
Multi-Area Thévenin Equivalent Based Power Flow Techniques

by

Alexander Guido De Maeseneer

B.A.Sc., The University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies
(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

October 2010

©Alexander Guido De Maeseneer, 2010

Abstract

This thesis explores the possibility of applying the existing Multi-Area Thévenin Equivalent (MATE)

algorithm to the power flow problem. Various theoretical considerations/difficulties of handling link

connections in power flow are discussed. The current equation power flow program is examined in

hopes of aiding link decoupling by taking advantage of the current equation’s inherent symmetrical

links. However, implementation and testing of the current equation program indicated contrary results to

recently published material on current equation programs.

In an attempt to make MATE viable for power flow, one of MATE’s bottlenecks was examined, the

link matrix. It was found that the problem could be alleviated by using a multi-level approach. This

approach would allow link computation to be distributed across the subsystems and levels. An existing

multi-level MATE algorithm has already been proposed but was implemented for only two levels. This

thesis proposes a massively parallel algorithm for a general number of levels. The distribution of the

link matrix allows for mass parallelization of the system matrix into very small subsystems. A flop

analysis of the proposed multi-level MATE algorithm reveals that the majority of the computation is

spent performing independent small matrix multiplication operations.

Upon inspection of the strengths of the proposed multi-level MATE algorithm, it appears that the

algorithm would benefit from a parallel computing platform such as modern GPUs. Today’s GPUs

contain hundreds to thousands of scalar processors providing approximately an order of magnitude

in computational power over multi-core CPUs. This has garnered the GPU much attention in many

scientific disciplines. To test the feasibility of the MATE’s algorithm on the GPU, the algorithm’s

most common operation, small matrix multiplication, was implemented. The test case was arranged

to simulate the conditions of a 15,000 node system being factorized. The routine is meant to serve as the

algorithm’s BLAS since linear algebra libraries on the GPU are not meant to handle very small matrices.

The routine was found to successfully achieve a decent portion of the GPU’s peak flops.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . vii

List of Figures . viii

List of Abbreviations . x

Acknowledgments . xii

1 Introduction . 1
1.1 The Power Flow Problem . 2

1.1.1 The Gauss-Seidel Method . 4

1.1.1.1 Acceleration factor . 4

1.1.1.2 Handling PV Buses . 5

1.1.1.3 Practical Usage . 5

1.1.2 The Newton-Raphson Method . 5

1.1.2.1 Newton-Raphson Algorithm . 5

1.1.2.2 Newton-Raphson method applied to Power Flow 7

1.2 System Partitioning and Parallel Algorithms . 12

1.2.1 Diakoptics . 12

1.2.2 Domain Decomposition Methods . 12

1.2.2.1 History . 12

1.2.2.2 Partitioning . 13

1.2.2.3 Direct Solution and the Schur Complement 14

1.2.2.4 Vertex-Based Solution . 17

1.2.3 Multi-Area Thévenin Equivalent . 18

1.3 Motivation and Objectives . 21

1.4 Thesis Organization . 21

2 MATE in Power Flow . 23
2.1 Generalized MATE Link Equations . 24

iii

TABLE OF CONTENTS

2.1.1 Symmetrical Links . 24

2.1.2 Unsymmetrical Links . 25

2.2 Matrix Oriented Branch Tearing . 26

2.3 MATE in Power Flow Theory . 27

2.4 Summary . 30

3 Power Flow Optimizations for MATE . 31
3.1 General Implementation Details . 31

3.1.1 Test Cases . 31

3.1.2 Sparse Solver . 32

3.1.3 Execution Times . 32

3.2 Current Equation Power Flow Program . 33

3.2.1 Notation . 33

3.2.2 Literature Review . 34

3.2.3 Expected Speed Up . 35

3.2.4 Implementations . 36

3.2.4.1 Expanded Form . 36

3.2.4.2 Condensed Form . 37

3.2.4.3 Results . 38

3.2.5 Proposed Algorithm . 39

3.2.5.1 Original PV Bus Derivation . 40

3.2.5.2 Proposed PV Bus Derivation . 41

3.2.6 Results . 42

3.2.7 Summary . 43

3.3 Constant Jacobian . 44

3.3.1 Theory . 44

3.3.2 Results . 45

3.3.3 Summary . 45

3.4 Chapter Summary . 46

4 Proposed Multi-level Algorithms . 48
4.1 Literature Review . 48

4.2 General Approach . 50

4.3 Notation . 51

4.4 Level 3 Multi-level MATE Example . 51

4.4.1 Initial Subsystem Factorization . 52

4.4.2 Elimination of Level 3 . 53

4.4.3 Elimination of Level 2 . 54

4.4.4 Level 1 Solution . 55

4.5 General Algorithm . 57

iv

TABLE OF CONTENTS

4.6 Flop Analysis . 57

4.6.1 Multi-Level MATE Using Branch Tearing . 59

4.6.1.1 Single Solution . 59

4.6.1.2 Repeat Solutions . 61

4.6.2 Multi-Level MATE Using Node Tearing . 62

4.6.2.1 Single Solution . 63

4.6.2.2 Repeat Solutions . 65

4.7 Conclusions . 66

5 The Graphics Processing Unit and MATE . 68
5.1 Literature Review . 68

5.2 GPU Comparisons . 71

5.2.1 Architectures . 71

5.2.1.1 ATI vs. NVIDIA . 72

5.2.1.2 GPU vs. CPU . 75

5.2.2 Programming Languages . 77

5.2.3 Summary . 77

5.3 GPU Programming . 78

5.3.1 Programming Model . 78

5.3.2 Pipeline Latency and Throughput . 79

5.4 Test Case - Small Matrix Multiplication Routine . 81

5.4.1 Small Matrix Representation (SMR) . 81

5.4.2 Design of Small Matrix Multiply Routine . 82

5.4.3 Theoretical Results . 84

5.4.4 Measured Results . 86

5.5 Summary . 87

6 Conclusion . 88
6.1 Summary of Thesis Contributions . 89

6.2 Future Work . 90

Bibliography . 91

Appendices . 96

A Power Flow Convergence Characteristics . 96
A.1 118 Bus System . 96

A.2 300 Bus System . 97

B Power Flow Profiling . 99
B.1 118 Bus System . 99

v

TABLE OF CONTENTS

B.2 300 Bus System . 100

C Small Matrix Multiply Code . 102

D Small Matrix Multiply Assembly Code . 105

vi

List of Tables

3.1 Test Case Summary . 31

3.2 Number of Iterations Required to Reach Convergence 33

3.3 Execution Times (ms) for a 0.001 Mismatch Tolerance 33

3.4 Conventional Program Profiling for 118 Bus . 36

3.5 Conventional Program Profiling for 300 Bus . 36

3.6 Comparisons of Execution Times (Tolerance of 1e-3) 38

3.7 Expanded Form Profiling of 300 Bus . 39

3.8 Condensed Form Profiling of 300 Bus . 39

3.9 Factorization Analysis & Comparisons . 39

3.10 Execution Times for 118 Bus System Using Condensed Current Equation PF 42

3.11 Execution Times for 300 Bus System Using Condensed Current Equation PF 42

3.12 Iteration Times (ms) . 45

3.13 Execution Times for 118 Bus System (Tolerance of 1e-3) 46

3.14 Execution Times for 300 Bus System (Tolerance of 1e-3) 46

4.1 Notation of Multi-Level Quantities . 51

4.2 Branch Tearing Single Solution Flop Analysis . 61

4.3 Branch Tearing Repeat Solution Flop Analysis . 63

4.4 Node Tearing Single Solution Flop Analysis . 65

4.5 Node Tearing Repeat Solution Flop Analysis . 67

5.1 NVIDIA’s Multiprocessor vs. ATI’s SIMD Engine . 73

5.2 Architecture Comparison . 75

5.3 Predicted Performance . 86

5.4 Modified Predicted Performance . 87

vii

List of Figures

1.1 Newton’s Method . 6

1.2 Transformer Model in IEEE Common Data Format . 9

1.3 Types of Partitioning in DDM . 14

1.4 Examples of Partitioning Types . 15

1.5 Tearing Techniques . 16

1.6 MNA Example Circuit . 18

1.7 Weakly Interconnected Subsystems . 19

1.8 GPU vs. CPU Theoretical Flops . 22

2.1 Power Flow Branch Types . 28

2.2 PQ-PQ-PQ Branch . 29

3.1 Sample Generated Power Flow Output . 32

3.2 Two PV Buses Using 3x3 Blocks . 43

3.3 Constant Jacobian Concept . 44

4.1 System Decomposition . 49

4.2 Multi-Level MATE’s Matrices . 49

4.3 Multi-Level Technique . 50

4.4 Level 3 Hierarchy . 52

4.5 Initial Multi-Level Structure . 52

4.6 After Level 3 Triangularization . 53

4.7 After Level 3 Elimination . 54

4.8 Level 2 Triangularized . 55

4.9 Level 1 Matrix After Factorization . 55

4.10 Level 1 Triangularized . 56

5.1 Phlegmatic Dragon . 69

5.2 BM-7 Wing Model . 70

5.3 NVIDIA Streaming Multiprocessor vs. ATI SIMD Engine 73

5.4 Architecture Comparison . 74

5.5 Blocks and Threads Abstraction . 78

5.6 Memory Latencies . 80

viii

LIST OF FIGURES

5.7 Small Matrix Representation . 82

5.8 Matrix Multiplication Kernel . 84

ix

List of Abbreviations

ALU Arithmetic Logic Unit

API Application Programming Interface

BBDF Block Bordered Diagonal Form

BLAS Basic Linear Algebra Subprograms

CG Conjugate Gradient

CUDA Compute Unified Device Architecture

CPU Central Processing Unit

DDM Domain Decomposition Methods

EMTP ElectroMagnetic Transients Program

FACTS Flexible AC Transmission Systems

FP Floating Point

FLOPS Floating Point Operations per Second

FPGA Field-Programmable Gate Array

FPU Floating-Point Unit

GPU Graphics Processing Unit

GPGPU General Purpose computing on Graphics Processing Unit

GS Gauss-Seidel

ISA Instruction Set Architecture

LAPACK Linear Algebra PACKage

LTC Load Tap Changing

MAD Multiply-Add

x

LIST OF ABBREVIATIONS

MATE Multi-Area Thévenin Equivalent

MNA Modified Nodal Analysis

NR Newton-Raphson

OVNI Object Virtual Network Integrator

PF Power Flow

PTX Parallel Thread Execution

SCI Scalable Coherent Interface

SDK Software Development Kit

SGEMM Single Precision General Matrix-to-Matrix Multiplication

SFU Special Functions Unit

SIMD Single Instruction Multiple Data

SM Streaming Multiprocessor

SP Streaming/Scalar Processor

TCUL Tap Changing Under Load

VDHN Very DisHonest Newton-Raphson

WECC Western Electricity Coordinating Council

xi

Acknowledgments

The creation of this thesis has been brought about by the help of many individuals. First and foremost

I would like to give my sincerest gratitude to Dr. Luis Linares for being a source of inspiration and

providing me the opportunity and freedom to carry out the research found in this thesis. I would also

like to thank Dr. José Marti for graciously acting as co-supervisor. Dr. Hermann Dommel for his

insight on current equation power flow algorithms. I’d also like to thank my thesis advisory committee

for participating in my thesis defense. Special thanks to Dr. Marcelo Tomim whose help and guidance

with sparse matrix packages greatly furthered the research in this thesis. Thanks to Matthew Hsu for his

assistance with Linux and CUDA. And finally I would like to thank everyone in the power lab for their

kindness and support.

xii

Chapter 1

Introduction

Very early power systems where designed, built and operated by monopolies such as government bodies

or public utilities. Electrical networks were often found in separate and isolated regions of generators

and loads. The system operator’s main goal was primarily placed on system reliability. However with

the deregulation of the power market in the recent decades, emphasis began to shift from reliability to a

more retail/market-centric view. As demand for power grew, electrical networks have also become more

interconnected allowing disturbances to propagate over farther distances resulting in a more vulnerable

system. [27, 40, 42]

There are various software tools used to help ensure continuous operation during a disturbance to

the system. Disturbances may be a loss of a transmission line, transformer, generator or major load.

Determining an appropriate response to return the system into a new “safe” equilibrium is known as a

contingency. The validity of a contingency is evaluated based on how the system reaches steady state

(i.e. transient analysis) and how the system behaves in steady state. Analysis of the system’s transient

behaviour is known as dynamic security assessment (DSA). DSA programs typically focus primarily

on the transient stability assessment (TSA) program which concerns itself with the issue of maintaining

synchronous operation of the AC generators. Analysis of the pre- and post-fault system conditions is

known as static security assessment (SSA). It is the power flow (aka load flow) program that simulates

the system in steady state to provide the necessary data for analysis. [27]

In an effort to speed up security assessment software, the MATE (Multi-Area Thévenin Equivalent)

algorithm was applied to the TSA program in [56]. MATE’s algorithm would tear the power network

into subsystems. Each subsystem could then compute their Thévenin equivalent values independently

from the other. A reduced system can then be formed by interconnecting all the Thévenin equivalents

which can then be used to determine the linking currents between subsystems. The solution to the link

currents are then distributed to all the subsystems allowing for parallel computation of the nodal voltages.

A commodity cluster of off-the-shelf computers were used to realize this implementation.

One of the main goals of this thesis is to further extend MATE’s application into the realm of SSA

through the power flow program. The objective of applying MATE to power flow is to achieve a speedup

in execution time. This can be accomplished through MATE’s ability to parallelize the power flow

algorithm which can allow for concurrent execution over more than one processor. This can be quite

1

CHAPTER 1. Introduction

advantageous, especially given the current trends in microprocessor design.

Over the last several years, there has been minimal performance improvements made for single

processors despite the continued improvements in transistor densities as predicted by Moore’s Law.

This can be attributed to various limitations in the current microprocessor design that are beginning

to be reached. For instance, further gains from superscalar design are now providing severe diminishing

returns when attempting to extract further parallelism from sequential code. Another limiting factor is the

memory speed being much slower than the actual CPU speed. Typically cache and out-of-order execution

helps remedy this discrepancy however the effects of diminishing returns is becoming significant. Also,

the cost of powering transistors is reaching the limits of what is economically feasible. In all these cases,

a large cost is being expended for only a small gain. Thus the general trend in the last few years is to

use the additional transistors to add on more cores rather than to further increase the performance of a

single core. Processors have evolved from single-core to dual-core, quad-core, hex-core and soon octo-

core. Thus parallel algorithms such as MATE have the potential to benefit a lot from current and future

computing architectures. [37, 6]

The rest of this chapter will provide a literature review, objectives & motivation, and conclude with

an overview of the thesis organization. The majority of literature review is found in this chapter, however

other specialized chapters, such as the GPU chapter, will provide a further survey on relevant literature

at the start of the chapter. The literature review found here will first start with power flow algorithms and

then move towards parallel algorithms.

1.1 The Power Flow Problem

A power flow (aka load flow) program is concerned with solving the nodal voltages, and in effect solving

the flow of power between nodes, in an electrical network in steady state. The power flow program plays

a critical role in planning and designing of future power networks. It also provides pre- and post-fault

static conditions during contingency analysis. The power flow problem models an electrical network

by a set of nodal equations. Typically each node (aka bus) is represented by their power equation as

shown in equation 1.1 where Nk represents the set of buses adjacent to bus k as well as bus k itself.

These formulae represent the net power at each bus as function of nodal voltages. Notice that since the

net current at bus k also contains a V k term, each nodal equation contains a term where V k is squared.

Hence the system of equations that model a power network in steady state are quadratic.

Sk = VkI
∗
k

Sk = Vk

(∑
m∈Nk

YkmVm

)∗
(1.1)

The apparent power Sk can be split into its real and imaginary components. When power is specified

at a bus, it refers to the net power at that bus as shown in equation 1.2. Depending on the type of bus,

these quantities may or may not be fixed (or specified/scheduled). The bulk of the computation in a load

flow is determining the unknown voltages in the network from the system of nodal power equations.

2

CHAPTER 1. Introduction

Pk = P genk − P loadk

Qk = Qgenk −Qloadk

(1.2)

There are generally three types of buses which will either consume power or generate power. At each

bus there are four quantities: Pk, Qk, |Vk| and δk. Two of the four quantities will be specified and two

will be unknown. The specifics of which quantities are known/unknown depends on the bus type.

Load buses, will specify the real and reactive power that is being consumed. This data is typically

known from historical record, load forecast or measurement. Since both the real and reactive power are

specified, these buses are referred to as PQ buses. The unknown quantities are the voltage magnitude

and angle.

Voltage controlled buses (aka PV buses), are generator nodes where the voltage magnitude as well

as the real power can be set by adjusting the prime mover and generator excitation, respectively. Thus

both Pk and |Vk| are specified where δk and Qk are unknown.

At a slack bus (aka reference bus or swing bus) both the |Vk| and δk are specified and Pk and Qk
are unknown. The purpose of a slack bus can be described as follows. Consider a system made up of

only PQ and PV buses. Since both types of buses specify real power, the total losses (I2R losses) in the

system can be determined by the equation shown below.

Plosses = Pgen − Pload (1.3)

However this implies that the total I2R losses in the system are known prior to the solution of the

system. Thus the need for a slack bus to make up for the difference between Pgen and
(
Pload + I2R

)
after the system voltages and currents are solved. In addition, it is sometimes more realistic to distribute

this power across more than one slack bus [19].

Since a general power system in steady state can be modeled by thousands of quadratic equations, an

analytical solution is not feasible. Thus numerical methods such Gauss-Seidel or Newton’s Method are

employed. These methods begin with an initial guess for all the unknowns in the system, then proceed

in an iterative manner until a sufficiently accurate solution is obtained. Prior to the start of these iterative

methods, an admittance (or impedance) matrix must be formed and an initial guess must be made.

When solving the power flow problem a system admittance matrix or impedance matrix is needed

to specify how the power network is interconnected. The admittance matrix is by far the most widely

used due to the admittance matrix being very sparse whereas the impedance matrix is completely dense.

Hence Sparsity Techniques can be applied to the admittance matrix which allows for a drastic reduction

in both computation time and storage. This performance improvement is achieved by only perform-

ing computation on the non-zero elements while avoiding all the zero elements. Thus when Sparsity

Techniques began being implemented in power system simulations in the mid 1960s, Y-matrix methods

became the most prevalent technique.

Finally, to start an iterative method, an initial guess must be made of all the nodal voltages in the

system. Typically a “flat start” is used as a guess which is is when nodal voltages are set to the slack

bus voltage (except of course for the specified voltage magnitude on PV buses) which is typically 1.0∠0.

3

CHAPTER 1. Introduction

Alternatively, sometimes the results of a previous simulation are used instead of the flat start. From here,

the Gauss-Seidel method or the Newton-Raphson Method can be used to solve the power flow problem.

[26, 22]

1.1.1 The Gauss-Seidel Method

The Gauss-Seidel method begins by equating the scheduled power with the calculated power at every

bus in the system excluding the slack buses. This is shown in equation 1.4 where Nk represents the set

of buses adjacent to bus k as well as bus k itself but excluding slack buses. The voltages and admittances

are phasors which can be represented in polar coordinates or more commonly in rectangular coordinates.

P schk + jQschk = Vk

 ∑
m∈Nk

YkmVm

∗ (1.4)

From the nodal power equation, V k can be extracted out of the summation and then reordered as

shown below.

Vk =
1

Ykk

P schk − jQschk
V ∗k

−
∑
m 6=k

YkmVm

 (1.5)

This reordered formula will serve as the iterative equation which is the essence of the Gauss-Seidel

algorithm. As shown in equation 1.6, the voltage at bus k for the current iteration (i + 1) can be

determined from voltages from the previous iteration i and also from voltages that have already been

computed for the current iteration (i + 1). Note that the summation variable m for the second term of

equation 1.6 is set to start at m = 2 because it assumes there is only one slack bus and is numbered as

bus 1.

V
(i+1)
k =

1

Ykk

P schk − jQschk(
V

(i)
k

)∗ −
k−1∑
m=2

YkmV
(i+1)
m −

N∑
m=k+1

YkmV
(i)
m

 (1.6)

Thus the algorithm for the Gauss-Seidel method is to first begin with an initial guess, typically a flat

start. Then iterate with equation 1.6 until the change in voltages are less than a specified minimum. Once

all the voltages are solved, the flow of power between buses can be determined.

1.1.1.1 Acceleration factor

It has been found empirically that the number of iterations needed to converge can be substantially

reduced if an acceleration factor is used. At each iteration, the Gauss-Seidel method takes relatively

small steps towards the desired root. By using an acceleration factor, the steps are extrapolated, hence

larger steps are taken. Equation 1.7 describes the techniques where α is the acceleration factor. The

acceleration factor is typically set between 1 < α < 2 because if the acceleration factor is set too large,

overshoot can occur resulting in the program to diverge. The actual value of the acceleration factor is

4

CHAPTER 1. Introduction

determined from years of experience.

V (i+1)
acc = V (i)

acc + α
(
V (i+1)
acc − V (i)

acc

)
(1.7)

1.1.1.2 Handling PV Buses

Since PV buses do not specify Qsch, it is calculated as shown below for use in equation 1.6. However,

from a practical viewpoint, a generator is designed to produce reactive power within some maximum

and minimum limit. Thus if the calculated reactive power is beyond either limit, it is simply set to the

violated limit.

Qk = −

V ∗k ∑
m∈Nk

YkmVm

 (1.8)

Also, the voltage magnitude at a PV bus is held constant at a scheduled value |V sch|. Thus it is

necessary to ensure that this condition is satisfied mathematically by applying the correction below to all

PV buses.

Vk = |V sch
k | Vk
|Vk|

(1.9)

1.1.1.3 Practical Usage

The Gauss-Seidel algorithm is relatively simple and used to be the most popular method used in the early

days of digital computers. However, there are many practical situations which cannot be solved by the

Gauss-Seidel method, but can be solved by Newton’s method [53]. In addition to this, the Gauss-Seidel

algorithm requires a lot of iterations to converge and the overall computational speed of the algorithm

cannot compete with the Newton-Raphson method. Nevertheless, the Gauss-Seidel method is still often

used to start the Newton-Raphson algorithm by running one or two iterations prior to the start of NR. In

certain situations, a flat start is not a sufficiently accurate to serve as an initial guess for the NR algorithm.

However, the GS algorithm is capable of tolerating a poor initial guess making it the ideal algorithm for

this purpose. [26, 22]

1.1.2 The Newton-Raphson Method

The Newton Raphson Method is the main algorithm used in today’s power flow programs. Shortly after

the advent of Sparsity Techniques in the mid 1960s, the NR method became widely used due to its ability

to converge quickly while requiring relatively low computation and memory storage. The full details are

given in [53] which was the first published NR power flow implementation that used sparsity techniques.

1.1.2.1 Newton-Raphson Algorithm

Newton’s method for both the general scalar and multi-dimensional cases can be described as follows.

Consider a quadratic function f(x) of which we would like to find its roots. Thus we seek a value x such

5

CHAPTER 1. Introduction

Figure 1.1: Newton’s Method
(modified from: O.I. Elgerd. Electric energy systems theory. McGraw-Hill New York, 1971.)

that f(x) = 0.

To apply Newton’s method, f(x) can be linearized around some initial guess x(0) that is sufficiently

close to the desired root. This can be done by approximating f(x) by the first two terms of its Taylor

series shown below.

f(x(0)) + f ′(x(0)) (x− x(0)) = 0 (1.10)

Then the root of the approximated tangent line can be given by equation 1.11.

x(1) = x(0) − f(x)

(df/dx)(0)
(1.11)

If the initial point chosen was sufficiently close to the solution, then root of the linearized function

f(x) will provide a more accurate approximation of the actual root of f(x) as shown in figure 1.1. The

procedure is then repeated as many times as necessary until a desired accuracy is achieved. Thus in

general for an iteration i, a closer approximation can be achieved with equations 1.12.

x(i+1) = x(i) − f(x)

(df/dx)(i)
(1.12)

The method can also be expanded for a system of n nonlinear equations with n unknowns. Each

equation is then approximated by its tangent hyperplane by expanding each equation into their Taylor

series around the initial guess as shown below.


f1(x(0))

...

fn(x(0))

+


(
∂f1
∂x1

)(0)
· · ·

(
∂f1
∂xn

)(0)

...
...(

∂fn
∂x1

)(0)
· · ·

(
∂fn
∂xn

)(0)




(x1 − x0
1)

...

(xn − x0
n)

 =


0
...

0

 (1.13)

The derivative term from the scalar case is now a matrix of partial differentials which is referred to

as a Jacobian matrix. The matrix equation can then be reordered, as was done in the scalar case, where

6

CHAPTER 1. Introduction

the Jacobian matrix is inverted as shown below.

x(1) = x(0) −
[
J(0)

]−1
f(x(0)) (1.14)

Thus in general the iterative formula would be that of equation 1.15. This formula is repeated until a

prespecified accuracy is reached.

x(i+1) = x(i) −
[
J(i)
]−1

f(x(i)) (1.15)

Alternatively, the procedure could also be split into two steps as shown in the two equations shown

below. This is the formulation used in a typical NR power flow program.

M x =
(
x(i+1) − x(i)

)
= −

[
J(i)
]−1

f(x(i)) (1.16)

x(i+1) = x(i)+ M x (1.17)

1.1.2.2 Newton-Raphson method applied to Power Flow

The derivation to the NR power flow algorithm begins again with the nodal power equations. These

equations can be divided into their real and imaginary components yielding two equations at a given

bus as shown in equation 1.18. It should also be noted that the algorithm can so be derived using nodal

current equations instead of power equations which is discussed later in section 3.2.

P calck = Re

{
Vk

(∑
m∈Nk

YkmVm

)∗}

Qcalck = Im

{
Vk

(∑
m∈Nk

YkmVm

)∗} (1.18)

At each bus there can be a scheduled real and reactive power. In addition, the power at each bus can

also be calculated as a function of nodal voltages as written in equation 1.18. Either way, both quantities

should be equal and thus equation 1.19 should hold true.

M Pk = P schk − P calck = 0

M Qk = Qschk −Qcalck = 0
(1.19)

However, since the NR algorithm begins with an initial guess, the calculated values use approximated

nodal voltages. Thus during the solution procedure, the difference between the scheduled and calculated

power is not zero. Hence equation 1.19 is referred to as mismatch equations. The NR algorithm will

solve for the roots of the mismatch equations to determine the nodal voltages within the system.

Since the voltages and admittances from the power equations are phasor quantities, they can be

represented in either polar or rectangular coordinates. Polar form is the most widely used and will also

be used in the derivation in this section. However, there are advantages to using the rectangular form

7

CHAPTER 1. Introduction

when the power flow algorithm is derived based on the current equation as oppose to the power equation

(see section 3.2).

Thus to solve the power flow problem, Newton’s method can be applied to the mismatch equations

using polar form. This results in a linearized system that can be conveniently written in equation 1.20.

