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ABSTRACT

This thesis discusses two applications of operations research to healthcare: nursing workforce

planning and radiation therapy treatment decision making. The first application describes a linear

programming based hierarchical planning tool that determines the optimal number of nurses to

train, promote to managerial levels and recruit over a 20 year planning horizon to achieve nursing

and managerial targets. The model is based on the age dynamics and attrition rates of the nursing

workforce. The tool has been developed to assist policy makers in planning the British Columbia

registered nurses workforce. Its simplicity of use makes it ideal for scenario and “What-If” analyses.

The second application presents a novel approach to model individual disease progression of

prostate cancer patients who receive neoadjuvant hormone therapy before radiation therapy. The

model is used to help clinicians determine when to initiate radiation therapy based on a patient’s

prostate specific antigen (PSA) dynamics. Each patient’s PSA dynamics is modeled by a log

quadratic curve. Prior distributions for the curve parameters are obtained from population

characteristics. The distribution of the time of the PSA nadir (which might be linked to maximal

tumor regression) is derived from an approximation of the ratio of two correlated normal random

variables. Using a dynamic Kalman filter model, the parameter estimates are updated as new

patient specific information becomes available. Clustering is incorporated to improve our prior

estimates of the curve parameters. The model trades off the risk of beginning radiation therapy too

soon, before hormone therapy has achieved its maximum effect, against waiting too long to start

therapy after there has been a potential increase in the number of tumor cells resistant to the

treatment. We illustrate and validate our modeling approach by comparing clinically

implementable policies (cumulative probability policy and threshold probability policy) on a

cohort of prostate cancer patients, and show that our approach outperforms the current protocol

by identifi’ing earlier when radiation therapy should start for each patient.

While both applications involve very different approaches, they incorporate dynamic decision

making in the field of healthcare. A deeper knowledge of the potential of the field is achieved by

understanding the challenges faced and methodology used to guide decisions on a policy level as

well as on a patient-specific level.
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CHAPTER 1: INTRODUCTION

Providing quality healthcare that is accessible to all members of the population is a challenge faced

by governments worldwide. Timely, efficient healthcare delivery not only significantly impacts

patients, but also has significant economic implications: healthcare spending represents over 16%

of the US gross domestic product (GDP) (Keehan et al. 2008) and over 10% of the Canadian GDP

(CIHI 2008). According to the Canadian Institute for Health Information (2008), it is necessary to

have “the right number of health care providers, with the right set of skills, in the right settings” in

order to meet the growing health care needs of the population. However, how to achieve and

maintain appropriate workforce levels and how to improve treatment decisions based on patient

specific outcomes are questions left open. This thesis will address these questions in two specific

settings; nurse workforce planning and prostate cancer treatment decision making.

Operations research (OR) has been widely used to model healthcare challenges (Brandeau et al.

2004). Models in the healthcare operations research field may be classified into the following

broad categories: policy and public health, tactical operations management and disease

management.

Policy and public health models concern strategic decisions that are made over a long term horizon.

These decisions usually involve a wide variety of stakeholders including governments, regulatory

bodies, professional associations, representatives from the private sector and senior health system

executives. Problems faced at this level include trading off capacity expansion and long term

capital investments (Lovejoy and Li 2002), deciding where to locate hospitals and health units

(Daskin and Dean 2004; Verter and Lapierre 2002), modeling population health and risk

management (Chick et al. 2002; Hall et al. 1992; Peterson 1996), relating outcomes to economic

analysis (Fuloria and Zenios 2001; Kognakorn and Sainfort 2004; So and Tang 2000), and

analyzing how factors such as quality of service are impacted by capacity changes (Güne et al.

2004).

Operation management decisions, on the other hand, arise in the provision of health care at

hospitals and other clinical units. The decisions usually involve managers and health professionals.

They incorporate problems faced on a daily, weekly, or monthly basis such as scheduling

specialties and managing waitlists (Santibañez et al. 2005), assigning resources to shifts (Felici and

Gentile 2004) and managing inventory (Henderson and Mason 2004).
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Finally, disease management models are related to those decisions that clinicians face in the

delivery of health care. Decisions might be related to disease monitoring and screening (Baker

1998; Butler 1979; Harper and Jones 2005; Kirch and Klein 1974; Lincoln and Weiss 1964; Ozekici

and Pliska 1991; Pardalos et al. 2004; Sherlaw-Johnson and Gallivan 2000; Shwartz 1978)

diagnosis (Laporte et al. 1998; Mangasarian 1995; Sanchez de Rivera 1980) and treatment

planning (Alagoz et al 2000; Ferris, et a! 2003; Hu et al 1996; Mehrez and Gafni 1987; Romeijn et al.

2005; Shechter et al 2008).

In this thesis, I investigate healthcare operations research from both a strategic perspective and a

clinician’s perspective. Both problems involve dynamic decision making made recursively over a

finite planning horizon, yet they use very different approaches. In the former case, I formulate a

comprehensive, policy based, methodology for health human resource planning that not only

focuses on forecasting future staffing requirements but also on how to best meet those

requirements through training, recruitment, and promotions. The model is formulated over a 20

year planning horizon (with decisions made once a year), and it is based on the age dynamics and

attrition rates of the providers. This is a novel framework that incorporates variables such as

leaves of absence, full time equivalence, promotion rules and attrition from educational programs

and the profession. It is applied to assist policy makers in planning the British Columbia registered

nurses workforce.

At the disease management level, I develop novel patient specific models that help clinicians

determine when to start radiotherapy treatment, based on a patient’s prostate specific antigen

(PSA) dynamics, for prostate cancer patients receiving hormone therapy. Each time a PSA reading

is taken, the clinician must decide whether to start radiation therapy or to wait for a next reading.

The model trades off the risk of beginning radiation therapy too soon, before hormone therapy has

achieved its maximum effect, against waiting too long to start therapy after there has been a

potential increase in the number of tumor cells resistant to the treatment. Prior distributions for

the patient’s PSA dynamics are obtained from population characteristics, and parameter estimates

are updated as new patient specific information becomes sequentially available. Two decision

rules are evaluated and shown to identifi earlier, and with less variability than under current

practice, when the best time to start radiation therapy is likely to be reached. The modeling

approach is validated on a cohort of prostate cancer patients from the British Columbia Cancer

Agency database.
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The thesis is organized as follows. Chapter 2 describes the health human resource planning model,

its innovative features as well as the methodological challenges encountered. Chapter 3 describes

the prostate cancer decision making model and its implications. This model is validated in Chapter

4. Finally, Chapter S reviews key findings and points to new research opportunities. Chapters 2

and 3 contain detailed introductions to these specific areas of research.
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CHAPTER 2: OPTIMAL PLANNING OF THE BRITISH COLUMBIA REGISTERED

NURSES’ WORKFORCE

A 2004 - Canadian Health Services Research Foundation report stated that workforce planning,

training and regulation was the dominant immediate and long term issue for health services policy

makers, managers, and clinical organizations. Health professionals’ staffing levels significantly

impact wait times, patient throughput, and the quality and effectiveness of the services provided

by the healthcare system (Tomblin Murphy and O’Brien-Pallas 2004).

Decisions related to workforce supply have long term implications. In order to have a sufficient

number of professionals to replace those that will retire in the future, new professionals must be

educated. However, admitting too many students is as undesirable as a shortage. Not only does it

take time to educate each health professional, but training represents a significant societal

financial investment. Furthermore, each newly graduated healthcare professional should be able to

take up a position in the healthcare system. Balancing the number of educational seats with the in-

migration of health professionals from other provinces and other countries while accounting for

the impact of other factors on the supply of professionals needs to be considered.

While the importance of decisions pertinent to health human resource planning is acknowledged,

no unified model has been developed to determine the best long term plan to meet the forecasted

need for health professionals in British Columbia (BC). Models that have been developed in the

healthcare field tend to focus on either projecting the impact of current policies based on present

workforce characteristics and expected entries and attrition (Kazanjian, Brothers and Wong 1986;

Kazanjian, Pulcins and Kerluke 1992; Newton and Burske 1998; Abrahams 2005; Archambault

1999); estimating how many health professionals will be needed based on general population

demographics and health status (Basu and Liu 2005; Tomblin Murphy 2005); or estimating

requirements based on anticipated future costs or financial resources (Dickson 2002). Most

approaches rely heavily on supply-side projections, assume current patterns of utilization and

seldom include the impact of policy decisions on supply (O’Brien-Pallas et al. 2001).

These models provide useful insights into the supply and demand for health professionals.

However, none is sufficient on its own to address the current and future challenges in planning the

health workforce.
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Workforce planning has been widely modeled in the operations research literature. The models

address two levels of human resource planning: tactical planning and high level (or strategic)

planning. On one hand, tactical planning concerns workforce allocation decisions such as within

day staffing, allocating capacities among facilities or scheduling operating rooms (Green 2004). A

widely studied problem is staff scheduling or “nurse rostering”. The goal is to assign workers to

shifts (Felici and Gentile 2004) or tasks (Grunow, Gunther and Yang 2004) or to decide which

shifts and breaks to use (Aykin 1996) subject to several hard and soft constraints. A summary of

solution procedures for the staff scheduling problem appears in Vanhoucke and Maenhout (2007).

Strategic planning, on the other hand, concerns long-term human resource decisions. Those

decisions impact the number and type of human resources that will be available over a specified

time horizon. They include determining the number of resources to train (Balinksy and Reisman

1972) or cross train (Iravani, Kolfal and Van Oyen 2007) or the number of employees to recruit or

promote in either the deterministic setting (Rao 1990) or the stochastic setting (Martel and Price

1981; Chattopadhyay and Gupta 2007) . As discussed by Georgiou and Tsantas (2002) and De

Feyter (2007), promotions might occur as a result of a vacancy in a group (pull models) or with a

certain probability independent of the current vacancies (push models). In a related application,

Wiersma (2007) and Thompson (2007) studied employees’ learning curves and their impact on

workforce planning decisions.

This chapter focuses on strategic health human resource planning. Our approach takes into

account training, promotion and recruitment decisions. Since nurses represent the largest group of

healthcare providers, and were among the top 10 occupations with the largest expected number of

employment openings in British Columbia (BC) over this decade (B.C. Stats 2003), we have worked

with decision makers to study the policy implications of using high level planning to model the

nursing workforce of the province of British Columbia. With relevant data, our model could also be

applied to other health professions and jurisdictions.

According to the Canadian Institute for Health Information (2007), some of the key characteristics

by which the nursing profession differs from others include:

• A high female to male ratio (which might impact parental leaves).

• Low unemployment rates (as demand for nurses increases, it cannot be assumed that there

will be sufficient supply to meet that demand).
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• Extreme consequences of having inadequate staff to meet demand (it is not possible to

optimize supply without consideration of the demand).

• The presence of regulatory bodies (regulatory bodies may limit entrance of new graduates

to the workforce, mobility within Canada and immigration of workers from other

countries).

• A skewed age distribution (this might impact expectations of the work environment as well

as attrition rates).

• The need for nurses to work both in rural and urban areas (while some professions might

provide services remotely, a nurse must be located where the service is needed).

• Data limitations (e.g., standards, privacy, confidentiality).

We describe the innovative features of our model as well as the methodological challenges

encountered. We expand models from the operations research literature by incorporating

characteristics that are specific to the nursing workforce including full time equivalence (FTE),

promotion rules, parental leaves, “on the job” training (continuing education), two types of

educational programs and the impact of age on workforce attrition.

2.1 Nursing in British Columbia

Canada, like many countries, is experiencing a shortage of registered nurses (RN5) that is projected

to worsen over the next decade. This projected shortage is due, in part, to the growth in need for

healthcare services by the Canadian population as well as the increased attrition of an aging

workforce (Basu and Halliwell 2004). British Columbia’s RNs are the oldest RNs, on average, in the

country, and the province has the largest percentage of over-45-year-old nurses (Canadian

Institute for Health Information 2006). The large number of RNs expected to retire in the next

decade, along with the repercussions of reductions in education seats in the 1990s, have created a

significant imbalance between those entering the profession and those leaving (O’Brien-Pallas,

Alksnis and Wang 2003; Human Resources and Skills Development Canada 2003). Table 2.1

provides additional information about BC’s population and its RN workforce.
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Table 2.1. BC’s employed registered nurses’ demographics and population statistics, 1997-2005

1997 2001 2005

Demographics of Employed Registered
(N = 27,964) (N = 27,375) (N = 27,814)

Nurses*

Number per 70.2 66.7 65.3
10,000 Population

Average Age (National Average) 43.3 (42.4) 44.8 (43.7) 46.4 (44.7)

Area of responsibility (Number (%))
Direct Care 25,723 (92.0) 24,568 (89.7) 24,956 (89.7)

Administration 998 ( 3.6) 1,135 ( 4.1) 1,162 ( 4.2)

Education 1,010 ( 3.6) 1,148 ( 4.2) 1,386 ( 5.0)

Research 146 ( 0.5) 194 ( 0.7) 235 ( 0.8)

Not Stated 87 ( 0.5) 330 ( 1.2) 75 ( 0.3)

Position (Number (%))
Staff Nurse/Community Health Nurse 22,770 (81.4) 21,819 (79.7) 21,965 (79.0)

Management 2,124 7.6) 2,010 (7.3) 2,119 (7.6)

Other/Not Stated 3,070 (11.0) 3,546 (13.0) 3,730 (13.4)

Place of Work

Hospital 18,156 (64.9) 17,599 (64.3) 17,336 (62.3)

Community 3,013 (10.8) 3,273 (12.0) 3,971 (14.3)

Nursing Home 2,333 (8.3) 3,653 (13.0) 3,371 (12.1)

Other/Not Stated 4,462 (16.0) 2,940 (10.7) 3,136 (11.3)

Source of New RNs (Number (%))
BC Schools of Nursing 670 (46.9) 572 (46.7) 857 (55.0)

Other Provinces 601 (42.1) 371 (30.3) 405 (26.0)

Other Countries 158 (11.0) 282 (23.0) 297 (19.0)

BC Population Estimates#

Total Population 3,948,544 4,078,447 4,257,833
*Canadian Institute for Health Information, based on the number in the registry actively
employed in nursing (2002; 2006)
+ College of Registered Nurses of British Columbia
# Statistics Canada

Estimates based on a cohort analysis conducted by the Canadian Nurses Association (2002)

predict that Canada will be short between 78,000 and 113,000 RNs in the next decade. Given this

projected deficit, strategies addressed specifically to those entering the profession and those who

will be retiring from the profession are of particular importance. Increasing education seats is

considered a key strategy to address the shortage; “governments must be engaged immediately

with schools and employers, educating health professionals to put in place the human and physical

resources to accommodate more students” (Villeneuve and MacDonald 2006:101). Yet the number

of students that should or could be accommodated is an open question.
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Education seats are not the only consideration in planning human resources. Multiple factors

influence the supply of, and demand for, RNs, including attrition (short-term leaves, premature

leave from the profession and retirement), changes in the workplace (e.g., availability of

employment positions and contractual requirements such as hours worked), the availability of

personnel in leadership or management roles, the skill mix and task delegation of all healthcare

providers, how demand is defined (whether based on current utilization patterns or population

healthcare needs) and productivity (availability of support staff and other aids).

Governmental and employers’ policies also play an important role in planning human resources.

The need to examine how policy decisions made in one sector of the healthcare system can

influence other sectors is an issue that is rarely considered. For example, a decision to increase

education seats should be commensurate with the availability of employment positions. Studies by

the College of Registered Nurses of British Columbia (2006) have indicated that the availability of

full-time employment is a factor in whether recently graduated RNs remain in the province.

Recruitment and retention strategies are an important feature of planning human resources. A

growing body of literature has identified the importance of workplace characteristics for RN

retention. In their synthesis of research and other literature on nursing and work, Baumann et al.

(2001) identified features of the work environment related to perceived quality, including the

availability of personnel in leadership or management positions and an emphasis on promoting

recruitment and retention. Examining the influence of various strategies on the overall supply of

RNs is an important element of planning (Kephart et al. 2006).

2.2 The Model

The goal of the model described here was to investigate the impact of assumptions on the number

of students to admit to all university and college programs in the province, the number of nurses to

train for management roles, and the number of nurses to recruit from outside the province to meet

forecasted service needs. The model variables are totals and do not represent specific individuals

so that constraints involving proportions are equivalent to taking expected values or averaging

over a large population.

The problem was formulated as a multi-period finite horizon linear program (LP). LP was chosen

over other approaches because of its transparency, the capability of obtaining an optimum solution,

as well as its simplicity to modify in order to perform “what-if’ analyses. Alternatives considered

8



include simulation at the cohort level, simulation at the individual level and stochastic

programming.

2.2.1 Model Assumptions

The model was based on the year to year dynamics of the entire nursing cohort broken down by

age and activity level. Consequently the model was based on mathematical expectations, which are

equivalent to averaging over a large population. While we acknowledge that this is a strong

assumption, it is justified by the law of large numbers and appropriate for aggregate level work

force policy decisions. The effect of variability on our optimal solutions could be investigated using

simulation or stochastic programming.

The timeline of events and decisions in the model appears in Figure 2.1. It represents the following

chain of events.

