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Abstract

In this thesis we will review some recent results of Optimal Mass Transportation

emphasizing on the role of displacement interpolation and displacement convexity.

We will show some of its recent applications, specially the ones by Bernard, and

Agueh-Ghoussoub-Kang.
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Chapter 1

Introduction

Mathematics is the art of giving the same name to different things.
— J.H. Poincaré

The most basic problem of modern mass transportation is the Monge-Kantorovich

problem for quadratic cost function, that is, given the measures µ0 and µ1 of Rn

find a measure γ0 of Rn×Rn, that satisfies

inf
γ∈Γ(µ0,µ1)

∫
Rn×Rn

|x− y|2 dγ(x,y) =
∫
Rn×Rn

|x− y|2 dγ0(x,y),

where Γ(µ0,µ1) is the set of measures in Rn×Rn with marginals µ0 and µ1. This

actually defines a distance dw(µ0,µ1) in the probability space P(Rn), which we

shall denote by Wasserstein distance. In Chapter 1 we will review the basic results

of Optimal Mass Transportation. A very good text book for this subject is the one

written by Villani [13].

Brenier and Benamou [8] studied a different point of view of the transport prob-

lem, one involving time, which is to find a one parameter family of pairs (µt ,Vt) ,

that minimize

inf
∫ 1

0

∫
|Vt |2 dµtdt,

where µt is a measure and Vt a vector field that depends on t and satisfy the conti-

nuity equation, or also known as the conservation of mass equation

µt +div(V µ) = 0.
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In Chapter 2 we will show the proof of Brenier’s theorem, that under some circum-

stances both problems have the same infimum or optimal cost. In this chapter we

will also review the concepts of displacement convexity and displacement interpo-

lation, which are related to the time dependent point of view.

The main idea of chapters 3 and 4 is to explain some of the results given by

Bernard [1] and Agueh, Ghoussoub and Kang [10] emphasizing on the role of time

dependent mass transportation.

In Chapter 3 we will explain some basic results in displacement interpolation

and displacement convexity. Then we will relax Brenier’s problem by considering

instead of classical flows Vt , generalized flows ηt,x(v), which are probability mea-

sures that indicate the probability of having velocity v ∈ T M at the point x in time

t. To generalize the continuity equation we will define a Transport measure, as a

Young measure η that, for a set of test functions g, satisfies∫
I×T M

[∂tg+∂xg · v]dηt,x(v)dµ(t,x) =
∫

I×T M
[∂tg+∂xg · v]dη(v, t,x) = 0. (1.1)

For certain functionals L we will show existence of minimizers of
∫

Ldη , first in the

case where η is a generalized curve and, under some conditions, we will see that

the infimum coincides with the one taken over the classical curves, hence showing

a known result previously proved by Tonelli.

Using a simple optimal transport argument and the geometric-arithmetic in-

equality one can prove the isoperimetric inequality and Sobolev-Nirenberg in-

equalities. With the use of the Monge-Ampere equation it is also possible to

prove log-Sobolev inequalities, HWI, Brunn-Minkowski, and many others (see See

[3],[2],[11]). An interesting result is that actually many of this inequalities belong

or can be obtained from a more general inequality. Using displacement convexity

we will first show a general Sobolev inequality, that involves a positive measur-

able function ρ that represents density, force F , pressure PF , the internal energy

functional H, the Young’s function c∗, and a constant Kc,

HF+nPF (ρ)≤
∫

Ω

c∗(−∇F ′(ρ))ρdx+Kc. (1.2)
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Afterwards we will show that if we choose different forms of the force, we

can derive interesting inequalities from this one, like the Log-Sobolev, and the

Gagliardo Nirenberg inequality.

Also in this chapter we will prove the general Agueh-Ghoussoub-Kang in-

equality shown in [10], that involves a Young’s function c and its dual c∗, energy

functionals HF,W
V , relative entropy production Ic∗(ρ0 | ρV ), Wasserstein distance

d2
w(ρ0,ρ1) and barycentre b(ρ0), namely

HF,W
V+c(ρ0 | ρ1)+

λ +ν

2
d2

w(ρ0,ρ1)−
ν

2
|b(ρ0)−b(ρ1)|2

≤ H−nPF ,2x·∇W
c+∇V ·x (ρ0)+Ic∗(ρ0 | ρV ).

We will show this inequality generalizes (1.2) and other inequalities including

the HWI inequality.
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Chapter 2

Kantorovich problem

The original transport problem was proposed by Monge around the 1780´s, the

question was how to move given pile of soil into an excavation with the least

amount of work. Kantorovich relaxed the problem in terms of probability mea-

sures. In this chapter we explain some basic results in this direction, where a basic

reference is [13].

Whenever T is map from a measure space (X ,µ) to arbitrary space Y , we can

equip Y with the pushforward measure T#µ , where T#µ(B) = µ(T−1(B)), for every

set B⊂ Y.

We will denote the space of probability measures of X , as P(X) , and PAC(X)⊂
P(X) the space of absolutely continuous probability measures. Let M± ⊂ Rn

be two compact sets , and µ± ∈P(M±). We denote the projection functions as

π+ : M+ ×M− 7→ M+, where π+(x,y) = x, and π− : M+ ×M− 7→ M−, where

π−(x,y) = y. So we define

Γ(µ+,µ−) =
{

γ ∈P(M+×M−) | (π+)#γ = µ
+ and (π−)#γ = µ

−} .
Let c : M+×M− 7→R, be a continuous cost function. The Kantorovich problem

is to minimize the total cost defined as

C (γ) =
∫

M+×M−
c(x,y)dγ, where γ ∈ Γ(µ+,µ−) .

As we shall see the existence of minimizers is not hard, as we have that C is linear
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in γ and we can use the Banach-Alaouglu theorem.

Theorem 2.1 There exists a minimizer for the Kantorovich problem.

Proof. Since the space of probability measures is contained in the unit ball of

the dual space, which is weak* compact. Since Γ(µ+,µ−) is closed, it is weak-*

compact. Since C (γ) is continuous in the weak-* topology, it attains a minimum

in the compact set.

We will say γ is optimal if

γ ∈ Γop(µ
+,µ−) :=

{
γ ∈ Γ(µ+,µ−) | C (γ) = inf

γ∈Γ(µ+,µ−)

∫
M+×M−

c(x,y)dγ

}
.

2.0.1 Brenier’s theorem

First we state two definitions and their relationship.

Definition 2.2 Given a set Γ ⊂ X ×Y, and a cost function c(x,y), we say that Γ

is c-cyclically monotone if for any finite set of pairs {(xi,yi) | 1≤ i≤ N} ⊂ Γ. we

have that
N

∑
i

c(xi,yi)≤
N

∑
i

c(xi,yi+1). (with N+1=1)

Definition 2.3 A function φ : X 7→ R∪{+∞} is said to be c-convex if it is not

identical to {+∞} , and there exists a function g : Y 7→ R∪{+∞} , such that

φ(x) = sup
y∈Y

(g(y)− c(x,y)) ∀x ∈ X .

It´s c-transform is the function

φ
c(y) := inf

x∈X
(φ(x)+ c(x,y)),

and it’s c-subdifferential is the c-cyclically monotone set

∂
c
φ := {(x,y) ∈ X×Y | φ c(y)−φ(x) = c(x,y)} .
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Remark 2.4 The fact that a set Γ is c-cyclically monotone if and only if Γ = ∂ cφ

for a c-convex function φ is called Rockafellers’s theorem, a proof can be found in

[13].

Remark 2.5 If we take X =Y =Rn and c(x,y) =−x ·y, the the c-transform is the

usual Legendre transform or dual, and c-convexity is just convexity.

Lemma 2.6 The support of an optimal mapping γ is c-cyclically monotone.

Proof. If supp γ is not c-cyclically monotone then we have that, this means there

exists a set of pairs {(xi,yi) | 1≤ i≤ N} ⊂ Γ such that

N

∑
i

c(xi,yi)−
N

∑
i

c(xi,yi+1)> 0.

Even more, since c is continuous we can find a set of open neighbourhood Ui×Vi,

of (xi,yi) such that

N

∑
i

c(ui,vi)−
N

∑
i

c(ui,vi+1)> 0 ∀ (ui,vi) ∈Ui×Vi.

