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Abstract

In this thesis we will review some recent results of Optimal Mass Transportation
emphasizing on the role of displacement interpolation and displacement convexity.
We will show some of its recent applications, specially the ones by Bernard, and

Agueh-Ghoussoub-Kang.
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Chapter 1

Introduction

Mathematics is the art of giving the same name to different things.
— J.H. Poincaré

The most basic problem of modern mass transportation is the Monge-Kantorovich
problem for quadratic cost function, that is, given the measures yy and y; of R”

find a measure Jp of R" x R", that satisfies

it [ eesParen) = [ e yPdite)
where I'(uo, i) is the set of measures in R” x R” with marginals ty and p;. This
actually defines a distance d,, (Lo, 1) in the probability space &?(R"), which we
shall denote by Wasserstein distance. In Chapter 1 we will review the basic results
of Optimal Mass Transportation. A very good text book for this subject is the one
written by Villani [13].

Brenier and Benamou [8] studied a different point of view of the transport prob-

lem, one involving time, which is to find a one parameter family of pairs (i, V;) ,

1
inf/ /\Vt|2dutdt,
0

where L, is a measure and V; a vector field that depends on ¢ and satisfy the conti-

that minimize

nuity equation, or also known as the conservation of mass equation

t; +div(V) = 0.
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In Chapter 2 we will show the proof of Brenier’s theorem, that under some circum-
stances both problems have the same infimum or optimal cost. In this chapter we
will also review the concepts of displacement convexity and displacement interpo-

lation, which are related to the time dependent point of view.

The main idea of chapters 3 and 4 is to explain some of the results given by
Bernard [1] and Agueh, Ghoussoub and Kang [10] emphasizing on the role of time
dependent mass transportation.

In Chapter 3 we will explain some basic results in displacement interpolation
and displacement convexity. Then we will relax Brenier’s problem by considering
instead of classical flows V;, generalized flows 1, «(v), which are probability mea-
sures that indicate the probability of having velocity v € TM at the point x in time
t. To generalize the continuity equation we will define a Transport measure, as a

Young measure 1) that, for a set of test functions g, satisfies

/ [0, + dvg - v]dNx(v)du(z,x) :/ [0,g +dvg - v]dn(v,t,x) =0. (1.1)
IXTM

IxTM

For certain functionals L we will show existence of minimizers of [ Ldn, first in the
case where 1 is a generalized curve and, under some conditions, we will see that
the infimum coincides with the one taken over the classical curves, hence showing
a known result previously proved by Tonelli.

Using a simple optimal transport argument and the geometric-arithmetic in-
equality one can prove the isoperimetric inequality and Sobolev-Nirenberg in-
equalities. With the use of the Monge-Ampere equation it is also possible to
prove log-Sobolev inequalities, HWI, Brunn-Minkowski, and many others (see See
[3],[2],[11]). An interesting result is that actually many of this inequalities belong
or can be obtained from a more general inequality. Using displacement convexity
we will first show a general Sobolev inequality, that involves a positive measur-
able function p that represents density, force F, pressure Pr, the internal energy

functional H, the Young’s function ¢*, and a constant K,

H 7 (p) < [ ¢ (<VF(p))pdx-+K.. (1.2)



Afterwards we will show that if we choose different forms of the force, we
can derive interesting inequalities from this one, like the Log-Sobolev, and the
Gagliardo Nirenberg inequality.

Also in this chapter we will prove the general Agueh-Ghoussoub-Kang in-
equality shown in [10], that involves a Young’s function ¢ and its dual c*, energy
functionals H‘f’W, relative entropy production .%+(po | pv), Wasserstein distance

d?(po.p1) and barycentre b(py), namely

A+v v
=Y (po | p1) + Tdvzv(po,pl) — 5 [b(po) —b(p1) §

H M2 (p0) + e (po | pv).-

We will show this inequality generalizes (1.2) and other inequalities including
the HWI inequality.



Chapter 2

Kantorovich problem

The original transport problem was proposed by Monge around the 1780°s, the
question was how to move given pile of soil into an excavation with the least
amount of work. Kantorovich relaxed the problem in terms of probability mea-
sures. In this chapter we explain some basic results in this direction, where a basic
reference is [13].

Whenever T is map from a measure space (X, 1) to arbitrary space ¥, we can
equip Y with the pushforward measure Ty, where Tyt (B) = u(T~'(B)), for every
setBCY.

We will denote the space of probability measures of X, as 22 (X) , and Pac(X) C
P (X) the space of absolutely continuous probability measures. Let M* C R”
be two compact sets , and u* € Z(M*). We denote the projection functions as
T Mt XM~ — M', where @, (x,y) =x, and 7_ : M* X M~ — M~ , where
7_(x,y) =y. So we define

Dt u)={ye P2M" xM")|(n.)sy=p" and (m_)yy=p"}.

Letc:M™ x M~ — R, be a continuous cost function. The Kantorovich problem

18 to minimize the total cost defined as

C(y) = / c(x,y)dy, where y e T(u™,u™) .
JM+ <M~

As we shall see the existence of minimizers is not hard, as we have that € is linear



in ¥y and we can use the Banach-Alaouglu theorem.
Theorem 2.1 There exists a minimizer for the Kantorovich problem.

Proof. Since the space of probability measures is contained in the unit ball of
the dual space, which is weak* compact. Since I'(u™, ™) is closed, it is weak-*
compact. Since € () is continuous in the weak-* topology, it attains a minimum
in the compact set. ®

We will say 7 is optimal if

re D)= {yerwr 1 em= it [y,
Yel(u*,u=) M xm

2.0.1 Brenier’s theorem

First we state two definitions and their relationship.

Definition 2.2 Given a set I' C X x Y, and a cost function c(x,y), we say that T’
is c-cyclically monotone if for any finite set of pairs {(x;,y;) | 1 <i <N} CT. we
have that

N N
Z xlyl Z x[,yprl (with N+1=1)
i i

Definition 2.3 A function ¢ : X — RU{+eo} is said to be c-convex if it is not
identical to {4} , and there exists a function g : Y — RU{+eo}, such that

¢(x) =sup(g(y) —c(x,y)) VxeX.
yeYy

It’s c-transform is the function

9¢(y) == inf (¢ (x) +¢(x,y)),

xeX

and it’s c-subdifferential is the c-cyclically monotone set

9°¢ = {(x,y) €X XY [9°(y) =9 (x) = c(x,)}



Remark 2.4 The fact that a set T is c-cyclically monotone if and only if T = 9°¢

for a c-convex function ¢ is called Rockafellers’s theorem, a proof can be found in
[13].