The system matrix is a Jacobian where its partial differential elements are described in equation 1.21.[
M P

M Q

]
=

[
H N

M L

][
M δ

M |V |

]
(1.20)

Hkm = −
δP calck

∂δm
Nkm = −

∂P calck

∂|Vm|
Mkm = −

∂Qcalck

∂δm
L = −

∂Qcalck

∂|Vm|
(1.21)

As described earlier in the multi-dimensional NR algorithm, the unknown voltage corrections M δ

and M |V | are first solved for from the linear system of equation 1.21. The second step of the NR

algorithm is to update the voltages for the next iteration (i+ 1) as shown below. [26]

δ(i+1) = δ(i)+ M δ

|V |(i+1) = |V |(i)+ M |V |
(1.22)

Thus the algorithm for the NR power flow program first begins with an initial guess, such as a flat

start. Then algorithm simply repeats the following two steps until the specified accuracy is met:

1. Solve linearized system in equation 1.20

2. Update voltages with equation 1.22

Handling PV nodes

From the definition of a PV bus, the Qsch is not specified thus the reactive power mismatch equation

cannot be specified (see equation 1.19). Thus, unlike PQ buses which are modeled by two mismatch

equations, the PV bus is only represented by one equation. Fortunately, |V | is specified at PV buses, thus

only one equation is needed to solve for the one unknown which is M δ.

As mentioned in the GS algorithm, generators are designed to produce reactive power within some

maximum and minimum limit. Thus if a limit is violated, the PV bus is then modeled as a PQ bus.

Where the Qsch is set to the violated limit and the criteria for constant |V | is relaxed. Conversely, PQ

nodes can be regulated between a range of voltages. If a PQ bus exceeds one of the operational limits,

reactive-power support may be switched in. Thus the PQ node would then be modeled as a PV node

where |V | is set to the violated limit. Switching operation from PQ to PV or vice versa is said to be done

at the end of the second iteration [53].

Transformers

Various types of transformer can be modeled in a power flow program. For instance, the following is a

list of transformers that can be represented in the IEEE common data format:

8

CHAPTER 1. Introduction

Figure 1.2: Transformer Model in IEEE Common Data Format

• Fixed tap

• Variable tap for nodal voltage control (TCUL, LTC)

• Variable tap for reactive power flow control

• Variable phase angle for real power flow control (phase shifter)

Using the IEEE common data format, the first inputted terminal is the side with the non-unity tap ratio

a and the second terminal is the side with the modeled impedance Yt (see figure 1.2). Following this

convention, a general transformer model can be derived and integrated into the power flow algorithm.

The tap value awill be considered as a complex quantity, thus making the following derivation applicable

to both tap changing transformers and phase-shifting transformers. [48]

Consider the apparent power at each of the terminal nodes which can be calculated as shown in

equation 1.23. A relationship between the currents Ik and Im can then be extracted as shown in equation

1.24.

Sk = VkI
∗
k Sm =

1

a
VkI

∗
m (1.23)

Ik = − 1

a∗
Im (1.24)

Also, equation 1.25 can be written where the current Im is determined from the voltage drop across

the transformer’s admittance Yt. Then substituting equation 1.25 into equation 1.24 gives the formula for

the other current Ik (equation 1.26). The two equations for Ik and Im can finally be reordered in matrix

form as shown in equation 1.27 where the admittance matrix of the transformer is shown.

Im =

(
Vm −

1

a
Vk

)
Yt = −1

a
YtVk + YtVm (1.25)

Ik =
1

|a|2
YtVk −

1

a∗
YtVm (1.26)

[
Yt/|a|2 −Yt/a∗

−Yt/a Yt

][
Vk

Vm

]
=

[
Ik

Im

]
(1.27)

9

CHAPTER 1. Introduction

Thus to append the transformer model onto a general power system admittance matrix between buses

k and m, one would simply add the transformers admittance terms to the proper elements in the system

matrix (see equation 1.28). This derivation can now be used to describe the inclusion of the fixed tap,

variable tap, and phase-shifting transformers.

Ymodified =



Y11 · · · Y1N

. . . (
Ykm + Yt/|a|2

)
· · · (Ykm − Yt/a∗)

...
...

...
...

(Ykm − Yt/a) · · · (Ykm + Yt)
. . .

YN1 · · · YNN


(1.28)

Fixed transformers are the simplest model. They are included during the assembly of the system’s

admittance matrix as shown in equation 1.28. Its admittance terms remain static throughout the entire

simulation and no other changes are made to the power flow algorithm.

There are two kinds of variable tap changing transformers, voltage control and reactive power

control. Voltage control can attempt to regulate a voltage at a bus either connected directly to the

transformer or a bus elsewhere in system (aka a remote bus). Thus at the regulated bus k, |Vk| is set

to a constant value and is no longer an unknown (and can be removed as a state variable). Instead, the

tap ratio akm is now the unknown and can replace |Vk| as the state variable at that node. The system’s

admittance matrix is also modified as in equation 1.28, however it is no longer static since the tap ratio

akm is now variable. Thus the tap ratio akm is now present in the mismatch equations. Hence, when

the mismatch equations are linearized with respect to the new state variable akm, the Jacobian matrix

is altered. Only the nodes connected to the transformer will contain akm in their mismatch equations

and thus only those nodes will contain non-zero partial differentials when linearized with respect to akm.

For instance, if bus k is connected to the transformer, the mismatch equation for the reactive power will

consist of the following partial differential elements as shown in equation 1.29 (where Nk represents the

set of buses adjacent to bus k and Mk represents the set of PQ buses adjacent to bus k).

M Qk =

[
−
∂Qcalck

∂δk
+−

∂Qcalck

∂akm

]
︸ ︷︷ ︸

diagonal block

+

 ∑
m∈Nk

(
−
∂Qcalck

∂δm

)
+
∑
m∈Mk

(
−
∂Qcalck

∂|Vm|

)
︸ ︷︷ ︸

off−diagonal blocks

(1.29)

However for the case when bus k is a remote node, the diagonal element would be zero. This is

because bus k’s mismatch equation will not contain any akm terms and thus it will also not contain any

non-zero terms when the mismatch equation is linearized with respect to akm. Hence when factorizing

the Jacobian matrix, special ordering of the rows/columns must take place to avoid the zero diagonal

10

CHAPTER 1. Introduction

element.

Since the tap ratio akm is now a state variable, it also gets updated at the end of an iteration with all

the other state variables. Thus once the linearized system is formed, akm is also updated with a tap ratio

correction as shown in equation 1.30.

a
(i+1)
km = a

(i)
km+ M akm (1.30)

A variable tap changing transformer can also control the amount of reactive power flow between

two nodes k and m. However now, the desired variable to be regulated (Qkm) is not an existing state

variable as was the case with |V |. Since this new unknown is not replacing an existing state variable,

a new equation needs to be added. Thus a branch mismatch equation in terms of reactive power can

be created in a similar fashion as the nodal mismatch equations (see equation 1.31). This equation is

grouped together with the rest of the system’s mismatch equations then linearized as was done in step

1 of the NR algorithm. Step 2 of an NR iteration is then done where the state variables are updated as

shown in equations 1.22 and 1.30.

M Qkm = Qregkm −Q
calc
km (1.31)

The phase-shifting transformer has a similar model as the tap changing transformer that controls

reactive power. It is similar in that the real power flow from a branch is not an existing state variable and

thus an additional branch mismatch equation is necessary (see equation 1.32).

M Pkm = P regkm − P
reg
km (1.32)

However it differs in the fact that now the tap variable akm now has unity magnitude and a non-zero

phase angle. Thus the new state variable becomes the phase angle of the transformer φkm. Aside from

the difference in the state variable, the approach is the same as the tap changing transformer controlling

reactive power. Thus step 1 of the NR algorithm remains the same and step 2 of the NR algorithm will

include equation 1.33 to update the transformer’s phase angle at the end of each iteration.

φ
(i+1)
km = φ

(i)
km+ M φkm (1.33)

Detailed derivations are provided in the appendix of [47]. It should be noted that the derivation for

the tap changing voltage control transformer uses a representation where nodes k and m are reversed

from than that of figure 1.2. Also the tap is modeled on the opposite terminal of figure 1.2 and thus their

tap ratio is effectively t = 1
a .

A few other implementation details can mentioned about the transformer model. For instance, the

transformers with an active tap or phase angle typically remain static until the end of the second ([53])

or third ([47]) iteration to allow for more accurate system values before applying transformer control.

When the transformer taps or phase angle are active, they are allowed to act as continuous values. It is

only near the end of the simulation where the final tap or phase angle is rounded to the nearest tap/phase

increment. If the tap/phase quantity exceeds its maximum or minimum value, it is simply set to the

11

CHAPTER 1. Introduction

violated limit. Afterwards, the constraint variable is checked every iteration to see if the limit is still

necessary. [47]

1.2 System Partitioning and Parallel Algorithms

This section attempts to review concepts in parallel algorithms and partitioning techniques in various

applications which will be later used in MATE. This section begins with a very brief discussion of Di-

akoptics. The history of Domain Decomposition Methods (DDM) as well as its direct method techniques,

as oppose to the more common iterative methods, are then examined. Finally the MATE algorithm and

implementation details are discussed and compared to previous established concepts from the perspective

of power systems.

1.2.1 Diakoptics

In 1953, Gabriel Kron published the first paper on Diakoptics [34]. Diakoptics is a method of tearing a

system into pieces, obtaining independent partial solutions of each subsystem, then combining the partial

solutions to obtain the final result. This approach is the basis of parallel algorithms such as MATE.

Shortly after the inception of Diakoptics, load flow algorithms based on the techniques of Diakoptics

came about. The first one can be traced back to 1963 in [10] that used a Z matrix power flow algorithm,

which were common in the early 1960s as sparsity techniques haven’t yet been discovered [51]. However

shortly after the advent of sparsity techniques, it wasn’t long until sparsity techniques dominated the

power systems arena leaving little room for Diakoptics to flourish.

The original purpose of Diakoptics was not to improve computational speed but rather to gain the

ability to solve electrical circuits that were too large for the computers at the time to handle. Although

Kron’s ideas were at first not well received by the scientific community, the concepts of Diakoptics have

later gone on to influence today’s parallel computing community. It is believed that Kron’s work helped

lay the grounds for modern direct Domain Decomposition Methods, which will be discussed in the next

section. [35]

1.2.2 Domain Decomposition Methods

This section will give a brief history of DDM. The rest of the section will focus on direct methods

and will begin by discussing two types of partitioning in DDM. These partitioning techniques are then

compared with tearing techniques. This is followed by a discussion of the Schur complement and an

example of its application is given for a vertex-based partitioning example.

1.2.2.1 History

Domain Decomposition Methods (DDM) are traditionally a set of techniques performed on discretized

partial differential equations using a "divide-and-conquer" paradigm. Just as in Diakoptics, a large

problem is decomposed into smaller problems, each of which are computationally easier to solve than

the original problem, and most of all these sub-problems can solved in parallel. Historically, DDM has

12

CHAPTER 1. Introduction

its origins from the work of H. A. Schwarz (1843-1921) which has later been developed into a wide array

of iterative techniques named after Schwarz (e.g. Schwarz alternating/additive/multiplicative methods as

well as Schwarz Machinery) [36, 50]. Another area that forms the core of more modern DDM comes

from substructuring techniques which were originally created by mechanical engineers for the finite ele-

ment analysis of complex structures in the 1960s [36]. With the advent of massively parallel computers

in the 1980s, DDM became a prime candidate as the framework to parallel algorithms. Since then, DDM

has become one of the most successful collection of methods in numerical analysis for parallelization

in many scientific applications such as fluid dynamics, structural mechanics, biomechanics, geophysics,

plasma physics, radiation transport, electricity and magnetism, and flows in porous media to name a few

[9].

The collection of domain decomposition techniques can be classified into various categories. For

instance, these techniques can be sub-divided into direct/iterative methods or methods specifically de-

signed for overlapping/non-overlapping domains. Most of the research in DDM focuses on iterative

methods, however advancements are still being made on the direct methods. This trend is most evident

from the amount of papers on iterative techniques published in the International Conference of Domain

Decomposition1 volumes which are held every ~1.5 years. Much of the research in iterative techniques

are invested in reducing the number of iterations. Thus preconditioners are a main source of interest and

are typically the most complex operation in domain decomposition [9]. Despite the popularity of iterative

methods in DDM, the emphasis will be placed on direct methods since they are the main concern of this

thesis.

1.2.2.2 Partitioning

One of the first divide-and-conquer ideas in structural analysis partitioned a system for use in a direct

solver. There are several ways to go about partitioning a system in DDM. The simplest techniques are

edge-based2 partitioning and vertex-based partitioning. Figure 1.3 (a) and (b) depict a domain being split

into two subdomains by both types of partitioning. The type of partitioning indicates the quantity (i.e.

vertices or edges) that cannot be split between two subdomains. Thus if the partitioning is edge-based,

then edges cannot straddle between two subdomains. Similarly if the partitioning is vertex-based, than

vertices cannot be shared between two or more subdomains. [50]

Examples of edge-based and vertex-based partitioning are also shown in figure 1.4 where a domain

is divided into three subdomains. In the case of edge-based partitioning, nodes numbered 34 to 40 are

chosen as a global interface. By ordering the nodes of each subsystem together and numbering the

interface nodes last, the system matrix is turned into block bordered diagonal form (BBDF). In the case

of vertex-based partitioning, each subdomain contains its own set of local interface nodes. Thus the

interface nodes are numbered last within the scope of their subdomains, as oppose to edge-base where

1A list of all conferences can be found at www.ddm.org

2In graph theory, nodes and branches are referred to as vertices and edges respectively.

13

CHAPTER 1. Introduction

(a) Edge-Based Partitioning (b) Vertex-Based Partitioning

Figure 1.3: Types of Partitioning in DDM
(modified from: Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathematics, 2003.)

the interface nodes are numbered last within the scope of the entire domain. Since all the interfaces

are local, there is no global interface connecting all the subdomains together. Hence this non-BBDF

matrix will yield a different solution procedure than the BBDF matrix. It is also important to note that

vertex-based partitioning required almost twice as many interface nodes than edge-based partitioning.

A comparison of these types of partitioning can be made with tearing techniques. Tearing techniques

involve removing a small set of branches or nodes from a graph such that the graph is disconnected

into parts. Figure 1.5 illustrates both branch tearing and node tearing. In the case of branch tearing,

additional equations are introduced to represent the set of branches cut. Branch tearing is also the same

technique used in Diakoptics. For node tearing (figure 1.5.b), subsystems are decoupled by removing

a set of border nodes from one subsystem. Border nodes are a set of nodes in a subsystem that have

branches connecting to them to other subsystems. In figure 1.5.b, two border nodes from subsystem G2

are removed and placed into a new linking subsystem G3 which yields a BBDF matrix. Notice that node

tearing is essentially the same as the partitioning techniques in DDM. Vertex-based partitioning would

be a slight variant, where border nodes from both subsystems are used in a separate linking subsystems.

1.2.2.3 Direct Solution and the Schur Complement

Once the system has been partitioned into subdomains where the matrix is in BBDF, the system can be

solved by block Gaussian elimination. Consider the following system where a matrix is divided into

submatrices B, E, F , and C. [
B E

F C

][
x

y

]
=

[
f

g

]
(1.34)

The first block row can be solved for x in terms of y as shown below.

x = B−1 (f − E y) (1.35)

Upon substituting this expression for x into the second block row yields

14

CHAPTER 1. Introduction

(a) Edge-Based (b) Vertex-Based

Figure 1.4: Examples of Partitioning Types
(modified from: Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathematics, 2003.)

15

CHAPTER 1. Introduction

(a) Branch Tearing (b) Node Tearing

Figure 1.5: Tearing Techniques
(extracted from: I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices. Oxford University Press, USA, 1989.)

(
C − F B−1E

)
y = g − F B−1f (1.36)

Where the matrix

S = C − F B−1E (1.37)

is called the Schur complement. If the Schur complement can be formed, the solution to the interface

variables y can be obtained. Then once the interface values are solved, the subdomain variables x can be

obtained to achieve the total solution to the system. [50]

This technique can easily be extrapolated to systems of two or more subdomains (as shown in

equation 1.38). For a domain with s subdomains, equation 1.39 provides the general Schur complement.

The Schur complement is named after Issai Schur (1875-1941) where the notation was first used in

1968 in a partitioned (two-way block) matrix. However earlier implicit manifestations of the Schur

complement was first published in 1812 by Pierre Simon Laplace. [65] B1 0 E1

0 B2 E2

F1 F2 C


 x1

x2

y

 =

 f1

f2

g

 (1.38)

S = C −
s∑
i=1

Ci − FiB−1
i Ei (1.39)

The general procedure using this approach is listed below. Notice that the subdomain computation

for steps 1) and 3) are independent which allows for parallel processing.

1. Form the Schur complement & the RHS of equation 1.36

16

CHAPTER 1. Introduction

2. Solve for the interface variables y

3. Back-substitute y to obtain subdomain variables x

Practical implementations of this method will factorize the Bi matrices but will not calculate their

inverses explicitly . Instead linear systems are created that solve for intermediate quantities E′ and f ′

via factorization then forward/backward substitution (see equation 1.40) . These intermediate quantities

are then substituted into the Schur complement as well as the RHS of equation 1.36 which is shown

in equations 1.41 and 1.42 ([50] section 13.2.1). The same technique is also done in the large scale

implementation of MATE [55].

BE′ = E B f ′ = f (1.40)

S = C − F E′ (1.41)

S y = g − F f ′ (1.42)

1.2.2.4 Vertex-Based Solution

In vertex-based partitioning, the system matrix is not in BBDF (see figure 1.4.b) which results in a

slightly different procedure. Notice that instead of a global block border, each diagonal block contains

its own local block border. Hence each subdomain (diagonal block) is of the form shown below.[
Bi Ei

Fi Ci

]
(1.43)

Thus each subdomain contains both interior nodes as well as interface nodes. Then consider a

subdomain’s block row shown in equation 1.44. The Eij terms reflect the connections between the

local interfaces of subdomains in the off-diagonal blocks as seen in figure 1.4.b. Thus N i is the set of

local interface variables that subdomain i is connected to.

Bixi + Eiyi = fi

Fixi + Ciyi +
∑
j∈Ni

Eijyj = gi
(1.44)

Then just as was done in the solution to edge-based partitioning, an xi is extracted from the first

equation (xi = B−1
i (fi − Ei yi)) and is substituted into the the second equation to give:

Si yi +
∑
j∈Ni

Eijyj = gi − FiB−1
i fi (1.45)

Notice the interface equation is only a function of interface variables yi. By collecting these interface

equations from all the subdomains a global Schur complement can be assembled. For example, the global

Schur complement for figure 1.4.b is shown below.

17

CHAPTER 1. Introduction

Figure 1.6: MNA Example Circuit

S =

 S1 E12 E13

E21 S2 0

E31 0 S3

 (1.46)

An interesting result of the solution to vertex-based partitioning is that the Schur complement is not

completely dense in general as was the case with edge-based partitioning. The off-diagonal blocks Eij
only exist if there is coupling between subdomains i and j Thus a system with many weakly coupled

subdomains would result in a much more sparse Schur complement. However this sparsity comes at a

cost of having a much larger Schur complement matrix since vertex-based partitioning requires almost

twice as many interface nodes than edge-based partitioning. [50]

1.2.3 Multi-Area Thévenin Equivalent

Multi-Area Thévenin Equivalent (MATE) is yet another divide-and-conquer technique specifically de-

signed in the area of power systems. As described in [41], MATE achieves parallel computation by

utilizing concepts from Diakoptics in the form of branch tearing. Modified nodal analysis (MNA) then

assists with the representation of the torn branches. Once the system is partitioned, block Gaussian

elimination (as described in section 1.2.2.3) is used to solve the system. This section discusses parallels

with the direct solution approach in DDM but from an electrical systems viewpoint.

To demonstrate MNA’s usage in MATE, consider the two node system in figure 1.6. Then suppose

the branch between node A and B is torn. Using MNA, the system of equations will appear as shown in

equation 1.47 where the branch equation is placed at the bottom of the matrix. This third equation is used

to compute the current flowing through the linking branch. Then due to the removal of the connecting

branch a +1 and −1 appear in the is column of the admittance matrix to include the effects of current

being injected into the system and current being drawn from the system respectively. It is also important

to note that the branch is physically being removed, thus the branch’s admittance is also being removed

from the self-admittance of Ya and YB . This is exactly what MATE does to partition a power system. YA 0 +1

0 YB −1

+1 −1 Zs


 vA

vB

is

 =

 iA

iB

Vs

 (1.47)

Since branch tearing introduces an additional equation for every branch that is torn, an ideal power

18

CHAPTER 1. Introduction

Figure 1.7: Weakly Interconnected Subsystems
(extracted from: W. Tinney and W. Meyer. Solution of large sparse systems by ordered triangular factorization. IEEE Transactions on

Automatic Control, 18(4):333–346. © 1973 IEEE)

system would be one with weakly interconnected subsystems as shown in figure 1.7. In this case,

only three additional branch equation would be introduced to the system matrix. The system can be

represented as shown in equation , where the p terms are sparse matrices which represent the set of torn

branch connections with +1’s and −1’s, as described in MNA above, for each subsystem. Since the p

serve to inject the currents of the torn branches into each subsystem, they are referred to as injection

matrices. 
Y1 p1

Y2 p2

Y3 p3

pt1 pt2 pt3 Z



v1

v2

v3

iα

 =


h1

h2

h3

0

 (1.48)

With the system matrix in BBDF, block Gaussian elimination can be performed in the same manner

as was done in section 1.2.2.3. A Schur complement is formed and the interface quantities, in this case

branch currents, are solved. The interface quantities are then feedback to each of the subsystems which

can then be solved independently of each other.

In contrast to general DDMs, the submatrices formed in MATE during the solution procedure also

possess a physical meaning. As described in [55], the injection matrix pi maps subsystem nodes to link

branches. Thus equation 1.49 is used to extract the Thévenin equivalent impedance from the perspective

of the link branches of subsystem i. Also, the internal voltages of a subsystem when disconnected from

the rest of the system can be determined by ei = Y −1
i hi. The Thévenin equivalent voltages from the

perspective of the link branches can then be determined with equation 1.50, which selects the appropriate

voltages from ei.

19

CHAPTER 1. Introduction

Zthi = pti Y
−1
i pi (1.49)

ethi = pti ei (1.50)

Then each subsystem can be represented by their Thévenin equivalents to yield a much smaller

system which can then be solved to obtain the link currents in the system. Intuitively, to obtain the

current in a simple series circuit, one would simply sum the impedances and voltages. The current

would then be obtained by I = Veq/Zeq. Analogously, the Thévenin equivalents are also summed as

shown in equation 1.51. With these quantities, the link currents can be obtained by solving the link

system in equation 1.52. Notice that mathematically the procedure is the same as forming the Schur

complement then solving for the interface variables. Once the link currents are solved, they are fed back

to each subsystem where their voltages can be solved independently of each other.

Zα = Zl +
∑
∀i
Zthi eα =

∑
∀i
ethi (1.51)

Zαiα = eα (1.52)

There are several advantages associated with this method. The independence of the subsystems

allows for different techniques such as using different step sizes to reduce overall computation. The

decoupling of the subsystems even allows for the possibility of using different integration rules. Also,

since MATE uses the MNA branch equations, switches can be modeled to prevent topological changes

to the system which avoids re-triangularization of subsystems [41]. For applications such as HVDC

converter, significant speedups have been reported [3].

MATE was later redesigned in [56] to tackle Transient Stability Assessment (TSA) simulations of

actual large scale power systems. This implementation used a cluster of CPUs and was the only practical

implementation of MATE for general large scale power systems. The algorithm incorporated several

well-known and widely-used software packages. METIS was used to partition the system, SuperLU

(coupled with GotoBLAS) was used to factorize the subsystem matrices and LAPACK was used for

dense matrix operations. All communications between processors used MPI over an SCI network.

MATE’s algorithm was reformulated where a series of mapping schemes were used to ensure that the

Thévenin equivalent quantities were with respect to the border nodes instead of the link branches. The

mapping schemes allow for better handling of cases where a border node is connected to more than one

link branch. In these situations, a reduction in computation and data transfer can be achieved as explained

in section 2.3 of [55]. A detailed description and procedure for obtaining the Thévenin equivalents

of subsystems was also given. Coincidentally, the mathematics behind the procedure happen to be

equivalent with that of the practical implementations of block Gaussian elimination in DDM (described

in section 1.2.2.3). This newer version of MATE obtained speedups of approximately 7 times using 14

CPUs over a conventional sparse solver on a single CPU for a ~15,000 node WECC system [56].

20

CHAPTER 1. Introduction

1.3 Motivation and Objectives

Trends in computing are clearly moving towards parallel architectures, thus it is only natural to look into

parallel algorithms for power systems. Literature on parallelizing power flow algorithms can already

be found for architectures such as CPU clusters, transputers, FPGAs and even GPUs. Node tearing

(described in section 1.2.2.2) appears to be the most common partitioning method used for power flow.

However, multi-level techniques (described at the start of chapter 4) appear to provide superior scaling

across multiple processors. In fact, MATE already has its own multi-level algorithm as described in

[5] which appears to play a vital role in parallelization. It will be seen that by furthering the existing

multi-level MATE algorithm, the use of massively parallel computing platforms (such as GPUs) appear

to become viable for power system simulations.

In the last several years, graphics processing units (GPUs) have been beginning to cross over into

general purpose computation on GPUs (GPGPU). GPUs focus on creating much “simpler” processing

cores than the superscalar cores of CPUs. This allows for modern GPUs to consist of hundreds to

thousands of scalar processors. GPUs are known for their raw computational power which is typically

an order magnitude larger than a CPU (see figure 1.8). Hence many substantial speedup claims from

various simulation programs have been reported across the scientific community. GPUs have even been

making their presence known in supercomputers. As of June 2010, two of the top 10 most powerful3

supercomputers in the world contain GPUs. The Nebulae is ranked at #2 and is composed of NVIDIA

Tesla C2050 GPUs and Intel processors. And the Tianhe-1 is ranked at #7 which consists of ATI’s

Radeon HD 4870 and Intel processors. [44]

The main objective of this thesis is to explore the possibility of expanding MATE to the power flow

problem successfully. First an appropriate type of power flow program must be chosen to serve as a base

for MATE. Also, given the recent developments in the area of GPUs, it would be advantageous if MATE’s

algorithm could be adapted to suit the GPU architecture. This would then provide the possibility of not

only accelerating power flow simulations but also other power system simulations such as the transient

stability program.

1.4 Thesis Organization

This thesis contains four research chapters. The first research chapter begins with Chapter 2 that dis-

cusses the issue of partitioning in power flow. It covers how the link equation which originally rep-

resented the flow of current in EMTP can be represented in power flow. This chapter also makes a

distinction between two types of branch tearing and suggests the possibility of node tearing. It also

addresses the challenges associated with tearing certain types nodes in power flow, such as two PQ

nodes.

