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Abstract 

Rotating shafts are used in the power train components of aircraft and automotive 

engines. The shafts are turned on the lathes. Engine cylinders and bearing housings are 

finish machined using boring bars with single or multiple inserts. The cutting forces 

excite the structural dynamics of the turned shafts or boring bars during machining, 

leading to a poor surface finish and possible damage to the machined parts. This thesis 

presents mathematical models of single and multiple point turning/boring operations 

with the aim of predicting their outcome ahead of costly physical trials on the shop floor. 

Turning and boring operations are conducted at low angular speeds where the system 

dynamics is dominated by the process damping mechanism. The dynamic forces are 

modeled proportional to the static and regenerative chip thickness, direction of chip 

flow, tool geometry, and velocities of the vibration and cutting process. The process 

damping coefficients, which are dependent on the material, tool geometry, cutting speed 

and vibrations, are identified from chatter tests conducted at the critical speeds and 

depths. The cutting forces are modeled for boring tools with a single insert, inserts 

distributed around the circular cross section as well as along the axis of the boring bar.  

The structural dynamics of the long boring bars are modeled using the Timoshenko 

Beam elements in a Finite Element model.   The structural dynamic model allows 

parametric placement of the boundary conditions, such as the bearing supports along the 

boring bar. The dynamics of the interaction between the cutting process and the structure 

are modeled. The stability of the operations is solved in the frequency domain, 

analytically when the velocity and vibration dependent process damping is neglected. 

When the process damping is included, but the periodicity of the dynamic forces is 

neglected, the stability of the process is solved using the Nyquist criterion. When the 

periodicity and process damping are considered, the dynamic system is represented by a 

set of differential equations with periodic, time delayed forces. The stability of such 

systems, which are found in the line boring of crank and cam shaft housings, is solved in 

the time domain using an analytical but semi-discrete method.  
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The thesis presents a complete set of solutions in predicting the static and dynamic 

forces, as well as the critical depths of cuts and speeds to avoid chatter vibrations in 

single point, multi-point and line boring operations.  
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Chapter 1  

Introduction 

The machining operations such as turning, boring and milling are commonly used in the 

industry. The wide range of applications consists of automotive engine parts such as the 

engine block and aircraft components such as the engine turbine, as well as biomedical 

parts. The limitations affecting the quality of the part and cost of the production originate 

from the thermo-mechanical properties of work material, torque and power capacity of 

the machine tool and vibrations due to flexible tool-workpiece interaction. Relative 

motion between tool and workpiece results in excessive vibrations called chatter which 

scraps the workpiece unless avoided. Knowing the limitations that are inherent in the 

workpiece and machine tool, a process planner can optimize the process by considering 

the dynamics and mechanics of the cutting operation and eventually maximize the 

material removal rate. 

Dynamic cutting operations are usually represented by delayed differential equations 

where the delay component arises from the previous passage of the tool which 

contributes to the vibrations and forces being generated at the current state. It also 

includes the material properties, structural dynamics of the flexible components, and the 

process specific cutting model which may also bring in time dependency to the system. 

Under some operating conditions, the damping capacity of the structure is insufficient to 

damp out the energy generated at the tool-workpiece engagement and, consequently, 

vibrations increase drastically. This creates an instability problem and the prediction of 

critically stable cutting conditions is of the utmost importance and studied by many 

researchers in the past. 

The characteristics of high speed machining is very well studied and analyzed by 

researchers. However the classical stability prediction methods underestimate the 

experimentally obtained critical stability border at low speeds. This is attributed to the 

process induced damping term which is inversely proportional to the cutting speed and 

dominates the dynamic system at low cutting speeds. Significant research efforts have 

been spent in modeling the process damping effect. Earlier attempts include defining the 

complex cutting coefficients, the interaction between tool flank face and finished 
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surface, and the interaction between tool rake face and chip. In all of the previous 

studies, material dependency is introduced to the model with the process damping 

coefficient which must be identified for each material or extracted from other material 

properties like Young’s modulus. Basically, three different identification methods appear 

in literature thus far: oscillation tests, indentation tests, and extraction from chatter tests. 

In this thesis, a simple identification method for the process damping coefficient is 

presented. 

In an automotive engine, the rotating parts are connected to the stationary body through 

holes. As the crankshaft and camshaft are very long components, there are several bores 

on the engine block and cylinder head, respectively, to provide a smooth connection. A 

special line boring machine is used in order to machine the crankshaft and camshaft 

bores. The tool has a long bar on which there are as many axially spaced inserts as the 

number of bores to be machined. All of the bores are machined simultaneously with this 

tool. The slender structure of the bar brings low dynamic stiffness and makes the process 

prone to excessive vibrations. Various supporting methods are used to increase the 

dynamic stiffness of the bar. In this thesis, a generalized dynamic line boring model to 

predict the stability, vibrations, and forces is presented considering various support 

conditions. 

The thesis is organized as follows: In Chapter 2, a review of the existing research on the 

dynamics of single point cutting, the modeling of process damping and mechanics, and 

the dynamics of line boring process is presented. Several process damping identification 

methods are discussed in detail. 

Chapter 3 is dedicated to the identification technique for the process damping 

coefficient. An approximate chip model is used which can accommodate the influence of 

the operating conditions and tool geometry. The regeneration of the chip is assumed to 

be in chip flow direction which is a function of feedrate, width of cut, nose radius and 

approach angle. Identification is based on chatter tests where transition from an unstable 

state to a stable state is captured, and the critical velocity is recorded. The characteristic 

equation of dynamic plunge turning is used to estimate the unknown damping 
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coefficients. Stability prediction is carried out by using Nyquist stability criterion in 

frequency domain. Finally, experiments are conducted for verification purposes. 

In Chapter 4, the stability of the line boring operation is investigated including the 

process damping effect. Finite element beam theories are applied to represent the line 

boring structure and to estimate the transfer function between tool and workpiece. Zero 

order solution and Nyquist stability criterion are proposed for stability solution in 

frequency domain. Semi-discretization is used to investigate the influence of the time 

varying directional coefficients arising from the rotation of the line boring bar. The 

vibrations and the dynamic cutting forces are simulated in time domain. A detailed 

comparison of stability charts under various insert, support and angular orientations is 

also presented. 

The thesis is concluded with a brief summary of contributions and possible future works. 

The details of some mathematical derivations are given in the Appendices.  
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Chapter 2  

Literature Review 

2.1 Overview 

Single point cutting operations, such as turning and boring, are widely used in 

manufacturing. Investigation of the mechanics and dynamics of those processes are 

important in terms of productivity and quality of the final product. However, a 

comprehensive model requires the modeling of nonlinearities that stem from the 

geometry and the force coefficients. Research related to the modeling of single point 

cutting operations is surveyed in section 2.2. 

The aim of manufacturing is to maximize the productivity of machining operations while 

keeping the surface quality within specified tolerances. However, the maximum surface 

speed is limited for some materials such as titanium and nickel alloys. The dynamics of 

the cutting process is mainly dominated by the process damping at low speed, which is 

surveyed and discussed in section 2.3. 

A special purpose operation called line boring is of interest in this thesis. It is mainly 

used to machine axially spaced crankshaft or camshaft bores of engine blocks. As it has 

many inserts along the bar cutting at the same time, the dynamic analysis is different 

from many machining operations, and related research is discussed in section 2.4. 

2.2 Dynamics of Single Point Cutting 

Turning and boring are the most common single point cutting operations used in the 

industry. Turning is used to remove the material from the outer surface of an 

axisymmetric workpiece. In general, the rotating workpiece is clamped on the spindle 

chuck, whereas the tool is stationary. Boring is used to enlarge the existing holes. 

Similar to turning, the workpiece is rotationary and the boring bar is attached to the 

tailstock of the lathe. The static forces generated are time invariant in both of the 

processes because the cutting edge of the tool is fixed. Moreover, static forces are 

identical when the same cutting conditions are applied in both processes. However, if the 
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dynamic properties are compared, they are dissimilar due to different flexibilities of the 

structures. 

          

Figure 2-1 : Single point cutting processes (a) Turning (b) Boring 

The dynamics of turning have been studied widely in the literature where the biggest 

problem mentioned is the regenerative chatter vibrations. The chatter vibrations occur 

due to the phase shift between successive vibration waves when the structural modes of 

the system are excited, see Figure 2-2a. In literature, the regeneration of the chip 

thickness phenomenon first appeared in the 1950s in Tobias’s [1] and Tlusty’s [2] 

research. Tlusty calculated the absolute limit for the depth of cut by considering the 

flexibilities of the structure as: 

 
( )( )lim

1
2 min Re ( )f

a
K jω

−
=

Φ
 (2.1) 

where fK  is the assumed constant cutting force coefficient and ( )jωΦ  is the frequency 

response function between the tool and workpiece which relates displacement to cutting 

forces. Tobias invented the stability lobes where higher stable depth values than the one 

calculated by Eq.(2.1) can be selected at various spindle speed ranges, see Figure 2-2b. 

Merritt [3] explained the chatter phenomenon as a closed loop system where the 

vibrations during the previous cut are fed back and cause instability of the system. 

More complex tools are used in today’s machining centers which consider geometric 

nonlinearities to the cutting model. One of the most important parameters is the nose 

radius of the tool which has significant effect on the cutting force directions. Ozdoganlar 

et al. [4] developed a chip area formulation which can be used with nose-radiused tools 

(a) (b) 
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under depth and feed direction variations. He compared the error of the method with the 

exact area calculation with many conditions, and concluded that the error is negligible 

for practical purposes. In [5], Ozdoganlar et al. presented an analytical chatter stability 

solution for turning operations which considers the linearized uncut chip area 

formulations. With this method, the model is capable of accommodating the effect of the 

cutting conditions (feedrate, depth of cut) and tool geometry (nose radius, approach 

angle). Reddy et al. [6] applied a similar approach to solve the stability problem of 

contour turning where the effect of the tool path on stability is observed. Thus, they were 

able to investigate the stability of more complex part geometries by means of the 

developed contour turning stability prediction method. 

 

 
Figure 2-2 : (a) Regeneration of chip thickness in plunge turning operation [7] (b) Stability diagram 
example 

Clancy and Shin [8] proposed a stability method for the face turning operation. In their 

model, flexibilities in three orthogonal directions and the effect of flank wear on stability 

are considered. Stability is investigated in frequency domain by solving the eigenvalues 

of the force model. However, an iterative approach is used because many variables in the 

force model are dependent on the depth of cut value which is not known initially. Given 
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an initial depth value, the iteration continues until convergence of the depth of cut to 

some predefined tolerance is reached. 

In 2007, Ozlu et al. [9] proposed an analytical model for the stability of turning and 

boring processes which includes true insert geometry and flexibilities in feed and depth 

directions. In their study, the major cutting edge is divided into small elements, and the 

cutting force directions are estimated separately for each element, see Figure 2-3. 

Stability is solved in frequency domain with the eigenvalue solution method reported by 

Budak [10]. 

 

Figure 2-3 : Discretization of chip area [9] 

Recently, Eynian et al. [11] proposed a stability method for general turning operations. 

The process is modeled as it happens along the equivalent chord length connecting the 

two extreme points of the cutting edge. The penetration of the tool flank face is included 

as a source of process damping. The stability is checked by using the Nyquist stability 

criterion at each cutting condition where speed dependent cutting coefficients are 

utilized. Sensitivity analysis of tool geometry and operating conditions revealed that they 

have a significant effect on chatter stability predictions. 

In literature, there are a handful of studies related to the boring operation as opposed to 

the turning operation. In those studies, the boring bar is considered the dominant source 

of flexibility due to its slender structure. 

Baker et al. [12] in 2002 studied the stability of boring bars with a focus on tangential 

cutting forces. Based on Parker’s study [13], they focused on the design of the boring 

bar, especially the effect of asymmetry of the boring bar due to the flattened surfaces to 

the process dynamics. The Nyquist stability criterion is applied to find the stable cutting 
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conditions. Iyer [14] studied the stability of the boring operation at mid-range spindle 

speeds for single and twin insert tools. In his model, transverse vibrations which are the 

most critical for boring dynamics are neglected, and only axial vibrations are considered 

as the reason for chatter. Stability is solved in frequency domain with a similar approach 

reported by Budak [10]. Although it was mentioned that the nose radius has big effect 

when the depth of cut value is comparable, this was also neglected in his study. Friction 

forces mainly occurring at low speed are not included because the interested speed range 

was higher than 3000 rpm. 

Atabey et al. [15] developed a comprehensive cutting force model for boring operations. 

The insert-workpiece engagement area is calculated for various depth, nose radius, side 

and end cutting edge angle cases by dividing the area into 3 main regions. The cutting 

coefficients are identified as a function of cutting speed and feed rate. The predicted 

forces are within a 10 % error range which is stated to be tolerable. Later, they used this 

force model for dynamic analysis of boring in time domain [16]. True engagement of the 

tool-workpiece is considered and regenerative vibration frequencies were predicted 

successfully for the given operating conditions only. Their model also predicts the 

machined workpiece topography. 

Recently, Yussefian et al. [17] proposed a cutting force model for boring. Similar to 

Atabey’s study, the cutting forces are proportional to the chip area and cutting edge 

length, but they suggested using B-spline parametric curves to calculate them for every 

tool geometry and process parameter. This is the main contribution of their study in 

literature because with one single approach, they eliminated the area calculation by 

dividing it into many regions. Later, they extended their study to simulate the dynamics 

of the boring process in time domain [18]. The boring bar was modeled by the Euler-

Bernoulli beam theory. Since this theory does not account for the rotary inertia and shear 

deformation and assumes a rigid clamping condition, it overestimates the first natural 

frequency. They compensated for this by correlating the theoretical natural frequency 

with the measured first resonance frequency.  



Chapter 2. Literature Review 

9 
 

2.3 Process Damping in Continuous Cutting 

At low cutting speeds, high stable depth of cut values can be reached in most of the 

machining operations. In literature, this is explained with an additional damping term 

which stems from tool flank – workpiece interaction [19], [20], see Figure 2-4a. In the 

past, a large number of attempts were performed to model the process damping so that 

stability diagrams could be predicted accurately. 

   

Figure 2-4 : (a) Schematic diagram of the displaced volume underneath the tool (b) Sample stability 
diagram with and without process damping effect. Increased stability at low speeds due to damping. 

Tobias [21] used complex material coefficients in order to introduce the process 

damping effect into the cutting force model, which also helped others to understand the 

phase shift between the cutting force and the chip thickness variation. Wu et al. [22], 

[23] showed that low speed stability is dominated by the ploughing forces on the tool 

nose region, as opposed to the high speed stability where forces on the rake face are 

much more effective. Later, Wu [24] presented the ploughing forces to be comprised of 

two components. The first one is in the chip thickness direction and is proportional to the 

volume of the material displaced underneath the tool nose region. The second 

component is generated due to the friction force that the first component causes as: 

 1

2 1

spf f V

f fμ

=

=
 (2.2) 

where V  is the volume of displaced material, spf  is the material dependent coefficient 

and μ  is the friction coefficient. Lee et al. [25] simulated the process damping force in 

time domain using Wu’s approach for turning operations. 
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Chiou and Liang [26] extended Wu’s approach and proposed a formula for the volume 

of displaced volume, making a small amplitude vibration assumption as: 

 
2

2
wb l xV
v

− ⋅ ⋅
=

�
 (2.3) 

where b  is the depth of cut, v  is the surface speed, wl  is the flank wear length and x�  is 

the velocity of vibrations in the chip thickness direction. Furthermore, the material 

dependent force coefficient is calculated by a series of static indentation tests. This 

model was useful in explaining the increased stability when tool wear exists, as observed 

in the experiments [27]. This model is utilized by several researchers to predict the 

stability of the turning operation [8], [11] with various flank wear cases. 