Figure 2.1. Model timelme

- ./Admit\
Students N

-- sden/r
+ d anden s rop -‘Promote nursesi

Initial outfnurscs nurce
nurses

/

conditions retire gcL N

- ..

.1 I I
0 September 1, January 1 September 1,

yearj-1 yearj
Number of Number of
students/nurses stndents!nure
agei-1 agei

An academic year starts with a known number of students and nurses in each age category and at

each level. For students, the level represents their year in their educational program, and for

nurses, it represents whether they are practicing or whether they are employed at one of two

managerial levels. Throughout the year, students and nurses leave the system through attrition.

Further the student and nursing populations age, and students who do not drop out advance in

their educational programs or graduate. Then, a decision is made regarding how many new

students to admit, how many nurses to promote to managerial positions, and how many nurses to

9



recruit from outside the province. The results of this decision, together with the sizes of the age

cohorts (at January 1 in the figure), determines the student and nursing populations in the

following year.

A system flowchart appears in Figure 2.2. Dashed arrows represent decision variables. The model

incorporates the two types of baccalaureate educational programs offered in the province: the

standard program and the advanced standing program. Students that enrol in the standard

program take four years to complete their education; they are not required to have any post-

secondary education prior to being admitted into a program. Students admitted to the advanced

standing program have completed a minimum number of university credits, a priort Those

students are assumed to be older than the students admitted to the standard program. The

advanced standing program is two years in length, and its content is similar to the last two years of

the standard program.

Figure 2.2. Workforce flowchart

Some students discontinue their education (attrition being highly dependent on the year of study

(Pringle and Green 2005)), while most students graduate with a nursing degree. A small fraction of

graduates might decide to leave the province or not register with the regulatory body. To practice

as a registered nurse in the province, graduates of a nursing program must pass the Canadian

Registered Nurse Examination (College of Registered Nurses of British Columbia 2006). Direct care

nurses that have acquired the relevant experience might be promoted to work in entry level

management positions and subsequently to senior level management positions. Nurses might

leave the profession permanently or temporarily (parental leaves being a key factor included in

the model); attrition rates are highly dependent on age (Kazanjian et al. 1986).

In addition to graduates of BC schools of nursing, other sources of new RNs in British Columbia are

other provinces and countries. We assume that this migration, which is affected by the global

(d)admitted s(’3)admtted n(’J,)recruited n (2)recraited
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shortage of nurses, will continue in the near future. High recruitment costs (Webber 2005) as well

as availability of nurses willing to move to the province are incorporated into the model.

2.2.2 Decision Variables

The decision variables of the model are the total number of students to admit into the standard

and advanced standing programs (s(1)admitted1and s(3)admitted1respectively), the total number

of direct care nurses and entry level managers recruited (n(1)recruited, and n(2)recruited1

respectively), the total number of direct care nurses promoted to entry level management

positions (n(1)promoted1),and the total number of entry level managers promoted to senior level

management positions (n(2)promoted1).Given that certain characteristics are age dependent

(such as attrition rates and fertility rates), it is necessary to keep track of the number of first,

second, third and fourth year students of age i (A I B) in year j (s(1)1,, s(2)1, s(3)1,1,s(4)1,,) as

well as the total number (n(1)1,,, n(2),,,, n(3),,,) of direct care nurses, entry level managers and

senior level managers of age i in year j We call these variables “bookkeeping variables” and

calculate them as follows:

The total number of first year students of age fat time period j(s(1)1;1)is given by:

S(1)i7 = s(1)admitted1*Ps(1). (2.1)

where Ps(1)1represents the probability that a student admitted into the first year of the program

is of age t Note that we are assuming that the age distribution of the students admitted into the

program remains the same over time, that is, it does not depend on the periodj

The total number of second year students of age fat time period j(s(2),,1)is given by:

s(2)1,1—initiaJs(2)1 forj= 1, A i (2.2)

s(2)1=s(1)ii *pcontinuing(1) for2jN, Ai <B (2.3)

s(2)17=[s(1)j,1j+ s(1)1,1i] *pcontinuing(1) for2jN, i=B (2.4)

While equation (2.2) specifies that the number of second year students in the first period is just

based on the initial conditions initiaLs(2)1(e.g., decisions made in the first period will only affect

the number of second year students after the second period), equations (2.3) and (2.4) indicate

that the number of second year students is a fraction of the number of students that were admitted
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into the standard program the year before. Equation (2.4) can be interpreted by noting that, after

students reach age B, their attrition rate does not change as they age further.

The total number of third year students of age fat time period j(s(3),,1)is given by:

s(3,),,1= initiaLs(3) + s(3)admittedj*Ps(3)i forj =1, A 1 (2.5)

= s(2)j,ji *pcontinuing(2)

+s(3)admittedj*Ps(3)i for2jN,Af<B (2.6)

s(3)j = [s(2)1j,1j+ S(2)i,ji] * Pcontinuing(2)

+ s(3)admittedj*Ps(3)j for2jN, / = B (2.7)

Equations (2.5) through (2.7) compute the total number of third year students by summing the

number of students that are in the standard program who continue after their second year, and the

number of students admitted into the advanced standing program.

Finally, the total number of fourth year students of age iat time period j(s(4),,,) is given by:

s(4)17 = initial forj =1, A i (2.8)

= s(3)1,1*pcontinuing(3) for2jN, A i <B (2.9)

s(4)11=[s(3)1i,1i+ s(3)1,1.z] *pcontinuing(3) for2jN, I = B (2.10)

Equations (2.8) through (2.10) can be interpreted in the same way as equations (2.2) though (2.4).

The total number of direct care nurses of age fat time period j (n(1)1,,) is given by:

n(J), = initiaL n(’V + n(1)recruited1* Prn(1)1

- n(1)promotedj * Ppn(i)1 forj =1, AiB (2.11)

n(1), = n(l)1-Li-i *(lpretire(V)

+ s(4)ii,ji*Pcontinuing(4) *ppass*pstay

+n(1)recruitedj* Prn(1)1

_n(1)promoteaj*Ppn(1)j for2jN,Ai<B (2.12)
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= n(1) ( 1-P_retire(1))

+ n(1)1,,i*(1P_retire(1).)

+ s(4)ii,ji*Pcontinuing(4) *ppass*pstay

* s(4),,ji*Pcontinuing(4) *ppass*pstay

/n(1)recruitedj* Prn(1)

- n(1)promotedj*Ppn(1)i for2jN, i=B (2.13)

In the first period, n(1)1,1is calculated by subtracting the direct care nurses that are promoted from

the initial number of direct care nurses initiai_n(1) and then adding recruits by age (equation

(2.11)). In the remaining periods (equations (2.12) and (2.13)), the total number of direct care

nurses is comprised of those nurses that are neither promoted nor decide to retire, plus new

recruits and students that complete their education (Pcontinuing(4)), pass the national

examination (Ppass), and practice in the province (Pstay). We assumed that the age distribution of

nurses recruited Prn(1) and promoted Ppn(1)1was known and constant over the planning horizon.

Moreover, after nurses reach age B, their attrition rate does not change as they age further.

The total entry level managers of age iat time period j(n(2),,) is given by:

= initiaLn(2)1-f n(1)promotedj* Ppn(1)

-f n(2)recruited1* Prn(2)

- n(2)promotedt Ppn(2) forj=1,AiB (2.14)

= n(2) “( 1-PretIre(2))

+ n(1)promoteaj*Ppn(1)i

-f n(2)recruiteci1* Prn(2)1

-n(2)promoted7Ppn(2)1 for2jN,Ai<B (2.15)

=n(2) *( 1-P retire(2)

+ n(2)1,1*( 1- Pretire(2)1)

* n(1)promotedj*Ppn(1)j

+ [n(2)recruited1-n(2)promotedj]*Pn(2)j for2jN, I = B (2.16)

The interpretation of equations (2.14) through (2.16) is similar to the interpretation of equations

(2.11) through (2.13). The main difference is that, while new direct care nurses from within the

province are a function of the students from the previous period, new entry level managers from

within the province are based on the number of direct care nurses promoted.
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Lastly, the total senior level managers of age iat time period j(n(3)1)is given by:

n(3),7=initial n(3) * n(2)promotedj*Ppn(2) forj = l.A iB (2.17)

n(3)17 = n(3) *( 1-P_retire(3)“)

+n(2)promotedj*Pn(2)i for2jN,Ai<B (2.18)

n(3)17 = n(3)i-i,ji
*(lP_retire(3)ii)

+ n(3),,-i 1 1-P retire(3))
+n(2)promotedj*Pn(2)j for2jN, i=B (2.19)

Note that we assumed that it was not possible to recruit senior level managers: all senior level

managers must have worked as entry level managers (equations (2.17) through (2.19)).

To determine the effective workforce size each year, our model adjusted the workforce size as

follows. The number of full time equivalents each year, FTE(n(.)1,,), was a function of the total

number of direct care nurses, entry level managers and senior level managers. For instance, to

incorporate parental leaves, we subtracted the expected number of workers of each age that

requested such leave in a given year times the fraction of the year the nurse would be away if such

leave was granted. Given the high ratio of females in the occupation (over 94% (Canadian Institute

for Health Information 2007)), full time equivalence due to parental leave FTE(n(.)1)icould be

approximated by:

FTE(n(.),)j = n(.)1 * (1- Fertility rate1*female ratio * Maternity leave/12) (2.20)

where Fertility raterepresents the ratio of females of age i that request parental leave per year,

female_ratio is the female to male ratio and Maternity leave is the number of months of leave

specified by labour contract.

In addition, we assumed that nurses that started a new position would take some time to get

adjusted to their position (due to the learning curve and the time required to take the national

examination). Hence, the full time equivalents FTEO of those nurses was computed as a fraction of

the nurses that started the new position.

2.2.3 Data Formulation

A summary of the data required to populate the model appears in Table 2.2.
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Table 2.2. Notation of inputs

Source

(University of British

Columbia, School of

Nursing 2006)

Notation Description

Ps(1)b Ps(3)1
Probability that a student admitted

into the program is of age I

Probabilities

(College of Registered

Nurses of British

Age distribution of nurses Columbia 2006);
Prn(1)1,Prn(2)1

recruited (Canadian Institute for

Health Information

2006)

(College of Registered

Nurses of British

Age distribution of nurses Columbia 2006);
Ppn(1),, Ppn(2)1

promoted (Canadian Institute for

Health Information

. 2006)

Pcontinuing(1), UBC School of Nursing;

Pcontinuing(2), Fraction of students that continue (Pringle and Green

Pcontinuing(3), in the program each year 2005)

Pcontinuing(4)

(College of Registered
Fraction of BC graduates that pass

Ppass Nurses of British
the national CRNE examination

Columbia 2006)

(College of Registered
Fraction of RNs that remain in the

Pstay Nurses of British
province after graduation

Columbia 2006)

(Kazanjian, Brothers

Pretire(1)b and Wong 1986);

Pretire(2,)b Attrition rate of nurses by age i (O’Brien-Pallas,

Pretire(3)1 Alksnis and Wang

2003)

Fertiity rates
Ratio of females of age i that

request parental leave per year

(Statistics Canada

2004)
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Notation Description Source

initial s(2) UBC School of Nursing
Number of students of age i in the

initiaL s(’3)1,
first period of the model

initiaL s(4)

(College of Registered

Nurses of British
initial n(1)1,

Number of nurses of age i in the Columbia 2006);
initiaL n(2)b

first period of the model (Canadian Institute for
initial n(3)1

Health Information

Initial 2006)

conditions (College of Registered

Nurses of British
pfraction(1),., Initial fraction of workers that

Columbia 2006);
pfraction(2) have been in their position at least

. (Canadian Institute for
pfraction(3) x years

Health Information

2006)

(Canadian Institute for

female_ratio Female to male ratio Health Information

2006)

BC Ministry of
Cost of funding a university seat

tsCost Advanced Education
per year

(MAE)

Cost of training to promote a nurse MAE
tn(2)Cost,

from direct care RN into a
tn(3)Cost

Costs managerial position

rn(1)Costfr Recruitment cost for each nurse in (Webber 2005)

rn(2)Cost1 yearj

sn(1)Cost, BC Nurses’ Union

sn(2)Cost, Average annual salaries

sn(3)Cost

Lower bound on the number of UBC School of Nursing

mm s(1)1, students admitted into the
Bounds

mm s’3)1 programs in year j
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Notation Description Source

Upper bound on the number of UBC School of Nursing
maxs(1)1,

Bounds students admitted into the
max s(3)1

programs in year I

BCpop1 Population projection for yearj (BC Stats 2006)

n(1)ratio1, (Canadian Institute for
Demand Minimum ratios of nurses to meet

n(2)ratioj; Health Information
population demand in yearj

n(3)ratio1 2006)

Obtaining this data was challenging and time consuming. For this purpose, we performed an

extensive literature review, and as well contacted various organizations including the British

Columbia Nurses’ Union, the College of Registered Nurses of British Columbia, the BC Ministry of

Advanced Education, and the School of Nursing at the University of British Columbia. Since all

nurses in BC are registered to practice, the authors investigated the movement of registrants

between membership statuses as a proxy for employment status.

Other key inputs to the model were the nurse/population and the managerial ratios. We first set as

our objective to maintain current ratios (as estimated by the Canadian Institute for Health

Information (2006)) and performed a sensitivity analysis to determine the cost of improving such

ratios. However, it must be highlighted that the ratios were only used as proxies for demand. Given

the key role they play in the solution, a more refined needs-based model should be developed.

2.2.4 Model Formulation

In this subsection, we first show the full model and then give further detail on how the objective

function and constraints were calculated. The mathematical formulation of the model is as follows:

Mm Cost ofTrainin& + Recruitment Cost1+ Annual Salary1

subject to:

Necessary resources:

maxs(1)1 s(1)admitted1 miii s(1)1 Vj (2.21)

maxs(3)1 s(3)admitted1 mm s(3,)1 Vj (2.22)
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FTE(n(1)1,) BCpop1/n(1)ratio3 Vj (2.23)

FTE(n(2)1,3) FTE(n(fl) /n(2)ratio Vj (2.24)

FTE(n(3)1,1) FTE(n(1)1,1)/n(3)ratio (2.25)

Balance first and third year students:

s(1)admitted1 s(3)admittecJ1 Vj (2.26)

Do not recruit more direct care nurses than the number of graduates that can work in BC:

initial s(4)1 * Pcontinuing(4) * Ppass * Pstay n(l)recruited1 j = 1 (2.27)

s(4)11 * Pcontinuing(4) * Ppass * Pstay n(1)recruited1 Vj 2 (2.28)

Only promote those nurses that have been in their position x years:

n(1)promoted pfraction(1) * n(1)10 1 = 1 (2.29)

j-2

n(1)promoted [n(1)1o* pfraction(1)1* fl (1— P
— retire(l)i+k)] x j 2 (2.30)

n(1)promoted [n(1)1j* fl (1— P
— retire(l)i+k)] j > x (2.31)

n(2)promoted pfraction(2) * n(2),9 j = 1 (2.32)

j-2

n(2)promoted [n(2)jo * pfraction(2) * fl (1— P
— retire(2)I÷k) x J 2 (2.33)

n(2)promoted [fli * fl (1— P
— retire(2)l+k) j > x (2.34)

The objective of the model is to minimize the total cost of training, recruitment and annual salaries.

The cost of training is comprised of the cost of educating each student (e.g., tsCost) and the cost of

promoting nurses into managerial positions (e.g., tn(2)Costand tn(3)Cost). The cost of training in

a given period jcan therefore be written as:

[s(1) + s(2)1, +s(3), + s(4), j* tsCost
Cost ofTraining1= i (2.35)

+ n(1)promoted * tn(2)Cost + n(2)promoted * tn(3)Cost
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In order to calculate the annual recruitment cost, we multiplied the expected number of health

professionals recruited in each position by the recruitment cost (rn(l)Cost1for direct care nurses

and rn(2)Cost1forentry level managers):

Recruitment Cost1 = n(1)recruited ,
* rn(1)Cost, + n(2)recruited * rn(2)Cost3 (2.36)

Finally, annual salaries were calculated by summing the estimates of annual salaries for the

various positions (e.g. sn(1)Cos4 sn(2)Costand sn(3)Cost):

Annual Salary3 = n(1)1*sn(1)Cost + n(2) *sn(2)Cost + n(3)11 *sn(3)Cost (2.37)

We now interpret the above constraints:

Necessary resources constraints: These constraints correspond to the bounds on the expected

number of students and nurses in the province. Constraints (2.21) and (2.22) indicate that the

expected number of students admitted into the standard and advanced standing educational

programs should be within an upper and lower bound (max s(.)1 and mm s(.)1). These bounds

could be absolute numbers or a function of the students admitted the year(s) before. The

constraints represent various challenges faced when expanding/decreasing the university

programs (which include the need for faculty and infrastructure changes).

Constraints (2.23), (2.24) and (2.25) drive the model. Constraint (2.23) ensures that there are a

sufficient number of full time equivalent direct care nurses to meet annual targets over the

planning horizon. While we currently estimate the minimum number of nurses to meet the

population’s need in a given year based on population projections, demand could be defined by

rates of hospital utilization or other measures of population healthcare needs. Moreover,

constraints (2.24) and (2.25) define minimum nurse to manager ratios. It is widely acknowledged

that nurse to manager ratios play a key role in nurse retention (Kramer, Schmalenberg and

Maguire 2004). Our model is based on current ratios and attritions. Sensitivity analysis was used

to investigate the impact of altering such ratios.

