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Abstract 

A key first step in understanding cellular processes is a quantitative and comprehensive 

measurement of gene expression profiles. The scale and complexity of the mammalian 

transcriptome is a significant challenge to efforts aiming to identify the complete set of 

expressed transcripts. Specifically, detection of low-abundance sequences, such as 

antisense transcripts, has historically been difficult to achieve using EST libraries, 

microarrays, or tag sequencing methods. Antisense transcripts are expressed from the 

opposite strand of a partner gene, and in some cases can regulate the processing of the 

sense transcript, highlighting their biological relevance. Recently, efficient profiling of 

low-frequency transcripts was made possible with the advent of next generation 

sequencing platforms. Thus, a major goal of my thesis was to assess the prevalence of 

antisense transcripts using Tag-seq, a tag sequencing method modified to take advantage 

of the Illumina sequencing platform. The increase in sampling depth provided by Tag-seq 

resulted in significantly improved detection of low abundance antisense transcripts, and 

allowed accurate measurements of their differential expression across normal and 

cancerous states.  

While antisense transcription is known to regulate sense transcript processing at a small 

number of loci, no genome wide assessments of this regulatory interaction exist. I 

addressed this knowledge gap using Affymetrix exon arrays, and found a significant 

correlation between antisense transcription and alternative splicing in normal human 

cells. Further exploring the biological relevance of antisense-correlated splicing events in 

human disease, I found that these events could be used to identify clinically distinct 

subtypes of cancer. Together, the findings in this thesis provide a new foundation for the 

investigation of antisense transcripts in the regulation of alternative transcript processing, 

and open new avenues of research into understanding the molecular heterogeneity of 

human cancers.  
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1. Bioinformatic approaches for the analysis of antisense transcript 
expression, evolution, and regulatory effects1 

1.1 Introduction 

Elucidating the mechanisms by which gene expression is regulated is one of the main 

challenges in understanding mammalian development and disease. Antisense 

transcription has recently been recognized as one such mechanism, and is characterized 

by the transcription of an overlapping gene from the opposite strand. A number of studies 

of individual loci have determined that gene pairs encoded in an overlapping and 

opposite orientation (termed sense-antisense (SAS) gene pairs) are able to regulate the 

processing of their partner. One way in which this regulation is exerted relies on the 

perfect sequence complementarity that SAS transcripts have over the region of overlap, 

and involves formation of double stranded RNA (dsRNA). Processing of dsRNA can 

alter the maturation, nuclear transport, splicing, or message stability of the SAS 

transcripts. Furthermore, there is substantial evidence that chromatin state, and thus sense 

gene transcription, may also be regulated by antisense transcripts (as described in this 

chapter).  

To date, analysis of EST libraries and cDNA libraries, mRNA sequences, transcript 

tagging technologies, and microarrays have provided evidence that a large proportion 

(63% to over 90%) of the mouse and human genomes are transcribed into RNA (Carninci 

et al. 2005; Cheng et al. 2005), and further, that approximately 60% of transcripts are 

involved in sense-antisense pairs. Consequently, there is significant potential for 

widespread antisense-mediated regulation of mammalian gene expression.  

This chapter reviews known examples of SAS-mediated regulation and techniques used 

to determine the prevalence of antisense transcription, primarily in the mouse and human 

genomes. Finally, I review analyses of SAS evolutionary conservation, regulated 

expression, and disease relevance. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 A version of this chapter has been published. Petrescu AS, Marra MA. 2007. Genomic approaches for 
identifying cis-encoded antisense transcripts. Global Research Network. Kerala, India. Research Advances 
in Nucleic Acids Research.  
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1.2 Thesis overview 

Systematic analyses of comprehensive transcriptome datasets have revealed thousands of 

mammalian SAS loci. A consistent positive association between increased sampling 

depth and the number of detected transcripts, including antisense transcripts, indicates 

that only moderate-abundance and high-abundance transcripts have been 

comprehensively profiled (reviewed in section 1.4). To identify all expressed sequences 

in the mammalian genome, it is thus necessary to devise ways of efficiently profiling 

low-abundance transcripts.  

The first hypothesis of my thesis was that deeper sampling would generate a more 

comprehensive profiling of transcription in human cells, including antisense 

transcription. Comparing large collections of EST (expressed sequence tags) libraries and 

tag sequence libraries, which were sampled at the same depth, showed that tag 

sequencing performs better at identifying low-frequency expression (Chen et al. 2002). 

Thus, deeper sampling of tag sequence libraries is one approach by which these 

sequences might be efficiently discovered, however, the high cost of additional 

sequencing would be prohibitive. This limitation can be overcome with the application of 

‘next-generation’ sequencing platforms, which enable ultra-high throughput sampling in 

a cost effective manner (section 1.4.4). One such application (Tag-seq) was developed at 

the BCCA’s Genome Sciences Centre, and utilized the Illumina platform to sequence tag 

sequence libraries generated through a modified LongSAGE protocol (Chapter 1). A 

specific aim of my thesis was to compare the transcript profiling success of the 

LongSAGE method to that of Tag-seq, which generates transcriptome libraries that are 

sampled an order of magnitude more deeply. Specifically, I conducted cross-platform 

comparisons to assess the suitability of Tag-seq for identification of low-frequency 

transcripts, such as antisense transcripts. A second aim was to use Tag-seq data to 

conduct an analysis of differentially expressed antisense transcripts in cancerous versus 

normal cells. 

A regulatory role of antisense transcription involves alteration of sense gene splicing 

outcomes, and has been well documented at the thyroid hormone receptor locus 

(Hastings et al. 2000). However, to date no studies have surveyed the prevalence of 

antisense-mediated splicing events on a genome-wide scale. My second hypothesis was 
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that antisense transcripts may have a role in the regulation of alternative splicing at 

numerous loci. Consequently, a principal aim of my thesis was to develop a 

computational approach that used exon tiling array data to identify antisense-correlated 

splicing events genome-wide (Chapter 3). Exploring this relationship further, I used 

public nucleosome and polymerase occupancy datasets to propose a novel mechanism by 

which alternative splicing might influence splicing outcomes (Chapter 3).  

Having defined a relationship between antisense transcription and alternative splicing 

(Chapter 3), and knowing that alternative expression events influence cancer biology 

(Venables 2004), I hypothesized that antisense-correlated alternative splicing events 

may contribute to the molecular heterogeneity of cancer types or subtypes. In Chapter 4, 

I explore the utility of using antisense-correlated splicing events to identify clinically 

distinct sub-types of cancer.  

1.3 Biological roles of antisense transcription 

Antisense transcription can affect the processing of the sense partner gene at both the 

transcriptional and post-transcriptional levels. Control at the transcriptional level can be 

mediated by either transcriptional interference or mechanisms of chromatin silencing 

induced by antisense expression. Post-transcriptional regulation can occur through three 

dsRNA-dependent mechanisms: RNA editing, RNA interference, and RNA masking 

(Lavorgna et al. 2004). 

1.3.1 Transcriptional interference 

Antisense-mediated regulation via transcriptional interference operates through 

premature termination or stalling of the RNA Polymerase II complex (RNAP) on one 

strand, due to steric interference arising from the presence of transcription machinery on 

the other strand (Eszterhas et al. 2002; Shearwin et al. 2005). Since transcription involves 

the movement of an RNAP complex along an unwinding DNA strand in the 5’ to 3’ 

direction of the gene, concurrent antisense transcription can result in supercoiling of 

DNA between RNAP complexes. This sterically unfavourable state can be resolved 

through RNAP stalling, backtracking, or disassociation (Eszterhas et al. 2002; Shearwin 

et al. 2005; Galburt et al. 2007).  



! (!

1.3.2 Epigenetic effects 

Chromatin is the structured association of DNA and nucleosomes, and its “active” 

(euchromatic) or “silent“ (heterochromatic) state directly affects the accessibility of 

target DNA to protein complexes that carry out transcription. The reversal and 

maintenance of silent and active states partially involves the modification of specific 

nucleosome residues as well as DNA methylation, through mechanisms that are the topic 

of many current research efforts (Thiriet and Hayes 2005) for review, see (Jiang and 

Pugh 2009).  

Chromatin silencing induced through DNA methylation and histone modifications seems 

to be a hallmark of imprinted genes that are controlled by antisense transcripts (Malik et 

al. 2000). In one study, an estimated 85% of imprinted genes were found to be associated 

with antisense RNA(Carninci et al. 2005)s . This suggests a role for antisense 

transcription in epigenetic processes. A classical example of antisense-mediated 

epigenetic silencing occurs during X-chromosome inactivation and involves the SAS 

non-coding RNAs Xist and Tsix (Lee et al. 1999). X-inactivation is a critical process 

during early embryogenesis in female mammals, and is carried out through Xist-

mediated changes in chromatin composition. During this process, one X-chromosome is 

converted from active euchromatin to transcriptionally silent heterochromatin. Increased 

expression of Xist on the future inactive chromosome is followed by coating of the X-

chromosome in Xist RNA, and an outward spread of silencing histone modifications (ex. 

H3K9) and CpG island DNA methylation from the Xist-proximal X inactivation center 

(XIC). The expression of Tsix, encoded antisense to Xist, allows one X-chromosome to 

escape inactivation. Transcription of Tsix through the Xist locus is required for this 

effect, and causes Xist inactivation through epigenetic repression of its promoter 

(Navarro et al. 2006). 

Non-imprinted loci, such as sphingosine kinase-1 (Sphk1), can also be epigenetically 

regulated by antisense transcripts (Imamura et al. 2004). At this locus, tissue specific 

alternative splicing of Sphk1 is controlled by the methylation of a tissue-dependent 

differentially methylated region (T-DMR) embedded in a CpG island. An antisense 

transcript (Khps1a) overlapping the T-DMR can alter the methylation of the Sphk1 CpG 

island, and consequently influence processing of the Sphk1 gene. 
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Despite the documented relationship between antisense transcription and chromatin 

modifications, the specific events mediating antisense dependent silencing of large 

chromosomal regions remain to be thoroughly understood. One possibility already 

mentioned involves non-coding RNA-mediated targeting of chromatin modification 

enzymes to specific chromatin domains. This mechanism is supported by evidence 

linking the functional demarcation of active and silent chromatin domains in human 

HOX loci to a physical interaction between a chromatin-remodeling complex, the 

polycomb repressive complex 2 (PRC2), and an antisense transcript in the HOXC locus 

(HOTAIR; (Rinn et al. 2007)). HOTAIR and PRC2 interactions are necessary for PRC2 

localization to the HOXD locus, and the consequent silencing of the region through 

trimethylation of histone 3 lysine 27 (H3K27me3) residues. Thus, in contrast to previous 

studies, the observed function of this antisense transcript (encoded on chromosome 12) 

was in trans (i.e. encompassing 40 Kb of DNA at the HOXD locus encoded on 

chromosome 2). Antisense-mediated heterochromatinization does not always occur over 

large distances, and may induce silencing through localized changes in the promoter of 

the sense gene (Yu et al. 2008). 

Antisense-mediated changes involving DNA methylation have also been observed to 

occur in cis, and a unique example underlies a case of !-thalassemia (Tufarelli et al. 

2003). The disease-causing genomic event in this patient was found to be a deletion 

closely juxtaposing the hemoglobin !-2 gene (HBA2) and a promoter-containing 

segment of a distant gene on the opposite strand, LUC7. In this patient, transcription of 

LUC7 carried through the opposite strand of the HBA2 gene and promoter, leading to the 

de novo methylation of the HBA2 promoter, and effectively silencing the gene. The 

exact mechanism of antisense transcription induced DNA-methylation remains to be 

elucidated. 

Understanding the regulatory effects of antisense transcription on neighbouring genes 

will be critical given the extent of such transcription (Cheng et al. 2005).  One recent 

study of growth-factor induced gene expression showed that transcription at one locus 

frequently affected neighbouring loci  (Ebisuya et al. 2008). Specifically, intensive 

transcription induced by growth factors was often accompanied by coordinated 

upregulation of neighbouring genes.  This effect was mediated by activating chromatin 
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marks (e.g. H3 and H4 acetylation) deposited at the target gene as well as in surrounding 

intergenic regions.  Consequently, promoters encoded in neighbouring areas became 

available to the transcription machinery, and caused a coordinated expression pattern, 

termed a “ripple effect”.  This ripple effect may account for a large proportion of 

transcriptional events in unannotated intergenic regions, including antisense 

transcription.  Understanding the effects of such transcription will be a complex 

challenge to address in future studies.  

1.3.3 RNA editing 

RNA editing is a process carried out by nuclear adenosine deaminases that act on RNA 

(ADARs). ADARs bind dsRNA, such as that resulting from long regions of SAS 

complementarity, and subsequently catalyze the hydrolytic deamination of adenosine 

residues to inosine. Because inosine is read as guanine by the transcriptional machinery, 

editing can alter codons, create or remove splice sites, sequester RNA molecules to the 

nucleus, or lead to dsRNA degradation (Bass 2002; Athanasiadis et al. 2004). Antisense-

mediated RNA editing has been observed at the thymidylate synthase (TS) locus, a gene 

expressed in rapidly dividing cancer cells, and a major chemotherapeutic target (Johnston 

et al. 1994). In the presence of the antisense transcript (rTS!), the TS RNA is cleaved at 

specific adenosine residues and consequently down-regulated (Chu and Dolnick 2002). 

Cleavage at inosilated residues is likely carried out by RNases that specifically target 

dsRNA formed between the sense and antisense transcripts (Meegan and Marcus 1989).  

1.3.4 RNAi 

Gene silencing induced through dsRNA dependant activation of the RNAi pathway has 

been documented in both fly and yeast (Aravin et al. 2001; Volpe et al. 2002). Although 

no mammalian examples of RNAi induced by SAS dsRNAs have yet been described, 

long dsRNA introduced into mammalian cells can be processed through the RNAi 

pathway, and knock down expression of genes with homologous sequences (Shinagawa 

and Ishii 2003). RNAi is therefore a plausible consequence of SAS gene transcription. 

One study (Haussecker and Proudfoot 2005) presents compelling evidence for the 

association of antisense transcription with the RNAi pathway in humans. This study 

tested the hypothesis that intergenic transcription at the "-globin locus was positively 

associated with an open chromatin state and with globin gene expression. The results 
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showed that the expression of intergenic SAS transcripts was not positively correlated to 

either an open chromatin state, or globin gene expression. Further investigation showed 

that the SAS intergenic transcripts were up-regulated in cells in which Dicer was 

knocked down (Haussecker and Proudfoot 2005), suggesting that Dicer, a protein 

involved in the RNAi pathway, promotes chromatin inactivation. These observations are 

consistent with a model in which intergenic SAS transcription contributes to the 

formation and maintenance of silent chromatin, as previously observed in X-inactivation 

(Navarro et al. 2006), but in this instance involving the RNAi pathway. At this locus, 

silenced chromatin is the default state and can be reversed in the presence of transcription 

factors that are specifically expressed in erythrocytes, ensuring tissue-specific 

transcription of globin genes.  

1.3.5 RNA masking 

The third post-transcriptional mechanism, RNA masking, involves the formation of 

dsRNA encompassing regulatory regions of either the sense or antisense transcripts. The 

formation of dsRNA can interfere with the binding of various trans-acting proteins or 

RNA factors that recognize single-stranded RNA targets. Masking of sequence motifs 

such as splice sites, splice site enhancers and repressors, polyadenylation signals, can 

therefore alter RNA splicing, stability, and localization (Kuersten and Goodwin 2003). 

One well characterized example is the post-transcriptional regulation of thyroid hormone 

receptor (TR!, also known as THRA) expression by the antisense transcript Rev-erbA-! 

(also known as NR1D1; Fig 1.1A (Hastings et al. 2000)). Alternative splicing of the 

sense TR! pre-mRNA generates two functionally antagonistic proteins: TR!1, which 

mediates signals through the thyroid hormone, and TR!2, an orphan nuclear receptor that 

competes with TR!1 for DNA and protein binding sites. The biological response of a cell 

to thyroid hormone is thus dependant on the ratio of TR!1:TR!2, and Rev-erbA-! 

modulates this ratio by occluding the TR!2 specific splice site and skewing pre-mRNA 

splicing into the TR!1 form. Consequently, interactions between the sense and antisense 

transcripts at this locus determine the cellular response to thyroid hormone.  

1.4 High-throughput discovery of SAS genes 

Prior to the availability of genome sequence data, approximately 40 SAS transcripts had 

been identified in studies of individual loci (Kumar and Carmichael 1998; Vanhee-
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Brossollet and Vaquero 1998). Our understanding of the prevalence and nature of 

mammalian antisense transcription has increased dramatically in the past decade, with 

the availability of whole genome sequences, vast collections of ESTs, cDNA libraries 

(complementary DNA), well-characterized mRNAs, and through the use of high-

throughput transcriptome profiling techniques such as microarrays and sequence tags 

(Fig. 1.2). 

1.4.1 Studies utilizing mRNAs, ESTs, and cDNA libraries 

The first large-scale observations of SAS transcription were based on ESTs, cDNA, and 

mRNA data. cDNA libraries can be created from polyadenylated (poly(A)+) mRNAs 

that are reverse-transcribed into complementary DNA sequences with an oligo-d(T) 

primer, and subsequently cloned into vectors. The internal structure of such transcripts 

can be assessed by full-length sequencing of cDNA libraries. While this is costly and 

time-consuming, collaborative efforts have resulted in comprehensive collections of fully 

sequenced cDNAs (Okazaki et al. 2002; Gerhard et al. 2004; Ota et al. 2004).  

Sequencing of these libraries using primers specific for the 5’ and 3’ flanking vector 

sequences rapidly and more cheaply generates EST libraries of partial clone sequences 

that can be aligned to a reference genome for transcript identification (Hillier et al. 1996). 

A limitation of EST libraries in generating quantitative measurements of transcript 

expression is their historically shallow depth (on the order of tens of thousands of reads) 

relative to the number of mRNA molecules per cell (estimated at approximately 300-500 

thousand, (Jackson et al. 2000)). In addition, ESTs only provide partial 5’ and 3’ 

sequence coverage for transcripts longer than generated read lengths.  

Despite these limitations, mining collections of cDNA, EST and mRNA sequence data 

resulted in the identification of antisense transcripts for up to 51% of genes. An initial 

approach to systematic SAS gene identification employed BLAST (Kent 2002) to find 

regions of complementarity between vertebrate mRNAs from RefSeq (Lehner et al. 

2002). mRNA sequences have generally reliable orientation information, which is critical 

to identifying SAS transcripts, but were available in limited numbers, leading to the 

identification of only 87 SAS pairs, a small subset of currently known SAS pairs (Table 

1.1). This estimate was quickly increased through the use of EST data to augment the 

RefSeq mRNA collection (Shendure and Church 2002). Since sequence orientation for 
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ESTs is sometimes nonexistent or unreliable, the search was limited to directionally 

cloned ESTs with splicing information and mapping near polyA signals and tails. From 

these data, 217 candidate cis-encoded mouse and human antisense genes were identified. 

In addition to the 87 pairs found by Lehner and colleagues (Lehner et al. 2002), and the 

40 well-described cis-encoded antisense cases in the literature (Kumar and Carmichael 

1998; Vanhee-Brossollet and Vaquero 1998), this study brought the total number of SAS 

genes to more than 300. 

This estimate increased by an order of magnitude with the development of the Antisensor 

algorithm (Yelin et al. 2003). This algorithm mined human EST and mRNA sequences 

from GenBank, and created 2,667 high-confidence clusters containing transcripts from 

one or both strands that share sequence. These clusters contained mRNAs and ESTs with 

an annotated direction, splice junction consensus sequences, and polyA tail sequences. 

Employing a similar clustering strategy, another group (Chen et al. 2004) used more than 

4 million stringently filtered mRNAs and ESTs to generate 26,741 clusters of sequences 

that shared a genomic location and orientation. Of the total transcription clusters formed, 

22% (5,880) consisted of SAS pairs.  

Together, these reports highlight two fundamental aspects of the transcriptome – first that 

by using increasingly comprehensive transcriptome resources, increasing numbers of 

SAS transcripts can be identified, and second that expression from both strands of the 

genome is much more prevalent than was previously recognized (Vanhee-Brossollet and 

Vaquero 1998). Despite their success in identifying SAS pairs, these approaches were 

ultimately limited by a focus on protein-coding genes; a bias toward spliced transcripts of 

annotated genes; and were inherently limited to finding those SAS transcripts 

overlapping in exonic regions.  

To overcome these limitations, the search for antisense transcripts was expanded to 

include non-coding RNAs, SAS pairs overlapping on introns as well as exons, and to 

include un-spliced transcripts. As described in the previous sections, antisense transcripts 

have the potential to affect sense transcription even in an unprocessed state in the 

nucleus; for instance via transcriptional interference or through epigenetic modifications. 

Thus, non-coding antisense transcripts or those overlapping sense introns are legitimate 

candidate targets for identification, as they may play regulatory roles. The prevalence of 
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antisense transcripts differing in coding status and the presence of intronic overlaps was 

addressed in an analysis of the Fantom2 full-length cDNA collection, in which non-

coding RNAs are well represented (Kiyosawa et al. 2003). Together with mRNA data 

and the mouse reference genome sequence this resource allowed identification of 2,481 

exon-overlapping SAS pairs and 899 intron-overlapping SAS pairs. Interestingly, 

approximately a quarter of the SAS transcript pairs consisted of two coding transcripts, 

half consisted of one coding and one non-coding transcript, and the remainder consisted 

of two non-coding transcripts. This evidence suggests that up to 50% of antisense 

transcripts are non-coding RNAs. The difference in the magnitude of SAS predictions 

between this and previous studies again highlights that with increased expressed 

sequence data, the estimation of SAS pairs grows. 

1.4.2 Microarray studies 

Microarrays are a well-established method for simultaneously detecting the level of 

expression of thousands of transcripts in a sample. Briefly, they consist of a surface (i.e. 

a “chip”) arrayed with short probes (25-60 nucleotides) that are complementary to non-

repetitive target regions of interest. Commercially available arrays can have 10-20 

probesets per gene, but detection of expression is generally biased to the 3’ end (Fig. 1.2; 

reviewed in (Schulze and Downward 2001)). More recent design strategies involve the 

tiling of probesets at regular intervals (5-35bp) over large, non-repetitive genomic 

regions. The advantage of tiling arrays is the ability to detect de novo transcription 

throughout the genome. However, due to the large size of the human genome, initial 

tiling arrays only profiled chromosomes 21, and 22 (Kapranov et al. 2002; Rinn et al. 

2003; Kampa et al. 2004). Subsequent tiling array designs covered 10 chromosomes at 

5bp resolution (Cheng et al. 2005), and the whole genome at 50bp resolution (Bertone et 

al. 2004). In addition to known annotations, these arrays are capable of detecting novel 

genes, novel exons, and un-annotated alternative exon boundaries. However, the vast 

number of chips required to tile the genome (52 million probesets spanning 134 chips) is 

a prohibitive limitation in applying this approach to routine gene expression 

measurements. The balance between comprehensive profiling and frugal use of space 

was therefore a design feature of exon tiling arrays, which have 25bp probes spanning 

1.4 million known and predicted exons in the human genome (www.affymetrix.com). 

These fit on one chip, allowing high-throughput and low-cost quantitative experiments. 
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Since these arrays are not designed to elucidate exon connectivity of alternate splice 

variants at a given locus, additional methods have been developed to create arrays 

capable of detecting known and predicted exon splicing events (Nuwaysir et al. 2002; 

Johnson et al. 2003; Griffith et al. 2010). 

A major finding of the tiling arrays profiling human chromosomes 21 and 22 revealed 

that a surprisingly large proportion of the intragenic and intergenic regions are in fact 

transcribed (Rinn et al. 2003; Kampa et al. 2004), and that intergenic antisense transcripts 

and novel exons in known genes were expressed in approximately equal proportions 

(Bertone et al. 2004). This was in accordance with the findings of Rinn and colleagues 

(Rinn et al. 2003), who showed that half of the chromosome 22 transcribed regions 

overlapping introns were in an antisense orientation, and half were likely novel exons. It 

is possible that these antisense transcripts eluded prior detection due to their relatively 

low abundance, or due to increased sensitivity relative to previous methods.  

Previous sequence-based estimates of SAS prevalence (>50% of genes) were confirmed 

in a tiling microarray experiment surveying ten human chromosomes (Cheng et al. 2005). 

In this analysis, ~50% of the detected transcribed sequences did not overlap with any of 

the well-characterized exon, mRNA, or EST annotations. Because this microarray design 

did not allow the strand of origin to be distinguished for a given transcribed sequence, a 

combination of RACE, high-density arrays, and cloning and sequencing techniques was 

used to characterize a subset of 768 transcripts in detail. The majority (60.8%) of 

surveyed loci for which 5’ and 3’ RACE was successful had evidence of transcription on 

both strands (Kapranov et al. 2005). 

1.4.2.1 PolyA(-) antisense transcripts 

Non-polyadenylated (poly(A)-) transcribed sequences constitute nearly half of the 

transcriptome (Cheng et al. 2005), yet the vast majority of sequence resources and high-

throughput array experiments only focus on poly(A)+ mRNAs. In one study addressing 

both poly(A)+ and poly(A)- transcripts (Cheng et al. 2005), RNA isolated from the 

nuclear and cytosolic compartments of HepG2 cell lines was profiled on tiling arrays 

spanning 10 chromosomes (~30% of the genome). Previously considered “junk” 

genomic regions were found to encode multiple overlapping poly(A)+ and poly(A)- 

coding and non-coding transcripts. Novel poly(A)- transcripts actually comprised the 
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major proportion of the transcribed messages in the human genome. Of all transcribed 

sequences, 19.4% were observed to be poly(A)+, 43.7% were poly(A)-, and 36.9%, were 

bimorphic. Bimorphic transcripts are transcribed as poly(A)+ RNAs and later processed 

to reduce or completely remove the 3’ polyA tail. The specific conditions and signals 

regulating the bimorphic state may thus be relevant to the regulation of antisense 

transcripts. It remains to be determined what proportion of transcribed loci consists of 

poly(A)- antisense transcripts. Because the array detected transcription in a strand-

independent manner, the full-length structures of many transcriptional units were 

determined using RACE and high-density arrays, but only for poly(A)+ RNAs. Thus, the 

potential roles played by poly(A)- RNAs in cellular processes may be underappreciated, 

and because many antisense transcripts are found to be poly(A)-, a comprehensive 

understanding of SAS gene regulation will ultimately require the study of this subset of 

the transcriptome. 

A different approach was taken by Kiyosawa and colleagues (Kiyosawa et al. 2005), who 

used custom microarrays to investigate the expression of 1,947 known SAS pairs. To 

determine the proportion of poly(A)- RNAs transcribed from these loci, the expression 

values of RNA primed with random nanomers were compared to those of RNA primed 

with poly(T) primers. The results obtained with random nanomers were expected to 

differ from the poly(T) results only if the majority of SAS pairs were not polyadenylated. 

Interestingly, random-primed targets gave higher signals, an effect specific to SAS genes 

but not non-overlapping genes. The poly(A)- fraction of the transcriptome may therefore 

harbour regulatory SAS RNA species unlikely to have been previously detected in EST 

and cDNA libraries. The existence of poly(A)- SAS transcripts is consistent with 

regulatory roles carried out in the nucleus, involving for instance antisense-mediated 

altered splicing of sense pre-mRNA.  

1.4.3 Tag-based studies 

Serial Analysis of Gene Expression (SAGE) (Velculescu et al. 1995), is a technique used 

for gene expression profiling and de novo transcript discovery, without need for probe 

design or prior knowledge of either genomic sequence or transcribed regions, as required 

for microarray design. A major aim of developing this technique was to increase the 

efficiency of sequence-driven transcript profiling by increasing the number of transcripts 
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detected per sequence read. To generate SAGE libraries, a biotinylated poly(T) primer is 

used to synthesize cDNA from an mRNA sample. The cDNAs are tethered to 

streptavidin-coated beads and digested using an enzyme that cleaves typical transcripts at 

least once (ie. NlaIII). Tethered cDNA fragments are ligated to 5’ adapter sequences that 

contain a recognition sequence for a type II restriction enzyme. This tagging enzyme cuts 

several nucleotides away, generating short tags that can be cloned into vectors, amplified 

using PCR, and subsequently sequenced. The SAGE technique thus results in the 

generation of sequence reads containing 30-45 short sequence tags (depending on read 

length) from the 3’ ends of poly(A)+ transcripts, which can be mapped to genome and 

transcript resources to provide digital counts of transcript expression (Velculescu et al. 

1995). To assess the expression of rare transcripts that are poorly represented in EST 

libraries is a simple matter of increasing the number of sequences analyzed.  

Different type II restriction enzymes have been used to generate different length tags of 

either 14bp (BsmFI in short SAGE, (Velculescu et al. 1995)), or 21bp (MmeI in 

LongSAGE,(Saha et al. 2002)). However, due to the likelihood of finding a random 14bp 

sequence multiple times in the genome, tags generated using the short SAGE technique 

can be mapped to unique locations on the genome in only a small fraction of cases, and 

are instead most frequently mapped only to transcript sequences. The LongSAGE 

technique was developed to address this limitation, and generates 21bp tags with a 75% 

unique mapping rate to the genome (Saha et al. 2002). Collections of classical (short) 

SAGE and LongSAGE libraries are available as part of the Cancer Genome Anatomy 

Project (CGAP) (Lal et al. 1999; Khattra et al. 2007).  

The search for antisense transcripts using short SAGE data was pioneered by Quere and 

colleagues (Quere et al. 2004), who investigated whether unmapped tags in the human 

leukemia cell line U937 could instead be mapped onto the reverse complement of well-

annotated mRNAs. A total of 3.5% of the 4,444 mRNAs with detectable expression in 

U937 cells showed expression of both sense and antisense tags, and 2.8% showed 

expression of the antisense tag only. By definition, the antisense tags that mapped to a 

sense gene sequence represented a convergent antisense gene (ie. whose 3’ end 

overlapped the sense gene 3’ end; Fig. 1.2). Therefore, the 6.3% of genes with antisense 

transcription were an underestimate of the total antisense transcription in these cells, as 



! %(!

SAGE tags from pairs with intron overlaps and from divergent SAS pairs were not 

considered.  

The first study to undertake discovery of antisense transcription in mouse embryonic tail 

tissues using LongSAGE employed a stringent tag-to-gene mapping process and required 

that all tags be supported by EST or cDNA evidence (Wahl et al. 2005). Antisense tags 

mapping outside of sense gene boundaries (such as those arising from divergent genes, 

Fig. 1.1) were included if they mapped within 10kb of gene boundaries and had 

supporting EST or cDNA evidence. Of the 1,260 genes with detectable antisense 

transcription, only 259 had annotated antisense Ensembl transcripts. Thus, >75% of the 

antisense transcription detected using LongSAGE in one murine tissue was novel, 

indicating that the number of antisense transcripts detected should dramatically increase 

in larger LongSAGE libraries generated from multiple tissues. 

Such an analysis was carried out using 8.55 million LongSAGE tags derived from 72 

LongSAGE libraries as part of the Mouse Atlas of Gene Expression project (Siddiqui et 

al. 2005). Libraries were sampled to an average depth of >118,000 tags, yielding gene-

detection sensitivity approximately equivalent to that of microarray approaches (Su et al. 

2002). Thus these libraries were suitable for detection of abundant and moderately 

abundant transcripts. After removing tags with sequence errors and applying a tag quality 

threshold, 261,134 tag sequences were mapped uniquely to the genome. Of these, 46% 

(120,122) mapped to 19,865 known genes, and 20% (52,255) mapped antisense to 

annotated genes. Thus, over a third of mapped sequence tags appeared to derive from 

antisense transcripts. 

A different tagging technology, Cap Analysis of Gene Expression (CAGE), can be used 

to generate digital tag counts of capped mRNAs (Kodzius et al. 2006). This technique is 

similar to LongSAGE, but the ~20bp tags are generated from the 5’ ends of transcripts 

and can be prepared from total RNA, allowing identification of both poly(A)+ and 

poly(A)- transcripts. The 5’ cap of a mature transcript is a modified guanosine nucleotide 

that prevents transcript degradation by exonucleases and regulates nuclear export of 

mRNAs (Wilusz et al. 2001). Essentially, CAGE libraries profile transcriptional start 

sites of mRNAs in a sample, and provide a quantitative digital measure of mRNA 

expression. Together, SAGE and CAGE tags allow comprehensive but independent 
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detection of transcription start sites as well as terminus-proximal sites (i.e. 3’-most NlaIII 

sites). These sites can be simultaneously profiled using a third tagging method, GIS 

(gene identification signature) (Ng et al. 2005). This approach generates linked 5’ and 3’ 

paired end tags (PET) from one mRNA molecule, allowing analysis of transcript 

isoforms differing in both start and end exon usage. Generation of PET tags involves the 

circularization of cDNAs into cloning vectors, which can introduce a size-bias in clones. 

Consequently, PET tags are not generally used for quantitative analyses; instead, they 

can be used to annotate transcript termini in a library that is profiled in parallel with a 

quantitative technology such as CAGE (Carninci et al. 2005). 