The identification of the material dependent coefficient in Chiou’s study was not 

satisfactory because it was identified under static conditions. Altintas et al. [27] tried to 

identify the process damping coefficient under dynamic conditions. They used a piezo-

actuator driven fast tool servo for this purpose. This device was able to give 

displacement to the tool at a specified amplitude and frequency. Thus, the regenerative 

vibrations are eliminated by keeping the zero phase shift between successive revolutions 

of the workpiece and only the ploughing forces (process damping force in this case) are 

measured. Recently, Ahmadi et al. [28] compared both of the methods and concluded by 

experiments that Chiou’s model based on small amplitude vibration underestimates the 

experimentally determined stability limits and the accuracy of Altintas’s identification 

method depends on the amplitude of excitation in relationship to the feedrate employed 

in verification tests. 

Recently, Budak et al. [29], [30] proposed a new identification method for process 

damping coefficients where the coefficient is identified directly from chatter tests. In 

order to obtain a general model, an energy analysis is used in contact force modeling. 

The effect of the clearance angle and the edge radius (i.e. hone radius) is observed with 

this method. They stated that as the edge radius gets larger, the effect of process 

damping can be observed at higher speeds as well. Both Budak and Ahmadi observed 

that at low speeds, when the depth of cut is increased gradually, the transition region 
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from the stable to unstable region gets larger due to the process damping effect as 

opposed to the fast transition in the high speed region.  

A different process damping idea was presented by Khasawneh et al. [31]. In this 

approach, the distributed forces acting on the chip-tool interface is considered a short 

delay regenerative effect which stabilizes the system at low cutting speeds. Although the 

study was not supported by any experiments, the simulation results show an increased 

stable region at low speeds. This method highly depends on the force distribution 

function which is not clearly known (some assumed functions are employed in their 

study) and the time during which the chip travels on the rake face of the tool. As they 

suggested, distributed forces can also be used for the flank/workpiece interface. Later, 

Bachrathy et al. [32] applied this approach to the tool flank/workpiece interface where 

flank wear exists, and solved the stability using The Semi-Discretization method [33]. In 

this study, it was shown that if the flank wear is relatively small, the short delay 

representation can be reduced to the displaced volume of material approximation that 

Chiou suggested [26]. However, this study is not supported by experiments. Taylor et al. 

[34] carried out experiments considering both the tool flank/workpiece and chip/tool 

interactions. They stated that the flank interface stabilizes the cutting process only if the 

vibration amplitude is high enough. Regardless of the shape of the distributed force, a 

short regenerative effect on the chip/tool interface was found to be insufficient to match 

the experimentally obtained stability boundary. 

2.4 Mechanics and Dynamics of Line Boring Operation 

In literature, the dynamics of a conventional line boring process, shown in Figure 2-5, 

has never been addressed. There are a few publications, but none of which present a 

comprehensive model that can be applied to all of the line boring tools. The unique 

property of the line boring process is that there are multiple inserts located along a very 

long bar where the structural dynamic characteristics can be quite different. However, 

since the inserts are located on the same tool, cutting forces at one point might cause 

vibrations at another cutter location, see Figure 2-5. Unlike the classical chatter theories 

where the relative transfer function is measured at one point, in the case of line boring, 

the cross talk between each node becomes very important. 
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Figure 2-5 : Cutting forces acting on conventional line boring bar 

Li et al. [35] proposed a lumped parameter process model in rotating coordinates for 

rotating boring tools. In their study, the boring bar is assumed to have only one insert at 

the free end. The guiding pads located at the circumference of the line boring bar are 

designed in such a way that they support the very long bar by touching the just machined 

bore. The focus of their study was to see the rotational effects where Coriolis and the 

centrifugal forces are considered and thus the coupling between radial and tangential 

dynamics is included which does not exist in the stationary boring bar. They assumed the 

boring bar as the dominant compliant component which is a reasonable assumption 

considering the structure of the line boring bar. The nonlinear force model was 

linearized with respect to the state variables but still, the cutting coefficients were 

nonlinear functions of the stability limit. In order to solve the stability, an iterative 

algorithm was adopted in their study. They concluded that averaging the time varying 

coefficients results in discrepancies at the low speed stability, however, this is not the 

case for high speed stability which is successfully applied by Altintas and Budak [10]. 

Some line boring tools have more than one insert at each bore location. Thus, the 

machining with multiple inserts is of interest in this thesis as well. Atabey et al. [36] 

studied the mechanics of a multi-insert boring head operation which is commonly used 

for the machining of engine cylinders. They extended their previous work [15] with 

single insert boring bars to multiple insert boring heads. The force model includes the 

effect of tool geometry and process parameters. Furthermore, the process faults such as 

the misalignment of the boring head axis with respect to the axis of the hole to be 

machined. This misalignment, as well as radial and axial runouts for each insert, bring 

about an irregular force profile which was studied extensively in their study. Later Suren 

[37] studied the dynamics of multiple inserted boring operations. He proposed a stability 
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prediction method in frequency domain using the average directional coefficients 

without addressing geometric nonlinearities. In case of non-uniform pitch tools, an 

algorithm to select the optimum pitch angles is presented, which leads to higher stability 

than uniform pitch angle tools. His study can be used as a starting point for line boring 

dynamic analysis. 
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Chapter 3  

Identification of Process Damping Coefficient 

3.1 Introduction 

High material removal rates are mainly prevented by chatter instability in machining. 

The aim of past and current research has been to foresee under which conditions the 

cutting operation becomes unstable. High speed operations, specifically, were modeled 

successfully and experimentally verified [7], which led to improved material removal 

rates. However, low speed cutting demonstrated different characteristics from high speed 

cutting which is still not fully understood. At low speeds, higher stable conditions can be 

observed. Many research studies [20], [21], [38] have explained that an additional 

process induced damping term, which is inversely proportional to the cutting speed, 

exists in low speed machining operations. When high speed and low speed cutting are 

compared in terms of dynamic characteristics, the main difference is the shorter 

wavelength of vibrations at low speeds. Hence, there are dense vibration marks left on 

the cut surface at low speeds. These dense vibrations affect the cutting mechanics by 

changing the rake angle, clearance angle and shear angle. This is illustrated in Figure 

3-1. 

 

Figure 3-1 : Effective rake and clearance angle change during cutting 
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Besides dynamically changing geometrical parameters, researchers stated that the 

clearance face of the tool makes contact with the finished surface of the workpiece, and 

this brings additional forces to the system as illustrated in Figure 3-2 :   

 

Figure 3-2 : Flank face contact with cut surface and direction of process damping forces 

The contact changes dynamically and increases the damping of the system at low speeds. 

In literature, this phenomenon is named as process damping [39] which is investigated in 

this chapter. 

3.2 Tool Workpiece Interaction  

In order to model process damping, researchers focused on the flank face contact. 

Wallace [40], Wu [24] and later Chiou [26] proposed a method which accounts for the 

tool-workpiece interaction. Their model assumes that the process damping force is 

proportional to the volume of material which is displaced underneath the tool. However, 

this volume of the material changes as the tool and workpiece vibrate simultaneously as 

seen in Figure 3-3. Following this approach, the indented volume decreases when the 

tool moves upward; however, it increases when the tool moves toward the workpiece. 

Therefore, this volume continuously changes and, as a result, the forces change as well. 
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Figure 3-3 : Dynamic variation of indented volume of the tool [40] 

In this approach, the penetrated volume of material during stable cutting is constant as: 

 0 w wV L h=  (3.1) 

where wL  is the tool edge wear length and wh  is the height of the material which is 

deformed under the tool. In the case of vibrations, the volume change is approximated as 

[26]:  
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�
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where b  is the cutting edge length, cV  is the surface speed and z�  is the velocity of the 

vibrations in the feed direction, see Figure 3-3. 
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As a result, the total penetrated volume became the same for both the upward ( 0z >� ) 

and downward ( 0z <� ) motion of the tool: 

 21
2T w w w

c

zV L h bL
V

= −
�  (3.3) 

The damping force is proportional to the total volume TV  and the process damping 

coefficient, spK , which is a material specific property. 
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 (3.4) 

The dF  component is pushing the tool out in normal direction to the cut surface. 

Whereas dyF  is the friction component and is perpendicular to dF , see Figure 3-2 : . In 

Eq.(3.4), the damping forces consist of a static part and a dynamic part. Since the static 

part does not contribute to the stability of the cutting operation, it can be disregarded. 

Thus, the dynamic process damping forces are: 
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 (3.5) 

The friction coefficient,μ , is a material dependent quantity, but 0.3 is used for a steel 

workpiece in [24]. The identification of the damping coefficient, spK , is achieved by a 

series of indentation tests and by fitting a linear curve between the measured force and 

the displaced volume [26]. The main idea behind this identification method is that the 

penetration process during cutting is assumed to be identical to the indentation process 

with tools in the static case. 
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An alternate way of expressing the dynamic process damping force is used by Altintas 

et.al [27]. The damping force is still a function of the vibration velocity and thus changes 

dynamically during the cutting operation as follows:  

 
d z

c

dy y
c

zF C a
V

zF C a
V

= −

= −

�

�
 (3.6) 

Unlike the previous method [26], the identification of the damping coefficients ( ,y zC C ) 

is achieved by conducting a series of plunge turning tests. In order to eliminate the effect 

of the regenerative chip thickness, a piezo-actuator driven fast tool servo was used. By 

moving the tool at a specified frequency and amplitude, the phase difference between the 

successive revolutions of the workpiece was minimized, and only the process damping 

effect was measured by a dynamometer. The drawbacks of this method are that first, it 

requires a specific device designed for this purpose, and second, a series of tests at 

different excitation frequencies is required. In this thesis, a relatively simple 

identification method is presented in Section 3.5. 

3.3 Prediction of Chip Flow Angle (η )  

Single point cutting operations are mostly conducted by using inserted cutters. A 

summary of insert types along with the applications are presented in Table 3.1. Most of 

the inserts used in the industry have oblique geometry including the nose radius, rε , the 

cutting edge angle, rκ , and the inclination angle, sλ  (see Table 3.1). In order to estimate 

the cutting force directions, several equivalent chip flow models are proposed in 

literature. Utilizing an equivalent chip model is advantageous in the case of stability 

analysis because those irregular dimensions bring geometric non-linearity to the 

mechanics of cutting. A sample chip with the nose radius ( rε ) and the cutting edge angle 

( rκ ) is introduced in Figure 3-4. 
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Table 3.1 : Insert Shapes [41] 

Insert 
Type 

Geometric 
Dimensions 

3-D 
View Application 

Triangular 

 
  

Square 

  
 

Rhombic 

(Diamond) 
 

 
 

Round 

 
  

Trigon 

 

  

 

 

Figure 3-4 : Chip formation with an insert having nose radius, feed rate c, width of cut b. 
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Stabler [42] proposed that the chip flow angle can be assumed to be the same as the 

inclination angle of the tool’s straight oblique cutting edge. However, this approach is 

not applicable when the cutting edge is curved, as shown in Figure 3-4. Colwell [43] 

suggested a geometrical model which simply combines the effect of the nose radius and 

the cutting edge angle. In his model, a new cutting edge is defined which passes through 

the two extreme end points of the cutting edge, and the chip flows perpendicular to this 

equivalent cutting edge. However, obliquity of tool, thus inclination angle and rake angle 

were not taken into account. 

 

Figure 3-5 : Colwell’s approach for chip flow angle estimation 

Young et al. [44] proposed a different method for the prediction of the chip flow where 

the chip is divided into infinitesimal elements, and in each element the chip flow angle is 

assumed to be in the same direction as the friction force, see Figure 3-6. By summing up 

the effect of all small area elements in the x and y directions, the average chip flow 

angle,η , is expressed as: 
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Figure 3-6 : Young’s approach for chip flow angle estimation 

Wang [45] extended Young’s approach by introducing the tool inclination angle and the 

rake angle of the tool, and derived the necessary formulae for different depth of cut and 

nose radius combinations. 

By implementing the methods summarized above, the chip flow angle for various tool 

geometries and under different cutting conditions are estimated in this chapter.  

3.4 Dynamics of Plunge Turning Operation 

Plunge turning is a single point cutting operation. As the cylindrical workpiece rotates, 

the tool is fed in lateral direction, as given in Figure 3-7. The cutting speed is reduced 

continuously as the tool is fed into the workpiece which is utilized for process damping 

identification. 

 

Figure 3-7 : Plunge turning operation 

3.4.1 Mechanics of Plunge Turning Operation 

The cutting forces in plunge turning can be expressed by adding the contribution of the 

shearing, ploughing and process damping effects: 
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where r, t and a denote the radial, tangential and axial directions, respectively. The chip 

area and the length of the cutting edge are denoted by A  and L  respectively, as shown 

in Figure 3-8. The cutting forces are written in matrix form as: 

 ( )rta c e dF K K P i

c

C LA L r t
V

= ⋅ + ⋅ − ⋅ �  (3.9) 
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The cutting coefficients ( ,,rc tc acK K K ) and the edge coefficients ( ,,re te aeK K K ) can be 

evaluated from an orthogonal cutting database by employing the oblique transformation 

method explained by Armarego [46]. Using tool geometry and material properties, the 

cutting coefficients contributed by the shear action correspond to: 
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 (3.10) 

where sλ  is the inclination(helix) angle, nφ  is the normal shear angle, nγ  is the normal 

rake angle,η  is the chip flow angle, nβ  is the normal friction angle, sτ  is the shear yield 

stress of the workpiece material during cutting. 

The cutting force coefficients can also be estimated by implementing mechanistic 

modeling. In this approach, for a specific tool and workpiece pair, a series of cutting 
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tests are performed and the cutting/edge coefficients are identified by means of the least 

square curve fitting to the experimental force data [47]. 

In Eq.(3.4), the process damping force consists of static and dynamic components. 

However, in Eq.(3.8), only the dynamic part is included since the edge forces share the 

same effect with the static part of the process damping force. They are both considered 

as the “ploughing” or “rubbing” at the flank face. In fact, the dynamically changing part 

of the damping force tries to damp the vibrations, because the direction of the dynamic 

damping force changes with the slope of the vibration in the r-direction and affects it in 

such a way that it pulls the tool to its nominal chip thickness value. The damping force 

added to the radial direction is proportional to the cutting edge length ( L ) and the 

damping coefficient ( iC ). In the tangential direction, the frictional part of the dynamic 

process damping force is applied where μ  is the friction coefficient. 

 

Figure 3-8 : Chip created by actual tool and approximate chip model suggested by Eynian [11] 

When an actual tool is taken into consideration, the cutting edge of the insert has a nose 

radius and an approach angle which make the forces unevenly distributed along the 

cutting edge of the tool. In this study, an equivalent chip area approach, which is 

suggested by Eynian [11], [48], is employed by using the chip flow angle theories 

explained in Section 3.3. Therefore, the directions of the forces are determined according 

to the new chip flow angle, as illustrated in Figure 3-8. This new chip is a function of the 

cutting parameters (width of cut, b  and feed, c ) and the tool geometry (nose radius, rε , 
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approach angle, rκ ). The new chip can be defined by introducing the approximate chord 

length, L , equivalent chip thickness, h , and chord angle, θ , where the angle stands for 

the orientation of the chip. 

The chip parameters are evaluated from Figure 3-8 as follows. 

