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Abstract 
 
This work develops a framework of design evolution to support and automate the generation and 

evaluation of optimal multi-domain engineering designs. It integrates a Machine Health 

Monitoring System (MHMS), a Model Generation System (MGS), a Design Expert System 

(DES) and an Evolutionary Design Optimization System (EDOS) for aiding engineers through 

the redesign of an existing engineering system. First, the MHMS, while maintaining the 

engineering system in an operable condition by anticipating possible failures, indicates 

subsystems for possible design improvement. Second, the MGS which provides the capability of 

system modeling through the Linear Graphs approach enables representation of the current 

version of the system that is being designed. Third, the integration of a DES to the evolutionary 

framework provides automatic incorporation of expert suggestions into the system. Fourth, the 

EDOS automatically evolves mechatronic designs represented by Linear Graphs using Genetic 

Programming (GP). In addition, the Mechatronic Design Quotient has been proposed as the 

fitness function of the evolutionary process, as it provides an intelligent way to represent the 

quality of design using various design indices. Also it has proven to be a good approach to meet 

design constraints and do not violate the feasibility of implementation. 

The experimental system (Iron Butcher) is an automated industrial fish processing machine that 

already has a MHMS. Development of the DES is an on-going project of other researchers in our 

laboratory. The present thesis primarily focuses on the modeling using Linear Graph and design 

optimization using Genetic Programming. 

An algorithm which integrates GPLAB, a MATLAB toolbox for Genetic Programming, with the 

powerful modeling and simulation tool of Simscape is developed. Both the scheme and the 

design alternatives generated by the algorithm are validated using computer simulations and 

physical experimentation on a realistic environment. For this purpose, a state-space model of the 

electromechanical conveying system of the Iron Butcher is developed using Linear Graph 

modeling. Results show that under normal operating conditions, the response of the machine 

satisfactorily matches that of the state-space model. Also it is found that the new mechatronic 

engineering designs automatically evolved through the developed design framework successfully 

met the design requirements. 
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Chapter 1  

Introduction 
 

1.1 Design of Engineering Systems 

In many situations of current practice, engineering products are designed in an empirical, 

instinctive and iterative manner. However, in order to design competitive and complex products, 

a systematic approach must be applied.  

Design may be viewed as an interplay between what we want to achieve and how we want to 

achieve it [1]. However, in practice, going from what to how, continues to be a difficult process 

which is full of conflicts, tradeoffs and risks. Successful designs must satisfy many opposing 

practical constraints. For example, there may be insufficient space for a desired function unless 

costly development is undertaken, or space is occupied from another function, affecting quality, 

fabrication yields, or ease of assembly.  

Engineering design could be defined as a multi-step process of specifying a realizable 

description of an artifact (in particular for this research work, artifact refers to industrial 

machinery). Converting a concept into a complex, multi-technology system involves many steps 

of refinement or “evolution.” The need for design optimization with respect to a complex 

objective function, in the present context, makes the design problem further challenging.   

In recent years, immense progress has been achieved as the design process for product 

development has become rational and systematic methodology. The design process is well 

organized into several specific stages: System Requirements, Conceptual Design, Preliminary 

Design, Detailed Design, Fabrication, Integration, and Testing.  

For every design step and its required iteration, a great deal of analysis and thorough 

investigation of fundamental physical processes are needed. Also it might be necessary to carry 

out experimental verifications, complex compromises between conflicting elements, and 

foremost, difficult decisions have to be made throughout. Frequently, the original concept may 

not function as planned, and additional work may be required, affecting the schedule or requiring 

a change in specifications; with all the implications this might create. 
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Even with the application of the best engineering design practices, numerous design failures of 

engineering systems occur on a daily basis. Satisfying the different and conflicting needs of 

function, manufacturing, use, and support not only requires expert knowledge and skills, but also 

demands a systematic approach and efficient tools to assist in the process. It is clear to 

understand why engineering design is a crucial component of the process of industrial product 

realization and engineering systems development.  

Several procedures and techniques have emerged to support and improve many phases of the 

design process. Catalogs, handbooks and company guidelines have been developed to collect and 

generalize the design knowledge base; but in fact such knowledge is so extensive that, up to date, 

much of the advances have only been able to focus in some specific domains or on the final 

phases of the design—the detailed or parametric design. 

This situation seems logical as, in the initial phases of design, much of the work is done at a high 

level of abstraction, and to a large extent the information is incomplete and ambiguous. 

Nevertheless, around 60% to 70% of the design decisions and most innovation are determined 

during the first stages of the design process—the conceptual design [2].  

Some examples of available tools are: rapid physical prototyping systems, solid modeling 

systems and Computer Aided systems. There is an extended use of Computer-Aided Design 

(CAD) and Computer-Aided Engineering (CAE) systems nowadays.  

Recent developments in Expert Systems (ES) have triggered the idea of using them in the 

challenging process of engineering system design. The present research proposes that along with 

ES, Machine Health Monitoring Systems (MHMS) could be used to provide valuable 

information regarding the design status and regions of design weakness. While sensing the 

performance of an operational prototype or an already commissioned engineering design, it can 

also be configured to detect existing design failures and gather enough evidence to determine 

possible areas requiring a redesign. 

The goal of any industry is to increase its productivity. With this in mind, achievements in the 

design process research can be used to reduce the lead-time of product development and 

facilitate the conceptual design process. An effective engineering design process and its 

automation, will improve quality, reduce costs, guarantee ease of manufacturing, speed up the 

time to market, and also provide better products that can satisfy customer/market needs. 
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A novel and powerful approach to assist the early stages of mechatronic systems design is 

developed in the present thesis. Automated search of the design space for an optimum solution, 

based on Genetic Programming (GP) and Linear Graphs (LG), addresses the time consuming and 

difficult process of innovation, where technical expertise and human judgment prevail.  

 

1.2 Research Objectives 

The goal of this thesis is to develop a system framework that uses on-line monitoring, linear-

graph modeling, design expert systems, and evolutionary optimization for automated design 

evolution of existing engineering/mechatronic systems. The original concept of this integrated 

system framework was proposed by Clarence de Silva in 2008, in his research proposal for a Tier 

1 Canada Research Chair at the University of British Columbia. Application of the developed 

methodology to a representative complex industrial machine and evaluation the resulting 

performance improvement in such a mechatronic system are also associated objectives of the 

present research. 

The system framework will integrate several technologies and systems capable of generating 

design alternatives, evaluate such alternatives, select the best candidate and provide an insight 

into why a particular design was chosen. 

The developed system framework will be implemented and tested on the industrial fish cutting 

machine (Iron Butcher), which has a complex engineering design and is available in the 

Industrial Automation Laboratory of the University of British Columbia. 

The most effective designs are acts of creativity that rank with those in the fine arts [3]. Trying to 

emulate such innovative and intelligent processes are not within the scope of this work, but to 

provide a tool to quickly and efficiently explore the vast space of possibilities and guide future 

research on design.  
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1.3 Organization of the Thesis 

The thesis is divided into 6 chapters. The present chapter discussed the motivation for a 

framework that is capable of assisting the creative phases of the engineering design process. 

Objectives and challenges of the research have been outlined in this Chapter. 

Chapter 2 provides a detailed literature review highlighting the relevant work in dynamic 

modeling techniques, evolutionary computing and particularly Genetic Programming (GP), and 

the integration of both dynamic modeling and GP for the design evolution of engineering 

systems. Previous work related to Machine Health Monitoring Systems implemented on the Iron 

Butcher is summarized. Finally, a description of Expert Systems is provided along with 

references.  

Chapter 3 describes the proposed system framework along with its main subsystems. The 

integration of a Machine Health Monitoring System, a Model Generation System, a Design 

Expert System and an Evolutionary Design Optimization System is discussed. The foundation 

(attributes and characteristics) of Linear Graph (LG) modeling as well as a brief introduction to 

Genetic Programming are presented as pertinent background. Such important concepts as 

evolution of fitness and embryo are discussed in detail in this chapter. The reasoning behind the 

selection of Linear Graph modeling is described. The general approach and methodology 

followed in the thesis are also described in this chapter. 

Chapter 4 presents the experimental setup, the industrial Iron Butcher, used in the present 

research. A Linear Graph model for the fish cutting machine and the state space model derived 

from it are presented in this chapter. The model response is compared against experimental 

results and verified through computer simulation. 

Chapter 5 summarizes the results obtained from computer simulation and experimentation on the 

test bed. The evolutionary program algorithm is presented and case studies are evaluated and 

discussed. 

Chapter 6 concludes this work by providing a summary of the presented research and the main 

contributions made. Suggestions for future research topics are also presented in this chapter. 
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Chapter 2 

 Literature Review 
 

2.1 Dynamic Modeling 

Analytical dynamic models have proven to be a powerful way to represent complex engineering 

systems. They have also been helpful to gain comprehension of the physical and mathematical 

theory that describes the relationships and interactions between every subsystem/component 

within a dynamic system. They provide useful means to represent the exchange of energy 

between elements and manipulate their response variables, which are, in principle, directly 

measurable physical quantities. 

An effective modeling tool that has been developed at the Massachusetts Institute of Technology, 

which can assist engineers in developing a state space model (system dynamical equations), is 

Linear Graph (LG) modeling. Linear Graphs is a graphical tool for developing and representing 

lumped-parameter models of dynamic systems. A good description of the underlying 

methodologies are provided by de Silva [4, 5]. Mechatronic systems (mechanical, electrical, 

thermal, fluid or multi-domain systems) are examples of dynamic systems which require a 

thorough understanding of their physical principles and behavior. Such understanding of the 

systems allows engineers to design, modify, control, and operate them for useful purposes. 

The graph theory was proposed by Euler in 1736, but it was only in 1950’s and 1960’s that the 

general modeling techniques for multi-domain engineering systems were developed [6]. In 1955 

Trent was the first to propose extending Kirchhoff’s studies on electrical networks to other 

physical domains [7]. Work by Roe [8] (1967) and Blackwell [9] (1968) provided unified 

procedures for analysis and design of physical systems such as very large electrical networks. 

Linear Graphs or Graph-Theoretic Modeling (GTM), Physical Networks and Bond Graphs (BG) 

are examples of techniques which share the common theory.  

Researchers have applied LG theory to spatial, flexible, and interconnected multi-bodies and 

symbolic computing [10]. Also the use of individual subsystems to build more complex system 

models has been evaluated and convenient computer software has been developed for 

constructing LG, BG and Physical Networks models. Such technical computing software has 

extended the benefits to various disciplines other than engineering (e.g., bioinformatics and 
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econometrics) thanks to the automatic formulation and solution of differential and algebraic 

equations which define the modeled system.  

Chapter 3 will provide an overview of LG principles and the unified and systematic approach for 

modeling multi-domain dynamic systems. A good reference for modeling and its application in 

control systems is the book by de Silva on Modeling and Control of Engineering Systems [11]. 

In particular, it provides a comprehensive chapter on the use of LG representation and the 

systematic development of an analytical model for mechanical, electrical, fluid and thermal 

systems.  

 

2.2 Genetic Programming 

Genetic Programming (GP) is a method of automatically creating computer programs inspired by 

biological evolution. The techniques based on natural means of evolution are classified as 

evolutionary computing. Genetic Algorithms (GA) developed by John Holland [12] in 1975 and 

Genetic Programming invented by Koza [13] in 1992 are two representative techniques of 

evolutionary computing. 

While in GA, solutions are represented by strings of numbers or symbols, GP solutions are 

executable programs (e.g., trees) that, without being explicitly programmed to solve a problem, 

they are able to do so [13].  

Both GA and GP are adaptive search mechanisms that are useful for system design. Several 

studies have proposed methods of using GA and GP to automatically design and optimize 

electrical circuits and mechanical structures [14]. In the past years, much progress has been made 

by Koza et al in this regard. They have demonstrated the capabilities of GP in the automatic 

synthesis (both topology and sizing) of various electrical circuits including filters, operational 

amplifiers and controllers [15]. Other applications of GP include: symbolic regression problems, 

time-optimal control and image compression.  

Attractive features and benefits of the GP technique as discussed later in this thesis include: 

global optimization without the risk of trapping in a local optimum, non-analytic optimization, 

biological inspiration, the variety of problems that can be solved, the problem independence and 

the ability to reuse previously generated code. 
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Genetic Programming technique comprises the following main steps: It starts by randomly 

generating an initial population of computer programs using the functions and terminals 

(variables and constants) of the problem. Once, the initial generation has been created, it 

evaluates every individual program of the population and calculates a fitness value depending on 

its performance on solving the problem. The best individuals will be selected and several 

architecture altering operations such as crossover and mutation will be applied on them in order 

to obtain new computer programs (individuals). The process of evaluation of individuals and the 

selection and creation of new individuals is repeated until the termination criteria have been 

satisfied. Finally, the best individual created in any of the generations will be able to solve (or 

approximately solve) the given problem, in an optimal manner as dictated by a fitness function 

(performance index). 

Chapter 3 will expand further the main components, principal operations and parameter 

characteristics of GP. Extensive information regarding the subject could be found in Karray and 

de Silva’s book [16] and Koza’s book [17].  

 

2.3 GP and BG Integration 

GP has been successfully applied to the automated synthesis (both sizing and topology) of analog 

electrical circuits [18] by mapping the structures obtained in GP with the graphs that represent 

associated complex circuits. One of the limitations of Koza’s work is that it has been performed 

only in one domain. Methodology has been developed to extend this approach to other domains. 

Bond Graphs (BG) is a multi-domain modeling tool for representing dynamic systems. Inspired 

by Koza’s work, Seo [19] et al. proposed the integration of Bond Graph modeling with Genetic 

Programming to explore the design space not only in electrical domain but also in multi-domain 

mechatronic systems which include active and passive components. The drawback of their work 

is that they only considered the structural part of the system and did not make a proper 

evaluation of the designs for implementation. 

Fan [20] et al. in 2001 proposed a tool called GPBG for automated synthesis of a variety of 

dynamic systems. The GPBG tool uses Genetic Programming to generate trees that specify 

operations for construction of a Bond Graph.  
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Behbahani and de Silva [21] have also integrated Genetic Programming and Bond Graphs for the 

system identification of a mechatronic system. The technique has been applied to a nonlinear 

electro-hydraulic manipulator. The authors also proposed additional construction functions to 

account for some nonlinearities of a mechatronic system. 

