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Abstract

Living cells are composed of a variety of biological macromolecules such as nu-

cleic acid, metabolites, proteins and cytoskeletal filaments as well as other parti-

cles. The fraction of the cellular interior volume that is taken by these biomolecules

is about 30%, leading to a highly crowded environment. Biomolecules present in

an extremely dense environment inside a cell have a completely different set of

kinetic and thermodynamic behavior than in a test tube [1–5]. Therefore com-

prehending the effect of crowding conditions on biologicalmolecules is crucial to

broad research fields such as biochemical, medical and pharmaceutical sciences.

Experimentally, we are able to mimic such crowded environments; which are of

more physiological relevance, by adding high concentrations of synthetic macro-

molecules into uncrowded buffers.

Theoretically, very little attention has been paid to the effects of the dense cel-

lular cytoplasm on biological reactions. The purpose of this work is to investigate

analytically the effects of crowding agents on protein folding and stability. We

present a new parameter as the measure of the polymer size, which will substitute

the traditional measurements of the radius of gyration of the polymer,RG, and the

end to end distance of a polymeric chain,Rete. Using this quantity we derive an

expression for the free energy of the polymer which can easily be generalized to

provide the free energy of a protein. This mechanism enablesus to study the ef-

fect of crowding on folding and stability of a protein. The stabilization effects of

the crowding particles depend on the concentration and the size of the crowders

and also the type of the crowding particles that are present in the system. In our

calculations the type of the crowders is controlled by the parameterεpo, that is the

energetic parameter between the protein and surrounding macromolecules.

ii



Preface

A version of chapter 4 and 5 is in preparation for publication. S. Hadizadeh and

A. Linhananta and S. S. Plotkin, Physical Review E, 2010 ([6]). I conducted all

the calculations, produced all the plots. The manuscript was written by me and Dr.

Steven Plotkin.

Chapter 6 is based on our study on the simulations of the effect of osmolytes

on protein folding which has been submitted for publication. A. Linhananta and S.

Hadizadeh and S. S. Plotkin, Biophys. J., 2010 ([7]). The manuscript was origi-

nally drafted by Apichart Linhananta and Dr. Steven Plotkin. Although the theory

and simulations of this work have been progressing in parallel, my contribution to

this manuscript is primarily in the general discussions about the choice of the prob-

lems that need to be simulated and the initial design of the simulation in order to

have a reasonable harmony between my theoretical calculations and Dr. Apichart

Linhananta’s simulations, and I also wrote parts of the text. Initially there was

a theory section in the manuscript with a few of my results forcomparison, but

we decided to move that section into the second manuscript ([6]) to present these

two aspects of the problem (theory and simulations) separately. Therefore most of

the plots that are currently presented in chapter 6 are produced by Dr. Apichart

Linhananta and Dr. Steven Plotkin.
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Chapter 1

Introduction

Sit down before fact like a little child, and be prepared to give up
every preconceived notion. Follow humbly wherever and to whatever

abyss Nature leads, or you shall learn nothing. — Thomas Huxley
(1860)

The main property of the intercellular medium is to sustain aliquid milieu for

macromolecules to assemble and function properly. Water isthe main constituent

of this environment and lack of it, or dehydration, is the major habitat stress. There

are two important factors that cause dehydration stresses:evaporation of internal

water and osmosis into crowded aquatic environment. Osmotic dehydration hap-

pens mostly in saline waters, for example in the oceans whichare the earth’s largest

habitat, or as a result of the diseases that produce high osmotic concentrations, for

instance elevated blood glucose in diabetes, or in case of freezing.

When a mobile organism is threatened with dehydration, it will look for a new

environment. But if the organism cannot move, it may choose one of the following

responses (figure 1.1). (a) the endangered cell may shrink passively and conse-

quently suffer from inhibited metabolic reactions and growth rates, and even death

in case of severe shrinkage. (b) normally in a multicellularorganism, each cell can

sustain its own volume by accommodating organic particles.Organisms that use

this treatment are called osmoconformers and range from single-celled archaea to

some tissues of mammals. (c) also a multicellular organism called osmoregulator,

can employ special organs such as kidney to compensate for changes in internal os-
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motic pressure. Even in osmoregulators, the organ that is responsible for osmotic

regulation should itself survive high osmotic pressure. Biologists used to think of

mammals as osmoregulators, however it became evident laterthat their renal cells

are exemplary osmoconformers. Osmoconformers are very important for survival,

because even in extremely dehydrating conditions when mammalian osmoregula-

tors fail to function properly, the cells in other organs such as brain and heart will

use osmoconformers.

Figure 1.1: Three possible responses of organisms to osmotic dehydration.

The folding of a protein into its proper 3-D native structure, the assembly of

complexes containing several macromolecules and macromolecular reactions are

determined not only by the macromolecules’ amino acid sequence, but also by

the surrounding particles and solutes [8, 9]. There are a variety of small organic

molecules that enable the cell to overcome various physicalstresses by accumu-

lating to high concentrations inside cells to protect it against stressing conditions

while not perturbing the macromolecule’s function [10]. These molecules that sta-

bilize proteins from unfolding under high temperatures, desiccation, or chemical

denaturants such as urea are called osmolytes [11].
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Organic osmolytes fall into four major chemical categories:

• small carbohydrates including sugars (e.g. trehalose), polyols (glycerol, in-

ositols, sorbitol, etc.) and derivatives (such aso-methyl-inositol)

• amino acids (glycine, proline, taurine, etc.) and derivatives (e.g. ectoine)

• methylamines (such as TMAO (Trimethylamine N-oxide) and glycine be-

taine) and methylsulfonium solutes including dimethylsulfonopropionate (DMSP)

• urea

We have calculated the molecular volume of a few osmolytes using mol-volume

software1 in Table 1.1. With an exception of urea which is found only in few

types of animals’ organs, other categories of osmolytes arewidespread in nature.

For example, glycine betaine occurs in every realm of life, and taurine is used

vastly by marine animals and some mammalian organs. Carbohydrate osmolytes

are found in archaea, fungi, algae, plants and mammalian kidneys, and possibly

deep-sea invertebrates. Organs that tolerate or avoid freezing, such as terrestrial

plants, insects, amphibians and some polar fishes usually use sugars and polyols.

Moreover, there are many organs that use combinations of osmolyte categories,

for instance, the mammalian kidney uses the polyols myo-inositol and sorbitol,

the methylamines glycerophosphorylcholine (GPC) and glycine betaine, and the

amino acid taurine (the organ also has high urea as both a waste product and an

osmotic agent to concentrate the urine).

Biologists had noticed that when they isolate a biologically active substance

such as an enzyme out of a cell, they have to add a high concentration of sucrose

or glycerol to the system to maintain the stabilization of the activity. On the other

hand, for isolated enzymes and proteins, biochemists have used high concentra-

tions of salts, most commonly ammonium sulfate, to keep the proteins functional

(basic solutes found in most cells have osmotic concentration of about 300−400

1mol-volume software is a program for calculating the macromolecular volume by Alexander
Balaeff. The Theoretical Biophysics Group, Beckman Institute, and The Board of Trustees of the
University of Illinois
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Table 1.1: The volume of a few osmolytes in units ofÅ3.
osmolyte volume

Urea 42.85
Betaine 108.80
Sorbitol 137.25
Taurine 84.78
Glycine 57.07
Glycerol 73.41
TMAO 67.12

milliosmoles per liter). This process is called “salting-out” [8]. In a similar manner,

researchers have known that adding concentrated urea or guanidine hydrochloride

(GuaHCl) to the medium leads to the denaturation of proteins(enzymes), that is

the loss of proteins’ biochemical activity by an uncoiling of their native structure.

The effects of salts on protein’s activity and stabilization can be explained in

terms of two opposing phenomena: (a) salting-in, that is at low salt concentrations

the protein solubility increases because of the Debye-Huckel electric field screen-

ing2 [12], and (b) salting-out at higher salt concentrations. Inthe latter process, the

log of protein solubility depends linearly on the ionic strength with the slopeKs

which is called the salting-out constant.

On the other hand, researchers have observed that denaturants such as urea

and GuaHCl, cause a protein to unfold by the direct interaction (binding) to the

protein molecules [13]. Tanford has done an extensive studyon the thermodynamic

mechanism of protein unfolding in the presence of urea or GuaHCl [14, 15]. He

showed that the unfolding process can be explained in terms of the changes in the

free energy of the native and denatured proteins when transferring from water to

a denaturant solution. These changes include the free energy of interaction of the

denaturants with protein groups that become exposed to solvent upon unfolding.

Finally, the process of protein stabilization by compoundssuch as sucrose and

glycerol, has been the focus of interest in many fields. Scientists used to believe

that these substances protect the protein from unfolding byforming a shell around

2The Debye-Huckel states that the ions in an electrolyte havea screening effect on the electric
field from individual ions. The screening length is called the Debye length and varies as the inverse
square root of the ionic strength.
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the protein, however there was no experimental evidence forit. Around three

decades ago, with studies of both sucrose [16] and glycerol [17] it became clear

that in the process of protein stabilization by some crowding particles, the opposite

happens. That is, in fact these compounds are excluded from the immediate zone

of protein in an environment enriched in water.

These three discussed phenomena may appear unrelated at first, however; more

detailed studies revealed that they share one basic fact. The solvent denaturation,

native protein stabilization, and precipitation or salting-out process, all happen in

the presence of high concentrations of the added compound. We can conclude

that the dominant interactions in these processes can neither be strong nor spe-

cific, and in fact they should be categorized into the realm ofweakly interacting

systems. Systematic studies of interactions between soluble native proteins and

molecules that stabilize their structure, have shown that the three processes can be

formulated into the three-component thermodynamic theory, with water being the

third constituent [18–20]. What happens in all these processes is that the structure-

stabilizing, precipitating, and self-assembly-inducingagents cause the protein to be

preferentially hydrated by being preferentially excludedfrom the protein domain

[21–23]. Denaturants such as urea act in the opposite way, that is they are preferen-

tially bound to proteins [24–26]. Both protein stabilizersand denaturants belong to

a single class of molecules that affect the stabilization ofproteins and ranges from

strong enhancers of the protein’s native structure to strong protein unfolders. In

the same manner, the way an agent affects solubility dependsonly on the balance

between the affinities of the protein for water and the added agent. In the former

case, the protein has strong preference for water and in the latter case, for cosol-

vent. Therefore, in this kind of approach these various processes follow unified

underlying principles and can be brought under one umbrellaby using preferential

interactions. These principles have been vastly employed by nature to protect life

from freezing or osmotic shock. Amazingly, a small number ofosmolyte types

suffice to supply such important purposes that certain microorganisms, frogs, and

desert plants have used to protect themselves from extinction.

Thermodynamic principles that govern all of these phenomena are based on

three related parameters and their changes during the course of a reaction. These

parameters are:
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1. The transfer free energy of the protein,∆µ2,tr, which is the change in the free

energy of the protein when transferred from pure water to thecosolvent solution.

∆µ2,tr = µ2(cosolvent)−µ2(water) (1.1)

whereµi = µ0
i (P,T )+ RT lnai is the chemical potential of theith component with

ai being the activity of componenti. Moreover,ai = miγi, wheremi is the molal

concentration andγi is the activity coefficient of componenti. The index 2 refers to

protein in the Scatchard notation of solution components3, and water and cosolvent

are indicated as components 1 and 3 respectively [27].

2. The preferential interaction parameter,(∂ µ2/∂m3)T,P,m2
= (∂ µ3/∂m2)T,P,m3

,

which is the changes in the transfer free energy with cosolvent concentration, and

provides a measure of the thermodynamic interactions. Thus,

∆µ2,tr =

(

∫ m3

0

∂ µ2

∂m3

)

T,P,m2

dm3 (1.2)

3. The preferential binding parameter,(∂m3/∂m2)T,P,µ3
. This is a measure of the

amount of osmolytes that needs to be added to (or removed from) the solvent to

restore thermodynamic equilibrium after we add the proteinto the system.

(

∂m3

∂m2

)

T,P,µ3

= −
(∂ µ2/∂m3)T,P,m2

(∂ µ3/∂m3)T,P,m2

(1.3)

There are two main categories of osmolytes. In the first category, the prefer-

ential exclusion is caused by factors that are not dependenton the chemical nature

of protein surface. That is, there is no interaction betweenosmolytes and protein

and the protein only presents a surface to osmolytes. In the second category, on the

other hand, the preferential exclusion is brought forth by factors that are sensitive

to the chemical nature of the protein surface. In this case, the osmolytes can dis-

tinguish particular chemical features of the protein surface that they are interacting

with, either by attraction or repulsion. The first category is ruled by two principal

constituents, steric exclusion and perturbation of the surface free energy of water

by osmolytes. Steric exclusion which was first introduced byKauzmann [13], is

3Scatchard notation is named after George Scatchard, an American chemist.
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the result of the difference in size of the osmolyte and watermolecules. When a

large osmolyte molecule is in contact with the protein, a shell is formed around the

protein which cannot be further penetrated by the osmolytes, but in principle can

be occupied by the smaller (water) molecules. This results in excess water around

the protein surface which is thermodynamically interpreted as preferential hydra-

tion [28, 29]. Moreover, the protein is separated from the solvent by an interface,

and changes to protein conformation cause perturbation in the surface tension or

the surface free energy of water. Gibbs has shown that changes in the surface ten-

sion must cause changes in the concentration of osmolytes inthe protein-solvent

interface [30]. The Gibbs Adsorption Isotherm is:

(

∂m3

∂m2

)(σ)

T,P,µ3

= − S2

RT

(

∂σ
∂ lna3

)

T,P,m2

(1.4)

whereS2 is the surface of the protein andσ is the surface tension. It can be pointed

out from equation (1.4) that the increase in the surface tension of water by an os-

molyte leads to its depletion from the surface layer. Sugars, nonhydrophobic amino

acids, and most salts belong to the class of osmolytes that increase the surface ten-

sion of water and therefore their concentration in the interface is less than that in

the bulk solvent. This is translated to preferential hydration, which means that the

chemical potential perturbation is positive. The surface tension at the transition

temperature at any cosolvent concentration,σ m3
Tm

, is given by:

σ m3
Tm

= σ0
Tm

+

(

dσ
dm3

)

m3+

(

dσ
dT

)

∆Tm (1.5)

whereσ0
Tm

is the surface tension at the transition temperature in water and∆Tm is the

difference between the transition temperatures of a solvent containing osmolytes

with concentrationm3 and in pure water. It is known that the surface tension of

water decreases as temperature increases. The experimental studies show that at

transition temperature,Tm, the changes in surface tension caused by the presence

of osmolytes are compensated by the changes that are caused by the temperature

increase from transition temperature in water to transition temperature in a solution

with sugar. In this caseσTm remains constant which means that when the interaction

between the protein and the osmolyte is dominated by the preferential exclusion
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resulting from nonspecific solvent properties, transitionoccurs at a constant surface

free energy.

In the second category of preferential exclusion, the chemical nature of the

protein surface plays a major role in determining the interactions. In this case, the

exclusion is dominantly driven by the solvophobic effect, which causes preferen-

tial hydration in case of glycerol [17] and polyols [31]. Thestructure of the poly-

ols allows them to form the proper hydrogen bonds that fortify water interactions

[32]. As a result, the nonpolar residues of the proteins haveless tendency to form

contacts with the polyol solution in comparison to that withwater and therefore,

polyol molecules are pushed away from the surface of the protein. An interesting

agent in the second category is MPD (2-methyl-2,4-pentanediol which is the most

popular chemical additive used for crystallization of biological macromolecules),

which is strongly involved in electrostatic interactions [33] and moves away from

the densely charged protein surface. Consequently, MPD causes high value of the

preferential hydration and therefore is considered a good precipitant. This explains

the high efficiency of MPD in protein-crystallizing4 [34].

This analysis of preferential hydration enables us to explain the reasons for a

class of preferentially excluded osmolytes to act as stabilizers of the native proteins

whereas others are destabilizers. In case of a totally nonspecific source of prefer-

ential exclusion, the unfolding process will be only affected by an increase in the

interface which is the depletion zone, that results in an increase in the unfavorable

free energy of interaction. This is the case for sucrose where for the native protein

∆µ2,tr increases linearly with sugar concentration. The stabilizing effects of glyc-

erol and polyols can be explained in a more or less similar manner. In this case, the

interaction between nonpolar residues of the protein and the agents is unfavorable

and since the number of these unfavorable sites on the protein increases as it un-

folds, the preferential hydration increases as well. This results in the stabilization

of the native protein.

MPD however, has an opposite situation. Its interaction with charges is repul-

4Proteins, can be prompted to form crystals when placed in theappropriate conditions. In order to
crystallize a protein, the purified protein undergoes slow precipitation from an aqueous solution. As
a result, individual protein molecules align themselves ina repeating series of unit cells by adopting a
consistent orientation. The crystalline lattice that forms is held together by noncovalent interactions.
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sive while there is a strong attraction between nonpolar residues on proteins and

MPD [35]. The surface charge density of the unfolded proteinis less than that

of the native protein, and therefore when the protein unfolds, MPD has a chance

to interact favorably with newly exposed nonpolar residues, stabilize the unfolded

structure. On the other hand, PEG (Polyethylene glycol) is both excluded non-

specifically from native proteins [28, 36, 37], and is strongly nonpolar [38]. But

since both MPD and PEG are strongly excluded from the native protein, they are

excellent precipitants [36] and protein crystallizers [39, 40].

The non-specific steric repulsion, also known as excluded volume effect, is

always present in cells. As R. John Ellis pointed out: “Crowding is similar to

gravity, it cannot be avoided and organisms have to cope withits consequences”.

Despite the fact that molecular crowding can in principle affect any biochemical

process that is associated with major reduction in excludedvolume, biochemists

commonly investigate the properties of proteins in solutions with concentration of

110 g/liter or less, in which crowding effects are insignificant. The kinetic and ther-

modynamic effects of crowding are so important that many calculations of folding

rates and stability done under uncrowded conditions of the test tube are different

from those under crowded conditions in cellular environments by orders of mag-

nitude. There are numerous experimental studies with biological applications that

indicate the diversity and magnitude of the effect of osmolytes [41–47].

Experimental measurements of protein folding rates and equilibria are mostly

done under idealized conditions where the effects of nonspecific interactions be-

tween the protein under study and other macromolecular particles present inside the

cell are minimized. However; the ideal dilute solution is different from biological

media in both the high concentration that a single macromolecule may have and in

the variety of crowder species that exist in the solvent bath. For instance the con-

centration of RNA plus protein inside the cytoplasm ofE-coli is 340 g/liter [48].

Biologically this medium is referred to as crowded. Moreover, there usually ex-

ist some structural macromolecules such as microtubules, intermediate filaments,

membranous boundaries and F-actin that are soluble and are treated as background

particle because they have no direct participation in biologically relevant reactions.

A general description of protecting and denaturing (urea) osmolytes has been

proposed by Bolen [49], by developing Tanford’s transfer model [14] to account
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for both protein side-chains and backbone. Essentially thesame thermodynamic

cycle approach has been applied to theories of protein stabilization due to macro-

molecular crowding agents [50, 51], which focus on the excluded volume (en-

tropic) aspects of the transfer process. In fact, the physical origins of protein or

polymer stabilization by steric osmolytes or crowders are essentially the same as

those leading to phase separation in colloidal suspensionsdue to the addition of a

non-adsorbing polymer for example [52–54]. We hope in this work to unify some

of the concepts that have developed in parallel in the fields of osmolytes, crowding,

and colloidal systems.

Bolen’s approach results in a solvent quality paradigm which classifies solvents

as good or poor. In a poor solvent (solvophobic), protein intramolecular interac-

tions dominate, which favors a compact folded native state that minimizes solvent

exposed protein surface area. In a good solvent (solvophilic), protein-solvent inter-

actions dominate, which favors an unfolded state that maximizes protein-solvent

contacts. At the middle of the solvent quality scale is the neutral solvent that fa-

vors neither native nor unfolded states. Water is a poor solvent for proteins since

the effective water-protein interactions lead to the hydrophobic effects, one of the

major forces that fold proteins. Aqueous osmolytes and aqueous urea solution are

poor and good solvents, respectively. The solvent quality paradigm has led to sev-

eral molecular free energy transfer models, which are phenomenological models

that utilize as input, experimentally measured change in free energy of proteins on

transfer from pure water to aqueous osmolyte/urea solutions [55, 56]. A recent

study combines protein conformations from simulation dataof Go model with ex-

perimentally measured transfer free energy to infer the thermodynamic properties

of proteins in solutions of osmolytes and urea [57]. The study predicts that solution

of osmolyte and urea raises and lowers, respectively, the folding temperatures of

the proteins. Since free energy transfer models utilize experimental data, the pre-

dicted enthalpy change due to osmolyte/urea should be accurate. However, the free

energy transfer model does not take into account the size of solvents, and may lead

to an incomplete description of the changes in protein conformational entropy due

to solvents. Excluded volume due to solvents can reduce the amount of accessible

protein conformations, changing an unstructured unfoldedprotein state to a more

compact native-like unfolded state, as observed in severalexperiments [58–60]. In
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addition, the binding of solvent to protein depends on the size of water, osmolytes

and urea, and therefore the solvent size must be included in theoretical calculations

and MD simulations to fully assess the enthalpy change due tosolvents.

In chapter 2, we review a few biological applications of volume exclusion ef-

fects to indicate the diversity and magnitude of the effect of osmolytes. It is evident

from the observations reported in this section that macromolecular crowdingin vivo

has effects on many different aspects of cellular function.The fact that biological

macromolecules are evolutionary being adapted to functionin such crowded en-

vironments, brings up a few biologically important questions: Why do cells have

such a highly crowded interior? Is there any advantage in being crowded?

In chapter 3, we briefly review previous approaches to the problem of crowd-

ing. In particular we will discuss the contributions of Takadaet al. [61, 62], Zhou

[63], Bolen [56, 64, 65] and Minton [66] to settling different aspects of this prob-

lem. In the following chapters, we explain how our analytical method could con-

tribute to further unraveling of polymer collapse and protein folding in dense sys-

tems. Takadaet al. have shown that for a fixed packing fraction of osmolytes,

small osmolytes have stronger stabilization effect than larger osmolytes, and as we

will see our theoretical and simulation studies confirm thisresult. However, what

is missing in their approaches is a model for the internal structure of the protein,

that is, the protein as a whole is considered to be either in folded state (N) or in

unfolded state (D), and the model is not flexible to the changes in the energetic

parameters between residues. In our theoretical model by changing the energetic

parameters of the primary, secondary and tertiary structure of the protein one can

attain a more detailed description of a specific protein. Moreover, the model allows

us to change the size of the protein residues. Another advantage of our theoreti-

cal work is that the protein can take any conformation that isconsistent with the

existing constraint in the system, and there is no need to be restricted to only two

possible states of the protein (N andD).