The cusp height is: 
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 (3.11) 

The projection of the chord length in the direction of the width of cut is: 

 cuspl b h= −  (3.12) 

The projection of the chord length in the feed direction has three different expressions 

depending on the width of cut, nose radius and approach angle combination: 

If  (1 cos )rb rε κ≥ − : 
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If  (1 cos )rb rε κ< − : 

 2 2( )
2
cw r r bε ε= + − −  (3.14) 

Three parameters necessary to define the new chip become [11]: 
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where L , θ  and h  are the chord length, chord angle and the equivalent chip thickness, 

respectively. 
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The cusp area ( cuspA ) is the region which stays uncut between successive tool passes and 

it can be calculated as follows: 
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 (3.16) 

If the nose radius of the tool and the width of cut are large compared to the feed rate, the 

cusp area is negligibly small compared to the area spanned by the feed rate and the width 

of cut. Moreover, a further simplification can be made by neglecting the cusp height 

when it is very small compared to the width of cut. In that case, chip thickness becomes: 

 .sin( )cuspb c A b c l ch c
L L L

θ
⋅ − ⋅ ⋅

= ≈ ≈ =  (3.17) 

which replaces Eq.(3.15). The chip area shown in Figure 3-8 is also approximated as: 

 A L h= ⋅  (3.18) 

The forces created during the cutting operation are expressed in the tool coordinate 
system, i.e. in Figure 3-8 , ,r t a  coordinates. But the force measurements cannot be 
conducted in this coordinate frame due to equipment properties; instead, the machine 
coordinate system is introduced in , ,x y z  directions. A transformation is required 
between two frames. The transformation matrix ( mrC ) is a function of the chord angle (
θ ): 

 { } { }T T
mrCx y z r t a= ⋅  (3.19) 

where 

 
sin 0 cos

0 1 0
cos 0 sin

mrC
θ − θ⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥θ θ⎣ ⎦

 (3.20) 

The transformation matrix can be used the other way around as well. 

 { } { }T TT
mrCr t a x y z= ⋅  (3.21) 

where its inverse is equal to the transpose of it due to orthonormal columns. 
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 1

sin 0 cos
0 1 0

cos 0 sin

T
mr mrC C−

θ θ⎡ ⎤
⎢ ⎥= = −⎢ ⎥
⎢ ⎥− θ θ⎣ ⎦

 (3.22) 

The projections of the cutting forces in feed ( x ), cutting velocity ( y ) and width of cut (

z ) directions (Figure 3-8) are evaluated using mrC  [49]:  

 T
xyz mr rta rta mr xyzF C F F C F= ⋅ ⇔ = ⋅  (3.23) 

where   

 ,xyz rtaF F
x r

y t

z a

F F
F F
F F

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

 (3.24) 

Note that forces shown in Figure 3-8 are applied on the insert, and the same forces act in 

the opposite direction on the workpiece: 

 t w t w
xyz xyz xyz rta rta rtaF F F F F F= = − ⇔ = = −  (3.25) 

where w  and t  refer to the workpiece and tool, respectively. 

3.4.2 Derivation of Characteristic Equation for Plunge Turning 

The dynamics of the plunge turning process is derived to analyze its chatter stability [7], 

[48]. The displacement vector { }( ) ( ) ( ) Tx s y s z s  of the structure is expressed as: 

 

( )

( ) ( )
( ) ( )
( ) ( )

Φ

xx xy xz x

yx yy yz y

zx zy zz z

s

x s F s
y s F s
z s F s

φ φ φ
φ φ φ
φ φ φ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪= ⋅⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦���	��


 (3.26) 

where ( )Φ s  is the transfer function matrix, and { }( ) ( ) ( )
T

x y zF s F s F s  is the cutting 

force vector. Each element of the transfer function matrix ( )Φ s  can be expressed in 

terms of the modal parameters in Laplace domain: 

 
2

2 2
1

/( ) , ( , , )
2

n
ni i

pq
i i ni ni

ks p q x y z
s s

ωφ
ζ ω ω=

= ∈
+ +∑  (3.27) 
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where niω , iζ  and ik  are the natural frequency, damping ratio and stiffness of each 

mode i  respectively, and n  is the total number of modes considered. The transfer 

function can be measured in frequency domain by means of modal testing techniques. 

Modal parameters of each structural mode can be extracted from the measurement data 

by means of modal analysis. 

Note that when the tool and workpiece are both flexible, as shown in Figure 3-9, the 

cutting forces will lead to vibrations on both the work and tool sides. Since the chip is 

generated in the workpiece-tool engagement region, one needs to consider the relative 

movement of the workpiece and tool. The relative displacement of the tool tip with 

respect to the workpiece is given by: 

 

{ } { } { }

( )
( )

( )

( ) ( )

( ) ( )

( ) ( )

( )

TT wT t t t w w

t t w w
xyz xyz

t t w t
xyz xyz

t w t
xyz

Φ

xyz

Φ F Φ F

Φ F Φ F

Φ Φ F

Φ F
s

x y z x y z x y z

s s

s s

s s

s

= −

= ⋅ − ⋅

= ⋅ − ⋅ −

= + ⋅

= ⋅

���	��


 (3.28) 

where ( )tΦ s , t
xyzF , ( )wΦ s , w

xyzF  and ( )Φ s , xyzF  are tool, workpiece and relative 

transfer function and force components, respectively. 

 

Figure 3-9 : Flexibilities of workpiece and tool side on a machine tool 
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Due to flexibilities in the structure, the system is prone to vibrations during the cutting 

operation. The vibrations lead to change in the chip area and thus, the amount of material 

removal. As a result, it leads the cutting forces to fluctuate as well. Since chip 

approximation is carried out in the previous section, and the new chip is defined in 

, ,r t a  coordinates, the flexibilities in the , ,r t a  coordinates are expressed as: 

 

{ } { }

( )

( )

( )

( )
rta

T TT
mr

T
mr xyz

T
mr mr rta

Φ

rta rta

C

C Φ F

C Φ C F

Φ F
s

r t a x y z

s

s

s

= ⋅

= ⋅ ⋅

= ⋅ ⋅ ⋅

= ⋅

���	��

 (3.29) 

where ( )rtaΦ s  denotes the relative transfer function of the tool tip with respect to the 

workpiece in tool coordinates. Furthermore, ( )rtaΦ s  can be illustrated explicitly as: 

 ( )rtaΦ
rr rt ra

tr tt ta

ar at aa

s
φ φ φ
φ φ φ
φ φ φ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.30) 

where each element of Eq.(3.30) is: 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( )

( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

cos cos sin sin cos sin

cos sin

sin cos sin cos cos sin

cos sin

cos sin

cos cos sin sin cos sin

rr zz xz zx xx

rt zy xy

ra zz xz zx xx

tr yz yx

tt yy

ta yx yz

ar xz zz xx zx

at

φ φ φ φ φ

φ φ φ

φ φ φ φ φ

φ φ φ

φ φ

φ φ φ

φ φ φ φ φ

φ

= θ θ + θ + θ θ + θ

= − θ − θ

= θ θ + θ − θ θ + θ

= − θ − θ

=

= θ − θ

= − θ θ − θ − θ θ − θ

= ( ) ( )
( ) ( ) ( )( ) ( ) ( ) ( )( )
cos sin

cos cos sin sin cos sin
xy zy

aa xx zx xz zz

φ φ

φ φ φ φ φ

θ − θ

= θ θ − θ − θ θ − θ

 (3.31) 

The chip area can also be described as the region between two successive tool passes 

which are a spindle period (τ ) apart from each other. Any movement during the 

previous cut and/or the current cut will lead to a change in the chip area. However, the 
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vibrations in the cutting velocity direction ( y  in Figure 3-10) have a negligible effect on 

the chip area formation, so only vibrations in the width of cut ( z ) and feed ( x ) 

directions are considered to modulate the chip area in this study. An equivalent chip 

modulation is considered in an approximated chip as well. The combined effect of the 

two directions is regarded as vibrations in the chip flow direction in the new model, as 

illustrated in Figure 3-10. The variation in the relative distance between the successive 

cuts in the r  direction is taken as the main source of the dynamically changing forces. 

This variation also corresponds to the phase difference (ε ) between consecutive 

vibrations in the r  direction. In that sense, the dynamic chip thickness is given as: 

 [ ]( ) ( ) ( )dh t h r t r t τ= − − −  (3.32) 

where ( )r t , ( )r t τ−  and τ  refer to the current vibrations,  previous vibrations and the 

spindle period, respectively. 

In order to obtain the characteristic equation from Eq.(3.32), a relationship between 

vibrations in the r  direction and the dynamic chip thickness ( dh ) is needed. 

 

Figure 3-10 : Chip modulation and regeneration effect 

κr
b

c
θ

L

hCurrent�
cut

x

zy

r

a
t

θ

h
hd ε

cr

kr

Previous�
cut

r(t)

r(t-τ)



Chapter 3. Identification of Process Damping Coefficient 

30 
 

From Eq.(3.29) and Eq.(3.30): 

 
{ }

( )

( ) ( )

( ) ( ) ( )
r,rta

rta

Φ

r,rta rta

F

Φ F

rr rt ra

s

r s s

r s s s

φ φ φ= ⋅

= ⋅

���	��

 (3.33) 

where ( )r,rtaΦ s  is the transfer function in the r  direction only. Substituting force and 

chip area expressions from Eq.(3.9) and Eq.(3.18) into Eq.(3.33) and converting force 

into Laplace domain yield to: 

 

( ) ( ) ( ) ( )

( )
( ) ( )

1 ( )

r,rta c d

r,rta c

r,rta d

Φ K P

Φ K

Φ P

i
d

c

d
i

c

C Lr s s Lh s s r s
V

L s
r s h sC Ls s

V

⎛ ⎞
= ⋅ ⋅ − ⋅⎜ ⎟

⎝ ⎠
⋅ ⋅

= ⋅
+ ⋅ ⋅

 (3.34) 

The relation between vibrations in the r-direction and the dynamic chip thickness is 

obtained in Eq.(3.34). Note that the edge forces are dropped from the total forces 

because they do not change in time, thus they do not affect the stability of the system. 

The dynamic chip thickness in Eq.(3.32) is converted in to Laplace domain as: 

 ( )( ) 1 ( )s
dh s h e r sτ−= − −  (3.35) 

The transfer function between the static chip thickness h  and the dynamic chip 

thickness dh  can easily be obtained from Equations (3.34) and (3.35) as: 

 
( )

( ) 1
( )( ) 1 1

1 ( )

r,rta c

r,rta d

Φ K

Φ P

d

s

i

c

h s
L sh s e C Ls s

V

τ−

=
⋅ ⋅

+ − ⋅
+ ⋅ ⋅

 (3.36) 

which can be rewritten as: 

 
( )

1 ( )
( )
( ) 1 ( ) 1 ( )

r,rta d

r,rta d r,rta c

Φ P

Φ P Φ K

i

d c

si

c

C Ls s
h s V

C Lh s s s e L s
V

τ−

+ ⋅ ⋅
=

+ ⋅ ⋅ + − ⋅ ⋅ ⋅
 (3.37) 
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The right hand side of Eq.(3.37) is the transfer function of the dynamic system in s 

domain. The characteristic equation is given by the denominator of the transfer function: 

 ( )1 ( ) 1 ( ) 0r,rta d r,rta cΦ P Φ Ksi

c

C Ls s e L s
V

τ−+ ⋅ ⋅ + − ⋅ ⋅ ⋅ =  (3.38) 

The dynamics of the cutting system is represented by the block diagram shown in Figure 

3-11. 

 

Figure 3-11 : Block diagram of the dynamic plunge turning operation 
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Kurata et al.[51] first used the plunge turning operation to identify the process damping 

coefficient. In this study, Eynian’s [11] detailed approximate chip model is added and 

flexibilities in all three orthogonal directions are included in the identification method. 

The damping coefficient iC  is identified from the characteristic equation of plunge 

turning. When the cutting process is critically stable, the real part of the characteristic 

equation becomes zero, i.e. cs jω= . The system vibrates with a constant amplitude at 

chatter frequency cω . When the system is critically stable, the characteristic equation 
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c c c
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Since Eq.(3.39) has real and imaginary parts, both must be zero in order to satisfy the 

equilibrium. This suggests that for each chatter frequency, there are two possible 
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damping coefficients ( iC ): one for the real part of the equation ( ,1iC ) and one for the 

imaginary part of the equation ( ,2iC ). These are expressed in Eq.(3.40)  by using Euler’s 

formula ( cos( ) sin( )jxe x j x= + ): 

 
( ) ( ) ( )

( )( )

( )
( ) ( )

( )

,1 , , ,
, ,

, , ,

, , ,
,2

, , , ,

1

1 cos

sin
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sin

lim
i rc rr R tc rt R ac ra R

c rr I rt I

rc rr I tc rt I ac ra I

rc rr I tc rt I ac ra Ilim
i

rr R rt R rc rr R tc rt R ac

L
VC K K K

K K K

K K KVC
K K K

ωτ φ φ φ
ω φ μφ

ωτ φ φ φ

ωτ φ φ φ

ω φ μφ ωτ φ φ

⎛ ⎞+⎜ ⎟
⎜ ⎟
⎡ ⎤= ⋅ − + + −⎜ ⎟⎣ ⎦+ ⎜ ⎟

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤− + + +− ⎣ ⎦= ⋅
+ + +( ),ra Rφ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3.40) 

where limV  is the surface speed at the critically stable condition, , , ,, ,rr R rt R ra Rφ φ φ  are the 

real parts and , , ,, ,rr I rt I ra Iφ φ φ  are the imaginary parts of the corresponding transfer 

functions given in Eq.(3.31). 

The process damping coefficient is obtained by looking for a value of ω  in the 

neighbourhood of the measured chatter frequency cω  for which the following condition 

holds: 

 ,1 ,2 0i i iC C C= = >  (3.41) 

The parameters in Eq.(3.40) can be measured and calculated as follows. Cutting 

coefficients ( , ,rc tc acK K K ) can be estimated as given in Section 3.4.1. The relative 

transfer function of the structure ( , ,rr rt raφ φ φ ) can be measured by modal testing. The 

friction coefficient (μ ) is a material property, for instance it is 0.3 for steel [24]. 

However, the surface speed at the critically stable condition ( limV ) is identified from the 

plunge turning tests. The surface speed V  reduces as the tool plunges into the 

workpiece, i.e. D  reduces: 

 
60

n DV ⋅
=  (3.42) 
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where n  is the spindle speed in [ ]rpm  and D  is the diameter of the cylindrical 

workpiece in [ ]m . The critical velocity ( limV ) is distinguished when the system 

experiences a transition from an unstable cutting to a stable cutting, see Figure 3-12. 

When the speed is low, the effect of the speed dependent process damping increases and, 

after some point, this leads to a chatter free cutting operation. 

 
Figure 3-12 : Transition from unstable cutting to stable cutting 

The identification method applies the criterion given in Eq.(3.41), which is necessary but 

not sufficient for the system to be critically stable. Although the criterion is satisfied, the 

system can still be unstable. The Nyquist stability criterion is applied in order to make 

sure the dynamic system is critically stable with the identified process damping 

coefficient. A flowchart which summarizes the identification method is illustrated in 

Figure 3-13. 
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Figure 3-13 : Flowchart for identification of process damping coefficient 
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3.6 Experimental Results 

In this section, experimental studies to identify the process damping coefficient are 

presented. Since the purpose is to see the transition from unstable to stable cutting, a 

long cylindrical workpiece is used to create a flexible system which is prone to chatter. 

The frequency response function is measured by using an instrumented hammer and an 

accelerometer as presented in Figure 3-14.  

 

Figure 3-14 : Experimental setup for FRF measurement 

The cutting forces are measured using a dynamometer, and the sound created during the 

cutting operation is recorded using a microphone. The cutting experiment setup is given 

in Figure 3-15.  All of the experiments are conducted on the Hardinge Superslant turning 

machine. 

 

Figure 3-15 : Experimental setup for plunge turning tests 
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3.6.1 Identification Results 

A cold rolled AISI 1045 steel with 232 HB hardness is used during the tests. 

Specifications of the workpiece and insert, which are used in tests, are given in Table 

3.2. 

Table 3.2 : Tool and workpiece specifications 

Insert 

Type TNMA 16 04 08-KR 3205 
Nose radius [mm] 0.8 

Rake angle [°] -6 
Helix angle [°] -6 

Approach angle [°] 91 

Workpiece 
Material AISI 1045 

Diameter [mm] 41.275 
Hardness [HB] 232 

The cutting coefficients of the tool-workpiece are obtained from the chatter-free force 

measurements (Figure 3-16) and given in Table 3.3. 