Remark 2.5 Ifwe take X =Y = R" and c(x,y) = —x -y, the the c-transform is the

usual Legendre transform or dual, and c-convexity is just convexity.
Lemma 2.6 The support of an optimal mapping v is c-cyclically monotone.

Proof. If supp 7 is not c-cyclically monotone then we have that, this means there
exists a set of pairs {(x;,y;) | 1 <i <N} C T such that

N N
Zc(xi,yi) - Zc(xi,ym) > 0.

Even more, since c is continuous we can find a set of open neighbourhood U; x V;,
of (x;,y;) such that

N N
Zc(u,;v,-) —Zc(ui,vi+1) >0 VY (uvi)eUxV.
;

i

We define the measures ¥;(E) = %, let 1 = I1y; a measure of (X x Y)V
and H; = (f;,g; ) the projections such that y; = H1.
We define

7L N
Yy=7+ ;Z(fm x gi)u#n — (fi X &i)#Mn,

where A =infy(U; x V;) > 0. We check that (7, )47 = ,u+—i— YN(fir1)sn —(fi)sn =

pt, similarly (7_)s7=pu",and (X x¥Y) =1+ 2% Ay il i:i‘é;) 7}%3 i‘é;) 1.

Finally we compute

_Cg(%:/A/I+XM72C(]CI'+1781')_C(fingi)dTI >0

]
Now we proceed to prove a theorem by Brenier, that applies to quadratic cost

functions, i.e. c(x,y) = 1 [x— .



Theorem 2.7 Let M* C R" be open and bounded sets, and u*= € Pyc(M*).
Hence there exists an optimal mapping Teptt = =, and @ convex function such
that

T=Vop

almost everywhere.

Proof. By the previous results, we know there exists an optimal measure ,, €
yp(1*, 1), let S be a maximal c-cyclical monotone set, hence suppy,, C S . By
Rockafellar theorem, there exists a c-convex function ¢, such that S = 9@ (x), by

definition of c-convexity we have that

009 = sup {~c(x) ~ 00} = sup { =3 x> = 9°0)

yeM~ yeEM~

1 1
= sup {3 P = 5 bF +ay =00}
yeM—

Now we can define a function ¢,

[ [
o) =00+ 5 P = sup { =3 - 0700}
yeM-
This function is convex and bounded and moreover, d@(x) = d“¢. This means ¢
is Lipschitz and hence differentiable almost everywhere by Rademacher’s theorem

So almost everywhere d@(x) = Vo(x). m

Monge-Ampere equation

Let M= C R”" be open and bounded sets, and u* € Puc(M*), that is u* = fdx
and y~ = gdy, from the last theorem there exists an optimal mapping Tau™* = 1=,

and ¢ convex function such that T = V¢, in other words we have that

/l//(y)g(y)dy = /I[I(V(p(x))f(x)dx for all test functions y.



Alexandrov’s theorem says that D? ¢ exists almost everywhere if ¢ is convex, so if

we do a change of variables y =V ¢(x) we get that

[ vi)st)ay = [w(Vo)e(Vo(x) detD?gds.

From this we get the Monge-Ampere’s equation

g(Vo)detD’p = f(x).

2.1 Kantorovich-Rubinstein space

Now that we know about the existence of solutions of the Kantorovich problem,
we can define a very useful metric. Let &7,(X) be the space of Borel probability

measures on U € X with finite nth moment, which means

[ 1ato, 91" du(x) < o=
for some x¢ € X, and hence for any xg € X.

Definition 2.8 We can define a distance in the space 7,(X) is defined as follows,

1/n

mln/ ’d(-xay)|ndl(x7y)
XxX

dn(ﬂan): i

Where A runs along de probability measures on X x X, whose marginals are |l
and n. Particularly for n = 2, we shall call it the Wasserstein distance and we will

denote it as d,,.

We can characterize the topological space &;(X), let’s consider C;(X), the
space of functions f : X — R, such that

)]
— <
vex 1+d(x0.7)

for one (and hence for all) xy € X. Then we have that d; (i, i) — 0 if and only if

[ fawns [ ran
8



for every f € Ci(X).
We also define a weaker topology , called the narrow topology

Definition 2.9 We say U, converges narrowly to W if

[ faw [ ra

for each bounded continuous function f.



Chapter 3

Time dependent mass
transportation

3.1 Displacement interpolation

So far we only minded the starting and ending point of the mass transportation
problem, without giving any information of what could happen in the middle. This
view point is related to fluid dynamics and has been studied principally by Brenier

(8]

Definition 3.1 Ler u*,u~ € 2)(R") and Y € T(u",u™) be the solution to the
Kantorovich problem with quadratic cost . For every s € |0, 1] we define m; : R" x
R" — R", as

7s(x,y) := (1 —s)x+ sy,

and we will call g = (7t;)#Y the displacement interpolation between ™ and 1™ .

As we shall see the solutions of the time dependent minimization problems can
be represents as displacement interpolation of two measures.
We now prove a result that shows that the displacement interpolation of two

measures is a constant speed geodesic.

Theorem 3.2 Let U be the displacement interpolation between Uy and [ then

10



Vs,t € [0,1], we have that

iy (s, ps) = |t — 5|y (o, 1) -
Proof. First we take
Mg = (% X M)y Yo = (1= s)x+sy), (1 =1)x+19)#%0 € T(Ks, fr)-
So that
B2 (k) < [ Je=ydmg = [101= s)xtsy = (1= 0p-+ 13) P
= (=9 [ b=y = (=9 (o, ).
To get the equality use the triangle inequality

dy (o, 1) < dy(Ho, Ms) 4 dyy (L, ) + dyy (U, H1)
< sdy, (Mo, M1) + dy (Mg, 1) + (1 —1)dy (o, M1 ).

So we conclude that

dy(Urs fs) = |t — 5| dy (Mo, 1)

3.2 Displacement convexity

In this chapter we explain an important concept called displacement convexity,
originally due to R. McCann, which inspired a lot of development in Optimal

Transportation theory.

Definition 3.3 We will say H : dom(H) C &7, — R is displacement convex if

H(ps) < (1—s)H(po) +sH(p1),

for all pg displacement interpolation of py and p € dom(H).

