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Abstract

In this work,the deformation behaviour ain Mg-8Al-0.5Zn (AZ80) alloy having
a fixed initial grain size of ~ 32 pwasstudied by varying the initial texture, temperature,
stress state a@nmicrostructure. The work focused on investigating the influence of these
variables on the mechanical properties, work hardening characteristics, texture evolution
and deformation mechanisms of the alloy. The initial materials with different starting
textures (i.e. strong and wealy textured) and microstructures (i.e. solutio@ated and
aged) were obtained through a series of themechanical treatments including cold
rolling, annealing and ageing. The uniaxial compression and tension deformation
expeiments were carried out on strapmgand weakly textured solutieineated and aged
samples at 77K and 293K. Neutron diffraction, slip trace analysis, high and low resolution
EBSDwereused to characterize the texture evolution and deformation mechanisnes of
alloy. In addition, avisco-plastic self consistent (VPSC) modehs usd to predictthe

influence of initial texture and temperaturetbe deformation behaviour

The results show that temperature and loading direction with respect to initial
texture has a pronounced effect on yield strengthvaoik hardeninglt is found that there
is a substantial difference between the nature of twinning, slip system activity and texture
development as a function of deformation temperature. It is shown thaP8@ model is
effective in predicting the deformation response of alloy when it is dominated bysip
same modehoweverproved tobe inadequate fotwinning dominated deformation. The
results illustrate that precipitates are capable of changing #lamceaof deformation

mechanisms and texture development of the alloy. These found to be extremely



effective in reducing the well known tension compression yield asymmetry exhibited by

magnesium and its alloys.
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CHAPTER 1 - Introduction

Magnesium is the eighth mosctust é&thasmad ant
hexagonal crystal structure with a c/a ratio of 1.624 and is approximately 37% lighter by
volume than aluminum and 78% lighter than iron. Its light weight makes it a potential
candidate for automotive and aerospace applications. Theicagié of weight reduction
in structural applications can be realised by comparing the material index (a material
design parameter) for bending of beams. The best materials for a light, stiff beam (under
specified stiffness, length and square section ghaeethose with the largest values of M

(Wwhere M, is the material index for a beam given as ME*%} , E is the elastic modulus
and} is the density of the material). The,f magnesium is approximately 51Bgher

than for steel and 17% higher than for aluminum.

The use of magnesium as a structural material has a long history. During World
War |, the world production of magnesium we8000 tons/year although it was reduced to
~400 tons/year soon after the mv&@he production picked up again during World War I,
but then again dropped i mmediately after tt
were made to develop magnesium technology. Interestingly, in the decades that followed
there was relativelyittle research on this light metal. Recently, there has been a renewed
interest in developing magnesium and its alloys for the transportation and electronic
industries, mostly driven by the increasing importance of fuel economy and the need to

reduce weigh

Despite a long history and attractive properties, the current applications of

magnesium and its alloys are limited. This is often related to tlmitetd room
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temperature ductilityhighly anisotropicand asymmetriplasticbehaviour (i.e. difference
between tensile and compressive behaviour), poor crash performance and poor corrosion
resistance. The recent demands for light weight structural materials have increased the
interest towards improving the performance of existing magnesium alloys andpiegel

new ones. However, one of the factors that limit their application is a lack of knowledge of

their deformation behaviour.

The fundamental understanding of yielding and work hardening response for
hexagonal metals is much more complex than it i$afoecentered cubic (FCC) and boedy
centered cubic (BCC) metals. This is because, unlike-dantered and boegentered
lattices, the hexagonal lattice does not provide enough number of geometrically equivalent
slip systems to satisfy the von Misesiterion for polycrystal deformation. To accomplish

this, more than one crystallographic slip mode and/or twin mode must be activated.

In general, magnesium exhibits deformation on several crystallographic slip and
twin systems. The activation stresses fois¢éhare widely different. Because of this, the
plastic properties of magnesium are very anisotropic and asymmetric. Further, the relative
roles of individuaklip and twin modes strongly depend on temperature, loading conditions,
alloying, crystallographictexture, and microstructureCurrently there is a lack of
systematic studies where these factbes/e been examined over a wide range of
conditions.Knowledge of the active deformation mechanisms and the variation in their
relative contribution as a funoh of these variables is required for accurately predicting

the plastic response and texture evolution of magnesium and its alloys. This is particularly

! According to the von Mises criterion, five independent slip systems are needed to accommodate an arbitrary
homogenous plastic deformation.



important for the development of reliable material models for use in forming and crash
performance. Iraddition, one can also think of manipulating the mechanical behaviour by

controlling the activity of different deformation mechanisms.

The present research work is focussed on understanding the influence of initial
texture, stress state, temperature amdrostructure on the deformation behaviour of an
Mg-8Al-0.5Zn (AZ80) alloy. This alloy is an excellent model alloy as the crystallographic
texture and precipitate state can be readily modified. The alloy is also of commercial
interest as a casting all@and potentially as a wrought alloy. This thesis is organised as
follows. First, a review of the relevant literature is provided in chapter 2. The scope and
objectives of the present research are outlined in chapter 3. Chapter 4 contains a description
of experimental and modelling methodologies employed in this study. In chapter 5, the
experimental results obtained on strong and weak textured material deformed at 77K and
293K are presented and discussed. To further elucidate the effects of initial texture an
temperature on deformation characteristics of the alloy, the viscoplasticoaslétent
(VPSC) model has been used as described in chapter 6. The experimental results obtained
on aged material are presented and discussed in chapter 7. Finally, hapidains a
summary of experimental and modelling observations, conclusions obtained from this

study and suggestions for future work.



CHAPTER 2 - Literature Review

2.1 Introduction

This literature review begins with a brief introduction to the crystallography of
hexagonal close packed (HCP) crystals. After that, a general overview of the deformation
mechanisms available to HCP metals will be presented. Following this, the characteristics
of the slip and twinning modes of magnesium will be described. The curmetstending
of work hardening in HCP metals, particularly in magnesium, and the hardening effects

related to twinning will be reviewed next.

In the present study, the influence of initial texture, -tewperature and
microstructure (i.e. aged conditionip aleformation behaviour of AZ80 magnesium alloy
has been studied. Consequently, it is useful to review the available literature in this area. In
this work, the deformation characteristics of magnesium alloy AZ80 are studied using a
viscoplastic sefconsigent (VPSC) model. Therefore, a brief overview of polycrystal

plastic deformation models including VPSC will also be presented.

2.2  The crystallography of HCP metals

A comprehensive review of crystallography in HCP materials has been carried out
by Partridge/1]. The primitive hexagonal unit celFigure2.1a) has axes;a&= & ¢ and
corresponding anglea= b = 90°, g = 120°. The symmetry of the hexagonal lattice can
be illustrated by the hexagonal prism which can be constructed from three primitive
hexagonal unit cells, such as showrFigure2.1. In the closepacked hexagonal structure

thea oms are stacked in a sequenkgere2dli. AVABABAB
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ideal close packing of spherical atoms in this sequence generates a structure that is
characterised in terms of lattice dimensions with a c/a ratico821 Some of the important
HCP metals are listed ifiable2.1. None of these metals in their pure form has an ideal c/a

ratio, but magnesium and cobalt have a c/a ratio within 1% of the ideal.

! ! A LAYER
1 1
1 1
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(RN F—— 4—
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4—
a2 1 A
a) b)

Figure 2.1: a) The primitive hexagonal unit cell illustrating the axgs=aa . c¢ and

corresponding angled= b = 90°, o = 120°andb) the hexagonal clespacked structure.

The thick solid lines in b) delineate the primitive hexagonal unit cell.

Table 2.1: Properties of common hexagonal clgseked metals at 300R]

Metal Be Ti Zr Mg Co Zn Cd

c/aratio| 1.568 1.587 1.593 1.623 1.628 1.856 1.886

Preferred pasal prism prism basal basal basal basal
slip _ _
plane | (0001) {1010+ {1010+ (0001) (0001) (0001) (0001




The important crystadgraphic planes and directions in the hexagonal lattice are
illustrated inFigure2.2. In order to avoid confusion, a four index MiHBravais notation
has been used throughout the review to identify the crygtajpic planes and directions.
The important crystallographic formulae for hexagonal lattice are summarised in Appendix

Al.
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Figure 2.2: Schematic diagram illustrating the important planes and directioriBein

hexagonal system.

2.3  Deformation modesof HCP metals
According to von Mises[3], five independent slip systemsire needed to
accommodate an arbitrary homogenous plastic deformation. In FCC metals, the twelv

{111} <110> slip systems provide five independent systems and satisfy this condition.