 

Figure 3-16 : Cutting forces rF  and tF   for different feed rates c  at 2 mm width of cut, 2000 rpm 
spindle speed and 80 mm length of workpiece  

Table 3.3 : Cutting force coefficients for steel 1045 

2[ / ]rcK N mm 1413 [ / ]reK N mm 131 
2[ / ]tcK N mm  2530 [ / ]teK N mm 62 
2[ / ]acK N mm 0 [ / ]reK N mm 0 
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Eq.(3.31) and Eq.(3.39). The most dominant mode is at 349 Hz which is the first 

bending mode of the workpiece. 
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g) , ( )zx wφ ω  h) , ( )zx tφ ω  

i) , ( )zy wφ ω  j) , ( )zy tφ ω  

k) , ( )zz wφ ω  l) , ( )zz tφ ω  
Figure 3-17 : Measured frequency response functions of workpiece (250 mm, steel 1045) and tool in 

machine coordinates 
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Table 3.4 : Cutting conditions for process damping coefficient identification of AISI 1045 

 Quantity Symbol Size 

Set 1 
Width of cut [mm] b  0.6 
Feed rate [mm/rev] c 0.05 
Spindle speed [rpm] n 1000 

Set 2 
Width of cut [mm] b  0.7 
Feed rate [mm/rev] c 0.10 
Spindle speed [rpm] n 1000 

Figure 3-18b shows the cutting forces in the chip flow direction ( rF ) for one of the 

measurements of the first set of cutting conditions. The corresponding sound data is 

shown in Figure 3-18a. Both measurements experience an unstable cutting with large 

chatter vibrations in the beginning and a stable cutting with small vibrations after some 

time. As the workpiece diameter reduces, so does the cutting velocity, the process 

damping effect becomes dominant and transition occurs at the critical cutting velocity. In 

other words, the sound and cutting forces start attenuating after critical velocity. The 

sound and force measurements suggest that this transition happens approximately after 

13.6 seconds, which corresponds to a workpiece diameter of 18.6 mm and a critical 

cutting velocity of 58.5 m/min. 

Frequency content of the force and sound data is calculated by taking fast Fourier 

transform (FFT) of the signals. For the time range of 3 to 13 seconds, chatter vibrations 

are clearly visible and chatter frequency is 381 Hz as shown in Figure 3-19(a-c). 

However chatter vanishes for the time range of 15 to 24 seconds. Frequency content is 

not dominated by any of the frequencies as in Figure 3-19(b-d). 
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a) Sound measurement 

b) Force Measurement 
Figure 3-18 : Sound (a) and force (b) measurement in time domain with cutting conditions of set 1 as 

given in Table 3.4 

a) Sound FFT from 3 to 13 seconds (Unstable) b) Sound FFT from 15 to 24 seconds (Stable) 

c) Force FFT from 3 to 13 seconds(Unstable) d) Force FFT from 15 to 24 seconds (Stable) 
Figure 3-19 : Sound (a-b) and force (c-d) measurement in frequency domain for cutting conditions 
of set 1 as given in Table 3.4 

For the second set of cutting conditions (see Table 3.4), the sound and force 

measurements are illustrated in Figure 3-20(a-b). In that case, the transition from 

unstable to stable cutting is not as clear in the force and sound data as it is in the first set. 

However, when FFT of the force and sound data are taken for the time range of 1 to 7 

seconds, chatter can be noticed clearly at a frequency of 381 Hz, see Figure 3-21(a-c). 

For the time range of 8 to 12 seconds, chatter disappears as shown in Figure 3-21(b-d). 
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Although the contribution of chatter is not enough to distinguish it clearly in the force 

and sound measurements, frequency analysis proves that the transition from unstable to 

stable cutting exists in the second set of cutting conditions. The transition occurs at a 

time of 7.5 seconds, which corresponds to the workpiece diameter of 16.5 mm and the 

critical cutting velocity of 51.8 m/min. 

a) Sound measurement 

b) Force Measurement 
Figure 3-20 : Sound (a) and force (b) measurement in time domain with cutting conditions of set 2 as 

given in Table 3.4 

a) Sound FFT from 1 to 7 seconds (Unstable) b) Sound FFT from 8 to 12 seconds (Stable) 

c) Force FFT from 1 to 7 seconds(Unstable) d) Force FFT from 8 to 12 seconds (Stable) 
Figure 3-21 : Sound (a-b) and force (c-d) measurement in frequency domain for cutting conditions 
of set 2 as given in Table 3.4 
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Among the five tests conducted for each set of cutting conditions, the calculated critical 

velocities do not deviate more than 4 m/min. Thus, the calculated critical velocities listed 

in Table 3.5 are used for identification of the process damping coefficient. 

Table 3.5 : Critical cutting velocities for AISI 1045 steel 
 Quantity Symbol Size 

Set 1 Critical cutting velocity [m/min] limV  58.5 
Set 2 Critical cutting velocity [m/min] limV  51.8 

Having all of the parameters in Eq.(3.40), the damping coefficients can be calculated 

from the real part ( ,1iC ) and the imaginary part ( ,2iC ) of the characteristic equation at a 

range of frequencies within the neighbourhood of a chatter frequency of 381 Hz. 

Variation of the damping coefficient ( iC ) with frequency is illustrated in Figure 3-22 for 

both set 1 and set 2 conditions.   

a) Variation of ,1iC  and ,2iC  for set 1 conditions 

b)  Variation of ,1iC  and ,2iC  for set 2 conditions 
Figure 3-22 : Process damping coefficient variation in neighbourhood of chatter frequency 381 Hz. 
See Table 3.4 for cutting conditions 
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iC  values, which satisfy the condition specified in Eq.(3.41), are of interest in this case 

because only those values guarantee that both the real and the imaginary parts of the 

characteristic equation are zero. There are numerous iC  values which satisfy this 

condition throughout the frequency range. There are even 2 iC  values at frequencies 

close to the chatter frequency as shown in Figure 3-22 for each set of conditions. The 

Nyquist stability criterion is used to check whether the corresponding iC  value satisfies 

the critical stability of the dynamic plunge turning operation. The Nyquist plots of the 

characteristic equation (see Eq.(3.39)) are illustrated in Figure 3-23.  Figures (a) and (b) 

show that the system is critically stable as both of the curves pass through (0,0) without 

encircling it. Although the curves are passing through (0,0) point in figures (c) and (d),  

they also encircle (0,0) point which makes the dynamic system unstable (see section 

3.6.2 for more details). As a result, iC  values in (c) and (d) are eliminated from the 

identification procedure by the Nyquist criteria. 

a) Set 1 :  52.1718 10 /iC N m= ⋅   b) Set 2 : 52.3336 10 /iC N m= ⋅   

c) Set 1 : 50.8568 10 /iC N m= ⋅  d) Set 2 : 52.3068 10 /iC N m= ⋅  
Figure 3-23 : Nyquist diagrams of characteristic equation for conditions of set 1 and set 2. 
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Hence, there is only one process damping coefficient value estimated for each set of 

conditions. They are reasonably close to each other as summarized in Table 3.6. For the 

following sections, an average value of 52.25 10×  N/m is used for AISI 1045 steel. 

Table 3.6 : Identified process damping coefficient for AISI 1045 steel 

 Quantity Symbol Size 
Set 1 Process damping coefficient [N/m] iC  52.17 10×  
Set 2 Process damping coefficient [N/m] iC  52.33 10×  

3.6.2 Experimental Validation of Stability Chart 

The prediction of the chatter stability chart, which demonstrates the stable and unstable 

cutting conditions, is presented in this section. Given the characteristic equation, the well 

known Nyquist stability criterion [52-54] is used for the prediction of the critically stable 

width of cut and corresponding spindle speed values. The method is briefly explained 

below. The characteristic equation in Eq.(3.38) can be written as: 

( ) ( )1 0CE s H s= + =  

where ( )H s  is the open-loop transfer function. According to the Nyquist stability 

criterion, a closed loop system is stable if all the zeros of the characteristic equation are 

in the left half plane as: 

 0Z N P= + =  (3.43) 

where  

Z : number of zeros of ( )( )1 H s+  (poles of closed loop system) in the right-half plane. 

N : net number of clockwise encirclements of 1 0 j− +  point by the ( )H jω  locus. 
P : number of poles of the open-loop transfer function, ( )H s  in the right half plane. 

Poles of ( )H s  are the poles of the structure, ( ( )pq sφ  see Eq.(3.27) ) which are all stable 

(P = 0). Therefore any clockwise encirclement of 1 0 j− +  point by the ( )H jω  locus (or 

0 0 j+  point by the ( )CE jω  locus) means an unstable pole of the system. 
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For the chatter stability chart, the Nyquist criterion is employed at every width of cut and 

spindle speed value, and the closed-loop system is checked to determine if it is stable or 

not. The process damping coefficient identified in the previous section is also included 

in the prediction. Chatter tests are conducted using cold rolled AISI 1045 steel and the 

tool is replaced with a new one without much wear. Test results are shown in Figure 

3-24.  Chatter is detected when the frequency content of the sound and force 

measurement have a high amplitude around the natural frequency of the structure. When 

the amplitude at the natural frequency is relatively small or comparable with the other 

frequencies, such as the spindle’s rotational frequency, the cutting test is considered 

stable. The critically stable width of cut value is constant at 0.48 mm for all speed ranges 

when the process damping effect is neglected, which fails to predict chatter at low 

speeds. However, the cutting test results agree with the prediction of the critical stability 

at low speeds when the damping effect is included. Two samples of the sound 

measurements at low speed are shown in Figure 3-24 which represent stable and chatter 

cases. As the spindle speed increases, the effect of the process damping decreases and 

two stability curves converge. There are discrepancies between the predicted stability 

border and chatter tests after 3000 rpm spindle speed. 
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Figure 3-24 : Comparison of experimental results and the predicted chatter stability chart with two 
sample sound measurements at stable and unstable tests. Feed rate, c = 0.05 mm/rev, See Table 3.3 
and Figure 3-17 for cutting coefficients and FRF measurements respectively. 
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The identified process damping coefficient for AISI 1045 (232 HB) is compared against 

the value identified with different methods in the literature. In this study iC  value is 

estimated as 52.25 10×  N/m. Altintas and Eynian [27] implemented the in-phase 

sinusoidal excitation approach and identified the iC  value as 56.11 10×  N/m for AISI 

1045(210 HB). The experimental study carried out in [27] along with the stability 

borders predicted with the result of two identification methods are illustrated in Figure 

3-25. Although some improvement is observed with several unstable tests at a width of 

cut of 1.0 and 1.2 with the new coefficient, there are still discrepancies at the spindle 

speed of 750 rpm and 1000 rpm. 

 

Figure 3-25 : Comparison of identified process damping coefficient with the one identified in 
[Altintas, 2008]. Structural parameters: m=0.561 kg, c=145 N/(m/s), k=6.48x106 N/m, cutting 
coefficients: 1384rK = Mpa, 2580tK = Mpa. 
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3.7 Summary  

A process damping identification method is presented in this chapter. The method uses 

an approximate chip model which takes cutting parameters and tool geometry into 

account. Regeneration of the chip is assumed to be in the chip flow direction for the 

approximate chip model. The characteristic equation is derived for the dynamic plunge 

turning process including the regenerative chip thickness, speed dependent process 

damping effect, and all of the tool and workpiece flexibilities. Because the cutting 

velocity continuously changes in the plunge turning process, the critical cutting velocity 

at the transition from unstable to stable cutting is detected. The process damping 

coefficients are searched for around the chatter frequency. The detected coefficients are 

tested with the Nyquist stability criterion to verify if critical stability is reached. The 

value which satisfies the critical stability is the identified coefficient for process 

damping. The stability of the dynamic system is investigated by the Nyquist criterion 

and chatter tests are in good agreement with the predicted stability border. 
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Chapter 4  

Stability of Line Boring Operation 

4.1 Introduction 

An automotive engine is composed of many stationary parts such as a cylinder block and 

head, as well as moving/rotating parts such as pistons, crankshaft and camshaft. The 

connection between stationary and rotating parts is carried through holes in the main 

blocks. The diameter and the length of the holes depend on the engine type but, in 

general, the length of the hole varies between L=10 to 600mm, whereas the diameter 

range is between D=5 to 90mm. After drilling the hole or directly after casting, the 

precision boring operation is applied to give the final diameter to the hole. Since the 

camshaft and crankshaft are very long, they are connected to the cylinder block and 

cylinder head through several bores, as illustrated in Figure 4-1. Half of the bore is on 

the main body of the engine, the other half is a separate component called the “crank 

bearing cap” and “cam bearing cap”. The caps are mounted to the main blocks by means 

of bolts. Since the camshaft and crankshaft are two of the most critical mechanical parts 

of the engine, the quality of the camshaft and crankshaft bores is of the utmost 

importance. Especially, the crankshaft operates to transfer the power produced by the 

engine through the transmission and powertrain. Large forces are generated through the 

crankshaft, and bearings at the crankshaft bores carry the forces. Thus, crankshaft bores 

have tight tolerances considering the clearances necessary for the bearings and the 

concentricity of the axially spaced bores. 

           

Figure 4-1 : Main engine components: a) Cylinder block,  b) Cylinder head 

Crankshaft bore

Camshaft  
bore 

a- Cylinder Block b- Cylinder Head 
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Figure 4-2: Application of line boring process; machining of crankshaft bores of a 4-cylinder engine  

A special precision boring tool, called a line boring machine, is designed in order to 

machine the crankshaft and camshaft bores. This tool has a long bar on which there are 

as many axially spaced inserts as the number of bores to be machined. All of the bores 

are machined simultaneously with this tool, as shown in Figure 4-2. Various types of 

line boring tools are available, as well as customized designs for specific engines.  

The machine tool designer must consider several criteria during the design stage. The 

first criterion is the high productivity in manufacturing where the designer must think 

about the number of inserts on the line boring bar, the machine down time for setup, and 

the tool change time for each machining operation. There are line boring tools which do 

semi-finishing and finishing in one stroke of machining to increase productivity. An 

example of that type is shown in Figure 4-3. The second criterion is the surface quality 

of the final hole. In this case, misalignment of the boring tool with respect to the engine 

block and the vibrations during cutting must be taken into account. It is quite possible to 

observe chatter marks on the surface because the boring bar is very long and flexible; the 

length and diameter (L/D) ratio lies between 5 and 20.  

In this chapter, the dynamics of the line boring process is investigated in detail to predict 

the stable operating conditions. Various support conditions, as well as different insert 

configurations, are compared through simulations of the process. 

4 Cylinder Engine Block

Line Boring Bar

Support Bearings



Chapter 4. Stability of Line Boring Operation 

51 
 

 

Figure 4-3 : Line boring bar for 6 cylinder engine block, supported by guide blocks 

4.2 FE Modeling of Line Boring Bar 

In order to study the dynamics of the line boring process, the structure of the line boring 

bar should be analyzed. When the shape of the line boring bar is considered, it does not 

differ much from a shaft having different diameters along its axis, see Figure 4-2. Some 

of them also have a hole through the rotation axis of the bar in order to reduce the 

weight, as shown in Figure 4-3. 

In this study, the Finite Element Method (FEM) is applied to estimate the structural 

behaviour of the system. Since the line boring bar resembles a linear beam, it is 

considered a combination of beam elements having circular cross-sections. There are 

several beam models such as the Euler-Bernoulli beam and the Timoshenko beam 

theory. The former takes only the bending moment into account, whereas the latter 

additionally considers inertia coming from the rotation and the shear effect [55]. When 

the bar is long and thin (i.e. length/diameter (L/D) ratio is high), both of the theories give 

similar results for low frequency modes but the high frequency modes are different. As 

the L/D ratio decreases, the difference increases and the Euler-Bernoulli theory fails to 

estimate the natural frequencies accurately. This is due to the increased effect of the 

rotary inertia and shear deformation which are ignored in the Euler-Bernoulli beam 

theory at low L/D ratios. In the line boring application, the L/D ratio is high enough, 

however, the intention of this study is to develop a general model which can also be used 

for short boring heads where small L/D ratios exist. Hence the Timoshenko beam theory 

is applied throughout the rest of the thesis. The elemental mass (Melm ) and stiffness (

K elm ) matrices for 6 degrees of freedom per node (dof/node) beam element are provided 

in Appendix A [56]. For the damping of the system, reasonable damping ratio (ζ ) 

values are assumed for each mode within the range of 0.02 - 0.05. 

