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Abstract

Using a log link for binary response in generalized linear mixed-effects models

(GLMM) allows direct estimation of the relative risk. If a random intercept

is the only random effect in the conditional mean structure, the marginal

mean has the same form. The fixed effects, representing the log relative

risks, have the same interpretation in both the mixed-effects model and the

marginal model. This leads to two approaches to estimate the relative risks,

1) maximum likelihood for the mixed-effects models and 2) the generalized

estimating equations (GEE) approach for the marginal models.

In our study, we apply such log-linear models to assess the effects of

neutralizing antibodies on interferon beta-1b in relapsing-remitting multiple

sclerosis. The results obtained by the two approaches are compared. The

relative efficiency of the GEE approach and the robustness of the GLMM

approach to some forms of misspecification of the model for the random

effects are studied by simulations.
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Chapter 1

Introduction

1.1 Multiple Sclerosis

In this report, we compare two regression approaches to estimation of rela-

tive risk with application to studies of neutralizing antibodies in relapsing-

remitting multiple sclerosis patients treated with interferon beta-1b. Multiple

sclerosis (MS) is a chronic and often disabling disease of the central nervous

system. MS is thought to be an autoimmune disease where a patient’s own

immune system attacks myelin in the brain and spinal cord. Myelin forms the

insulating protective myelin sheaths of nerve fibres. Damage to the myelin

sheaths or nerve fibres affects the transmission of nerve signals resulting in

symptoms including difficulties in moving and coordination, deterioration of

sensory functions, problems in bowel and bladder, among many others. Le-

sions in the brain and spinal cord formed at the site of inflammation where

the myelin is damaged are usually monitored by magnetic resonance imaging

(MRI) scans. Specific symptoms and severity of MS vary considerably across

patients.

Currently there are four types of MS characterized by disease progression

in term of severity of disability: 1) Relapsing-Remitting MS (RRMS), 2) Pri-

mary Progressive MS (PPMS), 3) Secondary Progressive MS (SPMS) and 4)

Progressive Relapsing MS (PRMS). Figure 1.1 shows the typical progression

profiles of each type of MS.

RRMS is the most common type of MS. According to the MS Society

1



1.2. The Interferon beta-1b Pivotal Trial

Figure 1.1: Disease progression of each MS type.

of Canada, about 80-85% of the patients are first diagnosed with RRMS.

RRMS is characterized by recurrent cycles of acute attack, also called relapse

or exacerbation, followed by complete or partial recovery with absence of

disease progression between relapses.

1.2 The Interferon beta-1b Pivotal Trial

There is no cure to MS to date, but disease modifying therapies exist to re-

duce the exacerbation rate and severity of relapse. In 1995 interferon beta-1b

2



1.2. The Interferon beta-1b Pivotal Trial

(IFNB) became the first disease modifying therapy approved for RRMS in

Canada.

The efficacy of IFNB in reducing exacerbation rate in RRMS was first

demonstrated by a multicenter, randomized, double blind, placebo-controlled

trial conducted by the IFNB Multiple Sclerosis Study Group[1–3]. From

June 1988 to May 1990, 372 MS patients with disease history longer than 1

year were enrolled in this pivotal trial: 123 patients were assigned to a placebo

arm, 125 to a low dose arm of 1.6 million international units (MIU) and 124

to a high dose arm of 8 MIU of IFNB, self-administered by subcutaneous

injections every other day. The primary clinical outcome was annualized ex-

acerbation rate. An exacerbation was defined as appearance of a new symp-

tom or worsening of an existing symptom, attributable to MS, accompanied

by an appropriate new neurologic abnormality. An exacerbation should also

be preceded by stability or improvement for a minimum of 30 days and last

for at least 24 hours in the absence of fever. The radiological outcome was

cranial MRI scans for brain lesions. All patients had a baseline MRI scan

and subsequent annual MRI scans. A cohort of 52 patients at the Univer-

sity of British Columbia, one of the participating sites, had MRI scans every

6 weeks for 2 years.

The trial was terminated with all patients converted to high dose (8 MIU)

treatment in January 1993. Total time-on-study for individual patients

ranged from 3.5 to 5 years. Based on 2-year data, the annual exacerba-

tion rate was 1.27 for the placebo group, 1.17 for the 1.6 MIU group and

0.84 for the 8 MIU group. The reduction in exacerbation rate in the 8 MIU

group relative to the placebo group was 33% in the first year of study and

28% in the second year of study, both with statistical significance at the 0.05

level. For the final three years, the reduction still ranged from 24% to 30%.

However, these reductions did not achieve statistical significance. A decreas-

3



1.3. Neutralizing Antibodies in the IFNB Pivotal Trial

ing trend in the annual exacerbation rate was observed over the 5-year course

of study in all groups with the placebo group always having the highest rate

whereas the 8 MIU group always had the lowest rate.

1.3 Neutralizing Antibodies in the IFNB

Pivotal Trial

1.3.1 Overview

The presence of neutralizing antibodies (NABs) to IFNB in the serum spec-

imens of some patients in the IFNB pivotal trial was well documented[1, 3].

Serum specimens were collected quarterly during the trial and tested for

NABs by a cytopathic effect (CPE) assay. Development of NABs began

mostly during the first year on study. In some patients, NABs appeared

inconsistently and intermittently while in others, NABs were detected per-

sistently subsequent to their first appearance.

The minimum detection limit of the CPE assay for NAB titers is 20

neutralizing units (NU/mL). A patient was identified as NAB+ if at least

two consecutive NAB titers were at least 20 NU/mL; otherwise the patient

was considered NAB−. Under this ad hoc rule, 2 of 123 placebo patients were

eventually identified as NAB+, whereas in both the 1.6 MIU and 8 MIU arm

about 35% of the patients were identified as NAB+ by the end of the trial.

1.3.2 Review of Cross-sectional Analysis

NABs were expected to diminish the efficacy of IFNB in reducing MS dis-

ease activity. To assess the impact of NABs on exacerbation rate, the an-

nualized exacerbation rate of the NAB+ patients was compared to that of

the NAB− patients on the same arm for every half-year period in a cross-

4
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sectional analysis[4]. In the 8 MIU group, the NAB+ patients had higher

estimated exacerbation rates than the NAB− patients for periods beyond

13 months on study and these exacerbation rates resembled the rates of the

placebo patients in that time period. The increases were significant over the

half-year periods of 19 – 24 and 25 – 30 months on study and over the longer

periods of 13 – 36 and 19 – 36 months on study. In the 1.6 MIU group, there

was no consistent pattern of increased exacerbation rates in the NAB+ group

compared to the NAB− group. For the half-year period of 19 – 24 months on

study, the exacerbation rate in the NAB+ group is even significantly lower

than the NAB− group. The study claimed to have shown significant evidence

of diminished treatment effect in the 8 MIU group in terms of increased risk

of exacerbation associated with development of NABs.

1.3.3 Review of Longitudinal Analysis

Petkau et al.[5] pointed out that the cross-sectional analyses were inadequate

as the baseline covariates, which might be predictive of exacerbation rates,

were not taken into account. Also, the analyses were based on each half-year

period separately and therefore were not very efficient. They suggested a

longitudinal approach to analyze the effects of NABs on exacerbation rate

to allow each patient to act as his own control. In their analysis, all patients

were initially considered as NAB−. The subsequent NAB status for each day

on study was then determined by one of several proposed ad hoc rules. The

relapse rates during NAB+ periods of individual patients were compared to

their rates during NAB− periods. This within subject comparison eliminates

the main effects of baseline covariates which are potential confounders of the

NAB effect. The longitudinal approach also allows straightforward incorpo-

ration of a time trend to adjust for the naturally changing exacerbation rates.

The first rule of classification of NAB status, referred to as “once positive,

always positive”, defines the time of switching from NAB− to NAB+ by the

5
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time of the first of two consecutive NAB titers of at least 20 NU/mL. Once

switched to NAB+, the patient is considered to remain NAB+ until the end

of the study irrespective of any of the following NAB titers. The requirement

of two consecutive NAB titers higher than a cut-off value is referred to as

“confirmation required”.

The second rule, referred to as “all switches considered”, allows switch-

ing back of the NAB status from NAB+ to NAB−. The definition for the

time of switching from NAB− to NAB+ is the same as the first rule, which

is the first time of two consecutive titers of at least 20 NU/mL. The time

of switching from NAB+ back to NAB− is the time of the first subsequent

NAB titer below 20 NU/mL with no confirmation required. The patient’s

NAB status can switch back and forth for any number of times.

Under either rule of classification, a patient is identified as “eventually

NAB+” if he has at least one NAB+ period; otherwise the patient is identi-

fied as “never NAB+”. Refining modifications applicable to both rules were

also considered to take some account of the titer levels. NAB+ is divided

into two sublevels, Low NAB+ and High NAB+, to examine the relative

effect of different levels of NAB titers. Two modifications were considered:

confirmation required or not required for switching from a lower level to a

higher level. In both cases, confirmation is not required for switching from a

higher level to a lower level.

The longitudinal approach facilitates direct comparison of exacerbation

frequencies during NAB− periods and NAB+ periods of individuals who had

at least one NAB+ period. Specifically Petkau et al.[5] considered the gener-

alized estimating equations approach which directly estimates the effects of

NABs at the population average level in terms of the relative risk of exacer-

bations while accounting for the correlation in the longitudinal observations.

6
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Their analyses also adjusted for the natural trend in exacerbation rates over

time by incorporating a linear effect of time.

By the time the longitudinal analysis was conducted, serum specimens

were tested by a new assay, namely the MxA assay, which has the same

detection limit as the CPE assay. NAB status determined by both assays

was considered but in separate analyses. With the MxA assay and the “once

positive, always positive” definition, comparing NAB+ periods to NAB− pe-

riods, the exacerbation rate increased by 28% (95% CI: −15%, 92%) in the

1.6 MIU group and by −2% (95% CI: −21%, 21%) in the 8 MIU group. With

the “all switches considered” definition, the increase in exacerbation rate was

29% (95% CI: 0%, 67%) in the 1.6 MIU group and 18% (95% CI: 0%, 40%)

in the 8 MIU group. With either definition, the increase was higher for the

low dose (1.6 MIU) group than the high dose (8 MIU) group. Using the titer

values obtained by the CPE assay, similar results were obtained, however,

with lower statistical sensitivity. In additional analyses, no evidence indicat-

ing a carryover of NAB+ effect was demonstrated. After adjustment for the

overall time trend, the relapse rates during the first NAB− period were not

statistically different from the rates during subsequent NAB− periods which

were preceded by at least one NAB+ period.

Petkau et al.[5] also estimated the power of the longitudinal analyses

based on the estimated correlation in the repeated observations on individ-

ual patients over time. Treatment with 8 MIU IFNB reduces the exacerbation

rate to about two-thirds of the placebo rate. A 50% increase in exacerbation

rate associated with the switch from NAB− to NAB+ is an effect of impor-

tance as it implies that the rate during NAB+ period resembles the placebo

rate. With the MxA assay, the power to detect a 50% increase in exacerba-

tion rate when NAB status switches from negative to positive was estimated

to be 96% for the “once positive, always positive” classification and 99.7% for

7
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the “all switches considered” classification. These longitudinal analyses with

results from the MxA assay had adequate statistical sensitivity for detecting

an effect of this magnitude.

However, the NAB effects on exacerbation rates were not precisely esti-

mated with the pivotal trial data, as demonstrated by the wide confidence

intervals obtained. The estimation of NAB effects are based directly on the

eventually NAB+ patients only. The low sensitivity is due in part to the rel-

atively small fraction of patients (about 35%) ever switching to NAB+ over

the course of trial. A larger sample of eventually NAB+ patients is required

for more precise estimation of the NAB effects.

1.4 The BEYOND Trial

The Betaseron Efficacy Yielding Outcomes of a New Dose (BEYOND) trial

was the largest MS phase III trial ever, involving a total of 2244 patients with

RRMS[6]. Patients enrolled were followed for 2 to 3.5 years. The original

objective of the BEYOND trial was to compare the efficacy of the standard

dose of IFNB (250 mcg, i.e. 8 MIU) with an experimental, higher dose of

IFNB (500 mcg, i.e. 16 MIU) and with 20 mg glatiramer acetate (GA), an

alternative treatment to IFNB.

A total of 2244 enrolled patients were randomized to the 250 mcg IFNB

group, the 500 mcg IFNB group and the GA group in the ratio 2:2:1. The

two IFNB groups were given the specified dose of IFNB injected subcuta-

neously every other day while the GA group was given a 20 mg GA injection

subcutaneously every day. Serum specimens were collected at baseline and

every 6 months for patients in the two IFNB arms and serum NAB titers

were measured by the MxA assay. The BEYOND trial provides, for the first

time, a potentially large number of NAB+ patients for assessment of NAB

8



1.5. Objectives and Outline of the Report

effects on RRMS disease activity so greater statistical sensitivity should be

expected relative to previous studies.

1.5 Objectives and Outline of the Report

The primary objective of our study is to contrast two longitudinal approaches

for comparing exacerbation rates during NAB− and NAB+ periods. The

first, the generalized estimating equations (GEE) approach, has been ap-

plied in some previous longitudinal studies of NAB effects. The second is the

full likelihood approach of generalized linear mixed-effects models (GLMM),

which has not been utilized previously in this context due to computational

difficulties. The efficiency of GEE relative to the GLMM approach is exam-

ined. An accurate model to reflect the natural diminishing relapse rates is

crucial for estimating NAB effects unbiasedly. The adequacy and appropri-

ateness of a linear time trend will be assessed. The impact of improving the

fit of natural time trends by regression splines will also be examined.

When the clinical outcome is observed on a daily basis, the huge number

of responses for each patient inevitably hinders the use of some standard sta-

tistical software for conducting the longitudinal analysis. The daily outcome

is collapsed to a less frequently observed outcome to attempt to circumvent

these computational difficulties. The loss of sensitivity due to such reductions

in the resolution of the relapse outcome is also investigated. For coherence

and consistency, the same set of analyses is performed separately on the

250 mcg group and the 500 mcg group.

This chapter has provided some background information on the scientific

problem and described some related statistical issues. Chapter 2 provides a

general review of the two longitudinal approaches to be utilized. A specific

class of GLMM with log link and random intercept is described in detail

9
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with specific features highlighted. The regression parameters of this log-

linear model can be estimated by both longitudinal approaches.

Chapter 3 presents the results of the longitudinal analyses based on daily

clinical outcomes. The log-linear model described in Chapter 2 is utilized.

Computational issues that arose when fitting this model to our data are dis-

cussed. The adequacy and appropriateness of a linear time trend is first

assessed. When the form of the time trend is decided, the relative efficiency

of the GEE approach in estimating the NAB effects is examined. The pri-

mary assessment of NAB effects is based on comparison of NAB+ periods

to NAB− periods. Association between the relapse rate and the NAB titers

is estimated to reveal any biological gradients of relapse rate with titer value.

Chapter 4 considers collapsing the daily relapse response to a less fre-

quent response. The collapsed response is the number of relapses between

consecutive acquisitions of serum specimens. The log-linear model discussed

in Chapter 2 is applied to the collapsed count data. The loss in efficiency

due to reduction in resolution of the response, as well as the efficiency of the

GEE approach relative to the GLMM approach is examined.

Chapter 5 describes and presents the results of simulation studies inves-

tigating the finite sample properties of the GLMM and the GEE approaches

for the type of models utilized in Chapter 3. We focus on the relative ef-

ficiency of GEE when GLMM is correctly specified and the robustness of

GLMM under some form of misspecification of the random intercept. Chap-

ter 6 summarizes the overall findings and discusses problems that remain to

be investigated in the future.
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Chapter 2

Methodology

2.1 Generalized Linear Models

The class of generalized linear models (GLMs) was first developed by Nelder

and Wedderburn[7] to unify and extend various regression models, such as

classical linear models, logistic and probit regression models for binary obser-

vations and log-linear models for contingency tables. The following notations

are established for the discussion of cross-sectional analysis in Sections 2.1

and 2.2. y = (y1, . . . , yn)T is a n×1 vector of observations or responses which

is a realization of a n×1 vector of random variables Y = (Y1, . . . , Yn)T . Each

response yi is associated with a p×1 vector of covariates xi. These vectors of

covariates xi can be grouped into a n×p covariate matrix X = (x1, · · · ,xn)T .

The GLM model assumption has two components, a stochastic compo-

nent and a systematic component. The stochastic component assumes that

each component of Y independently follows a distribution in the exponential

family with density function fY (·) given by

fYi(yi; θi, φ) = exp

{
yiθi − b(θi)

a(φ)
+ c(yi, φ)

}
, (2.1.1)

where θi is a location parameter and φ is a dispersion parameter. The disper-

sion parameter is known for some distributions. For example, φ = 1 for the

binomial and Poisson distributions, the most commonly used distributions in

GLMs for binary and count responses respectively. For our scope of discus-

sion, we assume a common constant dispersion a(φ) = φ across observations.

11



2.1. Generalized Linear Models

The mean and variance of Yi are given by

E(Yi) = b′(θi) = µi (2.1.2)

and

Var(Yi) = φ · b′′(θi) = φ · v(µi). (2.1.3)

The variance is determined by the mean through the known variance func-

tion v(·), up to a scalar multiple represented by the dispersion parameter φ.

The systematic component assumes that the effects of the covariates can

be represented by a linear predictor,

ηi = xTi β, (2.1.4)

where β = (β1, . . . , βp)
T is a p× 1 vector of unknown regression coefficients.

In matrix notation, η = Xβ, where η = (η1, . . . , ηn)T . A known link function

g(·) then relates the linear predictor to the corresponding mean,

g(µi) = ηi, (2.1.5)

which completes the specification of the mean structure. The link func-

tion g(·) can be any monotone differentiable function but there are common

choices for specific types of response variable.

The log likelihood function of a GLM has a general form,

l(θ, φ; y) =
n∑
i=1

li(θi, φ; yi) =
n∑
i=1

{
yiθi − b(θi)

φ
+ c(yi, φ)

}
. (2.1.6)

12



2.1. Generalized Linear Models

By recognizing from (2.1.1) and (2.1.2) that

∂li
∂θi

=
yi − b′(θi)

φ
=
yi − µi
φ

,

and from (2.1.3) that

dθi
dµi

=
dθi

db′(θi)
=

1

b′′(θi)
=

1

v(µi)
,

the score function, the first derivative of the log likelihood function (2.1.6),

is given by

s(β;φ,y) =
∂l

∂βT
=

n∑
i=1

∂li
∂θi

dθi
dµi

∂µi

∂βT

=
n∑
i=1

∂µi

∂βT
1

φ · v(µi)
(yi − µi) . (2.1.7)

From (2.1.4), we have

∂µi

∂βT
=
dµi
dηi

∂ηi

∂βT
=
dµi
dηi

xi,

so the score function can be re-expressed as

s(β;φ,y) =
1

φ

n∑
i=1

xiwi
dηi
dµi

(yi − µi),

where wi =
(
dµi
dηi

)2
1

v(µi)
.

If the maximum likelihood estimate (MLE) of β is an interior point in

the parameter space, it is a solution to the estimating equations

n∑
i=1

xiwi
dηi
dµi

(yi − µi) = 0,

13



2.1. Generalized Linear Models

which can be expressed in matrix notation as

XTW∆(y − µ) = 0, (2.1.8)

with W = diag(w1, . . . , wn), derivative matrix ∆ = diag
(
dη1
dµ1
, . . . , dηn

dµn

)
and

µ = (µ1, . . . , µn)T . Under the assumption of constant dispersion, solving for

the MLE of β does not involve the dispersion parameter φ.

Nelder and Wedderburn[7, 8] provided a generic model fitting algorithm,

the iteratively reweighted least squares (IRWLS) method on transformed

dependent variables, for solving the GLM maximum likelihood estimating

equations (2.1.8). IRWLS is computationally simple and is equivalent to

Fisher’s scoring method first proposed by Fisher in the context of probit

analysis.

Fisher’s scoring method is a variant of Newton’s method where the Hes-

sian matrix is replaced by its expected value. Omitting the dispersion pa-

rameter, the expected value of the Hessian matrix is given by

E

[
d2l

dβdβT

]
=

n∑
i=1

E

[
(yi − µi)

d

dβ

(
xiwi

dηi
dµi

)
+ xiwi

dηi
dµi

d

dβ
(yi − µi)

]
=

n∑
i=1

[
d

dβ

(
xiwi

dηi
dµi

)
E (yi − µi)− xiwi

dηi
dµi

dµi
dβ

]
= −

n∑
i=1

xiwi
dηi
dµi

dµi
dηi

dηi
dβ

= −
n∑
i=1

xiwix
T
i ,

which can be expressed as

E

[
d2l

dβdβT

]
= −XTWX.
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2.1. Generalized Linear Models

Given the current estimates at the kth iteration of Fisher’s scoring method,

β̂
(k)

, µ̂(k) η̂(k), W(k) and ∆(k), the updated β̂
(k+1)

is obtained by

β̂
(k+1)

= β̂
(k)

+
(
XTW(k)X

)−1
XTW(k)∆(k)(y − µ̂(k)). (2.1.9)

Fisher’s scoring method can be shown to be equivalent to IRWLS by rear-

ranging (2.1.9) as,

XTW(k)X
(
β̂

(k+1)
− β̂

(k)
)

= XTW(k)∆(k)(y − µ̂(k))

⇒ β̂
(k+1)

=
(
XTW(k)X

)−1
XTW(k)

(
Xβ̂

(k)
+ ∆(k)(y − µ̂(k))

)
=
(
XTW(k)X

)−1
XTW(k)

(̂
η(k)+ ∆(k)(y − µ̂(k))

)
.

(2.1.10)

This updating is thus equivalent to solving weighted least squares equations

with the transformed dependent variable

z
(k)
i = η̂

(k)
i +

dηi
dµi

(yi − µ̂i(k))

and weights

w
(k)
i =

(
dµi
dηi

)2
1

v(µ̂i
(k))

.

In accordance with standard likelihood theory,
√
n
(
β̂ − β

)
converges in

distribution to normal with mean 0 and covariance matrix φ ·
(
XTWX

)−1
,

as n tends to infinity.

As already noted, the MLE of β does not depend on the dispersion pa-

rameter φ. However, as Var(β̂) depends on φ, the dispersion parameter needs

to be estimated for any statistical inference. In case of a common dispersion
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2.2. The Quasi-likelihood Approach

parameter, φ can be consistently estimated by the moment estimator

φ̃ =
1

n− p

n∑
i=1

(yi − µ̂i)2

v(µ̂i)
, (2.1.11)

where µ̂i = g−1
(
xTi β̂

)
are the MLEs of the means.

2.2 The Quasi-likelihood Approach

In practice, we may be able to justify a specified mean structure and variance

function for observed responses. However, there may not be any distribution

in the exponential family or any actual probability distribution which has

the desired mean-variance structure and range of possible response values.

Wedderburn[9] proposed the quasi-likelihood approach as an alternative

to the GLM approach when inference on the regression parameters is the

main interest. In the quasi-likelihood approach, the responses Yi’s are as-

sumed independent with mean µi and variance φ · v(µi), where v(·) is a

known variance function and the dispersion parameter φ may be unknown

but is assumed to be constant. The mean µi depends on covariates xi as

in (2.1.4) and (2.1.5) for GLM. No further assumption is required regarding

the distribution of Yi.

A quasi-likelihood function, if it exists, is defined as

Q(µ, φ; y) =
n∑
i=1

∫ µi

yi

yi − t
φ · v(t)

dt,

which is anticipated to exhibit similar behaviour to a log-likelihood func-

tion under mild assumptions. In some cases, the quasi-likelihood function

is the GLM log-likelihood function with the corresponding mean-variance
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2.3. Marginal Models for Longitudinal Data

structure. The maximum quasi-likelihood estimate β̃ of the regression pa-

rameters maximizes the quasi-likelihood function. When this estimate is

an interior point solution, it solves the quasi-likelihood estimating equations

which take the same form as (2.1.7) and thus can be solved by Fisher’s algo-

rithm (2.1.9) or IRWLS (2.1.10) as for GLM. The resulting quasi-likelihood

estimator β̃ is consistent and
√
n
(
β̃ − β

)
converges in distribution to nor-

mal with mean 0 and covariance matrix φ ·
(
XTWX

)−1
as n tends to infinity.