Previous work has demonstrated the powerful search ability of Genetic Programming and the 

benefits of the integration of a multi-domain modeling tool. In order to assist in the automated 

synthesis of mechatronic systems, however, it is required to develop two main components: an 

embryo model from which all proposed solutions will be evolved and a fitness function which is 

a performance function for optimization, which can evaluate the performance of the candidate 

solutions. 

 

2.4 Mechatronic Design Quotient  

In the early 2000s, de Silva proposed the concept of Mechatronic Design Quotient (MDQ), 

which integrates a group of indices to represent the optimality of a multi-domain integrated 

design problem [22]. Subsequently, in 2005 Behbahani and de Silva [23] developed a tool for 

automated system identification that can be used in a variety of problems, provided that a 

suitable evaluation scheme can be established for that problem. The authors incorporated a 

fitness evaluation method based on MDQ, indicating the degree of closeness of the response of 

each model to the actual behavior of the system. Since then the concept of MDQ has been 

applied in the integrated design of a variety of applications [24, 25, 26]. 

Considering n design criteria and r design constraints, may be expressed as:  

   )(),(),...,(),()(
1

21 xgVxsxsxsHxMDQ i

r

i
n

 


   (2. 1) 

were si(x) is the partial score from the ith criterion showing its degree of satisfaction, H is the 

aggregation operator, and V[gi (x)] is a function indicating whether a constraint has been fulfilled 

(1 satisfied, 0 otherwise). 

In the design process, requirement specifications have to be compared against evaluating criteria 

in order to be able to select the best design candidates. Hence, MDQ can facilitate the designer’s 

selection of conceptual alternatives based on the degree of satisfaction of the chosen criteria.  
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2.5 Machine Health Monitoring Systems 

Fault detection and diagnosis have been an important topic for industrial systems. Severe damage 

can occur from failure of engineering systems and the effect of such failure could be serious. In 

this sense, many different approaches have assisted in monitoring modern complex engineering 

systems.  

Monitoring the health of complex mechatronic systems provides information that can be used to 

perform actions to prevent or correct failures. In the case of the Iron Butcher—the industrial fish 

cutting machine available at the Industrial Automation Laboratory—several Machine Health 

Monitoring Systems have been developed to accurately detect machine faults. 

In 2008, Lang and de Silva [27] developed a monitoring scheme through neuro-fuzzy sensor 

fusion for the Iron Butcher. They were able to classify three types of faults with high accuracy 

using an accelerometer, microphone and a CCD camera. 

Raman and de Silva [28] and Razavi and de Silva [29] developed two other techniques for 

condition monitoring of the Iron Butcher. Raman and de Silva [28] implemented a multisensor-

based condition monitoring scheme using wavelet packets to process acquired data from the 

sensors (accelerometers and microphones), evolutionary computing to optimize vector selection 

and neural networks to classify the faults. They were able to determine 6 different machine 

defects. Moreover, the system is capable of determining to which specific subsystem in the Iron 

Butcher the fault is related. Razavi and de Silva [29] implemented a model-based online 

condition monitoring scheme using Unscented Kalman Filter on the hydraulic subsystem of the 

Iron Butcher. They were able to detect four common hydraulic faults (hydraulic cylinder leakage 

and dry friction build-up).  

 

2.6 Expert Systems 

Expert Systems (ES) are a branch of applied artificial intelligence (AI) which emulate the 

behavior of a human expert or a consultant of a specified domain and solve or assist to solve 

difficult problems within their domain [30]. Expert Systems have been used to assist in 

diagnostics and monitoring of industrial machinery [31]. Present research explores the possibility 
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of incorporating Expert Systems in the design process as they are capable of incorporating the 

“expertise” of the design specialist. 

A thorough literature survey conducted by Liao [32] detailed Expert Systems methodologies and 

its applications. A summary of the foundations of ES and different techniques used to represent 

knowledge could be found in [30, 33]. Some of the available techniques include: rule-based 

systems, first-order predicate calculus, object-oriented systems and attribute grammar systems.  

In the case of rule-based systems, human expertise is represented in the form of rules (e.g., IF-

THEN-ELSE). Such human expertise and the decision rules contained in the knowledge-base are 

usually integrated with 3 other main subsystems: an inference engine, a working memory and a 

user interface. The inference engine can update data in the working memory and determines 

which rules are fired, its sequence and also functions as a conflict solver. The user interface 

serves as a channel to obtain more information from the users or to present an insight of how the 

result was achieved. 

Some work included in Liao’s ES survey are the design of an industrial fermentation plant, the 

cold forging process and designing of a microprocessor-based systems.  

 

2.7 Summary 

A historical overview and the theoretical foundation of Linear Graph modeling has been 

presented in this chapter. LG is a useful modeling tool for developing the analytical models of 

multi-domain engineering systems. 

Genetic Programming, although being an open-ended search technique, has been effective in 

complex and non-analytic optimization and particularly in generating design alternatives with 

respect to a performance function because it is a well organized procedure. Furthermore GP is 

suitable for large-scale, nonlinear multimodal problems, such as design improvement. The key 

feature of GP is that it allows the design space to be explored until the desired design, defined by 

the fitness function (performance function), is achieved. 

The integration of Genetic Programming and a multi-domain modeling tool has offered 

interesting possibilities for the automation of the early stages of the design process. Special 

importance has been attributed to the embryo model and the fitness calculation method.  For this 
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purpose, the benefits of using the Mechatronic Design Quotient—MDQ have been outlined. A 

multi-criteria index of this type maybe used as the fitness measure for the Genetic Programming 

tool, to guide the design evolutionary process.  

Machine Health Monitoring Systems implemented on the Iron Butcher have been presented. 

Finally, characteristics of Expert Systems have been outlined and references of the application of 

these technologies in aiding the design process have been included. 
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Chapter 3  

Approach and Methodology 
 

3.1 Introduction 

Engineering design is a fundamental aspect of industrial development. Benefits of properly 

designing products (simple or complex) based on a systematic methodology, by far exceed those 

related to monitoring, control, and maintenance. The costs and repercussions of design failures 

also speak for the value of good design. Among other reasons, this is why it is more frequent to 

see the application of advanced practices on design, implementation of standard procedures that 

integrate multi-disciplinary teams and the usage of tools such as CAD/CAE that minimize 

development time and costs associated with the design process. 

Unfortunately, many software tools in engineering design and the progress achieved in the past 

have focused primarily on the final phases of the design and not on the conceptual stages. This 

could be explained due to the fact that innovation in the design process is based on the 

capabilities of the human expert, which are difficult to assess and control quantitatively. 

Furthermore, design procedures and tools that address multi-domain integrated design and multi-

objective optimal design are virtually not available. 

Tools that can support the automatic and “creative” generation of design alternatives in the 

conceptual phase, evaluate the compliance of the performance requirements and asses the 

feasibility of implementation or even its costs, will provide unquantifiable benefits to the design 

process as they will stimulate the creation of new engineering systems. Moreover, existing 

engineering systems that are functional and operational will benefit from the improvements or 

redesign suggestions by such tools.  

In the subsequent sections of the present chapter the research methodology followed in this thesis 

is presented, for the optimal design evolution of multi-domain (mechatronic) systems. A detailed 

description of the system framework proposed to assist in the design evolution stages as well as 

in the redesign of existing systems is presented. A summary of the tools: LG, GP and MDQ are 

briefly described in order to provide adequate background for the proposed methodology. 

Finally, reasons for using LG modeling and its systematic procedure are also justified in this 

chapter. 
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3.2 Research Methodology 

The methodology pursued in the development of the present research comprises the following 

steps: 

 A thorough literature review to further define the problem and understand the state of the 

art in this discipline. 

 Development of a method to address the research problem.  

 Program the developed method 

 Test the developed method and evaluate its performance through simulation and 

experimentation. 

 Discuss the performance of the developed methodology. 

 

3.3 System Framework 

To address the complex problem presented in this thesis, several tools and methodologies are 

developed and integrated in a complementary manner to provide innovative design alternatives. 

Such design proposals will be evaluated (as done by expert engineers) and the selected options 

will be able to satisfy the design requirements (for new engineering systems) or improve the 

system performance (for already operational engineering systems).  Figure 3.1 shows a graphical 

representation of the proposed approach. 
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Figure 3.1: Design evolution framework through on-line monitoring.  

 

The conceptual framework consists of 4 main systems: a Machine Health Monitoring System 

(MHMS), a Design Expert System (DES), a Multi-Domain Model Generation System (MGS), 

and an Evolutionary Design Optimization System (EDOS). The following sections discuss these 

subsystems in more detail as well as the interrelation between them. 

 

3.3.1 Machine Health Monitoring System 

As discussed in Section 2.5, Machine Health Monitoring Systems have traditionally being used 

for fault detection and diagnosis. In order to reduce operational and maintenance costs, increase 

the equipment performance and improve its reliability, monitoring systems acquire data from 

different combinations of sensors and observe the current state of an engineering system.  

In the scheme proposed here, besides maintaining the engineering system in an operable 

condition, by anticipating possible failures, the MHMS is also responsible for providing valuable 

data to the Design Expert System (DES). This information will be processed by the DES in order 

to select locations of a possible design weakness which may lead to a fault or a malfunction. 

Hence, the information from monitored signals can be used to indicate to some extent where and 

what type of design improvements should be studied. For example, once a fault has been 
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detected in a specific region (subsystem or component) of the engineering system, the MHMS 

will trigger the Design Expert System so that it can evaluate the characteristics of the fault, 

classify it and evaluate if such a fault is related to a system underperformance with respect to 

speed, efficiency or power consumption. 

In general, for the proposed framework the MHMS has to accomplish two main objectives: 

 Monitor and diagnose failures within a complex engineering system, 

 Indicate specific areas or components related to faults which could be used by the 

evolutionary system for design improvement. 

 In fact, the MHMS implemented by Raman and de Silva [28] on the Iron Butcher can classify 

the machine faults with high accuracy. Furthermore, it is capable of suggesting subsystems 

related to a component failure (e.g., a cylinder leakage corresponds to a hydraulic system failure, 

the wear in a bearing relates to a conveying system failure).   

 

3.3.2 Design Expert System 

Once the Machine Health Monitoring System has acquired data related to a specific failure, if an 

expert engineer reviews such data and detects trends in the degradation of performance or 

recurrence of certain types of failures, it will be able to distinguish whether such failures are due 

to a bad design (e.g., fatigue failure, incorrect overload specification, etc.) or just wear, lack of 

preventive maintenance or even a bad original installation. 

In this research, an important function of the Design Expert System is to assist in the automated 

classification between an engineering system malfunctioning (due to maintenance, operational or 

installation errors) and an engineering design error, and to emulate human expertise in 

determining the characteristics of a fault. As another function, the DES will mimic the role of 

human experts for general supervision and for intelligent decisions within the automation of the 

design process. Furthermore, it can assist in determining the sites for design improvement and 

separating feasible design changes with infeasible design changes. 

In order to correctly assess the problem, expert engineers will use prior experience, theoretical 

and organized knowledge, and of course, common sense gained over time. The expert knowledge 
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in a particular domain may normally be represented in the form of heuristic knowledge (rules of 

thumb).  Once the expert knowledge is captured (Knowledge Engineering), typically in the form 

of IF-THEN rules, it will be transferred to a Knowledge Base (KB) along with design data 

contained in catalogs or handbooks.  

The Working Memory (WM) will contain the situation-specific information. This means that for 

every problem, particular details will be stored in the WM, such as the design specifications 

(tolerances, requisites and restrictions) as well as the intermediate results and facts of the 

problem being studied. One of the facts of the problem is in effect the on-line health provided 

(and routinely updated) by the MHMS. 

With the rules of the system (descriptions, relationships and procedures) stored in the KB and the 

facts of the problem saved in the WM, the Inference Engine (a program within the Expert 

System) will decide what set of rules should be applied and in which order should they be 

executed to minimize conflicts. For cases of incomplete information, DES can prompt the user or 

domain experts for missing values or data.  

An interesting aspect of the DES is its capability to answer questions and provide explanations of 

its procedures or reasoning by means of a user interface. This capability is very useful for the 

user as it helps to understand how it worked or in determining whether the DES reasoning was 

correct.  

In summary, the DES will infer system malfunctions from sensed symptom data provided by the 

MHMS and study the observed data over a period of time. It will warn against potential flaws 

and determine whether the failure corresponds to a design error. Finally, in conjunction with the 

MHMS, the DES will be able to identify subsystems or sites within the engineering system 

suitable for design improvement or related to the original cause of failure.  

Another activity performed by DES corresponds to feasibility evaluation, but this topic will be 

discussed in more detail in the next section. 

 

3.3.3 Evolutionary Design Optimization System 

The Evolutionary Design Optimization System (EDOS) is a key component of the proposed 

system framework. The EDOS may be considered as the primary creative part of the system. It is 
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responsible for the innovation in the automated design evolution process. This system consists of 

two primary subsystems: Model Generation System and Evolutionary Design Optimization 

System. The concept design evolution was proposed be de Silva in 2008 in his research proposal 

for Canada research Chair. It uses some concepts of model optimization through the GPBG 

scheme presented by Seo et al.  [19], some concepts of Mechatronic Design Quotient (MDQ) 

[22, 23], and liner graph modeling. 

The overall purpose of the Evolutionary Design Optimization System is to develop 

configurations that will satisfy given constraints, such as the optimal selection of components 

and its parameters for a predetermined response. These configurations are, in fact, design 

alternatives that could address the requirements for a new engineering concept or improve the 

actual performance of a functional system. 

The first step is to have a representation of the engineering system. In this approach a Linear 

Graph (LG) model, will be employed to represent an engineering system and also will be used 

for analysis and simulation.  To provide fundamental understanding of the capabilities of the 

developed multi-domain modeling tool the following section provides a brief introduction to LG 

and its structures. Section 3.3.3.2 explains the procedure to obtain an analytical model from the 

LG model. It will also provide the rationale for using LG modeling.  

