectively. A matched demodulator produces the LLR of ln((1 − p0)/p1)

for received symbol y = 0 and of ln(p0/(1−p1)) for y = 1. Assuming uniform

input, the matched I-curve follows from (2.8) or (2.20) as

IpY |X (s) = 1− 1− p0
2

log

(
1 +

ps1
(1− p0)s

)
− p0

2
log

(
1 +

(1− p1)s
ps0

)
−p1

2
log

(
1 +

(1− p0)s
ps1

)
− 1− p1

2
log

(
1 +

ps0
(1− p1)s

)
,

(2.27)

which peaks at (1, I(X;Y )).

Suppose that a mismatched demodulator produces LLR of +1 and −1

for received symbol y = 0 and y = 1, respectively. The corresponding

mismatched I-curve is given by

IqX,Y (s) = 1− p log(1 + es)− (1− p) log(1 + e−s) , (2.28)

where p = (p0 + p1)/2. The GMI Igmi
qX,Y = 1 + p log(p) + (1− p) log(1− p) =
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1 − Hb(p) is attained at sqX,Y = ln((1 − p)/p), where Hb is the binary

entropy function. We have Igmi
qX,Y ≤ I(X;Y ), and equality holds if and only

if p0 = p1, i.e. when the channel is a binary symmetric channel (BSC).

Applying scaling with factor c to this mismatched LLR, we obtain Iq′X,Y (s) =

IqX,Y (cs). Consider Iq′X,Y (1) as a function of c. It attains its maximum with

c = sqX,Y = ln((1− p)/p), for which Iq′X,Y (1) = Igmi
q′X,Y

= Igmi
qX,Y . Our proposal

states that scaling with this value of c should be applied in sum-product

decoding.

Let us consider a specific example with p0 = 0.03 and p1 = 0.07. This

pair results in I(X;Y ) = 0.72 bit per channel use (bpcu), p = 0.05, Igmi
qX,Y =

0.71 bpcu, and sqX,Y = 2.94. Figure 2.5 shows the plot of Iq′X,Y (1) vs. c.

To demonstrate the effect of scaling, we measure the average throughput

achieved by coded transmission using a Raptor code. The code consists

of an outer LDPC code of length 10 000 and code rate 0.95 and an inner

Luby transform (LT) code [37] with degree distribution [13, Table I, second

column]

Ω(x) = 0.007969x+ 0.493570x2 + 0.166220x3

+0.072646x4 + 0.082558x5 + 0.056058x8

+0.037229x9 + 0.055590x19 + 0.025023x65 + 0.003135x66 .

The parity-check matrix of the LDPC code is generated by the progres-

sive edge growth (PEG) algorithm [38,39] with degree-3 variable nodes and

almost regular check nodes. The transmitter sends coded bits until the

receiver successfully determines the correct message, at which point the
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Figure 2.5: Throughput achieved with a Raptor code over a BAC and SBS
decoding with mismatched metrics versus the metric-scaling parameter c.

instantaneous throughput is measured. Figure 2.5 shows the empirical av-

erage throughput achieved with sum-product and max-product decoding as

a function of c (consider only lines labeled “w/o i.i.d. channel adapter” for

the moment). Both methods use a maximum of 200 iterations to decode

the joint factor graph of the LDPC and LT codes [32, Fig. 1(b)]. The

decoder uses an update schedule similar to the one described in [31, Sec.

4.3]. We observe that scaling with the factor c = sqX,Y indeed yields the

best throughput for sum-product decoding. It can also be seen how the

achieved throughput degrades as c → 0. For large c, sum-product decod-

ing starts to converge towards max-product decoding. However, since we
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applied LLR bounding for improved numerical stability in our decoder im-

plementation, this convergence is not fully achieved in Figure 2.5. We can

turn the asymmetric channel into a symmetric one by using i.i.d. channel

adapters suggested in [40]. These adapters are synchronized random sign-

adjusters applied to the encoded bits and LLR streams at the transmitter

and receiver, respectively, cf. [40, Fig. 8]. With uniform input, the I-curve

is not changed by i.i.d. channel adaptation, cf. (2.20). Symmetrization is

sometimes considered useful when codes are designed under the assumption

of a symmetric channel. The simulation results for the symmetrized chan-

nel in Figure 2.5 (star makers labeled “w/ i.i.d. channel adapter”) show

that the conclusions about scaling are not an artifact of transmission over

asymmetric channels.

Remark 1: Understanding the impact of metric scaling in fact relates to

a familiar research problem. In systems with additive Gaussian noise, for

example, inaccurate estimation of the signal-to-noise ratio (SNR) results in

a mismatched metric that is a scaled version (in the logarithmic domain) of

the matched metric. The scaling factor c is proportional to the estimated

SNR. Thus, impact of SNR mismatch on sum-product decoding is a special

case of our discussion. The results in Figure 2.5 agree with the known result

that for sum-product decoding we would rather overestimate (have a large c)

than underestimate the SNR (have a small c), cf. e.g. [41,42] and references

therein. When sqX,Y > 1, which is the case of underestimated SNR, the

simulation results in Figure 2.5 suggests an intriguing upper bound IqX,Y (1)

to the achievable rate with sum-product decoding.
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Remark 2: We would like to contrast our scaling from LLR scaling as

investigated in e.g. [43–46]. In these works, scaling is derived from studying

the internal operation of the decoder and has the purpose of offsetting ap-

proximations to lower implementation complexity. On the other hand, our

proposed scaling is characterized only by the metric and is aimed to improve

the performance of exact sum-product decoding.

Application to BICM: In connection with Theorem 2.1, in BICM with

sum-product decoding we propose aligning all binary I-curves at s∗ = 1. For

max-product decoding, only the alignment matters, but not the value of the

critical point s∗. This is analogous to the case of word decoding considered

in Section 2.3.1.

2.3.3 Cascaded Channel Model and Metric-Mismatch

Correction

BICM as defined by (2.12), (2.1) and (2.2) constitutes a mismatched decod-

ing rule, for which an achievable rate is given by the GMI Igmi
qX,Y defined in

(2.7). In Section 2.3.1, we have shown that metric scaling applied to LLRs

ΛqBi,Y (y) can increase this GMI. In this section, we consider the generation

of ΛqBi,Y (y) as part of the transmission channel and determine the rates

achievable by further processing and other ways of decoding.

Cascaded Channel Model

Let zi , ΛqBi,Y (y) be the channel output to be processed. Accordingly, we

have a cascaded channel as shown in Figure 2.6(a) with input X and output

Z , [Z0, . . . , Zm−1]. From the data-processing inequality [34, Sec. 2.3] [47,
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(c)

(d)

(a)

(b)
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(y), . . . ,ΛqBm−1,Y

(y)
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(y), . . . ,ΛqBm−1,Y
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pY |X(y|x)
y ∈ Y
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(y)

pY |X(y|x)
y ∈ Y
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(y), {ΛqBj,Y

(y)}

bi(x) ∈ B ri ∈ Rmi

z ∈ Rm

bi(x) ∈ B

Figure 2.6: BICM demodulator as part of a cascaded channel. Also indicated
above each block diagram is the associated average mutual information.
(a) symbol-input cascaded channel; (b), (c) and (d) different binary-input
cascaded channels.
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Sec. 2.8], the corresponding average mutual information I(X;Z) is less than

or equal to I(X;Y ). Let us consider the use of binary codes for the cascaded

channel X → Z. The chain rule of mutual information [34, p. 22] reads as

I(X;Z) =
m−1∑
i=0

I(Bi;Z|B0, . . . , Bi−1) . (2.29)

For the terms on the right-hand side, we have the following inequalities

I(Bi;Z|B0, . . . , Bi−1) ≥ I(Bi;Z) (2.30)

≥ I(Bi;Zi) (2.31)

≥ Igmi
qBi,Y

. (2.32)

The mutual information I(Bi;Z) in (2.30) represents the constrained chan-

nel capacity, i.e. the maximum achievable rate with a given input distribu-

tion, of the binary-input channel Bi → Z illustrated in Figure 2.6(b). For

this cascaded channel, I(Bi;Z) ≤ I(Bi;Y ) [34, Sec. 2.3]. We note, how-

ever, that there is no definitive relation between I(Bi;Z|B0, . . . , Bi−1) and

I(Bi;Y ). The mutual information I(Bi;Zi) in (2.31) is the constrained ca-

pacity of the channel Bi → Zi shown in Figure 2.6(c). Equality in (2.31)

is achieved if Zi is a sufficient statistic for Bi given Z. Inequality (2.32)

holds because Igmi
qBi,Y

is just an achievable rate by a mismatched decoding,

whereas I(Bi;Zi) is the maximum achievable rate by matched decoding over

the channel Bi → Zi.

Inequality (2.31) suggests that Zj , j 6= i, can provide further information

for the decoding of Bi. In between the two extremes of using only Zi and

using all m elements of Z, we might opt to process a subset Ri = [Zi, {Zj}]
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of 1 < mi < m elements of Z to produce decoding metrics for Bi. The

resulting channel is included in Figure 2.6(d) and the inequalities

I(Bi;Zi) ≤ I(Bi;Ri) ≤ I(Bi;Z) (2.33)

hold for its associated mutual information. In summary, we obtain the

following inequality chain:

Igmi
qX,Y

≤
m−1∑
i=0

Igmi
qBi,Y

≤
m−1∑
i=0

I(Bi;Zi) ≤
m−1∑
i=0

I(Bi;Ri)

≤
m−1∑
i=0

I(Bi;Z) ≤


m−1∑
i=0

I(Bi;Y )

I(X;Z)

≤ I(X;Y ) . (2.34)

Metric-Mismatch Correction

The processing of original LLRs to achieve the above rates can be considered

as metric-mismatch correction. The matched bit-metrics for BICM trans-

mission over the cascaded channel X → Z corresponds to corrected LLRs

ΛpZ|Bi (z) = ln
pZ|Bi(z|0)

pZ|Bi(z|1)
(2.35)

for i = 0, . . . ,m−1. This metric correction realizes the rate I(Bi;Z) over the

binary-input channel Bi → Z, and, considering (2.34), it is the optimal cor-

rection in terms of achievable rate. The bit-metric correction corresponding
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to the channel Bi → Ri and achievable rate I(Bi;Ri) is given by

ΛpRi|Bi (ri) = ln
pRi|Bi(ri|0)

pRi|Bi(ri|1)
. (2.36)

Finally, the scalar metric correction

ΛpZi|Bi (zi) = ln
pZi|Bi(zi|0)

pZi|Bi(zi|1)
(2.37)

leads to I(Bi;Zi). Since metrics (2.35), (2.36), and (2.37) match to their cor-

responding binary-input channels, their binary I-curves are already aligned

at s = 1. As a result, the BICM GMI with these metrics is equal to∑m−1
i=0 I(Bi;Z),

∑m−1
i=0 I(Bi;Ri), and

∑m−1
i=0 I(Bi;Zi), respectively. While,

according to (2.34), the associated BICM GMI degrades from (2.35) to

(2.37), the computational complexity for metric correction is also reduced.

This trade-off renders (2.36) and (2.37) potentially attractive.

The scalar LLR correction (2.37) has been studied in the literature [24,

48–51], cf. also [52]. In [24], (2.37) has been shown to be the optimum scalar

metric correction in terms of GMI, a fact that is also clear from the above

derivation. It has further been pointed out in [24] that non-scalar metric

correction functions could further increase the GMI. We have provided such

corrections in (2.35) and (2.36).

In practice, the correction functions are prepared offline and stored as

look-up tables. Online evaluation is then done by table look-up and possibly

with additional interpolation [51, 52]. For clarity, we summarize all bit-

metric manipulations and their effects in Table 2.1.
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Table 2.1: BICM metric manipulation methods and their effects.
Metric Manipulation Effect

Original mismatched LLR ΛqBi,Y (y) Igmi
qX,Y ≤

∑m−1
i=0 Igmi

qBi,Y
is achiev-

able.

Scale all LLRs by the same factor
c = sqX,Y :

Λq′Bi,Y
(y) = sqX,Y ΛqBi,Y (y)

Shift the critical point of the
BICM I-curve to 1, aim to im-
prove the performance of sum-
product SBS decoding.

Scale LLRs differently by factors
ci = sqBi,Y /s

∗ for some s∗ > 0:

Λq′Bi,Y
(y) = (sqBi,Y /s

∗)ΛqBi,Y (y)

Binary I-curves are aligned at
s∗. The BICM GMI is Igmi

q′X,Y
=∑m−1

i=0 Igmi
qBi,Y

. Choose s∗ = 1 in
sum-product SBS decoding.

Apply scalar metric mismatch cor-
rection:

Λp
i|Bi

(zi) = ln
pZi|Bi(zi|0)

pZi|Bi(zi|1)

Bit metrics are matched to the
cascaded channels Bi → Zi. The
BICM GMI is

∑m−1
i=0 I(Bi;Zi).

Apply reduced-dimensional vector
metric mismatch correction:

ΛpRi|Bi (ri) = ln
pRi|Bi(ri|0)

pRi|Bi(ri|1)

Bit metrics are matched to the
cascaded channels Bi → Ri. The
BICM GMI is

∑m−1
i=0 I(Bi;Ri).

Apply optimal vector metric mis-
match correction:

ΛpZ|Bi (z) = ln
pZ|Bi(z|0)

pZ|Bi(z|1)

Bit metrics are matched to the
cascaded channels Bi → Z. The
BICM GMI is

∑m−1
i=0 I(Bi;Z).
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Remark: Inequality (2.34) also shows that no metric manipulation allows

BICM to attain a GMI better than
∑m−1

i=0 I(Bi;Y ), i.e., the GMI of matched

BICM over the original channel X → Y . To achieve I(X;Z) or I(X;Y ) with

binary codes, we need to use MLC with multistage decoding [5] applied to

the channels X → Z and X → Y , respectively.