The interaction parameter between osmolytes and the protein is taken to be

zero in Takada’s approach and therefore osmolytes are merely interacting with the

protein via a hard-sphere potential, whereas in our model a general description of

protecting and denaturing (urea) osmolytes has been provided by changing the in-

teraction energy between the polymer and the osmolytes fromnegative to positive
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values. Essentially the same thermodynamic approach can beapplied to theories of

protein stabilization due to macromolecular protecting crowding agents [50, 51],

and protein destabilization due to the present of denaturants. Therefore, our model

enables us to unify the effects of protecting osmolytes and denaturants in the same

theoretical scheme. One of the natural extensions of our theory is investigating the

role of depletion interaction in aggregation resulted fromprotein-protein interac-

tions and signal transduction. This effect has been partially studied in Takada’s

model by changing the interaction parameter between two unfolded proteins to

model protein aggregation.

The advantage of our theoretical framework to Zhou’s modelsis that again the

protein has no internal structure in his approach, that is, the protein as a whole is

considered to be either a globular object or a chain whereas our model has more

details about the structure of the protein. Moreover, in Zhou’s approach one cannot

change the concentration of the protein in the system, and inour model we intro-

duce a few characteristics of the protein (number of residues and the size of each

residue) that the change in any of those results in the changein protein concentra-

tion. However; the result of Zhou’s calculations which shows an increase in the

folded state stability as the packing fraction of osmolytesincreases is in qualitative

agreement with our results.

The purpose of this work is to find a theoretical framework to investigate the

effects of osmolytes on protein folding and stability. In the chapter 4, we introduce

a new parameter that is more adequate as the size of a polymer chain, instead of

the old notions of the linear dimension of a chain, the radiusof gyration of the

polymer, RG, and the end to end distance of a polymeric chain,Rete. In terms

of this new parameter, we find an expression for the free energy of the polymer

which enables us to investigate the thermodynamics and kinetics of the effect of

osmolytes on its collapse. In chapter 5, we derive the free energy of a protein by

introducing energetic parameters for primary, secondary and tertiary structure of

the protein and using the same algorithm as in the case of polymers we study the

effect of crowding on protein’s folding and stability. Furthermore, we show that

this effect is a function of the concentration and the size ofthe crowding agents as

well as the type of the crowding particles that are present inthe system. The latter

case is accounted for by the parameterεpo which is the interaction energy between
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the protein and surrounding osmolytes.

In chapter 6, we discuss the discontinuous molecular dynamics (DMD) simula-

tions of an all-atomGo model Trp-cage protein (PDB 1L2Y) immersed in explicit

solvent molecules to investigate how osmolytes or urea stabilize or destabilize pro-

teins [7]. The Trp-cage DMD model is immersed in spherical solvent molecules,

in which binding of solvent to protein is controlled by a solvent-protein contact

energy,ε∗
ps. Protein stabilization or destabilization in the solvent model used here

arises from a change in solvent-protein interactions whichimplicitly accounts for

the presence of osmolytes or denaturants.
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Chapter 2

Biological Motivations

In a closed system and in the presence of obstacles a polymer chain will contract.

Sasaharaet al. [67], Tokuriki et al. [68], Baumgartner and Muthukumar [69],

Honeycutt and Thirumalai [70], Dayantiset al. [71] have reported direct evidence

of the compaction of the unfolded protein by crowding. At high concentrations of

crowding macromolecules, the unoccupied interstitial spaces become too small to

accommodate the globular native protein which is modeled asa hard sphere. On

the other hand, the unfolded protein which can be modeled as aGaussian chain is

flexible in changing its conformation and therefore can be partially accommodated

in narrow spaces. This causes different restrictions on thefolded and unfolded

protein by crowding agents. Therefore, the native protein is forced to maintain

its native structure and remain functional. This phenomenon has vast biological

applications.

In this section, we review a few biological applications of volume exclusion

effects to indicate the diversity and magnitude of the effect of osmolytes. The goal

is to encourage researchers to bear in mind the crowding effects when modeling

the protein functions inside living cells.

2.1 Reverse Proteolysis

Proteolysis is the digestion of proteins by specific enzymescalled proteases and it

happens inside living cells for different purposes, such asdigesting of proteins in
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foods to produce amino acids, removing the signal peptides after their transport and

removing the N-terminal methionine residues after translation. Proteases used to be

thought of as critical elements in progression of catabolicreactionsin vivo, but it is

shown [41] that in the presence of crowding agents, subunitsthat build the protein

are converted to the native protein. This shift of the peptide bond equilibrium is

due to the fact that although the energetic barrier of ionization of the carboxyl is

lowered by osmolytes, but the entropic barrier is higher since the reacting ends are

brought closer to each other and the net difference in free energy increases which

means that volume exclusion effect plays the role of a driving force in reverse

proteolysis.

Somalinga and Roy have studied the (V8) protease-catalyzedsyntheses of three

20-residue peptides [41]. The organic co-solvents that areusually used in pro-

tein and osmolyte mixture experiments are dextran and PEG (polyethylene glycol).

Dextran is a complex polysaccharide composed of several glucose molecules. Dex-

tran can be synthesized in different lengths (from 10 to 150 kilodaltons) and usu-

ally is used as an antithrombotic to reduce blood viscosity.PEG, on the other hand

is an oligomer or polymer of ethylene oxide in liquid or low-melting solid state

depending on its molecular weight and is usually consideredto have a molecular

mass below 20000 g/mol. PEG is soluble in water and is coupledto hydrophobic

molecules to lower the surface tension of water and allow easier spreading.

The synthesis of these three proteins has been donein vitro with different con-

centrations of osmolytes and the results have confirmed the hypothesis of reverse-

proteolytic condensation of complementary fragments. In their paper, Somalinga

and Roy have shown that the formation of LIAA (20-residue designer peptides with

the consensus sequence DIAQALKQIAEALQKIAGGY) increases with increase

in dextran concentration which verifies the shift of the biasfrom bond hydrolysis

to synthesis by adding osmolytes [41].
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2.2 Formation of Rod-like Protein Aggregates
(Parkinson’s Disease)

There are a few factors through which macromolecular crowding can affect protein

aggregation. Destabilizing the individual-molecule states and stabilizing the com-

pound states, decreasing protein solubility in water and asa result inducing protein

self-interaction by changing water activity, decreasing diffusion rate and therefore

increasing the kinetics of aggregation by increasing viscosity, are among these fac-

tors. Aggregation appears after the formation of partiallyfolded intermediates rich

in beta structure which may have hydrophobic side-chains ontheir surface and

therefore can bring about non-polar interactions between molecules, resulting in

aggregation. Initially there is a lag time, which corresponds to the formation of the

nucleus and then the growth rate of the aggregation increases exponentially. Both

of these steps are affected by adding osmolytes into the system.

Munishkinaet al. have investigated the aggregation ofα-synuclein to explain

some of the effects of molecular crowding on proteins [42].α-synuclein is a 14

kDa protein, primarily found in neural tissue but also thereare traces of it in glial

cells. Purifiedα-synuclein is normally an unstructured soluble protein, but under

crowded circumstances can aggregate to form insoluble fibrils, known as Lewy

bodies which are responsible for degenerative diseases such as Parkinson’s and de-

mentia. In addition, anα-synuclein fragment, known as the non-Abeta component

(NAC), is found in amyloid plaques in Alzheimer’s disease.

The result of Munishkina’s experiment indicates that high concentration of dex-

tran/PEG increases the rate ofα-synuclein fibrillation. In [42], they have shown

that the addition of more and more PEGs results in larger acceleration of the rate

of fibril formation. Their results also indicated that high enough concentrations of

PEG 3350 have almost similar accelerating effects onα-synuclein fibril formation,

which can be explained in terms of viscosity. When the systemreaches a criti-

cal density, viscosity that works in the opposition of volume exclusion becomes

important.
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2.3 High Stability of the Crystallin Proteins in the Lens
of the Eye

The cytoplasm of vertebrate eye lens cells consists of about40% crystallin pro-

teins,α-, β - andγ-crystallins, whose molecular weight differ for various peptide

compositions. A degree of short-range order between these proteins is needed for

the eye lens to be transparent because if they scatter light randomly, the lens would

appear as an opaque object. Benedek showed that the observedtransparency of the

system can be explained by a limited degree of short-range order which means that

it is not necessary to have a crystalline or paracrystallinestate [72]. The opacity

of the eye lens, such as in cataract, can also be explained by scattering of light by

larger molecules which are the result of aggregation of crystallins, because the size

of these aggregations is comparable to the wavelength of thelight.

Having the highest molecular weight and concentration in the cytoplasm,α-

crystallin is the main protein of the eye lens and its structural function is to sustain

a suitable refractive index of the lens. The solubility of this crystallin is high (up

to 250 mg/ml) and its physiochemical changes are important in senile cataract for-

mation. Another function ofα-crystallin in the eye lens is to act as a molecular

chaperone to prevent the aggregation of intermediates by interacting with them

in the early stages of their unfolding and capturing them inside its hollow inte-

rior. To function as a chaperone properly,α-crystallin needs to remain in its native

state, because due to its complex assembly, the chaperone properties of refolded

α-crystallin is different from those of its native structure[44]. α-crystallin can

become unfolded easily and there are several factors that cause the unfolding of

this protein, such as heat, pH of the solution and the presence of denaturants such

as GdmCL. On the other hand, there are different ways to avoiddenaturation of

α-crystallin through crowding. Due to high concentration inthe cytoplasm in the

eye lens fiber cells,α-crystallin owes its stability partially to friction. Moreover,

as a result of volume exclusion, macromolecular crowding isresponsible forα-

crystallin stability in high protein concentration, whichis what naturally happens

in the eye.

Andries et al. have investigated the effect of high protein concentrations on

the scattered intensity of the lens [43]. At protein volume fraction of 0.035 the
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diffusive behavior of theα-crystallin solutions undergoes drastic changes. They

measured the scattered light in photon correlation spectroscopy. Photon correlation

spectroscopy technique is normally used to study the behavior of complex fluids

such as concentrated polymer solutions. The light scattersin all directions when it

hits small particles (Rayleigh scattering). For a monochromatic and coherent light

source such as a laser beam, the scattering intensity will have time-dependent fluc-

tuations. These fluctuations caused by the Brownian motion of the small molecules

in solutions are used to evaluate the changes in the distancebetween the scatterers

in the solution. The information about the time scale of movement of the scatter-

ers can be derived from the constructive or destructive interference of the scattered

light by the surrounding particles.

In their paper, Andrieset al. have measured the second order cumulant1 as

well as the correlation function of the eye lens at differentprotein volume fraction

of φ [43]. They have shown that the normalized second order cumulant deviates

drastically from 0 as they increaseφ and moreover the correlation function has

slowly decaying components. The cumulant analysis can be used to calculate an

effective diffusion coefficient,De f f . The osmolyte concentration ofα-crystallin

from bovine lenses at different angles and at a lower (ω = 0.08) and a higher

(ω = 0.32) ionic strength was calculated. At higherω the diffusion coefficient

decreases forα-crystallin from bovine lens cortex and for calf cortex there is a

small increase followed by a decrease.

2.4 Assembly of Cell Division Protein FtsZ into
One-monomer Thick Ribbons

The FtsZ2 is a protein that exists in most of the prokaryotic organismsand has a

crucial role in microbial and organelle divisions by constructing a ring around the

division site [73, 74]. The biological activities of FtsZ are the ability to efficiently

1Second order cumulant which provides an indication of the variance of the system, is the coeffi-
cient of the second term in the expansion of the auto-correlation function in terms of time.

2FtsZ is named after “filamenting temperature-sensitive mutant Z ”. The hypothesis was that due
to the inability of the daughter cells to separate from one another, cell division mutants ofE. coli
would grow as filaments.
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polymerize into filamentsin vitro in the presence of potassium and GTP, to readily

hydrolyze GTP to GDP and to involve in a reversible magnesium-linked assembly

to form linear oligomers in the presence of GDP.

Gonzalezet al. have studied the effect of osmolytes on FtsZ assembly in the

presence of the most abundant form of the nucleotide inside the cell, GTP [46].

They have found that the effect of high packing fractions of molecular crowdings

which resemble the crowdedE. coli cytoplasm is the formation of FtsZ polymer

ribbons. The GTPase activity of FtsZ which is the polymer assembly/disassem-

bly dynamics and nucleotide exchange within the polymer is significantly retarded

in crowded environments in comparison to the same parameters of the FtsZ fila-

ments that are formed in dilute solutions. Therefore they conclude that the self-

organization process of FtsZ spontaneous arrangement intoribbons only happens

in the bacterial interior and suggest that in the non-dividing cells the regulation of

Z-ring assembly is modulated by other mechanisms.

They have analyzed the effect of inert macromolecular crowders such as Ficoll

and dextran on the polymerization of FtsZ. In the presence ofpotassium ions in

KGA buffer (25 mM Hepes/acetate, pH 7.4, plus 100 mM potassium glutamate,

300 mM potassium acetate and 5 mM magnesium acetate) by adding GTP the FtsZ

filaments are formed. In the presence of high concentrationsof osmolytes the FtsZ

polymers form. Addition of 200 g/liter of Ficoll causes FtsZpolymers with width

of 40-100 nm to form. Since the size of a single FtsZ monomer is4-5 nm, these

polymers correspond to a width of 8-25 protofilaments. The addition of 200 g/liter

of dextran gives similar results. When they use incubation in KGA buffer with 0.1

nM of GMPCPP3 instead of GTP the polymers have been still observed. However

if the incubation time was more than one hour, the polymers disappeared unless

GTP-regenerating system regenerated GTP. This suggests that the polymers are

dynamic structures.

Moreover; the atomic force microscopy (AFM) images confirm that the width

of the FtsZ polymers that are induced by osmolytes is 40-100 nm and their thick-

3guanylyl-(α, β )-methylene-diphosphonate or GMPCPP hydrolyzes more slowly than GTP. The
polymerization rate with GMPCPP is very similar to that of GTP, however, in contrast to polymer-
ization with GTP, polymers formed with GMPCPP do not depolymerize rapidly after isothermal
dilution.
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ness is 3-4 nm. Considering that this size is compatible with2-D structures with

thickness of one protofilament, they concluded that these polymers are ribbons.

These ribbons can be observed by optical microscopes when flouorescently FtsZ is

used.

2.5 The Effect of Macromolecular Crowding on Signal
Transduction and Metabolite Channeling

The effect of high concentrations of macromolecular crowding on equilibrium phe-

nomena such as protein binding to DNA is a well-established problem [75]. How-

ever; the mechanism on the effect of osmolytes on nonequilibrium phenomena such

as signal transduction and metabolic fluxes (the rate at which a metabolite is pro-

duced during a biological process) requires more study and attention. In biology,

signal transduction is referred to any process in a cell which results in conversion

of one kind of signal or stimulus into another. These processes normally involve

ordered sequences of biochemical reactions inside the cellperformed by enzymes

and activated by second messengers that generate a signal transduction pathway.

The signal transduction processes usually last only for a few milliseconds in the

case of ion flux, or minutes for the activation of protein and lipid-mediated kinase

cascades.

The metabolic chemical reactions are organized into metabolic pathways in

which a principal chemical is converted into another chemical through a series of

steps catalyzed by a sequence of enzymes. Enzymes are essential to metabolism

because they assist organisms to have desirable reactions that take energy and do

not occur by themselves, by adjoining them to spontaneous reactions that release

energy. Moreover, enzymes are in charge of regulation of metabolic pathways

against the changes in the cell’s environment or signals from other cells. In some

metabolic pathways, the product of an enzyme converts into the next enzyme in the

pathway without equilibrating with the bulk solution. Thisdirect enzyme-enzyme

interaction is known as metabolite channeling.

Rohweret al. have investigated the effect of different enzyme concentrations

on the flux through the bacterial phosphotransferase system(PTS), the major car-
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bohydrate transport system in bacteria,in vitro [45]. They have measured the

PTS-mediated carbohydrate phosphorylation at different dilutions of E. coli ex-

tract. Their results show that the fluxJ is proportional tocα wherec is the protein

concentration and 1< α < 2.

Rohweret al. have shown that at lower protein concentrations the addition

of 9% PEG 6000 stimulates the PTS flux and inhibits the flux at higher protein

concentrations. At lower PEG 6000 concentrations, the stimulation to inhibition of

the PTS flux transition point occurs at higher protein concentrations. This suggests

that the presence of osmolytes cause a decrease in the dissociation rate constants of

enzyme complexes. Moreover, the addition of PEG 35000 inhibits the PTS flux in

all conditions. These results indicate that in the crowded environment of the cell,

on the time-scale of their turnover the PTS enzyme complexeslive longer.

2.6 Enhancement of Thermal Stability of Rabbit Muscle
Creatine Kinase

Jianget al. have investigated the effect of osmolytes on the native conformation and

thermal stability of creatine kinase (CK) using the far-ultraviolet circular dichro-

ism spectra to reflect the secondary structure of the native state [76]. CK also

known as creatine phosphokinase (CPK) or phospho-creatinekinase is an enzyme

belonging to guanidino kinase family which is expressed by various tissues and cell

types. This enzyme catalyzes the reversible transfer of a phosphoryl group from

AT P−Mg2+ to creatine which produces phosphocreatine andADP−Mg2+. CK is

important in regeneration of ATP inside the cells that consume ATP rapidly, such

as skeletal muscle, brain, photoreceptor cells of the retina, hair cells of the inner

ear, spermatozoa and smooth muscle. Moreover, CK is an important diagnostic

indicator of nervous system diseases, the heart muscle diseases and etc. In clinics,

CK is assayed in blood tests as a marker of heart attack, severe muscle breakdown,

muscular dystrophy, and in acute renal failure.

In their work, Jianget al. have used the purified rabbit muscle CK which

is an oligomeric two-domain protein and investigated the changes to its confor-

mation and stability over an extended range of dextran 70 concentration. They
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calculated the fraction of unfolded protein,fu, at different temperatures from CD

spectra results. By making the assumption that each spectrum at any given dextran

concentration can be described by a weighted linear combination of only the native

state and the unfolded state components, the dextran concentration dependence of

ellipticity was analyzed in a two-state fashion. The observed ellipticity is taken as

the average of the native state ellipticity and the fully unfolded ellipticity. In this

two-state model the protein is assumed to be in its native state atT = 25◦C and at

T = 80◦C it is fully unfolded at all dextran concentrations. In thermally induced un-

folding, the behavior of transition temperature,T1/2, shifts to higher temperatures

as osmolyte concentration increases. As they increased dextran concentration from

0 g/l to 260 g/l,T1/2 was raised by up to 8◦C.

2.7 Molecular Crowding Effect on an Alzheimer’s
β -amyloid Peptide

Alzheimer’s disease is a result of the fibril formation by theAlzheimer’sβ -amyloid

(Aβ ) peptide in brain tissue. Amyloids are insoluble protein-aceous fibrillar as-

semblies which are formed by aggregation of misfolded states of normally sol-

uble proteins [77, 78]. The structure of amyloid fibrils has been demonstrated

by X-ray fiber diffraction studies of a wide range of fibril types which clarified

that these amyliods have no 3-D structural homology to theirnative state. The

cleavage of a large amyloid precursor protein, APP, produces the Aβ1−42 peptide

which is present in unaffected individuals and has a normal physiological role. In

Alzheimer’s disease however, this peptide forms ordered aggregates that are de-

posited extracellularly as amyloid plaques or senile plaques in the neuropil and

in vascular deposits. To design effective therapeutic agents against Alzheimer’s

disease, we have to understand the conformational properties and the mechanisms

triggering aggregation of the Aβ peptides at an atomic level.

Because amyloid fibrils are insoluble it is difficult to studytheir molecular

structure, mechanisms of conformational transition, and the formation of the fib-

ril aggregate. However, recently techniques such as NMR, electron paramagnetic

resonance, and electron microscopy have revealed that Aβ1−42 undergoes a confor-
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mational transition from coil toα-helix to β -strand during amyloidogenesis [79].

From investigations of the refolding of reduced hen lysozyme in the presence of

different crowding agents (CA), we know that the presence ofosmolytes affects the

aggregation of refolding protein molecules. Based on theseconsideration, Liet al.

have constructed a computational model that consists of an atomistic description

of a peptide, inert macromolecules of about 70 KD molecular weight to model

osmolytes and a continuum solvent model [80]. They have applied this model to

monomeric Alzheimer’sβ -amyliod peptide segment (Aβ10−35).

Li et al. have started the simulations with one completely extended structure,

oneβ -strand structure, and four NMR structures both in dilute and crowded (with

CA packing fractions ofφ = 30% andφ = 40%) solutions. For two of the NMR

structures, an additional simulations with CA packing fractions ofφ = 35% were

done as well. In all simulations Aβ10−35 adopted a collapsed coil conformation.

For dilute solutions the results were in reasonable qualitative agreement with ex-

perimental and other simulation results. However; the results of the simulations in

crowded environment showed some distinct changes in properties of the Aβ10−35.

For example, the appearance of transientβ -structure increases and diffusivity de-

creases with increasing CA concentration. Moreover, the internal properties of

Aβ10−35 such as order parameter or atomic root mean square (RMSD) fluctuations

are less sensitive to the changes in CA concentrations.

2.8 Effect of Macromolecular Crowding Agents on HIV
Type 1 Capsid Protein Assembly

Human immunodeficiency virus (HIV) is a member of the retrovirus family, i.e.

RNA viruses that are replicated in a host cell and produce DNAfrom its RNA

genome via the reverse transcriptase. HIV causes acquired immunodeficiency syn-

drome (AIDS), which is the failure of the proper operation ofthe immune system

in humans. The immature HIV particle has a spherical shell composed of a few

thousand copies of the Gag polyprotein surrounded by the membrane. After the

virus particle buds from the cell using the viral protease, Gag is cleaved and re-

leases the matrix, capsid and nucleocapsid polypeptides (viral capsid proteins that
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are associated with viral nucleic acid). This phenomenon initiates a structural re-

arrangement which is called maturation and is mostly involved nucleocapsid and

viral RNA assembly into the mature capsid. Recent experimental studies reveal

that the assembly of the cone-shaped mature capsid requiresa de novo nucleo-

capsid assembly which is feasible at very high protein concentrations inside the

extracellular virion.

in vitro assembly of capsid of HIV-1 strain BH10 were first explored insolu-

tions with protein concentrations of 1 to 100µM range at different pHs and ionic

strengths without crowding agents [81]. Lanmanet al. observed that after many

hours of incubation no assembly is detected at physiologic ionic strength (150 mM

NaCl) eventhough the protein concentrations were high. Assembly was still very

slow at 1.75 M NaCl, however at 2.25 M NaCl, it was relatively fast. Moreover, the

assembly rate depends on pH as well, that is at pH 7.8 it is a fewtimes higher than

at pH 7.0. As expected by increasing the concentration of capsid both the rate and

the amount of polymer formed increased. The critical capsidconcentration was 5.6

µM at ionic strength 2.25 M NaCl and pH 7.8.