We define the measures γi(E) =
γ(E∩(Ui×Vi))

γ(Ui×Vi)
; let η = Πγi a measure of (X ×Y )N

and Hi = ( fi,gi ) the projections such that γi = Hi#η .

We define

γ̃ = γ +
λ

n

N

∑
i
( fi+1×gi)#η− ( fi×gi)#η ,

where λ = infγ(Ui×Vi)> 0. We check that (π+)#γ̃ = µ++ λ

n ∑
N
i ( fi+1)#η−( fi)#η =

µ+, similarly (π−)#γ̃ = µ−, and γ̃(X×Y ) = 1+ λ

n ∑
N
i

γ((Ui+1×Vi))
γ(Ui+1×Vi)

− γ((Ui×Vi))
γ(Ui×Vi)

= 1.

Finally we compute

C (γ)−C (γ̃) =
∫

M+×M−
∑c( fi+1,gi)− c( fi,gi)dη > 0

Now we proceed to prove a theorem by Brenier, that applies to quadratic cost

functions, i.e. c(x,y) = 1
2 |x− y|2 .
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Theorem 2.7 Let M± ⊂ Rn be open and bounded sets, and µ± ∈ PAC(M±).

Hence there exists an optimal mapping T#µ+ = µ−, and ϕ convex function such

that

T = ∇ϕ

almost everywhere.

Proof. By the previous results, we know there exists an optimal measure γop ∈
Γop(µ

+,µ−), let S be a maximal c-cyclical monotone set, hence suppγop ⊂ S . By

Rockafellar theorem, there exists a c-convex function φ , such that S = ∂ cφ(x), by

definition of c-convexity we have that

φ(x) = sup
y∈M−

{−c(x,y)−φ
c(y)}= sup

y∈M−

{
−1

2
|x− y|2−φ

c(y)
}

= sup
y∈M−

{
−1

2
|x|2− 1

2
|y|2 + xy−φ

c(y)
}
.

Now we can define a function ϕ,

ϕ(x) := φ(x)+
1
2
|x|2 = sup

y∈M−

{
−1

2
|y|2 + xy−φ

c(y)
}
.

This function is convex and bounded and moreover, ∂ϕ(x) = ∂ cφ . This means ϕ

is Lipschitz and hence differentiable almost everywhere by Rademacher’s theorem

So almost everywhere ∂ϕ(x) = ∇ϕ(x).

Monge-Ampere equation

Let M± ⊂ Rn be open and bounded sets, and µ± ∈PAC(M±), that is µ+ = f dx

and µ− = gdy, from the last theorem there exists an optimal mapping T#µ+ = µ−,

and ϕ convex function such that T = ∇ϕ, in other words we have that∫
ψ(y)g(y)dy =

∫
ψ(∇ϕ(x)) f (x)dx for all test functions ψ.

7



Alexandrov’s theorem says that D2ϕ exists almost everywhere if ϕ is convex, so if

we do a change of variables y = ∇ ϕ(x) we get that∫
ψ(y)g(y)dy =

∫
ψ(∇ϕ(x))g(∇ϕ(x))detD2

ϕdx.

From this we get the Monge-Ampere’s equation

g(∇ϕ)detD2
ϕ = f (x).

2.1 Kantorovich-Rubinstein space
Now that we know about the existence of solutions of the Kantorovich problem,

we can define a very useful metric. Let Pn(X) be the space of Borel probability

measures on µ ∈ X with finite nth moment, which means∫
|d(x0,x)|n dµ(x)< ∞

for some x0 ∈ X , and hence for any x0 ∈ X .

Definition 2.8 We can define a distance in the space Pn(X) is defined as follows,

dn(µ,η) =

∣∣∣∣min
λ

∫
X×X
|d(x,y)|n dλ (x,y)

∣∣∣∣1/n

.

Where λ runs along de probability measures on X×X, whose marginals are µ

and η . Particularly for n = 2, we shall call it the Wasserstein distance and we will

denote it as dw.

We can characterize the topological space P1(X), let´s consider C1(X), the

space of functions f : X 7→ R, such that

sup
x∈X

| f (x)|
1+d(x0,x)

< ∞

for one (and hence for all) x0 ∈ X . Then we have that d1(µn,µ) 7→ 0 if and only if∫
f dµn 7→

∫
f dµ

8



for every f ∈C1(X).

We also define a weaker topology , called the narrow topology

Definition 2.9 We say µn converges narrowly to µ if∫
f dµn 7→

∫
f dµ

for each bounded continuous function f .

9



Chapter 3

Time dependent mass
transportation

3.1 Displacement interpolation
So far we only minded the starting and ending point of the mass transportation

problem, without giving any information of what could happen in the middle. This

view point is related to fluid dynamics and has been studied principally by Brenier

[8]

Definition 3.1 Let µ+,µ− ∈P2(Rn) and γ0 ∈ Γ(µ+,µ−) be the solution to the

Kantorovich problem with quadratic cost . For every s ∈ [0,1] we define πs : Rn×
Rn→ Rn, as

πs(x,y) := (1− s)x+ sy,

and we will call µs = (πs)#γ0 the displacement interpolation between µ+ and µ−.

As we shall see the solutions of the time dependent minimization problems can

be represents as displacement interpolation of two measures.

We now prove a result that shows that the displacement interpolation of two

measures is a constant speed geodesic.

Theorem 3.2 Let µs be the displacement interpolation between µ0 and µ1 then

10



∀s, t ∈ [0,1] , we have that

dw(µt ,µs) = |t− s|dw(µ0,µ1) .

Proof. First we take

πst = (πs×πt)# γ0 = ((1− s)x+ sy),(1− t)x+ ty)#γ0 ∈ Γ(µs,µt).

So that

d2
w(µt ,µs)≤

∫
|x− y|2 dπst =

∫
|(1− s)x+ sy− ((1− t)x+ ty)|2 dγ0

= (t− s)2
∫
|x− y|2 dγ0 = (t− s)2d2

w(µ0,µ1).

To get the equality use the triangle inequality

dw(µ0,µ1)≤ dw(µ0,µs)+dw(µs,µt)+dw(µt ,µ1)

≤ sdw(µ0,µ1)+dw(µs,µt)+(1− t)dw(µ0,µ1).

So we conclude that

dw(µt ,µs) = |t− s|dw(µ0,µ1) .

3.2 Displacement convexity
In this chapter we explain an important concept called displacement convexity,

originally due to R. McCann, which inspired a lot of development in Optimal

Transportation theory.

Definition 3.3 We will say H : dom(H)⊂P2→ R is displacement convex if

H(ρs)≤ (1− s)H(ρ0)+ sH(ρ1),

for all ρs displacement interpolation of ρ0 and ρ1 ∈ dom(H).

11



Lemma 3.4 Suppose h:(0,∞)→R∪{∞} is convex and non increasing, and g:[0,1]→(0,∞)

is concave. Then h◦g will be convex.

Proof. Let s, t0, t1 ∈ [0,1] , then

h◦g((1− s)t0 + st1)≤ h((1− s)g(t0)+ sg(t1))

≤ (1− s)h◦g(t0)+ sh◦g(t1).

Definition 3.5 Let F : [0,∞)→Rn differentiable, then we can define the associated

Internal Energy Functional as

HF(ρ) :=
∫

Ω

F(ρ(x))dx .

Proposition 3.6 Let HF be the internal energy functional. If we suppose F :

[0,∞)→ Rn is differentiable with F(0) = 0, and x 7→ xnF( r
xn ) is convex and non

increasing for all r > 0, then HF is displacement convex.

Proof. Let ρ0 and ρ1 ∈P2,ac, , ∇ψ be the optimal mapping, and the displacement

interpolation of ρ0 and ρ1.

Since Supp(ρs) = Supp(ρ0)((1− s)I + s∇ψ) we have that

HF(ρs) =
∫

Ω

F(ρs(x))dx =
∫

Ω∩Supp(ρs)
F(ρs(x))dx

=
∫

Ω∩Supp(ρ0)
F(ρs(1− s)x+ s∇ψ(x))det((1− s)I + s∇ψ)dx.