Balance first- and third-year student constraints: Students that are admitted into the advanced

standing educational program must previously have completed a minimum number of university

credits. Given this requirement, and the assumption that such education must be received within

19



the province, current practice is not to admit more students to the advanced standing program

than into the standard program. Constraint (2.26) ensures that this condition is satisfied. This

constraint could easily be relaxed to reflect policy changes.

Do not recruit more direct care nurses than the number of graduates that can work in BC

constraint: As was previously mentioned, the number of nurses that can be recruited is

constrained by the availability of nurses to come and work in the province. Historically, over 50%

of newly employed nurses are graduates of BC. Constraints (2.27) and (2.28) ensure that this ratio

continues in the future. Such constraints could be modified to address the impact that the expected

global shortage of health professionals might have on the entire system.

Only promote those nurses that have been in their position over x years constraint: Finally,

constraints (2.29) through (2.34) ensure that nurses acquire the experience necessary before

being promoted to a managerial position. While constraints (2.31) and (2.34) indicate that the

number of nurses that can be promoted in period jis a function of the number of nurses that were

working x periods before and that did not retire (attrition probability by age is expressed as

Pretire(.)1),constraints (2.29), (2.30), (2.32) and (2.33) require knowledge of the initial fraction

of resources that have been in their position at least x years (pfraction(’.)).

We note also that an impact of using this objective function was that solutions were to satisfy

lower bound constraints if feasible. Thus we obtained solutions that used the smallest workforces

possible.

2.3 Implementation

This model was applied to the BC registered nurse workforce. As was previously mentioned, a key

challenge was encountered in obtaining the necessary data to populate the model. The main inputs

to the model were the objective function coefficients (cost of training, recruitment cost and annual

salaries) as well as the constraints coefficients (age demographics, attrition rates, workforce ratios,

demand for providers and full time equivalence basis). The sources of data for our model are

summarized in Table 2.2. They included government, education programs, regulatory bodies,

census data, employers (including private sector), research literature and unions and professional

associations.
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A user friendly interface was designed in the MS-Excel® platform, and the Frontline solver add-on

(Frontline Systems, Inc. 2007) was used to obtain the solutions. A screen shot of the model appears

in Figure 2.3. The initial model was solved over 20 periods with 50 age categories. This model had

126 variables and 7497 bookkeeping variables. We were able to obtain an optimal solution (or

determine that the model was infeasible) within seconds on a PC.

Figure 2.3. Model screenshot
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2.3.1 Scenario Analysis

While the model was used to determine the optimal education, promotion and recruitment plan

and its associated costs, the advantage of this approach relies on its ability to perform “what-if?”

analyses. This was particularly useful when faced with challenges in the data availability and

reliability. Five scenarios are analyzed herein. They were chosen to address current policy

concerns and to illustrate how the model could be used for setting policy. In each case, we made

the appropriate changes to the model inputs and solved it to find an optimal education)
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recruitment and promotion policy. We then compared the model output graphically. We used the

model to determine which factors had the largest impact on the long term workforce plan.

Scenario 1 — Baseline

The first scenario assumes:

• The goal is to satisfy current provider-to-population ratios subject to increasing

populations.

• In the first 10 years of the model, the percentage increase in the number of students

admitted to university programs is constrained to be the same as the maximum increase

that has been observed in the past.

• After entering the workforce, RNs who have completed the advanced standing program

have the same attrition rates, by age, as RNs that have completed a standard program.

• When RNs are initially employed they require time for adjustment to the position (i.e., in

their first year of a new position they work 0.8 FTEs to accommodate orientation,

mentorship and learning).

• A minimum of 500 direct care RNs move to BC each year.

• There are no restrictions on the maximum number of RNs that can be recruited from other

provinces and countries in the first year. However, we impose an increased cost associated

with bringing new direct care RNs to the province.

Scenario 2 — Changes in educational program attrition rates

The second scenario addresses the impact of changes in the proportion of students who continue

in their educational program after each year of study. The attrition rates are the ratio of students in

two consecutive years of schooling.

Reported attrition rates from nursing educational programs vary widely and have been noted to

range between 3% and 44% (Pringle and Green 2005). We tested a range of possible attrition rate

scenarios. At baseline (Scenario 1), attrition rates of 10% in the first year and 2% and 5% in the

second and third years, respectively, were used. In this scenario, we investigated how the optimal

policy would change if there were no attrition. Such a scenario might not be realistic, but it shows

the impact of reducing educational program attrition rates on other decision variables.
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Scenario 3 — Simultaneously change the direct care RN-to-manager ratio and the practicing RN

attrition rate

The baseline scenario assumes a direct care RN-to-manager ratio that follows the national average

of approximately 50 direct care RNs and 4 entry-level managers per senior-level manager

(Canadian Institute for Health Information 2006). We chose to investigate the impact of two

simultaneous changes to the baseline scenario: reducing the direct care RN-to-manager ratio by 10%

while assuming that the change would reduce the attrition rates of all RNs by 10%. We caution the

reader that the effect of reducing RN to manager ratios on attrition rates has not been widely

studied. Although many researchers acknowledge the importance of managers for direct care RN

retention (Kramer et al. 2004), they do not report the ideal ratio. Therefore, empirical research is

needed to determine if reductions in RN attrition could be achieved by altering direct care RN to

manager ratios.

Scenario 4 — Change the length of parental leave

The length of parental leave entitlement is a controversial topic. Although we do not advocate for

longer or shorter parental leaves, we used the model to investigate the impact on recruitment,

promotion and training of shortening parental leaves to six months from the 12 months assumed

in the baseline scenario. We assumed that the annual fertility rate of RNs was the same as the

population average fertility rate, by age, of all women in British Columbia in 2004 (Statistics

Canada 2004). This approach fails to recognize the rate at which male RNs and adoptive parents

exercise their parental leave provisions.

Scenario S — Change the RN-to-population ratio

In the absence of demand variables for the model, we used the RN to population ratio as a proxy

for demand. There is no consensus, however, on what the “proper” ratio ought to be. As mentioned

previously, the model allows for demand to be defined by the decision maker. For example, if

demand is defined by rates of hospital utilization or population healthcare needs, then these

variables could be entered. We therefore believe that the model is a complement to a demand

based model that provides more informed estimations of the minimum number of RNs needed to

meet the population’s health needs in a given year.
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Suppose that a needs-based model suggested that a reasonable target was to have five fewer

people per RN than the baseline, and that in such a case, the attrition rate of RNs was reduced by

15%. Under these assumptions, not only would the total number of direct care RNs increase in the

long term, but it could be done with a lower yearly recruitment rate. Other possible scenarios

include a change in the ratio over the planning horizon (which might be associated with changes in

the age distribution of the population), or the direct input of the minimum number of RNs needed

based on the population’s health status or other characteristics.

2.3.2 Results

Using the model, we showed that current policy in British Columbia is not sustainable over the

long run. Given our initial conditions, only by having a large initial recruitment or by sacrificing the

quality of service (e.g., by changing nurse-to-population ratios) were we able to obtain a feasible

solution.

The initial workforce age distribution had a significant impact on the model solution. This is due to

the increased attrition of the aging nursing workforce (Basu and Halliwell 2004). Figure 2.4 shows

that the age distribution changes to meet long term needs. A next step in this approach would be to

model the best sustainable age distribution at each level.

Figure 2.4. Age distribution of direct care nurses in the first and last years of the planning horizon

based on the optimal solution to the model
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Optimal values for the policy variables under the five scenarios are represented in Figures 2.5

through 2.8.

Figure 2.5 shows the total number of direct care RNs available each year in BC under each of the

scenarios. The minimum number of RNs required to maintain the current RN to population ratio

has also been included. Note that in none of the scenarios does the model suggest having exactly

the targeted number of RNs in the first years. This is because planning decisions this year will have

long-term implications and consequently impact planning decisions in the future. Note also that in

all of the scenarios, the rate of increase in the total number of direct care RNs stabilizes after a few

years. Also, as the current workforce is older than is optimal, adding RNs early on is necessary to

meet future needs for RNs and managers.

Figure 2.5. Number of direct care registered nurses per year

Even with an increase of entry-level managers and senior-level managers (Scenario 3), the total

number of new RNs that would be needed is lower than if such an increase were accompanied by a

reduction in attrition from the profession. Furthermore, note that the reduction in duration of

parental leave did not have a significant effect on the solution. We also tested a scenario with no

parental leave (an extreme scenario acknowledged not to be feasible) and noticed no major

difference in the number of students admitted to educational programs or recruitment

requirements. This may be related to the low fertility rates in the province. However, if it were true

that radically reducing parental leave would not reduce the need to educate or recruit new RNs,

and if by having such a benefit, attrition rates for RNs could be reduced, Scenario 4 supports a

decision to increase parental leave from 6 to 12 months as was recently done in Canada. We
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emphasize that to make a decision based on this scenario, other factors involving parental leave

(such as the possible association with the fertility rate) would need to be considered.

Figure 2.6 summarizes yearly recruitment requirements. Observe that a large recruitment of direct

care RNs from outside the province is required in all of the scenarios, especially in the first year.

While the number of direct care RNs recruited is much lower after the first year, note that the

recruitment number of direct care RNs is still elevated up to the year 2016. This occurs because

the current workforce is not sufficient to meet short term needs given the current RN age

distribution and attrition rates. Although we assume that a higher cost is associated with the

recruitment of RNs from outside the province compared with the education of new RNs within the

province, recruiting RNs externally provides a “quick fix” to the shortage problem. That is,

changing the number of students that are admitted to nursing educational programs will only have

an impact once those students have had the chance to complete their programs (either two or four

years after their admission to the programs). However, with a lower attrition from the programs

(Scenario 2) we also observe a lower initial recruitment of direct care RNs and senior level

managers.

Figure 2.6. Recruitment policies for various scenarios
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We stress that we are not advocating a massive recruitment of RNs in the near future (which has

socil and ethical implications), but instead are using the model to show that to achieve desired

target nurse-population ratios this is necessary. Alternatives could be identified by adding a

constraint on the number of RNs recruited early on and relaxing short term RN to population

ratios.

Figure 2.7 summarizes the total number of students admitted into BC nursing educational

programs. Note that the number of students admitted in the first years of the model is not greatly

affected by the parameters analyzed in the scenarios. This is because the capacity of the schools -

as represented by physical space, availability of preceptors, clinical placements for students, and

faculty - is a limiting factor in our current system (Pringle, Green and Johnson 2006).

Figure 2.7. Admission policies for various scenarios
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the number of students to be admitted into standard programs starts to decrease (up to a certain

point) while the number of students to be admitted into the advanced standing program keeps

increasing. This occurs despite our assumption that students admitted to the advanced standing

program are older than those students admitted to standard programs, and that a fixed cost

equivalent to two years of education in a nursing program (in addition to their nursing education
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costs) are accrued by every student admitted to the advanced standing program. An explanation of

this result might be the lower attrition rates of third year students in relation to first year students

or the end effects of a 20 year planning horizon.

Figure 2.8 displays promotion patterns under each scenario. Although the number of RNs

promoted from entry-level to senior-level management appears stable, that is not the case for the

promotion of direct care RNs to entry-level management. An explanation for the behaviour of the

model might be that no limits were imposed on the minimum number of RNs to be promoted.

Therefore, because of the insufficient current supply of direct care RNs in the province, the model

suggests keeping as many direct care RNs as possible and recruiting to fill entry-level management

positions in the first few years. The effect that this has on RN attrition is not known — it may be

demoralizing for those who seek career opportunities and must therefore be included in the model.

Figure 2.8. Promotion policies for various scenarios
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2.4 Discussion

The workforce plan might have been affected by the fact that the model was only solved over a

finite horizon. For a general discussion of horizon effects in other contexts, see (McClain and

Thomas 1977; Fisher, Ramdas and Zheng 2001). While bounds were added to constrain the rate of

change of admissions, our solution nonetheless stipulated a decrease in admissions in the last
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periods (see Figure 2.9). The size of the effect depended on both the length of the horizon as well

as the tightness of the bounds in the last periods.

The analysis above shows that one potential solution to the long term RN shortage is to increase

the number of students admitted to an advanced standing educational program while increasing

the number of students admitted to standard educational programs at first, but only to a certain

point. Although we assumed that students admitted to the advanced standing program are older

than those students admitted to standard programs, we also assumed that once they graduate,

their attrition from the profession will only depend on their age and not on their type of education.

Empirical evidence should be collected to verify this assumption. Furthermore, a large initial

recruitment of RNs is required under all scenarios. A possible expansion to the model would

consequently be to include a limit on the minimum number of direct care RNs to be promoted or to

increase attrition rates of RNs if no such limits are available.

Figure 2.9. Annual student populations by year of schooling obtained from the optimal solution to

the baseline model
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is small given the expected shortage of direct care RNs. Research has indicated that a sufficient
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(Kramer and Schmalenberg 2002). We could not find research evidence that would point to the
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Attrition rates vary across nursing education programs (Pringle and Green 2005). In the model, we

applied a conservative attrition rate for the nursing educational programs. The model indicated

that attrition plays a significant role in the supply of new graduate RNs. An examination of the

predictors of successful completion (Patric 2001; Wharrad, Chapple and Price 2003) along with

the possible reasons for attrition and strategies to reduce it (Pringle and Green 2005; Scott 2004)

may have a significant impact on the entire RN workforce population.

Among the challenges we experienced in applying the model were the limited availability and

accessibility of data about the current workforce and the lack of a comprehensive and coordinated

data repository or single database on RNs. In 2002, Romanow highlighted that “we cannot expect

to keep improving the healthcare system if we do not have the necessary information to measure

and track results” (Romanow 2002:xxix). Although data about RNs and physicians are relatively

accessible when compared with information about the other health professions, there continue to

be significant limitations in the data collected and their availability. These difficulties have been

recognized in many reports of the last five years where recommendations or observations

regarding the need for improved data collection on HHR are noted (Romanow 2002; Dault et al.

2004; Kephart et al. 2004; Task Force Two 2005; Kephart et al. 2006). We made various

assumptions about the model parameters such as direct care RN-to-manager ratios, the minimum

number of RNs required in the province per year, and so forth. Future research would help to bring

a better empirical basis for the assumptions.

Although the model provides directions, other changes must occur in the system so that model

recommendations could be implemented. For example, constraints that limit the capacity of

nursing educational programs to expand, such as the shortage of nursing faculty, need to be

addressed.

This model could also be used to analyze the impact of policy initiatives such as changes in the

composition of multidisciplinary teams and the expanding scope of practice of RNs and licensed

practical nurses. Assuming that workforce skill mix will have an impact on the total demand for

RNs, this could be accommodated by changing the demand parameters over the years (which are

an input to our model) in a similar way as is discussed in Scenario 5. Another possibility would be

to incorporate other categories (such as physicians or other nursing groups) in our model. This

would require access to the necessary data to populate such a model.
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2.5 Conclusions and Remarks

We have developed a high level workforce planning model on a provincial level. This model

determines the total number of students to admit to programs, the total number of registered

nurses to train for management roles, and the total number of nurses and managers resources to

recruit from outside the region to meet service needs. The model has been applied to model the

registered nurses of British Columbia. We have incorporated factors such as a learning curve for

recent graduates and parental leaves (in the calculation of full time equivalence (FTE5)),

promotion rules, the existence of two types of educational programs, and the importance of age in

the attrition of the workforce.

This model has been formulated as a deterministic linear problem. Given the main goal of our

model - to understand how changes in assumptions will impact the optimal number of nurses to

train, promote to managerial levels and recruit over the planning horizon - our linear

programming approach meets the needs of the decision maker. It provides a framework that can

be easily used to generate and compare various scenarios, avoiding the computational burden

associated with a stochastic model.

Moreover, additional level of detail may be gained by formulating this problem as a stochastic

model. For education, promotion and recruitment policies to be implemented, the effect of

variability on the optimal solutions would need to be considered. Possible random variables to be

incorporated in the model include: retirement rates, maternity leaves, student attrition, direct care

RN-to-manager ratios, and demand for direct care RN. The model would then be formulated in

multiple stages: a stage in which these random variables (with assumed joint probability

distribution) are observed, and a stage in which our decision variables are optimized given the

realization of the random variables discussed. This stochastic program will have much larger

dimension than the original deterministic formulation, and further consideration must be given to

address the numerical challenges that might be encountered in solving the model (Martel and

Price 1981).

We have assumed that the service needs are known. A possible research direction is to combine

empirical knowledge of a population’s needs and shift scheduling to determine the minimum

number of health professionals needed each period. Other extensions to the model include

studying the effect of aggregation into age groups, including training of faculty, evaluating whether

31



a steady state age distribution can be achieved, expanding the model to include other health

professionals and directly incorporating feedback loops into the model.

A problem often cited in the literature concerns how changes in the input mix (such as physician-

direct care nurse ratios) might impact policy. If our model was expanded to incorporate other

health professions, needs for one profession could then be expressed as a function of the needs for

the other profession in a similar manner as is done in constraints (2.24) and (2.25). This would

also allow us to investigate changes in the scope of practice of each profession by varying the

demand parameters, an especially timely subject of discussion (O’Brien-Pallas et al. 2001).