11



Lemma 3.4 Suppose h:(0,00) — RU{eo} is convex and non increasing, and g:[0, 1] —(0,0)

is concave. Then hog will be convex.

Proof. Let s,70,7; € [0,1], then

hog((1—s)to+st1) <h((1—s)g(to) +s8(t1))
< (1—=s)hog(ty) +shog(t).

Definition 3.5 Let F : [0,0) — R" differentiable, then we can define the associated

Internal Energy Functional as
H (p) = | F(p(x))dx.

Proposition 3.6 Let H' be the internal energy functional. If we suppose F :
[0,00) — R" is differentiable with F(0) =0, and x — x"F () is convex and non

increasing for all r > 0, then H is displacement convex.

Proof. Let pp and p; € £ 4¢, , VY be the optimal mapping, and the displacement
interpolation of pg and p;.
Since Supp(ps) = Supp(po)((1 —s)I+sVy) we have that

H (p) = [ Plpo)d= | F(py(x))dx

NSupp(ps)
= F(ps(1—s)x+sVy(x))det((1 —s)I+sVy)dx.
QNSupp(po)
Using the Monge-Ampere formula, and defining A (s) = det((1 —s)I + SVI]/)%WC
can conclude that

/ F Po(x)
onsupp(po)  det((1—s)I+sVy)

- (P00 g,
QNSupp(po) An

HY (py) = Ydet((1 —s)I +sVy)dx

12



Using the fact that A(s) is concave, the remark and the lemma, we see that s —

F (p‘i—(f))k” is convex, this means

H' (p,) < (1—5)H" (po) + sH" (p1).

3.3 Benamou-Brenier formula

In physics if we have a density u, and a vector field V,and we assume the mass is
conserved, then the density must satisfy the continuity equation. Inspired on this

we have the following definition.

Definition 3.7 We will call (,,V;), an admissible pair if
-t — U is weak™ continuous
‘t — [|x|dy, is continuous
IV ()| dpgdt < oo.
O+ V- (uV) =0 inaweak sense.

Theorem 3.8 Let X be a complete smooth manifold, let Ly be a probability mea-
sure on X. If v is an integrable field, that is, there exists a locally Lipschitz family
of diffeomorphisms (T, ) o<, , such that

dT;

L0 = V(T (),

then (U;,V;) is an admissible pairing, where L, = Tl is the unique solution to the

continuity equation .

Proof. Let ¢ be a test function and ¢ € (0,7), by definition of push-forward we

have
/rpdut = /((poTt)du

so for & > 0 we can write

1 oTiiy(x)—@oT;
z(/q)dmh—/fpduz):/q) = (h) P au.

13



Since 7,~! is continuous, then ¢ o 7; is Lipschitz and compactly supported uni-
formly for ¢ € [0,7], so the right hand of the equation is uniformly bounded for

t € [0,7 — h] and for almost all z,x converges point-wise to

d d
E(‘POTz):(V(POTt)'ETt:(V‘POTt)'(VtOE)~

By Lebesgue’s dominated convergence theorem we deduce that for almost all # we

have

d
E/wdut=/(V<poTt)’(vtoTt)=/V<p-wdut-

To prove uniqueness we will prove that if y, satisfies the continuity equation
then for any 7 € [0,7], if 1o = O then pur = 0. We first assume we can find a
Lipschitz compactly supported function @(¢,x) that satisfies

d
7?+V[V¢:O

@ |i=r= or.
Where ¢ € 2(X), the space of distribution, so we can compute for almost all
d [ On L
E/q)td.ut = /Wd.ut +/(Ptd(w)
= —/Vt V(p—l—/(ptd(Vv,,ut) =0.

Since g = 0, then
/(PTd.uT:O = pur =0.

Finally we can check that ¢, = @7 o Ty o T,”! Lipschitz with compact support,
and is a solution of
d o

E(p,(Ttx) = W—I-V-V(p:O.

We will need the following lemma to prove the Benamou-Brenier theorem.

14



Lemma 3.9 Let 6 be ameasureinR", f € L*(0), and T a map such that Ty(fo) =
hTy(o) . Then
17l 20y < 1 ll22(o)

Proof. Let g € L*(Ty0), computing

(Ty(fo),8) =(goT,fo) < fll2(e) 18Tl 12(0) = Il 120 18]l 2730) -

Using Riesz representation theorem we know the continuous linear functional
F such that
F(g) = (Ty(fo),8) = (hTx(0),8).

has norm ||A[| 2 (7, ) - This means

121216y < 1 f 1 22(0) -

]
The following result has an interesting physical interpretation, as the Wasser-
stein distance between two measures can be seen as the infimum of the energy

needed to translate one density to the other.

Theorem 3.10 (Benamou-Brenier) If o, 11 € &5 ac, then we have the equality

1
dvzv(,u(),,lh) :V U, ai;lnfissible/() /|Vt‘2d'utdt

Proof. Since we are assuming absolute continuity for ty and f;, we know there
is a convex funtion y such that Vygug = u; a.e. Let i, be the displacement inter-
polation function between py and ;.

For0<r<1,let

t; = (T;)#o where
T, =(1—1)ld+tVy.

So we define J
Vi(x) :== ETt(X) =Vy(x) —x

15



We claim that

Vi(T)sto = Vit = (T)#((Vy — 1d) o).

So using lemma 3.9 we have that

Vil 2wy < IVY = Id|| 2y,
this means
JViRdu < [ b= v duo = a2 o, ).

For the other inequality we take an admissible pairing, and first we suppose V;

is sufficiently regular so there exists a flow map 7" such that

dT;
) = V(7).
To(x) =x

We know the unique solution of the continuity equation is a displacement interpo-

lation so

M = (Tr)#ko-

We can compute

1 1
| [ wlduar= [ [ W0 duods = [ 1360 =P dpo = dfpao, ).

16



Chapter 4

Relaxation

4.1 Young measures

Young measures are an important tool in the Calculus of Variations and Optimal
Control Theory. It gives a description of limits of minimizing sequences; most of
the basic results can be found in L.C. Young’s book [14]. In this chapter we will
explain some work of Bernard [1], showing how he used the concept of Young
measures to generalize Brenier’s theory and prove some interesting results.

So far we have been working with measures that depend on time, instead of this
we will define Young measures in (I x X), where I = [a,b] with A the normalized

Lebesgue measure, and (X,d) is a complete and separable metric space.