2.4 Applications

In this section, we present and discuss a number of illustrative and rele-

vant examples for BICM transmission applying the metric manipulations

described in the previous sections. We assume uniform input in all cases.

The binary I-curves are obtained from (2.20) via Monte-Carlo integration.

2.4.1 Discrete Metrics and Metric Correction

Setup

Metric corrections are relatively easy to implement by means of look-up

tables if the mismatched metrics are drawn from a small set of discrete

values. Such cases arise if quantization and in particular hard detection is

applied at the receiver. In the following, we consider the example of 8-ary

amplitude-shift keying (8-ASK) transmission over the additive white Gaus-

sian noise (AWGN) channel with hard detection. We apply binary reflected

Gray labeling with [b0b1b2] = [000], [100], [110], [010], [011], [111], [101], [001]

for the eight signal points from left to right, as in Figure 2.7. This is

the best labeling in the moderate SNR range [53], cf. also [54]. Let

the SNR be equal to 6.43 dB, at which matched BICM attains a GMI of
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[001][000]

[b0b1b2] =

[100] [110] [010] [011] [111] [101]

Figure 2.7: 8-ASK constellation and labeling.

Igmi
qX,Y =

2∑
i=0

I(Bi;Y ) = 1.50 bpcu, and I(X;Y ) = 1.56 bpcu. Hard detection

that produces LLRs +1 and −1 leads to the GMI Igmi
qX,Y = 1.07 bpcu, which

is the maximum of the BICM I-curve IqX,Y (s) =
2∑
i=0

IqBi,Y (s), attained at

sqX,Y = 1.65. The I-curves for matched and hard-decision decoding are

plotted in Figure 2.8(d).

Metric-Mismatch Correction

We now examine the effect of metric manipulation. Consider level 2, whose

I-curves are shown in Figure 2.8(c). With matched LLR, the binary GMI

is I(B2;Y ) = 0.77 bpcu. With hard detection, B2 → Z2 is a BSC with

the GMI equal to I(B2;Z2) = 0.63 bpcu, cf. Example 2.1. For a BSC,

scalar correction (2.37) is identical to the scaling that shifts the critical

point to 1 and leaves the GMI unchanged (line Z2 in Figure 2.8(c)). On

the other hand, the optimum vector correction (2.35) yields I(B2;Z) =

0.75 bpcu (line Z2Z0Z1 in Figure 2.8(c)), which is significantly higher than

I(B2;Z2) and rather close to I(B2;Y ). The price for this is a more complex

mapping. In scalar correction, we map z2 from two input values {1,−1} to

two output values {2.56,−2.56}, i.e., ΛpZ2|B2
(1) = 2.56 and ΛpZ2|B2

(−1) =

−2.56. In optimum vector correction, we need a larger look-up table to

map [z2, z0, z1] from {[1, 1, 1], [1,−1, 1], [1,−1,−1], [1, 1,−1], [−1, 1,−1],
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Figure 2.8: I-curves for 8-ASK transmission over the AWGN channel with
matched detection (“matched”), hard detection (“hard”), and different
metric-mismatch corrections (identified by the used LLRs zi in the sub-
figures). Subfigures (a)-(c) show I-curves for binary levels. Subfigure (d)
shows BICM I-curves. Bullet markers show simulated throughput using a
Raptor code and sum-product decoding, and the double-arrowed arcs link
the simulated points to the peak of the corresponding I-curves.

34



2.4. Applications

[−1,−1,−1], [−1,−1, 1], [−1, 1, 1]} to the corrected LLRs {12.5, 7.40, 3.63,

1.05, −1.05, −3.63, −7.40, −12.5}. Between these two correction methods,

we have two choices for reduced-dimensional vector correction (2.36), namely

R2 = {Z2, Z0} or R2 = {Z2, Z1}, each of which maps four input values to

four output values. The two corresponding I-curves in Figure 2.8(c) are

labeled Z2Z0 and Z2Z1, respectively. Since I(B2;Z2Z0) < I(B2;Z2Z1), the

latter is preferred.

We have a BAC at both level 0 and 1. For level 1, we can see from

Figure 2.8(b) that scalar correction hardly increases the GMI. It is interest-

ing to observe that correction with R1 = {Z1, Z2} yields the same I-curve

as scalar correction, whereas correction with R1 = {Z1, Z0} yields the same

I-curve as the optimum correction. For level 0, different correction functions

result in identical binary I-curves, as shown in Figure 2.8(a). These phe-

nomena can be explained from examining the labeling of signal points. To

avoid repetition, we only explain why knowing z0 helps to increase the GMI

at level 1, whereas knowing z2 does not. Consider the labeling bits at level

1. They are {0, 0, 1, 1, 1, 1, 0, 0} for the eight symbols from left to right. We

can divide the four labeling bits 1 into two groups: the outer two bits that

are adjacent to a bit 0, and the other two inner bits which are not. To better

approach the performance of the matched decoding, we should distinguish

if a received bit 1 is an outer bit or an inner bit. Indeed, additional knowl-

edge about z0 tells us if the received bit 1 at level 1 is an outer bit (when

z0 = −1) or not (when z0 = 1). On the other hand, knowing z2 would not

help. Similarly, the four labeling bits 0 can be divided into two groups, and

knowledge of z0, but not z2, helps to distinguish if the received bit 0 is an
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inner or an outer bit.

The BICM I-curve for scalar and the best of all metric-mismatch cor-

rections are included in Figure 2.8(d). For the latter, full vector correction

is only required for level 2, while scalar correction and reduced-dimensional

correction are sufficient at level 0 and level 1, respectively. The increase

in the GMI by scalar correction comes mostly from the effect of having all

the binary curves aligned at s = 1. Optimum correction results in a much

improved GMI of 1.40 bpcu, which is 93% of the GMI for matched BICM.

Throughput

Using the Raptor code from Example 2.1, the simulated average through-

put is shown in Figure 2.8(d) (markers without lines). We observe that the

throughput closely follows the associated GMIs if metric-mismatch correc-

tion is applied. In these cases, the GMI is achieved at s = 1. In the case

of hard detection metrics, the gap between GMI and simulated rate is sig-

nificantly larger. This phenomenon has also been observed in Figure 2.5.

It corroborates our discussion in Section 2.3.2 that, when sqX,Y > 1, the

achieved throughput by sum-product SBS decoding seems to be determined

by IqX,Y (1) rather than the GMI.

2.4.2 Noncoherent Carrier-Modulated Orthogonal

Signaling

Carrier-modulated orthogonal signaling (orthogonal modulation) with non-

coherent detection is attractive due to its low complexity detector imple-

mentation. This type of signaling, e.g. in the form of frequency shift-keying
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(FSK) and pulse-position modulation (PPM), has been used in scenarios

where coherent detection is impossible or expensive to employ. Examples of

such scenarios include fast fading environment and large Doppler spread in

military communications.

Transmission Model

An M -ary orthogonal transmit symbol can be represented by a vector x =

[x0 . . . xM−1] of M elements where only one element is one and all the others

are zero. Let h = a ejφ be the complex channel gain, and n be the length-M

complex AWGN vector with variance N0 per element. The received sample

is a length-M complex vector

y = a ejφ x+ n . (2.38)

Noncoherent detection requires only knowledge of the magnitude of the chan-

nel gain and received sample. The channel transition probability is [55]

pY |X(y|x) ∝ I0
(

2a|ye(x)|
N0

)
, (2.39)

where I0(·) is the zeroth order modified Bessel function of the first kind [56],

and |ye(x)| is the magnitude of the element of y at the position of the non-

zero element of x.
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Metrics

The matched LLR metric for noncoherent orthogonal modulation is

Λmatched
i (y) = ln

pY |Bi(y|0)

pY |Bi(y|1)

= ln

∑
x∈X 0

i

I0

(
2a|ye(x)|
N0

)
∑
x∈X 1

i

I0

(
2a|ye(x)|
N0

) , (2.40)

The popular max-log LLR metric is

Λmax−log
i (y) = max

x∈X 0
i

ln I0

(
2a|ye(x)|
N0

)
− max
x∈X 1

i

ln I0

(
2a|ye(x)|
N0

)
. (2.41)

Since both functions ln(·) and I0(·) are monotonic with positive input, the

max-log LLR can be presented as

Λmax−log
i (y) = ln I0

(
2a

N0
max
x∈X 0

i

|ye(x)|
)
− ln I0

(
2a

N0
max
x∈X 1

i

|ye(x)|
)
. (2.42)

That is, the detector can search for the maximum values of |ye(x)| before

computing ln I0(·).

We now consider metrics resulting from approximation to the function

ln I0(α) with positive α ∈ R as illustrated in Figure 2.9. When α is large,

I0(α) can be asymptotically approximated by eα/
√

2πα and ln I0(α) can be

approximated α. From (2.42), this approximation leads to a new LLR

Λa−max−log
i (y) =

2a

N0

(
max
x∈X 0

i

|ye(x)| − max
x∈X 1

i

|ye(x)|
)
. (2.43)
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Figure 2.9: Approximation to the function ln(I0(·)).

A similar metric has been considered in [57].

When α is small, I0(α) can be approximated by the first two terms in

its power series expansion 1 + α2/4, and ln I0(α) can be approximated by

α2/4. The corresponding LLR is

Λps−max−log
i (y) =

a2

N2
0

(
max
x∈X 0

i

|ye(x)|2 − max
x∈X 1

i

|ye(x)|2
)
. (2.44)

Metrics (2.43) and (2.44) require less computational complexity than the

max-log metric (2.42), which in turn is computationally cheaper than the

matched metric (2.40).

If we drop the factor 2a/N0 in (2.43) and a2/N2
0 in (2.44), we have the
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parameter-free metrics

Λpf−a−max−log
i (y) = max

x∈X 0
i

|ye(x)| − max
x∈X 1

i

|ye(x)| , (2.45)

Λpf−ps−max−log
i (y) = max

x∈X 0
i

|ye(x)|2 − max
x∈X 1

i

|ye(x)|2 . (2.46)

Both channel gain and noise power estimation are not needed in the cal-

culation of these metrics. This simplification further reduces the detection

complexity. The parameter-free power series max-log metric (2.46) has been

considered in [58] for BICM with iterative decoding (BICM-ID) [59,60].

Numerical Results

For orthogonal constellations, all levels have the same binary I-curves if the

same metric is applied. Thus, the BICM I-curve is simply m times the binary

I-curve of any level, and the BICM GMI is m times the binary GMI (2.19).

GMI: We consider the cases M = 4, 16, and 64 and AWGN and Rayleigh

fading channels. Figure 2.10 shows the BICM GMI with the matched met-

ric (2.40) and the five mismatched metrics (2.42), (2.43), (2.44), (2.45), and

(2.46) at different SNR values (defined as E{a2}/N0). It is interesting, and

perhaps surprising, to observe that all the five mismatched metrics attain

practically the same GMI across the whole SNR range. Furthermore, this

GMI is very close to that of the matched metric.

Throughput with SBS Decoding: Figure 2.11 shows the BICM I-curve

of the case M = 16 and AWGN channel at a moderate SNR of 6.35 dB,

where all mismatched metrics attain a GMI of 2.0 bpcu. The BICM I-
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Figure 2.10: BICM GMI of noncoherent orthogonal modulation.
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curve of the max-log (2.42), asymptotic max-log (2.43), power series max-

log (2.44), parameter-free asymptotic max-log (2.45), and parameter-free

power series max-log (2.46) peaks at s = 0.83, 0.77, 0.19, 6.6, and 3.5,

respectively. In comparison, the BICM I-curve of the matched metric (2.40)

has a slightly larger GMI and peaks at s = 1. Below the peak of each I-

curve, we present the average throughput obtained by simulation with the

Raptor code from Example 2.1 and sum-product SBS decoding. We see

that while the mismatched GMIs are the same, the throughputs are notably

different. Furthermore, for each of the two parameter-free metrics with

critical point of the I-curve greater than 1, the throughput is upper bounded

by IqX,Y (1). Following Section 2.3.2, we apply constant LLR scaling with

the factor 0.83, 0.77, 0.19, 6.6, and 3.5 to the metric (2.42), (2.43), (2.44),

(2.45), (2.46), respectively. Now, the scaled mismatched metrics achieve the

same throughput of 1.86 bpcu, which agrees with the corresponding GMI.

This throughput leaves just a small gap to the throughput of the matched

metric. Therefore, metric scaling appears to provide a very favorable trade-

off between complexity and effect of metric-mismatch correction. However,

we note that the factor for metric scaling is SNR-dependent, and thus the

seemingly parameter-free metrics lose advantage over their counterparts if

scaling is applied.

Next, we consider the throughput with max-product decoding. The re-

sults are also included in Figure 2.11. Mismatched metrics attain a through-

put of approximately 1.34 bpcu. The throughput seems to be determined

by the GMI alone. Although the throughput is lower than in the case of

sum-product decoding with metric scaling, the low detection complexity
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Figure 2.11: BICM I-curve and coded throughput of 16-ary noncoherent
orthogonal modulation over AWGN channel at SNR of 6.35 dB.

associated the parameter-free metrics is particularly attractive.

Similar phenomena are observed for the case M = 16, Rayleigh fading

channel, and SNR of 8.5 dB in Figure 2.12: (i) the mismatched metrics

achieve GMIs that are close to that of the matched metric; (ii) sum-product

decoding with metric scaling attains improved throughout; and (iii) the

combination of parameter-free metrics with max-product decoding is a low-

complexity option for noncoherent orthogonal modulation. We note an ex-

ception for the throughput of power series max-log metric with sum-product

decoding. It is expected to be larger than that of max-product decoding.
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Figure 2.12: BICM I-curve and coded throughput of 16-ary noncoherent
orthogonal modulation over Rayleigh fading channel at SNR of 8.5 dB.

However, the LLR values are often too large, cf. Figure 2.9, that they are

clipped by our decoder implementation to avoid numerical overflow, result-

ing in a reduced throughput.