Later the effects of Ficoll 70 and dextran 10 on the kinetics of capsid assembly

were studied [82]. At first the capsid concentration was set to 15 µM and other

conditions were highly advantageous forin vitro polymerization, i.e. pH 7.8 and

ionic strength 2.25 M NaCl. The addition of Ficoll 70 accelerated capsid assembly

significantly. Replacing Ficoll 70 with dextran 10 gives almost the same amount

of enhancement in capsid assembly. In the presence of 100 g/liter Ficoll or dextran

the critical capsid concentration was reduced from about 5.6 µM to 3.1µM or 2.3

µM respectively.

The significant enhancement in the capsid assembly rate in the presence of os-

molytes facilitates the possibility of attaining rapid andefficient polymerization

in vitro under authentic conditions, i.e. high capsid concentration and low (phys-

iologic) ionic strength. In the absence of osmolytes, at 150mM NaCl and 600

µM capsid concentration, no polymerization was observed even after 65 hours of

incubation. However; addition of 250 g/liter Ficoll 70 causes efficient capsid as-

sembly in less than 2 min. In these conditions the cylindrical structures with 37

± 9 nm diameter were being formed. The shape and dimensions of these struc-

tures were indistinguishable from those obtained in standard conditions, that is
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high ionic strength and low capsid concentrations, in the absence of osmolytes.

Conical structures with sizes close to those of authentic mature capsids of HIV-1

were also observed.

2.9 Molecular Crowding Creates an Essential
Environment for the Formation of Stable
G-quadruplexes in Long Double-stranded DNA

Zhenget al. have prepared long dsDNA from human genome that carry G-quadruplex-

forming sequences with flanking duplex at both sides [83]. They then have investi-

gated the effect of the molecular crowding on the formation of G-quadruplex during

the process ofin vitro transcription and heat denaturation/renaturation. Theirdata

showed that osmolytes create an essential environment for stable G-quadruplex

formation in dsDNA.

In their experiment, Zhenget al. constructed two dsDNAs carrying the core

G-rich sequence from the C-MYC and NRAS gene, respectively using overlap

polymerase chain reaction (PCR) and genomic DNA from HeLa cells as template.

The G-rich core sequence was on the nontemplate strand and connected with a

flanking promoter sequence (short DNA sequences that bordera transcription unit)

for the T7 RNA polymerase (an RNA polymerase that catalyzes the formation of

RNA in the 5′ → 3′ direction) at its 5′ side. The two dsDNAs were subjected

to heat denaturation/renaturation or transcription with T7 RNA polymerase. The

conditions under which the experiments were carried out were similar to authentic

intracellular environment, i.e. at neutral pH in 150 mM K+ solution with (40%

PEG 200) and without osmolytes. G-quadruplex formation wasthen detected by

coupling the N7 of guanines to dimethyl sulfate (DMS). DMS can effect the base-

specific cleavage of guanine in DNA and therefore it can be used to determine base

sequencing, cleavage on the DNA chain, and other applications. Although the N7

in DNA duplex has a tendency to methylation by DMS and subsequently cleavaged

with piperidine, but the N7 in the G-quartet of G-quadruplexstructure cannot be

methylated. They labeled two dsDNAs at the 5′-end of the G-rich strand with a

fluorescent dye.
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Zhenget al. have marked the distinct bands corresponding to the cleavage of

the four runs of guanines with a circle in the core G-rich sequence for the dsDNAs

that were imposed to transcription or heat denaturation/renaturation. These bands

become protected from cleavage when the treatment was done in the presence of

40% PEG. This reveals that in these DNAs G-quadruplex is consisted of three

G-quartets that were formed during the process of RNA transcription and heat de-

naturation/renaturation. Interestingly, the guanines inthe flanking sequences were

always similarly attacked in the presence and absence of osmolytes, which indi-

cates that these sequences were in the duplex form.

Other processes that are directly influenced by molecular crowding are:

• Roles of cytoplasmic osmolytes, water, and crowding in the response ofEs-

cherichia coli to osmotic stress [47].

• Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and

S peptide to compact folding-competent states [60].

• Salt-induced stabilization of pair and many-body hydrophobic interactions

[84].

• Stabilization of Cutinase by Trehalose [58].

• Stabilization of the ribosomal protein S6 by Trehalose is counterbalanced by

the formation of a putative off-pathway species [59].

• Molecular crowding in theEscherichia coli periplasm maintainsα-synuclein

disorder [85].

26



Chapter 3

Previous Approaches and

Contributions

In this section we briefly review previous approaches to the problem of crowd-

ing environments. Takadaet al. [61, 62], Zhou [63], Bolen [56], [64, 65] and

Minton [66] had significant contributions to settling different aspects of the effects

of crowding agents on protein folding theoretically.

3.1 The Density Functional Model

In [61] the authors present an analytical framework to describe nonuniform sys-

tem of proteins in crowded media, which is a system with infinite degrees of free-

dom. Density functional theories are particularly appropriate to describe interfacial

phenomena such as phase separations of colloidal particlesand polymer mixtures.

Therefore, their theory provides a unified description of protein stability and ag-

gregation in crowded environments. In this model the crowded system is coarse-

grained, and proteins are represented by density fields. Thenative and denatured

states of the protein are characterized by their intrinsic free energies,ηN andηD,

respectively and protein can transform from a native state to a denatured state and

vice versa. In principle, the intrinsic free energies can befurther broken into ener-

getic and entropic parts, but in the following calculationsthe decomposition is not
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necessary because the temperature is fixed. They setηC = 0 in their calculations

because the intrinsic free energy of the crowding agent doesnot play any role in

their theory.

Further, they assume that the interaction (uα ,β ) between two molecules is the

hard-core square-well potential:

uα ,β (r) =











∞, r ≤ Rα + Rβ

εα ,β , Rα + Rβ < r ≤ c(Rα + Rβ)

0, c(Rα + Rβ ) < r

(3.1)

wherer is the intermolecular distance,Rα andRβ are the radii of molecular species

α and β (= N,D,C), andc is a constant factor greater than one and is set to 3

in this work. The excluded volume interaction is held by the uppermost line in

the above equation andεα ,β represents other longer range interactions. Since in

this calculation they were only concerned with the excludedvolume interaction,

they setεα ,β = 0 except forεD,D. Denatured proteins tend to attract each other

because hydrophobic residues and isolated hydrogen bond donors and acceptors

are exposed in unfolded states. Therefore,εD,D is usually set to a negative value.

The length scale in the present theory is set to∼10 nm, which is taken as the unit

length. The radii of the protein and crowding agent are of order of∼0.1 unit length.

The system is represented byφα(r) whereα specifies different species asD

for denatured protein,N for native protein andC for crowding agents. The density

field of solvent,φS(r), is defined asφS(r) = ρ0−Σαφα(r), whereρ0 is the total

bulk density of the system. Then the free energy of the systemcan be written as:

F [φα(r)] = Fi + Fn (3.2)

with Fi being the ideal part of the free energy andFn the nonideal part.Fi is given

by:

Fi =
∫

dr
[

Σαηα Φα + T ΣαΦα logΦα + TΦS logΦS] (3.3)
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whereΦS is the density field of the solvent andηD andηN are the intrinsic free

energies of the protein in denatured and native states respectively. The nonideal

part of the free energy is given by:

Fn =
1
2

Σα ,β

∫ ∫

dr1dr2Φα(r1)Φα (r2)T (1− exp(−uα ,β /T )) (3.4)

whereuα ,β is the hard sphere potential between different species. Next, they define

local chemical potentialµα(r):

µα(r) =
δF

δΦα(r)
(3.5)

which in addition to the equilibrium conditionµα (r) = µ0
α in which µ0

α is the

equilibrium chemical potential, leads to a set of self-consistent equations of state:

Φα(r) =
ρ0 exp[−(ηα +Wα(r)−µ0

α)/T ]

1+ Σβ exp[−(ηβ +Wβ (r)−µ0
β )/T ]

(3.6)

whereWα(r) can be regarded as the potential of mean force for the speciesα . Solv-

ing this set of equations gives density fieldsΦα(r) at equilibrium. The calculations

of equilibrium states were done with various parameter values forρP = φD + φN ,

ρC = φC, εD,D and different initial conditions. They found that there aretwo differ-

ent phases, namely the uniform phase (U phase) and the phase with aggregates of

the denatured proteins in it and the remaining region is mostly uniform (AD phase).

The lowest free energy state of theAD phase has one spherical aggregate. They

determine the phase boundary between theU andAD phases by the relative spatial

deviation of the native protein density fieldφN(r):

DN =

√

〈(φN −〈φN〉)2〉
〈φN〉 (3.7)

When DN < 10−8 the system is in theU phase and in theAD phase otherwise.

Further, they introduce the bulk densities of protein,ρP, and crowding agents,ρC.

Then the fraction of the native protein,fN = φN/ρP, determined the stability of the

native protein.

To generate phase diagrams, they usedT = 1, ηD = 0, RN = 0.4, εα ,β = 0

except forεD,D andρC is between 0 to 0.8. Other parameters are shown in table
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3.1.

Table 3.1: Parameter sets of the phase diagram.
Plane ρP ηN εD,D RC RD

ρC-εD,D 0.1 0 0.4 0.6
ρC-ρP 0 -0.058 0.4 0.6
ρC-ηN 0.1 -0.058 0.4 0.6
ρC-RC 0.1 0 -0.058 0.6
ρC-RD 0.1 0 -0.058 0.4

Moreover, the bulk volume fraction of the protein is between0.0268 and 0.0905

whenRN = 0.4, RD = 0.6 andρP = 0.1 and the bulk volume fraction of the crowd-

ing agents is 0.215 whenRC = 0.4 andρC = 0.8. Therefore the total volume frac-

tion of molecules which is between 0.2 and 0.3 corresponds approximately to that

of the living cells.

The phase diagram on theρC − εD,D plane indicates that aggregation increases

asρC becomes larger and also as long as the system is in theU phase, the native

protein becomes more stabilized asρC increases. We can derive some essential

features of the crowded environments in theρC − εD,D phase diagram, however;

experimentally it is not easy to manipulate the parameterεD,D and therefore they

tried other variables for phase diagrams. TheρC −ρP phase diagram indicates that

asρC increases, the aggregation of the denatured protein and thestabilization of

the native protein in the uniform phase are enhanced.

The intrinsic free energyηN of the native protein can be experimentally ma-

nipulated by mutations. TheρC −ηN phase diagram indicates the tendency of the

crowding agents to enhance aggregation and stabilizing thenative protein in the

uniform phase. WhenηN > 1 which means that the native protein is intrinsically

highly destabilized, the phase boundary on theρC −ηN plane is almost vertical.

This shows that when the native protein is unstable, the critical value ofρC for

aggregation behaves almost independently ofηN .

Takadaet al. have also investigated the effects of crowding environments with

different sizes of the crowding agents and unfolded proteins. Experimentally, we

can easily change the size of the crowding agent replacing the crowding agent
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to a different kind. In this calculations,RC was varied from 0.1 to 0.45. The

ρC −RC phase diagram indicates that, for fixedρC the larger crowding agents are

better stabilizers, that is, the increase inRC has similar effects to the increase in the

number densityρC. This is expected, because at a constant number densityρC, a

larger crowding agent takes more space. However, they defined ρ̃C = (4π/3)ρCR3
C

as the volume fraction of the crowding agent. Theρ̃C −RC phase diagram shows

that within the range ofRC that they studied, for a fixed̃ρC, smaller crowding

agents have more significant effects on the stabilization ofthe native protein in

the U phase and on the aggregation of the denatured proteins. At fixed ρ̃C the

crowding agents with largerρC reduce the native protein stability in theU phase

and prevent aggregation. Therefore they concluded that thecrowding effects on

protein stabilization and aggregation are bothRC andρ̃C dependent.

At the end, they studied the dependence of the crowding effects on the size of

the denatured proteins,RD. TheρC −RD phase diagram indicates that for largeRD,

that is forRD > 0.5 the increase inρC enhances the aggregation. ForRD > RN =

0.4, largerρC values stabilize the native protein in theU phase as in previous cases.

The crowding effects are more significant for largerRD.

3.2 The Gaussian Chain and Hard Sphere Model

In his first paper on crowding effects, Zhou uses theoreticalmodels that are in-

tentionally simple [63]. These models are suggested to capture the essence of the

essential effects of crowding, however they lack realisticdetails. In his work, Zhou

treats an unfolded protein as a Gaussian chain and a folded protein as a hard sphere

and assumes that these two states are separated from each other by a difference

in free energy∆G and then he studies the changes that the presence of osmolytes

makes in∆G.

The protein folding is the accumulation of native contacts.Let us consider the

formation of a contact between two residues of the unfolded chain. The probability

density for finding two monomers of an unfolded protein at a distance r from each

other is:
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P(r) =

(

3
2πnb2

)3/2

exp(− 3r2

2nb2 ) (3.8)

wheren is the number of monomers between the two residues andb is the bond

length. The potential that gives rise to the above probability distribution is:

P(r) = exp(−βU(r)) (3.9)

If we assume that every close approach between monomers leads to productive

contact formation then the problem of contact formation becomes equivalent to the

problem of a Brownian particle moving in potentialU(r) and being absorbed at the

contact distancer = a. The Kramers rate equation [86, 87] for a Gaussian chain

results in:

k f 0 =
3
√

6
π Da

(nb2)3/2
(3.10)

whereD is the relative diffusion constant andk f 0 is the rate constant.

However, the formation of a native contact happens when the two residues

are in their native states. If we assume that the transitionsinto and out of the

native state are rate processes and the transitions of individual residues take place

independently of other residues, then the rate constant of native contact formation

is smaller than that of total contact formation by:

k f 0

k f
=

ωA−ωB−
ωA+ωB+

[

aD−1/2(ωA+ + ωB+ + ωA− + ωB−)1/2 +1
] (3.11)

whereω− andω+ are residue (A or B) transitions rate into and out of the native

state.

If the two proteins are held together by a strong short-rangepotential U(r), the

binding constant is given by [88]:

Ks =

∫ r∗

a
exp[−βU(r)]4πr2dr (3.12)

wherer∗ is the upper limit that defines the bound state. The subscript’s’ stands for
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spherical geometry.

However; a protein complex is stereospecific which means that the complex

forms only if specific translational and rotational constraints between two proteins

are held. The relative displacement vector between two proteins is taken to ber

and the rotational angles of the two proteins are summarizedin ΩA andΩB. Then

the binding constant is given by:

K =

∫

Γ
exp[−βU(r,ΩA,ΩB)]drd3ΩAd3ΩB/(8π2)2 (3.13)

whereΓ represents the configurational space of the bound state.

Using [89]:

ks = 4πDa (3.14)

one can find the rate constant for the binding of two sphericalparticles at distance

a at steady state. If we assume that initially there is a uniform distribution, then at

time t the Smoluchowski rate constant at steady state becomes,

ks(t) = 4πDa

[

1+
a

(πDt)1/2

]

(3.15)

In the presence of a potential,U(r), the steady-state binding rate constant is

given by [90]:

ks =
D

∫ ∞
a exp[βU(r)] (4πr2)−1/2dr

(3.16)

In general, it is difficult to solve equation (3.16), however; for a long-range poten-

tial a simple approximation has been obtained [91]:

k = k0〈exp(−βU)〉∗ (3.17)

wherek0 is the rate constant in the absence of the potential and〈〉∗ means average

over the outer boundary of the bound state.
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Shift of folding equilibrium by crowding

Crowding agents limit the motional freedom of a protein and because of the size

difference, the denatured and native proteins are affectedto different extents and

therefore there is a shift in the folding equilibrium. For anunfolded (or Gaussian)

chain, the probability densityG(x,x0,n) that the chain with its origin atx0 will end

at x aftern steps satisfies a diffusion equation [92, 93]:

∂G(x,x0,n)

∂n
=

b2

6
∇2G(x,x0,n) (3.18)

When the chain length is large enoughN ≫ 1 the discrete variablen can be

treated as continuous to a good approximation.n is replaced with time in the dif-

fusion of a Brownian particle with a diffusion constantD = b2/6. In fact, since the

probability densities of both an unfolded chain and a Brownian particle are Gaus-

sian (with〈r2〉 proportional to the bond length in the former and the lapsed time

in the latter), we can use them interchangeably. Moreover, since a physical chain

cannot cross any obstacle such as a crowding macromolecule,an absorbing bound-

ary condition should be used, i.e.G(x,x0,n) = 0 at the positions that are taken by

crowding agents. On the other hand, the crowding macromolecules eliminate con-

formations that were available to the unfolded chain in the absence of these agents.

The fraction fu of chain conformations that do not cross any boundaries is given

by:

fu =
∫

dx3
∫

dx0
3G(x,x0,N)/V (3.19)

where the integration is over the whole volumeV of the solution. This problem

is equivalent to the problem of a Brownian particle in a field of static absorbing

traps with
∫

dx3G(x,x0,N) being the survival probability of the Brownian particle.

The additional integration overx0 in fu is equivalent to averaging over positions of

traps.

They assume that the traps are spheres with radiusac and concentrationc and

therefore they can use the Smoluchowski results. For short to moderate times, the

survival probabilityS(t) of a Brownian particle is given by (equation (3.15)):
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− lnS(t) = c
∫ t

0
dt ′ks(t

′) = 4πDact [1+2ac(πDt)]−1/2 (3.20)

Equation (3.20) for extremely small values ofS(t) is accurate [94, 95]. How-

ever, at aroundS(t) = exp(−6.68/φ1/2) whereφ = 4πa3
cc/3 is the volume frac-

tion of traps, this theory starts to fail, e.g. atφ = 0.25 equation (3.20) gives

− lnS(t) = 13.4.

By mapping the problem of a Brownian particle in the presenceof traps to the

problem of a Gaussian chain in a crowded environment, we find:

− ln fu = 3φy2
(

1+
2

yπ1/2

)

(3.21)

wherey = Rg/ac. Table 3.2 shows the range of validity of equation (3.21) for

different values ofy. It is seen from this table that equation (3.21) is reliable under

biological conditions.

Table 3.2: The range of validity of equation (3.21).
y φ
1 no limit
2 0.50
3 0.32
4 0.23

On the other hand, because of the presence of crowding agentsmany positions

of the protein will not be allowed. In physical chemistry, the inverse of the fraction

of the folded conformations that do not overlap with the crowding molecules,f f ,

is called the activity coefficient of the folded protein. In amodel that both the

folded protein and the crowding agents are hard spheres, thescaled-particle theory

predicts [96]:

35



− ln f f = − ln(1−φ)+ (3z+3z2 + z3)
φ

1−φ

+(
9
2

z2 +3z3)

(

φ
1−φ

)2

+3z3
(

φ
1−φ

)3

(3.22)

wherez = d f /2ac with d f being the effective diameter of the folded protein. Zhou

specifically considers the effect of crowding by ribonuclease A on the folding free

energy ofα-lactalbumin with parameters:Rg = 30Å, d f /2 = 17.2Å, ac = 15.4Å

andMc = 17,000 whereMc is the molecular weight of the crowding agents. The

difference between− ln fu and− ln f f increases asc increases.

3.2.1 Fundamental Measure Theory (FMT)

In his latest work, Zhou does not make any assumption about the shape of the

proteins [97], and therefore his new theory is based on the fundamental measure

theory (FMT) [98–100], which is a density functional theoryfor fluids of convex

hard particles. In the case of spherical particles, FMT reduces to SPT (scaled

particle theory) [99]. FMT predicts that by placing a test protein in a sea of convex

crowders, the increase in the chemical potential of the protein is [99]:

∆µ = Πcvp + γcsp + κclp − kBT ln(1−φ) (3.23)

wherekB is Boltzmann’s constant andT is the absolute temperature;vp, sp, andlp

are the volume, surface area, and linear size of the test protein; Πc is the osmotic

pressure of the crowders,γc and κc are the corresponding quantities for surface

tension and bending rigidity; andφ is the total volume fraction of the crowders. If

there are more than one crowder species in the system, then the crowder quantities

will be expressed in terms of the weighted number densities of the different species:

c = Σα cα ;cl = Σα lαcα ;cs = Σα sα cα ;φ = Σα vα cα (3.24)
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wherecα is the number density of speciesα , and lα , sα , andvα are their linear

size, surface area, and volume, respectively. The results are:

Πc

kBT
=

c
1−φ

+
clcs

(1−φ)2 +
c3

s

12π(1−φ)3

γc

kBT
=

cl

1−φ
+

c2
s

8π(1−φ)2

κc

kBT
=

cs

1−φ
(3.25)

The FMT has been applied to convex particles with relativelysimple geomet-

ric shapes [99]. Zhou generalizes the FMT to test proteins represented at the

atomic level and refers to his method as the generalized fundamental measure the-

ory (GFMT). Moreover, Zhou found that∆µ obtained in his previous simulation

work [101] by the insertion procedure could be fitted to equation (3.23). The fitting

did not produce a predictive method however, because it was not clear howvp, sp,

andlp could be calculated since an all-atom protein is not a convexparticle.

Zhou showed that there is a good agreement between the GFMT predictions on

∆µ and the data that obtained from simulations in Zhou’s previous work [101].

3.3 The Radial Distribution Function Model

Bolen, on the other hand, has a different theoretical approach to the problem of the

effects of crowding on protein folding [56, 64, 65]. He believes that the nonideal

solution behavior has a structural origin. MacMillan and Mayer [102] and later

Kirkwood and Buff [103] showed that one can express the thermodynamic proper-

ties of an isotropic solution as a function of the structure of the solution. The struc-

ture of a solution is reflected in the radial distribution functionsgα ,β (r) between

speciesα andβ . One can interpret the radial distribution function as a measure of

the deviation of particles of type-β from the random distribution around a central

particle of type-α . The radial distribution function is a function of the distance

from the central particle. Type-α and type-β particles can in principle be atoms,
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or molecules such as proteins, water, or cosolutes like osmolytes.

When there is no correlation between particles type-α and type-β , gα ,β (r) = 1.

However, when there is an excess or deficit of type-β at a distancer from the central

particle type-α , gα ,β deviates from unity positively or negatively, depending onthe

positive or negative correlation ofα andβ at r. They define the overall correlation

Gα ,β as the excess or deficit of type-β particles around type-α in the whole volume

that is occupied by these particles. One can obtainGα ,β as a function of the packing

fraction using the Kirkwood-Buff integrals defined as:

G = 4π
∫ ∞

0
[gα ,β (r)−1]r2dr (3.26)

Now let us consider a solution with osmolytes. Kirkwood and Buff [103] have

also developed the dependence of the osmolyte’s chemical potential µos on the

osmolyte concentrationcos:

1
RT

(

∂ µos

∂cos

)

T,p
=

1
cos

+
GWO −GOO

1− (GWO −GOO)cos
(3.27)

whereW andO stand for water and osmolyte respectively. The solvation features

strongly depend on the osmolyte concentration, and therefore GWO andGOO will

also depend on osmolyte concentration, leading to a complicated concentration

dependence of(GWO −GOO) in general. A comparison between equation (3.27)

and experimental data confirms this statement.