Chapter 3 acknowledges the added difficulty of tearing in power flow than with EMTP by exploring

3As ranked by http://www.top500.org/

21

CHAPTER 1. Introduction

Figure 1.8: GPU vs. CPU Theoretical Flops
(modified from: NVIDIA Corporation. NVIDIA CUDA Programming Guide, 3.1.1 edition, July 2010.)

ways to optimize the overall algorithm. The main focus of this chapter is to verify the viability of

using the current equation power flow program as the base program for MATE. The current equation

program appears promising due to its symmetrical branches and reported performance compared to a

conventional power flow program. CPU implementations (both using SuperLU) of a conventional power

flow program as well as a current equation power flow program were implemented and benchmarked

against each other. Vague implementation details from existing papers are also clarified.

Chapter 4 attempts to reformulate the MATE algorithm to a multi-level approach. The existing

multi-level MATE algorithm is furthered to extend beyond two levels. A detailed level three example is

provided. Finally, a simplistic model is made so that a flops analysis can be performed to determine the

distribution of the flops.

With the creation of the proposed algorithm, Chapter 5 looks into the feasibility of utilizing the GPU

as a computing platform. This chapter will attempt to create a kind of GPU based BLAS for the multi-

level MATE algorithm. The chapter begins with an overview of GPU hardware and software. Then a

small matrix representation is proposed which can serve as the starting point for all computation done on

the GPU using the multi-level MATE algorithm. From the flops analysis of the previous chapter, it was

determined that small matrix multiplication was the most common operation performed in the MATE

algorithm. Thus a small matrix multiplication routine was designed, implemented and benchmarked to

determine the viability of the GPU as a computing platform.

Concluding remarks as well as suggested future work is detailed in the final chapter.

22

Chapter 2

MATE in Power Flow

The MATE algorithm is well documented and has been implemented in many ways ([38], [29], [4], [55])

and even generalized in [49] for analyzing infrastructure dependencies. In all cases, a system matrix

is partitioned into subsystems which can then be computed independently in their respective simulation

program. The goal is to apply this idea of partitioning a system matrix into subsystems to the power flow

algorithm.

However there has already been much research done in the area of power flow where the concept of

partitioning a system matrix is applied. The most popular method to partition a matrix into subsystems

is by use of node tearing (discussed in section 1.2.2 and in the next paragraph) which converts the

system matrix into BBDF where block elimination or more elaborate elimination algorithms are used

to solve the system. These methods have been implemented for CPU clusters ([57], [57], [32], and

[64]), transputers [13], and even FPGAs [58]. Single level approaches (i.e. using only one link matrix

or Schur complement) gave similar results as MATE [55] where speedup began to saturate around 16

processors [32]. The multi-level or nested decomposition approaches report superior results in terms of

scaling to processors compared to the single level approach (particularly in [64]). Multilevel techniques

are discussed more thoroughly in chapter 4.

This chapter will set up the foundation for the MATE to be applied to power flow. The idea to

accomplish this transition is to remove small pieces from the system matrix that will disconnect the

system into parts. Tearing techniques can accomplish this by either removing a small number of branches

or nodes. Hence there are intuitively two categories of tearing, branch tearing and node tearing ([21]

section 11.11 and 11.12). In node tearing, once a node is removed, all branches connected to that node

is also removed (further discussion is found in section 1.2.2). Branch tearing, however, can be further

sub-divided into two more categories by considering branch tearing from a physical system viewpoint

or just a generic matrix viewpoint. If a physical system viewpoint is taken, such as the admittance

matrix of a power system, the removal of a branch will also affect the self admittance of the buses that

are connected to that branch. Hence not only are pairs of off-diagonal entries being removed, but the

diagonal entries are also being modified. This is the type of branch tearing employed by Diakoptics

and MATE. A generalized version of physical branch tearing for use in power flow is derived in section

2.1. The second section of this chapter discusses the generic matrix oriented branch tearing. The third

23

CHAPTER 2. MATE in Power Flow

section describes advantages and disadvantages of both branch tearing and node tearing techniques being

applied to the Jacobian matrix from a power flow program.

2.1 Generalized MATE Link Equations

In MATE, the link equation comes naturally from modified nodal analysis as the branch current. However

the link equation can also be generalized for a generic system matrix. This generalization will then pave

the way to an efficient approach for unsymmetrical links. MATE as well as the generalized technique

are both branch tearing techniques from a physical system point of view, thus they both modify the

diagonal entries of the system matrix. As it will be shown, the most essential portion of these derivations

is creating equivalent diagonal terms that are to be substituted into the system matrix.

2.1.1 Symmetrical Links

Consider the system shown in matrix form and equation form below. The system matrix is symmetrical

just like the admittance matrix of an EMTP program.[
a b

b c

]
·

[
x1

x2

]
=

[
y1

y2

]
(2.1)

a · x1 + b · x2 = y1

b · x1 + c · x2 = y2

(2.2)

Suppose this was the admittance matrix of a two node system. To decouple the two nodes using

MATE, the admittance of the branch connecting the two nodes would be removed. The removal of that

branch would require removing that branch’s mutual and self admittance (i.e. modifying both the off-

diagonal and diagonal entries). From a purely mathematical perspective, this can be accomplished by

replacing the diagonal entries a and c with the equivalent values shown in equation 2.3.

a = (a+ b)− b c = (c+ b)− b (2.3)

Upon substituting equations 2.3 into the system equations 2.2, the two equations shown below are

obtained. Notice that these two equations resemble that of MATE decoupling two nodes. It contains

a modified diagonal as well as linking “current” term. Notice how the current term is analogous to

Y · (v1− v2). Furthermore, the linking current term is positive in the first row and negative in the second

row, which is analogous to the linking current leaving one node and entering another.

(a+ b)x1

iα︷ ︸︸ ︷
−bx1 + bx2 = y1

(c+ b)x2 +bx1 − bx2︸ ︷︷ ︸
−iα

= y2
(2.4)

From the above equation, the link equation can be extracted (see equation 2.5) and the system can

then be represented with equation 2.6 or in matrix form in equation 2.7 in which decoupling is achieved.

24

CHAPTER 2. MATE in Power Flow

iα = −bx1 + bx2 or x1 − x2 + 1
b iα = 0 (2.5)

(a+ b)x1 + iα = y1

(c+ b)x2 − iα = y2

(2.6)

 (a+ b) 0 +1

0 (c+ b) −1

+1 −1 1
b

 ·
 x1

x2

iα

 =

 y1

y2

0

 (2.7)

Interestingly, instead of adding to the diagonals as shown in equation 2.3 one could also subtract

from the diagonals as shown in equation 2.8.

a = (a− b) + b c = (c− b) + b (2.8)

Just as before, equation 2.8 can be substituted into the system equation giving equation 2.9. However

this version has much less in common with a real system as now the current terms in rows one and two

are both positive, which would be analogous to current leaving both nodes. Extracting the link equation

and grouping all the system equations yields the system in matrix form shown in equation 2.11. As a

result of the modification on the diagonals, this variation leads to purely positive pointers shown by all

the +1’s .

(a− b)x1

iα︷ ︸︸ ︷
+bx1 + bx2 = y1

(c− b)x2 +bx1 + bx2︸ ︷︷ ︸
iα

= y2
(2.9)

iα = bx1 + bx2 or x1 + x2 − 1
b iα = 0 (2.10)

 (a− b) 0 +1

0 (c− b) +1

+1 +1 −1
b

 ·
 x1

x2

iα

 =

 y1

y2

0

 (2.11)

2.1.2 Unsymmetrical Links

Consider the following system shown in both matrix and equation form below. The system matrix is

unsymmetrical, just like the Jacobian matrix in a power flow program.[
a b

c d

]
·

[
x1

x2

]
=

[
y1

y2

]
(2.12)

a · x1 + b · x2 = y1

c · x1 + d · x2 = y2

(2.13)

25

CHAPTER 2. MATE in Power Flow

An approach similar to the symmetric link equation is taken. The diagonals are again modified only

now they are modified by the off-diagonal entry that is located directly below/above them as shown in

equation 2.14.

a = (a− c) + c d = (d− b) + b (2.14)

The modified diagonal values are then substituted back into system equations. By rearranging the

terms, a common linking term can be extracted despite the system matrix being unsymmetrical which

is shown below.

(a− c)x1

iα︷ ︸︸ ︷
+cx1 + bx2 = y1

(d− b)x2 +cx1 + bx2︸ ︷︷ ︸
iα

= y2
(2.15)

iα = cx1 + bx2 or x1 + x2 − 1
b iα = 0 (2.16)

Placing these equations in matrix form results in the desired decoupling shown in equation 2.7.

Although unsymmetrical decoupling of a branch was achieved with only one link equation, the link

equation row now contains the floating point value b
c instead of the simple +1. This can be avoided by

having two separate link terms however it will of course result in twice the number link equations to

decouple one unsymmetrical branch as shown in equation 2.18. (a− c) 0 +1

0 (d− b) +1

+1 + b
c −1

c

 ·
 x1

x2

iα

 =

 y1

y2

0

 (2.17)


(a− c) +1 +1

(d− b) +1 +1

+1 −1
c

+1 −1
b

 ·

x1

x2

iα1

iα2

 =


y1

y2

0

0

 (2.18)

2.2 Matrix Oriented Branch Tearing

This type of branch tearing technique differs from the physical system point of view, since it does not

modify the diagonal entries of the system matrix. This technique is particularly advantageous for nodes

with multiple connections and will be exemplified in the next section. This section will focus on the

mechanics of the technique in which the goal will be to zero two off-diagonal elements of a general

system matrix.

Consider the following system with an unsymmetrical matrix shown below. Suppose the goal is to

remove the elements a12 and a13. The first row multiplied out is shown in equation 2.20.

26

CHAPTER 2. MATE in Power Flow

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ·
 x1

x2

x3

 =

 y1

y2

y3

 (2.19)

The technique’s approach is to simply assign the desired entries to be decoupled to a link quantity.

Thus the link equation can be extracted shown in equation 2.21. The desired decoupling is then obtain

in equation 2.22.

a11x1 + a12x2 + a13x3︸ ︷︷ ︸
iα

= y1 (2.20)

iα = a12x2 + a13x3 or a12x2 + a13x3 − iα = 0 (2.21)


a11 0 0 1

a21 a22 a23 0

a31 a32 a33 0

0 a12 a13 −1

 ·

x1

x2

x3

iα

 =


y1

y2

y3

0

 (2.22)

2.3 MATE in Power Flow Theory

This section will explore the possibility of applying MATE to the power flow problem, as well as its

relation to the original EMTP MATE. In both applications, groups of nodes will form subsystems. In the

ideal situation, the groups of nodes within the subsystems are densely connected while the subsystem to

subsystem connections are weakly connected. To decouple a system requires the cutting of the subsystem

to subsystem branches. It is the quantity that is flowing through these branches, the linking quantity, that

will provide greater insight on the application of MATE in power flow. This section concludes with a

discussion on various techniques, either branch tearing or node tearing, that can be employed to achieve

partitioning in the power flow algorithm.

The linking quantity that connects partitioned systems in an EMTP MATE implementation can be

determined by considering the system equation (see equation 2.23). Notice that the multiplication of the

admittance matrix with the voltage vector results in a sum of current terms at each node. At a given node,

each of these current terms corresponds to a branch current coming in from other nodes. Thus the act of

cutting a branch is to remove its corresponding current term which is done by modifying the admittance

matrix. Therefore the branch quantity is indeed current, however in general, it can be easily identified by

inspecting the RHS of the system equation.

[Y] [V] = [I] (2.23)

Using the conclusions drawn from the above EMTP discussion, the power flow linking quantity can

be directly identified from the RHS of the linearized system equation (see equation 2.24); which happens

to be real and imaginary mismatch power. This can be explained from the fact that a power flow program

27

CHAPTER 2. MATE in Power Flow

Figure 2.1: Power Flow Branch Types

starts with an initial voltage guess. Hence there will be errors between the calculated power (using the

estimated voltages) and the scheduled power at a given node which is called mismatch power. Similar to

the net current at each node being a sum of currents flowing through branches from neighbouring nodes,

the net mismatch power at a node is the sum of the error in power flowing through branches coming

from neighbouring nodes. Thus to cut a branch, would be to remove a flow of the power error from the

two connecting nodes. Therefore the link quantity in power flow is the mismatch of real and imaginary

power flowing through a particular branch. Notice that in power flow, the linking quantity is more of a

theoretical value rather than a physical value, as is the case with EMTP.

[J] [M V] = [M S] (2.24)

As explained in section 1.1 there are three types of nodes in the power flow algorithm: PQ node, PV

node and slack node. Since the slack node is not present in the system’s Jacobian matrix, it is left out

of the discussion. The majority of a power system is made up of PQ nodes which are described by two

equations whereas the remainder of the system is made up of PV nodes which take up only one equation.

The difference in the number of equations for PQ and PV buses leads to three distinctly different branch

connections: PQ-to-PQ, PQ-to-PV and PV-to-PV. Now consider a system matrix composed of only two

nodes (either PQ or PV) that are connected together but are to be decoupled into two separate subsystems.

Figure 2.1 depicts such a situation with the three different branch types. The figure also provides a graph

of the system matrix based on only the non-zeros connection pattern (i.e. ignoring the fact that a PQ node

is modeled by two equations). The nodes and branches in these graphs will be referred to as vertices and

edges, respectively, to prevent confusion with the nodes and branches of an actual power system. The

decoupling of these three types of connections can be done using either node tearing or branch tearing.

In the case of node tearing, the method is to simply re-number one of the two nodes border nodes to

the bottom of the matrix as described in section 1.2.2. For instance, the case of a PQ-PQ connection, one

28

CHAPTER 2. MATE in Power Flow

Figure 2.2: PQ-PQ-PQ Branch

of the two nodes would have its two equations moved to the bottom of the system matrix which would

act as the link equations. For a PQ-PV connection, it would be advantageous to choose the PV node’s

single equation to be moved to the bottom, since it results in a smaller link matrix. Thus the PQ-PV and

PV-PV connections are preferred to be decoupled over the PQ-PQ connection.

In the case of branch tearing, there are two choices: physical branch tearing or matrix oriented branch

tearing. Certain connections will favour one method over the other as will be explained below.

Physical branch tearing (i.e. the generalized link equations) can be visualized by referring to figure

2.1 and remembering the distinction made with the vertices and edges versus the nodes and branches

of a power system. The unsymmetrical version (described in section 2.1.2) can be used here since

the Jacobian matrix of a conventional power flow algorithm is unsymmetrical. Thus when using the

unsymmetrical link version, notice that decoupling just one PQ-PQ branch is extremely computationally

expensive since the connection contains four edges (see figure 2.1), and hence four equations are neces-

sary. Furthermore, the PQ-PV connection requires two link equations and the PV-PV connection only

requires only one link equation. Therefore, when partitioning a system, decoupling PV-PV branches are

significantly more favorable than decoupling PQ-PQ branch.

Matrix oriented branch tearing, described in section 2.2, can also be applied to decouple connections.

This method is best used for nodes with multiple connections. For instance consider the situation shown

in figure 2.2 where one PQ node is connected two PQ nodes from another subsystem. Since this method

requires one link equation for every row containing entries that are to be decoupled, the system in figure

2.2 will require 6 link equations. Whereas the generalized link equations requires one link equation per

edge, hence requiring a total of 8 link equations. Furthermore, the higher the number of connection a

node has, the greater the discrepancy between the two types of branch tearing. However the best type of

decoupling may come from node tearing. The two equations that represent the PQ node with the most

connections is placed at the bottom of the system matrix. These two equations serve as the link equations.

Notice this version only contains two link equations whereas the branch tearing methods required 6 to 8

link equations.

It should also be noted that matrix oriented branch tearing does perform worst for decoupling nodes

with only one branch. For instance a PQ-PV requires three link equations with matrix oriented branch

29

CHAPTER 2. MATE in Power Flow

tearing as oppose to two link equations with the physical branch tearing. Fortunately, the two branch

tearing techniques can be used simultaneously since matrix oriented branch tearing does not modify the

diagonal entries.

2.4 Summary

Node tearing as well as two different branch tearing techniques were presented in this chapter for the

application of partitioning a power flow algorithm’s Jacobian. Perhaps the most distinctive characteristic

of the Jacobian, are the PQ nodes which take up two equations. This fact can significantly increase the

number of link equations necessary to decouple nodes when using branch tearing techniques. However

node tearing techniques do not suffer from the same problem as it only reorders the system equations

to achieve the desired partition. The main difference of branch tearing is that the block border column

is made up of ones and zeros (i.e. pointer matrices), whereas node tearing has floating point values.

This results in an increase in matrix multiplication during the formation of the link matrix. However the

significant increase in link equations from branch tearing would indicate node tearing to be the technique

of choice for partitioning in power flow. A fully implemented version would be necessary to obtain a

clear conclusion. However the projected performance of such an implementation would most likely be

worst than what has already done with MATE in [56] due to the PQ nodes. The next chapter will explore

some possible optimizations for the power flow algorithm with the objective of providing a better power

flow platform for MATE.

30

Chapter 3

Power Flow Optimizations for MATE

This chapter attempts to provide various power flow algorithms with the intention of providing speedups

to the MATE algorithm. Two separate programs (in addition to the base conventional program) have been

implemented and performance improvements are measured against a conventional Newton-Raphson

power flow program.

3.1 General Implementation Details

To compare the performance of each of the optimizations described in this chapter, a conventional

Newton-Raphson power flow program has been implemented and will serve as the base program. Details

on test cases, sparse matrix solver and execution times are provided in this section.

3.1.1 Test Cases

All implemented programs used power flow test cases provided from the University of Washington [45].

The Common Data Format (described in [48]) was used by all programs. The IEEE 118 and IEEE 300

buy systems will be used as a means of determining performance improvements. The IEEE 118 bus

test system represents a portion of the American Electric Power System (in the Midwestern US) as of

December, 1962 [45]. The IEEE 300 bus test case was created by the IEEE Test Systems Task Force in

1993 [45]. These two test cases are summarized in table 3.1.

Table 3.1: Test Case Summary

IEEE 118 IEEE 300
of branches 186 411

branches to nodes ratio 1.58 1.37
% of PQ nodes 54% 77%
% of PV nodes 45% 23%
Jacobian Size 181x181 530x530

of non-zeros in Jacobian 1051 3736
Jacobian Matrix Sparsity 96.8% 98.7%

31

CHAPTER 3. Power Flow Optimizations for MATE

Figure 3.1: Sample Generated Power Flow Output

3.1.2 Sparse Solver

The sparse matrix solver chosen for factorization of the Jacobian matrix is SuperLU. SuperLU is a direct

sparse matrix solver optimized for unsymmetrical matrices. It uses a left-looking supernodal approach

to the LU decomposition algorithm described in [18]. All programs in this chapter use this solver.

The factorization in the power flow program is described as follows. The first iteration performs

ordering, symbolic factorization, numerical factorization and backward/forward substitution. All sub-

sequent iterations reuse the ordering pattern and elimination tree that came from symbolic factorization

thus leaving only the numerical factorization and backward/forward substitution to be performed. Thus

the first iteration will take substantially more time to complete than the other iterations.

3.1.3 Execution Times

To verify the correct output of the program, the output of the Gauss-Seidel and current equation power

flow programs have been checked against the results of the base power equation PF program for cor-

rectness. All simulations in this chapter begin with a flat start. A sample output of the base program is

provided in figure 3.1.

All simulations were performed in Linux using the GNU g++ compiler on an Intel Core 2 Duo E7400

@ 2.8GHz with 4 GB of RAM. To simplify the comparison between load flows, control equations are

turned off and PV buses were not allowed to change to PQ if its generator VAR limits are exceeded.

A summary of the number of iterations required to converge to various specified mismatch tolerances

are provided in table 3.2 and execution times, averaged over many iterations, are in table 3.3. A more

detailed analysis can be found in appendices A and B. All performance improvements in this chapter

will be with respect to these benchmarks.

32

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.2: Number of Iterations Required to Reach Convergence

Mismatch Tolerance Iterations for 118 Iterations for 300
1e-3 3 4
1e-5 3 4
1e-6 4 5

Table 3.3: Execution Times (ms) for a 0.001 Mismatch Tolerance

Iteration 118 Bus 300 Bus
1 0.415 1.261
2 0.226 0.781
3 0.225 0.780
4 - 0.781

Total 0.68 3.60

3.2 Current Equation Power Flow Program

This method uses the current equation instead of the regular power equation to derive the PF algorithm.

A recent improvement to the PV bus representation has led to the re-surfacing of the algorithm [16].

Later in [24], the method was improved, however gave a few contradictory results to the original paper.

This section will investigate several possible implementations of the current equation algorithm as well

providing a proposed version. Execution times are then compared against a conventional power flow

program described in section 3.1.

3.2.1 Notation

The following notation will be used when deriving the current equation algorithm:

Variables Description

ek + j · fk Complex voltage at bus k (rectangular)

Vk∠δ Complex voltage at bus k (polar)

∆Pk + j ·∆Qk Complex mismatch power at bus k

P schk + j ·Qschk Net complex scheduled power at bus k

P calck + j ·Qcalck Net complex scheduled power at bus k

∆IRk + j ·∆IMk Complex mismatch current at bus k

Gkm + j ·Bkm Admittance of branch k-m

33

CHAPTER 3. Power Flow Optimizations for MATE

3.2.2 Literature Review

Load flow programs can be derived from either1 using the power equation (S = V I∗) or the current

equation (I = S∗

V ∗) with the voltage represented in either rectangular or polar coordinates. Upon

linearizing the two types of equations (using the conventional polar coordinates for the voltage in the

power equation and rectangular coordinates for the voltage in the current equation) we would obtain the

following: [
∆P

∆Q

]
=

[
J

]
·

[
∆V

∆δ

] [
∆IR

∆IM

]
=

[
Y ∗

]
·

[
∆e

∆f

]
(3.1)

Notice that the current equation version contains real and imaginary current mismatches instead of

power mismatches.

The benefit of using the current equation (using rectangular coordinates for voltage) comes from the

result of linearizing the system of equations (i.e. applying Newton’s method) where most of the off-

diagonal entries in the Jacobian are simply equal to bus admittances. Thus the majority of the Jacobian

is constant. However the problem with the current equation load flow (using rectangular coordinates

for voltage) was the fact that it required knowledge of the scheduled/final reactive power at all buses in

the system during the solving process. This isn’t a problem for the PQ node (since both P and Q are

specified) however for a PV node, the Qsch is determined after the voltages in the system have been

solved for.

The current equation algorithm was originally proposed by [20] in 1970. The PV bus was represented

using one power mismatch equation (∆P) where the voltage was represented in rectangular form.

Despite the exclusion of the Q mismatch equation, it still performed reasonably well for difficult lightly

loaded systems [51].

More recently in 1999 a paper was published ([16]) proposing a new PV bus representation which

contained both P and Q mismatch values along with a third equation relating the real and imaginary

voltage to the voltage magnitude (shown in equation 3.2). This third equation is necessary for there to

be enough equations to solve for the newly introduced Q mismatch variables at PV buses.

V 2
k = e2

k + f2
k (3.2)

Upon linearizing the above equation with respect to ek and fk we obtain the following:

∆Vk = 0 =
ek
Vk

∆ek +
fk
Vk

∆fk (3.3)

Since we’re dealing with PV buses, Vk is specified and thus constant. The authors used this fact to

simplify equation 3.3 by setting the mismatch in voltage magnitude (∆Vk) equal to zero.

A few years later, it was realized in [24] that setting ∆Vk to zero was only valid after convergence

1A voltage equation power flow is also possible however it would utilize the impedance matrix (which is dense) as oppose
to the sparse admittance matrix

34

CHAPTER 3. Power Flow Optimizations for MATE

had been reached. But since the original formulation assumed a zero ∆Vk during the solution procedure,

this approximation led to a slower convergence trajectory. This is both explained in words and shown in

table 1 of [24], which was in contrast to the original paper ([16]) whose results claimed to have identical

convergence to the conventional power equation power flow algorithm. The revision made to the third

equation of the PV bus representation was to calculate the voltage magnitude mismatch using equation

3.4 instead of setting it to zero.

∆Vk = V spec
k − V calc

k where V calc
k =

√
e2
k + f2

k
(3.4)

This correction was then tested on a balanced three-phase version on the IEEE 14 bus system at

loading factors ranging from 0.5 to 4.1 p.u. of the base case. It was also mentioned that the previous

version did not have identical convergence to the conventional program, however with the new improve-

ment they are able to achieve exact convergence with the conventional version. This method has also

been modified for control adjustments/FACTS [59, 17], then later modified for distribution systems [25]

(balanced three phase [23] and four conductor [46] load flow).

3.2.3 Expected Speed Up

By taking a closer look at the anatomy of the conventional power flow program we can determine an

upper bound to the potential performance improvement of the current equation version empirically.

The current equation algorithm has the potential to provide a speed up in two ways: (1) much of

the Jacobian does not need to be updated, and (2) the use of rectangular coordinates avoids the need of

sine and cosine functions2. Thus the speedup cannot be more than if the execution times of those two

operations were neglected (assuming identical convergence trajectory).

To gain a better understanding of this upper bound, the implemented conventional load flow program

(detailed in section 3.1) was profiled for 118 bus system and the 300 bus system. There are two different

types of iterations: the first iteration and then all subsequent iterations. The difference between them is

the first iteration requires both ordering and symbolic factorization, whereas the subsequent iterations do

not. The results are shown in tables 3.4 and 3.5, the detailed results are found in appendix B.

From these results we see factorization process takes between 75% to 88% of the execution time.

This value is corroborated by [31] which claims ~85% of a power flow program is spent performing

factorization. Furthermore looking at time taken to compute both the Jacobian and sine & cosine tasks,

they only contribute between 7% to 14% of the execution time which equates to the upper limit of the

improved current equation algorithm.

It should also be noted that although the majority current equation’s Jacobian matrix do not require

computation, the diagonals do require updating have formulas that are quite long (example of a diagonal

entry in equation 3.5, the rest are found in the appendix of [16]). These saving are further reduced when

2PV bus calculations do require the use of transcendental functions (square root and arc-tangent) but are shown to be
linearized in [16]

35

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.4: Conventional Program Profiling for 118 Bus

Task First Iteration Subsequent Iterations
Time (us) Percentage Time (us) Percentage

∆P & ∆Q 23.7 5.7% 23.7 10%
Jacobian 24.0 5.8% 24.0 11%
SuperLU 360 86% 171 75%

Voltage Update 1.52 0.4% 1.55 0.6%
Sine & Cosine 5.35 1.3% 6.12 2.7%

Table 3.5: Conventional Program Profiling for 300 Bus

Task First Iteration Subsequent Iterations
Time (us) Percentage Time (us) Percentage

∆P & ∆Q 56.4 4.5% 56.8 7.3%
Jacobian 80.8 6.4% 80.8 10%
SuperLU 1107 88% 625 80%

Voltage Update 3.33 0.3% 3.32 0.4%
Sine & Cosine 14.1 1.1% 14.7 1.9%

the additional factorization time of the larger Jacobian matrix is taken into account. The larger Jacobian

matrix is due to the additional equations of the newly developed PV bus representation.