2.4.3 Pulse-Position Modulation with Direct Detection

Our next example considers M -ary pulse-position modulation (PPM) with

intensity modulation and direct detection. It is a popular signaling scheme

for fiber and free-space optical communication, cf. e.g. [61]. Each M -ary
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PPM symbol is a vector x = [x0 . . . xM−1] with exactly one element equal

to 1 (on slot) and the others equal to 0 (off slots). We apply the photon-

counting channel model [61], by which the received vector is y = [y0 . . . yM−1]

and

yi = xiai + ni . (2.47)

The variables ai and ni are i.i.d. Poisson random variables with mean λs

and λb, respectively. The channel transition probabilities are given by

p(yi|xi) =
(λsxi + λb)

yi

yi!
exp (−[λsxi + λb]) , (2.48)

and p(y|x) =
∏M−1
i=0 p(yi|xi). It follows that

p(y|x) ∝
(

1 +
λs
λb

)yo(x)
, (2.49)

where yo(x) is the magnitude of the slot of y which corresponds to the on

slot of x. The matched LLR for PPM is

ΛpY |Bi (y) = ln

∑
x∈X 0

i

(
1 + λs

λb

)yo(x)
∑
x∈X 1

i

(
1 + λs

λb

)yo(x) . (2.50)

The simplified max-log metric is

ΛqBi,Y (y) =

(
max
x∈X 0

i

yo(x)− max
x∈X 1

i

yo(x)

)
ln

(
1 +

λs
λb

)
, (2.51)

which has considerably lower computational complexity than (2.50).
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Figure 2.13: BICM GMI for decoding with matched metric and max-log
metric, and IqX,Y (1) for max-log metric. 64-PPM transmission over Poisson
channel. Background radiation has mean λb = 0.2 photon/slot.

Similar to the carrier-modulated signaling schemes in Section 2.4.2, PPM

constellations are orthogonal and thus, the BICM I-curve and GMI are m

times the binary I-curve and GMI of any level if the same metric is ap-

plied at all levels. Figure 2.13 shows the GMI of matched metric (2.50)

and max-log metric (2.51) as a function of the SNR for the example of 64-

PPM and λb = 0.2 [62]. We observe only a relatively small gap between

the two GMIs. This suggests that the max-log metric (2.51) could be ap-

plied with little loss in the achievable rate. Also included in Figure 2.13 is

IqX,Y (1) for the max-log metric, for which a notable gap to the correspond-
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ing mismatched GMI can be seen, especially at low SNR values. Following

the discussion in Section 2.3.2, we expect that scaling the max-log LLR

such that the critical point is shifted to 1 should be applied to improve

the performance of sum-product decoding. This prediction is confirmed

by the results presented in Figure 2.14 for an example SNR of −8 dB. It

shows the I-curves for matched, max-log, and scaled max-log metric with

the scaling factor c = sqX,Y = 0.56, together with simulated throughputs

for sum-product and max-product decoding. The throughput figures are

obtained from simulation using the same Raptor code as in Example 2.1.

We observe that the simulated throughput using sum-product decoding well

approaches the associated GMI for matched metric. For the max-log met-

ric, however, the gap between throughput and GMI is considerably larger.

With scaling, the throughput accomplished with sum-product decoding is

significantly improved to 1.96 bpcu compared to 1.74 bpcu without scal-

ing. More specifically, the gap between throughput and GMI is closed by

60%. Finally, the performance of max-product decoding is notably inferior

to sum-product decoding and, as expected, is not changed by scaling.

2.4.4 MIMO-QAM with Clipped Max-Log Metric

The final illustration of BICM with mismatched decoding metric and metric-

mismatch correction uses the example considered in [24, Sec. IV]. The trans-

mission system is a 2 × 2 multiple-input multiple-output (MIMO) system

with 16-ary quadrature amplitude modulation (16-QAM) and Rayleigh fad-

ing channels, and the average SNR is fixed to 9.13 dB. Furthermore, the

BICM demodulator uses the max-log metric and the max-log LLR is clipped
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Figure 2.14: BICM I-curve and simulated rates. Matched, max-log, and
scaled max-log metric with the scaling factor c = sqX,Y = 0.56. The bul-
let markers show simulated rates using a Raptor code and sum-product
and max-product decoding. 64-PPM over Poisson channel at SNR of
10 log10(λs/(Mλb)) = −8 dB and λb = 0.2 photon/slot.

to the range [−2,+2]. LLR clipping is helpful to reduce complexity in list-

based detection [51]. It has been shown in [24, Sec. IV] that the optimum

scalar correction (2.37) improves the GMI and the bit-error rate (BER) per-

formance of the coded scheme. In this section, we also consider LLR scaling

and a hybrid scalar correction as explained below.

We assume a binary reflected Gray labeling for the 16-QAM symbols.

The 2× 2 MIMO system with 16-QAM has in total m = 8 binary levels, of

which four are equivalent to level 0 and four to level 1. Hence, we only need
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to consider those two levels when showing results. Figure 2.15(a) presents

the I-curves of the levels with matched and clipped max-log metrics. The

curves for the matched metrics serve as an upper bound and will be used to

gauge the success of mismatched-metric manipulation. It can be seen that

the two binary I-curves for the clipped max-log metric are misaligned. We

expect that scaling to align them at s∗ = 1 will increase the BICM GMI

and improve sum-product decoding performance. The BICM GMI curves

for matched, clipped max-log, and scaled clipped max-log metric are shown

in Figure 2.15(b). Also included are simulated throughputs, again using

the Raptor code from Example 2.1 with sum-product decoding. We observe

that, for clipped max-log with sqX,Y = 1.50 > 1, the throughput seems to

be upper bounded by IqX,Y (1). This might explain the large gap between

the BER curve and the GMI limit of the uncorrected LLR in [24, Fig. 2(b)].

Metric scaling aligns the binary I-curves at s∗ = 1 and leads to an improved

GMI. While the GMI increase is only slightly, the throughput improvement

is much more significant.

Applying the optimum scalar metric-mismatch correction (2.37), also

considered in [24, Sec. IV], [51, Sec. V], further improves both the GMI and

the performance with sum-product decoding. At the same time, it is more

complex than scaling as the correction requires table look-up and interpo-

lation (see also the plot of the scalar correction function in Figure 2.16 and

the discussion below). Noting that metric scaling treats all values ΛqBi,Y (y)

the same, even though the two extreme values −2 and +2 would warrant a

special consideration, we propose the following hybrid metric manipulation
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for this particular case:

Λq′Bi,Y
(y) =


ln

pZi|Bi (zi|0)
pZi|Bi (zi|1)

, if zi = ±2

cizi , otherwise .

(2.52)

That is, the two extreme LLR values are mapped as in the optimum scalar

correction, and the immediate values are scaled with a factor such that the

resulting I-curve peaks at s = 1. This correction function is indeed a good

approximation of the optimum scalar correction for the symmetric channel

at level 1. However, this is not the case for the asymmetric channel at level 0.

Hence, we apply channel symmetrization according to [40] as discussed in

Example 2.1 before using the hybrid rule (2.52). The different metric ma-

nipulations are plotted in Figure 2.16. From Figure 2.15, we observe that

hybrid manipulation results in I-curves and throughput performances that

are practically identical to those achieved with optimum scalar correction.

Considering its simpler implementation, this hybrid metric manipulation

would be the method of choice for this application example.

2.5 Conclusion

We have studied BICM with mismatched decoding metrics. We adopted

the GMI as a pertinent performance measure and showed that scaling of

logarithmic bit-metrics can improve the BICM GMI. We also suggested and

provided numerical evidence that metric scaling also improves throughput

in practical coding schemes using SBS decoding, even if the GMI remains
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unchanged. Furthermore, we studied general mismatched metric correc-

tion methods, including a previously proposed scalar correction. We pre-

sented a number of practically relevant applications in which mismatched

demodulation occurs, and our numerical results highlighted the benefits and

performance-complexity trade-offs for the different metric-mismatch correc-

tion approaches.
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Chapter 3

Multilevel Coding:

Reduced-Layer, General

Decoding Metrics, and

Rateless Transmission

MLC enables the combination of binary ECC with multilevel constella-

tions [4, 5]. It can achieve the same rate as coded transmission with non-

binary codes. In comparison, BICM also combines binary ECC with multi-

level constellations, but in a simpler layout with just one instead of several

coding layers and decoding stages as in MLC. The disadvantage of BICM

over MLC is some rate loss. This loss can be small with Gray mappings [53]

and thus, BICM has been widely employed in practice. Nevertheless, there

are important cases where Gray mapping does not exist, or loses its relevance

when the Euclidean-distance neighborhood of signal points is changed by the

channel. For these cases, MLC might considerably outperform BICM. Ex-

amples of such cases are multiple-input multiple-output (MIMO) signaling

and orthogonal modulation. In this chapter, we present a number of contri-

54



Chapter 3. Multilevel Coding

butions to the development of MLC. Our contributions can be grouped into

three sections as follows.

Conventional MLC requires as many coding layers (and thus encoder-

decoder pairs) as the number of levels. In Section 3.1, we introduce the

general scheme of reduced-layer MLC (RL-MLC) which can decrease the

number of coding layers with a trade-off to the achievable rate. RL-MLC is

a generalization of a previous work [12]. Conventional MLC and BICM are

special cases of RL-MLC where the number of layers equals the number of

levels and one, respectively2.

In Section 3.2, we consider the use of general decoding metrics in MLC3.

We show that, for any metric, the maximum achievable rate of MLC equals

the sum of the maximum achievable rates of the layers. Furthermore, these

layer rates can be estimated separately with the assumption that estimated

data from lower layers is always correct. We then view each layer as a BICM

scheme and adopt the results as presented in Chapter 2 for BICM into the

MLC case. In particular, we use the GMI as an indication of the maximum

achievable rate, and apply metric manipulations to improve the performance

of MLC.

Recently, the notion of rateless transmission has gained much attention

in the communications community, e.g., [13, 37]. In the context of MLC,

rateless transmission offers at least two attractive features. Firstly, it would

2We would like to stress the difference between “level” and “layer.” Each level corre-
sponds to a bit position in the labels of the signal points. Each layer corresponds to an
encoder-decoder pair, and may be comprised of one or multiple levels.

3Henceforth, without further clarification, by “MLC” we to refer to the general RL-
MLC scheme. When the reduced-layer nature is material in a discussion, we will make it
explicit.
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eliminate the need for carefully tailoring code rate for each layer, e.g. ac-

cording to the capacity design rule [5, Sec. IV-A]. Secondly, for transmission

over time-varying channels, rateless codes seamlessly adapt to the instanta-

neous channel quality and attain a larger average throughput compared to

channel adaptation by switching between fixed-rate codes. In Section 3.3,

we propose a novel rateless MLC scheme, which is compatible with any de-

coding metric and requires only one binary rateless code. We illustrate that

combining rateless codes with MLC is not as straightforward as it is with

BICM, and that a careless combination might lead to a considerable rate

loss compared to fixed-rate MLC. We distinguish between coding loss due

to the imperfectness of the code, and structural loss due to the structure

of MLC. In our proposed scheme, the structural loss is non-zero only in so-

called unstable systems. The stable or unstable nature of a rateless MLC

scheme depends on the relationship between achievable rates of the layers.

We illustrate that structural loss can be largely alleviated by controlling the

acknowledgment delay from the receiver, and in practice a simple minimum

segment-length (MSL) control rule can be effective enough in reducing this

loss and maintaining the rate advantage of MLC.

Application of our contributions to MIMO and orthogonal modulation

systems are presented in Section 3.4. Section 3.5 completes the chapter with

concluding remarks.

56



3.1. Reduced-Layer MLC

MAP channel

E2

E1

E0 D0

D1

D2

x y

b0

b1

b2

b̂0

b̂1

b̂2

Figure 3.1: Example of conventional MLC.

3.1 Reduced-Layer MLC

We consider a discrete-time memoryless channel with transmit symbol X ∈

X and received symbol Y ∈ Y. Let M = 2m be the cardinality of X and

B0, . . . , Bm−1 be the random variables of the labeling bits. The concept

of reduced-layer MLC is best described by an example. Figure 3.1 shows

the diagram of conventional MLC [5] with an 8-ary constellation. At the

transmitter, there are m = 3 independent binary encoders E0, E1, and E2

which produce encoded bits for the mapper. At the receiver, there are three

binary decoders working in three consecutive stages. In the first stage,

estimation of b0 is based on the channel output y alone. In the second stage,

estimation of b1 is based on the channel output y and b̂0 (the estimated

value b0). Finally, in the third stage, estimation of b2 is based on y, b̂0, and

b̂1.

In conventional MLC, the number of coding layers is equal to the number

of labeling bits. For large constellations, this structural complexity becomes

cumbersome. In reduced-layer MLC, we combine several layers into one, as

in BICM. For example, we can reduce the number of coding layers from three
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Figure 3.2: Two examples of reduced-layer MLC.

to two as in Figure 3.2. In Figure 3.2(a), layer 1 and 2 are combined into a

single layer. In Figure 3.2(b), layer 0 and 1 are combined. Given the number

of levels m and the number of layers κ < m, there are κ!S(m, k) possible

combinations, where S(m, k) is the Stirling number of the second kind. For

the best throughput performance, we want to choose the configuration which

yields the largest achievable rate. Rate analysis for reduced-layer MLC is

presented in Section 3.2. Full enumeration to find the best configuration is

possible for small κ, which is typically the design goal. In many cases, we

can also expedite the search by exploiting special properties of the signaling

scheme, as in Example 3.1 below.
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3.2 Multilevel Coding with General Decoding

Metrics

In this section, we first establish that the MLC achievable rate can be ex-

pressed in terms of the achievable rates of the layers. Applying this result,

we then focus on the transmission over each MLC layer and provide expres-

sions for the per-layer GMI. Based on these expressions, we propose metric-

mismatch correction technique for MLC. The latter two contributions are

an extension of the results in Chapter 2 to the MLC case.