The RIKEN group compiled an exhaustive profile of the mouse transcriptome using 

sequence-based expression data including cDNA and EST libraries, GIS and CAGE tags, 

and found that depending on stringency, between 28.7% and 72.1% of mouse transcripts 

had evidence for expression from the opposing strand (Riken Genome Exploration 

Research et al. 2005). In the most stringent case, cDNAs provided evidence for antisense 

transcription at 28.7% of loci. For 51.2% of expressed loci, antisense transcription was 

detected by at least two independent observations of expression (e.g. ESTs). Requiring 

just one observation for expression increased this number to 72.1%. These findings 

support the previous observations that antisense transcription is pervasive in the 

mammalian genome, and that a significant proportion of that transcription is near the 

limit of detection using these methods.  

1.4.4 Profiling antisense transcripts using next-generation approaches 

As noted in the previous section, antisense transcripts can often be infrequently 

expressed, requiring increasingly deeper sampling for the detection of novel low-

abundance sequences. Additional insight into the prevalence of antisense transcripts can 

therefore be gained by the application of methods capable of sensitively sampling low-

abundance transcripts. The development of ‘next generation’ sequencing platforms has 

made possible a cost-effective increase in the throughput of sampling by at least an order 

of magnitude relative to Sanger-based methods. These ultra-high throughput methods 

include the Roche Applied Sciences’ 454 pyrosequencing platform (Margulies et al. 

2005), the Illumina Genome Analyzer (Bentley 2006), and Applied Biosystems SOLiD 

platform (Valouev et al. 2008), and rely on massively parallel production of short reads.  
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Each of these technologies generates libraries of fragmented input sequences annealed to 

platform specific adapters, and uses the adapters to perform PCR amplification of single 

stranded sequences. In the pyrosequencing approach, subsequent DNA sequencing 

involves the release of a pyrophosphate upon nucleotide incorporation, which ultimately 

leads to detectable light emission. Individual fluorescently-labeled bases are sequentially 

washed over the single stranded templates, and incorporation events are detected for 

millions of templates in parallel. The intensity of light produced is proportional to the 

number of incorporated nucleotides. Thus, one limitation of this approach is light-

detector saturation during a homopolymer run, which leads to errors in the estimated 

number of identical bases. In this platform, single-stranded templates are each bound to 

individual agarose beads, and undergo the PCR and sequencing reactions in isolation.  

The Illumina platform performs the parallel PCR amplification of millions of adapter-

ligated single-stranded sequences on a single flowcell. This process leads to the 

generation of millions of clusters, each containing a million PCR-produced copies of a 

distinct single molecule fragment. This redundancy allows efficient imaging of 

nucleotide incorporation events. Each type of nucleotide has a distinct fluorescent label, 

allowing their simultaneous detection. Sequencing-by-synthesis proceeds from flowcell-

attached primers complementary to the library adapters. A chemical block prevents more 

than one base from being added to the complementary DNA in each incorporation 

reaction. The subsequent imaging step is thus followed by a de-blocking step.  

The SOLiD platform performs emulsion PCR amplification of DNA fragments 

individually attached to magnetic beads. The beads are distributed on a slide surface, 

where sequencing proceeds by ligation of fluorescently-labeled probes, such that each 

sequenced base is detected twice by independent probes.  

In contrast to the multi-step process of sequencing clone-based libraries using the Sanger 

method, these platforms allow simpler processing of sampled mRNAs into sequence 

reads without a bacterial cloning step. In general the reads generated by the next 

generation platforms are considerably shorter than those generated by capillary 

sequencing (36-500bp, depending on the platform, versus the ~1kb achievable by 

capillary sequencing). However, the shorter read lengths are amenable to tag sequencing 

applications, which can rely on the massive production of reads representing individual 
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tags instead of on long sequence reads of clone-based tag concatamers. Modification of 

the GIS method to utilize the Roche 454 pyrosequencing platform has demonstrated a 

100-fold increase in sampling efficiency (Ng et al. 2006), showing the utility of next 

generation methods in improving transcript detection.  

One important limitation of the data generated by these technologies to date is the lack of 

strand specificity. Libraries generated using the Illumina and SOLiD platforms are 

generally constructed in non-strand specific manner, and the strand of origin of the 

resulting sequences can not be easily determined.  This limitation can be overcome 

through modified library generation methods (discussed in section 5.1), or through 

technologies that allow sequencing of single molecules, such as the Helicos system 

(Bowers et al. 2009). The Helicos method uses reversible terminators with tethered 

inhibitors, and allows sequencing by synthesis of single molecules without amplification.  

During the course of this thesis, the study of sense-antisense transcripts using such 

strand-specific next generation technologies was not practical due to insufficient numbers 

of existing libraries. 

1.5 Functional analyses 

One potential caveat of SAS detection methods that rely on reverse transcription is the 

potential for artifactual antisense sequences generated during library preparation 

(Johnson et al. 2005). Thus, in addition to genomic prevalence, other lines of evidence 

are required to ascertain the biological relevance of antisense transcripts. Ample evidence 

to support the putative significance of antisense transcription has consequently been 

collected through studies of evolutionary conservation, association with gene regulatory 

motifs, and surveys of regulated expression across biological samples or in response to 

stimuli. 

1.5.1 Evolutionary conservation 

If two neighboring genes share a SAS relationship and that topological arrangement is 

required for regulation of gene processing, then events disrupting their topology should 

be selected against. Rearrangements and genome expansion events can disrupt SAS 

topology and their putative regulatory interactions, and should therefore be selected 

against to a greater extent than rearrangements at non-overlapping genes, which do not 
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have regulatory interactions based on sequence overlap. To test whether this selection 

could be observed, Dahary and colleagues (Dahary et al. 2005) compared the topological 

relationships of SAS genes in the human genome to those in the Fugu genome. The 

human genome is eight-fold larger than the Fugu genome, an expansion that can be 

largely accounted for by transposable elements (TEs). TEs were active at stages prior to 

and during the radiation of mammals, and now constitute at least 45% of the human 

genome (Lander et al. 2001). The insertion and movement of TEs in the mammalian 

lineage has presumably affected both intergenic distances and gene order. To investigate 

the relationship between antisense transcription and the intergenic distance of 

consecutive genes in the human genome, 453 gene pairs with conserved linkage between 

human and Fugu were identified. For this entire set, the average distance between paired 

genes was 11-fold larger in the human genome relative to Fugu, which is consistent with 

the difference in genome sizes. Interestingly, gene pairs on the same strand (170 pairs) 

had a 13-fold larger distance in human versus Fugu, while SAS genes (283 pairs) had a 

2.5-fold larger distance. Therefore, the reduced distance observed at SAS genes indicates 

that selection seems to be acting to preserve the topological relationships of SAS genes 

versus genes encoded in tandem.  

To further examine the effect of antisense transcription on the preservation of gene order, 

the same group used the Antisensor algorithm to determine that 236 of 2,737 consecutive 

gene pairs in the human genome formed SAS pairs (52). Antisense overlaps could not be 

detected in Fugu due to limited numbers of full-length cDNAs and ESTs available at the 

time. Of the human SAS pairs, 23.3% remained consecutive and preserved their 

orientation in Fugu, and were thus likely to form SAS pairs in Fugu. Conversely, only 

13.5% of the same-strand human gene pairs remained consecutive in Fugu, showing that 

SAS genes preserved their order significantly more often than neighboring non-

overlapping genes. 

A substantial fraction of SAS genes overlapping on exons was found to be conserved 

between the mouse and human genomes (Engstrom et al. 2006). A total of 16% (962) of 

human SAS pairs were found to retain their overlap patterns in mouse, while 18% (943) 

of mouse SAS pairs retained their overlap patterns in human. To account for the variable 

effect of sequence resource comprehensiveness on SAS pair identification, the entire 
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human dataset was compared with random samples of varying sizes of all available 

mouse transcript sequences. The resulting saturation curve predicted that approximately 

25% of human SAS pairs were conserved in mouse. The analogous analysis, sampling 

human transcripts instead of mouse transcripts, generated a saturation model predicting 

that approximately 26% of mouse SAS pairs were conserved in human. Thus, the exonic 

overlap patterns of a quarter of all exon-overlapping SAS gene pairs were evolutionarily 

conserved (Engstrom et al. 2006; Zhang et al. 2006). This implies a common functional 

role for at least a subset of antisense transcripts, which constrains their separation.  

Although up to 75% of the human and mouse SAS gene overlaps are organism-specific, 

a lack of conservation at the sequence level does not imply a lack of function. As 

described, a significant proportion of antisense transcripts are non-coding RNAs that 

have sequence-independent regulatory functions. It is thus likely that antisense-strand 

transcription itself has been the target of positive selection. 

1.5.2 Regulated expression 

Non-coding genes by definition do not have a primary function as proteins, thus they are 

likely to be involved in transcriptional and post-transcriptional regulation (Mattick 2004). 

Since approximately 50% of SAS genes are non-coding (Cawley et al. 2004; Riken 

Genome Exploration Research et al. 2005), assessing their functional attributes is a 

biologically relevant challenge. Two functional attributes amenable to testing are the 

presence of transcription factor binding sites (TFBS) in regulatory regions, and 

differential non-coding RNA expression in response to stimuli.  

An analysis of these functional attributes was conducted for coding and non-coding 

transcripts on chromosomes 21 and 22 (Cawley et al. 2004). First, chromatin bound by 

the transcription factors (TFs) Sp1, cMyc, and p53, was isolated using chromatin 

immunoprecipitation (ChIP), and analyzed on tiling arrays (ChIP-Chip). Unexpectedly, 

only a minority (22%) of TFBSs were located within canonical promoter regions in the 

5’ UTRs of coding genes. A larger proportion (36%) were found within or just 3’ to well-

characterized genes, indicating they might have a role as distal regulatory elements active 

on protein coding genes (e.g. enhancers), or as promoters for non-coding transcripts such 

as antisense transcripts. 
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Overall, similar proportions of coding and non-coding genes were associated with 

TFBSs. Evidence specifically pertaining to 363 SAS loci revealed a strong association of 

antisense transcription with non-canonical TFBSs, half of which were evolutionarily 

conserved between mouse and human. 

Next, the propensity of non-coding transcripts to respond to differentiation signals was 

investigated by challenging cells with retinoic acid (RA). Non-coding antisense 

transcripts exhibited a strong pattern of differential expression that was highly 

concordant to the RA response of corresponding coding sense genes, with which they 

were highly co-expressed.  

In keeping with these observations, multiple studies confirm that that co-expressed SAS 

pairs occur at a greater than expected frequency (Chen et al. 2004; Riken Genome 

Exploration Research et al. 2005), and that the patterns of expression can be tissue 

specific (Kiyosawa et al. 2005), implying that non-coding antisense RNAs may be 

involved in tissue-specific regulation of sense gene expression.  

Direct testing of SAS interactions can be achieved by targeting siRNAs against non-

overlapping regions of each partner in a SAS pair (Riken Genome Exploration Research 

et al. 2005). Results from such perturbation studies underscore the underappreciated 

complexity of SAS regulation. In one case, siRNA inhibition of the antisense transcript 

led to an increase in sense mRNA, but siRNA inhibition of the sense transcript had no 

effect on the antisense mRNA. In another case, inhibition of the sense transcript led to 

decreased levels of the antisense mRNA, however, inhibition of the antisense transcript 

had no effect on the sense mRNA. Surprisingly, over-expression of the sense mRNA in 

this case induced expression of the antisense mRNA. The interactions between SAS 

transcripts are thus more complex than a simple inverse expression or co-expression 

model would suggest, and interrogations of these interactions will require orthologous 

strategies. 

1.6 Cancer 

Abnormal and un-controlled cell division leads to cancer. The cancer phenotype is an 

indicator of aberrations in six aspects of cellular physiology, specifically: growth-signal 

independent proliferation, autonomy from anti-growth signals and programmed cell 
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death (apoptosis), sustained angiogenesis, limitless replicative potential, and the ability to 

invade other tissues, giving rise to metastases (Hanahan and Weinberg 2000).  

In British Columbia, the cancer incidence rate is 774 per 100,000 individuals, with an 

associated mortality rate of 305.5 per 100,000 individuals. In 2006 over 17,000 cases of 

cancer were diagnosed in the province (www.bccancer.bc.ca), underscoring the 

significant burden that this disease places on the medical system, and the importance of 

this area of health research. 

1.6.1 SAS transcripts in human disease and cancer 

Numerous studies have reported antisense transcripts to disease-related genes, and 

significant changes in the ratio of sense to antisense transcripts in disease tissue (Krystal 

et al. 1990; Smilinich et al. 1999; Thrash-Bingham and Tartof 1999; Chu and Dolnick 

2002; Rossignol et al. 2002; Shendure and Church 2002; Mihalich et al. 2003; Reis et al. 

2004; Shirasawa et al. 2004; Alfano et al. 2005; Chen et al. 2005; Yan et al. 2005; Ladd 

et al. 2007; Yu et al. 2008). Understanding the regulatory role of antisense transcripts in 

regulating known cancer genes ((Yu et al. 2008), and references therein) is of particular 

interest. Insights into such regulatory mechanisms could provide a new understanding of 

relevant cancer-related regulatory mechanisms, may supply potential new targets for 

therapy, or serve as prognostic or therapeutic markers. For instance, expression of the 

antisense gene Saf has been shown to correlate with splicing of the sense partner, Fas. 

Fas-induced apoptosis is a key mechanism of homeostasis in the central and peripheral 

immune systems, where deregulation of programmed cell death can lead to autoimmunity 

and cancer. Although the mechanism is not completely understood, Saf inhibits Fas-

mediated apoptosis. Interestingly, over-expression of Saf is correlated to specific Fas 

isoforms that exclude either the trans-membrane domain or the death domain, or both 

(Yan et al. 2005). Saf-correlated splicing events that generate a soluble rather than 

membrane-bound form or that skip the death domain are therefore linked to loss of 

function in this protein.  

1.6.2 Defining cancer subtypes using microarrays 

Profiling of cancer samples by microarrays generates individual measurements of 

thousands of gene expression values that can be used to group (i.e. cluster) patients into 
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groups defined by similar expression profiles. In Chapter 4, I use a subset of expression 

profiles to cluster patients into distinct groups. Numerous methods have been devised for 

this purpose (reviewed in (Butte 2002)), but a commonly used strategy is to first assess 

similarity between either genes or samples using the Pearson coefficient, and then to 

generate groups of similarly expressed genes using hierarchical clustering. Hierarchical 

clusters can be constructed by iteratively grouping the most similar genes together into 

larger groups, which are then grouped in yet larger groups along with other similar 

groups, until a complete similarity-based relationship is generated for all samples (or 

genes). The output of this method is based on existing information in the data, and is 

termed “unsupervised”. In contrast, “supervised” methods are closely related but 

fundamentally different in that criteria for groups are first defined (i.e. cancer vs non-

cancer; good pronosis vs poor prognosis), and expression data is subsequently mined to 

find genes that significantly differ in expression between pre-defined groups. 

Significance of expression differences is generally based on four characteristics: the 

absolute expression of the gene, the difference in expression levels between samples, the 

ratio of expression between groups, and the reproducibility of measurement (i.e. whether 

expression values are similar in a given group). Methods typically used for classification 

are reviewed in (Butte 2002). Successful identification of both known and novel cancer 

subtypes has been achieved using both unsupervised and supervised methods (Golub et 

al. 1999; Lubitz et al. 2006; Phillips et al. 2006; Li et al. 2009; Verhaak et al. 2010), and 

highlights the power of these approaches in improving diagnostic precision.  

1.7 Thesis objectives and chapter summaries 

The broad aims of this thesis were to (1) determine whether next generation sequencing 

platforms could be used to improve the quantitative detection of antisense transcripts, 

and (2) to explore the putative role of SAS transcription in splicing regulation and human 

disease. 

Systematic analyses of extensive transcriptome datasets (including EST libraries, 

microarrays, and tag sequence libraries) have revealed that a large proportion of 

antisense transcripts are infrequently expressed. A principal aim of the thesis was to 

determine the prevalence of antisense transcription using more sensitive methods for 

gene expression. I took advantage of the recent development of Tag-seq to address this 
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aim. Tag-seq is a version of the LongSAGE protocol modified to take advantage of the 

ultra high sequencing throughput of the Illumina platform, and was developed at the GSC 

in order to complete data collection for the Cancer Genome Anatomy Project (CGAP; 

cgap.nci.nih.gov). In Chapter 2, I compared multiple Tag-seq to LongSAGE libraries, 

and found an improved representation of low abundance sequences, such as antisense 

transcripts, transcription factors, and novel exons. The majority of low-abundance 

transcripts found were below the levels of detection achievable by the largest LongSAGE 

libraries, indicating that Tag-seq significantly advances our ability to measure 

transcription using tag sequencing. Tag-seq detected similar numbers of transcripts to 

RNA-seq, but in contrast retained strand of origin information, allowing non-ambiguous 

identification of overlapping sense and antisense transcripts. In addition, Tag-seq 

outperformed microarrays in terms of detectable dynamic range, and had less GC-bias 

than the LongSAGE method. The digital expression counts generated through the Tag-

seq approach were amenable to differential expression analysis between cancer and 

normal CGAP libraries, and led to the identification of SAS pairs with large changes in 

sense to antisense expression ratios between normal and diseased states.  

Most genomic loci are now known to generate multiple transcript isoforms differing in 

exon usage, polyadenylation status, and transcriptional start and end sites. Alternative 

splicing is thought to play a role in the generation of transcript isoforms from as many as 

75% of human loci, including SAS loci. Resulting transcript isoforms can encode 

proteins with altered localization, stability, or biological function, effectively expanding 

the information content of the genome into a surprisingly diverse proteome. Antisense 

transcripts have been shown to affect sense gene splicing outcomes (section 1.3.5), and 

thus, a specific goal of my thesis was to explore the relationship between antisense 

transcription and alternative splicing on a global scale. In Chapter 3, I describe a 

bioinformatic approach to this challenge, based on Affymetrix exon array data. These 

data are both strand specific, and unlike sequence tag-based methods, provide exon-level 

expression information. Using 176 exon arrays profiling normal human tissues, I 

detected a widespread and consistent relationship between alternative splicing and 

antisense transcription at the majority (~75%-80%) of expressed known and novel SAS 

genes. To better understand the basis for this relationship, I further explored the 

properties of SAS sequence overlaps, regions in which alternative splicing events seemed 
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to be more prevalent. SAS sequence overlaps were distinguished from flanking non-

overlapping genic regions by a significantly increased frequency of exons. I utilized 

nucleosome and polymerase occupancy datasets to show that a likely consequence of 

high exon frequencies was a concomitant increase in nucleosome occupancy levels, and a 

decrease in polymerase speed. Since slower polymerase elongation rates have been 

associated with increased alternative splicing rates (references in Chapter 3), my 

findings suggest for the first time that antisense-mediated splicing may happen through 

mechanisms other than RNA masking. 

In Chapter 4, I explored the utility of antisense-correlated sense gene isoforms in 

understanding disease heterogeneity. Using over 1,000 exon arrays profiling normal and 

cancerous tissues, I first identified thousands of exons with antisense-correlated splicing 

events specific to cancer. I next used unsupervised hierarchical clustering methods to 

show that the splicing patterns of these exons could be used to cluster patients into 

clinically distinct groups. Specifically, groups of patients with good and poor prognosis 

could be identified using this approach, as well as subsets of patients that were either 

sensitive or resistant to standard chemotherapy. These results show for the first time that 

the subset of splicing events that are correlated to antisense transcription can be used to 

discern biologically relevant subtypes of cancer. 
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Figure 1.1  Regulatory coding and non-coding antisense transcripts. 
UCSC gene models for five types of SAS gene pairs with known antisense regulatory 
functions. These gene pairs differ in their overlap type (convergent, divergent, fully 
overlapping; gene direction denoted by arrows), and coding status (thin exon blocks 
denote non-coding regions, thicker exon blocks denote coding regions). (A) Convergent, 
coding / coding. (B) Convergent, unspliced non-coding / spliced non-coding. (C) Fully 
overlapping, unspliced non-coding / coding. (D) Divergent, coding / spliced non-coding. 
(E) Fully overlapping, spliced non-coding / coding, with no exon overlaps. UCSC gene 
models are based on RefSeq, UniProt, GenBank, CCDS, and Comparative Genomics; 
gene colors denote level of experimental support (http://genome.ucsc.edu/). 
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Figure 1.2  Experimental methods for the detection of SAS transcription. 
A divergent sense and antisense gene pair is depicted on the positive and negative strands 
of the genome. Exons (boxes) are linked by thin lines (introns) with arrows denoting 
orientation. Strand specific methods are displayed separately above the sense and below 
the antisense gene models (cDNAs and ESTs, Exon tilling arrays, SAGE and CAGE 
tags, and GIS tags). Methods that are not strand specific are summarized in the middle 
(unspliced ESTs, whole genome tilling arrays, and first generation expression arrays). 
Abbreviations: cDNA (complementary DNA); EST (expressed sequence tag); SAGE 
(serial analysis of gene expression); CAGE (cap analysis of gene expression); GIS (gene 
identification signature). SAS overlap is denoted by a vertical grey bar. 
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Table 1.1  EST, mRNA and cDNA based SAS analyses. 
A compilation of studies relying on different types of transcript profiling methods to 
identify SAS genes that overlap on exons (eSAS) or introns (iSAS). Coding status of 
genes is summarized as c/c (both genes are coding, nc/nc (both genes are non-coding), 
and c/nc (one gene is coding). Topology of genes can be divergent (D), convergent (C), 
and fully overlapping (F). (A) Studies relying on EST, mRNA, and cDNA libraries; (B) 
studies relying on microarray datasets; (C) studies relying on sequence tags. 
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A 

Dataset Organism Antisense transcription Coding status Topology Reference 

RefSeq and Ensembl 
mRNAs Human 

2% (87 pairs) are SAS in 
12,897 RefSeq mRNAs 

analyzed 

44% of transcripts are SAS with 
exon overlaps NA (Lehner et al. 

2002) 

899 human and 176 
mouse EST libraries, 
UniGene mRNAs 

Human 
Mouse 

143 human and 73 mouse 
SAS pairs NA NA 

(Shendure 
and Church 

2002) 

GenBank mRNAs 
and ESTs Human 2,667 SAS pairs NA D C F 

31% 41% 28%  
(Yelin et al. 

2003) 

37,086 TUs from 
Fantom2 cDNA 
clones; public 
mRNAs 

Mouse 2,481 are eSAS  
899 are iSAS 

c/c: 27% eSAS 
c/nc: 55% eSAS 

nc/nc: 18% eSAS 
NA (Kiyosawa et 

al. 2003) 

43,553 TUs from 
Fantom3; GenBank 
cDNAs, ESTs, 
CAGE, GIS  

Mouse 
Strong evidence: 29% 
Good evidence: 51% 
Weak evidence: 72% 

c/c: 37% eSAS, 26% iSAS 
c/nc: 55% eSAS, 60% iSAS 
nc/nc: 8% eSAS, 14% iSAS 

D C F 
36% 34% 30%  

(Riken 
Genome 

Exploration 
Research et 

al. 2005) 

26,741 clusters of 
386,415 mRNAs and 
ESTs from UniGene 

Human 22% eSAS and 11% iSAS 
pairs 

c/c: 60% eSAS, 45% iSAS 
c/nc: 30% eSAS, 45% iSAS 

nc/nc: 10% eSAS, 10% iSAS 
NA (Chen et al. 

2004) 

36,606 TUs from 
ESTs, Fantom3 
cDNA clones, 
mRNAs 

 
Human 
Mouse  

eSAS iSAS 
24.7% 22.7% 
25.3% 16.1%  

NA 
D C F 

29% 29% 42% 
33% 33% 33%  

(Engstrom et 
al. 2006) 

mRNAs and ESTs 
from UniGene 

 
Human 
Mouse 

Fly 
Nematode 
Sea squirt 
Chicken 

Rat 
Frog 

Zebrafish 
Cow  

eSAS 
26.3% 
21.0% 
16.8% 
2.8% 

15.8% 
6.6% 
4.5% 
4.3% 
2.2% 
3.8%  

NA 

Convergent SA pairs 
predominate in fly, 
nematode, and sea 

squirt 

(Zhang et al. 
2006) 

mRNAs and ESTs 
from UniGene 

 
 

Human 
Mouse 

Rat 
Chicken 

Fly 
Nematode  

eSAS 
(all) 

eSAS* 
(20,000) 

22.7% 2.1% 
11.6% 2.9% 
4.8% 2.7% 
4.8% 4.2% 

17.2% 12.1% 
0.5% 0.5%  

NA NA 
(Sun et al. 

2006) 
 

* In this analysis, the proportion of SAS genes was calculated for all expressed transcripts, or a subset of 20,000 transcripts 
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B 

Dataset Organism Antisense transcription Coding status Topology Reference 
High-density 
oligoarrays of 
chromosomes 21 and 
22. Binding sites of 
Sp1, c-Myc, and p53 

Human 

21% of transcript clusters 
with mRNA evidence and 
a non-canonical TFBS are 
SAS pairs 

NA NA (Cawley et al. 
2004) 

13,889 
transcriptional units. 
High density 
oligoarrays of the 
non-repetitive 
regions of the 
genome 

Human 1,529 (11%) transcripts 
were antisense to introns NA NA (Bertone et al. 

2004) 

19,525 
transcriptional units. 
PCR-oligoarray of 
chromosome 22 

Human 
518 (9.8%) of 5,264 
transcribed fragments 
were antisense to introns. 

NA NA (Rinn et al. 
2003) 

Cytosolic and 
nuclear poly(A)+/- 
RNA from 8 cell 
lines profiled on 5-bp 
resolution tiling 
arrays 

Human 

61% of novel transcribed 
fragments represent 
transcripts from both 
strands of the genome; 
50% of intronic sequences 
are antisense  

NA NA 

(Cheng et al. 
2005; 

Kapranov et 
al. 2005) 

1,947 S-AS pairs 
profiled on 
oligoarrays using 
poly(A)+/- RNA 

Mouse NA 
c/c*: 48% 
c/nc: 43% 
nc/nc: 8% 

NA (Kiyosawa et 
al. 2005) 
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C 

Dataset Organism Antisense transcription Coding status Topology Reference 

Short SAGE library 
of U937 cell line Human 6.3% of expressed 

mRNAs had antisense tags NA NA (Quere et al. 
2004) 

8 LongSAGE 
libraries, one tissue Mouse 3.5% of all tags were 

antisense to genes NA NA (Wahl et al. 
2005) 

72 LongSAGE 
libraries, multiple 
tissues (Mouse Atlas 
of Gene Expression) 

Mouse 
Approximately one third 
of mapped LongSAGE 

tags are antisense  
NA NA (Siddiqui et 

al. 2005) 

43,553 TUs from 
Fantom3; GenBank 
cDNAs, ESTs, 
CAGE, GIS 

Mouse 
Strong evidence: 29% 
Good evidence: 51% 
Weak evidence: 72% 

c/c: 37% SA, 26% NOB 
c/nc: 55% SA, 59% NOB 
nc/nc: 8% SA, 14% NOB 

D C F 
36% 34% 30%  

(Riken 
Genome 

Exploration 
Research et 

al. 2005) 
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2. Next generation tag sequencing for cancer gene expression profiling2 

Author contributions 

T.Z, H.M., Y.Z., and M.H. were involved in the design of the Tag-seq method, and in 

creation of both Tag-seq and LongSAGE libraries (sections 2.2.1, 2.4.1, 2.4.2). S.J. and 

M.A.M. supervised the project and contributed design concepts and comments 

throughout. The data filtering algorithm was designed and implemented by A.D. 

(sections 2.2.2, 2.4.2, 2.4.3), who also conducted inter-plaform correlations measures 

(sections 2.2.4.1, 2.2.4.2, 2.4.6). S.D. processed RNA-seq data. R.M. wrote scripts used 

in section 2.4.7, was involved in original manuscript planning, and contributed text to the 

manuscript. I (A.S.M.) performed the majority of the computational experiments in the 

text, designed and performed the cancer-related analyses (sections 2.2.2-2.2.8 and 2.4.4, 

2.4.5, 2.4.7-2.4.9), created figures and tables describing the results, and wrote the 

manuscript. 

2.1 Introduction 

A key first step in understanding cellular processes is a quantitative representation of 

gene expression profiles, including those relevant to cancer. As part of the Cancer 

Genome Anatomy Project (CGAP), the gene expression profiles of a wide variety of 

cancer tissues and cells were measured using LongSAGE libraries, created and 

sequenced using conventional Sanger sequencing methods (Lal et al. 1999). Prior to 

completion of the CGAP project, the advent of new massively parallel sequencing 

technologies made feasible an improvement in the efficiency and sensitivity with which 

tag-based gene expression could be measured. We thus sought to develop and apply a 

next-generation sequencing approach for tag-based gene expression profiling to complete 

the CGAP database. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 A version of this chapter has been published.  Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald 
H, Jones S, Zhao Y, Hirst M, and Marra MA. 2009. Next generation tag sequencing for cancer gene 
expression profiling. Genome Res, 19:1825-35 

A portion of this chapter has been published. Morrissy AS, Zhang Y, Delaney A, Asano J, Dhalla N, Li I, 
McDonald H, Pandoh P, Prabhu A-L, Tam A, Hirst M, and Marra MA. 2010. Digital Gene Expression by 
Tag Sequencing on the Illumina Genome Analyzer.  Current Protocols in Human Genetics. Supp 65. Unit 
11.11. John Wiley and Sons, Hoboken, NJ. 
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Several recently developed sequencing technologies, such as Roche Applied Sciences’ 

454 pyrosequencing platform (Margulies et al. 2005), the Illumina Genome Analyzer 

(Bentley 2006), and Applied Biosystems SOLiD platform (Valouev et al. 2008), offer 

massively parallel production of short reads. Using these technologies, thousands to 

millions of isolated and amplified DNA molecules can be attached to a solid surface 

(such as a flowcell or microbeads), and sequenced in parallel. Such technologies offer up 

to two orders of magnitude increase in per base cost-efficiency compared to capillary 

sequencing (von Bubnoff 2008). These platforms have made feasible previously cost-

prohibitive projects such as genome re-sequencing (Green et al. 2006; Bentley et al. 

2008; Ley et al. 2008; Wang et al. 2008b), and deep transcriptome and non-coding RNA 

sequencing (Nielsen et al. 2006; Weber et al. 2007; Marioni et al. 2008; Morin et al. 

2008; Rosenkranz et al. 2008), as well as genome-wide protein binding-site surveys 

(Chip-seq) (Jothi et al. 2008; Wederell et al. 2008). 

The high-throughput methods preceding the massively parallel sequencing approaches 

mentioned above are diverse, but can generally be classified either as sequence-based or 

hybridization-based. The former are often termed ‘digital’ because they reflect the 

number of individual observations of a transcript, while the latter, typically in the form of 

microarrays, are termed ‘analog’ as they provide a surrogate hybridization-based 

measure of individual transcript abundance. Digital gene expression profiling using ESTs 

(Adams et al. 1991; Hillier et al. 1996) was cost-restrictive and more cost efficient tag-

based techniques such as serial analysis of gene expression (SAGE) were developed 

(Velculescu et al. 1995). Despite increases in cost-efficiency compared to EST profiling, 

the expense and specialized facilities required for high-throughput capillary sequencing 

prevented SAGE from becoming as widespread as its microarray counterparts.  

Our goal was to implement a tag sequencing protocol on the Illumina platform, 

analogous to LongSAGE (Saha et al. 2002), and to use this protocol to measure transcript 

abundance in human cancers. The Illumina (Bentley et al. 2008) sequence-by-synthesis 

technology currently offers approximately 80 million reads (10 million reads per lane; 8-

lane flow cell)3 from a single run of the instrument. This makes possible gene expression 

profiling experiments with much improved dynamic range and considerable cost savings 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 As of 2010, the Illumina instrument generates approximately 62 million reads per lane. 
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compared to capillary sequencing of LongSAGE libraries. Our approach, called Tag-seq, 

generates 21 base-pair tags, generally from the 3’ ends of transcripts. The method is 

similar to the LongSAGE approach, but forgoes the need for ditag production, 

concatenation, and cloning. Deep sequencing of tags is achieved using only a single lane 

of a flow cell, and typical yields are in the range of 5 – 10 million sequences.  

Compared to conventional microarrays, Tag-seq should not suffer from cross-

hybridization of related sequences, and in principle offers dynamic range limited only by 

sequencing depth. Compared to RNA-seq, Tag-seq performs comparably in terms of 

gene discovery and dynamic range. While Tag-seq does not provide information 

regarding the internal structure of transcripts, it can distinguish between transcripts 

originating from either of the DNA strands. There are advantages in using a strand-

specific gene expression platform, for example to measure the prevalent antisense 

transcription in the human genomes (Riken Genome Exploration Research et al. 2005). 

Here, we conduct an analysis of Tag-seq data from the CGAP collection to illustrate the 

utility of the method in addressing questions of relevance to cancer biology. 

2.2 Results 
2.2.1 Data generation 

The Tag-seq protocol (Morrissy et al. 2010b) is similar to the LongSAGE approach 

(Saha et al. 2002), in which a restriction endonuclease (NlaIII) cleaves each individual 

transcript in a sample, and a type II restriction endonuclease (MmeI) is used to generate a 

21bp tag from the 3’-most NlaIII site. In LongSAGE, tags from individual transcripts are 

ligated together to form ditags that are concatenated, cloned, and sequenced using 

capillary sequencing. The Tag-seq method, in contrast, forgoes ditag production and 

concatenation, and allows the direct sequencing of tags using massively parallel 

sequencing on the Illumina Genome Analyzer ((Morrissy et al. 2010b), Fig. 2.1). 