Given the existing concerns regarding the future of the nursing workforce, our model and planning

tool provides a systematic way of corroborating that a change in current policy is needed, as well

as offering guidance into what policies should be followed to obtain a sustainable workforce.
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CHAPTER 3: A PATIENT SPECIFIC MODEL FOR DECIDING WHEN TO START

RADIATION THERAPY FOR PROSTATE CANCER PATIENTS BASED ON THEIR

PSA DYNAMICS

Intermediate and high risk prostate cancer patients are often treated with combined hormone

therapy and radiation therapy (RT), with some or most of the hormone treatment given before RT.

However, the optimal duration of hormone treatment before RT is not known. Finding the best

time to initiate RT based on the patient’s maximum response to hormone treatment is a key

question faced by clinicians (Heymann et a!. 2007).

Throughout their hormone treatment, patients are monitored at a few discrete points in time,

every one to two months in our study, resulting in a short data series for each patient. By the time

sufficient patient-specific data are available, the best time to initiate radiation treatment might

already have passed. Similarly, by using an arbitrary duration of hormone treatment before RT, the

best time to start RT might not be reached. We present a novel approach to model the disease

progression of individual prostate cancer patients on hormone therapy by combining priors based

on population characteristics and patient-specific data that are gathered sequentially, so as to

make better decisions regarding the best time to initiate RT.

According to the Canadian Cancer Society’s Steering Committee (2009), prostate cancer has the

highest incidence and is the second leading cause of cancer death in men. In 2009, an estimated

25,500 Canadian men will be diagnosed with prostate cancer and 4,400 will die of the disease.

Prostate cancer is characterized by the “uncontrolled growth and spread of abnormal cells” of the

prostate (American Cancer Society 2008). Its growth is driven by androgens, such as testosterone,

and it is linked to the characteristics of the cells and the number of cells that have the potential to

proliferate. Though the disease is initially confined to the prostate, it might spread beyond the

prostatic capsule to the tissue surrounding the prostate, the bladder, the pelvic lymph nodes and

other parts of the body.

Prostate cancer is typically treated by removing or killing the malignant cells through surgery,

radiation, chemotherapy or hormonal therapy (BC Cancer Agency 2009). However, treatments are

often combined. For instance, high-intermediate and high risk localized prostate cancer patients,

who are scheduled to receive RT, are often treated with hormone therapy beforehand

(neoadjuvant hormone therapy). The main goal of the hormone therapy is to starve the tumor cells
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of androgens and “induce prostate cancer cell death and tumor regression” (Gleave et al. 2000). By

reducing the burden of cancer cells (local, regional or systemic), neoadjuvant hormone therapy

might improve the overall effectiveness of the combined treatment (Horwitz and Hanks 2000).

Throughout their hormone treatment, it is common clinical practice to periodically measure

patients’ blood levels of prostate specific antigen (PSA). PSA is a protein produced almost

exclusively by cells of the prostate. Reference levels for healthy men vary with age, but are

generally less than 4 ng/ml in the absence of malignancy. Its levels are known to increase as the

volume of the. prostate cancer increases (Makarov et al. 2007, Partin and Carter 2000, Sandblom et

al. 2002). Since PSA is produced by malignant cells that are growing and dividing, generally the

more cancer cells, the more PSA that is produced.

When hormone therapy is given to a patient, we expect to first observe a drastic decrease in the

PSA levels in the blood. Later on, the therapy induces a further, but less pronounced, decrease in

the PSA levels. This decrease in the PSA levels has been linked to the induction of programmed cell

death. In most patients, PSA levels will reach a minimum and then begin to rise. A rise (or

insufficient drop) in the PSA values might indicate that the treatment is not being effective or that

some of the cells have become resistant to the hormone treatment (Gleave et al. 2000). Such rise in

the PSA values during the neoadjuvant hormone treatment has been linked to shorter time to PSA

relapse, poorer cause-specific survival, and poorer overall survival (Niblock et al 2006).

Gleave et al. (2000) hypothesized that “maximal tumor regression probably occurs when PSA

reaches its nadir level”. We assume that it is ideal to start RT when the PSA reaches its minimum

level. However, since cancer progresses and regresses at different rates in patients, it is difficult to

predict when such a level will be achieved. Therefore, one standard duration of neoadjuvant

androgen ablation (be it 3, 6 or 8 months) is probably not best for everyone (Heymann et al.

2007).

The problem of choosing when to change treatments based on the patient’s specific disease

progression is not unique to this context. D’Amato et al. (2000) modeled the decision of when to

switch drug therapies based on the virus level of HIV-infected patients. Their goal was to “delay the

time until patients are resistant to all existing drug regimens”. In their model, they estimated the

probability of switching before the virus reached its minimum level and the mean delay in

detection of viral rebound. They tested two policies using simulation: the viral loadpolicy, in which

therapies were switched if the current viral load was higher than the previous minimum viral load
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by a given threshold, and the proactive policy, in which patients switched treatments if the viral

load’s threshold was reached or a predetermined switching time elapsed.

Our approach differs from the one described above in that we consider two sources of

randomness: the variability associated with each PSA reading, and the variability of PSA

progression. The PSA dynamics are modeled as a log quadratic function of the time elapsed since

hormone therapy is initiated. Our decision to start RT is based on the probability of choosing the

time when the PSA reaches its minimum level. Key to our model is the incorporation of parameter

updating as each new PSA reading becomes available.

The main steps involved in our modeling approach are summarized in Figure 3.1. We start by

modeling the initial beliefs of response patterns based on population characteristics. As new

information becomes sequentially available, we use the Kalman filter to update the estimates of the

curve parameters. We determine the distribution of the time of the nadir given our updated curve

parameters. As new PSA values are observed, we use the Kalman filter recursively to update the

curve parameters and the distribution of the nadir.

Figure 3.1. Model overview.

This chapter is organized as follows. The PSA dynamics model is described in Section 3.1.1. Section

3.1.2 discusses how the prior distribution of the curve parameters of the PSA dynamics model is

estimated. The parameters are used to estimate the time of the PSA nadir, which is linked to the

optimum RT time, in Section 3.1.3. Section 3.1.4 describes the state space model used to

sequentially update the distribution of the parameters as new PSA readings become available.

More specificity is obtained by clustering patients in Section 3.1.5. We illustrate our modeling

approach in Section 3.2 by comparing clinically implementable policies on a cohort of intermediate

risk prostate cancer patients who were enrolled in a prospective randomized trial (Morris et al.

2009). We conclude with final remarks in Section 3.3.

Initial Beliefs
(based on Population

Characteristics)
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3.1 Methods

Table 3.1 summarizes the notation used in our model.

Table 3.1. Model notation.

Notation Description

‘ Patient index

I Cluster index

t Time index

. Estimated time of nadir from the time at which hormone therapy
tnadir1

started

mInPSA1 Minimum PSA value observed

N Number of patients in the population

M Number of clusters

Y;t Observation variable (log of the prostate specific antigen level)

O,t =(a, ikj,t’y,1,t)T True regression parameters

6J = (a,j9,y)
—.

- T Prior estimates of the regression parameters
w — (—w pw —w

— a1 ,y1

O
=

Estimated regression coefficients given all PSA readings from the
I 1’ ‘

start of the hormone therapy up to the start of RT

6i,j,tlt—1 Kalman filter estimate of O,t given all PSA readings up to time t-1

w Observation error

I,j;t Variance of observation error

Between patient variance of the estimates

R11 Between patient variance of the estimates given all PSA readings
‘ up to time t-1

W1;j;t Parameter errors

W, Covariance of parameter errors

P(Dit Probability of an observation belonging to the jth cluster

Pi Mean vector and the covariance matrix for clusterj

3.1.1 Modeling PSA Dynamics

The PSA progression of patient i as a function of the time t elapsed since the patient started his

hormone treatment (in days) can be modeled by a log quadratic curve:
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J’;t= Jn(PSA1)=a1+J3,t+ y,t2+ 61—N(O,V1) (3.1)

Equation (3.1) can be justified in two ways: theoretically and empirically. Assume that the size of

the tumor N,(t), represented by the number of tumor cells, is proportional to the levels of PSA in

the blood PSA1.To model the dynamics of the PSA values as a function of time, it is first necessary

to understand the impact that the hormone treatment has on the tumor size. Based on Goldie and

Coldman’s (1979) hypothesis, the size of the tumour may be expressed as the sum of the resistant

and the non resistant cell population. For each patient let X1(t) be the number of tumor cells at

time tthat depend on androgens to grow, and let Z(t) be the number of cells that can grow and

divide in the absence of androgens (e.g., androgen independent cells). The total size of the tumor

N1(t) can therefore be expressed as the sum ofX1(t) and Z1(t).

At time 4 there are two competing factors that affect the size of the tumor of patient I: cell division

g1 and cell death a. Under sufficient androgen levels, we assume that the growth rate of the tumor

is a linear function of its size, that is:

dN1(t)/dt= (gi - a)N1(t) (3.2)

By solving (3.2), N1(t) can be written as C,exp((g1 - a,)t), where C1 is a constant that depends on the

patient specific characteristics.

When hormone therapy is given, its main impact is to reduce the levels of androgens or their

effectiveness. Only androgen independent cells are able to divide, while all cells die due to

apoptosis, a natural process of self-destruction in certain cells. We assume that the ability of

androgen independent cells to divide increases linearly over time. The growth rate is given by

dZ1(t)/dt = g1 tZ1(t) - aZ1(t) (3.3)

and

dX1(t)/dt = -a1A(t) (3.4)

If we let mbe the fraction of androgen independent cells, and assume that the number of androgen

independent cells is proportional to the total number of cells, Z1(t) can be rewritten as Z1(t) =

m1N1(t). From equations (3.3) and (3.4), the net growth rate can be rewritten as:

dN1(t)/dt= g,m1tN1(t) - a’N1(t) (3.5)
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By solving (3.5), we obtain N1(t) = C,exp(1/2g1m1t2- ait). Assuming that N1(t) oc PSA1;t, and under

the assumption of normality of the errors of the PSA readings, the PSA dynamics can therefore be

modeled as:

}t= Jn(PSA,;)=a1+/3t+t2+ ej-’-N(O,V1) (3.6)

A typical curve appears in Figure 3.2. It provides some empirical justification for this model. R2

values for the 163 patients on our study range from 0.57 to 0.99 with an average R2 of 0.9. Further

analysis of the goodness of fit of the curve and how R2 varies by patient type is presented in

Chapter 4.

Figure 3.2. PSA versus time curve fit for a randomly chosen patient.

Sample PSA vs Time Curve Fit

N

Time from hormone therapy start

The axes values have been omitted because of patient confidentiality. Note that the y-axis is plotted

on a logarithmic scale. The curve is obtained by fitting the regression curve Y1,=+t+t2+,E -

N(0,V1). For comparison purposes, PSA values observed are included in the graph.

3.1.2 Estimating the Prior Distribution of the Curve Parameters

Assume each patient’s curve parameters are drawn from a multivariate normal distribution with

mean and variance R. To estimate the distribution of the parameters in the population, we start

by fitting equation (3.1) for each patient i given all PSA readings from the start of the hormone

therapy up to the time RT is given. The estimated regression coefficients are denoted O =

= (ö1,1, 3.)T

= (a t ?)
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Our next step is to estimate the priors of the PSA dynamics of new patients that initiate hormone

therapy. An estimate of the initial beliefs of the regression coefficients 8 = (, O,3)T =

(a, ,7)T can be obtained based on the mean of the regression coefficients of all patients in the

population:

=
0/i for k = 1, 2, 3

(3.7)

Alternatively, regression coefficients can also be weighted by their variance Var(O) =

= (Var(öi,J, Var(O2,1),Var(ê3J) = (Var(â1),Var(P), Var(?)) to obtain a more accurate

estimate of the regression coefficients of new patients. Coefficients with smaller variability receive

more weight than coefficients with greater variability according to:

-

8k
nf 1 ‘\ (3.8)

‘ I I Ifork=l,2,3
i=1 Var(Ok,I)I i=i \Var(O,,,jJ

We determine the between patient variance of the estimates by calculating the covariance of the

regression coefficients of all patients in the population. The variance of the PSA readings V, is

calculated as the average of the mean square errors of all patients in the population. Other

alternatives may be explored using parametric empirical Bayes’ inferences to improve our

estimation of the parameters (Morris 1983).

3.1.3 Modeling the Distribution of the Nadir

By taking the derivative of the Equation (1) and setting it to zero, we are able to estimate tnadir1

(the time at which patient ireaches his PSA nadir) by:

tnadirj= -/3/(2y’) (3.9)

For tnadir, to be well defined, we must assume that y 0. In addition, we assume that the nadir is

reached after hormone therapy is given (tnadir1>0). As indicated by the BCCA’s current protocol

(BC Cancer Agency 2009), RT must be started at the end of eight months (at time t= 240) unless a

nadir has been reached beforehand. Equation (3.9) can therefore be rewritten as:
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tnadir1
= fmin(— f3/(2y3 , 240) y * j3 <0

240 otherwise

1r22. r23
where (fl, y1)N ?);r32 r33)j

(3.10)

Note that a faster growth rate is linked to a higher number of tumor cells, which will lead to a

higher rate of cells dying. Therefore, J3 and y, are negatively correlated.

As can be seen in Figure 3.3, it is important to incorporate the correlation of the parameters in our

distribution calculations. The correlation can significantly impact the estimation of when the

maximum nadir probability is reached and our decision to start radiation therapy.

Figure 3.3. Impact of incorporating correlation in the distribution of the time of nadir for a randomly

chosen patient.
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The distribution under the assumption of independence and correlation are obtained by

simulating 10,000 observations for the given patient assuming that the parameters are normally

0
distributed with mean (i ?) and covariance matrix o r33)

,r22
and I

\T3. r33.) respectively.
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(1÷2’1t)

(j+
r32t + 1 (3.11)

r22. r22.r33. I
ii

F(tnadir) =
— I exp(—y2/2)dy I

r22. r23. \
Let the time of nadir of patient i be given by -fl/(2y), where (, y1)N 9t); (r32 r33.)j

Note that: E(-/31)=—/, E(2y,) = 2j?, Var(-fl) = r221, Var(2y1) 4r33., Cov(-/L 2y) = —2r321 and

Corr(-fib 2y) = —r321/(.Jfr). Let

9(t) = (2r33.t +r32.)/(2r33.j
t

+
r32.t 1 (3.12)

r1r33.
+

and

h(t) = (— — 2?t)/(2
t2

+
r3.t 1 (3.13)

. r2.r33.
+
4r)

Based on the results by Fieller (1932), the cumulative distribution of the time of nadir is given by:

Co Co

J’ f exp
+ 2g(t)xy — (3.14)

2(1—g(t)2)
JdxdY

11

21_g(t)2 I
(—x2+2g(t)xy—y2 If f exp ( 2(1 - g(t)2)

dxdy

—h(t)j

/

Letting P(y1 >0) -) 1 (or y/J33 -oo) , the second term in equation (3.14) approaches 0. Given

that $exp{_ax2 —2bx}dx = &Jexp{b2 Ia}, the first term in equation (3.14) approaches:
-Go
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(h

exp{-y2/(2(1 - g(t)2))exp{(g(t)2y2)/(2(1 - g(t)2)))dY).

This simplifies to:

/ co (3.15)

=( f exp{—y2/2dy

\h(t)

Which is equivalent to:

/—h(t) \

1 / (3.16)
exp{—y/2} dY)

Note that, following a similar argument, it is possible to prove that, as P(y<O) -)1, the distribution

of the time of nadir converges to:

,h(t) \
1 / \ (3.17)

exp(—y2/2}dY)

Results presented by Hinkley (1969) can also be used to obtain bounds on this approximation.

Letting F*(tnadir) be the true cumulative distribution of the time of the nadir and F(tnadir) be the

approximation provided by (3.11):

F( tnadir) - (tfr) 1b(r3/Jr3.*) (3.18)

Where 1i is the density function of a standard normal random variable.

We compared this approximation to the results obtained by simulating this distri,

patient, we simulated 10,000 observations with mean ?) and covariance matrix

Using equation (3.10), we estimated the time of nadir for each observation. By di

we estimated the proportion of times (out of 10,000) that the simulated nadir fell into each time

category. As can be seen in Section 3.2.2, the two methods of estimating the period of maximum

probability gave similar results, suggesting that this approximation is appropriate.
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3.1.4 Updating the Parameter Estimation Using a State Space Model

Given the short data series for each patient, we include prior information to augment the data and

gain knowledge of what to expect of the population. We aim to combine our prior knowledge of the

parameters with the new observations that become sequentially available. For this purpose, we

use the Kalman filter to update the estimates of the curve parameters as new information is

obtained. An alternative to ordinary least squares regression, the Kalman filter is a recursive

procedure that computes the optimal estimator of the state vector at each time period based on a

series of noisy measures (Harvey 1991). While results obtained from the Kalman Filter model may

be derived from Mutivariate Normal results, considering this model in the state space framework

provides the additional value of setting the problem for dynamic programming calculations to be

performed in the future.