Guide block Crankshaft bores

Semi-finishing toolFinishing toolSpindle-side Line-boring bar
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Supporting conditions vary depending on the length of the bar. Usually, there is one 

support at the free end of the bar which is called the outboard support, see Figure 4-2. In 

addition to outboard support, there is inboard support placed between two ends of the bar 

to increase the rigidity of the structure. In order to introduce the effect of the support 

bearings on structural dynamics, the radial and axial spring elements are allowed in the 

Finite Element model at the corresponding nodes as shown in Figure 4-4a. 

         

Figure 4-4 : (a) Representation of out-board and in-board support bearings as spring elements 
having radial and axial stiffness (b) Single insert line boring tool having guiding pads 

In some applications, other than bearing elements, guide blocks are placed along the bar 

as a support component. In this case, the contact stiffness between the guide block and 

the boring bar should be known, so that it can be input into the Finite Element model. As 

an example, four guide blocks are used in the case shown in Figure 4-3. Furthermore, 

there are some types of line boring applications where there is only insert at the free end 

of the bar. The cutting operation starts with the first bore of the engine block, and one by 

one all of the bores are cut. In that case, the boring bar is supported by the previously 

machined bores with the help of guiding pads placed around the circumference of the 

boring bar, as shown in Figure 4-4b. The guiding pads have a slightly smaller diameter 

than the just machined bore. However, as discussed in [57], it is challenging to model 

the support conditions, because after the first bore it is not clear which guide pad is in 

contact with the bar during the cutting operation. In other words, the first machined bore 

is supporting the bar during the second bore cutting, but when the fourth bore is being 

cut, the second machined bore might not support the bar but only the first and third ones 

support. Given the dimensions, material properties and boundary conditions of the 

structure, the next step is the discretization of the boring bar into beam elements. After 

assembling each elemental matrix, global mass ( M ) and stiffness ( K ) matrices are 

obtained [58]. The natural frequencies ( nω ) and corresponding mode shapes (u ) are 
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calculated by solving the eigenvalue problem of a free-undamped system which is given 

by: 

 2K u M uω⋅ = ⋅  (4.1) 

From a design point of view, the support conditions have a big effect on the mode shapes 

and the natural frequencies. To see this effect, mode shapes are plotted for 3 different 

supporting conditions. Dimensions and material properties of the tool are given in  

 Figure 4-13 and  

Table 4-1 respectively. The overhang ratio (L/D) of the boring bar is 12 and the bar is 

discretized into 20 elements. The spindle side of the boring bar can be assumed as fixed 

by considering the high overhang ratio of the bar. The first case has fixed-free boundary 

conditions as shown in Figure 4-5, which does not have any real application because the 

structure is too flexible. It is presented here for comparison purposes. In this case, the 

first bending mode (at 97 Hz) is very dominant. 

 

Figure 4-5 : First 4 mass normalized mode shapes of the line boring bar at fixed-free boundary 
conditions 

The second case has outboard bearing support at the free end of the bar. The bearing is 

assumed to have only radial stiffness ( 83.85 10 / , 0r ak N m k= × = ). The first bending 

mode (at 417 Hz) is still dominant, but the effect of the other modes is comparable. The 

mode shapes and corresponding natural frequencies are shown in Figure 4-6. 
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Figure 4-6 : First 4 mass normalized mode shapes of the line boring bar at fixed-outboard bearing 
boundary conditions 

In addition to outboard support, inboard support having the same stiffness value is 

located in the middle of the boring bar in order to increase the rigidity of the structure. 

The influence of the inboard bearing is better observed in the first 2 bending modes (at 

1074 and 1541 Hz), see Figure 4-7. 

 

Figure 4-7 : First 4 mass normalized mode shapes of the line boring bar at fixed-inboard and 
outboard bearing boundary conditions 

The result of FE modal analysis is used to obtain the force-displacement transfer 

function of the bar at the tool-workpiece interaction points which are then used for 

stability prediction in the following sections. The semi-discrete time domain method 

requires the natural frequency ( nω ), damping ratio ( nζ ) of each structural mode, and the 

modal matrix which is defined as [ ]1U u u m= "  where m  is the total number of 

modes considered in the analysis. In frequency domain analysis, the Frequency 

Response Function is obtained as [7], [59]: 
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 2 2
1 , ,2

Tu uΦ( )
m

k k

k n k k n kj
ω

ω ω ζ ω ω=

⋅
=

− +∑  (4.2) 

Regardless of the number of inserts along the bar, the transfer function remains constant 

as long as the same geometric dimensions and support conditions are considered. 

Note that the spindle dynamics is also significant when the tool is not the most flexible 

component in a machine tool. The line boring bar is much more flexible than the spindle 

because it is very long. However, the proposed stability methods in the following 

sections are applicable and configurable to all of the boring types as well as short boring 

heads. Thus, one needs to consider the effect of spindle dynamics in those cases. 

Regardless of the type/length of the boring tool, if the machine is in-hand, the best way 

to obtain the transfer function is by measuring through modal testing. However, if the 

machine tool is not available during the design stage, an estimation of the transfer 

function is crucial for the design engineer. 

4.3 Cutting Forces in Line Boring Process 

The cutting forces are previously discussed in section 3.4.1 for single point cutting 

operations. In line boring operations, there are multiple inserts located radially and 

axially along the bar. As a result, all of the cutting forces must be taken into account. In 

addition to the forces, the torque created by the tangential cutting force is also included 

because the effect of the torsional vibrations is regarded as a source of the chip 

regeneration mechanism [60]. The general force model (as in Eq.(3.9)) including 

shearing, ploughing and process damping forces is written as: 

 ( )i

c

C LA L r t
V

= ⋅ + ⋅ − ⋅rta c e dF K K P �  (4.3) 

where each vector is expressed as: 
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In Eq.(4.4), the torque created by the tangential forces is added as tT R F= − ⋅ , which is 

depicted in Figure 4-8b. The radial distance from the rotation axis to the tangential force 

is denoted by R . Note the minus sign comes from the direction of the torque that is in 

the opposite direction of the spindle rotation, which is considered as the positive 

direction.  In order to cover different configurations of boring systems, a general model 

is used in this section. There are M  number of inserts located axially on the boring bar 

and superscript i  denotes the ith tool location ( 1,...,i M= ). At each tool location, that is 

ith tool, there are N number of inserts radially spaced around the circumference of the 

bar and superscript j  denotes the jth insert ( 1,...,j N= ). Furthermore, three coordinate 

frames are introduced to express the forces and the displacements. The first one is the 

fixed machine coordinate system defined for each axially located tool ( , , ,i i i ix y z φ  for ith 

tool in Figure 4-8a-b). The second one is the local coordinate frame defined for each 

insert radially spaced around the bar ( , , ,j j j jx y z φ  for jth insert in Figure 4-8b-c). The 

local frame is rotating as the angular position ( jφ ) of the insert changes. The third frame 

shows the direction of the cutting forces acting on each insert ( , , ,j j j jr t a φ  for jth insert 

in Figure 4-8c-d). The force and displacement vector can be transferred between three 

coordinate frames by means of two transformation matrices. The first transformation 

matrix ( 1T ) converts forces and displacements from ( , , ,j j j jr t a φ ) the coordinate frame 

to the local tool coordinates ( , , ,j j j jx y z φ ) of the jth insert as shown in Figure 4-8c. 

 
{ } { }

{ } { }
j j

x y z r t a jj

x y z r t a

F F F T F F F Tφ φ

φ φ= ⋅

= ⋅

T T
1

T T

1

rtaj FF

T

T
����	���
����	���


 (4.5) 

where  

 

cos( ) 0 sin( ) 0
0 1 0 0

sin( ) 0 cos( ) 0
0 0 0 1

r r

r r

κ κ

κ κ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

1T  (4.6) 
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1T  changes with the approach angle rκ . However, when the approximate chip model is 

applied, the approach angle is replaced by the flow angle (θ ) as shown in Figure 4-8d. 

The parameters of the approximate chip are given in Eq.(3.15). 

The second transformation matrix ( 2T ) converts the corresponding vectors from the 

rotating local tool coordinate frame ( , , ,j j j jx y z φ ) to the fixed machine coordinate 

system ( , , ,i i i ix y z φ ) of the ith tool location as shown in Figure 4-8b. 

 { } { }T T
2T

i j
x y z x y zφ φ= ⋅  (4.7) 

where  

  2

cos( ) sin( ) 0 0
sin( ) cos( ) 0 0

0 0 1 0
0 0 0 1

j j

j j

φ φ
φ φ

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

T  (4.8) 

2T  changes with the rotation of the bar as the instantaneous immersion angle ( jφ ) of 

insert j  varies, which is measured counter clockwise from normal ix  axis. As both of 

the transformation matrices have orthonormal columns, the inverse of them is equal to 

the transpose of them. Thus the inverse transformation is carried out as: 

 
{ } { }

{ } { }

T TT
1

T TT
2

T

T

j j

j i

r t a x y z

x y z x y z

φ φ

φ φ

= ⋅

= ⋅
 (4.9) 

The resultant force applied on ith tool is the summation of the forces created by all of the 

inserts radially spaced around the bar at the same axial location. After substituting 

Eq.(4.3) and Eq.(4.5), the resultant force acting on ith axial station becomes: 



Chapter 4. Stability of Line Boring Operation 

58 
 

 

( )

( ) ( )

1

1

1

1 1 1

( )

( )

N

N

N
j i

c

N N N
j i

c

C LA L r t
V

C LA L r t
V

=

=

=

= = =

= ⋅

= ⋅ ⋅

⎛ ⎞
= ⋅ ⋅ ⋅ + ⋅ − ⋅⎜ ⎟

⎝ ⎠
⎛ ⎞

= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎜ ⎟
⎝ ⎠

∑

∑

∑

∑ ∑ ∑

i 2 j
j

i 2 1 rta
j

j
i 2 1 c e d

j

j
i 2 1 c 2 1 e 2 1 d

j j j

Shearing forces Edge forces Process dampi

F T F

F T T F

F T T K K P

F T T K T T K T T P

�

�
����	���
 ����	���


ng forces
�����	����


 (4.10) 

When the spindle rotates at Ω (rad/s), the instantaneous immersion varies with time as 

j tφ = Ω ⋅ . The resultant force ( iF ) is time dependent, but periodic at the tooth period 

2 / Nτ π= Ω . 
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Figure 4-8 : (a) Schematic representation of line boring operation (b) Cross sectional view of ith node 
(view A-A) (c) Projected view of jth insert (view B-B) (d) Approximate chip model of jth insert 
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4.4 Stability Analysis of Line Boring in Frequency Domain 

The cutting forces result in displacement of the line boring bar. The displacements make 

the chip thickness change at each tooth period of the boring bar. If unstable cutting 

conditions are selected, the displacements trigger the regeneration mechanism and result 

in chatter vibrations. In this section, stability of the line boring process is investigated 

with two analytical methods in frequency domain, namely the Zero Order Solution and 

the Nyquist Stability criterion. 

4.4.1 Zero Order Solution 

For stability analysis, the edge forces can be dropped from the general force model 

because they do not contribute to the chip regeneration mechanism. Furthermore, if the 

speed dependent process damping forces are neglected, the stability of the line boring 

operation can be predicted analytically in frequency domain. In other words, the 

critically stable width of cut values and corresponding spindle speeds can be derived 

explicitly as it is done for the milling operation similar to the theory presented in [10]. 

After applying the aforementioned simplifications, the force acting on the ith tool 

location (Eq.(4.10)) becomes as: 

 ( )
1

N
jA

=

= ⋅ ⋅ ⋅∑i 2 1 c
j

F T T K  (4.11) 

The chip area ( jA ) can be expressed by multiplication of the dynamic chip thickness and 

the edge length as: 

 
sin( )

j j
d

r

bA h
κ

=  (4.12) 

For the chip area, geometric nonlinearity arising from the nose radius is not included. 

When the approximate chip model is used, the linear stability model becomes dependent 

on the current width of cut which prevents the prediction of stable width of cuts 

explicitly. 

The dynamic chip thickness ( j
dh ) is modulated by the current vibrations and vibrations 

one tooth period earlier, as illustrated in Figure 4-9. The influence of vibrations in xj and 
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zj directions are also discussed in Chapter 3 and illustrated in Figure 4-9(a-b). In addition 

to them, torsional vibrations ( jφ ) cause movements in the axial direction (zj) which 

result in chip thickness variation, see Figure 4-9c. Thus, the dynamic chip becomes as: 

 sin( ) cos( ) sin( ) sin( )j j j j
d r r r r

p

ch c x zκ κ κ φ κ
φ

= ⋅ − Δ − Δ − Δ  (4.13) 

where ( ) ( ) { , , , }j j j jp p t p t p x y zτ φΔ = − − ← ∈  and τ  is the tooth passing period. 

In Eq.(4.11), the sin( )rc κ⋅  term represents the rigid body motion of the cutter. Since the 

rigid body motion affects only the static deflections and forced vibrations, but not 

stability, it is dropped from the dynamic chip thickness. Thus, dynamic chip for the jth 

insert becomes:  

 3T Δpj j
dh = ⋅  (4.14) 

where  

 

{ }

cos( ) 0 sin( ) sin( )3

T

T

Δp

r r r
p

j j j j j

c

x y z

κ κ κ
φ

φ

⎧ ⎫⎪ ⎪= − − −⎨ ⎬
⎪ ⎪⎩ ⎭

= Δ Δ Δ Δ

 (4.15) 
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Figure 4-9 : Variation of chip thickness with (a) vibrations in xj direction (b) vibrations in zj (c) 
torsional vibrations ( jφ ) 

Substituting the chip thickness and the chip area into the force model, Eq.(4.11), yields: 

 
1 sin( )i 2 1 c 3

j
F T T K T Δp

N
j

r

b
κ=

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
∑  (4.16) 

Equation (4.16) shows the displacements ( p jΔ ) in rotating coordinates of the jth insert. 

Inverse transformation ( 2
TT ) can be used to express them in fixed machine coordinates 

where the frequency response of the flexible system is obtained. Thus, the dynamic force 

acting on the ith tool location becomes: 

 1 sin( )
T

i 2 1 c 3 2
j

i

F T T K T T Δp

F A ( ) Δp

N
i

r

i
i

b

b

κ

φ
=

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
= ⋅ ⋅

∑  (4.17) 

where  A( )φ  is called the directional coefficient matrix: 
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∑ cK

 (4.18) 

The variation of the elements of  A ( )i φ  with respect to the angular position of insert (φ ) 

is given in Figure 4-10 and Figure 4-11. When the number of radially located inserts is 

one or two ( 1,2N = ), most of the coefficients in A ( )i φ  vary periodically with the 

angular position, see Figure 4-10 for 1N = . However, for all insert numbers greater than 

two, the coefficients are constant, i.e. independent of the immersion angle, see Figure 

4-11 for 5N = . 