Using the Monge-Ampere formula, and defining λ (s) = det((1− s)I + s∇ψ)
1
n we

can conclude that

HF(ρs) =
∫

Ω∩Supp(ρ0)
F(

ρ0(x)
det((1− s)I + s∇ψ)

)det((1− s)I + s∇ψ)dx

=
∫

Ω∩Supp(ρ0)
F(

ρ0(x)
λ n )λ ndx

12



Using the fact that λ (s) is concave, the remark and the lemma, we see that s 7→
F(ρ0(x)

λ n )λ n is convex, this means

HF(ρs)≤ (1− s)HF(ρ0)+ sHF(ρ1).

3.3 Benamou-Brenier formula
In physics if we have a density µt and a vector field V ,and we assume the mass is

conserved, then the density must satisfy the continuity equation. Inspired on this

we have the following definition.

Definition 3.7 We will call (µt ,Vt), an admissible pair if

·t→ µt is weak* continuous

·t→
∫
|x|dµt is continuous

·
∫
‖V (t,x)‖2 dµtdt < ∞.

·∂t µ +∇ · (µV ) = 0 in a weak sense.

Theorem 3.8 Let X be a complete smooth manifold, let µ0 be a probability mea-

sure on X. If v is an integrable field, that is, there exists a locally Lipschitz family

of diffeomorphisms (Tt)0≤t≤T , such that

dTt

dt
(x) =Vt(T (x)),

then (µt ,Vt) is an admissible pairing, where µt = Tt#µ is the unique solution to the

continuity equation .

Proof. Let ϕ be a test function and t ∈ (0, t), by definition of push-forward we

have ∫
ϕdµt =

∫
(ϕ ◦Tt)dµ

so for h > 0 we can write

1
h
(
∫

ϕdµt+h−
∫

ϕdµt) =
∫

ϕ ◦Tt+x(x)−ϕ ◦Tt

h
dµ.

13



Since T−1
t is continuous, then ϕ ◦ Tt is Lipschitz and compactly supported uni-

formly for t ∈ [0, t] , so the right hand of the equation is uniformly bounded for

t ∈ [0, t−h] and for almost all t,x converges point-wise to

∂

∂ t
(ϕ ◦Tt) = (∇ϕ ◦Tt) ·

∂

∂ t
Tt = (∇ϕ ◦Tt) · (vt ◦Tt).

By Lebesgue´s dominated convergence theorem we deduce that for almost all t we

have
d
dt

∫
ϕdµt =

∫
(∇ϕ ◦Tt) · (vt ◦Tt) =

∫
∇ϕ · vtdµt .

To prove uniqueness we will prove that if µt satisfies the continuity equation

then for any T ∈ [0, t] , if µ0 = 0 then µT = 0. We first assume we can find a

Lipschitz compactly supported function ϕ(t,x) that satisfies

∂ϕ

∂ t
+ vt ·∇ϕ = 0

ϕ |t=T= ϕT .

Where ϕT ∈D(X), the space of distribution, so we can compute for almost all t

d
dt

∫
ϕtdµt =

∫
∂ϕt

∂ t
dµt +

∫
ϕtd(

∂ µt

∂ t
)

=−
∫

vt ·∇ϕ +
∫

ϕtd(∇ · vt µt) = 0.

Since µ0 = 0, then ∫
ϕT dµT = 0 =⇒ µT = 0.

Finally we can check that ϕt = ϕT ◦TT ◦T−1
t Lipschitz with compact support,

and is a solution of
d
dt

ϕt(Ttx) =
∂ϕ

∂ t
+ v ·∇ϕ = 0.

We will need the following lemma to prove the Benamou-Brenier theorem.
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Lemma 3.9 Let σ be a measure in Rn, f ∈L2(σ), and T a map such that T#( f σ)=

hT#(σ) . Then

‖h‖L2(T#σ) ≤ ‖ f‖L2(σ)

Proof. Let g ∈ L2(T#σ), computing

〈T#( f σ),g〉= 〈g◦T, f σ〉 ≤ ‖ f‖L2(σ) ‖g◦T‖L2(σ) = ‖ f‖L2(σ) ‖g‖L2(T#σ) .

Using Riesz representation theorem we know the continuous linear functional

F such that

F(g) = 〈T#( f σ),g〉= 〈hT#(σ),g〉 ,

has norm ‖h‖L2(T#σ) . This means

‖h‖L2(T#σ) ≤ ‖ f‖L2(σ) .

The following result has an interesting physical interpretation, as the Wasser-

stein distance between two measures can be seen as the infimum of the energy

needed to translate one density to the other.

Theorem 3.10 (Benamou-Brenier) If µ0, µ1 ∈P2,AC, then we have the equality

d2
w(µ0,µ1) = inf

Vt ,µt admissible

∫ 1

0

∫
|Vt |2 dµtdt.

Proof. Since we are assuming absolute continuity for µ0 and µ1, we know there

is a convex funtion ψ such that ∇ψ#µ0 = µ1 a.e. Let µt be the displacement inter-

polation function between µ0 and µ1.

For 0≤ t ≤ 1, let

µt = (Tt)#µ0 where

Tt = (1− t)Id + t∇ψ.

So we define

Vt(x) :=
d
dt

Tt(x) = ∇ψ(x)− x

15



We claim that

Vt(Tt)#µ0 =Vt µt = (Tt)#((∇ψ− Id)µ0).

So using lemma 3.9 we have that

‖Vt‖L2(Tt#µ) ≤ ‖∇ψ− Id‖L2(µ) ,

this means ∫
|Vt |2 dµt ≤

∫
|x−ψ(x)|2 dµ0 = d2

w(µ0,µ1).

For the other inequality we take an admissible pairing, and first we suppose Vt

is sufficiently regular so there exists a flow map T such that

dTt

dt
(x) =Vt(T (x)).

T0(x) = x

We know the unique solution of the continuity equation is a displacement interpo-

lation so

µt = (Tt)#µ0.

We can compute

∫ 1

0

∫
|Vt |2 dµtdt =

∫ 1

0

∫
|Vt(Tt(x))|2 dµ0dt ≥

∫
|T1(x)− x|2 dµ0 ≥ dw(µ0,µ1).
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Chapter 4

Relaxation

4.1 Young measures
Young measures are an important tool in the Calculus of Variations and Optimal

Control Theory. It gives a description of limits of minimizing sequences; most of

the basic results can be found in L.C. Young’s book [14]. In this chapter we will

explain some work of Bernard [1], showing how he used the concept of Young

measures to generalize Brenier’s theory and prove some interesting results.

So far we have been working with measures that depend on time, instead of this

we will define Young measures in (I×X), where I = [a,b] with λ the normalized

Lebesgue measure, and (X ,d) is a complete and separable metric space.

Definition 4.1 A Young Measure in (I×X), is a positive measure η on (I×X),

such that for any measurable set A ⊂ I,η(A×X) = λ (A). We denote the set of

Young measures as Y1(I,X) ⊂P1(I,X), and we endow the metric d1 (see defini-

tion 2.8).

Note that Y1(I,X) is closed in P1(I,X).

There is another way to express a Young Measure by using the disintegration

theorem [9], as there exist is a family of measures {ηt}t∈I in X , such that∫
I×X

f (t,x)dη =
∫

I

∫
X

f (t,x)dηtdλ . (4.1)

17



Now we would like to study some properties of the map

η 7→
∫

I×X
f (t,x)dη . (4.2)

This map is continuous if | f (t,x)|/(1+ d(x0,x)) is bounded for some x0 and

f is continuous, but we can generalize this result. For this we need to define

Caratheodory integrands , and remind the reader of some results.

Definition 4.2 A Caratheodory integrand is a Borel-measurable function f (t,x) :

I×X 7→ R, which is continuous in the second variable. A normal integrand is a

Borel function f (t,x) : I×X 7→ (−∞,∞] , which is lower semi-continuous in the

second variable.

Definition 4.3 We say Y ⊂P(X) has uniformly integrable first moment if for every

ε > 0 there exists a ball B ⊂ X such that∫
X−B

d(x0,x)dµ ≤ ε ∀µ ∈ Y,

for one and hence for all x0 ∈ X .We will use the following result in the proposition.