B
′
kk = Bkk −

(
e2
k − f2

k

)
·Qschk − 2 · ek · fk · P schk(
e2
k + f2

k

)2 (3.5)

In contrast to the results of the analysis presented here, [16] claimed an average speed up of 20%

(later claiming 30% in [23]) when compared to an industry grade power flow program. They also noted

that they used the same factorization code as the production grade program. However, this speed up

was cited for the original formulation, which was before the improvement in [24] and thus may not be

reliable. Since then, the current equation algorithm was modified for distribution systems and was never

compared to the conventional power flow after the improvement to the PV bus representation was made.

3.2.4 Implementations

The current equation algorithm was implemented as outlined in [16] however using the improvements

mentioned in [24]. This was implemented in two different ways, the expanded form and the condensed

form. The difference between them is just the algebraic representation of the third PV bus equation.

3.2.4.1 Expanded Form

This version was first used in the paper with the improved formulation [24]. This form simply retains

all 3 linearized equations to represent a PV bus, however moves the third row and column (shown in

equation 3.6) to end of the system’s Jacobian matrix which results in the equation 3.7. In this equation,

Z and X represent the contribution of the third row and column terms of all PV buses in the system.

36

CHAPTER 3. Power Flow Optimizations for MATE


fk·∆Pk
e2k+f2k
ek·∆Pk
e2k+f2k

∆Vk

 =


B
′
kk G

′
kk

ek
e2k+f2k

G
′′
kk B

′′
kk − fk

e2k+f2k
ek
Vk

fk
Vk

0

 ·
 ∆ek

∆fk

∆Qk

 (3.6)

 M Im

M Ir

M V

 =

 J X

Z


 M e

M f

M Q

 (3.7)

It was confirmed by the author (Dr. Paulo Garcia), in a conversation at the UBC power lab in January

of 2009, that the expanded form was indeed the way it was implemented in their code3. Although the Z

and X terms increased the size of the Jacobian, Dr. Garcia made references to how the sparsity of the

matrix was increased and argued it would be faster than a condensed formulation which is explained in

the next section. The end result is a system matrix with 2 equations for PQ buses and 3 equations for
PV buses.

3.2.4.2 Condensed Form

This form was used in the original derivation ([16]) of the current equation however it has not been

derived for the improved version ([24]) since it was believed to be slower than the expanded form. This

section will derive the condensed form using the improved version for the first time.

Starting with the 3 linearized PV equations at bus ’k’ we have:
fk·∆Pk
e2k+f2k
ek·∆Pk
e2k+f2k

∆Vk

 =


B
′
kk G

′
kk

ek
e2k+f2k

G
′′
kk B

′′
kk − fk

e2k+f2k
ek
Vk

fk
Vk

0

 ·
 ∆ek

∆fk

∆Qk

 (3.8)

Since the third row is only dependent on two state variables, we can eliminate one of those two state

variables by solving for ∆ek using the third equation of 3.8 shown below:

∆ek =
Vk
ek

∆Vk −
fk
ek

∆fk (3.9)

With this formula we can multiply the first column of equation 3.8 to obtain equation 3.10 which

has the same diagonal Jacobian matrix as [16] however has an additional term on the LHS to reflect the

improvement version of [24].

 fk·∆Pk
e2k+f2k

−
(
B
′
kk ·

Vk
ek

∆Vk

)
ek·∆Pk
e2k+f2k

−
(
G
′′
kk ·

Vk
ek

∆Vk

)  =


(
G
′
kk −

B
′
kk·fk
ek

)
ek

e2k+f2k(
B
′′
kk −

G
′′
kk·fk
ek

)
− fk
e2k+f2k

 ·
[

∆ek

∆fk

]
(3.10)

3Their paper implemented a three phase load flow, thus it is not exactly a direct comparison

37

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.6: Comparisons of Execution Times (Tolerance of 1e-3)

Jacobian Details Conventional PF Expanded Condensed
System 118 300 118 300 118 300

First Iteration (ms) 0.42 1.26 0.73 1.61 0.61 1.63
Subsequent Iterations (ms) 0.23 0.78 0.52 1.17 0.44 1.15
of iterations to converge 3 4 9 7 9 7

Total Time (ms)∗ 0.68 3.60 4.91 8.64 4.09 8.55
∗Extrapolated from first and subsequent iteration timings

However, the elimination of ∆ek does not just affect bus ’k’, it will also affect all buses connected

to bus ’k’ (i.e. all rows in the Jacobian that contain a ∆ek term). Thus in general, the LHS formulas for

a bus ’k’ affected by all PV buses ’m’ are shown below for both the PQ bus equations 3.11 and the PV

bus in equations 3.12.

LHSM = ∆IMk −
∑

m∈PV
Bkm · Vmem ∆Vm

LHSR = ∆IRk −
∑

m∈PV
Gkm · Vmem ∆Vm

(3.11)

LHSM = fk·∆Pk
e2k+f2k

−
(
B
′
kk ·

Vk
ek

∆Vk

)
−

∑
m∈PV

Bkm · Vmem ∆Vm

LHSR = ek·∆Pk
e2k+f2k

−
(
G
′′
kk ·

Vk
ek

∆Vk

)
−

∑
m∈PV

Gkm · Vmem ∆Vm
(3.12)

The end result is a Jacobian matrix with 2 equations for PQ nodes and 2 equations for PV nodes.

3.2.4.3 Results

Programs were implemented as described in [16, 24] and also in section 3.2.5.1.

Timing results are shown in table 3.6 which indicate very poor performance due primarily due to the

large number of iterations. An explanation for the large number of iterations is found in section 3.2.5.1.

It should also be noted that the 118 bus system does particularly poorly because it has a large number of

PV nodes (45% were PV buses). Both formulations appear to have similar speeds, where the condensed

version performing slightly faster than the expanded (20% for 118 and 1.1% for 300).

Supposing that the current equation PF converged in the same number of iterations as the conven-

tional PF as mentioned in ([24]), each iteration still takes longer to finish than the conventional PF

program. Further analysis of an iteration’s tasks are shown in tables 3.7 and 3.8. As expected the time to

build the Jacobian matrix is reduced and the cosine and sine calculations are no longer present. However

there is a drastic increase in factorization time due to the increase in the size of the Jacobian caused by

the PV bus representation.

There is a significant difference where the condensed and expanded forms spend their computational

time. Tables 3.7 and 3.8 show that percentage wise, the condensed form spends far less time performing

factorization then the expanded form. Indicating that if we had a very fast solver, the expanded form

would benefit the most from solver.

38

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.7: Expanded Form Profiling of 300 Bus

Task First Iteration Subsequent Iterations
Time (us) Percentage Time (us) Percentage

∆I 61.9 3.8% 61.7 5.3%
Jacobian 45.0 2.8% 48.2 4.1%
SuperLU 1498 93% 1056 90%

Voltage Update 3.47 0.22% 3.57 0.30%

Table 3.8: Condensed Form Profiling of 300 Bus

Task First Iteration Subsequent Iterations
Time (us) Percentage Time (us) Percentage

∆I 304 19% 307 27%
Jacobian 50.5 3.1% 53.7 4.7%
SuperLU 1268 78% 789 68%

Voltage Update 3.86 0.3% 3.86 0.3%

The timing results are further validated once we analyze the characteristics of the Jacobian matrix.

The data summarized in table 3.9 is very important for understanding the poor performance. It outlines

an increase in the number of non-zeros from 12% to 101%, which results in an increase in factorization

from 17.6% to 178%. Thus the main culprit of the slow performance comes the larger Jacobian matrix

(which was a result of the additional PV bus equations).

3.2.5 Proposed Algorithm

This section proposes a possible modification to the PV bus representation however it is possible that this

was how current equation algorithm was implemented in [24]. However these implementation details

where never explicitly specified.

The method takes the standard approach in applying Newton’s method, however it chooses Qsch

Table 3.9: Factorization Analysis & Comparisons

Jacobian Details Conventional PF Expanded Condensed
System 118 300 118 300 118 300

Jacobian Size 181x181 530x530 287x287 667x667 234x234 598x598
of non-zeros 1051 3736 2117 4800 1486 4192

#of required updates n/a n/a 680 1468 834 1464
Jacobian Sparsity 96.8% 98.7% 97.4% 98.9% 97.3% 98.8%
% incr. non-zeros∗ n/a n/a 101% 28.5% 41% 12%
% incr. in fact. 1† n/a n/a 89% 35% 35% 17.6%
% incr. in fact. 2 ‡ n/a n/a 178% 70% 46% 25%

* Increase with respect to conventional power equation PF
† Increase with respect to conventional PF factorization time for the first iteration
‡ Increase with respect to conventional PF factorization time for subsequent iterations

39

CHAPTER 3. Power Flow Optimizations for MATE

as the state variable instead of ∆Q. At a PV bus, we have 3 unknowns (e, f , Qsch) thus we need 3

equations. Just as before, there are 3 non-linear equations for each PV bus:

∆IMk = I
M(sch)
k − IM(calc)

k

∆IRk = I
R(sch)
k − IR(calc)

k

∆Vk = V sch
k − V cacl

k

(3.13)

The proposed modification of this thesis uses a standard Newton’s method approach to solve the

system of non-linear equations. This section will first describe the original PV bus derivation followed

by the proposed representation. The section concludes with a comparison of the previous and proposed

representations and benchmarks against the conventional PF program.

3.2.5.1 Original PV Bus Derivation

In the original derivation, it appears that the 3 PV bus equations were linearized with respect to only 2
state variables, which were the real and imaginary voltage (ek & fk). Thus upon linearization we obtain

the following:  ∆IMk
∆IRk
∆Vk

 =

 B
′
kk G

′
kk

G
′′
kk B

′′
kk

ek
Vk

fk
Vk

 · [∆ek

∆fk

]
(3.14)

Where B
′
kk and other elements in the matrix are the resulting derivatives of the 3 equations (full

derivation is covered in [16] and [24]). It can also be shown that ∆IMk and ∆IRk can be expanded as

follows: 
fk·∆Pk−ek·∆Qk

e2k+f2k
ek·∆Pk+fk·∆Qk

e2k+f2k

∆Vk

 =

 B
′
kk G

′
kk

G
′′
kk B

′′
kk

ek
Vk

fk
Vk

 · [∆ek

∆fk

]
(3.15)

Since ∆Qk is not available at PV buses the authors of [16] proposed to introduce ∆Qk as a state

variable and move the ∆Qk quantities in the LHS vector (of equation 3.15) into the Jacobian as shown

below: 
fk·∆Pk
e2k+f2k
ek·∆Pk
e2k+f2k

∆Vk

 =


B
′
kk G

′
kk

ek
e2k+f2k

G
′′
kk B

′′
kk − fk

e2k+f2k
ek
Vk

fk
Vk

0

 ·
 ∆ek

∆fk

∆Qk

 (3.16)

It is this operation that is believed to be reason for the slow convergence observed in section 3.2.4.3

since it deviates from Newton’s method.

After solving equation 3.16, the state variables can be updated by the correction terms as follows:

40

CHAPTER 3. Power Flow Optimizations for MATE

enewk = ek + ∆ek

fnewk = fk + ∆fk

∆Qnewk = ∆Qk

(3.17)

The ∆Qk update was not specified in the paper, however the implemented version in this thesis

assumed ∆Qk to be updated as shown in equation 3.17. The ∆Qk value is necessary at PV buses to

determine Qschk for the diagonal term of the Jacobian. Later it was discussed by the authors of [16] via

email that they never updated ∆Qk during the iterative process. Further details were not revealed but

may explain the strange results in convergence found in section 3.2.4.3.

It should also be noted that the improved version ([24]) recognized that the third column of the

Jacobian in equation 3.16 were the partial derivatives of the current equation mismatches with respect to

reactive power. However [24] never specified whether they were referring to Qschk or Qcalck or ∆Qk. It is

also unknown how the ∆Qk update was handled. Thus it appears that [24] used an unknown third state

variable to linearize the PV bus equations. Finally, there was also no explanation why the LHS was full

at all buses instead of the partial formulas shown in equation 3.16 for PV buses. It was assumed that this

was used to simplify notation, as the paper referenced the original algorithm [16] which used the partial

mismatches shown in equation 3.16.

3.2.5.2 Proposed PV Bus Derivation

The proposed/clarified4 version is to simply apply Newton method to all the PV bus equations. Since

there are 3 non-linear equations with 3 unknowns, one can just linearize all 3 equations with respect to

all 3 state variables. However we can already determine the Qcalc portion of ∆Qk, the real unknown is

Qschk , thus we make it the third state variable.

∆Qk = Qschk −Qcalck (3.18)

Then it is just a matter of linearizing all three equations with respect to ek , fk and Qschk . Upon doing

so, one would obtain the following linearized system:

 ∆IMk
∆IRk
∆Vk

 =


B
′
kk G

′
kk

ek
V 2
k

G
′′
kk B

′′
kk − fk

V 2
k

ek
Vk

fk
Vk

0

 ·
 ∆ek

∆fk

∆Qschk

 (3.19)

Coincidentally, the change in the state variable still results in the same Jacobian matrix as before.

However, the LHS has changed since there is now the regular full current mismatch equations (much like

the power mismatches) whereas the previous formulation only had partial current mismatches. Lastly, it

is important to take note that ∆Qschk is not the same as ∆Qk. ∆Qschk is the scheduled reactive power

correction whereas ∆Qk = Qschk −Qcalck .

4Bearing in mind the comments made at the end of section 3.2.5.1, this may just be a clarification

41

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.10: Execution Times for 118 Bus System Using Condensed Current Equation PF

Tolerance Iterations Time (ms) Speedup
conventional current eqn conventional current eqn

1e-3 3 3 0.87 1.48 -1.7x
1e-5 4 4 0.87 1.92 -2.2x
1e-6 4 4 1.09 1.91 -1.8x

Table 3.11: Execution Times for 300 Bus System Using Condensed Current Equation PF

Tolerance Iterations Time (ms) Speedup
conventional current eqn conventional current eqn

1e-3 4 4 3.60 5.09 -1.4x
1e-5 4 5 3.60 6.24 -1.7x
1e-6 5 5 4.39 6.24 -1.4x

After solving equation 3.19, we obtain correction terms which are used to update the state variables

as shown below:

enewk = ek + ∆ek

fnewk = fk + ∆fk

Qschk = Qschk + ∆Qschk

(3.20)

It was found that this implemented version had a better convergence characteristic which is described

in the next section.

3.2.6 Results

Convergence is much better and we are able to achieve the same convergence as the conventional PF

program (see in tables 3.10 and 3.11) for a precision of 1e-3. However using a mismatch tolerance of

1e-5, we find that the current equation PF takes one iteration longer. Thus the convergence between the

conventional and current equation PF programs is still not exactly equivalent.

The speedups in tables 3.10 and 3.11 are negative, indicating the current equation took longer to

execute than the conventional program. Since each iteration takes longer to solve, the only way for it to

be faster is if it took less iterations.

It is possible that the improved version in [24] implemented their program as similar to the version

presented here however the specific details are not given in their paper. Even if this was the case, the

results of the 118 bus and 300 bus test systems do not corroborate any speedup, much less the 20%

speedup found in [16]. The main reason for the poor performance was found to be the larger Jacobian

matrix of the current equation, which leads to longer factorization times (see table 3.9).

The current equation algorithm was originally proposed by Dr. Hermann Dommel in 1970 [20].

In a discussion with Dr. Dommel in March 2010, Dr. Dommel thought it was doubtful that a current

equation PF program could out perform a conventional PF program by 20% to 30% in as stated in [16]

42

CHAPTER 3. Power Flow Optimizations for MATE

Figure 3.2: Two PV Buses Using 3x3 Blocks

and [23]. He agreed that the majority (~85%) of the PF program is spent during the factorization phase

which means only a small gain could be obtained from the formation of the Jacobian. Furthermore,

having to represent PV buses with three equations as oppose to one would lead to a noticeable increase

in non-zeros which would increase the factorization time. Once the additional equations to represent the

PV buses are taken, the 20% speedup would seem very unlikely.

3.2.7 Summary

[16, 24] presented a novel approach to representing PV buses using three nodal equations. It was shown

in section 3.2.6 that it is possible to get near identical convergence with the conventional power equation

load flow program. However the effect of using 3 equations (instead of the usual one equation) to

represent a PV bus leads to a larger Jacobian matrix which leads to a significant increase in factorization

time. The results from the iteration profiling in section 3.2.4.3 indicates that the savings from the

reduction in computation time of building the Jacobian matrix is not justified by increase in factorization

time. Especially once one considers that factorization time accounts of ~85% of an iteration whereas

creating a Jacobian accounts for only ~10% of an iteration.

The expanded form may present a more suitable host for the MATE algorithm since it maintains

symmetry in the off-diagonal blocks and it spends most of its time performing factorization. It would be

best to adopt 3x3 PV blocks rather than placing the third rows and columns of the PV bus diagonal at the

ends of the of Jacobian matrix. This will ensure the PV buses do not interfere with the MATE operations.

An example is given in figure which depicting the non-zero structure of 2 PV buses in a Jacobian. Notice

that symmetry is maintained in the off-diagonals hence reducing link computation. However, due to the

poor performance of current equation algorithm, it would seem that the current equation is best avoided.

It should be noted that the current equation algorithm would provide no obvious benefits when using

node tearing as oppose to branch tearing. The reason being is that the border quantities are assumed to

be non-zero, thus using the unsymmetrical link formula detailed in section 2.1.2 would have the same

performance as symmetric link formula. In this case there would be no reason to use the current equation

over the conventional PF program.

43

CHAPTER 3. Power Flow Optimizations for MATE

(a) Newton’s Method (b) Slope Sizes

Figure 3.3: Constant Jacobian Concept
(fig. (a) extracted from: H.W. Dommel. Course notes. "EECE 459 - Computer Applications in Power Systems", 1995.)

3.3 Constant Jacobian

This method calculates the Jacobian matrix once, then is kept constant for all subsequent iterations. This

is a standard technique used to accelerate Newton’s methods [53].

3.3.1 Theory

The basic theory behind using a constant Jacobian can be explained as follows. Newton’s Method is

a series of linear approximations used to determine the roots of some non-linear function. The first

linearization (or slope calculation) takes place at some initial point, a guess, reasonably close to the

desired root. This slope is is then used to calculate the next successive point closer to root until solution

meets some desired tolerance. However at each new point, the function is re-linearized. In general,

the first slope calculated will be the largest due to the distance from the root and the curvature of the

non-linear function. Thus as we approach the root, the slope becomes smaller and thus takes larger

strides (proportional to the height of the function) are taken towards the root. See figure 3.3which better

illustrates the concept.

When using a constant Jacobian, the slope calculated at the first iteration is re-used for all subsequent

iterations. As a result, we lose the quadratic convergence of the standard Newton’s method (thus it will

incur additional iterations), but we gain the benefit of not having to update the Jacobian matrix after

the first iteration. Though the smaller strides do increase the number of iterations, they also help reduce

overshooting the root thus lessening wasted steps. In practice, it is found that this trade-off worth making.

This method is also used in many production grade transient stability programs under the name Very

Dishonest Newton Raphson (VDHN). The Jacobian matrix is a result of the linearization of differential

equations to model the dynamics of the system (i.e. generators, loads, controllers). The Jacobian matrix

is normally kept constant and only updated if there is a significant change in the system or if the number

of iterations exceed a pre-determined value. [12]

Some power flow algorithms, such as the fast decoupled power flow method or a dc load flow

[52], already have constant Jacobian matrices. The natural constant Jacobian is a result of a series

44

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.12: Iteration Times (ms)

Iteration Type 118 Bus 300 Bus
First Iteration 0.415 1.268

Jacobian Update 0.228 0.781
Constant Jacobian 0.0463 0.125

of approximations based on the assumption of a properly operated power system. However if the

assumption of normal conditions is violated (such as a system being heavily loaded) the algorithm may

not converge at all.

3.3.2 Results

Results in this section also experiments with an iteration that updates the Jacobian at a certain point

in time. Altogether, three different types of iterations can be identified: first iteration, Jacobian up-

date and constant Jacobian. The first iteration performs ordering, symbolic/numerical factorization

and backward/forward substitution. The Jacobian update iteration requires numerical factorization and

backward/forward substitution. Finally the constant Jacobian iteration only needs to perform back-

ward/forward substitution since the LU factors remain constant. Timing for each type of iteration is

given in table 3.12. Notice that the constant Jacobian iteration is roughly an order of magnitude less than

the first iteration.

The reduction in execution time for the constant Jacobian iteration comes from the fact that the

Jacobian does not need to be updated and that backward/forward substitution is all that is needed.

However, it is the reduction in factorization that plays the biggest role. For the 300 bus system, it

was found that 88% of the reduction in time was due to the savings from factorization, and only 12%

came from not having to update the Jacobian.

Simulation results using a constant Jacobian are shown in tables 3.13 and 3.14. The first column in

both tables indicates which iteration the Jacobian update occurred. The speedup is measured against the

conventional power flow program detailed in section 3.1. There is a big difference in speedup between the

118 and 300 bus systems. This is largely due to the number of iterations required to solve each system

when using the conventional algorithm. The 118 bus requires 3 iterations and the 300 bus requires 4

iterations. The additional iteration accounts for ~20% more time to complete and thus we observe a

reasonable speed improvement for the 300 bus.

The 300 bus system was also tested at a higher precision tolerance (1e-5) with a one Jacobian update

on the fourth iteration. A speedup of 43% was recorded further validating that the constant Jacobian

method works best for systems that naturally require many iterations to converge.

3.3.3 Summary

Using a constant Jacobian method can provide speedups of up ~43%, however simulations that normally

converge within a few iterations (two or three) can end up having the reverse effect and actually slow

down the overall simulation.

45

CHAPTER 3. Power Flow Optimizations for MATE

Table 3.13: Execution Times for 118 Bus System (Tolerance of 1e-3)

Update @ Iteration: # of iterations to converge Execution Time (ms) Speedup
no update 6 0.647 5%

2 3 0.689 -1%
3 3 0.689 -1%
4 4 0.736 -8%

Table 3.14: Execution Times for 300 Bus System (Tolerance of 1e-3)

Update @ Iteration: # of iterations to converge Execution Time (ms) Speedup
no update 11 2.518 30%

2 7 2.674 26%
3 5 2.424 33%
4 5 2.424 33%
5 5 2.424 33%
6 6 2.549 29%
7 7 2.674 26%

When implementing the constant Jacobian method on a single CPU, MATE can provide some

additional benefits that Sparsity Techniques alone cannot. When dealing with automatic adjustment of

transformers controlling either a nodal voltage or a power flow within some certain predefined limit,

control equations will need to be substituted or added in if the limits are violated [47]. Thus the

Jacobian matrix will need to be updated and will incur numerical factorization and potentially symbolic

factorization. In the case of Sparsity Techniques, if there are a small amount of tap changing transformers

it is possible to significantly mitigate the factorization time by placing those transformer equations at the

bottom of the matrix [54]. However when thethe VAR limits from the PV nodes are include, the number

equations at the bottom grow too large for the technique to work properly. Thus MATE is able provide

a performance increase over Sparsity Techniques since it only needs to update the subsystems with the

necessary control equations. It should be noted however, that a multi-CPU implementation may not

receive any additional benefits since the subsystems that do not require updating would have to wait for

the subsystems that are updating.

Lastly, inclusion of control equations will favour the constant Jacobian method since the control

equations raise the number of iterations required to reach convergence. Thus it is expected that this

method would provide a greater improvement in performance when used with a single CPU MATE

implementation.

3.4 Chapter Summary

In this chapter, various types of power flow programs were implemented and benchmarked where the

goal was to find the best program to serve as a host to MATE. A conventional power flow program

was implemented as the base case for speedups. Two versions of the current equation program were

46

CHAPTER 3. Power Flow Optimizations for MATE

implemented. The current equation program was quite appealing to the MATE algorithm due to its

Jacobian matrix giving rise to symmetrical links. However the speedups reported in various published

papers were not achieved when implemented. The analysis and benchmarking done in this chapter gives

strong evidence against the reported speedup. The main argument being that the additional PV bus

equations increases the size and non-zeros of the Jacobian matrix. The time saved from having a near

constant Jacobian is not justified by the increased factorization time. Thus the current equation power

flow program is not deeded a viable option for MATE. However the constant Jacobian implementation

was able to achieve reasonable speed up, as expected.

47

Chapter 4

Proposed Multi-level Algorithms

As was found in the large-scale implementation of MATE ([56]), the single level approach would scale

well only up to around 14 processors. Going above this saturation point causes the link matrix to become

too large. A multi-level approach mitigates this problem by allowing for the link matrix to be split up

and computed in parallel. Thus a massively parallel multi-level MATE algorithm will be proposed in this

chapter. This will be a direct extension of the existing multi-level MATE algorithm found in [5] where

the same base formulas are used but furthered for an arbitrary number of levels.

This chapter begins with a short review of literature on multi-level techniques to solving power

system simulations. A basic description of the proposed algorithm is provided followed by an example

of a level three decomposition. From the level three example, it becomes easier to visualize a general

algorithm. A model for a sparse matrix is then described which is then used for an analysis of the

distribution of floating point operations in both a branch tearing and node tearing version of the multi-

level MATE algorithm.

4.1 Literature Review

The idea of partitioning a subsystem into successive levels can be traced back as far as 1973 where

Happ describes a multi-level algorithm for Diakoptics [28]. Since then the concept of using multi-level

techniques for MATE and BBDF matrices have naturally been extended (first in [38] called “Extended

MATE” and later in [5] as Multi-level MATE). The main benefit of such an algorithm is its ability to

distribute the link matrix and thus enable further parallelism.

Multi-level MATE

As described in [5], multi-level MATE was originally designed for inclusion of controller equations and

nonlinearities in EMTP. One of the motivations for introducing a second level was the desire to partition

a system into natural subsystems that could have their own time steps (i.e. latency techniques). It was

recognized that increasing the number of link branches between subsystems slowed down the execution

speed of the program and hence the need for the second level.

48

CHAPTER 4. Proposed Multi-level Algorithms

(a) One Level Decomposition (b) Two Level Decomposition

Figure 4.1: System Decomposition
(extracted from: M.L. Armstrong. Multilevel MATE Algorithm for the Simulation of Power System Transients with the OVNI Simulator.

PhD thesis, The University of Bristish Columbia, 2006.)

(a) Starting Matrix Form

(b) Final Matrix Form

Figure 4.2: Multi-Level MATE’s Matrices
(extracted from: M.L. Armstrong. Multilevel MATE Algorithm for the Simulation of Power System Transients with the OVNI Simulator.

PhD thesis, The University of Bristish Columbia, 2006.)