Recently Rosgenet al. have built a statistical mechanical theory to study the

nonideal behavior of solutions with different concentrations of solutes such as salts

and osmolytes [104, 105]. The chemical potentialµos of the osmolyte (to the first

approximation) is given by Rosgenet al. [105]:

µos = µo
os + RT ln

(

cos

1−V1cos

)

(3.28)

where the constantV1 is the effective molar volume of the osmolyte andµo
os is

the standard chemical potential. By taking the derivative of the chemical potential

(equation (3.28)) with respect to osmolyte concentrationcos we find:
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1
RT

(

∂ µos

∂cos

)

T,p
=

1
cos

+
V1

1−V1cos
(3.29)

By comparing (3.29) with equation (3.27) one finds that the apparent hydrated

volume of the osmolyteV1 to first order is equal to(GWO −GOO). This conclusion

provides a simple first order interpretation of solution behavior for osmolytes.

Equation (3.29) is applicable to a wide range of osmolytes and V1 is a constant

in this first order expression of the chemical potential [105]. Consequently, the dif-

ference between osmolyte hydration and osmolyte self-correlation,(GWO −GOO),

must not depend on the concentration as well. That is, although osmolyte hydra-

tion GWO and self-solvationGOO can individually be a function of concentration,

nevertheless their concentration dependence should cancel out in (GWO −GOO) for

solutions that obey equation (3.28). This means despite thefact that the individual

hydration and solvation correlations between osmolytes are nontrivial, osmolyte

molecules can in principle behave thermodynamically as independent particles.

As mentioned above most of the studied osmolytes follow thisfirst order be-

havior. The rest of the osmolytes are well described by the second order approxi-

mation. However; urea has a trivial behavior, that is:

1
RT

(

∂ µos

∂cos

)

T,p
≈ 1

cos
(3.30)

When we compare equation (3.30) with equation (3.27) we see that indepen-

dent of the urea concentration, hydration and self-solvation of urea are almost

equal, i.e. GWO ≈ GOO. This ideal behavior is a special case of the first order

behavior.

So far, we discussed that the Kirkwood-Buff theory along with Bolen’s theory

of solutions provide information about structural features of osmolyte solutions.

Now, let us consider three-component solutions, includingwater, osmolytes and

proteins. If we assume that the protein concentration is low, then we can write

its chemical potential,µprot , as a function of the osmolyte concentrationcos as the

following [106, 107]:

1
RT

(

∂ µprot

∂cos

)

T,p
=

GPW −GPO

1− (GWO −GOO)cos
(3.31)
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The denominator in equation (3.31) contains merely information about the struc-

ture of the bulk solution, i.e. the Kirkwood-Buff integralsfor osmolyte self-solvation

GOO and osmolyte hydrationGWO (equation (3.27))

1
1− (GWO −GOO)cos

=
1

RT

(

∂ µos

∂cos

)

T,p
(3.32)

However; the numerator contains the Kirkwood-Buff integrals for the protein hy-

dration,GPW , and osmolyte solvation of the protein,GPO. In three-component so-

lutions the differences between solute-macromolecule andwater-macromolecule

interactions have thermodynamic effects that depend on solute concentration and

are characterized quantitatively by preferential interaction coefficients. The pref-

erential interaction parametersΓµi with i = 1,2,3 (1 for water, 2 for protein and 3

for osmolyte) are defined as partial derivatives that specify the dependence of the

molality of the smaller solute on the macromolecular molality at fixed temperature

and pressure, that is:

−Γµ3 =

(

∂ µ2

∂m3

)

T,P,m2

(3.33)

wherem2 is the moles of the protein per Kg of solvent. Moreover, the product of

the differenceGPW −GPO and the osmolyte concentrationcos, gives the preferential

interaction parameter−Γµ3 = cos(GPW −GPO) [108–110]. To determine whether

a cosolute is stabilizing, one has to evaluate the protein’spreference to have posi-

tive correlations with water or with osmolyte. On the other hand the preference of

the protein determines the sign of the solvation expression(GPW −GPO) or equiva-

lently, the sign ofΓµ3. The denominator in equation (3.31) is always positive, and

it can only modulate (up or down) the sensitivity of the protein chemical potential

with respect tocos.

The inverse Kirkwood-Buff theory [111] allows for a numerical determination

of the Kirkwood-Buff integralsGα ,β from experimental data. Recent MD simula-

tions on the preferential interaction parameters of RNaseAand RNaseT1 in aque-

ous urea and glycerol provide important information about the thermodynamics of

the protein solvation [112]. However, one should bear in mind that these results

were all under the limiting assumption of ideal solution conditions. This limitation
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can be serious in some cases which can have a major impact on the solvation of

proteins. In the case of the denaturant urea however, since it has an almost ideal

behavior, the simulation results [112] are valid over a larger range of concentration.

However one can still derive general, system-independent concepts about the

impact of the structure of nonideal solutions on protein stability. The protein sta-

bility can be determined by the Gibbs free energy of unfolding, ∆D
NG = RT lnK,

whereK is the equilibrium constant. Moreover,∆D
NG = RT lnK can be derived

using the differences of chemical potentials of the native and the denatured state.

By taking the difference between the native and the denatured state,∆D
N , in (3.31)

one obtains the derivative,m, of ∆D
NG with respect to osmolyte concentration:

−
(

∂ lnK
∂cos

)

T,P
=

m
RT

=
∆D

N(GPW −GPO)

1− (GWO −GOO)cos
(3.34)

Experimental results show that them-value of protein unfolding is constant and

negative in sign for urea, and does not depend on the urea concentration [113–115].

Moreover, them-values for protecting osmolytes are positive in sign, and constant

[116, 117]. By combining (3.32) and (3.34), one can find the dependence of the

solvation preference of the native state compared to that ofthe denatured state,

∆D
N(GPW −GPO), on them-value:

∆D
N(GPW −GPO) =

m
(

∂ µos
∂ lncos

)

T,P

(3.35)

The solvation preference relative to that at 0M osmolyte is given by:

∆D
N(GPW −GPO)

∆D
N(GPW −GPO)cos=0

=
RT

(

∂ µos
∂ lncos

)

T,P

(3.36)

where
(

∂ µos
∂ lncos

)

T,P,cos=0
= RT . In the above equation, the derivative is given by

(3.29). Bolen compared the change in solvation preference of proteins for several

osmolytes as a function of osmolyte concentration and concluded that in the case of

stabilizing osmolytes, except glycine, the slope is exceedingly steep which means

that the concentration dependence is larger in comparison to urea. Although in

case of urea the solvation preferences does not vary much with the changes of
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urea concentration, in case of protecting osmolytes, however, the protein solvation

preferences change significantly as the osmolyte concentration is increased.

3.4 The Chemical Potential Model

In this section we discuss Minton’s approach to the problem of crowding [66]. In

this treatment, the native state of the protein is denoted byN, and theith nonnative

conformational state byDi. The main characteristic of nonnative states is their radii

of gyration, that is, each nonnative state belongs to a set ofnonnative states with

the same radius of gyration, denoted byRG,i. The chemical potential of the native

state is given by:

µN = µo
N + RT lncN + RT lnγN (3.37)

whereµo
N is the chemical potential of the native state at concentration of unity in

ideal solution where there is no solute-solute interaction. cN is the molar concentra-

tion of the native state,γN the thermodynamic activity coefficient of the native state

in real solution,R the molar gas constant, andT the absolute temperature. To write

a similar expression for nonnative states, we need to choosea reference nonnative

state, namelyD0. In this model, the reference nonnative state is the state which is

most abundant in ideal solution and under the selected environmental conditions.

The chemical potential of an arbitrary nonnative stateDi is then given by

µi = µo
D + RT lnci + RT lnγi (3.38)

whereµo
D is the chemical potential of the reference nonnative state at concentration

of unity in ideal solution, andci andγi are the concentration and thermodynamic

activity coefficient of stateDi in real solution respectively. The fact that we can

assign a single standard state chemical potential to allDi allows us to take the

differences between the chemical potential of any two nonnative states at equal

concentrations as the differences in the activity coefficients. For instance when

ci = c j = c:
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∆µi j(c) ≡ µ j(c)−µi(c) = RT ln
γ j

γi
(3.39)

However, we know that at equilibrium, the chemical potential of all species

should be equal, therefore from equation (3.38) we find that for any two species

we have:

ci

c0
=

γ0

γi
(3.40)

The fraction of statei among all denatured states at equilibrium is then:

fi ≡
ci

Σ jc j
=

γ−1
i

Σ jγ−1
j

(3.41)

Moreover, since〈X〉= Σ j f jX j, where〈〉 denotes the mean value andX is any state

property, from (3.41) we find:

〈γD〉 =
Λ

Σ jγ−1
j

(3.42)

where〈γD〉 is the mean activity coefficient of all denatured states andΛ is the total

number of denatured states.

At constant temperature, pressure, and solvent conditionsthe difference be-

tween the chemical potential of the two standard statesN andD0 should be constant

and therefore a thermodynamic constant is defined as the following:

K∗ ≡ exp

(

−µo
D −µo

N

RT

)

=
γici

γNcN
(3.43)

Let fN be the fraction of protein in the native state, therefore thefraction of

denatured protein,fD, is then equal to 1− fN . We can then define the equilibrium

unfolding constant of the native state as:

KND =
fD

fN
=

Σici

cN
= K∗Λ

γN

〈γD〉
(3.44)

and also a root mean-square radius of gyration of the denatured state as:
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RRMS
G = 〈R2

G〉1/2 =
(

Σ j f jR
2
G, j

)1/2
(3.45)

For the rest of this work, the value of quantities in the dilute (ideal) solution

are indicated with a superscript “o”. Sinceγo
N = 1 by definition, it follows from

equations (3.42) and (3.44) that:

KND

Ko
ND

= γN
Σiγ−1

i

Σi(γo)−1
i

(3.46)

Minton treats a denatured protein as a random coil or freely jointed chain [118].

According to Flory and Fisk [119], the probability distribution of the radius of

gyration,RG, of an ideal chain is given approximately by:

P(RG) = A

(

R2
G

〈R2
G〉

)3

exp

(

−7
2

R2
G

〈R2
G〉

)

(3.47)

where〈R2
G〉 is the mean-squared radius of gyration andA is a normalization con-

stant. More recently, Lhuillier [120] proposed the following probability distri-

bution of the radius of gyration of a nonself-intersecting polymer chain in three

dimensions:

P(RG) = P(R∗
G)exp

[

−B

(

4r−15/4

5
+

6r5/2

5
−2

)]

(3.48)

whereR∗
G is the radius of gyration that maximizesP(RG), r ≡ RG/R∗

G andB is the

scaling parameter.

From equation (3.40) we have:

γo
i =

co
0

co
i

=
P(RG,0)

P(RG,i)
(3.49)

becauseγo
0 = 1. By combining equations (3.48) and (3.49) we get:

lnγo
i = B

(

4r−15/4
i

5
+

6r5/2
i

5
−2

)

(3.50)

whereri ≡ RG,i/RG,0. From equation (3.39) we have (the authors must have as-

sumed that the concentration of statei is the same before and after transfer):
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γi(φ) = γo
i exp

(

∆µi(φ)

RT

)

(3.51)

where∆µi(φ) is the transfer free energy of a polypeptide chain with a radius of

gyration RG,i to move from a solution with no cosolute to a solution containing

inert macromolecular cosolutes with volume fractionφ .

Minton then made estimates of the contribution of the excluded volume inter-

action to the transfer free energy, using two different models for the polypeptide

chain. The first model is called the Gaussian cloud. In this model, the polypep-

tide chain is taken to be a spherically symmetric cloud of residues. At any given

point inside this sphere with a distancerp from the c.o.m. of a polymer chain, the

average density of residues is given by the Gaussian function [118]:

ρ = Aexp(−B2r2
p) (3.52)

whereB2 = 3/2R2
G, A = n[3/2πR2

G]3/2 andn is the total number of residues in the

chain. For polymer chains in a good solvent the semiempirical function in equation

(3.52) provides a reasonable description of the density of the chain. To obtain the

contribution of the excluded volume interaction in the transfer free energy, Minton

calculates the probability for a rigid cosolute to penetrate to a certain distance in the

cloud without intersecting any residue, and then integrates over the whole volume

of the cloud.

The second model is called the equivalent hard sphere model.Here, the polypep-

tide chain is taken to be an equivalent rigid sphere having the corresponding radius

of gyration. The covolume of this rigid sphere and the hard particle cosolute are

calculated in the conventional manner [121].

Minton calculated the properties of the denatured states for 30 states of four

proteins withRG values spaced logarithmically in the range between 0.4 and 1.5

times〈R2
G〉1/2. Calculations show that increasing the density of states and/or the

range ofRG does not change the final results significantly.γ0
i were calculated using

equations (3.49) and (3.50),γi were then calculated as a function ofφ for each of

the discussed models,〈γD〉 was calculated using equation (3.42) withΛ = 30 and

γN was calculated using equation (3.43).

Furthermore, the results indicated that negligence of steric exclusion between
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non-adjacent residues results in a reduction of∼50% in the difference between

the free energies of the unfolded and native states at allφ 6= 0. In the absence

of this long-range steric repulsion the equilibrium average conformation is more

compact. When long-range intramolecular steric exclusionis neglected, at higher

φ a significant fraction of the equilibrium ensemble of unfolded protein haveRG

that is close to or even less than that of a sphere consisting of an equal number of

close packed residues [122], which is not realistic.

Moreover, the calculations in both models discussed above indicate that high

concentrations of hard sphere or a hard rod cosolutes substantially stabilizes the

native state of a dilute protein in comparison to its denatured state. For a givenφ
of cosolute, the magnitude of the stabilization depends significantly on the size of

the protein relative to the solute.

It should be emphasized that neither of these models provides a realistic picture

of the excluded volume interaction between the polymer and arigid cosolute for

all accessible radii of gyration. However, the Gaussian cloud model is a good

approximation of excluded volume interaction for large radii of gyration, that is

when the protein is in nonnative states. Moreover, the equivalent hard sphere model

provides a more realistic picture when the radius of gyration is small which means

when protein is in the native state. Therefore the combination of these two models

gives the limiting estimates of the magnitude of the excluded volume interaction.
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Chapter 4

Thermodynamics of a Polymer

4.1 Measures and Statistics of Polymer Size

In this chapter I will investigate the statistics of an isolated polymer in a theoreti-

cal framework, which facilitates the study of the effects ofosmolytes on polymer

collapse.

Our focal point is to find an appropriate theoretical framework for describing

the statistics of polymers.1 The development of a theory detailing the thermo-

dynamics of conformational ensembles of homopolymers has been the topic of

research interests. As mentioned by Chan and Dill in their review, scaling of poly-

mer size with polymer length provides a suitable probe of thenature of interactions

between polymer and its environment [122–124]. In an extensive study Flory has

shown that for a chain with lengthN the average radius of gyration,Rg, scales ac-

cording toRg = lNν [125, 126], wherel andν are determined by the characteristics

of the solution and dimensionality. For instance in three dimensions when polymer

is in a good solventν ≈ 0.6 and for a polymer in a bad solventν ≈ 0.34.

Another quantity that is usually used in the literature as the linear size of a

chain is its end to end distance, which is the distance between the first and last

monomers. However; neitherRg nor the end to end distance can precisely capture

the right features of a chain. Although when the chain is crammed into a compact

1A version of this chapter is in preparation for publication [6].
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conformation the radius of gyration might be a suitable quantity to measure the

linear size of the chain, but as the polymer expands to more stretched out confor-

mations theRg description fails to represent the right size of the chain. For instance

in the limit of a completely expanded rod-like conformationRg estimates L√
12

as the

linear size of the chain instead ofL which is the contour length of the chain. On the

other hand, the end to end distance description provides reasonable measurement

of the linear size of an expanded chain whereas in case of a compact chain many

conformations lie outside the end to end sphere, which is a sphere with its center at

the center of mass of the chain with radiusRete. There are numerous conformations

of the chain withRete ≈ 0 whereas even in the most collapsed state a polymer in

principle cannot get smaller than a certain size, usually given byRg ∝ N1/3.

Furthermore, the likelihood of close approaches between parts of the polymer

non-local in sequence depends on the effective polymer density or packing fraction.

The density is given by the number of monomers divided by the volume of the

polymer. The volume of the polymer may be estimated by a sphere with radius

given by the end to end distanceRete or the radius of gyrationRg, however many

configurations will have substantial amounts of polymer outside of these spherical

approximations. We thus seek improved measures of the volume of the polymer.

Accurate measures of polymer size are important because thevolume occupied

by a protein changes dramatically during folding or collapse. Such improved mea-

sures facilitate an accurate statistical mechanical description of polymer-osmolyte

and protein-osmolyte mixtures. One of our intents in this work is to inspect through

various possible quantities that represent the correct size of the polymer and hence

provide a more reasonable description of the polymer statistics.

4.1.1 Self-Avoiding Random Walk

The end to end distance probability distribution,P(Rete), of a freely jointed ideal

chain converges to a Gaussian even for chains as small as 10 residues [125, 127].

However for polymer chains undergoing random walks in dimensions less than 4

the end to end distance probability distribution of a chain is no longer Gaussian

when excluded volume effects are present [128–131]. The statistics of a poly-

mer is then often approximated by that of a self avoiding random walk (SAW)
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on a hypercubic lattice. The functional form ofP(Rete) for an excluded volume

chain has been investigated using both Monte Carlo simulations [132] and an-

alytical approaches [133, 134]. Here the results from MonteCarlo simulations

and Lagrangian theory approaches are in excellent agreement for two and three-

dimensional chains. A scaling law for the distributionP(Rete) has been derived by

des Cloizeaux for an on-lattice SAW [134]

P(N) =
1

ξ d Cρθ e−Aρδ
(4.1)

whereρ = r
ξ in which r is the end to end distance of the chain andξ 2 =

〈r2〉
2d .

The mean-squared end to end distance is given by
〈

r2
〉

= B2ℓ2N2ν whereℓ is the

bond length (taken to be unity), the exponentν = 0.59 and the prefactorB = 1.2

is a number that is important for quantifying return probabilities. We take this

value from end to end distance data in Monte-Carlo simulations of off-lattice self-

avoiding chains of various lengths [135].C is a non-universal number of order

unity.

For an ideal random walk,ν = 0.5 andB = 1.0; values ofA, θ , andδ are

given in table 4.1 for comparison. The parameterA and exponentsθ and δ are

universal, that is they are the same for all on-lattice SAW’sin a given number of

dimensions regardless of chain length. The universal parameters for a 3-D SAW

are summarized in table 4.1.

The configurations of real polymers are better described by off-lattice self-

avoiding random walks rather than on-lattice models, whichallow the angle be-

tween three consecutive monomers to have any value consistent with steric volume

constraints. We have written a MATLAB2 algorithm to generate off-lattice SAW

conformations by the well-known pivot algorithm, which hasbeen shown to deal

effectively with the attrition problem for SAWs [136, 137].Other generating al-

gorithms which solve the attrition problem are also widely used [138, 139]. The

attrition problem corresponds to the fact that for a polymerto avoid a sterically-

excluded region, the appropriate boundary condition corresponds to that of an ab-

sorbing boundary. Any generated conformation which penetrates into the bound-

2The MathWorks, Natick, MA.
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ary must then be removed from the statistics. Thus in generating conformations

of a self-avoiding polymer, any conformation of the polymerthat by chance wan-

ders into the sterically excluded region corresponding to the previously generated

monomer positions must be eliminated, and the walk must be either re-initiated or

appropriately reweighted [140]. Walks that survive this process become exponen-

tially rare as the chain length increases.

The pivot algorithm is implemented for off-lattice SAWs by first generating a

viableN-step SAW as follows. Thei+1th residue is placed a distanceℓ from theith

residue at random angle; if the distanceri+1, j for any j < i is less than 2σ , whereσ
is the monomer radius taken here to beσ = ℓ/2, the walk is canceled and restarted

until a SAW ofN steps is generated. New conformations are then obtained by per-

forming random symmetry operations at random positions along the chain. These

symmetry operations include rotations around the pivot point with arbitrary Euler

angles. Because the pivot algorithm generates radically different conformations,

after∼ N0.19 moves a globally different conformation is achieved [137].

To see the effects of a self-avoiding walk versus a reflectingboundary condition

on SAW statistics, we have also generated random walks usinga naive growth

algorithm that corresponds to a reflecting boundary condition as follows. Walks

are generated as above, with thei + 1th residue placed a distanceℓ from the ith

residue at random angle; but now if the distanceri+1, j for any j < i is less than

2σ , only the last step is canceled and a new step is attempted, until a walk of N

steps is generated. The process is then repeated from the first step to generate a

new conformation.

Using the above generating methods (forN = 50,100,200,500,700,900), we

have found that the end to end distribution for an off-lattice SAW has the same

functional form as the on-lattice SAW in (4.1), however withdifferent universal

exponents. These are summarized in table 4.1.

Figure 4.1 compares the end to end probability distributionof an on-lattice

SAW and an off-lattice SAW for a 100-mer. As a check, figure 4.2shows that

on-lattice SAWs that we generated using the pivot-algorithm recover exactly the

same set of universal parameters for an on-lattice SAW as derived in previous stud-

ies [134].

The quantityA and exponentsδ andθ are universal, that is they are indepen-
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Figure 4.1: A comparison of the end to end probability distribution of an
on-lattice SAW withN = 200 (red curve is obtained by using the des
Cloizeaux functional form in equation (4.1 using the well-known ex-
ponents in table 4.1 and red circles are data from the on-lattice pivot
algorithm) and an off-lattice SAW (blue curve is taken againfrom equa-
tion (4.1) using the exponents in table 4.1 and blue circles are data from
the off-lattice pivot algorithm). This fitting is done for several values of
N to give the exponents in table 4.1.R is in units of angstrom.

dent of chain length, however they differ for on- and off-lattice walks and are less

universal than the Flory exponentν , which is the same for both on- and off-lattice

walks (0.59±0.01).

4.1.2 Off-lattice SAWs from Discontinuous Molecular Dynamics
Simulations

Discontinuous Molecular Dynamics (DMD) is an efficient method that has been

used to study protein folding andab initio protein structure prediction [141–146],

protein aggregation [147, 148], and the effects of osmolyte-protein interactions [145].

A brief description of the DMD method for freely jointed polymer chains is pre-
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Figure 4.2: On lattice saw forN = 200 using the theory and pivot algorithm.
The parameters of the fitting curve are as the following:A = 0.144,θ =
2.269,δ = 2.45 and the value of these parameters in the literature are:
A = 0.144,θ = 2.269,δ = 2.43. R is in units of angstrom.

sented here (more complete descriptions of DMD methods for polymers and pro-

teins are contained in the above references and in the appendix). We used DMD

simulations for the purpose of generating polymer configurations. In our model

the polymer is a freely jointed chain ofN beads or monomers andN − 1 joints,

wherein each monomer is represented as a hard sphere. Two bonded beads i and j

are constrained to be within 10% of an average distance,ℓ, by an infinite square-

well potential:

ubond
i,i+1 =











∞, r ≤ 0.9ℓ

0, 0.9ℓ < r ≤ 1.1ℓ

∞, 1.1ℓ < r

(4.2)
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whereℓ = 1. Two non-bonded atoms i,j may interact by hard-sphere potential

(purely repulsive) with a hard-core radius:

unon−bond
i j =

{

∞, r ≤ σHS

0, σHS < r
(4.3)

whereσHS is the hard-sphere diameter of a monomer. In this work we setσHS = ℓ.