Typically, a Tag-seq library is sequenced to a depth of 10 million tags, which represents 

an increase of 2 orders of magnitude over the sequencing depth of a typical LongSAGE 

library. Our expectation was that the added depth of the Tag-seq method would improve 

representation of important low-abundance transcripts at the limits of or beyond 

LongSAGE sensitivity. 
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We used the Tag-seq platform to complete the CGAP digital gene expression profiling 

project, by generating 35 libraries from cancer and normal tissue samples. To assess the 

similarities between the new Tag-seq data and the existing LongSAGE data, we 

compared the data from these 35 libraries to those from 77 LongSAGE libraries. In total, 

we produced two meta-libraries, one containing 6.9 million LongSAGE tags from the 77 

libraries (1.1 million distinct tag sequences), and one containing 170 million Tag-seq tags 

from the 35 quality filtered libraries (4.0 million distinct tag sequences). These libraries 

are publicly available as part of the Cancer Genome Anatomy Project (CGAP) collection 

((Lal et al. 1999); Appendix A). The CGAP libraries also included two replicate 

libraries, one Tag-seq library and one LongSAGE library, which were created from the 

same human embryonic stem cell (hESC) RNA source.  

2.2.2 Data filtering 

To ensure that we analyzed high quality data in the Tag-seq libraries, we removed 

potentially erroneous tags using a novel filtering algorithm (Methods). Briefly, tags were 

removed if they occurred once (singletons), or if they differed by one basepair from more 

highly expressed tags (one-offs) unless they mapped to the genome or transcriptome. On 

average, 22.1% of filtered tags could be mapped to Ensembl transcripts, while only 1.2% 

of tags removed by the filter could be mapped to transcripts. While filtered tag sequences 

comprised an average of 7.5% of all tag sequences, their abundance corresponded to an 

average of 56.0% of the total library size, and they identified over 97.5% of the total 

number of genes detected by all tags.  

2.2.3 Effect of library depth on tag sequence diversity and abundance 

By comparing the Tag-seq and LongSAGE meta-libraries, we sought to first determine 

whether differences in Tag-seq and LongSAGE protocols resulted in any significant bias 

in tag or gene representation. As expected, we found a significant overlap between these 

meta-libraries, with over 300,000 unique tag sequences detected using both methods. On 

average, these commonly detected tag sequences were expressed in a larger proportion of 

Tag-seq libraries than LongSAGE libraries, and had 17-fold higher expression in Tag-seq 

libraries (Table 2.1). A large number of tag sequences were detected by only one 

method; in general, these were expressed at lower levels than those tag sequences found 

by both methods, and in fewer libraries. The 3 million tag sequences detected only by 
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Tag-seq were on average 1/16 the abundance of the tags detected in common by both 

methods (absolute counts, Table 2.1), and therefore were likely undetectable in the 

LongSAGE libraries due to their comparatively shallow sequencing depth. Thousands of 

Tag-seq tag sequences did not map to any unique or repetitive sites in the genome or the 

transcriptome. These may indicate the presence of either novel transcripts, or novel 

isoforms of annotated genes that lead to the creation of novel tag sequences spanning 

splice sites (80,875 Tag-seq tag-sequences and 63,166 LongSAGE tag sequences 

expressed over counts of 10; Fig. 2.2C).  

Nearly a third of the tags detected in both meta-libraries mapped to 21,638 genes. A 

small proportion of tag sequences found solely in LongSAGE (8.1%) or Tag-seq (3.5%) 

mapped to Ensembl genes (Table 2.1). Although in general the tag sequences found only 

by Tag-seq had expression levels below those detectable by LongSAGE, the 741 genes 

found only in Tag-seq had an average expression level higher than that for the genes 

found in common. They are therefore likely to be genes specific to tissues not profiled by 

LongSAGE. With the exception of the hESC replicate libraries (section 2.2.1), all 

LongSAGE and Tag-seq libraries represented diverse tissues, although the greater 

number of LongSAGE libraries doubled the diversity of tissues profiled by LongSAGE. 

The 430 genes found only by LongSAGE were on average less frequently expressed than 

genes detected by both methods, and may represent genes specific to tissues profiled 

using LongSAGE.  

We next investigated the effect of depth on gene representation by comparing the Tag-

seq and LongSAGE replicate libraries created from the same hESC RNA sample. The 

Tag-seq replicate (library id ‘hs0238’) had a total of 293,179 tag sequences (filtered tags 

only), of which 40,149 (13.7%) mapped to Ensembl genes, either in introns, exons, or on 

the opposite strand. The LongSAGE replicate (library id ‘1313’ in Table S1) had a total 

of 19,998 tag sequences, of which 13,983 (69.9%) mapped to Ensembl genes. The 

LongSAGE tag sequences mapped to 7,055 genes and the Tag-seq tag sequences mapped 

to 11,165 genes, which included 93.5% of the genes found by LongSAGE. Thus, added 

depth improved gene detection in this tissue 1.6-fold. Since each tag sequence mapping 

to a gene can represent an individual transcript isoform (Siddiqui et al. 2005), we 

analyzed the average expression of all transcript isoforms. The transcripts of the 6.5% of 
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genes only found by LongSAGE were expressed at low levels (average of 4.0 counts), 

and may be under-represented in the Tag-seq library due to variability in the replicate 

library creation. The detection of transcription factors was 1.8-fold greater, with 429 TFs 

detected by LongSAGE, and 799 TFs detected by Tag-seq. The average expression of the 

393 TFs detected in common was higher (69.8 in the Tag-seq replicate, 6.8 in the 

LongSAGE replicate), than that of the 36 TFs detected only in LongSAGE (5.9), and the 

406 TFs detected only by Tag-seq (26.7). 

To determine whether these additional genes found by Tag-seq were functionally 

different than those found by both methods, we conducted an assessment of GO 

categories overrepresented in the Tag-seq versus the LongSAGE replicate (Ashburner et 

al. 2000). The most significantly overrepresented terms in this tissue were found by both 

methods. Thus, increased sequencing depth resulted in identification of additional genes 

that belonged to the same functional categories (data not shown). 

We next asked whether a Tag-seq library unambiguously identified a larger number of 

genes on average than a standard LongSAGE library. We performed a sampling 

simulation to estimate the number of genes represented by different ‘depths’ of 

sequencing in each Tag-seq and LongSAGE library. Sampling up to 300,000 tags from 

individual LongSAGE libraries resulted in detection of up to 10,000 genes (Fig. 2.2A). 

Quality filtered Tag-seq libraries sampled at depths of up to 10 million tags detected up 

to 13,000 genes. This suggested that the added depth provided by the Tag-seq approach 

results in a more comprehensive interrogation of gene expression profiles, with 48.3% 

and 36.3% of expressed genes detectable at depths greater than those of a typical 

(100,000 tags) or large (200,000 tags) LongSAGE library, respectively. At every 

sampling depth level greater than 1 million tags in Tag-seq, the rate of gene detection 

was reduced (Fig. 2.2B).  

2.2.4 Differences in gene abundance between Tag-seq and other gene expression 
platforms 

2.2.4.1 Tag-seq vs LongSAGE and SAGELite 

Having established that the measured sampling depth of Tag-seq improved gene 

discovery, we evaluated the concordance of tag abundance between the two methods, by 

re-analyzing the Tag-seq and LongSAGE replicate hESC libraries. The LongSAGE 
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replicate had a total of 272,465 tags, while the Tag-seq replicate had a total of 3,636,083 

quality filtered tags. Tags expressed in common between these libraries had a Pearson 

coefficient of 0.60 (Fig. 2.3). We analyzed another set of replicate Tag-seq and 

LongSAGE libraries created from the same mouse RNA (Methods), and found they had a 

Pearson correlation of 0.64. This was comparable to the correlation between the 

LongSAGE library and a technical replicate generated with the SAGELite protocol 

(0.64). SAGELite is a variant of LongSAGE used to create libraries from samples that 

are too small to yield sufficient amounts of mRNA for standard LongSAGE library 

construction (Peters et al. 1999). We observed a lower Pearson coefficient between the 

Tag-seq technical replicate and the SAGELite replicate (0.43), indicating these methods 

have different biases relative to LongSAGE.  

2.2.4.2 Tag-seq vs Affymetrix 

We generated Pearson correlations between three non-CGAP Tag-seq libraries and their 

respective technical replicates analyzed on Affymetrix exon arrays. Correlations were 

calculated for expressed tags that represented known transcripts and mapped uniquely or 

not at all to the genome, and their corresponding Affymetrix probes. Pearson coefficients 

for the three technical replicates were very similar to each other (0.59, 0.60, and 0.61), 

and to that of Tag-seq and LongSAGE replicates.  

To determine whether the Tag-seq platform performed better in quantifying the dynamic 

range of expressed genes, we analyzed one of the three Affymetrix:Tag-seq replicates. 

We binned the 10,152 genes detected in common between the two platforms by 

expression level into 10 bins, from least to most highly expressed (Fig. 2.3E). In the 

Affymetrix replicate, the genes in bins 1-4 were indistinguishable from background 

noise. Thus, genes with measurable expression above background in Affymetrix were 

contained in bins 5-10 only. In contrast, genes with measurable expression above 

background in Tag-seq were well separated among the 10 bins. Between Affymetrix bin5 

and bin10, genes had a fold-change of 78.7, while between Tag-seq bin1 and bin10, 

genes had a fold change of 1,018.5, nearly 13 times higher. Between Tag-seq bins 2 and 

10, the fold change was 407.6, over 5 times higher. 

The log transformed minimum, mean, and maximum expression was next calculated for 

the tag sequences in each library. The range between the minimum and the maximum, 
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and between the mean and maximum values was computed (Table 2.4A). Tag-seq counts 

and Affy intensities spanned the same range (2.2-11.0 and 0.0-10.9, respectively, 

averaged over three replicate libraries), however the range between the average gene 

expression and the max gene expression was double in Tag-seq vs RNA-seq (8.2 vs 4.9), 

showing that genes expressed above average have twice the log-transformed dynamic 

range in Tag-seq. 

2.2.4.3 Tag-seq vs RNA-seq 

We also analyzed a pair of replicate RNA-seq / Tag-seq libraries created from the same 

RNA source (Methods), and found a high concordance in transcript identification 

between the methods. A total of 8,050 transcripts were found by both methods (Table 

2.4B), representing 94.4% of all 8,528 transcripts found by RNA-seq, and 96.2% of all 

8,366 transcripts found by Tag-seq (Pearson correlation of gene abundance: 0.54). 

Commonly expressed genes were also highly concordant in terms of dynamic range 

(Pearson correlation of 0.97; see Methods). 

The library construction approach used to make Illumina libraries does not currently 

distinguish between reads derived from opposing DNA strands, and RNA-seq reads were 

therefore not able to discriminate between sense and antisense transcription. For nearly a 

third (29.5%) of the genes detected by both methods in this replicate library set the Tag-

seq replicate detected expression on the antisense strand (Table 2.4B). In the case of 613 

loci detected by both methods, the Tag-seq reads clearly show that expression arises 

solely from the antisense strand. At these loci, correlations between gene expression 

levels measured by Tag-seq vs RNA-seq (0.50) were the same as those at loci with sense 

expression in both technologies (0.54). 

2.2.5 GC-content bias 

We next investigated whether there was any detectable bias in the sequence composition 

of tags profiled by the Tag-seq and LongSAGE platforms. The GC-bias of a platform can 

be calculated by comparing the number of standard deviations by which the observed 

bias in an individual library deviates from that of the expected bias ((Siddiqui et al. 

2006); Methods). We found that Tag-seq libraries were significantly more AT-rich than 

LongSAGE libraries (Fig. 2.4A). As previously observed, LongSAGE libraries had a 
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weak GC-bias (-3.51 +/- 8.08), while Tag-seq libraries had a stronger AT-bias (12.99 +/- 

5.39), comparable to that of the Affymetrix platform (HGU 133 GeneChip; ((Siddiqui et 

al. 2006)). As observed for Affymetrix, this bias decreased in parallel with increasing 

expression level, such that highly expressed Tag-seq sequences were significantly less 

biased (all filtered tag sequences vs those expressed over counts of 500, P = 2.1 X 10-10, 

T-test). This suggests that as sequencing depth increases in sequencing-based 

technologies, a distinct class of genes with increasing AT content is detected. We tested 

whether this was the case in Tag-seq by comparing the GC-content of the genes with 

high vs low frequency tags, and found that genes expressed at or below 100 tag counts 

were significantly more AT-rich than genes expressed at or above 1,500 tag counts (P = 

2.8 X 10-4, T-test , Fig. 2.4B). This was true of gene sequences that included introns, but 

not of cDNA sequences (data not shown), indicating that the AT-content of the genomic 

regions in which these genes were encoded was correlated to their expression level. In 

LongSAGE, bias also decreased with increasing expression level, such that tag sequences 

expressed over 20 and over 100 counts become significantly less biased (all tag 

sequences vs those expressed over counts of 100, P = 1.9 X 10-3, T-test). This trend was 

also correlated to the GC-content level of the genes to which LongSAGE tags mapped to, 

indicating that the source for these observations was also biological in nature rather than 

a technical artifact (Fig. 2.4B).  

Next we determined the extent to which tag sequence representation was biased in Tag-

seq versus LongSAGE, by re-analyzing the hESC replicate libraries made from the same 

RNA source. Tag sequences detected solely by LongSAGE had a greater GC-content 

than those detected solely by Tag-seq (0.50 vs 0.39), however, both sets of tag sequences 

were on average very infrequently expressed (Fig. 2.5A). In contrast, the 13,161 tag 

sequences detected by both methods were highly expressed and had an intermediate GC-

content (0.43) that was nearly identical to the average GC-content of all Ensembl 

transcript tag sequences (0.42). We looked at whether the correlation of expression of 

these common tag sequences differed as a function of tag GC-content. We divided the 

tags into four bins representing increasing proportions of tag GC-content (bin1: 0%-25%, 

bin2: 25%-45%, bin3: 45%-65%, bin4: 65%-100%), and found that the Pearson 

correlation changed as a function of GC-content, with AT-rich tags having the lowest 

correlation between methods (Fig. 2.5B).  
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We investigated the cause of the decreased correlation between AT-rich tag sequences in 

the two methods, and found a relationship between tag abundance and tag GC-content. In 

LongSAGE we observed a positive correlation between tag abundance and GC-content 

for the first 3 bins (bin1 vs bin2 P = 1.6 X 10-3, bin2 vs bin3 P = 1.4 X 10-3, T-test). In 

contrast, the abundance of the same tag sequences in the Tag-seq replicate did not 

correlate with GC-content, with the exception of the most GC-rich bin (bin3 vs bin4 P = 

9.4 X 10-8; Fig. 2.5C). This relationship between GC-content and tag abundance held for 

all Tag-seq and all LongSAGE libraries (data not shown). 

2.2.6 Improved representation of low abundance LongSAGE transcripts in Tag-seq 
libraries 

Given the increased depth of Tag-seq libraries, we expected to observe increased 

numbers of tags for transcripts at the limit of detection in LongSAGE (Siddiqui et al. 

2005). Two such tag categories include antisense and intronic tags. Antisense tags 

originate from transcripts that are transcribed from the opposite strand (Fig. 2.6), while 

intronic tags may represent unannotated exons and UTRs within known genes (Saha et 

al. 2002), previously unannotated sequences transcribed from introns, such as embedded 

genes (eg. HA_003240, (Hirst et al. 2007)) or miRNA genes (Kim 2005). Another class 

of generally low abundance transcripts of biological interest consists of transcription 

factors (TFs). To investigate the expression levels of TFs in Tag-seq and LongSAGE 

libraries, we downloaded the set of 2,890 human genes that encoded DNA-binding 

domains (DBD, http://dbd.mrc-lmb.cam.ac.uk/DBD/index.cgi?About), which should 

include all TFs, and searched for their presence in the CGAP libraries.  

We enumerated tag sequences that mapped in the sense orientation to TF exons, 

antisense to known genes, and sense to gene introns, in each library, at increasing 

thresholds of expression. Overall, an average Tag-seq library detected 1.7 times as many 

TF genes as a LongSAGE library (849 vs 504), 6.3 times as many genes with AS tags 

(4,999 vs 795), and 2.8 times more genes with intronic tags (7,651 vs 2,752). The 

majority of genes found by Tag-seq were at expression levels below those detectable in 

existing LongSAGE libraries (Fig. 2.7A-C). 

We confirmed the relationship between sequencing depth and the diversity and 

abundance of intronic and antisense tags by analyzing the Tag-seq and LongSAGE hESC 



! (&!

replicate libraries. To ensure that the relationship between tag sequence diversity and tag 

abundance was due to no other factors except depth, we generated an in silico library of 

272,465 randomly sub-sampled tags from the Tag-seq replicate. The in silico library, 

hereafter referred to as sub_Tag-seq, theoretically represents a random sample of the 

most highly expressed tags in the Tag-seq replicate, and should therefore be very similar 

to the LongSAGE replicate. We found that sub_Tag-seq was moderately correlated with 

the LongSAGE replicate (Pearson correlation of 0.6), with most of the variation coming 

from low frequency tags (data not shown). Any differences in the abundance of intronic 

and antisense tags in sub_Tag-seq library relative to the Tag-seq library would most 

likely be due to decreased depth.  

A comparison of the Tag-seq replicate, sub_Tag-seq, and the LongSAGE replicate 

supports the described increase in the diversity of intronic and antisense tags in deeper 

libraries. We compared the proportion of tag sequences in each library that mapped either 

to exons, introns, or to the antisense strand of Ensembl genes (Fig. 2.8A). In the Tag-seq 

replicate, the most abundant categories of mapped tag sequences were exonic tags 

(47.8%), followed by antisense tags (32.1%), and intronic tags (20.6%). In contrast, the 

LongSAGE replicate was far more likely to detect tags mapping to exons (73.0%) than 

antisense (23.4%) or intronic tags (6.2%). Thus, the Tag-seq replicate is enriched in 

antisense and intronic tag sequences; this enrichment is not observable at sampling 

depths less than 300,000 tags, since the tags in sub_Tag-seq library mapped in 

proportions similar to those of the LongSAGE replicate (differences were not 

significant). These observations held when comparing all Tag-seq to all LongSAGE 

libraries (data not shown), indicating that low-frequency antisense and intronic tags were 

present in all the profiled human tissues, and were not specific to hESCs. The altered 

proportion of antisense, intronic, and exonic tag sequences was highly significant (T-test 

between Tag-seq and LongSAGE tag sequence proportions: antisense P = 6.2 X 10-5, 

intronic P = 1.0 X 10-10, exonic P = 1.6 X 10-24).  

Interestingly, the abundance of exonic, intronic, and antisense tag sequences was almost 

identical between methods (Fig. 2.8B). Thus, in both methods exonic tags were the most 

abundantly expressed (~80%), followed by antisense tags (~20%), and intronic tags 

(0.1%).  
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The additional depth in Tag-seq had a dramatic effect on the dynamic range of 

expression of moderate to abundantly expressed tags, which could be detected by both 

methods. On average, exonic tag sequences were detected at frequencies 12.7-fold higher 

in the Tag-seq versus the LongSAGE replicate, and antisense and intronic tag sequences 

were detected at levels 13.4 and 14.4-fold higher (Fig. 2.8C). The range of expression 

was an order of magnitude higher in Tag-seq versus LongSAGE, indicating a 

significantly greater dynamic range of expression. 

2.2.7 Sense-antisense transcripts in cancer libraries 

Having assessed the technical differences between the LongSAGE and Tag-seq 

protocols, we undertook a biological analysis of the CGAP library collection. We first 

analyzed the antisense tags with a focus on their differential expression in libraries 

representing cancerous and normal tissue samples. Previous studies have shown that the 

ratio of sense to antisense transcripts changes between normal and malignant tissue 

samples (Chen et al. 2005), and that antisense transcripts can be implicated in disease 

processes (Tufarelli et al. 2003; Reis et al. 2004). Our goal was to highlight the potential 

of the Tag-seq approach to identify known and novel antisense transcripts whose 

expression ratios changed significantly with respect to the sense gene, between normal 

and diseased states, between different stages of disease progression, or between cancer 

subtypes. 

To achieve this, libraries were first grouped by tissue into 15 groups (Appendix A; 

Methods). Libraries belonging to each tissue were segregated into groups representing 

normal and cancerous samples, and when possible, were further segregated into cancer 

stages (pre-cancerous samples versus malignant for instance; Appendix B). The ratio of 

sense to antisense transcription between each of the tissue groups was assessed at every 

relevant locus; either using pairs of sense tags mapping to known SAS gene pairs, or 

using sense tags mapping to single genes with novel antisense transcription (novel SAS) 

(Fig. 2.6).  

Altered expression ratios between 389 known SAS gene pairs and between 2,195 novel 

SAS pairs were found in the 15 tissue groups. Random assignment of tags to genes 

showed that known SAS genes were, on average, 55 times more likely to have ratio 

changes than would be expected by chance, while novel SAS genes were 17.5 times 
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more likely than expected by chance, suggesting a higher rate of false positives in the 

ratio changes of these pairs. We developed a normalization protocol to identify pairs with 

large expression ratio changes (Methods), and to ensure higher ranking of highly 

expressed gene pairs and of those pairs with lower variance in their ratios. Overall, 

tissues comprised solely of Tag-seq or LongSAGE libraries had equivalent numbers of 

gene pairs with ratio changes. Since the tissues profiled by the different methods were 

distinct, we could make no a priori predictions regarding the number of gene pairs with 

different ratios found by Tag-seq or LongSAGE. By definition, the genes targeted by this 

analysis are moderately to highly expressed, and could be found by both methods. Thus, 

in the absence of Tag-seq and LongSAGE replicates for a whole tissue, we conclude that 

both methods are capable of finding gene pairs whose abundance ratios change between 

cancerous and normal samples, and which therefore may be differentially regulated in 

cancer versus normal tissues. 

To determine whether there was an enrichment of biological categories in these genes, 

we conducted a functional annotation clustering analysis (Dennis et al. 2003; Huang et 

al. 2009). In this analysis, annotations (such as gene ontology (GO) terms; (Ashburner et 

al. 2000)) that share common genes are more likely to be grouped together. We found 

that genes with extreme ratio changes (in the top 10%) were highly enriched in GO terms 

relating to the regulation of developmental processes, to the regulation of cell death, and 

to cell proliferation, terms which are relevant to cancer biology (data not shown). 

To further evaluate the biological relevance of these pairs, we enumerated the number of 

Cancer Gene Census genes in the dataset (Futreal et al. 2004). This is a catalog of genes 

with mutations that have been causally implicated in multiple cancers. Of the total 312 

cancer census genes, expression was detected in the CGAP dataset for 300. Interestingly, 

over one quarter of these genes (72 novel and 6 known SAS) were also found to have 

significant ratio changes between normal and cancerous libraries in the studied tissues 

(Table 2.2; Appendix C). The pairs with ratio differences in the top 10% of the range of 

differences were identified, revealing a total of 30 of the cancer census genes remaining 

in this shortlist (27 novel and 3 known SAS). Thus, 38% of the cancer genes were in the 

top 10% of differentially expressed genes with extreme ratio changes between cancer and 

normal tissues, which is a significant enrichment (P < 7.0 X 10-4, Chi-square test). 
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2.2.8 Transcript isoforms in cancer libraries 

Differential expression of transcript isoforms was analyzed in 4,237 genes with multiple 

expressed tags, since these tags potentially represent alternative 3’ polyadenylation sites 

(Siddiqui et al. 2005). A total of 1,957 of these genes had tag pairs whose ratio of 

expression changed between libraries grouped by disease state (eg. cancerous vs normal). 

For 1,304 (66.6%) of these genes, the sequence bounded by the two tags harboured 

predicted miRNA targeting sites (Grimson et al. 2007), suggesting that miRNAs may 

regulate isoform expression in one of the two states (Hirst et al. 2007). The proportion of 

miRNA-targeted genes in this list was nearly three times greater than the proportion of 

miRNA-targeted genes in the human genome (22.0%, P < 2.2 X 10-16, Chi-square test; 

Table 2.3). Of the 772 genes with transcript pairs that had the 10% most extreme 

expression ratio changes, we found an additional enrichment of transcripts harbouring 

miRNA targeting sites (72.5%; Table 3). For 33.1% of these genes, the longer isoform 

was consistently more abundant in cancers; for 41.0% of these genes, the shorter isoform 

was consistently more abundant in cancer; for the remaining 26.9% of genes, either 

isoform was more abundant in cancer in some sample.  

We found 93 miRNA targeting sites with enriched frequencies in the set of genes with 

the top 10% most extreme expression isoform ratio changes (versus the frequencies in 

the set of all genes with isoform ratio changes, P < 0.05, hypergeometric distribution test; 

Appendix D). A closer look at the most enriched sites showed that these miRNAs have 

been previously observed to have altered expression in cancers (eg. miR-124 in 

glioblastoma multiforme, (Silber et al. 2008); miR-181 and miR-15/16 in B-cell chronic 

lymphocytic leukemia, (Calin et al. 2002; Pekarsky et al. 2006); miR-224 in thyroid 

tumors and in hepatocellular carcinoma, (Nikiforova et al. 2008; Wang et al. 2008c)). 

2.3 Discussion 

To complete the CGAP digital gene expression profiling project, we developed Tag-seq 

as an efficient and cost effective alternative to LongSAGE. Tag-seq library construction 

is similar to the LongSAGE protocol, but sequencing employs Illumina’s massively 

parallel sequencing by synthesis protocol in place of conventional Sanger sequencing. 

Every read in a sequenced Tag-seq library represents a 17-bp sequence tag adjacent to 
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the 3’most NlaIII site of an individual transcript, and therefore represents a digital count 

of that transcript.  

Relative to another Illumina-based transcript profiling technology, RNA-seq (Marioni et 

al. 2008; Rosenkranz et al. 2008), Tag-seq performs comparably in terms of gene 

discovery and measured dynamic range. For gene expression profiling experiments 

where accurate profiling of transcripts from both strands of the genome is required, Tag-

seq data are superior, since unlike current applications of RNA-seq (see section 5.1), it 

allows discrimination of sense and antisense transcripts. Sense and antisense genes are 

encoded on the opposite strands of the same genomic locus, and yield transcripts that 

have sequence complementarity. Their genomic arrangement and sequence 

complementarity increases the likelihood that their regulation is affected by common 

factors (such as chromatin state) and their relative expression (such as transcriptional 

interference), at both the transcriptional and post-transcriptional level (Lavorgna et al. 

2004; Dahary et al. 2005). To date, antisense transcripts have been observed for up to 

72% of the mammalian transcriptome in datasets generated by both sequence-based and 

hybridization-based methods (Riken Genome Exploration Research et al. 2005). Given 

the high prevalence of antisense transcription in the mammalian genome, and the link 

between antisense transcripts and disease (Tufarelli et al. 2003; Reis et al. 2004), Tag-seq 

was well suited to the study of cancer-relevant gene expression in the context of the 

CGAP project. We found known and novel SAS gene pairs for which the ratio of 

expression changed significantly between cancer subtypes or between cancer and normal 

states. These were enriched in known cancer-related genes, supporting a role for 

antisense transcription in cancer biology. For instance, we found evidence for antisense 

transcription at the BCL6 locus, which encodes an oncogene that is known to be involved 

in lymphomas (Ye et al. 1997). Antisense ESTs have previously been observed at this 

locus, lending support to our observations of antisense transcription (Fig. 2.9). The 

number of antisense tags at this locus was significantly increased in the subset of libraries 

from grade II carcinoma epithelium and associated myofibroblast samples, leading to a 

reduced sense-to-antisense ratio in those samples. These libraries represented cell types 

sampled from one breast cancer patient, implicating the relationship between BCL6 and 

its antisense transcript in the biology of this individual breast cancer. While carcinoma 

associated myofibroblasts are not necessarily cancer cells per se, they have epigenetic 
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alterations similar to those seen in malignant carcinoma epithelium, and are globally 

hypomethylated (Jiang et al. 2008). One plausible explanation for the increase in 

antisense expression at this locus is increased hypomethylation at CpG islands 

downstream of the BCL6 gene (Fig. 2.9). 

While Tag-seq is able to distinguish transcript strand of origin, it only provides limited 

information regarding transcript structure. Thus, to gather data on expressed transcript 

isoforms, exon arrays or RNA-seq would be the more suitable technologies. However, 

Tag-seq is still informative on the expression of the subset of gene isoforms that lead to a 

different 3’ NlaIII tag sequence as a consequence of alternative 3’-end formation. We 

were able to analyze over 4,200 genes with such transcript isoforms and expression in 

CGAP, and to find differential expression of isoforms between cancer and normal states. 

Intriguingly, we found an enrichment of transcripts harbouring miRNA targeting sites in 

the sequence unique to one of two differentially expressed isoforms (Hirst et al. 2007; 

Ghosh et al. 2008), implicating their regulation in cancer biology. 

Compared to Affymetrix microarrays, Tag-seq is capable of de novo gene discovery 

without the requirement of genome-wide probe design, does not suffer from cross-

hybridization of related sequences, and achieves essentially unlimited dynamic range 

simply by increasing sequencing depth. At the current level of sampling (~10 million 

tags), genes detected by Tag-seq had a 13-fold greater measurable fold change than the 

same genes detected by Affymetrix.  

Relative to LongSAGE, the additional depth of sampling provided by Tag-seq led to a 

greater number of genes identified in a given tissue, and improved the measurable 

dynamic range of those genes. One other report has thus far shown that Tag-seq 

surpasses LongSAGE in sequencing depth (Hanriot et al. 2008). We extend these 

findings by reporting for the first time that with increasing depth, Tag-seq also allowed 

detection of a distinct subset of transcriptome space, enriched in AT-rich genes, intronic 

tags, antisense tags, and novel intergenic tags. The enhanced detection of low-frequency 

AT-rich tag sequences in Tag-seq was similar to previous observations made in 

Affymetrix arrays (Siddiqui et al. 2006), although the detection of AT-rich sequences 

was in that case interpreted as a technological bias. These new results suggest that this 

AT-rich class of tag sequences do not represent technical bias in either method, but rather 
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a biological difference in the types of transcripts present at lower frequencies, which is 

detectable using both sequencing-based and hybridization-based technologies. The depth 

of sampling achieved by LongSAGE is not large enough to detect this subset of the 

transcriptome. Furthermore, we found that Tag-seq has less GC-bias, leading to a more 

accurate interpretation of the abundance of tags spanning the range of GC-content. 

Overall, Tag-seq identifies more genes than LongSAGE, detects a greater dynamic range 

of expression, and thus allows differential expression analysis for a greater range of 

transcripts. Tag-seq libraries provide an excellent resource for the discovery of known 

and novel transcripts with expression changes relevant to disease processes, and highlight 

the applicability of next generation tag sequencing to gene expression profiling. 

2.4 Methods 

2.4.1 Tag-seq library construction 

All libraries were constructed using one of two protocols: Tag-seq or Tag-seqLite. Tag-

seq is a variant of LongSAGE as described (Siddiqui et al. 2005; Khattra et al. 2007), 

with modifications forgoing the requisite production of ditags and concatemers and 

allowing direct sequencing on the Illumina Genome Analyzer (Fig. 2.1). Typically 500-

2000ng of DNase I treated total RNA was used in Tag-seq library construction, and 4-

50ng in Tag-seqLite library construction (Morrissy et al. 2010b). 

Tag sequences as long as 26bp are possible (SuperSAGE; (Matsumura et al. 2005)) by 

using EcoP15I as a tagging enzyme, but there are drawbacks to using this enzyme, in 

return for marginal gains in tag-to-gene mapping.  

EcoP15I is a Type III enzyme, requiring two oppositely oriented binding sites for 

cleavage. To use this enzyme with the current Tag-seq protocol, EcoP15I binding sites 

would need to be added in the 5’ adapter (at the NlaIII site) and the 3’ adapter (part of the 

bead-bound Oligo-dT primer). One issue is that cleavage can occur at either one of the 

binding sites, leading to a different tag sequence for the same transcript in different 

libraries, which would confound differential gene expression analysis and make 

comparison to LongSAGE impractical. Another issue is that the efficiency of EcoP15I 

cleavage changes with increasing sequence length between the two binding sites (the 

3’most NlaIII site and the end of each mRNA), thus further affecting the ability to collect 
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quantitative gene expression measurements 

(http://www.neb.com/nebecomm/products/productR0646.asp). Additional aspects of the 

cleavage reaction that affect cutting efficiency and specificity (ie. which of the two 

recognition sites is used for cleavage, whether base composition biases this choice, which 

cofactors affect cutting efficiency, etc) are still under study (Moncke-Buchner et al. 

2009).  

Even if the specific conditions required for efficient and specific EcoP15I cleavage steps 

were known, the cost of changing the reagents used in the Tag-seq protocol would 

become an issue, since the Illumina Oligo-dT beads can not be used with EcoP15I 

without modification. The modification required would be the addition of linker 

sequence (including the EcoP15I cutting site) on the bead-bound polyT primer. Ordering 

custom-made polyT-beads would increase the time and cost required for library 

construction, and decrease the wide accessibility of the method to other investigators.  

MmeI is therefore a better tagging enzyme choice than EcoP15I for tag-based sequencing 

(Saha et al. 2002), due to its simpler cleavage parameters and adequate tag-length. 