Definition 4.4 A set Y ⊂P(X) is called tight if for every ε > 0 ∃ Kε compact

such that

µ(X−Kε)≤ ε ∀µ ∈ Y.

Theorem 4.5 The function g(t,x) : I×X 7→ R is a normal integrand if and only if

g = supn∈N gn(t,x), where gn is a sequence of Caratheodory integrands.

Proof. See Berliocchi, Lasry [7].

Theorem 4.6 (Prokhorov) Let K ⊂P(X), K is tight if and only if it is relatively

compact.

Proof. See Ambrosio, Gigli, Savare [9].

Theorem 4.7 The following properties are equivalent

· The family Y is tight with uniformly integrable first moment.
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·There exists a function f ;X 7→ [0,∞] whose sub-levels are compact, a constant

C and a point x0 such that∫
X
(1+d(x0,x) f (x)dµ ≤C ∀µ ∈ Y.

Proof. See Ambrosio, Gigli, Savaré [9]

Proposition 4.8 The map (4.2) is continuous on Y1(I×X) if f is a Caratheodory

integrand such that | f (t,x)|/(1+d(x0,x)) is bounded for some x0 ∈ X . It is lower

semi-continuous if f is a normal integrand such that | f (t,x)|/(1 + d(x0,x)) is

bounded from below for some x0 ∈ X .

Proof. Using the Scorza-Dragoni Theorem [12], we know there exists a sequence

of compact sets Jn ⊂ I, such that f is continuous on Jn×X , and λ (Jn) 7→ 1 as

n 7→ ∞. For every set Jn we can extend the function f continuously to a function

fn with a bounded norm, so | fn(t,x)|/(1+ d(x0,x)) is bounded for every n. This

means η 7→
∫

I×X fn(t,x)dη is continuous, and converges uniformly to (4.2) , and

therefore is continuous.

For the second part we define g = f (t,x)/(1+d(x0,x)), then g is a normal inte-

grand which is bounded from below. Using Theorem 4.5, we see g= supn∈N gn(t,x)

, where gn have to be bounded Caratheodory integrands. So now we can see the

map (4.2) as the increasing limit of the continuous maps

η 7→
∫
(1+d(x0,x))gn(t,x)dη .

Hence it is lower semi-continuous.

From this proposition we can conclude our first important result.

Theorem 4.9 Let f (t,x) be a normal integrand such that f (t,x)≥ l(x)(1+d(x0,x))+

g(t), where g : I 7→R, is an integrable function, and l : X 7→ [0,∞) is a proper func-

tion. Then for each C ∈ R, the set{
η ∈ Y1(I,X) |

∫
f dη ≤C

}
is compact.
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Proof. The set{
η ∈ Y1(I,X) |

∫
l(x)(1+d(x0,x))dη ≤C

}
⊃
{

η ∈ Y1(I,X) |
∫

f dη ≤C
}

is closed and 1-tight by the equivalence results, hence it is compact. Since the map

(4.2) is lower semi continuous the set {η ∈ Y1(I,X) |
∫

f dη ≤C} is closed.

4.2 Transport measures
In this section we will consider Young measures acting on I×T M where M is a

complete Riemannian manifold without boundary, and d is a distance on T M such

that the quotient
1+d((x0,0),(x,v))

1+‖v‖x
,

and its inverse are bounded for any point x0 ∈ X .

If η ∈ Y1(I,T M) is a Young measure, the image of η of the projection I×
T M 7→ I×M will be denoted as µ. We can think of µ as a density in M. Using the

disintegration theorem [9] with respect to this projection, we obtain the measurable

family ηt,x of probability measures on TxM such that η = µ⊗ηt,x. We define the

vector field V (t,x) : I×M 7→ T M by the expression

V (t,x) =
∫

TxM
vdηt,x(v).

We note that V (t,x) is a Borel vector field, that satisfies the

integrability condition ∫
‖V (t,x)‖x dµ(t,x)< ∞.

We would like to know wheter µ satisfies the continuity equation,

∂t µ +div(V µ) = 0, (4.3)

in the sense of distributions. We have the following characterization result.
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Lemma 4.10 The measure µ satisfies equation (4.3) if and only if∫
I×T M

[∂tg+∂xg · v]dη(t,x,v) = 0 (4.4)

for all smooth compactly supported test functions g ∈C∞
c ((a,b)×M).

Proof. If we disintegrate η , we have that

∫
I×T M

[∂tg+∂xg · v]dη(t,x,v) =
∫

I×T M
[∂tg+∂xg · vd]ηt,x(v)dµ(t,x),

for each test function. Considering the definition of V , we have the equality∫
T M

∂xg · vdηt,x(v) = ∂xg ·V (t,x).

This means η satisfies equation (4.4) if and only if∫
I×M

∂tg+∂xg ·V (t,x)dµ(t,x) = 0.

Which is equivalent to say µ satisfies equation (4.3).

Any η ∈ Y1(I,T M), that satisfies equation (4.4) will be called transport mea-

sure, and we will denote the space of transport measures as T (I,M).

For the boundary conditions we do the following, given two probability mea-

sures µi and µ f on M, we say η is a transport measure between µi and µ f , if in

addition we have that∫
I×T M

[∂tg+∂xg · v]dη(t,x,v) =
∫

M
gb(x)dµ f −

∫
M

ga(x)dµi,

for all g : [a,b]×M 7→ R, smooth compactly supported function. We denote by

T
µ f

µi (I,M), the set of transport measures between µi and µ f .

4.3 Generalized curves
A particular case of transport measures are generalized curves as studied by L.C.

Young. The way he defined boundary points is equivalent as the way defined above

for this particular case.

21



Definition 4.11 A transport measure η is called a generalized curve if for each

t ∈ I we have that µt = δγ(t), for a continuous curve γ(t) : I 7→ M. We say η is a

generalized curve over γ, and we denote them as G (I,M).

The following result shows us some regularity we can obtain from our new

continuity equation.

Lemma 4.12 Let Γ ∈ T (I,M) be a generalized curve over γ, then γ is absolutely

continuous.

Proof. By the disintegration theorem, the measure Γ can be written in the from

dΓ = dt⊗ δγ(t)⊗ dΓt , with some measurable family {Γt} of probability measure

in Tγ(t)M. In other words

∫
I×T M

f (t,x,v)dΓ(t,x,v) =
∫ 1

0

∫
Tγ(t)M

f (t,γ(t),v)dΓt(v)dt ∀ f ∈ L1(Γ).

Now, for each f ∈ C∞
c (a,b) and ϕ ∈ C∞

c (M), let´s apply the equation (4.4) to the

function g(t,x) = f (t)ϕ(x), to get

0 =
∫

I×T M

[
f ′(t)ϕ(x)+ f (t)dϕx · v

]
dη(t,x,v)

=
∫ 1

0
f´́(t)ϕ(γ(t))dt +

∫ 1

0
f (t)

∫
Tγ(t)M

dϕγ(t) · vdΓt(v)dt.

This means, in the sense of distributions, that

(ϕ ◦ γ )́(t) =
∫

Tγ(t)M
dϕγ(t) · vdΓt(v) ∀ϕ ∈C∞

c (M).

Hence γ is absolutely continuous and∫
Tγ(t)M

vdΓt(v) =
.
γ(t). (4.5)

Theorem 4.13 The set G (I,M) is closed in Y1(I,T M), and the map

Γ 7→ γ (4.6)
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is continuous.

Proof. Let Γn be a sequence of generalized curves converging to η in P1(I,T M).

The set {Γn}∪η is compact hence, it has uniformly integrable first moment, so

if the Γńs are generalized curves over γn , then the sequence γn is absolutely equi-

continuous. Hence there exists a subsequence γnm and a curve γ0 absolutely con-

tinuous, such that γnm → γ0.