However, the situation in HCP metals is much more complex owing to the following

2 An independent slip system produces a shape change that cannot be obtained by oontfirkier
systems.



reasons. First, the deformation of HCP metals typically involves $lgithand twinning,
each slip and twinning system having different critical resolved shear stresses. Second,
different families of slip systems and twin systems become activated depending on texture,

sense of loading, temperature and grain size.

2.3.1 Dislocations in HCP metals

Slip is one of the most important deformation mechanisms in crystalline gjlids
It involves the motion of dislocations on a specific crystallographic plane along a specific
crystallographidirection. Often, slip planes are the close packed planes and slip directions
in the slip planes are the close packed directions. The magnitude and the direction of shear

displacement on a particular plane is given by the Burgers J@¢tdtigure2.3 shows the

{1070} 0T

e 6 o e e o
feote— i
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o oY 6 o o

. {1072}

c/2

c/2

(0001)

@ Atoms in A layer O Atoms in B layer

Figure 23: Schematic diagram illustrating the interplanar spacings of
(0001),(1012),(1011) and (1010) planesin magnesium. Note that the arrows indicate

the interplanar spacing, while the dashed lines highlight thébasal planes.



interplanar spacings of the basiat((0001)) and nosbasal planes (e {010} ,{1011}) in

magnesium. fie intrinsic lattice resistance ®ip is expected to be smaller for planes
having the largest interplanar spacings and containing the shortest lattice translation
vectors. In magnesium, the (00Qdane exhibits the largest interplanar spacing (i.e. ¢/2 as
indicated inFigure2.3), it is therefore slip on this plane that is considered to be the easiest
among all slip planes. On the other hand, thelmasalplanes are more closely spaced and

thus slip on these planes is expected to be more difficult.

Similar to the Thompson tetrahedron for fasmtredcubic metals, the fpyramid
construction for HCP crystals can be used to describe the Burgers vects®adtobns
(Figure2.4). The important dislocations and their Burgers vectorsanmemarisedn Table
2.2. Notice that among the perfect dislocatidisted, only the glide directions with the
three 1/31120> dislocationsare coplanar, lying on the clepacked plane (basal plane),

and are associated with the shortest Burgers vector. Slip by thé123> (0001)systems

Figure 2.4. Bi-pyramid construction in HCP lattice to describe the Burgers ve@ess.

Table2.2 for more description.



Table 2.2: Dislocations in hexagonal clogackel structure$2]. The notation matches

that in the bipyramid construction dfigure2.4

AB TS SA/TB Al as AS
Type
(perfect) (perfect) (perfect) (partial) (partial) (partial)
b 1/3<1120> [0001]  1/3<1123> 1/3<1100>  1/2[0001] 1/6<2203>
b a c (cP+ad) 2 a//3 c/2 (&/3+%14)
b & 8/3d 11/3& 1/3& 2/3 &
Total No. of 6 2 12 6 4 12
dislocations
(0001),
Possible 101 = 5 —
glide plane { _0} {1010} {1122} {101n}
{1011

in metals such as beryllium, magnesium, cadmiumzamdis similar to 1/2<110>{111}

slip in FCC metals, in that the critical resolved shear stress (CRSS)[8]low

Dislocations of <a> type Burgers vectors may dissociate in the basal plane into
twolowene gy Shockl ey partials di Jdblez2aRigurens of

2.5) separated by an intrinsic stacking faulhe reaction is:
AB- As +sB (2.1)
Or

1 = 1. - 1
5[1120] - Z[1010] + [0110] (2.2)

%t is the local region in the crystal where the regular atomic sequence has been interrupted.



The stacking fault energy (%93 mlml)l.the ba

Thisis lower than the stacking fault energy of cubic metals such as pure alumhiL66 (
mJm?) and copper { 78 mJn¥) but it is similar to silver { 25 mJn¥). Nevertheless, the
dissociated ABRlislocations on the basal plane can cslgsto any{101n} type plane via
the constriction of screw segments [1, 2]. In magnesium, there are rep8fth§t suggest
the crossslip of <a> type dislocations occurs from the basal plandbe prism plane and
vice versa. The complete process of crslgs is illustrated schematically iRigure 2.6.

One difference between creskp in the HCP and FCC cases is that after estipsthe

glide resistace is different in HCP. For example,kigure2.6, prism slip is more difficult

than basal slip.

Shockley Shockley

partial partial
Ac oB
! C :

" A "
A ¢ A
B A B
A i pad C ) | A

L ( B < =L
B < B
A A A
B B B
A A A

Figure 2.5: Dissociation of a perfect dislocation with Burgeestor AB Figure2.4) into
two Shockley partial dislocations separated by a stacking fault. Double arrows indicate the

two errors in the twdold stacking sequence of the basal planes.
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Prism plane

72> Z

Basal plane

Figure 2.6: Schematioof re-dissociation ofa constricted dislocation in the prism plane of

magnesiunafter crossslip from the basal plane

2.3.2 Crystallography of twinning in HCP metals

Twinning is another common mechanism of plaséfodnation in HCP materials,
particularly when straining is carried out at low temperatures or at high speeds. A
deformation twin is a region of a crystal that has undergone a homogenous shape
deformation in such a way that the resulting structure isichnwith that of parent, but
oriented differently. Several comprehensive review articles have been published on
deformation twinning [1, 943]. Figure 2.7 illustrates the change in shape of a sphere of
material, the top half hawg undergone a twinning shear. In this event, there are two
material planes that remain undistorted namely, th€fikst undistorted plane) and;K
(second undistorted but rotated plane) planes as indicatedrigare 2.7. The
cryg¢ al | ogr aphi ¢ islisseia rthe first rumdistoriec planeE The second
charact er i g tidsn Karndis@eapendioutar to the intersection afaid K.

The magnitude of the twinning shear (S) is given by:
11



S=2cot(2f) (2.3)

where & is the angle between;Kand K.

The theoretical tensile strain due to transformation of a single crystal into a twin is

[14]:

e, =+/1+2Ssin(f )cos( ) +S?sin’f - 1 (2.4)

Wheree, is the tensile strain due to twinninig,is the angle between the tensile stress axis

and the twinning shear direction ahdis the angle betweethe twinning plane normal and

the tensile axisTable 2.3 summarizes the twinning elements, corresponding shears and

maximum tensile strains (calculated from (2.4)) that may result from a particular type of
twin in most common HCP metals. It can be noticed that{10d 2} <1011 > twinning

system is seen in almost all HCP metals. Further, it should be mentioned that the direction

and the magnitude of twinning shear in HCP metalsmidpe c/a ratiofl2]. For instance,

Figure27.Shows the conversion of a spheyaed i nt o

illustrated the various important twinning elements.
12



Table 2.3: Twinning elements and maximum tensile strain resulting from various twinning
modes in HCP meta[45]

- Maximum
Twinning tensile strain
Metal K1 dx K> dx Shear, L
o in single
crystal

Mg {1012} <1011 > {10132 <1011> +0.131 0.065
Mg {1011 <1012 > {1013} <3032> -0.14 0.07
Ti {1012 <1011 > {1012 <1011> +0.18 0.09
Ti {1122} <1123 > (1124) <2243> -0.22 0.11
Be {1012} <1011 > {10132 <1011> +0.19 0.095
Zn {1012 <1011 > {1013 <1011> -0.14 0.07
Cd {1012} <1011 > {1012 <1011> -0.17 0.085
Zr {1123 <1126 > (0001) <1120>  +0.63 0.35
Zr {1012 <1011 > {1012 <1011> +0.17 0.085
Zr {1122} <1123 > (1124) <2243> -0.23 0.12

* A positive shear causes elongation parallel to the <c> axis

* A negative shear causes contraction along the <c> axis

when c/a </3, the twinning shear direction fof1012) twin lies along <1011 >, but

along<1011> whenc/a>/3.Si mi | ar |y, t

ratio due to twinning on th1012} <1011 > twin system is given bji1]:

_(c/a)*-

(c/ a)/3

he dependence of

(2.5)

13



2.3.3 Characteristics of twinning in HCP metals

It is generally thought that the process of nucleatiba twin and its subsgquent
growth can be treated separatétytheliterature, two approaches have been considered for
the nucleation of twin embryos, homogenowfié¢n a local stress concentration reaches a
critical value) [16] and heterogeneous (at defect site in crysl lattice such as a
dislocatior) nucleation[17-19]. The heterogeneous nucleation of twins at defects such as
grain boundaries are generally calesed to be thenostcommon[17-20]. Once nucleated,

the lengthening and widening of twins has bdescribedn terms of various dislocation
glide-based mechanisnj$7, 21-25]. Recent atomistic studi¢®6-29] on (1012) twinning

in hexagmal close packed crystalsqvide further insight in tahe atomiescale processes

responsibldor twin nucleation and growth.