2.4.2 Tag extraction 

Sequencing of a Tag-seq amplicon starts at the first base following the Adapter A 

sequence. Thus, the first 17 to 18 bases of a read are the transcript-derived tag sequence, 

and the remaining bases are the Adapter B sequence. As expected, 99% of adapters found 

in a Tag-seq library occur in positions 18 and 19 of the read. The "Raw" Tag-seq library 

is then constructed by truncating all reads at length 17.  

2.4.3 Tag-seq filtering 

In the SSOOHE (Sans Singletons and One-Offs of Highly Expressed tags) filtering 

algorithm, tag sequences are removed if they are only observed once (i.e. singletons), or 

their sequence is different by 1bp from a more highly expressed tag (one-offs of highly 

expressed tags). More specifically, tag sequences that are one-offs are only removed if 

they do not themselves map to the genome or transcriptome, and if they are expressed at 

counts below 100. Singleton tags are not significantly different than zero count tags 

(Audic and Claverie 1997), and are thus not informative in differential expression 

analyses. If a genome or transcriptome is unavailable, SSOOHE filters cannot be applied, 
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and instead only singletons and adapters are removed. Other filtering options identify the 

subsets of tags mapping to genes, and include the "MG" version, containing only tags 

which map to the genome, the "MR" version, containing only tags which map to the 

RefSeq transcriptome (Pruitt et al. 2007), and the "MA" version, which contains tags 

which map to the genome or to any of the Refseq, MGC (Gerhard et al. 2004), Ensembl 

(Birney et al. 2004), or NCBI predicted transcriptomes 

(http://www.ncbi.nlm.nih.gov/projects/genome/guide/build.shtml#gene). 

2.4.4 Ensembl data 

Full gene sequences (including introns), cDNA sequences, and gene boundary 

coordinates were downloaded from the Ensembl version 47 release, (Birney et al. 2004), 

based on the NCBI human genome build 36, using the Ensembl API (www.ensembl.org). 

Virtual sense and antisense tag sequence databases were generated for both full gene and 

cDNA sequences using in-house Perl scripts. Briefly, all NlaIII sites were identified for 

each sequence, and the adjoining 17bp in the 3' direction were designated the sense tags, 

while the 17bp in the 5' direction were designated the antisense tags. The human genome 

sequence was downloaded from NCBI (ftp://ftp.ncbi.nih.gov), and the complete 

sequence, including repeat regions, was used to create virtual sense and antisense tag 

databases. Sense and antisense tag sequences mapping to unique locations in the genome 

were distinguished from those mapping in multiple locations. 

2.4.5 Mouse Tag-seq and LongSAGE replicates 

Two libraries from the Mammalian Organogenesis – Regulation by Gene Expression 

Networks (MORGEN) Project were used to confirm observations made from the human 

hESC Tag-seq:LongSAGE replicate libraries. The two mouse Tag-seq and LongSAGE 

replicates were created from heart (Atrioventricular canal) RNA collected at Theiler 

stage (TS) 17. Libraries were analyzed as described for the human replicate. 

2.4.6 Tag-seq vs Affymetrix comparison 

Affymetrix exon arrays data was generated at the Genome Sciences Centre. Three sets of 

Tag-seq:Affymetrix technical replicates were created from acute myeloid leukemia 

samples (HL60 cell line). Each of the three exon arrays was normalized, yielding a 

probeset, and a log2plier data file. "Log2plier" is the log of the normalized fluorescence 
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intensity. Probesets were converted to RefSeq transcripts (Pruitt et al. 2007), and an 

overall log2plier value was calculated by merging all the probesets for each transcript. 

Tags in the three Tag-seq replicates were mapped to RefSeq transcripts, and tags 

mapping to position 1 were retained. A total of 26,000 exon array probesets mapping to 

RefSeq transcripts were compared to 16,000 position 1 Tag-seq tags. Scatterplots and 

Pearson correlations were created for all three technical replicate sets. 

2.4.7 Tag-seq vs RNA-seq comparison 

Blue Stain fungus (Ophiostoma clavigerum) RNA was used to create a set of gene 

expression libraries using the Tag-seq and the RNA-seq protocol. Tag-seq tag sequences 

were extracted from reads as described above. A total of 2,334,820 reads from the RNA-

seq library and 2,334,820 tags from the Tag-seq library were mapped to 11,084 Blue 

Stain fungus transcripts (DiGuistini et al. 2007). Tag sequences that mapped to the sense 

strand of annotated transcripts were enumerated separately from those that mapped 

antisense to known transcripts.  

Dynamic range concordance of the two methods was tested by sub-sampling 

predetermined numbers of tag sequences (in the case of Tag-seq) or reads (RNA-seq), 

and enumerating the level of expression of each transcript found at those depths (10%, 

20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% of the 2,334,820 reads/tags 

analyzed). For each transcript found in common by both methods (sense-mapping Tag-

seq tags only), the Pearson correlation coefficient was calculated between the ten 

expression values found by Tag-seq vs RNA-seq.  

Expression correlations between commonly detected genes were calculated using the 

sum of all sense and antisense Tag-seq tag counts mapping to each gene, and the sum of 

the RNA-seq reads mapping to the same gene. RNA-seq values were normalized to gene 

length (Rosenkranz et al. 2008). 

2.4.8 GC-content bias 

For this study, we only used tag sequences mapping to the most 3’ NlaIII site (i.e. 

position 1 (P1) tag sequences). The premise was that the GC-content of the observed P1 

tag sequences in a library (observed bias) should not be significantly different than the 

GC-content of a random sample of P1 tag sequences, of the same size, taken from the set 
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of all possible P1 tag sequences (expected bias). We first measured the deviation of the 

GC-content of observed P1 tag sequences from that of all possible P1 tag sequences. 

Second, we randomly sampled the same number of P1 tag sequences from the set of all 

possible P1 tag sequences (1,000 times), and calculated the deviation of their GC-content 

from that of the set of all P1 tag sequences. Finally, the deviation of the observed P1 tag 

sequences was divided by the standard deviation of the deviations of the randomly 

sampled sets. This value represents the number of standard deviations by which the 

observed bias in an individual library differed from the expected random bias.  

2.4.9 Detection of SAS and isoform ratios between normal and disease samples 

Libraries were first grouped by tissue (Appendix A), and resulted in a total of 7 tissue 

groups containing 2 or more LongSAGE libraries (brain, breast, colon, esophagus, gall 

bladder, retina, and white blood cells); 3 tissue groups contained 2 or more Tag-seq 

libraries (skin, uterus, and bladder); 5 tissue groups contained both types of libraries 

(bone marrow, embryonic, lymph nodes, testis, vascular). In each of the 15 tissue library-

groups, individual libraries were organized into two subgroups, by whether they 

represented normal or diseased samples, or different stages of disease. Thus, the libraries 

in each tissue group could be categorized in multiple ways (Appendix B). For each 

tissue, gene expression between the two subgroups (labeled A and B) was analyzed. Tags 

in the analysis represented either S-AS gene pairs, single genes with expressed AS tags, 

or tags representing two isoforms of one gene. Only tags with a minimum expression of 

10 tags per million in at least one A or B library were considered. The ratio of the 

normalized expression (ex. S:AS) was calculated in each A and each B library, and 

multiplied by the natural log of the difference between them. This ensured that highly 

expressed tag pairs were more highly ranked. For pairs of genes with positive ratio 

changes, the S:AS ratio was higher in cancerous tissues versus normal tissues, while 

pairs with negative values of ratio changes had a S:AS ratio higher in normal rather than 

cancerous tissues. Gene pair ratio-change values ranged from -11.7 to +11.8. 

 RatioS:AS = ln ( ln ( expS – expAS) * ( expS / expAS ) ) 

If the AS was more highly expressed than the sense, the ratio was calculated as: 

RatioS:AS = (-1)*( ln ( ln ( expAS – expS) * (expAS / expS ) ) 
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For each tag pair, the average and standard deviation was computed for all modified 

means in A libraries, and separately for all means in B libraries. An overall measure of 

the change in S:AS ratio between A and B libraries was therefore: 

 Ratio changeAB = ln ( meanA / stdevA ) – ln ( meanB / stdevB ) 

Dividing each mean by the standard deviation ensured that tag pairs with lower variance 

in their ratios were ranked higher than gene pairs with a high variance. 
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Figure 2.1  Outline of Tag-seq library generation. 
Each mRNA (burgundy) underwent double stranded cDNA synthesis using Oligo dT 
beads, to capture polyadenylated RNA. cDNA (orange) is digested with the NlaIII 
anchoring restriction enzyme (vertical red arrows), leaving a 4bp overhang (GTAC). 
Only cDNA fragments anchored to Oligo dT beads are retained. Adapter A (green) is 
ligated to the overhang, and adds a recognition site for the TypeIIS tagging enzyme 
MmeI. Following MmeI digestion (red vertical arrow), a second adapter is ligated 
(Adapter B, blue) to the resulting 2bp overhang. PCR primers (horizontal red arrows) 
annealing to adapters A and B are used to enrich tags. Cluster generation and sequencing 
(brown arrow) is performed on the Illumina cluster station and analyzer. The resulting 
image files are processed to extract the read sequences, and 21bp SAGE tags are further 
extracted from the reads. Tags consist of the 4bp NlaIII recognition sites and 17bp of 
unique sequence, and add to 21 bases that can be mapped back to the original mRNA 
(brown). 
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Figure 2.2  Tag to gene mapping success in Tag-seq and LongSAGE. 
Average number (A) and proportion (B) of Ensembl genes unambiguously identified in 
Tag-seq and LongSAGE libraries as a function of sampling depth. Error bars represent 
the standard deviation of the average number of identified genes in 77 LongSAGE 
libraries and 35 Tag-seq libraries. The largest LongSAGE libraries were approximately 
300,000 tags, while the largest Tag-seq libraries were approximately 10 million tags. (C) 
Average number of tag sequences found at a minimum count of 10, 20, 50, 100, 200 and 
500 in the 35 Tag-seq libraries, which do not map to either the human genome or 
transcriptome. The number of tag sequences is displayed for Tag-seq only. 
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Figure 2.3  Inter-platform comparisons. 
Pearson correlations and linear regressions (green lines) are shown for scatterplots of (A) 
Tag-seq vs LongSAGE replicates, (B) LongSAGE vs SAGELite, (C) Tag-seq vs 
SAGELite, (D) one of the three technical replicate Tag-seq vs Affymetrix exon arrays. 
(E) Number of genes detected by three Tag-seq (hs0103, hs0154, hs0155) and three 
Affymetrix replicate libraries (ex0103, ex0154, ex0155), binned by expression (ie. genes 
with <10% of max expression in the first bin). 
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Figure 2.4  GC-bias of Tag-seq and LongSAGE libraries. 

GC-bias is reported as the number of standard deviations by which the observed bias 
differed from the expected bias (see text). Positive and negative values represent libraries 
with more AT-rich or CG-rich sequences than expected (respectively). Bias (y-axis) was 
calculated for all quality filtered Tag-seq and all LongSAGE tag sequences (A) or gene 
sequences (B), at increasing thresholds of expression (x-axis). 
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Figure 2.5  GC-content biases in technical replicate libraries. 

(A) Comparison of the GC-content and average count of tag sequences found either in 
common or by each of the Tag-seq and LongSAGE replicate libraries. (B) Pearson 
correlations of binned tags. Bins are labeled with the range of the observed GC-content, 
and the number of binned tags (x-axis). (C) Average log expression of tag sequences by 
bin. An asterix (*) denotes bins between which the expression of tag sequences was 
significantly different (T-test, p < 0.01). 
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Figure 2.6  Sense and antisense trags of cis-encoded antisense genes and non-
overlapping bi-directional genes. 

(A) Diagram of a cis-encoded S-AS locus with two genes overlapping in a convergent 
manner. (i) Exons are open rectangles, and introns are horizontal lines connecting exons. 
Arrows denote transcriptional start sites. NlaIII restriction sites (vertical lines) are 
numbered starting with the 3’ most site, and the virtual sense (green) and antisense (red) 
tags at each position are shown on both strands. (ii) Experimentally observed tags can 
map in a sense orientation to exons or introns of the gene they arise from (green 
rectangle). The sense tags originating from the #1 position of the top-strand gene also 
maps antisense at the #2 position of the bottom-strand gene. The sense tag originating 
from the #3 position on the top-strand gene is outside the bottom-strand gene boundary, 
so there is no corresponding antisense tag in the bottom-strand gene. (iii) cDNA 
sequences exclude intronic tags. (B) Antisense tags that map to a location with no 
annotated transcript on the opposite strand are evidence of novel transcription. (i) Virtual 
and (ii) experimentally observed tags are diagramed. The tag mapping antisense at the #1 
position of the bottom-strand gene was generated from an unannotated region of 
unknown structure (grey box) on the top-strand. (iii) The sum of the sense cDNA tags of 
annotated genes can be compared to the sum of all tags mapping on the opposite strand 
but within the gene boundaries of the annotated gene. 
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Figure 2.7  Detection of intronic, antisense, and TFs by Tag-seq and LongSAGE. 

The proportion of the average number of genes detected by tags in LongSAGE and Tag-
seq libraries is shown at increasing expression thresholds (tags per million). Bars 
represent the proportion of the average number of genes with (A) intronic tags, (B) 
antisense tags, and (C) DNA-binding domains (transcription factors) in Tag-seq and 
LongSAGE libraries. 
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Figure 2.8  Detection of intronic, antisense, and TFs in replicate libraries. 

Tag sequences from the hESC Tag-seq technical replicate, the in silico derived sub_Tag-
seq, and the LongSAGE replicate, were mapped to the introns, exons, and antisense 
strands of Ensembl genes. The proportions of distinct tag sequences (A) and tag 
abundance (B) are reported relative to all mapped quality-filtered tags. Average tag 
counts (+/- standard deviation) are reported for all tag sequences found in common 
between the three libraries (C). 
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Figure 2.9  Change in the ratio of BCL6 sense and antisense tags in breast cancer. 
(A) The novel SAS locus, BCL6, has antisense ESTs and antisense tags. (B) Antisense transcription is significantly more abundant in 
libraries representing grade II carcinomas (class A) compared to remaining tissues (class B). Observed tag expression (counts per million) is 
shown for breast cancer patient IDC7. 
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Table 2.1  Tag sequences detected by Tag-seq and LongSAGE 
Average expression values were enumerated for tag sequences detected only in 
LongSAGE libraries, only in Tag-seq libraries, or in both. The average number of 
libraries in which individual tags are expressed is also shown. Results are tabulated for 
all tags or the subset of tags mapping to Ensembl genes. SD = standard deviation. 
 
  Common Tags  
 LongSAGE LongSAGE Tag-seq Tag-seq 
Tag sequences (all) 822,988 318,400 318,400 3,705,783 
Average number of libraries +/- SD 1.3 +/- 1.3 4.9 +/- 9.6 7.4 +/-9.1 1.7 +/- 1.8 
Average expression level +/- SD 1.1 +/- 1.8 3.7 +/- 20.9 62.1 +/-1115.2 3.8 +/- 71.9 
     
Tag sequences ( Ensembl genes) 543 98,717 98,717 1,026 
Ensembl genes detected 432 21,638 21,638 741 
Average number of libraries +/- SD 1.6 +/- 1.5 5.1 +/- 10.5 5.7 +/- 8.5 2.9 +/- 4.0 
Average expression level +/- SD 2.5 +/- 7.9 3.9 +/- 21.9 65.8 +/- 1116.0 73.8 +/- 584.0 
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Table 2.2  Known and novel SAS genes in the Cancer Gene Census 
(A) The proportion of known and novel SAS genes in the cancer gene census with 
altered sense to antisense expression ratios (AR). Genes are sub-categorized into those 
with expression ratio scores in the top 20% and top 10%. (B) The proportion of DE SAS 
genes in the cancer gene census, of 300 observed in CGAP. 

 
A 

 Genes Cancer Census Proportion 
Known SAS 389 6 0.015 
     Top 20% AR 264 5 0.019 
     Top 10% AR 193 3 0.016 
Novel SAS 2,195 72 0.033 
    Top 20% AR 1,337 39 0.029 
    Top 10% AR 935 27 0.029 

 

B 

 Cancer census Proportion (of 300) 

Altered SAS ratios 78 0.26 

Top 20% 44 0.56 

Top 10% 30 0.38 
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Table 2.3  miRNA targeting sites 
Genes with differentially expressed (DE) isoforms between two disease states were 
enriched in miRNA targeting sites relative to all genes. The enrichment was further 
increased for genes with DE values in the top 20% and most increased for those in the 
top 10%. 

 

 Genes Genes with miRNA 
targeting sites Proportion 

All Ensembl genes 33,761 7,442 0.22 

Genes with DE isoforms 1,957 1,304 0.67 

Top 20% DE 1,156 806 0.7 

Top 10% DE 772 560 0.73 
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Table 2.4  Affymetrix versus Tag-seq comparisons 
(A) Tag sequences detected in common by the Affymetrix and the Tag-seq platforms 
were analyzed for three sets of replicate libraries. Minimum, mean, and maximum 
expression (log2) was calculated for the tag sequences in each library. The range between 
the minimum and the maximum, and between the mean and maximum values was 
computed. (B) Genes detected by either the RNA-seq and the Tag-seq platforms, as well 
as in common between the platforms, were analyzed for one set of replicate libraries. A 
minimum of two RNA-seq reads and two Tag-seq tags were required to count a gene as 
expressed. The total number of genes with sense tags (S), with antisense tags (AS), or 
with both sense and antisense tags (S-AS) are enumerated. 
 

A 

 Replicate 154 Replicate 155 Replicate 103 

  Affy Tag-seq Affy Tag-seq Affy Tag-seq 

Tag sequences in common 10,152 10,152 9,969 9,969 9,930 9,930 
Mean expression (log2) 8.35 2.84 8.41 2.73 8.45 2.51 
Min expression (log2) 2.31 0.00 2.30 0.00 2.00 0.00 
Max expression (log2) 13.25 11.04 13.24 10.87 13.33 10.89 
Range (Max-Min) 10.94 11.04 10.94 10.87 11.32 10.89 
Mean Range (Max-Mean) 4.90 8.20 4.82 8.14 4.88 8.38 

 
B 
 

  
Total 
genes  Genes in common 

RNA-seq (all)  8,528 8,050 
Tag-seq (all)  8,366 8,050 
Tag-seq (S) 5,224 5,064 
Tag-seq (AS) 3,142 2,986 
Tag-seq (S-AS)  2,430 2,373 
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3. Extensive relationship between antisense transcription and 
alternative splicing in the human genome4 

 

Author contributions 

A.S.M. and M.A.M. conceived the analyses. A.S.M. designed and performed all 

computational analyses, created the figures and tables, and wrote the manuscript. M.G. 

conducted microarray data pre-processing (section 3.4.3.1) and contributed microarray 

analysis concepts.  

3.1 Introduction 

Much of the complexity of mammalian biology can be attributed to the regulation of 

gene expression via changes in the level, splicing, and localization of RNA (Wang et al. 

2008a; Licatalosi and Darnell 2010). One type of regulation occurs between genes that 

are encoded in an overlapping and opposite orientation. Such sense-antisense (SAS) gene 

pairs encode proteins and non-coding RNAs that play key roles in development, and have 

been implicated in diseases such as cancer (Vanhee-Brossollet and Vaquero 1998; 

Tufarelli et al. 2003; Reis et al. 2004; Chen et al. 2005; Engstrom et al. 2006). Antisense 

transcripts have been identified at 50% to 70% of mammalian loci (Riken Genome 

Exploration Research et al. 2005), yet despite their prevalence, regulatory roles have only 

been elucidated for a small subset of SAS genes (reviewed in (Vanhee-Brossollet and 

Vaquero 1998; Lavorgna et al. 2004). Since a large proportion (40%) of antisense 

transcripts are non-coding RNAs, they may act predominantly as regulators of expression 

(Mattick 2004).  

In a limited number of cases, antisense transcription has been correlated to sense gene 

splicing (Mihalich et al. 2003; Louro et al. 2007; Annilo et al. 2009), or shown to 

regulate sense gene splicing (Krystal et al. 1990; Kuersten and Goodwin 2003; Yan et al. 

2005; Beltran et al. 2008). One well-characterized example is the antisense-mediated 

splicing regulation of the thyroid hormone receptor (TR!) by the antisense transcript Rev-

erbA-! (Hastings et al. 1997). At this locus, co-expressed sense and antisense transcripts 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
4 A version of this chapter has been submitted. Morrissy AS, Griffith M, Marra MA. 2010. Extensive 
relationship between antisense transcription and alternative splicing in the human genome. Submitted. 
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form double-stranded RNA (dsRNA) over the region of SAS overlap, leading to splice 

site masking and a consequent shift in mRNA isoform production. Similar changes in 

splicing can be achieved by the addition of synthetic antisense oligonucleotides (Garcia-

Blanco et al. 2004). In vitro and in vivo, synthetic antisense oligonucleotides have been 

used to modulate splicing reactions in favor of specific isoforms of disease-related genes, 

with the goal of developing strategies that influence therapeutic outcomes (Garcia-

Blanco et al. 2004). 

To date, there are no genome-wide studies that have investigated the relationship 

between alternative splicing and antisense transcription. We therefore set out to 

investigate the possibility that antisense-mediated splicing may be a prevalent regulatory 

mechanism in the human genome. The specific objectives of our study were to assess the 

correlation between antisense transcription and splicing events in normal human cells, 

and to investigate possible mechanisms for antisense-mediated splicing regulation.  

3.2 Results 

3.2.1 Distinct structural features of known novel SAS loci 

The hypothesis that antisense transcription has the capacity to influence splicing 

outcomes implies that genes with antisense transcripts may be structurally distinct from 

those without. We therefore compared structural features (gene length, transcript length, 

number of introns, and number of annotated isoforms) of genes with and without 

antisense transcripts. Genes with antisense transcripts were classified into two categories: 

(1) those with an annotated antisense gene whose genomic coordinates overlapped 

(“known SAS”), and (2) those with no annotated antisense gene, but with evidence for 

antisense transcription (“novel SAS”) (Fig. 3.1A). We analyzed available Ensembl 

annotations for 20,921 protein-coding genes, and identified 5,169 known SAS genes 

(Fig. 3.1A). To find evidence for novel antisense transcription, we searched for 

Affymetrix Human Exon 1.0 ST array probesets mapping on the antisense strand of 

annotated genes without partners (Methods, Fig. 3.1B). Probesets were used to infer 

evidence for novel antisense transcription at 7,823 genes (reffered to as “novel SAS 

genes”). An additional 7,929 genes had no evidence for either known or novel antisense 

transcription (“non SAS”).  
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On average, known SAS and novel SAS genes were significantly longer than non SAS 

genes (83.7 kb and 70.6 kb, versus 22.9kb, P < 1.6"10-148), their transcripts were larger 

(2.3 kb and 2.6 kb versus 1.9 kb, P < 5.1"10-40), they had more introns (9.4 and 9.9 

versus 6.6, P < 5.8"10-78), and more isoforms (2.3 and 2.3, versus 1.8, P < 3.2"10-84) 

(Fig. 3.1C, all Welch t-Test P values in Fig. 3.1D). The co-incidence of antisense 

transcription with longer genes may reflect an increased chance of observing antisense 

transcription in larger genomic regions, similarly to the increased numbers of exons and 

isoforms observed at such loci. However, given previous observations of antisense-

regulated splicing events (Krystal et al. 1990; Hastings et al. 1997; Kuersten and 

Goodwin 2003; Yan et al. 2005; Beltran et al. 2008), these results are consistent with a 

putative role for antisense transcription in splicing regulation. 

3.2.2 Functional characterization 

Structurally and functionally, novel SAS genes were most similar to known SAS genes, 

and most dissimilar to genes without antisense transcripts (Appendix E). The novel SAS 

gene category was the most enriched in functional categories, including 58 GO 

categories and 45 Keywords. Notably, 31 of 39 GO terms in the Biological Process 

category pertained to regulation (i.e. “Regulation of Apoptosis”, “Negative Regulation of 

Transcription”, “Regulation of Signal Transduction”, etc). Highly enriched UniProt 

Keywords included “Phosphoprotein”, “Alternative Splicing”, “Kinase”, “Apoptosis”, 

and “Proto-oncogene”. Overall, these GO terms and Keywords are consistent with the 

strong enrichment of Cancer Gene Census (CGC) genes observed in the novel SAS class 

relative to the set of all protein coding genes (215 of 389 CGC genes, Chi-square test, P 

= 4.2"10-9).  

3.2.3 Exon splicing is strongly correlated to antisense gene expression 

Having established that antisense transcription is generally associated with structurally 

distinct genes having multiple isoforms, we examined the relationship between 

alternative splicing and antisense transcription at these loci. To establish the parameters 

of this relationship in normal human tissues, we analyzed expression data derived from 

176 lymphoblastoid cell lines (LCL’s) (Huang et al. 2007). These data were generated 

using the Affymetrix Human Exon 1.0 ST arrays which measure expression changes for 

1.4 million probesets representing known and predicted exons on both strands of the 
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genome. Eighty-seven Centre d’Etude Polymorphisme Humain individuals from UTAH 

(CEU) and 89 Yoruba individuals from Iabadan, Nigeria (YRI) were included in the 

analysis.  

Probesets mapping to the sense strand of Ensembl exons were used to measure sense 

gene expression (Fig. 3.1A). Similarily, probesets mapping to opposite strands of genes 

without an annotated antisense gene partner measured novel antisense transcription (Fig. 

3.1B) since they were designed based on previous evidence of transcription, such as 

ESTs (expressed sequence tags) (Liu et al. 2003). Probesets mapping to introns were also 

analyzed since these may represent alternative splice variants of annotated genes, 

including those with novel exons, or exons with alternative 3´ and 5´ splice sites. 

Therefore, each analyzed probeset mapping to a gene was considered in our analysis to 

represent an exon. 

The alternative splicing of each exon was assessed by normalizing its expression value to 

the expression value of the gene in each sample (as described in Methods). The resulting 

value (denoted the splice index) represented an exon’s relative inclusion or exclusion 

from the final mRNA. Thus, correlating the splicing index of individual exons with the 

expression of the antisense gene allowed us to determine the relationship between 

splicing and antisense transcription (Methods). Overall, a total of 2,995 exons in 258 

known SAS genes were expressed in the LCL samples, as well as 4,187 exons in 215 

novel SAS genes. P-values were corrected for multiple-testing using the stringent 

Bonferroni method, and we therefore expect our results to be conservative. 

Our analysis revealed a widespread relationship between splicing and antisense 

transcription in human LCL’s. Of the 258 known SAS genes, a large majority (191 

genes, 74.1%) had antisense-correlated splicing events (Methods). Overall, the splicing 

index of 24% of the 2,995 expressed exons in these genes was significantly correlated to 

antisense gene expression (Fig. 3.3, Bonferroni corrected P < 0.05). Of these 191 known 

SAS genes, 75.4% had antisense-correlated splicing changes in both partners, as would 

be expected from a reciprocal relationship. An example of this reciprocal relationship is 

the MSH6 (mutS homolog 6) and FBXO11 (F-box protein 11) locus, which encodes 9 

exons with significant antisense-correlated splicing (Fig 3.2A). The two MSH6 exons 

were profiled by three distinct probesets. Two of these had splice index values negatively 
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correlated to the antisense gene (FBXO11, Fig. 3.2B), and one had splice index values 

positively correlated to the antisense gene (Fig. 3.2C). This indicated that the negatively 

correlated probesets were excluded from MSH6 mRNA isoforms expressed concurrently 

with FBXO11, while the positively correlated exon was preferentially included. 

Interestingly, the MSH6 exon that encodes the protein motif for DNA mismatch repair 

was profiled by two probesets (Fig 3.2A). The 5´-most probeset had a positively 

antisense-correlated splice index (r = 0.56), and the 3´-most probeset has a negatively 

antisense-correlated splice index (r = -0.59). The 3´-most of these probesets maps within 

the DNA mismatch repair motif (data not shown), and thus distinguishes those MSH6 

isoforms that contain the motif from shorter isoforms that do not.  Since the splicing 

index of this probeset (as well as that of another downstream probeset with r = -0.63, Fig. 

3.2A-B) is negatively correlated to antisense expression, it seems that FBXO11 

expression is positively correlated to short and presumably non-functional MSH6 

isoforms. 

Similarly to the known SAS genes, 78.1% (168) of the 215 novel SAS genes had 

significant antisense-correlated splicing events. A total of 19.8% of the 4,167 expressed 

exons in these genes had antisense-correlated splicing patterns (Fig. 3.3). Genes 

contained (1) exons with positive antisense-correlated splicing, indicating their inclusion 

in isoforms co-expressed with the antisense gene; (2) exons with negative antisense-

correlated splicing, indicating their exclusion from expressed isoforms; and (3) exons 

whose splicing was un-correlated with antisense transcription, indicating either 

constitutive expression or splicing regulation mediated by independent factors. On 

average, 32.3% of known and 23.1% of novel SAS gene exons had antisense-correlated 

splicing, suggesting that expressed alternative isoforms differed significantly from each 

other. Over a third of exons with antisense-correlated splicing events encoded protein 

domains (data not shown), and may therefore alter the encoded protein. 

We re-analyzed the CEU and YRI data separately, since previous studies (Spielman et al. 

2007; Storey et al. 2007; Zhang et al. 2008) have observed population-specific 

differences in gene expression patterns. Such differences were also evident in our data, as 

a remarkably higher proportion of novel SAS genes undergo antisense-correlated splicing 

solely in the YRI (35.6%) versus CEU (24.1%) individuals (Fig. 3.4).  
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3.2.4 Antisense expression affects both splicing and expression of sense genes 

Previous studies have identified correlations between antisense transcription and sense 

gene expression (Chen et al. 2005; Riken Genome Exploration Research et al. 2005), 

however, the correspondence between antisense-correlated changes in splicing versus 

gene expression remains to be determined. Using the 258 known SAS genes expressed in 

LCLs, we calculated correlations between gene expression levels of partner genes and 

found significant gene-level correlations for 68.2% of pairs (176 genes, Bonferroni 

corrected P < 0.05). Given that antisense-correlated splicing occurs at 74.0% of the same 

258 known SAS genes, these results indicate that antisense transcription affects splicing 

and expression of the partner gene to similar extents. For 170 genes, antisense 

transcription was significantly correlated to both sense gene expression and splicing. A 

few genes had antisense-correlated changes only in splicing (21) or expression (6). As 

observed in previous studies (Chen et al. 2005; Riken Genome Exploration Research et 

al. 2005), the expression of most SAS gene pairs (96.6%) was positively correlated, 

indicating concordant expression. 

3.2.5 Regions of SAS overlap are enriched in exons with antisense-correlated 
splicing events 

RNA-masking of splice sites via dsRNA formation underlies antisense-mediated splicing 

regulation of genes such as TR! (Hastings et al. 1997), indicating the importance of 

sequence overlap. To determine the relative importance of SAS sequence overlap in our 

data, we ascertained whether exons that overlapped an antisense gene (“overlapping 

exons”) were more likely to exhibit antisense-correlated splicing events than exons 

outside of the annotated overlap (“non-overlapping exons”) (Fig. 3.1A).  

Of the 191 known SAS genes with antisense-correlated splicing events, 27 had at least 

two overlapping and two non-overlapping expressed exons. For each of these genes, we 

compared the proportion of antisense-correlated non-overlapping exons to that of 

antisense-correlated overlapping exons. If sequence overlap is not an important factor, 

the proportions of these two groups should be equal. Instead, for 21 genes (77.8%), a 

greater proportion of exons with antisense-correlated splicing were overlapping rather 

than non-overlapping (Fig. 3.5B). Physical overlap therefore seems to be a critical aspect 
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of the observed antisense-correlated splicing events, perhaps indicating that sequence 

overlap is a key feature of the mechanism of splicing control acting at these loci.  

3.2.6 Regions of SAS overlap are enriched in nucleosomes, PolII occupancy and 
alternatively spliced exons 

Recent analyses (Nahkuri et al. 2009; Schwartz et al. 2009; Spies et al. 2009; Tilgner et 

al. 2009) of publicly available ChIP-seq data from human T-cells (Schones et al. 2008), 

found that nucleosome occupancy is elevated in exons relative to introns, and indicate 

that this enrichment decreases the rate of RNA Polymerase II (PolII) elongation 

(Schwartz et al. 2009). Indeed, nucleosomes constitute chromatin “roadblocks” slow the 

PolII elongation rate (Kulaeva et al. 2009), and slower PolII elongation rates have in turn 

been shown to increase the rate of alternative splicing (de la Mata et al. 2003). Thus one 

hypothesis for the observed increase in the rate of antisense-correlated alternative 

splicing events in SAS overlaps may involve a decreased polymerase speed in those 

regions.  In support of this hypothesis, we noted that areas of SAS overlap contained 

exons encoded by two genes, leading to a potential enrichment of exons in overlapping 

regions. We ascertained the frequency (per kb) of Ensembl-annotated exons in SAS 

genes (Methods), and found a 7.2-fold increased exon/kb frequency in overlapping (3.1 

exons/kb) versus non-overlapping regions (0.43 exons/kb; Welch’s t-Test, P < 2.2"10-16). 

This finding would correspond to a greater frequency of nucleosomes in overlapping 

regions if exons were indeed enriched in nucleosomes, as expected from previous studies 

(Schwartz et al. 2009; Spies et al. 2009; Tilgner et al. 2009).  