4.4 Tonelli theorem

In this section we will prove the existence of minimizers of normal integrands L,

by finding conditions for which sets of the type {Γ |
∫

LdΓ≤C} are compact. We

will consider the space ACx f
xi of absolutely continuous curves γ : I 7→M, such that

γ(a) = xi and γ(b) = x f , and the set

G
x f
xi = T

µ f
µi (I,M)∩G (I,M),

of generalized curves above elements of ACx f
xi . We will notice convexity of L is not

needed for the result in G
x f
xi , but it is for ACx f

xi , which is one of the advantages of

working with generalized curves.

For the following results, we suppose L : [a,b]×T M 7→ R∪{+∞} is a normal

integrand.

Definition 4.14 We say L is fiber-wise convex if, the function v 7→ L(t,x,v), is con-

vex on TxM, for every t ∈ [a,b], and x ∈M.

Definition 4.15 We say L is uniformly super-linear over a compact K, if there

exists a function l : R+ 7→R, such that limr 7→∞ l(r)/r = ∞ and such that L(t,x,v)≥
l(‖v‖x) for every (t,x,v) ∈ [a,b]×TkM.

Lemma 4.16 Let L be a fiber-wise convex normal integrand. If Γ is a generalized

curve above γ, then ∫ 1

0
L(t,γ(t),

�
γ(t))dt ≤

∫
LdΓ.
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Proof. Using equation (4.5) and Jensen´s inequality we have

L(t,γ(t),
�
γ(t)) = L(t,γ(t),

∫
Tγ(t)M

vdΓt(v))≤
∫

Tγ(t)M
L(t,γ(t),v)dΓt(v).

Hence ∫ 1

0
L(t,γ(t),

�
γ(t))dt ≤

∫ 1

0

∫
Tγ(t)M

L(t,γ(t),v)dΓt(v)dt =
∫

LdΓ.

Theorem 4.17 Let L be a normal integrand such that the quotient

L(t,x,v)
1+‖v‖x

(4.7)

is bounded from below.

Conclusion: for each C ∈ R, the set

A g
C :=

{
Γ ∈ G

x f
xi |

∫
LdΓ≤C

}
is compact in G

x f
xi . If L is fiber-wise convex, the set

AC :=
{

γ ∈ ACx f
xi |

∫ b

a
L(t,γ(t),

�
γ(t))dt ≤C

}
is compact in ACx f

xi for the uniform topology.

Proof. The compactness of A g
C follows from theorem 4.9. If L is fiber-wise

convex, using lemma 4.16 we know the image of A g
C with the continuous map

(4.6) is AC, hence it is compact.

A more general result is due originally to Tonelli.

Theorem 4.18 (Tonelli) Let L be a normal integrand such that

·L is uniformly super-linear over each compact subset of M.

·There exists a positive constant such that L(t,x,v)≥ c‖v‖x−1 .

Then we have the same conclusion as in the last theorem.
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Proof. If Γ is a generalized curve over γ such that
∫

LdΓ ≤ C, using ‖v‖x ≤
(L(t,x,v)+1)/c ∫ b

a

∥∥∥ �
γ(t)

∥∥∥
γ(t)

dt ≤ C+b−a
c

.

This means the curve γ lies in the ball B(C+b−a
c ,xi) , which is compact since M has

finite dimension and d is complete. So if we define the convex integrand

LB(t,x,v) =

{
L(t,x,v) if x ∈ B(C+b−a

c ,xi)

∞ if x /∈ B(C+b−a
c ,xi)

,

we have that Γ satisfies
∫

LdΓ ≤C if and only if
∫

LBdΓ ≤C. Using the fact L is

uniformly super-linear on B(C+b−a
c ,xi), we see that the quotient

LB(t,x,v)
1+‖v‖x

(4.8)

is bounded below. So we can use the previous theorem.
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Chapter 5

Inequalities

Mass transport has already shown it is a powerful tool to prove known inequalities

in sometimes remarkably simpler ways, for example one of the most simple in-

equalities one can prove using mass transportation techniques is the isoperimetric

inequality. Using only the arithmetic-geometric inequality in the following sense

n(detD2
ϕ)

1
n ≤ tr(D2

ϕ) = ∆ϕ,

we give a sketch, ignoring subtle analytic issues, of the original proof due to M.

Gromov (see [13])

Theorem 5.1 Let Ω be an open set, such that |Ω| = 1, then we have that |∂Ω| ≥
|∂B|= n, where B is the ball with area one.

Sketch. We take the unitary functions in Ω and B , 1Ω and 1B. Both are probability

functions so we can take the optimal transport ∇ϕ, from Ω onto B. Hence this

function satisfies the Monge-Ampere equation

detD2
ϕ = 1.

Since |∇ϕ| ≤ 1, using Gauss theorem we can compute

|∂Ω|=
∫

∂Ω

1ds≥
∫

∂Ω

∇ϕ ·−→n ds =
∫

Ω

∆ϕdx≥
∫

Ω

n(detD2
ϕ)

1
n = n |Ω|= n.

26



It has been known that there is a relationship between the isoperimetric inequal-

ity and the Sobolev inequality. In fact the Sobolev inequality, can be proven using

optimal transport in a similar spirit. There are several other applications like Brunn-

Monkowski, HWI, Log-sobolev, and Gagliardo-Nirenberg. See [3],[2],[11]. Re-

cently Agueh-Ghoussoub-Kang [10] showed that many of this inequalities actually

belong to the same family of inequalities, in other words they are particular cases

of the same general inequality. It is the purpose of this chapter to explain this re-

sult emphasizing on displacement convexity by proving first a general Sobolev in-

equality that can be used to obtain Log-Sobolev, Sobolev and Gagliardo-Nirenberg

inequalities. Afterwards we will prove the Agueh-Ghoussoub-Kang’s general in-

equality , and show that it generalizes the general Sobolev inequality as well as

other general inequalities like the HWI and Gaussian inequalities .

5.1 General Sobolev inequality
In this section we will use the energy functional HF (see definition 3.5)

In this chapter, T represents the optimal map from ρ0 to ρ1, and ρt := ((1−
t)I +T )#ρ0.

Lemma 5.2 Suppose F : [0,∞)→ Rn is differentiable with F(0) = 0, and x 7→
xnF( r

xn ) is convex and non increasing for all r > 0, then we have that

HF(ρ1)−HF(ρ0)≥
∫

Ω

ρo(T −1) ·∇F ′(ρ0)dx,

for all ρ0,ρ1 ∈P2,AC.

Proof. Since HF(ρt) is convex then we obtain

HF(ρ1)−HF(ρ0)

1
≥
[

d
dt

HF(ρt)

]
t=0

=

[
d
dt

∫
Ω

F(((1− t)I + tT )#ρ0)dx
]

t=0

=−
∫

Ω

F ′(ρ0)div(ρ0(T − I))dx =
∫

Ω

ρo(T −1) ·∇F ′(ρ0)dx.
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Definition 5.3 We will call a Young function, any strictly convex super-linear C1-

function c :Rn→R, such that c(0) = 0, and we will denote by c∗ its Legendre dual,

as defined in remark 2.5.

Theorem 5.4 (General Sobolev inequality) Under the hypotheses of the previous

lemma, let Ω be any open bounded convex set, then for any ρ ∈P2,AC, satisfying

suppρ ⊂Ω and PF(x) := xF ′(x)−F(x) ∈W 1,∞(Ω) , we have that

HF+nPF (ρ)≤
∫

Ω

c∗(−∇F ′(ρ))ρdx+Kc. (5.1)

Proof. Using the previous lemma for ρ0 = ρ, and ρ1 = ρc, where ρc ∈P2,AC is a

solution of

∇(F ′(ρc)+ c) = 0,

we get that

HF(ρc)−HF(ρ)≥
∫

Ω

ρ(T x− x) ·∇F ′(ρ).

We note that since ρ∇(F ′(ρ)) = ∇(PF(ρ)) we have that∫
Ω

ρ∇(F ′(ρ)) · x =
∫

Ω

−nPF(ρ) = H−nPF (ρ).

We obtain

HF(ρ)−HF(ρc)≤
∫

ρ(x−T x) ·∇(F ′(ρ))

≤ H−nPF (ρ)−
∫

Ω

ρ∇(F ′(ρ)) ·T xdx.