The Kalman filter has been used in a wide variety of patient specific models. Some examples

include: tracking urinary bladder filling (Kristiansen et al. 2005), monitoring glucose levels in the

blood (Parker et al. 1999, Knobbe and Buckingham 2005) and tracking the position of a tumor in

patients receiving radiation therapy (Rehbinder et al. 2004). In our model, the noisy measures

correspond to the PSA readings and the state vector corresponds to the PSA dynamics.

We start by putting the model in a state space form. For that purpose, we determine the observable

variables and how they are related to the (non-observable) parameters of interest. Let J’, and

V be scalars representing the observable variable (Jn(PSA)), the observation error and the

variance of the observation error of patient iat time t Let Ft be the 3x1 vector (1, 4 t7) Twhere tis

the time elapsed from the start date of the hormone treatment for patient L Let be the 3x1

vector (ait, fi ) T the curve parameters for patient iat time t. The observable variable

Y is related to the curve parameters Ot by the measurement equation:

t=JtT61t+st —N(O,V1,) (3.19)

We assume that the errors are temporally and mutually independent and that the disturbances and

the initial state vector are normally distributed. In addition, we assume that the underlying model

does not change over time. That is, = Oj, for all 6 s. We can therefore write:

(3.20)

= + (Oj;t W,;t-- N(O, W1)
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where Wi,t is the 3x1 vector of the parameters’ errors with mean zero and covariance matrix 14’.

Given our assumption that the true model does not change over time, the matrix [4is assumed to

have all components equal to 0 at t>0. If measurement error is incorporated in the initial

estimation of the parameters, this is done by letting 14o be the covariance matrix of the initial

parameters.

Now we apply the Kalman filter to obtain estimates of the parameters of the above model. Let

be the estimate of O4 of patient iat time tgiven all PSA readings for that patient up to time

t-1. When a new PSA reading, J’;t, becomes available, êi,tt—i is updated as follows:

= Ôj,t1t_i+Ri;tit-itQit4[1’t- JtTO1,tit_i1 (3.21)

where R11is the 3x3 covariance matrix of the estimation error. R41 is updated as follows:

Rj;jt = R,;jti - Rjjt-iF;tQj;t2F,TR1i (3.22)

Qi;t FtTRtiitiFt+ V, (3.23)

From equation (3.20),

= ei,t_lIt_1 (3.24)

and

R,;t1tz = R,;t-ijt-j + [4/h (3.25)

Furthermore, observe that Y enters only in equation (3.21). Since the covariance of the parameter

estimates does not depend on the data obtained in each period, it can be computed off-line based

on the prior information.

3.1.5 Clustering

Finding the prior distribution for the parameters can be challenging. As illustrated by Zhu and

Rohwer (1996), prior distribution assumptions are key to any Bayesian framework. The clinicians

in our team believe that certain patients may be faster or slower responders to hormone therapy.

By clustering, as opposed to using one grouping of the entire population of data, we can separate
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out this variability and tailor our model to these different patient subgroups. Figure 3.4 shows how

clustering can be used to improve our model estimates.

Figure 3.4. Main steps in clustering the prior distribution.

Fit regression

curve for each
patient

Estimate probability of a

patient being in a cluster
given baseline values

As in Section 3.1.2, we first fit regression curve (3.1) for each patient L The distribution of tnadir1

as well as the minimum PSA value observed (mInPSA1) for each patient is calculated. Other

possible clustering variables include the regression parameters. However, as is discussed later,

clustering based on tnadir,and m1nPSA1 gives results that are easiest to interpret.

As can be observed in Figure 3.5 and Figure 3.9, the population is not homogeneous: there appears

to be subgroups within the population.

Figure 3.5. Distribution of the estimated time

observed.

- I

We therefore partition patients into subgroups based on the tnadir, and m1nPSA1.For this purpose,

we use the model based strategy for clustering proposed by Fraley and Raftery (1998). This

method combines agglomerate hierarchical clustering with the EM algorithm to maximize the

likelihood that observationx1belongs to groupj

to reach the nadir and the minimum PSA value
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n M (3.26)
L(p1, ...,PM;P(1),...,P(M)) = flP(J)fj(xIpj)

i=1 j=1

where Mrepresents the number of clusters, P(j) is the probability of an observation belonging to

the jth cluster, Pi are the mean vector and the covariance matrix for cluster j and !(Xi/pj) is the

density of each observation (assumed to be multivariate normal).

In our model, p corresponds to the mean and covariance matrix of tnadir1 and mInPSA1 for all

patients in cluster j We begin by letting each observation be in a cluster by itself. Sequentially,

observations are merged greedily based on (3.26) until Mclusters are formed. Using this partition

to initialize the EM algorithm, we iterate between an M step in which maximum-likelihood

parameter estimates given the clustering partition are computed and an E step in which a

clustering partition is obtained based on the maximum likelihood parameter estimates until the

relative difference between successive parameter estimates is below a threshold. Each observation

is taken to be part of the group that has the maximum conditional probability.

Once observations are classified, we study the distribution of the regression parameters within

each clusterj Equations (3.7) and (3.8) can be rewritten as:

8k,j
=

Cl,] c,1 for k = 1, 2, 3
(3.27)

and

0’ (3.28)

= Var(O,,1)
(cj1

ok,i,i)/Z1(Var(k)
1) for k = 1, 2, 3

where c,,1 equals 1 if patient ibelongs to clusterj 0 otherwise.

We determine the between patient variance of the estimates by calculating the covariance of the

regression coefficients of all patients in the cluster. The variance of the observations is assumed to

be the average of the mean square errors of all patients in the cluster.

Our next step is to estimate the probability that a new patient belongs to a cluster given the patient

specific characteristics such as his initial PSA level, co-morbidities and staging (AJCC 2002). We

opted for a logit model (Agresti 1996) given its simplicity to interpret. The initial beliefs are based
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on the parameter estimates of the cluster for which the patient has the highest probability of

belonging.

We can proceed in two ways. One way is to assign patients initially to a cluster and only update the

parameters for that cluster as new information becomes available. Another possibility would be to

update the probability that patient i belongs to cluster j at time t (PU)t) as new PSA readings

become available. In each period 4 the patient would either be assigned the cluster with the

highest probability or a weighted average of the nadir probability for all clusters would be taken.

While this entails keeping track of the curve parameters for each cluster at all time periods, this

might, on the other hand, improve our initial cluster probability estimates for patient L P(j)1,,is

updated as follows:

* f (PSA1,tI(Fj,tTOj,j,tIti; (3.29)

1=i (p,_1* f (PsAj,tI(Fj,tTej,j,tit_i;Q,1,_)))

where f(y(,u;o)) is the univariate normal density function with mean ,uand variance o’.

Equation (3.29) states that the probability that a patient is in cluster j given all the information

available up to time tis proportional to the prior probability that the patient belongs to such group

times the probability that a PSA value PSA is observed at time t Figure 3.6 summarizes the

parameter updating process.

Figure 3.6. Steps involved in the curve parameter updating
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3.2 Implementation and Data Analysis

We implemented our modeling approach on data from 163 intermediate risk patients who were

part of a prospective randomized trial (Morris et al. 2009). The purpose of the clinical trial was to
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study the impact on biochemical recurrence of RT dose escalation using implanted radioactive

iodine sources, compared with dose escalated external beam RT. Prior to dose escalation, all of the

patients received 8 months of luteinizing hormone-releasing therapy, with at least one month of

nonsteroidal antiandrogen hormones, followed by pelvic external beam radiation therapy. Usually

patients had PSA readings every two months before radiotherapy, as was specified in the study

protocol. Over 70% of the patients had at least five PSA readings before radiotherapy.

For each patient, data available included: hormone and radiation therapy start date as well as the

dates and values of the PSA readings taken during hormone treatment. Additional information

available for each patient included: the type of drugs given during hormone treatment, whether the

patient switched the type of hormone treatment, the dates and values of testosterone readings,

whether the patient was diabetic, had vascular disease or had other bilateral diseases, the initial T

stage, Gleason grade of cancer score and the percent of biopsies that contained cancer.

We now describe the analysis performed when incorporating clustering to improve our model

estimates. In an implementation that leaves out clustering assumptions, all clustering steps would

be omitted, and all members of the population would be taken to be part of a single cluster. Policy

results obtained under both sets of assumptions are discussed in Section 3.2.2.

3.2.1 Data Analysis

Looking retrospectively, we fit a regression curve for each patient in our population based on all

the PSA observations obtained for that patient from the time at which hormone therapy started

(time 0). To test goodness of fit, we compared the predicted time of the nadir (tnadir1)obtained by

fitting the regression curve (1) for each patient to the time at which the minimum PSA was

observed for that patient (e.g., the time of mJnPSA,). This was done by performing a paired data t

test. We tested the null hypothesis that the times were equal versus the alternative hypothesis

that the times differed. There was not sufficient evidence to reject our null hypothesis (t = 1.13,

P > .25). Note that PSA readings were only taken at discrete points in time (every one to two

months). The time at which the readings were taken might impact the time at which the minimum

PSA minPSA1was observed.

Figure 3.7 shows a scatterplot of the regression parameters obtained for all patients. As can be

seen in Figure 3.7, the curve parameters /. and y2 are negatively correlated (the correlation
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coefficient between / and yj is -0.92). This supports our earlier remark that omitting the

parameter correlation in the nadir calculation is not appropriate.

Figure 3.7. and from the regression curve Y1 ,t=ai+fit+y1t2+vi calculated for each patient in the

dataset.

Parameter Estimates by Patient

O 0.0003

o 0
00

0 0
OW 0.0002

I o

0.0001

I -0.1 -0.05

-0.0001

-0.0002

A

o Cluster 1 x Cluster 2 A Cluster 3

Patients have been clustered based on tnadir1and minPSA1.

It was not easy to choose which variables to use as the basis for clustering. However, the expected

time to reach the nadir tnadir1 and the minimum PSA value observed prior to the start of the

radiation treatment m1nPSA1gave results that were easiest to interpret. Other possible clustering

variables considered included the regression parameters â, f and j?, the estimated minimum

PSA value (estimated in a similar way as tnadir) and the initial PSA. Note that, as part of the

selection criteria for the clinical study we applied our analyses to, the group of patients was

relatively homogeneous - primarily intermediate and lower tier high risk prostate cancer patients.

In a more heterogeneous group, we would expect other explanatory variables to play a role in our

clustering model and we are investigating this further.

The number of clusters was chosen based on the Bayesian Information Criterion values (Fraley

and Raftery, 1998) as well as on the ease of interpretation of the results. The Bayesian Information

Criterion (BIC) values as a function of the number of clusters M in the population is presented in

Figure 3.8. Based on the best BIC values obtained within each clustering assumption, clustering the
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population into either three or four subgroups is suggested. While clustering patients into four

groups gives a slightly higher BIC value than clustering into three groups (a BIC of -1639.32 versus

-1642.21), we chose three clusters given the ease of interpretation by clinicians. Other possible

criterions to be considered when assessing the number of clusters are described by (Celeux and

Soromenho, 1996).

Figure 3.8. Summary of best BIC as a function of the number Mof clusters in the population.

Best BIC as a Function of the Number of Clusters in
the Population

The best BIC for each M is obtained by comparing the BIC under various possible

parameterizations of the covariance matrix (Fraley and Raftery, 1998).

Table 3.2 compares average cluster probabilities given the most likely cluster membership. While,

as expected, the average probabilities are higher for the diagonals, patients are not perfectly

separated.

Table 3.2. Average cluster probabilities given most likely cluster membership.

Most likely cluster/Possible clusters Cluster 1 Cluster 2 Cluster 3
Cluster 1 0.49 0.31 0.20

Cluster 2 0.29 0.39 0.25
Cluster 3 0.21 0.27 0.52
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The most likely cluster represents the cluster to which each patient is classified. Within all patients

in a given cluster, we compute the average probability of belonging to each of the possible clusters.

Higher probabilities of the diagonals represent better cluster separation. Note that, since we are

dealing only with averages, neither the rows nor the columns in the table necessarily add to one.
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Figure 3.9 summarizes the clusters obtained. Note that 72% of the patients were assigned to

cluster 1, which has an average estimated time to reach the nadir that is below the current

guidelines of 8 months. Patients in the second cluster have an average time to reach the nadir of

around 8 months and patients in the third cluster have a longer time to reach the nadir.

Figure 3.9. Cluster classification of patients based on the estimated time of nadir and minimum PSA

value observed.
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From Figure 3.7, note that patients in the third cluster are the only patients to present a ?<O. This

third cluster is comprised mostly of patients whose initial hormone treatment strategy was not

effective and had to be given additional hormones during treatment. Giving additional hormones

adds cost and morbidity to the treatment. Being able to predict which patients are in the third

cluster earlier, and which patients will therefore require additional hormones, is important to

clinicians.

Using equations (3.27) and (3.28), we estimated the parameters within each cluster. The results

obtained are presented in Figure 3.10.

Estimated Time of Nadir versus
Minimum PSA Value Observed by

Cluster
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*

x

Cluster 1 Cluster 2
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(mean, in months)
5.5 8 >> 8
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Figure 3.10. Regression curves based on prior means obtained by weighting parameters within each

cluster.

PSA vs Time (Cluster 1 Curve Fit) PSA vs Time (Cluster 2 Curve Fit)
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Parameters are weighted based on Equation (3.27) (equal weight) or on Equation (3.28) (weight

based on variance).

The impact on policy decisions of using either equation to estimate the initial parameters within

each cluster is shown in Section 3.2.2.

Finally, we estimated the probability of each patient being in a cluster using the following logit

model (Agresti 1996):

P(1)i;o= exp(2.3- O.16*PSA1;o)/[1+ exp(2.3O.16*PSAi;o)+ exp(1.16- O.06*PSA1;o)] (3.30)

P(2)i;o = exp(1.16- a06*psA,;o)/[1 + exp(2.3Od6*PSA,;o)+ exp(1.16- O.06*PSA,;o)] (3.31)

P(3)o= 1- P(1)4o- P(2)j;o (3.32)

P(J)1,o represents the probability that a patient i belongs to cluster j at the beginning of the

neoadjuvant hormonal treatment (e.g. at time 0). PSA1;ois the PSA value for patient jat time 0.

Baseline values considered included: initial PSA value, Gleason score, T stage, percent of biopsies

that contained cancer, whether the patient was diabetic and whether he had any vascular disease.
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Nevertheless, when the initial PSA value was used, none of the other variables was a significant

predictor. As additional PSA values became available for a given patient, we used the Kalman filter

to update the regression parameter estimates. Based on Equation (3.10), we then estimated the

time of nadir.

Figure 3.11 summarizes how the distribution of the estimated time of nadir between patients

changes given the number of times the parameters for each patient are updated (Reading 1,

Reading 2, Reading 3 and Reading 4). We compare it with the distribution of the estimated time of

nadir (tnadir,) that does not incorporate Kalman filtering updates but that uses all PSA readings

retrospectively to estimate the regression parameters for each patient (all Readings).

Note that, while initially the time of nadir distribution is highly dependent on the prior parameter

estimates within each cluster, as new readings become available, the distribution of the time of

nadir using Kalman filter updates approaches the distribution of tnadir1.

Figure 3.11. Distribution of the estimated time of nadir among patients after each patient has had 1,

2, 3 or 4 PSA readings (Reading 1, Reading 2, Reading 3 and Reading 4, respectively).
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Readings are taken every 2 months on average. The estimated time of nadir is obtained by

recursively applying the Kalman filter and Equation (3.10) for each patient 1, 2, 3 or 4 times. For

comparison purposes, we include the distribution of the estimated time of nadir tnadir1based on

O (all Readings).1is obtained by fitting Equation (3.1) retrospectively for each patient given all

PSA readings from the start of the hormone treatment to the start of the RT.
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We continue to update the probability a patient is in each cluster using Equation (3.29) by

comparing the projected PSA, based on the patient’s trend in each cluster, to the observed PSA.

Patients are assigned to the cluster with highest probability. Figure 3.12 summarizes how

clustering classification changes over time.

As the patient’s curve parameters are updated, Clusters 1 and 2 become very similar, making it

increasingly difficult to discern between the clusters. Also, as additional readings become available,

fewer patients are incorrectly classified as being in Cluster 3. This is important to clinicians, since

patients in the third cluster tend to need additional medication, which is costly and has associated

side effects.

Figure 3.12. Change of cluster classification based on the number of times the probability of being in

each cluster is updated (1, 2, 3 or 4 times, represented as Reading 1, Reading 2, Reading 3, and

Reading 4).

Cluster classification is updated using Equation (3.29). PSA readings are taken every 2 months on

average.

3.2.2 Clinical Decision Making

We now illustrate the capabilities of our model by comparing two heuristic decision rules for

starting RT based on the previous model to the current clinical guidelines. Each month is assumed

to consist of 30 days. Since we cannot observe the true time of nadir for a patient, we focus on the

patient’s estimated time of nadir for comparison. The estimated time of nadir for each patient is

obtained from Equation (3.10), based on the regression parameters calculated retrospectively

given all PSA readings for that patient. With the exception of the current protocol, all policies use
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the proposed Kalman filter model to update the parameters of the PSA curve as new PSA values

become available:

Current protocol: In British Columbia, patients who receive neoadjuvant hormone therapy start

their radiotherapy treatment if at least one of the following conditions occurs (BC Cancer Agency

2009):

• 8 months of hormone therapy have been received

• PSA levels start to rise

• PSA < 0.05 ng/ml after 4 months

Cumulative probability policy (based on our model): We focus on the cumulative probability of

having reached the nadir. Two cumulative probability policies have been analyzed.