In general, the dispersion parameter can be consistently estimated by the

same moment estimator in (2.1.11), given the quasi-likelihood estimates of

the means, µ̃i = g−1
(
xTi β̃

)
.

2.3 Marginal Models for Longitudinal Data

2.3.1 Overview

For longitudinal data, observations on a response are taken repeatedly on

each subject over a period of time. The repeated measures on the same

subject are likely to be statistically dependent due to unobservable or un-

measured characteristics of the subjects. An assumption of independence of

the repeated measures is usually not justified. Direct application of GLM

to longitudinal data is thus inappropriate. Alternative approaches which

account for the dependence are needed in order to draw valid statistical in-

ferences. Two extensions to GLM applicable to longitudinal data will be

discussed and compared. First, we focus on a class of marginal models which

is a straightforward extension of GLM to longitudinal data. In contrast to

the class of mixed-effects models which will be discussed in the next section,

this class of marginal models enable separate construction of the mean struc-

ture and the dependence structure.

17



2.3. Marginal Models for Longitudinal Data

Suppose m subjects are followed over time with ni repeated measures

on the ith subject at times tij, j = 1, . . . , ni. A total of N =
∑m

i=1 ni mea-

sures are recorded. Let observation yij be the realization of Yij, the response

variable of the jth measure on the ith subject at time tij. Each response is

associated with a p × 1 vector of covariates xij. These covariates can be

invariant or varying over time. The covariate vectors for the same individual

can be grouped in a ni × p matrix, Xi = (xi1, · · · ,xini
)T . The vectors of

responses Yi = (Yi1, . . . , Yini
)T are independent across subjects.

A marginal model has a three-fold specification. Firstly, the marginal

mean E(Yij) = µij depends on the covariates through a known link function

g(·) as

g(µij) = ηij = xTijβ,

where β = (β1, . . . , βp)
T is a vector of p regression coefficients. Secondly, the

marginal variance Var(Yij) depends on the marginal mean through a known

variance function v(·) that is scaled by a dispersion parameter,

Var(Yij) = φ · v(µij).

The dispersion parameter can be time dependent or modelled as a function

of covariates, but for our scope of discussion, we assume a constant dis-

persion across subjects and times. The first two components of the model

specification are the same as in GLM, whereas the third component is the

extension to accommodate longitudinal data by specification of the pairwise

dependence of responses of the same individual. We depict the dependence

structure by pairwise correlations where the ni×ni correlation matrix Ri(α)

of Yi is completely specified by a s × 1 vector of association parameters α.

The variance-covariance matrix of Yi is thus given by

Vi = φ ·A1/2
i Ri(α)A

1/2
i , (2.3.1)
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2.3. Marginal Models for Longitudinal Data

where Ai = diag(v(µi1), . . . , v(µini
)).

With only the mean structure and the variance-covariance structure spec-

ified, the joint distribution of Yi is not completely determined in general. For

continuous data, the joint distribution of the longitudinal observations are

often assumed to be multivariate normal which is completely specified by

the first two moments. For discrete data, there is no simple analogue to

the multivariate normal distribution. Higher order moment assumptions are

involved in constructing a joint distribution for non-normal data which be-

comes impractical. For example, Bahadur[10] proposed a parameterization

for multivariate binary responses Y = (y1, . . . , yn)T ,

P(Y = y) =
n∏
i=1

µyii (1− µi)1−yi×(
1 +

∑
i<j

ρijrirj +
∑
i<j<k

ρijkrirjrk + · · ·+ ρ1,...,nr1 . . . rn

)
,

where ri is the realization of Ri = Yi−µi√
µi(1−µi)

, ρij = Corr(Yi, Yj) = E(RiRj),

ρijk = E(RiRjRk), . . . , and ρ1,...,n = E(R1 . . . Rn). Diggle et al.[11] and

Chaganty and Joe[12] pointed out that the correlations among the binary

responses are constrained by the marginal means in complicated ways with

the upper and lower bounds determined by the Fréchet bounds. When the

marginal mean depends on some covariates, the convenient assumption that

the pairwise and higher-order correlations are independent of the covariates

is impossible.

When a full likelihood is not available, alternative approaches to max-

imum likelihood estimation must be employed for inference on regression

parameters. One alternative is the generalized estimating equations (GEE)

approach.
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2.3. Marginal Models for Longitudinal Data

2.3.2 Inferential Approach: Generalized Estimating

Equations

Liang and Zeger[13, 14] proposed the generalized estimating equations (GEE)

approach as an extension of generalized linear models for longitudinal data

to obtain consistent estimates of regression coefficients and their standard

errors. The GEE approach does not require the assumption of an exponen-

tial family distribution for the marginal model. Therefore, it can be regarded

more generally as an extension of the quasi-likelihood approach for clustered

data. The GEE approach provides a framework for estimation for the class

of marginal models in the previous section.

Due to the often complicated underlying stochastic process that gener-

ates the longitudinal data, the true correlation structure is usually difficult

to determine. When the dependence of the mean on the covariates is of pri-

mary interest, the regression parameters β are the main target of inference

and the association parameters α can be treated as nuisance parameters. In

these circumstances, it would be desirable if valid inference for the regres-

sion parameters could be achieved without having to specify the correlation

structure correctly.

The GEE approach gives a consistent estimate of β and the asymptotic

variance-covariance matrix of this estimate regardless of the true correlation

structure. The specific estimating equations of the GEE approach depend

upon a so-called “working” correlation matrix, also denoted Ri(α), but this

need not be the true correlation matrix. Common choices of “working” cor-

relation structure include,

1. Independence where Ri(α) = Ini
, the ni × ni identity matrix;
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2.3. Marginal Models for Longitudinal Data

2. Exchangeable where

Corr(Yit, Yit′) = α, (2.3.2)

for all t 6= t′;

3. AR−1, a continuous time analogue of the first-order autoregressive

process, where

Corr(Yit, Yit′) = α|t−t
′|

for all t 6= t′; and

4. m-dependence where

Corr(Yit, Yit+l) =

{
αk, for l = 1, . . . ,m

0, for l = m+ 1, . . . , ni
.

GEE can be viewed as quasi-likelihood estimating equations for longitu-

dinal data taking the form

m∑
i=1

DT
i V−1

i (yi − µi) = 0, (2.3.3)

where Di = dµi

dβ
is a ni × p matrix,

Di =


∂µi1/∂β1 · · · ∂µi1/∂βp

...
. . .

...

∂µini
/∂β1 · · · ∂µini

/∂βp

 ,

and Vi = φ ·A1/2
i Ri(α)A

1/2
i as specified in (2.3.1) but with Ri(α) being the

“working” correlation matrix. Since Di and Vi do not depend on yi, the left-

hand side of (2.3.3) has expectation equal to 0, so the estimating equations

are unbiased irrespective of the choice of “working” correlation matrix. The
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2.3. Marginal Models for Longitudinal Data

roots of the estimating equations are thus consistent if the mean structure is

correctly specified so that E (yi − µi) = 0.

Estimating equations (2.3.3) can be solved iteratively by a modified Fisher’s

scoring algorithm augmented with moment estimation of α and φ. Regard-

ing the left hand side of (2.3.3) as the estimating function, the expected value

of its first derivative matrix is given by −
∑m

i=1 DT
i V−1

i Di. Hence, given the

kth step estimates β̂
(k)

, α̂(k) and φ̂(k), the updated β̂
(k+1)

, α̂(k+1) and φ̂(k+1)

can be obtained by a two-stage iterative procedure:

1. Compute µ̂(k), D
(k)

i and V
(k)

i based on the current estimates β̂
(k)

, α̂(k)

and φ̂(k). Then, update β̂
(k+1)

by the modified Fisher’s scoring algo-

rithm,

β̂
(k+1)

= β̂
(k)

+

{
m∑
i=1

D
(k)T
i V

(k)−1
i D

(k)

i

}−1{ m∑
i=1

D
(k)T
i V

(k)−1
i

(
yi − µ̂

(k)
i

)}
,

or equivalently by

β̂
(k+1)

=

{
m∑
i=1

D
(k)T
i V

(k)−1
i D

(k)

i

}−1{ m∑
i=1

D
(k)T
i V

(k)−1
i zi

}
, (2.3.4)

where

zi = D
(k)

i β̂
(k)

+
(
yi − µ̂

(k)
i

)
.

Step (2.3.4) is equivalent to weighted least squares with transformed

dependent variable zi, covariate matrix Di and weight matrix V−1
i .

2. After obtaining the fitted mean µ̂(k+1) from the updated regression

coefficients β̂
(k+1)

, the standardized residuals

r
(k+1)
ij =

(
yij − µ̂(k+1)

ij

)
√
v(µ̂

(k+1)
ij )

, (2.3.5)

22



2.3. Marginal Models for Longitudinal Data

form the basis for estimation of φ and α. The association parameter, α,

is estimated by a
√
m-consistent estimator, α̂(β, φ), which is a function

of the data, β and φ. The unknown dispersion parameter, φ, in α̂(β, φ)

is estimated by a
√
m-consistent estimator, φ̂(β), which is a function of

the data and β. The unknown β in both α̂(β, φ) and φ̂(β) is replaced

by β̂
(k+1)

evaluated in step 1.

The two steps: the updating to β̂
(k+1)

and the estimation of φ and α are

iterated until convergence. An initial value for β is usually obtained from a

GLM fit pretending the observations are independent.

Under mild regularity conditions, as the number of subjects m tends to

infinity,
√
m(β̂ − β) is asymptotically p-variate normal with mean 0 and

covariance matrix ΣGEE given by

ΣGEE = (2.3.6)

lim
m→∞

m·

(
m∑
i=1

DT
i V−1

i Di

)−1( m∑
i=1

DT
i V−1

i Cov(Yi)V
−1
i Di

)(
m∑
i=1

DT
i V−1

i Di

)−1

.

For finite samples, the covariance matrix of β̂ can be approximated by the

so-called “sandwich estimate”,

Σ̂β̂ ≈ (2.3.7)(
m∑
i=1

D̂T
i V̂−1

i D̂i

)−1( m∑
i=1

D̂T
i V̂−1

i (yi − µ̂i) (yi − µ̂i)
T V̂−1

i D̂i

)(
m∑
i=1

D̂T
i V̂−1

i D̂i

)−1

,

where the term Cov(Yi) in the asymptotic covariance matrix (2.3.7) is re-

placed by a simple moment estimate (yi − µ̂i) (yi − µ̂i)
T , while Di and Vi

are also replaced by their corresponding estimates. The consistency of β̂ and

the covariance matrix follows provided the mean structure is correctly speci-

fied regardless of the choice of “working” correlation structure. The validity
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of these asymptotic results does not depend on the specific choice of estima-

tors of α and φ as long as they are
√
m-consistent. Thus, the GEE approach

is robust to the “working” correlation assumption. However, higher statis-

tical efficiency is achieved if the “working” correlation structure is closer to

the true correlation structure[13].

Liang and Zeger[13, 14] also proposed the following moment estimators

of α and φ. Given the standardized residuals (2.3.5) at a certain iteration,

the moment estimator of φ is given by

φ̂ =

∑m
i=1

∑ni

j=1 r
2
ij

N − p
.

The estimator of α depends on the specific structure of R(α). For example,

when α represents the pairwise correlation in an exchangeable correlation

structure as defined in (2.3.2), for given φ, it can be estimated by

α̂ =
φ ·
∑m

i=1

∑
j>k rijrik∑m

i=1
1
2
ni(ni − 1)− p

.

The sandwich estimator of variance may exhibit bias when the number

of clusters is small, e.g. m < 30. Paik[15] proposed the jackknife variance

estimator as an improvement to the sandwich estimator. This jackknife es-

timator is defined as

Σ̃β̂ =
m− p
m

m∑
i=1

(
β̂−i − β̂

)(
β̂−i − β̂

)T
, (2.3.8)

where β̂−i is the estimate obtained for β when the ith subject is removed

from the dataset. In a simulation study, the jackknife variance estimator

was shown to have superior properties over the sandwich variance estima-

tor. This jackknife estimator is sometimes referred to as the fully iterated

jackknife estimator. In each iteration, the model is fitted by fully iterated
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Newton method to the dataset with one cluster removed. Since the model

needs to be fitted as many times as the number of clusters, this jackknife

estimator is computationally intensive when the number of clusters is mod-

erate or large. Halekoh et al.[16] implemented the sandwich estimator, the

fully iterated jackknife estimator as well as an approximate jackknife esti-

mator and an one-step jackknife estimator in the R package geepack. For

the one-step jackknife estimator, each β̂−i is obtained by one-step Newton

iteration. Their simulations and other previous simulations indicate that the

latter two computationally less demanding versions of jackknife estimates are

in many cases accurate approximates to the fully iterated jackknife variance

estimate.

This class of marginal models is a suitable modelling approach in many

clinical trials and observational studies when the average effects of treat-

ments or exposures in the population of interest are the primary target of

inference. The regression parameters are directly interpretable as the popu-

lation average effects. This interpretation is invariant to the specification of

the correlation structure, or more generally the association structure.

GEE permits consistent point estimation and interval estimation under

weak assumptions. Hypothesis tests for contrasts of β are based on the

resulting Wald-type statistics. Suppose we are interested in testing H0 :

Cβ = 0 against H0 : Cβ 6= 0, with C being a contrast matrix of rank q.

The Wald-type statistic

W 2 = β̂
T
CT
(
CΣ̂β̂CT

)−1

Cβ̂ (2.3.9)

asymptotically follows a χ2-distribution with q degrees of freedom. The

Wald-type test can be used to compare nested models if the reduced model

can be obtained by setting some contrasts in the full model to zero. However,

likelihood-based tools such as likelihood ratio tests are not available. There
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are also no widely accepted criteria, such as the Akaike Information Crite-

rion (AIC), for comparing non-nested models. Thus, model comparisons are

sometimes difficult, especially for non-nested models.

2.4 Generalized Linear Mixed-effect Models

2.4.1 Overview

Generalized linear mixed-effect models (GLMM) is another extension of gen-

eralized linear models for repeated measures and longitudinal data. In GLMM,

some of the regression coefficients are assumed to vary across subjects to

reflect natural between-subject heterogeneity due to unmeasured and unob-

servable factors.

Given a q × 1 vector of random effects bi, Yij is assumed to have a con-

ditional distribution in the exponential family with density function, fY (·),
as (2.1.1). Conditional on the random effects, the Yij’s are usually assumed

to be independent of one another. This is sometimes referred to as the con-

ditional independence assumption. Though the conditional independence

assumption is not necessarily required, it is invariably adopted for discrete

responses since direct modelling of correlation structure is difficult.

The conditional mean of Yij is modelled as

g (E[Yij|bi]) = ηij = xTijβ + uTijbi,

where g(·) is a known link function and the q × 1 vector uij is a subset of

the p× 1 vector of covariates xij. The random effects bi are assumed to be

independently and identically distributed with density fb(·), having mean

E(bi) = 0 and depending on a set of parameters Vb. The random effects

distribution is often assumed to be multivariate normal for mathematical
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2.4. Generalized Linear Mixed-effect Models

convenience. In this case, Vb represents the covariance matrix of the ran-

dom effects.

When the conditional independence assumption is made, association among

the repeated measures is not modelled directly. Instead, within subject cor-

relation is entirely induced by the random effects. In the case of linear

mixed-effects models where the continuous responses are assumed to be con-

ditionally independent and normal with common variance σ2 and an identity

link g(t) = t is used, the induced marginal covariance structure is given by

Cov(Yi) = UiVbUT
i + σ2Ii,

where Ui = (ui1 · · ·uini
)T is the ni × q matrix of covariates corresponding

to the random effects and Ii is the ni × ni. identity matrix. For discrete

responses, a nonlinear link would usually be used and the induced covariance

matrix is often mathematically intractable.

The regression coefficients β are usually referred to as the fixed effects.

In the general case, they can be interpreted as the effects of the covariates

on an individual whose random effects bi are equal to 0. In some cases the

random effects are assumed only for the time independent covariates, repre-

senting heterogeneity at baseline levels. In that case, the fixed effects for the

time dependent covariates are interpreted as the effects of the covariates at

the subject level. These common effects across individuals do not necessarily

represent the effects at population level. Therefore, mixed-effects models are

sometimes called subject-specific models, in contrast the marginal models in

Section 2.3 which are referred to as population-averaged models.

When an identity link is used, the conditional mean structure of GLMM,

E[Yij|bi] = xTijβ + uTijbi,
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2.4. Generalized Linear Mixed-effect Models

and its implied marginal mean structure,

E[Yij] = xTijβ,

happen to have the same functional form for β. In general when nonlinear

links are adopted, the implied marginal mean structure,

E[Yij] = Eb[g
−1(xTijβ + uTijbi)],

and the conditional mean structure have different functional forms. The

functional form of the implied marginal mean structure depends on the dis-

tribution of the random effects and the link function. In many cases, such

as when a logit link and normal random effects are assumed, an explicit an-

alytic form may not exist. As a consequence, the regression coefficients β

may not have a straightforward interpretation in terms of the marginal mean

structure.

This issue can be illustrated by an example. Suppose given a random

intercept bi0 and a random slope bi1, the responses Yij are independent with

conditional means µ
(C)
ij . which depend on the conditional linear predictor

η
(C)
ij through a log link,

log
(
µ

(C)
ij

)
= η(C) = (β0 + bi0) + (β1 + bi1)xij. (2.4.1)

The marginal mean µ
(M)
ij can be obtained by taking expectation over the

distribution of the random effects,

µ
(M)
ij = E

[
µ

(C)
ij

]
= E [exp {(β0 + bi0) + (β1 + bi1)xij}]

= exp {β0 + β1xij} · E [exp {bi0 + bi1xij}]

= exp {β0 + β1xij} ·Mb0,b1 (1, xij) ,
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2.4. Generalized Linear Mixed-effect Models

where Mb0,b1 (·, ·) is the moment-generating function (MGF) of the joint dis-

tribution of b0 and b1. If b0 and b1 are statistically independent, the joint

MGF is the product of the marginal MGFs Mb0(·) and Mb1(·). If the ran-

dom effects are assumed to follow independent normal distributions with

mean 0 and variance σ2
0 and σ2

1 respectively, the log transformed marginal

mean happens to have a simple analytic form

log
(
µ

(M)
ij

)
=

(
β0 +

1

2
σ2

0

)
+ β1xij +

1

2
σ2

1x
2
ij, (2.4.2)

which is no longer a linear but a quadratic function in xij. The impact

of xij on the marginal mean µ
(M)
ij depends not only on β1 but also on the

variability of the random slope σ2
1. The regression coefficient β1 does not

have a simple interpretation in terms of the population averaged effect of the

predictor x. Figure 2.1 shows the conditional means as well as the implied

marginal means for parameter values β0 = −5, σ0 = 2, β1 = 1.5, σ1 = 1. For

the conditional means, the random intercept and random slope are evaluated

at the 10th, 20th, . . . , 80th and 90th percentiles.

2.4.2 Inferential Approach: Maximum Likelihood

Maximum likelihood estimation is the standard inferential approach for GLMM.

The marginal likelihood function for the parameters β, φ and Vb is

L(β,Vb, φ; y1, . . . ,ym) =
m∏
i=1

∫ { ni∏
j=1

fY (yij|bi; xi,β, φ)

}
fb(bi; Vb)dbi.

The likelihood function does not have a closed form in general. Numeri-

cal methods are required to evaluate the integral that yields the marginal

likelihood of yi

Li(β,Vb, φ; yi) =

∫ { ni∏
j=1

fY (yij|bi; xi,β, φ)

}
fb(bi; Vb)dbi, (2.4.3)
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2.4. Generalized Linear Mixed-effect Models

which can also be expressed as an expectation of the conditional likelihood

over the distribution of the random effects, E
[∏ni

j=1 fY (yij|bi; xi,β, φ)
]
. If

the random effects are assumed to be normally distributed and the number

of random effects q is small, for example fewer than 5, the marginal likeli-

hood (2.4.3) is usually approximated by Gauss-Hermite quadrature. Using

a fixed set of K quadrature points and weights {(z1, w1), . . . , (zK , wK)}, the

numerical approximation is simply a weighted sum of the conditional likeli-

hood evaluated at scaled quadrature points, bi = V
1/2
b zk,

Li(β,Vb, φ; yi) ≈
K∑
k=1

wk ·

{
ni∏
j=1

fY (yij|bi = V
1/2
b zk;β)

}
.

The accuracy of the approximation is higher with more quadrature points.

Adaptive Gaussian quadrature is an alternative numerical approximation

which shifts the centers of the Gaussian approximation from 0 to the pos-

terior mode of the random effects. Higher accuracy is achieved with the

same number of quadrature points than with Gauss-Hermite quadrature.

Numerical optimization, such as the quasi-Newton method with numerical

derivatives, is then applied to locate the maximum of the marginal likelihood

function.

Given the MLEs of β, Vb and φ, inference on the fixed effects β follows

standard likelihood theory. Hypothesis tests for nested models can be carried

out by the likelihood ratio (LR) test, in addition to the Wald-type test (2.3.9)

which is the sole option for the GEE approach. The LR test statistic,

G2 = 2 (lfull − lreduced) , (2.4.4)

follows asymptotically a χ2-distribution with s degrees of freedom, where

lfull and lreduced are the maximum log likelihood under the full model and

the reduced model respectively and s is the number of restrictions on the
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2.4. Generalized Linear Mixed-effect Models

parameters of the full model for obtaining the reduced model. The LR test

is sometimes preferred to the Wald-type test for higher statistical sensitivity

and its property of invariance to parameterization.

Testing of variance components by the LR test are non-standard prob-

lems. Under the null hypothesis, some variance components are putatively

zero, falling on the boundary of the parameter space. In general, the asymp-

totic distributions of the test statistics (2.4.4) are mixtures of χ2-distributions[17].

The form of mixture depends on the number of parameters of interest on the

boundary and in the interior space under null hypothesis, and the number of

nuisance parameters on the boundary and in the interior space. For the sim-

plest case when a single variance component is the only parameter of interest

and all other nuisance parameters lie in the interior space, the asymptotic dis-

tribution of the LR test statistic is a 50:50 mixture of χ2
0 and χ2

1 distributions.

Random effects bi of individual subjects can be predicted by the empirical

Bayes estimates,

b̂i = E
[
bi|Yi = yi;β = β̂,Vb = V̂b, φ = φ̂

]
,

with the posterior mean of the random effects evaluated as if all the parame-

ters conditioned on are known with values equal to the corresponding plug-in

estimates β̂, V̂b and φ̂. The integration yielding the conditional expectation

typically needs to be evaluated by numerical methods.

The maximum likelihood estimates of the variance components of re-

gression models are well-known to be underestimates in small samples. For

example, in simple linear models, the maximum likelihood estimate of the

variance is obtained by dividing the residual sum of squares by n, the num-

ber of observations. An unbiased estimate of this variance is obtained by

replacing n in the denominator of the maximum likelihood estimator by the
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2.5. Log-linear Models

residual degrees of freedom. For general linear models or linear mixed-effects

models, the bias adjustment is more than a simple adjustment to the denom-

inator. This motivated a variant of maximum likelihood estimation, namely

restricted maximum likelihood (REML) estimation, first introduced by Pat-

terson and Thompson[18]. One explanation of the underestimation is that

maximum likelihood does not take into account the fact that β is also esti-

mated, while the estimator of the variance components is not orthogonal to

the estimator of β. The main idea of REML is therefore to estimate the vari-

ance components by maximum likelihood upon a partition of the data whose

distribution does not depend on β but only on the variance components. In

the case of general linear model, one way to partition the data is to use the

ordinary least squares residuals for estimation of the variance components.