The remaining sections of the chapter describe the GP tool, the MDQ, and the EDOS algorithm 

flowchart. Finally the LG evolution procedure will be introduced with an example of a 

Mechatronic system evolution.  

 

3.3.3.1 Linear Graphs 

Linear Graphs use interconnected line segments called branches to represent ideal lumped-

parameter systems based on the conservation of power (see de Silva [4, 5, 11]). Each branch has 

an ordered pair of variables associated with it: a through variable (f) and an across variable (v). 

The product of the two variables in every branch is the power variable. In general, the 

relationship between f and v is nonlinear. Table 3.1 presents the pair of variables associated with 

Electrical, Mechanical, Hydraulic/Pneumatic and Thermal domains. 
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Table 3.1: Through and across variables associated with some domains. 

Domain Through variable Across variable 

Electrical Current Voltage 

Mechanical Force /  Torque Velocity / Angular Velocity 

Hydraulic / Pneumatic Flow Rate Pressure 

Thermal Heat Transfer Temperature 

 

In LG, every branch is oriented and they are connected at nodes (where two or more branches 

meet). A branch has one end called a point of action and the other end is called the point of 

reference. An arrowhead, always pointing toward the point of reference, is used to describe the 

positive direction of flow as shown in Figure 3.2. This configuration reflects the physics of the 

system.  

 

Figure 3.2: Linear Graph branch of an element. 

The value of the through variable (f) transmitted through an element does not change. However, 

in the same element, the absolute value of the corresponding across variable (v) does change 

“across” the element, and the value at the point of action relative to that at the point of reference 

is taken as the value of the across variable v.  

In LG there are two main types of elements: Single-Port Elements and Two-Port Elements. The 

classification of each type of element is related to the number of branches that are used to 

represent them.  The following sections explain in more detail the elements and their 

classification. 

Single-Port Elements 

A port is defined as a place where energy/power is exchanged with the environment (input or 

output of energy/power). Hence the Single-Port Elements are represented by a single branch (line 

segment) and they have a single power variable.  
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Three passive Single-Port Elements are required to model systems: Across (A-Type) elements, 

Through (T-Type) elements, and Damping (D-Type) elements. Passive elements do not contain 

sources of power.  There are analogous representations used for the mechanical, electrical, fluid 

and thermal elements. Figure 3.3 shows the Linear Graph representation of the passive electrical 

elements. 

 

Figure 3.3: Linear Graph representation for electrical system elements (Single-port). 

A second type of Single-Port Element is required to represent the system inputs. Such inputs are 

represented by the source elements, which may be classified as T-Type Source (e.g., Current 

Source, Force Source) and A-Type Source (e.g., Voltage Source, Velocity Source). For these 

elements, the independent variable in the source will be unaffected by the dynamics of the 

system to which the source is connected; but the dependent variable will change. Figure 3.4 

shows the representation of the two types of source elements. 
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Figure 3.4: Linear Graph representation of a T-type source and an A-type source. 

 

Two-Port Elements 

The Two-Port Elements represent elements that have two energy ports in which power is 

conserved. The transformer and the gyrator are the two elements required to model systems. 

The transformer element is an ideal element where the across and through variables associated 

with the two branches change without dissipating or storing energy. Figure 3.5 shows the Linear 

Graph representation of a transformer where: 

vi and fi are the across and through variables of the input port, 

vo and fo are the across and through variables of the output port and 

r is the transformation ratio. 

 

Figure 3.5: Linear Graph representation of a Transformer. 
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Examples of transformer elements are a pair of gear wheels (mechanical rotatory domain), a 

lever and a pulley (mechanical translatory domain) or an electrical transformer (electrical 

domain). 

The gyrator element represents an ideal gyroscope or spinning top where other small motions do 

not affect the rotation (high angular speed) of its own axis. Figure 3.6 shows the Linear Graph 

representation of the gyrator where: 

vi and fi are the across and through variables of the gyrator input port, 

vo and fo are the across and through variables of the gyrator output port and 

M is the gyroscope parameter. 

 

 

Figure 3.6:  Linear Graph representation of a Gyrator. 

 

3.3.3.2 State Space Models from Linear Graphs 

This section provides a description of the systematic procedure that is used to obtain an 

analytical model from a Linear Graph.  

Three types of equations have to be established from the linear graph: 

 Constitutive (physical) equations 

 Compatibility (or loop) equations  

 Continuity (or node) equations 
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The Constitutive equations correspond to the “physical” equations of all the branches (elements) 

that are not sources (inputs). 

The Compatibility equations correspond to the independent loops in the Linear Graph. A loop is 

a closed path formed by at least two branches. Independent loops refer to a minimal set of loops 

from which any other loop in the LG model could be formed (See Fig. 3.7).  

 

Figure 3.7:  Mass-spring-damper Linear Graph representation with 3 primary loops. 

The Compatibility equations are obtained by summing all the across variables along the branches 

that form the loop and equating it to zero. A sign convention dictates that while following the 

loop, the across variable in each branch is considered positive if it is in the direction of the arrow, 

and negative otherwise. 

For the Continuity equations, we have to equate the sum of all the through variables at every 

node to zero. The reason for this is related to the Current balance (Kirchhoff’s current law) in 

electrical systems or the equilibrium equation (Newton’s third law) in mechanical systems. 

Once we obtain the Constitutive, Compatibility and Continuity equations the systematic 

methodology to obtain the state space model comprises the following steps: 

1. Select the state variables for the independent elements: across variables for A-type 

elements and trough variables for T-type elements. 

2. Write the state space shell. The state space shell is formed by the constitutive equations 

of the independent energy storage elements. 
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3. Write the remaining constitutive equations for the other elements. 

4. Write the continuity equations for the primary nodes. 

5. Write the compatibility equations for the primary loops. 

6. Finally, eliminate all the other variables in the state space shell which are not state 

variables or input variables, using the node, loop and remaining constitutive equations.  

An illustrative example given in Section 4.3 describes this process. As clear from this example, 

the methodology is easily implementable in a computer script and provides a good justification 

for automating the process. 

LG as a powerful multi-domain modeling technique will be used to represent the engineering 

system. The justifications for using the LG approach are: 

1. The systematic methodology described in Section 3.3.3.2 is used to obtain the state space 

model from any LG model. 

2. Mechatronic systems are generally modeled either by BG or LG. LG has a realistic 

representation of the physical structure compared to other mechatronic modeling 

methods.  

3. LG provides a unified approach to model multi-domain systems. 

Figure 3.8 shows the BG and LG representations for a parallel Spring-Mass-Damper 

mechanical system and Figure 3.9 shows a series configuration of an electrical system 

and its representation in both BG and LG. 

 

Figure 3.8: Parallel mechanical system and its BG and LG representation. 
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Figure 3.9: Series electrical system and its BG and LG representation. 

While the same BG model represents a parallel mechanical system and a series electrical 

system, it is clear to see that a unique parallel LG model represents a parallel mechanical 

system, and a unique series LG model represents a series electrical system. This 

characteristic of LG is very helpful for design engineers as it can provide an insight of an 

engineering system. 

4. BG adds a computational burden to the framework, as it requires a causality check to 

verify every model. LG, however, by its nature, will not have a causality conflict. 

Once the LG model has been generated, either for developing an engineering prototype in the 

conceptual phase or to model an operational engineering system, the model can be validated by 

simulation and/or experimentation. Actual parameters may be obtained by system identification, 

experimental modeling or from manufacturer’s documentation. Using actual parameters will 

guarantee that the model performs according to the real system, and every modification in its 

configuration will impact on the desired performance.  

 

3.3.3.3 Genetic Programming 

On-line health information provided by the MHMS is used by the design expert system (DES) to 

determine areas or components that may need (and are suitable for) a design improvement. The 

next step is to identify the corresponding sections in the LG model as the regions of the 

engineering system selected by the DES. These LG sections will become the modifiable sites 

where evolutionary process will take place. Note that during the evolutionary process, GP by its 

nature will also select modifiable sites in its normal course of action. However, MHMS in 
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conjunction with DES are able to either allow or overrule any modifications that are 

independently considered by GP. In this sense what is done is a supervised modification. 

The next section will provide an overview of the GP structures, main operations, fitness, embryo 

model and control parameters used by the EDOS. 

 

Structures 

The structures that we want to evolve in GP are LG models (or its representation) capable of 

solving a specified design problem. In order to accomplish the solution, the user has to define 

Nfunc functions in the function set  

F = {f1, f2,…, fNfunc} 

and Nterm terminals in the terminal set  

T = {t1, t2,…, tNterm} 

that, when combined in to a set C 

C = F  T 

will provide all the required ingredients to recursively create LG models. Such possible 

combination of functions and terminals becomes the search space for GP.  

Each function requires a specified number of arguments, which is called arity. On the other hand, 

terminals could be considered as functions that have arity of 0; this means they do not require 

any argument to be evaluated. 

The functions and terminals have to satisfy two important conditions in order for GP to obtain 

the expected results. 

 Closure – This property states that each of the functions defined in the function set has to 

be able to incorporate, as its arguments, any data resulting from the evaluation of other 

functions or terminals defined in the combined set C. This property is especially critical, 

as will be seen later in the thesis, because altering operations have to be applied on the 
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structures and there is no possibility of matching functions with predetermined terminals 

as its arguments.  

The possibility of randomly mixing the functions and terminals in set C is one of the benefits 

of GP, as it simultaneously creates hundreds or thousands of individuals in the search space 

which may be capable of solving the specified problem. 

 Sufficiency – This property states that the combination of sets, the function and the 

terminal set, have to be defined by the user in such way that they should be able to 

generate a solution to the problem.  

In some GP problems, this property may be trivially satisfied, but in some other applications the 

sufficiency of the set C could surpass the user expertise. A way to overcome this problem is the 

inclusion of functions and terminals that may be useful in achieving a solution. These potentially 

useful components are called extraneous functions and terminals. In some cases they could 

degrade the performance of the GP and sometimes enhance the performance of the individuals, 

depending on the unknown sufficiency of the set C to solve the problem. 

Fitness 

The purpose of the fitness measure is to specify what the user wants to achieve. Hence, for every 

individual program, the fitness calculation must reflect how well its output resembles the desired 

output. Since this fitness calculation will guide the evolutionary process and it is performed on 

every individual generated by the GP, it is a critical component of the technique. In the design 

and evolution of mechatronic systems, it is appropriate to use the Mechatronic Design Quotient 

(MDQ) as proposed by de Silva in 2004 [22] as the fitness function for optimization.  

There are several alternatives to calculate the fitness; some are explicit while others are implicit. 

The fitness measure used in the application described in Chapter 4 was named by Koza as raw 

fitness. It consists of defining the raw fitness r(i,t) of the individual i at any generational step t as 

the sum of the absolute values of the difference (error) between the desired output C(j) (objective 

value for fitness case j) and the evaluated response S(i,j) (value i for fitness case j in Ne cases).  
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In the raw fitness calculation, it is clear that a smaller fitness measure is better; a fitness measure 

of 0 will indicate a perfect match with the target. In nature the individuals in a generation have 

better chances of survival (and therefore, in transmitting their characteristics to future 

generations) if their fitness is higher.  

In this sense, a convenient way of expressing the fitness measure is using the standardize fitness 

s(i,t), given by  

),(),( max tirrtis     (3. 2) 

where rmax denotes the maximum possible value of raw fitness to be computed. 

Two other methods that may be used in GP for calculating the fitness are the adjusted fitness and 

the normalized fitness. The selection between the different fitness computations will depend on 

the application and its ability to express the correctness of every individual in the GP runs. 

Structure Modifying Operations  

Once the function and the terminal set have been defined, the method of calculating the fitness 

measure has been established, and the initial generation of structures has been created, the next 

step in the Genetic Programming algorithm is to select and/or modify such primitive individuals. 

 Reproduction - The reproduction operation plays a major role among the important 

operations that modify the original structure in evolution. Described by Darwin’s natural 

selection and survival of the fittest, reproduction consists of the selection (based on 

fitness) of one individual and its replication into the new generation of individuals. 

Examples of different selection methods are: roulette, tournament, lexictour  [34] and 

double tour. 

 Crossover - In the crossover operation, two individuals are mated to form two new 

individuals or offspring. The parents are selected from the population by a fitness-based 

selection method. Once the parents are chosen, a random section of each parent is picked 

(see Fig. 3.10) and swapped, between the corresponding structural locations of the two 

parents (see Fig. 3.11).  
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Figure 3.10: Two parental GP trees. 

 

Figure 3.11: Two offspring produced by crossover. 

Often the length of the two parents is different and the resulting offspring is as diverse as 

in the previous generations. But in some cases, as the evolutionary process progresses, it 

is possible that several individuals in the same generation will be identical. This situation 

may be explained because those individuals are replicas of the fittest individual (the one 

who has greater probabilities of being selected for reproduction) of previous generations. 

This phenomenon is called convergence. It can cause an incestuous mating (crossover 

between identical individuals (see Fig. 3.12)) which in later generations will increase the 

convergence tendency and lead to suboptimal results.  

 

Figure 3.12: Two identical parental GP trees. 
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In contrast to genetic algorithms (GA), where the convergence tendency is high and only 

the mutation operation could counter the effect, GP does not have fixed-length strings 

and it is quite infrequent that the crossover sections of the parents are the same (see Fig. 

3.13). This characteristic provides the GP with good probabilities of reaching the global 

optimum. 

 

Figure 3.13: Two offspring produced by crossover between two identical parental GP trees. 

 

 Mutation – For the mutation operation a random individual is selected and aleatory 

changes are performed on the structure of the individual (see Fig. 3.14 and 3.15). 

 

Figure 3.14: GP tree selected for mutation. 

 

Figure 3.15: Two different offspring GP trees after mutation. 
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Mutation operation provides both GA and GP an important ability to escape from local 

optima in what is known as hill-climbing. This operation is responsible for introducing 

diversity in the population which may have beneficial results. 

Other genetic operations that may be used to improve the GP performance are: permutation, 

editing, encapsulation and decimation.  