For the last term we can use the generalized Young’s inequality to obtain that

−∇(F ′(ρ)) ·T x≤ c(T x)+ c∗(−ρ∇(F ′(ρ)).
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Integrating this to the inequality we have

HF(ρ)−HF(ρc)

≤ H−nPF (ρ)+
∫

Ω

c(T x)ρdx+
∫

Ω

c∗(−∇F ′(ρ))ρdx

= H−nPF (ρ)+
∫

Ω

c(x)ρcdx+
∫

Ω

c∗(−∇F ′(ρ))ρdx.

Finally we get

HF+nPF (ρ)≤
∫

Ω

c∗(−∇F ′(ρ))ρdx+
∫

Ω

(c(x)+F ′(ρc))ρcdx−HPF (ρc)

We name the constant c(x)+F ′(ρc) = Kc, and we note that HPF (ρc) ≥ 0 to

conclude the proof.

In the following pages we will see that using different F’s this inequality gen-

eralizes Log-Sobolev inequalities and Sobolev-Nirenberg-Gagliardo inequalities.

5.1.1 Euclidian Log Sobolev inequalities

The Log-Sobolev inequality was first introduced by L. Gross, see [6], here we

prove it as a corollary of the previous inequality.

Corollary 5.5 Let Ω ⊂ Rn be an open bounded and convex set, and let c be a

Young functional , such that c∗ is p-homogeneous, for p > 1, we have that for all

probability densities ρ, with supp(ρ)⊂Ω, and ρ ∈W 1,∞(Rn)

∫
Rn

ρ logρdx≤ n
p

log(
p

nep−1σ
p/n
c

∫
Rn

ρc∗(−∇ρ

ρ
)dx),

where σc =
∫
Rn e−c(x)dx.

Proof. Let F(x)= x log(x), and F(0)= 0. We check that x 7→ xnF(x−n)=−n log(x)

is convex and non increasing. Considering that in this case PF(x) = x, we get that

for any probability measure ρ , HPF =
∫

ρ = 1. We take inequality (5.1),

HF+nPF (ρ)≤
∫

Ω

c∗(−∇F ′(ρ))ρdx+
∫
(F ′(ρc)+ c)ρcdx, (5.2)
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where ρc is a solution of the equation

∇(logρc + c) = 0,

which we take ρc(x) = e−c(x)/σc, so we get

∫
ρ logρ +n≤

∫
c∗(−∇ρ

ρ
)ρdx+

∫ (
loge−c(x)− log(

∫
Rn

e−c(x)dx)+ c
)

ρcdx

(5.3)

=
∫

c∗(−∇ρ

ρ
)ρdx− log(

∫
Rn

e−c(x)dx). (5.4)

Let cλ (x) := c(λx), hence c∗
λ
(y) = c∗( y

λ
). If we apply the inequality to this Young

function we get∫
ρ logρ +n≤

∫
c∗(−∇ρ

λρ
)ρdx− log(

∫
Rn

e−c(λx)dx)

=
∫

c∗(−∇ρ

λρ
)ρdx− log(

∫
Rn

e−c(x)dx)+n logλ .

Considering that c∗( y
λ
) = 1

λ p c∗(y), the infimum over λ is attained when

λ
p
o =

p
n

∫
c∗(−∇ρ

ρ
)ρdx.

So we get the inequality for all probability densities ρ, with supp(ρ) ⊂ Ω, and

ρ ∈W 1,∞(Rn)

∫
ρ logρ ≤ n

p
∫

c∗(−∇ρ

λρ
)ρdx

∫
c∗(−∇ρ

ρ
)ρdx− log(σc)+

n
p

log
(

p
n

∫
c∗(−∇ρ

λρ
)ρdx

)
−n

≤ n
p

log
(

p
n

∫
c∗(−∇ρ

λρ
)ρdx

)
− log(σc)−n+

n
p

=
n
p

log(
p

nep−1σ
p/n
c

∫
Rn

ρc∗(−∇ρ

ρ
)dx).
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5.1.2 Sobolev and Gagliardo-Nirenberg inequalities

We will now derive the Gagliardo-Nirenberg inequality from the general Sobolev

inequality. A classical proof can be found in [4], and a proof using mass-transport

approach can be found in [2].

Corollary 5.6 (Gagliardo-Nirenberg) Let 1 < p < n and r ∈ (0, np
n−p) such that

r 6= p. We define γ := 1
r +

1
q , where 1

p +
1
q = 1. For any f ∈W 1,p(Rn) we have that

there exists θ such that

‖ f‖r ≤C(p,r)‖∇ f‖θ

p ‖ f‖1−θ

rγ
.

Proof. We will use inequality (5.1) with F(x) = xγ

γ−1 . Since r 6= p we have that

γ 6= 1 and since r ∈ (0, np
n−p ), we have that 1 > γ > 1− 1

n . To use the inequality

we check that F(0) = 0, and x 7→ xnF(x−n) = xn−nγ

γ−1 is convex and non increasing

since n− nγ < 1 and γ − 1 < 0. Let c(x) = rγ

q |x|
q , so c∗(x) = 1

p(rγ)p−1 |x|p . Using

inequality (5.1) we get

∫
F(ρ)+nρF ′(ρ)−nF(ρ)dx≤

∫
Ω

ρ
1

p(rγ)p−1 (−∇F ′(ρ))p
ρdx+Kc. (5.5)

Making the substitution of F(x) = xγ

γ−1 we get

1
γ−1

∫
ρ

γ −nρ
γ +nγρ

γdx≤
∫

Ω

ρ
1

p(rγ)p−1 (−γρ
γ−2

∇ρ)p
ρdx+Kc,

and rearranging the equation we get

(
1

γ−1
+n)

∫
ρ

γdx≤
∫

Ω

ρ
rγ

p(r)p (∇ρ)p
ρdx+Kc.

If we suppose that ‖ f‖r = 1, we take ρ = | f |r to get

(
1

γ−1
+n)

∫
| f |rγ dx≤

∫
Ω

rγ

p
|∇ f |p ρdx+Kc,

and for general f we get this inequality
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rγ

p

‖∇ f‖p
p

‖ f‖p
r
−
(

1
γ−1

+n
) ‖ f‖rγ

rγ

‖ f‖r
≥−Kc.

If we have the function fλ (x) = f (λx), with a change of variables we get the

following equalities

‖ fλ‖p
r = λ

−np/r ‖ f‖p
r ,

‖ fλ‖rγ

rγ
= λ

−n ‖ f‖rγ

rγ
,

‖ fλ‖r = λ
−n/r ‖ f‖r ,

‖∇ fλ‖p
p = ‖λ∇ f (xλ )‖p

p = λ
p−n ‖∇ f‖p

p .

So the inequality becomes

λ
p−n+np/r rγ

p

‖∇ f‖p
p

‖ f‖p
r
−λ

−n+n/r
(

1
γ−1

+n
) ‖ f‖rγ

rγ

‖ f‖r
≥−Kc.

We take λ = ‖∇ f‖a
p ‖ f‖b

r ‖ f‖c
rγ
, and we pick a, b, and c, so that the powers of

the norms are the same in both terms, that is

a =
pr

pr+np−n
,

b =
(p−1)r

pr+np−n
,

c =
r

pr+np−n
.

So we obtain

1
Kc

(
−rγ

p
+

1
γ−1

−n
)
‖∇ f‖a′

p ‖ f‖c′
rγ
≥ ‖ f‖b′

r ,
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where

a′ =
−npr+np
pr+np−n

b′ =
(p−1)r(−n+n/r)

pr+np−n
−1

c′ =
rp−nr+np
pr+np−n

Finally we note that if we take the limit as r→ p∗ = np
n−p , we have that c′→ 0,

and a′,b′→ np(n−np−p)
(n−p)(pr+np−n) so we get the Sobolev inequality

‖ f‖p∗ ≤C(p,n)‖∇ f‖p .

5.2 General inequality
In this section we will generalize the previous result by showing an inequality

that contains even more information, like HWI inequalities (see [10]). For this,

inspired by the physics of interacting gases, we will define more energy functionals

in P2,ac, and we will use the concept of semi-convexity.