3.2.1 Achievable Rates

Given a detection rule, we say the rate C is achievable if for any ε > 0 and

sufficiently large N , there exists a code C(N ′, R) of length N ′ ≥ N and rate

R ≥ C and a decoding algorithm D such that the block error probability

is less than or equal to ε, cf. [34, Ch. 5], [63, Ch. 10]. We say C is the

maximum achievable rate if it is the tightest upper bound on achievable

rates.

We have the following theorem regarding achievable rates of MLC.

Theorem 3.1. Given a detection rule, let Ck be an achievable rate of the k-

th layer given decoding decisions from lower layers are correct, k = 0, . . . , κ−

1. The MLC scheme achieves rate C =
∑κ−1

k=0 Ck. Furthermore, if each Ck is

the maximum achievable rate of layer k, then C is the maximum achievable

rate of the MLC scheme.

Proof. We first show achievability. Let Ck and mk be an achievable rate
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and the number of levels (bits) in layer k, respectively. That is, in layer k,

conditioned on correct decoding at all lower layers 0, . . . , k−1, for any εk > 0

and large enough N , there exists a code Ck(mkN
′, Rk) of length mkN

′ > N

and rate Rk ≥ Ck and a decoding algorithm Dk such that the block error

probability Pk ≤ εk. MLC with these codes has rate R ≥ C =
∑κ−1

k=0 Ck.

Furthermore, the block error probability of MLC is upper bounded by [64,

Inequality 4.1]

P ≤
κ−1∑
k=0

Pk ≤
κ−1∑
k=0

εk = ε . (3.1)

Hence, rate C is achievable.

Now let Ck be the maximum achievable rate for each layer k and C =∑κ−1
k=0 Ck. Transmission with rate R > C by the MLC scheme requires that

at least one layer, say k′, has to transmit with rate Rk′ > Ck′ . Hence, there

exists an ε > 0 such that for any code and decoding algorithm at this layer,

the block error probability is Pk′ > ε. Since

P ≥ Pk ∀k , (3.2)

C is the maximum achievable rate for MLC.

We have the following remarks. Firstly, as the theorem makes no as-

sumptions about detection rules being matched to the channel transition

probabilities, it can be applied to mismatched decoding in the layers. Sec-

ondly, Theorem 3.1 allows us to consider each layer separately without con-

cerning about error propagation when estimating achievable rates and when

manipulating mismatched metrics to increase these rates.
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Figure 3.3: MLC transmitter and receiver.

3.2.2 Per-Layer Transmission and GMI

Since the maximum achievable rate of a mismatched decoding scheme is not

known in general [65], we follow recent literature on BICM [8,9] and use the

GMI as an approximation to the layer maximum achievable rate.

An m-level, κ-layer MLC configuration can be described by a length-m

vector h = [h0 . . . hm−1] with hi ∈ {0, . . . , κ − 1} and hj ≤ hi if j < i. The

element hi = k indicates that level i is in layer k. The MLC transmitter

with κ independent binary encoders is presented in Figure 3.3(a). The corre-

sponding MLC receiver with κ binary decoders is presented in Figure 3.3(b).

Let Vk be the multivariate random variable of the labeling bits at layer k.
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That is, the elements of Vk are {Bi : hi = k}. In Vk and other multivariate

random variables below, we assume that the binary random variables {Bi :

hi = k} are ordered by their index i. At the receiver, the detection of Bi

depends on the received symbol Y and the estimated value of bits from lower

layers. Let Di denote the multivariate random variable of these lower-layer

bits, i.e., the elements of Di are {Bj : hj < hi}. Furthermore, let bi(X) and

di(X) denote the value of Bi and Di corresponding to the transmit symbol

X. In conventional MLC where each level is put in a separate layer, h =

[0 . . .m − 1] and Di = [B0 . . . Bi−1]. In BICM where all levels are grouped

into one layer, h = 01×m and Di = ∅. Let Uk be the multivariate random

variable of all lower-layer bits common to all levels at layer k. The elements

of Uk are {Bj : hj < k}. For the scheme in Figure 3.2(a), h = [0 1 1],

V0 = [B0], V1 = [B1 B2], U0 = D0 = ∅, and U1 = D1 = D2 = [B0].

The detector calculates bit metrics of the general form qBi,Y,D̂i(b, y, d)

for Bi based on the received sample y ∈ Y and estimated data from lower

layers d ∈ B|Di|, B = {0, 1}. We assume qBi,Y,D̂i(b, y, d) > 0, ∀ b ∈ B, y ∈ Y,

and d ∈ B|Di|. The corresponding LLR is defined as

ΛqBi,Y,D̂i
(y, d) , ln

qBi,Y,D̂i(0, y, d)

qBi,Y,D̂i(1, y, d)
. (3.3)

For all levels i at layer k, we have Di = Uk. Thus, qBi,Y,D̂i(b, y, d) can also

be written as qBi,Y,Ûk(b, y, u). The layer metric is defined as

qVk,Y,Ûk(v, y, u) =
∏
i:hi=k

qBi,Y,Ûk(b, y, u) , (3.4)
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with v ∈ B|Vk| and u ∈ B|Uk|.

From Theorem 3.1, in the following calculations we assume that the

estimated data from lower layers is always the same as transmitted. That

is, we use Di instead of D̂i, and Uk instead of Ûk. For the i-th level and bit

metric qBi,Y,Di(b, y, d), the binary I-curve is defined as

IqBi,Y,Di (s) , −EBi,Y,Di

{
log
∑
b∈B

pBi(b)

[
qBi,Y,Di(b, Y,Di)

qBi,Y,Di(Bi, Y,Di)

]s}
(3.5)

= −EX,Y
{

log
∑
b∈B

pBi(b)

[
qBi,Y,Di(b, Y, di(X))

qBi,Y,Di(bi(X), Y, di(X))

]s}
.(3.6)

With uniform input, the binary I-curve can be expressed in terms of the

LLR as, cf. (2.20)

IqBi,Y,Di (s) = 1− EX,Y
{

log(1 + exp(− sgn(bi(X))ΛqBi,Y,Di (Y, di(X))s)
}
.

(3.7)

The binary GMI of the level is the peak value of this curve,

Igmi
qBi,Y,Di

, max
s>0

IqBi,Y,Di (s) . (3.8)

For matched metrics, i.e., when qBi,Y,Di(b, y, d) is proportional to the tran-

sition probability pY |Bi,Di(y|b, d), the binary I-curve peaks at s = 1 and the

GMI equals the average mutual information I(Bi;Y |Di).

The layer I-curve corresponding to the layer metric qVk,Y,Uk(v, y, u) is
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defined as

IqVk,Y,Uk (s) , −EVk,Y,Uk

log
∑

v∈B|Vk|
pVk(v)

[
qVk,Y,Uk(v, Y, Uk)

qVk,Y,Uk(Vk, Y, Uk)

]s
= −EX,Y

log
∑

v∈B|Vk|
pVk(v)

[
qBi,Y,Di(v, Y, uk(X))

qBi,Y,Di(vk(X), Y, uk(X))

]s . (3.9)

As in Section 2.2.3, the layer I-curve can be shown to be equal to the sum

of the binary I-curves of the levels,

IqVk,Y,Uk (s) =
∑
i:hi=k

IqBi,Y,Di (s) . (3.10)

The layer GMI is the peak value of this layer I-curve,

Igmi
qVk,Y,Uk

, max
s>0

IqVk,Y,Uk (s) . (3.11)

By Theorem 3.1, the MLC scheme achieves a rate equal to the sum of the

layer GMIs. For convenience, we call this rate the MLC GMI. We note that

Theorem 2.1 is also applicable to the per-layer MLC transmission. That

is, layer GMI (3.11) is less than or equal to the sum of the binary GMIs

(2.19) in that layer. Equality is achieved if and only if the binary I-curves

are harmonic.

Example 3.1. We consider IM-DD PPM transmission as in Section 2.4.3.

Given the number of levels m and the number of layers κ, we want to

find the MLC configuration which yields the largest MLC GMI. Due to

the orthogonality of the PPM constellation, all levels in the same layer will
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3.2. Multilevel Coding with General Decoding Metrics

have the same binary I-curve if the same metric is applied. Let Igmi(i) be

the binary GMI of level i when the lower-layer bits are Di = [B0 . . . Bi−1].

Furthermore, let mk be the number of levels at layer k. The MLC GMI is

then equal to

Igmi =
κ−1∑
k=0

mkI
gmi

(
k−1∑
i=0

mi

)
. (3.12)

Thus, we only need to obtain at most m binary GMI values Igmi(0), . . . ,

Igmi(m− 1) in order to calculate the GMI of any MLC configuration.

We consider 128-PPM (hencem = 7) with background radiation λb = 0.2

photons/slot and matched LLR

ΛqBi,Y,D̂i
(y, d) = ln

∑
x∈X d,0di,i

pY |X(y|x)

∑
x∈X d,1di,i

pY |X(y|x)
, (3.13)

= ln

∑
x∈X d,0di,i

(
1 +

λs
λb

)ye(x)
∑

x∈X d,1di,i

(
1 +

λs
λb

)ye(x) , (3.14)

where the notation X d,0di,bi
(X d,1di,bi

) denotes the set of x that has the labeling

bits di(x) = d and bi(x) = 0 (bi(x) = 1). The GMI of conventional MLC,

BICM, 2-layer MLC specified by h = [0 0 0 0 1 1 1], and 3-layer MLC

specified by h = [0 0 0 1 1 2 2] are plotted in Figure 3.4. We recall

h = [0 0 0 0 1 1 1] indicates that the lower four levels are grouped into

layer 0 and the remaining three levels are grouped into layer 1. Similarly,
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Figure 3.4: GMI of conventional MLC, BICM, and 2-layer MLC for 128-
PPM over Poisson channel with λb = 0.2.

h = [0 0 0 1 1 2 2] indicates that the lowest three levels are groups into layer

0, the next two levels are grouped into layer 1, and the highest two levels are

grouped into layer 2. The plots show that conventional MLC can outperform

BICM by a large GMI gap. MLC with only two layers can close this GMI

gap by more than a half. MLC with three layers further narrows the gap.

Thus, reduced-layer MLC enables a trade-off between the achievable rate

and the number of decoding layers.
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3.2.3 Metric-Mismatch Correction

Metric-mismatch correction methods from Table 2.1 can be extended to the

MLC case. In particular, metric scaling

Λq′
Bi,Y,D̂i

(y, d) = sqBi,Y,DiΛqBi,Y,D̂i
(y, d) (3.15)

can be applied to improve the GMI and throughput performance with sum-

product SBS decoding in each layer, where sqBi,Y,Di is the critical point of

IqBi,Y,Di (s). We would like to stress that the scaling factor sqBi,Y,Di in (3.15)

is obtained without consideration of possible errors at lower layers.

3.3 Rateless Multilevel Coding

Having discussed achievable rates and metric mismatch correction in MLC,

we proceed by presenting our novel rateless MLC scheme. After the de-

scription, we provide an operation analysis and develop a control technique

to reduce the structural rate loss of rateless MLC when necessary. Our

scheme is compatible with any mismatched metric, metric-mismatch correc-

tion method, and decoding algorithm in the layers. Following Theorem 3.1

and for generality, we continue using the notations Ck, k = 0, . . . , κ − 1,

and C =
∑κ−1

k=0 Ck to denote the maximum achievable rates of the layers

(assuming there is no error from lower layers) and of MLC, respectively. We

will resort to the GMI as an approximation for maximum achievable rates

again when showing numerical results in Section 3.4.
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3.3. Rateless Multilevel Coding

3.3.1 Encoding and Decoding

In rateless BICM, the binary encoder takes in a fixed-length block of mes-

sage bits and continuously produces coded bits, which are mapped to trans-

mit symbols. The receiver can produce metric samples immediately after

each received symbol. These metric samples are accumulated until they

can provide enough information for successful decoding. At this point, the

receiver acknowledges the transmitter and the transmitter switches to a

new message block, cf. [13]. In this manner, rateless codes combine forward

ECC with automatic repeat-request (ARQ), and hence realize a hybrid ARQ

scheme [66]. We now consider a “naive” combination of rateless coding and

MLC, in which the encoder-decoder pair at each layer (see Figure 3.3) is

simply implemented in a rateless fashion. At layer 0, metric samples be-

come available to the decoder immediately after each received symbol, as in

rateless BICM. However, at any upper layer k > 0, the decoder collects sym-

bol samples and waits for estimated data from lower layers to arrive. Only

then, bit metrics can be calculated. The estimated data from lower layers

does not become available immediately after each received symbol, but in

large blocks. Thus, by the time this data is available and bit metrics are

calculated, the collection of bit metrics at layer k may have already accumu-

lated more information than necessary for successful decoding. This means

that layer k is underutilized and the exceeding channel uses are wasted as

rate loss. It is only at the lowest layer that we are able to collect just-enough

information for successful decoding and avoid this underutilization.

The above observation leads us to propose the following scheme. The
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Figure 3.5: Rotation rateless MLC transmitter and receiver. Stream redi-
rection occurs at switching to a new interval.

transmitter employs κ binary rateless encoders Ek, k = 0, . . . , κ− 1. In the

naive combination above, output from encoder Ek is always mapped to layer

k. In our proposed scheme as illustrated in Figure 3.5(a), output from Ek is

mapped to different layers at different time intervals. More specifically, Ek

cyclically directs its output through layers (κ − 1), (κ − 2), . . . , 0 during κ

time intervals t− (κ− 1), t− (κ− 2), . . . , t. Each time interval corresponds

to the transmission of a number of symbols. The number of symbols in each
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time

(b)

(a)

layer 0
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ℓ[t− 1] ℓ[t]
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C1 C0Cκ−2
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Cκ−1

layer κ− 2
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Figure 3.6: (a) Information segments at the receiver. Segments with the
same shading belong to the same codeword of a binary encoder-decoder
pair. White segments are already decoded information. Segments may have
different lengths. Among the κ binary decoders, during any time interval,
only the one that is collecting information from layer 0 attempts to decode.
(b) Each binary encoder-decoder pair experiences a time-varying channel
with different interval maximum achievable rates Ci, i = 0, . . . , κ− 1.

interval might vary from one interval to another, and is discussed in detail

below.