Termination Criteria 

As in nature, the GP process will evolve continuously and so it is important that the user defines 

the termination criteria. One criterion is when a specified maximum number of generations G is 

reached. Another is when a certain stop condition has been met. A stop condition could be 

defined to terminate the evolutionary process when the result obtained by the best individual in 

the population produces exact results in all fitness cases, or to stop if it produces exact results in 

at least a certain percentage of the fitness cases, or the fitness value reaches a predefined desired 

value. Several stop conditions may be used concurrently. 

Control Parameters 

Several control parameters can be established in Genetic Programming so that runs are executed 

according to an expected behavior.  

The two main parameters that must be set by the user are the maximum number of generations to 

be run (G) and the population size (M). Other parameters that may be used to control the process 

include: generative method for the initial population, method of selection, probability of 

crossover, and probability of reproduction.   

Embryo Model 

The initial step to obtain a complex model from a program structure (tree-like structure) is to 

define the basic model. This initial model consists of two main subsections: an embryo model 

and a test fixture. 

The embryo model corresponds to a model substructure that at least has one modifiable site. The 

modifiable sites are places where the evolutionary process could be applied in order to obtain 

new individuals. The new individuals will continue to evolve through generations until a fully 

developed model is obtained and the fitness function defined by the user is satisfied. 
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On the other hand, the test fixture, as its name indicates, is a fixed circuit substructure that cannot 

be modified because it contains important elements that are required to test the new individuals. 

Elements that may be included in the test fixture are: input sources, actuators, scopes and/or 

output sensors.  

 

3.3.3.4 Mechatronic Design Quotient  

In the early 2000s, de Silva proposed the concept of Mechatronic Design Quotient or MDQ [22]. 

Just as a human designer, the present evolutionary design framework has to deal with the 

extensive search space resulting from the combination of possible conceptual choices. The 

selection of such choices has to achieve the best problem satisfaction without violating the 

constraints. It is common that design may use excessive safety factors and worst-case 

specifications. This will not provide an optimal design or the most efficient performance. For this 

reasons the Mechatronic Design Quotient (MDQ) – a multi-criteria design evaluation index is 

used in the present work as the fitness function in the GP. Optimization of its value will provide 

the best design solution. 

The model that contains the identified modifiable sites and all the inputs required for the 

simulation will become the embryo model for the EDOS. This embryo model serves as the basis 

for all the evolutionary operations (e.g., selection, crossover, and mutation) performed by GP. 

The functions utilized by the GP to evolve new individuals (LG models) will then be evaluated 

through a fitness calculation indicating the satisfaction measure against the functional 

requirements.  

In this sense, the MDQ can integrate decision factors such as the criteria described in the list 

below. These criteria can be used to obtain successful designs as described in [23] 

 Reliability 

 Ease of manufacture and assembly 

 Safety  

 Low cost of operation and maintenance 
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 Ergonomics 

 Aesthetics 

 Use of standard components 

 Compliance with International Standards 

 Disposition and recycling of components (at the end of the lifecycle of the product) 

Therefore, MDQ, which is a multi-criteria design evaluation index, is able to guide the process of 

design evolution as its fitness function. The maximization of the selected criteria will serve as an 

assessment on the optimality of the design. 

Moreover, MDQ can also integrate the implementation feasibility criterion.  Such criterion has to 

be evaluated during the evolutionary design process, both by the DES and by the fitness 

calculation method in the GP. This aspect is especially important as the GP has to be guided, 

without restricting its broad exploratory functionality, because not all the generated individuals 

are physically realizable, even though they are capable of obtaining good responses in computer 

simulation.  

Finally the process of generation, modification and evaluation of the individuals is repeated 

automatically until the MDQ has been satisfied. This means that the final choice not only 

provides the intended function and the desired performance, but also will be a feasible new 

design or a feasible design improvement ready for implementation.  

 

3.3.3.5 LG Evolution 

As indicated in the literature review of Chapter 2, in 2003 Seo et al. [19] presented their 

expanded methodology for multi-domain dynamic applications by integrating BG and GP. They 

complemented the advantages of the open ended search capabilities of GP and the multi-domain 

representation characteristics of BG, and demonstrated their usefulness in various design 

problems. 

Their proposed automated methodology provides the designers with a unified tool (regardless of 

the domain areas e.g., mechanic, electrical, hydraulic and thermal) to “create” alternative designs 
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without much of the interaction of the user, thereby avoiding the cumbersome iteration process 

of evaluating each recommended alternative. 

In their work, Seo and colleagues evolved GP trees, where the GP chromosomes did not directly 

represent the bond graphs, but they represented instructions on how to develop them. Following 

work of Koza and Seo, the novel methodology proposed in this thesis uses several construction 

functions and terminals to generate such instructions, but applied for Linear Graphs (LG) instead 

of Bond Graphs. 

For the proposed case of LG, two types of functions are required: a combination between 

topology-modifying functions, component-creating functions, and development-controlling 

functions. The first type of functions, in general, inserts a component into the developing model, 

assigns a value to it and changes the model structure. A detailed explanation of these first 

functions and their principal characteristics are presented next. 

The Add functions (see Fig. 3.16) are component-creating/topology-modifying functions which 

are applied to a modifiable node and will incorporate a single-port T, D or A element, a two-port 

t or g element, or an L connection.  

 

Figure 3.16: General Add function structure. 

For the single-port elements the Add functions are: 

Add_T: adds single-port Through type element (e.g., Linear Spring, Torsional Spring, Inductor, 

or Fluid Inertor). 

Add_D: adds single-port Damping type element (e.g., Viscous Damper, Resistor, Thermal 

Resistor, or Fluid Resistor). 
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Add_A: adds single-port Across type element (Mass, Moment of Inertia, Capacitor, Thermal 

Capacitor, or Fluid Capacitor). 

The single-port Add functions may be applied to any modifiable node (see Fig. 3.17) and will 

create two new modifiable sites, as indicated in Figure 3.18. The add function maintains the 

modifiable site (1) for further possible modification at the node. It creates a new node at the 

modifiable site (2) and will add the single-port Across, Through, or Damping type element at the 

modifiable site (3). The modifiable site (3) is the one that allows the branch to change its 

corresponding parameter value.  

 

Figure 3.17: Original LG branch with one modifiable site. 

 

Figure 3.18: New LG branch after Add_A function has been applied. 

 

Add_A function has a special meaning in the mechanical domain. When it is a mass or a moment 

of inertia element, it is always “connected” to the reference point (Newton’s 2nd Law) or 

ground. Therefore such function is connected in the modifiable site (2) to the ground reference 

and that node does not become a modifiable site anymore as illustrated in Figure 3.19. 
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Figure 3.19: New LG for the Mass or Inertia element. 

 

For the case of two-port elements the Add functions are: 

Add_t: adds two-port transformer element. 

Add_g: adds two-port gyrator element. 

These functions may be applied to any modifiable node (see Fig. 3.20) and they create two 

modifiable sites as indicated in Figure 3.21. They will maintain the modifiable site (1) for 

possible modification of the node, will create a new node at the modifiable site (2), and will 

change the corresponding parameter value at the modifiable site (3).  

 

Figure 3.20: Original LG branch with one modifiable site. 
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Figure 3.21: New LG branch after Add_t function has been applied. 

 

Similar to Add_t function, Figure 3.22 shows the corresponding branch and modifiable nodes 

created after the Add_g function has been applied. 

 

Figure 3.22: New LG branch after Add_g function has been applied. 

 

The last Add function that is required by this scheme is the Add_L function. This simple, yet 

important function is the one responsible of converting the open-circuit topology of LG into 

closed loop circuits. The Add_L is a pure topology-modifying function, which requires two 

modifiable nodes to operate (see Fig. 3.23), and its purpose is to create a connection between 

such nodes.  
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Figure 3.23: Original LG branches with one modifiable site each. 

After the Add_L function has been applied, the two nodes involved are integrated into one new 

modifiable site (3) that allows further evolution of the model (see Fig. 3.24). 

 

Figure 3.24: New LG model after Add_L function has been applied. 

Finally, the Replace functions are pure component-creating functions that can modify the type of 

element defined for the selected modifiable branch and its corresponding parameter value. The 

Replace functions may either be applied to the single-port elements or the two-port elements. 

The Replace functions have an arity of 2 as they require a branch to be in between two 

modifiable sites to operate. 

The second type of functions, the development-controlling functions, is responsible for directing 

the growth and development of the model. To some degree these functions control the expansion 

of the evolutionary process and serve to filter incomplete models before further processing, 

which can be computationally expensive. This type of functions includes the Operational 

functions and the Arithmetic functions.  

Desprog_2 and Desprog_3 are zero-argument operational functions that correspond to 

instructions for executing two or three other functions sequentially. Both functions are based on 

Koza’s artificial ant problems [13]. 

Close_node is an operational function that could be applied to any modifiable node and it will 

terminate the possibility of further expansion on the selected node. 



 
 

38 

Gnd is an operational terminal that combines the Close_node function and the Add_L function. 

Basically, it is applied to a modifiable node and it performs a connection between such node and 

the system ground node. This terminal cancels the original modifiable node and no further 

evolution could be performed in such node.  

On the other hand, Arithmetic functions perform arithmetic operations to determine the 

parameter value associated with each component. For these functions, several methods may be 

incorporated in order to perform the required calculations. For example genetic algorithms using 

real-valued genes could be used or in the case that the number of possible component values is 

small, a specific function could be defined for every component (i.e., the component’s value is 

implicit in the component creating function) [15]. 

Ephemeral Random Constants (ERC) are terminals used to define the values for each component. 

The + and – functions are responsible for adding two ERCs or subtracting two ERCs to calculate 

the parameter value of the component. The End terminal finalizes the parameter value 

calculation of a modifiable branch. 

Table 3.2 presents a summary of the functions and terminals used to evolve LG models in this 

thesis. 

Table 3.2: LG- GP Functions and Terminals. 

Name Arity Description 

Add_A 1 Adds an Across type element to a modifiable node 

Add_T 1 Adds a Through type element to a modifiable node 

Add_D 1 Adds a Damping type element to a modifiable node 

Add_t 1 Adds a Transformer type element (two-port) to a modifiable 
node 

Add_g 1 Adds a Gyrator type element (two-port) to a modifiable node 

Add_L 2 Adds a Line between two modifiable nodes 

Replace_A 2 Replaces the current element with an Across type element 

Replace_T 2 Replaces the current element with a Through type element 

Replace_D 2 Replaces the current element with a Damping type element 
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Name Arity Description 

Replace_t 2 Replaces the current two-port element with a Transformer 
type element 

Replace_g 2 Replaces the current two-port element with a Gyrator type 
element 

Desprog_2 0 Executes two functions sequentially 

Desprog_3 0 Executes three functions sequentially 

Close_node 1 Terminates a modifiable node 

Gnd 1 Connects a modifiable node to ground reference and 
terminates it 

ERC 0 Ephemeral Random Constant 

+ 2 Adds two ERCs 

– 2 Subtracts two ERCs 

* 2 Multiplies two ERCs 

End 0 Terminates a modifiable branch 

 

To exemplify how the proposed functions and terminals are used, the next section demonstrates 

the evolution of a mechatronic system through the application of the described methodology.  

The first step in the procedure to evolve an LG is to define an Embryo model (see Fig. 3.25) 

which should include some input(s), some output(s), relationships between them, and modifiable 

sites (where the user wants the system to perform changes). This Embryo model will be the base 

model for solutions proposed by the evolutionary system, until it accomplishes the objective 

defined in the fitness function.  

Three modifiable sites at nodes (a), (b) and (c) have been identified by the user and have been 

indicated as available for the GP program to start the evolution.  



 
 

40 

 

Figure 3.25: Embryo example of a mechatronic LG model. 

Figure 3.26 illustrates a GP tree generated arbitrarily from the LG embryo model of Figure 3.25. 

 

Figure 3.26: Example of a GP tree for an arbitrary evolved LG model. 

 

The first operation applied to the embryo model starts at the modifiable site in node (a). If the 

evolution starts from that site with Add_T function, it will generate a branch (in this example 

representing an Inductor), determine its parameter value and will connect the branch to the 
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ground reference applying a Gnd terminal. The evolution process of this recently created branch 

terminates with an End operator and a Close_node terminal so that no further modification 

occurs at that node. 

The next modifiable site is at the node (b) and includes an Add_A function which for this case 

may correspond to a Moment of Inertia. Because it is a Moment of Inertia and belongs to the 

special case of the Add functions, the newly created node is automatically connected to the 

ground reference.  

In the same way as the Add_T function described before at node (a), the parameter values are 

calculated and the branch modifiable site is terminated with an End operator. In this case, the 

node (b) continues to be modifiable and from the same node (b) an Add_D function as well as an 

Add_t function, are executed one after the other. Once the Add_t function has been executed, a 

Close_node terminal is applied to the modifiable site at node (b) finishing any possibility of 

further modification in such site. 

Now, from the modifiable site recently generated by the Add_t function at node (4), another 

Add_T (e.g., Spring) function and an Add_D (e.g., Viscous damper) function are executed. In 

both cases, the parameter values are calculated using ERCs, + and – terminals and the modifiable 

site at each branch is terminated with an End operators.   

Notice that the Add_T function and the Add_D function in this section of the GP tree use the 

Desprog_2 and Desprog_3 functions to perform several operations sequentially. In the first case, 

an Add_L is required to connect the modifiable site in node (6) to the modifiable site in node (c) 

and a Close_node function to terminate the modifiable site at node (6).  

Finally, for the Desprog_3 case an Add_L is required to connect the modifiable site in node (5) to 

the modifiable site in node (c) and two Close_node functions are used to terminate the 

modifiable sites at nodes (5) and (c). The resulting LG model is shown in Figure 3.27. 



 
 

42 

 

Figure 3.27: LG model generated by the example GP tree. 

 

3.4 System Framework Algorithm Flowchart 

Figure 3.28 presents a flowchart of the system framework algorithm. The dark shaded blocks 

identify steps where the MHMS and the DES exchange information so that the evolutionary 

process (EDOS) can take place. Operations executed by the EDOS (such as LG model creation, 

embryo model initialization with modifiable sites, alternatives evolution, and simulation of 

feasible design candidates) are indicated in light shaded blocks. Clear blocks correspond to the 

activities performed in the experimental phase of this research and will be explained in more 

detail in the following chapters. 
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Figure 3.28: Flowchart of the system framework algorithm. 