Definition 5.7 Let F : [0,∞)→ Rn differentiable, and V,W : R→ [0,∞) , twice

differentiable, then we can define the associated Free Energy Functional as

HF,W
V (ρ) := HF(ρ)+HV (ρ)+HW (ρ).

Where we have

·Internal energy

HF(ρ) :=
∫

Ω

F(ρ(x))dx, .

·Potential energy

HV (ρ) =:
∫

Ω

ρ(x)V (x)dx.

·Interaction energy

HW (ρ) =:
1
2

∫
Ω

ρ(W ∗ρ),
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where ∗ denotes the convolution product.

Furthermore we define the relative energy of ρ0 with respect to ρ1 as

HF,W
V (ρ0 | ρ1) := HF,W

V (ρ1)−HF,W
V (ρ0),

and the relative entropy production of ρ with respect to ρV as

I2(ρ | ρV ) :=
∫

Ω

∣∣∇(F ′(ρ)+V +W ∗ρ)
∣∣2 ρdx.

So if ρV is a probability density that satisfies

∇(F ′(ρV )+V +W ∗ρ) = 0,

then

I2(ρ | ρV ) :=
∫

Ω

∣∣∇(F ′(ρ)−F ′(ρV )+W ∗ (ρ−ρV ))
∣∣2 ρdx.

We will also work with non-quadratic versions of entropy, so we define the

generalized relative entropy production-type function of ρ with respect to ρV mea-

sured against c∗ as

Ic∗(ρ0 | ρV ) :=
∫

Ω

c∗
(
−∇(F ′(ρ0)+V +W ∗ρ0)

)
ρ0dx,

where c∗ is the Legendre conjugate of c.

Lemma 5.8 Assume V:Rn→ R satisfies that D2V ≥ λ I, for some λ ∈ R, then we

have that

HV (ρ1)−HV (ρ0)≥
∫

Ω

ρo(T −1) ·∇V dx+
λ

2
d2

w(ρ0,ρ1),

for all ρ0,ρ1 ∈P2,AC.

Proof. Expanding and using D2V ≥ λ I, we obtain

V (b)−V (a)≥ ∇V (a) · (b−a)+
λ

2
|a−b|2 .
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This means that

V (T x)−V (x)≥ ∇V (x) · (T x− x)+
λ

2
|x−T x|2 .

Hence integrating we obtain

HV (ρ1)−HV (ρ0)≥
∫

V (T x)ρ0−V (x)ρ0dx

≥
∫

Ω

∇V (x) · (T x− x)+
λ

2
|x−T x|2 ρ0dx

=
∫

Ω

ρo(T −1) ·∇V dx+
λ

2
d2

w(ρ0,ρ1).

Lemma 5.9 Assume W:Rn → R is even and satisfies that D2W ≥ νI, for some

ν ∈ R, then we have that

HW (ρ1)−HW (ρ0)≥
∫

Ω

ρo(T−1)·∇(W ∗ρ0)dx+
ν

2
(d2

w(ρ0,ρ1)−|b(ρ0)−b(ρ1)|2),

for all ρ0,ρ1 ∈P2,AC, and where b represents the centre of mass denoted by b(ρ)=∫
xρ(x)dx.

Proof. First we note that we can write the interaction energy as follows

HW (ρ1) =
1
2

∫
Ω×Ω

W (x− y)ρ1(x)ρ1(y)dxdy

=
1
2

∫
Ω×Ω

W (T x−Ty)ρ0(x)ρ0(y)dxdy

=
1
2

∫
Ω×Ω

W (x− y+(T − I)(x)− (T − I)(y))ρ0(x)ρ0(y)dxdy
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Since D2W ≥ νI we obtain

HW (ρ1)≥
1
2

∫
Ω×Ω

[W (x− y)+∇W (x− y) · ((T − I)(x)− (T − I)(y))]ρ0(x)ρ0(y)dxdy

+
ν

4

∫
Ω×Ω

|(T − I)(x)− (T − I)(y)|2 ρ0(x)ρ0(y)dxdy

= HW (ρ0)+
1
2

∫
Ω×Ω

∇W (x− y) · ((T − I)(x)− (T − I)(y))ρ0(x)ρ0(y)dxdy

+
ν

4

∫
Ω×Ω

|(T − I)(x)− (T − I)(y)|2 ρ0(x)ρ0(y)dxdy.

Now we note the following equalities, for the last term∫
Ω×Ω

|(T − I)(x)− (T − I)(y)|2 ρ0(x)ρ0(y)dxdy

= 2
∫

Ω×Ω

|(T − I)(x)|2 ρ0(x)dx−2
∣∣∣∣∫

Ω×Ω

(T − I)(x)ρ0(x)dx
∣∣∣∣2

= 2
[∫

Ω×Ω

|(T − I)(x)|2 ρ0(x)dx−|b(ρ1)−b(ρ0)|2
]
.

For the second term we consider that ∇W is odd∫
Ω×Ω

∇W (x− y) · ((T − I)(x)− (T − I)(y))ρ0(x)ρ0(y)dxdy

= 2
∫

Ω×Ω

∇W (x− y) · ((T − I)(x))ρ0(x)ρ0(y)dydx

= 2
∫

Ω×Ω

(∇W ∗ρ0) · (T − I)(x))ρ0(x)dx.

Using these two equalities we get

HW (ρ1)−HW (ρ0)≥
∫

Ω

ρo(T−1)·∇(W ∗ρ0)dx+
ν

2
(d2

w(ρ0,ρ1)−|b(ρ0)−b(ρ1)|2).

Theorem 5.10 (Basic inequality) Under the hypotheses of the three previous lem-

mas, let Ω be any open bounded convex set, then for any ρ0,ρ1 ∈P2,AC, satisfying
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suppρ0 ⊂Ω and PF(x) := xF ′(x)−F(x) ∈W 1,∞(Ω) , we have that

HF,W
V+c(ρ0 | ρ1)+

λ +ν

2
d2

w(ρ0,ρ1)−
ν

2
|b(ρ0−b(ρ1)|2

≤ H−nPF ,2x·∇W
c+∇V ·x (ρ0)+Ic∗(ρ0 | ρV ).

Proof. First we note that since ρ0∇(F ′(ρ0)) = ∇(PF(ρ0)) we have that∫
Ω

ρ0∇(F ′(ρ0)+V +W ∗ρ0) · x

=
∫

Ω

−nPF(ρ0)+ρ0 [∇(V +∇W ∗ρ0)] · x

=
∫

Ω

−nPF(ρ0)+ρ0∇V · x+ 1
2

ρ0(2x ·∇W ∗ρ0)dx

= H−nPF ,2x·∇W
∇V ·x (ρ0).

If we add the inequalities from the previous lemmas we get

HF,W
V (ρ1)−HF,W

V (ρ0)

≥
∫

Ω

ρ0(T x− x) ·∇(F ′(ρ0)+V +W ∗ρ0)dx+
λ

2
d2

w(ρ0,ρ1)

+
ν

2
(d2

w(ρ0,ρ1)−|b(ρ0)−b(ρ1)|2).

Rearranging and using the first inequality we have

HF,W
V (ρ0)−HF,W

V (ρ1)+
λ +ν

2
d2

w(ρ0,ρ1)−|b(ρ0)−b(ρ1)|2)

≤
∫

Ω

ρ0(x−T x) ·∇(F ′(ρ0)+V +W ∗ρ0)

≤ H−nPF ,2x·∇W
∇V ·x (ρ0)−

∫
Ω

ρ0∇(F ′(ρ0)+V +W ∗ρ0) ·T xdx.

For the last term we can use the generalized Young’s inequality to obtain that

−∇(F ′(ρ0)+V +W ∗ρ0) ·T x

≤ c(T x)+ c∗(−∇(F ′(ρ0)+V +W ∗ρ0).
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Integrating this to the inequality we have

HF,W
V (ρ0)−HF,W

V (ρ1)+
λ +ν

2
d2

w(ρ0,ρ1)−|b(ρ0)−b(ρ1)|2)

≤ H−nPF ,2x·∇W
∇V ·x (ρ0)+

∫
Ω

c(T x)ρ0dx+
∫

Ω

c∗(−∇(F ′(ρ0)+V +W ∗ρ0)ρ0dx

= H−nPF ,2x·∇W
∇V ·x (ρ0)+

∫
Ω

c(x)ρ1dx+
∫

Ω

c∗(−∇(F ′(ρ0)+V +W ∗ρ0)ρ0dx.