The following example was given in [4] where a level two decomposition was performed. Figure 4.1

illustrates the chosen partitioning performed in both first and second level. The corresponding system

matrix is shown in figure 4.2 (a) where each diagonal block represents another MATE system. Following

a series of elegant manipulation, the sublink branches are able to be “hidden” from the first level and thus

results the matrix equation shown in figure 4.2 (b). After collapsing the level two data into level one, this

final matrix equation resembles that of the original MATE formulation as shown in equation 4.1. 1 0 a

0 1 b

0 0 Zα


 vA

vB

iα

 =

 eA

eB

eα

 (4.1)

49

CHAPTER 4. Proposed Multi-level Algorithms

(a) Separator Tree (b) System Matrix Structure

Figure 4.3: Multi-Level Technique
(extracted from: F. Tu and A.J. Flueck. A message-passing distributed-memory Newton-GMRES parallel power flow algorithm. Power

Engineering Society Winter Meeting, 1:211–216. © 2002 IEEE)

Other Multi-level Programs

There have also been other multi-level approaches that have used in the area of power flow. For instance

in [57], implemented an algorithm for a general number of levels to be run on a CPU cluster. Figure

4.3 depicts a level two decomposition. The partitioning of the matrix was performed by METIS. Both

a direct and iterative matrix solvers where used and it was the iterative solver that was found to provide

the superior scaling. The iterative solver showed a speed up of 12.6 times over 16 processors (i.e 79%

efficiency per processor). However there was no mention of how the subsystem matrices where factorized

in their direct solver other than the authors stating they implemented it. There was also no mention of

any optimized linear algebra libraries being used.

Another multi-level implementation described in [62, 64, 63] takes a different approach. It first

begins by using epsilon decomposition to partition the system matrix onto multiple processors. The

partitioning used creates block borders that are initially much larger than the subsystem matrices them-

selves. The elements of the sparse matrix are represented by linked lists. Then factorization occurs

through a complex algorithm (described in [62]) which iteratively reduces the size of the block border

(similar to level elimination). This particular algorithm was reported to have achieved a speedup of 11.2

times over 14 processors (i.e. 80% scaling efficiency per processor). Unfortunately the algorithm was

never benchmarked against any well known sparse solvers such SuperLU, MUMPS or UMFPACK.

4.2 General Approach

The main idea is to always divide a subsystem into roughly two equal pieces at each level. By never

dividing by more than two, the minimum number links are decoupled at every level. This provides the

greatest spread of link matrix computation. Because the division is always by two, the following formula

could be derived that describes the relationship between the number of levels L and the desired size of

the subsystems.

50

CHAPTER 4. Proposed Multi-level Algorithms

Table 4.1: Notation of Multi-Level Quantities

Quantity Description
A, B Original subsystem matrix
hA, hB Original RHS of subsystem
p, q Injection/pointer matrices
a, b Partial Thévenin equivalent matrix
eA, eB Thévenin equivalent voltages
zkm Impedance matrix
zα Link matrix
eα Link voltage
iα Link current

Size.of.System

2L
= Size.of.Sub.System (4.2)

For example, suppose it is desirable to decompose a system of 2000 nodes into subsystems of size

~8x8. using equation 4.2, it would determine that 8 levels are necessary to achieve the desired subsystem

size. A level three example shown in figure 4.5 depicts the composition of the system matrix.

4.3 Notation

Table 4.1 lists the quantities used in the multi-level algorithm. Although the physical meaning of many

of the quantities does not apply in case of power flow, much of the original MATE notation is retained for

convenience of explanation. Also the word “subsystem” will typically be used to refer to bottom-most

level subsystems, otherwise the term “subnetwork” will be used for any arbitrary level.

Numerical subscripts attached to any of the quantities listed in table 4.1 provides further information

about which level it belongs to and the current state that quantity is in. The first numerical subscript

indicates which level it belongs to (i.e. A4 is a level 4 subsystem matrix). If a second numerical subscript

is present, the second value represents the level it was just modified by (i.e. b52 is a level 5 quantity and

has just been modified by level 2).

One exception exists to both subscripts at the very start of the program where the value of a subscript

can exceed the total number of levels by one. This is merely to indicate initial factorization of each

subsystem. An example is given in section 4.4.1.

4.4 Level 3 Multi-level MATE Example

To provide a more concrete idea of the multi-level MATE algorithm, a level three decomposition is

provided in this section. This approach will then be generalized for more than three levels in the following

section. The algorithm will first start with a partitioned system, then iteratively eliminate each level

following the same formulas as described in the existing multi-level MATE algorithm [5]. In this example

a system of an arbitrary size is assumed.

51

CHAPTER 4. Proposed Multi-level Algorithms

Figure 4.4: Level 3 Hierarchy

Figure 4.5: Initial Multi-Level Structure

The algorithm begins by partitioning the system into pieces of two as was described in section 4.2.

Since three levels are being used, equation 4.2 states that the system matrix will be partitioned into 8

subsystems (23 = 8). Figure 4.4 depicts the colour coded system matrix where green indicates level

three quantities, blue represents level two and red represents level one.

The solution procedure is to perform level elimination starting with the bottom-most level, in this

case level three. The goal is to eliminate all level three block borders by transferring their information

into the block borders of the remaining levels, thereby eliminating level three. The same process is then

done with level two. Then once the system is in the level one state, it proceeds by solving the system as

a regular single level MATE implementation as shown in equation 4.1. Conceptually, it can be pictured

as ascending the hierarchical pyramid shown in figure 4.4 until level one is reached.

4.4.1 Initial Subsystem Factorization

Prior to the start of level elimination, all the subsystems are first factorized. This step can be seen

as inverting each of the subsystem matrices then multiplying through their respective block rows. As

a result of having multiple block borders, additional partial Thévenin equivalent matrices fill in the

52

CHAPTER 4. Proposed Multi-level Algorithms

Figure 4.6: After Level 3 Triangularization

injection matrices. The corresponding quantities are shown below.

a34 = A−1
3 p3 a24 = A−1

3 p
(1)
2 a14 = A−1

3 p
(1)
1 eA4 = A−1

3 hA3

b34 = B−1
3 q3 b24 = B−1

3 p
(2)
2 b14 = B−1

3 p
(2)
1 eB4 = B−1

3 hB3

(4.3)

4.4.2 Elimination of Level 3

The start of the elimination of level three will be defined to begin by performing block Gaussian elimi-

nation on the level three block border row. This corresponds to the original MATE operations where a

link matrix and link voltage is calculated, except here it is done for level three quantities.

zα3 = pt3 · a34 + qt3 · b34 + z3 (4.4)

eα3 = pt3 · eA4 + qt3 · eB4 (4.5)

As a by-product of the level three link matrix formation, additional impedance matrices are also

formed from the block elimination and are given below.

z23 = pt3 · a24 + qt3 · b24

z13 = pt3 · a14 + qt3 · b14

(4.6)

After performing all these operations, the system matrix will look like that of figure 4.6 where all the

updated quantities are highlighted in yellow.

The actual level elimination is done by collapsing the level three quantities into the quantities of the

remaining levels. This is accomplished by clever algebraic manipulations of the subsystem formulae as

53

CHAPTER 4. Proposed Multi-level Algorithms

Figure 4.7: After Level 3 Elimination

was done in [5]. The end effect of level three on the remaining levels can be described by the formulas

below. Notice the second numerical subscripts of the newly calculated partial Thévenin equivalents is a

’3’, indicating they were modified by level three.

a23 = a24 − a34 [zα3]−1 z23 a13 = a14 − a34 [zα3]−1 z13 eA3 = eA4 − a34 [zα3]−1 eα3

b23 = b24 − b34 [zα3]−1 z23 b13 = b14 − b34 [zα3]−1 z13 eB3 = eB4 − b34 [zα3]−1 eα3

(4.7)

Later it will be seen that this step makes up the bulk of the computation in the overall algorithm.

The corresponding system matrix after level three is eliminated is shown in figure 4.7 with the updated

quantities highlighted in yellow.

4.4.3 Elimination of Level 2

As with level three, block Gaussian elimination is performed again except now it is for the level two

block border rows to obtain the link quantities. In addition, level three granularity is also present in the

level two link equations as shown below. A2 and B2 are specified to clarify which instance of a23 and

b23 is used.

zα2 =

A2︷ ︸︸ ︷
p

(1)t
2 · a23 + p

(2)t
2 · b23 +

B2︷ ︸︸ ︷
q

(1)t
2 · a23 + q

(2)t
2 · b23 +z2 (4.8)

eα2 = p
(1)t
2 · eA3 + p

(2)t
2 · eB3︸ ︷︷ ︸

A2

+ q
(1)t
2 · eA3 + q

(2)t
2 · eB3︸ ︷︷ ︸

B2

(4.9)

Just as before, additional impedance matrix result from the block elimination. Upon performing

these operations, the system matrix will change as shown in figure 4.8.

54

CHAPTER 4. Proposed Multi-level Algorithms

Figure 4.8: Level 2 Triangularized

Figure 4.9: Level 1 Matrix After Factorization

z12 =

A2︷ ︸︸ ︷
p

(1)t
2 · a13 + p

(2)t
2 · b13 +

B2︷ ︸︸ ︷
q

(1)t
2 · a13 + q

(2)t
2 · b13 (4.10)

Level two is then eliminated by transferring the level two block border into the block border of the

remaining level one. Similar to level three, this is done with the equations shown below. These equations

will then provide the final level one Thévenin equivalent values. The system matrix reflecting these

changes are shown in figure 4.9.

a12 = a13 − a23 [zα2]−1 z12 eA2 = eA3 − a23 [zα2]−1 eα2

b12 = b13 − b23 [zα2]−1 z12 eB2 = eB3 − b23 [zα2]−1 eα2

(4.11)

4.4.4 Level 1 Solution

Now that all the other levels have been eliminated, the original single-level MATE algorithm can be

applied. Only now the system is decoupled into 8 subsystems but with a significantly smaller level one

55

CHAPTER 4. Proposed Multi-level Algorithms

Figure 4.10: Level 1 Triangularized

link matrix. By performing block elimination, the link quantities can be calculated as shown below.

Groups of terms within the calculation are labeled to identify which subnetwork they belong to in the

level three hierarchy (see figure 4.4). The final system matrix is shown in figure 4.10.

zα1 =

A1︷ ︸︸ ︷
A2︷ ︸︸ ︷

p
(1)t
1 · a12 + p

(2)t
1 · b12 +

B2︷ ︸︸ ︷
p

(3)t
1 · a12 + p

(4)t
1 · b12

+ q
(1)t
1 · a12 + q

(2)t
1 · b12︸ ︷︷ ︸

A2

+ q
(3)t
1 · a12 + q

(4)t
1 · b12︸ ︷︷ ︸

B2︸ ︷︷ ︸
B1

+z1

(4.12)

eα1 =

A1︷ ︸︸ ︷
A2︷ ︸︸ ︷

p
(1)t
1 · eA2 + p

(2)t
1 · eB2 +

B2︷ ︸︸ ︷
p

(3)t
1 · eA2 + p

(4)t
1 · eB2

+ q
(1)t
1 · eA2 + q

(2)t
1 · eB2︸ ︷︷ ︸

A2

+ q
(3)t
1 · eA2 + q

(4)t
1 · eB2︸ ︷︷ ︸

B2︸ ︷︷ ︸
B1

(4.13)

The level one link currents can then be solved and distributed to all the subsystems whereby each

subsystem can then solve their respective voltages. From this example there are two main advantages

that become apparent when using a multi-level approach to just a single level approach.

1. Matrix operations are done with significantly smaller matrices.

2. The link matrix computation is distributed into smaller pieces which allows for parallel solving.

It is also important to note that every level that is introduced, is a level that needs to also be eliminated.

Thus there is a trade-off, the additional levels introduced increases level elimination computation how-

ever at the same time they allow for further partitioning which can reduce the cost of matrix operations.

56

CHAPTER 4. Proposed Multi-level Algorithms

4.5 General Algorithm

The level three example can then be generalized into an algorithm for an arbitrary number of levels. The

algorithm can be explained as follows:

I. Initial subsystem factorization

II. Level elimination (reduce levels starting from L = Lmax until L = 2)

(a) Calculate link level matrices (Thévenin equivalent impedances)

(b) Eliminate level L

III. Solve global links (level 1)

(a) Form level 1 Thévenin equivalents

(b) Solve level 1 link currents

IV. Solve system

(a) Scatter level 1 link currents to all subsystems

(b) Solve each subsystem

The bulk of the computation is spent performing level elimination. As was apparent from the level

three example, the amount of computation and parallelism diminishes as more levels are eliminated.

It should also be noted that the parallelism for the link matrix may appear to diminish much quicker

than the subsystem operations. For instance there is only one level one link matrix. However a closer

inspection of the level three example would show from equation 4.12 that the computation of the level

one link matrix is made up of many terms. In general the level one link matrix will contain 2L matrix

add operations, where L is the number of levels used to decompose a system. Thus a system with ten

level would require 1024 matrix add operations.

4.6 Flop Analysis

The goal of this section is to gain insight on the mechanics of the multi-level MATE algorithm. For

instance, understanding where the flops are being distributed and how they vary with different choices in

subsystem size or number of levels. Information such as knowing the distribution of subsystem to link

matrix computation can be vital when implementing an optimized version of multi-level MATE.

However to begin a flops analysis a host system matrix is needed. Since it is a sparse matrix, the

sparsity pattern needs to be addressed. For the purpose of this section’s analysis, a simple model is

presented which uses the following two assumptions:

I. All subsystems are exactly partitioned to the desired size

57

CHAPTER 4. Proposed Multi-level Algorithms

II. All link matrices of each level are exactly the same size as the subsystem matrices

These assumptions provide implications to the sparsity of the host matrix while helping to simplify the

flop calculations. For instance, if the desired subsystem size is 5x5, then all subsystems are of size

5x5 including the link matrices. The fact that link matrices are of size 5x5 indicates that exactly five

branches are cut every time a pair of subnetworks are decoupled. Hence these two assumptions provide

implications to the sparsity of the host matrix.

From the description of the multi-level MATE algorithm and the model for the host matrix, the

exact number of the total number of inter-subnetwork branches can be determined. To begin, consider

the level hierarchy in figure 4.4 where level one contains 20 subnetwork split, level two contain 21

subnetworks splits and level three contains 22 subnetwork splits. Thus the total number of subnetwork

splits is 20+21+22, or in general the geometric series summation formula would be
(
2L − 1

)
. Therefore

the total number of inter-subnetwork branches is equal to the product of
(
2L − 1

)
and the number of

branches between a subnetwork pair. Hence using assumption two from the host matrix model the

equations below can be obtained where S represents the order of the host matrix.

of inter subnetwork branches =
(
2L − 1

)
× (subsystem size) (4.14)

of inter subnetwork branches =
(
2L − 1

)
×
(
S

2L

)
= S − S

2L
≈ S (4.15)

Hence if the subsystem matrix size is much smaller than the system matrix, the number of inter-

subnetwork branches is always equal to order of the host matrix. However this still doesn’t account

for the branches within the subsystems. For a sense of comparison, the ~15,000 node WECC system

contains ~1.2 branches per node [55]. So suppose subsystems of size 3x3 are chosen, where the average

number of branches within the 3x3 subsystems is two. Then the total number of internal branches will

be the number of subsystems (i.e. 2L or S
3 using equation 4.2) times the number of branches inside a

subsystem (assumed to be two). Therefore the final number of branches in the system can be calculated

as follows:

of total branches = [# of inter subnetwork branches] + [# of internal branches] (4.16)

of total branches = [S] +

[
2

3
× S

]
=

5

3
S (4.17)

Thus the sparse matrix model has a branch to node ratio of ~1.7 which is not far off from the WECC

system’s ~1.2 branches per node.

The next two sub-sections will apply the multi-level MATE algorithm to the just described sparse

matrix model. In the coming analysis, the matrix size is chosen to be 15,000 x 15,000 to resemble the

WECC system’s sparsity. The term “flops” in this section will merely refer to plural form of flop instead

of floating point operations per second. A flop analysis will be performed using two variations of the

58

CHAPTER 4. Proposed Multi-level Algorithms

MATE algorithm, a branch tearing version and node tearing version.

4.6.1 Multi-Level MATE Using Branch Tearing

This section will go through the number of floating point operations that each portion of the algorithm

requires, then present the totals in graphical and tabular form. The following analysis uses the variables

n and L for denoting the order of the a subsystem and total number of levels chosen, respectively, for a

system of size 15,000 by 15,000. Derivations are done with geometric series summation formulae using

the same approach as was done to derive the number of branches in a system. In the branch tearing

implementation, the injection matrices p and q are simply pointers, and thus only reorder values. Hence

these operations do not contribute any floating point operations however in the next sub-section on node

tearing this won’t be the case. This sub-section will cover the number of flops for both a single solution

and a repeat solution.

4.6.1.1 Single Solution

The following covers all the operations necessary to perform full factorization to obtain the unknown

voltage vectors.

I. Initial Factorization consists of two types of operations:

(a) Factorize all subsystems ([AL]−1 and [BL]−1)

(b) Solving level L Thévenin voltage equivalents (eA(L+1) = [AL]−1 hAL and eB(L+1) =

[BL]−1 hBL)

The performance model assumes the a dense non-symmetrical LU decomposition algorithm is

used to calculate the matrix inverses. The total flops for these steps are:

(a) 2L · (8
3n

3 − 3
2n

2 − 2
3n) flops

(b) 2L ·
(
2n2 − n

)
flops

II. Level Elimination consists of eight types of operations:

(a) Link matrix calculations (zαN = ptN · aN(N+1) + qtN · bN(N+1) + zN)

(b) Link matrix inversion ([zαN]−1)

(c) Link voltage calculations (eαN = ptN · eA(N+1) + qtN · eB(N+1))

(d) Impedance matrix calculations (ziN = ptN · ai(N+1) + qtN · bi(N+1))

(e) Impedance matrix multiplication ([zαN]−1 · ziN)

(f) Thévenin equivalent voltage multiplication ([zαN]−1 · eαN)

(g) Partial Thévenin equivalent reduction (aiN = ai(N+1) − aN(N+1) [zαN]−1 ziN)

(h) Thévenin equivalent voltage reduction (eAN = eA(N+1) − aN(N+1) [zαN]−1 eαN)

59

CHAPTER 4. Proposed Multi-level Algorithms

whereN = 2...L for which i = 1...(N−1); N represents the level to be eliminated and i represents

a level getting modified. The total flops for these steps are:

(a) (L− 1) · 2L · n2 flops

(b)
[
2L+1 − 2

]
·
(

8
3n

3 − 3
2n

2 − 2
3n
)

flops

(c)
[
(L− 2) · 2L + 2

]
· n flops

(d)
[
2L−1

(
L2 − 3L+ 4

)
− 2
]
· n2 flops

(e)
[
(L− 2) · 2L + 2

]
·
(
2n3 − n2

)
flops

(f)
[
(L− 2) · 2L + 2

]
·
(
2n2 − n

)
flops

(g) 2L−1 ·
[
L2 − L

]
·
(
2n3
)

flops

(h) (L− 1) · 2L ·
(
2n2
)

flops

III. Global Link Solution consists of three types of operations:

(a) Link matrix calculation (zα1 = p
(1...2L−1)t
1 · a12 + q

(1...2L−1)t
1 · b12 + z1)

(b) Link voltage calculation (eα1 = p
(1...2L−1)t
1 · eA2 + q

(1...2L−1)t
1 · eB2)

(c) Link solution (zα1 · iα1 = eα1)

The total flops for these steps are:

(a) 2L · n2 flops

(b)
[
2L − 1

]
· n flops

(c)
(

2
3n

3 + 3
2n

2 − 5
3n
)

flops

IV. System Solution consists of the following operation:

(a) All subsystem solutions (v = a12 · iα1 − eA2)

The total flops for these steps are:

(a) 2L ·
(
2n2 − n+ 1

)
flops

The flop distribution is provided in table 4.2 which is performed for subsystem matrices of size ~1x1

to ~30x30. The subsystem matrix is size is chosen as the independent variable, while the rest of the

quantities in the table are dependent. The table highlights the most expensive operations which happens

to be predominately matrix-to-matrix multiplication and also some matrix addition. At the bottom of the

table, a condensed version groups together total link and total subsystem operations where subsystem

computation is ~70% and link computation is ~30% of the total overall computation.

Another observation that can be made is the amount of total flops as a function of subsystem size. The

amount of flops dramatically increases with subsystem size due to the fact that the majority of the flops

60

CHAPTER 4. Proposed Multi-level Algorithms

Table 4.2: Branch Tearing Single Solution Flop Analysis

comes from dense matrix-to-matrix multiplication which is an O{n3} operation. Hence the multi-level

MATE algorithm performs best with smaller subsystem matrices. However also notice that the ~1x1

subsystem matrices do exceptionally well. This is mostly due to the two assumptions that were specified

at the start of the section to model the host sparse matrix. For instance, the system matrix is less sparse

than normal because the subsystem size is 1x1, since there are no internal branches for a 1x1 subsystem.

Hence the total number of branches in the system is equal to the number of nodes in the system. But

the main culprit would be the inaccurate decoupling of the subnetworks. Since the subsystem matrices

are of order one, the algorithm always assumes that only one branch needs to be decoupled to split a

subnetwork. Thus most accurate values begin around 3x3 to 4x4 sized subsystems.

4.6.1.2 Repeat Solutions

Assumes the system matrix has already been factorized but a new RHS is introduced. Hence the matrix

quantities in the formulas below are merely being loaded from memory and the computation mainly

deals with Thévenin voltage quantities. In power flow, this would be the case when the Jacobian matrix

is reused for the next iteration.

I. Initial Factorization consists of one operation:

(a) Solving level L Thévenin voltage equivalents (eA(L+1) = [AL]−1 hAL)

The total flops for these steps are:

61

CHAPTER 4. Proposed Multi-level Algorithms

(a) 2L ·
(
2n2 − n

)
flops

II. Level Elimination consists of three types of operations:

(a) Link voltage calculations (eαN = ptN · eA(N+1) + qtN · eB(N+1))

(b) Thévenin equivalent voltage multiplication ([zαN]−1 · eαN)

(c) Thévenin equivalent voltage reduction (eAN = eA(N+1) − aN(N+1) [zαN]−1 eαN)

whereN = 2...L for which i = 1...(N−1); N represents the level to be eliminated and i represents

a level getting modified. The total flops for these steps are:

(a)
[
(L− 2) · 2L + 2

]
· n flops

(b)
[
(L− 2) · 2L + 2

]
·
(
2n2 − n

)
flops

(c) (L− 1) · 2L ·
(
2n2
)

flops

III. Global Link Solution consists of two types of operations:

(a) Link voltage calculation (eα1 = p
(1...2L−1)t
1 · eA2 + q

(1...2L−1)t
1 · eB2)

(b) Link solution, re-use LU factors (zα1 · iα1 = eα1)

The total flops for these steps are:

(a)
[
2L − 1

]
· n flops

(b)
(
2n2 − n

)
flops

IV. System Solution consists of the following operation:

(a) All subsystem solutions (v = a12 · iα1 − eA2)

The total flops for these steps are:

(a) 2L ·
(
2n2 − n+ 1

)
flops

The results for a repeat solution are shown in table 4.3. Notice there is ~10 times less computation than

a full factorization. The amount of link and subsystem computation is now almost the same.

4.6.2 Multi-Level MATE Using Node Tearing

Similar to branch tearing sub-section, this sub-section will use the variables n and L for denoting the

order of the a subsystem and total number of levels chosen, respectively, for a system of size 15,000 by

15,000. The node tearing version assumes that all block borders (p and q injection matrices) are dense

and thus now contribute to the total amount of flops. However node tearing does benefit from the fact

that it does not require additional equations to represent the link quantities.

This sub-section will cover the number of flops for both a single solution and a repeat solution.

62

CHAPTER 4. Proposed Multi-level Algorithms

Table 4.3: Branch Tearing Repeat Solution Flop Analysis

4.6.2.1 Single Solution

The following covers all the operations necessary to perform full factorization to obtain the unknown

voltage vectors.

I. Initial Factorization consists of two types of operations:

(a) Factorize all subsystems (ALaL(L+1) = p1 and BLbL(L+1) = qL)

(b) Solve level L Thévenin voltage equivalents (ALeA(L+1) = hAL and BLeB(L+1) = hBL)

The performance model assumes the a dense LU decomposition algorithm is used to calculate the

matrix inverses. The total flops for these steps are:

(a) 2L · (8
3n

3 − 3
2n

2 − 2
3n) flops

(b) 2L ·
(
2n2 − n

)
flops

II. Level Elimination consists of eight types of operations:

(a) Link matrix calculations (zαN = ptN · aN(N+1) + qtN · bN(N+1) + zN)

(b) Link matrix inversion ([zαN]−1)

(c) Link voltage calculations (eαN = ptN · eA(N+1) + qtN · eB(N+1))

(d) Impedance matrix calculations (ziN = ptN · ai(N+1) + qtN · bi(N+1))

(e) Impedance matrix multiplication ([zαN]−1 · ziN)

(f) Thévenin equivalent voltage multiplication ([zαN]−1 · eαN)

(g) Partial Thévenin equivalent reduction (aiN = ai(N+1) − aN(N+1) [zαN]−1 ziN)

63

CHAPTER 4. Proposed Multi-level Algorithms

(h) Thévenin equivalent voltage reduction (eAN = eA(N+1) − aN(N+1) [zαN]−1 eαN)

whereN = 2...L for which i = 1...(N−1); N represents the level to be eliminated and i represents

a level getting modified. The total flops for these steps are:

(a) (L− 1) · 2L ·
(
2n3
)

flops

(b)
[
2L+1 − 2

]
·
(

8
3n

3 − 3
2n

2 − 2
3n
)

flops

(c) [L− 1] · 2L
(
2n2
)

+
[
2− 2L

]
· n flops

(d)
[
2L
(
L2 − L

)]
· n3 +

[
2L+1 (1− L)− 2

]
· n2 flops

(e)
[
(L− 2) · 2L + 2

]
·
(
2n3 − n2

)
flops

(f)
[
(L− 2) · 2L + 2

]
·
(
2n2 − n

)
flops

(g) 2L−1 ·
[
L2 − L

]
·
(
2n3
)

flops

(h) (L− 1) · 2L ·
(
2n2
)

flops

III. Global Link Solution consists of three types of operations:

(a) Link matrix calculation (zα1 = p
(1...2L−1)t
1 · a12 + q

(1...2L−1)t
1 · b12 + z1)

(b) Link voltage calculation (eα1 = p
(1...2L−1)t
1 · eA2 + q

(1...2L−1)t
1 · eB2)

(c) Link solution (zα1 · iα1 = eα1)

The total flops for these steps are:

(a) 2L ·
(
2n3
)

flops

(b) 2L+1 · n2 − n flops

(c)
(

1
3n

3 + 3
2n

2 + 1
6n
)

flops

IV. System Solution consists of the following operation:

(a) All subsystem solutions (v = a12 · iα1 − eA2)

The total flops for these steps are:

(a) 2L ·
(
2n2 − n+ 1

)
flops

The results are shown in table 4.4. Much of the analysis discussed in the branch tearing sub-section

holds here as well. Notice that there appears to be a ~20% reduction in total amount of flops from the

branch tearing version. Also the two most expensive operations comes almost exclusively from matrix

multiplication. However subsystem and link computation are now roughly the same.