After obtaining the REML estimates of the variance components, β is esti-

mated by the usual general least squares approach.

The notion of REML generalizes to GLMM, but the estimation algorithm

is less straightforward than for linear models. For example, McCulloch con-

sidered a class of probit normal models for binary data and described a

version of REML implemented with the EM algorithm[19]. As the bias of

maximum likelihood for variance components diminishes when the sample

size is substantially larger than the dimension of β, the difference between

maximum likelihood and REML becomes less important[20].

2.5 Log-linear Models

2.5.1 Mixed-effects Models

In this section, we describe a class of log-linear models with random intercept

which will be utilized for data analysis in the following chapters. Given a

univariate random effect bi, the responses Yij are assumed to be conditionally

independent, following some distribution in the exponential family (2.1.1)
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with conditional mean E(Yij|bi) = µ
(C)
ij . The conditional mean depends on

the random intercept and a p× 1 vector of covariates xij through a log link,

log
(
µ

(C)
ij

)
= bi + ηij = bi + β0 + xTijβ,

where β0 is the overall intercept and β is a p× 1 vector of fixed effects. The

random intercept is assumed to follow some distribution with density func-

tion fb(·) having mean E(bi) = 0 and variance Var(bi) = σ2
b .

Conditional on the random effect, the regression coefficient correspond-

ing to a continuous covariate can be interpreted as the log relative risk for

a binary response or the log relative rate for a count response for every unit

increment of the covariate, adjusted for all other covariates. When the co-

variate is binary, representing two exposures or treatments, the regression

coefficient can be interpreted as the adjusted log relative risk or relative rate

comparing the two exposures or treatments. The likelihood-based approach

for GLMM described in Section 2.4 can be applied to analyze data using this

log-linear random intercept model.

2.5.2 Marginalized Models

The marginal mean structure for the log-linear mixed-effects model can be

obtained by taking the expectation of the conditional mean over the distri-

bution of the random intercept. Denoting the marginal mean as

µ
(M)
ij = E(Yij) = E[E(Yij|bi)] = E(µ

(C)
ij ),
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the marginal mean structure is given by

log
(
µ

(M)
ij

)
= η

(M)
ij = log

(
E
[
exp(bi + β0 + xTijβ)

])
= log

(
E
[
ebi
])

+ β0 + xTijβ

= log (Mb(1)) + β0 + xTijβ

= log (Mb(1)) + ηij (2.5.1)

where Mb(·) is the MGF of the random intercept bi. The constant term

log (Mb(1)) can be absorbed into the intercept, yielding

log
(
µ

(M)
ij

)
= β∗0 + xTijβ. (2.5.2)

In this model, the marginal mean structure has the same functional form as

the conditional mean structure. It follows that the regression parameters β

have the same interpretation at the individual level as well as at the popu-

lation averaged level regardless of the distribution of the random intercept.

The only exception is the intercept term which depends on the distribution

of the random intercept as the MGF of the random effect enters the intercept

term in the implied marginal mean structure. In the special case of a normal

random effect distribution with variance σ2
b ,

β∗0 = β0 +
1

2
σ2
b . (2.5.3)

Binary response

When the response Yij is binary, the conditional and marginal distribution

are both Bernoulli with mean µ
(C)
ij and µ

(M)
ij respectively. The marginal

variance is simply

Var(Yij) = µ
(M)
ij (1− µ(M)

ij ).
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The marginal covariance of two distinct responses on the same individual,

Yij and Yik where j 6= k, is given by

Cov(Yij, Yik) = Cov(E[Yij|bi],E[Yik|bi]) + E(Cov[Yij, Yik|bi])

= Cov(µ
(C)
ij , µ

(C)
ik )

= E(µ
(C)
ij µ

(C)
ik )− µ(M)

ij µ
(M)
ik

= E (exp{2bi + ηij + ηik})− µ(M)
ij µ

(M)
ik

=
Mb(2)

M2
b (1)

µ
(M)
ij µ

(M)
ik − µ

(M)
ij µ

(M)
ik

=

(
Mb(2)

M2
b (1)

− 1

)
µ

(M)
ij µ

(M)
ik . (2.5.4)

The marginal correlation is thus

Corr(Yij, Yik) =
Cov(Yij, Yik)√

Var(Yij)Var(Yik)

=

(
Mb(2)

M2
b (1)
− 1
)
µ

(M)
ij µ

(M)
ik√

µ
(M)
ij (1− µ(M)

ij )µ
(M)
ik (1− µ(M)

ik )
,

which depends upon the random effect distribution and the marginal means

in an obscure way. In general, the pairwise correlation increases with the

marginal mean. When the µ
(M)
ij ’s are small, the marginal correlation is ap-

proximately

Corr(Yij, Yik) ≈
(
Mb(2)

M2
b (1)

− 1

)√
µ

(M)
ij µ

(M)
ik .

For a fixed individual i, if the marginal mean µ
(M)
it does not vary much over

time so that
√
µ

(M)
ij µ

(M)
ik ≈ µ

(M)
i , an exchangeable correlation structure is a

close approximation to the above implied marginal correlation. If no baseline

covariates are included in the model such that µ
(M)
i does not vary across

individuals, a common exchangeable correlation structure is a reasonable
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choice of “working” correlation structure. In the special case when there

is no covariate effect, the correlation matrix has exactly an exchangeable

structure.

Count response

When the response Yij is a count, the conditional distribution of Yij given bi

is usually assumed to be Poisson, with mean µ
(C)
ij and variance equal to the

mean. By observing in (2.5.1) that

exp(ηij) =
µ

(M)
ij

Mb(1)
,

the variance of the marginal distribution is

Var(Yij) = Var(E[Yij|bi]) + E(Var[Yij|bi])

= Var(µ
(C)
ij ) + E(µ

(C)
ij )

= Var (exp{bi + ηij}) + µ
(M)
ij

= exp{2ηij} · Var (exp{bi}) + µ
(M)
ij

=
(
E(exp{2bi})− E(exp{bi})2

) [ µ(M)
ij

Mb(1)

]2

+ µ
(M)
ij

=

(
Mb(2)

M2
b (1)

− 1

)
µ

(M)2

ij + µ
(M)
ij .

When the random intercept follows normal distribution with variance σ2
b , the

marginal variance,

Var(Yij) =
(
eσ

2
b − 1

)
µ

(M)2

ij + µ
(M)
ij ,

depends on the marginal mean µ
(M)
ij and the variance component σ2

b . For

σ2
b > 0, the marginal variance is greater than the marginal mean. The

overdispersion of Yij with respect to Poisson is due to the extra variation in-
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troduced by the random intercept representing baseline heterogeneity which

persists throughout the course of the longitudinal study. Since the constant

dispersion parameter φ can be eliminated in the estimating equations (2.3.3)

and the sandwich estimator of variance (2.3.8), when an independence or a

fixed “working” correlation matrix is used, the GEE estimator of β and the

sandwich estimator of variance are robust to overdispersion. However, when

a more complicated “working” correlation structure is used, some associa-

tion parameters α need to be estimated. The consistent estimator of α may

involve φ. In this case, we have to allow for and estimate the overdispersion

φ when GEE with Poisson variance function is used for this marginal model.

The marginal covariance in (2.5.4) does not depend the distributional

form of the response but only the marginal means of the responses and the

distributional form of the random effect. The marginal correlation of the

counts Yij and Yik is thus

Corr (Yij, Yik) =
Cov (Yij, Yik)√
Var(Yij)Var(Yik)

=

(
Mb(2)

M2
b (1)
− 1
)
µ

(M)
ij µ

(M)
ik√([

Mb(2)

M2
b (1)
− 1
]
µ

(M)2

ij + µ
(M)
ij

)([
Mb(2)

M2
b (1)
− 1
]
µ

(M)2

ik + µ
(M)
ik

)
=

1√(
1 + 1

/[
Mb(2)

M2
b (1)
− 1
]
µ

(M)
ij

)(
1 + 1

/[
Mb(2)

M2
b (1)
− 1
]
µ

(M)
ik

) ,
which depends on the random effect distribution and the marginal means in

a complicated way. When the within subject covariate effects are small such

that µ
(M)
ij ≈ µ

(M)
ik for j 6= k, an exchangeable structure may provide a good

approximation to the true correlation structure. When the between subject

covariate effects are also small such that the µ
(M)
i ’s are similar across subjects,

a common exchangeable structure with a common pairwise correlation of ob-
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servations across subjects and time may be a reasonable approximation. In

the extreme case when there are no covariate effects at all, the marginal cor-

relation matrix has exactly an exchangeable structure. In general, direct uti-

lization of the exact marginal correlation structure involves some difficulties.

The estimation of the component ξ = Mb(2)

M2
b (1)

is non-standard and most generic

GEE model-fitting algorithms do not support the use of such a customized

“working” correlation. When a simple “working” correlation structure better

than the independence structure is sought, the exchangeable structure may

be applied as an effort to partially account for the within-subject correlation.

The GLMM log-linear random intercept model and its derived marginal

model are applied to analyze the BEYOND trial data. The GLMMs are

fitted by MLE, whereas the marginal models are fitted by GEE with an

exchangeable correlation structure. Chapter 3 presents the results when the

response is a binary indicator of relapse onset on the corresponding day

on study. Chapter 4 considers an alternative form of response obtained by

collapsing the daily binary responses to counts over time intervals.

38



2.5. Log-linear Models

Figure 2.1: Conditional and implied marginal mean structures of a log-linear
model with random intercept and slope: random effects are evaluated at the
10th, 20th, . . . , 90th percentiles.
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Chapter 3

Analysis of BEYOND Trial

Data

3.1 Introduction

In the BEYOND trial, 897 patients were randomized to the 250 mcg IFNB

group, 899 patients were randomized to the 500 mcg IFNB group and 448

patients randomized to the 20 mg GA group. Serum samples were collected

on most of the patients at baseline and semiannually in the two IFNB groups.

Serum samples were tested for NABs to IFNB. NAB titers were measured

by the MxA assay. Among the 1773 patients who had at least one NAB titer

measure, 320 out of 888 in the 250 mcg IFNB arm and 340 out of 885 in the

500 mcg IFNB arm had at least one NAB titer of 20 NU/mL or higher.

Variables of Interest

Onset of relapse. The clinical outcomes of interest are the dates of onset

of new relapses. Whether a new relapse started or not was recorded for every

day on study for each individual patient. By definition, a new relapse cannot

start before the patient recovers from an ongoing relapse. Therefore, during

the periods of ongoing relapses patients were not subjected to the risk of

new relapses. We call the time between the second day and the last day of a

relapse inclusively days-not-at-risk and other time during the trial days-at-

risk. Inference on the probability of a new relapse starting on a particular day

should be based exclusively on observations on days-at-risk. Unfortunately,

40



3.1. Introduction

the ending dates of relapses were not recorded in the BEYOND trial. Hence,

we adopt an ad hoc rule which assumes that all relapses last for exactly 30

days. The 29 days following the start of each relapse are excluded from all

our reported analyses.

NAB titers. The NAB titers of serum samples collected at baseline and

every 6 months afterward were measured by the MxA assay. The MxA assay

has a detection limit of 20 NU/mL. NABs to IFNB are regarded as absent

if the NAB titer is less than the detection limit. In the BEYOND dataset,

some NAB measures are missing at baseline. In all our analyses in this and

the next chapter, we assume the titer values corresponding to any missing

NAB measures at baseline are less than 20 NU/mL.

NAB status. In our analyses, the NAB status for each day is determined

by the “all switches considered” rule with “confirmation required” for both

switching from NAB− to NAB+ as well as from NAB+ back to NAB−. The

requirement of confirmation is due a belief that the reliability of the NAB

titers is low. Detailed description of this ad hoc classification rule is given in

Section 1.3.3. The cutoff for switching between NAB− and NAB+ is chosen

to be 20 NU/mL, the detection limit of the MxA assay.

Refined NAB status. A refinement of the NAB status classification is

also considered. The NAB+ periods are further divided into periods of Low

NAB+, Medium NAB+ and High NAB+ to explore the usefulness of levels of

NAB titer in predicting strength of NAB effects. Confirmation is not required

for switchings between sublevels of NAB+. The NAB+ periods are classi-

fied as Low NAB+ for NAB titers in the interval [20NU/mL, 100NU/mL),

Medium NAB+ for NAB titers in the interval [100NU/mL, 400NU/mL) and

High NAB+ for NAB titers equal to or higher than 400 NU/mL.
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Table 3.1 summarizes the scheduled clinical visits where the first NAB

serum titer became available for individual patients. Some patients did not

have their first NAB titer available until some time after baseline. Since

NABs are not expected to develop in the very early part of treatment, or

to be present at baseline before the treatment is administered, we assume

that the NAB titers for these patients are 0 NU/mL for all visits before NAB

titers are available.

Table 3.1: Time of the first available NAB titer

Groups Baseline/Day 1 Week 26 Week 52 Week 78 End of study

250 mcg 863 24 1 0 0

500 mcg 863 19 1 1 1

Using the above NAB classification rule, 248 of the 897 (28%) patients in

the 250 mcg group have at least one NAB+ period while the remaining 639

patients never have any NAB+ periods. In the 500 mcg group, 262 of the

899 (29%) patients have at least one NAB+ period while the remaining 623

patients have no NAB+ periods.

Table 3.2 shows the distribution of the time to the first confirmed NAB+

among eventually NAB+ patients. In both treatment arms, the majority of

the eventually NAB+ became NAB+ in the first one and a half years on

study. More than half of the eventually NAB+ patients were already NAB+

by around 6 months on study.

Table 3.3 shows the distribution of the number of NAB+ periods for each

patient. All eventually NAB+ patients had only one NAB+ period. About

85% of the eventually NAB+ patients in both groups, had an initial NAB−
period follow by a NAB+ period which extended to the end of their follow-
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Table 3.2: Time to the first confirmed NAB+

Time† (Year)
Groups 0.0 0.5 1.0 1.5 2.0 2.5

250 mcg 2 144 72 18 7 0

500 mcg 1 173 56 27 4 1

†Rounded to the nearest 0.5 year.

up. The remaining 15% first had a NAB− period, followed by a NAB+, then

by a conversion back to NAB−. Two exceptional cases in the 250 mcg group

and one in the 500 mcg group had NAB+ periods beginning from baseline.

Table 3.3: NAB status dynamics

All Switches considered ; confirmed NAB+ and confirmed NAB-

NAB Dynamics 250 mcg 500 mcg

Eventually NAB+

− + 215 229

− + − 31 32

+ 1 1

+ − 1 0

subtotal 248 262

Never NAB+ − 639 623

Total 887 885

The total number of days at risk for the eventually NAB+ patients in

the 250 mcg group ranges from 254 to 1267 days. The never NAB+ patients

in the 250 mcg group have days at risk ranging from 15 to 1280 days. For
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the 500 mcg group, the range for eventually NAB+ patients is 378 to 1242

days, whereas the range for never NAB+ patients is 7 to 1197 days. In both

IFNB treated groups, the average proportion of time on study as NAB− for

individual eventually NAB+ patients is about 36%. Figures 3.1a and 3.1b

show the distribution of the proportion of NAB− periods

The total number of relapses during the course of trial for individuals in

the 250 mcg group ranges from 0 to 6 with an average of 0.86 for eventually

NAB+ patients and ranges from 0 to 7 with an average of 0.78 for never

NAB+ patients . The annualized crude relapse rate is 0.362 for the even-

tually NAB+ group and 0.356 for the never NAB+ group. In the 500 mcg

group, the total number of relapses ranges from 0 to 5 with an average of

0.77 for eventually NAB+ patients and from 0 to 8 with an average of 0.72

for never NAB+ patients. The annualized crude relapse rate is 0.330 for the

eventually NAB+ group and 0.334 for the never NAB+ group.

Table 3.4 is a frequency table of the total number of relapses per patient

throughout the course of study for the eventually NAB+ patients. A similar

distribution for the number of relapses is observed for both IFNB treated

groups. For the 250 mcg and the 500 mcg groups respectively, 51% and 56%

of the patients did not experience any relapses during the study; 26% and

23% had one relapse; and 23% and 21% had two or more relapses.

Table 3.4: Number of relapses per eventually NAB+ patients

Number of relapses
Groups 0 1 2 3 4 5 6

250 mcg 126 65 36 11 7 2 1

500 mcg 147 60 32 15 7 1 0

44



3.1.
In

tro
d
u
ction

Figure 3.1: Proportion of time on study as NAB− for eventually NAB+ patients.

(a) The 250 mcg group
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3.2. Basic Model Specification

The NAB effect in our report refers to the relative risk of relapse onset if

a patient is NAB+ instead of NAB− on that day. The NAB effect is assessed

by comparing the relapse risk during the NAB+ periods to the risk during the

NAB− periods within individuals. Therefore only eventually NAB+ patients

provide the relevant information for estimating NAB effects. All our analyses

are based only on the eventually NAB+ groups.

3.2 Basic Model Specification

We construct a mixed effect log-binomial regression model for the daily prob-

ability of a relapse onset. The response Yit is a binary indicator of whether

a relapse started at time t for the ith patient. Conditional on the random

effects, Yit is assumed to follow a Bernoulli distribution with probability µ
(C)
it .

The conditional independence assumption is adopted.

The primary target of inference is the NAB effect quantified as the per-

centage increase in relapse risk on any given day on study during NAB+

periods relative to NAB− periods. This succinct summary of relative risk

can be directly estimated by relating the daily relapse probability µ
(C)
it to a

linear predictor through a log link. In general, we consider linear predictors

for the daily relapse probability which includes additive components of 1) a

NAB effect, 2) the time trend of the natural progression of relapse frequency

over the course of trial, and 3) a random intercept representing inherent be-

tween subject variation in MS disease activity.

Figure 3.2 shows the log empirical annualized relapse rates for preceding

3-month periods separately for the two IFNB treated groups. For month 36

to 39, the empirical relapse rate is zero in both groups; whereas for month 39

to 42, the empirical relapse rate is zero for the 500 mcg group. Since relapse

rates are presented on log scale, these two periods are not included in Fig-
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Figure 3.2: Empirical annualized relapse rates for preceding 3-month periods and the corresponding loess
fits for eventually NAB+ patients.
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3.2. Basic Model Specification

ure 3.2. The loess fit to the log empirical relapse rate illustrates a decreasing

time trend for the 250 mcg group which is reasonably linear. On the other

hand, no distinguishable time trend is suggested in the 500 mcg group.

We consider an initial model with a simple mean structure,

log
(
µ

(C)
it

)
= bi + β0 + β1t+ β2NABit, (3.2.1)

where bi is a random intercept from normal(0, σ2
b ), β0 is the intercept; β1 is

the slope of the linear time trend; and β2 represents the NAB effect with

NABit being the binary covariate of NAB status corresponding to Yit coded

as 0 for NAB− and 1 for NAB+. The model assumes that the log daily

relapse risk is changed by a constant level during the NAB+ period. When

the NAB status switches from NAB+ back to NAB−, the log daily relapse

risk returns to the initial NAB− level adjusted for the time trend without

any NAB effects carried over. As described in Section 2.5.2, the marginalized

model derived from the initial mixed-effects model 3.2.1 has mean structure,

log
(
µ

(M)
it

)
= β∗0 + β1t+ β2NABit, (3.2.2)

where the intercept β∗0 = β0 + 1
2
σ2
b as mentioned in (2.5.3). The mixed-effects

model and the marginalized model share the same regression coefficients β1

and β2.

For analysis of the daily relapse data presented in this chapter, the log-

binomial random intercept models are fitted by maximum likelihood, whereas

the marginalized models are fitted by GEE with an exchangeable “working”

correlation structure (GEE-EXCH) with variance Var(Yij) = φµ
(M)
ij

(
1− µ(M)

ij

)
for binary responses. Given the estimated regression coefficients from either

approach, the relative risk of NAB+ periods versus NAB− periods can be

estimated by R̂R = exp
(
β̂2

)
. The standard error of the estimated relative
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3.3. Computational Issues

risk can be approximated by the delta method, SE(R̂R) ≈ R̂R · SE(β̂2).

An approximate (1 − α) × 100% confidence interval for the relative risk

can be obtained by transforming a symmetric confidence interval for β2,

R̂R · exp(±z1−α/2SE(β̂2)), where z1−α/2 is the (1 − α/2)th upper quantile of

a standard normal distribution.

3.3 Computational Issues

Various R packages and routines are available for fitting GLMMs. Packages

we are aware of up to the time this report was written include

1) function glmmPQL() in package MASS,

2) package glmmADMB,

3) package MCMCglmm,

4) package glmmML,

5) package glmmAK,

6) function glmer() in package lme4, and

7) function glmm() in package repeated.

Not all of these packages suit our purposes: 1 – 3) do not perform maxi-

mum likelihood estimation and 4 – 5) do not have the log link available for

the binomial family. Only glmer(lme4) and glmm(repeated) perform log-

binomial regression with adaptive Gauss quadrature implemented. Among

the two model fitting routines, glmer(lme4) can handle most specifications

of random effects, while glmm(repeated) can only accommodate a random

intercept. Neither of these routines provides an option of REML as an al-

ternative to maximum likelihood for estimation of the variance components
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3.4. Time Trend

except for the case of linear mixed-effects models.

Although patients in the BEYOND trial were only followed for a mod-

erate length of 2 to 3.5 years, since relapse onset was monitored on a daily

basis, each patient has a long vector of binary responses. The average num-

ber of days at risk for eventually NAB+ patients is 871 in the 250 mcg group

and 854 in the 500 mcg group. The size of our dataset also poses a challenge

for the memory management of the model fitting routines and resources of

the platform R runs on. The presumably more powerful glmer(lme4) can-

not handle our large dataset, while glmm(repeated) still manages to fit the

models, despite taking a substantial amount of time. The MLE of GLMMs

in this chapter and Chapter 4 are obtained by glmm(repeated) using 15

quadrature points with default convergence criteria and control parameters.

The same problem is encountered for the GEE approach. The two stan-

dard of excellence R packages for GEE, gee and geepack, were unable to

handle our data. With the permission of Mr. Rick White, we used his GEE

model fitting C routine, which can handle our large dataset, for all our re-

ported GEE model fitting in this chapter, as well as in Chapter 4.

3.4 Time Trend

The proposed longitudinal analysis of NAB effects automatically takes into

account the confounding effects of baseline covariates by making the compari-

son of NAB− time periods to NAB+ time periods within individual patients.

The natural trend of relapse risk over time becomes the most important fac-

tor remain to be adjusted for. Accuracy in modelling this time trend is

essential to the soundness of the estimation of the NAB effect.

Based on the patterns in Figure 3.2, we propose an initial linear time
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3.4. Time Trend

trend in the log transformed daily relapse risk. The linear trend on the log

scale implies that the relapse risk changes exponentially over time. Adequacy

of the linearity assumption is assessed by comparing GLMM fits with alter-

native time trends modelled by natural cubic splines with degrees of freedom

equals to 2, 3 or 4 to the linear time trend. The linear time trend can be

regarded as a natural cubic spline with 1 degree of freedom. NAB status is

included as a covariate in all the models so that the impact of including a

more complicated time trend on the estimation of NAB effects can be as-

sessed.

Fitted time trends are visualized in Figures 3.3a and 3.3b for the 250 mcg

group and 500 mcg group respectively. The “annualized” fitted relapse rates

are obtained by multiplying the fitted daily relapse probabilities by a factor

of 365.25. For the 250 mcg group, the 2 and 3 degrees of freedom splines

seem to suggest more curvature for the diminishing trend in relapse risk than

the exponential decay implied by linear time trend in log relapse risk. The

wigglyness of the fitted curve of the 4 degrees of freedom spline suggests over-

fitting. In contrast, the linearity assumption in the 500 mcg group appears to

be representing the trend of relapse risk over time well as the higher degree

of freedom splines almost coincide with the linear trend. Signs of overfitting

are observed for the 3 and 4 degrees of freedom splines. All the fitted time

trends for the 500 mcg group suggest that the change over the 3.5 year period

is minimal. Comparing the two IFNB treated groups, the “annualized” fitted

relapse rates in the 250 mcg group are higher than the rates in the 500 mcg

group during the 3.5 years on study. Analyses are expected to have lower

sensitivity for the 500 mcg group than the 250 mcg group due to the lower

relapse risk.