Definition 4.1 A Young Measure in (I X X), is a positive measure 1M on (I x X),
such that for any measurable set A C I,1(A x X) = A(A). We denote the set of
Young measures as % (1,X) C Z,(1,X), and we endow the metric d; (see defini-
tion 2.5).

Note that % (1,X) is closed in & (I,X).
There is another way to express a Young Measure by using the disintegration

theorem [9], as there exist is a family of measures {n,}lE ; 1in X, such that

Flt.x)dn = /I /X F(t,x)dnidA. @.1)

IxX

17



Now we would like to study some properties of the map

ne f(t,x)dn. (4.2)

JIxX

This map is continuous if |f(¢,x)| /(14 d(xg,x)) is bounded for some x( and
f is continuous, but we can generalize this result. For this we need to define

Caratheodory integrands , and remind the reader of some results.

Definition 4.2 A Caratheodory integrand is a Borel-measurable function f(t,x)
I x X — R, which is continuous in the second variable. A normal integrand is a
Borel function f(t,x) : I x X + (—oo,00], which is lower semi-continuous in the

second variable.

Definition 4.3 We say Y C & (X) has uniformly integrable first moment if for every
€ >0 there exists a ball B C X such that

d(xo,x)du <e Vuevy,
X—-B

for one and hence for all xy € X.We will use the following result in the proposition.

Definition 4.4 A set Y C P (X) is called tight if for every € >0 3 K, compact
such that
uX—-K;)<e Vuey.

Theorem 4.5 The function g(t,x) : [ x X — R is a normal integrand if and only if

8 = SUP,cn 8n(t,X), where g, is a sequence of Caratheodory integrands.
Proof. See Berliocchi, Lasry [7]. m

Theorem 4.6 (Prokhorov) Let K C & (X), K is tight if and only if it is relatively

compact.
Proof. See Ambrosio, Gigli, Savare [9]. m

Theorem 4.7 The following properties are equivalent
- The family Y is tight with uniformly integrable first moment.

18



-There exists a function f;X + [0,00] whose sub-levels are compact, a constant

C and a point xq such that

/ (1+d(xox)f(x)dp <C Vuey.
X
Proof. See Ambrosio, Gigli, Savaré [9] m

Proposition 4.8 The map (4.2) is continuous on % (I x X) if f is a Caratheodory
integrand such that |f(t,x)| /(14 d(x0,x)) is bounded for some xo € X. It is lower
semi-continuous if f is a normal integrand such that |f(t,x)| /(1 + d(xo,x)) is

bounded from below for some xy € X.

Proof. Using the Scorza-Dragoni Theorem [12], we know there exists a sequence
of compact sets J, C I, such that f is continuous on J, x X, and A(J,,) — 1 as
n — oo. For every set J, we can extend the function f continuously to a function
fn with a bounded norm, so | f,(¢,x)| /(1 +d(xo,x)) is bounded for every n. This
means 1 — [}, y fa(t,x)dn is continuous, and converges uniformly to (4.2) , and
therefore is continuous.

For the second part we define g = f(¢,x)/(1+d(xo,x)), then g is a normal inte-
grand which is bounded from below. Using Theorem 4.5, we see g = sup,,cy &n(t,x)
, where g, have to be bounded Caratheodory integrands. So now we can see the

map (4.2) as the increasing limit of the continuous maps

nes [(1+do,0)elr.dn.

Hence it is lower semi-continuous. ®

From this proposition we can conclude our first important result.

Theorem 4.9 Let f(t,x) be a normal integrand such that f(t,x) > 1(x)(14d(xo,x))+
g(t), where g : I — R, is an integrable function, and | : X — [0,00) is a proper func-
tion. Then for each C € R, the set

{neaax) frm<c}
is compact.

19



Proof. The set
{ne%@})/ﬂ@0+ﬂmJWMSC}D{n€%UX)/ﬂMSC}

is closed and 1-tight by the equivalence results, hence it is compact. Since the map
(4.2) is lower semi continuous the set {n € Z(I,X) | [ fdn <C} is closed. m

4.2 Transport measures

In this section we will consider Young measures acting on / x TM where M is a
complete Riemannian manifold without boundary, and d is a distance on TM such

that the quotient
1 +d((X0,0), (.X,V))
o

and its inverse are bounded for any point xg € X.

If n € Z1(I,TM) is a Young measure, the image of 1 of the projection I x
TM — I x M will be denoted as . We can think of u as a density in M. Using the
disintegration theorem [9] with respect to this projection, we obtain the measurable
family 7, of probability measures on T.M such that n = u ®n; .. We define the
vector field V(¢,x) : I x M — TM by the expression

v@@:AMmmAw

We note that V(z,x) is a Borel vector field, that satisfies the
integrability condition

J R

We would like to know wheter u satisfies the continuity equation,
ou+div(Vu) =0, (4.3)

in the sense of distributions. We have the following characterization result.

20



Lemma 4.10 The measure U satisfies equation (4.3) if and only if
[ 2g+agvidn(t.xy) =0 (4.4
JixTm

for all smooth compactly supported test functions g € C*((a,b) x M).

Proof. If we disintegrate 1, we have that
[, asragvldny) = [ [dg+ g vdna(du(r.).
IXTM IXTM

for each test function. Considering the definition of V, we have the equality

/ okg - vdny x(v) = dvg -V (t,x).
™

This means 1 satisfies equation (4.4) if and only if
/ D+ gV (t,x)du(r,x) = 0.
IxM

Which is equivalent to say u satisfies equation (4.3). m

Any 1 € #(I,TM), that satisfies equation (4.4) will be called transport mea-
sure, and we will denote the space of transport measures as .7 (I,M).

For the boundary conditions we do the following, given two probability mea-
sures W; and Uy on M, we say 7 is a transport measure between y; and Uy, if in

addition we have that

. (gt agvlantan) = [ e [ glodu,
IXTM M M

for all g : [a,b] x M — R, smooth compactly supported function. We denote by
Zf:" (I,M), the set of transport measures between t; and fis.

4.3 Generalized curves

A particular case of transport measures are generalized curves as studied by L.C.
Young. The way he defined boundary points is equivalent as the way defined above

for this particular case.
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Definition 4.11 A transport measure 1M is called a generalized curve if for each
t € I we have that [, = 8y, for a continuous curve y(t) : I — M. We say 1 is a

generalized curve over y, and we denote them as 4 (I,M).

The following result shows us some regularity we can obtain from our new

continuity equation.

