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Abstract 
Spinning disks have substantial applications in today’s industries (e.g., saw mill 

industries). Developing a greater understanding the dynamics of spinning disks is a 

central topic for this thesis. Specifically, this thesis investigates the linear and nonlinear 

vibrations of spinning disks.  

In some of the spinning disk applications, the disks may experience a rigid body 

translational degree of freedom. Having this degree of freedom can change the stability 

characteristics of spinning disks. Using analytical techniques and a two-mode 

approximation, the stability characteristics of elastically guided spinning disks having a 

rigid body translational degree of freedom are thus studied.  

The effect of axisymmetric non-flatness on the frequency behaviour of spinning 

disks is also studied. The equations of motion are based on Von Karman plate theory. 

Assuming that the shape of initial runout is in the form of mode shapes with zero nodal 

diameters, the equations of motion are then discretized. Neglecting higher order terms, 

the equations are linearized and the effects of different levels of initial runout on the 

dynamics of spinning disks are thus studied.  

Using experimental measurements, the effects of large deformations on the 

frequency behaviour and amplitude of response for the spinning disks are investigated. 

Disks with different thicknesses are used in this study. The disks were under the 

application of a space fixed external force which can produce different levels of 

nonlinearity. By measuring the disk displacement and conducting FFT analyses, the 

frequencies were measured for different levels of initial deflection. 

In order to see how the geometrical nonlinear terms affect the frequency behaviour 

of spinning disks, the nonlinear governing equations are discretized and then solved to 

find the equilibrium solutions. By assuming a small perturbation around the equilibrium 

solution, the nonlinear equations of motion are linearized. Using the linearized form of 

the equations of motion, the effect of large deformations of the frequency characteristics 

of spinning disks is analyzed. The analytical results are then compared with the 

experimentally obtained results. 
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Chapter 1- Introduction 

1.1. Background 

Spinning thin disks can be found in many engineering applications. Common 

industrial applications include circular saws (Figure 1.1), turbine rotors, brake systems, 

fans, precision gyroscopes, and computer storage devices. Spinning disks may experience 

severe vibration which could lead to fatigue failure of the system. 

A disk is usually defined as a thin, flat, circular plate. Hence, the analysis of 

spinning disks involves the theory of thin plates. The first step in investigating the 

vibrations of the spinning disk is to set up a mathematical model of the system. The aim 

is to set up a model that captures the essential physics of the problem. 

 
Figure 1.1. Guided saw blade 

 
One of the most common applications of the rotating disks is in the saw mill 

industry. For several years, the blade that was used in this industry had a fixed inner 

boundary condition and free outer boundary condition. These types of saws are called 

“clamped” saws. Later on, less and less guided clamped saws were used in the saw mill 

industry. In the splined guided saw blades, the guide is composed of two flat pads in a 

space fixed point, and the blade rotates between the pads. The clearance between the pads 

and the blade is in the order of several thousandths of an inch. A combination of water 

and air is used to keep the blade cool and also to lubricate the blade. The splined saw 

blades have a rigid body translational degree of freedom. This degree of freedom can 
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substantially change the stability characteristics of spinning disks. Therefore, there is the 

need to study the effect of the rigid body translational degree of freedom on the dynamic 

behaviour of saw blades. 

Saw blades in the mill industry have different sources of imperfections including 

those imperfections due to the initial non-flatness of the disk. The initial lack of flatness 

may change the frequency and critical speed behaviours of saw blades. Therefore in order 

to see how a non-flat saw blade performs at very high speeds, the effect of initial runout 

on the dynamics of spinning disks should be studied. 

When saw blades are in the cutting modes, they experience external forces in the 

radial, tangential, and lateral directions. The lateral forces cause lateral deflections where, 

in some cases, these lateral deflections may change the dynamics of spinning disks at 

critical speed ranges. The effect of large deformations on the dynamics of spinning disks 

can be looked at both numerically and experimentally. Here, it will be determined how 

the frequency behaviour of spinning disks changes with regard to large deformations. 

In the theory of vibrations for spinning disks, two different approaches have been 

taken. The first one utilizes linear theory where the effects of nonlinear terms are 

neglected; the second approach, nonlinear theory, instead takes those effects into account. 