Using these parameters we have performed DMD simulations onhomopoly-

mers of length 50, 100, and 200 with the above potentials, as aconfirmation of

SAW statistics generated by the pivot algorithm mentioned above.

The system is simulated at a finite temperature (in practiceT was set to 10K

here, however since there is no interaction energy-scale for a purely self-avoiding

polymer, any finite temperature will generate the same equilibrium ensemble).

Temperature equilibration is achieved by the ghost particle methods. Moves are

generated by integrating Newton’s equations and conserving momentum and en-

ergy for inter-particle collisions. Statistics such as theprobability distribution of

the end to end distance are calculated by sampling 1,000,000 conformations for

each polymer chain length.

A plot of the end to end distribution for a walk of lengthN = 200, as generated

by the pivot algorithm, naive growth algorithm, and DMD simulations, is shown

in figure 4.3. As expected, the DMD simulations reproduce thesame statistics as

those of the pivot algorithm for a continuum SAW.

To determine an accurate measure of the volume occupied by a polymer, we

considered four different ways to enclose a specific conformation of polymer. Fig-

ure 4.4 depicts the four different models: (a) The end to end distance model, which

approximates polymer size by a sphere centered at the centerof mass of the poly-

mer, having radiusRete; (b) The embedding sphere model, which is a sphere with

its center at the c.o.m. of the polymer and radiusR =
∣

∣~r f −~rcom
∣

∣ where~r f is

the position of the farthest monomer from c.o.m.; (c) The Cartesian box model,

which is a box oriented in a fixed Cartesian frame of reference, with volume v

given by |xmax − xmin| × |ymax − ymin| × |zmax − zmin| wherexmin and xmax are the
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Figure 4.3: The end to end distance probability distribution of a continuum
SAW with N = 200 using the naive growth algorithm (black diamonds),
the pivot algorithm (green diamonds) and DMD simulations (brown di-
amonds). The naive chain growth algorithm with effective reflecting
boundary condition when dead-ends are encountered does notprovide
the correct statistics of a SAW. The effective absorbing boundary con-
dition of a self-avoiding walk shifts the distribution to larger values of
end to end distance. The pivot algorithm and DMD simulationsshow
essentially the same statistics.R is in units of angstrom.

x-components of the position vector of the monomers with smallest and largest

components along the x-axis correspondingly (the same definition applies iny and

z directions); (d) The principal box model, which determinespolymer volume us-

ing a box aligned along the principal axes of the polymer in each conformation,

having volumev = |r1max − r1min|× |r2max − r2min|× |r3max − r3min| wherer1min and

r1max are the components of the position vector of the monomers with smallest and

largest components along the first principal axis respectively (the same definition

applies in second and third principal axis directions).

The principal box volume correlates with the steric volume of the polymer,

but is always larger than the steric polymer volume (see figure 4.5). The steric
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molecular volume may be calculated by measuring how many vertices of a dense

cubic lattice happen to be within a region bounded by a surface determined by

tracing a probe of given radius over all of the monomers constituting the polymer.

Figure 4.4: The comparison between different ways of measuring the sizeof
a chain. (a) the end to end distance model, (b) the embedding sphere
model, (c) the Cartesian box model and (d) the principal box model.

Figure 4.6 compares the effective diameter probability distributions using dif-

ferent models of the size of a 100-mer. Employing the letter notation above de-

scribing the four size measures, the effective diameter representing the linear size

of the polymer for (a) is given byde f f = 2Re f f , for (b) byde f f = 2R and for (c) and

(d) by de f f = (6v
π )1/3. We choose this last equation rather thande f f = v1/3 in order

to compare diameters of effective spheres for all measures.To compare spherical

measures for all four methods shown in figure 4.6, we use an effective sphere for

methods (c) and (d) which has the same volume as the fixed reference frame or

principal axes box respectively. However it is the volume rather than the linear size

which enters into the analysis below.

For many conformations the end to end distance description does not accu-

rately represent the size statistics of a polymer, since theend to end distance of a
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Figure 4.5: Molecular volume (vmol) versus principal box volume (vgb). The
principal box volume correlates with the steric volume of the polymer,
but is always larger than the steric polymer volume. The steric molec-
ular volume may be calculated by measuring how many verticesof a
dense cubic lattice happen to be within a region bounded by a sur-
face determined by the tracing a probe of given radius over all of the
monomers constituting the polymer.vgb andvmol are in units ofÅ3.

polymer can be zero, whereas even in the most collapsed conformation the real size

of a polymer cannot be smaller than≈ ℓN1/3. The embedding sphere and Carte-

sian box models overestimate the size of the polymer, as can be seen in figure 4.6

and therefore cannot be considered as a good measure of the size of the polymer.

Moreover, we have calculated the probability distributionof the effective diameter

of the gyration tensor volume which isde f f = 2(
√

e2
1 + e2

2 + e2
3) wheree1, e2 and

e3 are the eigenvalues of the gyration tensor of the polymer. Asit can be seen

from figure 4.6 numerous conformations of the polymer have larger principal box

diameter than the effective gyration tensor diameter, which means that the gyration

tensor model underestimates the volume of the polymer. Therefore, for the rest of

this work we usede f f = (
6vpb

π )1/3 as the suitable linear size of the polymer, where

vpb is the volume of the principal box enclosing the polymer, andhenceforth we

replacevpb with v.
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Figure 4.6: The effective diameter probability distribution of a 100-mer.
Green: effective principal diameter probability distribution, Orange: ef-
fective random box diameter probability distribution, Blue: embedding
sphere diameter probability distribution, Magenta: the end to end dis-
tance probability distribution using the pivot algorithm,Black: radius of
gyration probability distribution and Brown: gyration tensor probability
distribution. Diameter is in units of angstrom.

The effective volume containing the polymer is then the volume of a box

aligned with its principal axes, that encloses all the monomers. We have performed

DMD simulations for homopolymers with different lengths and calculated the vol-

ume of the polymer in each conformation. Figure 4.7 displaysthe volume prob-

ability distribution of a 50-mer, 100-mer and 200-mer. By curve fitting the DMD

data, we have found that a universal expression that describes the volume probabil-

ity distribution of homopolymersP(v) is analogous toPSAW(Rete) except for a shift

in the volume variablev− v0:

P(v,N) = C(
v− v0

δv
)θ ′

e−A′( v−v0
δ v )

δ ′

(4.4)

The values ofA′, θ ′ and δ ′ in equation (4.4) are summarized in table 4.1. The
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quantityv0 is the principal volume of the collapsed conformation of thepolymer

which is related to the number of monomers,N, and the bond length,ℓ, asv0 =

cℓ3Nα whereα = 1.92±0.02 andc is a constant of order unity. The quantityδv

is given by
√

〈v2〉 = c′ℓ3Nγ with γ = 2.0±0.04.

Equation (4.4) includes a nonzero offsetv0 to account for the fact that the

polymer volume can never be smaller than the fully collapsedvolume. This term

is more appropriate for a metric accounting for polymer volume than for end to

end distance because the end to end distance can in principlebe zero while the

polymer volume cannot. The offsetv0 improves the fit to simulated data. Taking

equation (4.4) without the factor ofv0 results in the fit to the data given in figure 4.8.

The degrees of freedom in the equation increases from 134 (140 data points minus

6 degrees of freedomA′,θ ′,δ ′,γ , andv0 or c) to 135. This gives an F-value of 122,

so that the probability of expression (4.4) without the factor of v0 being correct is
1

F-value= 0.008.

To compare with the previous distributions such as the end toend distance

distribution, we definer = ( 3v
4π )1/3 to obtain the probability distribution of the linear

size of the polymer asP(r) = P(v(r)) |dv/dr|, which is a function of the form:

P(r,N) = 4πr2C(
r− r0

ζ
)θ exp(−A(

r− r0

ζ
)δ ) (4.5)

wherer0 is the linear size of the collapsed polymer and is given byr0 = clN∆ with

∆ = 0.64±0.02 andζ =
√

〈r2〉. The values ofA, θ andδ are summarized in table

4.1.

4.2 Thermodynamics of a Polymer

The grand potential is the natural free energy for describing mixtures of polymer

and osmolytes. We consider a box of fixed volume enclosing a protein and os-

molytes system, and a subsystem with a permeable boundary toosmolytes, but im-

permeable to the monomers of the polymer, as shown schematically in figure 4.9.

Entropic considerations are very important in investigating the effects of the

solvent on protein folding and polymer collapse. The folding dynamics involve a
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conformational search, guided by energetic bias, of all allowed states. The confor-

mational entropy as a function of the polymer volumev is given by

S(v,N) = S0− kB log(P(v,N)) (4.6)

whereS0 is the total entropy of the polymer andkB is Boltzmann’s constant. Now

consider a polymer in good solvent where the monomers are attracted to each other

such that two non-bonded monomers in contact have contact energy −ε . Two

monomersi and j are in contact if|i− j| > 3 and
∣

∣~ri −~r j

∣

∣ < rc whererc is an

interaction cutoff distance. In a mean field approximation the number of contacts,

n, of aN-mer with volumev is given by:

n(v) = zNη(v) (4.7)

where the constantz is the coordination number in a maximally compact configu-

ration, andη(v) is the packing fraction of the chain defined as:

η(v) = Nvm/v (4.8)

wherevm is the volume taken up by each monomer, andv is the volume of the

Table 4.1: Values of parametersA, θ and δ for (a) end to end probability
distribution of an ideal random walk, (b) end to end probability distri-
bution of an on-lattice SAW, (c) end to end probability distribution of
an off-lattice SAW using the pivot algorithm, (d) end to end probabil-
ity distribution of an off-lattice SAW using the naive growth algorithm,
(e) probability distribution of the linear size of the polymer using DMD
simulations (equation (4.5)), (f) volume probability distribution of the
polymer using DMD simulations in equation (4.4) and (g) volume prob-
ability distribution of the polymer using equation (4.4) without the factor
of v0 to best fit the DMD simulations.
a b c d e f g

A 1.5 0.144 0.057± 0.002 0.46± 0.01 2.70± 0.01 4.00± 0.01 6.90± 0.03

θ 0.0 2.269 2.40± 0.01 2.1± 0.01 2.38± 0.02 2.50± 0.02 7.50± 0.02

δ 2.0 2.43 2.85± 0.05 1.7± 0.02 2.70± 0.01 1.35± 0.01 1.20± 0.03
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principal box found previously. The interest in accurate representations of polymer

volume is justified by the fact that the number of pairwise contacts in a polymer

depends on the packing fractionη , which itself depends on the volume that the

polymer takes up.

In the mean-field approximation, the internal energy of the polymer is given

by:

E(v) = −εzNη(v) = −εzN2vm/v (4.9)

The free energyF(v,T ) of a homopolymer as a function of the polymer volume

v at a given temperature is given byE(v)−TS(v), where the entropyS(v) is given

in equation (4.6). In our model, the internal energy of the polymer E(v) is given

by the number of contacts times the energy per contact, thus:

F(v,T ) = −εn(r < rc,v)−T S(v) . (4.10)

Here the quantityn(r < rc,v) is the average number of residue pairs within a cutoff

distancerc, given the polymer takes up a volumev. A contact occurs when|ri −
r j| < rc.

In what follows, we find the mean number of contacts that wouldoccur by

chance for a polymer having volumev, n(r < rc,v). Because the number of contacts

varies between conformations, we found that the best statistics were obtained by

first finding the cumulative probability distribution for the number of contacts of

all conformations that had a volumeless than a cutoff volumevc. The number of

contacts for conformations having volumevc was then found as

n(rc,v) =
N(N −3)

2
∂

∂vc
P(r < rc,v < vc)

∣

∣

∣

∣

vc=v
(4.11)

whereP(r < rc,v < vc) is the cumulative probability of having a contact withinrc

for all conformations withv < vc.

We enumerated the number of contacts of a polymer using DMD simulations.

Figure 4.10 shows the cumulative probability for two non-bonded monomers with

|i− j|> 3 to be within a distancerc, i.e. P(|ri−r j|< rc). The curves were obtained

by calculating the distance between all pairs separated by three or more bonded
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monomers (|i− j| > 3) for all conformations with volumev less than the cutoff

volumevc and then normalizing to obtain the probability distribution.

Each curve in figure 4.10 corresponds to a given cutoff volume. An expression

that best describes the DMD simulation data can be written interms of complete

and incomplete gamma functions:

P(r < rc,v < vc) = C
ξ A

−(1+θ )
δ

δ

(

Γ(
1+ θ

δ
) − Γ(

1+ θ
δ

, f (v)(
r
ξ

)δ )

)

whereξ =
√

〈r2〉 and the functionf (v) is:

f (v) =
B

( v√
〈v2〉

)γ + D (4.12)

where constantsγ , B andD are equal to 1.21, 1.15 and 4.78 respectively. Since

P(r < rc,v < vc) is the cumulative probability, the average number of contacts for

conformations having volumev is then given by equation (4.11).

4.2.1 The Effect of Osmolytes on the Thermodynamics of a Polymer

In this section, we examine the statistical mechanics of mixtures of polymer and

neutral osmolytes, which are represented as hard sphere particles. The polymer

and osmolytes interact only by hard-sphere (HS) potential resulting in excluded-

volume effects, which we calculated using the free volume theory. HS systems are

efficient models that have been used to study dense gases and liquids, and com-

plex liquid systems [149]. By studying the HS system we neglect interaction en-

thalpy effects between polymer or protein and osmolyte [150], but we focus on the

often neglected excluded-volume features of osmolyte-induced stability. We be-

gin with the Percus-Yevick HS integral equation to determine the compressibility

of a dense hard-sphere gas as a function of the packing fraction. Thiele [151],

Wertheim [152], and Carnahan and Starling [153] have found an approximate

closed-form solution of the HS Percus-Yevick equation for the compressibility of

a dense hard-sphere gas:
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Z =
PV

NRT
=

1+ φ + φ2−φ3

(1−φ)3 (4.13)

HereZ is the compressibility andφ = No4πr3
o/3V is the packing fraction of hard

spheres with radiusro. On the other hand from the hard-sphere equation of state,

the free energy is given by:

F =

∫

dF = kBT N
∫

Z
φ

dφ (4.14)

By substituting equation (4.13) into equation (4.14) we obtain the free energy of a

system of hard sphere fluid:

F = T N

(

log(φ)+
2

1−φ
+

1
(1−φ)2

)

(4.15)

The first term in this expression is the free energy of an idealgas. In the low

packing fraction limit,φ → 0, the second and third terms in equation (4.15) become

negligible.

To apply the above expression into our model of mixture of polymer and os-

molytes it is important to note thatφ = No4πr3
o/3Va whereVa is the volume that

is available to osmolytes. Depending on the polymer configuration, Va varies as

a function of the number of contacts,n, which is itself taken to be a function of

v. The volume of the system that is excluded to the osmolytes decreases when a

contact forms, because the total depletion zone of two monomers decreases when

they are closer than 2(rm + ro) [154]. In our model we take the following form for

the available volume:

Va(v) = Vsystem −N
4π
3

(rm + ro)
3 + vdzn(v) (4.16)

whereVsystem is the total volume of the system (the outer box in figure 4.9),v is the

principal volume of the polymer,n(v) is given in equation (4.11), andrm andro

are the radii of monomers and osmolytes, respectively.vdz is a purely geometrical

parameter that counts the gain in the available volume when the depletion zones of

two monomers in contact overlap, and is given by [154]:
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vdz =

{

π(2r(rm + ro)
2− r3

6 ), 2rm ≤ r ≤ 2(rm + ro)

0, 2(rm + ro) < r
(4.17)

wherer is the distance between two (spherical) monomers.

Since there are no interactions between the polymer and the osmolytes, the

final expression for the free energy of the mixture of aN-mer andNo osmolytes in

a volumeVsystem can be written as

F = Fpoly(N,v)+ Fosm (No,Va(v)) (4.18)

The free energy expression decouples into two separate terms corresponding to

pure polymer subsystem and pure hard sphere fluid subsystem in a volumeVa. The

connection between these two terms is held merely in the dependence ofVa on v.

Figure 4.11 shows how the presence of osmolytes stabilizes the collapsed confor-

mations of a 50-mer. The contact energyε between monomers in the homopolymer

is taken to be 3kBT , and the osmolyte packing fractionφ = 0.3.

In figure 4.11 the polymer in implicit solution without osmolytes (magenta

plot) shows a free energy minimum at high principal volume ofthe polymer,v,

corresponding to an extended state. For osmolyte to polymermonomer size ratio

ro/rm = 0.7 (navy), the free energy has shifted to lower volumev = 120Å3, corre-

sponding to a stable collapsed polymer state. This shows that the presence of pure

HS osmolytes can induce polymer collapse by excluded volumeeffects. Even more

remarkable behavior is observed when the size of the monomeris decreased, while

fixing the volume fraction atφ = 0.3. The free energy profiles in figure 4.11 for

small osmolytes,ro/rm = 0.6 (black) andro/rm = 0.5 (maroon) show that the col-

lapsed configurations are even more strongly favored. Our results show that for a

given packing fraction of osmolytes, smaller osmolytes arebetter stabilizers. This

is in agreement with previous theoretical results, for example calculations done by

Takadaet al. confirms this conclusion [61, 62] and model calculations [66]. More-

over, Zhou has done both experimental and analytical studies on the size effects of

crowders on protein folding and his results confirm that smaller osmolytes (Dex-

tran 6KD, 10KD and 20KD) have stronger effect than larger osmolytes (Ficoll 70
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and Dextran 70KD, 100KD and 150KD) [155–157]. Tsaoet al. have also shown

that for hard sphere osmolytes, the smaller osmolyte have a larger protecting effect

per unit weight/volume concentration [158]. Saunderset al. have further investi-

gated the effect of polyol osmolytes with different molecular weights (80 to 504

g/mol) on two conformational equilibria of iso-1-ferricytochrome c and showed

that smaller polyols induce larger protein stabilization [159].
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Figure 4.7: Volume prob-
ability distribution
of a (a) 50-mer, (b)
100-mer and (c) 200-
mer. DMD simulations
are performed for
homopolymers with
N = 50,100,200 and
the volume of the
polymer in each con-
formation is calculated
(circles). By curve
fitting the DMD data,
it is found that a uni-
versal expression that
describes the volume
probability distribution
of homopolymersP(v)
is given by 4.4.v is in
units ofÅ3.
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Figure 4.8: Volume probability distribution of a 50-mer, and the fits using
4.4 with (blue) and without (red) the factor ofv0. It can be seen that the
model with more variables (the shift factorv0) provides a more accurate
description. The F-value is 122, with associated cumulative probability
of 0.008 by random chance.v is in units ofÅ3.

Figure 4.9: A schematic representation of the semi-grand canonical scheme.
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Figure 4.10: Cumulative
probability of a (a)
50-mer, different
curves from top to
bottom correspond to
vc = 200, 250, 350,
450, 650, 950̊A3, (b)
100-mer, different
curves from top to
bottom correspond
to vc = 1000, 1500,
3500Å3 and (c)
200-mer, different
curves from top to
bottom correspond
to vc = 2000, 3000,
4000, 6000, 13000̊A3.
rc is in units of
angstrom.
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Figure 4.11: Free energy of a 50-mer with and without osmolytes present,
as a function of polymer volume as defined by the volume of the prin-
cipal box. Magenta curve: without osmolyte; other curves have os-
molytes present with fixed packing fractionφ = 0.3, but varying os-
molyte sizes, and thus differing concentrations of osmolytes. Navy:
50-mer and osmolytes withro/rm = 0.7; Black: 50-mer and osmolytes
with ro/rm = 0.6; Maroon: 50-mer and osmolytes withro/rm = 0.5. v
is in units ofÅ3.
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Chapter 5

The Effect of Osmolytes on

Protein Folding

In this chapter I will derive the free energy of an isolated protein and investigate

the changes in the protein free energy when osmolytes, whichare modeled as hard

spheres are added to the system.

Proteins are polymer chains with selected attractive interactions between their

residues so that they fold into one or a few specific conformations [160–162]; min-

imal frustration enables proteins to acquire [163] and sustain [164] their native

structure, resulting in a globally funneled energy landscape guiding the conforma-

tional search [80, 165–172].1 The starting point of many theoretical models of

protein folding is the derivation of a free energy profile [173–178].

Our polymer model can be generalized to a protein model by adding a few ener-

getic terms to the polymeric energy. Following the formulation of Bryngelson and

Wolynes [164], [75] we assign an energy of−εp to a pair of amino acids when they

are in their native state and zero when they are not, which naively will resemble the

secondary structure energy. By entering explicit cooperativity into our model, we

mimic the idea that only formed secondary structure units can couple [177, 179].

Moreover, three-body interactions are added into the energetic contributions, by

including terms in the energy functional that are proportional to higher powers of

the number of native contacts than simply linear terms.

1A version of this chapter is in preparation for publication [6].
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In the previous section we found the total number of contactsas a function of

the size of the protein. The largest number of contacts corresponds to the native

protein or fully-collapsed polymer, where the protein or polymer has its smallest

volume, that isnmax = n(v0).

In Figure 5.1 we compare the largest number of contacts per residue of a pro-

tein suggested in our model and the number of bonds made per monomer in a

Hamiltonian walk ofN steps (on-lattice) which was studied by Douglas and Ishin-

abe [180]. For the most collapsed walk, the dependence of thenumber of bonds

made per monomer,z(N), in a Hamiltonian (dense) walk ofN steps, onN is clearly

due to the fact that monomers on the surface have less contacts than in the bulk.

For three-dimensional systems,z(N) is given approximately by:

z(N) ≡ 1
N

Int[2N −3(N +1)2/3 +3] (5.1)

where Int[] means the integer part. From equation (5.1) we see that the effect of

the surface on the number of contacts is quite important evenfor large macro-

molecules, asz(N) approaches its bulk value of two contacts per monomer rather

slowly, as∼ 2−3N−1/3.