3.2.6.1 Nucleosomes are enriched in areas of SAS overlap 

To confirm that SAS genes harbored more nucleosomes in exons than introns, we re-

analyzed the publicly available activated T-cell ChIP-seq and microarray data (Schones 

et al. 2008). We used the T-cell microarray data to identify 8,627 expressed genes in 

activated T-cells. Of these, 189 belonged to the set of 2,995 known SAS genes, and a 

smaller subset of 122 genes had antisense-correlated splicing events and corresponding 

nucleosome occupancy ChIP-seq data. On average, exons had a 1.2-fold enrichment of 

nucleosome peaks compared to the introns of the same genes (Student’s t-Test P = 

5.7"10-9; Fig. 3.5A). We conclude that both exons and nucleosomes are enriched in areas 

of SAS overlap (modeled in Fig. 3.6). 
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3.2.6.2 Increased PolII occupancy in regions of SAS overlap 

Increased nucleosome occupancy of SAS overlaps should lead to attenuated PolII 

elongation speed in these regions. Given the documented effects of decreased PolII speed 

on alternative splicing (de la Mata et al. 2003), we also expected an increased local 

frequency of alternatively spliced exons. To test these predictions, we ascertained the 

level of both PolII occupancy and of alternative splicing in regions of SAS overlap 

relative to non-overlapping regions, as described next. 

3.2.6.2.1 PolII occupancy 

PolII occupancy levels were analyzed using publicly available ChIP-seq data from one 

LCL (GM12878), generated as part of the ENCODE project (Consortium 2004). We 

sought to determine whether PolII peaks were enriched in regions of sequence overlap 

relative to flanking non-overlapping regions in individual SAS genes. PolII occupancy 

was used as a surrogate measure of PolII speed, since areas with stalled or slowly-

moving complexes were more likely to be observed as bound by PolII in a ChIP-seq 

experiment than areas with fast moving PolII complexes. Thus, PolII peaks are expected 

to represent regions of DNA through which PolII exhibits slow elongation speeds. To 

assess PolII occupancy, areas with significant enrichment of signal over background 

(peaks) were enumerated independently in overlapping and non-overlapping regions of 

known SAS genes. A total of 549 known SAS genes were expressed in GM12878, and 

harboured at least one significant PolII peak. Of these, we analyzed 248 genes with at 

least one non promoter-associated PolII peak, indicating the presence of the elongating 

form of PolII in the gene body. These genes harbored 488 PolII peaks in distinct regions: 

85 peaks (17.4%) in known promoters, 212 peaks (43.4%) in non-overlapping regions, 

and 191 peaks (39.1%) in overlapping regions. Regions of overlap spanned an average of 

11.1% of the total gene lengths. By calculating the log ratio of overlapping versus non-

overlapping PolII occupancy levels (peaks/kb), a 5.5 fold enrichment was observed in 

areas of overlap for 85.9% of the 248 known SAS genes (Fig. 3.4C, Mann-Whitney Test, 

P = 2.4"10-19). We excluded the possibility that enrichment of PolII peaks in areas of 

SAS overlap was due to transcriptional termination, which can also decrease PolII speed 

(Nag et al. 2006) (data not shown). This enrichment corresponds with the anticipated 

effect of increased nucleosome concentrations on PolII speed in areas of SAS overlaps, 

and is likely to cause local changes in splicing outcomes.  
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3.2.6.2.2 Higher rates of alternative splicing in areas of SAS overlap 

To investigate changes in alternative splicing in overlapping versus non-overlapping 

regions, we identified constitutive and alternative exons for 8,530 Ensembl genes with 

multiple transcripts. The 149,032 exons encoded by these genes were categorized as 

“constitutive” if present in all annotated gene isoforms (45.5% of exons), and 

“alternative” if found in only a subset of isoforms (55.5% of exons). Next, all exons 

encoded in the 2,668 known SAS genes were subdivided into overlapping and non-

overlapping categories, as previously described. Of these, we analyzed 163 genes that 

had both alternative and constitutive exons, and at least two overlapping and two non-

overlapping exons. A total of 57.1% of non-overlapping exons were alternatively spliced, 

similar to the proportion of alternative exons in all 8,530 genes with multiple isoforms 

(Table 3.1, Student’s t-Test, P = 0.6). When considering overlapping exons however, 

67.8% of exons were alternatively spliced, a significant increase from the overall 

proportion (Table 3.1, Student’s t-Test, P = 4.5"10-4). Elevated levels of alternative 

splicing were expected from the inferred local decrease in PolII transcriptional speed, 

and suggest that antisense transcription ultimately increases the variety of alternative 

transcripts expressed from SAS loci (modeled in Fig. 3.6). 

3.2.7 Antisense transcription coincides with alternative splicing throughout 
metazoan evolution 

Since antisense transcription has been observed in numerous organisms (Dahary et al. 

2005); (Zhang et al. 2006), we hypothesized that the relationship between splicing and 

antisense transcription is evolutionarily conserved. To address this possibility, we 

measured the concordance between alternative splicing (inferred from the number of 

annotated sense gene isoforms) and annotated antisense genes in twelve species: human, 

mouse, rat, chimp, rhesus monkey, fly, chicken, frog, sea squirt, puffer fish, worm, and 

zebrafish. We first divided genes into those with multiple annotated isoforms and those 

with a single known transcript (Fig. 3.7A). In each species, we then compared the 

proportion of known SAS genes in each category, and found that a significantly higher 

proportion of multiple-transcript genes had known antisense gene partners in eleven 

species (Fig. 3.7B, corresponding P values in Table 3.2A).  
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We next measured novel antisense transcription by utilizing species-specific ESTs 

mapping antisense to known genes (Methods). Antisense ESTs were not only found in a 

significantly larger proportion of genes with multiple rather than single isoforms (Fig. 

3.7C, Table 3.2B), but they were also more highly expressed, indicating that antisense 

transcription is abundant at these loci. Together, these findings indicate that antisense 

transcription is a general feature of genes with multiple transcripts throughout evolution. 

3.3 Discussion 

Numerous groups have reported on the abundance of antisense transcription in 

mammalian transcriptomes (Engstrom et al. 2006); (Riken Genome Exploration Research 

et al. 2005); (Chen et al. 2004; Kapranov et al. 2005) and on the frequent co-expression 

of SAS gene partners  (Reis et al. 2004; Chen et al. 2005; Kiyosawa et al. 2005), but the 

functional implications of this transcription remain to be elucidated. For the first time we 

provide evidence linking antisense transcription to alternative splicing across the 

majority of expressed human SAS loci. First, antisense transcription distinguishes long 

genes with numerous exons and transcript isoforms from shorter genes with simpler 

splicing outcomes. Second, both known and novel instances of antisense transcription are 

strongly correlated to sense gene splicing, affecting 20-24% of exons at 74-79% of 

expressed known and novel SAS loci. Together, these findings provide a basis for 

interpreting potential functional outcomes of co-expressed SAS genes. 

Altering the complement of proteins associated with the PolII C-terminal domain can 

affect splicing either by altering the elongation speed of the polymerase or by making 

specific splicing factors available co-transcriptionally (Listerman et al. 2006), thus 

affecting the alternative expression of many genes. In contrast to such trans-acting effects 

of classical splicing regulatory mechanisms (Wang and Burge 2008), a distinguishing 

aspect of antisense-mediated splicing regulation is its effect on individual cis-encoded 

genes, yet in a manner unique from that of other cis-acting elements, such as splicing 

enhancers (Castle et al. 2008). The importance of SAS sequence overlap underscores 

these key differences, since overlapping regions are enriched in antisense-correlated 

alternative splicing events. Our findings indicate that overlapping regions are 

characterized by a greater frequency of exons and elevated nucleosome occupancy 

compared to adjacent non-overlapping regions. The elevated nucleosomal barrier in these 
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regions is correlated to decreased PolII speed, which is further linked to an observable 

increase in alternative exon usage in areas of SAS overlap (Fig. 3.5). A similar increase 

in nucleosome occupancy has previously been linked to actively used polyadenylation 

signals (PAS) in T-cells (Spies et al. 2009), as well as decreased polymerase speed in 

intragenic regions (de la Mata et al. 2003; de la Mata and Kornblihtt 2006). In 

conjunction, these observations underscore the role that sequence-based determinants of 

nucleosome positioning, (such as nucleosome binding affinity of exonic and PAS-

associated sequences) play in alternative polyadenylation and splicing.  

In contrast to known SAS genes, the antisense transcripts at novel SAS loci do not 

correspond to known genes with identifiable exons, yet antisense-correlated splicing still 

occurs with a similar prevalence. At such loci, elongating polymerases transcribing the 

sense gene could be slowed either by increased nucleosome occupancy levels as seen in 

known SAS pairs, or alternatively, by the non-mutually exclusive mechanism of 

transcriptional interference, which has previously been shown to slow PolII speed 

(Galburt et al. 2007); (Shearwin et al. 2005). A significant amount of novel SAS 

transcription was detected in multiple species. Along with our observations of human 

population-specific differences in novel SAS events correlated to alternative splicing 

events, these results suggest that new SAS loci continue to evolve and to influence 

splicing outcomes. 

We found a strong concordance between known antisense transcription and genes with 

multiple isoforms in amphibians, fishes, insects, birds, nematodes, and mammals. If 

antisense-mediated regulation of alternative splicing were functionally important in these 

species, we would expect SAS gene overlaps to be conserved throughout evolution. In 

support of this hypothesis, positive selection for the maintenance of sequence overlaps in 

known SAS genes has already been documented between the human, mouse, and Fugu 

genomes (Dahary et al. 2005). In conjunction with detectable alterations in chromatin-

state and PolII processivity at human known SAS loci, these observations advocate for 

antisense transcription as a conserved mechanism of splicing regulation. 
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3.4 Methods 

3.4.1 Ensembl genes 

Ensembl (Hubbard et al. 2002) gene annotations (including gene, transcript, and exon 

coordinates; release 49) were downloaded via the Ensembl Perl API. Genes whose 

genomic coordinates overlapped by at least one base, and which were encoded on 

opposite strands were categorized as known SAS genes. Exons were classified as 

alternative (A) or constitutive (C) if they were found in a subset or in all of the annotated 

isoforms of a gene, respectively. Only known SAS genes with both A and C exons, and 

at least two expressed exons in the overlapping and two expressed exons in the non-

overlapping SAS region were considered. Affymetrix probesets were mapped to the 

sense and antisense strands of genes using custom Perl scripts. 

3.4.2 Public datasets 

3.4.2.1 Lymphoblastoid cell lines 

Publicly available CEU and YRI Affymetrix Human Exon 1.0 ST Array data 

(http://media.affymetrix.com:80/support/technical/technotes/exon_array_design_technote

.pdf) were downloaded from the Gene Expression Omnibus (Barrett et al. 2009) (GEO, 

GSE7792). A total of 18,041 genes had probesets mapping to both the positive and 

negative strands of the genome, and 10,636 genes had probesets mapping only to the 

sense strand. An additional 366 genes had probesets mapping only to the antisense 

strand, and likely reflect changes in gene annotations since probeset design.  

3.4.2.2 Multiple species data 

Current gene annotations and EST data were downloaded from the UCSC genome 

browser (Rosenbloom et al. 2007) for human (Homo sapiens), puffer fish (Takifugu 

rubripes), mouse (Mus musculus), chimp (Pan troglodytes), rhesus (Macaca mulatta), rat 

(Rattus norvegicus), sea squirt (Ciona intestinalis), fly (Drosophila melanogaster), frog 

(Xenopus tropicalis), chicken (Gallus gallus), nematode (Caenorhabditis elegans), and 

zebrafish (Danio rerio). 
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3.4.2.3 PolII data 

ChIP-seq data were downloaded from the UCSC genome browser (Primary Table: 

wgEncodeYaleChIPseqRel2SignalGm12878Pol2). For the PolII analysis, known SAS 

genes were required to have at least one PolII peak in the gene body (i.e. not including 

the first exon of the gene). Genes completely overlapped by another gene were excluded 

from the analysis. 

3.4.2.4 Nucleosome data 

Activated T-cell ChIP-seq and microarray expression data were downloaded from GEO 

(Barrett et al. 2009) (GSE10437). T-cell microarray data (Schones et al. 2008) were 

processed using the Affymetrix Expression Console Software 

(http://www.affymetrix.com/), and MAS5 (Hubbell et al. 2002) p-values were used to 

identify expressed genes. ChIP-seq data were processed as previously described 

(Schwartz et al. 2009). Mean nucleosome occupancy was calculated separately for 

intronic and exonic regions in SAS gene partner regions. Areas of exon-intron sequence 

overlap were considered exonic sequence. 

3.4.2.5 Cancer Gene Census data 

CGC genes were obtained from the Wellcome Trust Sanger Institute Cancer Genome 

Project web site, http://www.sanger.ac.uk/genetics/CGP. 

3.4.3 Microarray processing 

3.4.3.1 Pre-processing 

Array data were background corrected and normalized according to standard protocols 

(Expression Console, www.affymetrix.com/support/technical/software_downloads.affx). 

The log2 of the resulting expression values was used in further analyses.  

3.4.3.2 Gene expression filtering 

Probesets were filtered for expression above background (Griffith et al. 2008) in at least 

20% of samples and gene-level expression values were calculated for genes that had a 

minimum of 20% of probesets expressed in at least 20% of samples, and a minimum of 

two expressed probesets. In the case of novel SAS genes, an “antisense construct” was 

generated to represent the unknown antisense transcript. The boundaries of the antisense 
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construct were set to the genomic boundaries of the sense gene, but only probesets 

mapping to the opposite strands were considered (Fig. 1B). Probesets mapping in this 

region were used to calculate the antisense construct expression in an analogous way to 

annotated genes. 

3.4.3 Splice index calculations 

Gene expression was calculated as the mean of all probesets mapping to the sense strand 

of that gene or antisense construct. Probesets that mapped to introns as well as exons 

were included, since they may represent alternatively spliced exons, intron retention 

events, or other un-annotated splicing variations, such as alternative 5´ or 3´ splice-site 

usage. Each probeset is therefore referred to as an exon. The splice index was the 

expression of the exon normalized to the expression of the whole gene: 

  Splice index (exon) = expression (exon) / expression (gene) 

The Spearman’s rank correlation coefficient of each sense exon splicing index and the 

antisense gene (or construct) expression was calculated for all samples and all SAS 

genes, using the cor.test function in R (R_Development_Core_Team 2008). Associated 

correlation p-values (Best and Roberts 1975) were multiple-test corrected using the 

Bonferroni method (Wright 1992). In known SAS gene pairs, each gene partner was in 

turn analyzed as the sense gene and as the antisense gene. Correlations (and associated p-

values) between gene expression values were calculated using the same methods. 

Relative to probesets that were not antisense-correlated, correlated probesets did not have 

biases in any of the following features: number of independent probes, cross-

hybridization type, or probe count (Chi-square test, respective P values = 0.98, 0.80, 

1.00).  

3.4.4 Functional annotation 

We used the David Bioinformatics Resources (Dennis et al. 2003); (Huang et al. 2009) to 

functionally annotate the 4,792 known SAS, 7,648 novel SAS and 7,137 non SAS genes 

whose IDs could be converted to DAVID IDs, specifically focusing on Gene Ontology 

(Michael et al. 2000) terms (GO), and Uniprot Keywords 

(http://www.uniprot.org/manual/keywords). 
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3.4.5 Exon frequency calculations 

The frequency of exons per kilobase (exons/kb) was calculated for 1,765 known SAS 

gene pairs. For each gene pair, the number of exons/kb in the overlapping region 

(including exons from both strands) was compared to the number of exons/kb in non-

overlapping regions of both genes. For this analysis, overlapping alternative exons (ie. 

sharing the same genomic location, but differing in 5´ or 3´ ends) were only counted 

once. 
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Figure 3.1  Known and novel SAS genes are structurally distinct from genes without 
antisense transcription.  
(A). Schematic diagram of a hypothetical known SAS gene pair shows the structural 
arrangement of overlapping exons (red rectangles) and non-overlapping exons (orange 
rectangles). In our analysis, each partner gene is in turn treated as the antisense gene. 
Probesets (horizontal green dashes) map to the sense strand of the gene in either exons or 
introns. Black arrows denote transcriptional direction. (B) A novel SAS sense gene. 
Since the structure of the antisense transcript is unknown, an antisense construct (dashed-
line box) spans the genomic coordinates of the sense gene and approximates antisense 
expression. All antisense probesets encompassed by that region are used to infer the 
expression of the antisense construct. If the actual antisense transcript extends beyond the 
sense gene boundaries, the antisense construct expression under-represents the actual 
level of antisense transcription at that locus. (C). On average, known and novel SAS 
genes have significantly longer gene (left vertical axis) and transcript lengths than genes 
with no antisense transcription, as well as significantly more introns and isoforms (right 
vertical axis). The total number of protein coding known SAS genes, novel SAS, and non 
SAS genes in the human genome is shown on the x-axis. (D) P-values for all pairwise 
comparisons between known SAS, novel SAS, and non SAS genes (Welch two-sample t-
test). 
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Known SAS 

vs 
Novel SAS 

Known SAS 
vs 

Non SAS 

Novel SAS 
vs 

Non SAS 

Gene length (kb) 2.4"10-7 1.6"10-148 1.0"10-285 

Transcript length (kb) 8.0"10-18 5.1"10-40 3.0"10-147 

Transcripts per gene 6.1"10-1 3.2"10-84 4.2"10-111 

Introns per gene 5.8"10-3 5.8"10-78 9.7"10-147 
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Figure 3.2  Antisense-correlated splicing events at the MSH6 and FBXO11 locus. 
(A) EnsEMBL isoforms of MSH6 and FBXO11 are shown as exons (burgundy 
rectangles) separated by introns (horizontal lines), along with arrows denoting 
transcriptional direction. The gene MSH6 largely overlaps the FBXO11 gene, and has 
one exonic probeset whose splice index is positively antisense-correlated (green 
rectangle), and two exonic probesetss whose splice index is negatively antisense-
correlated (red rectangles).  A black dotted line links each probeset with the exon it 
represents.  The SAS partner gene (FBXO11) has four exons with positive antisense-
correlated splicing, and three exons with negative antisense-correlated splicing.  (B) The 
splice index values of the negatively antisense-correlated MSH6 exons (red solid and red 
dashed lines, left-hand y-axis) are shown along with the expression of the antisense gene 
(FBXO11, solid black line, right-hand y-axis). Values are reported for all 176 CEPH and 
YRI libraries (x-axis). Trendlines (log-transformed) were fitted to the gene and exon 
values. (C) The splice index values of the positively correlated MSH6 exon (green solid 
line) is shown along with the FBXO11 antisense gene expression. As in (B), trendlines 
are shown for each dataset. In both (B) and (C), the libraries are sorted by ascending 
FBXO11 expression values. 
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Figure 3.3  The majority of antisense expression is significantly correlated to sense 
gene exon splicing events. 
Dashed arrows mark significant correlations between the splicing index of individual 
sense-gene exons and the expression of the antisense gene or construct (encased in 
dashed-line box). Significantly antisense-correlated exons are denoted by small orange 
rectangles; uncorrelated exons are small blue rectangles. The percent of expressed genes 
with antisense-correlated splicing events are shown above the diagram, while the percent 
of expressed exons whose splicing is correlated to antisense expression is shown below 
the diagram. 
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Figure 3.4  YRI individuals have a greater proportion of novel SAS genes with 
antisense-correlated splicing events. 
The fraction (A) and number (B) of probesets (i.e. exons) with antisense-correlated 
splicing indexes, and the fraction of genes that these probesets map to, is shown for the 
individual CEU and YRI datasets and for both populations.  

A 

 

B 

 Known SAS Novel SAS 
  probesets genes probesets genes 
CEU and YRI 151 82 162 66 
CEU 157 35 178 30 
YRI 177 38 319 53 
Total 485 155 659 149 
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Figure 3.5  Nucleosomes, antisense-correlated splicing events, and PolII occupancy 
levels are enriched in SAS overlaps. 
 (A) Nucleosome peak enrichment was calculated using a ratio of exonic vs intronic 
peaks. The majority of genes have a significant enrichment of exonic nucleosomes in 
introns (ratio > 1). (B) The x-axis coordinate of each gene shows the fraction of all 
expressed overlapping exons with antisense-correlated splicing. The y-axis shows the 
fraction of all expressed non-overlapping exons with antisense-correlated splicing. The 
grey (dotted) line represents equal proportions of antisense-correlated overlapping and 
non-overlapping exons (C). The log10 ratios of overlapping versus non-overlapping PolII 
peaks/kb for 248 known SAS genes reveals PolII enrichment in SAS overlaps (log ratios 
> 0) at the majority of genes. 
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Figure 3.6  Model of distinct features enriched in SAS overlapping regions. 
Features over-represented in the SAS overlap (large rectangle) include exon frequency 
(blue or green rectangles connected by a thick black line), the proportion of alternative 
(green) versus constitutive (blue) exons, PolII peak frequency (orange rectangles), and 
the proportion of exons with antisense-correlated splicing patterns (*). Nucleosomes 
(gray ovals) are localized to exons, and are therefore enriched in the area of SAS overlap. 
Black arrows denote transcriptional direction. 
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Figure 3.7  High concordance between alternative splicing and antisense 
transcription in multiple species. 
(A) The proportion of all genes with multiple isoforms in twelve species. (B) Genes with 
multiple isoforms are enriched in known SAS pairs and (C) in EST evidence for novel 
antisense transcription (novel SAS genes). The dotted lines represent equal proportions 
of SAS genes or antisense ESTs among genes with multiple or single transcripts.  
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Table 3.1  Alternative exons are enriched in SAS overlaps. 
The percent of alternatively (A) and constitutively (C) spliced exons is shown for 8,530 
Ensembl genes with multiple isoforms and encoding both A and C exons. The proportion 
of A and C exons in overlapping and non-overlapping regions is summarized for a subset 
of 163 known SAS genes. P values correspond to differences between the proportions of 
A and C exons in overlapping or non-overlapping regions versus the proportion of in all 
genes (Student’s T-test). 

 
 
 Genes Alternative (%) Constitutive (%) P value 

SAS gene overlapping regions 163 67.8 32.2 4.5"10-4 

SAS gene non-overlapping regions 163 57.1 42.9 0.61 

All genes 8,530 55.5 44.5 NA 
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Table 3.2  Significant concordance of SAS genes with alternative splicing across 
species 
For twelve metazoan organisms, a significant enrichment of known SAS genes, and 
novel antisense transcription (as measured by the presence of antisense ESTs) was 
observed in genes with multiple rather than single transcripts. (A) For each species, the 
proportion of genes with multiple or single isoforms that are known SAS genes is 
tabulated along with the enrichment of SAS genes in the multiple transcript genes, and 
the p-value of that enrichment (Student’s t-Test). Similarly (B), the average expression of 
ESTs mapping antisense to genes with multiple or single transcripts is enumerated along 
with the enrichment and significance for each species. 

A 

 Known SAS (proportion)   

Species 
Genes with 

multiple isoforms 
Genes with 

single isoforms Enrichment P value 
human 0.22 0.16 1.37 3.48"10-25 
puffer fish 0.04 0.02 1.80 9.64"10-14 
mouse 0.20 0.12 1.69 2.25"10-66 
chimp 0.10 0.09 1.14 2.61"10-03 
rhesus 0.12 0.10 1.16 3.35"10-04 
rat 0.11 0.09 1.22 8.97"10-06 
sea squirt 0.14 0.11 1.36 5.15"10-09 
fly 0.29 0.25 1.16 2.51"10-06 
frog 0.14 0.05 3.16 1.24"10-64 
chicken 0.12 0.12 1.06 2.41"10-01 
nematode 0.16 0.09 1.84 1.05"10-33 
zebrafish 0.11 0.05 1.95 2.12"10-20 
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B 

 Antisense ESTs (average)   

Species 
Genes with multiple 

isoforms 
Genes with single 

isoforms Enrichment P value 
nematode 22.71 3.81 5.97 3.3"10-90 
chicken 5.58 3.43 1.63 3.5"10-08 
chimp 119.07 69.97 1.70 2.2"10-80 
sea squirt 19.01 18.24 1.04 9.0"10-01 
fly 18.11 6.89 2.63 1.5"10-81 
puffer fish 0.06 0.04 1.49 3.8"10-10 
human 123.06 57.15 2.15 7.3"10-126 
mouse 41.74 18.85 2.21 1.1"10-95 
rat 18.53 10.23 1.81 8.3"10-38 
rhesus 0.17 0.14 1.23 1.0"10-01 
frog 18.72 18.71 1.00 9.9"10-01 
zebrafish 16.58 10.51 1.58 4.6"10-06 
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4. Analysis of antisense-correlated splicing events in Glioblastoma 
Multiforme reveals subtypes of cancer 

 

Author contributions 

A.S.M. and M.A.M. conceived the analyses. A.S.M. designed and performed all 

computational analyses, created the figures and tables, and wrote the text.  

4.1 Introduction 

Alternative expression is a general feature of human gene expression, specifically acting 

to increase protein diversity from the majority of genes (Wang et al. 2008a; Licatalosi 

and Darnell 2010). In particular, tissue-specific and temporal patterns of alternative 

splicing underscore the importance of this phenomenon to mammalian development. Its 

mis-regulation can lead to disease (Hutton et al. 1998; Garcia-Blanco et al. 2004), and 

can play a role in cancer (reviewed in (Venables 2004)). 

Antisense transcription is a prevalent feature in the human genome, and in a small 

number of cases has been shown to regulate the alternative expression of cis-encoded 

sense transcripts (Chapter 1). Antisense transcripts have been shown to control the 

expression of disease-causing genes (Tufarelli et al. 2003), to be differentially expressed 

between normal and cancerous states (Morrissy et al. 2009), and to correlate to splicing 

outcomes (Chapter 3; (Hastings et al. 2000; Morrissy et al. 2010a)). 

Given the relevance of alternative expression to cancer biology, and the relationship 

between antisense transcription and alternative expression, I hypothesized that antisense 

transcription can provide insight into properties of cancer biology. I chose to explore this 

question through the analysis of exon-level expression data collected by The Cancer 

Genome Atlas (TCGA) Research Network as part of a comprehensive catalog of cancer 

genomic profiles (TCGA 2008). This effort has led to the detailed profiling of a large 

cohort of glioblastoma multiforme (GBM) patients. In adults, GBM is the most common 

form of malignant brain tumor, and is characterized by a dismal one-year median 

survival rate (Ohgaki and Kleihues 2007). To date, analysis of TCGA data including 

copy number variations, gene expression levels, and somatic mutations has pinpointed 
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specific signaling pathways that likely drive GBM tumorigenesis. Given its uniform 

clinical manifestation and extremely poor prognosis, current research efforts are aimed at 

finding molecular signatures for GBM subtypes that can be used as prognostic, or even 

therapeutic markers. 

I investigated the relationship between alternative splicing and antisense transcription in 

a panel of TCGA GBM samples (TCGA 2008). My aims were to (1) discern the extent of 

cancer-specific antisense-correlated splicing events, and (2) to determine whether 

antisense-correlated splicing events could be used to identify clinically distinct subgroups 

of GBM patients. 

4.2 Results 

4.2.1 Prevalent antisense-correlated splicing events in cancers and normal tissues 

To study antisense-correlated alternative splicing in normal and malignant tissues, I 

compiled a dataset of 230 publicly available Affymetrix Exon 1.0 ST arrays profiling 

expression of normal tissue samples (Barrett et al. 2009), and 266 arrays profiling 

glioblastoma (GBM) samples. An additional 518 ovarian cystadenocarcinoma (OVC) 

samples were also collected to allow later discrimination between cancer-specific and 

GBM-specific splicing events (Table 4.1, (TCGA 2008)). Arrays were pre-processed and 

filtered as described in Methods. As previously noted (Morrissy et al. 2010a), probesets 

are referred to as exons, since they generally represent exonic sequences; probesets 

mapping to introns may represent either novel exons, alternative acceptor and donor sites 

of annotated exons, or retained introns. The expression of filtered exons was used to 

calculate gene expression and splice indexes (SI) for all expressed genes and exons, in 

the GBM, OVC and Normal datasets independently. SI values represent the proportion of 

a gene’s expression that is due to a particular exon, and changes in the SI value indicate 

changes in the relative inclusion or exclusion of an exon in the mRNA (ex. Fig 4.1). 

Sense genes with annotated antisense partners (known SAS) and sense genes with no 

annotated antisense partners but expression-based evidence for novel antisense 

transcription (novel SAS) were retained for further analysis (Fig 4.2A).  

A total of 3,312 (69.0%), 2,179 (47.4%), and 3,099 (65.4%) expressed genes harbored 

antisense-correlated splicing events in the Normal, GBM, and OVC samples, 
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respectively (Fig 4.2A). In each respective dataset, a total of 17,420 (16.3%), 9,410 

(11.2%), and 14,610 (16.2%) exons were spliced in an antisense-correlated manner (Fig 

4.2A). 

The majority of genes (1,730, 79.4%) with antisense-correlated alternative splicing in 

GBM had at least one GBM-specific splicing event, and consequently at least one GBM-

specific isoform (Fig 4.2B). A subset of 4,689 (49.6%) of the alternatively spliced exons 

was only observed in GBM samples (Fig 4.2B). Similarily, large proportions of isoforms 

were unique to each dataset; I thus hypothesized that their relative expression (ie. SI 

values) could be used to molecularly distinguish distinct normal tissues and GBM 

subtypes. 

4.2.2 Unsupervised hierarchical clustering identifies known normal tissues 

I performed unsupervised hierarchical clustering of the SI values of the 17,420 exons 

with significant antisense-correlated splicing events in the Normal dataset, and found 

distinct clusters demarcating individual tissues (Fig. 4.3). Similar tissues profiled in 

different labs, such as the brain tissues (fetal brain, adult brain, GBM controls, and 

cerebellum from the Affymetrix dataset; see Table 4.1) clustered together, indicating that 

lab and batch-specific biases were successfully removed during data normalization. As 

expected from this observation, the Affymetrix cerebellum sample clustered with the 

remaining brain samples rather than the other tissues it was profiled with. Similarly, all 

blood tissue samples clustered together despite being generated by different labs. I 

conclude that antisense-correlated exons have SI values that represent tissue-specific 

patterns of expression, and consequently provide an effective means of clustering 

biologically distinct samples. 

4.2.3 Clinically relevant GBM subclasses identified using unsupervised methods 

Having determined that SI values of exons with antisense-correlated splicing can be used 

to distinguish normal tissues, I next conducted unsupervised hierarchical clustering on 

GBM samples. The 1,000 most variant exons with cancer-specific expression were used 

for this analysis, along with 245 GBM samples for which clinical data was available. 

These 1,000 exons mapped to 654 genes that were not significantly enriched in known 

pathways or gene ontology terms (data not shown).  
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Unsupervised hierarchical clustering formed two major clusters (1 and 2), the second of 

which was further split into 2 clusters (2A and 2B; Fig 4.4A). Cluster 2B contained two 

final large clusters: 2B1 and 2B2. The corresponding groups of patients had several 

distinguishing clinical characteristics. First, using Kaplan-Meier curves, I observed a 

significant difference in survival time (Fig 4.4B), with cluster 1 patients having the best 

prognosis (median survival = 1,024 days), and cluster 2B1 the second-best prognosis 

(median survival = 551 days). The two poor-prognosis groups (cluster 2A median 

survival = 447 days, cluster 2B2 median survival = 345 days) were not significantly 

different from each other, but their median survival was significantly smaller than both 

good-prognosis curves (log-rank test p-values in Fig 4.4B).  

Overall survival at the 2-year time point was quite similar for the patients in the poor-

prognosis clusters (21.1% for 2A, 15.0% for 2B2, Fig. 4.5A), and much lower than the 2-

year survival of patients in clusters 1 and 2B1 (69.5% and 39.6%, respectively). 

However, the conditional 5-year survival rate, which is the probability of survival to five 

years for those patients alive at two years, distinguished cluster 2B2 from cluster 2A as 

having a particularly dismal prognosis (5.9% for 2B2, 20.0% for 2A, Fig 4.5A).  

Age is a known prognostic factor for survival of GBM patients (Ohgaki and Kleihues 

2007), so I sought to determine whether this variable differed significantly between the 

four patient groups. As expected, the patients in the best prognosis group (cluster 1) were 

the youngest (median age = 33 years; Fig 4.5A) by a significant margin compared to the 

other groups (Fig 4.5A; all pairwise Student’s T-tests, P < 6 x 10-3). In contrast, the 

subgroups in cluster 2 did not differ significantly from eachother (i.e. 2A, 2B1, 2B2), 

indicating that clinical factors other than age may distinguish these patients (Fig 4.5A). 

4.2.4 Group-specific differences in response to Temozolomide treatment 

To determine whether clinically relevant features other than age and overall survival 

might distinguish patient groups, I investigated survival outcomes based on treatment 

with Temozolomide. Temozolomide is a recently approved chemotherapeutic drug 

(Cohen et al. 2005; Stupp et al. 2005) that is rapidly absorbed after oral administration, 

spontaneously converts to its active form without hepatic metabolism, efficiently 

penetrates the blood-brain barrier, and has mild and predictable side effects. In a program 

of concomitant administration with radiotherapy, Temozolomide confers a small yet 
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significant survival advantage to patients concurrently undergoing radiotherapy 

(increasing median survival from 12.1 to 14.6 months). Upon its approval, it has become 

the standard treatment for GBM, and 100 (40.8%) of the 245 TCGA patients had 

concomitant Temazolomide and radiation as part of their therapy. I therefore sought to 

determine whether improved survival due to this treatment was evident within each 

patient cluster (derived in 4.2.3).  