There are certain microstructural variables such as grain orientation, grain size,
grain boundary misorientation and precipgat that can significantly affect the
phenomenon of twin nucleation and growth-{84. The research group at Los Alamos
[33] has been systematically characterizing the deformation twins using large EBSD data

sets collected from more than 40 scans of 40600 um in size to draw correlations

between microstructural features and the nucleation and growth df2§1@wins in
magnesium. The reported results indicate that the twin variant observed is not always the
one with the highest Schichfactof’. Among the total twins investigated, 47% and 27% of
twins had the first highest and the second highest Schmid factor, respectively, and they all

were wide. On the other hand, the third and the fourth highest Schmid factor twins (0.125 <

* The Schmid factor is given bgosf cosl , wheref and| are the angle of stressis with the slip plane
normal and the slip direction, respectively.
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Schmid fctor < 0.375) constituted 16% and 8% of the total twins and appeared
comparatively thinner. It was also reported that the tendency of twin nucleation leading to

adjoining twin pairs increases with the decrease in grain boundary misorientation angle.

Like slip, twinning occurs by the passage of dislocations. However, the twinning
dislocations shear material only in one sense and only on their twin planes. In general,
deformation twins are known to form at the speed of sound such that their formation in
some cases creates audible sound (e. g- Acry
strain curve to be serrated [11, 12]. The reason for the rapid growth is that the stress
required to nucleate a twin is presumed to be significantly greater thanetbe retieded for
growth of the twin. As a result, once nucleated, the twin will be driven at high speed by the
local overstress and will continue to propagate until the stress is relaxed or the twin meets

an obstacle.

Deformation twins are generally lectilar in shape, meaning that the boundaries
between the twinned and untwined regions do not coincide exactly with the twinning plane
(Ky). Their central plane is, however, approximately parallel {o Khe shape othe
deformation twins is related to theeyall energy change as the twin forms [12]. There are
two main contributions to this overall energy change: one is the creation of a new surface
involving surface energy and the other is the change in strain energy that results when one
portion of materibsheared while other does not. The final shape is therefore a result of the

balance between the two opposing terms [12].

The relationship between twinning and texture is important in HCP metals. For

instance, inFigure 2.8 a stess normal to the basal plane produces equal shear stress

15



components on all si¥1012} twinning planes. However, a compressive or tensile stress

parallel to (0001) and along.010], for example, places a larger stresgwa planes than

on the other fourRigure 2.8). In short, a tensile or compressive stress normal to the basal
plane is not equivalent, with regard to the activation of twinning modes, to a compressive
or tensile stress applied pdel to the basal plane. Most recently, Park and colleagues [35]

have shown this using Schmid analysis.

2.3.4 Summary

In this section, the important characteristics of slip and twin modes has been
reviewed in HCP metals. Twinning in particular can contribugniicantly to the
deformation of these metals. However, it has limited strain accommodation capability and

dependence for activation on the sense of applied stress.

[1010]

Wiaz el

[1210] o (0001)

(0001)
[1210]

Oy

All planes equally stressed Two planes more heavily stressed

Figure 2.8: Schematidllustrating that a tensile stress normal to the basal plane in a HCP
metal is not equivalent in its effect on activating twinning modes to a compressive stress

parallel to the basal plane.
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2.4  Deformation of magnesium

2.4.1 Slip modes in magnesium

Slip in HCP magnesium has lreebserved on the following planes: (0001) basal
[36, 37],{10 10} prismatic [38],{1011} 1% order pyramidal [39, 40] and {212} 2" order

pyramidal [4143] (schematically drawn iRigure2.9). The typical characteristics of each

slip mode are listed iTable 2.4. The combination of basal and prism slip (6rdakder

pyramidal alone) provides only four independent modes. Moreover, stipeirl12 0>

direction does not produce strain parallel to tbhe &xis. The strain along the <c> axis can

be accommodated either by <c+a> slip on tffeofder pyramidal plane ({122}) or by
twinning. The 2" order pyramidal <c+a> slip alone can provide the necesfaey
independent modes. However, several single crystal studie43]38n pure magnesium
have reported that the CRSS to activate-basal slip is significantly higher than that of

basal slip being roughly two orders of magnitude higher than basal slip at ambient

temperature (seBable2.4).

Basal <a> Prism<a> Istorder Pyramidal <a> 2nd order Pyramidal

Figure 2.9: lllustrates the basal and ndtasal slip systemioth <a> and <c+a> type) in

HCP magnesiumrhe Burgers vector dhedislocation is given byhesolid arrow.
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Table 2.4: Characteristics of slip modes in magnesium single crystals

Crystdlographic CRSS irMPa  Number of
Mode Plane Direction elementgslip at ambiert  independent
systems) temperature modes
Basal | (0001) <1120> (0001)<1120> 0.49%¢: 371 2
Prismatic| {1010} <1120> {1010} <1120> 44 38 2
Pyramidall 1760 150> {1708 <1120> ] 4
1% order
Pyramidal B o B o 10744 44
2"Yorder | {11222 <1123> {1122} <1123> o 43 5
<c+a> )

The early work of Hauser and-e@rkers [44] and more recent work of Keshavarz

and Barnett [45] using slip trace analysis has confirmed the importance-basahslip at

low temperatures. Rece dislocation observations [8, 43, 46, 47] using transmission

electron microscopy (TEM) provide further support for 4b@sal slip. Moreover, in

polycrystalline magnesium alloys, it has been argued by Koike amwdbdaers [46, 47]

that the constraints ingged by neighbouring grains helps in reducing the required ratio of

CRSS for norbasal to basal slip from approximately 90 to between 2 and 8, thereby

making it easier for nebasal slip to occurA number of researchers [4®] have also

emphasised thahé inclusion of notbasal slip (both prismatic <a> type and pyramidal

<ct+a> type) is essential to simulate the mechanical response of magnesium alloys at

ambient temperature.
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2.4.2 Twin modes in magnesium

It is well known that active twin types are dependentr@ndirection of internal
twinning stress with respect to the HCP <c> axis of a given dtdinFor instance, in
magnesium, {1Q 2} twins are expected when a grain is in tension along the <c> axis,
while {10 11} and {1013} twins are expected when a grain is in compression along the

<c> axis [1, 51, 52]. Twinning on the {Ii®} plane leads to extension along the <c> axis

(Aext ens i dinhe basal plane)in the wiintbeing reoriented through 85.2° around

the <1210> axis as indicated irFigure 2.10a. Comparatively, the effect of {101}

twinning is contraction parallel tothe<> axi s (Acontraction twin

being reoriented through 57° around &#210> axis as depicted iRigure2.10b.

There has been debate in the literature whether twinning can be understood by a
CRSS criterion such as Schmiddés | aw or not.
the deformation behaviour of materials exhibiting twinning [53, 54]. Some reports [35, 55,

56] support the applicability of the CRSS criteria while, others do not5[83%8]. In case
of models that apply a CRSS criterion, the CRSS for1{2p extension twinning is

considered to be-2 MPa [59]. Conversely, the CRSS is taken to be 114 MPa fot {}0

contraction twinning [60].

It has been reported by several authors [47, 61, 62] that extension twins have a

different appearance compared to contraction twins. Thel 2}0twins are typically

thicker and depart frequently from a common lenticular shape. Ontliee band, the

{10 11} contraction twins are typically thin.
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[1011]

(1012)

3
[1120]

. L {1012} <1011>
a) Extensiontwinning

57.05A
[1012]

(1011)

3
[1120]

~

&

b) Contractiortwinning

Figure 2.10: Shows schematically the -mrientation of the <c> axis which results from

a){1012} extensiorandb) {1011} contractionwinning inmagnesium.

In addition to primary twinning, rewinning inside a primary twin (double
twinning) can also provide an additional mechanism of plasticity. The double twins of
{1011}-{1012} and {1013}-{10 12} types, typically characterized respectively by 37.5°
and 22.3° boundary misorientation around &40> axis, have been observed in single
crydals [6365] of certain orientations, and in polycrystals [62, 66]. Most recently, Martin
and colleagues [67] have identified all the possible variant specifiemhatnx orientation
relationships for these double twins. In the aforementioned double, tthimssequence

involved twinning first on either {1@1} or {1013} plane followed by rewinning on
20



{1012} planes. The reorientation of the basal plane from the primary {3Gwinning

and from the secondary {li®} twinning was illustrated by Hartt and Reegtil [65] and

more recently by Barnett and-eworkers [68]. Harttand Readi | | 6s schematic
shown inFigure2.11. It has been suggested by various researcher6q688] that these

double twins are of considerable significance as they could induce localised softening due
to the favourable alignment of basal polagdroximately37° to the loading axis) for bdsa
dislocation slip in the double twinned volume. Eventually, this could also lead to fracture in

the material.

In addition, detwinning may occur in magnesium alloys during unloading or strain
path changes. Detwinning is a contraction of a twinned regigmocess that does not
require nucleation [69]. During detwinning, the existing twins can disappear or become
narrower under reverse loading or unloading. There are several recent investigations [70

72] in magnesium alloys that have emphasised the i@poetof detwinning.