 

                       Angular position of insert (deg) 
Figure 4-10 : Variation of directional coefficients with angular position of 1 insert (N=1) 
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                     Angular position of insert (deg) 
 Figure 4-11 : Variation of directional coefficients with angular position of insert when 5 inserts are 
used around the periphery of the bar at fixed location (N=5) 

Budak [10] presented a stability solution when varying directional coefficients are 

present. Altintas [61] proved that unless the cutting process is highly intermittent, the 

average of the directional coefficients leads to as accurate stability solution as the case 

when varying directional terms are considered. In the line boring case, when insert 

number ( N ) is greater than two, the directional terms are constant, so taking the average 

does not introduce any approximation. If there are only 1 or 2 inserts, taking the average 

still does not influence the stability of the process because the cutting operation is 

continuous, and directional terms do not have short impulse-wave forms where strong 

harmonic components are present in addition to the average value. Thus, the average 

component of A ( )i φ  becomes: 
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where α  terms are: 

 

cos( )cot( ) cos( )
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2 cos( ) 2 sin( )
2 , 2

2 ,
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xy tc r yx xy

zz ac r rc r
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φ

α α
φ

α α α α α α α α

= = − −

= − = −

= −

= ⋅ =

= ⋅

= = = = = = = =

 (4.20) 

For more than two inserts ( 2N > ), taking the average yields the exact solution because 

the directional terms are time invariant, i.e. 0A =A ( )i i φ . Analytical proof of time 

invariant directional terms is given in Appendix C. For the line boring operation where 

the tool is always in contact, the entry and exit angles are 0 and 2π , respectively. In the 

case of different entry and exit angles, the proposed Zero Order Solution is still capable 

of predicting stability, but average terms must be calculated by integrating  A ( )i φ  over 

the spindle period 2π again, including a windowing function as explained in [10]. Here, 

care must be taken because the more interrupted the cutting operation is, the more 

approximation is introduced by averaging the directional terms.  

The displacement vector (Δpi ), given in Eq.(4.17), represents the relative movement of 

the tool with respect to the workpiece. Displacements are written for insert i  in fixed 

coordinate frame as: 

 0( ) ( )Δp p pi i it t τ= − −  (4.21) 

where vibrations at the present time ( t ) and previous tooth period ( t τ− ) are defined as: 
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τ τ τ τ φ τ

=

− = − − − −
 (4.22) 

Vibrations can be described at chatter frequency cω  by using the Frequency Response 

Function (FRF) of the structure: 
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 (4.23) 

where 

 

{ }
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= = −

…H
 (4.24) 

cω τ  is the phase delay between vibrations at successive tooth periods. Combining 

Eq.(4.17),(4.19),(4.21) and (4.23), the cutting force vector Fi  for each axially spaced 

insert ( thi  insert) can be expressed as: 

 ( ) { }

1

11i i i
0

F

F A H H H F

F

c c ct t
i i i ii iM i

M

e b e eω ω τ ω− − −

⎧ ⎫
⎪ ⎪
⎪ ⎪⎪ ⎪⋅ = ⋅ − ⋅ ⋅ ⋅ ⋅⎨ ⎬
⎪ ⎪
⎪ ⎪
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#
" "

#
 (4.25) 

All of the cutting force vectors can be written in an augmented matrix format as: 
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i ctω−

                                                                                                                                   (4.26) 

which turns the dynamic boring system to an eigenvalue problem: 

 [ ]det 0I DCM Φ⎡ ⎤+ Λ ⋅ ⋅ =⎣ ⎦  (4.27) 

where the complex eigenvalue is, 

 ( )1 i ic
R Ib e ω τ−Λ = − ⋅ − = Λ + Λ  (4.28) 

where RΛ  and IΛ  are the real and imaginary parts of the eigenvalue Λ . The number of 

eigenvalues is the same as the size of the overall directional coefficient matrix [ ]DCM . 

Since the size is greater than two in most of the cases, it is not possible to find an explicit 

analytical expression for eigenvalues as in [10]. Instead, they are solved numerically for 

a given chatter frequency cω . Once the eigenvalues are calculated numerically, the 

critical width of cut, limb , values are calculated by substituting 

cos( ) sin( )i ic
c ce ω τ ω τ ω τ− = −  into Eq.(4.28) as: 

 
lim

sin( ) (1 cos( )) (1 cos( )) sin( )1
2 1 cos( ) 1 cos( )

iI c R c I c R c

c c

b ω τ ω τ ω τ ω τ
ω τ ω τ

⎛ ⎞Λ + Λ − Λ − − Λ
= − +⎜ ⎟− −⎝ ⎠

 (4.29) 

However, the width of cut is a physical quantity and must be a real number. As a result, 

the imaginary part of limb  in Eq.(4.29) must be zero, 

 (1 cos( )) sin( ) 0I c R cω τ ω τΛ − − Λ =  (4.30) 

By assigning a variable κ  for the ratio of IΛ  to RΛ  and substituting κ  into Eq.(4.29), 

the critical width of cut value can be found explicitly as: 
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 ( )2
lim

1 1
2 Rb κ= − Λ +  (4.31) 

where  

 
sin( )

1 cos( )
I c

R c

ωτκ
ωτ

Λ
= =
Λ −

 (4.32) 

Eq.(4.32) is rewritten  by implementing the half angle conversions: 

 
cos( / 2) tan( / 2 / 2)
sin( / 2)

c
c

c

ωτκ π ωτ
ωτ

= = −  (4.33) 

Taking the inverse of both sides of Eq.(4.33): 

 arctan( )
2 2

c nω τπψ κ π= = − +       where     n∈]  (4.34) 

On the other hand, the total number of vibration cycles can be divided into two 

components. The first component k  is the number of full vibration cycles. The second 

component is a fraction of a full cycle, ε , which actually implies the phase shift 

between the current and previous vibration marks resulting in the regeneration of the 

chip: 

 2c kω τ π ε= +    where    0k ∈`  (4.35) 

provided that the below condition is satisfied. 

 0 2ε π≤ <  (4.36) 

When Eq.(4.35) is substituted into Eq.(4.34), ε  is extracted as: 

 2 ( ) 2n kε π π ψ= − + −  (4.37) 

Special care must be taken when calculating the inverse tangent in Eq.(4.34) with digital 

computers. When atan function (defined as / 2 atan( / ) / 2I Rπ π− < Λ Λ < ) is utilized for 

this purpose, in order to satisfy the condition given in Eq.(4.36), ( )n k−  must be zero, 

thus the phase shift becomes: 
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 2 atan I

R

ε π
⎛ ⎞Λ

= − ⎜ ⎟Λ⎝ ⎠
 (4.38) 

For each critical width of cut value calculated with Eq.(4.31), the corresponding spindle 

speed (rev/ min)n  for each stability lobe ( 0,1,..k = ) is calculated as: 

 
2 60

c

k n
N

π ετ
ω τ
+

= → =  (4.39) 

The above explained zero order stability solution usually results in as many stability 

lobes as the number of eigenvalues having a negative real part. However, when stable 

cutting conditions are of interest, the region below the critical stability border must be 

used after superimposing all of the lobes. 

4.4.2 Stability Using Nyquist Criterion with Process Damping 

The effect of process damping on stability is investigated in this section. Since the 

process damping forces in Eq.(4.3) depend on the cutting speed, the stable spindle 

speeds cannot be calculated explicitly unlike the zero order solution. However, the 

stability is checked by the Nyquist criterion at each spindle speed and width of cut pair. 

The chatter stability chart is obtained by scanning a range of spindle speeds. 

The Zero Order Solution is not able to take full chip geometry into account because of 

the geometric nonlinearity introduced by the nose radius. However, when the process 

damping force exists in the force model, the stability of the system is checked at each 

operating condition which allows the use of the approximate chip model. Thus, the 

approximate chip model shown in Figure 4-8 is implemented in this section. Details of 

the approximate chip model are provided in section 3.4.1.  

The cutting forces applied to each bore location ( iF ) in Eq.(4.10) are rewritten below: 

( ) ( )
1 1 1

( )j
i 2 1 c 2 1 e 2 1 d

j j j

Shearing forces Edge forces Process damping forces

F T T K T T K T T P
N N N

j i

c

C LA L r t
V= = =

⎛ ⎞
= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ �
����	���
 ����	���
 �����	����


 

The edge forces can be dropped because they do not affect the stability of the system: 
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⎛ ⎞
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⎝ ⎠
∑ ∑ �  (4.40) 

Where the 1T  transformation matrix is a function of the chord angle (θ ). The chord 

length ( L ), chord angle (θ ) and equivalent chip thickness ( h ) are shown in Figure 4-8 

and calculated in Eq.(3.15). Substituting the dynamic chip thickness ( j
dh  as in Eq.(4.14)), 

the chip area of each insert ( jA ) is expressed in terms of displacements ( ( )p i t , 

0 ( )p i t τ−  in Eq.(4.22)) in the fixed coordinate system as: 
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 where  ( )3T f θ=  (4.41) 

Moreover, ( )jr t�  term in the process damping force in Eq.(4.40) is transformed into the 

fixed frame as: 
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��
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 (4.42) 

where 4T  is defined as: 

 4 cos( ) 0 sin( ) sin( )T
p

cθ θ θ
φ

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 (4.43) 

By substituting Eq.(4.41) and Eq.(4.42) into Eq.(4.40), the dynamic force vector 

becomes: 

 0( ) ( ) ( )i τ vF J p J p J pi i i i i it t tτ= ⋅ + ⋅ − + ⋅ �  (4.44) 

where direct ( Ji ), delay ( τJ i ), and process damping ( vJ i ) gain matrices are: 
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2 1 c 3 2

j
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J J
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i i
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i i
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C L
V

=

=
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= −

⎛ ⎞
= − ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

∑

∑

 (4.45) 
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Similar to the directional coefficient matrix ( A ( )i φ  as in Eq.(4.18)), process gain 

matrices are time-variant and periodic at the tooth passing period (τ ) because 2T  is a 

function of the rotation angle (φ ). In order to investigate the stability, the average of 

each matrix is calculated which makes the dynamic line boring system time-invariant. 

The average direct and delay gain matrices ( J i , τJ i ) are: 

 

2

0

0 0
0 01

0 0 2 22 2
0 0 2 2

τ

J J ( )

J J

xx xy

yx yyi i

zz z

z

i i

Nd L
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φφ

φ φφ

α α
α α

φ φ
α απ
α α

=

=

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⋅ = ⋅ ⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

= −

∫  (4.46) 

where 

 

2

2
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sin( )
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c

φ

φ
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α α θ θ θ

α θ α α

α θ θ θ

α α
φ

α θ

α α
φ

= = − −

= − = −

= −

= ⋅

=

= ⋅

 (4.47) 

Similarly, the average of the process damping gain matrix ( vJ i ) is: 

 
2

0

0 0
0 01

0 0 2 02 2
0 0 2 0

v vJ J ( )

xx xy

yx yyi i i

zzc

z
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=
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∫  (4.48) 

where 
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2

2

cos ( )

cos( ),

sin ( ), sin( )

,

xx yy
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z zz z
p p

R
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φ
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α μ θ α α

α θ α μ θ
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φ φ

= = −

= − = −

= − =

= ⋅ = ⋅

 (4.49) 

By substituting the average terms into Eq.(4.44) and transforming them into the Laplace 

domain as: 

 ( ) ( ) ( ) ( )τ
τ v

A

F J J J p A p

i

i i s i i i
i is e s s s−= + + ⋅ = ⋅

����	���
  (4.50) 

where A i  stands for the average directional coefficient matrix for the thi  bore location. 

The transfer function of the whole line boring structure can be placed into Eq.(4.50) as: 
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 (4.51) 

From Eq.(4.51) the characteristic equation of the dynamic system is represented as: 

 [ ] [ ]( )4 1
det ( ) 0I DCM Φ

M
s

×
− ⋅ =  (4.52) 

At each cutting condition, the stability of the system represented by the characteristic 

equation is investigated using the Nyquist stability criterion in frequency domain (

cs jω→ ). Details of this method are discussed in section 3.6.2. 
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4.5 Analysis of Line Boring with Semi Discrete Time Domain Solution 

The line boring process is investigated in frequency domain in previous sections. Stepan, 

[33], presented an analytical method called Semi-Discretization (SD) to solve the 

stability of delayed periodic systems like milling in time domain. The main advantage of 

the SD method is that periodic directional coefficients are taken into account without 

taking their average. Since directional terms are also time varying and periodic in the 

line boring process when the number of radially spaced inserts is less than 3 (i.e. 3N <

), the SD method is utilized in this section for stability analysis. In addition to stability, 

the SD method can be used to predict the vibrations and cutting forces when the linear 

force model is considered. 

The total cutting forces acting at the 
thi  bore location (Eq.(4.10)) are given below: 

 ( ) ( )
1 1 1

( )j
i 2 1 c 2 1 e 2 1 d

j j j

Shearing forces Edge forces Process damping forces

F T T K T T K T T P
N N N

j i

c

C LA L r t
V= = =

⎛ ⎞
= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠
∑ ∑ ∑ �
����	���
 ����	���
 �����	����


 (4.53) 

iF  can be expressed in machine coordinates by using a similar transformation given in 

Eqs.(4.41)-(4.45). 

 0( ) ( ) ( ) ( )i τ vF J p J p J p Gi i i i i i
it t t tτ= ⋅ + ⋅ − + ⋅ +�   with    1,..,i M=  (4.54) 

where , ,τ vJ J Ji i i  are process gain matrices, and the stationary cutting force vector ( )G i t  

which includes the edge forces and forces arising from the rigid body motion of the line 

boring bar is: 

 ( ) ( )
1 1

( ) sin( )2 1 c 2 1 e
j j

G T T K T T K
N N

i t L c Lθ
= =

= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅∑ ∑   (4.55) 

The governing equation of motion (EOM) of the line boring process is written in the 

machine coordinate system as: 

 
0

( ) ( ) ( ) ( , )
( ) ( ) ( ) ( ) ( ) ( ) ( )τ v

M p C p K p F
M p C p K p J p J p J p G

t t t t
t t t t t t t

τ
τ

⋅ + ⋅ + ⋅ =
⋅ + ⋅ + ⋅ = ⋅ + ⋅ − + ⋅ +

�� �
�� � �

 (4.56) 

where the total force vector , ( , )F t τ , is constructed by writing the individual forces ( iF ) 

in an augmented matrix form and M, C, K  refer to mass, damping and stiffness 
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matrices respectively. The process gain matrices ( J , τJ , vJ ) of the whole line boring 

structure are introduced as: 

 

1 1 1
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 (4.57) 

In order to apply the SD method, the governing EOM (Eq.(4.56)) is transformed into 

modal coordinates using mass normalized modal matrix ( U ): 

 0( ) ( ) ( ) ( ) ( ) ( ) ( ),τ ,vI q C q K q J q J q J q Gq q q q q qt t t t t t tτ⋅ + ⋅ + ⋅ = ⋅ + ⋅ − + ⋅ +�� � �  (4.58) 

where 
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 (4.59) 

The transformation above is carried out by implementing the orthogonality property of 

the modes and assuming proportional damping [62], [59]. Subscript q  denotes the 

modal coordinate system. Note that the complete modal matrix ( U ) is introduced in 

Eq.(4.58) and (4.59) but the incomplete modal matrix ( 'U ) can be used as well by 

considering only the dominant modes of the structure. That makes the size of the 

matrices smaller, and computational efficiency can be achieved with an expense of 

ignoring higher modes. This is applicable for the line boring structure because the first 

two modes are dominant, thus the higher modes can be neglected without losing 
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significant data. The governing EOM is rearranged by taking the common terms in one 

group and leaving the retarded vibrations and static component on the right hand side of 

Eq.(4.58) as: 

 ( ) ( ) 0( ) ( ) ( ) ( ) ( ),v ,τI q C - J q K - J q J q Gq q q q q qt t t t tτ⋅ + ⋅ + ⋅ = ⋅ − +�� �  (4.60) 

The order of the delayed differential equation (DDE) can be reduced by transforming 

into the state space format: 
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� ) ( )St tτ− +

 (4.61) 

where displacement ( 1 ( )q t ) and velocity ( 2 ( )q t ) vectors are defined as: 

 
1 1
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2 2 2
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( ) ( )( ) , ( )

qq q q
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= =

= =

�

�
 (4.62) 

The SD method requires the delay period τ  to be discretized in time. Thus, τ  is divided 

into k  number of discrete time intervals. 

 k tτ = ⋅Δ  (4.63) 

The most important aspect of the SD method is that it converts the time varying DDE 

given in Eq.(4.61) into many ordinary differential equations (ODE) with constant 

coefficients by approximating the delayed displacement vector ( ( )r t τ− ) as a linear 

combination of the delayed discrete values. Let the value of ( )r it  at time it  be ri  and 

( )r it τ−  be ri k−  as shown in Figure 4-12. Then, when the time interval is small enough, 

the delayed term can be approximated as: 
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 1( )
2

r rr i k i kt τ − − ++
− ≈       if      [ ]1,i it t t +∈   (4.64) 

It should be noted that the higher order approximation of the delayed term is also used in 

literature, as presented by Insperger [63]. The same as the delayed term, if time interval 

is chosen to be sufficiently small, the time dependent state matrices ( )L t , ( )R t  and ( )S t  

can be approximated as constant in each time interval. 
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    if   [ ]1,i it t t +∈  (4.65) 

As a result, by substituting (4.64) and (4.65) into (4.61), the DDE is reduced to an ODE 

in the small time intervals as: 

 1( ) ( )
2

r rr L r R Si k i k
i i it t − − ++⎛ ⎞= ⋅ + ⋅ +⎜ ⎟

⎝ ⎠
�      if     [ ]1,i it t t +∈    (4.66) 

 

Figure 4-12 : Discretization of periodic vibrations at each semi-discrete interval 

The exact solution of the first order ODE (4.66) can be evaluated at each semi-

discretization interval (i.e. 1i it t t +< < ). Details of the solution are provided in Appendix 

B.  The solution is presented below as a recursive equation: 
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 ( )1 ,1 ,2 1 ,3r N r +N r  + r Ni i i i i k i k i+ − − += ⋅ ⋅ +  (4.67) 

where the coefficient matrices: 
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 (4.68) 

This recursive expression indicates that the next state vector ( 1ri+ ) can be expressed in 

terms of the current state vector (ri ) and one tooth period (τ ) earlier state vectors (ri k− , 

1ri k− + ) of the dynamic system. 