Lemma 4.12 Let I" € .7 (I,M) be a generalized curve over Y, then Y is absolutely

continuous.

Proof. By the disintegration theorem, the measure I" can be written in the from
dlU = dt ® 8,y @ dI;, with some measurable family {I';} of probability measure
in TyyM. In other words

1
|, sxarexs) = [ [ fay@mdnma vreo.
IXTM 0 Ty(,)M

Now, for each f € C°(a,b) and ¢ € CZ(M), let’s apply the equation (4.4) to the
function g(¢,x) = f(1)p(x), to get

0= [ [P 0oe) +£(0)do.v] dn(t.x.v)

IXTM

1 1
= [ rwetrendr+ [ 1) [ dog- (v,

Ty

This means, in the sense of distributions, that

(por) = |

(1)

Md(py(t) : vdF,(v) Yo e CZO(M)
Hence 7 is absolutely continuous and

/ vdT,(v) = (1), 4.5)
T,

riyM
[
Theorem 4.13 The set G (I,M) is closed in %1 (1, TM), and the map
I—vy (4.6)
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is continuous.

Proof. Let I',, be a sequence of generalized curves converging to 1 in &1 (I,TM).
The set {I',} Un is compact hence, it has uniformly integrable first moment, so
if the I',s are generalized curves over %, , then the sequence ¥, is absolutely equi-
continuous. Hence there exists a subsequence ¥, and a curve 7} absolutely con-

tinuous, such that %, — %. ®

4.4 Tonelli theorem

In this section we will prove the existence of minimizers of normal integrands L,
by finding conditions for which sets of the type {I"| [ LdT" < C} are compact. We
will consider the space AC,’;/ of absolutely continuous curves v : I — M, such that
Y(a) = x; and y(b) = xy , and the set

& = T (ILM)NZ (1, M),

of generalized curves above elements of AC;f . We will notice convexity of L is not
needed for the result in ¢, , but it is for AC;/, which is one of the advantages of
working with generalized curves.

For the following results, we suppose L : [a,b] x TM — RU {+eo} is a normal

integrand.

Definition 4.14 We say L is fiber-wise convex if, the function v — L(t,x,v), is con-
vex on TuM, for everyt € [a,b], and x € M.

Definition 4.15 We say L is uniformly super-linear over a compact K, if there
exists a function | : R™ — R, such that lim,, ,, [(r) /r = o and such that L(t,x,v) >
L(||v||,) for every (t,x,v) € a,b] x TiM.

Lemma 4.16 Let L be a fiber-wise convex normal integrand. If U is a generalized

curve above Y, then

1
/ L(t, (1), 7(0))dt < / L.
0
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Proof. Using equation (4.5) and Jensen’s inequality we have

L{t,7(e),7(0)) = Lt Y0), |

TyoM

vl (v)) < / L{t, 7(1),v)dT (v).

LM

Hence

1 1
| v soa< [ [ M0 VAT () = [ ar.
||

Theorem 4.17 Let L be a normal integrand such that the quotient

L(t,x,v)
L+ lvl

(4.7)

is bounded from below.

Conclusion: for each C € R, the set
A = {r e | /Ldr < C}
is compact in %jﬁf .If L is fiber-wise convex, the set

o= {reacy | [ Loy <]

is compact in AC;lf for the uniform topology.

Proof. The compactness of 7% follows from theorem 4.9. If L is fiber-wise
convex, using lemma 4.16 we know the image of ;zicg with the continuous map
(4.6) is o7, hence it is compact. m

A more general result is due originally to Tonelli.

Theorem 4.18 (Tonelli) Let L be a normal integrand such that
-L is uniformly super-linear over each compact subset of M.
-There exists a positive constant such that L(t,x,v) > c||v||,— 1.

Then we have the same conclusion as in the last theorem.

24



Proof. If I is a generalized curve over y such that [LdT" < C, using ||v||, <

(L(t,x,v)+1)/c ,

This means the curve ¥ lies in the ball B(C%H ,Xi) , which is compact since M has

dt < m
(1) c

)

finite dimension and d is complete. So if we define the convex integrand

Ly(t.x,v) L(t,x,v) if x€ B(%,xi)
X, V) = . ’
? oo if x ¢ B(Ctb=a x,)

we have that I satisfies [ LdI" < C if and only if [LgdI" < C. Using the fact L is

Ctba ,X;), we see that the quotient
C

uniformly super-linear on B(

LB(taxav)

b (4.8)
L+ (vl

is bounded below. So we can use the previous theorem. m
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Chapter 5

Inequalities

Mass transport has already shown it is a powerful tool to prove known inequalities
in sometimes remarkably simpler ways, for example one of the most simple in-
equalities one can prove using mass transportation techniques is the isoperimetric

inequality. Using only the arithmetic-geometric inequality in the following sense
n(detD?@)r < tr(D*@) = Ag,

we give a sketch, ignoring subtle analytic issues, of the original proof due to M.

Gromov (see [13])

Theorem 5.1 Let Q be an open set, such that |Q| = 1, then we have that |0Q| >

|d0B| = n, where B is the ball with area one.

Sketch. We take the unitary functions in Q and B, 1 and 1. Both are probability
functions so we can take the optimal transport V@, from Q onto B. Hence this

function satisfies the Monge-Ampere equation
detD’¢p = 1.
Since |Vo| < 1, using Gauss theorem we can compute

|a§z\:/ 1ds2/ V<p-%>ds:/A<pdx2/n(detDZ<p)% =n|Q| =n.
aQ aQ Q Q
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]

It has been known that there is a relationship between the isoperimetric inequal-
ity and the Sobolev inequality. In fact the Sobolev inequality, can be proven using
optimal transport in a similar spirit. There are several other applications like Brunn-
Monkowski, HWI, Log-sobolev, and Gagliardo-Nirenberg. See [3],[2],[11]. Re-
cently Agueh-Ghoussoub-Kang [10] showed that many of this inequalities actually
belong to the same family of inequalities, in other words they are particular cases
of the same general inequality. It is the purpose of this chapter to explain this re-
sult emphasizing on displacement convexity by proving first a general Sobolev in-
equality that can be used to obtain Log-Sobolev, Sobolev and Gagliardo-Nirenberg
inequalities. Afterwards we will prove the Agueh-Ghoussoub-Kang’s general in-
equality , and show that it generalizes the general Sobolev inequality as well as

other general inequalities like the HWI and Gaussian inequalities .