I partitioned patients from each group into those treated with Temozolomize and those 

treated with other chemotherapeutic agents, and then reassessed survival using the 

Kaplan-Meier method (Fig 4.5B). Due to the small number of patients in cluster 1 that 

were treated with agents other than Temozolomide (n=2), no significant difference was 

detectable in survival (log-rank test, P = 0.29). Patients with the second-best prognosis 

(cluster 2B1) had no observable difference in survival outcomes due to treatment (log-

rank test, P = 0.96). In contrast, the two poor-prognosis groups differed dramatically in 

terms of treatment-specific survival, with Temozolomide having no significant effect on 

cluster 2B2 patients (log-rank test, P = 0.063), but leading to a significant increase in the 

survival rate of cluster 2A patients (log-rank test, P = 1.3 x 10-3). In the 2A group of 

patients, median survival increased 1.8-fold in response to treatment with Temozolomide 

(from 313.0 days to 547.5 days).  

4.2.5 Comparison to other GBM clustering methods 

A recent analysis of the same TCGA dataset (Verhaak et al. 2010) used unsupervised 

hierarchical clustering of gene expression values to subtype GBM samples into four 

groups. These groups, (Proneural, Neural, Classical, and Mesenchymal), were 

distinguished by a panel of somatic mutation and copy number changes in genes known 

to belong to pathways relevant to GBM pathogenesis (Verhaak et al. 2010). In addition, 

each had gene expression signatures reminiscent of mature cell types (neurons, 

oligodendrocytes, astrocytes, and astroglial cells), and therefore likely represent tumors 

evolved from distinct cell populations. To determine whether the prognostic value of 

these gene-expression derived clusters was comparable to that of the exon-expression 

derived clusters, I compared the survival rate of patients in all groups. 

As described in previous sections, the clusters derived from antisense-correlated splicing 

events represent a range of good to poor prognosis patient groups (Fig 4.6). In contrast, 
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there was no significant difference between the survival outcomes of individuals grouped 

using gene-expression values (all pairwise student’s t-tests with p > 0.05; Fig. 4.6). Thus, 

while the gene-expression derived subtypes can indicate the cell types from which 

tumors evolved, and the likely spectrum of somatic mutations, the groups derived from 

the exon-expression data can be more readily adapted to use as prognostic tools. 

4.2.6 Antisense-correlated alternative splicing of genes with putative driver roles in 
GBM pathogenesis 

Molecular studies of GBM copy number alterations, somatic mutations, DNA 

methylation patterns, and gene expression changes have revealed that the etiology of 

GBM is generally based on aberrations in genes belonging to three critical signaling 

pathways: growth factor receptors (PI3K and Ras), p53, and RB (Phillips et al. 2006; 

TCGA 2008; Cerami et al. 2010). I compiled a list of 82 genes from these publications 

and from the Ingenuity Pathway Analysis database (www.ingenuity.com), and asked 

whether any had known or novel antisense transcription, and whether they passed the 

expression filters in the GBM dataset. Thirty-three genes (40.2%) met these criteria, and 

for 19 (57.6%) of these, significant antisense-correlated splicing events were observed 

(Table 4.2). The majority of these genes had isoforms that were either cancer-specific 

(89.5%) or GBM-specific (68.4%). Interestingly, 10 (76.9%) of the genes with GBM-

specific isoforms were members of the PI3K pathway, suggesting that splicing regulation 

may be particularly relevant to the functioning of this signaling pathway. 

Six of the 17 candidate driver genes with cancer-specific isoforms had exons that were 

part of the list of 1,000 highly variant exons used in section 4.2.4 to distinguish good 

from poor prognosis patients (EGFR, AVIL, FOXO1, TLC1, PLCL2, PLCB1; Table 

4.2). Of these, EGFR had the highest number of antisense-correlated alternatively spliced 

exons (Fig. 4.7). In total, 17 EGFR exons were spliced in a manner significantly 

correlated with the novel antisense construct, and 16 of these were negatively correlated, 

indicating that in the presence of the antisense transcript they were excluded from one or 

more of the EGFR isoforms. Seven of these exons had strong correlation values (< -0.6), 

indicating that the antisense transcript may have a relatively strong role in influencing 

their exclusion. A subset of these exons encode the tyrosine kinase domain of the gene 

(Fig 4.7), and potentially alters the proportion of EGFR isoforms that contain a complete 

kinase domain.  
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Of particular clinical interest are those antisense-correlated splicing events that associate 

with prognosis. Finding such events can be achieved using the Cox proportional hazards 

method (Methods). To assess whether the genes previously identified as putative driver 

genes in GBM had prognostic splicing events, I applied the Cox proportional hazards 

model to EGFR, AVIL, FOXO1, TLC1, PLCL2, and PLCB1 exons. Fitting the Cox 

proportional hazards model revealed that one probeset in the PLCL2 gene was associated 

with survival, and this association remained significant after multiple test correction 

(corrected P = 0.038). Since this probeset mapped to an intron, it may represent a novel 

exon of PLCL2. However, the lack of EST-based support for a novel exon increases the 

likelihood that this probeset may instead represent a retained intron event. Interestingly, 

inclusion of the region identified by this probeset (i.e. a large SI value) was observed in 

patients with poor prognosis (median survival = 484 days, n=109) while its exclusion (a 

small SI value) was observed in patients with a better prognosis (median survival = 682 

days, n=136).  

4.3 Discussion 

Multiple genome and transcriptome-profiling technologies are being leveraged by The 

Cancer Genome Atlas Research Network to generate massive amounts of genomic 

profiling data designed to further our understanding of cancer biology (TCGA 2008). 

The challenge engendered by such data is in devising ways to discern biologically 

meaningful signal from noise. Successful approaches involve identifying genes expressed 

or mutated above background (random) levels. I employed a similar strategy to discern 

biologically relevant information from alternative splicing events. Previous reports have 

documented the prevalent and tissue specific patterns of splicing events (Wang et al. 

2008a), the high levels of alternative splicing events in the brain (Grabowski and Black 

2001), and have validated the use of splicing arrays in identifying subtypes of brain 

cancer (French et al. 2007). In contrast to these studies, I focused my analysis on the 

subset of alternative splicing events that were correlated to the level of cis-encoded 

antisense transcription. Antisense transcription has been shown to mediate splicing 

regulation (Hastings et al. 2000), and I have recently shown that antisense-mediated 

splicing regulation is likely a prevalent phenomenon in the human genome. The 

biological relevance of antisense-correlated splicing events is evident from the work 

presented here, since these events are not only prevalent in normal human tissues, but can 
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also serve to identify sub-groups of normal tissues through unsupervised clustering 

methods.  

Having established the relevance of antisense-correlated splicing events in normal cells, I 

focused on the potential utility of these signals in uncovering subtypes of GBM, a brain 

tumor with exceptionally poor prognosis. Gene-expression values have been previously 

used to segregate GBM patients into subtypes that were generally representative of driver 

somatic mutations and the cell types of tumor origin (Verhaak et al. 2010). In a similar 

approach, I used antisense-correlated alternative splicing events to identify four subtypes 

of GBM. One caveat of this approach is that the robustness of the identified subtypes 

have to be validated (using bootstrapping methods for instance).  In contrast to previous 

gene-expression derived groups, the subtypes identified using exon-expression 

information distinguished patients with a range of poor to good survival outcomes. This 

is the first report using molecular profiling of antisense-correlated alternative splicing 

events as a prognostic marker in a large cohort of cancer patients.  

Of specific clinical relevance was the finding that patients in one of the two poor-

prognosis groups had an improved response to concurrent Temozolomide and 

radiotherapy, which is part of the current standard of care for GBM patients. One 

explanation for the response of specific patients to Temozolomide could be epigenetic 

silencing of the DNA-repair gene O6-methylguanine–DNA methyltransferase (MGMT) 

(Hegi et al. 2005). A methylated MGMT promoter has been shown to confer sensitivity 

to drug action and radiation therapy, since promoter methylation decreases gene 

expression at this locus, and consequently prevents repair of drug-induced DNA lesions 

(Fig. 4.8, (Chakravarti et al. 2006)). However, the expression of MGMT did not 

contribute to my results since its novel antisense partner did not pass expression 

thresholds, and consequently the gene was not analyzed. Thus, the demonstrated ability 

to identify Temozolomide-sensitive patients based on antisense-correlated splicing events 

indicates that other predictors exist for sensitivity to Temozolomide. This observation is 

in accord with previous findings that a methylated MGMT promoter only conferred a 

survival advantage to 62% of patients treated with Temozolomide (Hegi et al. 2005). 

Genes other than MGMT are therefore likely to be involved in Temozolomide resistance 

and sensitivity, and importantly, include genes that exhibit antisense-correlated splicing 
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events specific to cancers. Since there are no known MGMT homologs, these could be 

genes that regulate MGMT promoter methylation, or genes acting in a closely related 

pathway to influence dsDNA repair. The antisense-correlated splicing events identified 

in this chapter essentially represent a short-list of genes from which we can gain a more 

complete understanding of the molecular basis for Temozolomide sensitivity.  

Identifying newly diagnosed patients who are not expected to respond to Temozolomide 

would be of considerable clinical value, as those patients may derive more benefit from 

enrolling in clinical trials rather than receiving standard care. One approach to 

identifying Temozolomide-responsive patients is to first find a subset of exons whose 

splicing status is significantly associated with the survival of group 2A patients. The Cox 

proportional hazards model can be used to test such associations. As an example of how 

this might be done, I carried out a similar analysis of association between survival and 

the splicing index of six candidate driver genes in GBM. One of 13 probesets thus tested 

was found to have a significant association with prognosis, such that its inclusion was 

indicative of poor survival and its exclusion indicative of good survival. Using a similar 

strategy, a survey of the 1,000 highly variant antisense-correlated splicing events should 

indentify a subset of exons associated with Temozolomide response. Once a set of 

predictive exons is found, their sensitivity and specificity can be defined in an unrelated 

set of GBM patients for which Temozolomide response is known. Ultimately, a minimal 

set of sensitive and specific splicing events can be developed into a clinical test, for 

instance a PCR-based assay that detects the presence or absence of the predictive exons.  

Antisense-correlated splicing events have been found to occur in nearly half of the 

candidate GBM driver genes, and specifically in the PI3K signaling pathway. 

Understanding the consequences of these splicing events on both gene function and the 

function of the signaling pathway could provide further insight into the etiology of 

GBMs. For example, an analysis of the exons that encode the EGFR protein kinase 

domain revealed that antisense-correlated splicing events have the potential to 

significantly impact protein functionality by generating EGRF isoforms with an 

incomplete protein kinase domain. This highlights that a good strategy for future 

identification of putative drug targets may be to focus on the subset of alternatively 

spliced exons that encode protein domains. This strategy has been previously employed 
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for the EGFRvIII isoform, which is an EGFR splice variant prevalent in cancers, 

including GBM. This isoform is missing part of the extracellular domain encoded by 

exons 2-7, generally due to an in-frame deletion. The fusion point is the target of 

therapies that rely on monoclonal antibodies to recognize the tumor-specific epitope 

(Kuan et al. 2001). Thus, one potential application of the methods described in this 

chapter is the identification of putative novel drug targets.  

4.4 Methods 

4.4.1 Affymetrix exon array data 

A total of 324 GBM and 518 OVC samples were downloaded from the TCGA data portal 

(tcga-data.nci.nih.gov). After averaging technical replicates, a total of 279 GBM samples 

remained, of which 10 were normal tissue (epileptic brain samples), and 3 were universal 

controls. The panel of normal samples included the 10 GBM normal tissues, plus a subset 

of arrays from the following GEO datasets: lymphoblastoid cell lines (GSE9703), 

erythrocytes (GSE14588), stomach (GSE13195), thymus (GSE11967), lung 

(GSE12236), prostate (GSE12378), stem cells (GSE18698), spinal cord (GSE18920), 

colon (GSE19163), blood (GSE19470), fibroblasts (GSE21440), adult brain (GSE9385), 

fetal brain (GSE13344), and one Affymetrix-generated tissue panel containing breast, 

cerebellum, heart, kidney, liver, muscle, pancreas, prostate, spleen, testes, and thyroid 

samples (references in Table 4.1). Technical and biological replicates in the set of 304 

samples were averaged to yield a final set of 230 samples. 

4.4.2 CEL file processing 

All Affymetrix CEL files were background corrected and normalized using Affymetrix 

Power Tools (www.affymetrix.com). Background correction and quantile normalization 

was computed using RMA-sketch. Resulting probeset expression values were filtered 

based on variance such that probesets with less than median variance were excluded from 

further analyses. Variance was calculated across the GBM, OVC, and Normal samples 

independently.  

4.4.3 Assessing antisense-correlation of alternative splicing events  

Probesets included in the analysis were those with greater than median variance in a 

given dataset. Genes included in the analysis were those with at least 20% of probesets 
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that passed the variance threshold. Probesets were mapped to the sense and antisense 

strands of genes using custom Perl scripts. As previously described (Morrissy et al. 

2010a), a splice index (SI) was calculated for each probeset in the OVC, GBM, or 

Normal dataset independently, as well as for the whole dataset. Briefly, the SI is the 

fraction of gene expression that corresponds to one exon, and changes in SI indicate 

alternative splicing events. Correlations between the SI of each exon in a sense gene and 

the expression of the corresponding antisense gene were computed in R using the cor.test 

function (R_Development_Core_Team 2008). Associated correlation p-values (Best and 

Roberts 1975) were multiple-test corrected using the Bonferroni method (Wright 1992). 

At novel SAS loci, the expression of probesets mapping within sense gene boundaries 

but on the opposite strand was averaged and used to approximate antisense expression 

(refered to as “antisense construct”).  

4.4.4 Clustering analysis 

Exons with antisense-correlated splicing were subjected to unsupervised hierarchical 

clustering using the TM4 Microarray Software Suite (Saeed et al. 2006). Default 

parameters were used (average linkage based on Pearson correlations), and clustering 

was performed using exon SI values. 

4.4.5 Survival analysis 

To test for differences in survival times between the patients in the four GBM clusters, 

the “survival” package in R was used to generate Kaplan-Meier curves and conduct log-

rank tests. Boxplots of survival values were also generated in R. Associations between 

the splice index values of individual exons and clinical variables (such as survival) were 

calculated using the “coxph” method in R, and resulting p-values were multiple test 

corrected by the Benjamini-Hochberg approach in “p.adjust”. 

 

 
 
  



! ""#!

Figure 4.1  Antisense-correlated splicing events. 

(A) The splice indexes (SI) of two significantly antisense-correlated exons are shown along with the expression of the antisense gene (dotted 
black line) in the set of normal libraries (x-axis, labels shown for every third library). One exon is negatively correlated (red line, r = -0.92), 
and one is positively correlated (blue line, r = 0.81). The two probesets map to exons of the gene PARP9, which is encoded antisense to the 
gene DTX3L (ENSG00000163840). (B) The SI of a sense gene exon at a novel SAS gene locus (red line, r = -0.87) is shown along with the 
expression of the antisense construct (dotted black line). The sense exon is part of the novel SAS gene CLIP3. 
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Figure 4.2  Prevalence of antisense-correlated splicing events. 
(A) The number of genes and exons passing expression thresholds in Normal, GBM and 
OVC samples (see Methods). The number of genes with significant SAS-correlated 
splicing as well as the number of spliced exons are enumerated. (B) Number of exons 
with significant antisense-correlated splicing observed in particular subsets of the data 
(left panel), and the number genes they map to (right panel). 
A 

 Tissues Arrays Expressed 
SAS genes 

Expressed 
SAS exons 

Genes with 
SAS-correlated 

splicing 

Exons with 
SAS-correlated 

splicing 

GBM 1 266 4,594 83,646 2,179 9,410 

OVC 1 518 4,739 90,287 3,099 14,610 

Normals 26 230 4,801 107,179 3,312 17,420 

 

B 
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Figure 4.3  Unsupervised hierarchical clustering of exons with antisense-correlated splicing in Normal tissues. 

Clusters specific to each input tissue are generated using unsupervised hierarchical clustering. Tissue group bars are displayed above the 
dendogram, and are annotated in the legend along with the number of samples per group. 
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Figure 4.4  GBM subtypes. 

(A) Unsupervised hierarchical clustering of the 1,000 most variant exons with antisense-
correlated splicing in GBM yields four clusters. Group bars are displayed above the 
dendogram, and are annotated in the legend along with the number of samples per group. 
(B). Survival curves corresponding to the four clusters are displayed in a Kaplan-Meier 
graph. Number of samples (n), and p-values of differences between curves are annotated 
in the legend. 
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B 



! "#%!

Figure 4.5  Clinical characteristics of patient clusters.  

(A) Median survival and age, overall 1-year and 2-year survival, and conditional 5-year 
survival (B). Kaplan-Meier curves were calculated separately for patients treated with 
Temozolomide or another chemotherapeutic. P-values of differences between the curves 
are annotated in the legend, along with the number of samples (n). 
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Number 
of 

Patients 

Median 
survival 
(days) 

Median 
age          

1-Year 
Survival 

(%) 

2-Year 
Survival 

(%) 

Conditional 
5-year 

Survival * 

Cluster 1 13 1,024 33 84.6 61.5 50.0 

Cluster 2A 71 447 56 56.3 21.1 20.0 

Cluster 2B1 48 551 58.5 68.8 39.6 21.0 

Cluster 2B2 113 345 57 47.8 15.0 5.9 

 

* 5-year survival rate (%) was calculated for the subset of patients still alive at 2 years. 
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Figure 4.6  GBM subtypes derived from gene-expression versus exon-expression 
data. 
(A) Gene-expression based clusters (Verhaak et al. 2010). (B) Clusters derived from 
antisense-correlated splicing events. Boxes reflect the IQR; whiskers extend to 1.5 x SD; 
box heights represent the number of samples in each group (n). 
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Figure 4.7  Antisense-correlated splicing events in EGFR and PLCL2. 

 (A) Five isoforms of EGFR are diagramed as rectangles (exons) connected by 
directional lines (introns). Exonic probesets are shown below the corresponding exons, 
and the colour indicates the degree of antisense-correlated splicing at each exon. 
Negative correlations are red bars, positive correlations are green bars, and exons without 
antisense-correlated splicing events are gray bars. The subset of 7 exons with correlations 
< -0.6 are shown in the lower track. A horizontal blue line indicates exons 18-25, which 
encode the kinase domain. (B). A probeset with positive antisense-correlated splicing 
maps to the intron of PLCL2. Inclusion of the corresponding region in the final mRNA is 
associated with poor prognosis. 
 
A  

 
B 
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Figure 4.8  Illustration of the role of MGMT in GBM treatment. 

A schematic representation of the role of MGMT (dark blue) in responding to 
Temozolomide-mediated addition of methyl groups (orange) to the O6 position of 
guanines. In patients with a silenced MGMT gene (i.e. via a methylated promoter), 
guanine-methyl groups are not removed, and lead to an increase in the number of dsDNA 
breaks induced by radiation therapy. In patients with active MGMT, methyl groups are 
removed, leading to a resistant phenotype. Patients originally sensitive to concomitant 
treatment with Temozolomide and radiation can become resistant by gaining inactivating 
mutations in the mismatch repair pathway. 
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Table 4.1  Summary of Affymetrix exon array data. 

Tissue of origin and GEO identifiers of normal and cancer datasets.  
 

GEO Series Samples 
*** 

Unique  Tissue Description 

GSE13344 94 49 fetal brain 

96 samples from left and right hemisphere of 13 brain 
regions of 2nd trimester fetuses (L and R samples 
were treated as biological replicates); (Johnson et al. 
2009) 

GSE9385 6 6 adult brain 6 adult brain samples; (French et al. 2007) 

GSE21440 3 3 fibroblasts 3 control fibroblast cultures 

GSE19470 22 22 blood CD3+ cells from whole blood; 2 timepoints of 
differentiation 

GSE19163 12 10 colon 10 cell lines of normal colon, 2 profiled in duplicate; 
(Mojica and Hawthorn 2010) 

GSE18920 20 20 spinal chord 10 lumbar spinal cords, Motor Neuron and Anterior 
Horn profiled in each individual, (Rabin et al. 2010) 

GSE18698 8 8 stem cells 

3 neonatal unrestricted somatic stem cells (USSC) 
from cord blood; 3 bone-marrow derived 
mesenchymal adult stem cells (BM-MSC) and 2 
adipose tissue-derived adult stem cells (AdAS); 
(Jansen et al. 2010) 

GSE12378 3 3 prostate 3 normal prostates; (Jhavar et al. 2009) 

GSE12236 20 20 lung 20 normal lung tissue samples adjacent to 
adenocarcinomas; (Xi et al. 2008) 

GSE11967 2 2 thymus 2 normal thymus samples; (Soreq et al. 2008) 

GSE13195 23 23 stomach Gastric mucosal tissue 

GSE14588 8 3 erythrocytes 
developing erythrocytes: day 7 (3 biological 
replicates), day 10 (2 biological replicates), day 14 (3 
biological replicates); (Yamamoto et al. 2009) 

GSE9703 40 40 LCLs 40 HapMap lymphoblastoid cell lines (LCLs); 
(Zhang et al. 2008) 

* 33 11 various 
11 tissues (technical triplicates): breast, cerebellum, 
heart, kidney, liver, muscle, pancreas, prostate, 
spleen, testes, thyroid 

** 10 10 brain GBM control samples (epileptic brain); (TCGA 
2008) 

* http://www.affymetrix.com/support/technical/sample_data/exon_array_data.affx 

** GBM control samples were sourced from the TCGA dataset 

*** after replicate arrays are averaged 
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Table 4.2  Antisense-correlated alternative splicing of GBM candidate driver genes. 
Eighty-two genes involved in GBM pathogenesis were collected from the literature. 
Expressed genes with known or novel antisense expression in the GBM samples are 
listed in rows, while those without antisense transcription or not expressed are denoted 
by *. Subsets of genes marked with “Y” have significant antisense-correlated splicing 
events, cancer-specific events or GBM-specific events. Dark red genes are in the set of 
genes encoding the 1,000 highly variable exons used in the unsupervised clustering 
analysis. 

Gene ID Ensembl ID 
Antisense-correlated 

splicing 
Cancer-specific 

isoforms 
GBM-specific 

isoforms 

A2M ENSG00000175899 Y Y Y 
AKT3 ENSG00000117020 Y Y Y 
AVIL ENSG00000135407 Y Y Y 

CCND2 ENSG00000118971 Y Y Y 
CDKN2C ENSG00000123080 Y Y Y 

EGFR ENSG00000146648 Y Y Y 
PIK3R1 ENSG00000145675 Y Y Y 
PTEN ENSG00000171862 Y Y Y 

SPRY2 ENSG00000136158 Y Y Y 
APC ENSG00000134982 Y Y Y 

FOXO1 ENSG00000150907 Y Y Y 
PLCL2 ENSG00000154822 Y Y Y 
TSC1 ENSG00000165699 Y Y Y 

CCND1 ENSG00000110092 Y Y  
FGFR1 ENSG00000077782 Y Y  
KLF6 ENSG00000067082 Y Y  

PLCB1 ENSG00000182621 Y Y  
EPHA3 ENSG00000044524 Y   
PTPN11 ENSG00000179295 Y   
FGFR2 ENSG00000066468    
IFNW1 ENSG00000091831    

SH3GL2 ENSG00000107295    
CBL ENSG00000110395    

FOXO3 ENSG00000118689    
PTPRB ENSG00000127329    

TUBGCP2 ENSG00000130640    
TBP ENSG00000132561    

PIK3C2B ENSG00000133056    
TP53 ENSG00000141510    
FRS2 ENSG00000166225    
CRK ENSG00000167193    
IRS1 ENSG00000169047    

BNC2 ENSG00000173068    

* MAPK1, RHOA, NRAS, ERBB3, LYZ, NUP50, JAK2, CDK6, MET, MPDZ, GAB1, IFNG, NUP107, RBBP5, 
FGF23, TEK, PIK3CA, KDR, TUBGCP6, MDM2, KRAS, AGAP2, CDK4, PIM1, RB1, ERBB2, IFNAR1, AKT1, 
TAF1, VLDLR, CDKN2B, CDKN2A, ADAM12, DOCK1, KIT, SNAPC3, IFNB1, DCTN2, SNRPE, THOC4, 
MAPK11, IFNA2, NF1, IFNA1, MDM4, HLA-DRA, PDGFRA, FGFR1OP, HSPA1A  
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5. Conclusions and future directions 

Comprehensive genome-wide datasets generated in the last decade have been extensively 

mined in efforts to better annotate transcribed regions, identify regulatory regions, and 

profile the differential expression of genes between normal and disease states. Insights 

into the prevalence of antisense transcription resulting from these efforts, coupled with 

existing knowledge of antisense-mediated regulation of transcript processing at a small 

number of loci, indicated that antisense-mediated regulation might be more prevalent 

than previously appreciated. The primary goals of this thesis were therefore to (1) 

investigate the prevalence of SAS transcription in the human genome, and (2) to 

investigate the putative role of antisense transcription in the processing of sense gene 

transcript isoforms. 

5.1 Using Tag-seq to annotate the cancer transcriptome 

In Chapter 1, I reviewed the transcriptional profiling methods used to analyze the 

transcriptome prior to the work conducted in Chapter 2, which specifically focused on 

the methods employed to detect antisense transcripts. Chapter 2 described the increased 

performance in antisense transcript detection achievable using Tag-seq, a method that 

took advantage of the ultra high-throughput capabilities of the Illumina sequencing 

platform. The greater profiling depths achieved by Tag-seq compared to LongSAGE not 

only allowed more sensitive antisense transcript detection, but increased statistical 

confidence in measuring differential expression between sense and antisense transcripts 

in cancerous and normal tissues. Consequently, Tag-seq is extremely well suited to 

identifying infrequently expressed transcripts below the level of detection for methods 

such as LongSAGE and microarrays, and yields data suitable for conducting differential 

expression analysis with a high level of confidence. In contrast to other applications of 

the Illumina platform, such as RNA-seq, Tag-seq allows distinction of the profiled 

transcripts strand of origin, and consequently enables analysis of SAS transcripts. A 

substantial benefit to cancer research is the large number of Tag-seq libraries that have 

already been generated as part of the Cancer Genome Anatomy Project project.  

The primary limitation of the Illumina Tag-seq method is the lack of information 

regarding transcript structure. In contrast, RNA-seq libraries generate reads spanning 

whole transcripts, and are thus considerably more informative of transcriptional start and 
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end sites, and alternative splicing events. Two recently developed computational tools 

have attempted to deduce the strand of origin from RNA-seq reads (Guttman et al. 2010; 

Trapnell et al. 2010). These tools rely on splice site sequences and read-pair information 

to assign a subset of reads to the positive or negative strands, thus generating a semi-

quantitative measure of SAS transcription. However, significant development of these 

algorithms will be required in order to close the gap between their inferred estimates of 

SAS expression and the precise digital counts generated by Tag-seq.  

While it is possible to create strand-specific RNA-seq libraries, this is not routinely done 

and typical RNA-seq libraries are consequently not amenable to studies of SAS 

transcription. However, strand-specific RNA-seq library construction might become 

more popular after a recent in-depth comparison of seven methods that can be used to 

retain strand-of-origin information (Levin et al. 2010). The authors of this study highlight 

the performance of the dUTP method as particularly superior in terms of strand-

specificity, as well as continuity and evenness of transcript coverage. This method 

involves addition of deoxyuridine triphosphate (dUTP) instead of deoxythymidine 

triphosphate (dTTP) to mark the second cDNA strand (Parkhomchuk et al. 2009). The 

marked strand is degraded before the amplification step, leading to specific amplification 

of the first cDNA strand, and consequently maintaining strand specificity. Generating 

RNA-seq libraries using the dUTP protocol only requires a small change in the 

established RNA-seq protocol, but yields critical transcript structure information at both 

known and novel genes (Parkhomchuk et al. 2009). For this reason, it seems likely that 

strand-specific RNA-seq libraries will eventually outnumber existing collections of Tag-

seq libraries. 

5.2 Characterizing an extensive relationship between antisense transcription and 
alternative splicing 

The numerous documented mechanisms of antisense-mediated regulation reveal the 

plasticity of these (typically) non-coding transcripts in exerting significant effects upon 

the processing of cis-encoded sense transcripts. Given the lack of genome-wide studies 

of specific mechanisms of antisense-mediated transcriptional regulation, I set out to 

investigate the effects of antisense transcription on splicing outcomes on a global scale. 

Chapter 3 describes the bioinformatic approach I devised to measure correlations 

between these two phenomena across the transcriptome. This approach revealed a 
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widespread and significant correlation between antisense transcription and alternative 

transcript processing at the majority of human SAS loci. Exon expression, nucleosome 

occupancy, and PolII occupancy data, were analyzed together in order to explore the 

properties of SAS sequence overlaps that might affect alternative splicing in a local 

manner. Decreased polymerase speeds were strongly correlated with nucleosome 

occupancy, as measured at known SAS loci where both transcripts were annotated. As a 

result, I proposed a speculative mechanism that links decreased polymerase elongation 

speed over regions of SAS overlap with local increases of alternative splicing events The 

analyses described in this chapter therefore highlight the utility of multi-tiered data 

analysis in exploring alternative splicing events in the context of antisense transcription. 

These findings indicate that a thorough investigation of splicing outcomes is warranted in 

future studies of known and novel SAS loci.  

One caveat of using exon array data is the inability to distinguish exon connectivity. As 

such, antisense-mediated splicing events of interest derived from microarray-based 

studies must ultimately be investigated further using technologies capable of detecting 

exon connectivity (i.e. RT-PCR; strand-specific RNA-seq libraries). The prevalent 

correlations between antisense transcription and alternative splicing of sense genes is a 

strong argument for the adoption of strand-specific RNA-seq protocols, as described in 

section 5.2. In comparison to exon microarrays, strand-specific RNA-seq libraries would 

provide more accurate measurements of sense and antisense transcript expression, and 

allow sensitive measurements of changes in exon usage over a greater dynamic range. In 

addition, exon connectivity could be directly measured using reads spanning splice sites, 

allowing detection of antisense-correlated isoforms rather than exons, and ultimately, a 

more complete understanding of splicing regulation.  

5.3 Using antisense-correlated splicing events to identify GBM subtypes 

In Chapter 4, I collected large exon array datasets representing normal and cancerous 

tissues and determined that highly variable antisense-correlated splicing events could be 

used to distinguish different normal tissues from each other. Of specific relevance to our 

understanding of GBM molecular heterogeneity, I found that cancer-specific antisense-

correlated splicing events could be used to distinguish clinically relevant subtypes of 

GBM. In particular, groups of GBM patients with good to poor survival outcomes could 
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be characterized using a subset of 1,000 antisense-correlated splicing events, and these 

groups could be further distinguished into subsets of patients who responded well or 

poorly to Temozolomide therapy. Thus, for the first time, I provide evidence that 

antisense-correlated exons represent a clinically relevant subset of splicing events in 

cancer. Using the approaches described here, such events could be readily investigated in 

other collections of cancer samples profiled using exon arrays (such as the set of ovarian 

cancers described in Chapter 4), or more generally, in any exon-level expression 

datasets generated in a strand-specific manner. 

The findings in Chapter 4 open up a number of avenues for future research. A first 

logical step is to reduce the set of 1,000 highly variable alternatively spliced exons used 

for clustering into a subset of the most informative events. One way in which this can be 

done is by using supervised methods that enrich for events correlating to the desired 

clinical feature, such as survival rate or response to Temozolomide. A short list of 

informative splicing events can then be analyzed in depth to determine whether the 

corresponding genes have known roles in cancer biology, and if so, whether the splicing 

events affect resulting protein structure in ways that might influence function. 

Alternatively, these genes may be novel players in cancer biology, and their correlation 

to specific clinical features could be used to short-list pathways involved in the processes 

of interest, and ultimately, may lead to the discovery of new prognostic and therapeutic 

targets. Therapeutic strategies targeting aberrantly expressed isoforms in human disease 

have already been undertaken in animal models as well as humans (Webb et al. 1997; Im 

et al. 1999). Given the cancer-specific inclusion of a particular exon affecting protein 

structure, antibody-based therapies can be devised to specifically target resultant cancer-

specific epitopoes (reviewed in (Mischel and Cloughesy 2006).  

5.4 Conclusions 

Overall, the research described in this thesis constitutes a step forward in our 

understanding of the prevalence and role of SAS genes in the human genome. My 

findings link antisense transcription with the regulation of alternative transcript 

processing at the majority of expressed SAS loci. This phenomenon is an important 

aspect of the molecular heterogeneity of human cancers, and opens new avenues of 

research in efforts to identify novel prognostic and therapeutic markers. 



! "$&!

Bibliography 

Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril 
CR, Wu A, Olde B, Moreno RF et al. 1991. Complementary DNA sequencing: 
expressed sequence tags and human genome project. Science 252(5013): 1651-
1656. 

Alfano G, Vitiello C, Caccioppoli C, Caramico T, Carola A, Szego MJ, McInnes RR, 
Auricchio A, Banfi S. 2005. Natural antisense transcripts associated with genes 
involved in eye development. Hum Mol Genet 14(7): 913-923. 

Annilo T, Kepp K, Laan M. 2009. Natural antisense transcript of natriuretic peptide 
precursor A (NPPA): structural organization and modulation of NPPA 
expression. BMC Molecular Biology 10(1): 81. 

Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. 2001. 
Double-stranded RNA-mediated silencing of genomic tandem repeats and 
transposable elements in the D. melanogaster germline. Curr Biol 11(13): 1017-
1027. 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski 
K, Dwight SS, Eppig JT et al. 2000. Gene ontology: tool for the unification of 
biology. The Gene Ontology Consortium. Nat Genet 25(1): 25-29. 

Athanasiadis A, Rich A, Maas S. 2004. Widespread A-to-I RNA editing of Alu-
containing mRNAs in the human transcriptome. PLoS Biol 2(12): e391. 

Audic S, Claverie JM. 1997. The significance of digital gene expression profiles. 
Genome Res 7(10): 986-995. 

Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva 
A, Tomashevsky M, Marshall KA et al. 2009. NCBI GEO: archive for high-
throughput functional genomic data. Nucleic Acids Research 37(Database issue): 
D885. 

Bass BL. 2002. RNA editing by adenosine deaminases that act on RNA. Annu Rev 
Biochem 71: 817-846. 

Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG. 
2008. A natural antisense transcript regulates Zeb2/Sip1 gene expression during 
Snail1-induced epithelial-ìmesenchymal transition. Genes & Development 22(6): 
756-769. 

Bentley DR. 2006. Whole-genome re-sequencing. Curr Opin Genet Dev 16(6): 545-552. 
Bentley DR Balasubramanian S Swerdlow HP Smith GP Milton J Brown CG Hall KP 

Evers DJ Barnes CL Bignell HR et al. 2008. Accurate whole human genome 
sequencing using reversible terminator chemistry. Nature 456(7218): 53-59. 

Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, 
Samanta M, Weissman S et al. 2004. Global identification of human transcribed 
sequences with genome tiling arrays. Science 306(5705): 2242-2246. 

Best DJ, Roberts DE. 1975. Algorithm AS 89: The Upper Tail Probabilities of 
Spearman's Rho. Journal of the Royal Statistical Society Series C (Applied 
Statistics) 24(3): 377-379. 

Birney E, Andrews TD, Bevan P, Caccamo M, Chen Y, Clarke L, Coates G, Cuff J, 
Curwen V, Cutts T et al. 2004. An overview of Ensembl. Genome Res 14(5): 925-
928. 

Bowers J, Mitchell J, Beer E, Buzby PR, Causey M, Efcavitch JW, Jarosz M, 
Krzymanska-Olejnik E, Kung L, Lipson D et al. 2009. Virtual terminator 
nucleotides for next-generation DNA sequencing. Nat Methods 6(8): 593-595. 



! "$'!

Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov 1(12): 
951-960. 

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, 
Keating M, Rai K et al. 2002. Frequent deletions and down-regulation of micro- 
RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc 
Natl Acad Sci U S A 99(24): 15524-15529. 

Carninci P Kasukawa T Katayama S Gough J Frith MC Maeda N Oyama R Ravasi T 
Lenhard B Wells C et al. 2005. The transcriptional landscape of the mammalian 
genome. Science 309(5740): 1559-1563. 

Castle JC, Zhang C, Shah JK, Kulkarni AV, Kalsotra A, Cooper TA, Johnson JM. 2008. 
Expression of 24,426 human alternative splicing events and predicted cis 
regulation in 48 tissues and cell lines. Nature Genetics 40(12): 1416-1425. 

Cawley S, Bekiranov S, Ng HH, Kapranov P, Sekinger EA, Kampa D, Piccolboni A, 
Sementchenko V, Cheng J, Williams AJ et al. 2004. Unbiased mapping of 
transcription factor binding sites along human chromosomes 21 and 22 points to 
widespread regulation of noncoding RNAs. Cell 116(4): 499-509. 

Cerami E, Demir E, Schultz N, Taylor BS, Sander C. 2010. Automated Network 
Analysis Identifies Core Pathways in Glioblastoma. PLoS ONE 5(2): e8918. 

Chakravarti A, Erkkinen MG, Nestler U, Stupp R, Mehta M, Aldape K, Gilbert MR, 
Black PM, Loeffler JS. 2006. Temozolomide-mediated radiation enhancement in 
glioblastoma: a report on underlying mechanisms. Clin Cancer Res 12(15): 4738-
4746. 

Chen J, Sun M, Hurst LD, Carmichael GG, Rowley JD. 2005. Genome-wide analysis of 
coordinate expression and evolution of human cis-encoded sense-antisense 
transcripts. Trends Genet 21(6): 326-329. 

Chen J, Sun M, Kent W, Huang X, Xie H, Wang W, Zhou G, Shi R, Rowley J. 2004. 
Over 20% of human transcripts might form sense-antisense pairs. Nucleic Acids 
Res 32: 4812-4820. 

Chen J, Sun M, Lee S, Zhou G, Rowley JD, Wang SM. 2002. Identifying novel 
transcripts and novel genes in the human genome by using novel SAGE tags. 
Proc Natl Acad Sci U S A 99(19): 12257-12262. 

Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, 
Tammana H, Helt G et al. 2005. Transcriptional maps of 10 human chromosomes 
at 5-nucleotide resolution. Science 308(5725): 1149-1154. 

Chu J, Dolnick BJ. 2002. Natural antisense (rTSalpha) RNA induces site-specific 
cleavage of thymidylate synthase mRNA. Biochim Biophys Acta 1587(2-3): 183-
193. 

Cohen MH, Johnson JR, Pazdur R. 2005. Food and Drug Administration Drug approval 
summary: temozolomide plus radiation therapy for the treatment of newly 
diagnosed glioblastoma multiforme. Clin Cancer Res 11(19 Pt 1): 6767-6771. 

Dahary D, Elroy-Stein O, Sorek R. 2005. Naturally occurring antisense: transcriptional 
leakage or real overlap? Genome Research 15(3): 364-368. 

de la Mata M, Alonso CR, Kadener S, Fededa JP, Blaustein M, Pelisch F, Cramer P, 
Bentley D, Kornblihtt AR. 2003. A Slow RNA Polymerase II Affects Alternative 
Splicing In Vivo. Molecular Cell 12(2): 525-532. 

de la Mata M, Kornblihtt AR. 2006. RNA polymerase II C-terminal domain mediates 
regulation of alternative splicing by SRp20. Nature Structural & Molecular 
Biology 13(11): 973-980. 



! "$(!

Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. 2003. 
DAVID: Database for Annotation, Visualization, and Integrated Discovery. 
Genome Biology 4(9): R60.61-R60.11. 

DiGuistini S, Ralph SG, Lim YW, Holt R, Jones S, Bohlmann J, Breuil C. 2007. 
Generation and annotation of lodgepole pine and oleoresin-induced expressed 
sequences from the blue-stain fungus Ophiostoma clavigerum, a Mountain Pine 
Beetle-associated pathogen. FEMS Microbiol Lett 267(2): 151-158. 

Ebisuya M, Yamamoto T, Nakajima M, Nishida E. 2008. Ripples from neighbouring 
transcription. Nat Cell Biol 10(9) 1106-1113. 

ENCODE Consortium. 2004. The ENCODE (ENCyclopedia Of DNA Elements) Project. 
Science 306(5696): 636-640. 

Engstrom PG, Suzuki H, Ninomiya N, Akalin A, Sessa L, Lavorgna G, Brozzi A, Luzi L, 
Tan SL, Yang L et al. 2006. Complex Loci in human and mouse genomes. PLoS 
genetics 2(4): e47. 

Eszterhas SK, Bouhassira EE, Martin DI, Fiering S. 2002. Transcriptional interference by 
independently regulated genes occurs in any relative arrangement of the genes 
and is influenced by chromosomal integration position. Mol Cell Biol 22(2): 469-
479. 

French PJ, Peeters J, Horsman S, Duijm E, Siccama I, van den Bent MJ, Luider TM, 
Kros JM, van der Spek P, Sillevis Smitt PA. 2007. Identification of differentially 
regulated splice variants and novel exons in glial brain tumors using exon 
expression arrays. Cancer Res 67(12): 5635-5642. 

Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton 
MR. 2004. A census of human cancer genes. Nat Rev Cancer 4(3): 177-183. 

Galburt EA, Grill SW, Wiedmann A, Lubkowska L, Choy J, Nogales E, Kashlev M, 
Bustamante C. 2007. Backtracking determines the force sensitivity of RNAP II in 
a factor-dependent manner. Nature 446(7137): 820-823. 

Garcia-Blanco M, Baraniak A, Lasda E. 2004. Alternative splicing in disease and 
therapy. Nature biotechnology 22: 535-546. 

Gerhard DS Wagner L Feingold EA Shenmen CM Grouse LH Schuler G Klein SL Old S 
Rasooly R Good P et al. 2004. The status, quality, and expansion of the NIH full-
length cDNA project: the Mammalian Gene Collection (MGC). Genome Res 
14(10B): 2121-2127. 

Ghosh T, Soni K, Scaria V, Halimani M, Bhattacharjee C, Pillai B. 2008. MicroRNA-
mediated up-regulation of an alternatively polyadenylated variant of the mouse 
cytoplasmic {beta}-actin gene. Nucleic Acids Res 36(19): 6318-6332. 

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh 
ML, Downing JR, Caligiuri MA et al. 1999. Molecular classification of cancer: 
class discovery and class prediction by gene expression monitoring. Science 
286(5439): 531-537. 

Grabowski PJ, Black DL. 2001. Alternative RNA splicing in the nervous system. Prog 
Neurobiol 65(3): 289-308. 

Green RE, Krause J, Ptak SE, Briggs AW, Ronan MT, Simons JF, Du L, Egholm M, 
Rothberg JM, Paunovic M et al. 2006. Analysis of one million base pairs of 
Neanderthal DNA. Nature 444(7117): 330-336. 

Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD, Corbett R, 
Tang MJ, Hou Y-C, Pugh TJ et al. 2010. Alternative expression analysis by RNA 
sequencing. Nat Meth 5. 



! "$)!

Griffith M, Tang MJ, Griffith OL, Morin RD, Chan SY, Asano JK, Zeng T, Flibotte S, 
Ally A, Baross A et al. 2008. ALEXA: a microarray design platform for 
alternative expression analysis. Nat Meth 5(2): 118. 

Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP. 2007. 
MicroRNA targeting specificity in mammals: determinants beyond seed pairing. 
Mol Cell 27(1): 91-105. 

Guttman M, Garber M, Levin JZ, Donaghey J, Robinson J, Adiconis X, Fan L, Koziol 
MJ, Gnirke A, Nusbaum C et al. 2010. Ab initio reconstruction of cell type-
specific transcriptomes in mouse reveals the conserved multi-exonic structure of 
lincRNAs. Nat Biotechnol 28(5): 503-510. 

Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100(1): 57-70. 
Hanriot L, Keime C, Gay N, Faure C, Dossat C, Wincker P, Scote-Blachon C, Peyron C, 

Gandrillon O. 2008. A combination of LongSAGE with Solexa sequencing is 
well suited to explore the depth and the complexity of transcriptome. BMC 
Genomics 9: 418. 

Hastings M, Milcarek C, Martincic K, Peterson M, Munroe S. 1997. Expression of the 
thyroid hormone receptor gene, erbAalpha, in B lymphocytes: alternative mRNA 
processing is independent of differentiation but correlates with antisense RNA 
levels. Nucleic Acids Research 25(21): 4296. 

Hastings ML, Ingle HA, Lazar MA, Munroe SH. 2000. Post-transcriptional regulation of 
thyroid hormone receptor expression by cis-acting sequences and a naturally 
occurring antisense RNA. J Biol Chem 275(15): 11507-11513. 

Haussecker D, Proudfoot NJ. 2005. Dicer-dependent turnover of intergenic transcripts 
from the human beta-globin gene cluster. Mol Cell Biol 25(21): 9724-9733. 

Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, 
Hainfellner JA, Mason W, Mariani L et al. 2005. MGMT gene silencing and 
benefit from temozolomide in glioblastoma. N Engl J Med 352(10): 997-1003. 

Hillier LD, Lennon G, Becker M, Bonaldo MF, Chiapelli B, Chissoe S, Dietrich N, 
DuBuque T, Favello A, Gish W et al. 1996. Generation and analysis of 280,000 
human expressed sequence tags. Genome Res 6(9): 807-828. 

Hirst M, Delaney A, Rogers SA, Schnerch A, Persaud DR, O'Connor MD, Zeng T, 
Moksa M, Fichter K, Mah D et al. 2007. LongSAGE profiling of nine human 
embryonic stem cell lines. Genome Biol 8(6): R113. 

Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of 
large gene lists using DAVID bioinformatics resources. Nat Protocols 4(1): 44-
57. 

Huang RS, Duan S, Bleibel WK, Kistner EO, Zhang W, Clark TA, Chen TX, Schweitzer 
AC, Blume JE, Cox NJ et al. 2007. A genome-wide approach to identify genetic 
variants that contribute to etoposide-induced cytotoxicity. Proc Natl Acad Sci 
USA 104(23): 9758-9763. 

Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, 
Down T et al. 2002. The Ensembl genome database project. Nucleic Acids Res 
30: 38-41. 

Hubbell E, Liu W-M, Mei R. 2002. Robust estimators for expression analysis. 
Bioinformatics 18(12): 1585-1592. 

Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, 
Chakraverty S, Isaacs A, Grover A et al. 1998. Association of missense and 5'-
splice-site mutations in tau with the inherited dementia FTDP-17. Nature 
393(6686): 702-705. 



! "$*!

Im SA, Gomez-Manzano C, Fueyo J, Liu TJ, Ke LD, Kim JS, Lee HY, Steck PA, 
Kyritsis AP, Yung WK. 1999. Antiangiogenesis treatment for gliomas: transfer of 
antisense-vascular endothelial growth factor inhibits tumor growth in vivo. 
Cancer Res 59(4): 895-900. 

Imamura T, Yamamoto S, Ohgane J, Hattori N, Tanaka S, Shiota K. 2004. Non-coding 
RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res 
Commun 322(2): 593-600. 

Jackson DA, Pombo A, Iborra F. 2000. The balance sheet for transcription: an analysis of 
nuclear RNA metabolism in mammalian cells. FASEB J 14(2): 242-254. 

Jansen BJ, Gilissen C, Roelofs H, Schaap-Oziemlak A, Veltman JA, Raymakers RA, 
Jansen JH, Kogler G, Figdor CG, Torensma R et al. 2010. Functional differences 
between mesenchymal stem cell populations are reflected by their transcriptome. 
Stem Cells Dev 19(4): 481-490. 

Jhavar S, Brewer D, Edwards S, Kote-Jarai Z, Attard G, Clark J, Flohr P, Christmas T, 
Thompson A, Parker M et al. 2009. Integration of ERG gene mapping and gene-
expression profiling identifies distinct categories of human prostate cancer. BJU 
Int 103(9): 1256-1269. 

Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through 
genomics. Nat Rev Genet 10(3): 161-172. 

Jiang L, Gonda TA, Gamble MV, Salas M, Seshan V, Tu S, Twaddell WS, Hegyi P, 
Lazar G, Steele I et al. 2008. Global hypomethylation of genomic DNA in cancer-
associated myofibroblasts. Cancer Res 68(23): 9900-9908. 

Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, 
Schadt EE, Stoughton R, Shoemaker DD. 2003. Genome-wide survey of human 
alternative pre-mRNA splicing with exon junction microarrays. Science 
302(5653): 2141-2144. 

Johnson JM, Edwards S, Shoemaker D, Schadt EE. 2005. Dark matter in the genome: 
evidence of widespread transcription detected by microarray tiling experiments. 
Trends Genet 21(2): 93-102. 

Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, 
Geschwind DH, Mane SM, State MW, Sestan N. 2009. Functional and 
evolutionary insights into human brain development through global transcriptome 
analysis. Neuron 62(4): 494-509. 

Johnston PG, Fisher ER, Rockette HE, Fisher B, Wolmark N, Drake JC, Chabner BA, 
Allegra CJ. 1994. The role of thymidylate synthase expression in prognosis and 
outcome of adjuvant chemotherapy in patients with rectal cancer. J Clin Oncol 
12(12): 2640-2647. 

Jothi R, Cuddapah S, Barski A, Cui K, Zhao K. 2008. Genome-wide identification of in 
vivo protein-DNA binding sites from ChIP-Seq data. Nucleic Acids Res 36(16): 
5221-5231. 

Kampa D, Cheng J, Kapranov P, Yamanaka M, Brubaker S, Cawley S, Drenkow J, 
Piccolboni A, Bekiranov S, Helt G et al. 2004. Novel RNAs identified from an 
in-depth analysis of the transcriptome of human chromosomes 21 and 22. 
Genome Res 14(3): 331-342. 

Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras 
TR. 2002. Large-scale transcriptional activity in chromosomes 21 and 22. Science 
296(5569): 916-919. 



! "%+!

Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, Gingeras TR. 2005. Examples 
of the complex architecture of the human transcriptome revealed by RACE and 
high-density tiling arrays. Genome Research 15(7): 987-997. 

Kent WJ. 2002. BLAT--the BLAST-like alignment tool. Genome Res 12(4): 656-664. 
Khattra J, Delaney AD, Zhao Y, Siddiqui A, Asano J, McDonald H, Pandoh P, Dhalla N, 

Prabhu AL, Ma K et al. 2007. Large-scale production of SAGE libraries from 
microdissected tissues, flow-sorted cells, and cell lines. Genome Res 17(1): 108-
116. 

Kim VN. 2005. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol 
Cell Biol 6(5): 376-385. 

Kiyosawa H, Mise N, Iwase S, Hayashizaki Y, Abe K. 2005. Disclosing hidden 
transcripts: Mouse natural sense-antisense transcripts tend to be poly(A) negative 
and nuclear localized. Genome Research 15: 463-474. 

Kiyosawa H, Yamanaka I, Osato N, Kondo S, Hayashizaki Y. 2003. Antisense 
transcripts with FANTOM2 clone set and their implications for gene regulation. 
Genome Res 13: 1324-1334. 

Kodzius R, Kojima M, Nishiyori H, Nakamura M, Fukuda S, Tagami M, Sasaki D, 
Imamura K, Kai C, Harbers M et al. 2006. CAGE: cap analysis of gene 
expression. Nat Methods 3(3): 211-222. 

Krystal GW, Armstrong BC, Battey JF. 1990. N-myc mRNA forms an RNA-RNA 
duplex with endogenous antisense transcripts. Molecular and Cellular Biology 
10(8): 4180-4191. 

Kuan CT, Wikstrand CJ, Bigner DD. 2001. EGF mutant receptor vIII as a molecular 
target in cancer therapy. Endocr Relat Cancer 8(2): 83-96. 

Kuersten S, Goodwin EB. 2003. The power of the 3' UTR: translational control and 
development. Nat Rev Genet 4(8): 626-637. 

Kulaeva OI, Gaykalova DA, Pestov NA, Golovastov VV, Vassylyev DG, Artsimovitch I, 
Studitsky VM. 2009. Mechanism of chromatin remodeling and recovery during 
passage of RNA polymerase II. Nat Struct Mol Biol 16(12): 1272-1278. 

Kumar M, Carmichael GG. 1998. Antisense RNA: function and fate of duplex RNA in 
cells of higher eukaryotes. Microbiol Mol Biol Rev 62(4): 1415-1434. 

Ladd PD, Smith LE, Rabaia NA, Moore JM, Georges SA, Hansen RS, Hagerman RJ, 
Tassone F, Tapscott SJ, Filippova GN. 2007. An antisense transcript spanning the 
CGG repeat region of FMR1 is upregulated in premutation carriers but silenced in 
full mutation individuals. Hum Mol Genet 16(24): 3174-3187. 

Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, 
Prange C, Morin PJ, Polyak K et al. 1999. A public database for gene expression 
in human cancers. Cancer Res 59(21): 5403-5407. 

Lander ES Linton LM Birren B Nusbaum C Zody MC Baldwin J Devon K Dewar K 
Doyle M FitzHugh W et al. 2001. Initial sequencing and analysis of the human 
genome. Nature 409(6822): 860-921. 

Lavorgna G, Dahary D, Lehner B, Sorek R, Sanderson CM, Casari G. 2004. In search of 
antisense. Trends in Biochemical Sciences 29(2): 88-94. 

Lee JT, Davidow LS, Warshawsky D. 1999. Tsix, a gene antisense to Xist at the X-
inactivation centre. Nat Genet 21(4): 400-404. 

Lehner B, Williams G, Campbell RD, Sanderson CM. 2002. Antisense transcripts in the 
human genome. Trends Genet 18(2): 63-65. 



! "%"!

Levin JZ, Yassour M, Adiconis X, Nusbaum C, Thompson DA, Friedman N, Gnirke A, 
Regev A. 2010. Comprehensive comparative analysis of strand-specific RNA 
sequencing methods. Nat Methods 7(9): 709-715. 

Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, Dunford-
Shore BH, McGrath S, Hickenbotham M et al. 2008. DNA sequencing of a 
cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218): 66-
72. 

Li A, Walling J, Ahn S, Kotliarov Y, Su Q, Quezado M, Oberholtzer JC, Park J, 
Zenklusen JC, Fine HA. 2009. Unsupervised analysis of transcriptomic profiles 
reveals six glioma subtypes. Cancer Res 69(5): 2091-2099. 

Licatalosi DD, Darnell RB. 2010. RNA processing and its regulation: global insights into 
biological networks. Nature Reviews Genetics 11(1): 75-87. 

Listerman I, Sapra AK, Neugebauer KM. 2006. Cotranscriptional coupling of splicing 
factor recruitment and precursor messenger RNA splicing in mammalian cells. 
Nature Structural & Molecular Biology 13(9): 815-822. 

Liu G, Loraine A, Shigeta R, Cline M, Cheng J, Valmeekam V, Sun S, Kulp D, Siani-
Rose M. 2003. NetAffx: Affymetrix probesets and annotations. Nucleic Acids Res 
31: 82-86. 

Louro R, Nakaya H, Amaral P, Festa F, Sogayar M, da Silva A, Verjovski-Almeida S, 
Reis E. 2007. Androgen responsive intronic non-coding RNAs. BMC Biology 
5(1): 4. 

Lubitz CC, Ugras SK, Kazam JJ, Zhu B, Scognamiglio T, Chen YT, Fahey TJ, 3rd. 
2006. Microarray analysis of thyroid nodule fine-needle aspirates accurately 
classifies benign and malignant lesions. J Mol Diagn 8(4): 490-498. 

Malik K, Salpekar A, Hancock A, Moorwood K, Jackson S, Charles A, Brown KW. 
2000. Identification of differential methylation of the WT1 antisense regulatory 
region and relaxation of imprinting in Wilms' tumor. Cancer Res 60(9): 2356-
2360. 

Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, 
Braverman MS, Chen YJ, Chen Z et al. 2005. Genome sequencing in 
microfabricated high-density picolitre reactors. Nature 437(7057): 376-380. 

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. 2008. RNA-seq: an assessment 
of technical reproducibility and comparison with gene expression arrays. Genome 
Res 18(9): 1509-1517. 

Matsumura H, Ito A, Saitoh H, Winter P, Kahl G, Reuter M, Kruger DH, Terauchi R. 
2005. SuperSAGE. Cell Microbiol 7(1): 11-18. 

Mattick J. 2004. RNA regulation: a new genetics? Nat Rev Genet 5: 316-323. 
Meegan JM, Marcus PI. 1989. Double-stranded ribonuclease coinduced with interferon. 

Science 244(4908): 1089-1091. 
Michael A, Catherine AB, Judith AB, David B, Heather B, Cherry JM, Allan PD, Kara 

D, Selina SD, Janan TE et al. 2000. Gene Ontology: tool for the unification of 
biology. Nature Genetics 25(1): 25. 

Mihalich A, Reina M, Mangioni S, Ponti E, Alberti L, Vigano P, Vignali M, Di Blasio 
AM. 2003. Different Basic Fibroblast Growth Factor and Fibroblast Growth 
Factor-Antisense Expression in Eutopic Endometrial Stromal Cells Derived from 
Women with and without Endometriosis. Journal of Clinical Endocrinology 
Metabolism 88(6): 2853-2859. 

Mischel PS, Cloughesy T. 2006. Using molecular information to guide brain tumor 
therapy. Nat Clin Pract Neurol 2(5): 232-233. 



! "%#!

Mojica W, Hawthorn L. 2010. Normal colon epithelium: a dataset for the analysis of 
gene expression and alternative splicing events in colon disease. BMC Genomics 
11: 5. 

Moncke-Buchner E, Rothenberg M, Reich S, Wagenfuhr K, Matsumura H, Terauchi R, 
Kruger DH, Reuter M. 2009. Functional characterization and modulation of the 
DNA cleavage efficiency of type III restriction endonuclease EcoP15I in its 
interaction with two sites in the DNA target. J Mol Biol 387(5): 1309-1319. 

Morin RD, O'Connor MD, Griffith M, Kuchenbauer F, Delaney A, Prabhu AL, Zhao Y, 
McDonald H, Zeng T, Hirst M et al. 2008. Application of massively parallel 
sequencing to microRNA profiling and discovery in human embryonic stem cells. 
Genome Res 18(4): 610-621. 

Morrissy AS, Griffith M, Marra M. 2010a. Extensive relationship between antisense 
transcription and alternative splicing in the human genome. Mauscript submitted. 

Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, 
Marra MA. 2009. Next-generation tag sequencing for cancer gene expression 
profiling. Genome Res 19(10): 1825-1835. 

Morrissy S, Zhao Y, Delaney A, Asano J, Dhalla N, Li I, McDonald H, Pandoh P, 
Prabhu AL, Tam A et al. 2010b. Digital gene expression by tag sequencing on the 
illumina genome analyzer. Curr Protoc Hum Genet Chapter 11: Unit 11 11 11-
36. 

Nag A, Narsinh K, Kazerouninia A, Martinson HG. 2006. The conserved AAUAAA 
hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA 
polymerase II transcription velocity. RNA 12(8): 1534-1544. 

Nahkuri S, Taft RJ, Mattick JS. 2009. Nucleosomes are preferentially positioned at exons 
in somatic and sperm cells. Cell Cycle 8(20): 3420-3424. 

Navarro P, Page DR, Avner P, Rougeulle C. 2006. Tsix-mediated epigenetic switch of a 
CTCF-flanked region of the Xist promoter determines the Xist transcription 
program. Genes Dev 20(20): 2787-2792. 

Ng P, Tan JJ, Ooi HS, Lee YL, Chiu KP, Fullwood MJ, Srinivasan KG, Perbost C, Du L, 
Sung WK et al. 2006. Multiplex sequencing of paired-end ditags (MS-PET): a 
strategy for the ultra-high-throughput analysis of transcriptomes and genomes. 
Nucleic Acids Res 34(12): e84. 

Ng P, Wei CL, Sung WK, Chiu KP, Lipovich L, Ang CC, Gupta S, Shahab A, Ridwan 
A, Wong CH et al. 2005. Gene identification signature (GIS) analysis for 
transcriptome characterization and genome annotation. Nat Methods 2(2): 105-
111. 

Nielsen KL, Hogh AL, Emmersen J. 2006. DeepSAGE--digital transcriptomics with high 
sensitivity, simple experimental protocol and multiplexing of samples. Nucleic 
Acids Res 34(19): e133. 

Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. 2008. MicroRNA 
expression profiling of thyroid tumors: biological significance and diagnostic 
utility. J Clin Endocrinol Metab 93(5): 1600-1608. 

Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski 
T, Berg JP, Ballin J et al. 2002. Gene expression analysis using oligonucleotide 
arrays produced by maskless photolithography. Genome Res 12(11): 1749-1755. 

Ohgaki H, Kleihues P. 2007. Genetic pathways to primary and secondary glioblastoma. 
Am J Pathol 170(5): 1445-1453. 



! "%$!

Okazaki Y Furuno M Kasukawa T Adachi J Bono H Kondo S Nikaido I Osato N Saito R 
Suzuki H et al. 2002. Analysis of the mouse transcriptome based on functional 
annotation of 60,770 full-length cDNAs. Nature 420(6915): 563-573. 

Ota T Suzuki Y Nishikawa T Otsuki T Sugiyama T Irie R Wakamatsu A Hayashi K Sato 
H Nagai K et al. 2004. Complete sequencing and characterization of 21,243 full-
length human cDNAs. Nat Genet 36(1): 40-45. 

Parkhomchuk D, Borodina T, Amstislavskiy V, Banaru M, Hallen L, Krobitsch S, 
Lehrach H, Soldatov A. 2009. Transcriptome analysis by strand-specific 
sequencing of complementary DNA. Nucleic Acids Res 37(18): e123. 

Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, Volinia 
S, Alder H, Liu CG, Rassenti L et al. 2006. Tcl1 expression in chronic 
lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 66(24): 
11590-11593. 

Peters DG, Kassam AB, Yonas H, O'Hare EH, Ferrell RE, Brufsky AM. 1999. 
Comprehensive transcript analysis in small quantities of mRNA by SAGE-lite. 
Nucleic Acids Res 27(24): e39. 

Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro 
JM, Colman H, Soroceanu L et al. 2006. Molecular subclasses of high-grade 
glioma predict prognosis, delineate a pattern of disease progression, and resemble 
stages in neurogenesis. Cancer Cell 9(3): 157-173. 

Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a 
curated non-redundant sequence database of genomes, transcripts and proteins. 
Nucleic Acids Res 35(Database issue): D61-65. 

Quere R, Manchon L, Lejeune M, Clement O, Pierrat F, Bonafoux B, Commes T, 
Piquemal D, Marti J. 2004. Mining SAGE data allows large-scale, sensitive 
screening of antisense transcript expression. Nucleic Acids Res 32(20): e163. 

R Development Core Team. 2008. R: A Language and Environment for Statistical 
Computing. R Foundation for Statistical Computing Vienna, Austria(ISBN  3-
900051-07-0): URL http://www.R-project.org. 

Rabin SJ, Kim JMH, Baughn M, Libby RT, Kim YJ, Fan Y, Libby RT, La Spada A, 
Stone B, Ravits J. 2010. Sporadic ALS has compartment-specific aberrant exon 
splicing and altered cell-matrix adhesion biology. Hum Mol Genet 19(2): 313-
328. 

Reis E, Nakaya H, Louro R, Canavez F, Flatschart A, Almeida G, Egidio C, Paquola A, 
Machado A, Festa F et al. 2004. Antisense intronic non-coding RNA levels 
correlate to the degree of tumor differentiation in prostate cancer. Oncogene 
23(39): 6684-6692. 

Riken Genome Exploration Research Group, Genome Science Group, The Fantom 
Consortium, Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, 
Nakamura M, Nishida H et al. 2005. Antisense Transcription in the Mammalian 
Transcriptome. Science 309(5740): 1564. 

Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, 
Nelson FK, Miller P, Gerstein M et al. 2003. The transcriptional activity of 
human Chromosome 22. Genes Dev 17(4): 529-540. 

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, 
Helms JA, Farnham PJ, Segal E et al. 2007. Functional demarcation of active and 
silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129(7): 
1311-1323. 



! "%%!

Rosenbloom KR, Dreszer TR, Pheasant M, Barber GP, Meyer LR, Pohl A, Raney BJ, 
Wang T, Hinrichs AS, Zweig AS et al. 2007. ENCODE whole-genome data in 
the UCSC Genome Browser. Nucleic Acids Research 38(Database issue): D620. 

Rosenkranz R, Borodina T, Lehrach H, Himmelbauer H. 2008. Characterizing the mouse 
ES cell transcriptome with Illumina sequencing. Genomics 92(4): 187-194. 

Rossignol F, Vache C, Clottes E. 2002. Natural antisense transcripts of hypoxia-
inducible factor 1alpha are detected in different normal and tumour human 
tissues. Gene 299(1-2): 135-140. 

Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan 
M, White JA, Quackenbush J. 2006. TM4 microarray software suite. Methods 
Enzymol 411: 134-193. 

Saha S, Sparks AB, Rago C, Akmaev V, Wang CJ, Vogelstein B, Kinzler KW, 
Velculescu VE. 2002. Using the transcriptome to annotate the genome. Nat 
Biotechnol 20(5): 508-512. 

Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K. 2008. 
Dynamic regulation of nucleosome positioning in the human genome. Cell 
132(5): 887-898. 

Schulze A, Downward J. 2001. Navigating gene expression using microarrays--a 
technology review. Nat Cell Biol 3(8): E190-195. 

Schwartz S, Meshorer E, Ast G. 2009. Chromatin organization marks exon-intron 
structure. Nature Structural & Molecular Biology 16(9): 990-995. 

Shearwin KE, Callen BP, Egan JB. 2005. Transcriptional interference--a crash course. 
Trends Genet 21(6): 339-345. 

Shendure J, Church GM. 2002. Computational discovery of sense-antisense transcription 
in the human and mouse genomes. Genome Biol 3(9): RESEARCH0044. 

Shinagawa T, Ishii S. 2003. Generation of Ski-knockdown mice by expressing a long 
double-strand RNA from an RNA polymerase II promoter. Genes Dev 17(11): 
1340-1345. 

Shirasawa S, Harada H, Furugaki K, Akamizu T, Ishikawa N, Ito K, Tamai H, Kuma K, 
Kubota S, Hiratani H et al. 2004. SNPs in the promoter of a B cell-specific 
antisense transcript, SAS-ZFAT, determine susceptibility to autoimmune thyroid 
disease. Hum Mol Genet 13(19): 2221-2231. 

Siddiqui AS, Delaney AD, Schnerch A, Griffith OL, Jones SJ, Marra MA. 2006. 
Sequence biases in large scale gene expression profiling data. Nucleic Acids Res 
34(12): e83. 