64

CHAPTER 4. Proposed Multi-level Algorithms

Table 4.4: Node Tearing Single Solution Flop Analysis

4.6.2.2 Repeat Solutions

Assumes the system matrix has already been factorized but a new RHS is introduced. Formulas given

here are identical to the repeat solution for the branch tearing version, however there is an increase

computation in step 3 Global Link Solution.

I. Initial Factorization consists of one operation:

(a) Solving level L Thévenin voltage equivalents (eA(L+1) = [AL]−1 hAL)

The total flops for these steps are:

(a) 2L ·
(
2n2 − n

)
flops

II. Level Elimination consists of three types of operations:

(a) Link voltage calculations (eαN = ptN · eA(N+1) + qtN · eB(N+1))

(b) Thévenin equivalent voltage multiplication ([zαN]−1 · eαN)

(c) Thévenin equivalent voltage reduction (eAN = eA(N+1) − aN(N+1) [zαN]−1 eαN)

whereN = 2...L for which i = 1...(N−1); N represents the level to be eliminated and i represents

a level getting modified. The total flops for these steps are:

65

CHAPTER 4. Proposed Multi-level Algorithms

(a) [L− 1] · 2L
(
2n2
)

+
[
2− 2L

]
· n flops

(b)
[
(L− 2) · 2L + 2

]
·
(
2n2 − n

)
flops

(c) (L− 1) · 2L ·
(
2n2
)

flops

III. Global Link Solution consists of three types of operations:

(a) Link voltage calculation (eα1 = p
(1...2L−1)t
1 · eA2 + q

(1...2L−1)t
1 · eB2)

(b) Link solution, re-use LU factors (zα1 · iα1 = eα1)

The total flops for these steps are:

(a) 2L ·
(
2n3
)

flops

(b) 2L+1 · n2 − n flops

(c)
(

1
3n

3 + 3
2n

2 + 1
6n
)

flops

IV. System Solution consists of the following operation:

(a) All subsystem solutions (v = a12 · iα1 − eA2)

The total flops for these steps are:

(a) 2L ·
(
2n2 − n+ 1

)
flops

Results are shown in table 4.5. The data indicates that the repeat solution for node tearing only requires

half the computation of the repeat solution for branch tearing. The overall reduction is a result of the

subsystem nodes only containing 50% of the total number of system nodes, since the other 50% is used

as link quantities for block borders.

4.7 Conclusions

This chapter redesigns MATE as a massively parallel algorithm. An analysis on the distribution of

floating point operations was performed on two different versions, a branch tearing version and a node

tearing version. The data from the flop analysis indicates that the node tearing version requires less

computation to solve a sparse matrix problem. The flop analysis also determined that the majority of the

floating point operations came from matrix-to-matrix multiplication. Since matrix multiplication is an

O{n3} operation, it was seen that smaller subsystem matrices where advantageous.

It should be noted that the flop analysis is not a performance model. The calculation of the total

floating point values are approximate since they were based on the two assumptions stated at the be-

ginning of section 4.6. The simplistic model allows for a clear view of the internal mechanics of the

proposed multi-level MATE algorithm. It is capable of showing where the floating point operations are

being allocated, which can serve as a good tool for implementing/optimizing the algorithm.

66

CHAPTER 4. Proposed Multi-level Algorithms

Table 4.5: Node Tearing Repeat Solution Flop Analysis

The proposed algorithm’s main strength is its ability to be partitioned into hundreds to thousands of

subsystems. However this comes at a cost of performing dense matrix operations with both subsystems

and block border quantities. Thus the algorithm would not perform as well on a single CPU than a

normal sparse solver. However, as will be shown in the next chapter, the simplicity of the algorithm

would perform well on a massively parallel SIMD architecture such as a GPU.

67

Chapter 5

The Graphics Processing Unit and MATE

In the last decade, GPUs have been outperforming CPUs by an order of magnitude in raw computational

power [44]. This has led to a lot of interest from many scientific fields where general purpose computa-

tion on GPUs (GPGPU) has flourished for a variety of applications. However not all applications can be

easily ported to the GPU. Programs must be able to be inherently parallel (aka embarrassingly parallel)

to take advantage of the GPU’s architecture.

The goal of this chapter is to take the first step towards checking the viability of the multi-level MATE

algorithm on the GPU. From the previous chapter, it was found that the majority of the computation

is spent on matrix-to-matrix multiplication. Thus if MATE is to succeed on the GPU, the matrix

multiplication routine which can effectively handle MATE’s data needs to run efficiently on the GPU.

Hence this will be the main objective of this chapter.

To accomplish this intent, the chapter will first begin with a literature review of sparse solvers on the

GPU from several different scientific communities, including power systems. An overview on the GPU’s

architecture and software is given to provide context as well as necessary concepts to be used later in the

chapter. Then a short overview on issues surrounding GPU programming, such as important abstractions

as well as the matter of hiding latencies. Finally a data representation for MATE is proposed along with

the design, implementation and benchmarking of the matrix multiplication routine.

5.1 Literature Review

With the recent advancements in GPU technology, there has been significant performance improvements

reported in many scientific disciplines. This literature review will focus on direct and iterative sparse

matrix solvers from various areas of study. The section is divided into three parts: (1) conjugate gradient

solvers, (2) multifrontal solvers and (3) solvers in power system simulations. Papers generally will

discuss GPU and CPU hardware and software used to obtain some measure of speedup. Unfortunately,

it was not uncommon, especially in the earlier years, to find papers with unfair comparisons. These

were generally papers that claimed several orders of magnitude in speedup by using poorly optimized

CPU code. It is not uncommon for an author to spend months optimizing GPU code, then rush CPU

code for the sole purpose of benchmarking. Thus it is always important to check for signs of proper

68

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.1: Phlegmatic Dragon
(extracted from: L. Buatois, G. Caumon, and B. Lévy. Concurrent number cruncher: a GPU implementation of a general sparse linear solver.

International Journal of Parallel, Emergent and Distributed Systems, 24(3):205–223, 2009.)

optimized CPU code. For instance, the usage of OpenMp, SSE, or any standard BLAS/math libraries.

Also checking for CPU comparisons with other papers or more simply just using standard software

simulation packages from their respective field.

Conjugate Gradient Solvers: In [11], a CG solver called the Concurrent Number Cruncher (CNC)

was designed and implemented for both the ATI and NVIDIA graphics cards. The application was in the

realm of graphics computation, more specifically parametrization and smoothing of a mesh for various

objects (see figure 5.1). The sparse matrices ranged in size from 1.5k×1.5k to 1M×1M . The GPUs used

were the NVIDIA QuadroFX 5600 (equivalent of GeForce 8800 Ultra) and an older ATI X1900XTX

(competed with the GeForce 7000 series). The CPU used for comparison was a dual core AMD Athlon 64

X2 4800+. The preconditioned CG algorithm makes use of two BLAS routines: the sparse matrix-vector

product and the vector-inner product. From benchmarking, it was found that the sparse matrix-vector

product operation took roughly 80% of the execution time. The GPU implementations were compared to

a multithreaded SSE3 optimized CPU code. To further verify the validity of the optimized CPU code, it

was benchmarked against the routines in the MKL and ACML libraries. Their best case results were for

their largest matrix (1M × 1M) which showed speedups of 6.0 and 3.2 times faster with NVIDIA and

ATI cards, respectively than the CPU implementation. However the smaller 1.5k × 1.5k matrix actually

preformed worst than the CPU implementation.

Another CG solver is detailed in [61], which is designed for digital optical tomography. Benchmark-

ing was done with a test matrix of size 138, 324×138, 324. The GPU used was NVIDIA’s GeForce 8800

GTX which was compared against Intel’s dual core Xeon 5140 Woodcrest. The GPU implementation

was compared against SSE optimized CPU code using MKL functions as well as OpenMP parallelism

between the two cores. Similar to the previous CG solver described in this section, the sparse matrix-

vector product took ~85% of the computation time. The GPU was recorded as 2.56 times faster, however

for solutions with equal approximated relative error, the execution times were roughly the same.

Multifrontal Solvers: In [33] and [39], multifrontal solvers have been created for the application

of modeling a Boeing wing and for mechanical engineering simulations, respectively. Both using finite

element packages as a means of comparison, ANSYS for [33] and MCAE (Mechanical Computer Aided

Engineering) for [39]. In both cases, the GPU is essentially used as the BLAS for the multifrontal

algorithm (i.e. providing dense matrix factorizations for the frontal matrices). However in [39], only

69

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.2: BM-7 Wing Model
(extracted from: G.P. Krawezik and G. Poole. Accelerating the ANSYS Direct Sparse Solver with GPUs.)

the largest frontal matrices were factorized on the GPU, the smaller matrices were done on the CPU.

The GPU to CPU comparison in [33] was much more thorough in providing the test conditions. It used

an NVIDIA Tesla C1060 and compared the performance of ANSYS running on two quad-core Xeon

processors. ANSYS allowed for various matrix sizes to represent the wing model and was benchmarked

for matrices of order 250 thousand to 2 million (which are much larger than power system grid). They

were able to achieve speedups of up to 4 times faster than the two quad-core CPUs. They did note that

the Boeing wing was a very blocky model (see figure 5.2), and did not contain any holes or thin shapes

which resulted in large frontal matrices, instead of smaller matrices, which favours the GPU architecture.

However in [39], these “less favourable” models were used in their simulations. The models they used

were an I-beam, a hood and a prosthetic knee which corresponded to systems of order 70 thousand to 236

thousand. They achieved speedups of 1.96 times faster, however the CPU platform was never mentioned.

However they did use an older GPU (NVIDA GeForce 8800) than [33].

Power Systems: There has also been GPU work done in the area of power systems, namely [7] in

power flow and [30] transient stability simulation. Both papers used NVIDIA’s GTX 280 and compared

their results to a quad-core CPU. These two papers also used the conjugate gradient method on the GPU

side as their sparse matrix solver. Unfortunately, the paper on transient stability analysis falls under the

category of “unfair comparisons” as mentioned at the start of this section. There were two issues that

could have led to this unfair comparison. The first issue has to do with the test matrix. An IEEE 39

bus system was said to be “duplicated several times to create systems of larger scales” from which the

author created a system 1248 bus system. No further information was giving on how the duplication took

place or what the 1248 bus system looked like. The second issue, and most likely the most problematic,

was the CPU code prepared. The paper did claim that the PSS/E software package was used, but only

to check the accuracy of their results. There was no mention of any kind of optimizations such as SSE

instructions or any math or BLAS libraries being used. This led to a very suspicious GPU speedup of

340 times faster than the CPU code. Notice that this result is utterly out of line with the results of the

papers on CG solvers mentioned previously in this section, especially when considering the relatively

small size of the power system matrix. Furthermore, assuming equal efficiency of processor usage on

70

CHAPTER 5. The Graphics Processing Unit and MATE

both the CPU and GPU used, it is physically impossible to achieve a speedup of any more than roughly

10 times (more details on GPU and CPU architecture in section 5.2.1.2). This speedup would strongly

imply unoptimized CPU code.

The second paper ([7]) on power flow does not appear to suffer from this problem as it used MAT-

LAB’s sparse solver for the CPU comparison. Assuming the author used MATLAB 6.0 (released in

2000) or later, the built in sparse solver would have been UMFPACK, a well known multifrontal solver.

The paper compared the execution time required to factorize Jacobian matrices belonging to 685 node

and 1138 node power systems. The best case speedup was only 1.5 times faster. However upon further

investigation of the references, it turns out that the author used large tridiagonal matrices from the area

of fluid dynamics to obtain their best case speedup. The actual speedup for for 685 node and 1138 node

systems were 1.04 and 1.14 times faster, respectively.

Several conclusions can be made from this literature review on GPU sparse solvers. The general

trend is that the current direct and iterative sparse matrix solvers on the GPU provide relatively small

speedups in comparison with a CPU, especially when compared to the speedup claims from other fields.

Both the CG and multifrontal solvers, only perform marginally well for matrices much larger than power

systems (i.e. 1 million degrees of freedom or more). Furthermore the power system papers do not

seem to show much promise either, although it was to be expected since they both used the CG method.

The main bottleneck of the CG solver is the sparse matrix-vector product routine. A thorough research

paper written by NVIDIA employees ([8]) on the sparse matrix-vector product routine benchmark several

common approaches to the implementation. The overall performances ranged from 1% to 2% of the GPU

theoretical flops. The multifrontal solver on the other hand, requires extremely large frontal matrices in

order to use the GPU efficiently. The frontal matrix size is dependent upon the system size and grid

connection pattern. Both of which are not favoured when it comes to a power system graph.

5.2 GPU Comparisons

This section will provide a brief overview of both the hardware and software of the two largest GPU

producers: NVIDIA and ATI/AMD. The hardware comparison will provide some background on the

processor architecture as well as the theoretical flops each machine can perform. The software compari-

son will provide a quick overview of the languages and high performance libraries available from either

company. The pros and cons of each GPU are considered for attempting choose which GPU would be

best for MATE.

5.2.1 Architectures

This section will first compare the architectures of the two main GPU producers followed by a compari-

son between the architectures of a GPU and a CPU.

71

CHAPTER 5. The Graphics Processing Unit and MATE

5.2.1.1 ATI vs. NVIDIA

The processor architecture of both NVIDIA and ATI graphics cards will be examined in this section. The

comparison is made between the top workstation grade GPUs from both companies (as of mid 2009),

which are the Tesla C1060 from NVIDIA and the FireStream 9270 from ATI. The consumer equivalent

(“gaming cards”) GPUs are the GeForce GTX 280 (NVIDIA) and the Radeon HD 4870 (ATI). From the

architecture design, a GPU’s theoretical flops can be determined, which will provide greater insight as to

the programming of GPUs.

Modern GPUs contain hundreds of scalar processors. However the architecture of the scalar or

streaming processors (SPs) are much simpler than a CPU processor, thus the SPs are best thought of

as simple ALUs. Furthermore, the streaming processors cannot act independently of each other. The

SPs are partitioned into groups of 8 (NVIDIA’s streaming multiprocessor) or 64 (ATI’s SIMD Engine)

which are called vector processors (see figure 5.3). Once an instruction is given to a vector processor,

all the SPs will execute the same instruction in parallel. For instance, if an ADD instruction were issued

to a given vector processor, then all SPs within that vector processor would have to perform an ADD

operation on their respective data, hence SIMD (single instruction, multiple data) execution.

The GPU works in vectors. Thus independent scalar operations are not possible since instructions

are always issued in vector form. As the architecture suggests for the ATI card, the vector length is 64

elements (or threads) since there are 64 streaming cores in a SIMD engine. For instance, consider the

addition of two vectors with a length 64 elements on a SIMD engine. Each of the 64 cores would add one

element from both vectors which is performed in parallel and thus take can take 1 clock cycle (since each

scalar core has a throughput of 1 ADD per clock cycle). This group of 64 threads in which instructions

are issued is referred to as a wavefront.

Instead of wavefronts, NVIDIA has warps which consist of 32 threads which are given to the SM.

Since a multiprocessor consists of only 8 scalar processors, it takes an SM a minimum of 4 clock cycles

to complete an instruction of 1 warp. NVIDIA’s next generation architecture (Fermi) will contain a more

appropriate size of 32 scalar processors.

Streaming processors are capable of performing 32-bit (single precision) operations. In figure 5.3, the

SIMD engine contains T-Stream Cores, which perform transcendental operations but are also capable of

performing multiply-add (MAD) instructions much like the SPs. The streaming multiprocessors (SMs)

contain their own special functions units (SFUs) which perform transcendental operations but are not

capable of performing single precision MAD instructions.

Double precision operations are handled differently on either architecture. The SM performs double

precision calculation through the SFU, thus it only has one 64 bit processor (as listed in table 5.1). The

SIMD Engine will combine four stream cores to produce 64 bit calculations, the T-Stream Core does not

participate. Thus the SIMD engine has equivalently 16 double precision cores.

Within the vector processors, there is a small cache (16KB) of programmable memory that is directly

accessible only by the SPs of a vector processor. Note that there is a lot more cache memory per scalar

processor in NVIDIA’s vector processor since it is only shared with 8 processors as oppose to 64 (see

table 5.1).

72

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.3: NVIDIA Streaming Multiprocessor vs. ATI SIMD Engine
(extracted from AMD/ATI. ATI Stream Computing. In Advanced Micro Devices, Inc., 2009.

and

Anand Lal Shimpi & DerekWilson. Nvidia’s 1.4 billion transistor gpu: Gt200 arrives as the geforce gtx 280 & 260.

http://www.anandtech.com/video/showdoc.aspx?i=3334&p=2, June 2008.)

Table 5.1: NVIDIA’s Multiprocessor vs. ATI’s SIMD Engine

Streaming Multiprocessor SIMD Engine
8x FP32 cores 80x FP32 cores
1x FP64 cores 16x FP64 cores

16KB shared memory 16KB local data store

73

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.4: Architecture Comparison
(extracted from: AMD/ATI. ATI Stream Computing. In Advanced Micro Devices, Inc., 2009.

and

N.G.F.G.T.X. NVIDIA. 200 GPU architectural overview, second-generation unified GPU architecture for visual computing. Technical report,

Tech. Rep., NVIDIA, 2008. URL www. nvidia. com/docs/IO/55506/GeForce_GTX_200_GPU_Technical_Brief. pdf, 2008.)

The total GPU is made up of vector processors, either 30 SMs or 10 SIMD Engines (see figure 5.4

and table 5.2). ATI has significantly more cores, but also notice that their SPs are running at almost half

the clock speed. Theoretical flop performance can be calculated as follows:

Theoretical F lops = (# of cores)× (FP operations per clock cycle)× (clock speed) (5.1)

For instance, the FireStream 9270 has 800 cores, which can do 2 floating point operations per clock

cycle, thus has theoretical flops of 800*2*0.75 = 1.2 Tflops. The Tesla card has 240 cores and claims its

SPs are capable of performing both a MAD and a MUL instruction per clock cycle (thus 3 FP operations

per clock cycle), which give 240*3*1.3 ' 933 Gflops. However in practice NVIDIA’s cards are at best

only able to reach ~75% of the 933 Gflops and it is common to see the dual issue MUL instruction

ignored in research papers, thus using 240*2*1.3 = 624 Gflops as the theoretical.

The dram speed of 102 GB/s and 109 GB/s may seem rather impressive, especially when considering

a CPU’s fastest memory, the L1 cache, only reaches top speeds of ~50 GB/s. However a caveat is in order.

The GPU’s dram speed is calculated as an aggregate bandwidth of data being sent to all the scalar cores

in the GPU, thus to send data to just one core, would only reach speeds of 1
240 th or 1

800 th of the listed

bandwidth.

NVIDIA has split up their GPUs in 3 categories: gaming (Geforce), CAD design (Quadro) and

GPGPU (Tesla). All three have the same architecture however NVIDIA charges a premium for the

Quadro and Tesla series. In relation to the Geforce equivalent cards, Tesla cards are ~3-4x more

expensive and the Quadro are ~6-8x more expensive. The Tesla and Quadro series are workstation/server

grade GPUs and thus go through far more quality assurance than the Geforce cards. According to

NVIDIA‘s third quarter fiscal 2009 financial results, the Geforce cards were by far the highest selling

74

CHAPTER 5. The Graphics Processing Unit and MATE

Table 5.2: Architecture Comparison

Tesla C1060 FireStream 9270
of Vector Processors 30 SMs 10 SIMD Engines
of Scalar Processors 240 @ 1.3GHz 800 @ 750MHz

Single Precision 933 GigaFlops 1.2 Teraflops
Double Precision 78 GigaFlops 240 GigaFlops

Memory Bandwidth 102 GB/s 109 GB/s
Max Power Consumption 188 Watts < 220 Watts

MSRP (USD) ~$1300 ~$1100

GPUs however it was the Quadro cards that brought in the majority of the profits. Also note that ATI has

the same 3 categories: gaming (Radeon), CAD design (FireGL/FirePro) and GPGPU (FireStream).

From the view point of only theoretical flops, it is clear that ATI’s architecture is superior to NVIDIA’s

architecture. Thus, in general, algorithms that are compute bound would do better on the ATI cards (i.e.

BLAS 3 routines). In fact, for dense matrix-to-matrix multiplication, it was found that on NVIDIA’s

GTX 280 (equiv. of Tesla C1050) reaches 375 Gflops [60]. A slightly modified1 version of SGEMM

on ATI’s HD 4870 (similar to FireStream 9270) achieved as high as 880 Gflops [1], more than double

NVIDIA’s performance.

However, direct sparse solvers are a combination of compute bound routines (i.e. BLAS 3) and

memory bound routines (i.e. triangular solve [15]). NVIDIA provides a lot more cache memory (10 times

more programmable cache) than ATI allowing for larger pieces of data to be re-used. NVIDIA is also

significantly increasing their L2 cache on their next generation card (Fermi) to further help algorithms

sparse matrix algorithms. Fermi will also have ECC support for its RAM, whereas ATI’s next generation

card does not. EEC is of course a standard for server grade computing equipment.

5.2.1.2 GPU vs. CPU

This section will attempt to provide a fair comparison of the computational power of NVIDIA’s Tesla

C1050 and the FireStream 9270 to a server grade CPU (such as Intel’s Xeon series or AMD’s Opteron

series). Only server grade equipment is compared, since it is assumed to be used in an electrical utility.

CPU theoretical flops can be computed similarly as that of a GPU. A single CPU core is similar

to a GPU’s vector processor. Current Intel cores contain 4 single precision (or 2 double precision)

ALUs which execute in SIMD. Each of these ALUs are capable of performing a fused multiply-add

operation each clock cycle (thus 8 single precision FP operations per clock cycle or 4 double precision

FP operations per single CPU core). For instance an Intel quad core i7 running at 3.33GHz would have a

theoretical double precision flops of 4*4*3.46 = 55.36 Gflops (as listed on Intel’s website for the i7-975)

or single precision of 111 Gflops.

1Input matrices required special storage. Matrices where divided into 2 parts (even and odd columns) and one matrix is
stored in row-major while the other was stored in column-major [2].

75

CHAPTER 5. The Graphics Processing Unit and MATE

A fair comparison between architectures is not easily done. Does one simply compare a single CPU

to a single GPU? If such were the case, we could take the most powerful CPU being an Opteron six-core

which can give up to 134.4 Gflops (theoretical single precision). In this case, the Tesla C1050 would

have the equivalent computational power of ~4.6 Opteron six-core processors. However this particular

Opteron processor has an MSRP of $2650 whereas the C1050 is only $1300. If we compare to a more

economical quad-cores (~$200 which has 76.8Gflops), then more than 8 of these quad-core CPUs are

needed to match the flops of the Tesla C1050. From this example, it becomes clear that the price must

also play a role in the comparison.

Although we can find server grade quad-core CPUs starting at $200, one also needs to take into ac-

count the additional hardware required by CPUs, such as the motherboard, RAM/ROM, power supplies,

fans, and rack-mount chassis. Similarly the GPUs require one or more CPUs to run them along with all

the CPU’s hardware components. One could conceivably put together 8 Tesla C1050s in along with a

dual quad-core CPUs in a 5U chassis for roughly $13,000 (8*$1300+$2600). Similarly a cheap 1U dual

quad-core CPU package can be made ~$1000. However to obtain the same theoretical flops, one would

need 32 1U dual CPU racks to match the single 5U GPU rack. However the racks of CPUs will cost

roughly 2.5x more than the GPUs (in this example) and consume ~3-4x more power.

Thus in terms of cost, for every GPU, one could purchase ~3.2 quad cores2. Thus the equivalent

theoretical flops for 3.2 quad-cores is 246 Gflops where the Tesla is 624 Gflops (2.5x more) and the

FireStream is 1200 Gflops (4.9x more). This reflects possible speed-ups for compute bound algorithms.

However sometimes CPU based algorithms achieve higher percentages of their theoretical flops than

GPUs can. For instance in Volkov’s paper [60], he achieved 60% of NVIDIA’s GPU flops while achieving

92% on an Intel quad-core CPU when performing matrix-to-matrix multiply. But on an ATI card, a

modified version of matrix-to-matrix multiply achieved ~80% of the theoretical flops [1]. Although the

GPU’s memory bandwidth is also superior to the CPU, a direct comparison would be complicated as one

would need to model the memory hierarchy on the CPU. Thus it is more difficult to determine how well

memory bound algorithms would perform.

The prospect of hundreds of cores coupled with many research papers claiming two or even three

orders of magnitude in speedup may lead to the expectation of GPUs being an extraordinary device.

However from the analysis above, the raw computational power along with the price only leads to ~5x

speed-up at best. Papers claiming speedups in excess of this are often comparing their GPU results to

poorly coded CPU program. Such as programs that use only a single CPU core, or do not use SSE

(streaming SIMD extensions), do not use optimized libraries, use double precision on CPU while using

single precision on GPU, and sometimes use multiple GPUs. Ignoring such points can easily short

change the CPUs results by as high as two orders of magnitude.

2The calculations was done using very rough figures for pricing since there are many different options when designing a
server setup.

76

CHAPTER 5. The Graphics Processing Unit and MATE

5.2.2 Programming Languages

A brief comparison of common programming languages available for NVIDIA and ATI’s GPUs will be

compared in this section.

CUDA (Compute Unified Device Architecture) is C style programming language that was released in

November 2007 and runs only on NVIDIA hardware [44]. CUDA is the most widely used programming

language for GPGPU applications. The programming forum is very active and there is plenty of support

in terms of quality drivers. It is a proprietary API that is owned and controlled by NVIDIA. CUDA

is currently the most mature language and is the easiest language to achieve good performance. There

are many high performance libraries readily available (i.e. BLAS, FFT, along with many other open

source programs released by the large programming community). NVIDIA does not release the actual

ISA (instruction set architecture) of its graphics cards, however they do provide and virtual ISA called

PTX (Parallel Thread Execution) which is an assembly level language [43]. However, a third party

tool (not supported by NVIDIA) called decuda is often used in many research papers which allows the

programmer to convert the compiler’s machine code into PTX instructions.

ATI graphics cards have Brook+, a C level programming language originally developed by a research

team at Standford University. Similar to NVIDIA’s virtual ISA language, ATI has IL (Intermediate

Language). However ATI also goes beyond the virtual ISA and publishes the actual ISAs as well. The

vendor provides limited library support through ACML (AMD Core Math Library), which contains

extensions for its GPUs (currently it only provides SGEMM and DGEMM). It should be noted that ATI

has pledged to support OpenCL (to be discussed next) which may lead to Brook+ becoming obsolete.

In addition to vendor specific languages, there is also cross-platform language called OpenCL (Open

Computing Language) that is compatible with both NVIDIA and ATI cards. OpenCL is a newer language

and is modeled after the CUDA driver API. As the name suggests, the language is meant to be an open

standard and is managed by a non-profit consortium (The Khronos Group). CUDA on the other hand is

a proprietary language and is controlled by NVIDIA, which is why ATI refuses support the language on

its GPUs. Generally, on NVIDIA cards, CUDA programs will execute slightly faster than OpenCL since

CUDA is specifically designed for the NVDIA hardware.