5.1 General Sobolev inequality

In this section we will use the energy functional H" (see definition 3.5)
In this chapter, T represents the optimal map from pg to p;, and p, := ((1 —
I+ T)apo.

Lemma 5.2 Suppose F : [0,00) — R" is differentiable with F(0) = 0, and x —

x"F () is convex and non increasing for all r > 0, then we have that

HE (py) — H (po) > /Q po(T —1)- VF'(po)dx,

for all py,p1 € @27,40
Proof. Since H' (p,) is convex then we obtain

H"(p1)—H"(po) _ [d , r
1 1 : = [dtH (pt):|t_0

_ [Z/QF(((I—I)I+tT)#pO)dx}

— /Q F'(po)div(po(T —I))dx = /Q po(T — 1) - VF'(po)dx.

t=0
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Definition 5.3 We will call a Young function, any strictly convex super-linear C'-
function ¢ : R" — R, such that ¢(0) = 0, and we will denote by c* its Legendre dual,

as defined in remark 2.5,

Theorem 5.4 (General Sobolev inequality) Under the hypotheses of the previous
lemma, let Q be any open bounded convex set, then for any p € 95 sc, satisfying
suppp C Q and Pr(x) := xF'(x) — F (x) € W'*(Q) , we have that

HE 7 (p) < [ ¢ (<VF/(p))pd-+K.. 5.1)

Proof. Using the previous lemma for pg = p, and p; = p., where p. € 5 sc is a
solution of
V(F'(pe)+¢) =0,

we get that
H (p)—H"(p) > [ p(Tx—x)-VF'(p).

We note that since pV(F'(p)) = V(Pr(p)) we have that
| PV ()= [ ~npr(p) =1 (p).
We obtain
H"(p)~H (p.) < [ plx—T)-V(F'(p))
<H " (p)~ [ pV(F'(p)-Txdx,

Q

For the last term we can use the generalized Young’s inequality to obtain that

~V(F'(p))-Tx < (Tx) + ¢*(~pV (F'(p)).
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Integrating this to the inequality we have

H"(p) —H" (pc)
<H " (p)+ [ e(Txpd+ [ ' (~VF'(p))pdx

H P ( +/ pcdx—i—/ p))pdx.

Finally we get

HF+an(p)§/ =V de+/ x)+F'(pc))pedx — HPF(pC)

We name the constant c(x) + F’(p.) = K., and we note that H" (p.) > 0 to
conclude the proof. m
In the following pages we will see that using different F’s this inequality gen-

eralizes Log-Sobolev inequalities and Sobolev-Nirenberg-Gagliardo inequalities.

5.1.1 Euclidian Log Sobolev inequalities

The Log-Sobolev inequality was first introduced by L. Gross, see [6], here we

prove it as a corollary of the previous inequality.

Corollary 5.5 Let Q C R” be an open bounded and convex set, and let ¢ be a
Young functional , such that c¢* is p-homogeneous, for p > 1, we have that for all
probability densities p, with supp(p) C Q, and p € W= (R")

‘ n p . VP
logpdx < —1 7/ —Byax),
[ progpdx < Diog(— L [ pet(—=Py)

neP~'o;
where 0, = [gne

Proof. Let F(x) = xlog(x), and F(0) = 0. We check that x — x"F (x~") = —nlog(x)
is convex and non increasing. Considering that in this case Pr(x) = x, we get that
for any probability measure p , H?¥ = [ p = 1. We take inequality (5.1),

HF+Pr (p) < /

¢ (=VF(p)pdrt [(Flp)+elpdr, (52
Q
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where p. is a solution of the equation
V(logpc + C) = 07

which we take p,(x) = e =¥ /G, so we get

\Y%
/plogp +n< /c*(—:)pdx+/ <logec(x) —log(/ ec(x)dx)—FC) pedx
RYI
(5.3)

(= YP - ()
—/c ( > )pdx log(/Rne dx). (5.4

Let ¢y (x) := c(Ax), hence ¢} (y) = ¢*(). If we apply the inequality to this Young

function we get

\Y%
/plogp +n< /c*(——p)pdx—log(/ e~ gx)
Ap R7

\%
= /c*(—kz)pdx—log(/w e “Mdx) +nlogA.

Considering that ¢*(§) = 7;¢*(y), the infimum over A is attained when

pzp/*_VP
i p)pdx-

So we get the inequality for all probability densities p, with supp(p) C Q, and
pEW!=(R")

n Vp n P Vp
logp < /c* ——)pdx—1log(o,)+—1o </C* - dx>—n
[ proge pre ) ¢ et lented e (4 [ €3 e
n p (. Vp > n
<-—lo —/c ——)pdx | —log(o,) —n+ —
Ltog (£ [ (32 par) - toglon) -+ -
n p Vp
= 7/ “(— Py,
5 Og(nep—lof/" pe( ’ )dx)
[
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5.1.2 Sobolev and Gagliardo-Nirenberg inequalities

We will now derive the Gagliardo-Nirenberg inequality from the general Sobolev
inequality. A classical proof can be found in [4], and a proof using mass-transport

approach can be found in [2].

Corollary 5.6 (Gagllardo-Nlrenberg) Let l<p<nandrec(0,; p) such that
r# p. We define vy := ; + §7 where 5+ g = 1. Forany f € Wlfp(R”) we have that

there exists 0 such that

171l < €, ) IV AL 1178

Proof. We will use inequality (5.1) with F(x) = yxfyl Since r # p we have that

Yy # 1 and since r € (0,-"2 ), we have that 1 >y > 1 — % To use the inequality

Y n—p p
we check that F(0) =0, and x — x"F(x™") = )‘;%nly is convex and non increasing
sincen—ny<1land y—1<0. Let c(x) = %’ Ix|?, so c*(x) = W |x|? . Using

inequality (5.1) we get

[F @)+ npF (0) = nF(p)ix < [ p— o (~VF (p)pdr+ Ko (55)

o p(ry)r!

Making the substitution of F(x) = Yxfyl we get

_1/07 np7+nypydx</p (—yp"*Vp)Ppdx+K,,

(ry)p—1

and rearranging the equation we get

7+n /pydx</

If we suppose that || f||, = 1, we take p = | f|" to get

Ypdx+K..