2.4.3 Summary

The literature reviewed in this section indicates that basal slip has the lowest
CRSS of all slip modes in magnesium. Comparatively, slip on prismatic and pyramidal slip
systems is more difficult owing to higher CRSS valuesinfiing on{1012} and {1011}

planes provides strain parallel to the <c> axis, the former supplies the extension along the

<c> axis while, the latter provides the compression along the <c> axis. Double twinning of
type {1011 - {1012} and detwinning of{1012} twins under reverse loading are also

commonly reported in magnesium.
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Primary {1011} ==—
twin E—

Secondary {1612}-
twin -

AN
N\
\ \
3750& Basal trace
Y.
Figure 2.11: Schematic of a {1@1}-{10 12} double twin based on Hartt and Reldd | | 6 s

[65] analysis of a replica taken from a single crystal. The crosshatched lines correspond to

basal plane traces and the image zone axixi$210>.

2.5  Work hardening in HCP crystals

2.5.1 A general overview on work hardening

The work hardening of hexagonal close packed materials is much more complex
than it is for cubic metals [73, 74]. For instance, as compared to cubic metals, the
hexagonal lattice does not provide a sufficient numbesrydtallographically equivalent
slip systems to satisfy the von Mises criteria [3] for polycrystal deformation. In order to
achieve at least five geometrically independent systems, more than one crystallographic
slip mode must be activated and the CRSIBevaf the difficult slip modes in magnesium

(e.g. prism slip, pyramidal slip) varies considerably (Eaigle2.4). Moreover, the situation
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becomes increasingly complicated when twinning enters as an additional mode of

deformation(see section 2.5.2 for more details).

The behaviour of an unconstrained hexagonal single crystal may resemble that of
a FCC crystal [75]. However, the difference between FCC and HCP polycrystals is very
strong due to the constraints between the neiglingpgrains. Here the hard modes must
also be activated, and these dominate the macroscopic behaviour [73]. It has been reported
by a number of researchers [61, 76, 77] that the work hardening rates exhibited by
magnesium and its alloys are very h{ghg.the hardening rateg() normalised by the shear

modulus (n) ~ 0.2-0.3), i.e. much higher than one would expect in FCC or BCC metals

[ 73, 74] where the maxi mum hardeni+0p05r at e

0.1.

Agnew and ceworkers [78] have measured the internal strains in magnesium
alloys using in situ neutron diffraction. They found that magnesium exhibits a prolonged
elastic plastic transition, similar to composite materials, up to as high asna@%oscopic
strain. They have reported continuous rapid accumulation of elastic lattice strains even at
the highest applied stresses. According to Agnew et al. [78] the strain hardening rate would
then be determined through load sharing between thecelastd oriented, and the plastic,

soft oriented grains.

Work hardening behaviour has also been found to depend on alloying additions.
For example, @eres and Rovera [79] have studied the solid solution effects eAlMg
alloys with Al contents rangingdm 1 to 8 wt%. Their results suggest that the more

concentrated alloys exhibit higher hardening rates. They attributed this to an increased
23



contribution from forest hardening to the strength of materials with the concentration of

solute.

Originally, Caceres and Blake [80] and latera€eres et al. [81] studied the work
hardening behaviour of randomly oriented and strongly textured polycrystals of pure
magnesium deformed in tension or compression at room temperature. They indicated that
the overall behaviouof pure magnesium closely resembles that of FCC polycrystals.
Strain hardening by the accumulation of forest dislocations was considered to be the chief
hardening mechanism. There is a need for caution with this interpretation owing to the
much more comglx interaction of deformation modes in HCP metals compared to cubic

metals.

2.5.2 Hardening effects related to twinning

To understand the plastic deformation and work hardening behaviour of
magnesium, the role of deformation twinning should be carefully ceresid Twinning
activity, in particular, has three main effed)sa geometric effect in which crystallographic
reori entation resulting from twinning could
orientation or i i) a aallPeshd fype teffead m iwkicht twirtningo n |
introduces additional barriers to dislocation motion inside and around twingiji ard
Basinski effect in which twinning transforms the glissile dislocations into sessile
dislocations. For a reliable constitutive desioip of plastic deformation of HCP metals it

is essential to consider these three factors.

® The HallPetch (HP) relation is theelationship between yield stre§§, and the average grain sideof
material, 0, =0; + kd ¥2where, 0, is the lattice friction stress arid is aH-P constant.
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2.5.2.1 The geometric effect

A number of authors [61, 76, 82, 99] have emphasised the importance of
crystallographic reorientation due to twinning in determining the wohardening
characteristics of magnesium alloys. It has been widely reported [61, 76, 82, 99] that the in
plane compression of magnesium sheets exhibit a distinct stress strain response, marked by
very high hardening rates,rvearsFigurd2ll2isher at ed
explanation offered to this type of stress strain curve is{tl@t2} twinning starts quite
early in the deformation leading to a regime of low hardening up to the point where
twinning beomes exhausted-(up to 56% strain). Once most twinning finishes, the stress
rises rapidly. The high hardening rate arises from the fact tha{lib&2} twinning

reorients the original grain by ~85°. Consequently, the twinned portidreajrain is in a

hard orientation for subsequent slip and/or twinning.
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Figure 2.12 True stress vs. true strain curve for sample subjected to -glicne

compression with <c> axis extensj@dapted fromeferencq99].
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2.5.2.2 The Hall-Petch type effect

Salem et al . [ 8 3] have studi etithniumhne st r a

compression. The results suggest an increase in the strain hardening rate after an initial
drop at small strain. This was attribd to deformation twinning. Deformation twins
appear to reduce the effective slip distance and increase the strain hardening rate via a Hall

Petch type mechanism [84].

The effectiveness of twin boundaries in blocking slip dislocations depends -on slip
twin interaction. Yoo [85, 86] has analyzed the possible-talip interaction in HCP
metals from crystallographic and energetic points of view and concluded that th2}{10
twins in magnesium are repulsive twins (acting as a bagidislocation glide) while, the
{1011} twins are attractive twins. The repulsive interaction between basal or prismatic
dislocations and {102} twins would develop local stress concentration due to a
dislocation pileup at the interface. Recently, Koike et al. [#8je explained the observed
recovered regions in the microstructureadf6 %- elongaed AZ31 sample based on §lip
twin interaction. The {1Q1} twins in the deformedmatrix were found to absorb
dislocations by dissociating them and forming irdeef ledges (consistent with Yoo [85,
86]). According to Koike et al. [46}he {1011} twins in magnesium alloys can contribute

to dynamic recovery ambient temperature.

2.5.2.3 The Basinski effect

Crystallographic reorientation due to twinning can transform originally glissile
dislocations into sessile dislocations. Consequently, the material within the twinned domain

would be harder than the untwinned g s . This effect i's also
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effecto as it was first proposed by Basi
yield stress via this mechanism have been reported in Hadfield steels [88] and titanium
[89]. In the past, several reselers [61, 90, 91] have invoked this mechanism in
magnesium but with little experimental proof. It should be noticed{t@k2} twinning in
magnesium nearly flips the basal plane into the prismatic plane and vice versa, implying
that baskdislocations will lie close to hard prism planes whereas prism dislocations will lie
nearly on soft basal planes. Nonetheless, there is a need for careful examination to probe

the significance of this mechanism for magnesium alloys.

2.5.3 Summary

In general,the work hardening response of HCP polycrystals is a result of the
complex nature of slip and twinning behavior and their strong dependeredetrmal
(temperature, strain rate) and internal parameters (alloying, microstructure and texture).
Twinning in particular can have significant effect on the hardening behaviour of these

metals.