The following sections introduce and discuss these two theories in detail. 

1.2. Linear Theory of Vibration  

In the approach based on the linear theory of vibration, the effect of higher order 

terms in the strain-displacement relations is neglected. Thus the resulting equations of 

motion are solely linear. The governing equation of transverse vibration of a spinning 

disk in terms of lateral displacement ( )trw ,, θ , with respect to a space fixed polar 

coordinate system shown with ( )θ,r , can be written as [36]: 

              ( ) ( ) ( )tFw
r
hrw

r
hwDwwwh

rrrttt =−−∇+Ω+Ω+ θθθθθθ σσρ ,,2,,
42

, ,,2                 (1.1) 

Where D and ρ are the flexural rigidity and mass density of the plate 

respectively, ( )tF  is the applied external load, a is the inner radius, b is the outer radius, h 

is its thickness, and Ω  represents the angular velocity. rσ and θσ  the radial and 

tangential stresses, respectively, can be obtained through:  
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                                                  ⎟
⎠
⎞

⎜
⎝
⎛ ++Ω= 2

32
2

1
2 rC

r
CCr ρσ                                         (1.2a) 

                                                   ⎟
⎠
⎞

⎜
⎝
⎛ +−Ω= 2

42
2

1
2 rC

r
CCρσθ                                         (1.2b) 

Two different disks with different boundary conditions are considered in this 

research work: the clamped disk and the splined disk. As mentioned above, for a clamped 

disk it is assumed that the inner boundary is fixed and the outer boundary is free. For the 

splined disk it is assumed that both of the boundaries are free. In the above equations 

321 ,, CCC  and 4C  are constants that can be determined from the boundary conditions. For 

disks clamped at in the inner rim and free at the outer rim, the following equations can be 

used: 

( ) ( )
( ) ( ) ,

11
31

8
1

22

44

1 ba
baC

νν
ννν

+−−
+−−+

=  

( ) ( )
( ) ( ) ,

11
31

8
1

22

22
22

2 ba
babaC

νν
ννν

+−−
+−+−

=  

( ) ,833 ν+−=C  
( ) .8314 ν+−=C  

For a splined disk with an idealized free-free boundary condition for both inner and 

outer rims 3C  and 4C  remain unchanged and 1C  and 2C  are: 

( )22
1 8

3 baC +
+

=
ν  

22
2 8

3 baC ν+
−=  

The main focus of this work is to study the dynamics characteristics of the clamped 

disks. At first, brief discussions regarding the dynamical characteristics of clamped disks 

are presented. Following that considerations and discussions will be made of the effect of 

elastic constraints and the effects of elastic constraints and rigid body modes on the 

vibration characteristics of the spinning disks. 

1.2.1. Clamped Disks 

Figure 1.2 shows the natural frequencies of a disk calculated with respect to 

stationary coordinates with the inner and outer diameters of 6″ and 17″, respectively, and 

a thickness of 0.05″. In this graph the modes are distinguished from each other by the 
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number of their nodal circles −n− and also the number of their nodal diameters −m− and 

shown as mode (n,m). Corresponding to each mode there are two waves travelling around 

the disk. One travels in the direction of rotation (forward travelling wave) and the other 

travels in the opposite direction (backward travelling wave). It can be seen that natural 

frequencies of the backward and forward travelling waves of a mode are the same when 

the disk is stationary. Once the disk starts to spin, the natural frequency of the forward 

travelling wave increases and that of the backward travelling wave decreases as the 

rotation speed increases. It can be seen that for the modes having more than one nodal 

diameter a speed is reached at which the natural frequency of its backward travelling 

wave is zero. This speed is called the disk “critical speed.” 

There has been a large body of research work concerning the dynamic 

characteristics of clamped spinning disks. Lamb et. al. [1] investigated the transverse 

vibration of a circular disk of uniform thickness rotating about its axis with constant 

velocity. Tian and Hutton [2] developed an analytical model for wood cutting of circular 

saws in order to understand the washboarding mechanism. 