Results of likelihood ratio tests comparing the fitted splines and linear

time trends are presented in Table 3.5. Among the natural cubic splines we
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Figure 3.3: Annualized fitted relapse rate of GLMM for NAB− periods, natural regression splines for time
trend, eventually NAB+ patients only.
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Figure 3.3: – Continued

(b) The 500 mcg group
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3.4. Time Trend

considered, none fits the data significantly better than the linear trend in

either IFNB treated group.

Table 3.5: p-values for likelihood ratio tests comparing GLMM fits with
different time trends: eventually NAB+ patients only.

All Switches considered; confirmed NAB+, confirmed NAB−

Alternative hypothesis, H1

250 mcg group 500 mcg group
Natural Splines Natural Splines

Null hypothesis, H0 df = 2 df = 3 df = 4 df = 2 df = 3 df = 4

Natural
Splines

df = 1† 0.40 0.69 0.55 0.97 0.65 0.72

df = 2 − 0.81 0.49 − 0.36 0.52

df = 3 − − 0.24 − − 0.49

† natural spline with 1 degree of freedom is equivalent to linear.

The estimated relative risks of NAB+ to NAB− time periods under each

of the time trend models considered are presented in Table 3.6. With the

linear time trend, the estimated increase in relapse risk of NAB+ periods is

10% in the 250 mcg group, but this doubles to about 20% when the time

trends are fitted with splines. The increase in relapse risk is about 30% in

the 500 mcg group under all the different models considered for the time

trend. The estimated NAB effects are always stronger in the 500 mcg group,

though the effects are statistically insignificant in both groups under all the

time trends considered. The standard errors of the estimated relative risks in

the 500 mcg group are larger than those in the 250 mcg group, as expected

given the lower relapse risks in the 500 mcg group revealed in Figures 3.3a

and 3.3b.

For the 500 mcg group, as revealed by the fitted splines and the likelihood
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3.5. Neutralizing Antibody Effects

Table 3.6: Estimated relative risks of NAB+ to NAB− from GLMM fits with
various time trends: eventually NAB+ patients only.

All Switches considered ; confirmed NAB+, confirmed NAB−

250 mcg group 500 mcg group

R̂R SE 95% CI R̂R SE 95% CI

Linear 1.10 0.19 (0.79, 1.54) 1.29 0.24 (0.90, 1.84)

Natural Spline, df=2 1.21 0.24 (0.81, 1.79) 1.29 0.27 (0.86, 1.94)

Natural Spline, df=3 1.21 0.25 (0.81, 1.81) 1.34 0.29 (0.87, 2.05)

Natural Spline, df=4 1.24 0.25 (0.83, 1.84) 1.33 0.29 (0.87, 2.03)

R̂R: estimated relative risk.

ratio tests, the assumption of a linear time trend is apparently reasonable

and adequately represents the natural change of relapse risks over time. For

the 250 mcg group, the fitted splines suggest that a quadratic time trend

might be more appropriate. However, no substantial evidence of lack of fit

is indicated by the likelihood ratio tests for either group. In both groups,

the standard error of the estimated relative risk increases with the degrees

of freedom of the regression splines, illustrating a tradeoff between bias and

variance. Based on the results of the likelihood ratio tests, we decide to adopt

the parsimonious model of a linear trend in log relapse risk over time for the

subsequent analyses.

3.5 Neutralizing Antibody Effects

3.5.1 NAB Status

Tables 3.7a and 3.7b present the estimates and standard errors of the rela-

tive risks obtained by GEE-EXCH and GLMM based on the initial specifi-

cation of mean structure (3.2.1). Results based on the refined NAB status

of Low/Medium/High NAB+ are also included.
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3.5. Neutralizing Antibody Effects

Similar patterns and levels of estimated NAB effects are given by GEE-

EXCH and GLMM for both IFNB treated groups. For the 250 mcg group,

no significant NAB effect is detected. The estimated increase in relapse risk

is about 10% comparing NAB+ to NAB−. The NAB effects do not differ

substantially across the three sublevels of NAB+. Comparing to NAB−, the

estimated increases in relapse risk are less than 10% for Low NAB+, about

15% for Medium NAB+ and less than 5% for High NAB+.

A different pattern is observed for the 500 mcg group. The time adjusted

increase in relapse risk of NAB+ period relative to NAB− period is estimated

to be about 30%. The increases in relapse risk are about 10%, 55% and 60%

for Low, Medium and High NAB+ periods respectively. The NAB effects are

statistically significant at the 0.05 level for Medium and High NAB+ based

on the GEE-EXCH model fit. Although the results are not quite statistically

significant (Low: p = 0.65, Medium: p = 0.05, High: p = 0.05) using the

GLMM approach, they still provide evidence suggesting presence of NAB

effects in the 500 mcg group. The suggested NAB effects also appear to

increase when NAB titer raises from low to medium level, but the relative

risks are similar for medium and high levels.

3.5.2 NAB Titer

The direct use of NAB titer in estimating NAB effect on relapse risk is also

explored by replacing the NAB status predictor NABit in model (3.2.1) by a

log titer term log
(

Titerit
20

)
· I{Titerit ≥ 20}, where Titerit is the latest NAB

titer available as of time t for the ith patient. Natural regression splines are

fitted on the log titers, serving to discover the form of association between

relapse risk and NAB titers. Figures 3.4a and 3.4b show the fitted natural

cubic splines with 2 degrees of freedom and histograms of the titer values. As

illustrated by the fitted splines, there is little suggestion of an NAB effect in

the 250 mcg group, whereas in the 500 mcg group, the relapse risks appear
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Table 3.7: Estimated relative risks of NAB+ and sublevels to NAB−: eventually NAB+ patients only.

(a) The 250 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

NAB+ vs. NAB− 1.092 0.172 (0.802, 1.487) 1.102 0.188 (0.788, 1.541)

Low NAB+ vs. NAB− 1.075 0.181 (0.774, 1.495) 1.094 0.199 (0.766, 1.564)

Med NAB+ vs. NAB− 1.158 0.256 (0.751, 1.786) 1.150 0.254 (0.747, 1.772)

High NAB+ vs. NAB− 1.035 0.270 (0.621, 1.725) 1.023 0.277 (0.602, 1.738)

(b) The 500 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

NAB+ vs. NAB− 1.293 0.222 (0.923, 1.811) 1.287 0.236 (0.898, 1.843)

Low NAB+ vs. NAB− 1.111 0.223 (0.749, 1.647) 1.099 0.228 (0.732, 1.650)

Med NAB+ vs. NAB− 1.541 0.339 (1.001, 2.370) 1.547 0.345 (1.000, 2.394)

High NAB+ vs. NAB− 1.602 0.379 (1.007, 2.548) 1.593 0.384 (0.993, 2.557)

R̂R: estimated relative risk.

Titers for NAB status — Low: [20, 100), Med: [100, 400), High: [400,∞).
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3.5. Neutralizing Antibody Effects

to increase with NAB titers until reaching a certain maximum limit.

As revealed by the plots of the fitted splines in Figures 3.4a and 3.4b,

a quadratic trend in log titer value might represents the form association

between relapse risk and NAB titer more accurately than a linear trend.

However, a quadratic fit would complicate the interpretation A model which

captures the basic shape of this exposure-response relationship but retains

simple interpretation of NAB effects is desired. Therefore, a piecewise linear

model on log titers which implies a constant relative risk for doubled titers

over a range of titers from 20 NU/mL to a cutoff k NU/mL is proposed for

more formal analysis. The conditional mean structure of the piecewise linear

model

log
(
µ

(C)
it

)
= bi+β0+β1t+β2 log

(
min {Titerit, k}

20

)
·I{Titerit ≥ 20}, (3.5.1)

marginalizes to

log
(
µ

(M)
it

)
= β∗0 + β1t+ β2 log

(
min {Titerit, k}

20

)
· I{Titerit ≥ 20}, (3.5.2)

where k is a prespecified titer cutoff level. Presuming that β2 is positive,

the time adjusted relapse risk reaches its maximum at the cutoff level. The

relative risk for an arbitrary titer value compared to any titer ≤ 20 NU/mL

is
(

min{Titerit,k}
20

)β2
. When the titer values are between 20 and k NU/mL,

the relative risk corresponding to doubling the NAB titer is 2β2 . Given the

estimated regression coefficient β̂2, for titers less than cutoff, the standard

error of R̂R =
(

Titerit
20

)β̂2
can be approximated by log

(
Titerit

20

)
R̂R · SE(β̂2).

Four values for the cutoff k are considered: 100 NU/mL, 400 NU/mL,

1000 NU/mL and ∞ NU/mL, where the last case reduces to a linear trend

in log titers. Estimated relative risks based on log titers are presented in
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Figure 3.4: Fitted natural cubic spline (df = 2) on log NAB titers of GLMM: eventually NAB+ patients
only.
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Figure 3.4: – Continued

(b) The 500 mcg group

−
0.

2
0.

0
0.

2
0.

4
0.

6

0.
8

1
1.

2
1.

5
1.

8

0 1 2 3 4 5 6 7
Log(NAB Titer / 20)

Lo
g 

R
el

at
iv

e 
R

is
k,

 (
vs

. 2
0 

N
U

/m
L)

 

R
el

at
iv

e 
R

is
k,

 (
vs

. 2
0 

N
U

/m
L)

 

500 mcg arm

NAB Titer, (NU/mL)

%
 o

f T
ot

al
P

at
ie

nt
−

D
ay

s

0.
0

0.
2

0.
4

20 55 150 400 1100 3000 8000 22000

60



3.5. Neutralizing Antibody Effects

Tables 3.8a and 3.8b. The pattern of the results given by GEE-EXCH and

GLMM resemble each other closely in both IFNB treated groups. Estimated

relative risks from the two approaches are effectively the same.

For the 250 mcg group, no significant associations between NAB titers

and relapse risks are found regardless of the titer cutoff. For the model with

no cutoff (k = ∞), β̂2 is −0.002. For models with finite cutoff, β̂2’s are

positive ranging from 0.002 to 0.028. The estimated increase in relapse risk

for doubled titers are less than 2% in all cases, and the maximum increases

in relapse risk achievable at the cutoff are less than 5%.

For the 500 mcg group, for all four models, β̂2 is positive and the asso-

ciation between NAB titers and relapse risk is statistically significant. For

cutoffs at 100, 400 and 1000 NU/mL, the estimated increases in relapse risks

for doubled titers are about 18%, 12% and 10% respectively, whereas the es-

timated increases in relapse risk at cutoff are 48%, 63% and 71% respectively.

With no cutoff, the estimated relative risks for doubled titers is about 8%.

Tables A.1a to A.4 in Appendix A show complete results of the model fits

for all the models in this section. For GEE-EXCH, the estimated correlation

α is 0.001 in every model for both the 250 mcg and 500 mcg groups. With

essentially zero estimated correlation, the same model fits would be obtained

with an independent “working” correlation structure.

The estimated marginal intercept β̂∗0 obtained from the GEE-EXCH fit is

compared to the estimated conditional intercept β̂0 and variance components

σ̂2
b obtained from the GLMM fit with reference to their theoretical relation-

ship (2.5.3). The derived marginal intercepts β̂0 + 1
2
σ̂2
b are consistently larger

than the estimated marginal intercepts β̂∗0 in all the fitted models. The dif-

ference ranges from 0.042 to 0.055.
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Table 3.8: Estimated relative risk of NAB titers: eventually NAB+ patients only.

(a) The 250 mcg group

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

cutoff=∞
Doubled titer before cutoff 0.999 0.038 ( 0.928, 1.075 ) 0.994 0.038 ( 0.922, 1.072 )

cutoff=1000
Doubled titer before cutoff 1.004 0.043 ( 0.923, 1.092 ) 0.999 0.043 ( 0.918, 1.088 )
At cutoff 1000 NU/mL vs. 20 NU/mL 1.022 0.248 ( 0.635, 1.644 ) 0.996 0.243 ( 0.617, 1.608 )

cutoff=400
Doubled titer before cutoff 1.002 0.049 ( 0.910, 1.103 ) 0.996 0.050 ( 0.904, 1.098 )
At cutoff 400 NU/mL vs. 20 NU/mL 1.007 0.214 ( 0.664, 1.528 ) 0.984 0.212 ( 0.646, 1.500 )

cutoff=100
Doubled titer before cutoff 1.019 0.077 ( 0.879, 1.183 ) 1.014 0.079 ( 0.870, 1.181 )
At cutoff 100 NU/mL vs. 20 NU/mL 1.045 0.184 ( 0.740, 1.476 ) 1.032 0.187 ( 0.724, 1.472 )
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Table 3.8: – Continued

(b) The 500 mcg group

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

cutoff=∞
Doubled titer before cutoff 1.078 0.038 ( 1.005, 1.156 ) 1.079 0.037 ( 1.009, 1.153 )

cutoff=1000
Doubled titer before cutoff 1.100 0.047 ( 1.012, 1.196 ) 1.100 0.043 ( 1.018, 1.189 )
At cutoff 1000 NU/mL vs. 20 NU/mL 1.712 0.411 ( 1.069, 2.741 ) 1.714 0.382 ( 1.108, 2.652 )

cutoff=400
Doubled titer before cutoff 1.119 0.057 ( 1.014, 1.235 ) 1.120 0.053 ( 1.020, 1.229 )
At cutoff 400 NU/mL vs. 20 NU/mL 1.626 0.355 ( 1.060, 2.493 ) 1.630 0.334 ( 1.091, 2.435 )

cutoff=100
Doubled titer before cutoff 1.181 0.096 ( 1.006, 1.385 ) 1.182 0.093 ( 1.013, 1.380 )
At cutoff 100 NU/mL vs. 20 NU/mL 1.470 0.278 ( 1.015, 2.131 ) 1.475 0.270 ( 1.029, 2.112 )
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3.6 Relative Efficiency of GEE to GLMM

Approach on Estimating NAB Effects

Comparing the two longitudinal approaches applied, when the conditional

models are the correct models, the GLMM approach has the highest asymp-

totic efficiency. However, the GEE approach, as a method of moments ap-

proach, is more robust to model misspecification as it only requires correct

specification of the mean structure and independence between subjects. The

efficiency of the GEE approach relative to the GLMM approach in our finite

sample case is investigated. Specifically the efficiency in estimating NAB ef-

fects is our primary interest. We define relative efficiency of GEE to GLMM

as the ratio of the variance of GLMM to the variance of GEE estimated rel-

ative risks.

The pattern observed based on the estimates in Tables 3.7a, 3.7b, 3.8a

and 3.8b is not consistent. Based on NAB status, GEE-EXCH demonstrated

a higher efficiency; the relative efficiencies are 119.5% and 113.0% for the

250 mcg and the 500 mcg groups respectively. For the 250 mcg group, the

relative efficiency of GEE-EXCH is 120.9%, 98.4% and 105.3% for estimating

the effects of Low NAB+, Medium NAB+ and High NAB+ versus NAB−
respectively. For the 500 mcg group, the relative efficiency of GEE-EXCH is

104.5%, 103.6% and 102.7% for estimating the effects of Low NAB+, Medium

NAB+ and High NAB+ versus NAB− respectively. Based on NAB titers,

comparisons are made on all the estimated relative risks presented in Ta-

bles 3.8a and 3.8b. In the 250 mcg group, the relative efficiencies are close

to 100%, ranging from 96.0% to 105.3%. However, in the 500 mcg group,

the estimates given by GEE-EXCH are less precise with relative efficiencies

ranging from 83.7% to 94.8%

Comparison based on the variance of the estimated regression coefficients
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3.7. Summary

representing the NAB effects results in similar conclusions. The relative ef-

ficiencies are 113.0% and 113.7% for the 250 mcg and the 500 mcg groups

respectively for estimating an overall effects associated with the binary NAB

status. For the 250 mcg group, the relative efficiencies are 104.5% for Low,

103.6% for Medium and 102.7% for High NAB+ versus NAB−. For the

500 mcg group, the relative efficiencies are 106.1% for Low, 102.8% for

Medium and 103.7% for High NAB+ versus NAB−. GEE-EXCH returned

more precise estimates of NAB effects when they are based on NAB status.

While based on NAB titers, the relative efficiency of GEE-EXCH is close to

100%, ranging from 101.4% to 105.8% for the 250 mcg group. Considerable

loss of efficiency is noticed, however, for the 500 mcg group with relative

efficiency of GEE-EXCH ranging from 86.0% to 91.3%. The average loss of

efficiency in this group with the direct use of NAB titer is about 10%.

3.7 Summary

The analysis of the BEYOND trial suggests some effects of NABs to IFNB on

RRMS patients’ relapse risks. The additional analysis based on NAB titers

sheds some light on how the level of NABs is associated with an increase

in the risk of relapse. Some positive associations between NAB titers and

frequency of relapse are suggested. Regarding the efficiency of the GEE and

GLMM approaches, no consistent evidence of one being superior to the other

is found.

Recall that the model for this daily relapse data cannot be fitted with

most generic GEE or GLMM routines in R. An alternative to avoid this

computational difficulty is to use another configuration of the relapse data.

Since NAB titers were measured every 6 months, we may consider collapsing

the daily relapse data and performing our analysis based on the number

of relapses between consecutive NAB titer measures. This reduction in the
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3.7. Summary

resolution of the relapse data and the potentially less precise estimation of

the time trend may affect the statistical power in detecting NAB effects.

The next chapter presents analyses based on collapsed data and attempts

to answer the questions concerning impacts on the sensitivity for detecting

NAB effects.
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Chapter 4

Analysis Based on Collapsed

Data

4.1 Introduction

In the BEYOND trial data, each patient has about 800 longitudinal binary

indicators of relapse onset. The dimension of this response data causes some

computational difficulties in fitting GLMMs and marginal models. For most

model fitting procedures in R to be applicable, the response vectors need to be

reduced to a more manageable size. Since NAB serum specimens were mea-

sured normally every half-year, much less frequently than the daily record of

relapse onset, we consider collapsing the daily relapse data to the number of

relapse onsets between consecutive NAB measures. This collapsing reduces

the average number of longitudinal observations to about 6. Table 4.1 shows

the distribution of the number of NAB serum specimens collected, which is

equivalent to the number of collapsed intervals. In both the 250 mcg and

500 mcg groups, most patients had 5 to 7 collapsed intervals.

Table 4.1: Number of NAB titer measures

2 3 4 5 6 7 8

250 mcg group 1 1 15 75 84 58 14

500 mcg group 0 5 24 80 89 57 7
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Table 4.2 shows the number of relapse onsets per interval. For the 250 mcg

group, about 86% of the intervals had no relapse onsets, about 13% had one

relapse onset and the remaining 1% had two relapse onsets. For the 500 mcg

group, about 88% of the intervals had no relapse onsets, about 11% had one

relapse onset and the remaining 1% had two relapse onsets. Only about 1%

of the intervals in each group has two relapse onsets, which was the largest

number of relapse onsets observed in a single interval, the aggregation of the

events from the daily data is minimal. Some loss of precision in estimation

due to collapsing is anticipated but not to a large extent.

Table 4.2: Number of relapse onsets per interval

0 1 2 Total

250 mcg group 1261 188 13 1462

500 mcg group 1315 168 17 1500

Table 4.3 shows the distribution of the lengths of the intervals at risk

corresponding to the collapsed observations. For the 250 mcg group, the

lengths of the intervals at risk range from 1 to 544 days, whereas for the

500 mcg group, the lengths range from 1 to 675 days. In both groups, the

number of days at risk clustered at around 1 day and 180 days. In the 250 mcg

group, 200 out of 1462 are 1-day intervals, whereas in the 500 mcg group,

205 out of 1500 are 1-day intervals. Only one of these 1-day intervals had a

relapse onset in each group. These exceptionally short intervals correspond

to the end of study visit for some of the patients when the protocol specified

that a final NAB specimen be taken.
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4.2. Model Specification

Table 4.3: Number of days at risk between consecutive collections of NAB
serum specimens

Days at risk
0 – 49 50 – 99 100 – 149 150 – 199 200+

250 mcg group 215 82 64 1063 38

500 mcg group 225 72 60 1100 43

4.2 Model Specification

For the collapsed data, the response Yij of the ith patient is the number of

relapse onsets during the period starting from tj, the day the jth NAB titer

was measured, to tj+1 − 1, the day before the next NAB titer measurement

inclusively. Given a random effect bi, the counts Yij are assumed to be

conditionally independent following a Poisson distribution with mean µ
(C)
ij =

λijsij, where sij is the length of the period at risk expressed in years. The

conditional mean depends on the covariates through a log link,

log(µ
(C)
ij ) = β0 + bi + β1tj + β2NABij + log(sij).

The relative relapse rate for NAB+ time periods versus NAB− time periods

is represented by exp(β2). Since the NAB status remains unchanged between

consecutive NAB titer measures, the NAB status NABij corresponding to Yij

is readily obtainable from the daily data in Chapter 3. The random intercept

bi is assumed to be a random sample from a normal distribution with mean

0 and variance σ2
b .

The marginal mean structure of this GLMM is only a shift of the intercept

from the conditional mean structure,

log(µ
(M)
ij ) = β∗0 + bi + β1tj + β2NABij + log(sij),
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4.3. Results

as shown in (2.5.2). The Poisson regression model with random intercept

for count data is fitted by maximum likelihood, whereas the marginalized

model is fitted by the GEE approach with an exchangeable “working” corre-

lation structure (GEE-EXCH). Although the marginal distribution of Yij is

not Poisson, we assume the marginal variance is proportional to the mean,

Var(Yij) = φµ
(M)
ij , in our GEE analyses. The dispersion parameter φ allows

for anticipated overdispersion with respect to Poisson. With the dimension of

the data reduced as indicated, both glmer() of the lme4 package and glmm()

of the repeated package can fit the GLMM model. For the GEE approach,

both gee() of the gee package and geeglm() of the geepack package can

handle the collapsed data. For coherence and ease of comparison of results

based on the daily relapse data and the collapsed data, the same model fitting

routines in R as in Chapter 3 are implemented for the collapsed data.

4.3 Results

4.3.1 NAB Status

Tables 4.4a and 4.4b show the estimated relative rates obtained by the

GLMM and the GEE approach. Complete results of these model fits are

given in Tables B.1a to B.2b, in Appendix B. In the 250 mcg group, es-

timated NAB effects given by the two approaches based on the collapsed

relapse data are very similar. The time adjusted increase in annualized re-

lapse rate associated with switching from NAB− to NAB+ is about 15%.

For NAB+ sublevels, the increases with respect to NAB− are about 13%

for Low NAB+, 22% for Medium NAB+ and 10% for High NAB+. We

define the relative efficiency of GEE-EXCH by the ratio of the variance of

the GLMM to that of the GEE estimate. Based on the estimates of the log

relative rates, β̂2, the relative efficiency of GEE-EXCH ranges from 93.2% to

109.6% in the 250 mcg group and from 81.3% to 94.8% in the 500 mcg group.

Based on estimates of relative rates in Table 4.4a, the relative efficiency of
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4.3. Results

GEE-EXCH ranges from 91.7% to 107.4% for the 250 mcg group and from

79.4% to 90.4% for the 500 mcg group. The estimated relative rates obtained

by either approach have similar precision for the 250 mcg group but some

noticeable loss of efficiencies for GEE-EXCH is observed for the 500 group.

In the 250 mcg group, no convincing NAB effects is demonstrated by ei-

ther approach, just as in the analyses based on the daily data. The estimated

relative rates based on the collapsed data are higher than the corresponding

estimates based on the daily data. The pattern of the relative rates with

respect to low, medium and high levels of NABs is similar. In the 500 mcg

group, estimated increases in relapse rate given by the two approaches are

similar, with those given by GLMM always slightly smaller. The estimated

increases in relapse rate associated with switching from NAB− to NAB+

are about 29% and 29% from GEE-EXCH and GLMM, respectively. For the

NAB sublevels, the estimated increases in relapse rates relative to NAB− are

11% and 10% for Low NAB+, 54% and 55% for Medium NAB+ and 60%

and 59% for High NAB+. GLMM has a higher efficiency in this case with

the relative efficiency of GEE-EXCH ranging from 79.4% to 90.4%. None

of the estimated NAB effects are statistically significant at the 0.05 level.