2.6 Influence of orientation on deformation behaviour of magnesium

alloys

2.6.1 Single crystals

Plastic éformation of HCP materials such esgnesium is strongly affected by
the relationship between the loading axis and thgstallographic orientationThe early
work of Schmid and Boas [92] showed, particularly for HCP metals, that the tensile yield

stress varied greatly with orientation. For example, the tensile yield stress waittdre as

27

ns



the ratio of resolved shear stresy @nd Schmid factordosf cosl , wheref and| are

the angle of stress axis with the slip plane normal and the slip directspeadtively) i.e.

s =t/cosf codl , also known as Schmidodos | aw. It
applied tensile stress will vary between wide limits for different crystals at the same stage
of deformation [93]. An illustration of the sigicant variation in tensile yield stress as a
function of inclination of the <c> axis for different slip systems and thel ZJ0twinning

system is given irFigure 2.13. This figure is recreated from the Woof Barnett and co
workers [94]. The curves were plotted by assuming the CRSS ratios for basal to prismatic
slip, basal to pyramidal <c+a> slip and basal to extension twinning as 1:2, 1:15 and 1:0.7,
respectively. Notice that with the change in the oagtoh of the crystal the relative

importance of each mode can vary substantially.
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Figure 2.13: Schmid factor normalised CRSS values plotted as a function of the inclination

of ¢ axis to the imposed strg$sr tension) adapted from referen¢@4].
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The plastic properties ahagnesium single crystals have bestudied in detail
[52, 6365, 95, 96]during the 195G and 6Gs with extensive application of slip trace
analysisand constrainedleformation expements. The main conclusion of these studies

wasthat magnesium possesses two easy deformation madd@®m temperature: slip on

the (0001) basal plane alongl210> close packed directions and twinning on {12}
planes. Moreover, the stresdrain response is influenced by the orientatiothefcrystal
relative to the loading axis prior to deformation. As can be seen from work of Kelly and
Hosford [96]. They studied the deformation behaviour of pure magnesium siysigl<in
plane strain deformation experiment by varying the crystal orientations as shévwgure

2.14.
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Figure 2.14: True stress vs. true strain response of pure magnesnghe sirystals loaded
in orientation most favourably oriented fay <c+a> slipb) prismatic slip ana) {1012}

extension twinning. The inset drawing illustrates the orientation of loading axis and

constrained direction in the hexagonalstay The figure is adapted from refererjeé].
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2.6.2 Polycrystal

In general, wrought polycrystalline aggregates show strong crystallographic
texture (preferred orientation) which results in a strong anisotropy in mechanical
behaviour. Sheet magnesium allogso s s e s s Abasal textureo whe
predominately aligned parallel to the rolling plarfe2Q° tilt towards rolling direction)

[97]. Such texture is known to influence several aspects of the material, in particular the
yielding and work hardening characteristics. Kelly and Hosford [98] studied the
deformation behaviour of strongly textured polycrystalline magnesium in plane strain
compression, similar to their single crystal study on pure magnesium. They found that the
stress strain curves are similar in their general form of asymmetry to those obtained on
single crystals (se€igure 2.14) and can be interpreted in terms of deformation modes

observed in single crystals.

The early work of Kellyand Hosford [98] also showed the yield loci for textured
pure magnesium sheet as showirigure2.15. It is interesting to notice the shape and size
of yield loci at different strain levels. The strength in compression is [thaerin tension
and it was attributed to the easy activation{t®12} twinning in compression but not in
tension. The yield loci at 5% strain shows asymmetry similar to that of the locus at 1%
strain, while the yield locus at 10% straiexhibits comparable strength in all the
quadrants. This is consistent with completion of twinning at about 6% strain. For an
accurate description of yield loci of magnesium, it is imperative to take into account some
key sources of anisotropy: slip andterinning activity and texture development during

deformation.
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Figure 2.15: Yield loci for textured pure magnesium at 1%, 5% and 10% strain. The
plotted loci are fit to limited data of uniaxial tension, wimshcompression and plane strain
compression experimentshe figure is adapted from refererj®8].

Barnett et al . [ 99] have repeated Kel
experiments in selected orientations. Their results were consistent with tHoskyaand
Hosford [98]. Similar studies have been carried out by various other researchers [100, 101]

on pure magnesium and AZ31 magnesium alloys at high temperature.

Agnew et al. [8] did a systematic study on the plastic anisotropy in wrought
magnesiumalloy AZ31 by conducting tensile tests on variously oriented samples (e.qg.
parallel to rolling direction, 45° to rolling direction) at a range of temperatures {room
temperaturé 250 °C) and strain rates (300.1 s%). Their results suggest that theosty in

plane anisotropy at low temperatures can be attributed to the initial crystallographic texture

and greater than anticipated Aoasal prismatic slip of K12 0> type Burgers vectors.
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2.6.3 Summary

The work reviewed in this sectiohighlights that the relative contribution of
various deformation mechanisms (slip and twin modes) depends strongly on the specific
loading condition and the initial texture. Indeed, this is a key source of asymmetric
behaviour and anisotropy exhibited Inyagnesium single crystals and polycrystals in
different loading conditions. It is essential to consider the role of crystallographic texture in

determining the yielding and hardening response of magnesium alloy.

2.7 Effects of low homologous temperatureon the deformation
response of magnesium alloys

In this review, the term lotemperature is used to correspond to deformation at
homologous temperatufesf ¢ 0.33T, (Where T, is the melting temperature). Over the
last decade or so, thenave been numerous experimental and modelling studies [89, 102
110] focusing on investigating the let@mperature mechanical behaviour of HCP metals.
While many studies have centered on Zr, Be, Hf and Ti, few studies have systematically

examined the effés of lowtemperature on the mechanical response of magnesium alloys.

Figure 2.16 shows the temperature dependence of CRSS s/&buesarious slip
systems inpure magnesium determined from single crystal experiments taken feom th
literature [36, 37, 43, 111]it can be seen thadiasal slip is nly slightly temperature
dependat whereaghere is gong temperature dependence for tioe-basal activity.For

instanceprismatic <a> slip and pyramidal <c+a> slip are two times arakttimesnore

® Homologous temperature expresses the temperature of a material as a fraction of its melting point using the
Kelvin scale.
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Figure 2.16. The temperature dependence of CRSS for various slip systems in pure

magnesium.

difficult, respectivelyat 77K than at 293Kit should also be noticed that there is apparent
disaepancy in single crystal data for <a>+slip. The values reported by BhattachdA&

are approximately 1015 times lower than thealuesreported by Stohr et aJ111]. The
noteddiscrepancyvas primarily ascribed to the quality of the single crystatsording to
Bhattacharya [43], their lower CRSS values can be related to better single crystal quality.

This suggests that alloying may play an important role in determining the CRSS.

The earliest work in polycrystalline magnesium was performetidnyseret al.
[112]. They investigated the deformation mechanisms in extruded pure Mg sheets under

uniaxial tension at 7898K. The samples had a basal texture parallel to the sheet plane.

The results indicated that basal (@ﬂ> type)and prismatic (<1i 0> type) slip occurred

frequently at and below room temperature at stress concentration sites such as grain
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boundaries. The ease of prismatic slip was attributed to the localized inhomogeneous stress

caused byanstraints imposed on a grain by its neighbours [112].

Hauser and colleagues [112] also qualitatively studied the incidenfE0a}

extension twinning in magnesium at 78K, 195K, 273K and 298K. They reported that the
number of twins wasiot altered by lowering the test temperature. This conclusion is

somewhat surprising as they had loaded the specimens in tension normal to the <c> axes

which is unfavourable fof1012} twinning.

Ando and colleagues [113] studied the defation behaviour of magnesium

single crystals in tension along €1120> direction at low temperature. Their results
suggest that the crystal deformed primarily BY @rder pyramidal <c+a> slip in the

temperature range of 77R93K.

More recently, Bhattacharya [43] has studied the tensile behaviour of
polycrystalline pure magnesium in the temperature range of3GDK. The main
conclusion of his study was that magnesium exhibits anomalous yield stress and flow stress
behaviour at low tempatures. Both the yield stress and the flow stress were found to be
lower at 4.2K than at 77K. This behaviour was ascribed to the temperature dependence of
<c+a> slip activity. According to Bhattacharya [43], the glide due to <c+a> slip is more
favourableat 4.2K than at 77K because at higher temperature thermal activation dissociates
the <c+a> dislocation into a glissile, <a> type dislocation on the basal plane, and a sessile,
<c> type of dislocation on the prism plane. The glide of such dissociated atiigioc

becomes difficult due to sessile nature of the component <c> dislocation.
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2.7.1 Summary

In HCP metals, the relative importance of various slip and twin modes can vary
substantially with the change in test temperature and potentially alloy additionktilonre
to this many detailed experimental and simulation studies are available on metals like Zr,
Be, however, little is explored for magnesium alloys. Based on the limited single crystals
and polycrystal studies on magnesium, it is realised that thdisagie of slip and twin

modes can vary at low temperatures.

2.8  Precipitation and its influence on the deformation behaviour of

magnesium alloys

2.8.1 Precipitation in Mg-Al alloys

Figure 2.17 shows the Mg rich portion of the Mgl binary equilibrium phase
diagram. The maximum equilibrium solid solubility of aluminum in magnesium is 11.5
wt% at the eutectic temperature of 432°C, which decreases with decreasing temperature
(e.g. at 200°C equilibrium concentration2.9 wt% Al). When the aiminum content
exceeds t he solubility [ i mit i n-Mgnalgnesi un
precipitates (BCC structure) forms. Compared with the phases present in bingkly Mg
alloys, no new phases occur in ternary-Mgzn alloys if the Al:Zn ratio? 3:1 [115, 116].
The b p h-Als)ehas (bbep thoroughly studied [3181] and two distinct,

competitive modes of precipitation have been identified.