 

3.5 Summary 

In this chapter, an introduction reviewing the issues and complex problems encountered in the 

engineering design process has been outlined. The research methodology for this thesis has been 

presented along with the proposed system framework.   

The developed framework incorporates on-line information provided by an MHMS to the design 

evolutionary system. Emphasis has been given to the design expert system (DES) functionality 

and its integration with the framework. The importance in the extraction of knowledge from 

domain experts as well as how this knowledge is organized, represented and accessed has also 

been highlighted.   

The key component of the proposed system framework, the Evolutionary Design Optimization 

System (EDOS), has been described. It comprises the following concepts: 
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 It uses a multi-domain modeling tool to represent the engineering system. LG has been 

chosen and its benefits, characteristics and key elements have been explained in Sections 

3.3.3.1 and 3.3.3.2 

 Genetic Programming is used for design evolution and as a tool to explore the design 

space possibilities. Also, a brief description of its procedure, functions and operations has 

been provided. 

 Mechatronic Design Quotient (MDQ) has been proposed as the fitness function because it 

is an intelligent way of evaluating the design. One benefit of using MDQ is the possibility 

of selecting the important factors/criteria appropriate for each design (user selectable) and 

its implementation for feasibility evaluation. 

 The procedure, functions and terminals required to integrate LG modeling with Genetic 

Programming has been explained in detail. The novel approach functionality has been 

exemplified with the evolution of a mechatronic design model. 

Finally, a system framework algorithm flowchart has been presented to provide better 

understanding of importance of the interactions between the four main subsystems: the Machine 

Health Monitoring System, the Design Expert System, Model Generation System, and the 

Evolutionary Design Optimization System. 
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Chapter 4  

Modeling and Implementation of the Experimental System 
 

4.1 Experimental System: Iron Butcher 

The test bed that is used to evaluate the approach developed here is the Iron Butcher—an 

automated fish cutting machine developed in the Industrial Automation Laboratory (IAL) of the 

University of British Columbia. This machine was developed to decrease the use of labor under 

hazardous conditions and to reduce the wastage of fish meat during processing, in the fish 

processing industry. The Iron Butcher (IB) is a complex industrial machine with multiple 

functional units and subsystems, designed for fish head cutting before the processing for 

canning. Figure 4.1 shows a view of the Iron Butcher. 

 

Figure 4.1: Iron Butcher.  

 

The Iron Butcher contains three main sub-systems: an electromechanical conveying system to 

feed the fish, a hydraulic system to position the cutter, and a pneumatic system to hold the fish in 

place and actuate the cutter.  

The electromechanical conveying system transports the fish from the feeding section to the 

cutting section. In order to achieve this, a 3-phase AC induction motor (see Fig. 4.2 (a)) is 

coupled with a Variable-diameter pulley (VDP) drive. The VDP can compensate for speed 

variations of the motor/load, because the distance between the pulleys and the length of the belt 
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do not change. What changes is the effective diameter of the pulleys which in turn adjusts the 

overall ratio. The VDP is connected to a gearbox which decreases the output velocity and 

increases the output torque after which the rotary motion is converted into a push pull stroke 

through a mechanical linkage. The mechanical linkage is then connected to a sliding mechanism 

(see Fig. 4.2(b)) which moves the fish only in one direction as several fixtures fold or remain 

open depending on the cycle of the motion.  

  

Figure 4.2 (a): IB conveying system;  Figure 4.2: (b) IB sliding mechanism. 

 

The cutter blade assembly is mounted on a horizontal X-Y table (see Fig. 4.3 (a)). This table is 

positioned and aligned with respect to the fish gill by means of an electro-hydraulic system (Fig. 

4.4). The positioning table is powered by two hydraulic actuators (double acting cylinders) 

which provide a controlled linear displacement as each one is controlled by a solenoid valve 

(three-way valve) shown in Figure 4.3 (b). The overall electro-hydraulic system is powered by a 

hydraulic pump.  

  

Figure 4.3 (a): Cutter blade assembly;    Figure 4.3 (b): Solenoid valves. 
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Figure 4.4: Schematic diagram of the electro-hydraulic system. 

 

The pneumatic system is responsible for operating the cutter and holding the fish in place (see 

Fig. 4.5 (a) and (b)). A compressor provides the power required to actuate four pneumatic 

cylinders. One cylinder (double acting) is responsible for the cutting operation and the other 

three cylinders (single acting) maintain the fish in place while the conveying system is pushing 

fixtures to retract them to the start position and repeat the cycle. The operation of each cylinder is 

controlled by a solenoid valve (four-way, five-port double valve).  

 

Figure 4.5 (a): Holding mechanism; Figure 4.5 (b): Cutting blade. 
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The normal operation of the Iron Butcher comprises the following processes: First, fish is fed by 

the operators manually into the feeding zone (see Fig. 4.6). Then, the conveying system with the 

sliding mechanism transports the fish into the cutting area where the pneumatic system maintains 

the position of the fish fixed (perpendicular to the conveying direction). At this moment, a 

primary digital CCD camera captures the image of the fish and an algorithm calculates the 

precise cutting position that will reduce the fish meat wastage. Immediately after that, a 

controller positions the cutter assembly in the computed cutting position. The hydraulic system 

transports the X-Y table (with the cutter assembly mounted on it) to the computed position. Once 

the cutting assembly is located in the proper position and the fish enters the cutter assembly, the 

pneumatic cutter is activated and the fish head is removed. Finally, the holding mechanism 

releases the fish and the conveying system transports the fish to an inspection zone where a 

secondary digital CCD camera inspects the quality of the processed fish. The process is repeated 

continuously as long as new fish is available in the feeding zone.  

 

Figure 4.6: Iron Butcher zones: Feeding, Standby, Cutting, and Inspection. 

 

Recently, the Iron Butcher has been upgraded with two modifications useful for the purposes of 

this research: The first one is the incorporation of a Machine Health Monitoring System 

described in the literature review (Chapter 2). As mentioned before, Raman and de Silva [28] 
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implemented a monitoring scheme on the IB, which can be trained to detect subsystems or even 

components suitable for design enhancement.    

The other change important for the research is the substitution of the VDP for a Variable 

Frequency Drive. This change and its benefits will be described in more detail in Section 4.3 of 

this Chapter. 

 

4.2 IB – Conveying System Linear Graph Model 

Following the information presented in Section 3.3.3.1, a lumped-parameter Linear Graph model 

for the IB electromechanical conveying system was developed. Figure 4.7 shows the LG model 

along with schematic drawings of the three main subsystems. 

 

The conveying system has been chosen to implement the developed methodology, as it provides 

a practical example of a multi-domain engineering system (consisting of electrical, mechanical 

translational, and mechanical rotational domains). The Linear Graph model and the state space 

model generated for this system will serve as a basis for simulation/analysis. 

 

 
Figure 4.7: LG of the electromechanical conveying system.  
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A list of parameters defined for the subsystems (Gearbox, Wheel and Axle, and Lever) that form 

the electromechanical conveying system is presented next: 

 

Gearbox  

 = Input shaft angular velocity  

 = Output shaft angular velocity  

 = Torque on the input shaft  

 = Torque on the output shaft  

 = Gear ratio 

 

Wheel/Axle 

 = Linear velocity of the wheel periphery  

 = Angular velocity of the axle  

 = Torque on the axle  

 = Force on the wheel periphery  

 = Wheel radius 

 

Two-node first-class lever with the fulcrum at node B 

 = Lever joint input velocity  

 = Lever joint output velocity  

 = Lever joint input force  

 = Lever joint output force 

  where:  are the arm lengths  

 

The driving motor is represented by an ideal torque source  with an angular velocity of . The 

following parameters are also defined: 

 

  = equivalent moment of inertia of the gear 

  = equivalent moment of inertia of the wheel (disc) 

 = equivalent mass of the linkage 

  = equivalent mass of the sliding copper bars (Load) 
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  = stiffness of the “flexible” shaft coupling the gearbox with the disc 

 = stiffness of the “flexible” shaft coupling the disc with the linkage 

  = equivalent viscous damping constant  

  = linear velocity of damping element 

  = Torque at the gear 

  = Torque at the “flexible” shaft coupling the gearbox with the disc 

  = Torque at the wheel (disc) 

  = angular velocity of the gear 

  = angular velocity of the wheel (disc) 

  = Force at the “flexible” shaft coupling the disc with the linkage 

  = equivalent dynamic force of the linkage  

  = equivalent dynamic force of the sliding copper bars (Load) 

  = Force at the equivalent viscous damper 

 = angular velocity of the “flexible” shaft coupling the gearbox with the disc 

  = linear velocity of the linkage 

  = velocity of the “flexible” shaft coupling the disc with the linkage 

  = linear velocity of the sliding copper bars 

 

After developing the Linear Graph for the configuration of the conveying system, the next step is 

to derive the state space model for this dynamic system. According to the systematic 

methodology described in Section 3.4 and the Linear Graph model previously generated for the 

IB conveying system, we determine the following: 

 

Number of branches 

 
Number of nodes 

 
Number of primary loops 

 
Number of sources 
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As each source branch has one unknown variable and all the other passive branches have two 

unknown variables each, then the number of unknown variables is 

 
Number of constitutive equations 

 
Number of independent node equations 

 
Number of loop equations 

 
 

Now as verification, for the system to be solvable, the number of unknowns should be equal to 

the number of equations: 

 

 
 

 
 

The system modeled by the Linear Graph is a sixth order system because it has six independent 

energy storage elements. The selected state variables are: 

 

 
 

Hence the state space shell is formed by the following equations: 
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The remaining constitutive equations are: 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

The node equations are: 
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and the loop equations are: 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

Then, by eliminating the auxiliary variables in the state-space shell, the following state equations 

are obtained: 
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These represent the state-space model. The corresponding system matrix is: 

 

A= ; 

 

The input distribution matrix is:  

 

B= ; 

 

The measurement gain matrix is: 

 

C= ; 

 

and D= 0 
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Now that the state space model (which completely defines the system state) has been derived 

from the Linear Graph model, simulations can be performed. The simulations allow the design 

engineer to determine the system response to external inputs without the need to build a real 

system or make changes to an existing system.  

 

4.3 Simulation 

To validate the developed analytical model of the IB conveying system, actual measurements 

from the experimental setup have been performed. Also MATLAB® based Simscape™ 

language is used to simulate the results. Simscape is an extension of Simulink® software, but 

instead of modeling the underlying mathematics that represent a system or the operators on the 

signals of such system, with this software the blocks introduced in the modeling environment 

directly represent physical components or the physical connections between such components.  

 

This causal modeling and simulation software allows the user, just as in Linear Graphs modeling, 

to represent multi-domain physical systems. The software provides several modules and blocks 

that can represent a vast majority of mechanical, hydraulic, electrical, pneumatic and thermal 

components. 

 

The advantages of simulating the systems in computer software are well known by engineers, 

among which we can consider some of the following: 

 

 The user can test and simulate several design requirements to determine the best 

components and parameters to use, leading to optimal design solutions. 

 

 This capability to test alternative designs and separate the effects of the environment on 

such systems, will save developing time and will promote innovation. 

 

 Finally, testing the configurations in a virtual environment will save costs of 

manufacturing and prototyping while a mature stage of design is accomplished. 
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As in any modeling technique, the user must determine to what level of detail the system should 

be studied. For obvious reasons, any system can be divided into numerous subsystems, and one 

has to be careful, as the modeling could become quite complex with too many details as some of 

them could become meaningless depending on the type of analysis to be carried out. 

 

For the Iron Butcher electromechanical conveying system, Simscape and its extensions 

SimMechanics® and SimElectronics®, provided all the blocks required to simulate its 

performance. Furthermore, the software allows the engineer to create custom blocks for 

exploration of complex effects and testing of other required domains. 

 

For illustrative purposes the modeling is divided in two sections, a “driving” section and the 

“driven” section. The driving subsystem corresponds to the power source and gearbox. For the 

Linear Graph model, the power source was considered as an ideal torque source formed by an 

AC induction motor connected to a VDP, and the gearbox directly coupled to it.   

 

For the experimental setup, the VDP was replaced by a Variable Frequency Drive (VFD) and the 

motor incorporated an encoder. The VFD allowed us to control the four pole, 1HP, AC motor 

(See Fig. 4.8 (a) and Fig. 4.8 (b)) in a closed loop, therefore guaranteeing a constant torque and 

speed parameters. Finally, the AC motor is directly coupled to a 3 stage helical gearbox with a 

gear ratio of 106.58:1.  

 

 
(a) AC motor and gearbox    (b) VFD 

Figure 4.8: Driving subsystem. 
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The first section (driving section) of the system is represented by the model shown in Figure 4.9.  

 

 
Figure 4.9: Simscape model of the driving section. 

 

It is easy to verify that proper relationships between elements have been incorporated into the 

model. To demonstrate this idea, Ideal Torque Sensors are connected to the input (left hand side - 

LHS) shaft and the output (right hand side - RHS) shaft of the gearbox. Both sensors are 

connected to a Scope, to monitor whether the gearbox acts as a constant speed reducer.  

 

Applying a sine wave input signal (simulating a no-load input speed of 1800 RPM) the ideal 

gearbox exerts a peak output speed of 16.8 rpm (See Fig. 4.10 (a)). Similarly, with no-load and 

the same input sine wave, the peak torque increases from 0.1584 to 16.88 N-m (See Fig. 4.10 

(b)). 
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(a) Rotational velocities (rpm)  (b) Torques (N-m) 

Figure 4.10: Gearbox Input and output signals. 

 

The second section of the modeling corresponds to the ‘driven’ subsystem. It consists of a 

wheel/axle mechanism coupled to a 3 linkage mechanism (see Fig. 4.11). This mechanism 

converts the rotational motion of the AC motor into the translational push-pull movement of the 

conveying system.  

 
Figure 4.11: Driving subsystem. 