4.5.1 Chatter Stability Analysis Using Semi-Discretization 

The stability of the dynamic line boring process is investigated by employing the SD 

method. As it is the case in frequency domain analysis, the static component of the force 

( ( )G i t  in Eq.(4.55)) is dropped because it does not influence the instability of the 

system. Thus, the derived first order ODE (Eq.(4.66)) in small time steps becomes as: 

 1( ) ( )
2

r rr L r R i k i k
i it t − − ++⎛ ⎞= ⋅ + ⋅⎜ ⎟

⎝ ⎠
�      where    [ ]1,i it t t +∈    (4.69) 

The solution of Eq.(4.69) is obtained in the same way as it was in the previous section. 

The only difference is that the static force vector (S i ) does not appear in the solution. As 

a result, the recursive equation for the next state vector has the form: 

 ( )1 ,1 ,2 1r N r +N r  + ri i i i i k i k+ − − += ⋅ ⋅  (4.70) 

where the coefficients ,1 ,2,N Ni i  are given in Eq.(4.68). If the series of equations is 

written at each time step ( tΔ ) within one tooth period (τ ) of time by using this 

recursive equation, a discrete map can be constructed as: 

 1Γ Θ Γi i i+ = ⋅  (4.71) 

where 
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 (4.72) 

The size of the transition matrix Θ i  is 2 ( 1) 2 ( 1)x q k q k+ +  and ,q k  denote the number 

of structural modes considered and number of discretizations, respectively. However, a 

simplification can be applied to reduce the size of the transition matrix [33]. Since 

0 ( )q t τ−�  does not appear in the EOM (see Eq.(4.58)), the second column of matrix R i  

is zero, so is the second column of matrix ,2N i . Thus, 1ri+  does not depend on 1q i k− +�  and 

q i k−� . For this reason, a new vector (Γi
� ) is defined instead of Γ i  as: 

 { }1 2
TΓ q q q q qi i i i i i k− − −=� � "  (4.73) 

where the size of Θ i
�  and Γi

�  is reduced to ( 2) ( 2)x q k q k+ +  and ( 2) x 1q k +  

respectively. The transition over the tooth period τ  is determined by coupling each 

transition matrix Θ i
�  as illustrated in Figure 4-12 and given by: 

 Γ = Θ Γi k iτ+ ⋅�� �  (4.74) 

where the overall transition matrix is 1 2 1Θ Θ Θ Θ Θi k i k i iτ + − + − += ⋅ ⋅� � � � �" . Here each transition 

matrix should be calculated at its own time interval because of the time varying periodic 

process gain matrices , ,τ vJ J J  in Eq.(4.56). But it is sufficient to calculate transition 

matrix over one tooth period due to the periodic nature of the cutting operation, i.e. 

Θ Θkτ τ+ =� � . 

The stability of the dynamic system can be investigated by calculating the eigenvalues of 

the transition matrix Θτ
�  based on the Floquet Theory. The system is stable if all of the 

eigenvalues have modulus less than one, critically stable if all of them have unity 

modulus and unstable if any of the eigenvalues have modulus greater than one. In order 

to obtain a stability chart, a range of spindle speeds and width of cut values must be 
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scanned. In that sense, a matrix size reduction carried in Eq.(4.73) is very useful in terms 

of computational efficiency because the stability is inspected repeatedly at each cutting 

condition. 

At low spindle speeds, which correspond to high stability lobes, there are many vibration 

waves left on the surface. In order to capture those vibrations in the SD stability analysis, 

one has to increase the number of divisions in one period, i.e. high k  value. This results 

in computational difficulties because the size of the transition matrix becomes very big 

and the computation time increases as well. 

4.5.2 Prediction of Cutting Forces and Vibrations in Time Domain 

The time domain simulation of linear cutting processes is also possible using the Semi 

Discretization method. Unlike the stability analysis, the static component of the total 

force vector should be accounted for in the vibration prediction, that is ( )G i t  in 

Eq.(4.55). The reason for this is that the static component brings in forced vibrations 

which cannot be ignored in the transient part of the time domain simulation. The 

recursive equation obtained by solving the DDE in small time intervals can be used to 

calculate the state vector at the next time step that requires three state vectors ( ri , ri k−  

and 1ri k− + ) as shown below:  

 ( )1 ,1 ,2 1 ,3r N r +N r  + r Ni i i i i k i k i+ − − += ⋅ ⋅ +  (4.75) 

During the first tooth period, there is not any regenerative effect introduced to the 

process because the cutting surface is assumed to be free of vibration marks initially. 

Thus, during the first tooth period which corresponds to the first k  state vectors, state 

vectors from the previous pass  (ri k−  and 1ri k− + ) have zero value but still forced vibrations 

exist, and it determines the displacements and velocities of the next state vector, 1ri+ . 

After calculating the states of the first tooth period using Eq.(4.75), ri k−  and 1ri k− +  are 

effective in the system and they introduce the regenerative vibrations to the time domain 

simulation for the successive state computations. In this way, the vibrations and the 

velocity of vibrations can be predicted in modal coordinates which can be transformed 



Chapter 4. Stability of Line Boring Operation 

80 
 

into the machine coordinate system by multiplying them with the modal matrix V  

obtained in section 4.2. 

After the vibrations are predicted as explained above, the cutting forces can be 

calculated by simply substituting the discrete vibrations and velocities into the cutting 

force expression given in Eqs.(4.56)-(4.57): 

 0( , ) ( ) ( ) ( ) ( )τ vF J p J p J p Gi i i k i it t t t tτ −= ⋅ + ⋅ + ⋅ +�  (4.76) 

which gives force vector at time it . By repeating this calculation for several spindle 

revolutions, the cutting forces are predicted. 

Note that the time domain simulation presented above does not take tool jump into 

account, which happens when excessive vibrations are present in the system. Tool jump 

introduces non-linearity to the cutting process, and cutting forces are not generated when 

the tool is out of cut. This is not addressed in the above proposed method.  

Examples of the vibration and force prediction are presented in section 4.6.1 for both 

unstable and stable operating conditions. 

4.6 Simulation Results 

The proposed methods are compared at different cutting conditions. A 4 cylinder engine 

is considered as a case study; however, note that the model is reconfigurable to any other 

type of boring operation. For example, when the axially located insert number is one (i.e.

1M = ), the model represents a boring head. When the engine has many cylinders, the 

length of the bar also increases. Thus, machine builders put additional support bearings 

to make a more rigid structure. When the stiffness information of the bearings is 

available, this can be input to the FE model and proper FRF can be estimated.  

Table 4-1 shows all of the simulation parameters including the insert geometry and 

cutting force coefficients. 
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Table 4-1 : Simulation parameters: Insert geometry, cutting conditions, workpiece properties 

Parameter Value Unit 
Approach angle ( rκ ) 80 [ ° ] 

Feed-rate ( c ) 0.05 [mm/rev/tooth]
Nose radius ( rε ) 0.4 [mm] 

Cutting Coefficients (Table 3.3 ) 
, ,rc tc acK K K  
, ,re te aeK K K  

 
1413,  2530,  0 

131,  62,  0 

 
[N/mm2] 
[N/mm] 

Process damping coefficient (Table 3.6) 
( iC ) 2.25 x 105 [N/m] 

Bearing stiffness in radial direction ( rk ) 3.85 x 108 [N/m] 
Line Boring Bar: 

Radius (R) 
Young’s Modulus (E) 

Poisson’s ratio ( v ) 
Density ( ρ ) 

 
25 
200 
0.3 

7850 

 
[mm] 
[GPa] 

[ ] 
[kg/m3] 

Damping ratio for each mode (ζ ) 0.03 [ ] 
 

4.6.1 Comparison of Stability Prediction Methods 

Three different methods are proposed for line boring stability prediction, namely the 

Zero Order Solution, the Nyquist Stability Method, and Semi-Discretization. The first 

one is easy to apply and computationally fast compared to the others, but it does not 

consider the effect of insert geometry on the chip flow and process damping forces. The 

main difference between the Nyquist Method and Semi-Discretization is that, unlike the 

Nyquist Method, Semi-Discretization is able to consider the time varying directional 

factors which exist in the system when there are less than 3 inserts at each bore location. 

A 4-cylinder engine shown in Figure 4-2 is considered for simulations. There are 5 

axially spaced inserts ( 5M = ) and at each bore location there is only one insert ( 1N = ). 

Insert locations along the line boring bar are given in  
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 Figure 4-13, as well as the cross sectional views. In this particular example, all of the 

inserts are in the same orientation with respect to each other. For supporting conditions, 

the first node of the bar (marked as 1 in  

 Figure 4-13) is assumed to be fixed because it is close to the spindle which is less 

flexible than the line boring bar. The free end of the boring bar is supported with a 

bearing at node 7. The Finite Element model resulted in bending modes presented in 

Table 4-2. 

Table 4-2 : First 5 natural frequencies of bending modes 

 1st Mode 2nd Mode 3rd Mode 4th Mode 5th Mode 
Bending Mode [Hz] 492 1488 2336 3057 4787 

 

 

 Figure 4-13 : Dimensions of line boring bar for a 4-cylinder engine 
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speed dependent process damping force is neglected there. The Nyquist Stability Method 
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SD adjust the cutting force directions for the stability solution. The chip flow angle is the 

key parameter for the chatter stability prediction because it determines how much the 

cutting forces are projected into the chip thickness direction. As the chip flow angle 

decreases, the forces are directed toward the radial direction of the boring bar which is 

more flexible than the axial direction. However in ZOS, the chip flow angle is assumed 

to be constant and equal to the approach angle rκ  which is 80 degrees in this case. At a 

low speed range, the stable region gets larger in the NSM and SD predictions due to 

process damping. The difference between two comes from the time varying directional 

coefficients which are taken into account in the SD method but only average terms are 

used in the NSM. This difference resulted in a very small difference at high speed 

predictions which can be neglected, but the difference is significant at low speeds where 

the process damping is effective. The chatter frequency figure shows that the first 

bending mode dominates the chatter vibrations. 

 

Figure 4-14 : Stability chart and chatter frequencies. Comparison of three stability prediction 
methods: Zero Orders Solution, Nyquist Method and Semi-discretization. See Table 4-1 and Figure 
4-13 for cutting conditions 
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The vibrations and forces in the machine coordinate system are predicted by methods 

developed in section 4.5.2. One stable and one unstable condition (marked as A and B in 

Figure 4-14) are simulated in the time domain for 15 spindle revolutions. Simulation 

results are plotted in Figure 4-15 and Figure 4-16 respectively. Both of them experience 

the transient vibrations during the first two revolutions, but after that case A becomes 

fully stable. On the other hand, regenerative vibrations are dominant in case B and both 

displacements and forces grow rapidly. 

 

 

 

Figure 4-15 : Displacement and force simulation using Semi Discretization time domain method for 
condition A in Figure 4-14 (Width of cut = 1.5mm, Spindle speed = 250rpm, first 15 revolutions are 
presented, 4th node in Figure 4-13) 
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Figure 4-16 : Displacement and force simulation using semi discretization time domain method for 
condition B in Figure 4-14 (Width of cut = 1.5mm, Spindle speed = 750rpm, first 15 revolutions are 
presented, 4th node in Figure 4-13) 
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considered as in milling. Thus, as the productivity increases with the number of inserts, 

the instability problems may arise in the cutting process. The NSM and SD results are 

shown in Figure 4-14, Figure 4-19 and Figure 4-20 for cases a, b, c shown in Figure 4-17 

respectively. Both the NSM and SD show the same trend as it is seen in ZOS when more 

inserts are used at each bore location. However, since the limit width of cut values are 

very small, it is hard to distinguish the difference in most of the spindle speed range. 

When 1-insert (N=1, Figure 4-14) and 2-insert (N=2, Figure 4-19) cases are analyzed, it 

is again clear that SD and NSM show a very small difference at high speeds but a large 

difference at low speeds, i.e. below 1000 rpm. But the 3-insert (N=3, Figure 4-20) case 

demonstrates that NSM and SD predictions match at high speeds as well as low speeds. 

This is an expected result because the time varying coefficients become time invariant 

when there are 3 or more inserts at each bore location, i.e. N൒3 as discussed in section 

4.6.1. 

 

Figure 4-17 : Pictorial representation of line boring bar having different number of insert at each 
bore location (N=1,2,3), cross sectional and detailed views. 
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Figure 4-18 : Comparison of number of inserts with Zero Order Solution for cases given in Figure 
4-17. Case (a) : 1 insert (N=1), Case (b) : 2 inserts (N=2) and Case (c) : 3 inserts (N=3) 

 

Figure 4-19 : Comparison of stability charts when there are 2 inserts (N=2) at each bore location, see 
Figure 4-17-b. Process damping effect is included. 
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Figure 4-20 : Comparison of stability charts when there are 3 inserts (N=3) at each bore location, see 
Figure 4-17-c. Process damping effect is included. 
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in the line boring application, directional terms in radial directions (axx, axy, ayx and ayy) 

are the key parameters where stability is concerned. But all of the four terms are 180° 

periodic, so the phase shift does not introduce any difference to the dynamic system, and 

case (a) and case (b) give identical results. Case (c) obviously is the worst angular 

orientation among the 3 cases according to the stability results. 

 

Figure 4-21 : 1 insert at each bore location (N=1) (a) All of the inserts have view A-A orientation. (b) 
inserts at nodes 1,3,5 have view A-A, nodes 2,4 have view B-B orientation (c) inserts at nodes 1,3,4 
have view C-C, nodes 2,4 have view B-B orientation 

 

Figure 4-22 : Stability comparison for case a-b-c in Figure 4-21. (N=1) 
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A similar approach is employed for the 2-insert condition. Insert configurations are 

illustrated in Figure 4-23. Case (a) has the same orientation for all inserts, whereas a 90° 

angular difference exists from one insert to the next one in case (b). Since directional 

terms are still time variant and periodic at 180°,  the ZOS and NSM are not able to 

capture the difference; only the SD method can capture that. Thus, the SD results are 

shown in Figure 4-24 along with the NSM results. Case (b) resulted in almost the same 

stability border with the NSM. However, case (a) differs from case (b) especially at low 

spindle speeds and gives higher stable width of cut values. 