The nucleation and growth of isolated precipitates in the parent HCP ngatrix

referred to as continuous precipitation. Continupuscipitatesare of lath shapeon the
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Figure 2.17: Magnesium rich portion of M@\l binary equilibrium phase diagrafhl4].

basal plane of magsium solid solution matrix. The precipitate morphology and
orientation relationship with the matrix has been studied by various researcheig15
Table 2.5 briefly summarizes the shape, size and orientatfotontinuous precipitates in

the MgAIl-Zn system. It should be noted that the majority of these precipitates are
relatively large as the length of precipitategpproximatelyi2 e m (compar ed,
strengthening precipitates in aluminum alloyd)eTinterparticle spacing are also large, at

approximately 0.2 ¢ m-1p3l. 1 5

Unlike continuous precipitation, discontinuous precipitates appear as alternating
lamellae of solute depleted HCP phases and precipitate phasgaliMghat form behind
an advancing high angle grain boundafable 2.5 briefly compares the morphology and

orientation relationship of discontinuous precipitates to continuous precipitates.
36



Table 2.5: lllustrates the details of common precipitate type in theAgn system. L, W

and T correspond to length, width and thickness of precipitates, respectively

Precipitate Orientation

type relationshigt Shape Size ( Comments
=10 Formed by
(0003, 11110, Lath shape, (rare’ j dif;(Joslilg:an
Continuous ~ spheFr)ic’aI - W=0203 gominates at
[1120],, [I[111, t
T =0.030.02 mos
temperatures
Cry;tallographlc Single seam, Formed by
. . relationship with  double seam .
Discontinuoug . - grain boundary
marix is less lamellar e
: diffusion
stringent aggregates

* The subscript m and p correspond to matrix and particle, respectively.

2.8.2 Influence of precipitation on slip and twinning behaviour

2.8.2.1 Deformation of single crystals

In 1963, Byrne [124] studied the plastic deformation of-M24Mn alloy sigle
crystal s. The aging treat ment i n-Mn tyges al | c
normal to the basal plane. The alloy single crystals were tested in both the solution treated
and the aged condition. In the solution treated condition, an indre@®SS of five times
that of pure magnesium has been reported and primarily ascribed to the clustering of the
solute atoms given the 42% difference in atomic radii between Mg and Mn. On the other
hand, the CRSS value increased by a factor of two goimg fine solution treated state to

the aged condition. This increase was attributed to the solid solution in equilibrium with the
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precipitates. It w éVis precipigtes are enpapable efdnhiliitinga t

twinning.

I n the | ate dB@gre(l@y studi€lhthe rprecitate strengthening
mechanisms in Mé.1wt% Zn alloy single crystals favourably oriented for basal slip. They
found that the crystals in the quenched and aged state exhibit CRSS values of
approximately 10 times and 40 tim#sat of pure magnesium, respectively. In another
study from the same group [126], Nbglwt% Zn single crystal was tested in an orientation
favourable for twinning such that the tensile axis was placed along the [0001] direction.
They found that controllegrecipitation can be extremely effective in inhibiting the

twinning and increasing the strain to failure.

2.8.2.2 Deformation of polycrystals

There are a limited number of studies that examine deformation mechanisms in
the presence of precipitates. In 1970, Holeyer andHertzberg[127] reported that low

asymmetry in the tensiecompression behaviour can be achieved in wrough®§o Y

alloy and that this can be attributed to a reduction i{10&2} twinning activity.

Clark [128] has studiedge hardening mechanisms in a-Bigt%Zn alloy using
transmission electron microscopy (TEM). He suggested that basal slip{18i®}

twinning are the principal modes of deformation in aged2vicalloys. Moreover, the slip
dislocations werdound to be bowed between MgZrods (the precipitate rods were
aligned normal to the basal plane) while, twinning tends to shear the hardening precipitate,
resulting in a reorientation of MgZfi rods. Most recently, Stanford and Barnett [129] have

studied the deformation behaviour af binary MgZn alloy using a combination of
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experimental and modelling (VPSC) techniques. Their observations in TEM suggest that
the precipitates are not sheared by the twinning activity in contradiction with the earlier
observations by Clark [128]. Thegported that the presence of particles would tend to
increase the number density of twins, reduce the twin size and decrease the total twin
volume fraction. In addition, their VPSC modelling results inferred that the prismatic

planes are hardened more bggpitation than the basal slip.

To the authords knowl edge, there are on
AZ series magnesium alloy that examine the effect of precipitates on deformation
behaviour. The seminal work §lark [117] represents an dgprattempt at studyinghe
deformation mechanism in polycrystalline Nwt%AIl alloy by subjectingsamples to
uniaxial compressianThe solution treated materiahdergoes deformation Hyesal slip
and{1012} twinning, whereas prégitate-containing material shows ndrasal prismatic
slip (<1120> type) along with basal slifhe enhanced nebasal slip and suppression of
dominant {101 2}-twinning was attributed to the presence oégipitates. However, the
exact mechanism by which precipitates suppress twin formation and enharzasabaslip
was not clear. Neverthelessjppression ofdominant{1012}-twinning and incrase in
activity of nonbasal slip by pecipitation rather than by a matrix orientation effect is

interesting.

More recently, Gharghouri and -@mrkers [130] examined the nature of
interaction between the precipitates and the twins in aged binaf¥. MtfoAl alloy using

TEM. They found that # nature of interaction depends on the relative thickness of the
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twin and the precipitate (MgAl12). Twins were found to engulf the precipitates, impinge

upon precipitates and bypass the precipitates without shearing the precipitates.

2.8.3 Influence of precipitation on work hardening behaviaur

The process of strain hardening arising from the presence of undeformable
particles is briefly considered herelastic deformation of a material containing hard non
deformable particke produces internal stressélsat must be exceeded before further
deformation can occur [13134]. The difference in elastic and plastic properties of the
phases produces elastic and plastic incompatibilities, which in turn produce internal
stresses [13837]. Brown and Clarke [133, 134] V& calculated this mean back stress for
a number of particle geometries (e.g. ri bt

method. They showed the mean back stress in the matrix due to particles is given by:

S, =4f dfe (2.6)

m
(M, - o(m, - m)

where f = , g is an accommodation factor (for dishaped particles

g=1/(2(2- n)), whereni s t he P o ing andm @retherskearimodulus of the
particle and matri x, respectively, f is the
plastic strain. It should be noted that the back stress term linearly increases with the applied

strain pravided there is no plastic relaxation.

Gharghouri and colleagues [55] have applied this approach to understanding the
hardening response of a binary Mg at%Al alloy. In order to recognize the role of second

phase Mg-Al 1> during deformation of the alloythey measured the mechanical properties
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of a singl e crpAg,t The reported dastip rhoaldue andigeld strength
was approximate 80 GPa and 1 GPa respectively, which is significantly different from
the parent HCP matrix (modulus for nmegium 45 GPa). They showed in the absence of
plastic relaxation (i.e. at low strains) around particles, the above expression can reasonably
predict the hardening response of the alloy. In additi@dteres and cavorkers [138]
successfully applied equatid2.6) to estimate the maximum stress due to particles in their

sand cast and high pressure die cast91Zn (AZ91) magnesium alloy.

2.8.4 Summary

It is clear from the work reviewed above that precipitation can have a significant
effect on deformation respse of magnesium alloys. Some types of precipitation can
considerably change the slip and twinning characteristics of the alloy. Moreover, the work
hardening response can also vary substantially due to precipitates. In the aged magnesium
alloys, the interetion of precipitates with slip and twinning is complex and relatively

poorly understood.

2.9  Modelling the polycrystal plastic deformation behaviour of HCP
metals

There are many reasons why it is desirable to develop robust models for prediction
of deformaton and texture: i) the cost of experiments compared to simulations are very
high, ii) one can generate wealth of additional information, iii) underlying mechanisms and

physics can be better understood and iv) one can test various hypotheses.
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2.9.1 Polycrystal plastic deformation models

The prediction of polycrystal plastic deformation behaviour from the response of
their single crystal constitutes has been the subject of interest for almost eight decades now
(since Sachs 1928 [139] and Taylor 1938 [140]). Thggdst challenge to this is to
mathematically solve a problem that includes interaction among the grains. To tackle such
situation, models based on the averaging/homogenization methods in which the overall
quantities are represented as some proper avefatheio local counterparts have been

developed [13944].

Within an HCP polycrystal, the individual grains split up into groups of hard and
soft grains. The patrtition of plastic strain can thus be quite different between these groups.
The well known Taydr model [140, 141] under such situations may not be adequate as it
assumes the local grain level strains are identical to the overall macroscopic one. The
crystal plasticity finite element (CPFEM) [145%7] and sekconsistent viscoplastic models
[148-151] have been developed to handle these cases. In CPFEM models, local
heterogeneity can be taken into account by discretizing the grains into many elements. A
disadvantage of this approach is that it requires long computation times to deal with even a

relatively small number of grains.