<—+n Jurax< [ Tvspdre k.

and for general f we get this inequality
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V£l|?P ry
IV (L)W
p f1I7 r—1 1£1l,

If we have the function f; (x) = f(Ax), with a change of variables we get the

following equalities

A ll7 =272 L £112

12l = 27" 11115
Ifall, = 27" 111,

IVfally = 1AV (A5 = AP IV

So the inequality becomes

J— 7l \ 2] Sp— < 1 +n> 17
p A7 y—1 A, =

We take A = | V£ I£1I211£]lS, , and we pick a, b, and ¢, so that the powers of
p r ry p

the norms are the same in both terms, that is

pr
a=——————,
pr+np—n
_ (p=Dr
pr+np—n’
r

c=——.
pr+np—n

So we obtain

1 ry 1 , , y
I R A v £l ¢S
KC ( p + Y_l l’l) H f”p Hf”r]/ - Hf“r y

32



where

, —npr—+np
a e —

- prt+np—n
b/: (p_ l)r(_n+n/r) _1
pr+np—n
, Irp—nr—+np
c=——
pr+np—n

Finally we note that if we take the limit as r — p* = %, we have that ¢/ — 0,

np(n—np—p)

! !/
anda’, b’ = =

so we get the Sobolev inequality

£l <Clp,m [IVA,-
5.2 General inequality

In this section we will generalize the previous result by showing an inequality
that contains even more information, like HWI inequalities (see [10]). For this,
inspired by the physics of interacting gases, we will define more energy functionals

in &, 4, and we will use the concept of semi-convexity.

Definition 5.7 Let F : [0,00) — R" differentiable, and V,2W : R — [0,0), twice

differentiable, then we can define the associated Free Energy Functional as
FW N, F w
Hy" (p):=H"(p)+Hy(p) +H" (p).
Where we have

-Internal energy

-Potential energy

Hy(p) = | p(x)V ().
-Interaction energy

1" (p) =5 [ pOWxp).
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where x denotes the convolution product.

Furthermore we define the relative energy of po with respect to p; as

oY (po | pr) == Hy ™ (p1) — Hy ™ (po),

and the relative entropy production of p with respect to py as

2
S(plpv): /\V p)+V+Wxp)| pdx.
So if py is a probability density that satisfies
V(F'(py) +V +Wxp) =0,

then
2 p [ pv): /\V F'(py) + W= (p —pv))|’ pdx.

We will also work with non-quadratic versions of entropy, so we define the
generalized relative entropy production-type function of p with respect to py mea-

sured against c* as

Felpol py)i= [ ¢ (<V(F(po) +V+W o)) pod

where ¢* is the Legendre conjugate of c.

Lemma 5.8 Assume V:R" — R satisfies that D’V > A1, for some A € R, then we
have that

A
Hy(p1) —Hy(po) Z/QPO(T—1)-Vde+§dv2v(P0,P1),

for all po, p1 € P ac-

Proof. Expanding and using D>V > AI, we obtain

V(b)—V(a) > VV(a)-(b—a)+ ;L la—b|*.
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This means that
A 2
V(Tx)—V(x) >VV(x) (Tx—x)+ 5 |x—Tx|~.
Hence integrating we obtain
Hy(p1) ~ Hy(po) = [ V(T2)po ~V (x)pudx
> / VV(x) - (Tx—x)+ i lx — Tx|? podx
Q
A
_ / po(T —1)-VVdx+ =2 (po. p1)-
Q 2
]

Lemma 5.9 Assume W-R" — R is even and satisfies that D*W > vI, for some
v € R, then we have that

H" (p1)=H" (po) = [ po(T=1)-V (W po)d-+ 2 (2 (po. p1) = [b(p0) — b(p1) ).

forall py, p1 € P ac, and where b represents the centre of mass denoted by b(p) =
Jxp(x)dx.

Proof. First we note that we can write the interaction energy as follows

H ) =3 [ W-nppi o)y

1
=3 W (Tx —Ty)po(x)po(y)dxdy
QxQ
1

=3 Joo Wy (T =D)(0) = (T =D (y)pox)po(y)dxdy
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Since D*W > vI we obtain

B (o) 25 [ W)+ VW (=) (T =D& = (T = D)) po()poly)dady
1%

+ (T =D)(x) = (T = 1)(3)* o (x) po () dxdy

4 Joxo

=HY (o) +3 [ VW) (T =10~ (T =D 0)po(o)po(y)drdy
1%

7 @ =DE@) = (T =D polx)po(y)ddy.

Now we note the following equalities, for the last term

/QXQ (T =1)(x) = (T =) (y)[* po(x)po(y)dxy
2

=2 [ (T =D polx)dx—2
QxQ

=2 [ 1T =D potodr— oy b(on)

| (T =D@polx)ax
QxQ

For the second term we consider that VW is odd

[ YW a—)- (T = D)~ (T = D0)po()po()dxdy

=2 [ VW) (T =D)polx)poly)dvd

=2 (VWxpo)- (T —1I)(x))po(x)dx.
JQAXQ

Using these two equalities we get

H" (p1)=H" (po) > | po(T—1)-V(Wpo)d-+ 2 (&3 (po.p1) ~[b(po) = b(p1) ).
|

Theorem 5.10 (Basic inequality) Under the hypotheses of the three previous lem-
mas, let Q be any open bounded convex set, then for any po,p1 € 2 ac, satisfying
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supppo C Q and Pr(x) := xF'(x) — F(x) € W'*°(Q) , we have that

A+vVv \Y
Hy o (po | p1) + = —dy(po.p1) = = [b(po — b(py)
HE2 Y (o) + e (po | pv).-

Proof. First we note that since poV (F’(po)) = V(Pr(po)) we have that

| POV (o) +V +W s po) - x

= [ =nPe(po) + o [V (V + VW py)] -2

= /Q —nPF(PO)+POVV'X+%PO(2x'VW*PO)dx
— fnPR2xVW (Po)-

VV.x

If we add the inequalities from the previous lemmas we get

=Y (p1) —HY (po)
A
> [ Po(Tx—)-V(F(po) +V + W s po)dx+ 53 (po.p)
\%

+ 2 (d2(po.p1) — [b(po) — bl(p1)I?).

Rearranging and using the first inequality we have

HE (po) ~ HE (o1) + 22V (o, p1) ~ Ib(po) — b))
< [ Polx=T2)- V(F'(po) +V +W x po)

< Hop! YW (pg) — /Q poV(F'(po) +V +W % po) - Txdx.
For the last term we can use the generalized Young’s inequality to obtain that

—V(F'(po) +V +Wpo) - Tx
< ¢(Tx) +c"(=V(F'(po) +V +W x po).
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Integrating this to the inequality we have

HEY (po) — HEY (00) + 2 a2 po.p1) — (o) — b))

< Hoyt 2 (po) + / (Tx)podx + / V(F'(po) +V + W * po)podsx

V"}};F 2 VW / pm’x—&—/ po )+ V +Wxpg)podx.