We defineZ = n(v)/nmax as the fraction of total contacts per monomer in any

conformation. As mentioned above there is an attractive energy attributed to each

bond that is made between two non-local residues that takes care of the polymeric

energy. Moreover, we defineq = Q(v)/nmax as the fraction of native contacts

present in an arbitrary conformation of the protein whereQ(v) is the number of

native contacts in a given conformation andnmax is the maximum number of native

contacts. Finally the internal energy of the protein can be written in the mean-field

approximation as [181]:

E(q,Z) = −nmaxεpq

− nmaxεs[(1−α)q+ αq2]

− nmaxεt [(1−α)Z + αZ2]

− nmax
ε2

z

2T

{

1− [(1−α)q+ αq2]2
}

(5.2)
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Figure 5.1: The largest number of contacts per residue of a protein calcu-
lated in our model (red) and the number of bonds made per monomer
in a Hamiltonian walk ofN steps (blue) which was studied by Douglas
and Ishinabe [180]. For the most collapsed walk, the dependence of the
number of bonds made per monomer,z(N), in a Hamiltonian (dense)
walk of N steps, onN is clearly due to the fact that monomers on the
surface have less contacts than in the bulk. For three-dimensional sys-
tems,z(N) is given approximately by (5.1).

whereεs are the energetic parameters of the protein,εs is an energy scale for native

contacts,εt is an energy scale for contacts of any kind (native or non-native), and

εz is an energy scale for non-native contacts.α is a measure of the amount of

three-body force present, whenα = 0 there are purely two-body forces, andα =

1 indicates purely many-body (higher than two-body) forces. . We assume that

each amino acid residue can takeν discrete states. The parameterν resembles the

coordination number of a lattice. We take 10 available states per residue consisting

of one native state and 9 unfolded states. The polymeric partof the entropy of a

protein is consistent with the polymer entropyS(Z) which was derived in previous

chapter. In order to findS as a function ofZ we need to substitutev(Z) into S(v)
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wherev(Z) is the inverse function ofZ(v) derived previously), and againS0 =

Nlog(ν).

Furthermore, we have to count for changes in entropySmix due to different

ways of choosingnmaxq native contacts fromnmaxZ total contacts.

Smix = nmax(Z logZ −q logq− (Z−q) log(Z −q)) (5.3)

As discussed by Plotkinet al. [177, 182] the reduction in entropySb accounts for

the fact that a particular set of native contactsnmaxq should be formed and finally

the entropy decreaseSab of having a set of native contactsnmaxZ−nmaxq that should

not be formed.

Sb =
3
2

nmaxq(logC + logq) (5.4)

and

Sab = nmax
1
C

∫ CZ

Cq
dx log(1− x3/2) (5.5)

whereC is a constant of order 1. The free energy of the protein is thengiven by:

F(Z,q) = E(q,Z)−T(S(Z)+ S0+ Smix + Sb + Sab) (5.6)

Figure 5.2 shows the free energy of a coarse-grained proteinwith 50 amino acids

andC = 0.6,α = 0.1,εp = 2.24,εt = 0.6,εz = 0.9,T = 1.51K. We can see that the

free energy has two minima at folded and unfolded states of the protein.

We can now study the effect of the presence of neutral osmolytes on the pro-

tein folding. By employing the Carnahan-Starling free energy for osmolytes as

mentioned formerly, the free energy of the system consisting of the protein and

osmolytes is given by:

F = Fprot(Z,q)+ Fosm(No,Va) (5.7)

whereVa = Vsystem −N 4π
3 (rm + ro)

3 + nmax(vdzzZ + vdzqq).

The parametersvdzz andvdzq are average depletion zone volume for total and

native contacts correspondingly which are given by equation (4.17). Forrm =
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Figure 5.2: Free energy of a coarse-grained protein with 50 amino acids
using equation (5.6) withC = 0.6,α = 0.1,εp = 2.24,εt = 0.6,εs =
0.5,εz = 0.9,T = 1.51K. We can see that the free energy has two min-
ima at folded (q = 0.75,Z = 0.9) and unfolded (q = 0, Z = 0.65) states
of the protein.

0.48Å andro = 0.24Å we getvdzz = 1Å3 andvdzq = 2.2Å3 (the values forrm andro

are unphysical values and are used purely in the context of the model). Figure 5.3

shows that by adding neutral osmolytes with packing fraction φ = 0.12, the free

energy minimum shifts to highZ andq, and the folded state of the protein becomes

the stable state.
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Figure 5.3: Free energy of a coarse-grained protein with 50 amino acids with
C = 0.6,α = 0.1,εp = 2.24,εt = 0.6,εs = 0.5,εz = 0.9,T = 1.51K in
the presence of neutral osmolytes with packing fractionφ = 0.12 using
equation (5.7). We can see that the free energy minimum shifts to high
Z = 0.9 andq = 0.85, and the folded state of the protein becomes the
stable state.

5.1 Interactive Osmolytes

The stabilizing property of osmolytes has been shown to correlate with the prefer-

ential exclusion of osmolytes from unfolded protein domains, resulting in the pref-

erential accumulation of water (preferential hydration) near an unfolded protein

[183, 184]. This implies a net repulsive interaction between stabilizing osmolytes

and protein, and indeed preferential exclusion has been shown to arise from repul-

sive interactions between osmolytes and the backbone of proteins [49, 185, 186].

Repulsive osmolyte-backbone interactions would raise theenthalpy of a protein,
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and the increase in enthalpy would be larger for the unfoldedstate due to its larger

solvent exposed backbone area. Consequently the unfolded state would be more

destabilized, stabilizing the folded native state.

In contrast to protective osmolytes that protect cells against environmental

stresses such as high temperature, desiccation and pressure, denaturants, such as

urea and guanidinium chloride (GdmCl), destabilize proteins. The interaction be-

tween urea and the protein is attractive leading to the preferential accumulation of

urea in the vicinity of proteins [187]. The attractive urea-protein interactions lower

the free energy of both the native and unfolded states, but due to its larger solvent

exposed surface area, the free energy of the unfolded state is lowered more compare

to folded state [49]. Consequently, the addition of urea to protein solutions shifts

the equilibrium to the unfolded state. The attractive interactions between urea and

protein must overcome the entropic stabilization of the protein mentioned above.

In the process of denaturation proteins or nucleic acids fail to preserve their tertiary

structure and secondary structure by application of some external compound, such

as a strong acid or base, a concentrated inorganic salt, an organic solvent such as

alcohol and chloroform. Denaturation of the proteins in a living cell cause disrup-

tion of cell activity whose characteristics range from lossof solubility to communal

aggregation and possibly cell death.

So far we have studied the effect of neutral osmolytes, however; as we dis-

cussed above crowding agents in general can interact with amino acids of a protein.

To calculate the effect of these interactions on protein stability, we need to measure

the surface area of the protein as a function of its total and native contacts. In the

completely extended conformation, the surface area of aN-mer protein is given by:

A = 4πN(rm + rc)
2 (5.8)

where as mentioned aboverm and rc are the radius of monomers and crowding

agents respectively. When a bond forms between two monomers, the surface area

of the protein reduces by:

∆A = πr2 (5.9)

for 2rm ≤ r ≤ 2(rm + rc) wherer is the distance between two monomers in contact
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[188]. Therefore, for an arbitrary conformation of the protein with nmaxZ number

of total contacts andnmaxq number of native contacts the surface area is given by:

A = πN
(

4(rm + rc)
2−nmax(r2

ZZ + r2
qq))

)

(5.10)

wherer2
Z andr2

q are averager2 for total contacts and native contacts. The difference

between these two parameters comes from the fact that non-native contacts have a

larger cut-off distance.

The interaction free energy here is very similar to the free energy of the ad-

hesion of gas molecules to a 2D lattice sites with binding energy εpo. However;

the number of adsorbing sites available on the surface of a single protein that is

embedded in a sea of osmolytes with packing fraction of more than 30% is much

less than the number of crowding particles, and therefore toa good approximation

we can assume that all the adsorbing sites on the protein surface are always occu-

pied by an osmolyte. This means that the number of states is 1 and the adsorption

entropy is zero. Hence we have:

Fint = 〈Eads〉 = εpoNs
e−εpo/kBT

1+ e−εpo/kBT
(5.11)

whereNs is the number of the adsorbing sites on the protein surface and is given

by A
πr2

c
. The free energy of the mixture is:

F = Fprot(Z,q)+ Fosm(No,Va(Z,q))+ Fint(Z,q) (5.12)

Figure 5.4 shows the stability (= Ff olded −Fun f olded ) as a function ofεpo.

The reduction in entropy of the unfolded state due to osmolytes results in a

loss of folding cooperativity. This can be seen by investigating the heat capacity

as a function of temperature as osmophobicity of the solvent, εpo, is varied. It

is clearly seen that there is a loss in folding cooperativitywhen osmolytes are

stabilizing the native state, again due to the reduction in conformational entropy of

the unfolded state. Conversely, there is an increase in folding cooperativity in the

presence of denaturant due to swelling of the unfolded protein. Figure 5.5 shows

the heat capacity plot of a protein with 50 residues in a box ofcrowding agents

with packing fraction 30% andεpo = −0.2,0,0.2 using:
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Figure 5.4: The stability of a protein with 50 residues as a function ofεpo in
units ofT .

Cv =
d 〈E〉
dT

=
d

dT
E f exp(−Ff /kBT )+ Eu exp(−Fu/kBT )

exp(−Ff /kBT )+exp(−Fu/kBT )
(5.13)

whereE f (equation (5.2) withq = 0.1 andZ = 0.6) andEu (equation (5.2) with

q = 0.7 andZ = 0.9) are the internal energy of the protein in folded and unfolded

state correspondingly andFf (equation (5.12) withq = 0.1 andZ = 0.6) andFu

(equation (5.12) withq = 0.7 andZ = 0.9) are the free energy of the folded and

unfolded protein correspondingly.

We can compare our analytical result with the DMD all-atom simulation of

the Trp-cage protein, a designed 20-residue protein. The initial heavy-atom po-

sitions were obtained from the NMR structure (structure 1 ofPDB 1L2Y34) and

the missing polar hydrogen molecules are constructed as in [133]. The resulting

structure is comprised of 189 heavy atoms and polar hydrogenatoms (non-polar

hydrogen atoms are not represented), which in the discontinuous model are repre-

sented as hard spheres. The energetic parameters that are used in the simulation

are explained in next chapter.
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Figure 5.5: The heat capacity of a coarse-grained protein with 50 amino acids
in a box of crowding agents with packing fraction 30% withro/rm =
0.9 andC = 1,α = 0.1,εp = 2.24,εt = 0.6,εz = 0.9. Different curves
correspond toεpo = −0.2 (black),εpo = 0 (red) andεpo = 0.2 (blue).
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Chapter 6

Discontinuous Molecular

Dynamics Simulations

In this chapter an all-atomGo simulation of Trp-cage protein is discussed em-

ploying discontinuous molecular dynamics in an explicit minimal solvent, using a

single, contact-based interaction energy between proteinand solvent particles.

Molecular dynamics (MD) is a very popular technique for simulating the prop-

erties of large systems of molecules.1 By recurrently solving Newton’s equations

of motion, the trajectories of a group of atoms (102 −106) are computed. As the

system evolves in time, its macroscopic properties can be calculated by taking av-

erages of instantaneous properties. In general molecular dynamics simulations are

categorized as continuous molecular dynamics and discontinuous molecular dy-

namics (DMD). In the former, a continuous potential energy field such as Lennard-

Jones potential generates the force that acts on molecules whereas in DMD, the

potential is discontinuous, for instance the hard-sphere potential and the force is

impulsive. Since the time integration in DMD is very simple,it provides the op-

portunity to explore phenomena that require long time scales using relatively inex-

pensive hardware.

An effective denaturant or osmolyte solution can be constructed by making the

interaction energy attractive or repulsive. A statisticalmechanical equivalence is

demonstrated between this effective solvent model and models in which proteins

1A version of this chapter has been submitted for publicationfor publication [7].
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are immersed in solutions consisting of water and osmolytesor denaturants. Anal-

ysis of these studies yields the following conclusions: 1) Osmolytes impart extra

stability to the protein by reducing the entropy of the unfolded state. This result

is in agreement with previous experimental studies, for example Gahlet al have

shown that the physiological osmolyte TMAO stabilizes onconase (ONC) by de-

creasing the entropy of the unfolded state through a solvophobic effect [189] and

Milev et al have shown that both glycerol and sorbitol lead to a large entropy loss

in sequence-specific protein-DNA association of a complex composed of the in-

tegrase Tn916 DNA-binding domain and its target DNA duplex [190]. Zhou also

employed a very simple model to calculate the effect of macromolecular crowding

on folding entropy [155]. 2) Unfolded states in the presenceof osmolyte are more

collapsed than in water. Dharet al have combined experiment and simulation to the

effect of Ficoll 70 on the structure and function of phosphoglycerate kinase (PGK)

[191]. In their paper Dharet al show that the radius of gyration of PGK decreases

as the volume fraction of Ficoll 70 increases. Moreover Stagg et al have investi-

gated the consequences of Ficoll 70 on the 148-residue single-domainα /β protein,

Desulfovibrio desulfuricans apoflavodoxin, and observed adecrease on the size of

the protein (radius of gyration) as the concentration of Ficoll 70 increases [192]. 3)

The folding transition in osmolyte solutions tends to be less cooperative than in wa-

ter, as determined by the ratio of van’t Hoff to calorimetricenthalpy changes. The

decrease in cooperativity arises from an increase in nativestructure in the unfolded

state, and thus a lower thermodynamic barrier at the transition midpoint. Auton

et al have theoretically and experimentally calculated them value of RCAM-T1

induced by TMAO, proline and urea [193]. Them value is a measure of the fold-

ing transition cooperativity and has units ofkcal/mol.M−1. They have confirmed

that the folding cooperativity increases in the presence ofurea and decreases in the

presence of TMAO and proline. Moreover, Baskakovet al have shown that TMAO

induces RCAM-T1 to fold in a cooperative manner, reaching a maximum in fold-

ing at TMAO concentrations above 2.5 M [194]. Henkelset al also have shown

that Bacillus subtilis RNase P (P protein) which is predominantly unfolded in 10

mM sodium cacodylate at neutral pH undergoes a cooperative folding transition

upon addition of TMAO [195]. 4) Weak denaturants destabilize small proteins not

by lowering the unfolded enthalpy, but primarily by swelling the unfolded state
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and raising its entropy. 5) The folding transition in denaturant-containing solutions

is more cooperative than in water. This result is in agreement with previous ex-

perimental results, for example Autonet al have shown that RCAM-T1 folding is

more cooperative in the presence of urea [193]. 6) Transfer to a concentrated os-

molyte solution with purely hard-sphere steric repulsion significantly stabilizes the

protein, due to excluded volume interactions not present inthe canonical Tanford

transfer model. 7) While a solution with hard-sphere interactions adds a solvation

barrier to native contacts, the folding is nevertheless less cooperative for reasons

1-3 above, because a hard-sphere solvent acts as a protecting osmolyte.

The representative protein used in this work to illustrate the effects of solvent

quality is a DMD all-atom model of the Trp-cage protein [133], a designed, 20-

residue, truncated construct exhibiting cooperative folding to a stable structure at

physiological pH. Initial heavy-atom positions were obtained from the NMR struc-

ture (structure 1 of PDB 1L2Y(35)) and the missing polar hydrogen molecules are

constructed as in reference [133]. AGo model potential [196] is implemented by

setting the non-bonded square-well depthεpp to −εGo for all i j pairs in the equili-

brated structure with van der Waals overlapr < 1.2σ vdW
i j , whereσ vdW

i j is the sum

of the van der Waals (vdW) radiiri + r j for each atom; for all other non-bonded

i j pairs, the square-well depth is set to 0, so that these atom pairs are purely re-

pulsive. The energy scale is set by theGo contact energy as in previous DMD

studies [133, 197]; thus simulations are performed with theGo contact energyε∗
pp

set to−ε∗
Go = −1, and all energies and temperatures are scaled in units ofεGo

(E∗ = E/εGo andT ∗ = kBT/εGo).

The Go model protein in explicit solvent is implemented by placingthe Trp-

cage protein in a 40̊A×40Å×40Å box, along with a variable number of spherical

solvent molecules randomly inserted without hardcore overlaps. Standard peri-

odic boundary conditions are implemented. A typical simulation consisted of 1000

spherical solvent particles of radius 1.5Å (the approximate radius of water). This

is about half the number of water molecules in a 55M solution for a (40Å)3 box.

We employ such a dilute concentration for computational convenience; physical

concentrations have collision times sufficiently short as to make such simulations

prohibitively slow. Diluting the concentration weakens the effects that would be

observed by varying solvent qualities from those at 55M, that is, this simplification
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effectively places lower bounds on any trends that we predict would be observed.

For this reason we find the approximation acceptable as it only strengthens the

conclusions of this study.

Solvent molecules interact with both protein moieties and with each other by

a square-well potential with well position given by 0.8σ xs
i j < r < 1.2σ xs

i j and well

depth given by the parameterεxs or ε∗
xs = εxs/εGo wherex may be either a protein

atom p or another solvent residues. If r < 0.8σ xs
i j the potential is infinity. For

solvent-solvent interactions,σ ss
i j is the vdW diameter of the solvent, which we gen-

erally set to 3.0Å, roughly the size of a water molecule.ε∗
ss is the solvent-solvent

square-well depth in units of theGo contact energy. For solvent-protein interac-

tions,σ ps
i j = (σ vdW

i +σ water
j )/2 is the average vdW diameter of the protein-solvent

i j pair, whereσ vdW
i is the vdW diameter of theith atom of the protein according

to CHARMM potential set 19 [147], andσ water
j = 3.0Å is the vdW diameter of the

jth water molecule.ε∗
ps is the protein-solvent square-well depth in units of theGo

contact energy.

The quantityε∗
ps is a measure of the solvent quality. As shown below through

a correspondence between explicit and implicit solute, it is a well-defined function

of solute interactions with the protein. In this study the solvent quality is varied

from a minimum value of−0.8 representing a strongly denaturing aqueous urea

solution, to a maximum value of+1.0 representing a strongly protein-stabilizing

aqueous osmolyte solution. We may considerε∗
ps = 0 as representing a reference

solution of “pure-water” (this is still stabilizing for theprotein sinceε∗
pp = −1).

The solvent-solvent square-well depth is generally taken to beε∗
ss = −1, reflecting

an overall preference for solvent particles to interact with each other at least as

favourably as with the protein(ε∗
ss < ε∗

ps).

6.1 Free Energy and Entropy Functional

The free energy calculations used here are based on standardmultiple-histogram

method [198–201], which calculates thermodynamic quantities by approximating

the density of statesg(ε) (that is, the number of states with energyε) from simula-

tion data. This gives the partition functionZ(x) = Σ∗g(ε ,x,∆x)exp(−βε) where∗
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indicates a summation over all energy states with the order parameter constrained

to values ranging fromx to x+ ∆x, andg(ε ,x,∆x) is the density of state of energy

with the order parameter rangex to x+∆x. Thermodynamic quantities only depend

on the bin size∆x by an additive constant, so long as∆x is sufficiently small in the

traditional coarse-graining sense. The free energy then isgiven by:

F(x) = −kBT logZ(x) = −kBT logP(x)+ F (6.1)

whereP(x) is the probability the system is within the order parameter rangex to

x+ ∆x, andF = −kBT logZ is the total free energy. The internal energy is:

U(x) = 〈E(x)〉 = Σ
εg(ε ,x,∆x)exp(−βε)

Z(x)
(6.2)

and the entropyS(x) = (U(x)−F(x))/T .

In this work we use the non-local native fraction of contactsQ as an order

parameter, defined by first counting all atom pairs in the native structure that are

within 1.2 times the sum of their hard-core radii, and between residues i j, such that

|i− j| > 3. This gives 276 contacts in the native state. The value ofQ in a given

(partly folded) configuration is the fraction of these contacts present, and varies

from 0 (completely unfolded) to 1 (completely folded). A binsize ∆Q = 0.02

was used. As mentioned earlier, in here the protein internalenergy includes intra-

protein energy and protein-solvent energy, but not solvent-solvent interaction en-

ergy. The computed energyu∗(Q), free energyf ∗(Q), and entropys∗(Q) functions

are in units of theGo contact energy.

6.2 The Correspondence between Explicit and Implicit
Osmolyte Models

We are interested in the effects of osmolytes on polymeric species in solution, in-

cluding homopolymers and proteins. The system consists of protein or polymer

(p), solvent such as water (s), and osmolyte solute (o). There are 6 relevant inter-

action enthalpies corresponding to the pair interactions between the above species:

εss,εpp,εoo,εpo,εps,εso. These interaction energies along with temperatureT are
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the relevant energy scales in the problem. There are also 3 length scales in the prob-

lem corresponding to the sizes (radii) of the various species or their constituents:

rp,rs,ro corresponding to the monomer, solvent, and osmolyte radius. In the ap-

proach described below, these radii simply correspond to different coordination

numbers for each of the species.

A solution of water and osmolyte may be considered as an effective medium

with modified solvent interactions so that the new system canbe treated with just

3 energy scales:ε∗
ss,ε∗

pp,ε∗
ps. To compare the simulation results to an analytic the-

ory that treats osmolyte particles explicitly, we make the following formal corre-

spondence between explicit and implicit osmolyte models. Given the six explicit-

system (ES) parametersεss,εpp,εoo,εpo,εps,εso, we seek the three implicit-system

(IS) parametersε∗
ss,ε∗

pp,ε∗
ps that would give the same average interaction probabil-

ities for the system. The mean number of interactionsNi j between speciesi and

j for the explicit system can be found from the sum rules for thetotal number of

nearest neighbors:

qpNp = 2Npp + Nps + Npo

qsNs = 2Nss + Nps + Nso

qoNo = 2Noo + Npo + Nso

(6.3)

whereqi is the coordination number of speciesi. The 3 quasichemical equations of

mass balance for the reactionspo + so ⇋ ps + oo, so + so ⇋ ss + oo, po + po ⇋

pp+ oo, which give equations of the form:

NpsNoo

NpoNso
= e−β(εps+εoo−εpo−εso) (6.4)

There are 3 independent rate equations, giving along with a total of 6 equations

for the 6Ni j. Several approximations are made in the above heuristic approach.

The different sizes of the particles are only manifested in the different coordination

numbers. More accurate models would modify the sum rules to more accurately

account for the geometry of nearest neighbors, which would also result in modi-

fied stoichiometric coefficients in the mass balance equations. The parameterεpp
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should be interpreted as a chemical potential, because the conformational entropy

for protein monomers is smaller than that for free osmolyte or solvent particles.

To map to the implicit system, first let the IS particle numbers be given by:

N∗
p = Np, andN∗

s = Ns + No. Adding the solvent and solute equations in the sum

rules for the total number of nearest neighbors (equation (6.3)) gives a relation

between the coordination numbers and solvent particles which can be mapped to

the implicit system:

qsNs + qoNo = 2(Nss + Noo + Nso)+ Nps + Npo (6.5)

and

q∗s N∗
s = 2N∗

ss + N∗
ps (6.6)

Equating the numbers on the left hand side of (6.5) and (6.6) gives the co-

ordination number for effective solvent particle asqsxs + qoxo, i.e. the solvent

and osmolyte coordination numbers weighted by their respective mol fractionsxi.