• Cumulative probability policy A: This policy starts the radiotherapy treatment of the patient

if the cumulative probability of having reached the nadir, from the time the hormone

therapy started until the time of the latest PSA reading, is greater than a threshold.

• Cumulative probability policy B: This policy starts the radiotherapy treatment of the patient

if the cumulative probability of having reached the nadir, from the time the hormone

therapy started until two months after the latest PSA reading, is greater than a threshold.

This policy indicates that RT should be started on a given patient if the probability of

having reached the nadir - or of reaching it before the next PSA reading - is greater than a

given threshold.

Possible thresholds explored varied from 65% to 90%. If the given threshold is not reached by the

eighth month, it is assumed that all patients receive RT at the eighth month.

Threshold probability policy (based on our model): This family of policies focuses on the

probability of reaching the nadir in the current period. Four threshold probability policies have

been analyzed:

• Threshold probability policy A: This policy starts the radiotherapy treatment of the patient

if the patient’s probability of reaching the nadir from the time of the PSA reading until the
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next PSA reading is taken (assumed to be two months afterwards) is higher than a given

threshold.

• Threshold probability policy B: This policy starts the radiotherapy treatment of the patient

if the patient’s probability of reaching the nadir from one month before the PSA reading

until one month afterthat reading is higher than a given threshold.

• Threshold probability policy C: This policy starts the radiotherapy treatment of the patient

if the patient’s probability of reaching the nadir from the time of the current PSA reading

until a month after that reading is higher than a given threshold.

• Threshold probability policy D: This policy starts the radiotherapy treatment of the patient

if the patient’s probability of reaching the nadir from two weeks before the PSA reading

until two weeks afterthat reading is higher than a given threshold.

We considered a variety of possible thresholds between 15% and 60%. If the given threshold is not

reached by the eighth month, it is assumed that all patients receive RT at the eighth month.

We used our baseline approach to model the policies. This approach:

• Keeps track of the curve parameters for the three clusters.

• Updates the parameter estimates and the probability of being in each cluster based on the

PSA values observed.

• Assigns each patient to the cluster with the highest probability PU)1 tin each period.

• Uses the integral approximation (3.11) to estimate the nadir probabilities given that the

patient belongs to the cluster with highest probability.

• Uses equation (3.27) to weight the prior estimates of the parameters within each cluster.

• Does not incorporate measurement error.

Policies are compared based on the mean absolute difference between the policy’s treatment time

and the patient’s estimated time of nadir. From Figure 3.13 we see that, among the policies

explored, 85% cumulative probability policy B and 15% threshold probability policy D perform

closest to the estimated time of nadir (lowest mean absolute difference). Their mean absolute

difference from the time of nadir is 29 days and 36 days, respectively, compared to 45 days under
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the current protocol. Additional analysis is required to determine the patient specific threshold

that achieves the smallest difference from the estimated time of nadir.

Figure 3.13. Comparison of the mean absolute difference between the RT start time based on each

policy and the estimated time of nadir for each patient in the population.

The distribution of the differences and absolute differences of the 85% cumulative probability

policy B and 15% threshold probability policy D are compared to the current protocol in Figure

3.14.

Figure 3.14. Comparison of the population distribution of the difference and absolute difference of

the estimated time of nadir for each patient to the RT start time of that patient based on the 85%

cumulative probability policy B, 15% threshold probability policy D and the current protocol.
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The estimated time of nadir is based on Equations (3.1) and (3.10) using all PSA readings for that

patient (not achievable). Within each policy, various thresholds are compared. The policies are

compared to the current protocol (dashed line).

The estimation of the time of nadir for each patient is based on Equations (3.1) and (3.10) using

all PSA readings for that patient (not achievable).
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Not oniy does the current protocol have a larger mean difference from the estimated time of nadir,

but it also has greater variability (with a variance of 1024, compared to variances of 431 and 612

for the 85% cumulative probability policy B and the 15% threshold probability policy D,

respectively). Under the current protocol, most patients will wait for a rise in their PSA or for eight

months to have elapsed to start RT. However, based on our analysis, over 82% of the patients will

have reached their nadir by the seventh month. If starting the RT treatment at the PSA nadir is

assumed to be best for patients, by following the current protocol, the RT treatment is started a

month and a half later, on average, than the ideal time to initiate treatment. Starting the RT

treatment too late could, in theory, be linked to disease progression, increased risk of cells

becoming resistant to treatment, and greater toxicity associated with hormone therapy.

We have applied the 85% cumulative probability policy B and the 15% threshold probability policy

D based on parameter priors from this dataset to another dataset. Under the 85% cumulative

probability policy B, 75% of the patients would have started RT earlier than what their current

protocol suggested. Under the 15% threshold probability policy D, the number of patients that

would have started earlier than their current protocol was 89%. The average difference between

the time of treatment and the time of treatment under the current protocol is 74 and 103 days,

respectively.

We then considered the following modifications to the baseline model:

Simulation: This modeling approach calculates the probability of the nadir by using simulation

instead of the integral approximation described in equation (3.11). Simulation results are obtained

based on 10,000 replications.

Weight cluster probabilities: Rather than assigning each patient to the cluster with the highest

probability PO)1, in each period, this approach weights the nadir probability within each cluster

times the probability P(J)1, that the patient belongs to the cluster.

Weight priors: This modeling approach weights the regression coefficients by their variance to

obtain the prior estimates within each cluster. Equation (3.28) is used instead of equation (3.27).

Include measurement error: This approach incorporates the covariance matrix of the initial

parameters as measurement error.
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As can be seen in Table 3.3, none of the modifications to our modeling approach improved our

solutions significantly, suggesting that our initial assumptions are appropriate.

Table 3.3. Model comparisons based on the mean absolute difference and maximum absolute

difference between each policy’s RT start time and the estimated tnadir1for all patients.

Range of Threshold Initial Sim”Ition Weight prcbabilities. Use egua 16’ Include rrrnt. erro No clusters

probability Used mean max mean max mean max mean max mean max mean max

0.15 60 154 59 154 60 228 60 228 62 174 66 228

0.2 58 154 58 154 59 228 59 228 59 154 61 228
Threshold

0.3 56 145 56 145 56 145 57 228 57 145 56 228
Prol I ity

0.4 55 145 55 145 52 145 52 228 54 145 49 145
0 Icy

0 5 49 133 50 137 47 130 50 228 49 137 49 137

06 47 130 46 130 48 130 49 228 49 130 49 130

0.15 51 145 51 145 50 228 50 228 53 145 54 228

Tb h Id
0.2 49 145 49 145 48 228 43 228 50 145 51 228

bbl
0.3 39 130 40 130 37 127 36 228 44 133 41 228

P1a iity
04 36 121 36 121 35 119 36 228 41 127 40 119

o icy
0.5 40 127 40 127 43 127 42 228 42 119 44 127

0.6 46 127 46 127 47 127 48 228 46 127 48 127

0.15 52 145 52 145 31 119 51 228 54 145 52 228

Tb h Id
0.2 49 145 50 145 30 119 46 228 49 133 50 228

reSo
03 43 127 43 127 29 106 50 228 45 130 45 130

04 47 127 46 127 29 106 49 228 47 127 47 127
o icy

0 5 49 127 49 127 31 106 49 127 49 127 48 127

0.6 49 127 49 127 31 106 49 127 49 127 49 127

0.15 36 121 37 127 34 121 36 228 41 133 40 228

Tb h Id
0.2 36 121 36 121 37 119 38 228 40 121 42 228

P bbl
0.3 45 127 45 127 46 127 47 228 43 119 46 127

P1
iity

0.4 48 127 48 127 49 127 49 127 47 127 49 127
o icy

0.5 49 127 49 127 49 127 49 127 49 127 49 127

0.6 49 127 49 127 49 127 49 127 49 127 49 127

065 32 106 31 106 33 106 36 106 32 106 32 106

07 34 106 34 106 36 106 38 106 33 106 34 106
Cumulative — —

P b bI
0.75 36 106 36 106 39 106 41 106 35 106 38 106

roa
0.8 39 106 39 106 41 106 45 106 39 106 41 106

oicy
0.85 43 106 43 106 44 106 47 106 43 106 43 106

0 9 46 106 46 106 46 95 48 106 46 106 47 106

0.65 37 130 38 130 35 130 32 228 37 130 35 130

. 0.7 33 119 33 119 34 119 30 228 33 119 34 130
Cumulative

. 0.75 30 119 30 119 31 119 31 228 33 119 32 119
Probability —

Polic B
0.8 29 119 29 119 31 106 30 228 29 106 33 119

y
0.85 29. 106 29 106 32 106 31 106 32 106 32 106

0.9 32 106 32 106 35 106 38 106 33 106 34 106

The minimum mean and maximum difference within each policy and modeling approach are

highlighted.

In addition, we compared our results to the results obtained if clustering was omitted from our

analysis. That is, we assumed that all patients in the population belong to a single cluster (no

clusters). While the absolute difference between the treatment time and the retrospectively

estimated time of nadir under all policies without clustering is not smaller than if clustering was

incorporated, the difference between both models is not large enough to warrant the additional
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complications involved in keeping the clusters. Note, however, that in a more heterogeneous

population, clustering might have a larger impact on the solution.

To implement this model, we have developed a user friendly Excel based tool that can be run at the

clinician’s computer. A screenshot of the output page of the tool appears in Figure 3.15. The main

inputs of this tool include the hormone start date and the PSA dates and values. The tool then

provides clinicians with outputs related to the estimated distribution of the time of nadir.

Clinicians can use this tool to decide whether to start RT treatment based on the probability at any

given period of treating at the nadir as well as to measure tradeoffs of delaying the RT treatment.

The model also provides the physician, and the patient, with an estimate of when the patient’s RT

is likely to start several months in advance. As additional PSA values become available, they can be

easily incorporated by using the tool, and the outputs are recalculated accordingly. The tool

interacts with an Access database to record all inputs and outputs obtained.

Figure 3.15. Sample output obtained from the tool
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Given that the PSA dynamics might depend on the type of hormone treatment, before this tool can

be used prospectively, clinicians need to calibrate the model. That is, clinicians should first apply

the model retrospectively to their patients. The tool would be used to compare the model
60

Quick Output Summary (Printable)
5.m1nary c opis

Period of maxtioje probaby (dd Month yy): between 03 JLiY 09 and 01Sep09

Probaby of na in that period: 64.7%

Probthy ol reachiog the r,a 60 days from todays date: 0.60%

Prdaay ci haviog passed the ne eady: 0.85%

PSA Date PSA

02Feb09 7

Distribution of lime of Nadir

0)

0)

a)

30%

25%

20%

15%

10%

5%

0% .

I — I I I I I I I I
oadir — I

Back to View O&*p.Es Back to Ma.1J Prnt —

—



estimates to their own assessment of the time of nadir. If the model estimates are not accurate, it is

necessary to revise the prior distribution of the parameters based on the PSA dynamics of that

group of patients. Additional validation after the model has been calibrated is suggested. After the

model has been calibrated and validated, clinicians might use the tool to make prospective

decisions of patients with similar characteristics to the patients used in the validation and

calibration process.

3.3 Conclusions and Remarks

We have developed an iterative approach to update the estimates of the distribution of the PSA

nadir of prostate cancer patients receiving neoadjuvant hormone therapy treatment prior to

radiation therapy. By using a threshold to decide whether to start RT, we are able to identify

earlier when the nadir is likely to be reached. Furthermore, we are able to decrease the variability

of the difference between the RT treatment time and the estimated time of nadir. Additional

analysis is needed to determine the optimum threshold and the patient specific policy that

maximizes the probability of treating at the nadir.

To determine the best patient specific policy, this problem might be formulated as a discrete time,

finite horizon, Markov decision problem (MDP). The objective of such a model is to maximize the

probability of treating at the nadir. The decision epochs correspond to the times at which PSA

readings are taken. The two possible actions are to start RT or to wait for another PSA reading. If

RT is started, the patient receives a reward based on the probability of reaching the nadir in the

following period, and no additional PSA readings are taken. If it is decided to wait, no reward is

received. In that case, a new PSA reading is taken in the following period, and the process is

repeated. The state of the model is the patient’s PSA curve parameters and the covariance of the

parameters used to calculate the distribution of the time of nadir. The state is updated using the

Kalman filter.

Note that, while this model entails a continuous, partially observable state space, given the Kalman

filter properties discussed, the parameter covariances do not depend on the new PSA readings and

can be computed off-line based on the prior information. In addition, while the reward function is

based on the ratio of correlated normal random variables, the integral approximation discussed in

this paper would simplif’ the reward calculations.
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This model assumes that there is a fixed time at which readings are taken, and that RT will be

started at the last period if it has not started before. Other questions to be addressed include when

to take the next reading and what a good endpoint for the model might be. While eight months

have been assumed throughout the paper, it is possible that a longer planning horizon might be

appropriate.

A key assumption of our model is that the PSA nadir is directly linked to better patient outcomes.

The validation step is to design a formal clinical trial comparing a fixed time interval, or a target

PSA, to the estimate of the nadir based on our decision model. Such a trial would compare the

proposed model to the current protocol in terms of survival and time to PSA relapse.

Once this model has been validated, clinicians could use it prospectively to decide when to start RT

on their patients. Using the user friendly tool developed, clinicians would input the PSA values of

their patients in each period. They would then obtain the estimated probability of reaching the

nadir within 15 days and the cumulative probability of having reached the nadir or of reaching it

within the next period. Depending on the policy chosen, the patient would start RT if the threshold

probability or the cumulative probability is above 15% or 85%, respectively.

62



CHAPTER 4: VALIDATION OF A PSA DYNAMICS MODEL AND NADIR

PREDICTION METHODS

In the previous chapter, we developed a novel approach to modeling the individual disease

progression of prostate cancer patients, based on the dynamics of their prostate specific antigen

(PSA). In the model, estimates are updated as new patient-specific information becomes available.

The model was developed for a cohort of intermediate and high risk prostate cancer patients who

were enrolled in a prospective randomized trial (Morris et al. 2009). Under the assumption that it

is best to treat patients when their PSA is as low as possible (Gleave et al. 2000), we used our

model to decide when to initiate radiation therapy based on when the PSA reached its nadir level.

We now proceed to validate our model by applying it to a larger, more heterogeneous cohort of

patients from the British Columbia Cancer Agency (BCCA) database. We avoid bias by only using

the models and policies developed from the original cohort of patients to estimate the best time of

treatment for this new cohort of patients. We show that, even though the models were not

calibrated to the more heterogeneous validation dataset, we are better able to plan optimal

treatment closer to the patients’ PSA nadir in comparison with the current protocol (time of RT).

Section 4.1 summarizes the methodology used. Section 4.2 describes the data used in the

validation process. The model is validated in Section 4.3. We then test the policy implications of

using our modeling approach in Section 4.4. We conclude with final remarks in Section 4.5.

4.1 Methodology

In order to asses our model we must validate:

• PSA curve dynamics

• Update the curve as new PSA readings become available

• Cluster classification

• Policy implications of our model

Key to our validation process is having an estimate of when each patient reached his minimum PSA

level. Two alternatives are:

• The retrospective nadir estimated by fitting a curve through all PSA values for each patient.
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• The time - or an interval around the time - at which the minimum PSA value for each

patient was observed.

While the second option avoids any modeling assumptions, it is highly dependent on how often the

PSA readings were taken and the time at which radiation therapy (RT) was started. Patients’ PSAs

might be censored, that is, their minimum observed PSA level might correspond to the last reading

obtained before RT started. For those patients, however, their true PSA nadir might have been

reached later. This is not fully accommodated if we only examine the minimum observed PSA value

before the start of RT. On the other hand, the retrospective nadir estimated from a model fit to all

the data would not depend on the frequency of the PSA readings and might be obtained by

extrapolating the model parameters after RT is started. While we acknowledge that in an ideal

scenario, such extrapolation would be avoided, it might provide a more reliable nadir estimate for

censored PSA readings. We use both approaches to estimating the nadir in our validation process.

We begin by testing the goodness of fit of our PSA dynamics curve. For that purpose, we fit the

proposed curve based on all observations for each patient in the database. For those patients that

have at least 4 PSA observations (over 50% of the patients analyzed), we compute the R squared

values of their curve. MSE are also calculated to obtain an idea of the magnitude of the residuals.

Next, we compute the observed PSA nadir and compare it to the estimated PSA nadir based on

each patient’s curve parameters. We first determine the time at which the minimum PSA is first

observed. It is assumed that there is a strong likelihood that the true PSA nadir occurs after the

previous PSA reading and before the following PSA reading. An alternative to this approach would

be to select a fixed interval around the PSA nadir within which the nadir is assumed to occur. While

selecting a fixed interval would avoid the dependency on how often the PSA readings were taken, a

fixed interval would depend instead on what the chosen length of the interval is. Further analysis is

necessary to determine such an interval.