From the perspective of someone beginning with GPU programming, it would seem that CUDA

would be the best choice. The language is by far the most popular and thus has the most resources (i.e.

forums, research papers, math libraries...) and isn’t expected to go away any time soon.

5.2.3 Summary

ATI appears to have the advantage in terms of hardware (in terms of theoretical flops), but NVIDIA

has the clear advantage in software. An ATI card has double the computational power of an NVIDIA

card but NVIDIA has a lot more cache space that would benefit sparse matrix algorithms. NVIDIA’s

programming language CUDA is very easy to use and thus has gained the most programmers. This

has led to extensive available resources for NVIDIA leaving ATI trailing behind. From the perspective

of someone beginning GPU programming, NVIDIA would be the clear choice and thus the theory and

designs discussed in this thesis will be with reference to NVIDIA graphics cards. However, since MATE

77

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.5: Blocks and Threads Abstraction
(extracted from: NVIDIA Corporation. NVIDIA CUDA Programming Guide, 3.1.1 edition, July 2010.)

is not purely compute bound a clear choice cannot be made simply on specifications alone. One would

need to be implement MATE on both machines to truly determine which GPU would work best.

5.3 GPU Programming

This section is split into two parts which cover some key concepts necessary to achieve a decent percent-

age of the hardware’s theoretical peak flops. The first part of this section will discuss the threads and

blocks abstraction along with an example illustrating the vector nature of the GPU. The second portion

will deal with the pipeline concept and the importance of hiding latencies of both arithmetic and move

instructions.

5.3.1 Programming Model

The GPU’s hardware (shown in figures 5.3 and 5.4) is composed of streaming multiprocessors (SM)

which are themselves composed of 8 scalar processors. The most important abstraction in GPU pro-

gramming is the concept of blocks and threads (see figure 5.5). Each SM is assigned one or more blocks.

A block is then made up of many threads. Each scalar processor is assigned multiple threads. The

exact block-to-SM or thread-to-processor mapping is hidden from the programmer. This abstraction is

necessary to facilitate distribution of the computation amongst the hundreds of processors on the graphics

card. Thus all programming is structured in terms of blocks and threads. The number of blocks on an

SM and the number of threads in a block make up the execution parameters. The execution parameters

are always specified at the start of any GPU program.

The threads belonging to a block operate in SIMD (Single Instruction, Multiple Data). More specif-

78

CHAPTER 5. The Graphics Processing Unit and MATE

ically, a single instruction is made of up 32 threads (called a warp). Therefore a single scalar addition

(i.e. equation 5.2) would actually be vectorized into 32 redundant additions shown in equation 5.3. Thus

despite the SIMD environment, scalar operations can be forced, however they can be very wasteful in

terms of useful computation (1
32 or ~3% efficiency). This highlights the importance of orienting code

towards vector operations.

a = 1;

b = 2;

c = a+ b;

(5.2)

 C


︸ ︷︷ ︸
32 elements

=


1

1
...

1

+


2

2
...

2

 (5.3)

5.3.2 Pipeline Latency and Throughput

To code efficiently, it is important to know how long basic instructions (data movement or arithmetic)

take to execute. To understand execution time, a familiarization with pipeline latency and throughput

are a necessity. This section contains a brief description of the pipeline concept, common measures of

throughput/latency on a GPU and typical values of throughputs and latencies for various arithmetic and

move instructions.

To perform a floating point operation (such as add, subtract, multiply, etc.), the data passes through

various stages of computation until the final result is achieved. This is known as a pipeline. The time

it takes for one set of data to travel through the entire pipeline from start to finish is called the pipeline

latency. There are typically many sets of data at various stages of a pipeline at a given time. Thus when a

pipeline is fully saturated, instructions can effectively finish much faster than the overall latency; which is

known as throughput. Ideally, the programmer would want to hide all latencies with useful computation

so all that is seen is the instruction throughput.

Since instructions are issued for groups of 32 threads, a common measure of throughput and latency

is in terms of clock cycles and warps per multiprocessor. The fastest a thread can execute is one clock

cycle per processor. Since there are 32 threads in a warp and 8 processors in a multiprocessor, the fastest

a warp can finish is 4 clock cycles. In this section both latency and throughput will be stated in terms of

clock cycles per warp per multiprocessor.

Typical throughputs of single precision floating point arithmetic instructions such as (ADD, SUB,

MUL, MAD3) can be executed every 4 clock cycles (i.e 1 operation every clock cycle per processor).

Other arithmetic operations such as division or square root can take many more clock cycles to complete

3A MAD instruction performs a multiply-add operation in the form of d = a× b+ c

79

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.6: Memory Latencies
(extracted from: V. Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proceedings of the 2008 ACM/IEEE

conference on Supercomputing, pages 1–11. © 2008 IEEE)

(i.e. DIV can take up to 36 clock cycles). However these throughputs actually assume all operands are

stored within registers. Although the CUDA programming manual [44] claims that shared memory (L1

cache) is as fast as registers, it was found in [60] that MAD instructions took up to 6 clock cycles to

execute when one of the operands are stored in shared memory.

Throughputs of data movement instructions, whether from registers, cache or DRAM only take 4

clock cycles. However it is the latency of the move instructions that the programmer must take into

careful consideration.

For arithmetic floating point operations, pipeline latency for simple arithmetic instructions such as

ADD, MUL, or MAD is ~24 clock cycles and is typically referred to as read-after-write latency. Thus

to hide this latency, it is recommended by the programming manual ([44] section 5.2) to schedule at

least 6 warps (192 threads) of instructions to hide this latency (since 6 × 4 = 24 clock cycles). The

warps can be contiguous or segmented. For instances operations with vector size of 192 elements or 3

independent vectors of length 64 elements. Both cases achieve the necessary independent operations to

hide the read-after-write latency.

The memory latency of instructions transferring data from various memory locations to a multipro-

cessor’s register space is shown in figure 5.6. The benchmarking for figure 5.6 is described in [60] and

are performed on a 8800GTX. The largest area of memory, the DRAM (which houses as much 4 GB on

the C1050) has the largest latency of ~510 clock cycles and closely matches the programming manual’s

400-600 clock cycle latency ([44] section 5.1.1.3). Just like the arithmetic latency, memory latency can

be hidden by issuing useful arithmetic or memory instructions.

80

CHAPTER 5. The Graphics Processing Unit and MATE

5.4 Test Case - Small Matrix Multiplication Routine

This section will demonstrate how the most common computation from the multi-level MATE algorithm

can be done on the GPU. From the previous chapter, we see that the majority of the computation is spent

performing small matrix multiplication. Similarly, modern sparse solvers (e.g. MUMPS, SuperLU,

UMFPACK, etc.) off load the bulk of their computation to BLAS routines (optimized linear algebra

libraries), where GEMM calls also consume the lion’s share of the execution time.

Thus one of the first steps to realizing multi-level MATE on the GPU is ensuring there are efficient

BLAS routines capable of handling the algorithm’s computations. Although NVIDIA does provide

BLAS routines, they are designed for very large matrices. In fact, the SGEMM routine only achieve

peak performance for matrices of size 4096×4096 and larger. Moreover, the granularity of the SGEMM

routine itself is significantly larger than the 3×3 matrices used in the proposed algorithm (SGEMM uses

panels of size 16 × 64 [60]). Thus there is a need for a multiplication routine that is designed to handle

the many 3 × 3 matrices from the multi-level MATE algorithm while achieving similar computational

benchmarks as standard GPU BLAS routines. Such metric would provide insight to the viability of the

proposed algorithm on the GPU.

This section divided into four parts to provide an in-depth analysis to the design and implementation

of a multiplication routine suited for mutli-level MATE algorithm. The first part will discuss how the

standard row/column major data storage is not efficient for the small matrices in the multi-level MATE

algorithm, thus another data storage scheme is proposed. The next part will attempt to provide a thorough

understanding behind the design choices in the routine. The third part goes into the clock cycle analysis

of the instructions in the routine which will provide an accurate prediction of the measured results. The

final portion provides the experimental setup along with the benchmarked results.

5.4.1 Small Matrix Representation (SMR)

Based on the GPU programming model, perhaps the simplest approach to accomplishing dense matrix-

to-matrix multiplication is to just multiply the 3 × 3 or 5 × 5 matrices independently of each other.

Standard matrix multiplication can be employed by assigning one warp of threads for each two pairs of

matrices that are to be multiplied together. Thus using the common row-major or column-major layout

would be appropriate to accomplish this task.

However such a method suffers from various inefficiencies. The number of independent operations to

perform matrix multiplication of either 3× 3 or 5× 5 matrices are not a multiple of 32 (a warp contains

32 threads). Hence poor thread utilization will result in many wasted arithmetic and data movement

operations. As a further consequence, improper memory access patterns will arise and reduce effective

memory bandwidth. Finally, the use of just one warp per matrix operation will cause further problems in

the form of register memory bank conflicts ([44] section 5.1.2.6). With all the efficiencies, it is clear that

such a simple approach would be a viable candidate.

To overcome these problems, a small matrix representation (SMR) is proposed. The representation

goes a step further by using the data from a large groups of matrices together as oppose to just focusing

81

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.7: Small Matrix Representation

on 2 matrices at a time. Many large groups of matrices can be formed since large power networks can

be partitioned into thousands of subsystems. For instance, if a 15000 × 15000 matrix is decomposed

into 3x3 subsystems, it would result in 3000 subsystems. Furthermore, the situation of having only 3000

subsystems is actually the worst case scenario. As discussed in chapter 4, the elimination matrices (also

3×3 or 5×5) can outnumber the subsystem matrices by an order of magnitude (depending on how many

levels are created), thus providing a plentiful amount of matrices to achieve this proposed representation.

For large enough power systems, two representations of 3 × 3 or 5 × 5 matrices may be able to be

supported concurrently.

Just as matrix-to-matrix multiplication requires two matrices to perform the operation, the proposed

representation requires two groups of matrices. Both groups are composed of the same number of 3x3

or 5x5 matrices. For a given group, the set of matrices are decomposed into vectors. These vectors are

formed by taking a single element (i, j) from every matrix in the group (illustrated in figure 5.7 for (1, 1)

element vector). As a consequence, if a group consists of n× n matrices, the group will be represented

n2 vectors (thus a 3× 3 matrix group will have 9 vectors).

There are several advantages to this representation. By just properly choosing the right number of

matrices to put in a group the inefficiencies regarding low thread utilization, memory access pattern and

latencies can be alleviated. But perhaps the most notable advantage is the ability to control individual el-

ements as if performing scalar operations. Even the most challenging computations such as small matrix

factorization can easily be done while maintaining vectorized calculations. The only requirement is that

each matrix of a group requires the exact same operation performed, which is why sparse operations on

a group of matrices are not possible.

5.4.2 Design of Small Matrix Multiply Routine

The small matrix multiply routine consists of 3 sections: (1) Load data into registers, (2) matrix mul-

tiplication using SMR, and (3) sending solution data from registers to cache. This section will provide

insight behind the choices made to implement the matrix multiply routine.

In the first section, data is assumed to be stored in cache from previous operations since matrix

multiplication is repeated many times in the multi-level MATE algorithm as discussed in chapter 4. The

purpose of the first stage is to transfer data from cache to the registers since computations are performed

82

CHAPTER 5. The Graphics Processing Unit and MATE

faster when all operands are stored in registers as oppose to cache [60]. In fact, this technique was used

in a recent SGEMM routine designed on a NVIDIA GPU and was found to be 10-20% faster than the

vendor’s original SGEMM [14]. Furthermore this operation also helps reduce register memory usage

which aids in reducing latencies.

The algorithm uses row or column major ordering (there is no computational advantage choosing one

or the other in the scope of this routine) to store individual 3×3 matrix data consecutively in both DRAM

and cache memory. Each time data is transferred from cache memory to registers, the data is converted

into the SMR vectors as depicted in figure 5.7. The conversion from row/column major ordering into

SMR vectors requires strided memory access. Strided access from cache memory incurs no penalty in

transfer bandwidth for certain values of stride ([44] section 5.1.2.5 which discusses that the best strides

are those that do not cause bank conflicts). The specific application of converting 3× 3 matrix data into

SMR vectors requires a stride of nine, which fortunately does not cause bank conflicts. Also noteworthy

is fact that 4 × 4 matrix conversion will suffer from bank conflicts however 5 × 5 matrices will not. It

should also be noted that heavy penalties would be incurred if strided memory access were performed to

or from the GPU’s DRAM.

The second section performs the actual computation. Since the data is now stored as SMR vectors

within the registers of the GPU, the calculation is rather straightforward. The representation allows for

direct manipulation of individual elements of the 3×3 matrices (while still maintaining vector operations)

thus the calculation for each of the nine SMR solution vectors can be performed as shown in equation

5.4.

cij = ai1b1j + ai2b2j + ai3b3j (5.4)

This operation is split into 3 stages (see equation 5.5). Notice that the solution of the first stage is

dependent for the next, thus read-after-write latencies (24 clock cycles) will be present. As discussed

in section 5.3.2, a minimum of 192 threads (or vector elements) running independent computation (e.g.

running all stage 1 computation first) is required to hide this latency. It is also possible to achieve the same

goal by spreading out the independent computation amongst smaller segments of blocks with threads

that sum to 192 (i.e. running three blocks of 64 threads). This is a much more favorable choice since it

provides a higher granularity when dealing with SMR vectors which allows for more even distribution

of computation among the multiprocessors.

stage 1 : c
(1)
ij = ai1b1j

stage 2 : c
(2)
ij = ai2b2j + c

(1)
ij

stage 3 : c
(3)
ij = ai3b3j + c

(2)
ij

(5.5)

Unfortunately hiding latencies with memory transfers seem to behave differently than latencies with

computation. As mentioned above, 192 threads executing independent computation is necessary to hide

read-after-write latency. For computation, there was some freedom in the thread/block allocation (i.e.

using one block of 192 threads or 3 blocks of 64 threads would accomplish the same goal). However for

memory operations, it behaves as if there were "block synchronization" whereby the compiler appears to

83

CHAPTER 5. The Graphics Processing Unit and MATE

Figure 5.8: Matrix Multiplication Kernel

threat blocks as dependent operations. Hence choosing blocks of 64 threads caused significant latencies

with memory transfers and thus blocks of 192 threads were chosen for the small matrix multiply kernel.

The third section simply sends the result from the matrix multiplication group from the registers

to the shared memory. This operation again uses strided access to return the data from SMR form to

row/column major layout. Thus there is no issue with data transfer when it is eventually transferred into

the GPU’s DRAM.

As mentioned in section 5.3.1, all routines require execution parameters to specify the distribution of

the computation on the GPU. The number of threads per block was chosen as 192 and was discussed in

the second section of the multiply routine. One block per multiprocessor was chosen in order to reduce

inter-block communication, which is required after the elimination of each level in the multi-level MATE

algorithm. The block abstraction enforces that the data from each block is not directly accessible from

another block, even if they happen to reside on the same multiprocessor. Thus if one multiprocessor had

two blocks, communication between the two blocks would require sending data to the GPU’s DRAM

and back (~700 clock cycle latency each way) even though data from each block is already stored in the

same cache memory. Figure 5.8 contains the code the multiplication routine outlined in this section. Full

listing of the code can be found in appendix C.

5.4.3 Theoretical Results

This section will perform a clock cycle analysis of the routine to determine how close to the GPU’s

theoretical flops the matrix multiply routine is able to achieve. In the following analysis, a ratio will be

taken of the arithmetic instructions to the total instructions to determine how close to the theoretical flops

the algorithm comes to. Since it is a ratio, the actual length of the SMR vectors (or number of blocks per

thread) is irrelevant.

There are two types of instructions that are used for this multiply routine, arithmetic and move

84

CHAPTER 5. The Graphics Processing Unit and MATE

instructions. For move instructions, the multiply routine moves matrix groups A and B into shared

memory, and then moves matrix C out of shared memory. Since the elements in a matrix group are SMR

vectors, we know there are n2 SMR vector move instructions required to move 1 group matrix, thus there

are a total of 3n2 move instructions in the multiply routine. For arithmetic instructions, the computation

of the first SMR vector (c11) can be computed as shown in equation 5.6 (assuming small matrices are of

size 3× 3). Thus to obtain a given solution element cij there are:

• 1 multiply instruction

• (n-1) multiply-add instructions

Since there are n2 elements in the solution matrix, the total number of arithmetic instructions are n2

MUL instructions and (n− 1) · n2 MAD instructions to perform a matrix to matrix multiplication.

c11 = a11b11︸ ︷︷ ︸
MUL

+a12b21 + a13b31

c11=c(1) + a12b21︸ ︷︷ ︸
MAD

+a13b31

c11 = c(2) + a13b31︸ ︷︷ ︸
MAD

(5.6)

Then by taking the ratio of arithmetic instructions to total instructions (i.e. arithmetic + move instruc-

tions) we can determine the percentage of the theoretical flops that the algorithm is capable of achieving.

This is possible for this routine because both the arithmetic and move instructions theoretically take the

same about of time to execute (4 clock cycles per warp assuming latencies are hidden). However there

is a distinction that needs to be made between the arithmetic instructions. A scalar processor is capable

of performing a multiply-add operation (i.e. d = a ∗ b + c) every clock cycle, which is 2 floating point

operations. But if just a multiply operation is done (i.e. d = a ∗ b) , then only 1 floating point operation

is being performed, which is only 50% of what the GPU is capable of doing on a clock cycle. Thus the

following formula can be constructed:

% theoretical flops =
1
2 (# of MUL) + (# of MAD)

total (arithmetic+move) instructions
× 100% (5.7)

Then substituting in the arithmetic and move instructions for the small matrix multiplication routine:

% theoretical flops =
1
2

(
n2
)

+ ((n− 1) · n2)

(n3) + (3n2)
× 100% (5.8)

% theoretical flops =
n3 − 1

2n
2

(n3) + (3n2)
× 100% (5.9)

Table 5.3 shows performances for various subsystem matrix sizes. A trade-off becomes evident,

the larger we choose the subsystem matrices, the better performance on the GPU (in terms of flops).

However the larger the subsystem matrices are, the more fill-in is incurred thus increasing execution

time. The analysis from chapter 4 indicates a huge increase in total operations from just minor increases

85

CHAPTER 5. The Graphics Processing Unit and MATE

Table 5.3: Predicted Performance

Matrix Size % of theoretical flops
3x3 41.7%
5x5 56.3%
7x7 65.0%

15x15 80.6%

in subsystem size, thus the target size is around 3 × 3 or 5 × 5. Table 5.3 indicates performances of

41.7% to 56.3%. As a comparison, the previous NVIDIA GPU BLAS implementation which would

only achieve 36-44%, the newer version currently runs at 58-60%.

5.4.4 Measured Results

This section will discuss the benchmarking setup followed by the results. Also a closer look at the code

is taken to get a more accurate clock cycle analysis.

The experiment was run on GT 9800 card. It contains 112 cores (14 multiprocessor) running at a

frequency of 1.62GHz providing a theoretical flops of 363 Gflops. The code assumes 3 × 3 subsystem

matrices using 192 threads per block, running 1 block per multiprocessor. Thus each SMR vector is of

length 192, and each multiprocessor is handling 192 matrices from both matrix groups A and B. The

multiplication routine’s kernel is shown figure 5.8 (full code in appendix C). The code was iterated one

million times to achieve an accurate measurement and was unrolled 20 times (’20’ was chosen because

the code nicely fit into the GPU’s instruction memory). Measured flop rate was determined from the

total number of floating point operations divided by the execution time and was found to be 135 Gflops
or 37.2% of the theoretical 363 Gflops.

A closer instruction analysis can reveal several issues that are the cause of discrepancy with the

measured result (37.2%) and theoretical result (41.7%).

I. Memory Transfer Efficiency. When independently testing shared memory-to-register transfers

using 192 threads per block (1 block per multiprocessor), it was found that only 88% of the

theoretical bandwidth was achieved.

II. Additional Instructions. The multiplication kernel contains one synchronization instruction that

was not previously accounted for. Upon inspection of the assembly code (using decuda4, a popular

third party disassembler) we also see there is an additional address calculation being performed.

III. MAD Efficiency. The testing MAD throughput under ideal conditions using 192 threads per block,

was found to have an efficiency of 98.6%

The main culprit behind the discrepancy is clearly latencies that haven’t been completely hidden. These

inefficiencies can be modeled by taking equation 5.9 and dividing each instruction term by their actual

4http://wiki.github.com/laanwj/decuda

86

CHAPTER 5. The Graphics Processing Unit and MATE

Table 5.4: Modified Predicted Performance

Matrix Size % of theoretical flops
3x3 37.5%
5x5 52.6%
7x7 61.6%

15x15 77.8%

efficiency to reflect additional time to complete each instruction. Also the additional instructions that

were not originally included are added in by simply placing a ’+2’ to the denominator. The corresponding

results for the new predicted results are shown in table 5.4 and now shows 37.5% as the theoretical flops,

a much closer value to the measured result.

% theoretical flops (adjusted) =

(
n3 − 1

2n
2
)

(n3) /0.986 + (3n2) /0.88 + 2
× 100% (5.10)

5.5 Summary

In this chapter, a custom small matrix-to-matrix multiplication routine was implemented for the multi-

level MATE algorithm. A data representation for MATE was also proposed which allowed to keep all

processors busy while avoiding the majority of latencies encountered during the multiplication routine.

The data representation also enables easy access and manipulation of individual elements within a sub-

system matrix. Thus complicated routines such as small matrix factorization can be easily implemented

without having to worry about hiding latencies. However this data representation does have its own

downsides. The representation necessitates the need for uniformity of all subsystem and link matrix

quantities. Thus smaller matrices will need to be padded with zeros and hence computation will be

wasted in this case. The final benchmarked result for the small matrix multiplication routine was able to

successfully achieve ~40% of the GPU’s theoretical flops.

87

Chapter 6

Conclusion

The first step towards verifying the validity of the multi-level MATE algorithm on the GPU is to have

a BLAS that can efficiently handle the necessary computation. A BLAS routine needed to be designed

because standard matrix multiplication BLAS on the GPU is designed for large matrices and achieves

the best performance for matrices of size 4096x4096 and over. However, the proposed algorithm is

concerned with matrices of size 3x3. The implemented small matrix multiplication routine was able to

successfully achieve ~40% of the GPUs peak flops while the regular large matrix multiplication routine

reaches ~60%. Thus providing the possibility for multi-level MATE algorithm to transition to the GPU.

However, the small matrix multiplication imposes limitations to the MATE algorithm. The described

algorithm assumes the sparse matrix will fit nicely into the described model. Ideally, allowing the

algorithm to bend and mold to the inputted sparse matrix would provide an overall reduction in the

amount of computation required to solve the system. For instance, using different size subsystems

or occasionally partitioning a subnetwork at a certain level into pieces of three instead of the usual

two. However straying away from a simple and uniform approach can cause a serious reduction in

the algorithm’s performance on the GPU. The small matrix representation uses the uniformity for easy

distribution of computation onto the GPU’s processors while avoiding various latencies. If the algorithm

assumes 3x3 subsystems but a few the subsystems have a final size of 2x2, the matrix multiply routine

will pad the 2x2 matrices with zeros to make it 3x3. Thus to allow the MATE algorithm to be more

flexible results is wasted computation.

On the subject of the power flow implementations and comparisons, the programs did not contain

any control adjustments. Although their inclusion would have provided a more accurate comparison, the

main goal was to create a current equation power flow program that executed as fast as was published

in the aforementioned papers. These programs were later used to perform iteration profiling to identify

which sections of the program where speedup and which portions where slowed down. Thus the control

adjustment’s role was not necessarily central to the main argument.

Lastly, the proposed multi-level MATE algorithm is specifically designed to take advantage of the

computational horsepower of the GPU. The choice of small 3x3 subsystem matrices fits well on the

GPU based on preliminary test results. The small subsystem size also allows them to be treated as

dense matrices thus removing the burden of sparsity to the matrix partitioning software. However by

88

CHAPTER 6. Conclusion

modeling all the matrices in the simulation as dense, there is an associated computational cost. Thus the

expectation is that this cost is outweighed by the ability to utilize many processors effectively. Therefore,

the proposed algorithm would not be well suited on CPUs as it is currently described. From the literature

review, a multi-level algorithm appears to be the best direct solver approach for a cluster of CPUs. In

contrast to the proposed MATE algorithm, the goal of partitioning for a CPU cluster should be to split a

system into only as many subsystems as there are available processors. Subsystem sparsity should also

be retained since the CPU provides more programming flexibility than the GPU.

6.1 Summary of Thesis Contributions

This thesis has made the following contributions:

• Unsymmetrical Generalized Link Equation

Allows for the application of MATE into power flow through a similar means as MATE in EMTP. It

enables the decoupling of an unsymmetrical branch using only one equation. Two types of branch

tearing techniques where provided. A discussion covered the trade-offs of using one version over

the other when decoupling different types of nodes.

• Current Equation Power Flow Implementation and Performance

Proposed a condensed formulation (described in section 3.2.4.2) using the updated PV bus repre-

sentation found in [24]. Provided explicit descriptions of various current equation implementations

that have not been described in research papers. Provided an extensive argument against the

performance current equation PF performance claimed in several IEEE publications. The argument

was supported through benchmarking and iteration profiling of multiple implementations of the

current equation algorithm which was compared to the conventional power flow algorithm.

• Multi-level MATE Algorithm for Massively Parallel Computing Architectures

Exploits the multi-level concept by using many levels to allow for the parallel computation of the

link matrix. This allows for mass partitioning of the original system matrix. A simple model

is provided which is used to give a flop analysis to determine the distribution of floating point

operations. Two versions are provided, one using branch tearing and the other using node tearing.

• GPU Data Representation and Matrix Multiplication Routine

Small matrix representation provides a framework to perform virtually all of the operations of the

multi-level MATE algorithm in an efficient and uniform manner across all the cores on the GPU.

A big advantage to the representation is its ability to manipulate individual elements easily, thus

the implementation a dense small matrix LU factorization would be relatively simple. This data

representation was tested via implementation and benchmarking of the small matrix multiplication

routine.

89

CHAPTER 6. Conclusion

6.2 Future Work

The following are outstanding issues recommended for future work:

• Full implementation of the multi-level MATE algorithm on the GPU. A matrix partitioner such as

METIS can be used to iteratively split the matrices into pieces of two until the desired subsystem

size is reached. The small matrix representation can similarly be applied to vectors to perform all

operations necessary for the multi-level algorithm.

Many design considerations must still be taken into account. Such as when to load data from

DRAM or cache into registers. Also, deciding how much data to load into the cache or registers

and ensuring all these latencies are either completely hidden or kept to a minimum.

Once the main structure of the implementation is complete, it may be prudent to try various

types of partitioning. For instance, both versions of the multi-level MATE algorithm should be

implemented to determine which is best (i.e. branch tearing and node tearing). Furthermore, node

tearing can be further subdivided into vertex-based and edge-based partitioning.