This proves the inequality.

A simpler inequality is the one obtained when V and W are strictly convex

hence ν ,λ ≥ 0.

Lemma 5.11 Under the same hypothesis as theorem 5.10, assume that V and W

are also convex. Then for any Young function c : Rn→ R, we have

HF+nPF ,W−2x·∇W
V−∇V ·x (ρ)≤−HPF ,W (ρV+c)+Ic∗(ρ | ρV )+KV+c. (5.6)

Furthermore if we set W =V = 0, since HPF (ρc)≥ 0, we obtain

HF+nPF (ρ)≤−HPF (ρc)+Ic∗(ρ | ρV )+KV+c (5.7)

≤
∫

Ω

c∗(−∇F ′(ρ))ρdx+KV+c. (5.8)

Hence recovering inequality (5.1).

Proof. Let´s consider the inequality we just proved

HF,W
V+c(ρ0 | ρ1)+

λ +ν

2
d2

w(ρ0,ρ1)−
ν

2
|b(ρ0−b(ρ1)|2 (5.9)

≤ H−nPF ,2x·∇W
c+∇V ·x (ρ0)+Ic∗(ρ0 | ρV ). (5.10)

In particular if we take ρ0 = ρ and ρ1 = ρV+c , where ρV+c is a solution of

∇(F ′(ρV+c)+V + c+W ∗ρV+c) = 0.
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Hence we have that for any ρ ∈Pc(Ω), with supp ρ ⊂Ω, and PF(ρ)∈W 1,∞(Ω)

we have that

HF+nPF ,W−2x·∇W
V−∇V ·x (ρ)+

λ +ν

2
d2

w(ρ,ρV+c)−
ν

2
|b(ρ−b(ρ1)|2 (5.11)

≤−HPF ,W (ρV+c)+Ic∗(ρ | ρV )+
∫ (

F ′(ρV+c)+V + c+W ∗ρV+c
)

ρV+c.

(5.12)

Where we can define the constant F ′(ρV + c)+V + c+W ∗ρ := KV+c .

Since ν ,λ ≥ 0 we get that

λ +ν

2
d2

w(ρ,ρV+c)−
ν

2
|b(ρ)−b(ρV+c)|2

=
λ +ν

2

∫
|T x− x|2 ρ0(x)dx− ν

2

∣∣∣∣∫ (T x− x)ρ0(x)dx
∣∣∣∣2 ≥ 0.

So we can remove the terms involving ν and λ in the inequality to get the wanted

inequality.

5.2.1 HWI inequalities

Now we proceed to get some corollaries when we apply a quadratic Young func-

tion.

Corollary 5.12 Under the same hypothesis as theorem 5.10, let µ ∈ R, and U

:Rn→ R be a C2 function such that D2U ≥ µI, then for any σ > 0 we have that

HF
U (ρ0 | ρ1)+

1
2
(µ− 1

σ
)W 2

2 (ρ0,ρ1)≤
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx.

Proof. If we take the basic inequality with c(x) = 1
2σ
|x|2 , W = 0, and we set,

V = U − c. Hence we have that c∗(p) = 1
2σ
|σ p|2 = σ

2 |p|
2 , so using the general

inequality we get

HF
U (ρ0 | ρ1)+

(µ−σ−1)

2
d2

w(ρ0,ρ1)≤H−nPF
c+∇(U−c)·x(ρ0)+

σ

2

∫
Ω

ρ0∇(F ′◦ρ0+U−c)dx.
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We can compute

σ

2

∫
Ω

ρ0
∣∣∇(F ′ ◦ρ0 +U− c)

∣∣2 dx

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx+
1

2σ

∫
Ω

ρ0 |x|2 dx−
∫

Ω

xρ0 ·∇(F ′ ◦ρ0 +U)dx,

and

HnPF
c+∇(U−c)·x(ρ0) = HnPF (ρ0)−

∫
Ω

ρx ·∇Udx+
1

2σ

∫
Ω

|x|2 ρ0dx.

By combining the two and using integration by parts we get that

H−nPF
c+∇(U−c)·x(ρ0)+

σ

2

∫
Ω

ρ0
∣∣∇(F ′ ◦ρ0 +U− c)

∣∣2 dx

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx−
∫

Ω

xρ0 ·∇(F ′ ◦ρ0)dx−HnPF (ρ0)

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx+
∫

Ω

div(xρ0) · (F ′ ◦ρ0)dx−HnPF (ρ0)

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx+
∫

Ω

nρ0 · (F ′ ◦ρ0)dx+
∫

Ω

x ·∇F(ρ0)dx−HnPF (ρ0)

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx+
∫

Ω

x ·∇F(ρ0)dx+
∫

Ω

n(F ◦ρ0)dx

=
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U

∣∣2 dx.

Returning to the first inequality we get that

HF
U (ρ0 | ρ1)+

(µ−σ−1)

2
d2

w(ρ0,ρ1)≤
σ

2

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U)

∣∣2 dx.

Corollary 5.13 Furthermore if we take µ > 0, that is, take U is uniformly convex,

take σ = 1
µ
, we can get the Generalized Log-Sobolev inequality:

HF
U (ρ0 | ρ1)≤

1
2µ

∫
Ω

ρ
∣∣∇(F ′ ◦ρ0 +U)

∣∣2 dx =
1

2µ
I2(ρ0 | ρU).

Corollary 5.14 (HWI ) Finally we can obtain the generalized HWI-inequality,
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which is originally due to Otto and Villani (see [5]).

HF
U (ρ0 | ρ1)+

µ

2
d2

w(ρ0,ρ1)≤
√

I2(ρ0 | ρU)dw(ρ0,ρ1).

Proof. If we write the inequality of the last corollary as

HF
U (ρ0 | ρ1)+

µ

2
d2

w(ρ0,ρ1)≤
σ

2
I2(ρ0 | ρU)+

1
2σ

d2
w(ρ0,ρ1)

and minimize over σ , we obtain the minimum when σ =
dw(ρ0,ρ1)√
I2(ρ0|ρU )

, we can write

the inequality as

HF
U (ρ0 | ρ1)+

µ

2
d2

w(ρ0,ρ1)≤
√

I2(ρ0 | ρU)dw(ρ0,ρ1).

5.2.2 Gaussian inequalities

By taking a particular F we can prove Otto-Villani’s HWI inequality.

Corollary 5.15 Let µ ∈R, and U :Rn→R be a C2 function such that D2U ≥ µI,

then for any σ > 0 , and any non-negative function f such that fρU ∈W 1,∞(Rn) and∫
f ρU = 1, we have that

∫
f log( f )ρU +

1
2
(µ− 1

σ
)W 2

2 (ρ0,ρ1)≤
σ

2

∫
Ω

ρU
|∇ f |2

f
dx.

Where ρU = e−U/
∫

e−U dx.

Proof. The proof follows from corollary 5.12, taking ρ0 = ρU , ρ1 = f ρU , and

F(x) = x logx. So we compute

HF
U (ρU) =

∫
ρU logρU +UρU dx =

∫ [(
e−U/

∫
e−U dx

)
log
(

e−U/
∫

e−U dx
)
+U

(
e−U/

∫
e−U dx

)]
=

1∫
e−U dx

∫
e−U(− log

∫
e−U) =− log

∫
e−U , and
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HF
U ( f ρU) =

∫
f ρU log f ρU +U f ρU =

1∫
e−U dx

∫
e−U f (log f − log

∫
e−U)

=
∫

f log( f )ρU −
(

log
∫

e−U
)∫

f ρU

=
∫

f log( f )ρU − log
∫

e−U

Hence HF
U (ρ0 | ρ1) =

∫
f log( f )ρU .

Furthermore if U is uniformly convex , we can consider µ > 0, so we can

simplify the inequality to get the original Log-Sobolev inequality of Gross

∫
f log( f )ρU ≤

1
µ

∫
Ω

ρU
|∇ f |2

f
dx.
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