The linkage AE is the final element of the mechanism that transmits the force required to move 

the sliding copper bars. These copper bars have several indexing pins which fold only in one 
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direction. This folding effect allows the fish to be transported with a linear intermittent 

movement through the table of the Iron Butcher. 

 

The model for this section is shown in Figure 4.12. The linkages are represented by blocks called 

“bodies” (in green color) which include information as: mass, moment of inertia tensor, the 

location of the center of gravity, and the physical location with respect to global or local 

coordinates in the system. The bodies are: Conveying bars, linkage AE, linkage AB, linkage CD 

and disc DM. 
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Figure 4.12: SimMechanics model of driven section. 

 

Every block is connected to a joint block (Revolute joints 1,2,3,4 and 5, and a prismatic joint) 

which represents the degrees of freedom (DOF) of the body relative to another body, or relative 

to the global reference in the system. Similar to the Simscape model, the SimMechanics model 

has the possibility of incorporating joint sensors and scopes to visualize responses to different 

stimuli.  

 

One may notice the similarity between the model and the schematic diagram, which is also 

another benefit of using physical modeling, as it allows easy reading and interpretation of the 

model. 
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After determining and measuring the parameters of every component in the system, and 

specifying them in the model along with their units, the simulation has shown the following 

results for a constant input speed of 1800 RPM. 

 

Simulation time: 20 seconds 

Average distance traveled by the indexing pins per cycle: 30.3 cm 

Average time per cycle: 2.53 seconds 

 

 
Figure 4.13: Output position profile (cm). 

Figure 4.14 (a) shows the velocity of the indexing pins in m/s and Figure 4.14 (b) illustrates the 

acceleration profile in m/s^2. 

 
Figures 4.14 (a) and (b): Velocity [m/s] (top) and acceleration [m/s^2] (bottom) profile of the 

indexing pins. 
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Fig. 4.15: Reaction torque [N-m] and reaction force [N]. 

 

Figure 4.15 illustrates the reaction torque in N-m and the reaction force in N measured in the 

copper bars with respect to the linkage AE. 

 

An interesting aspect of the software is that as information relating to the position and the center 

of gravity of every link has been captured into the model, the user is able to observe the model’s 

visual rendering as well as the movements and positions of the elements located in a Cartesian 

plane (See Fig. 4.16). 

 

 
Figure 4.16: Location of linkages and joints (m). 
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The graphs in Fig. 4.17 show the linkage locations at different times during the 20 seconds 

interval of the simulation. 

 

 
(a)      (b) 

 
(c)      (d) 

Figure 4.17: Snapshots of the position of every linkage during the simulation. 

Although the calculated parameters are realistic, several assumptions have been made. To verify 

the correctness of the model, the results are compared with experimental data. For example, the 

measured distance the indexing pins travel on the Iron Butcher is approximately 28.5 cm. Also 

the average time to complete a cycle was of 3.05 seconds. The existence of these differences is 

understandable as the model has not taken into consideration several losses due to the friction 

between the copper bars and the support where they are rested on.  
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4.4 Summary 

A Linear Graph model representing the Iron Butcher (IB) electromechanical conveying system 

was generated. The IB conveying system was chosen because it represents a functional, complex 

and multi-domain industrial machine. 

  

A systematic and unified methodology for modeling multi-domain systems was followed and an 

analytical model was derived using it. To demonstrate the correctness of the derived model, a 

simulation was carried out using software based on similar theoretical principles of Linear Graph 

modeling.  

 

As the results are consistent with the experimental measurements, it was decided to continue 

with the validation and testing of the proposed system framework in an automated manner.  
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Chapter 5 

 Results and Discussion 
 

5.1 Evolutionary Tool 

A framework capable of evolving multi-domain engineering systems in an automated manner is 

developed in this research. The methodology as described in Chapter 3 integrates four main 

systems: a Machine Health Monitoring System (MHMS), a Design Expert System (DES), a 

Model Generation System (MGS), and an Evolutionary Design Optimization System (EDOS). 

The EDOS uses GP to evolve an optimal design of engineering systems represented by linear 

graph (LG) models as generated by the MGS. The following sections of the thesis will explain 

how the EDOS operates and two examples of automated mechatronic design evolution using 

EDOS. Finally the benefits of the developed methodology are discussed. 

The EDOS algorithm has been implemented using MATLAB language to perform the automated 

evolution of both the topology and the parameters of mechatronic systems. The algorithm 

integrates the powerful modeling and simulation tool of Simscape and an adaptation of GPLAB1 

[35], a Genetic Programming toolbox for MATLAB. 

GPLAB combines a highly modular and modifiable structure with automatic parameterization 

techniques. These features allow the user to build and test new functionalities such as new 

sampling methods, new genetic operators or the new user functions required by this research. 

The flowchart of the general system framework algorithm that is used to evolve the design of a 

mechatronic system is shown in Figure 3.27. A simplified version of this algorithm was 

developed by substituting activities previously performed manually with activities now carried 

out by the modified GPLAB toolbox, and it is shown in Figure 5.1. It is important to notice the 

interaction between user, DES and MHMS with EDOS and MGS for full automation of the 

evolutionary process. A detailed description of each block of activities will be explained next 

and a comprehensive manual to operate the developed EDOS algorithm is included in the 

Appendix. 

 

                                                 
1 GPLAB, a Genetic Programming toolbox for MATLAB available at http://gplab.sourceforge.net/download.html 



 
 

66 

Figure 5.1 EDOS Algorithm Flowchart.  

 

The first step described by the algorithm flowchart is where the user (dark shading) has to 

generate the LG model of the engineering system (MGS). The MHMS & DES (light shading) 

work in conjunction to monitor the engineering system and to indicate the subsystems, and even 

components of the subsystems, that are candidates for design improvement. The latter leads to 

the identification of modifiable sites within the engineering system. 

Next, the user has to generate the Simscape embryo model based on the LG model in the MGS 

and the MHMS and DES findings.  Before executing the GP program, the user has to define GP 

parameters (e.g., number of individuals, number of generations, etc.), operations (e.g., crossover, 

mutation, etc.), functions and terminals (e.g., add functions, replace functions, etc.) to be used, 

and the proper fitness function (MDQ) which will guide the evolutionary process to the desired 

solution. 

Once above information is stored in the EDOS (clear blocks), the modified GPLAB algorithm 

will be automatically executed to evolve the design from the embryo model to a complete 

parameterized model that satisfies the defined fitness function. 

Internally, the modified GPLAB algorithm will create an initial population of individuals using 

the functions and terminals defined in the preliminary steps. Each of the individuals will 

automatically be modeled in Simscape, simulated and evaluated against the MDQ criteria and 

fitness will be assigned to each one of them. The fittest individuals will serve as parents for 
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future generations. Structure modifying operations will be applied to the initial population and 

hundreds or even thousands of individuals (new design proposals originated from the established 

embryo model) will be generated, modeled, simulated and evaluated iteratively.  

The GPLAB algorithm will stop the evolutionary process when the defined maximum number of 

generations has been reached, or when the required fitness value has been satisfied by an 

individual. The GP tree of the fittest individual (instructions on how to build the model) will be 

shown at the end of the program execution. 

 

5.2 Evolution 

In order to demonstrate the functionality of the developed evolutionary methodology, the multi-

domain applicability and the automated operation of its algorithm, a rather simple but explicative 

example is described in this section: a mass-spring-damper mechanical system (see Fig. 5.2 (a)) 

and its corresponding Linear Graph model (see Fig. 5.2 (b)).  

 

 
Figure 5.2 (a): Mass-spring-damper system;    Figure 5.2 (b): Mass-spring-damper LG. 

 

 

With the purpose of obtaining the embryo model, two nodes have been defined as the modifiable 

sites (1 and 2) and components have been removed from the original LG model (see Fig. 5.3). 

Also the test fixture (as explained in Chapter 3) has been established maintaining the input 

source and ground reference. 
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Figure 5.3: Linear Graph embryo model with two modifiable sites. 

 

The next step is to construct the Simscape embryo model (see Fig. 5.4) from the established LG 

embryo model. Along with the embryo model, it is also required to have the test fixture in the 

Simscape environment so that it includes the following: Force source, Translational motion 

sensor, sinks for measurements, signal generator and scopes to display the output response 

generated during simulation. 

 
Figure 5.4: Simscape embryo and test fixture model. 
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Parallel to these activities, the user has to define the key features of the problem to correctly 

parameterize the modified GPLAB algorithm. The first step in preparing to use GP is to identify 

the set of terminals and for this problem it is defined as:  

T = {ERC, End, Close_node} 

The second step is to identify the set of functions as given below:  

F = {Add_T, Add_D, Add_A, Desprog_2,Desprog_3,+, –} 

Since the problem is defined for the translational mechanical domain, the function set has been 

constrained to that domain for illustrative purposes. In this case, the Add_T function will insert a 

Through element corresponding to a Translational Spring, the Add_D function will insert a 

Damping element corresponding to a Translational Damper, and the Add_A function will insert 

an Across element corresponding to a Mass. 

The third step is the identification of the fitness function. For this case, the raw fitness will be 

calculated as the sum of the absolute value of the difference between the simulated response and 

the expected response for Velocity and Position (see Fig. 5.5 (a) & (b)) of the mechanical system 

for the pulse input shown in Figure 5.6. 

 

a) Expected velocity profile;   b) Expected position profile 

Figure 5.5 Expected responses: Velocity and Position profiles. 
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Figure 5.6: Pulse input force applied to the mass-spring-damper system. 

Table 5.1 summarizes the key features of (or choices made for) the automated design of a 

mechanical system problem. The population size, M, and the maximum number of generations to 

be run, G, are given in the last row of the table. 

Table 5.1:  Parameters for automated design of a mass-spring-damper system. 

Objective: Find the mechanical components and its 
parameters, that yield the expected output 
response from the system 

Terminal set: ERC, End, Close_node 

Function set: Add_A, Add_T, Add_D, Desprog_2, 
Desprog_3, + , – 

Fitness cases: The given sample of data points 

Raw fitness: The sum of the absolute value of the 
difference between the simulated response 
and the expected response of the 
mechanical system for a specific input. 

Standardized fitness: Same as raw fitness for this problem 

Control parameters: M=50. G = 600 
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The best GP tree individual from generation 513 had a raw fitness value of 5.0000e-012. Figure 

5.7 graphically depicts the best individual found as a rooted, point-labeled tree with ordered 

branches. 

add_A add_D

Add_L Add_T

  desprogn2

  desprogn3

Close_node add_L Close_node

  desprogn3

  desprogn2

 
Figure 5.7: Best GP tree individual found for the mass-spring-damper system. 

The best individual GP tree generates the Simscape model shown in Figure 5.8. Also, the 

parameters for Add_A, Add_D and Add_T were automatically generated for every branch with 

the ERC and end terminals operations (not shown in the GP tree). The values obtained were:  

Mass = 1.0000 kg 

Damping coefficient = 100.0000 N/m/s 

Spring rate = 1000.0000 N/m 

 



 
 

72 

 
Figure 5.8: Simscape model generated from the best GP tree individual found. 

 

An added benefit of the GPLAB program is that it can represent some of the state variables 

graphically. Figure 5.9 shows the evolution of the maximum (best of current generation), 

median, average, and average +/- standard deviation values of fitness. Also it shows the fitness of 

the best individual found so far. 

 

 
Figure 5.9: Fitness plot. 

 

Figure 5.10 presents the evolution of the tree depth and size during the run. Also, the plot shows 

the values of the best individual found so far.  
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Figure 5.10: Complexity plot. 

 

Intermediate results of the evolutionary process, plots of fitness improvement, complexity levels 

for the GP trees and best individuals found for generations 10, 20 and 40 are shown in the 

following figures.  

 

Figure 5.11 (a) shows the fitness plot and Figure 5.11 (b) shows the complexity plot of the first 

10 generations. As can be seen from the graph, the best fitness value found in the initial 

generation for this run was 2. After just 10 generations the fitness value has decreased to 1.  
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Figure 5.11 (a) and (b): Fitness plot (top) and complexity plot (bottom) at generation 10. 

 

Figure 5.12 shows the best individual GP tree found in generation 10. So far, the algorithm has 

only been able to terminate the modifiable sites on the embryo model but without building a 

complete model. 
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Figure 5.12 Best GP tree individual found for the mass-spring-damper system at generation 10. 

 

Figure 5.13 (a) shows the fitness plot and Figure 5.13 (b) shows the complexity plot of the first 

20 generations. Fitness value of the best individual in generation 20 has decreased to 0.37028.  

The dramatic improvement of the fitness value is explained because of the increase in size (from 

3 to 7) and depth (from 2 to 4) of the GP tree structures being evolved.  
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Figure 5.13 (a): Fitness plot at generation 20. 

 



 
 

76 

0 5 10 15 20
0

5

10

15

20

25

30

35

40
Structural complexity

generation

tre
e 

de
pt

h*
10

 / 
tre

e 
si

ze
 / 

%
in

tro
ns

 

 
maximum size: 28
bestsofar size: 7
bestsofar introns: 2
bestsofar depth: 4

 
 

Figure 5.13 (b): Complexity plot at generation 20. 

 

Figure 5.14 shows the best individual GP tree found in generation 20. Now the algorithm has 

been able to create a GP tree structure which in turn, constructs a complete model. The best 

individual found has added a mass and a spring to the system. Also it has been able to close one 

modifiable site on the embryo model and connect the components to the ground reference to 

form a complete Simscape model (See Fig. 5.15). 

addspring10

closenode10 addline12

  desprogn2

  desprogn2 addmass10

  desprogn2

 
Figure 5.14 Best GP tree individual found for the mass-spring-damper system at generation 20. 
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Figure 5.15: Simscape model generated from the best GP tree individual found at generation 20. 

 

Even though this Simscape model is complete for simulation, the response from the system still 

continues to be out of specification. Figure 5.16 (a) and (b) shows the velocity and position 

profile obtained at the end of the simulation. 