If the minimum PSA observed occurs right before RT starts (a censored patient), it is only

assumed that there is a high likelihood that the observed PSA nadir occurs after the previous PSA

reading. Figure 4.1 illustrates the intervals assumed to have high likelihood of containing the PSA

nadir for two sample patients.
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Figure 4.1. Illustration of interval of PSA nadir based on whether patient is censored.
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Possible PSA dynamics represent feasible underlying PSA models given the PSA values observed

for each patient. They are included in the Figure to illustrate that the true PSA nadir might occur

before or after the minimum PSA level is observed.

The estimated PSA nadir is calculated from Equation (3.10). To assess how well such estimates

perform, we calculate the proportion of patients for whom the estimated PSA nadir falls within the

interval assumed to contain the patient’s PSA nadir.

The curve parameters are updated as new PSA readings become available. Using the prior

distribution of the parameters obtained from our original dataset, we apply the Kalman filter

(baseline) model described in Chapter 3 to our validation dataset. Each time the curve parameters

are updated, we estimate the nadir (from Equation 3.10) and compute the proportion of patients

for which the estimated nadir falls within the interval assumed to contain the observed PSA nadir.

Moreover, we compute the distribution of the difference between the estimated nadir obtained

from the updated curve parameters and the estimated nadir obtained retrospectively by fitting

Equation 3.1 based on all PSA readings for each patient.

We then assess our cluster classification. Given the patients’ initial PSA levels, they are classified

into the three clusters obtained from the original clinical trial. We estimate the proportion of

patients in each of the original clusters and how cluster classification changes over time. The PSA

nadir estimations given the original cluster classification are compared to the nadir estimations

under no clustering assumptions.

Finally, we study the policy implications of our model. We apply the 15% threshold probability

policy and the 85% cumulative probability policy to the new cohort of patients and assess how the

time of treatment under both policies and under the current protocol differ from the estimated

time of nadir. Moreover, we show that under the proposed policies patients would have been
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treated closer to the time at which the minimum PSA value was observed than the actual time at

which they received RT (current protocol).

4.2 Data Description

Our database consists of 422 patients who received up to a year of hormone therapy before

curative intent radiation therapy and had at least 3 PSA readings (and up to 11 PSA readings)

throughout their hormone treatment. Over 50% of the patients had at least 4 PSA readings

throughout their hormone treatment. All cases were diagnosed between January 2000 and May

2007. None of the patients participated in the clinical trial used to develop the model. The initial

PSA - used as the first PSA reading in our model - is the last reading taken before hormone therapy

started. The reading might also have been taken on the day hormone therapy started. Patients

received either luteinizing hormone-releasing (LHRH) therapy - with only the first month of LHRH

covered by non-steroidal anti-androgen (NSAA) - or total androgen blockade (with both LHRH and

NSAA throughout the course of hormone therapy). Patients are classified as:

• Low risk patients (LR): Includes patients with all:

o Gleason 6

o Initial PSA 10

o Histologically-proven prostate cancer stage Tla-T2b (AJCC 2002)

• Intermediate risk patients (IR): Includes patients with histologically-proven prostate

cancer stage Tla-T2c and either:

o Gleason 6 and 10 <initial PSA 20

o Gleason = 7 and initial PSA 20

o Tstage T2c (AJCC 2002), Gleason <8, and initial PSA 20

• High risk patients (HR): Includes patients with either:

o Gleason 8

o Initial PSA >20

o Histologically-proven prostate cancer stage T3a-T4 (AJCC 2002)

Our validation database is described in Figure 4.2 and Table 4.1.
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Figure 4.2. Proportion of patients in the validation database.
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Table 4.1. Number of patients in the validation database.

Proportion of Patients by Rink Group

JR
21%

LR JR HR
LHRH monotherapy with only
first month of NSAA 0 71 157 228Eligible

Total androgen blockade until RT
0 19 48 67

LHRH monotherapy with only
first month of NSAA 5 0 85 90Not eligible

Total androgen blockade until RT
3 0 34 37

8 90 324 422

While only intermediate and high risk non-metastatic prostate cancer patients with an initial PSA

below 40 ng/ml and histologically-proven prostate cancer stage Tic -T3a (AJCC 2002) would have

been eligible to participate in the clinical trial (Morris et aL 2009) used to develop the original

model, our validation database incorporates a wider group of patients. From Figure 4.2 and Table

4.1, we see that 295 patients - or 69.9% of the patients - would have been eligible to participate in

the clinical trial used to develop the initial model. Most of the non eligible patients would have

been excluded because of their high initial PSA or their low risk classification. Moreover, 25% of

the patients received total androgen blockade, and most patients were either high risk or

intermediate risk patients.

On average, patients received 216 days of hormone therapy prior to radiation therapy (see Table

4.2). For all risk groups, patients that received total androgen blockade received slightly longer

hormone therapy compared with patients that received LHRH monotherapy.

KR

Eligibility for
Hormone therapyinitial clinical trial

Risk group
Total

Total
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Table 4.2. Length of hormone treatment for patients in the validation database (Average Number of

Days [Minimum, Maximum]).

Eligibility for Risk group
. . . . . . Hormone therapy
initial clinical trial LR IR HR

LHRH monotherapy
with onlyfirst 214 215

Eligible month of NSAA 0 [70,338] [32,345]

Total androgen 240 228
blockade until RT 0 1L48,342] [68,376]
LHRH monotherapy
withonlyfirst 213 207

Noteligible monthofNSAA [183,268] 0 [63,341]

Total androgen 261 214
blockade until RT [216,323] 0 [88,358]

PSA readings were taken every 68 days, on average. High risk patients had PSA readings completed

more often than did intermediate and low risk patients (see Table 4.3). Within the group of high

risk patients, patients that would not have been eligible to participate in the initial clinical trial had

PSA readings completed more often than did patients that would have been eligible.

Table 4.3. Time (in days) between PSA readings for patients in the validation database (Average,

[Minimum, MaximumJ).

Eligibility for Risk group
. . . . . . Hormone therapy
initial clinical trial LR JR HR

LHRH monotherapy
with only first month of 70 69

Eligible NSAA 0 [20,1401 [11,1301
Total androgen 76 70
blockade until RT 0 [40,158] [20,127]
LHRH monotherapy
with only first month of 79 66

Not eligible NSAA [55,1021 0 [20,125]

Total androgen 92 61
blockade until RT [84,98] 0 [17,122]

4.3 Model Validation

As mentioned in Chapter 3, we assume that the PSA progression of patient i as a function of the

time telapsed since the patient started his hormone treatment (in days) can be modeled by a log

quadratic curve (3.1): Y,t= In(PSA,;t) =a + /31t+ 71t2 + 6, Si N(O, fr).
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We proceed to fit (3.1) to all patients in our validation database based on all readings for each

patient. Figure 4.3 summarizes the R2 obtained.

Figure 4.3. Distribution of R2values for patients that had at least four PSA readings.
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As can be seen in Figure 4.3, the log quadratic curve seems to fit the PSA dynamics of the patients

well. For those patients with at least 4 observations - and an average of 5 observations - the R

squared values ranged from 0.56 to 0.99. While we acknowledge that, given the limited number of

PSA readings available for each patient, the R squared values might not be a robust indicator of the

goodness of fit of the curve, high R squared values provide some evidence that the log quadratic

curve fits the available data well. The MSE of the curves ranged from .00015 to 3.19 with an

average MSE of 0.34.

Whether patients would have been eligible to participate in the original trial had no impact on how

well the quadratic curve fit the PSA dynamics. Note, however, that the curve tends to better fit

patients that had LHRH monotherapy with only the first month of NSAA.

A comparison of the cumulative distribution of the retrospective time of nadir obtained by fitting a

log quadratic curve through all PSA readings for each patient versus the distribution of the time at

which the minimum PSA value for each patient was observed is presented in Figure 4.4. Note that,

while some differences are to be expected given that our second measure is highly dependent on
69
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when the PSA readings were taken, both distributions are similar, providing further evidence that

the log quadratic curve is appropriate.

Figure 4.4. Comparison of the cumulative distribution of the time of the minimum PSA value

observed versus the nadir estimated by fitting a log quadratic curve based on all readings

Only 25% of the patients in our validation database were not censored (see Table 4.4): the PSA

levels rose or did not drop further after reaching their minimum observed level. Censored patients

may have been treated too early or the PSA may not have been measured frequently enough to

observe the PSA relapse.

Table 4.4. Proportion of not censored patients in the validation database.

Eligibility for
Hormone therapy

Risk group
initial clinical trial LR JR HR

LHRH monotherapy
with only first month of

Eligible NSAA 0% 15% 30%
Total androgen
blockadeuntilRT 0% 26% 25%
LHRH monotherapy
with only first month of

Not eligible NSAA 20% 0% 19%
Total androgen
blockade until RT 0% 0% 44%

Note that the assay sensitivity ranges from 0.026 ng/mL to 0.052 ng/mL (Niblock et al 2006).

Given assay sensitivity and other patient specific fluctuations, it is possible that subsequent PSA
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readings for not censored patients might be lower - that not censored patients are in fact censored.

Conversely, it is also possible that a patient that is assumed to be censored has in fact reached his

minimum PSA value before RT started.

We compare the proportion of patients for whom the estimated PSA nadir falls within the interval

assumed to contain the patient’s PSA nadir to the proportion of patients for whom their time of RT

(current protocol) falls within the interval assumed to contain the patient’s PSA nadir (see Figure

4.5 and Table 4.5).

Figure 4.5. Comparison of the estimated PSA nadirs to the current protocol based on whether they

fall within the interval assumed to contain the true nadir.
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Two possible nadirs are estimated for each patient: under no additional assumptions and under

the assumption that RT must start by the eighth month as suggested by current guidelines. The

current protocol represents the actual time each patient received their radiotherapy treatment.

Note that, given our definition of the interval of PSA nadir, the current protocol will always fall

within that interval if patients are censored and will not fall within the interval if patients are not

censored. We incorporate the current protocol given other patient characteristics to illustrate

possible gains obtained by applying our model to estimate the nadir. For the current protocol, the

proportion of patients that do not fall within the interval of PSA nadir can be interpreted as the

proportion of patients for whom RT treatment was started after the interval of PSA nadir.
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Table 4.5. Proportion of patients for whom the estimated nadirs and the current protocol fall within

the interval assumed to contain the PSA nadir

Estimated nadir (limit maximum
Estimated Current

neoadjuvant hormone duration
nadir

to eight months
protocol

Observed Not censored 91% 92% 0%
nadir Censored 93% 92% 100%

Total
androgen

Hormone
blockade 93% 91% 69%

therapy
LHRH
monotherapy 92% 92% 76%

Eligibility Eligible 91% 91% 75%
for initial
clinical
trial Not eligible 95% 95% 75%

• LR 100% 100% 88%
Risk

JR 92% 92% 82%group
HR 92% 92% 72%

Total All Patients 92% 92% 75%

Whether we assume that RT should be started at the eighth month, at the latest, does not have a

significant impact on the proportion of patients for whom the estimated PSA nadir falls within the

interval assumed to contain the patient’s PSA nadir. From Figures 4.4 and 4.5 and Table 4.5, note

that the estimated PSA nadir outperforms the current protocol. However, the estimated nadir is

based on all observations and can only be obtained retrospectively. We proceed to compare the

nadir estimated after the patient has had 1, 2 or 3 readings to the current protocol. Starting from

the priors obtained from the original clinical trial - under clustering and no clustering assumptions

- we use the proposed Kalman Filter model prospectively to update the distribution of the

parameters as new readings become available. Table 4.6 compares the proportion of patients for

whom the estimated nadir after one, two or three readings falls within the interval assumed to

contain the patient’s PSA nadir.

From Table 4.6 we can see how, with just the first PSA reading, the proportion of patients for

whom the estimated nadir falls within the interval assumed to contain the patient’s PSA nadir is

higher than under the current protocol. Clinicians might use this information to give patients an

initial estimate of when their RT treatment will be given, as well as to plan the RT resources

accordingly. Given how wide the interval is - ranging from 21 days to over 8 months - and the high
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percentage of censored patients, this proportion only increases slightly as new readings become

available. Intervals for noncensored patients are narrower than for censored patients.

Table 4.6. Comparison of the estimated PSA nadir after the patient has had one, two or three

readings to the current protocol based on the proportion that falls within the interval assumed to

contain the patient’s PSA nadir.

As can be seen in Figure 4.6, the accuracy of our estimation improves as new PSA readings become

available.

Figure 4.6. Distribution of the difference and absolute difference between the estimated time of nadir

based on the Kalman Filter model and the nadir estimated from a model fit to all data.

Reading 1 Reading 2 Reading 3
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Timeof Notcensored 46% 45% 43% 48% 56% 55% 0%
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LHRH
monotherapy 84% 84% 83% 83% 84% 85% 76%

Eligibility
for initial
clinical Eligible 80% 81% 79% 80% 82% 83% 75%
trial Not eligible 79% 80% 80% 80% 79% 80% 74%

LR 100% 88% 100% 100% 100% 100% 88%
Risk group IR 86% 88% 87% 83% 89% 89% 82%

HR 77% 78% 77% 78% 78% 79% 72%
Total All Patients 80% 81% 79% 80% 81% 82% 75%
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On average, patients had their second reading 65.6 days after they started hormone therapy and

their third reading 138 days after starting hormone therapy. Our results suggest that taking PSA

readings more often might improve the accuracy of the PSA nadir estimations. This is key to

physicians, since more accuracy in the estimation of the PSA nadir would allow them to know

sooner and with less variability when the PSA nadir will be reached and improve planning of the

RT resources.

In our baseline model, patients have been classified into the three clusters obtained from the

original clinical trial data. The mean estimated time of nadir and minimum PSA value observed by

cluster is presented in Table 4.7. Note that patients in the third cluster continue to have an

estimated time of nadir that is later than that of the other two clusters.

Table 4.7. Estimated time of nadir and minimum PSA value observed by cluster.

Cluster 1 Cluster 2 Cluster 3
Estimated time of nadir
(mean, in months) 6.0 5.7 >>8.0
Minimum PSA value
observed (mean [variance]) .381.471 .8[1.66] 1.417.921

The proportion of patients classified into each of the original clusters is presented in Figure 4.7.

Based on our first two readings, 20% of the patients that received LHRH monotherapy are
74
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The estimated time of nadir is calculated under clustering (clusters model) and no clustering (no

clusters model) assumptions after each patient has had one, two or three PSA readings (Reading

1, Reading 2 and Reading 3 respectively).

Note that comparisons in this figure are made under the assumption that the estimated nadir

based on all observations is an accurate representation of the true time of nadir.



classified into Cluster 3, while 45% of the patients that received total androgen blockade are

classified into the third cluster. While further recalibration of our cluster classification is

necessary, our results indicate that patients that have a higher initial PSA value might have a

higher likelihood of requiring additional hormones during the treatment.

Figure 4.7. Change of cluster classification over time for all patients and patients classified based on

whether they had LHRH monotherapy or total androgen blockade until RT
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From Figure 4.6 and Table 4.6, note that no significant improvement in the accuracy of the nadir

estimation is achieved when patients in our validation database are clustered into three groups

based on our original cluster classification. The population used to design the original cluster

classification might have been too homogeneous. Patients in this new - more heterogeneous -

database should therefore be reclustered, following a similar methodology as highlighted in

Chapter 3.
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4.4 Policy Implications

As highlighted in Chapter 3, the two policies that performed best on our original database included

the 85% cumulative probability policy B and the 15% threshold probability policy D. The 85%

cumulative probability policy B (85% policy) starts radiotherapy treatment if the cumulative

probability of having reached the nadir - or of reaching it before the next PSA reading is greater

than 85%. On the other hand, the 15% threshold probability policy D starts the radiotherapy

treatment of the patient if the patient’s probability of reaching the nadir from two weeks before

the PSA reading until two weeks after that reading is higher than a given threshold. Both policies

start the radiotherapy treatment if the given threshold is not reached by the eighth month.

The cumulative distribution of the time of treatment under each protocol is compared to the

cumulative distribution of the retrospective nadir estimate in Figure 4.8.

Figure 4.8. Comparison of the cumulative distribution of the time of treatment under each protocol

to the distribution of the nadir estimated based on all readings.
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With the exception of the current protocol, all other estimates are calculated under clustering

assumptions. The 15% and 85% probability policies represent the two protocols highlighted in

Chapter 3. Reading 2 highlights the distribution of the nadir estimated for each patient after two

readings - one reading on or before hormone therapy started and one reading after hormone

therapy started. The current protocol represents the actual time patients received RT.
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From Figure 4.8, we see that the 15% and the 85% probability policies outperform the current

protocol in terms of treating closer to the estimated time of nadir. While treating patients based on

the highlighted policies is recommended, the nadir estimated after two readings provide clinicians

with an initial idea of when the nadir is expected to be reached.

Next, we compare the two policies under clustering (clusters model) and no clustering

assumptions (no clusters model) to the time of RT treatment (current protocol) based on the

differences from the estimated time of nadir and from the time of the minimum PSA value

observed. The distribution of the differences for all patients is illustrated in Figure 4.9.