Equating protein-protein, protein-bath, and bath-bath contacts in both models gives

the correspondence betweenNi j andN∗
i j:

N∗
pp = Npp

N∗
ss = Nss + Noo + Nso

N∗
oo = Nps + Npo (6.7)

TheN∗
i j then determine the transfer energy in the IS model through:

N∗
ppN∗

ss

(N∗
ps)

2 = e−β(ε∗pp+ε∗ss−2ε∗ps) (6.8)

The other 2 equations determining the 3 energy scales in the IS model may be

found from the conservation of total energy between the two models:

N∗
ppε∗

pp + N∗
ssε∗

ss + N∗
psε∗

ps = Σi, jNi jεi j (6.9)
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And by the ansatz that the total bath interaction energy (or equivalently protein-

bath interaction energy) be the same in both models:

N∗
ssε∗

ss = Nssεss + Nooεoo + Nsoεso (6.10)

Equations (6.8)-(6.10) then determineε∗
ss,ε∗

pp,ε∗
ps. For example, a system with

εss,εpp,εoo,εpo,εps,εso = −1.25,−1.1,−0.4,1.1,0.25,−0.8 in units ofkBT , with

qp,qo,qs = 8,6,4 and mol fractionsxp,xo,xs = 0.05,0.2,0.75 has effective energy

scalesε∗
ss,ε∗

pp,ε∗
ps = −1,−1,0.4; a set of parameters that we often use in our sim-

ulations. We have thus shown that for any explicit osmolyte-solvent system, there

exists an effective solvent model that captures the thermodynamics of the original

system.

6.3 Results

6.3.1 Simulations

In this work, the Trp-cageGo model in implicit solvent, where the effects of wa-

ter is incorporated into the intra-protein interaction energy, is used as a reference

protein system (6.1A). The system is simulated by discontinuous molecular dy-

namics, with the initial Maxwell-Boltzmann distribution of particles defining the

temperatureT ∗. The system exhibits two-state behaviour as shown by the heat ca-

pacity plot of figure 6.2a, which has a single first-order-like phase transition peak.

The folding temperatureT ∗
f = 4.0, at the heat capacity maximum, separates the

low temperate native state (N) from the high temperature unfolded (U) state. The

plot was obtained by equilibrium simulations at temperatures fromT ∗ = 2.0 to

T ∗ = 6.0. The error bars were obtained by performing fivet∗ = 60000 (scaled time

duration) independent runs at each temperature. To improvethe accuracy near the

folding temperatureT ∗
f = 4.0, where the fluctuation is high,t∗ = 300000 five runs

were performed atT ∗ = 3.8,4.0,4.2, which reduced the size of the error bar near

the folding temperature. However,C∗ versusT ∗ plots obtained from the multiple-

histogram method vary negligibly with simulation length aslong as a lower time

limit (for the Trp-cage modelt∗ = 60000) is exceeded, thus the results are statisti-
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cally reliable (we usedC∗ =
〈E∗2〉−〈E∗〉2

T ∗2 ).

Figure 6.1: A: Ground-state native structure of the all-atomGo model of the
Trp-cage protein; B: Denatured (unfolded) Trp-cage in ureasolution; C:
Folded Trp-cage in osmolyte solution.

Figure 6.2b shows the probability distribution versus energy at the folding tem-

perature. The probability distribution is bimodal, with peaks at the unfolded and

folded energy, no detectable specific intermediate state, and attenuated population

between folded and unfolded states indicating a weakly two-state transition. We

show below that an effective solvent with osmolyte present increases the folding

temperature of the Trp-cage, and decreases the cooperativity of the transition, while

an effective solvent modeling the presence of denaturant decreases the folding tem-

perature and increases the cooperativity.

6.3.2 A Hard-sphere Solvent Induces a Desolvation Barrier between
Native Contacts, but Decreases Folding Cooperativity Relative
to the Implicit Solvent Model

Figure 6.2b shows the distribution of energy in the implicitsolvent model at the

folding temperature (solid), as well as distribution of energy of a “reference sol-

vent” model at its own transition midpoint (dotted). The reference solvent is self-

attractive (ε∗
ss = −1), but has hard-sphere interactions with the protein (ε∗

ps = 0).

One can see here that the distribution of energy of the hard-sphere solvent is less

cooperative than that of the implicit solvent model. However the protein in hard-
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Figure 6.2: (a) Reduced Heat capacity (C∗ = C/kB) versus reduced temper-
atureT ∗ of Trp-cageGo model with implicit solvent. The plot is ob-
tained by using the multiple-histogram method. The data points and
error bars are averages taken from the five independent runs at each
temperature. (b) Probability distributions of energy for protein-protein
plus protein-solvent interactions, obtained by the histogram method, for
several solvents at their respective folding temperatures(implicit sol-
vent: T ∗

f = 4.0, neutral solvent withε∗
ps = 0: T ∗

f = 4.55, protective
osmolyte solvent withε∗

ps = 0.4: T ∗
f = 5.08, denaturing osmolyte sol-

vent with ε∗
ps = −0.4: T ∗

f = 3.913). For explicit solvents, the energy
generally includes protein-solvent interaction energy, however for the
implicit and neutral hard-sphere solvent this contribution to the energy
is zero. Protective osmolytes shift to the higher energies and show less
cooperative transition while denaturing osmolytes shift to lower ener-
gies and show more cooperative transition. Comparing the neutral and
implicit solvent histograms, the native ensemble shifts tohigher energy
because it has less overall native structure due to the less cooperative
folding transition. The unfolded ensemble also shifts to the right be-
cause even though there is a tendency to have more native longrange
contacts, there are less local contacts.

sphere solvent still exhibits solvation barriers for native protein contacts (see figure

6.2a inset). Solvation barriers generally increase folding cooperativity, essentially

by reducing the conformational space sampled by the proteinin partially unfolded

states, however native-centric modeling alone neglects other potential effects of

the solvent on the unfolded ensemble. One important effect is the reduction of
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polymer entropy in the unfolded state by induced polymer collapse, which results

in an increased propensity for native and non-native contact formation. On the

other hand a denaturing osmolyte such as GdHCl has attractive interactions with

the protein, which results in expansion of the unfolded state, and increased folding

cooperativity. We describe these effects in more detail below.

6.3.3 Effects of Osmolytes and Denaturants on Stability, Polymer
Collapse, and Folding Cooperativity

Figure 6.3A showsC∗ versusT ∗ plots of Trp-cageGo model immersed in 1000

spherical solvent molecules with hard-sphere radiusrs,hs = 1.5Å (about the size of

a water molecule) confined in a(40Å)3 periodic box. For this system the solvent-

solvent contact energy is fixed atε∗
ss = −1, with the solvent-protein contact en-

ergy varying fromε∗
ps = −0.6 (strong urea solution) toε∗

ps = 0.8 (strong osmolyte

solution). For the neutral solvent (ε∗
ps = 0) the folding temperature increases to

T ∗
f = 4.5 and the heat capacity peak has decreased toC∗

peak = 300 in compari-

son toC∗
peak = 390 for the Trp-cage in implicit solvent model (figure 6.2a).The

increase in the folding temperature as compared to the implicit solvent model in

figure 6.3A, despite zero solvent-protein contact energy suggests that the change

in thermodynamic property is due to excluded volume effects. That is, this signif-

icant change in stability is due to volume effects not accounted for in the Tanford

transfer model ([14]), which is based upon interactions at the protein-solvent in-

terface and thus has free energies scaling with solvent-accessible surface area, and

energy of solvent-protein interaction. Forε∗
ps = 0 there is no energy scale in the

problem. For the osmolyte solvents (poor solvent), in whichsolvent molecules are

repulsive to the protein (ε∗
ps > 0), the folding temperature increases progressively

to T ∗
f = 5.3 for ε∗

ps = 0.8, and the heat capacity peak also decreases progressively

to C∗
peak = 200 for ε∗

ps = 0.8. The addition of repulsive osmolyte solvents (bad

solvents) stabilizes the Trp-cage, since the shift of the heat capacity peak indicates

the native state is stable up to a higher temperature. For urea-like solvents (good

solvent), in which solvent molecules are attracted to the protein (ε∗
ps < 0), the fold-

ing temperature decreases progressively toT ∗
f = 3.5 for ε∗

ps =−0.6. The attractive

urea-solvent interactions destabilize the native structure so that the Trp-cage un-

folds at lower temperatures than for the reference (water-like) solvent withε∗
ps = 0.

89



The set of temperaturesT ∗
f of heat capacity peaks in figure 6.3A and their corre-

sponding interaction energiesε∗
ps define a phase boundary between native (N) and

unfolded (U) states. A solvent quality phase diagram can thus be plotted in figure

6.3B. This phase diagram illustrates that our protein in explicit solvent model re-

produces protein stabilization/destabilization by osmolyte/urea, since the N state

becomes more stable as the quality indexε∗
ps increases (that is becomes more like

an osmolytic solvent).

Figure 6.3: (A) C∗ versusT ∗ of Trp-cage in solvent for protein-solvent con-
tact energyε∗

ps = 0 (solid line), ε∗
ps = 0.2,0.4,0.6,0.8 (dashed lines),

ε∗
ps = −0.2,−0.4,−0.6 (dotted lines),ε∗

ss = −1 for all solvents. (B)
Solvent quality temperature (T ∗) versus solvent quality (ε∗

ps) phase dia-
gram. N denotes region where the native is stable, and U, region where
the unfolded state is stable. The phase boundary (solid line) is deter-
mined by folding temperatureT ∗

f obtained from histogram analysis of
the simulation data. The two symbols in the figure indicate two systems
with different solvent conditions:O, location in the phase diagram of
theGo model in implicit solvent; and∆, location in the phase diagram
of theGo model in hard sphere solvent (ε∗

ps = ε∗
ss = 0).

For each of the solutions plotted in figure 6.3A, the thermal average radius of

gyrationRGY of the unfolded states withQ < 0.2 was recorded at the corresponding

folding temperature; the results are plotted in figure 6.4A.The plot clearly shows

that unfolded states become more collapsed as the solvent models one containing
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osmolyte (i.e. asε∗
ps increases to positive values), and more expanded or swollenas

the solvent models one containing denaturant (more negative ε∗
ps). Inset images of

figure 6.4A show representative snapshots illustrating that unfolded states become

more collapsed as solvent quality decreases (asε∗
ps increases). Error bars in the

plot are obtained from the standard deviation of theRGY values from simulations

of half the total length of those used to obtain the plotted data points. In contrast,

folded configurations withQ > 0.6 do not show significant variation with solvent

quality parameterε∗
ps (data not shown). The trend in figure 6.4A is also consistent

with experimental evidence that in the presence of osmolytes, unfolded conforma-

tions of proteins become more compact, while folded conformations are unaffected

([58–60]).

We also plot the cooperativity of the transition versusε∗
ps in figure 6.4B. The

cooperativity is defined by the ratio of the van’t Hoff enthalpy over calorimetric

enthalpy of the folding transition ([202–205]). We show in figure 6.6 that the inter-

nal enthalpy of protein-protein plus protein-solvent interactions is a nearly linear

function of Q, hence we useQ here as a proxy for the enthalpy and calculate the

various enthalpies as follows. The van’t Hoff enthalpy change corresponds to twice

the standard deviation of the enthalpy (orQ) at the transition midpoint, while the

calorimetric enthalpy corresponds to the difference in enthalpy of the unfolded and

folded states well above and below the transition respectively ([203]). We found

these values by taking the average values ofQ both well below and well above the

transition. The corresponding values ofQ f andQu did not vary significantly asε∗
ps

varied. In contrast, the van’t Hoff enthalpy varies significantly, as can be seen from

the insets in figure 6.4B which show histograms ofQ at the transition midpoints for

ε∗
ps =−0.6 andε∗

ps = 0.8. Denaturant solutions show enhanced two-state behaviour

of the transition, with larger cooperativity and corresponding bimodal distribution

of Q values at the transition midpoint. Osmolyte solutions showreduced two-state

behaviour of the transition, with smaller cooperativity and unimodal (at least for

the Trp-cage model) distribution ofQ values at the transition midpoint.
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6.3.4 Excluded Volume Stabilization Due to Hard Sphere Solvents

Figure 6.5 compares the Trp-cage in implicit solvent (thicksolid) with Trp-cage

immersed in 1000 (dashed) and 1500 (dashed-dotted) pure hard-sphere solvent

(HSS) molecules withε∗
ps = 0 andε∗

ss = 0, where the hard-sphere radius of a solvent

molecule is 1.2Å, roughly 80% of the vdW radius of a water molecule (see model

section). The HSS systems differ from the implicit solvent system: The folding

temperature increases fromT ∗
f = 4.0 (implicit solvent) toT ∗

f = 4.45 (1000 HSS)

to T ∗
f = 4.7 (1500 HSS). This is despite the fact that the interactions between the

HSS molecules with themselves and with the protein are purely steric so there is

no additional energy scale in the problem. This indicates that protein stabilization

is due to an excluded volume effect. The addition of explicitsolvent molecules

into theGo model protein introduces an excluded volume effect that reduces the

configuration/conformation space of the protein, to different extents depending on

whether the protein is folded or unfolded.

Even for weak urea solution where the protein is weakly attractive to the solvet,

such asε∗
ps =−0.2 of figure 6.3A, the folding temperature is higher than that of the

Trp-cage implicit solvent model. In order to compensate forthe stabilizing effects

of excluded volume, a urea solution must haveε∗
ps =−0.3 (andε∗

ss =−1), as in the

dotted line of figure 6.5, which has the same folding temperature as the implicit-

solvent modelT ∗
f = 4.0. This indicates that there is a critical net attractive energy

between solute and protein for the solute to function as a denaturant.

Another observation that can be made from figure 6.5 is that the 1000 neutral

solvent molecules model (the “reference” solvent withε∗
ps = 0 andε∗

ss = −1) has

a folding temperature ofT ∗
f = 4.57 (light solid line of figure 6.5), which is higher

than the 1000 HSS model, suggesting that the attractive solvent-solvent interactions

enhance protein stabilization. This can be thought of as a minimal model of the

hydrophobic effect.

6.3.5 Calculation of the Free Energy, Enthalpy, and Entropy
Changes for Osmolytes and Denaturants

Figure 6.6a plots the free energy versusQ at T ∗
f = 4.8 for solvents withε∗

ps =

−0.2,0,0.4. For the neutral solvent (ε∗
ps = 0), whereT ∗

f = 4.57, the U state is stable
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as evident from the minimum atQmin = 0.1. The osmolyte solvents (ε∗
ps = 0.4)

stabilize the protein so that the free energy minimum is now at Qmin = 0.5. Adding

an osmolytic solvent with effective energyε∗
ps = 0.4 stabilizes the native state by

about 5kBT . The relatively low value ofQ is because the folding temperature of

the protein-osmolyte system is atT ∗
f = 5.0 (figure 6.3A), which is only slightly

higher thanT ∗
f = 4.8, and also because a protein of such small size as the Trp-

cage exhibits substantial fluctuations in the native basin.In the case of denaturing

solvents (ε∗
ps = −0.2) whereT ∗

f = 4.2, the protein is even more destabilized than

the neutral solvent with a further change of stability of about−4kBT , and a shift of

the free energy towards lowerQ values in figure 6.6a.

Figure 6.6b plots the internal thermal energy〈E〉 versusQ atT ∗
f = 4.8 for ε∗

ps =

−0.2,0,0.4. This readily shows that the osmolyte solvent decreases the energy

of the protein uniformly (even though the solvent-protein interaction is repulsive),

while the effects of the urea solvents are negligible (even though the solvent-protein

interaction is attractive) . An osmolytic solvent with repulsiveε∗
ps lowers the energy

by inducing collapse in the protein in a manner that 1L2Y is not sensitive toQ

over the range spanning the unfolded and folded states. Hence the stabilization

of protein in our model is not due to the change in enthalpy since the osmolyte

solvents decrease the energy of the native (highQ) and unfolded (lowQ) essentially

equally (figure 6.6e).

Figure 6.6d plots the entropyS versusQ, which shows a decrease/increase

in the entropy of the unfolded protein for the osmolyte/ureasolution, compared

to the neutral solvent. The entropy difference between osmolyte/urea solvents

and neutral solvent is plotted in figure 6.6d, that is, this isthe change in entropy

∆S = S(ε∗
ps = 0.4)− S(ε∗

ps = 0) and∆S = S(ε∗
ps = −0.2)− S(ε∗

ps = 0) versusQ.

For the osmolyte solvents (ε∗
ps = 0.4) the decrease in entropy, compare to the neu-

tral solvents (ε∗
ps = 0), is due to the excluded volume effects, which is expected

to reduce the protein conformational/spatial configurations. The key point is that

the reduction in entropy decreases asQ decreases (see dashed line of figure 6.6d),

which means that the entropy of unfolded conformations is reduced more than

folded conformations. This is consistent with the hypothesis that osmolytes stabi-

lize proteins by introducing an entropic bias for unfolded conformations.

For the urea solvents (ε∗
ps = −0.2) the increase in entropy, compare to the neu-
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tral solvents (ε∗
ps = 0), increases asQ decreases (dotted line of figure 6.6d), which

means that the entropy of unfolded conformations is increased more than folded

conformations. This suggests that urea destabilization ofprotein is also driven by

entropy change. In fact, the denaturing solvent raised the enthalpy of the unfolded

state relative to the neutral solvent, rather than loweringit. This is due to the fact

that as favourable solvent-protein contacts are made, favourable protein-protein

contacts are lost, so that the net result is a modest stabilization of the native state

change due to enthalpy changes (figure 6.6e). The dominant factor contributing to

the destabilization of the native state for weak denaturingsolvents is the increase in

entropy due to an expanded unfolded state. For sufficiently strong denaturants (ε∗
ps

large and negative) we expect a crossover to a regime where enthalpic stabilization

of the unfolded state becomes significant.
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Figure 6.4: (A) Radius of gyration of the unfolded states withQ < 0.2 taken
at the temperatures of the heat capacity peaks in figure 6.3, plotted as
a function of the protein-solvent interaction energyε∗

ps. Snapshots of
representative unfolded states forε∗

ps = −0.6 andε∗
ps = 0.8 are shown

in the insets. These snapshots are obtained by taking the first sampled
conformation that had aRGY within 2% of the average value given by the
plotted data point. (B) Cooperativity of the folding transition, defined
by the ratio of the van’t Hoff enthalpy over calorimetric enthalpy, as a
function of ε∗

ps. Histograms of the values ofQ at the midpoints of the
transition forε∗

ps = −0.6 andε∗
ps = 0.8 are shown in the insets, which

are strongly bimodal for a denaturant-containing solvent,and unimodal
(for the Trp-cage model) for a strong osmolyte-containing solvent.

95



Figure 6.5: C∗ versusT ∗ of plots Trp-cage for several solvent models: In
implicit solvent (thick solid line); in 1000 spherical reference solvent
molecules withε∗

ps = 0,ε∗
ss = −1 (thin solid line, this curve is identical

to theε∗
ps = 0 curve in figure 6.3A); in 1000 pure hard-sphere spheri-

cal solvents withε∗
ps = ε∗

ss = 0 (dashed line); in 1500 pure hard-sphere
spherical solventsε∗

ps = ε∗
ss = 0 (dashed-dotted line); in 1000 urea-like

spherical solvents withε∗
ps = −0.3,ε∗

ss = −1 (dotted line).
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Figure 6.6: (a) Free energy versus protein foldedness (Q) at T ∗
f = 4.8 for

ε∗
ps = 0 (solid line),ε∗

ps = 0.4 (dashed line), andε∗
ps =−0.2 (dotted line),

with solvent-solvent contact energy fixed atε∗
ss = 0 (solid line) (b) Pro-

tein internal energy〈E〉 versusQ (c) Entropy (S) versusQ (d) Change
in entropy (∆S) versusQ, for osmolyte solvent (ε∗

ps = 0.4) compared to
neutral solvent (ε∗

ps = 0), that is,∆S = S(ε∗
ps = 0.4)−S(ε∗

ps = 0) (dashed
line), and for urea (ε∗

ps =−0.2) solvent compare to neutral (ε∗
ps = 0) sol-

vent∆S = S(ε∗
ps = −0.2)−S(ε∗

ps = 0) (e) Changes in enthalpy between
osmolyte and neutral solvent∆E = E(ε∗

ps = 0.4)−E(ε∗
ps = 0) (dashed

line), and between denaturant solvent and neutral solvent∆E = E(ε∗
ps =

−0.2)−E(ε∗
ps = 0) (dotted line).
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Chapter 7

Conclusion

Our understanding of protein folding has been greatly acquired from studies under

ideal conditions in dilute solutions. However, potentially macromolecular crowd-

ing inside the cell can significantly affect the thermodynamic stability and alter the

folding/unfolding kinetics of proteins. A growing number of experimental, theo-

retical, and computational investigations on the consequences and magnitudes of

macromolecular crowding predict significant stabilization [66, 67, 206]. This im-

plied that proteins perform their functions in environments that are crowded with

various macromolecules and macromolecular assemblies, asvisualized recently by

high-resolution cryoelectron tomography [207] and other techniques. The goal of

the present work was to understand the effects of macromolecular crowding on the

mechanical stability and unfolding kinetics of proteins atthe single-molecule level

using analytical calculations and computer simulations. We hope that this work can

encourage researchers to consider the effect of crowdedness in their experiments

and use proper approximations in order to avoid presenting the data and results that

might be reflecting a picture that is either far from or the opposite of reality, as we

have discussed in some of the examples in chapter 2.

Essentially all taxa utilize osmolytes which are ubiquitous, small organic molecules

to cope with environmental, extracellular, or intracellular stress. The origin of the

native protein stabilization by crowding is the steric repulsion between the amino

acids of the protein and different kinds of osmolytes. The entropy induced deple-

tion interaction, which is responsible for all the energetic consequences, was first
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described by Asakura and Oosawa in 1954 [52] and later by Vrij[53]. The theory

implies that there is an osmotic pressure pushing hard spheres toward each other

when they are close enough. Moreover, the instant effect of the high packing frac-

tion of macromolecules inside a living cell, which on the average is about 20% to

30%, implicates that a large fraction of the interior volumeis excluded to anything

whose size is comparable to cell constituent molecules, andthis in turn, means

that any reactions that are accompanied by dramatic change in volume accessible

will be significantly affected in dense systems. The collapse of a heteropolymer

and folding of proteins are partly driven by this effect. Furthermore, the thermo-

dynamic effects of crowding agents vary from reduction of the diffusion rate to

hindering degradative reactions [3].

The stabilizing property of osmolytes has been shown to correlate with the

preferential exclusion of osmolytes from unfolded proteindomains, resulting in

the preferential accumulation of water (preferential hydration) near an unfolded

protein [183, 184]. This implies a net repulsive interaction between stabilizing

osmolytes and protein, and indeed preferential exclusion has been shown to arise

from repulsive interactions between osmolytes and the backbone of proteins [49,

185, 186]. Repulsive osmolyte-backbone interactions would raise the enthalpy

of a protein, and the increase in enthalpy would be larger forthe unfolded state

due to its larger solvent exposed backbone area and consequently the unfolded

state would be more destabilized. Another possible stabilization mechanism is the

osmolyte-induced loss of protein conformational entropy,with the greater entropic

loss by the unfolded state, leading to an overall shift in equilibrium towards the

native state. The entropy loss mechanism is consistent withexperimental works

that observed increased compactness in unfolded states of cutinase [58], protein

S6 [59], and Rnase S [60] due to osmolytes. This would imply that even if an

osmolyte interacts with a protein with the same energetics as water, it would still

stabilize the protein for entropic reasons. In reference [60], which examines the

thermal and chemical stabilization of Rnase S by osmolytes,protein stabilization

by an increase in enthalpy that destabilizes the unfolded state is ruled out.