The estimated relative rates given by both approaches closely resemble the

corresponding estimated relative risks based on the daily relapse data.

From the model fits in Tables B.1a to B.2b, the derived marginal inter-

cepts β̂0 + 1
2
σ̂2
b estimated from the GLMM fits are larger than the estimated

marginal intercepts β̂∗0 by about 0.06 for the 250 mcg group and about 0.11 to

for the 500 mcg group. For the GEE approach, the estimated exchangeable

correlation α̂ ranges from 0.050 to 0.054 for the 250 mcg group and from

0.105 to 0.107 for the 500 mcg group.

The precision in estimating the log relative rate β2 is similar for the col-
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4.3. Results

lapsed and the daily data for GLMM. In the 250 mcg group, the variances of

the estimated log relative rates (β̂2) based on the collapsed data are about

3% to 4% larger than the variances based on the daily relapse data. In the

500 mcg group, the variances of β̂2 based on the collapsed data are about

−1% to 2% larger than those based on the daily relapse data. However, a

more severe loss of efficiency due to collapsing is observed for GEE-EXCH.

In the 250 mcg group, the variances based on the collapsed data are about

10% to 16% larger than the variances based on the daily relapse data. In the

500 mcg group, the variances are inflated by about 17% to 20%.

The comparison of precision based on estimated relative rates R̂R =

exp(β̂2) shows similar but amplified patterns. For GLMM, the inflation of

variance due to collapsing is about 10% to 20% in the 250 mcg group and

about −3% to 3% in the 500 mcg group. For GEE-EXCH, the variances are

inflated by about 23% to 28% in the 250 mcg group and about 17% to 29%

in the 500 mcg group.

4.3.2 NAB Titer

The NAB effect based on NAB titers is also examined by replacing the NAB

status covariate, NABij, by log NAB titers with a cutoff at k NU/mL,

log
(
min{Titerij ,k}

20

)
. Results based on NAB titers are presented in Tables 4.5a

and 4.5b. Similar patterns as with the daily relapse data are observed with

the collapsed data.

For the 250 mcg group, similar results are given by GLMM and GEE-

EXCH with the estimates obtained by GLMM always slightly larger. The

estimated increases in relapse rate for doubled titers are about 3% for GEE-

EXCH and 4% for GLMM when a cutoff at 100 NU/mL is used. For higher

cutoffs, the estimates are less than 1.5%. The estimated increases in relapse

rate at the cutoffs relative to titer value ≤ 20 NU/mL are less than or equal
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Table 4.4: Estimated relative risks of NAB+ and sublevels to NAB−: eventually NAB+ patients only,
collapsed data.

(a) The 250 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

NAB+ vs. NAB− 1.092 0.172 (0.802, 1.487) 1.102 0.188 (0.788, 1.541)

Low NAB+ vs. NAB− 1.075 0.181 (0.774, 1.495) 1.094 0.199 (0.766, 1.564)

Med NAB+ vs. NAB− 1.158 0.256 (0.751, 1.786) 1.150 0.254 (0.747, 1.772)

High NAB+ vs. NAB− 1.035 0.270 (0.621, 1.725) 1.023 0.277 (0.602, 1.738)

(b) The 500 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

NAB+ vs. NAB− 1.293 0.222 (0.923, 1.811) 1.287 0.236 (0.898, 1.843)

Low NAB+ vs. NAB− 1.111 0.223 (0.749, 1.647) 1.099 0.228 (0.732, 1.650)

Med NAB+ vs. NAB− 1.541 0.339 (1.001, 2.370) 1.547 0.345 (1.000, 2.394)

High NAB+ vs. NAB− 1.602 0.379 (1.007, 2.548) 1.593 0.384 (0.993, 2.557)

R̂R: estimated relative risk.
Titers for NAB status — Low: [20, 100), Med: [100, 400), High: [400,∞).
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8.5%. No convincing association between NAB titers and relapse rates is

demonstrated; none of the increases are statistically significant at the 0.05

level. Compared to results based on the daily relapse data, estimated relative

rates based on the collapsed data are always slightly higher.

For the 500 mcg group, results based on the two approaches also resem-

ble each other but with the estimates based on the GEE approach always

slightly larger. For doubled titers, the estimated increases in relapse rate are

about 20% for GEE-EXCH and 18% for GLMM for a cutoff at 100 NU/mL,

about 13% and 12% for a cutoff at 400 NU/mL, about 11% and 10% for a

cutoff at 1000 NU/mL and about 9% and 8% for no cutoff. The maximum

increases achievable at cutoff with respect to titer ≤ 20 NU/mL are about

54% for GEE-EXCH and 47% for GLMM for cutoff at 100 NU/mL, about

70% and 64% for cutoff at 400 NU/mL and about 81% and 74% for cutoff at

1000 NU/mL. Regardless of the cutoff level chosen, the NAB effects are sta-

tistically significant at the 0.05 level, indicating some evidence of a positive

association between NAB titers and relapse rate. The efficiency in estimating

the relative rates are similar for the two approaches in the 250 mcg group,

whereas in the 500 mcg group, the GLMM approach gives somewhat more

precise estimates in terms of the relative rates.

Complete results of the model fits are listed in Tables B.3 and B.4 in

Appendix B. Comparing the estimated marginal intercept β̂∗0 to the derived

marginal intercept β̂0 + 1
2
σ̂2
b , the latter is larger by about 0.06 for the 250 mcg

group and about 0.10 to 0.11 for the 500 mcg group. For the GEE approach,

the estimated exchangeable correlation α̂ ranges from 0.051to 0.052 for the

250 mcg group and from 0.097 to 0.098 for the 500 mcg group.

The loss of efficiency due to collapsing is assessed by comparing the vari-

ances of the estimated log relative risks (β̂2) based on the collapsed data to
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the variances of the estimates based on the daily relapse data. For GLMM,

the variances of the estimates based on the collapsed data are about 0% to 3%

larger than the variances based on the daily relapse data. For GEE-EXCH,

the variances of the estimates based on the collapsed data are about 5% to

10% larger than the variances of the estimates based on the daily relapse

data. A consistently larger loss of efficiency due to collapsing is observed for

GEE-EXCH compared to GLMM.

4.4 Impact of Exceptionally Short Intervals

The analyses of the collapsed data presented in the previous section are based

on all intervals. In the 250 mcg group, 1262 of the 1462 intervals have length

longer than 1 day. Among the 200 1-day intervals, 87% are NAB+ and 1

of the NAB− 1-day intervals had a relapse onset. In the 500 mcg group,

1295 of the 1500 intervals have length longer than 1 day. Among the 205

1-day intervals, 86% are NAB+ and 1 of the NAB+ 1-day intervals had a

relapse onset. Since the empirical relapse rate in these 2 exceptionally short

intervals with relapse onset is 1 per day, we are concerned that they may

have excessive impact on the estimated rates. On the other hand, negligible

effect on the standard error is expected if these 1-day intervals are excluded

from the dataset as they contribute little to the total exposure time in the

complete dataset. The impacts of these 1-day intervals are investigated in

this section.

Tables 4.6a and 4.6b show the fitted log relative rates with and without

the 1-day intervals for both IFNB treatment groups. For the 250 mcg group,

the estimates based on all intervals are consistently smaller than the esti-

mates based only on intervals longer than one day for both GEE-EXCH and

GLMM. The increase in β̂ due to exclusion of the 1-day intervals ranges from

17% to 65%. The standard errors of the estimates are almost the same under
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Table 4.5: Estimated relative risk of NAB titers: eventually NAB+ patients only, collapsed data.

(a) The 250 mcg group

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

cutoff=∞
Doubled titer before cutoff 1.004 0.039 (0.929, 1.084) 1.006 0.040 (0.931, 1.086)

cutoff=1000
Doubled titer before cutoff 1.010 0.046 (0.925, 1.104) 1.012 0.045 (0.929, 1.103)
At cutoff 1000 NU/mL vs. 20 NU/mL 1.058 0.270 (0.642, 1.743) 1.071 0.266 (0.659, 1.742)

cutoff=400
Doubled titer before cutoff 1.008 0.052 (0.911, 1.116) 1.011 0.051 (0.916, 1.116)
At cutoff 400 NU/mL vs. 20 NU/mL 1.037 0.233 (0.668, 1.610) 1.048 0.229 (0.683, 1.608)

cutoff=100
Doubled titer before cutoff 1.031 0.082 (0.881, 1.206) 1.036 0.082 (0.887, 1.210)
At cutoff 100 NU/mL vs. 20 NU/mL 1.073 0.199 (0.746, 1.544) 1.085 0.199 (0.757, 1.556)
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Table 4.5: – Continued

(b) The 500 mcg group

GEE-EXCH GLMM

R̂R SE 95% CI R̂R SE 95% CI

cutoff=∞
Doubled titer before cutoff 1.085 0.041 (1.008, 1.168) 1.082 0.037 (1.012, 1.158)

cutoff=1000
Doubled titer before cutoff 1.110 0.051 (1.015, 1.214) 1.103 0.044 (1.021, 1.192)
At cutoff 1000 NU/mL vs. 20 NU/mL 1.805 0.465 (1.089, 2.991) 1.740 0.390 (1.121, 2.699)

cutoff=400
Doubled titer before cutoff 1.133 0.062 (1.017, 1.261) 1.122 0.053 (1.022, 1.231)
At cutoff 400 NU/mL vs. 20 NU/mL 1.714 0.407 (1.076, 2.728) 1.644 0.338 (1.099, 2.459)

cutoff=100
Doubled titer before cutoff 1.204 0.109 (1.009, 1.438) 1.181 0.093 (1.012, 1.377)
At cutoff 100 NU/mL vs. 20 NU/mL 1.539 0.323 (1.020, 2.323) 1.470 0.269 (1.028, 2.103)
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both the complete and the reduced data set, with those based on the latter

being very slightly larger in general. The conclusion on the NAB effects is

not affected by exclusion of 1-day intervals as the p-values are still quite high,

larger than about 0.3.

For the 500 mcg group, the estimates and their standard errors are very

similar for model fits based on all intervals and those based only on intervals

longer than one day for both GEE-EXCH and GLMM. For GEE-EXCH, the

standard errors are always slightly smaller based on intervals longer than one

day, whereas for GLMM, the standard errors are almost identical.

It is worth noting that, when the 1-day intervals are excluded, the corre-

lation estimated by GEE-EXCH increases from 0.05 to 0.15 for the 250 mcg

group and from 0.11 to about 0.12 to 0.13 for the 500 mcg group. The higher

correlation may partly compensate for the increase in variance due to reduced

total follow-up time. On the other hand, for GLMM, the estimated variance

components are similar for both versions of the data.

Although exclusion of the 1-day intervals from the model fits results in

increases in estimated log relative rates in the 250 mcg group, the general

conclusions about the NAB effects are not altered. On the contrary, the

model fits in the 500 mcg group are not noticeably affected.

4.5 Summary

Collapsing the daily relapse data to less frequent responses greatly reduces

the computational burden of model estimation at a potential cost of reduced

statistical efficiency. For our particular cases, the loss of efficiency for esti-

mating β2 is small for GLMM; the variances of β̂2 increased by less than 5%.

It appears that collapsing the sparse daily response vector, consisting mostly

78



4.5.
S
u
m

m
ary

Table 4.6: Impact of 1-day intervals on estimates of log relative rates, β.

(a) The 250 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

All Intervals Intervals > 1 day

β̂ SE z-score P value β̂ SE z-score P value

GEE-EXCH
NAB+ vs. NAB− 0.142 0.167 0.85 0.40 0.171 0.167 1.02 0.31

Low NAB+ vs. NAB− 0.125 0.181 0.70 0.49 0.146 0.179 0.81 0.42
Med NAB+ vs. NAB− 0.201 0.232 0.87 0.39 0.249 0.233 1.07 0.29
High NAB+ vs. NAB− 0.094 0.274 0.34 0.73 0.155 0.275 0.56 0.57

GLMM
NAB+ vs. NAB− 0.138 0.174 0.79 0.43 0.182 0.177 1.03 0.30

Low NAB+ vs. NAB− 0.122 0.185 0.66 0.51 0.164 0.188 0.87 0.38
Med NAB+ vs. NAB− 0.195 0.224 0.87 0.38 0.241 0.226 1.07 0.29
High NAB+ vs. NAB− 0.097 0.275 0.35 0.72 0.156 0.279 0.56 0.58
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Table 4.6: – Continued

(b) The 500 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

All Intervals Intervals > 1 day

β̂ SE z-score P value β̂ SE z-score P value

GEE-EXCH
NAB+ vs. NAB− 0.269 0.188 1.43 0.15 0.263 0.183 1.44 0.15

Low NAB+ vs. NAB− 0.103 0.218 0.48 0.63 0.105 0.212 0.49 0.62
Med NAB+ vs. NAB− 0.476 0.239 1.99 0.05 0.461 0.236 1.95 0.05
High NAB+ vs. NAB− 0.502 0.256 1.96 0.05 0.496 0.252 1.97 0.05

GLMM
NAB+ vs. NAB− 0.240 0.183 1.31 0.19 0.239 0.185 1.30 0.20

Low NAB+ vs. NAB− 0.084 0.207 0.41 0.68 0.074 0.209 0.36 0.72
Med NAB+ vs. NAB− 0.433 0.222 1.95 0.05 0.438 0.223 1.96 0.05
High NAB+ vs. NAB− 0.469 0.243 1.93 0.05 0.480 0.245 1.96 0.05

Titers for NAB status — Low: [20, 100), Med: [100, 400), High: [400,∞).
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4.5. Summary

of long strings of 0’s, does not result in much loss of resolution. Thus the

efficiencies for estimating the NAB effect are similar in both configurations

of data.

For the GEE approach, greater loss of efficiency due to collapsing is re-

ported; the variances of β̂2 increased by 10% to 20%. The variable length of

intervals adds further variation in the mean of the responses which determine

the strength of the pairwise correlations of the responses. An exchangeable

“working” correlation structure approximates the true correlation structure

less accurately in the case of the collapsed data than in the case of the daily

relapse data. This is likely the cause of the higher loss of efficiency for GEE-

EXCH than for GLMM.

Overall, the pattern of estimated relative rates based on the collapsed

data resembles that based on the daily relapse data. Analyses based on the

two configurations of data arrived at the same overall conclusions for the

NAB effects.

For the daily relapse data in Chapter 3, the relative efficiency of GEE-

EXCH for estimating the log relative risks β2 in terms of NAB status is 100%

to 108% for the 250 mcg group and 101% to 106% for the 500 mcg group.

The relative efficiency demonstrated is slightly lower when the relapse rate is

modelled as a function of NAB titers: 100% to 104% for the 250 mcg group

and 93% to 96% for the 500 mcg group. For the collapsed data considered

in this chapter, the relative efficiency of GEE-EXCH for estimating the log

relative rates β2 is 97% to 104% for the 250 mcg group and 93% to 98%

for the 500 mcg group, when NAB status is utilized. With NAB titers, the

relative efficiency for estimating β2 is 97% to 100% for the 250 mcg group

and 86% to 93% for the 500 mcg group.
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4.5. Summary

The estimated relative efficiency is always higher for the 250 mcg group

compared to the 500 mcg group, for daily relapse data compared to collapsed

data and for using NAB status compared to using NAB titers. However, the

reported figures do not provide a clear picture of whether one of the two

estimation approaches is generally more efficient than the other.

As an attempt to clarify this issue, in Chapter 5, simulation studies con-

trasting the GEE approach to the GLMM approach are reported. In particu-

lar, scenarios with binary and sparse responses are considered. The efficiency

of GEE approaches with independent (GEE-IND) and exchangeable (GEE-

EXCH) correlation structure are compared to GLMM when both GEE and

GLMM are correctly specified. Situations when GEE is correctly specified

but GLMM is misspecified are also considered.

82



Chapter 5

Simulation Study

5.1 Introduction

In the BEYOND data, eventually NAB+ patients had an average of 0.7 to 0.8

relapse onsets during the course of the study. The empirical annualized re-

lapse risk was about 0.33 to 0.36. The average proportion of time on study as

NAB− was about 36%. Assuming a random intercept model, the estimated

variance component was about 0.82. In this chapter, we consider simulation

studies comparing the small sample properties of the GEE and GLMM ap-

proaches used in Chapter 3 to analyze the BEYOND data. The simulations

are designed such that the generated data capture some salient features of

the daily relapse data. Thus the results of the simulation are more relevant

to our data analyses in Chapter 3. The number of daily relapse observations

for each patient in the BEYOND trial is about 800. Conducting simulations

with this cluster size is not feasible with the computing resources currently

available to us. Thus, much smaller cluster sizes are considered in our sim-

ulations. A typical simulated cluster will have roughly one event, as for the

BEYOND dataset. The simulations do not fully represent the scenario of the

BEYOND data, nevertheless, they shed some light on the performance of the

GLMM and GEE approaches for clustered binary data when the event is rare.

Specifically, the efficiency of GEE-EXCH and GEE-IND are compared

to GLMM when (1) the observations follow the distribution modelled by

GLMM and (2) when the marginal and conditional mean structures are the

same but some aspect of the distribution of the random effect is misspecified
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5.1. Introduction

in GLMM. Three simulation studies are conducted. The first study exam-

ines primarily the finite sample efficiency of GEE when the GLMM is the

true model. The relative efficiency is defined as the reciprocal of the ratio of

empirical variances. The finite sample biases are also examined. The second

and third studies examine the impact of two forms of model misspecification

on GEE and GLMM.

In all the simulations, clustered binary responses are generated from the

log-linear models for binary response described in Section 2.51. The Bernoulli

probability is associated with a binary covariate while no time trend is con-

sidered. As shown previously in Section 2.5, the only difference between

the marginal and conditional mean structure is the intercept term. The es-

timated regression coefficients for the binary covariate obtained by GLMM

and GEE are thus directly comparable in all three simulation studies.

The model fitting routine for GLMM implemented for the simulations is

glmer() of the R package lme4, which is computationally faster than glmm()

in the R package repeated. In glmer(), the random effect is assumed to

be normal, the variance component is estimated by maximum likelihood and

fifteen quadrature points are used for the adaptive Gaussian quadrature. For

the GEE approach, the function gee() in the R package gee is utilized. The

standard errors are estimated by the robust sandwich estimator of variance.

The moment estimates for the correlation (when an exchangeable “working”

correlation is used) and the sandwich estimator of variance proposed by Liang

and Zeger[13] are implemented in gee().

1The mixed-effects models for the second simulation study in Section 5.3 are excep-
tions with some changes to the random intercept which does not alter the marginal mean
structure.
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5.2. Simulation I: Efficiency of GEE

5.2 Simulation I: Efficiency of GEE

Assume there are M independent subjects, each with ni repeated observa-

tions. Given a random intercept bi, the binary responses Yij are independent

Bernoullis with conditional mean π
(C)
ij modelled as,

log
(
π

(C)
ij

)
= β0 + bi + β1xij,

where xij is a binary covariate. The random intercept bi follows a normal

distribution with mean 0 and standard deviation σb = 0.3. Since a log link

and a normal random effect are used, the simulated Bernoulli probabilities

are not bounded above by 1. This smaller variance component than that

estimated for the BEYOND data (≈ 0.8) is therefore chosen, so that the

simulated probabilities would very seldom exceed one. In fact, for all three

simulation studies, all our simulated probabilities are within 0 and 1.

Combinations of the following covariate and parameter settings are con-

sidered in all simulations unless otherwise specified:

A Number of observations per subject:

1. ni = 15, for all i.

2. ni uniformly distributed over the interval [14, 15].

3. ni uniformly distributed over the interval [12, 15].

B Baseline probability: β0 = log(1/15), so that a typical patient (with

bi ≈ 0) has roughly one event on average among the repeated observa-

tions in the absence of the covariate effect.

C Effect of the binary covariate x:

1. β1 = log(1.0) = 0.

2. β1 = log(1.3) ≈ 0.26.
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5.2. Simulation I: Efficiency of GEE

3. β1 = log(1.5) ≈ 0.41.

D Distribution of covariate x for individual subject: For each sub-

ject, the covariate xij starts with a sequence of 0’s followed by a se-

quence of 1’s:

1. The first 30% of xij values are 0 and the subsequent 70% are 1.

2. The proportion of xij values that equal 0 is distributed uniformly

from 20% to 50%.

When β1 = 0 and σb = 0.3,

P
(

0.04 < π
(C)
ij < 0.18

)
≈ 0.95

and

P
(

0.03 < π
(C)
ij < 0.22

)
≈ 0.99.

For β1 = 0, the within-subject correlation is about 0.007. For β1 = log(1.5),

the correlation ranges from 0.007 when both x = 0 to 0.011 when both x = 1.

The number of simulated replicates is 1000 for each setting. The model

fitting algorithms used are glmer(lme4) for GLMM and gee(gee) for GEE-

exchangeable (GEE-EXCH) and GEE-independent (GEE-IND). Sometimes

the GLMM model fitting algorithm, glmer(), complains about boundary

problems. The actual cause of the error is still unknown. The algorithm

basically complains that some fitted probabilities are numerically zero. Oc-

casionally, this error can be solved by reducing the number of quadrature

points to as low as 3. For the same data sets, this problem disappears when

the log link is replaced by the logit link. Simulated replicates with this type

of error are replaced until no errors are reported. The number of replicates

replaced is also recorded. No errors were encountered with gee() in any of

our reported simulation studies even for the replicates causing a problem for

glmer().
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5.2. Simulation I: Efficiency of GEE

Results

Tables 5.1a to 5.1c show the results of this simulation. Table 5.1a shows

the estimated biases, the empirical standard errors and the average standard

errors: the average robust standard errors for GEE estimates and the av-

erage model-based standard errors for GLMM. Estimates obtained by GEE

with exchangeable and independent “working” correlation structures are al-

most identical. Similar patterns of estimated bias in β1 are demonstrated by

GLMM and GEE. The estimated bias is consistently small, usually within

±0.015. Exceptions include the three cases where the proportion of xij = 0

within cluster is 30% and β1 = 0 (RR = 1.0), where the estimated biases

range from 0.020 to 0.026 and the last of the cases where the proportion of

xij = 0 within cluster ranges from 20% to 50% and β1 = log(1.5), where

the estimated biases are about −0.044. For GEE, no specific patterns of

discrepancy between the average robust standard errors and the empirical

standard errors are observed; differences are within about −4% to 6%. For

GLMM, the average model-based standard errors are consistently larger than

the empirical standard errors by up to about 8% except in one case where

the average model-based standard error is smaller by about 2%.

As shown in Table 5.1b, the efficiencies of GEE-EXCH and GEE-IND

relative to GLMM are consistently larger than 1 by a slight margin across all

18 cases considered. The GEE approaches are as efficient as GLMM in this

simulation.

Table 5.1c reports the average estimated variance component and the

numbers of simulated replicates replaced due to errors reported by glmer.

The variance component is underestimated by about 10% to 30% as about

14% to 23% of the estimated variance components are numerically zero. The

proportion of numerically zero estimated variance components increases with

the variability of cluster size in general. Moderate to large number of sim-
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5.2. Simulation I: Efficiency of GEE

ulated replicates are replaced, with the number increasing with the relative

risk and the variability in cluster size. For the cases with relative risk 1.5 and

cluster size ranging from 12 to 15, more than 1000 replicates were replaced,

inducing substantial bias in the types of samples included in the simulation.

More Clusters

Since the responses and covariates are binary, the pattern of observations

on each cluster can be represented by a 2 × 2 table. In our simulation, the

Bernoulli probabilities are very low and the vector of covariate values are

similar across clusters, or identical in some cases. Hence, there may be very

little variation in terms of the pattern of observations across clusters. The

predicted random effects for clusters sharing the same pattern should intu-

itively be identical, so the estimation of the variance component is essentially

based on a few groups of predicted random effects taking the same values.