Another approach is viscoplastic setinsistent (VPSC) models in which each
grain is assumed to be an ellipsoidal inclusion embedded in an infinite homogenous
effective medium (HEM) whose properties coincide with the avepagperties of the
polycrystal, as shown iRigure2.18. The local grain level constitutive response is coupled
to the aggregate behaviour usingthe-seinsi st ent al gorithm based

formalism [152]. After ach straining step the selfnsistent criteria ensures that the
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Figure 2.18 Schematic representation of the calculation scheme of the VPSC model where
each grain (ellipsoidal inclusion) is embeddwithin a medium with average properties.

The arrows within the grainthi cat e the ori epg and@aareothe graih  t he

stress and strain rate, whifeand ® are polycrystastress and strain rate values.

averages of all grain level stresses andistrates equal to those imposed macroscopically
i.e. it satisfies both strain compatibility and stress equilibrium in the average $éese.
local grain deformation in VPSC depends on grain orientation, grain shape and grain
interaction with the surrounadlj (each grain sees the average neighborhood in-site 1
model).The details of the entire formulation can be found elsewhere1%49 The single
crystal constitutive equation, the interaction equation, the hardening and twinning model

are described iAppendix A2.

2.9.2 Twinning models

It is important to briefly review here the main approaches that are commonly used

to model the twinning behaviour. Two types of model are common: the type a), also known
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as Kalidindidos model [ Yided into twidndd]land netwinnedh i ¢ h
regions (increases the number of grains in the simulations) and the type b), also known as
predominant twin reorientation (PTR) scheme, in which grains are allowed to be
completely reoriented when a certain criterion it fmumber of grains remains constant)
[151]. In the present study, the model of type (b) has been used in the Los Alamos VPSC
model [149] to account for twinning. Within the PTR scheme, a grain is allowed to be
completely reoriented based on the mostvactwin system present in that grain. The

details of model are presented in Appendix A2.4.

2.9.3 VPSC studies on magnesium alloys

In 2001, Agnew and cworkers [48] made their first attempt to implement a
VPSC code for analysing the mechanical behaviour of puagnesium and its solid
solution alloys containing Li or Y additions. They have demonstrated the utility of VPSC
models in interpreting the differences in the mechanical behaviour of different alloys. The
results showed that the plane strain compressixtuites of the alloys exhibit an increased
tendency for the basal poles to rotate away from the normal direction towards the rolling
direction and this was primarily attributed to enhanced activity of the non basal <c+a> slip
mode. They have also reportélgat the alloys had improved ductility in compression
compared to pure magnesium owing to the enhanced non basal <c+a> slip activity.

Recently, Jain and Agnew [82] have employed the VPSC model to study the
mechanical behaviour of AZ31B magnesium alloy eshenaterial tested in uniaxial
compression along three sample directions (rolling, transverse and normal direction) over

the temperature range of -280°C. The key conclusions from their study are: ipliane

compression results in profu§®012} twinning, which was shown to result in very low R
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value (given by ratio of width strain to thickness strain), i) the basal slip{aDti2}

extension twinning are athermal deformation mechanisms, {1i)12} twinning is

responsible for hardening of material due to rapid texture evolution and due to twin
boundaries acting as barrier to dislocation motion, iv) the twin barrier effect reduces with
increasing temperature and v) the enhanced ductility at moderate &unegi(10200°C)

was attributed to thermally activated prismatic <a> and pyramidal <c+a> slip mechanisms.

There are several other similar studies available on AZ31 magnesium alloy [8, 155].

2.9.4 Summary

Polycrystal plastic deformation models allow us twklithe aggregate response
with the grainlevel behaviour. In this regard, the model based on the viscoplastic self
consistent formulation is attractive as it accounts for the heterogeneous deformation of
polycrystals which is of particular interest for then-cubic metals and alloys. The work
reviewed above clearly highlights the potential of VPSC simulations in interpreting the
mechanical behaviour of magnesium alloys. One can predict the texture evolution,
individual mode activities and mechanical prdggsr using a VPSC model. As indicated
earlier, VPSC have been successfully employed for analysing the mechanical behaviour of
AZ31 magnesium all oy. However, to the auth

previous attempt made on AZ80 magnesium alloy.
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CHAPTER 3 - Scope and Objectives

This study is focussed on the AZ80 (M@\l-0.5Zn) magnesium alloy having a
fixed starting average grain size (i-e32um). In this work, deformation behaviour of an
AZ80 alloy is studied by varying: i) the crystallographic text(ire. strong and weak
texture), i) the temperature (i.e. 77K and 293K), iii) thstress state i.€.

tensioricompression) and ithe microstructurei.g. solutiontreated vs. aged).

The broadobjective of this workis to examine the influence of inifigdexture,
temperature, stress state and precipitabes deformation behaviour othe AZ80
magnesium alloy. This studyims atsystenatic characterization of the influence of these
variables on the yield strength, work hardening behaviour, texture evoarttassociated

deformation mechanisms of the alloy. The following objectives are sought in this work:

i) Examination of the effects of low homologous temperature on deformation
behaviour of strong and weak textured AZ80 allmyparticular, the work focuse
on analysing the effects of temperature on tmechanical propertieswork
hardening characteristics, texture evolution, slip activity and twinning behaviour of

the alloy.

i) To evaluate the VPSC model for deformatiohthe AZ80 magnesium alloy. The
VPSCmodel is employed to examine the effects of initial texture, stress state and
temperature on deformation mechanisms and texture evolution of the alloy.
Moreover,the present study will seekphysically based approadbr setting the

adjustable parameteirs the model.
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iii) To examine the influence of precipitation on the mechanical behaviour and texture
development of the AZ80 alloyThis studyaims toinvestigaé the effecs of
precipitates on the microstructural evolution, slip activity and twinning behawfour

the alloy
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CHAPTER 4 i Materials and Methodologies

4.1 Introduction

This chapter is conceed with the experimental methoas/olved in this study
and the basic overall design of the experimental and modelling Wiglite 4.1 shows a
schematic representation of the variables Ive@ in the present study i.e. crystallographic
texture, microstructure (precipitate state), test temperature and the loading path. The
experimental work involved a number of importaasks including i) the production of
materials withdifferent starting textureand ii) the generation of different microstructures
l.e. a supersaturated soligolution (solutiortreated) anda homogeneous distribution of
precipitates (aged). To accomplistese suitable processing conditions (e.g. heat treatment
condition, rolling condition ety have been determined. In addition, for examining the
effect of low homologous temperature on deformation behaviourA880 alloy,
deformationtests were caied aut at room temperature and with samples submerged in

liquid-nitrogen

The organization of this chapter is as follows. Sectidghprovides details on the
starting material. Section 4.3 describes the various characterization tools and the related
sample peparation techniques used. The processihthe alloy with different starting
textures and microstructigés summarised in section 4¥he matrix of mechanical testing
is described in section 4.5. Section 4.6 includes the description of various metkddsr
characterizing the deformation modes in the present study. The methodology involved in

the VPSC simulations is described in section 4.7.
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Figure 4.1: Schematic representation of the variables inedlin deformation study.

4.2 Initial material details

The direct chill cast AZ80 magnesium alloy used in this study was supplied by
Timminco Inc., Canada. The size of thecast billet was about 220 mm in height and 300
mm in diameterTable 4.1 shows the chemical composition of thereseived alloy. For
reference, the chemical composition of the AZ80 alloy is showra @ection of the
quaternary phase diagram figure 4.2. At temperatures below approximately 355°C, the
b-Mga7Al 1, precipitates from the parent HCP alpha phase, in addition to the insoluble

AlgMns phase which precipitates during solidification.

Table 4.1: Nominalchemical composition of the commercfeZ80 magnesium alloy

Element Al Zn Mn Mg

wt % 8 0.5 0.2 Bal.
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Figure 4.2: Mg-rich end of the MgAl-Zn-Mn phase diagram. The quaternary isopleth is
plotted at 0.5 wt%Zn and 0.2 wt% Mn. The dashed line indicates the bulk Al content of
the AZ80 alloy[114].

4.3  Material characterization: sample preparationand tools

4.3.1 Metallography

Sample preparation for opticalicroscopy scanning electron microscopy (SEM),
and electron ackscatter dffaction (EBSD) was as followsMechanical grinding
(600/800/1200/240@rade SiC)was performed andollowed by diamond suspension
polishing using6 €¢ m a n dcompaumd After diamond polishing, samples were
chemically polished in 10% Nital (®@ml of ethyl alcohol and 10ml of nitric acid) solution

for 30-60 sat roomtemperature
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For optical metallography, the chemically polished surface was etched in an
aceticpicral solution (4.2y picric acid, 10 ml acetic acid, 10 ml water, 70 ml ethatwl)
reveal thegrain structure. The sample wiasmersed in theolution until its surface turned
light orange(~ 30 s)and wasthen rinsed with ethanol and dried in a blast of air. For
revealing the precipitates, chemically polished samples were alsoetig®eo in 10%

hydrofluoric acidsolution in ethanadlor 1-2 s.