In contrast to protecting osmolytes, urea is a nonprotecting osmolyte. The

interaction between urea and the protein is attractive leading to the preferential

accumulation of urea in the vicinity of proteins [187]. The attractive urea-protein

99



interactions lower the free energy of both the native and unfolded states, but due

to its larger solvent exposed surface area, the free energy of the unfolded state is

lowered more compare to folded state [49]. Consequently, the addition of urea

to protein solutions shifts the equilibrium to the unfoldedstate. The attractive

interactions between urea and protein must overcome the entropic stabilization of

the protein mentioned above.

Moreover, macromolecular crowding restricts the folded protein and the un-

folded protein to different extents because the unfolded chain can penetrate into the

interstitial spaces. When the concentration of crowding macromolecules is high,

the interstitial voids are too small to serve as routes of translocation for the glob-

ular native protein. However, in the same osmolyte concentrations, the interstitial

spaces still will allow the unfolded chain to leak. This is similar to confining the

protein in a cage with holes. Although the native protein is fully restricted but the

holes will compensate for the excess restriction of the cageon the unfolded chain.

To investigate the effect of molecular crowding on polymer collapse and pro-

tein folding, we need to formulate the thermodynamics of a polymer (or protein)

in terms of its size. The simplest model for a protein is an ideal chain [118]. How-

ever, this model provides an unrealistic picture of proteins because there is no steric

repulsion between monomers of the chain to avoid self-crossing. The intramolec-

ular steric repulsion is usually accounted for by introducing an empirical factor

that causes expansion of the chain [124]. We showed that using computer simula-

tion algorithms we can calculate the conformational statistics of both on-lattice and

off-lattice self-avoiding walks [208–210]. Goldenberg has done off-lattice Monte

Carlo simulations which gave the radius of gyration probability distributions of

four model protein chains, accounting for local steric interactions between adja-

cent amino acid residues by restricting angles [211]. Goldenberg has performed

two sets of calculations, in which the long-range steric interactions between non-

adjacent residues were ignored in one set, and in the other set they were present.

The result of the calculations showed that when long-range steric interaction was

present, for all four proteins the dependence of the root mean-square radius of gy-

ration on the chain length was in good agreement with experimental data obtained

for a large set of denatured proteins.

Real polymers can be modeled as off-lattice self-avoiding random walks, which
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allow the angle between three consecutive monomers to have any value consis-

tent with steric volume constraints. We have created a MATLAB pivot algorithm

to generate off-lattice SAW conformations by the well-known pivot algorithm, to

get around the attrition problem which corresponds to the fact that an absorbing

boundary should be used for a polymer to avoid a sterically-excluded region. Any

generated conformation which penetrates into the boundarymust then be removed

from the statistics. Thus in generating conformations of a self-avoiding polymer,

any conformation of the polymer that by chance wanders into the sterically ex-

cluded region corresponding to the previously generated monomer positions must

be eliminated, and the walk must be re-initiated.

To see the effects of a reflecting boundary condition on SAW statistics, we have

also generated random walks using a naive growth algorithm that corresponds to a

reflecting boundary condition. Walks are generated with thei+1th residue placed

a distanceℓ from theith residue at random angle; and if the distanceri+1, j for any

j < i is less than 2σ , only the last step is canceled and a new step is attempted,

until a walk ofN steps is generated. As we expected there is an obvious distinction

between the end to end distance probability distribution ofan off-lattice SAW using

the naive growth algorithm and that using the pivot algorithm, and the distinction

become more and more clear asN increases.

Moreover, we noticed that the difference between the probability distribution

functions of an on-lattice SAW and its improved replica, theoff-lattice SAW model

(which is widely used in the literature), are not negligible. Therefore we were

inspired to further look for a method that can generate a morerealistic model of

a polymer which led to employing DMD simulations in our work.In our model

the polymer is a freely jointed chain ofN beads or monomers andN − 1 joints,

wherein each monomer is represented as a hard sphere. Two bonded beadsi and

j are constrained to be within 10% of an average distance,ℓ = 1Å, by an infinite

square-well potential. Two non-bonded atomsi and j may interact by hard-sphere

potential (purely repulsive). As expected, the DMD simulations reproduced the

same statistics (end to end distance probability distribution) as that of the pivot

algorithm for a continuum SAW.

We have introducedvpb which is the volume of the smallest box along the prin-

cipal axes of the polymer in each conformation, as the new measure of the size of
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a polymer. We showed thatvpb or equivalentlyrpb = (
3vpb

4π )1/3 provides a better

measure of the size of a polymer chain. A comparison of the effective diame-

ter probability distributions using different models of the size of a 100-mer, that is

de f f = 2Re f f for the end to end distance model,de f f = 2R for the embedding sphere

model andde f f = (6v
π )1/3 for the Cartesian box model and the principal box model,

shows that: 1) for many conformations the end to end distancedescription does not

accurately represent the size statistics of a polymer, since the end to end distance of

a polymer can be zero, whereas even in the most collapsed conformation the real

size of a polymer cannot be smaller than≈ ℓN1/3, 2) the embedding sphere and

Cartesian box models overestimate the size of the polymer and therefore cannot be

considered as a good measure of the size of the polymer. Moreover, we have cal-

culated the probability distribution of the effective diameter of the gyration tensor

volume which isde f f = 2(
√

e2
1 + e2

2+ e2
3) wheree1, e2 ande3 are the eigenvalues

of the gyration tensor of the polymer. We noticed that numerous conformations of

the polymer have larger principal box diameter than the effective gyration tensor

diameter, which means that the gyration tensor model underestimates the volume

of the polymer.

In terms of this new variable,vpb, we derived expressions for the entropy by

finding the fits to the data obtained from DMD simulations. Furthermore, using

the same method we found an expression that describes the number of close ap-

proaches of a polymer chain (a close approach happens when two non-neighbor

monomers come closer to each other than a certain cut off distance) and we used

this expression to find the internal energy of a polymer. The polymer free energy

is then simply given byF = E −TS. The effect of neutral osmolytes were studied

by adding the free energy of a hard sphere liquid system to thefree energy of the

polymer. The generalization to a protein is easily done by introducing energetic

parameters that account for the primary, secondary and tertiary structures of the

protein. The stabilization of a collapsed polymer or a folded protein by osmolytes

depends on the size and concentration, as well as the type of the osmolyte which is

represented byεpo. At the same overall volume fractionφ , smaller osmolytes are

more effective at stabilizing proteins.

In chapter 3 we discussed examples of different approaches to the problem of

polymer (protein) and osmolyte mixtures which have provided powerful theories
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to explain both thermodynamics and kinetics of the crowdingeffects on protein

folding. However, what is commonly missing in these approaches is a model for

the internal structure of the protein, that is, the protein as a whole is considered

to be either a globular object or a chain, and often the model is not flexible to

the changes in the energetic parameters between residues. In the model that we

presented here, by changing the energetic parameters of theprimary, secondary

and tertiary structure of the protein one can attain a more detailed description of

a specific protein. The three distinct aspects of a protein’sstructure are as the

following:

• Primary structure: the amino acid sequence.

• Secondary structure: general three-dimensional form of local segments of

the protein that are stabilized by hydrogen bonds. Common examples are

the alpha helix, beta sheet and turns. Secondary structure does not, however,

describe specific atomic coordinates in three-dimensionalspace.

• Tertiary structure: the overall 3-D shape of a single protein molecule; the

spatial order of the secondary structures. The stabilization of tertiary struc-

ture is generally done by nonlocal interactions, such as theformation of a

hydrophobic core, salt bridges, hydrogen bonds and disulfide bonds. The

tertiary structure is what controls the function of the protein and therefore

we can use the term “tertiary structure” and the word “fold” interchange-

ably.

Using the appropriate size of the protein molecule, and equipped with ener-

getic parameters of the protein structure, our theoreticalresults provide a thorough

description of the thermodynamics of the polymers and proteins that allows us to

readily investigate the effect of osmolytes on their behavior. Furthermore, in this

framework a general description of protecting and denaturing (urea) osmolytes has

been provided by changing the interaction energy between the polymer and the

osmolytes from negative to positive values. Essentially the same thermodynamic

approach can be applied to theories of protein stabilization due to macromolecular

protecting crowding agents [50, 51], and protein destabilization due to the present
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of denaturants. Therefore, this model enables us to unify the effects of protecting

osmolytes and denaturants in the same theoretical scheme.

In chapter 6 an all-atomGo simulation of Trp-cage protein was discussed em-

ploying discontinuous molecular dynamics simulations in an explicit minimal sol-

vent, using a single, contact-based interaction energy between protein and solvent

particles. An effective denaturant or osmolyte solution was constructed by making

the interaction energy attractive or repulsive. Analysis of the results confirms the

main findings of our theoretical work, which can be summarized as follows: 1) The

comparison between figures 5.2 and 5.3 shows that by adding osmolytes to the sys-

tem, the free energy minimum of the protein shifts to high values ofZ (the fraction

of total contacts per monomer in any conformation) andq (the fraction of native

contacts per monomer in any conformation), and the folded state of the protein

becomes the stable state. These osmolytes are neutral because the interaction en-

ergy between protein and osmolytes,εpo, has considered to be zero in calculations,

however it is argued in this work that negative values ofεpo strengthen the effect of

neutral osmolytes and positive values ofεpo weaken the stability effect of neutral

osmolytes. Figure 6.6a is the result of simulations and plots the free energy of the

protein versus foldedness. We can see a comparison between the effect of neutral

osmolytes (εpo = 0), protecting osmolytes (εpo > 0) and denaturants (εpo < 0). As

the theory predicts, the protecting osmolyte solvents stabilize the protein so that the

free energy minimum is at higher value than that for neutral osmolytes. Adding an

osmolytic solvent with effective interaction energy of 0.4 stabilizes the native state

by about 5kBT . In the case of denaturing solvents however, the protein is more

destabilized than the neutral solvent with a further changeof stability of about

−4kBT , and there is a shift of the free energy towards lower foldedness values, 2)

The reduction in entropy of the unfolded state due to osmolytes results in a loss of

folding cooperativity. This can be seen by investigating the heat capacity as a func-

tion of temperature as osmophobicity of the solvent,εpo, is varied. There is a loss

in folding cooperativity when osmolytes are stabilizing the native state, again due

to the reduction in conformational entropy of the unfolded state. Conversely, there

is an increase in folding cooperativity in the presence of denaturant due to swelling

of the unfolded protein. Less strongly peaked and larger width of heat capacity

indicates less cooperativity, because denaturant solutions show enhanced two-state
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behaviour of the transition, with larger cooperativity andcorresponding bimodal

distribution of Q values at the transition midpoint. Osmolyte solutions show re-

duced two-state behaviour of the transition, with smaller cooperativity. We showed

the heat capacity plot of a protein with 50 residues in a box ofcrowding agents with

packing fraction 30% andεpo = −0.2,0,0.2 in figure 5.5 which was derived using

theoretical results (equation (5.13)). Moreover, figure 6.3A showed the simulation

results of the heat capacity of Trp-cageGo model immersed in 1000 spherical sol-

vent molecules with hard-sphere radiusrs,hs = 1.5Å confined in a(40Å)3 periodic

box as a function of temperature, in the presence of osmolytes with different os-

mophobicity values. The increase in the folding temperature as compared to the

implicit solvent model despite zero solvent-protein contact energy suggests that

the change in thermodynamic property is due to excluded volume effects. When

the interaction energy between protein and solvent,ε∗
ps, is zero there is no energy

scale in the problem. For the osmolyte solvents (poor solvent), in which solvent

molecules are repulsive to the protein, the folding temperature increases progres-

sively and the heat capacity peak decreases progressively.The addition of repulsive

osmolyte solvents (bad solvents) stabilizes the Trp-cage,since the shift of the heat

capacity peak indicates the native state is stable up to a higher temperature. For

urea-like solvents (good solvent), in which solvent molecules are attracted to the

protein (ε∗
ps < 0), the folding temperature decreases progressively. The attractive

urea-solvent interactions destabilize the native structure so that the Trp-cage un-

folds at lower temperatures than for the reference (water-like) solvent withε∗
ps = 0.

We also discussed the correspondence between explicit and implicit osmolyte

models, to be able to compare our analytical results with simulation results, be-

cause in our theory there could be in principle 6 relevant interaction enthalpies

corresponding to the pair interactions between the above species:εss, εpp, εoo, εpo,

εps, εso (explicit osmolyte model), whereas in the simulations a solution of water

and osmolyte may be considered as an effective medium with modified solvent in-

teractions so that the new system can be treated with just 3 energy scales:ε∗
ss, ε∗

pp,

ε∗
ps (implicit osmolyte model).

At last, it is worth mentioning that one can use similar ideasthat were used

in this work to explain the effect of confinement on protein stability, because a

macromolecular confiner is essentially a stabilizing osmolyte of larger effective
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size. In fact, the physical origins of protein or polymer stabilization by steric os-

molytes or crowders are essentially the same as those leading to phase separation in

colloidal suspensions due to the addition of a non-adsorbing polymer for example

[52–54]. The next step of generalizing our model is to changethe effective size of

the osmolytes to dimensions comparable to the size of confiner molecules and to

investigate the difference of the free energy of the protein.

The confinement effect has significant biological applications, e.g. only a few

proteins can fold unassisted into their unique 3-D structure that enables them to

serve the purpose for which they are evolutionary designed,through the chemical

properties of their amino acids. However; the majority of protein molecules require

the aid of molecular chaperones that assist the non-covalent folding or assembly of

macromolecular structure by confining them to fold into their native states. While

both confinement and crowding effects are caused by reduction in the number of

configurations that are available to a macromolecule because of the high-volume

fraction of osmolytes or static barriers to movement, thereis an important quali-

tative difference between these two phenomena. Although the free energy cost of

crowding is minimum for protein conformations that are globally the most compact

with the smallest radius of gyration, confinement favors conformations that have

a complementary shape to the shape of the confining volume. For example, in a

quasispherical cavity the globular conformation of the protein is favored, however;

in a cylindrical pore the preferred conformation is rod-like, and when the protein is

confined by two parallel hard walls, plate-like conformations are preferred. There-

fore, numerical calculations of the magnitude of confinement effects depend both

on the shape of the confining space and confined macromolecular species [212].

Other natural extensions of our theory are:

• studying the effect of charged osmolytes on protein stability.

• analyzing the effect of ellipsoidal crowding agents instead of spherical osm-

loytes (which could resemble peptides inin vivo experiments). This study

requires calculating the difference between the excluded volume for various

orientations of ellipsoidal osmolytes which can lead to their alignment in

crystal phase.
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• investigating the role of depletion interaction in aggregation resulted from

protein-protein interactions and signal transduction.

• examining the dewetting transition and drying induced collapse and its ef-

fects on protein folding by changing the interaction energybetween protein

and osmolytes,εpo, as well as the structural energetic parameters of the pro-

tein.
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Discontinuous Molecular

Dynamics

A brief description of the DMD simulation method is presented here. The ini-

tial heavy-atom positions were obtained from the NMR structure. The resulting

structure is comprised of 189 heavy atoms and polar hydrogenatoms, which in

the discontinuous model are represented as hard spheres. Two bonded atomsi and

j, as well any 1,3 angle-constrained pair and 1,4 aromatic pair, are constrained to

be within 10% of their distance in the NMR structure by an infinite square-well

potential:

ubond
i j =











∞, r ≤ 0.9σi j

0, 0.9σi j < r ≤ 1.1σi j

∞, 1.1σi j < r

(1)

whereσi j is the separation distance of the bondedi, j pair in the equilibrium struc-

ture. The model also includes a discontinuous improper dihedral potential, to

maintain chirality about tetrahedral heavy atoms (e.g.Cα ,Cβ ,C,N), and planar

moieties such as tryptophan rings.
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uimprop
i j =











∞, ω < ω0−20◦

0, ω0−20◦ < ω < ω0 +20◦

∞, ω0 +20◦ < ω
(2)

Hereω represents the dihedral angles of the constrained atoms, which are restricted

to values nearω0 = 32.26439◦ for tetrahedral heavy atoms, andω0 = 0◦ for planar

atoms.

As well, two non-bonded atomsi, j may interact by hard-sphere potential (purely

repulsive) with a hard-core radius:

unon−bond
i j =











∞, r < 0.8σ vdW
i j

εpp = Bi jεGo, 0.8σ vdW
i j < r < 1.2σ vdW

i j

0, 1.2σ vdW
i j < r

(3)

whereσ vdW
i j is the sum of the van der Waals (vdW) radiiri + r j for each atom

pair, as given by the CHARMM potential set 19 [147] andBi j and εGo are Go

interaction strength parameters giving the depth of the square well potential, which

may depend on the identities of atomsi and j.

Using these parameters we performed a short DMD simulation with fixed na-

tive contacts to remove interactions violating equations (2)-(4) from the initial ex-

perimental structure, to produce an equilibrium structureof the model Trp-cage

consistent with the above potentials. TheGo model potential [196] is implemented

by setting the non-bonded square-well depthεpp to εGo (Bi j = −1) for all i j pairs

in the equilibrated structure with van der Waals overlapr < 1.2σ vdW
i j ; for all other

non-bondedi j pairs, the square-well depth is set to 0 (Bi j = 0), so that these atom

pairs are purely repulsive. As in previous DMD studies [133,197], the energy scale

is set by theGo contact energy; thus simulations are performed with theGo contact

energyε∗
pp set to−ε∗

Go = −1, and all energies and temperatures are scaled in units
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of εGo (E∗ = E/εGo andT ∗ = kBT/εGo). A reduced time unitt∗ = t
√

εGo/mσ2
L is

also used (m can be taken to be the average atomic mass of the atoms comprising

the protein andσL = 1Å).

The Go model protein in explicit solvent is implemented by placingthe Trp-

cage protein in a 40̊A×40Å×40Å box, along with a variable number of spherical

solvent molecules randomly inserted without hardcore overlaps. A typical simula-

tion consisted of 1000 spherical solvent particles of radius 1.5Å (the approximate

radius of water). This is about half the number of water molecules in a 55M so-

lution for a 40̊A3 box. We employ such a dilute concentration for computational

convenience; physical concentrations have collision times sufficiently short as to

make such simulations prohibitively slow. Diluting the concentration weakens the

effects that would be observed by varying solvent qualitiesfrom those at 55M, i.e.

this simplification effectively places lower bounds on any trends that we predict

would be observed. For this reason we find the approximation acceptable as it only

strengthens the conclusions of this study. Standard periodic boundary conditions

are implemented.

Solvent molecules interact with both protein moieties and with each other by a

square-well potential plus hard core radii, having the form:

ux−s
i j

εGo
=











∞, r < 0.8σ xs
i j

ε∗
xs = εxs/εGo, 0.8σ xs

i j < r < 1.2σ xs
i j

0, 1.2σ xs
i j < r

(4)

In above equationx may be either a protein atomp or another solvent residues.

For solvent-solvent interactions,σ ss
i j is the vdW diameter of the solvent, which we

generally set toσ ss
i j = 3.0Å: roughly the size of a water molecule.ε∗

ss is the solvent-

solvent square-well depth in units of theGo contact energyεGo. For solvent-protein

interactions,σ ps
i j =

(

σ vdW
i + σ water

j

)

/2 is the average vdW diameter of the protein-

solvent(i, j) pair, whereσ vdW
i is the vdW diameter of theith atom of the protein,

andσ water
j = 3.0Å is the vdW diameter of thejth water molecule.ε∗

ps is the protein-

solvent square-well depth in units of theGo contact energyεGo.
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To demonstrate the extent of improvements in efficiency by using discontin-

uous potential simulations, we shortly review the the differences between DMD

simulations and continuous potential simulations. In the latter case, generally a

fixed time step is being used for all the atoms in the simulation. For each time

step, the forces acting on each site are summed over all the sites in the simulation

(a summation of lengthN). When performed over allN sites, the total summation

time is of orderN2. Simulations via discontinuous potentials basically dealwith

looking for future collisions and scheduling them. The interacting force between

non-colliding atoms do not change because the potential is flat and consequently

these atoms simply get closer together or farther apart. Therefore one needs to only

calculate and schedule the future prospective collisions of the colliding atoms. This

means that at the time of the collision the positions of all the interaction sites should

be updated in time since the last collision. This process requires a loop over allN

sites while the coordinates of only two sites have changed significantly. One way

to get around this problem is to compute false positions of the two sites that were

just colliding, at some previous update of all positions, such that the velocities and

positions of sites are calculated correctly after the collision which in turn guar-

antees that all future events will be correct. Yet another trick is to compart the

simulation box into cells with the size of the largest repulsive site. Therefore cell

crossings can be tracked in much the same way as collisions and the only possible

collisions, are generated by sites that are in adjacent cells. This will narrow down

the domain of possible future collisions from all sites in the fluid to only a few.

A similar cell structure may be used in continuous potentialsimulations to reduce

their computation times to orderN. However, the range of a continuous potential

(e.g. Lennard-Jones potential) is much larger than that of ahard sphere potential

and therefore the size of cells also should be very large. In general, the number of

sites that are involved in summing the forces for a continuous potential model are

about one to two orders of magnitude more than that in a discontinuous potential

model leading to proportional penalties in computation time.

The general idea is, given the positions, velocities and other dynamic informa-

tion of molecules at timet, we attempt to find the positions, velocities and other

information of molecules at a later timet + δ t to a reasonable degree of accuracy.

Consider two spheres with diameterσ whose position at timet is ri andr j and
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their velocities at timet is vi andv j. If at time t +δ t these spheres collide then the

following equation should be satisfied:

∣

∣ri j(t + δ t)
∣

∣=
∣

∣ri j + vi jδ t
∣

∣= σ (5)

whereri j = ri−r j andvi j = vi−v j. If we definebi j = ri j.vi j equation (5) becomes:

v2
i jδ t2 +2bi jδ t + r2

i j −σ2 = 0 (6)

If bi j > 0 then spheres are moving away from each other and will not collide. If

bi j < 0 andb2
i j − v2

i j(r
2
i j −σ2) < 0 again equation (6) will have complex root and

no collision will happen. Otherwise, the spheres will collide and equation (6) will

have two positive roots, the smaller of which corresponds toimpact.

Using conservation of total linear momentum and kinetic energy, the changes

in velocity such that:

vi(a f ter) = vi(be f ore)+ δvi (7)

is given by:

δvi = −bi j

σ2ri j = −vi j,v (8)

with bi j now being calculated at the moment of impact.δvi is then just simply

negative of the projection ofvi j along theri j direction which is denoted byvi j,v.
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