This partly explains the reason for poor estimation of the variance compo-

nent.

The same simulations were repeated with the number of subjects M in-

creased from 250 to 1000 to see if this leads to better estimation of the

variance components. Results are reported in Tables 5.2a to 5.2c. GEE-

EXCH and GEE-IND again give essentially identical results. GLMM and

GEE show similar patterns of estimated biases, which are small, less than

0.012. The only exceptions are the two cases where β1 = log(1.5) and ni

is uniformly distributed from 12 to 15, where the estimated bias is about

−0.031 for the case where the proportion of xij = 0 is 30% and about −0.036

for the case where the proportion of xij = 0 ranges from 20% to 50%. For

GLMM, the differences of the model-based standard errors from the empir-

ical standard errors range from about −2% to 7%, whereas those for GEE

range from about −4% to 5%. The estimated relative efficiencies of GEE-

EXCH are consistently greater than 1 but by less than 1%. Similar relative
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5.2. Simulation I: Efficiency of GEE

efficiencies are observed for GEE-IND.

For the variance component, less than 4% of the estimates are numerically

0. A decreasing trend of the average estimated variance component with

respect to increasing relative risk is observed, which was also observed in

the previous simulation with M = 250. The numbers of replicates replaced

are small for relative risk 1.0. However, the numbers of replacements are

excessive when the relative risk and the variation in cluster size increases.

The number of replicates replaced is larger than 10000 for the case with RR

= 1.5 and cluster size varying from 12 to 15. The simulation results may not

be reliable for these cases.

Larger Cluster Size

A third simulation under the scenario of this section was conducted, where

the efficiency of GEE is compared to GLMM hopefully in the absence of

possible effects from poor estimation of variance components. The number

of clusters, M , is 250. The cluster sizes are distributed uniformly from 80

to 100, and β0 = log(0.05) so that about 5 events are expected in a typical

cluster with size 100 in the absence of covariate effect (β1 = 0). The larger

β0 leads to higher within cluster correlation. In the absence of the covariate

effect, the within cluster correlation is about 0.005. Results are presented in

Tables 5.3a to 5.3c.

In all cases for both GLMM and GEE, the estimated biases are negligible,

less than 0.01, and the average standard errors and the empirical standard

errors are in general agreement. The relative efficiency of GEE-EXCH is

consistently slightly larger than 1, but by less then 1%. The relative efficiency

of GEE-IND ranges from about 98% to 100%. Table 5.3c shows that the

variance component is accurately estimated and no estimates are numerically

0. However, a modest number of simulated replicates are still replaced due
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5.2. Simulation I: Efficiency of GEE

to the boundary problem in glmer().

Summary

In this section, we considered a scenario of clustered data with sparse binary

events and a binary covariate which varies within cluster. Clustered data is

a more general type of data which encompasses longitudinal data, repeated

measurement and familial data. In contrast to longitudinal data, a natural

chronological ordering of the observations may not necessarily be relevant to

clustered data. In this setting, GEE-EXCH demonstrates the same efficiency

as GLMM in estimating the log relative risk β1. The GEE-IND approach also

demonstrates high efficiency. The GEE-IND and the GEE-EXCH approaches

are almost equivalent in the first two simulation settings. In the third setting

where a larger cluster size is considered, the relative efficiency of GEE-IND

is still close to 100%, although clearly less than that of GEE-EXCH.
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Table 5.1: Results of Simulation I–1

(a) Comparison of estimated log relative risk, β1

Number of subjects, M = 250
β0 = log(1/15), σb = 0.3

GLMM-MLE GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.022 0.165 0.159 0.022 0.161 0.159 0.022 0.161 0.159

14–15 0.026 0.166 0.158 0.026 0.162 0.158 0.026 0.162 0.158
12–15 0.020 0.167 0.157 0.020 0.163 0.157 0.020 0.163 0.157

1.3
15 0.009 0.161 0.165 0.009 0.157 0.164 0.009 0.157 0.165

14–15 0.006 0.161 0.159 0.005 0.158 0.158 0.005 0.158 0.158
12–15 0.007 0.162 0.160 0.007 0.159 0.160 0.007 0.159 0.160

1.5
15 0.005 0.159 0.156 0.004 0.156 0.155 0.004 0.156 0.155

14–15 -0.001 0.159 0.156 -0.002 0.156 0.156 -0.002 0.156 0.156
12–15 -0.012 0.160 0.157 -0.013 0.158 0.156 -0.013 0.158 0.156

20%–50%

1.0
15 0.003 0.127 0.127 0.004 0.124 0.127 0.004 0.124 0.127

14–15 0.006 0.128 0.119 0.006 0.125 0.119 0.006 0.125 0.119
12–15 -0.002 0.131 0.123 -0.002 0.128 0.122 -0.002 0.128 0.122

1.3
15 0.003 0.121 0.114 0.003 0.118 0.114 0.003 0.118 0.114

14–15 -0.004 0.122 0.119 -0.005 0.119 0.119 -0.005 0.119 0.119
12–15 -0.015 0.124 0.119 -0.016 0.121 0.119 -0.016 0.121 0.119

1.5
15 -0.001 0.118 0.114 -0.002 0.116 0.114 -0.002 0.116 0.114

14–15 -0.013 0.119 0.118 -0.014 0.116 0.118 -0.014 0.116 0.118
12–15 -0.044 0.121 0.113 -0.045 0.119 0.112 -0.045 0.119 0.112

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.
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Table 5.1: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1

Number of subjects, M = 250
β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.005 1.004

14–15 1.005 1.004
12–15 1.002 1.004

1.3
15 1.004 1.001

14–15 1.004 1.004
12–15 1.004 1.005

1.5
15 1.005 1.004

14–15 1.003 1.004
12–15 1.004 1.004

20%–50%

1.0
15 1.005 1.005

14–15 1.006 1.006
12–15 1.006 1.007

1.3
15 1.005 1.006

14–15 1.004 1.001
12–15 1.005 1.001

1.5
15 1.004 1.005

14–15 1.004 1.004
12–15 1.003 1.003

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.1: – Continued

(c) Estimation of variance component in GLMM and computation issues
of glmer()

Number of subjects, M = 250

β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.271 18.7% 112

14–15 0.268 21.0% 108
12–15 0.255 22.8% 160

1.3
15 0.261 14.0% 158

14–15 0.260 13.7% 206
12–15 0.248 17.7% 320

1.5
15 0.251 11.2% 300

14–15 0.257 11.7% 433
12–15 0.234 16.1% 1169

20%–50%

1.0
15 0.270 19.6% 78

14–15 0.272 18.3% 102
12–15 0.261 22.0% 150

1.3
15 0.269 14.9% 158

14–15 0.265 13.9% 208
12–15 0.250 19.5% 358

1.5
15 0.254 13.0% 365

14–15 0.243 15.6% 565
12–15 0.216 23.2% 1744
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Table 5.2: Results of Simulation I–2: More Clusters

(a) Comparison of estimated log relative risk, β1

Number of subjects, M = 1000
β0 = log(1/15), σb = 0.3

GLMM-MLE GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.003 0.082 0.079 0.003 0.080 0.078 0.003 0.080 0.078

14–15 0.004 0.082 0.080 0.004 0.080 0.080 0.004 0.080 0.080
12–15 0.006 0.083 0.078 0.006 0.081 0.077 0.006 0.081 0.077

1.3
15 0.003 0.080 0.075 0.002 0.078 0.075 0.002 0.078 0.075

14–15 0.005 0.080 0.082 0.004 0.079 0.082 0.004 0.079 0.082
12–15 -0.001 0.081 0.081 -0.001 0.079 0.080 -0.001 0.079 0.080

1.5
15 -0.003 0.079 0.077 -0.004 0.078 0.077 -0.004 0.078 0.077

14–15 -0.007 0.079 0.078 -0.008 0.078 0.078 -0.008 0.078 0.078
12–15 -0.031 0.080 0.075 -0.032 0.078 0.075 -0.031 0.078 0.075

20%–50%

1.0
15 0.002 0.063 0.061 0.002 0.062 0.061 0.002 0.062 0.061

14–15 0.003 0.064 0.062 0.003 0.062 0.062 0.003 0.063 0.062
12–15 0.000 0.066 0.062 0.000 0.064 0.062 0.000 0.064 0.062

1.3
15 -0.002 0.060 0.059 -0.003 0.059 0.059 -0.003 0.059 0.059

14–15 -0.002 0.061 0.061 -0.003 0.060 0.061 -0.003 0.060 0.061
12–15 -0.010 0.062 0.058 -0.010 0.061 0.058 -0.010 0.061 0.058

1.5
15 -0.003 0.059 0.055 -0.004 0.058 0.055 -0.004 0.058 0.055

14–15 -0.011 0.059 0.057 -0.012 0.058 0.057 -0.012 0.058 0.057
12–15 -0.036 0.061 0.057 -0.037 0.059 0.057 -0.037 0.059 0.057

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.
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Table 5.2: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1

Number of subjects, M = 1000
β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.007 1.009

14–15 1.006 1.005
12–15 1.005 1.007

1.3
15 1.004 1.005

14–15 1.006 1.007
12–15 1.005 1.005

1.5
15 1.006 1.006

14–15 1.005 1.006
12–15 1.004 1.002

20%–50%

1.0
15 1.004 1.002

14–15 1.006 1.003
12–15 1.006 1.007

1.3
15 1.006 1.007

14–15 1.006 1.004
12–15 1.004 1.001

1.5
15 1.005 1.003

14–15 1.004 1.000
12–15 1.002 0.999

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.2: – Continued

(c) Estimation of variance component in GLMM and computation issues
of glmer()

Number of subjects, M = 1000

β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.324 1.7% 36

14–15 0.323 2.8% 36
12–15 0.323 3.6% 67

1.3
15 0.316 0.6% 102

14–15 0.313 0.9% 162
12–15 0.309 0.8% 640

1.5
15 0.302 0.2% 612

14–15 0.300 0.4% 1258
12–15 0.280 1.6% 11624

20%–50%

1.0
15 0.328 2.3% 16

14–15 0.330 2.2% 36
12–15 0.325 3.6% 63

1.3
15 0.318 0.7% 141

14–15 0.313 1.2% 234
12–15 0.305 1.9% 908

1.5
15 0.302 0.5% 1008

14–15 0.296 0.9% 2234
12–15 0.267 3.7% 24633
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Table 5.3: Results of Simulation I–3: Larger Cluster Size

(a) Comparison of estimated log relative risk, β1

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

GLMM-MLE GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
100 0.007 0.076 0.073 0.007 0.075 0.073 0.007 0.075 0.073

90–100 0.009 0.076 0.077 0.009 0.075 0.077 0.009 0.075 0.077
80–100 0.003 0.077 0.074 0.003 0.076 0.074 0.003 0.076 0.074

1.3
100 0.001 0.074 0.072 0.001 0.073 0.072 0.001 0.074 0.073

90–100 0.003 0.075 0.072 0.003 0.074 0.072 0.004 0.074 0.072
80–100 0.003 0.075 0.073 0.002 0.074 0.073 0.002 0.074 0.073

20%–50%

1.0
100 0.004 0.057 0.057 0.004 0.056 0.057 0.004 0.057 0.057

90–100 -0.002 0.058 0.057 -0.001 0.057 0.057 -0.002 0.058 0.057
80–100 0.002 0.059 0.058 0.002 0.058 0.058 0.002 0.059 0.058

1.3
100 -0.001 0.055 0.053 -0.001 0.054 0.053 -0.001 0.054 0.053

90–100 0.000 0.055 0.054 0.000 0.055 0.054 0.000 0.055 0.054
80–100 -0.001 0.056 0.056 -0.001 0.055 0.056 -0.002 0.056 0.056

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.
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Table 5.3: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
100 1.002 0.997

90–100 1.003 0.995
80–100 1.002 0.988

1.3
100 1.002 0.984

90–100 1.001 0.994
80–100 1.001 0.988

20%–50%

1.0
100 1.002 0.999

90–100 1.003 0.994
80–100 1.001 0.996

1.3
100 1.001 1.000

90–100 1.004 1.003
80–100 1.002 0.995

†Relative efficiency defined as reciprocal of the ratio of empirical variances.

98



5.2. Simulation I: Efficiency of GEE

Table 5.3: – Continued

(c) Estimation of variance component in GLMM and computation issues
of glmer()

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
100 0.300 0% 272

90–100 0.299 0% 362
80–100 0.297 0% 440

1.3
100 0.296 0% 159

90–100 0.297 0% 221
80–100 0.299 0% 334

20%–50%

1.0
100 0.296 0% 127

90–100 0.297 0% 155
80–100 0.296 0% 164

1.3
100 0.297 0% 103

90–100 0.295 0% 104
80–100 0.298 0% 161
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5.3 Simulation II: Misspecification of

Random Effects

In our second scenario, we examine the impact of a form of misspecification

of the random effects. All the features of this simulation study are the same

as in Section 5.2 except the assumptions concerning the random effects. The

conditional mean Yij is now modelled as

log
(
π

(C)
ij

)
= β0 + bij + β1xij.

The random effects bij are independent across subjects. Within a subject,

bij follows an AR-1 process,

bij = ρbij−1 +
√

1− ρ2εij,

for j = 2, . . . , ni, where bi1 and εij are i.i.d. N(0, σ2
b ). The former conditional

independence assumption is violated in the sense that within a cluster, the

events tend to be clustered together, although the effect may not be apparent

for binary data even with a substantially long sequence of observations.

The marginal distribution of any individual Yij does not depend on the

latent stochastic process of the random effects. Since bij follows a normal

distribution with zero mean and variance σ2
b , the marginal distribution of Yij

is the same as in Section 5.2. The marginal correlation of Yij and Yik is

Corr (Yij, Yik) =

[
exp

(
ρ|j−k|σ2

b

)
− 1
]
µ

(M)
ij µ

(M)
ik√

µ
(M)
ij

(
1− µ(M)

ij

)
µ

(M)
ik

(
1− µ(M)

ik

) ,
so the within-subject observations have a banded correlation structure for

β1 = 0.
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We consider two choices of ρ, 0.1 and 0.5. For ρ = 0.1, and β1 = log(1.5),

the lag-1 correlation of Yij and Yij+1 ranges from 0.0007 when both x’s are

0 to 0.0011 when both x’s are 1. The lag-2 and lag-3 correlation are about

0.0001 and less than 0.0001 respectively. For ρ = 0.5, and β1 = log(1.5),

the lag-1 correlation ranges from 0.0035 when both x’s are 0 to 0.0054 when

both x’s are 1. The lag-2 correlation ranges from 0.0017 to 0.0027 and the

lag-3 correlation ranges from 0.0008 to 0.0013.

Results

Tables 5.4a to 5.4d present the results for the sets of simulations with 250

subjects in each of the 1000 simulated replicates. The results given by GEE-

EXCH and GEE-IND are almost identical which is in coherence with the

negligible true marginal correlations. In fact, the estimated biases, the av-

erage standard errors and the empirical standard errors from all three ap-

proaches are very close to each other. The estimated biases for estimation

of β1 lie in the range of −0.031 to 0.022, which coverts to biases of less

than 3% in estimation of the relative risk, exp(β1). The average standard

errors are in general agreement with the empirical standard errors with no

specific pattern of discrepancy. The largest disagreements are observed in

the case where β1 = log(1.5), the proportion of the binary covariate x being

zero ranges from 20% to 50% within cluster and the cluster sizes ni range

from 12 to 15; for both ρ = 0.1 and 0.5, for all three approaches, the av-

erage standard error is larger then the empirical standard error by about 7%.

The simulation results show that the GEE approaches are as efficient as

the GLMM approach. For both GEE-EXCH and GEE-IND, the estimated

relative efficiencies are consistently larger than 1 by a slight margin of less

than 0.005 in all settings considered, except one instance for GEE-IND in

which the estimated relative efficiency is 0.999.
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5.3. Simulation II: Misspecification of Random Effects

For GLMM, about half of the estimated variance components are numeri-

cally zero, though the interpretation of this estimated variance component in

the context of the true model is unclear. The number of simulated replicates

replaced ranged from 4 to 763 times across the 24 cases considered. The

frequency increases with β1 as well as with variation in cluster size and the

variation in the within cluster proportion of x taking the value zero.

More Clusters

Tables 5.5a to 5.5d show the results of the same set of simulations with the

number of subjects increased from 250 to 1000. The bias for estimation of β1

is smaller than 0.01 in general except in four cases where RR = 1.5 and clus-

ter size ranges from 12; to 15. In these cases, the biases range from −0.010

to −0.030, however, the number of replicates replaced ranges from about

2400 to 5469. For the standard errors, the percentage differences between

the average standard error and the empirical standard error are within 6.5%.

The estimated relative efficiency of GEE-EXCH and GEE-IND is consis-

tently slightly larger than 100% but by no more than 0.3%. For the settings

with relative risk equal to 1.0, no more than 5 replicates are replaced in each

case. For the settings with relative risk equal to 1.5, the number of replicates

replaced increases with the variation in cluster size, ranging from about 100

to about 5000. Regarding the estimated variance component, 37.5% to 56.1%

are numerically zero for low autocorrelation ρ = 0.1 and 48.1% to 69.4% are

numerically zero for high autocorrelation ρ = 0.5.

Larger Cluster Size

Tables 5.6a to 5.6c present results for selected cases with 250 subjects and

larger and constant cluster size of ni = 100 in each simulated replicate. We

considered combinations of 2 levels of log relative risk β1 = 0 and log(1.3) and
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5.3. Simulation II: Misspecification of Random Effects

2 levels of autocorrelation ρ = 0.1 and 0.5. The same conclusions concerning

the pattern of bias, the validity of the robust standard error for the GEE

approaches and the model-based standard error for GLMM, and the relative

efficiency of GEE are apparent. For this setting with cluster size ni = 100,

the numbers of replicates replaced are negligible. The observed proportions

of estimated variance components numerically zero are still around 50%. The

average estimated variance component ranges from 0.044 to 0.065. However,

the estimation of the fixed effect is not affected by the estimated variance

components being severely underestimated.

Summary

The GEE and GLMM approaches are in general robust to this investigated

form of misspecification for the latent stochastic process of the random effect.

The percentage of estimated variance component numerically equal to zero

is higher, about 50%, compared to about 0% to 23% in Section 5.2 when

the model is correctly specified. The number of replicates replaced is also

much smaller in this section. Compared to Section 5.2, more or less the

same patterns are revealed for bias and the accuracy of the standard error.

The efficiency of GEE-EXCH and GEE-IND are almost the same as GLMM

probably because the correlation within cluster is almost zero.
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Table 5.4: Results of Simulation II–1

(a) Comparison of estimated log relative risk, β1, when the time-dependent random effect follows an AR-1
process, ρ = 0.1.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250

β0 = log(1/15), σb = 0.3
GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.013 0.163 0.161 0.013 0.161 0.161 0.013 0.161 0.161

14–15 0.019 0.164 0.161 0.019 0.162 0.161 0.019 0.162 0.161
12–15 0.022 0.165 0.163 0.022 0.163 0.163 0.022 0.163 0.163

1.5
15 0.015 0.158 0.164 0.014 0.157 0.164 0.014 0.157 0.164

14–15 0.009 0.158 0.158 0.009 0.157 0.158 0.009 0.157 0.157
12–15 -0.010 0.158 0.157 -0.010 0.157 0.156 -0.010 0.157 0.156

20%–50%

1.0
15 -0.003 0.125 0.124 -0.003 0.123 0.124 -0.003 0.123 0.124

14–15 0.003 0.127 0.130 0.003 0.126 0.129 0.003 0.126 0.129
12–15 0.002 0.129 0.126 0.002 0.128 0.126 0.002 0.128 0.126

1.5
15 0.003 0.116 0.113 0.003 0.116 0.113 0.003 0.116 0.113

14–15 -0.007 0.117 0.115 -0.007 0.116 0.115 -0.007 0.116 0.115
12–15 -0.025 0.120 0.113 -0.025 0.119 0.113 -0.025 0.119 0.113

Continued on Next Page. . .
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Table 5.4: – Continued

(b) Comparison of estimated log relative risk, β1, when the time-dependent random effect follows an AR-1
process, ρ = 0.5.

Autocorrelation, ρ = 0.5

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.010 0.163 0.156 0.010 0.161 0.156 0.010 0.161 0.156

14–15 0.011 0.164 0.157 0.011 0.163 0.156 0.011 0.163 0.156
12–15 0.005 0.164 0.153 0.005 0.162 0.153 0.005 0.163 0.153

1.5
15 0.005 0.157 0.157 0.005 0.156 0.157 0.005 0.156 0.157

14–15 0.009 0.158 0.156 0.009 0.157 0.156 0.008 0.157 0.156
12–15 -0.015 0.158 0.164 -0.015 0.158 0.164 -0.015 0.158 0.164

20%–50%

1.0
15 0.001 0.125 0.124 0.001 0.124 0.123 0.001 0.124 0.123

14–15 -0.002 0.127 0.123 -0.002 0.125 0.123 -0.002 0.126 0.123
12–15 0.000 0.130 0.130 0.000 0.128 0.130 0.000 0.128 0.130

1.5
15 -0.004 0.117 0.115 -0.005 0.116 0.115 -0.005 0.116 0.115

14–15 -0.007 0.117 0.116 -0.007 0.117 0.116 -0.007 0.117 0.116
12–15 -0.030 0.120 0.112 -0.030 0.119 0.112 -0.031 0.119 0.112

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.
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Table 5.4: – Continued

(c) Relative efficiency† to maximum liklihood for estimating β1, when
the time-dependent random effect follows an AR-1 process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250
β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.002 1.003

14–15 1.001 1.003
12–15 1.002 1.001

1.5
15 1.000 1.001

14–15 1.001 1.003
12–15 1.002 1.001

20%–50%

1.0
15 1.002 1.004

14–15 1.002 1.003
12–15 1.002 1.001

1.5
15 1.000 1.001

14–15 1.002 1.001
12–15 1.000 1.001

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.002 1.002

14–15 1.000 1.002
12–15 1.003 1.002

1.5
15 1.002 1.000

14–15 1.001 1.000
12–15 1.001 0.999

20%–50%

1.0
15 1.002 1.001

14–15 1.002 1.001
12–15 1.003 1.004

1.5
15 1.000 1.002

14–15 1.004 1.001
12–15 1.002 1.001

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.4: – Continued

(d) Estimation of variance component in GLMM and computation issues
of glmer(), when the time-dependent random effect follows an AR-1
process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250

β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.127 54.7% 9

14–15 0.130 50.7% 11
12–15 0.134 52.0% 34

1.5
15 0.100 53.0% 47

14–15 0.096 56.4% 72
12–15 0.084 62.2% 425

20%–50%

1.0
15 0.117 55.3% 14

14–15 0.122 55.2% 4
12–15 0.134 54.2% 14

1.5
15 0.096 55.1% 79

14–15 0.099 56.0% 151
12–15 0.079 65.5% 712

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.145 48.3% 13

14–15 0.151 48.5% 19
12–15 0.134 52.4% 37

1.5
15 0.115 47.2% 47

14–15 0.120 47.5% 96
12–15 0.100 54.7% 470

20%–50%

1.0
15 0.144 48.0% 10

14–15 0.144 48.1% 12
12–15 0.150 49.3% 21

1.5
15 0.118 47.7% 89

14–15 0.111 50.7% 206
12–15 0.104 55.3% 763
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Table 5.5: Results of Simulation II–2: More Clusters

(a) Comparison of estimated log relative risk, β1, when the time-dependent random effect follows an AR-1
process, ρ = 0.1.