 

 
a) Velocity profile;   b) Position profile 

Figure 5.16: Velocity and Position profiles of best individual found at generation 20. 
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Figure 5.17 (a) shows the fitness plot and Figure 5.17 (b) shows the complexity plot of the first 

40 generations. Fitness value of the best individual in generation 40 has decreased to 0.2915.  

Previously, the size and depth of the structures had to be increased because the algorithm 

realized that structures with higher complexity were required. Now, the algorithm realized that it 

could decrease the complexity in order to obtain a better fitness value. Improvement of the 

fitness value this time is explained because of a decrease in size (from 7 to 6) and depth (from 4 

to 3) of the GP tree structures being evolved.  
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Figure 5.17 (a) and (b): Fitness and complexity plot at generation 40. 
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Figure 5.18 shows the best individual GP tree found in generation 40. The best individual found 

has added a damper to the system but removed the spring. It also substituted two desprogn2 

functions with only one desprogn3 function.  

adddamper10

closenode10 addline12 addmass10

  desprogn3

  desprogn2

 
Figure 5.18: Best GP tree individual found for the mass-spring-damper system at generation 40. 

 

 

5.3 Design Fault Simulation 

Now that the modified GPLAB algorithm has successfully evolved a mechanical system, the 

next example will present how the MHMS information can be incorporated into the developed 

framework in order to generate and evaluate design alternatives for a multi-domain engineering 

system. The proposed evolutionary methodology will use the MHMS information to determine 

subsystems, or even components, which could be considered as modifiable sites for the GP 

procedure. 

 

The methodology has been applied to the industrial fish cutting machine, and specifically the 

electromechanical conveying system described in Chapter 4. Figure 4.7 showed the schematic 

diagram of the conveying system as well as its corresponding Linear Graph model.  
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In experimental tests, the MHMS implemented by Raman and de Silva [28] was able to detect 

failures within the conveying system. Moreover, after several runs the MHMS indicated that 

recurrent failures occur in the gearbox subsystem. After taking into consideration the record of 

malfunctions, using its knowledge and expertise in the matter, and contrasting design 

specifications against actual performance, a human expert has been able deciding if the 

malfunctions were related to a design failure or corresponded to some other factors. In this work 

such decisions and considerations are suggested to be made by a Design Expert System (DES). 

  

For the purposes of testing the developed system framework we considered the failures in the 

gearbox to be related to a design failure. In this sense, the next step in the methodology is to 

generate the embryo model along with the test fixture. Hence the two nodes have been defined as 

the modifiable sites (1 and 2) and the gearbox component of the LG model has been removed 

(see Fig. 5.19).  

 

 
Figure 5.19: Linear Graph embryo model with two modifiable sites. 

 

 

The next step is to construct the Simscape embryo model (see Fig. 5.20) from the LG embryo 

shown in Figure 5.19. As in the mass-spring-damper example, along with the embryo model, we 

require the test fixture in the Simscape environment.  
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Figure 5.20: Simscape embryo and test fixture model. 

 

 

Similar to the previous example, the terminal set used to correctly parameterize the modified 

GPLAB algorithm is:  

T = {ERC, End, Close_node} 

and the function set for this problem is:  

F = {Add_t, Desprog_2,Desprog_3,+, –,*} 

Although the problem is defined as a multi-domain (electrical and mechanical) system, we know 

the solution has to be given in terms of a gearbox. Therefore it is only required to have the Add_t 

function as it will insert the two-port Transformer element corresponding to a gearbox. 
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The fitness function will be calculated as in the previous example. Therefore, the fitness case 

considers the design specification for displacement of the indexing pins of 30 cm in 2.5 seconds. 

The input corresponds to a constant speed of 1800 RPM.  

While the position specification is a prerequisite for an optimum design, it alone may not 

characterize an optimum design. Section 3.3.3.4 presented several decision factors that could be 

selected to evaluate a design and decide on its optimality. Hence, MDQ and its optimization 

provides and efficient tool to include and evaluate important criteria for a particular design. In 

[23] a nonlinear fuzzy integral called the Choquet integral is used to aggregate interacting 

criteria. In the case of independent criterion a weighted average method may serve as the 

aggregation technique. 

Table 5.2 summarizes the key features of the automated design of an electromechanical 

conveying system problem.  

Table 5.2: Parameters for automated design of electromechanical conveying system. 

Objective: Find the adequate gearbox and gearbox 
ratio, that yield the expected output 
response from the system 

Terminal set: ERC, End, Close_node 

Function set:  Add_t, Desprog_2, Desprog_3, + , –,* 

Fitness cases: The given sample of data points 

Raw fitness: The sum of the absolute value of the 
difference between the simulated response 
and the expected response of the 
electromechanical conveying system for 
the specific input. 

Standardized fitness: Same as raw fitness for this problem 

Control parameters: M=100. G = 50 

 

 

The best GP tree individual found from generation 47 had a raw fitness value of 0.0300. Figure 

5.21 graphically depicts the best individual as a rooted, point-labeled tree with ordered branches. 
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Figure 5.21: Best GP tree individual found for the electromechanical conveying system. 

Before making the changes (described in section 4.3) to the conveying system, the gearbox ratio 

was 147.92:1. This gearbox had an average time per cycle of 3.04 seconds with an average 

distance traveled by the indexing pins of 30.5 cm.  

To compensate for the 0.54 seconds lost every cycle, the operator could have increased the motor 

speed; thus the gearbox functioned out of the design specification for prolonged periods. 

Consequently, the MHMS has detected failures in the gearbox, possibly because at higher pitch 

line speeds, although there might be enough oil on the gear tooth surfaces for lubrication, it 

might not be adequate for cooling and the gearbox might be heating up.   

 

The best individual GP tree calculated a value of 106.58:1 for the gearbox ratio. This gearbox 

ratio produces an average time per cycle of 2.53 seconds which fully satisfies the original design 

specification of 2.5 seconds per cycle.  
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Figure 5.14 presents the fitness of the best individual found, as well as the evolution median, 

average, and average +/- standard deviation values of fitness.  

 
Figure 5.22: Fitness plot. 

 

 

Finally, Figure 5.23 presents the evolution of the tree depth and size during the run. Also the plot 

shows the values of the best individual found. 

 
Figure 5.23: Complexity plot. 
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5.4 Summary 

In this chapter, multiple experiments were carried out to validate the developed system 

framework and specifically, to test the developed Evolutionary Design Optimization System. In 

this regard, two design examples, a translational mechanical domain system and a mechatronic 

system (electromechanical conveying system of an industrial fish cutting machine) were evolved 

in a successful manner to obtain the desired design. The novel evolutionary system (Linear 

Graph modeling and Genetic Programming) implemented by the modified GPLAB algorithm 

was capable of automatically evolving designs of the mechatronic system to satisfy the 

requirements. Furthermore, the experimental results in this chapter showed that the developed 

Design Evolution framework was quite effective in generating and evaluating design proposals 

for a complex industrial machine. 
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Chapter 6  

Conclusions 
 

6.1 Main Contributions 

In this thesis, a Design Evolution framework to automate the generation and evaluation of multi-

domain optimal engineering designs has been developed. Based on an extensive literature 

review, several systems and tools were integrated into the Optimal Design Evolution scheme. 

The four main subsystems that constitute the scheme are: a Machine Health Monitoring System 

(MHMS), a Design Expert System (DES), a Model Generation System (MGS), and an 

Evolutionary Design Optimization System (EDOS). 

The Machine Health Monitoring System, while maintaining the engineering system in an 

operable condition by anticipating possible failures (fault monitoring and diagnosis), will now be 

responsible of indicating systems or subsystems suitable of design improvement.  

The novel integration of a Design Expert System to the evolutionary framework will provide 

automatic control and expert suggestions to improve the system. It will also be able to 

distinguish between system malfunction (due to maintenance, operational or installation errors) 

and design weakness. 

The Evolutionary Design Optimization System in conjunction with the Model generating System 

is the core of this research and it is a novel methodology for evolving mechatronic engineering 

systems. It integrates Linear Graph modeling and Evolutionary Computing through Genetic 

Programming (GP). The two techniques along with their principles and main elements have been 

described in Chapter 3.  

Several functions and terminals required by the GP tool to automatically evolve designs have 

been developed and implemented in a modified GPLAB algorithm. The implemented algorithm 

integrates GPLAB, a MATLAB toolbox for GP, with the powerful modeling and simulation tool 

of Simscape. The Appendix provides a demonstration of the main function of the developed 

algorithm along with a comprehensive operational manual.  

The developed methodology and algorithm were implemented on a realistic experimental 

environment: the Iron Butcher—an industrial fish processing machine. The scheme and the 
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design alternatives generated by the algorithm were validated using computer simulation and 

physical experimentation. Also a state-space model of the electromechanical conveying system 

of the industrial machine was developed using Linear Graph modeling which provides a realistic 

representation of the engineering system. 

In addition, the Mechatronic Design Quotient (MDQ) has been established as the fitness function 

of the evolutionary process, as it provides an intelligent way to incorporate various design 

indices and human experience into the automated process in an optimal manner. Also it has 

proven to be a good approach to meet design constraints and does not violate the feasibility of 

implementation. 

 

6.2 Future Directions 

Automated design evolution of engineering systems is a vast and complex area which requires 

thorough and continuous investigation to provide results which could be applied in today’s 

industries and complex machinery. The following suggestions may be considered as possible 

future work for the improvement of the system framework developed in this thesis and to 

complement the research of design and its possible automation. 

 

 The modifiable sites assigned to subsystems within the Iron Butcher’s LG model have 

been manually identified based on the MHMS information. In this sense, a Design Expert 

System could be designed and implemented in order to completely automate the process. 

The DES will select the most appropriate sites to evolve the embryo LG model through 

the Evolutionary Design Optimization System.  

 In this work, a mechanical and a mechatronic system were evolved through the developed 

algorithm. Systems from other domains could be explored to extend the benefits of the 

automated generation of designs to other domain and research fields.  

 Computational demand of the developed methodology is relatively high. The algorithm 

may be further improved to reduce computer resource usage and increase the processing 

efficiency.  
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 A Graphical User Interface (GUI) could be developed to provide a more convenient and 

efficient interface with common users and researchers.  

 More detailed design failures may be implemented and more rigorous experimentation 

and simulation may be carried out using the industrial fish cutting machine. 
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Appendix A  

EDOS Operation Manual 
 

A.1  Introduction 

To perform the automated synthesis and topology design of mechatronic systems, the developed 

Evolutionary Design Optimization System (EDOS) algorithm has been implemented using 

MATLAB®2 programming language. As mentioned before, the algorithm integrates the 

powerful modeling and simulation tool of Simscape™ and an adaptation of GPLAB3, a Genetic 

Programming toolbox for MATLAB. 

Simscape is an extension of Simulink®, where the blocks introduced in the modeling 

environment directly represent physical components or the physical connections between such 

components. This causal modeling and simulation software allows the user, just as Linear Graph 

modeling, to represent multi-domain physical systems. The software provides several modules 

and blocks that represent a vast majority of mechanical, hydraulic, and electrical components. 

Moreover, it also allows the user to develop its own components or to define other domains as 

required (e.g., pneumatic, thermal).  

On the other hand, GPLAB combines a highly modular and modifiable structure with automatic 

parameterization techniques, all of which facilitated this research, to build and test new 

functionalities such as its integration with Simscape.  

The GPLAB toolbox provided a solid foundation, with all its functions and graphical 

capabilities, to build the EDOS algorithm. However, several “plug and play” functions and 

terminals had to be developed. These functions and terminals were described in Chapter 3 of this 

thesis. The closure property had to be verified in order to correctly generate the tree structures 

(instructions on how to build the Simscape models).  

Also a fitness function was implemented, so that every model could be simulated and a fitness 

measure could be calculated. The fitness measured is obtained as the sum of the absolute 

                                                 
2 The MathWorks http:// www.mathworks.com/products/MATLAB/ 

3 GPLAB, a Genetic Programming toolbox for MATLAB available at http://gplab.sourceforge.net/download.html 
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differences between the simulated and the expected results. The lower the fitness value, the 

better the individual.  

Further information may be found at the developer’s websites. Comprehensive user manuals are 

found at [35] and [36].  

A.2  Procedure 

The first step in the procedure is to define and prepare the embryo model in the Simscape 

environment. For this purpose, the user has to develop the model that will be evolved and has to 

select the modifiable sites where a design enhancement would be possible. Fig A.1 shows the 

embryo model and test fixture used in Section 5 of this thesis.  

 

Figure A.1: Simscape embryo and test fixture model. 

 

Once the modifiable sites are selected, Port Handles have to be retrieved and stored in the file 

named Nodelist. The Nodelist file will contain all the information that is required to initialize 

every model before being simulated and will keep the working parameters available for the 

GPLAB algorithm. 

 

 



 
 

95 

For the model shown in Figure A.1, the instructions to obtain and store the Port Handles, which 

correspond to the Mechanical Translational Reference and the Ideal Force Source are: 

Block1PortHandles = get_param([sys '/Mechanical Translational 
Reference'],'PortHandles'); 
Nodelist(1).Handle=Block1PortHandles.LConn(1); 
Block2PortHandles = get_param([sys '/Ideal Force Source'],'PortHandles'); 
Nodelist(2).Handle=Block2PortHandles.LConn(1); 
 

For every new Port Handle stored in the Nodelist file, an Openhandle status will be assigned. 

The status could only be changed once the terminal Close_node has been applied to the node and 

therefore, the modifiable site stops being modifiable.  

The Simscape model filename has also to be stored in the file NodelistandGPinfo12. This will 

indicate to the algorithm which system has to be evolved (e.g., if a model name is low-pass filter, 

then sys = ‘lowpassfilter’;). .  

It is important that the embryo model includes the inputs (sources) and outputs (sinks or scopes 

for visualization) that are required to simulate a complete model. The output information will be 

stored in the MATLAB workspace and will be used to calculate the fitness of every individual.  

The next step required in the parameterization of the modified GPLAB algorithm, is to store the 

desired performance data in the input variables: input_yr6.txt and input_xr6.txt. The data stored 

in these variables will be compared against the simulated responses for every individual in each 

generation and the lowest calculated fitness value will determine the best individuals. The 

function M-file desfitness12.m corresponds to the instructions on how to calculate the fitness and 

may be changed according to the user requirements. 