The corresponding receiver is shown in Figure 3.5(b). Each binary de-

coder Dk, k = 0, . . . , κ − 1, collects information from all layers, starting

from the highest layer κ− 1 and ending at the lowest layer 0. The decoders

attempt to decode only when collecting information from layer 0. Thus, dur-

ing any time interval, among the κ decoders, only the one decoder collecting

information from layer 0 attempts to decode.

Figure 3.6(a) shows the information segments at the receiver over κ time
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3.3. Rateless Multilevel Coding

intervals. Suppose some decoder Dk is collecting information from layer 0

during interval t. This decoder has also collected information segments

from layers (κ − 1), . . . , 1 in the preceding (κ − 1) intervals. When Dk

gathers that it might have accumulated enough information, it makes a

decoding attempt. If decoding fails, Dk continues to collect information

from layer 0, and attempts decoding again. Eventually, decoding will be

successful, which marks the end of this time interval. The receiver then sends

an acknowledgment to the transmitter. Upon receiving the acknowledgment,

the transmitter: (i) changes the input of the corresponding encoder Ek to

a new message block, and (ii) re-maps the encoded bit streams to different

layers in the cyclical manner illustrated in Figure 3.5(a). That is, the stream

that was mapped to layer k is now mapped to layer (k−1), for k = 1, . . . , κ−

1, and the stream that was mapped to layer 0 is now mapped to layer κ− 1.

In the next time interval t + 1, the decoders will collect information from

different layers, corresponding to this new streaming. From the viewpoint

of a fixed encoder-decoder pair (Ek,Dk), the overall channel is segment-

wise time varying. Each segment is associated with a different maximum

achievable rate. This is illustrated in Figure 3.6(b).

The proposed scheme requires an initialization. This can be seen in

Figure 3.6(a), where white segments represent already decoded informa-

tion. Therefore, at the start of the transmission session, the transmitter

sends some preamble data that is known to the receiver in the correspond-

ing segments. This preamble transmission appears only once and thus the

associated rate loss will be negligible for sufficiently long sessions.

71



3.3. Rateless Multilevel Coding

3.3.2 Operation Analysis and Control

As shown in Figure 3.6, let `[t] ≥ 0 be the number of transmit symbols

during time interval t. While `[t] is an integer number, for simplicity we let

`[t] assume real values in the following analysis; the effect of this relaxation

becomes negligible for long codewords. By the end of time interval t, one

codeword has been successfully decoded. We distinguish three variables

related to the transmission of this codeword: K[t] is the number of bits

in the message block taken by the encoder, θ[t] is the nominal amount of

information collected by the receiver, i.e.,

θ[t] =
κ−1∑
k=0

Ck`[t− k] , (3.16)

and finally, ν[t] is the minimal amount of information sufficient for successful

decoding. Since we assume successful decoding, we have ν[t] ≤ θ[t].

We call a binary rateless code ideal if ν[t] = K[t]. Practical codes,

e.g. Raptor codes [13], require positive overheads and thus have a positive

average (ν[t] −K[t]). We call this value the coding loss as it measures the

required overhead of the code. The difference between θ[t] and ν[t] is due

to the MLC structure. We therefore call the average of (θ[t] − ν[t]) the

structural loss. The total rate loss of an MLC scheme, i.e., the gap between

the average throughput and C, is the sum of its coding and structural loss.

If successful decoding does not occur at the start of the interval when

`[t] = 0, we can collect just enough additional information with `[t] > 0

and terminate decoding such that θ[t] = ν[t]. That is, no structural loss

occurs. However, if successful decoding is possible at `[t] = 0, we have likely
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accumulated more than enough information and wasted channel resources.

Therefore, if `[t] varies around an equilibrium length and `[t] > 0, we assume

that the transmission has no structural loss. In the following we will elabo-

rate on this equilibrium length and the conditions under which the system

is stable, that is, when `[t] automatically converges to and remains around

the equilibrium length.

Equilibrium Length

For simplicity, we assume that K[t] = K, which means that all encoders

always take in message blocks of the same length. This also means that all

the κ binary encoder-decoder pairs can use the same binary rateless code.

Let n[t] be a vector of (κ − 1) non-negative previous transmission lengths

that represents the receiver state at the beginning of interval t,

n[t] =
(
`[t− (κ− 1)] . . . `[t− 1]

)T
.

In systems with no structural loss, we have θ[t] = ν[t]. From (3.16), for

t ≥ tinitial = 0, the state evolves according to the linear time-invariant state-

space equation

n[t+ 1] = An[t] + bν[t] , (3.17)

with

A =



0 1 . . . 0

...
...

...
...

0 0 . . . 1

−Cκ−1

C0
−Cκ−2

C0
. . . −C1

C0


and b =



0

...

0

1
C0


.
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Let ν̄ be the mean value of ν[t]. We call the solution of the equation

n[t+ 1] = An[t] + bν̄ , (3.18)

the equilibrium point. This equilibrium point is found as

ne = ν̄(Iκ−1 −A)−1b = `e1(κ−1)×1 , (3.19)

where `e is the equilibrium length

`e =
ν̄∑κ−1

i=0 Ci
=
ν̄

C
, (3.20)

and 1(κ−1)×1 and Iκ−1 is the all-one column vector of length κ− 1 and the

identity matrix of size (κ− 1)× (κ− 1), respectively. We observe that:

• If ν[t] is a constant, i.e. ν[t] = ν̄, once at the equilibrium point, the

system stays there.

• With ideal codes, i.e. ν[t] = K, once at the equilibrium point, the

system stays there and suffers zero total loss. Thus, with ideal codes,

we can achieve a throughput equal to C.

Stable Systems

The system is stable if the eigenvalues of the matrix A in (3.17) lie inside the

unit circle in the complex plane. In this case, the state n[t] will automatically

hover around the equilibrium point ne. Then, the interval length `[t] stays

close to `e and is positive, so that θ[t] = ν[t] holds and the transmission has
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zero structural rate loss. For stable systems, the only loss with respect to C

is the coding loss and our proposed MLC scheme is a rate-optimal way of

combining binary rateless codes and multilevel constellations.

The eigenvalues of A are the roots ri of the polynomial

U(z) = 1 +
C1

C0
z−1 +

C2

C0
z−2 + . . .+

Cκ−1
C0

zκ−1 . (3.21)

There are several methods to determine whether |ri| < 1 for all roots of

(3.21) [67, Ch. 4.5]. For the special cases of κ = 2 and κ = 3 layers, we can

make the criteria for stability explicit:

• κ = 2: U(z) = 1 + C1
C0
z−1, and the root r1 = −C1/C0 lies inside the

unit circle if and only if C0 > C1. In other words, a two-layer scheme

is stable if the lower layer has larger maximum achievable rate than

the upper layer.

• κ = 3: U(z) = 1+ C1
C0
z−1+ C2

C0
z−2, and the two roots r1,2 = 1

2C0
(−C1±√

C2
1 − 4C0C2) lie inside the unit circle if and only if (C0 > C2 and

C0 + C2 > C1).

Unstable Systems

If the linear system (3.17) is unstable, the interval length `[t] would oscillate

with increasing amplitude. Due to the constraint `[t] ≥ 0, the length `[t]

will eventually swing between zero and some extreme values. This behavior

is illustrated in Figure 3.7 for the example of κ = 3, C0 = 1, C1 = 1.7,

C2 = 1.3, and thus C = 4 bit per channel use (bpcu), ν[t] = K for all t (the
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Figure 3.7: Interval length `[t] of an unstable system.

binary code is ideal), and the initial state n[0] = (K/C)[1.0 1.2]T . At large

values of t, the system settles into the following pattern: there is one long

interval of length K, followed by two intervals of length zero. In the long

interval, one codeword is decoded with all samples from layer 0. In the next

interval, one codeword is decoded with all samples from layer 1 and no more

samples from layer 0 are needed (hence, the interval length is 0). Similarly,

the next codeword is decoded with all samples from layer 2. Even though the

rateless code is ideal, the system achieves a data rate of only 3 bpcu, which

is well below C. This behavior calls for a control mechanism to minimize

the structural loss for unstable systems.
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Control for Unstable Systems

The receiver can delay sending the acknowledgment to the transmitter after

successful decoding. By controlling this delay, we can reduce the structural

loss. To illustrate the potential of such a control, we consider a scenario

where we can predict the values of ν[t] in a near future. Suppose that at

the beginning of time interval τ , the receiver state is n[τ ], and we predict

the values of ν[t] over the finite time horizon T to be ν[τ ], . . . , ν[τ + T − 1].

Beyond this horizon, we extrapolate that ν[t] equals to the average of the

predicted values ν̄[τ ], given by

ν̄[τ ] =
1

T

τ+T−1∑
t=τ

ν[t] . (3.22)

We observe from Eqns. (3.17) to (3.20) that, if ν[t] remains constant as

ν[t] = ν̄[τ ] for t ≥ τ +T , the transmission suffers no structural loss if all the

segment lengths equal ν̄[τ ]/C. Therefore, we want to settle into the state

`[t] = ν̄[τ ]/C for t ≥ τ + T . We end up having an extended control period

from τ to τ + T + κ− 2 with the desired ending state

`[τ + T ] = . . . = `[τ + T + κ− 2] =
ν̄[τ ]

C
. (3.23)

For the period [τ, τ + T − 1], we plan the lengths `[τ ], . . . , `[τ + T − 1] to

minimize the structural loss. The initial amount of information stored at

the receiver at the beginning of time interval t = τ (the initial information
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inventory) is

Ibeginning =
κ−1∑
k=1

κ−1∑
j=k

Cj`[τ − k] . (3.24)

The ending information inventory at the end of time interval τ + T + κ− 2

(or beginning of the time interval t = τ + T + κ− 1), is

Iend =

κ−1∑
k=1

κ−1∑
j=k

Cj
ν̄[τ ]

C
. (3.25)

During the control period, the total amount of arriving information is

C
∑τ+T+κ−2

t=τ `[t], and we spend
∑τ+T+κ−2

t=τ ν[t] to successfully decode T +

κ− 1 codewords. The structural loss is therefore

Istructural loss = C

τ+T+κ−2∑
t=τ

`[t]−
τ+T+κ−2∑

t=τ

ν[t] + Ibeginning − Iend . (3.26)

Since the beginning and ending receiver state are fixed, the structural loss

is minimized if
∑τ+T−1

t=τ `[t] is minimized. Planning the segment lengths can

then be stated as the following linear programming (LP) problem:

{ˆ̀[τ ] . . . ˆ̀[τ + T − 1]} = argmin
τ+T−1∑
t=τ

`[t]

subject to:∑κ−1
k=0 Ck`[t− k] ≥ ν[t], ∀ t ∈ [τ, τ + T + κ− 2],(
`[τ − (κ− 1)] . . . `[τ − 1]

)T
= n[τ ],

`[τ + T ] = . . . = `[τ + T + κ− 1] = ν̄[τ ]/C,

`[t] ≥ 0 .

(3.27)

As the transmission progresses, we apply the model predictive control
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// Model predictive control

1: At the beginning of time interval t = τ , predict ν[τ ], . . . , ν[τ +
T − 1].

2: Plan the segment lengths for the period [τ, τ + T − 1] by solving
(3.27).

3: Receive at least ˆ̀[τ ] symbols in this time interval.
4: Repeat for t← τ + 1.

Figure 3.8: Model predictive control technique.

(MPC) technique, e.g. [68], to adjust to the increment of t. This technique

can also be effective in compensating for imperfect prediction of future values

of ν[t]. The MPC technique is summarized as in Figure 3.8.

An alternative control rule to the MPC technique above is to always

receive at least `min symbols in each interval. We call this the minimal seg-

ment length (MSL) control rule. This simple rule comes from observing the

behavior of unstable systems without control, as described in Section 3.3.2.

Since the decoders have to wait for their turn, the one that collects most

of the information from a low-rate layer needs a relatively long interval and

forces other decoders to accumulate too much information. By setting a

proper minimum value for all `[t], MSL reduces the long wait by making

the total amount of information to be distributed more equally over the κ

intervals.

Example 3.2. We now illustrate the effectiveness of the control techniques

via a hypothetical example. Let ν[t] be a random process such that ν[t] =

(1.05 + ε[t])K. The component ε[t] is Rayleigh-distributed with mean 0.04.

Therefore, ν̄/K = 1.09 and thus the coding loss is 9%. This model ap-

proximates the simulation result of a Raptor code from [69, Fig. 6]. We
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Figure 3.9: Controlling structural loss in an unstable system with maximum
achievable rates [C0 C1 C2] = [1.0 1.7 1.3] bpcu. Top: structural loss vs.
T for model predictive control (MPC) with perfect prediction. Bottom:
structural loss vs. `min for minimum segment length (MSL) control.

consider the same MLC example as in Section 3.3.2. That is, κ = 3, C0 = 1,

C1 = 1.7, and C2 = 1.3 bpcu. Without control, the transmission suffers

a structural loss of 36%. For MPC with perfect prediction, the structural

loss versus T is plotted in the upper half of Figure 3.9. It is interesting to

observe that even with short T = 1, MPC reduces the structural loss to

just about 2%. With long horizon T , it can almost completely eliminate the

structural loss. Thus, controlling the acknowledgment delay can indeed re-

duce the structural loss. Unfortunately, perfect prediction of ν[t] over a long

horizon is rather idealistic. With the simple and practical MSL control rule,
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the structural loss versus `min is plotted in the lower half of Figure 3.9. The

result shows that MLC can reduce the structural loss to a very small value

of less than 2%. This value is much less than the coding loss. These results

suggest that MSL control is indeed a practical way of stabilizing rateless

MLC systems, and we apply it in the application examples below.