This proves the inequality. m
A simpler inequality is the one obtained when V and W are strictly convex
hence v,A > 0.

Lemma 5.11 Under the same hypothesis as theorem 5.10, assume that V and W

are also convex. Then for any Young function ¢ : R" — R, we have

HITIW=2W () < HPEW (py )+ T (p | pv) + Ky ier (5.6)

Furthermore if we set W =V = 0, since H'* (p.) > 0, we obtain

H™ M (p) < —H™ (pc) + e (p | pv) + Ky e (5.7)
< [ ¢ (=VF/(p)pds-+ K- (5.8)

Hence recovering inequality (5.1).

Proof. Let’s consider the inequality we just proved

A+v %
Hy(po | pr)+ Tdi(po,pl) — 5 [blPo— b(p1)? (5.9)
<H_ 02 (po) + S (po | pv).- (5.10)

In particular if we take pp = p and p; = Py, , where py . is a solution of

V(Fl(pv-i-c) +V+ct+W *pV-i-c) =0.
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Hence we have that for any p € Z.(Q), with supp p C Q, and Pr(p) € W1=(Q)

we have that

nPe W —2x. A+v \Y
Hy "oy (p) + S di(papvae) = o [b(p —b(py) (5.11)

< —H"Y(pyic)+ T (p | pv) +/(F/(Pv+c) +V+c+Wkpyic)pvie
(5.12)

Where we can define the constant F/(py +¢)+V +c+Wxp =Ky, .
Since v,A > 0 we get that

A+v %
(P pvie) = 5 [b(p) = blpv-sc)|”

A+vVv
2

2
> 0.

/|Tx—x|2po(x)dx— % ‘/(Tx—x)po(x)dx

So we can remove the terms involving v and A4 in the inequality to get the wanted

inequality. m
5.2.1 HWI inequalities

Now we proceed to get some corollaries when we apply a quadratic Young func-

tion.

Corollary 5.12 Under the same hypothesis as theorem 5.10, let 4 € R, and U
‘R" = R be a C* function such that D*U > ul, then for any 6 > 0 we have that

1 1 (o) 2
HE (po | 1)+ 5 (= W (po.p) < 5 [ p[V(F 0po-+U[ dx.

Proof. If we take the basic inequality with ¢(x) = % x>, W =0, and we set,
V = U —c. Hence we have that ¢*(p) = 5= lop|* = S |p|*, so using the general
inequality we get

_ G_l)

HE (po| pr)+ =)

Py o
5 dyzv(Po,Pl)SHc+5(ufc).x(Po)+§/QPOV(FIOPOJFU—C)W
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We can compute

c
E/on‘V(F/opo—i-U—c)‘zdx
o 1
=2 [ oV opo+UFdr+ 5 [ polldx— [ xpy-V(Fopo+U)dx,
2 Ja 20 Jo Q
and
H' (Po) :HHPF(P0>—/ PX'VUdXJrL/ |x|? podx.
c+V(U—c)-x o 20 Jo
By combining the two and using integration by parts we get that
H" (o) + 2 V(F' U-c)|’d
c+V(U—c)x p0>+2‘9p0‘ ( °po+ C)‘ X
c 2
- E/QP!V(F’OPMU\ dx—/gxpo-V(F’opo)dx—H"”F(po)
(e .
= 2 [PV epo+Uf dr+ [ divtxpo)- (' po)dx—H"" (po)
(0
- E/QP’V(F'OPOJFU‘Z‘”JF/Q”PO'(F'OPO)dx+/QX'VF(PO)dx—H"PF(Po)
(e
:—/p’V(F’op0+U‘2dx+/x~VF(p0)dx+/n(Fop0)dx
2 Jo Q Q
o
= E/Qp ’V(F’opo+U‘2dx.
Returning to the first inequality we get that

(u—c')

(o2
5 di(po,pl)§§/p!V(F’opo+U)\2dx'
Q

Hf(po | p1) +
| |

Corollary 5.13 Furthermore if we take u > 0, that is, take U is uniformly convex,

take ¢ = %, we can get the Generalized Log-Sobolev inequality:

1 2 1
HE <—/ V(F opy+U)| dx = — .7 )
U(PO!Pl)_zu QP\ (F'opo+U)| dx o 2(po | pu)

Corollary 5.14 (HWI ) Finally we can obtain the generalized HW I-inequality,
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which is originally due to Otto and Villani (see [5]).

H5(po\p1)+”d2pop1 <V A(po | pu)d,,(Po.p1)-

Proof. If we write the inequality of the last corollary as

1
H (po | p1)+ 5d2(popr) < 5 Fa(po pu) +5-d2(pop1)

dw(po.P1)

and minimize over ¢, we obtain the minimum when ¢ =
2 (polpu)

, We can write

the inequality as

H (po | 1)+ S (pop1) < v/ 72(p0 | pu)d (popr).

5.2.2 Gaussian inequalities
By taking a particular F we can prove Otto-Villani’s HWI inequality.
Corollary 5.15 Let 4 € R, and U :R" — R be a C? function such that D*U > ul,

then for any 6 > 0, and any non-negative function f such that foy € W' (R") and
[ fpu =1, we have that

2
|VJ{| dx.

1 1 c
/flog(f)pu +5 (1= )W (po.p1) < 5/ pu
Q
Where py =e Y/ [e Vdx

Proof. The proof follows from corollary 5.12, taking py = py, p1 = fpu, and

F(x) = xlogx. So we compute

HE (pu) = / pulogpy +Upydx = / KeU / / ede> log <eU / / ede> ny (eU / / ede)]
— felde/eU(—log/eU) = —1og/e*U, and

41




1
Hi(fpv) = [ fouton fou+U fou = =g [V flogf —tog [ )

:/flog(f)PU— <log/eU) /fpu

— [ f1og(f)py ~tog [

Hence Hf(po | p1) = [ flog(f)pu. m

Furthermore if U is uniformly convex , we can consider 4 > 0, so we can

simplify the inequality to get the original Log-Sobolev inequality of Gross

VI

7 dx.

[ froetpu < :L [ v
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