Autocorrelation, ρ = 0.1

Number of subjects, M = 1000

β0 = log(1/15), σb = 0.3
GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.005 0.081 0.078 0.005 0.080 0.078 0.005 0.080 0.078

14–15 0.003 0.081 0.084 0.003 0.081 0.084 0.003 0.081 0.084
12–15 0.004 0.082 0.080 0.004 0.081 0.080 0.004 0.081 0.080

1.5
15 0.001 0.078 0.081 0.001 0.078 0.081 0.001 0.078 0.081

14–15 -0.001 0.078 0.081 -0.001 0.078 0.081 -0.001 0.078 0.081
12–15 -0.015 0.079 0.078 -0.015 0.078 0.078 -0.015 0.078 0.078

20%–50%

1.0
15 0.005 0.062 0.064 0.005 0.062 0.064 0.005 0.062 0.064

14–15 0.001 0.063 0.062 0.001 0.063 0.062 0.001 0.063 0.062
12–15 -0.002 0.064 0.065 -0.002 0.064 0.065 -0.002 0.064 0.065

1.5
15 -0.004 0.058 0.056 -0.004 0.058 0.056 -0.004 0.058 0.056

14–15 -0.006 0.058 0.057 -0.006 0.058 0.057 -0.006 0.058 0.057
12–15 -0.028 0.059 0.056 -0.028 0.059 0.056 -0.028 0.059 0.056

Continued on Next Page. . .
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Table 5.5: – Continued

(b) Comparison of estimated log relative risk, β1, when the time-dependent random effect follows an AR-1
process, ρ = 0.5.

Autocorrelation, ρ = 0.5

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
15 0.001 0.081 0.080 0.001 0.080 0.080 0.001 0.080 0.080

14–15 0.000 0.081 0.078 0.000 0.081 0.078 0.000 0.081 0.078
12–15 0.004 0.082 0.079 0.004 0.081 0.079 0.004 0.081 0.079

1.5
15 -0.003 0.078 0.075 -0.003 0.078 0.075 -0.003 0.078 0.075

14–15 -0.004 0.078 0.075 -0.005 0.078 0.075 -0.005 0.078 0.075
12–15 -0.021 0.078 0.079 -0.021 0.078 0.079 -0.021 0.078 0.079

20%–50%

1.0
15 0.001 0.062 0.064 0.001 0.062 0.064 0.001 0.062 0.064

14–15 -0.003 0.063 0.061 -0.003 0.063 0.061 -0.003 0.063 0.061
12–15 -0.001 0.065 0.065 -0.001 0.064 0.065 -0.001 0.064 0.065

1.5
15 -0.003 0.058 0.057 -0.004 0.058 0.057 -0.004 0.058 0.057

14–15 -0.005 0.059 0.058 -0.006 0.058 0.058 -0.006 0.058 0.058
12–15 -0.026 0.060 0.058 -0.027 0.060 0.058 -0.027 0.060 0.058

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.
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Table 5.5: – Continued

(c) Relative efficiency† to maximum liklihood for estimating β1, when
the time-dependent random effect follows an AR-1 process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 1000
β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.000 1.001

14–15 1.001 1.003
12–15 1.002 1.001

1.5
15 1.001 1.000

14–15 1.000 1.002
12–15 1.000 1.000

20%–50%

1.0
15 1.002 1.002

14–15 1.001 1.001
12–15 1.001 1.003

1.5
15 1.001 1.002

14–15 1.000 1.000
12–15 1.000 1.000

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
15 1.001 1.002

14–15 1.002 1.001
12–15 1.002 1.002

1.5
15 1.002 1.002

14–15 1.001 1.000
12–15 1.000 1.000

20%–50%

1.0
15 1.002 1.002

14–15 1.001 1.001
12–15 1.002 1.003

1.5
15 1.001 1.000

14–15 1.001 1.002
12–15 1.001 1.001

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.5: – Continued

(d) Estimation of variance component in GLMM and computation issues
of glmer(), when the time-dependent random effect follows an AR-1
process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 1000

β0 = log(1/15), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.098 51.7% 2

14–15 0.108 49.9% 0
12–15 0.101 53.9% 4

1.5
15 0.075 52.7% 106

14–15 0.072 52.9% 294
12–15 0.056 64.1% 2429

20%–50%

1.0
15 0.109 48.1% 0

14–15 0.108 49.6% 0
12–15 0.109 51.2% 5

1.5
15 0.078 53.3% 224

14–15 0.067 59.0% 552
12–15 0.049 69.4% 4581

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
15 0.129 39.3% 0

14–15 0.128 42.0% 2
12–15 0.138 41.3% 4

1.5
15 0.107 37.5% 144

14–15 0.107 38.6% 297
12–15 0.079 51.5% 2904

20%–50%

1.0
15 0.131 41.1% 0

14–15 0.125 43.4% 0
12–15 0.140 40.1% 3

1.5
15 0.111 39.0% 219

14–15 0.097 44.4% 630
12–15 0.077 56.1% 5469
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Table 5.6: Results of Simulation II–3: Larger Cluster Size

(a) Comparison of estimated log relative risk, β1, when the time-dependent random effect follows an AR-1
process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%
1.0 100 0.002 0.075 0.075 0.002 0.074 0.075 0.002 0.074 0.075

1.3 100 0.002 0.073 0.073 0.002 0.073 0.073 0.002 0.073 0.073

20%–50%
1.0 100 0.002 0.057 0.056 0.002 0.056 0.056 0.002 0.056 0.056

1.3 100 0.003 0.054 0.054 0.003 0.054 0.054 0.003 0.054 0.054

Autocorrelation, ρ = 0.5

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%
1.0 100 -0.001 0.075 0.078 -0.001 0.075 0.078 -0.001 0.075 0.078

1.3 100 0.000 0.073 0.078 0.000 0.073 0.077 0.000 0.073 0.077

20%–50%
1.0 100 0.001 0.057 0.057 0.001 0.057 0.057 0.001 0.057 0.057

1.3 100 0.001 0.054 0.054 0.001 0.054 0.054 0.001 0.054 0.054

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.112
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Table 5.6: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1, when
the time-dependent random effect follows an AR-1 process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%
1.0 100 1.001 1.001

1.3 100 1.001 1.000

20%–50%
1.0 100 1.000 1.001

1.3 100 1.001 1.001

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%
1.0 100 1.001 1.002

1.3 100 1.001 1.001

20%–50%
1.0 100 0.999 1.001

1.3 100 1.000 1.000

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.6: – Continued

(c) Estimation of variance component in GLMM and computation
issues of glmer(), when the time-dependent random effect follows an
AR-1 process.

Autocorrelation, ρ = 0.1

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%
1.0 100 0.049 55.4% 7

1.3 100 0.044 55.8% 1

20%–50%
1.0 100 0.053 52.0% 2

1.3 100 0.048 51.6% 2

Autocorrelation, ρ = 0.5

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%
1.0 100 0.057 48.8% 3

1.3 100 0.054 45.8% 2

20%–50%
1.0 100 0.060 45.4% 2

1.3 100 0.055 45.4% 0
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5.4 Simulation III: Misspecification of the

Random Effect Distribution

In the third scenario, we study the impact of a form of misspecification of the

random effect distribution. All the features of the simulation study in Section

5.2 are retained in this section except for this departure of the random effect

distribution.

Beta Distribution for the Baseline Conditional

Probability

Firstly, a beta-binomial setup is considered. The baseline conditional prob-

ability, P (Yij = 1|bi, xij = 0) = exp (β0 + bi), as a function of bi, is assumed

to follow a beta distribution with mean π0 = exp
(
β0 +

σ2
b

2

)
and variance

σ2
π = (exp(σ2

b )− 1) · π2
0. The equivalent parameterization in the usual shape

parameters α and β of the beta distribution is

α = π0

(
π0(1− π0)

σ2
π

− 1

)
and

β = (1− π0)

(
π0(1− π0)

σ2
π

− 1

)
.

For β0 = log(5/100) and σb = 0.3, π0 lies between 0.026 and 0.088 with

probability 0.95 and between 0.020 to 0.010 with probability 0.99. The beta

distribution for π0 is analogous to implementing a slightly asymmetric dis-

tribution for bi, with approximately, mean −0.003, standard deviation 0.316

and skewness −0.35. The probabilities corresponding to x = 1 are obtained

by multiplying the baseline probabilities by the relative risk exp(β1).

Figure 5.1 shows the probability density function of the random intercept

when the baseline conditional probability follows the specified beta distri-
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bution and compares it to a normal distribution to illustrate the extent it

deviates from normal. The same first two moments of the normal distribution

are matched to have mean −0.003 and standard deviation 0.316. Under this

beta-binomial setting, the random intercept distribution does not deviate

much from a normal distribution and is only slightly left-skewed.

Results

Table 5.7a shows the estimated biases, the average standard error and the

empirical standard error for the three estimation approaches. Results ob-

tained by the three approaches are very similar, with numerical values within

a margin of 0.001. The estimated bias is small, less than 0.010 in absolute

value in all cases. The average standard error and the empirical standard

error closely resemble each other in general. The ratio of the grand average

of the standard error to the grand average of the empirical standard error is

101.3% for GLMM and 100.0% for GEE-EXCH and GEE-IND.

Table 5.7b shows the estimated efficiencies of GEE-EXCH and GEE-IND

relative to GLMM. Among the 18 cases we considered, GEE-EXCH is as

efficient as GLMM with relative efficiency ranging from 99.9% to 100.4%.

GEE-IND is in general less efficient in this setup as the estimated relative

efficiencies mostly range from 98.2% to 100.0% with three cases where the

relative efficiencies are larger than 100.0% (100.3%, 100.3% and 100.8%).

The average estimated variance components reported in Table 5.7c are

close to true value, σb = 0.3. None of the estimated variance components is

numerically 0. A considerable number of replicates, ranging from 48 to 311,

are replaced.

This very mild misspecification of the random effect distribution does

not appear to influence the bias and accuracy of the model-based standard
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error of GLMM. In this particular setup, GEE-EXCH and GLMM have very

similar efficiency, while GEE-IND has a slightly lower efficiency.

Triangular Distribution for the Random Intercept

A second setup considers a triangular distribution for the random effect. The

random intercept bi is generated from a distribution with density function

fb(x) =
2 · (2δ − x)

(3δ)2

for x ∈ [ − δ, 2δ ]. The cumulative distribution function (CDF) is

Fb(x) =
(x+ δ) · (5δ − x)

(3δ)2

for x ∈ [−δ, 2δ], and the inverse CDF is

F−1
b (u) = (2− 3

√
1− u) · δ

for u ∈ [0, 1] . This triangular distribution has mean 0 and variance δ2

2
. In

this subsection, We choose a scale parameter δ = 0.3
√

2 so that the standard

deviation of bi is the same as in our earlier simulations (σb = 0.3). Figure

5.2 compares the density of this triangular distribution with δ = 0.3
√

2 to

a normal distribution with zero mean and variance σ2
b = 0.32. This density

function is perpendicular triangular in shape with skewness approximately

0.57. It imitates a situation when the majority of patients have relatively

low event rates while a few exceptional patients have comparatively high

event rates. The 18 basic settings listed in Section 5.2 are considered, with

cluster sizes uniformly distribution from 80 to 100 and β0 = log(5/100). This

implies a baseline probability in the range from 0.03 to 0.12. Results for these

settings are directly comparable to those in Tables 5.3a to 5.3c.
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Results

Table 5.8a shows the estimated biases, average standard errors and the em-

pirical standard errors. The estimated biases of all three approaches are

small, less than 0.005 in absolute value in all cases. The average standard

errors are in good agreement with the empirical standard errors in general.

For empirical standard errors around 0.055 to 0.075, the discrepancies of the

average standard errors are within a margin of 0.002. The ratio of the grand

average of the standard errors to the grand average of the empirical standard

errors reported in Table 5.8a is 101.4% for GLMM, 100.0% for GEE-EXCH

and 100.2% for GEE-IND. For GLMM, the ratios of the standard errors are

consistently larger than 100% ranging from about 100% to 104%. Excep-

tions include three cases with the ratios about 99.0% to 99.5%. In general,

for all three approaches, there is essentially no difference between the robust

standard errors or the model-based standard errors from their corresponding

empirical standard errors.

Table 5.8b presents the estimated relative efficiencies. GEE-EXCH is ba-

sically as efficient as GLMM in this setting as well, with estimated relative

efficiencies ranging from 99.9% to 100.4%; whereas GEE-IND tends to be

slightly less efficient, with estimated relative efficiencies ranging from 98.3%

to 100.1%.

Table 5.8c reports on the estimation of the variance component and num-

ber of simulated replicates replaced. The variance component is overesti-

mated by 4.0% to 6.3%. The number of simulated replicates replaced is

comparable to the previous setup with the beta distribution.

Even with this more extreme distribution for the random effect, regarding

estimation of the regression coefficients, GLMM is still quite robust to this

form of model misspecification. The variance component is however overes-
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timated on average leading to potentially slight inflation of the model-based

standard error, although the effect is very limited in our cases. The bias and

validity of the sandwich estimator of variance of the GEE approaches are not

affected by the distribution of the random effect, as far as we observed. For

the two setups considered in this section, GEE-EXCH has the same efficiency

as GLMM while GEE-IND is slightly less efficient by 1% to 2%.

Summary

Our limited simulation studies in this section show that GLMM estimation

of the regression coefficients is quite robust to moderate departures of the

true random effect distribution from the normal distribution when the latter

is conventionally assumed. Comparing the two settings of model misspeci-

fication in this section to the correct model specification setting in Section

5.2, similar biases, average standard errors and empirical standard errors are

demonstrated. The number of replicates replaced are consistently smaller in

the two model misspecification settings than in the correct model specifica-

tion case. The number of replacements is however similar between these two

settings.

For the average estimates of the variance component, those in the cor-

rect model specification setting are always the smallest, while the triangular

random effect distribution setting always results in the largest variance com-

ponent estimates among the three simulation settings. The efficiencies of

GEE-EXCH and GEE-IND relative to GLMM are also similar in all three

settings.

5.5 Conclusion

In the simulation studies for clustered binary responses and a binary covari-

ate in this chapter, we have only considered circumstances with very low
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marginal probability of events. Simulated response vectors usually consist of

long strings of zeros and very rare events. In general, the pairwise correla-

tion is bound to be low for small marginal probability, which is presumably

the reason no loss of efficiency for the GEE approaches is observed in the

simulations even for the independence “working” correlation structure.

The GLMM estimates of the regression coefficients are robust to depar-

tures of the random effect distribution from the conventional normal assump-

tion even if the true underlying distribution is moderately skewed. Misspeci-

fication to the underlying stochastic process of the random effect of the type

investigated also has no impact on the quality and efficiency for estimating

the regression coefficients. However, it is worth noting that the GLMM log

binomial model seems to be a difficult model to fit when the cluster size is

small (n = 15) compared to fitting the corresponding marginal model by the

GEE approach.
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5.5. Conclusion

Figure 5.1: Probability density functions of random intercept bi with mean
−0.003 and variance σ2

b = 0.3162 when 1) normally distributed and 2) base-
line conditional probability follows beta a distribution.
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Table 5.7: Results of Simulation III–1: Beta-Binomial Setup

(a) Comparison of estimated log relative risk, β1 when the baseline probability follows a beta distribution.

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
100 0.006 0.076 0.077 0.006 0.075 0.077 0.006 0.075 0.078

90–100 0.006 0.076 0.075 0.006 0.075 0.075 0.006 0.076 0.076
80–100 0.008 0.077 0.074 0.008 0.076 0.074 0.007 0.076 0.074

1.3
100 -0.001 0.074 0.075 -0.002 0.073 0.074 -0.001 0.074 0.075

90–100 0.002 0.075 0.075 0.002 0.074 0.074 0.002 0.074 0.075
80–100 0.001 0.075 0.075 0.001 0.074 0.075 0.000 0.074 0.074

1.5
100 0.001 0.074 0.073 0.000 0.073 0.073 0.001 0.073 0.073

80–100 0.004 0.074 0.075 0.004 0.073 0.075 0.003 0.074 0.076
90–100 0.003 0.074 0.072 0.002 0.073 0.072 0.002 0.074 0.072

20%–50%

1.0
100 0.002 0.057 0.057 0.002 0.056 0.057 0.002 0.057 0.057

90–100 0.002 0.058 0.055 0.002 0.057 0.055 0.002 0.057 0.055
80–100 -0.005 0.059 0.057 -0.005 0.058 0.057 -0.005 0.058 0.057

1.3
100 0.000 0.055 0.055 0.000 0.054 0.055 0.000 0.054 0.055

90–100 0.003 0.055 0.054 0.003 0.055 0.054 0.003 0.055 0.054
80–100 0.002 0.056 0.054 0.001 0.055 0.054 0.001 0.056 0.055

1.5
100 0.001 0.054 0.054 0.001 0.053 0.054 0.001 0.053 0.054

90–100 0.001 0.054 0.054 0.001 0.053 0.053 0.001 0.054 0.054
80–100 0.002 0.055 0.054 0.001 0.054 0.054 0.001 0.055 0.054

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.122
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Table 5.7: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1 when
the baseline probability follows a beta distribution.

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
100 1.003 0.982

90–100 1.002 0.986
80–100 1.001 0.999

1.3
100 1.003 0.986

90–100 1.001 0.986
80–100 0.999 1.003

1.5
100 1.004 0.990

80–100 1.004 0.983
90–100 1.000 0.995

20%–50%

1.0
100 1.002 0.990

90–100 1.002 0.985
80–100 1.003 0.995

1.3
100 1.004 0.997

90–100 1.004 1.008
80–100 1.001 0.987

1.5
100 1.002 1.003

90–100 1.004 0.994
80–100 1.002 1.000

†Relative efficiency defined as reciprocal of the ratio of empirical variances.
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Table 5.7: – Continued

(c) Estimation of variance component in GLMM and computation issues
of glmer() when the baseline probability follows a beta distribution.

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
100 0.302 0% 164

90–100 0.302 0% 235
80–100 0.301 0% 311

1.3
100 0.301 0% 80

90–100 0.301 0% 115
80–100 0.302 0% 199

1.5
100 0.298 0% 83

90–100 0.299 0% 128
80–100 0.300 0% 185

20%–50%

1.0
100 0.297 0% 48

90–100 0.300 0% 83
80–100 0.299 0% 102

1.3
100 0.301 0% 48

90–100 0.300 0% 75
80–100 0.299 0% 97

1.5
100 0.297 0% 53

90–100 0.299 0% 76
80–100 0.299 0% 103
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Figure 5.2: Probability density functions of random intercept bi with mean
0 and variance σ2

b = 0.32 when 1) normally distributed and 2) triangularly
distributed.
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Table 5.8: Results of Simulation III–2: Triangular Distribution

(a) Comparison of estimated log relative risk, β1 when the random effect follows a triangular distribution.

Number of subjects, M = 250
β0 = log(5/100), σb = 0.3

GLMM GEE-EXCH GEE-IND

Prop. xij = 0 RR ni Bias SE∗(M) SE‡(E) Bias SE†(R) SE‡(E) Bias SE†(R) SE‡(E)

30%

1.0
100 0.002 0.076 0.075 0.002 0.075 0.075 0.002 0.075 0.076

90–100 0.001 0.076 0.076 0.001 0.075 0.075 0.001 0.076 0.076
80–100 0.004 0.077 0.075 0.004 0.076 0.075 0.003 0.076 0.075

1.3
100 0.000 0.074 0.074 0.000 0.073 0.074 0.000 0.074 0.074

90–100 0.002 0.075 0.074 0.002 0.074 0.074 0.002 0.074 0.074
80–100 0.004 0.075 0.073 0.003 0.074 0.073 0.003 0.074 0.073

1.5
100 0.002 0.074 0.072 0.002 0.073 0.072 0.002 0.073 0.073

80–100 0.004 0.074 0.074 0.004 0.073 0.074 0.004 0.073 0.074
90–100 0.004 0.074 0.073 0.003 0.073 0.073 0.003 0.074 0.073

20%–50%

1.0
100 0.001 0.057 0.056 0.001 0.056 0.056 0.000 0.057 0.056

90–100 0.002 0.058 0.058 -0.002 0.057 0.058 -0.002 0.057 0.059
80–100 0.003 0.059 0.060 0.003 0.058 0.060 0.003 0.058 0.060

1.3
100 0.001 0.055 0.054 0.000 0.054 0.054 0.000 0.054 0.055

90–100 0.000 0.055 0.054 0.000 0.054 0.054 0.000 0.055 0.054
80–100 0.002 0.056 0.055 0.002 0.055 0.055 0.002 0.056 0.055

1.5
100 0.001 0.053 0.054 0.000 0.053 0.054 0.000 0.053 0.054

90–100 0.003 0.054 0.053 0.002 0.053 0.053 0.001 0.054 0.053
80–100 0.000 0.055 0.053 -0.001 0.054 0.053 -0.001 0.054 0.053

∗ Averaged model-based standard error.
† Averaged robust standard error.
‡ Empirical standard error, i.e. sample standard deviation of simulation replicates.126
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Table 5.8: – Continued

(b) Relative efficiency† to maximum liklihood for estimating β1, when
the random effect follows a triangular distribution.

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni GEE-EXCH GEE-IND

30%

1.0
100 1.002 0.995

90–100 1.004 1.000
80–100 1.002 0.995

1.3
100 1.000 1.001

90–100 1.000 0.996
80–100 1.002 0.996

1.5
100 1.002 0.987

80–100 1.003 0.984
90–100 0.999 1.000

20%–50%

1.0
100 1.003 0.998

90–100 1.002 0.996
80–100 1.002 1.000

1.3
100 1.002 0.984

90–100 1.003 0.989
80–100 1.002 1.001

1.5
100 1.002 0.990

90–100 1.001 0.983
80–100 1.001 0.987

†Relative efficiency defined as reciprocal of the ratio of empirical variances.

127



5.5. Conclusion

Table 5.8: – Continued

(c) Estimation of variance component in GLMM and computation issues
of glmer(), when the random effect follows a triangular distribution.

Number of subjects, M = 250

β0 = log(5/100), σb = 0.3

Prop. xij = 0 RR ni
Average
σ̂b

Prop.
σ̂b < 0.01

Replicates
replaced

30%

1.0
100 0.316 0% 161

90–100 0.319 0% 235
80–100 0.318 0% 334

1.3
100 0.313 0% 80

90–100 0.314 0% 102
80–100 0.318 0% 185

1.5
100 0.313 0% 70

90–100 0.315 0% 94
80–100 0.315 0% 169

20%–50%

1.0
100 0.317 0% 66

90–100 0.314 0% 83
80–100 0.316 0% 108

1.3
100 0.315 0% 38

90–100 0.314 0% 70
80–100 0.315 0% 104

1.5
100 0.312 0% 60

90–100 0.314 0% 88
80–100 0.314 0% 127
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Chapter 6

Conclusions and Discussion

A log-linear random intercept model for estimating relative risk for clustered

or longitudinal data is described in this report. This model implies a com-

mon mean structure at the population average level and the subject specific

level, which leads to two approaches for estimation of the same regression

coefficient. In the case of a binary response, the corresponding regression

coefficient represents the log relative risk. The first model fitting approach,

maximum likelihood, is based on the integrated likelihood of the GLMM

model; the second, the GEE approach, is an estimating equations approach

based on the marginalized mean structure of this GLMM model.

This regression model was applied to the BEYOND trial data to assess

the effects of neutralizing antibodies on the efficacy of interferon beta-1b in

relapsing-remitting multiple sclerosis. Analyses based on daily relapse data

showed that the model fits obtained by GLMM and GEE-EXCH are very

similar. The estimated correlations by GEE-EXCH were very low, about

0.001. The BEYOND trial data suggested some NAB effect for medium

and high level NAB titer values in the 500 mcg group, but this pattern was

barely significant for GEE-EXCH and not significant for GLMM. For the 250

mcg group, no evidence of NAB effect was suggested based on NAB status.

When using the NAB titers directly, no evidence of NAB effects was sug-

gested, again, in the 250 mcg group. On the other hand, in the 500 mcg

group, a positive association between the titer value and the risk of relapse

onset was indicated for both approaches.
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Another version of the data was considered by collapsing the binary indi-

cators of daily relapse onset to the number of relapse onsets within intervals

between two consecutive serum sample collections. Analyses based on the

collapsed data resulted in generally the same conclusions on NAB effect.