3.4 Applications

In this section, we demonstrate the efficacy of our rateless MLC scheme in a

number of transmission scenarios. The application examples include MIMO

and orthogonal modulation transmission in stationary or slow fading chan-

nels, and using matched or approximate metrics. Following Section 3.2.2, we

use the GMI as an approximation to the maximum achievable rates of the

layers. We use the same Raptor code as in Example 2.1 with K = 9500 and

sum-product SBS decoding. When a decoding attempt fails, an additional

information amount of 0.01K is collected before the next attempt.

3.4.1 MIMO-QAM

Consider MIMO transmission with Nt transmit and Nr receive antennas.

Each transmit antenna emits symbols from a constituent quadrature ampli-

tude modulation (QAM) constellation A of size MA. Each symbol of the

MIMO constellation X is thus a vector of Nt elements x = [x0 . . . xNt−1]
T ,

where each element xi ∈ A is a complex number. The size of the multidi-

mensional transmit constellation is M = (MA)Nt . Assuming a flat fading

channel with the matrix of complex gains H and complex additive white
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Gaussian noise (AWGN) vector n with variance N0 per element, the re-

ceived symbol is given by

y = Hx+ n . (3.28)

The channel transition probability follows as

pY |X(y|x) ∝ exp

(
−|y −Hx|

2

N0

)
. (3.29)

It was shown in [17, Sec. IV-E] that there exists a significant gap between

the BICM GMI and the constellation-constrained channel capacity I(X;Y ),

even when Gray mappings are applied for the constituent constellation A,

and hence for X . Thus, it is appealing to use MLC with MIMO signaling.

Let us consider the case of 4-QAM with Nt = 4 transmit antennas and

matched decoding metric (3.13). The size of the constellation is M = 256

and the number of labeling bits is m = 8. We use MLC with κ = 2 layers.

The first four bits are grouped into layer 0, and the other four bits are

grouped into layer 1. We consider an i.i.d. Rayleigh fading channel and

two scenarios of Nr = 2 and Nr = 4 receive antennas. For both scenarios,

the GMI of layer 0 is less than that of layer 1, and therefore the system is

unstable. We apply the MSL control with `min = 1.06K/C. The signal-to-

noise ratio (SNR) is defined as Er/N0, where Er is the average received power

at each antenna, cf. [17]. The simulation results are plotted in Figure 3.10.

It can be observed that MLC with just two layers can considerably reduce

the gap between BICM GMI and the average mutual information I(X;Y ).

Over the whole SNR range, the simulated throughput is about 92% of the

MLC GMI. This ratio is close to the reported value in [69] for a Raptor
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Figure 3.10: GMI and throughput of rateless MLC for 4-QAM MIMO trans-
mission with 4 transmit and 2 and 4 receive antennas over an i.i.d. Rayleigh
fading channel.

code over a binary AWGN channel. Therefore, we conclude that most of

the rate loss is the coding loss, and the structural loss is small. Overall, the

results demonstrate a significant throughput gain from using our rateless

MLC scheme instead of BICM.

3.4.2 Noncoherent Carrier-Modulated Orthogonal

Signaling

In orthogonal modulation, the Euclidean distances between signal points

are the same. Hence, for constellations with size M > 2, Gray mappings
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Figure 3.11: GMI and throughput of rateless MLC for M = 128 noncoherent
orthogonal modulation. Label “w/o control” and “w/ control” are for the
rotational scheme without and with MSL control, respectively.
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do not exist. We apply rateless MLC to carrier-modulated orthogonal sig-

naling with noncoherent detection. The channel model is described in Sec-

tion 2.4.2. Let us consider a system with m = 7 levels [70], κ = 2 layers and

h = [0 0 0 0 1 1 1]. Similarly to the MIMO-QAM application above, the

SNR is defined as Er/N0, and for this modulation Er = E{a2}. The layer

GMIs are plotted in Figure 3.11(a) for the case of an AWGN channel and in

Figure 3.11(b) for the case of an i.i.d. Rayleigh fading channel. Depending

on the SNR, the GMI of layer 0 can be smaller or larger than that of layer 1.

Therefore, the MLC system can be unstable or stable, respectively. We re-

call that when the system is stable, no control is needed and no structural

loss results. For all SNR values, we apply our rateless scheme (i) without

control and (ii) with MSL using `min = 1.06K/C. As expected, Figure 3.11

shows that when the system is unstable, MSL improves the throughput.

Furthermore, when the system is stable, MSL practically does not incur

structural loss, achieving the same throughput as the case without control.

This suggests that we can safely apply MSL control to the whole range of

SNR values.

Rateless transmission is most beneficial in slow-fading channel environ-

ments. Thus, we now illustrate the performance of our scheme in a slow

fading example. To this end, we assume the complex channel gain g = a ejφ

evolves from one symbol to the next according to the first-order autoregres-

sive (AR1) model

gi = αgi−1 +
√

1− α2wi , (3.30)

where wi is an i.i.d. zero mean complex Gaussian process with variance
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Er. The parameter 0 ≤ α ≤ 1 determines the rate of fading. The extreme

values α = 1 and α = 0 turn (3.30) into an AWGN channel and an i.i.d.

Rayleigh fading channel, respectively. In slow fading cases, we modify the

MSL control to: always receive at least an amount of information Imin in

each segment. Corresponding to N0 and the magnitude of the instantaneous

channel gain, the instantaneous GMI can be obtained from the GMI plots

in Figure 3.11(a). Let C[t] be the MLC GMI averaged over time interval

t. We use the value R[t] = C[t]K/θ[t] as an indication of the throughput

in interval t. We recall that θ[t] (3.16) is the total amount of information

associated with the codeword that has just been decoded in this interval.

The ratio K/θ[t] is the relative throughput efficiency of the codeword.

As an interesting example, we consider 10 log10(Er/N0) = 8 dB and

α = 0.999 such that C[t] would change significantly across intervals. We

use MSL control with Imin = 1.06K. Samples of average MLC GMI and

R[t] obtained from a simulation are plotted in Figure 3.12. For comparison,

the BICM GMI of the same channel realizations, averaged over the same

segment boundaries, is also included. We observe that the throughput of our

scheme closely follows the associated MLC GMI. Furthermore, R[t] exceeds

the BICM GMI for the majority of the times. Averaging over the whole 70

sample intervals illustrated in Figure 3.12, the MLC GMI is 3.03 bpcu, R[t]

is 2.70 bpcu, and the BICM GMI is 2.48 bpcu. That is, our scheme attains

a throughput gain in slow fading channels as well.
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Figure 3.12: Example of 2-layer rateless MLC over slow fading channel. The
value R[t] approximates the average throughput during time interval t.

3.4.3 Pulse-Position Modulation with Direct Detection

We continue with the PPM transmission in Example 3.1. Consider 128-PPM

with 2-layer MLC such that h = [0 0 0 0 1 1 1]. Simulation results with

the matched metric (3.14) demonstrate the same trends as in the case of

noncoherent orthogonal modulation above, and therefore are not presented

here. We now consider the popular max-log approximate LLR metric, which

is

ΛqBi,Y,Di (y, d) =

 max
x∈X d,0di,i

ye(x)− max
x∈X d,1di,i

ye(x)

 ln

(
1 +

λs
λb

)
. (3.31)
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Figure 3.13: Layer I-curves of the 128-PPM MLC scheme with λb = 0.2
photons/slot and 10 log10(λs/(Mλb)) = −10.5 dB and different metrics.
Each doubled-arrowed arc connects the peak of an I-curve with a marker
that represents the associated throughput with an off-the-shelf Raptor code.

This max-log LLR requires less computation than the matched metric (3.14).

We consider a mid-range SNR of 10 log10(λs/(Mλb)) = −10.5 dB, at

which the 2-layer MLC scheme with matched metric attains a GMI of

3.5 bpcu. Figure 3.13 shows the I-curves (3.10) of the two layers with

matched and max-log metrics. We recall that the I-curve of layer 0 is equal

to four times the binary I-curve of any level in layer 0. Similarly, the I-

curve of layer 1 is equal to three times the binary I-curve of any level in

that layer. From Figure 3.13, we see that the max-log metric incurs only

a small reduction in the GMI. The critical point (the s-coordinate of the
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peak) of the I-curve of layer 0 is 0.55 and that of layer 1 is 0.75. As the

critical point of the I-curve is not equal to 1, the throughput achieved by

sum-product SBS decoding can be considerably lower than the GMI, see

Section 2.3.2. We illustrate this phenomenon via a simulation in which the

Raptor decoder is fed with LLR samples from layer 0 or layer 1 alone. In

the detection at layer 1, we use transmitted data from layer 0 instead of the

estimated data. The resulting throughputs are presented as bold markers in

Figure 3.13. The phenomenon is especially pronounced at layer 0: while the

throughput with metric (3.13) is about 93% of the corresponding GMI, this

ratio reduces to only 80% with metric (3.31). The most simple correction

to reduce this gap is to scale the mismatched LLR with a factor equal to

the critical point of the I-curve, following (3.15). That is, we multiply the

max-log LLR at layer 0 with 0.55 and at layer 1 with 0.75. This scaling

shifts the critical point to 1 without changes in the GMI. We stress again

that the scaling factor for layer 1 is obtained without considering errors in

layer 0. The scaled max-log metric results in an improved throughput, as

shown in Figure 3.13. Finally, using the scaled max-log metric in our rota-

tional rateless scheme with appropriate `min, we obtain a throughput of 3.1

bpcu. In comparison, a simulation of matched BICM with the same Raptor

code results in a throughput of 2.5 bpcu. Thus, scaled max-log MLC attains

a throughput gain of more than 20% compared to matched BICM.
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3.5 Conclusion

In this chapter we considered three practical issues of MLC. Our first contri-

bution is the development of reduced-layer MLC which can favorably trade

the achievable rate for MLC structural complexity reduction. Our second

contribution involves rate analysis and metric mismatch correction for MLC

with approximate metrics. We use the GMI as an approximation to the

maximum achievable rate of the layer, which can be estimated separately

and with the assumption that there is no error in the decoding at lower

layers. Our last contribution is the proposal of a novel rateless MLC scheme

with no or negligible structural rate loss. We provide extensive numerical

examples with MIMO, noncoherent carrier-modulated orthogonal signaling,

and IM-DD PPM in stationary or slow-fading scenario, using matched or

max-log metric, which show that our scheme can attain throughput gains

compared to rateless BICM.
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Chapter 4

Applications in Free-Space

Optics

FSO has recently emerged as a cost-effective solution for a wide range of

communication applications [7]. It possesses a multi-Gigabits-per-second

capacity, is highly secure, rapidly deployable, and re-installable. We have

considered coded PPM for FSO in Section 2.4.3, Example 3.1, and Sec-

tion 3.4.3. In this chapter, we continue with several advanced signaling

schemes and apply coding techniques from the previous chapters to improve

FSO’s rate and reliability.

4.1 Rateless Hybrid FSO-RF for Last-Mile

Access

While the telecommunications backbone infrastructure has been remark-

ably improved over the past decade, bridging its enormous capacity to end-

users remains a difficult challenge. Existing copper wires and wireless LAN

technologies cannot handle the data rate necessary to deliver modern high-

definition multimedia in real time, whereas coaxial cables and fiber optics
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Figure 4.1: Channel coding diversity scheme.

are often too inconvenient and expensive to deploy at end-users’ premises.

FSO has been anticipated to be a low-cost solution to this “last-mile chal-

lenge.” However, last-mile FSO has one major drawback: adverse weather

can dramatically reduce the signal strength and make the communication

unreliable [71,72]. One of the most promising solutions to tackle this reliabil-

ity issue is to use an RF link in conjunction with the FSO link, e.g. [73–77].

The rationale for FSO-RF conjunction is that fog and rain, which can dra-

matically reduce FSO and RF link quality respectively, rarely occur at the

same time. In light of results from Chapter 2, in this section we revisit the

rateless hybrid FSO-RF scheme from [14] and present rate analysis for the

case of general decoding metrics.

4.1.1 Channel Coding Diversity Model and Rate Analysis

The hybrid FSO-RF scheme from [14] is an instance of channel coding di-

versity [15]. The block diagram of a channel coding diversity scheme is

presented in Figure 4.1. The diversity channel consists of two individual

channels 1 and 2. There is a single encoder E which controls both of the

mappers to produce transmit symbols for the individual channels. Cor-
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respondingly, there is a single decoder D which makes decoding decisions

based on symbol metrics from the two detectors. We consider indepen-

dent discrete-time memoryless individual channels with input and output

random variables Xi ∈ Xi and Yi ∈ Yi, and channel transition probability

functions pYi|Xi(yi|xi), i = {1, 2}. The detectors produce symbol metrics

qXi,Yi(xi, yi) > 0 for all transmit symbols xi ∈ Xi and received symbols

yi ∈ Yi. Following Section 2.1, we consider codebooks of M codewords

x = [x1 x2]. Component xi is a length-Ni sub-codeword whose elements

are to be transmitted via channel i. Let N = N1 +N2 and ηi = Ni/N . As

in Section 2.1, the word error probability, averaged over all codewords and

random codebook realizations, is upper bounded as

P ≤Mρ
2∏
i=1

EXi,Yi


∑
xi∈Xi

pXi(xi)

[
qXi,Yi(xi, Yi)

qXi,Yi(Xi, Yi)

]sρ
Ni

. (4.1)

In parallel with (2.4), (2.5), and (2.6), the above equation can be written as

P ≤ 2−NE
r(R), (4.2)

with

R ,
logM

N
, (4.3)

the random coding exponent

Er(R) , max
0≤ρ≤1

max
s>0

(
E0(ρ, s)− ρR

)
, (4.4)
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and the generalized Gallager function of the diversity channel

E0(ρ, s) , η1E
0
qX1,Y1

(ρ, s) + η2E
0
qX2,Y2

. (4.5)

In (4.5), E0
qXi,Yi

(ρ, s), i = {1, 2} is the generalized Gallager function of

the individual component channel i defined by (2.6). Similarly to (2.7) and

(2.8), the GMI and I-curve of the diversity channel are

Igmi , max
s>0

I(s) , (4.6)

and

I(s) = η1IqX1,Y1
(s) + η2IqX2,Y2

(s) . (4.7)

Again, IqXi,Yi (s) is the I-curve of the individual channel defined by (2.8).