Figure 4.9. Distribution of the difference from the estimated time of nadir and the

minimum PSA value observed for the proposed policies and the current protocol.
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Figure 4.9 supports that, using our proposed policies, we are able to treat patients closer to the

estimated nadir and to the time of the minimum PSA value observed than under the current

protocol. Note that, by following the 15% policy, we could have treated over 75% of the patients

within two months of the estimated nadir, while under the current protocol only 46% of the
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patients received treatment within two months of the estimated nadir. Clustering has a bigger

impact on the 85% policy than on the 15% policy.

Keeping the patient clusters, we now compare the distributions of the difference from the

estimated time of nadir for censored and not censored patients (see Figure 4.10). Note that only

the estimated time of nadir might be used for comparison in this case, since the time at which the

minimum PSA value was observed for censored patients is highly dependent on when RT was

started.

Figure 4.10. Distribution of the difference from the estimated time of nadir for censored and not

censored patients using the proposed policies and the current protocol

For both censored and not censored patients the proposed policies outperform the current

protocol. For not censored patients, the proportion of patients treated within two months of the

estimated nadir is 73% and 66% using the 15% policy and the 85% policy, respectively, as

compared to 26% under the current protocol. On the other hand, for censored patients this

proportion is 77% and 76% as compared to 55% under the current protocol.

By recalibrating our clusters - as well as by investigating other thresholds - further improvements

over the current protocol might be achieved. As highlighted in Chapter 3, the optimum patient

specific policy might be obtained by formulating this problem as a Markov decision process. In

addition, our policies assume that if the threshold probability is not reached by the end of eight

months, all patients should commence RT. A modification of this policy might be to start RT if the

threshold is reached or if the estimated time of nadir based on the updated parameters for a given

patient is reached.
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4.5 Conclusion and Remarks

In this chapter we broaden our analysis by applying the model developed in Chapter 3 to a larger,

more heterogeneous cohort of patients. The model is used to decide when to start RT treatment of

prostate cancer patients receiving neoadjuvant hormone therapy based on their PSA dynamics. To

avoid bias, the model has been solely developed on a different set of patients to the ones used in

our validation process and it is not recalibrated before testing. While further improvements should

be achieved once the model has been recalibrated based on this new cohort of patients and an

appropriate threshold for each patient is found, we show that, even with the imperfect model, we

are able to predict the appropriate time of treatment for patients closer to when they reach their

PSA nadir than under the current protocol.

Key to our analysis is the fact that, even at the time of RT treatment, it is not clear if and when the

PSA nadir has been reached. We use two different estimates of the retrospective time of nadir: the

time (or an interval around the time) at which the minimum PSA is observed and the estimated

time of nadir obtained by fitting a curve through all observations. We favour the second estimate

given the high proportion of censored patients - patients for whom the minimum PSA value

observed occurs right before RT - yet both estimates are reported in this chapter. Regardless of the

estimate used for comparison, our model outperforms the current protocol in terms of treating

patients closer to the estimated nadir.

In addition, we show that, based on the prior information obtained from the other dataset and the

initial PSA value for each patient, we are able to provide an estimate at the beginning of the

hormone therapy of when patients are likely to reach their PSA nadir. Our results could be

beneficial in forecasting demand and planning the (limited) RT resources. If at the beginning of the

hormone treatment it is known that RT resources are not available to provide radiation when the

patient is forecasted to reach his PSA nadir, clinicians may delay the start of the hormone

treatment to ensure the patient is able to receive RT at his PSA nadir. The main tradeoffs of such

decision must be investigated.

The accuracy of our model improves as new PSA readings become available, suggesting that taking

PSA readings more frequently (especially at the beginning of the treatment) should be considered.

Further research could study the optimal frequency of PSA readings.
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We have clustered patients in our validation dataset based on the clustering algorithm developed

using the initial dataset. While clustering patients does not significantly improve our nadir

estimations, patients in the third cluster are more likely to require total androgen blockade until

RT. By recalibrating our clustering algorithm based on this new cohort of patients, that likelihood

might be further improved. Patients in the third cluster tend to have a higher initial PSA. Further

analysis of the relationship between initial PSA and the type of hormone therapy required might be

considered.
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CHAPTERS: CONCLUSIONS, FUTURE CHALLENGES AND FINAL REMARKS

This thesis investigates and develops two healthcare operations research applications: health

human resource planning and prostate cancer clinical decision making. Although both problems

model dynamic decision making, they use different analytical approaches: optimization and large

scale linear programming on one hand, and applied statistics, Kalman Filter and Bayesian updating

on the other. Both models involve a multi-period planning horizon in which decisions have long

term implications. I shall next summarize each contribution in more detail.

5.1 Main Conclusions

The workforce planning model determines the total number of students to admit to academic

programs, the total number of nurses to train for management roles, and the total number of

nurses and managers to recruit from outside the region to meet service needs. Our model

incorporates consideration of “on-the-job” training and parental leaves (in the calculation of full

time equivalence (FTE)), promotion rules, the existence of two types of education programs and

the effect of an age specific attrition rate. To implement this model, a user friendly tool was

developed to assist policy makers in planning the British Columbia registered nurses workforce. Its

simplicity makes it ideal for scenario and “what-if’ analyses. We demonstrate the capabilities of

our model by investigating the impact of decreasing attrition from educational programs,

changing nurse-to-manager ratios and exploring how other changes might alter planning

recommendations.

Based on our analysis, we show that under the current nurse age distribution and attrition rates,

only by having a large initial recruitment or by sacrificing the quality of service by changing nurse-

to-population ratios, are we able to obtain a feasible solution to the problem. Practically, this

implies that, unless proactive changes are made to the current workforce, the current level of

service and nurse-to-manager ratios cannot be sustained in the future. As the current workforce

is older than is optimal, adding RNs early on is necessary to meet future needs for RNs and

managers. Given the importance of health human resources to ensure that healthcare needs of the

population are met, changes to current practice need to be considered.
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The model can be used to draw policy insights. Attrition from educational programs and from the

profession have significant effects on recruitment and training. A key policy recommendation is

that given the global shortage of nurses, as well as high recruitment costs, decision makers should

consider initiatives that promote reductions of such attritions. Reducing attrition, especially by

older nurses, for example by reducing nurse—manager ratios, and increasing the number of

students admitted to advanced standing educational programs should also be considered.

Nonetheless, decision makers should address constraints that limit the capacity of nursing

educational programs to expand, such as the shortage of nursing faculty. On the other hand, a

radical reduction in the duration of parental leaves would not have a significant effect on the

solution. This may be a result of the low fertility rates in the province. However, if by increasing the

length of parental leaves, attrition rates for nurses could be reduced, something that would have to

be studied, this model would support such a decision. We emphasize that, to make a decision based

on these results, decision makers need to consider other factors such as the possible association

with the provincial fertility rate.

The patient-specific model challenges clinicians who treat patients with prostate cancer to think

about patient’s PSA nadirs and their predictions, rather than waiting for a rise in PSA or for eight

months to have elapsed to start radiation therapy (RT) as is current practice. We are able to

provide an estimate at the beginning of hormone therapy of when patients are likely to reach their

PSA nadir. The accuracy of our predictions was validated by comparing our estimates with an

independent sample’s retrospective nadirs based on all PSA values and the time - or an interval

around the time - at which the minimum PSA value for each patient was observed. Parameters

used to model PSA progression are justified both theoretically and empirically. The distribution of

the time of PSA nadir is derived from an approximation of the ratio of two correlated normal

random variables. Estimates are updated as new patient information becomes available. Based on

our analysis, we are able to predict the appropriate time of treatment closer to when patients

reach their PSA nadir than is the case under current clinical practice. A user friendly tool is

developed to assist clinicians in the decision to start RT based on the PSA progression of the

patient.

Note that clustering patients did not significantly improve our nadir predictions. This might be due

to the homogeneity of the patients used to develop the initial model. Moreover, patients in the

third cluster had higher likelihood of requiring total androgen blockade until RT. Given the

additional costs and co-morbidities associated with total androgen blockade, identifying which
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patients are in this third cluster, and therefore more likely to require additional hormones during

treatment, is of interest to clinicians. By recalibrating our clustering algorithm based on a more

heterogeneous set of patients, cluster separation and predictions could be improved.

5.2 Future Challenges

Both models developed in this thesis lead to methodological challenges that could be further

investigated.

5.2.1 The Workforce Planning Model

The workforce plan was affected by the fact that the model was only solved over a finite horizon.

Future research should consider how to formulate appropriate terminal conditions in finite

horizon approximations to infinite horizon models. While bounds were added to constrain the rate

of change of number of admissions to educational programs in the last years, our solution

nonetheless stipulates a decrease in admissions over this period. Various approaches have been

discussed in the literature to address end effects in finite horizon approximations to infinite

horizon models.

Lippman et al. (1967) and Kunreuther and Morton (1973) suggested that it might be possible to

prove that decisions made in the first period of a multiple horizon problem will not be affected by

values long enough into the future. The main advantage relies on the simplicity of this approach: it

is only needed to solve the model over a horizon that is long enough to guide the decision(s) of the

first period(s). However, the conditions for existence might be too restrictive, the length of the

planning horizon might not be easy to find and, even if it exists, the planning horizon might be too

long to be useful for the planner. See Puterman (1994) Section 6.8 for more on this approach in an

MDP setting.

MacClam and Thomas (1977) in the context of production planning, on the other hand, suggested

obtaining end conditions to the problem by solving a steady state problem in which no assumption

is made with respect to the initial values of the decision variables, but an assumption is made to

ensure that the model is in a steady state. The advantage of this approach is that, once the end

condition is calculated, the problem may be solved over a shorter horizon than the planning

horizon problem (good ending conditions might be better in summarizing future requirements
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compared with adding more periods to the decision problem). The shorter period model might be

easier for managers to understand. However, the authors assumed that it is always feasible to meet

the end conditions, and it is unclear how the steady state conditions could be found in different

settings; especially in our case when the model is driven by non-stationary input.

This second approach is favoured for the workforce planning model given the size of the original

problem. As is shown in Chapter 2, the age distribution of the workforce had a significant impact

on the model solution. It is hypothesized that placing bounds on the relative age distribution at the

final period (either as constraints or as part of the objective function) might improve model results.

The steady state model may be formulated by adding a constraint to avoid changes of the age

distribution over time. Let FTE(n(1),,1), FTE(n(2),,) and FTE(n(3)1,) be the total full time

equivalent direct care nurses, entry level managers and senior level managers of age I in year j
Using the notation of Chapter 2, in the steady state model the age distribution constraints could be

written as:

FTE(n(1)11)
— FTE(fl(1)jk)

( BCpop
— ( BCpopj

n(1)ratioj) n(a)ratiok

FTE(n(Z)1)
— FTE(n(2)j,k)

/ BCpop \ — ( BCpOp ( . )
n(1)ratiojn(2)ratioj) ‘n(1)ratiokn(2)ratiok

FTE(n(3)1)
— FTE(n(3)k)

/ BCpopj
— ( BCpop 1,1, (5.3)

n(1)ratioJn(z)ratojn(3)ratioJ) n(1)ratiokn(2)ratjokn(3)ratiok)

Where the denominator in each formula corresponds to the minimum number of full time

equivalent nurses needed in each period. We might look instead at the ratio of nurses between age

categories, which should remain constant in the limit. Yet incorporating such ratios would involve

nonlinear constraints and must be further investigated.

Boundary conditions to the original problem could be obtained from the age distribution of the

steady state model. Future research should consider how to assign weights when the end

conditions cannot be met by the original problem. In addition, if the steady state problem is to be

solved over a finite horizon, it is challenging to prove that the steady state workforce plan is not

affected by the planning horizon. An alternative might be to use a control theory approach in which

the number of students admitted at time, the number of nurses recruited, and the number of

nurses promoted are assumed to be our control variables.
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5.2.2 The Prostate Cancer Model

In the case of the prostate cancer model - the question of how long to give neoadjuvant androgen

ablation before starting radiotherapy is still open, as is the question of what is the best indicator

for when to start radiotherapy. As discussed in Chapter 3, this problem may be formulated as a

discrete time, finite horizon, Markov decision problem (MDP). Using the notation described in

Chapter 3, the decision epochs correspond to the time tat which PSA readings are taken. The state

of the model scorresponds to the patient’s PSA curve parameters and the covariance of the

parameters used to calculate the distribution of the time of nadir. In each decision epoch, two

possible actions may be taken: to start RT or to wait for another PSA reading. If RT is started, the

patient receives a reward based on the probability of reaching the nadir in the following period,

and no additional PSA readings are taken. The reward received can be interpreted as the

probability of reaching the PSA nadir at the time RT is started. If the patient’s clinician decides to

wait, no reward is received. In that case, a new PSA reading is taken in the following period, and

the process is repeated. The state is updated using the Kalman filter. Let tnadir be the true time of

nadir. If we assume that RT treatment is started within days after the PSA reading is taken, and

that the objective of the model is to maximize the probability that patients reach the PSA nadir in

the period in which RT is started, the optimality equation v(ê,1_1,R,i_1)might be written as:

( P(t tnadjr t +

v (O - ,R - )=max f (5.4)
j ( +, It_i’ Vt( i,t+lIt’ it+1It))

The objective function value can be interpreted as the maximum probability of reaching the PSA

nadir when RT is started given the curve parameters and expected PSA readings and parameter

updates. This is an optimal stopping problem. The first term in (5.4) represents the distribution of

the time of nadir, while the second term is the usual dynamic recursion which can be obtained

from the Kalman Filter results. Other alternatives to the objective, such as maximizing the patient’s

quality of life, might be considered. Moreover, clusters of relatively homogenous sets of patients

might be incorporated in this decision model.

This model entails a continuous, partially observable state space model, which is difficult to solve

in practice. However, as discussed in Chapter 3, the parameter covariances do not depend on the

new PSA readings and can be computed off-line based on the prior information. In addition, while
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the reward function is based on the ratio of correlated normal random variables, the integral

approximation discussed would simplify the reward calculations. The state space might be

discretized to obtain initial solutions to the model, and by analyzing properties of the reward

function, policy implications might be obtained.

To implement the patient specific model, our first step has been to test it on other databases to

validate the PSA curve dynamics and nadir predictions, accuracy improvements over time, cluster

classification and the policy implications of our model. The next step involves testing the tool by

conducting a pilot study in which oncologists are asked to provide qualitative feedback on the tool

and to suggest possible improvements to facilitate its use. A formal randomized clinical trial should

be formulated to validate the decision model. The purpose of the trial would be to compare the

current protocol to the proposed model in terms of survival and time to PSA relapse. A cohort of

intermediate/high risk patients would receive treatment under the current protocol, while another

cohort of intermediate/high risk patients would receive treatment following the best policies

obtained from our validation database. Patients should be monitored at least once a month during

hormone treatment and at least once every six months after radiation therapy is given.

Comparisons could then be made at the end of three, five and ten years.

While decisions in the workforce planning model are made regularly (once a year), decisions at the

disease management level are made as new information becomes available, that is, after each PSA

reading is taken. Future research should consider how to incorporate the decision of when to take

additional PSA readings based on observed PSA progression in the MDP framework. This may be

formulated as a discrete time MDP in which the state of the model correspond to the patient’s PSA

curve parameters and the covariance of the parameters, yet the possible actions are whether to

take an additional reading or not in each period and whether to start RT based on the knowledge

of the PSA dynamics that the clinician is expected to have at the end of the period. Each period

corresponds to the possible times readings could be taken. Only if an additional PSA reading is

taken in that period is the curve updated. A specific challenge would be developing an appropriate

representation for costs so that model objectives are on the same scale.

5.3 Concluding Remarks

While in the workforce planning model decisions are made at the beginning of the planning

horizon, in the prostate cancer model decisions incorporate additional information obtained as
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new data (PSA readings) become available. Limited availability and accessibility of data played a

key role in the development of both models. Greater emphasis should be placed on accurate

collection and calculation of the parameters that have the greatest effect on the decision-making

process. Our workforce planning analysis points to the need to obtain better estimations of

attrition rates, both from educational programs and from the profession. The prostate cancer

treatment model suggests that additional PSA readings may have produce significant

improvements in the nadir estimations. Taking additional readings, especially in the first months

of hormone treatment, might not only improve nadir estimation, but may be beneficial in

forecasting demand and thus improve planning for the use of limited RT resources.

By modeling healthcare problems faced at both a strategic level and a patient specific level, I have

gained a deeper understanding of the benefits and challenges of applying operations research in

the field of healthcare. The next step is to link strategic decision making with patient-specific

models. Policy decisions might influence how patients are treated, and treatment decisions will

influence the resources required. For instance, the level of resources might impact the used in

(5.4), and the number of patients needing treatment will impact the necessary resources in

constraints (2.23), (2.24) and (2.25). Future research shall combine both types of models in order

to compare optimum policies attained from a patient’s perspective to system-wide policies that

take resource availability into consideration by estimating expected deviations from the optimum

time of treatment based on the levels of resources available.

To conclude, I believe healthcare operations research to be a very promising area of research.

Operations research can be used to guide decision makers in making better policy, operations

management and disease management decisions. Those decisions are not only significant from the

patient and economic point of view, but they involve challenging methodological questions that

need to be addressed. My hope is that the field of healthcare operations research will continue to

grow, as more operational researchers and healthcare professionals acknowledge the significance

and potential of such collaboration.
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