For EBSD observations, an additional step of electrolybiisping is required
The electrepolishing was carried out in a separate cell consisting of an anode, a cathode
(stainless steel) @nan electrolyteZ0% nitric acid in 80% absolute ethanahaintained at
-20°C. A voltage of 2630V was used The electrolyte was constantly stirred with a
magnetic stirrer to avoid the formation of bubbles on the surface of the sample. After

electrepolishing, samples were quickly rinsed with ethanol and dried under a blast of air.

4.3.2 Microstructure and texture characterization

4.3.2.1 Optical-Nomarski microscopy

A Nikon EPIPHOT 300 optical microscopeas used to charactee the initial
microstructureand to studythe surface slip trace§rain size measuremenby optical
microscopywerebased orASTM E 112 [156] and werebtainedfrom the measurement of
500-1000 grains. For revealing the slip lines unambiguously, a Nomarski |e@es
specifically attached to asptical microscopeA detailed procedure of slip trace analysis is

described later section in 4.6.1.
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4.3.2.2 Scanning electron microscopy (SEM)

The microstructure of asast, solutioftreated and aged samples was studied using
a Hitachi S570 scanning electron mascope (SEM) operating at 20 keV. The
homogenization of the asast structure and dissolutionf®ig;7Al 1, phase during solution
treatment was studied by SEM using secondary electron (SE) images. For revealing the

distribution of precipitates in an aged sample SE images were also utilised.

4.3.2.3 Electron back scattered diffraction (EBSD) analysis

In the pesent study, two EBSD systemsere used to characterize the
microstructures in deformed and undeformed stafyse system was mounted on a
tungsten filament SEM giving a spatial resolution on the order of 1 pm while the second
was mounted on a FEG SEM iy a spatial resolution of50 nm.

The low resolution EBSD system was used to determine the orientation of the
grains, to measure the twin area fraction and to compute the microtexture. The
measurements were carried out on a Hitachir@ SEM equipped h a electron back
scattered detector. The opengticonditions were as followsceelerating voltage 2ReV,
sample tilt 70°, working distance 23 mm, step siZz2el mTo obtain the information on
texture, a large step size 4-5 um) was used in an att@ito increase grain statistics. The
indexing rate of the measured EBSD maps was typically around 80&tedium level
(five neighbouring points) of zero solution extrapolation has been applied to the data to
remove norindexed points.

Selected high resdion EBSD maps were also measured to examine the
formation of twins. EBSD measurements were made using a JEOL 6500F field emission

gun scanning electron microscope operated at 15 keV equipped with HKL Channel 5
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software at a step size of about-BD nm. he indexing rate of the EBSD maps was
typically 85% and they were cleaned in the same manner as mentioned above. Two types
of maps were plotted: an inverse pole figure map and a band contrast map. In the inverse
pole figure map the compression directiorpistted in the crystal reference frame. The

band contrast map is based on the Kikuchi pattern quality. For plotting, an available grey
scale which typically varies from-B55 has been used. In this the minimum pattern quality
was shaded as black, whilecreasing brightness indicates increasing pattern quality. The
presence of grain boundaries and defects on the surface such as slip lines, deteriorate the

pattern quality and are therefore revealed in the band contrast map.

4.3.2.4 Neutron diffraction texture measuements

Neutron diffraction has been employed to characterize the texture and estimate the
twin volume fraction in deformed samples (procedure outlined in section 4.6.3). Texture
measurements were made on the E3 spectrometer at the Canadian NeutroreBearatC
Chalk River Laboratories, Canadéigure 4.3 shows a schematic drawing of the neutron
texture measurement unit. The incident neutron beam of wavelength 2.2 A was obtained
from the {311} reflection of a germanium monochrating crystal. The cross section of
the beam was 25.4 mm x 25.4 mm. Thengle orientation was controlled by Eulerian

cradle which was pr @drAa mmeld3dor lo inspement oc5°, f r o m

as indicated irFigure 4.3. Four pole figures, {0001}1010} ,{1011} and{1012}, were

measured in each case. ApproximateRx10’ grains were involved in the neutron
analysis. The measurement of each sample took approximately 10 hr (including
background determination). The neutron dateevearalysed and subsequently plotted using

the Chalk River texture package.
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Detector

Eulerian cradle

Reactor Monochromator
crystal

Figure 4.3. Schematic representation of neutron diffraction unit used for texture

measurements.

4.4  Processing of initial material

Figure 4.4 shows an SEM of the a=mstAZ80al | oy . T Mgi/Albisphase
distributed throughout the matrix, primarily along grain boundaries the former
interdendritic region during solidificatiolThe asrecaeved material was then subsequently
treated in several steps as illustrated in the schematic diagram sh&wgur@4.5, while

the details of the processing @escibed in the next three sections

4.4.1 Preparation of wealy textured solution treated samples

The asreceived alloy was given a homogenization and solution treatment with the
purpose of eliminating the a=ag segregati on aMvgdAl,,phasesd | vi ng
temperature of 415°C was selected based upon théAlMm-Mn equilibrium phase
diagram Figure4.2). This is well above the equilibrium lsas temperature of thaZ80

alloy, which is roughly around 355°C and below the liquidus of 480°C. To study
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Figure 4.4: Secondary electron micrograph (SEM) micrograph of theeesived material.

Solution treated

As-received AZS( 415C Weak texture, Cold rolling
alloy Tday $ Grain size ~ 32

Strong texture,
Grain size ~ 32

=]

Annealing
3854C for 1h

Ageing Ageing
2004C for 72h 200/C for 72
Aged
Weak texture, Grain Strong texture, Grajn
size ~ 32 um, size ~ 32 ym,
precipitates precipitates

Figure 4.5: Schematic drawing illustrating the key steps involved in the processing of the

asreceived material.

dissolutionoft he b phase and homogeni zation, sampl
times (i.e. %2, 1, 2, 4 and 7 days) at 415°C and then quenched into cold water. All the heat
treatments were carried out undiewing argon to reduce oxidatiofigure4.6a and 4.6b

show that there was a complete dissolution
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(b)

Figure 4.6. SEM micrographs of samples solution treated at 415°@)fdrday ando) 7
days.

number of insoluble Mn rich AMn intermetallics (confirmed bgnergydispersive Xray

(EDX) analysis) were observetihese are presumea be theAlgMns phase (see the phase
diagram inFigure4.2). There idittle difference between a 1 day and 7 dapttreatment

and it was therefore conalad that the solution treatment at 415°C for 1 day was sufficient

to dissolve the b phase. It should also be

previously applied by other researchers [1674similar alloy.

Figure4.7a shows an etched optical micrograph of solutreated AZ80 alloy.
The initial grain size was 32 &m, as measu
[156]. This was found to be consistent with the measurement from EBSD Figpse
4.7b and 4.7c, respectively show the {0001} basal §h@10} prismatic pole figures
(measured from neutron diffraction) of theraseived material. Although t{€001} pole

figure shows some preffred alignment of bakpoles perpendicular to the casting direction
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{0001} {1010}

€D Max. = 2.4 Max. = 1.9

! Contour separation: 0.5 X Random
ND D Thick solid line = 1 X Random

() (b) (©)

Figure 4.7: a) An optical micrograph showing the grain structure of solutreated
(415°C for 24h) AZ80 alloyb) andc) show the {001} and {1010} (stereographic) pole

figures, measured from neutron diffraction, representing the texture of the same material.
The pole figures are contoured in multiples of random distribution (m.r.d.) with the thick
solid black line corrgponding to 1 m.r.d.. The contour levels above and below 1 m.r.d. are
given by solid and dotted lines, respectively, in 0.5 m.r.d. stEps.CD, TD and ND
correspond to casting direction, transverse direction and normal direction of the sample,

respectivey.

(CD), the overall texture of this material is weak (maximum intensity of 2.4 m.r.d.). This

condition is referred to as weddxtured solutioftreated in the subsequent discussions.

4.4.2 Preparation of strong textured solution treated samples

The samples ithe supersaturated solid solution state (described in section 4.4.1)
were also coldolled and annealed with the aim of producing a microstructure consisting
of grains of similar average size (i.e. 32 um) but with a strong recrystallized texture. To
acconplish this, solutiortreated samples of 120mm x 65mm x 14mm, were cold rolled on

a laboratory rolling mill (roll diameterl54 mm) and then annealed isothermally at 385°C
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