Let ri be the baud rate4 of channel i, we can also define the I-curve of the

diversity channel as

I(s) = r1IqX1,Y1
(s) + r2IqX2,Y2

(s) . (4.8)

The GMI (4.6) is now measured in bits per time unit.

Let Igmi
qXi,Yi

be the individual GMI of channel i. Interestingly, from (4.6)

4Or symbol rate, which is the inverse of the symbol period.
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Figure 4.2: Rateless BICM hybrid FSO-RF communication system.

and (4.8), it follows that

Igmi = max
s>0

(
r1IqX1,Y1

(s) + r2IqX2,Y2
(s)
)

≤ r1 max
s>0

IqX1,Y1
(s) + r2 max

s>0
IqX2,Y2

(s)

= r1I
gmi
qX1,Y1

+ r2I
gmi
qX2,Y2

.

That is, the GMI of the diversity channel is less than or equal to the baud-

rate weighted sum of the individual channels’ GMIs. Equality

Igmi = r1I
gmi
qX1,Y1

+ r2I
gmi
qX2,Y2

. (4.9)

holds if and only if the individual I-curves are harmonic, see Theorem 2.1.

In BICM with channel coding diversity as the hybrid scheme in [14] and

presented in Figure 4.2, each I-curve IqXi,Yi (s), i = {1, 2}, is in turn equal to

the sum of the binary I-curves in that channel. Furthermore, we can apply

metric manipulation methods from Section 2.3 to increase the individual

channel’s or the diversity channel’s BICM GMI.
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4.1.2 Numerical Examples

The BICM hybrid FSO-RF scheme from [14] uses rateless codes, which can

seamlessly and simultaneously utilize each of the links’ resources.
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Figure 4.3: Scatter plot of throughput vs. GMI for 1000 codewords over the
hybrid (diversity) FSO-RF scheme.

In the first numerical example, we consider the same scenario as in [14]

with matched metrics. Thus, all binary I-curves are aligned at s = 1 and

equality (4.9) holds. The FSO link uses on-off keying (OOK) with symbol

period of 10 ns. The photo-counting model (2.47) applies with background

radiation λb = 39 photons/slot. We assume a moderate transmitter-receiver

distance of 1000 m, wind speed of 5 m/s and a relatively strong turbulence

scintillation condition as described in [14, Sec. IV]. In this scenario, the FSO

96



4.1. Rateless Hybrid FSO-RF for Last-Mile Access

0 50 100 150 200
40

60

80

100

120

140

160

 

 

GMI

Througput

R
at
e
[M

b
p
s]

→

Codeword index →

Figure 4.4: Throughput and GMI during the transmission of 200 consecutive
codewords over the hybrid FSO-RF scheme.

transmission experiences a slow fading condition and the value of the GMI

Igmi
FSO varies from 0 to 1 bpcu. In particular, the FSO channel gain changes

from one symbol to the next, but the two values are almost the same, cf.

Figure 4.4 and the explanation below. The RF modulator produces 64-QAM

with symbol period of 60 ns. The RF channel is i.i.d. Rayleigh fading and

has an average SNR such that the GMI Igmi
RF is 3.0 bpcu. The hybrid, or

diversity, GMI is therefore in the range of 50 Mbps (when the FSO link

is completely “blacked out”) to 150 Mbps (when the FSO link achieves its

maximum rate). We use the same Raptor code from Example 2.1 for coded

transmission. Figure 4.3 shows the scatter plot of throughput vs. the GMI
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for 1000 codewords. It shows that the rateless code consistently achieves a

throughput close to the GMI. The ability of the rateless code to seamlessly

adapt to the channel quality is further illustrated by the plot of throughput

and GMI during the transmission of 200 consecutive codewords in Figure 4.4.

This numerical evidence shows that rateless coding is suitable for last-mile

hybrid FSO-RF communications.

In the second numerical example, we demonstrate the use of approximate

metrics. The RF link has the same modulation and symbol period as above,

except now we use the max-log LLR metric and adjust the SNR so that the

GMI of the RF link is 2.0 bpcu. The FSO link now uses 64-PPM with a baud

rate equal to 1.5 times the baud rate of the RF link. The photo-counting

model (2.47) applies with λb = 2.44 photons/slot. This new value of λb

reflects the changes in the FSO modulation format and baud rate compared

to the previous example. We consider the max-log metric (2.51) with SNR

such that the GMI of the FSO link is also 2.0 bpcu. The BICM I-curves of

the individual channels are shown in Figure 4.5. We see that they attain

their peaks at different values of s (s = 0.675 for the FSO I-curve IFSO(s)

and s = 1.225 for the RF I-curve IRF(s)). The I-curve of the diversity

channel is (with the diversity channel GMI (4.6) measured in bits per TRF)

I(s) = 1.5IFSO(s) + IRF(s) , (4.10)

and is plotted in Figure 4.6. This I-curve peaks at s = 0.775 and attains a

GMI of 4.86 bits/TRF. Now, if we scale all the FSO LLR values by 0.675 and

all the RF LLR values by 1.225, the FSO and RF I-curves will attains their
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peak at the same critical point s = 1. The resulting I-curve of the diversity

channel Iscaled(s) is plotted in Figure 4.6 with a GMI of 5.0 bits/TRF. That

is, equality (4.9) holds. Below each I-curve in Figure 4.6, we plot a marker

which represents the throughput by the Raptor code from Example 2.1. The

transmission with max-log metrics attains a throughput of 4.37 bits/TRF

whereas the transmission with scaled max-log metrics attains a significantly

higher throughput of 4.62 bits/TRF. We perform a further simulation where

all the FSO and RF LLR values is scaled by 0.775. This scaling shifts the

peak of the I-curve of the diversity channel to s = 1, but leaves the GMI

remains at 4.86 bits/TRF. Now, the transmission attains a throughput of

4.49 bits/TRF, which is still lower than the case where both the individual

I-curves achieve their peaks at the same s = 1. Thus, our GMI analysis

indeed reflects the performance of actual coded transmission.

4.2 Multipulse Pulse-Position Modulation

In this section we consider multipulse pulse-position modulation (MPPM)

as a power- and bandwidth-efficient format for FSO. This modulation can be

used in hybrid systems as in Section 4.1 or in stand-alone FSO applications.

Currently, the most common format for FSO are OOK and PPM [61,

62,78,79]. OOK achieves higher bandwidth efficiency, but it has low power

efficiency. In addition, its possible long sequences of on and off slots are not

favorable to synchronization. On the other hand, PPM has higher power

efficiency but lower bandwidth efficiency. MPPM has been proposed as a

well-suited format for intensity modulation [16] with a balanced trade-off be-
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Figure 4.5: BICM I-curve of individual FSO and RF channels.

tween power and bandwidth efficiencies. Its regulated pulsed and non-pulsed

slots is also friendly to synchronization. In this section, we investigate the

combination of ECC with MPPM to realize power- and bandwidth-efficient

FSO transmission. In particular, we are interested in the application of bi-

nary ECC schemes for which a large number of powerful codes have been

developed. One difficulty with this approach is that the sizes of w-pulse

n-slot MPPM constellations are
(
n
w

)
, which are not powers of 2. Thus,

bit-to-symbol mapping can be complicated. A common-sense solution is

decimating the constellations to the nearest power-of-2 sizes. Since this

in turn reduces bandwidth efficiency, (at least) two questions immediately

arise. First, under what circumstances would MPPM indeed offer notable
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Figure 4.6: BICM I-curve and coded throughput of hybrid (diversity) chan-
nel.

throughput or power efficiency gains over the popular alternative PPM for-

mat? Second, how can those gains be realized by practical ECC schemes?

To address the first question, MPPM and PPM have been compared

based on different criteria and under various transmission conditions, cf.

e.g. [16,62,80–85]. It has been shown that although MPPM can potentially

be two times more bandwidth efficient than PPM with the same power ef-

ficiency [16], considerable throughput gains are only present for high signal

power and duty cycle w/n [62, 80]. In terms of error-rate performance, it

was recognized that no PPM or MPPM constellation is universally superior

to all the others, and that different modulation formats are preferable under
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different transmission constraints, such as peak- or average-power or band-

width constraints [83]. Hence, before designing specific ECC schemes for

MPPM, a careful selection of appropriate MPPM constellations is needed.

As for the second question, we note that several coding schemes have

been studied for MPPM. Analytical results for Reed-Solomon coded MPPM

were given in [80–82, 86]. Sato et al. [82] also analyzed the performance of

convolutional coded 2-pulse MPPM and investigated the effect of imperfect

slot synchronization on the error rate performance. The combination of

trellis-coded modulation (TCM) with 2-pulse MPPM was outlined in [83]. A

more detailed description of TCM with 2-pulse MPPM, including asymptotic

coding gain calculation, was given in [87]. Serially concatenated TCM was

also considered for 2-level 2-pulse MPPM (each of the two pulses can take

two values) in [88]. It should be noted that none of these ECC schemes

is capacity-approaching. Hence a significant performance gain is left to be

realized. Furthermore, most authors have considered only 2-pulse MPPM,

probably for ease of analysis.

In the following, we revisit both of the above questions concerning the

application of coded MPPM. Firstly, we compare MPPM with PPM in

terms of achievable data rate under simultaneous peak power, average power,

and bandwidth constraints. A similar comparison has been performed by

Hamkins and Moision [62]. However, they considered full-sized MPPM con-

stellations and mostly focused on low duty-cycle modulations for deep-space

communication, where MPPM’s throughput gains are very limited. Our

comparison here focuses on high duty-cycle and thus bandwidth-efficient

MPPM with decimated constellations suitable for coded transmission. Sec-
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ondly, we investigate the application of binary ECC to MPPM using such

decimated constellations. In particular, we design BICM and MLC schemes

for MPPM. We find that BICM is only an appropriate ECC scheme for

MPPM at relatively high SNR, whereas MLC can attain a significantly

higher throughput at lower SNR values.

4.2.1 Constellation Selection

Each (n,w)-MPPM symbol is represented by a vector x = [x1 . . . xn] of n

elements, each of which is transmitted in one slot, and 1 < w ≤ bn/2c

elements of 1 and the others are 0. We use the photo-counting model (2.47).

The SNR is defined as γ = (w/n)λs/λb. The channel transition probability

is

p(y|x) ∝
(

1 +
λs
λb

)<y,x>
. (4.11)

The notation < y, x > denotes the inner product between y and x, which

turns out to be the sum of the elements of y at the locations of the non-zero

elements of x. We assume uniform input distribution. The constellation-

constrained channel capacity is

C(X ) =
1

n
I(X;Y ) [bits/slot] . (4.12)

The set U of all distinct (n,w)-MPPM symbols has size

Mmax =

(
n

w

)
=

n!

w!(n− w)!
, (4.13)

which is never a power of 2. Since constellations of sizes M = 2m, m ∈ Z, are
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preferred for coded transmission, we will use only a decimated constellation

X ⊂ U of M < Mmax distinct symbols. We now turn to the problem of

selecting “good” MPPM constellations. Our approach consists of two steps.

First, we determine parameters (n,w,M) such that MPPM transmission

with a corresponding set X potentially offers throughput gains compared to

PPM under the same transmission constraints. Then, we obtain the set X

from decimation of the full-size MPPM set U such that C(X ) is maximized.

We compare MPPM constellations based on the maximal throughput

τ = log(M)/n bits/slot under simultaneous peak power, average power,

and bandwidth constraints. Peak and average power constraints require

identical duty cycles 1/ρ = w/n, where ρ is the peak-to-average power

ratio (PAPR), and the bandwidth constraint is accounted for by measuring

throughput in bits per slot. The “OOK bound” τ = H(1/ρ), where H(·) is

the binary entropy function, upper bounds the MPPM throughput for given

PAPR ρ [80]. Furthermore, an n-slot PPM constellation has ρ = n and

τ = (log ρ)/ρ.

Figure 4.7 shows the power-bandwidth efficiency chart for MPPM con-

stellations with M ≤ 256 and τ ≥ (log ρ)/ρ. There are 89 triplets (n,w,M)

satisfying these conditions. Each triplet (n,w,M) is presented as a point

in the figure, and several (n,w,M) triplets may take the same point. In-

cluded are the upper “OOK bound” τ = H(1/ρ) and the lower “PPM

bound” τ = (log ρ)/ρ. With this figure, we are able to locate the param-

eters (n,w,M) of MPPM constellations that offer both high power and

bandwidth efficiencies. For example, if we want a transmission which re-

quires ρ to be around 4.0 we could select one of the three constellations
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Figure 4.7: Power-bandwidth efficiency chart of MPPM. Parameter sets are
triplets (n,w,M).

where (n,w,M) equals (11, 3, 128) , (13, 3, 256), or (12, 3, 128), for which

Mmax =
(
n
w

)
= 165, 286, and 220, respectively.

4.2.2 Subset Selection

Having determined the MPPM constellation parameters, we need to decide

which M out of the Mmax symbols are to be used. Selection of subsets

based on symbol-error rate or avoidance of long sequences of zeros and ones

has been considered in [83, 86, 87]. As mentioned above, here we use the

constellation-constrained channel capacity C(X ) as the relevant criterion.
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Therefore, we formulate subset selection as a combinatorial optimization

(CO) problem:

Maximize: C(X )

subject to: X ⊂ U and |X | = M
(4.14)

Since the solution of this CO problem with the objective function C(X ) from

(4.12) seems to require total enumeration, we aim at a possibly suboptimal

solution using CO search algorithms.