 

Figure 4-23 : 2 inserts at each bore location. (a) All of the inserts have view A-A orientation. (b) 
inserts at nodes 1,3,5 have view A-A, nodes 2,4 have view B-B orientation 

 

Figure 4-24 : Stability comparison for case a-b in Figure 4-23. ( 2N = ) 
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all inserts, but case (b) has inserts which are oriented with a 60° angular phase 

difference. It is previously mentioned that when the insert number at each bore location 

is greater than two, the directional coefficients turn into time-invariant values and are 

equal to the average terms. Thus, case (a), case (b) and NSM should theoretically result 

in the same stability border. Results are illustrated in Figure 4-26 and, as expected, all 

three gave exactly the same stability border. 

 

Figure 4-25 : 3 inserts at each bore location (N=3) (a) All of the inserts are oriented same as view A-
A. (b) inserts at nodes 1,3,5 have view A-A, nodes 2,4 have view B-B orientation 

 

Figure 4-26 : Stability comparison for case a-b in Figure 4-25. ( 3N = ) 
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The dimensions of the boring bar and the insert locations are shown in Figure 4-27. 

Other simulation parameters are the same as the ones used in previous sections. Angular 

orientation of the inserts is kept the same in order to see the support effect on chatter 

stability. 

 

Figure 4-27 : Dimensions of line boring bar for a 5-cylinder engine, one insert for each bore (N=1), 
dimension are in mm. D1 = 50mm, D2 = 100mm 

The outboard bearing is placed at three different positions on the bar; those being the 

11th, 9th and 7th node of the bar as seen in Figure 4-28. All three cases are modeled as 

beam elements, and radial spring elements are added at the corresponding bearing 

locations. The first four bending natural frequencies are listed in Table 4-3 and mass 

normalized mode shapes are shown in Figure 4-29. The only difference between those 

three cases is the FRF at the cutting points. 

Table 4-3 : First 4 natural frequencies of bending modes for cases in Figure 4-28 

Bending Modes [Hz] 1st Mode 2nd Mode 3rd Mode 4th Mode 
Case (a) 438 1337 2233 2758 
Case (b) 523 904 1833 3088 
Case (c) 318 1086 1881 2816 
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Figure 4-28 : Different support conditions: out-board support is at (a) node 11, (b) node 9, (c) node 7 

 

Figure 4-29 : Mass normalized bending mode shapes for 3 different support conditions, see Figure 
4-28 for support conditions 
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Figure 4-30 : Comparison of support conditions using Zero Order Solution. See Figure 4-28a, b, c 
for bearing locations. 

 

Figure 4-31 : Comparison of support conditions using Nyquist stability criterion. See Figure 4-28a, 
b, c for bearing locations. 
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which ended up giving higher stability border do not necessarily mean that they are 

always the best insert configurations. It totally depends on the mode shapes of the 

dominant structural modes. The support conditions change the mode shapes 

considerably. In simulations, only the cases which have the same number of inserts at 

each bore location are examined. In those cases, the delay time is same for all cutting 

locations. Although there is not a line boring tool that has a different number of inserts at 

each station, i.e. delay time is not the same, the stability of those can still be analyzed by 

using Nyquist Stability Method by changing the delay for each cutting point. 
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4.7 Summary 

In this chapter, the mechanics and dynamics of the line boring operation are presented. 

The method uses a similar force model as presented in the previous chapter. However, 

forces generated at each bore location are taken into account for the dynamic analysis. 

The transfer function at the cutter locations is estimated using the Finite Element beam 

theory. The stability of the process is investigated in frequency domain, as well as in 

time domain. In frequency domain, the Zero Order Method provides a very fast solution, 

although the directional terms are approximated by their average, and speed dependent 

process damping forces are neglected. The Nyquist Stability Method predicts stability 

when the process damping effect is included, but the average directional terms are used. 

Semi-Discretization investigates the stability in time domain by approximating the delay 

term at small time intervals. The time varying directional coefficients and process 

damping are accounted for in this method with an expense of increased computational 

time. The vibrations and cutting forces are predicted with Semi-Discretization method as 

well. Different insert, support, and angular orientation cases are compared extensively. 

The line boring model presented here represents the big picture of all boring types, but 

this model can be easily adapted to other types.  
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Chapter 5  

Conclusions 

The thesis presents an identification technique for the process damping coefficient and a 

comprehensive dynamic model of the line boring process, including process damping.  

The need for stability prediction in machining operation leads to the modeling of the 

mechanics and dynamics of each process. Although the predictions are quite satisfactory 

for high speed machining, low speed stability remains difficult to estimate because of the 

tool flank-workpiece contact mechanism known as process damping. The relationship 

between the workpiece material and process damping is introduced to the system with a 

coefficient. Previous research used either a fast oscillator device designed for this 

purpose which is impractical, or indentation tests under static conditions which do not 

represent the real dynamic cutting. A simpler identification process is proposed in this 

thesis. The method is carried out by cutting a long cylindrical workpiece with a regular 

plunge turning (face turning) setup. Since process damping is dominant at low speeds, 

the transition from less damped speed to highly damped speed is possible if the vicinity 

of critical speed is scanned. The plunge turning process has the capability to scan a wide 

range of surface speed as the diameter of the workpiece is proportional to the surface 

speed. After the critical surface speed is detected using a microscope and force sensor 

during chatter tests, the process damping coefficient can be identified from the 

characteristic equation of the dynamic process around the chatter frequency observed in 

the tests. In the case of more than one candidate value, the critical stability must be 

checked using the Nyquist plot of the characteristic equation and then incorrect values 

can be eliminated. The influence of the process parameters and tool geometry on the 

chip flow direction is added to the dynamic system by describing an approximate chip 

model. The stability is solved by using the Nyquist stability criterion including the 

identified process damping coefficient, and experimental results agree with the predicted 

stability border at low speeds. Eventually, this model predicts the vertical chatter free 

speed limit, and in this range, the main limitation for machining hard materials becomes 

tool wear rather than instability. 
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The dynamic analysis of the line boring process has never been addressed in the past. 

The process differs from other boring operations because, unlike others, there are 

multiple cutters located along the long boring bar where the structural dynamic 

characteristics can be quite different, and cross talk between each bore location is 

significant. The transfer function at each bore location was estimated by using the finite 

element beam theory. The frequency and time domain stability prediction methods are 

proposed in this thesis. The Zero Order Solution, as one of the frequency domain 

methods, predicts the critical stability border very quickly, although average directional 

terms are used and the speed dependent process damping effect is neglected. This fast 

solution gives insight to the stability border and, because it is fast, different conditions 

can be compared easily. The Nyquist stability criterion is second frequency domain 

method where, in addition to the Zero Order Solution, the process damping effect and 

approximate chip model can be added. Semi Discretization solves the stability in the 

time domain where, instead of the transfer function, the dynamic parameters are used in 

the governing differential equation. The semi-discrete solution is able to capture the 

effect of time varying directional terms unlike the frequency domain methods presented, 

but it costs increased computational time. Different angular orientation of the inserts 

clearly showed that the time varying coefficients have a significant effect on chatter 

stability at low speeds. Besides stability, vibrations and linear dynamic cutting forces 

can be predicted by using the semi-discrete method as well. The proposed model can be 

configured to any insert configuration, support location, and different size of the boring 

bar easily, as it is presented in the results section. This gives the opportunity to 

investigate the stability of the system at the design stage. 

For line boring stability, the chip flow angle is the key parameter because it determines 

the contribution of flexibilities in different directions on the chip regeneration 

mechanism. Since the line boring bar is very long, vibrations in the radial direction are 

severe. As the approach angle increases, so does the chip flow angle, and the influence 

of radial vibrations decreases. Thus, the approach angle of the insert should be 90° for 

the minimum radial vibration effect. As the nose radius increases, cutting forces are 

directed to the radial direction again. Thus, inserts having small nose radius should 

be selected. 
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As  the  number  of  radially  spaced  inserts  at  each  bore  station  increases,  the 

minimum critically stable width of cut value decreases.  At this point, the designer 

has  to make a  compromise between  stability  and productivity while deciding  the 

number  of  inserts.  The  insert  configurations mentioned  in  the  thesis  have  same 

number of inserts at each station. The proposed Nyquist Stability Method is able to 

predict  the  stability  in  the  case  of  different  number  of  inserts  at  each  station 

although there is not any line boring tool with this configuration. 

The angular orientation of inserts with respect to each other has a significant effect 

on  stability  at  low  speed. The best  orientation  should be determined  considering 

the  dominant  bending  modes  of  the  structure  which  change  with  the  support 

conditions. 

Future work includes chatter tests that must be carried out for verification of the 

proposed stability methods used in the line boring process. The proposed model is only 

capable of predicting stability when inserts are evenly distributed around the 

circumference of the bar, i.e. uniform pitch angle. A further study can be done to solve 

the stability of non-uniform pitch angle cases. An algorithm to find the optimum bearing 

locations can be studied to maximize the stable cutting conditions.  
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Appendix A 

Timoshenko Beam Element Formulations 

 

Figure A-1 : Timoshenko Beam Element 

Figure A-1 shows a 6 dof/node beam element where geometric and material properties 

are listed as: 

elml  : length of the beam element 

elmA  : area of the cross section 

elmI  : second moment of area of element’s cross section 

elmρ  : density of the material 

elmE  : Young’s modulus 

elmG  : shear modulus 

There are 3 translational degrees of freedom ( , ,u v ω ) and 3 rotational degrees of 

freedom ( , ,x y zθ θ θ ) at each node. Stiffness ( K elm ) and mass ( M elm ) matrices of the 

Timoshenko beam element are given as [55], [56]: 
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where elements of stiffness matrix is given by: 

, ,
1 2 33 2
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where elements of mass matrix is given by: 
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The subscripts i  and j  denote x  or y  axis. If one indicates x , the other indicates y , 

and vice versa. Radius of gyration is calculated by , , /G
elm i elm ii elmr I A=  where ,elm iiI  is the 

second moment of area of the cross section. jΦ  is the shear deformation parameter 

given as: 

,
2

12 elm elm ii
j s

i elm elm elm

E I
k G A l

Φ =  (A.4)

where s
ik  is the cross section factor [64]: 

2 2

2 2 2

0.9 if circular cross section
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β  is the ratio of the inner diameter to the outer diameter and v  is the Poisson’s ratio. 
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Appendix B 

Solution of ODE at each Semi-Discretization Interval 

In this section, the exact solution of the inhomogeneous ordinary differential equation 

(ODE) with constant coefficients is presented (see Eq.(4.66)). Matrices ( , ,L R Si i i ) in 

ODE are constant only in the time interval where they are defined. The solution is 

carried out by using the method of variations of parameters. 
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2
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     if    [ ]1,i it t t +∈  

(A)  

(B)  

(B.1)

The general solution of the above differential equation consists of homogeneous ( ( )rh t ) 

and particular ( ( )rp t ) solutions. For the homogeneous part, the ODE is reduced to below 

form and solution ( )rh t  is given as: 

 ( ) ( )r L rh i ht t= ⋅ →� ( )
0( ) Lr Ci it t

h t e −= ⋅  (B.2)

where 0C  is a constant vector which is found after application of the initial conditions to 

the general solution. The inhomogeneous ODE and particular solution are given by:  

 ( ) ( )r L rp i p i it t R S= ⋅ + ���  (B.3)

 ( )( ) ( )Lr ui it t
p t e t−= ⋅  (B.4)

Substituting (B.4) into (B.3) yields to: 
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 Integrating both sides of (B.5) results in: 
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Thus, the particular solution (B.4) becomes as: 
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Pre-multiplying by L i  and using the exponential matrix property of   
1 1YXY Xe Ye Y

− −=  : 
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Thus, the particular solution is found as: 

 ( )( )1 1( ) ( )Lr L L ui it t
p i i i i i i it R S e R S t−− −= − ⋅ + ⋅ ⋅ +� �� �  (B.9)

The general solution is obtained by adding the homogeneous and particular solutions: 
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Since ODE is valid at the defined time interval [ ]1,i it t t +∈ , an initial condition of 

( )r r
iit =  at it t=  is applied to the general solution to obtain unknown 0C  vector. 
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Substituting found 0C  into (B.10) leads to the general solution as: 
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Since the Semi Discretization Method requires solution at 1it t += , a recursive equation is 

derived which allows one to calculate the next state vector ( 1ri+ ) in terms of the current 

state (ri ) and one period (τ ) earlier states (ri k− , 1ri k− + ) of the dynamic system.  

 ( )1 1 ,1 ,2 1 ,3( )r r N r +N r  + r Ni i i i i i k i k it+ + − − += = ⋅ ⋅ +  (B.13) 

where time step is 1i it t t+Δ = −  and  coefficient matrices are 
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Appendix C 

Analytical Proof of Time-Invariant Directional Factors (if N>2) 

The directional coefficient matrix ( ( )Ai φ ) given in Eq.(4.18) includes time varying 

terms, i.e. the transformation matrix 2T  and its transpose T
2T . However, when number of 

inserts at each station is greater 2 (i.e. N>2 ), the summation of each term ends up time-

invariant terms. Here, the summations are evaluated analytically. By showing the 

constant terms under one matrix B , Eq.(4.18) is rewritten as: 

 

( )
1

1

1
sin( )

T
2 1 3 2

j

T
2 2

j

A ( ) T T T T

A ( ) T B T

N

i
r

N

i

φ
κ

φ

=

=

⎛ ⎞
= ⋅ ⋅ ⋅ ⋅ ⋅⎜ ⎟

⎝ ⎠

= ⋅ ⋅

∑

∑

cK
 

(C)  

(C.1) 
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 (C.2) 

and all of the terms in B matrix are time invariant. By substituting the 2T  matrix from 

Eq.(4.8), the periodic terms of A ( )i φ can be shown in a general format as: 
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j j j j
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(C.3)

where 1 2 3 4 5, , , ,c c c c c  are time-invariant constants, jφ is the angular position of insert j , 

and it is expressed in terms of the angular position of the first insert as: 
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2( 1) 1,2...j j where j N
N
πφ φ= + − ⋅ =  (C.4) 

From this point, the time dependent terms in Eq.(C.3) are evaluated separately. Below 

elementary trigonometric formulae, summation property, and Euler’s equation are used 

for the derivation. 
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Summation of ( )sin jφ  terms: 
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 (C.6)

In Eq.(C.6), C  and D  terms can be written using the exponential function as: 
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(C.7) 
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For calculation of D  term in Eq.(C.6), the imaginary component of exponential function 

can be used, as shown in Eq.(C.7). Result is the same as C  term. Thus, summation of 

( )sin jφ  becomes: 

 
1

sin( ) 1
sin( )

0 1j
j

N if N
if N

φ
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=

=⎧
=⎨ >⎩

∑  (C.8) 

Similar derivation can be done for summation of ( )cos jφ  in Eq.(C.3) and result is: 
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There are other time dependent terms in Eq.(C.3), such as the summation of ( )sin 2 jφ  

and the summation of ( )cos 2 jφ . Only the former is shown below but similar procedure 

can be applied to the latter as well. 

Summation of ( )sin 2 jφ  terms: 
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(C.10) 

In Eq.(C.10), C  and D  terms can be written using the exponential function as: 
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For calculation of D  term in Eq.(C.10), the imaginary component of exponential 

function can be used, as shown in Eq.(C.11). Result is the same as C  term. Thus, 

summation of ( )sin 2 jφ  becomes: 
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With the same approach, summation of ( )cos 2 jφ  can be evaluated as: 
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As a result, elements of directional coefficient matrix A ( )i φ  are time invariant when the 

number of inserts is greater than two. 
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