Siddiqui AS, Khattra J, Delaney AD, Zhao Y, Astell C, Asano J, Babakaiff R, Barber S, 
Beland J, Bohacec S et al. 2005. A mouse atlas of gene expression: large-scale 
digital gene-expression profiles from precisely defined developing C57BL/6J 
mouse tissues and cells. Proc Natl Acad Sci U S A 102(51): 18485-18490. 

Silber J, Lim DA, Petritsch C, Persson AI, Maunakea AK, Yu M, Vandenberg SR, 
Ginzinger DG, James CD, Costello JF et al. 2008. miR-124 and miR-137 inhibit 
proliferation of glioblastoma multiforme cells and induce differentiation of brain 
tumor stem cells. BMC Med 6: 14. 

Smilinich NJ, Day CD, Fitzpatrick GV, Caldwell GM, Lossie AC, Cooper PR, 
Smallwood AC, Joyce JA, Schofield PN, Reik W et al. 1999. A maternally 
methylated CpG island in KvLQT1 is associated with an antisense paternal 
transcript and loss of imprinting in Beckwith-Wiedemann syndrome. Proc Natl 
Acad Sci U S A 96(14): 8064-8069. 



! "%&!

Soreq L, Gilboa-Geffen A, Berrih-Aknin S, Lacoste P, Darvasi A, Soreq E, Bergman H, 
Soreq H. 2008. Identifying alternative hyper-splicing signatures in MG-thymoma 
by exon arrays. PLoS One 3(6): e2392. 

Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG. 2007. 
Common genetic variants account for differences in gene expression among 
ethnic groups. Nat Genet 39(2): 226-231. 

Spies N, Nielsen CB, Padgett RA, Burge CB. 2009. Biased chromatin signatures around 
polyadenylation sites and exons. Molecular Cell 36(2): 245-254. 

Storey JD, Madeoy J, Strout JL, Wurfel M, Ronald J, Akey JM. 2007. Gene-Expression 
Variation Within and Among Human Populations. The American Journal of 
Human Genetics 80(3): 502-509. 

Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, 
Brandes AA, Marosi C, Bogdahn U et al. 2005. Radiotherapy plus concomitant 
and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10): 987-996. 

Su AI, Cooke MP, Ching KA, Hakak Y, Walker JR, Wiltshire T, Orth AP, Vega RG, 
Sapinoso LM, Moqrich A et al. 2002. Large-scale analysis of the human and 
mouse transcriptomes. Proc Natl Acad Sci U S A 99(7): 4465-4470. 

Sun M, Hurst LD, Carmichael GG, Chen J. 2006. Evidence for variation in abundance of 
antisense transcripts between multicellular animals but no relationship between 
antisense transcriptionand organismic complexity. Genome Res 16(7): 922-933. 

The Cancer Genome Atlas Research Network. 2008. Comprehensive genomic 
characterization defines human glioblastoma genes and core pathways. Nature 
455(7216): 1061-1068. 

Thiriet C, Hayes JJ. 2005. Replication-independent core histone dynamics at 
transcriptionally active loci in vivo. Genes Dev 19(6): 677-682. 

Thrash-Bingham CA, Tartof KD. 1999. aHIF: a natural antisense transcript 
overexpressed in human renal cancer and during hypoxia. J Natl Cancer Inst 
91(2): 143-151. 

Tilgner H, Nikolaou C, Althammer S, Sammeth M, Beato M, Valcarcel J, Guigo R. 
2009. Nucleosome positioning as a determinant of exon recognition. Nat Struct 
Mol Biol 16(9): 996-1001. 

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, 
Wold BJ, Pachter L. 2010. Transcript assembly and quantification by RNA-Seq 
reveals unannotated transcripts and isoform switching during cell differentiation. 
Nat Biotechnol 28(5): 511-515. 

Tufarelli C, Sloane Stanley J, Garrick D, Sharpe J, Ayyub H, Wood W, Higgs D. 2003. 
Transcription of antisense RNA leading to gene silencing and methylation as a 
novel cause of human genetic disease. Nature Genetics 34(2): 157. 

Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, 
Costa G, McKernan K et al. 2008. A high-resolution, nucleosome position map of 
C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 
18(7): 1051-1063. 

Vanhee-Brossollet C, Vaquero C. 1998. Do natural antisense transcripts make sense in 
eukaryotes? Gene 211(1): 1-9. 

Velculescu VE, Zhang L, Vogelstein B, Kinzler KW. 1995. Serial analysis of gene 
expression. Science 270(5235): 484-487. 

Venables JP. 2004. Aberrant and alternative splicing in cancer. Cancer Res 64(21): 7647-
7654. 



! "%'!

Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, Miller CR, Ding 
L, Golub T, Mesirov JP et al. 2010. Integrated genomic analysis identifies 
clinically relevant subtypes of glioblastoma characterized by abnormalities in 
PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1): 98-110. 

Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. 2002. Regulation of 
heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 
297(5588): 1833-1837. 

von Bubnoff A. 2008. Next-generation sequencing: the race is on. Cell 132(5): 721-723. 
Wahl MB, Heinzmann U, Imai K. 2005. LongSAGE analysis significantly improves 

genome annotation: identifications of novel genes and alternative transcripts in 
the mouse. Bioinformatics 21(8): 1393-1400. 

Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C, Kingsmore SF, Schroth 
GP, Burge CB. 2008a. Alternative isoform regulation in human tissue 
transcriptomes. Nature 456(7221): 470-476. 

Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, Guo Y et al. 
2008b. The diploid genome sequence of an Asian individual. Nature 456(7218): 
60-65. 

Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P et 
al. 2008c. Profiling microRNA expression in hepatocellular carcinoma reveals 
microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-
specific target. J Biol Chem 283(19): 13205-13215. 

Wang Z, Burge CB. 2008. Splicing regulation: from a parts list of regulatory elements to 
an integrated splicing code. RNA 14(5): 802-813. 

Webb A, Cunningham D, Cotter F, Clarke PA, di Stefano F, Ross P, Corbo M, 
Dziewanowska Z. 1997. BCL-2 antisense therapy in patients with non-Hodgkin 
lymphoma. Lancet 349(9059): 1137-1141. 

Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB. 2007. Sampling the 
Arabidopsis transcriptome with massively parallel pyrosequencing. Plant Physiol 
144(1): 32-42. 

Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, 
Zhao Y, Zeng T, Bernier B et al. 2008. Global analysis of in vivo Foxa2-binding 
sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 
36(14): 4549-4564. 

Wilusz CJ, Wormington M, Peltz SW. 2001. The cap-to-tail guide to mRNA turnover. 
Nat Rev Mol Cell Biol 2(4): 237-246. 

Wright SP. 1992. Adjusted P-Values for Simultaneous Inference. Biometrics 48(4): 
1005-1013. 

Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ, Litle VR, Pennathur A, 
Luketich JD, Godfrey TE. 2008. Whole genome exon arrays identify differential 
expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic 
Acids Res 36(20): 6535-6547. 

Yamamoto ML, Clark TA, Gee SL, Kang JA, Schweitzer AC, Wickrema A, Conboy JG. 
2009. Alternative pre-mRNA splicing switches modulate gene expression in late 
erythropoiesis. Blood 113(14): 3363-3370. 

Yan M-D, Hong C-C, Lai G-M, Cheng A-L, Lin Y-W, Chuang S-E. 2005. Identification 
and characterization of a novel gene Saf transcribed from the opposite strand of 
Fas. Human Molecular Genetics 14(11): 1465-1474. 



! "%(!

Ye BH, Cattoretti G, Shen Q, Zhang J, Hawe N, de Waard R, Leung C, Nouri-Shirazi M, 
Orazi A, Chaganti RS et al. 1997. The BCL-6 proto-oncogene controls germinal-
centre formation and Th2-type inflammation. Nat Genet 16(2): 161-170. 

Yelin R, Dahary D, Sorek R, Levanon E, Goldstein O, Shoshan A, Diber A, Biton S, 
Tamir Y, Khosravi R et al. 2003. Widespread occurrence of antisense 
transcription in the human genome. Nat Biotechnol 21: 379-386. 

Yu W, Gius D, Onyango P, Muldoon-Jacobs K, Karp J, Feinberg AP, Cui H. 2008. 
Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA. Nature 
451(7175): 202-206. 

Zhang W, Duan S, Kistner EO, Bleibel WK, Huang RS, Clark TA, Chen TX, Schweitzer 
AC, Blume JE, Cox NJ et al. 2008. Evaluation of Genetic Variation Contributing 
to Differences in Gene Expression between Populations. The American Journal of 
Human Genetics 82(3): 631-640. 

Zhang Y, Liu XS, Liu QR, Wei L. 2006. Genome-wide in silico identification and 
analysis of cis natural antisense transcripts (cis-NATs) in ten species. Nucleic 
Acids Research 34(12): 3465-3475. 

 
 



! "%)!

Appendices 

Appendix A  CGAP libraries 

The 35 Tag-seq and 77 LongSAGE CGAP libraries analyzed in Chapter 2 were grouped 
by tissue.  
 

Group Stage Description Library Protocol 
TaG2 Tumor (f) hs0240 Tag-seq 

T4aG3 Tumor (m) hs0265 Tag-seq 
T1G3 Tumor (f) hs0264 Tag-seq 
T1G3 Tumor (f) hs0241 Tag-seq 
TaG2 Tumor (m) hs0266 Tag-seq 

bladder 

NA Normal urothelium hs0239 Tag-seq 
Stage4 Metastatic melanoma (m) hs0275 Tag-seq 

NA Squamous cell carcinoma (f) hs0284 Tag-seq 
NA Seborrheic Keratosis (f) hs0282 Tag-seq 
NA Seborrheic Keratosis (m) hs0281 Tag-seq 
NA Basal cell carcinoma (m) hs0279 Tag-seq 
NA Basal cell carcinoma (f) hs0280 Tag-seq 
NA Squamous cell carcinoma (m) hs0283 Tag-seq 
NA Normal nevus (f) hs0278 Tag-seq 

Stage4 Metastatic melanoma (f) hs0276 Tag-seq 
NA Normal nevus (m) hs0277 Tag-seq 

Stage2 Primary melanoma (m; nonpigmented) hs0274 Tag-seq 
Stage2 Primary melanoma (m; pigmented) hs0273 Tag-seq 

NA Normal skin (f) hs0272 Tag-seq 
9months Foreskin (m) hs0305 Tag-seq 

skin 

NA Normal skin (m) hs0271 Tag-seq 
NA Ovary hs0194 Tag-seq uterus 
NA Fallopian tube hs0195 Tag-seq 
NA Peripheral blood from AML patient (m) hs0430 Tag-seq 
NA Peripheral blood from AML patient (m) hs0429 Tag-seq 
NA AML 1483 LongSAGE 

bone marrow 

NA AML 1865 LongSAGE 
NA H1 1387 LongSAGE 
NA H1 1390 LongSAGE 
NA BG01 1603 LongSAGE 
NA Normal undifferentiated stem cells hs0238 Tag-seq 
NA H14 1314 LongSAGE 
NA H13 1385 LongSAGE 
NA Hydatidiform mole hs0324 Tag-seq 
NA H7 1313 LongSAGE 
NA HSF6 1311 LongSAGE 
NA HES4 1383 LongSAGE 
NA HES3 1312 LongSAGE 

embryonic 

NA H9 843 LongSAGE 
NA Burkitt lymphoma hs0196 Tag-seq 
NA Diffuse Large B cell lymphoma (m) hs0204 Tag-seq lymph nodes 
NA B-cell Malignant Lymphoma 1864 LongSAGE 
NA malignant pluripotent embryonal carcinoma (2102Ep cell line) hs0213 Tag-seq 
NA Embryonal carcinoma (32m; bulk) 1863 LongSAGE testis 
NA malignant pluripotent carcinoma (22m; NTERA-2 cell line) hs0212 Tag-seq 
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Group Stage Description Library Protocol 

P0 Endothelial cells (3 male) hs0237 Tag-seq 
P0 Endothelial cells (3 female) hs0230 Tag-seq vascular 
NA Normal liver associated 655 LongSAGE 
NA medulloblastoma (f cell line) 2083 LongSAGE 
NA medulloblastoma (m cell line) 2085 LongSAGE 
NA glioblastoma (stem cell line) 1644 LongSAGE 
NA medulloblastoma (f cell line) 2123 LongSAGE 
NA medulloblastoma (m cell line) 2129 LongSAGE 
NA normal (m+f aborted fetuses) 656 LongSAGE 
NA Normal substantia nigra 648 LongSAGE 
NA glioblastoma (4d cell line) 1645 LongSAGE 

brain 

NA glioblastoma (28d cell line) 1643 LongSAGE 
NA Carcinoma (34f; extensive LCIS) 703 LongSAGE 
NA Carcinoma epithelium (pleural effusion; recurrence) 2171 LongSAGE 
NA Carcinoma epithelium (pleural effusion; recurrence) 2173 LongSAGE 
NA Carcinoma epithelium (55f; invasive ductal) 2163 LongSAGE 
NA Carcinoma epithelium (50f; invasive ductal) 2166 LongSAGE 
NA Fibroadenoma (11f; benign neoplasia) 723 LongSAGE 
NA Carcinoma associated stroma (28f) 650 LongSAGE 
NA Breast carcinoma - white blood cells (47f; IDC7) 659 LongSAGE 
NA Carcinoma epithelium (50f; invasive ductal) 2165 LongSAGE 
NA Carcinoma epithelium (32f; invasive ductal) 2175 LongSAGE 
NA Carcinoma epithelium (ascites; mixed lobular/ductal) 2169 LongSAGE 
NA Carcinoma associated stroma (47f; IDC7) 646 LongSAGE 
NA Carcinoma epithelium (47f; gradeII; IDC7) 645 LongSAGE 

NA 
Phyllodes tumor fibroblasts (52f; malignant high grade; poorly 
differentiated) 683 LongSAGE 

NA Carcinoma epithelium (tumor) 673 LongSAGE 
NA Carcinoma (71f; bulk ductal invasive) 649 LongSAGE 
NA Carcinoma epithelium (invasive ductal) 675 LongSAGE 
NA Carcinoma (44f; bulk in situ ductal) 657 LongSAGE 
NA Carcinoma associated myofibroblast (f; invasive ductal) 676 LongSAGE 
NA Carcinoma associated myofibroblast (f; tumor) 674 LongSAGE 
NA Carcinoma associated myofibroblast (47f; grade II; IDC7) 644 LongSAGE 

NA 
Normal epithelium (22f; breast reduction; mammary epithelial 
stem cells) 2179 LongSAGE 

NA Normal myoepithelium (47f; IDC7) 647 LongSAGE 

NA 
Normal epithelium (22f; breast reduction; diff luminal epithelial 
cells) 2177 LongSAGE 

NA Normal Stroma (44f; bulk) 1943 LongSAGE 

breast 

NA Normal epithelium (22f; breast reduction) 2181 LongSAGE 
NA Carcinoma (p53 KO; Anoxia) 654 LongSAGE 
NA Carcinoma (p53 WT; Oxygen) 653 LongSAGE 
NA Carcinoma (p53 WT; Anoxia) 651 LongSAGE 

colon 

NA Carcinoma (p53 KO; Oxygen) 652 LongSAGE 
NA Adenocarcinoma (cancer) 2147 LongSAGE 
NA Dysplasia (low grade; pre-cancer) 2143 LongSAGE 
NA Normal 2103 LongSAGE 

esophagus 

NA Dysplasia (high grade; pre-cancer) 2145 LongSAGE 
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Group Stage Description Library Protocol 
NA Adenocarcinoma 2133 LongSAGE 
NA Adenocarcinoma (tubular) 2131 LongSAGE 
NA Normal (ventral wall) 2127 LongSAGE 

gall bladder 

NA Adenocarcinoma (tubular; poorly diff) 2125 LongSAGE 
lung NA Adenocarcinoma (m; poorly diff) 963 LongSAGE 

muscle NA Rhabdomyosarcoma 1923 LongSAGE 
pancreas NA Normal 643 LongSAGE 

NA Normal (central retina) 1993 LongSAGE retina 
NA Retinoblastoma (bilateral; poorly diff; left orbit) 1883 LongSAGE 
NA Monocyte normal (39m; AP_A2) 1567 LongSAGE 
NA Monocyte normal (71m; AP_P1) 1565 LongSAGE 
NA Plaque macrophage normal (71m; AP_P1) 1983 LongSAGE 
NA Monocyte normal (68f; AP_C1) 1564 LongSAGE 
NA Monocyte normal (72f; AP_P2) 1563 LongSAGE 
NA Lung macrophage normal (53m) 1987 LongSAGE 
NA Monocyte depleted mononuclear cells normal (45m; AP_A1) 1569 LongSAGE 
NA Monocyte depleted mononuclear cells normal (71m; AP_P1) 1568 LongSAGE 
NA Plaque macrophage normal (72f; AP_P2) 1985 LongSAGE 
NA Monocyte normal (45m; AP_A1) 1566 LongSAGE 

white blood 
cells 

NA Breast carcinoma (47f; IDC7) 659 LongSAGE 
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Appendix B  CGAP library subgroups 
 
For full table, see (ftp://ftp.bcgsc.ca/supplementary/ASMorrissy/Table_S4.pdf). Within 
each tissue, various experimental sub-groupings were made (E1-E9) that represented 
pairings of subsets of libraries into either A (cancerous), or B (normal). A and B are also 
used to distinguish libraries belonging to different cancer subtypes. Tag pair ratios were 
assessed between the libraries in A versus B categories, in each experimental group, for 
every tissue. 
 
 
 
 

Experimental Sub-groups Group Stage Description 
E1 E2 E3 E4 E5 E6 E7 E8 E9 

TaG2 Tumor (f) A1   A3   A5         
T4aG3 Tumor (m) A1   A4      
T1G3 Tumor (f) A1 A2   B5     
T1G3 Tumor (f) A1 A2   B5     
TaG2 Tumor (m) A1  A3  A5     

bladder 

NA Normal urothelium B1 B2 B3 B4           
Stage4 Metastatic melanoma (m) A1 A2 A3       B7     

NA Squamous cell carcinoma (f) A1 A2    A6   B9 
NA Seborrheic Keratosis (f) A1 B2  A4      
NA Seborrheic Keratosis (m) A1 B2  A4      
NA Basal cell carcinoma (m) A1 A2   A5    A9 
NA Basal cell carcinoma (f) A1 A2   A5    A9 
NA Squamous cell carcinoma (m) A1 A2    A6   B9 
NA Normal nevus (f) A1 B2  A4      

Stage4 Metastatic melanoma (f) A1 A2 A3    B7   
NA Normal nevus (m) A1 B2  A4      

Stage2 Primary melanoma (m; nonpigmented) A1 A2 A3    A7   
Stage2 Primary melanoma (m; pigmented) A1 A2 A3    A7   

NA Normal skin (f) B1 B2 B3 B4 B5 B6  A8  
9months Foreskin (m) B1 B2 B3 B4 B5 B6  B8  

skin 

NA Normal skin (m) B1 B2 B3 B4 B5 B6   A8   
NA Ovary B1                 uterus 
NA Fallopian tube A1                 
NA Peripheral blood from AML patient (m) A1 A2               
NA Peripheral blood from AML patient (m) A1 B2        
NA AML B1  A3       

bone 
marrow 

NA AML B1   B3             
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Appendix C  Sense-antisense expression ratios 
For full table, see (ftp://ftp.bcgsc.ca/supplementary/ASMorrissy/Table_S6.pdf). 
Normalized counts are shown for tags in each experimental subgroup. Tag counts are 
normalized to tags per million. In each tissue, two or more libraries were categorized as 
either M or N ( and these were used to distingiush between normal and cancerous stages, 
or also between two different cancer stages). The number of M and N libraries in each 
group are shown, and tag counts are enumerated first in the M libraries, and then in the N 
libraries. Thus, for a group with 4 M and 2 N libraries, the first four counts represent 
those of the M libraries, and the last 2 counts represent those of the N libraries. Tags 
could belong to three types of genes: those with different isoforms (ISO), to S-AS genes 
(S-AS), or to Single-AS genes (Single-AS). 
 
 

Gene id Tag sequence Tissue Subgroup M  N  Library descriptions and counts  
      TaG2 T1G3 T1G3 T4aG3 TaG2 Normal 

ENSG00000151914 GAATCAAAGAGAAAGAT bladder E1 5 1 0 8.92 0 0 0 11.8 
ENSG00000151914 TGAGGTTTTCTTTTGCT bladder E1 5 1 6.34 11.27 8.66 8.83 8.85 0 
ENSG00000114861 CTTAGTCTAAAGACTGT bladder E1 5 1 11.48 6.26 6.5 6.73 7.9 0 
ENSG00000114861 GTATGCAGAAATGTGAT bladder E1 5 1 7.32 0 0 0 6.01 11.68 
ENSG00000146416 GTGGCGTGTGCCTGTAG bladder E1 5 1 20.22 0 3.61 0 14.39 24.4 
ENSG00000146416 TGAAACTTTTCCTAGAT bladder E1 5 1 74.22 46.95 48.12 21.09 77.01 9.85 
ENSG00000152465 AGGTCAGGAGATCGAGA bladder E1 5 1 370.86 36.31 48.72 60.06 38.21 159.81 
ENSG00000152465 TCATACAGTTTGTGAAA bladder E1 5 1 4.15 0 39.22 10.49 9.08 0 
ENSG00000189223 ACTCAATAAACCATTGC bladder E1 5 1 9.51 0 27.07 0 148.01 176.76 
ENSG00000189223 ATGGCACCATATTGTGT bladder E1 5 1 7.76 0 17.2 0 0 0 
ENSG00000210082 ACACAGCAAGACGAGAA bladder E1 5 1 0 0 0 198.95 156.03 70.68 
ENSG00000210082 TGTCACTGGGCAGGCGG bladder E1 5 1 3.39 3.44 11.67 4.75 4.72 0 
ENSG00000210082 ACACAGCAAGACGAGAA bladder E1 5 1 0 0 0 198.95 156.03 70.68 
ENSG00000210082 CCTGTGTTGGGTTGACA bladder E1 5 1 8.96 3.91 32.48 13.69 11.44 0 
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Appendix D  miRNA targeting sites 
For full table, see (ftp://ftp.bcgsc.ca/supplementary/ASMorrissy/Table_S7.pdf). The 
frequency of unique miRNA targetting sites predicted by TargetScanS was assessed in all 
genes (All), in genes with differentially expressed isoforms between cancer and normal 
libraries (DE), and in the genes with isoforms with the 10% most extreme ratio changes 
(Top 10%). miRNA targetting sites with significantly enriched frequencies between the 
DE and Top 10% lists are shown (Benjamini and Hochberg corrected p-values; threshold 
of significance = 0.05). 
 
 

miR-target Top 10% DE All p-value 
miR-124.2/506 102 208 1021 1.86E-05 
miR-181 78 154 631 6.47E-05 
miR-200bc/429 71 139 536 9.06E-05 
miR-224 38 62 218 9.06E-05 
miR-15/16/195/424/497 60 114 628 1.12E-04 
miR-128 61 118 610 1.68E-04 
miR-19 65 129 629 2.15E-04 
miR-377 39 69 260 5.27E-04 
miR-495 62 125 543 5.27E-04 
miR-203.1 50 96 422 6.01E-04 
miR-17-5p/20/93.mr/106/519.d 58 117 645 7.60E-04 
miR-93.hd/291-
3p/294/295/302/372/373/520 40 73 411 7.60E-04 
miR-141/200a 48 93 402 8.59E-04 
miR-205 32 55 255 8.59E-04 
miR-330 51 101 395 9.90E-04 
miR-27 65 137 714 1.11E-03 
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Appendix E  Functional annotation of known and novel SAS genes expressed in 
LCLs.  

Functional annotations for (A) known SAS, (B) novel SAS genes, and (C) non SAS 
genes shows significantly enriched Gene Ontology terms and UniProt Keywords. 

A 

Category Term Gene 
Count 

Fold 
Enrichment p-value 

4,792 Known SAS genes 
cellular protein metabolic process 601 12.9 1.70E-04 
regulation of small GTPase mediated signal 
transduction 87 1.9 2.10E-03 
protein modification process 379 8.1 3.30E-03 
RNA metabolic process 254 5.4 8.60E-03 

GO 
Biological 
Process 

intracellular signaling cascade 328 7 9.50E-03 
cytoplasm 1797 38.5 4.40E-12 
cytoplasmic part 1198 25.7 2.80E-05 
intracellular membrane-bounded organelle 1874 40.1 7.60E-05 
intracellular organelle 2086 44.7 9.10E-05 
Golgi apparatus 249 5.3 2.30E-04 

GO 
Cellular 
Component 

DNA-directed RNA polymerase II, holoenzyme 36 0.8 1.50E-03 
Ras guanyl-nucleotide exchange factor activity 38 0.8 7.20E-03 
protein kinase activity 174 3.7 7.60E-03 

GO 
Molecular 
Function adenyl ribonucleotide binding 386 8.3 6.70E-03 

alternative splicing 2037 43.6 3.70E-44 
phosphoprotein 1846 39.5 6.60E-19 
cytoplasm 875 18.7 3.70E-09 
coiled coil 551 11.8 1.20E-07 
guanine-nucleotide releasing factor 51 1.1 1.70E-04 
tpr repeat 60 1.3 1.30E-03 
golgi apparatus 172 3.7 1.90E-03 

UniProt 
Keywo`rds 

atp-binding 348 7.5 5.40E-03 
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B 

Category Term Gene 
Count 

Fold 
Enrichment p-value 

7,648 Novel SAS genes 
negative regulation of gene expression 271 3.5 5.70E-06 
negative regulation of cellular metabolic process 370 4.8 3.90E-06 
negative regulation of transcription 248 3.2 5.60E-06 
negative regulation of macromolecule metabolic 
process 373 4.9 8.90E-06 
negative regulation of biosynthetic process 299 3.9 9.20E-06 
negative regulation of macromolecule biosynthetic 
process 287 3.8 7.80E-06 
negative regulation of cellular biosynthetic process 293 3.8 8.30E-06 
negative regulation of nucleobase, nucleoside, 
nucleotide and nucleic acid metabolic process 269 3.5 1.50E-05 
negative regulation of nitrogen compound metabolic 
process 271 3.5 2.40E-05 
regulation of protein metabolic process 283 3.7 2.60E-05 
cellular protein metabolic process 1070 14 4.00E-05 
negative regulation of RNA metabolic process 196 2.6 5.40E-05 
negative regulation of transcription, DNA-dependent 193 2.5 5.50E-05 
regulation of cellular protein metabolic process 245 3.2 2.00E-04 
neurogenesis 302 3.9 2.50E-04 
regulation of signal transduction 425 5.6 2.80E-04 
positive regulation of cell differentiation 129 1.7 4.00E-04 
generation of neurons 281 3.7 5.00E-04 
regulation of cell development 117 1.5 4.80E-04 
regulation of neurogenesis 95 1.2 3.70E-03 
regulation of cellular carbohydrate metabolic process 29 0.4 6.10E-03 
negative regulation of programmed cell death 184 2.4 6.30E-03 
embryonic limb morphogenesis 55 0.7 6.50E-03 
embryonic appendage morphogenesis 55 0.7 6.50E-03 
regulation of programmed cell death 385 5 6.60E-03 
limb morphogenesis 61 0.8 6.50E-03 
negative regulation of cell death 184 2.4 6.50E-03 
regulation of apoptosis 381 5 6.80E-03 
posttranscriptional regulation of gene expression 115 1.5 6.60E-03 
positive regulation of cellular carbohydrate metabolic 
process 18 0.2 7.20E-03 
positive regulation of carbohydrate metabolic process 18 0.2 7.20E-03 
positive regulation of RNA metabolic process 238 3.1 7.10E-03 
positive regulation of transcription, DNA-dependent 236 3.1 7.40E-03 
regulation of carbohydrate metabolic process 29 0.4 8.70E-03 
negative regulation of apoptosis 180 2.4 8.90E-03 
regulation of neuron differentiation 77 1 8.70E-03 
organ morphogenesis 274 3.6 8.50E-03 
positive regulation of cellular metabolic process 412 5.4 9.30E-03 

GO 
Biological 
Process 

protein modification process 658 8.6 9.60E-03 
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Category Term Gene 
Count 

Fold 
Enrichment p-value 

7,648 Novel SAS genes 
cytoplasm 3273 42.8 3.50E-29 
cytoplasmic part 2226 29.1 1.30E-19 
intracellular organelle 3860 50.5 3.90E-19 
intracellular membrane-bounded organelle 3465 45.3 9.90E-19 
cytosol 692 9 1.10E-18 
intracellular organelle part 1885 24.6 5.00E-11 
nuclear part 845 11 3.30E-07 
nucleus 2196 28.7 4.10E-07 
intracellular organelle lumen 811 10.6 2.20E-05 
nuclear lumen 665 8.7 1.10E-04 
organelle envelope 305 4 1.40E-04 
nuclear envelope 115 1.5 2.50E-04 
Golgi apparatus 411 5.4 5.20E-04 
nucleoplasm 415 5.4 5.40E-04 
intracellular non-membrane-bounded organelle 1131 14.8 1.70E-03 
Golgi apparatus part 152 2 2.10E-03 
nuclear membrane 46 0.6 6.40E-03 

GO 
Cellular 
Component 

nuclear body 91 1.2 9.90E-03 

GO 
Molecular 
Function 

adenyl ribonucleotide binding 707 9.2 7.50E-08 
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Category Term Gene 
Count 

Fold 
Enrichment p-value 

7,648 Novel SAS genes 
phosphoprotein 3445 45 5.40E-94 
acetylation 1339 17.5 1.80E-44 
alternative splicing 3319 43.4 1.20E-44 
cytoplasm 1512 19.8 8.60E-20 
nucleotide-binding 806 10.5 7.00E-16 
atp-binding 641 8.4 3.50E-13 
nucleus 1830 23.9 7.70E-11 
metal-binding 1296 16.9 1.10E-09 
chromosomal rearrangement 158 2.1 4.00E-08 
ubl conjugation 297 3.9 4.40E-08 
activator 266 3.5 7.20E-08 
kinase 336 4.4 3.40E-07 
Transcription 901 11.8 3.50E-06 
transcription regulation 880 11.5 6.60E-06 
zinc 944 12.3 9.50E-06 
zinc-finger 752 9.8 1.50E-05 
repressor 217 2.8 2.20E-05 
rna-binding 262 3.4 2.50E-05 
host-virus interaction 150 2 2.90E-05 
protein biosynthesis 105 1.4 4.80E-05 
neurogenesis 85 1.1 5.80E-05 
isopeptide bond 163 2.1 8.70E-05 
cytoskeleton 299 3.9 9.80E-05 
transferase 611 8 1.20E-04 
sh3 domain 113 1.5 1.60E-04 
transport 720 9.4 2.20E-04 
Proto-oncogene 121 1.6 2.80E-04 
disease mutation 686 9 3.30E-04 
ATP 123 1.6 3.90E-04 
magnesium 211 2.8 7.70E-04 
ligase 152 2 7.80E-04 
coiled coil 853 11.2 7.50E-04 
golgi apparatus 272 3.6 8.80E-04 
endoplasmic reticulum 324 4.2 8.70E-04 
developmental protein 351 4.6 9.10E-04 
Endocytosis 57 0.7 1.10E-03 
calmodulin-binding 68 0.9 1.40E-03 
ubl conjugation pathway 236 3.1 2.20E-03 
mrna processing 129 1.7 3.30E-03 
Apoptosis 180 2.4 4.60E-03 
ribosome 44 0.6 5.40E-03 
ribonucleoprotein 136 1.8 5.50E-03 
phosphotransferase 102 1.3 5.70E-03 
mrna splicing 105 1.4 7.30E-03 

UniProt 
Keywords 

tyrosine-protein kinase 61 0.8 8.90E-03 
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C 

Category Term Gene 
Count 

Fold 
Enrichment p-value 

7,137 Non SAS genes 
defense response to bacterium 75 1.1 2.70E-11 GO 

Biological 
Process chemotaxis 82 1.1 1.30E-04 

chemokine activity 35 0.5 1.10E-06 
chemokine receptor binding 36 0.5 1.50E-06 

GO 
Molecular 
Function serine-type endopeptidase inhibitor activity 52 0.7 1.30E-04 

Secreted 809 11.3 1.30E-43 
signal 1359 19 1.80E-36 
Antimicrobial 57 0.8 1.70E-13 
antibiotic 55 0.8 2.30E-13 
cytokine 107 1.5 2.20E-11 
defensin 36 0.5 6.60E-11 
disulfide bond 1101 15.4 1.10E-10 
hormone 59 0.8 3.40E-09 
protease inhibitor 64 0.9 8.20E-07 
cleavage on pair of basic residues 132 1.8 1.00E-06 
chemotaxis 45 0.6 2.70E-05 
inflammatory response 46 0.6 1.10E-04 
Lectin 80 1.1 1.60E-04 
Serine protease inhibitor 46 0.6 3.90E-04 
Intermediate filament 45 0.6 4.20E-04 
immune response 104 1.5 4.00E-04 
plasma 50 0.7 1.40E-03 
neuropeptide 24 0.3 2.10E-03 
inflammation 19 0.3 2.20E-03 
Monooxygenase 43 0.6 2.30E-03 
amidation 28 0.4 2.40E-03 

UniProt 
Keywords 

fungicide 11 0.2 3.60E-03 

 

 