Search Algorithms

We now briefly describe the three popular search algorithms, whose pseudo-

code are presented in Figures 4.8, 4.9, and 4.10. All algorithms excecute N

search iterations. Further details can be found in [89].

// Random search

1: Randomly select X
2: for i = 1 . . . N do
3: Randomly select X ′
4: if (C(X ′) > C(X )) then
5: X = X ′
6: end if
7: end for
8: Return X

Figure 4.8: Pseudo-code for random search.

Random search: In each iteration, a new trial solution is generated by

randomly picking M elements of U . The result is the best of all trials.

Greedy ascent: The search starts with a random initial solution. In

each iteration, greedy ascent tries to replace only one MPPM symbol in

the solution by another one that would improve the quality of the solution.
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// Greedy ascent

1: Randomly select X
2: for i = 1 . . . N do
3: V = U \ X
4: Select x ∈ X and v ∈ V
5: X ′ = {X , v} \ {x} (i.e. replace x by v in X )
6: if (C(X ′) > C(X )) then
7: X = X ′
8: end if
9: end for

10: Return X

Figure 4.9: Pseudo-code for greedy ascent.

In this way, the good structure of the best-so-far solution is exploited in

generating new trail solutions.

Simulated annealing: For a difficult search landscape, the greedy as-

cent solution would eventually be trapped into a local maximum and no

further improvement could be attained. Simulated annealing [90] is one of

the metaheuristical algorithms where the search can probabilistically escape

local maxima. Simulated annealing is deduced from the physical anneal-

ing process of solid materials. Its solution asymptotically approaches the

global maximum. Simulated annealing requires the specification of a start

and end temperature from which the cooling coefficient α is derived. These

values can be determined by inspecting the annealing curve of the search

problem [91].

CWC-Based Search

For the CO algorithms, focusing the search in “good” regions of the signal

space can improve the quality of the result. To this end, we observe that
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// Simulated annealing

1: Randomly select X
2: Best solution X̂ = X
3: Initial temperature T
4: for i = 1 . . . N do
5: V = U \ X
6: Select x ∈ X and v ∈ V
7: X ′ = {X , v} \ {x}
8: δ = C(X )− C(X ′)
9: Generate uniform random number r in (0,1)

10: if (δ < 0 or r < e−δT ) then
11: X = X ′
12: end if
13: if (C(X ′) > C(X̂ )) then
14: X̂ = X ′
15: end if
16: Cool down: T = αT with α < 1
17: end for
18: Return X̂

Figure 4.10: Pseudo-code for simulated annealing.

MPPM symbols can be considered as the codewords of a length-n weight-w

constant-weight code (CWC). We argue that optimized CWCs with a large

minimum Hamming distance dmin are such good regions to focus our search.

Since CWCs are only available for certain size A (see tables in [92,93]), the

following approach is applied: (i) find a constant-weight code U ′ with large

dmin and size A close to M ; (ii) if A ≥ M then replace U in the search

algorithms by U ′, i.e. we search only within the CWC; otherwise, we make

X always contain U ′.
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Numerical Result

We consider the case (n,w,M) = (12, 3, 128), for which the set of all dis-

tinct MPPM symbols U has size Mmax = 220. For the Poisson channel

with λb = 0.2 [94], the constrained capacity C(U) is plotted in Figure 4.11.

Now we use the CO search algorithms above, together with the CWC-based

strategy, to find a constellation X ∈ U of size M = 128 which yields the

best C(X ). We perform the optimization at SNR of 6.9 dB, at which

C(U) = (1/n) logM . Surprisingly, all the search algorithms result in constel-

lations that have similar value C(X ) (4.12). This suggests that in practice

we can use the simplest algorithm, namely random search5. Having the op-

timized constellation by random search, we add the plot of C(X ) vs. SNR to

Figure 4.11. It shows that this constellation also yields good C(X ) over the

whole range of SNR. For comparison, the constrained channel capacity for

4-PPM is included, which has the same PAPR of ρ = 4.0. We observe that

the selected (12, 3, 128) MPPM constellation always outperforms 4-PPM for

the entire range of the SNR value.

4.2.3 Labeling and Binary-Coded Modulation

With a good MPPM constellation X , we now consider the combination of

MPPM with binary coding. We start with the simpler scheme of BICM.

5We further test the algorithms for (n,w,M) = (16, 4, 128) and (16, 4, 256) with several
transmission scenarios and also find that the CWC-based random search algorithm yields
good results in these cases.
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Figure 4.11: Constrained channel capacity of MPPM constellations.

Given X , the BICM GMI depends on the labeling L

Ibicm(L) =
1

n

m−1∑
i=0

I(Bi;Y ) . (4.15)

Our goal is to find a labeling that maximizes Ibicm(L). Due to the large

search space and the high computational cost to estimate the objective func-

tion Ibicm(L), this is again a difficult CO problem. Therefore, we take an

indirect approach as below.

Generally, Gray labeling is suggested for BICM [3, 53], cf. also [95]. In

Gray labeling, the labels of nearest-neighbor signal points differ at only one
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position. For MPPM, where adjacency is measured in terms of Hamming

distance between signal vectors, we may not be able to construct a Gray

labeling. This is because a necessary condition for the existence of a Gray

labeling is that the number of nearest-neighbor signal points to any signal

point must not exceed the number of labeling bits. In most relevant cases,

MPPM constellations do not satisfy this condition. As an example, for the

(12, 3, 128) constellation found in Section 4.2.2, each constellation point has

between 11 and 19 nearest neighbors, whereas m = 7. We therefore attempt

to find labelings L that are “as Gray as possible.” To this end, we consider

the CO problem

Mimimize: fG(L) =
1

M

M∑
i=1

1

|N (xi)|
∑

xj∈N (xi)

dH(bi, bj) ,

subject to: {bi ∈ {0, 1}m|i = 1, . . . ,M} ,
(4.16)

where N (xi) is the set of the nearest neighbors of xi, bi is the label of xi,

and dH(bi, bj) denotes the Hamming distance between labels bi and bj . We

note that the cost function fG(L) ≥ 1 is the average Hamming distance

between labels of nearest-neighbor symbols, and fG(L) = 1.0 if and only if

L is a Gray labeling. Incidentally, a similar cost function has been applied

in [96, Eqs. (4), (5)] for a BICM scheme with RF signaling over AWGN

channels.

Finding the optimal solution of (4.16) might still require the prohibitive

total enumeration. We therefore propose a “local search with best improve-

ment and random restart” algorithm, which we refer to as Algorithm 1 in

the following. The pseudo-code of the algorithm is listed in Figure 4.12.
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// Gray labeling search

1: Generate random labeling L
2: Best-so-far labeling L̂ = L
3: for t = 1 . . . N do
4: L′ = argmin

i,j=0...M−1
{fG(L′) : L′ = S(L, i, j), i 6= j}

5: if (fG(L′) < fG(L)) then
6: L = L′
7: else
8: Generate new random labeling L
9: end if

10: if (fG(L) < fG(L̂)) then
11: L̂ = L
12: end if
13: end for
14: Return L̂

Figure 4.12: Pseudo-code for Gray labeling search. S(L, i, j) denotes the
label-swapping operation applied on L such that the labels of the i-th and
j-th symbols are swapped.

Figure 4.13 (line (b)) shows the BICM GMI corresponding to the optimized

labeling for the (12, 3, 128) constellation from Section 4.2.1 and N = 1000

search steps in Algorithm 1. To illustrate the effectiveness of Algorithm 1, we

also compare the result with labelings found by a search over 1000 randomly

generated labelings (line (c) in Figure 4.11). We observe that the Gray-like

labeling obtained from using (4.16) with Algorithm 1 significantly improves

the BICM GMI. However, while the GMI associated with 4-PPM BICM (line

(g)) is virtually as good as 4-PPM MLC (line (f)), MPPM BICM leaves a

notable gap to the constrained capacity (line (a)), especially at medium-to-

low SNR values. We therefore propose RL-MLC architecture, which makes

use of the BICM-optimized labeling, and is able to narrow this gap (line (d)

and (e)). The MLC configurations for line (d) and (e) are h = [1 1 1 1 2 2 2]
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Figure 4.13: Constrained capacities or GMIs of MPPM transmission: (a)
C(X ) with (n,w,M) = (12, 3, 128) by a random search; (b) BICM GMI with
Gray-like labeling obtained with Algorithm 1 (Figure 4.12); (c) BICM GMI
with labeling from a random search; (d) GMI of a 2-layer MLC; (e) GMI
of a 3-layer MLC. For comparison, (f) and (g) are the constrained capacity
and BICM GMI of 4-PPM, which has the same PAPR ρ as (12,3)-MPPM.

and h = [1 1 2 2 3 3 3], respectively. It is worth pointing out that we have

arrived at the MLC schemes via two greedy optimization stages: finding

a labeling that maximizes the BICM GMI, and then determining an MLC

configuration that maximizes the MLC GMI for this labeling. Nevertheless,

the results in Figure 4.13 indicate that there is only little room for possible

improvement by a joint optimization of labeling and MLC configurations.
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4.3 Conclusion

In this chapter, we first revisited the rateless BICM scheme for hybrid FSO-

RF transmission and showed a new approach to rate analysis via the concept

of the I-curve. In the second part, we presented the design process for coded

MPPM transmission. In particular, we considered the two fundamental

questions of when MPPM is preferable over PPM and how MPPM could

be combined with ECC. To this end, we compared MPPM and PPM FSO

transmission under simultaneous limited peak-power, average power, and

bandwidth constraints. We then devised decimation and labeling strategies

for the application of binary ECC to MPPM. It has been found that BICM

GMI leaves a notable gap to the constrained channel capacity at medium-

to-low SNR range, which can be bridged by MLC schemes with only several

encoder-decoder pairs.
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Chapter 5

Concluding Remarks

5.1 Summary of Contributions

Since binary-coded modulation is the current de facto coding standard for

digital communication systems, and since practical implementations of such

systems almost certainly use some low-complexity approximate metrics, the

scope and results of this thesis are particularly interesting and relevant to

professionals in communications. Our contributions in this thesis range from

labeling design for a specific scheme to new insights that are useful for

improving the performance of many practical systems and have implications

beyond the binary coding framework. In the following, we summarize our

main contributions with remarks on their impacts and some ideas for further

research.

• Relationship between the I-curve and SBS throughput performance:

The I-curve is derived from the generalized Gallager function, which is

in turn derived from the random coding argument with word decoding.

Its peak value, the GMI, has been routinely used in the literature as an

upper bound to the throughput performance of SBS decoding. In this

thesis we further discovered an intriguing influence of the critical point
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of the I-curve on the performance of SBS decoding, cf. Example 2.1.

• I-curve decomposition: We showed that the I-curve of a compound

channel is equal to the baud-rate weighted sum of the individual chan-

nels’ I-curves. In Section 2.2, this decomposition is between the BICM

channel and the virtual binary channels of the levels, regardless of the

input distribution pX(x). The same result has been reported in [9]

for uniform input. In Section 4.1, the decomposition is between the

coding diversity channel and the component physical channels.

• Metric scaling: We discovered in Section 2.3.1 and 2.3.2 that metric

scaling with a constant factor in the logarithmic domain can shift

the critical point of the I-curve without affecting the GMI. Together

with the two above contributions, this finding leads to a versatile and

very practical metric manipulation method that can improve coded

performance in a wide range of mismatched transmission scenarios.

• Multidimensional metric correction functions for BICM: By consider-

ing the BICM approximate detector as part of a cascaded channel, we

naturally arrived at metric mismatch correction functions for BICM.

These functions can be practical in certain situations, and in general

shed new light on the upper GMI limit of BICM with mismatched

decoding metrics, cf. Section 2.3.3.

• Reduced-layer and rateless MLC: The two main drawbacks of MLC

are its structural complexity and the need to carefully design code rate

for each layer to realize its performance gains compared to BICM. Our
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contributions in Chapter 3 can alleviate both of these drawbacks. With

the reduced-layer coding concept, we can design MLC schemes with

any number of coding layer. Next, using our rateless MLC scheme, we

can preserve the rate advantage of MLC while not having to design

individual codes for each coding layer.

• Design of MPPM signaling: We showed a systematic design process

for MPPM signaling in Section 4.2. Unlike previous studies on the

application of MPPM, we start by identifying parameters which po-

tentially yield better performances compared to MPPM’s main com-

peting modulation formats. Then, using suitable optimization tools,

we select decimated constellations and symbol labels that return good

achievable rates in BICM and MLC schemes.

5.2 Suggested Future Work

Perhaps the most interesting unsolved problem that has been opened up

by this thesis is to find a rigorous theoretical explanation for the variation

of the achieved SBS decoding throughput versus the critical point of the

I-curve, as illustrated in Example 2.1. In particular, a solution to this prob-

lem should explain why the SBS decoding throughput approaches the GMI

when sqX,Y = 1, but only IqX,Y (1) when sqX,Y > 1. It should also lead to

an estimation of the achievable throughput by max-product SBS decoding,

which can be of great interest for communication system designers.

The contributions of this thesis to the GMI framework for BICM and

MLC are generic and applicable to many practical systems with mismatched
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decoding metrics. Specifically, the achievable rates by these systems can be

measured in terms of the GMI, and metric correction methods from this

thesis can be applied to increase both the GMI and throughput performance

by SBS decoding. Examples of such systems are wireless communications

with simplified metrics, orthogonal-frequency division multiplexing (OFDM)

systems with exceeding peak-to-average power ratio (PAPR), and multiuser

detection.
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[9] A. Martinez, A. Guillén i Fàbregas, G. Caire, and F. Willems, “Bit-

interleaved coded modulation revisited: A mismatched decoding per-

spective,” IEEE Trans. Inf. Theory, vol. 55, no. 6, Jun. 2009.

[10] G. Kaplan and S. Shamai, “Information rates and error exponents of

compound channels with application to antipodal signaling in a fading

environment,” Archiv Elektronik Übertragungstechnik (AEÜ), vol. 47,
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