NodelistandGPinfo12 and NodelistandGPinfo13 are files that have to be set up depending on the 

number of modifiable sites and are used to initialize the variables to be used by the algorithm. 

The following lines correspond to the NodelistandGPinfo13 source code: 

 
open_system(sys) % Open the model  
%load_system(sys); % Alternate option to load model in background to save 
%computer resources 
  
%Create Nodelist and GP info for example of two modifiable sites 
  
Nodelist(1).id=1; 
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Nodelist(2).id=2; 
Nodelist(1).Status='openhandle'; 
Nodelist(2).Status='openhandle'; 
  
%In case of 3 or more modifiable sites, the fields with * have to be 
%changed accordingly to the number of modifiable sites 
  
GPInfo.Currentnameid=1; 
GPInfo.Currentnodeid=1; 
GPInfo.Openstatuscounter=2; %* 
GPInfo.Maxnodeid=2; %* 
GPInfo.Fitnesspenalty=0; 
GPInfo.Componentcounter=0;  
GPInfo.Nodecounter=2; %* 
GPInfo.Linecounter=0;  

Now that the embryo model has been established, expected response data has been stored, and 

working variables and files have been generated, the GPLAB algorithm is ready to be initialized. 

The user has to define certain GP parameters (described in the GPLAB Manual) depending on 

the level of usage and complexity of the research to be performed. The basic parameters to set up 

are:  

g: Generations: Maximum number of generations to run the algorithm. 

n: Individuals: Population size.  

All other parameters such as operators, functions and terminals have to be changed according to 

the domain to be researched. Also the fitness function may be adapted to incorporate several 

criteria or different fitness cases. 

Once the GPLAB parameters have been established (or the default values would be used), the 

algorithm proceeds to generate the initial population of individuals. The program will use the 

settings defined by the user (number of generations and individuals, parameters, operators, 

fitness function, etc.) and the tree structures will be originated with one of the three available 

initialization methods: Full, Grow, Ramped Half-and-Half. The individuals will be built using 

the functions and terminals previously defined by the user and a fitness function will be applied 

to determine each individual’s fitness.  

After the initial generation has been created, the program will apply the genetic operators to a 

group of parents from the population. The parents will be selected by a sampling method (e.g., 

Roulette, SUS, Tournament or Lexicographic Parsimony Pressure Tournament). After the 

parents have chosen, tree crossover and tree mutation are the two available operators for creating 
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the new generation until the population is complete. 

When the individual fitness has been calculated, a survival module chooses the individuals which 

will form the next population based on the elitism and survival parameters. 

A.3  Demo 

A demonstration function desdemo10 has been developed to illustrate the modified GPLAB 

algorithm usage. The source code is: 

function [v,b]=desdemo10 
%DESDEMO 10 Demonstration of the Evolutionary Design Optimization System. 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
  
NodelistandGPinfo12; 
fprintf('Running Evolutionary Design Optimization System demo...'); 
  
p=resetparams; 
p.sampling='roulette'; 
p.elitism='keepbest'; 
p.survival='fixedpopsize'; 
p=setoperators(p,'crossover',2,2,'mutation',1,1); 
p=setfunctions(p,'desprogn2',2,'desprogn3',3); 
p=setterminals(p,'closenode10','addline12','addspring10','adddamper10','addma
ss10'); 
p.calcfitness='desfitness12'; 
p.lowerisbetter=1;  
p.autovars=0; 
p.datafilex='input_xr6.txt'; 
p.datafiley='input_yr6.txt'; 
p.calcdiversity={}; 
p.calccomplexity=0; 
p.depthnodes='2'; 
p.graphics={'plotfitness','plotcomplexity'}; 
p.hits='[50,10]'; 
  
[v,b]=gplab(10,20,p);  
  
drawtree(v.state.bestsofar.tree); 
 
The demo runs an automated synthesis and topology design of a Mass-Spring-Damper with 20 

individuals for 10 generations. While performing the simulation, the demo will present (and 

update every generation) the plot showing the evolution of the fitness (See Fig. A.2), the tree 

depth (See Fig. A.3), and the number of nodes of all the best individuals found during the run. At 

the end of the run, a plot shows the tree (See Fig. A.4) with the respective node labels of the best 

individual found.  
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Figure A.2: Fitness plot after 70 generations. 
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Figure A.3: Complexity plot after 70 generations. 
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addspring10

adddamper10

closenode10 addline12

  desprogn2 closenode10

  desprogn3

  desprogn2 addline12

  desprogn2

 
Figure A.4: Modified GLAB tree found after 70 generations. 

 

Several other functions are available to visualize different characteristics of every run and its 

evolution (e.g., Pareto front, operator evolution, etc.).  

The two functions available to run the demo are: 

[vars,b]=desdemo10; 
[vars,b]=gplab(g,vars);  
 
The first function will initialize the default parameters and will run the algorithm for 10 

generations of 20 individuals. It will return all the variables of the algorithm (vars) and the best 

individual found (b). The second function will continue a previously started run for other g 

generations and requires the variable vars as an input.  

The desdemo10 operators are the standard crossover and mutation. The crossover operator 

creates two new individuals by swapping sub-trees of the two parents at random points. The 

mutation operator creates a new individual originated by substituting a random sub-tree of a 

parent by a new randomly created tree, with the same depth/size restrictions as the initial random 

tree. 

The fitness function will verify the correctness or completion of a model; this means that every 
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node has to have the closed status. This status can only be achieved when the node has a 

connection to another node (belonging to a component) or to the terminal ground reference. 

After this verification, it will follow the nodelist instructions and will build the model after which 

a simulation will take place. If the simulation could not be completed due to an error in the 

model (missing connections), the individual will receive a punishment in its fitness. Finally, the 

fitness will calculate the difference between the expected response (design specification) and the 

simulated response (actual response).  

 
sumdif=sum(abs(data.result-data.response)); 
 

The operation of the function and terminal set for the desdemo10 is based on the methodology 

described in Chapter 3. The source code for the function and the terminal set is presented next 

and it corresponds to the functions specifically required for the Translational Mechanical 

domain. 

 addmass10 function source code:  

function addmass10 
%addmass10 incorporates a mechanical translational mass to the model at 
%a modifiable site 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
  
global sys; 
global GPInfo; 
global Nodelist; 
global Componentlist; 
  
  
i=GPInfo.Currentnodeid; %current node's id 
  
  
%Verify open status of current node in nodelist's, if so save handle  
if strcmp (Nodelist(i).Status, 'openhandle') 
  
    x2=Nodelist(i).Handle; 
%Assign to j component number id to make name unique 
    j=GPInfo.Currentnameid; 
    str=num2str(j); 
%add Mass to sys  
 add_block('fl_lib/Mechanical/Translational Elements/Mass',[sys '/Mass' 
str],'Mass', '100'); 
  
GPInfo.Componentcounter=GPInfo.Componentcounter+1; 
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n=GPInfo.Componentcounter; 
    Componentlist(n).Component='Mass'; 
    Componentlist(n).Name= ['Mass' str]; 
    Componentlist(n).Id= n; 
         
    %add 1 to counter (componentnumber) for next name of element to be unique 
    GPInfo.Currentnameid = GPInfo.Currentnameid+1; 
  
%obtain port handles of damper created (Lconn & Rconn) 
    BlockHandles = get_param([sys '/Mass' str],'PortHandles'); 
%connect embryo node (port handle) to left connector (Lconn)of added Mass 
    add_line(sys,BlockHandles.LConn(1), x2,'autorouting','on'); 
  
  
Componentlist(n).Node(1)=i; 
Componentlist(n).Node(2)=GPInfo.Currentnodeid; 
  
else 
  
    GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+1; 
end 
  

 adddamper10 function source code: 

function adddamper10 
%adddamper10 incorporates a mechanical translational damper to the %model at 
a modifiable site 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
  
global sys; 
global GPInfo; 
global Nodelist; 
global Componentlist; 
  
i=GPInfo.Currentnodeid; %current node's id 
  
  
%Verify open status of current node in nodelist's, if so save handle  
if strcmp (Nodelist(i).Status, 'openhandle') 
     
    x2=Nodelist(i).Handle; 
%Assign to j component number id to make name unique 
    j=GPInfo.Currentnameid; 
    str=num2str(j); 
%add damper to sys  
    add_block('fl_lib/Mechanical/Translational Elements/Translational 
Damper',[sys '/Damper' str],'D', '100'); 
  
GPInfo.Componentcounter=GPInfo.Componentcounter+1; 
n=GPInfo.Componentcounter; 
    Componentlist(n).Component='Translational Damper'; 
    Componentlist(n).Name= ['Damper' str]; 
    Componentlist(n).Id= n; 
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    %add 1 to counter (componentnumber) for next name of element to be unique 
    GPInfo.Currentnameid = GPInfo.Currentnameid+1; 
  
%obtain port handles of damper created (Lconn & Rconn) 
    BlockHandles = get_param([sys '/Damper' str],'PortHandles'); 
%connect embryo node (port handle) to left connector (Lconn)of added Spring 
    add_line(sys,BlockHandles.LConn(1), x2,'autorouting','on'); 
  
%add 1 to Currentnodeid counter and save Damper's node (RConn = not 
connected) information (handle, id and status) to Nodelist 
GPInfo.Maxnodeid=GPInfo.Maxnodeid+1; 
Newid=GPInfo.Maxnodeid; 
Nodelist(Newid).id=Newid; 
Nodelist(Newid).Handle=BlockHandles.RConn(1); 
Nodelist(Newid).Status='openhandle'; 
  
GPInfo.Openstatuscounter=GPInfo.Openstatuscounter+1; 
GPInfo.Nodecounter=GPInfo.Nodecounter+1; 
  
Componentlist(n).Node(1)=i; 
Componentlist(n).Node(2)=GPInfo.Nodecounter; 
  
 
else 
  
    GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+1; 
     
end 
 
 

 addspring10 function source code is the same as the adddamper10 function source code 

but replacing the damper for a translational spring. 

 add_line12 function source code: 

function addline12 
  
%addline12 creates a branch (connection) between two modifiable nodes 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
global sys; 
global GPInfo; 
global Nodelist; 
global Componentlist; 
global Linelist; 
  
  
i=GPInfo.Currentnodeid;  
  
if (GPInfo.Openstatuscounter>=2)&&(GPInfo.Linecounter<=2)&& 
(GPInfo.Componentcounter<=2)&& (GPInfo.Nodecounter>2)  
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   if strcmp (Nodelist(i).Status, 'openhandle')  
       xA=Nodelist(i).Handle; 
        
        
        a = (1:GPInfo.Maxnodeid); 
        b = zeros(1, 20); 
        c = zeros(1, 20); 
        d = zeros(1, 20); 
        e = zeros(1, 20); 
         
          for m=1:GPInfo.Componentcounter 
            if Componentlist(m).Node(1)==i 
             b(m) = Componentlist(m).Node(2); 
            elseif  Componentlist(m).Node(2)==i 
             c(m) = Componentlist(m).Node(1); 
            end 
            continue, 
          end 
            for n=1:GPInfo.Linecounter 
                if Linelist(n).Node(1)==i 
                d(n) = Linelist(n).Node(2); 
                elseif  Linelist(n).Node(2)==i 
                e(n) = Linelist(n).Node(1); 
                end 
                continue, 
            end   
         
    Componentnodes=union (b,c); 
    Linenodes=union (d,e); 
    notavailablenodes=union (Componentnodes,Linenodes); 
    availablenodes = setxor(a, notavailablenodes); 
    availablenodes2 = setxor(a, i);    
    availablenodes3=intersect (availablenodes,availablenodes2); 
     
    if i==1 
        availablenodes3=setxor (availablenodes3,2); 
    elseif i==2 
        availablenodes3=setxor (availablenodes3,1); 
    end     
     
    for o=min(availablenodes3):max(availablenodes3)  
        if ismember(o,availablenodes3) 
            if strcmp (Nodelist(o).Status, 'openhandle')  
            xB=Nodelist(o).Handle; 
            add_line(sys,xA,xB,'autorouting','on'); 
            GPInfo.Linecounter=GPInfo.Linecounter+1; 
            p=GPInfo.Linecounter; 
            Linelist(p).Node(1)=i; 
            Linelist(p).Node(2)=o; 
            GPInfo.Currentnodeid=o; 
            break 
            else 
            GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+1;    
            end 
        else 
            continue 
        end 
    end     
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   else 
       GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+2; 
   end 
  
else 
    GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+2.5; 
end  

  close_node function source code: 

function closenode10 
  
%closenode10 assigns close status to a modifiable node 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
  
global GPInfo; 
global Nodelist; 
  
  
i=GPInfo.Currentnodeid;  
  
%Verify open status of current node and change it to close status in nodelist 
and 
     
if strcmp (Nodelist(i).Status, 'openhandle') 
    Nodelist(i).Status='closehandle'; 
    GPInfo.Openstatuscounter=GPInfo.Openstatuscounter-1; 
        if GPInfo.Currentnodeid<GPInfo.Maxnodeid 
           GPInfo.Currentnodeid=GPInfo.Currentnodeid+1; 
        else 
           GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+1;  
        end 
else 
     
     GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+2; 
     
end  

 desprogn2 function source code: 

function desprogn2(actions) 
%desprog2 evaluates two actions sequentially. 
% 
% 
%   Copyright (C) 2008-2010 Jesus Campos (jramcam@hotmail.com) 
  
global GPInfo; 
global Nodelist; 
  
i=GPInfo.Currentnodeid;  
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if strcmp (Nodelist(i).Status, 'openhandle') 
    deseval(actions[19]); 
    deseval(actions[19]); 
  
else 
  GPInfo.Fitnesspenalty=GPInfo.Fitnesspenalty+1;   
     
end 
 
 

 desprogn3 function is the same as desprogn2, but instead of performing two actions 

sequentially it executes three actions. 

 Ground reference (gnd_ref) connects the node that has not been used so far to a ground 

reference. 

 Arithmetic value (ERC) generates an arithmetic value for any added component 

(parameter) that has not been closed by the end terminal. 

 