The estimated relative risks obtained by GEE-EXCH were slightly larger

than those obtained by GLMM. The correlation estimated by GEE-EXCH

was about 0.05 for the 250 mcg group and 0.11 for the 500 mcg group. Com-

paring the standard errors of the estimated log relative risk based on the

daily relapse data and the collapsed data, there was little loss of efficiency

for GLMM due to collapsing. For GEE-EXCH, mild to moderate loss of

efficiency was observed. The variance of β̂ corresponding to NAB status was

inflated by up to 20% in the 500 mcg group.

To assess the efficiency of GEE-EXCH and GLMM, the variances of β̂

were compared. Based on the daily relapse data, GEE-EXCH was slightly

more efficient except in the 500 mcg group with direct use of NAB titer

when GLMM was more efficient. Based on the collapsed data, in the 250

mcg group, the efficiency of the two approaches were similar. In the 500 mcg

group, since a substantial loss of efficiency was observed for GEE-EXCH due

to collapsing, it was less efficient compared to GLMM with both NAB status

and NAB titers.

When the relapse onsets are very sparse among the binary responses, the

within-subject correlation is usually very low. Our simulations showed, not

surprisingly, that GEE-EXCH was as efficient as GLMM when the events

were sparse and the within cluster correlation was smaller than 0.1. We

also looked at the impact of model misspecification under the scenario of

low event probability and low correlation. When the random effects follow

a latent AR-1 process, our simulations showed that for estimation of the

fixed effect, GLMM was robust to this form of model misspecification, even
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though the variance component was poorly estimated. Similar robustness

of GLMM to departures from the conventionally assumed normal form of

the random effect distribution was also observed. In the situation when the

random effects follow a triangular distribution with moderate skewness, the

estimated regression coefficients were essentially unaffected and their model-

based standard errors are accurate, although the variance component was

slightly overestimated. In these cases of misspecification of the random effect

distribution, GEE-EXCH has the same efficiency as GLMM while GEE-IND

is almost as efficient with a loss of less than 2%.

Various studies of the efficiency of GEE estimators can be found in the

literature. Neuhaus[21] compared a mixed-effects logistic model, a marginal

logistic model and Rosner’s model for clustered binary data. Although the

regression coefficients in the three models do not have the same interpreta-

tion, they estimate the same null covariate effect when the true regression

coefficients are zero. The mixed-effects model and Rosner’s model can be fit-

ted by maximum likelihood whereas the marginal logistic model can be fitted

by GEE. He considered a setting where a single covariate has exchangeable

correlation structure within cluster. Assuming the mixed-effects model holds

with no actual covariate effect, approximate analytic results relating the re-

gression coefficients as well as the standard errors obtained by the three

approaches were derived asymptotically. Based on those results, the asymp-

totic relative efficiencies (AREs) of the derived Wald-type tests of the three

approaches were compared. It was concluded that when the covariate only

varies at the cluster level, all three approaches have similar power in de-

tecting covariate effects. However, when the covariate varies within cluster,

the mixed-effects model and GEE-EXCH are similar and more efficient than

GEE-IND and Rosner’s model. The gain in efficiency increases with the

within cluster correlation of the response.
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Fitzmaurice[22] compared the efficiency of GEE-EXCH and GEE-IND to

maximum likelihood when the binary responses follow a general multivariate

distribution with mean structure related to covariates through a logit link.

The longitudinal data are measured at the same time points across clusters.

A binary covariate, either cluster-level or within-cluster, was considered. The

AREs of the estimated time effects were close to 1 so the focus was on the

binary covariate. For cluster-level covariates, the efficiency of GEE-EXCH

and GEE-IND are almost the same. Their AREs decrease with increasing

correlation of the responses but are quite high (> 0.9) provided the corre-

lation is modest (< 0.3). For within-cluster covariates, GEE-EXCH retains

a similar pattern of ARE. However, GEE-IND results in a considerable loss

of efficiency, as its ARE drops more sharply than that of GEE-EXCH as

the correlation increases. GEE-IND was also compared to GEE-EXCH un-

der the null covariate effect when both the response and the covariate has

an exchangeable correlation structure within cluster. Conclusions similar to

those of Neuhaus[21] were reached: loss of efficiency is associated with cor-

relation of both the covariates and the responses and the two approaches are

equally efficient when the covariate is constant within cluster. Fitzmaurice’s

results[22] explained the paradoxical findings in some previous studies on

relative efficiency of GEE-IND to GEE-EXCH where either a cluster-level or

a within-cluster covariate was considered, but not both.

Mancl and Leroux[23] investigated extensively the loss of efficiency due

to the use of an independence “working” correlation structure when the true

correlation structure is exchangeable. Asymptotic efficiency comparing GEE-

IND to GEE-EXCH was based on the analytic form of the covariance matri-

ces of the estimated regression coefficients for the case of linear models. The

ARE was shown to depend on the covariate distribution, the cluster size, the

within cluster correlations of the responses and the regression coefficients.

The distribution of the covariates was described in terms of the proportion
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of covariate variation attributable to between-cluster variation. Mancl and

Leroux[23] identified that GEE-IND is fully efficient relative to GEE-EXCH

in two situations: 1) when the covariate is cluster-level (i.e. covariate varia-

tion is entirely between-cluster); or 2) when cluster size is constant and the

within-cluster covariate is mean-balanced across clusters (i.e. covariate vari-

ation is entirely within-cluster). The latter situation had been overlooked in

previous studies but actually had been demonstrated by Fitzmaurice’s time

covariate, which is a special case of a mean-balanced covariate as it is identi-

cal across clusters. The ARE decreases as the covariate distribution deviates

from these two extremes. Larger cluster size was shown to aggravate the

loss of efficiency. When the cluster size is large (e.g. 100), even when the

response correlation is low (e.g. ρy = 0.1), the ARE can be as low as about

30%. They noted that the results may give good approximations for more

general situations with other link functions and variance functions, especially

if the resulting weights do not vary to a great extent. In an example for bi-

nary response and binary covariate with ρy = 0.2 and using a logit link, the

ARE is about 0.9 for a constant cluster size of 4 and drops to about 0.5 for a

constant cluster size of 20. The ARE is apparently unrelated to the baseline

probability and increases only slightly with the magnitude of the covariate

effect. Compared to our simulation study where a binary covariate varying

within cluster was considered, we did not see any loss of efficiency due to

variations in covariates, cluster size or covariate effects. This was most likely

due to the low correlation in our simulated responses.

Chaganty and Joe[12] pointed out that the usual GEE “working” cor-

relation matrix, assumed to be constant over possible values of covariates,

cannot be the true correlation structure in general for non-normal, especially

binary responses. For binary responses, the correlations are constrained by

Fréchet bounds which are determined by the marginal means. The bounds

could be quite narrow when the range of the covariate is wide. Also, strong
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positive dependence is possible without high correlation. They suggested to

regard the “working” correlation matrix merely as a weight matrix. A set

of guidelines for selecting the optimal weight matrix was described. Since

the optimal weight matrix is fixed, no association parameters are involved

so the weight matrix can be ensured to be positive definite. By simulation,

the efficiency of GEE is shown to be high relative to maximum likelihood

when data is generated from a multivariate probit model. In this case, the

optimal weight matrix turns out to be a rough approximate to the average

true correlation matrix.

Chaganty and Joe[12] also argued that some studies of the relative effi-

ciency of GEE in the literature are invalid. For example, they pointed out

that Fitzmaurice’s[22] comparison of the GEE approach to maximum likeli-

hood was invalid due to the questionable likelihood used. The correlations

between the binary responses were assumed constant across possible values of

the covariate, which was generally impossible. In contrast, our comparisons

of the GEE approach to GLMM were based on a correct likelihood in which

the correlations between the responses actually depended on the covariates2.

To conclude, when the marginal probability of the binary response is low,

the within cluster correlation is usually low. In this case, the GEE approach

is almost as efficient as GLMM even when an independence “working” corre-

lation matrix is used. Our simulations also indicated that GLMM was robust

to misspecification of the random effect distribution as well as when the ran-

dom intercept followed a latent AR-1 process within cluster. The estimation

of regression coefficients was not sensitive to the normality assumption of

the random intercept in general. Overall, the GEE approach demonstrated

high efficiency. Fitting the marginal model was also computationally easier

2Although one may argue that a normal random effect distribution is theoretically
impossible when a log link is applied to binary responses, we think this is not an issue
provided the variance component is small enough.
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and less demanding than fitting the GLMM. All in all, the GEE approach is

recommended over GLMM for estimation of relative risk when the relative

frequency of the event is very low for the correlated binary response.

In our analyses of the BEYOND data, the time trend of relapse risk

was modelled as linear based on the conclusion of the likelihood ratio tests.

Confirmatory analyses fitting a second degree spline or a quadratic time

trend can be performed for both daily and collapsed data to see if more

comparable NAB effects are estimated for both IFNB treatment groups. Our

study only compared the efficiency of the GEE approach to GLMM when the

response probability is low and the within cluster correlation is low. Further

research could be done to study the relative efficiency for higher marginal

probability and within cluster correlation. Also, the robustness of GLMM

under more extreme departure from the normal random effect distribution

could be examined. Since with the log link, the mean is not bounded above

by 1, problems may arise when fitting the log binomial models to data with

higher marginal probability. Some of these problems are documented in the

literature in the context of cross-sectional studies. These issues of fitting

the log-binomial model in the context of longitudinal studies and possible

alternatives to circumvent the difficulties could be topics for future studies.
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Table A.1: Model fit based on eventually NAB+ patients only: linear time trend, NAB status.

(a) The 250 mcg group

All switches considered ; confirmed NAB+, confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -6.720 0.139 -48.46 <0.01 -6.943 0.137 -50.52 <0.01
Time -0.185 0.104 -1.78 0.08 -0.192 0.110 -1.74 0.08
NAB+ vs. NAB− 0.088 0.158 0.56 0.58 0.097 0.171 0.57 0.57
α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.973 − − − − − − −
σb(GLMM) − − − − 0.729 0.069 10.60 <0.01

(b) The 500 mcg group

All switches considered ; confirmed NAB+, confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -7.087 0.151 -47.02 <0.01 -7.354 0.156 -47.22 <0.01
Time -0.052 0.113 -0.46 0.64 -0.050 0.116 -0.43 0.66
NAB+ vs. NAB− 0.257 0.172 1.49 0.14 0.252 0.183 1.38 0.17
α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.970 − − − − − − −
σb(GLMM) − − − − 0.802 0.073 10.94 <0.01
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Table A.2: Model fit based on eventually NAB+ patients only: linear time trend, refined NAB status.

(a) The 250 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -6.722 0.140 -48.11 <0.01 -6.946 0.138 -50.28 <0.01
Time -0.182 0.104 -1.75 0.08 -0.187 0.113 -1.66 0.10

Low NAB+ vs. NAB− 0.073 0.168 0.43 0.67 0.090 0.182 0.49 0.62
Med NAB+ vs. NAB− 0.147 0.221 0.66 0.51 0.140 0.221 0.63 0.53
High NAB+ vs. NAB− 0.034 0.261 0.13 0.90 0.023 0.270 0.09 0.93

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.973 − − − − − − −
σb(GLMM) − − − − 0.729 0.069 10.59 <0.01

(b) The 500 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -7.062 0.150 -47.02 <0.01 -7.334 0.157 -46.80 <0.01
Time -0.100 0.121 -0.83 0.41 -0.096 0.121 -0.80 0.43

Low NAB+ vs. NAB− 0.105 0.201 0.52 0.60 0.095 0.207 0.46 0.65
Med NAB+ vs. NAB− 0.432 0.220 1.97 0.05 0.436 0.223 1.96 0.05
High NAB+ vs. NAB− 0.471 0.237 1.99 0.05 0.466 0.241 1.93 0.05

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.971 − − − − − − −
σb(GLMM) − − − − 0.809 0.074 11.00 <0.01

∗Titers for NAB status — Low : [20, 100), Med : [100, 400), High : [400,∞).
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Table A.3: Model fits based on 250 mcg arm, eventually NAB+ patients only: linear time trend, log NAB
titers.

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = ∞
(Intercept) -6.703 0.135 -49.59 <0.01 -6.924 0.132 -52.32 <0.01

Time -0.151 0.092 -1.63 0.10 -0.148 0.102 -1.45 0.15

log (NAB Titer/20) -0.002 0.054 -0.03 0.97 -0.009 0.056 -0.16 0.87

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.972 − − − − − − −
σb(GLMM) − − − − 0.728 0.069 10.57 <0.01

cutoff = 1000 NU/mL

(Intercept) -6.704 0.135 -49.54 <0.01 -6.925 0.133 -52.26 <0.01

Time -0.157 0.093 -1.69 0.09 -0.155 0.103 -1.51 0.13

log (min {NAB Titer, 1000} /20) 0.006 0.062 0.09 0.93 -0.001 0.062 -0.02 0.98

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.972 − − − − − − −
σb(GLMM) − − − − 0.729 0.069 10.59 <0.01

Continued on Next Page. . .
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Table A.3 – Continued

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = 400 NU/mL

(Intercept) -6.703 0.135 -49.58 <0.01 -6.924 0.133 -52.22 <0.01

Time -0.154 0.094 -1.64 0.10 -0.152 0.103 -1.47 0.14

log (min {NAB Titer, 400} /20) 0.002 0.071 0.03 0.97 -0.005 0.072 -0.07 0.94

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.972 − − − − − − −
σb(GLMM) − − − − 0.728 0.069 10.58 <0.01

cutoff = 100 NU/mL

(Intercept) -6.707 0.136 -49.18 <0.01 -6.916 0.133 -51.92 <0.01

Time -0.166 0.095 -1.75 0.08 -0.134 0.102 -1.31 0.19

log (min {NAB Titer, 100} /20) 0.028 0.109 0.25 0.80 -0.050 0.111 -0.45 0.65

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.972 − − − − − − −
σb(GLMM) − − − − 0.727 0.069 10.56 <0.01
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Table A.4: Model fits based on 500 mcg arm, eventually NAB+ patients only: linear time trend, log NAB
titers.

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = ∞
(Intercept) -7.032 0.146 -48.18 <0.01 -7.309 0.148 -49.30 <0.01

Time -0.086 0.117 -0.74 0.46 -0.085 0.113 -0.75 0.45

log (NAB Titer/20) 0.108 0.051 2.10 0.04 0.110 0.049 2.23 0.03

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.970 − − − − − − −
σb(GLMM) − − − − 0.814 0.074 11.04 <0.01

cutoff = 1000 NU/mL

(Intercept) -7.044 0.148 -47.76 <0.01 -7.319 0.149 -49.14 <0.01

Time -0.102 0.119 -0.86 0.39 -0.100 0.114 -0.87 0.38

log (min {NAB Titer, 1000} /20) 0.137 0.061 2.24 0.03 0.138 0.057 2.42 0.02

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.971 − − − − − − −
σb(GLMM) − − − − 0.812 0.074 11.02 <0.01

Continued on Next Page. . .
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Table A.4 – Continued

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = 400 NU/mL

(Intercept) -7.056 0.148 -47.55 <0.01 -7.331 0.150 -48.96 <0.01

Time -0.101 0.119 -0.85 0.40 -0.100 0.115 -0.87 0.38

log (min {NAB Titer, 400} /20) 0.162 0.073 2.23 0.03 0.163 0.068 2.39 0.02

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.971 − − − − − − −
σb(GLMM) − − − − 0.811 0.074 11.01 <0.01

cutoff = 100 NU/mL

(Intercept) -7.079 0.150 -47.23 <0.01 -7.354 0.152 -48.28 <0.01

Time -0.084 0.116 -0.72 0.47 -0.082 0.112 -0.73 0.47

log (min {NAB Titer, 100} /20) 0.240 0.118 2.04 0.04 0.244 0.113 2.17 0.03

α(GEE-EXCH) 0.001 − − − − − − −
φ(GEE-EXCH) 0.970 − − − − − − −
σb(GLMM) − − − − 0.797 0.073 10.91 <0.01
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Table B.1: Model fit based on collapsed data, eventually NAB+ patients only: linear time trend, NAB
status.

(a) The 250 mcg group

All switches considered ; confirmed NAB+, confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -0.904 0.134 -6.76 <0.01 -1.177 0.131 -8.98 <0.01
Time -0.245 0.115 -2.14 0.03 -0.235 0.114 -2.05 0.04
NAB+ vs. NAB− 0.142 0.167 0.85 0.40 0.138 0.174 0.79 0.43
α(GEE-EXCH) 0.050 − − − − − − −
φ(GEE-EXCH) 2.242 − − − − − − −
σb(GLMM) − − − − 0.818 0.071 11.51 <0.01

(b) The 500 mcg group

All switches considered ; confirmed NAB+, confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -1.304 0.154 -8.48 <0.01 -1.600 0.149 -10.72 <0.01
Time -0.040 0.130 -0.31 0.76 -0.030 0.117 -0.25 0.80
NAB+ vs. NAB− 0.269 0.188 1.43 0.15 0.240 0.183 1.31 0.19
α(GEE-EXCH) 0.105 − − − − − − −
φ(GEE-EXCH) 1.934 − − − − − − −
σb(GLMM) − − − − 0.905 0.075 12.00 <0.01
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Table B.2: Model fit based on collapsed data, eventually NAB+ patients only: linear time trend, refined
NAB status.

(a) The 250 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -0.905 0.134 -6.75 <0.01 -1.178 0.131 -8.97 <0.01
Time -0.243 0.114 -2.13 0.03 -0.234 0.117 -2.00 0.05

Low NAB+ vs. NAB− 0.125 0.181 0.70 0.49 0.122 0.185 0.66 0.51
Med NAB+ vs. NAB− 0.201 0.232 0.87 0.39 0.195 0.224 0.87 0.38
High NAB+ vs. NAB− 0.094 0.274 0.34 0.73 0.097 0.275 0.35 0.72

α(GEE-EXCH) 0.050 − − − − − − −
φ(GEE-EXCH) 2.239 − − − − − − −
σb(GLMM) − − − − 0.819 0.071 11.51 <0.01

(b) The 500 mcg group

All Switches considered ; confirmed NAB+, unconfirmed L/M/H and confirmed NAB−

GEE-EXCH GLMM
estimate SE Z-score p-value estimate SE Z-score p-value

(Intercept) -1.296 0.156 -8.31 <0.01 -1.593 0.150 -10.63 <0.01
Time -0.095 0.141 -0.68 0.50 -0.082 0.123 -0.66 0.51

Low NAB+ vs. NAB− 0.103 0.218 0.48 0.63 0.084 0.207 0.41 0.68
Med NAB+ vs. NAB− 0.476 0.239 1.99 0.05 0.433 0.222 1.95 0.05
High NAB+ vs. NAB− 0.502 0.256 1.96 0.05 0.469 0.243 1.93 0.05

α(GEE-EXCH) 0.105 − − − − − − −
φ(GEE-EXCH) 2.183 − − − − − − −
σb(GLMM) − − − − 0.913 0.076 12.07 <0.01

∗Titers for NAB status — Low : [20, 100), Med : [100, 400), High : [400,∞).
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Table B.3: Model fits based on collapsed data, 250 mcg arm, eventually NAB+ patients only: linear time
trend, log NAB titers.

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = ∞
(Intercept) -0.868 0.126 -6.86 <0.01 -1.142 0.122 -9.37 <0.01

Time -0.196 0.100 -1.95 0.05 -0.189 0.106 -1.79 0.07

log (NAB Titer/20) 0.005 0.057 0.09 0.93 0.008 0.057 0.14 0.89

α(GEE-EXCH) 0.054 − − − − − − −
φ(GEE-EXCH) 2.054 − − − − − − −
σb(GLMM) − − − − 0.819 0.071 11.49 <0.01

cutoff = 1000 NU/mL

(Intercept) -0.870 0.127 -6.85 <0.01 -1.145 0.122 -9.36 <0.01

Time -0.200 0.102 -2.00 0.05 -0.196 0.106 -1.84 0.07

log (min {NAB Titer, 1000} /20) 0.012 0.065 0.22 0.82 0.018 0.063 0.28 0.78

α(GEE-EXCH) 0.054 − − − − − − −
φ(GEE-EXCH) 2.068 − − − − − − −
σb(GLMM) − − − − 0.819 0.071 11.51 <0.01

Continued on Next Page. . .
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Table B.3 – Continued

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = 400 NU/mL

(Intercept) -0.870 0.127 -6.85 <0.01 -1.145 0.123 -9.32 <0.01

Time -0.200 0.103 -1.95 0.05 -0.193 0.107 -1.81 0.07

log (min {NAB Titer, 400} /20) 0.012 0.075 0.16 0.87 0.016 0.073 0.21 0.83

α(GEE-EXCH) 0.054 − − − − − − −
φ(GEE-EXCH) 2.068 − − − − − − −
σb(GLMM) − − − − 0.819 0.071 11.50 <0.01

cutoff = 100 NU/mL

(Intercept) -0.877 0.129 -6.80 <0.01 -1.154 0.125 -9.25 <0.01

Time -0.213 0.104 -2.04 0.04 -0.207 0.108 -1.91 0.06

log (min {NAB Titer, 100} /20) 0.044 0.115 0.38 0.70 0.051 0.114 0.45 0.66

α(GEE-EXCH) 0.053 − − − − − − −
φ(GEE-EXCH) 2.111 − − − − − − −
σb(GLMM) − − − − 0.820 0.071 11.52 <0.01
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Table B.4: Model fits based on collapsed data, 500 mcg arm, eventually NAB+ patients only: linear time
trend, log NAB titers.

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = ∞
(Intercept) -1.257 0.145 -8.66 <0.01 -1.571 0.138 -11.42 <0.01

Time -0.085 0.135 -0.63 0.53 -0.076 0.116 -0.65 0.51

log (NAB Titer/20) 0.118 0.054 2.17 0.03 0.114 0.050 2.30 0.02

α(GEE-EXCH) 0.106 − − − − − − −
φ(GEE-EXCH) 2.078 − − − − − − −
σb(GLMM) − − − − 0.920 0.076 12.11 <0.01

cutoff = 1000 NU/mL

(Intercept) -1.276 0.148 -8.64 <0.01 -1.584 0.139 -11.43 <0.01

Time -0.102 0.138 -0.74 0.46 -0.089 0.117 -0.76 0.45

log (min {NAB Titer, 1000} /20) 0.151 0.066 2.29 0.02 0.142 0.057 2.47 0.01

α(GEE-EXCH) 0.106 − − − − − − −
φ(GEE-EXCH) 2.100 − − − − − − −
σb(GLMM) − − − − 0.918 0.076 12.09 <0.01

Continued on Next Page. . .
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Table B.4 – Continued

GEE-EXCH GLMM

estimate SE Z-score p-value estimate SE Z-score p-value

cutoff = 400 NU/mL

(Intercept) -1.291 0.149 -8.64 <0.01 -1.596 0.140 -11.39 <0.01

Time -0.103 0.139 -0.74 0.46 -0.087 0.117 -0.75 0.45

log (min {NAB Titer, 400} /20) 0.180 0.079 2.27 0.02 0.166 0.069 2.42 0.02

α(GEE-EXCH) 0.107 − − − − − − −
φ(GEE-EXCH) 2.086 − − − − − − −
σb(GLMM) − − − − 0.916 0.076 12.08 <0.01

cutoff = 100 NU/mL

(Intercept) -1.312 0.153 -8.57 <0.01 -1.609 0.143 -11.22 <0.01

Time -0.083 0.135 -0.62 0.54 -0.066 0.115 -0.58 0.56

log (min {NAB Titer, 100} /20) 0.268 0.131 2.05 0.04 0.240 0.114 2.11 0.03

α(GEE-EXCH) 0.107 − − − − − − −
φ(GEE-EXCH) 1.978 − − − − − − −
σb(GLMM) − − − − 0.909 0.076 12.03 <0.01
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