• Algorithm considerations. As mentioned at the start of this chapter, the small matrix representation

limits the flexibility of the MATE algorithm on the GPU. If the representation can be modified or

changed all together to allow for the algorithm to better accommodate the sparsity pattern of a

power system matrix, it would have the potential to save a substantial amount of computation.

• Applications beyond power flow. For instance, the transient stability program is a natural transi-

tion. The program can potentially be used as a general sparse solver should the performance of the

program prove to be competitive with current sparse solvers on the GPU.

90

Bibliography

[1] Faster dense matrix-matrix products on ati hardware. http://forum.beyond3d.com/showthread.php?t=54842,

August 2009.

[2] Opencl blas (sgemm) performance on radeon 4000 and 5000 series.

http://forums.amd.com/forum/messageview.cfm?catid=390&threadid=127963&enterthread=y,

February 2010.

[3] S. Acevedo, LR Linares, JR Martí, and Y. Fujimoto. Efficient HVDC converter model for real time

transients simulation. IEEE Transactions on Power Systems, 14(1):166–171, 1999.

[4] M.L. Armstrong. Multilevel MATE Algorithm for the Simulation of Power System Transients with

the OVNI Simulator. PhD thesis, The University of Bristish Columbia, 2006.

[5] M.L. Armstrong, J.R. Marti, L.R. Linares, and P. Kundur. Multilevel MATE for efficient simulta-

neous solution of control systems and nonlinearities in the OVNI simulator. IEEE Transactions on

Power Systems, 21(3):1250–1259, 2006.

[6] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry Husbands,

Kurt Keutzer, David A. Patterson, William Lester Plishker, John Shalf, Samuel Webb Williams,

and Katherine A. Yelick. The landscape of parallel computing research: A view from berkeley.

Technical Report UCB/EECS-2006-183, EECS Department, University of California, Berkeley,

Dec 2006.

[7] A. Asgari and JE Tate. Implementing the chebyshev polynomial preconditioner for the iterative so-

lution of linear systems on massively parallel graphics processors. In CIGRÉ Canada. Conference

on Power Systems, 2009.

[8] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA. NVIDIA

Corporation, NVIDIA Technical Report NVR-2008-004, 2008.

[9] M.J.; Kornhuber R.; Widlund O. (Eds.) Bercovier, M.; Gander. Domain Decomposition Methods

in Science and Engineering XVIII. Springer Publishing Company, Incorporated, 2009.

[10] H.E. Brown, G.K. Carter, H.H. Happ, and C.E. Person. Power flow solution by impedance matrix

iterative method. IEEE Trans. Power Apparatus and Systems, 82:1–10, 1963.

91

BIBLIOGRAPHY

[11] L. Buatois, G. Caumon, and B. Lévy. Concurrent number cruncher: a GPU implementation of a

general sparse linear solver. International Journal of Parallel, Emergent and Distributed Systems,

24(3):205–223, 2009.

[12] J.S. Chai and A. Bose. Bottlenecks in parallel algorithms for power system stabilityanalysis. IEEE

Transactions on Power Systems, 8(1):9–15, 1993.

[13] S.D. Chen. A study based on the factorization-tree approach for parallel solution of power network

equations. Electric Power Systems Research, 72(3):253–260, 2004.

[14] LS Chien. Hand-tuned sgemm on gt200 gpu. http://forums.nvidia.com/index.php?showtopic=159033,

February 2010.

[15] P. Cicotti, X.S. Li, and S.B. Baden. LUsim: A Framework for Simulation-Based Performance

Modeling and Prediction of Parallel Sparse LU Factorization. Lawrence Berkeley National

Laboratory, 2008.

[16] V.M. Da Costa, N. Martins, and JLR Pereira. Developments in the Newton Raphson power flow

formulation based oncurrent injections. IEEE Transactions on power systems, 14(4):1320–1326,

1999.

[17] V.M. Da Costa, J.L.R. Pereira, and N. Martins. An augmented Newton-Raphson power flow

formulation based on current injections. International journal of electrical power & energy systems,

23(4):305–312, 2001.

[18] J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, and J.W.H. Liu. A supernodal approach to

sparse partial pivoting. SIAM Journal on Matrix Analysis and Applications, 20(3):720–755, 1999.

[19] H. Dommel. Presentation: "power flow, optimal power flow, and sensitivity analysis.". UBC, May

2007.

[20] H.W. Dommel, W.F. Tinney, and W.L. Powell. Further developments in Newton’s method for power

system applications. In IEEE Winter Power Meeting, Paper, volume 70, 1970.

[21] I.S. Duff, A.M. Erisman, and J.K. Reid. Direct methods for sparse matrices. Oxford University

Press, USA, 1989.

[22] O.I. Elgerd. Electric energy systems theory. McGraw-Hill New York, 1971.

[23] P.A.N. Garcia, J.L.R. Pereira, S. Carneiro Jr, V.M. Da Costa, and N. Martins. Three-phase

power flow calculations using the current injectionmethod. IEEE Transactions on Power Systems,

15(2):508–514, 2000.

[24] P.A.N. Garcia, J.L.R. Pereira, S. Carneiro Jr, M.P. Vinagre, and F.V. Gomes. Improvements in the

representation of PV buses on three-phase distribution power flow. IEEE Transactions on Power

Delivery, 19(2):894–896, 2004.

92

BIBLIOGRAPHY

[25] F.V. Gomes, S. Carneiro Jr, J.L.R. Pereira, M.P. Vinagre, P.A.N. Garcia, and L.R. Araujo. A new

heuristic reconfiguration algorithm for large distribution systems. In IEEE Power Engineering

Society General Meeting, 2006, page 1, 2006.

[26] J.J. Grainger and W.D. Stevenson. Power systems analysis. McGraw-Hill, Inc., 1994.

[27] L.L. Grigsby. Power system stability and control. CRC, 2007.

[28] H.H. Happ. Multi-Level Tearing and Applications. IEEE Transactions on Power Apparatus and

Systems, 92:725–733, 1973.

[29] J. Hollman. Step by Step Analysis with EMTP Discrete Time Solutions. PhD thesis, The University

of British Columbia, Vancouver, 2006.

[30] V. Jalili-Marandi and V. Dinavahi. Large-Scale Transient Stability Simulation on Graphics

Processing Units.

[31] J. Johnson, T. Chagnon, P. Vachranukunkiet, P. Nagvajara, and C. Nwankpa. Sparse LU

decomposition using FPGA. In International Workshop on State-of-the-Art in Scientific and

Parallel Computing (PARA), 2008.

[32] DP Koester, S. Ranka, and GC Fox. Parallel block-diagonal-bordered sparse linear solvers for

electrical power system applications. In Scalable Parallel Libraries Conference. Citeseer, 1993.

[33] G.P. Krawezik and G. Poole. Accelerating the ANSYS Direct Sparse Solver with GPUs.

[34] G. Kron. A set of principles to interconnect the solutions of physical systems. Journal of Applied

Physics, 24:965, 1953.

[35] C.H. Lai. Diakoptics, domain decomposition and parallel computing. The Computer Journal,

37(10):840–846, 1994.

[36] M.; Keyes D.; Widlund O.; Zulehner W. (Eds.) Langer, U.; Discacciati. Domain Decomposition

Methods in Science and Engineering XVIII. Springer Publishing Company, Incorporated, 2008.

[37] C. Lin and L. Snyder. Principles of parallel programming. Addison-Wesley Publishing Company,

USA, 2008.

[38] L. R. Linares. OVNI (Object Virtual Network Integrator) a new fast algorithm for the simulation

of very large electric networks in real time. PhD thesis, The University of British Columbia,

Vancouver, 2000.

[39] R.F. Lucas, G. Wagenbreth, and D.M. Davis. Implementing a GPU-Enhanced Cluster for Large-

Scale Simulations. In Interservice/Industry Training, Simulation, and Education Conference

(I/ITSEC). Citeseer, 2007.

93

BIBLIOGRAPHY

[40] F. Maghsoodlou, R. Masiello, T. Ray, K. Inc, and N. Arnhem. Energy management systems. IEEE

Power and Energy Magazine, 2(5):49–57, 2004.

[41] J.R. Martí, L.R. Linares, J.A. Hollman, and F.A. Moreira. Ovni: integrated software/hardware

solution for real-time simulation of large power systems. In Proceedings of the 14th Power Systems

Computer Conference (PSCC 2002), 2002.

[42] K. Morison, L. Wang, and P. Kundur. Power system security assessment. IEEE Power and Energy

Magazine, 2(5):30–39, 2004.

[43] NVIDIA Corporation. NVIDIA Compute PTX: Parallel Thread Execution, 1.2 edition, June 2008.

[44] NVIDIA Corporation. NVIDIA CUDA Programming Guide, 3.1.1 edition, July 2010.

[45] University of Washington. Power systems test case archive.

http://www.ee.washington.edu/research/pstca/, 1993.

[46] D.R.R. Penido, L.R. Araujo, J.L.R. Pereira, P.A.N. Garcia, and S. Carneiro Jr. Four wire

Newton-Raphson power flow based on the current injection method. In IEEE PES Power Systems

Conference and Exposition, 2004, pages 239–242, 2004.

[47] N.M. Peterson and W.S. Meyer. Automatic adjustment of transformer and phase-shifter taps in the

Newton power flow. IEEE Transactions on Power Apparatus and Systems, 90:103–108, 1971.

[48] H.E. Pierce Jr, H.W. Colborn, D.W. Coleman, E.A. Marriage, J.C. Richard, L.J. Rindt, L.J. Rubino,

G.W. Stagg, T.P. Traub, J. Vandergrift, et al. Common format for exchange of solved load flow

data. IEEE Transactions on Power Apparatus and Systems, 92(6):1916–1925, 1973.

[49] H.A. Rahman, M. Armstrong, D. Mao, and J.R. Martí. I2Sim: a matrix-partition based framework

for critical infrastructure interdependencies simulation. In 8th IEEE Electrical Power & Energy

Conference, pages 6–7, 2008.

[50] Y. Saad. Iterative methods for sparse linear systems. Society for Industrial Mathematics, 2003.

[51] B. Stott. Review of load-flow calculation methods. Proceedings of the IEEE, 62(7):916–929, 1974.

[52] B. Stott and O. Alsac. Fast decoupled load flow. IEEE transactions on power apparatus and

systems, 93:859–869, 1974.

[53] W.F. Tinney and C.E. Hart. Power flow solution by Newton’s method. IEEE Transactions on Power

Apparatus and Systems, 86:1449–1460, 1967.

[54] W.F. Tinney and J.W. Walker. Direct solutions of sparse network equations by optimally ordered

triangular factorization. proc. IEEE, 55(11):1801–1809, 1967.

[55] M. Tomim. Parallel Computation of Large Power System Networks Using the Multi-Area Thévenin

Equivalents. PhD thesis, The University of British Columbia, Vancouver, 2009.

94

BIBLIOGRAPHY

[56] M.A. Tomim, J.R. Martí, and L. Wang. Parallel computation of large power system network

solutions using the Multi-Area Thévenin Equivalents (MATE) algorithm. In 16th Power Systems

Computation Conference, PSCC2008 Glasgow, Scotland, 2008.

[57] F. Tu and A.J. Flueck. A message-passing distributed-memory Newton-GMRES parallel power

flow algorithm. Power Engineering Society Winter Meeting, 1:211–216, 2002.

[58] P. Vachranukunkiet. Power flow computation using field programmable gate arrays. PhD thesis,

Citeseer, 2007.

[59] A.M. Variz, V.M. da Costa, J.L.R. Pereira, and N. Martins. Improved representation of control

adjustments into the Newton–Raphson power flow. International Journal of Electrical Power and

Energy Systems, 25(7):501–513, 2003.

[60] V. Volkov and J.W. Demmel. Benchmarking GPUs to tune dense linear algebra. In Proceedings of

the 2008 ACM/IEEE conference on Supercomputing, pages 1–11. IEEE Press, 2008.

[61] WA Wiggers, V. Bakker, ABJ Kokkeler, and GJM Smit. Implementing the conjugate gradient

algorithm on multi-core systems. 2007.

[62] A.I. Zečević. New Decomposition Methods for Parallel Computation of Large Systems. PhD thesis,

Santa Clara University, 1993.

[63] A.I. Zečević and D.D. Šiljak. A Nested Decomposition Algorithm For Parallel Computation of

very Large Sparse Systems. MPE, 1:41–57, 1994.

[64] A.I. Zečević and D.D. Šiljak. Balanced decompositions of sparse systems for multilevel parallel

processing. IEEE Trans. Circuits Syst. I, 41:220–233, 1994.

[65] F. Zhang. The Schur complement and its applications. Springer Verlag, 2005.

95

Appendix A

Power Flow Convergence Characteristics

The convergence details of the 118 and 300 bus systems are provided here using the conventional PF

program describe in section 3.1..

A.1 118 Bus System

Mismatch Tolerance = 1e-3

Iteration : 1

number of unsolved nodes = 117

number of solved nodes = 0

percentage of solved nodes = 0%

system error = -15.9

average nodal error = -0.0878

convergence state = 35.2%

Iteration : 2

number of unsolved nodes = 108

number of solved nodes = 9

percentage of solved nodes = 7.69%

system error = -4.7

average nodal error = -0.026

convergence state = 52.9%

Iteration : 3

number of unsolved nodes = 12

number of solved nodes = 105

percentage of solved nodes = 89.7%

system error = -0.0573

average nodal error = -0.000317

convergence state = 117%

Iteration : 4

96

APPENDIX A. Power Flow Convergence Characteristics

number of unsolved nodes = 0

number of solved nodes = 117

percentage of solved nodes = 100%

system error = -1.06e-05

average nodal error = -5.84e-08

convergence state = 241%

A.2 300 Bus System

Mismatch Tolerance = 1e-3

Iteration : 1

number of unsolved nodes = 294

number of solved nodes = 5

percentage of solved nodes = 1.67%

system error = 127

average nodal error = 0.239

convergence state = 20.7%

Iteration : 2

number of unsolved nodes = 281

number of solved nodes = 18

percentage of solved nodes = 6.02%

system error = -51.4

average nodal error = -0.097

convergence state = 33.8%

Iteration : 3

number of unsolved nodes = 164

number of solved nodes = 135

percentage of solved nodes = 45.2%

system error = -2.92

average nodal error = -0.00551

convergence state = 75.3%

Iteration : 4

number of unsolved nodes = 6

number of solved nodes = 293

percentage of solved nodes = 98%

system error = -0.0321

average nodal error = -6.05e-05

convergence state = 141%

Iteration : 5

97

APPENDIX A. Power Flow Convergence Characteristics

number of unsolved nodes = 0

number of solved nodes = 299

percentage of solved nodes = 100%

system error = -1.44e-05

average nodal error = -2.72e-08

convergence state = 252%

98

Appendix B

Power Flow Profiling

Output of profiling program is provided for 118 and 300 bus systems using the conventional PF program

describe in section 3.1.

B.1 118 Bus System

Total time to run iteration #1 = 0.414603ms

Timer 1: RHS

75000 times = 1.78s

time to complete once = 0.0237333ms

percentage of total iteration time = 5.72435%

Timer 2: Jacobian

75000 times = 1.8s

time to complete once = 0.024ms

percentage of total iteration time = 5.78867%

Timer 3: SuperLU

7500 times = 2.7s

time to complete once = 0.36ms

percentage of total iteration time = 86.83%

Timer 4: Adjust Voltages

1.5e+06 times = 2.28s

time to complete once = 0.00152ms

percentage of total iteration time = 0.366615%

Timer 5: Sine & Cosine

400000 times = 2.14s

time to complete once = 0.00535ms

percentage of total iteration time = 1.29039%

———————————————————-

Total time to run iteration #2 = 0.226078ms

99

APPENDIX B. Power Flow Profiling

Timer 1: RHS

75000 times = 1.78s

time to complete once = 0.0237333ms

percentage of total iteration time = 10.4978%

Timer 2: Jacobian

75000 times = 1.8s

time to complete once = 0.024ms

percentage of total iteration time = 10.6158%

Timer 3: SuperLU

7500 times = 1.28s

time to complete once = 0.170667ms

percentage of total iteration time = 75.4901%

Timer 4: Adjust Voltages

1.5e+06 times = 2.33s

time to complete once = 0.00155333ms

percentage of total iteration time = 0.687077%

Timer 5: Sine & Cosine

400000 times = 2.45s

time to complete once = 0.006125ms

percentage of total iteration time = 2.70924%

B.2 300 Bus System

Total time to run iteration #1 = 1.26143ms

Timer 1: RHS

75000 times = 4.23s

time to complete once = 0.0564ms

percentage of total iteration time = 4.47113%

Timer 2: Jacobian

75000 times = 6.06s

time to complete once = 0.0808ms

percentage of total iteration time = 6.40545%

Timer 3: SuperLU

7500 times = 8.3s

time to complete once = 1.10667ms

percentage of total iteration time = 87.7315%

Timer 4: Adjust Voltages

1.5e+06 times = 5s

time to complete once = 0.00333333ms

100

APPENDIX B. Power Flow Profiling

percentage of total iteration time = 0.264251%

Timer 5: Sine & Cosine

400000 times = 5.69s

time to complete once = 0.014225ms

percentage of total iteration time = 1.12769%

———————————————————-

Total time to run iteration #2 = 0.781028ms

Timer 1: RHS

75000 times = 4.26s

time to complete once = 0.0568ms

percentage of total iteration time = 7.27246%

Timer 2: Jacobian

75000 times = 6.06s

time to complete once = 0.0808ms

percentage of total iteration time = 10.3453%

Timer 3: SuperLU

7500 times = 4.69s

time to complete once = 0.625333ms

percentage of total iteration time = 80.0654%

Timer 4: Adjust Voltages

1.5e+06 times = 4.98s

time to complete once = 0.00332ms

percentage of total iteration time = 0.425081%

Timer 5: Sine & Cosine

400000 times = 5.91s

time to complete once = 0.014775ms

percentage of total iteration time = 1.89174%

101

Appendix C

Small Matrix Multiply Code

Benchmarked Kernel Code:

#include <stdio.h>

#include <cuda.h>

#define GRID_SIZE 14

#define BLOCK_SIZE 192

#define NUM_ELEMENTS (3*3) * BLOCK_SIZE

#define TEST_ITERATIONS 1000000

__device__ void reg2smem(volatile float *, volatile float *, const int);

__device__ void smem2reg(volatile float *, volatile float *, volatile float *, volatile float *, const

int);

__device__ void mad_ops(volatile float *, volatile float *, volatile float *);

__device__ void reg2gmem(volatile float *, volatile float *, const int);

// Main Kernel

__global__ void min_ops(float *gA, float *gB) {

int i;

const int tx = threadIdx.x;

volatile float a[9], b[9];

volatile float c[9] = {0,0,0,0,0,0,0,0,0};

volatile __shared__ float sA[NUM_ELEMENTS], sB[NUM_ELEMENTS];

#pragma unroll 20

for (i = 0 ; i < TEST_ITERATIONS ; i ++) {

smem2reg(a, b, sA, sB, tx);

__syncthreads();

mad_ops(a, b, c);

reg2smem(c, sA, tx);

}

__syncthreads();

reg2gmem(c, gA, tx);

102

APPENDIX C. Small Matrix Multiply Code

}

// Auxiliary Functions

__device__ void smem2reg(volatile float *a, volatile float *b, volatile float *sA, volatile float *sB,

const int tx) {

a[0] = sA[tx*9]; b[0] = sB[tx*9];

a[1] = sA[tx*9+1]; b[1] = sB[tx*9+1];

a[2] = sA[tx*9+2]; b[2] = sB[tx*9+2];

a[3] = sA[tx*9+3]; b[3] = sB[tx*9+3];

a[4] = sA[tx*9+4]; b[4] = sB[tx*9+4];

a[5] = sA[tx*9+5]; b[5] = sB[tx*9+5];

a[6] = sA[tx*9+6]; b[6] = sB[tx*9+6];

a[7] = sA[tx*9+7]; b[7] = sB[tx*9+7];

a[8] = sA[tx*9+8] ; b[8] = sB[tx*9+8];

}

__device__ void mad_ops(volatile float *a, volatile float *b, volatile float *c) {

c[0] = a[0]*b[0] + c[0]; c[0] = a[3]*b[1] + c[0]; c[0] = a[6]*b[2] + c[0];

c[1] = a[1]*b[0] + c[1]; c[1] = a[4]*b[1] + c[1]; c[1] = a[7]*b[2] + c[1];

c[2] = a[2]*b[0] + c[2]; c[2] = a[5]*b[1] + c[2]; c[2] = a[8]*b[2] + c[2];

c[3] = a[0]*b[3] + c[3]; c[3] = a[3]*b[4] + c[3]; c[3] = a[6]*b[5] + c[3];

c[4] = a[1]*b[3] + c[4]; c[4] = a[4]*b[4] + c[4]; c[4] = a[7]*b[5] + c[4];

c[5] = a[2]*b[3] + c[5]; c[5] = a[5]*b[4] + c[5]; c[5] = a[8]*b[5] + c[5];

c[6] = a[0]*b[6] + c[6]; c[6] = a[3]*b[7] + c[6]; c[6] = a[6]*b[8] + c[6];

c[7] = a[1]*b[6] + c[7]; c[7] = a[4]*b[7] + c[7]; c[7] = a[7]*b[8] + c[7];

c[8] = a[2]*b[6] + c[8]; c[8] = a[5]*b[7] + c[8]; c[8] = a[8]*b[8] + c[8];

}

__device__ void reg2smem(volatile float *c, volatile float *sA, const int tx) {

sA[tx*9] = c[0];

sA[tx*9+1] = c[1];

sA[tx*9+2] = c[2];

sA[tx*9+3] = c[3];

sA[tx*9+4] = c[4];

sA[tx*9+5] = c[5];

sA[tx*9+6] = c[6];

sA[tx*9+7] = c[7];

sA[tx*9+8] = c[8];

}

__device__ void reg2gmem(volatile float *c, volatile float *gA, const int tx) {

gA[tx*9] = c[0];

gA[tx*9+1] = c[1];

103

APPENDIX C. Small Matrix Multiply Code

gA[tx*9+2] = c[2];

gA[tx*9+3] = c[3];

gA[tx*9+4] = c[4];

gA[tx*9+5] = c[5];

gA[tx*9+6] = c[6];

gA[tx*9+7] = c[7];

gA[tx*9+8] = c[8];

}

104

Appendix D

Small Matrix Multiply Assembly Code

The following is a partial view of the assembly code used in small matrix multiplication.

// addressing instruction

movsh.b32 $ofs2, $r11, 0x00000000

// move A & B (18 move instructions)

mov.half.b32 $r27, s[$ofs1+0x0000]

mov.half.b32 $r26, s[$ofs1+0x0004]

mov.half.b32 $r23, s[$ofs1+0x0008]

...

mov.half.b32 $r6, s[$ofs2+0x0038]

mov.half.b32 $r2, s[$ofs2+0x003c]

mov.half.b32 $r0, s[$ofs2+0x0040]

// synchronization instruction

bar.sync.u32 0x00000000

// 27 MAD instructions with 9 MOV instructions (for matrix C)

mad.rn.f32 $r20, $r28, $r22, $r20

mad.rn.f32 $r25, $r28, $r8, $r25

mad.rn.f32 $r17, $r27, $r28, $r17

mad.rn.f32 $r16, $r13, $r27, $r16

mad.rn.f32 $r16, $r26, $r9, $r16

// total of 56 instructions

105

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Acknowledgments
	1 Introduction
	1.1 The Power Flow Problem
	1.1.1 The Gauss-Seidel Method
	1.1.1.1 Acceleration factor
	1.1.1.2 Handling PV Buses
	1.1.1.3 Practical Usage

	1.1.2 The Newton-Raphson Method
	1.1.2.1 Newton-Raphson Algorithm
	1.1.2.2 Newton-Raphson method applied to Power Flow

	1.2 System Partitioning and Parallel Algorithms
	1.2.1 Diakoptics
	1.2.2 Domain Decomposition Methods
	1.2.2.1 History
	1.2.2.2 Partitioning
	1.2.2.3 Direct Solution and the Schur Complement
	1.2.2.4 Vertex-Based Solution

	1.2.3 Multi-Area Thévenin Equivalent

	1.3 Motivation and Objectives
	1.4 Thesis Organization

	2 MATE in Power Flow
	2.1 Generalized MATE Link Equations
	2.1.1 Symmetrical Links
	2.1.2 Unsymmetrical Links

	2.2 Matrix Oriented Branch Tearing
	2.3 MATE in Power Flow Theory
	2.4 Summary

	3 Power Flow Optimizations for MATE
	3.1 General Implementation Details
	3.1.1 Test Cases
	3.1.2 Sparse Solver
	3.1.3 Execution Times

	3.2 Current Equation Power Flow Program
	3.2.1 Notation
	3.2.2 Literature Review
	3.2.3 Expected Speed Up
	3.2.4 Implementations
	3.2.4.1 Expanded Form
	3.2.4.2 Condensed Form
	3.2.4.3 Results

	3.2.5 Proposed Algorithm
	3.2.5.1 Original PV Bus Derivation
	3.2.5.2 Proposed PV Bus Derivation

	3.2.6 Results
	3.2.7 Summary

	3.3 Constant Jacobian
	3.3.1 Theory
	3.3.2 Results
	3.3.3 Summary

	3.4 Chapter Summary

	4 Proposed Multi-level Algorithms
	4.1 Literature Review
	4.2 General Approach
	4.3 Notation
	4.4 Level 3 Multi-level MATE Example
	4.4.1 Initial Subsystem Factorization
	4.4.2 Elimination of Level 3
	4.4.3 Elimination of Level 2
	4.4.4 Level 1 Solution

	4.5 General Algorithm
	4.6 Flop Analysis
	4.6.1 Multi-Level MATE Using Branch Tearing
	4.6.1.1 Single Solution
	4.6.1.2 Repeat Solutions

	4.6.2 Multi-Level MATE Using Node Tearing
	4.6.2.1 Single Solution
	4.6.2.2 Repeat Solutions

	4.7 Conclusions

	5 The Graphics Processing Unit and MATE
	5.1 Literature Review
	5.2 GPU Comparisons
	5.2.1 Architectures
	5.2.1.1 ATI vs. NVIDIA
	5.2.1.2 GPU vs. CPU

	5.2.2 Programming Languages
	5.2.3 Summary

	5.3 GPU Programming
	5.3.1 Programming Model
	5.3.2 Pipeline Latency and Throughput

	5.4 Test Case - Small Matrix Multiplication Routine
	5.4.1 Small Matrix Representation (SMR)
	5.4.2 Design of Small Matrix Multiply Routine
	5.4.3 Theoretical Results
	5.4.4 Measured Results

	5.5 Summary

	6 Conclusion
	6.1 Summary of Thesis Contributions
	6.2 Future Work

	Bibliography
	Appendices
	A Power Flow Convergence Characteristics
	A.1 118 Bus System
	A.2 300 Bus System

	B Power Flow Profiling
	B.1 118 Bus System
	B.2 300 Bus System

	C Small Matrix Multiply Code
	D Small Matrix Multiply Assembly Code