 
Figure 1.2. Natural frequencies versus rotation speed 

 

Yu [3] presented a generalized Hamilton’s principle and the associated equation of 

motion for finite elastic deformation. By means of the generalized variational equation of 

motion, it is possible to deduce immediately the nonlinear equation of motion. He then 

employed the generalized variational equation of motion for the derivation of plate 

equations for both flexural and extensional motions. Mote [4] analyzed the free vibration 
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characteristics of centrally clamped, variable thickness disks by the Rayleigh-Ritz 

technique. Natural frequencies of transverse vibration were computed, taking into 

consideration rotational and thermal in-plane stress as well as purposely induced initial 

stress. Based on his analysis initial stresses can significantly raise the minimum disk 

natural frequency throughout a prescribed rotational and thermal environment. Vogel [5] 

derived the frequency determinants for various combinations of boundary conditions 

associated with the transverse vibrations of uniform annular plates. From these equations, 

he calculated the values of the resonant frequencies for various normal modes.  

Chen [6] analyzed the forced response of a spinning disk under space fixed couples 

analytically using the eigenfunction expansion method. He considered a general couple 

on the disk surface as a superposition of two components. One of the components was 

pitching which was in the radial direction and the other one is a rolling component which 

is in the circumferential direction. He investigated the transient and steady state 

deflection of the disk. Nishio [7] investigated variations of the lateral vibration mode, the 

natural frequency, and the critical rotational speed of a slotted circular saw blade through 

both experiment and by numerical calculations.  

J.-S. Chen performed numerous studies in the linear region of the rotating elastically 

constrained rotating disks. He [8] used the orthogonality properties that govern the modes 

to determine the certain derivative of modes with respect to a specified parameter. He 

then found the derivative of the natural frequencies of the system with respect to 

constraint parameters such as mass, damper, and stiffness. He [9] also used a series 

approximation to show that stress distribution induced by the friction effect from a fixed 

space source cannot affect the stability of the system. In other works ([10], [11] and [12]) 

he studied the effect of edge loads on the stability characteristics of a rotating disk. 

DasGupta and Hagedorn [13] modelled the dynamics of spinning ring with a 

variable thickness external ring attached to it. They used von Karman plate theory to 

develop the equation of motion for the rotating disk with a ring attached to it. They found 

that a considerable change in the critical speed was achieved by designing an appropriate 

external ring. Kim and Renshaw [14] studied the effect of asymmetry of a spinning disk, 

using the finite element method. They investigated the effect of asymmetry on the natural 

frequencies of a rotating disk. Shen and Song [15] studied the effect of asymmetric 



Chapter 1. Introduction 

 

 

 6 

membrane stresses resulting from stationary in-plane edge loads. They used the method 

of multiple scales to study the stability of the disk subjected to stationary in-plane edge 

loads. Gupta et. al. [16] studied the asymmetric vibration of polar orthotropic circular 

plates. Adams [17] studied the effect of an elastic foundation on the critical speeds of a 

spinning disk. Eid et. al. [18] used Mindlin plate theory, which includes shear 

deformation and rotational inertia, to find the critical speeds of a spinning disk.  

Parker and Mote [19] proposed a method for initially stressing the disk that can 

increase the natural frequencies of some of the modes simultaneously. In another work 

Parker and Mote [20] used a perturbation solution to analytically determine the 

eigensolutions of an annular plate. Young and Wu [21] studied the dynamic instability of 

a spinning disk with a periodically varying speed, subjected to a stationary in plane edge 

load. They used perturbation method to analyze the effect of varying speed on the 

vibration characteristics of the disk. Tian and Hutton [22] introduces a general approach 

which predicts the physical instability mechanism that take place when the rotating disk 

is in interaction with a fixed space constraint. They used a physical energy flux equation 

for the disk to explain its instability. Then they investigated the effect of conservative and 

non-conservative forces on the stability of the disk. 

Shahab [23] used the Ritz method to investigate the transverse vibration of a disk 

with variable thickness. He developed a thick three dimensional element that includes the 

effect of rotary inertia and shear deformation for this purpose. Chung et. al. [24] 

investigated the effects of misalignment on the natural frequencies of a spinning disk.  

Huang, Wang, and Yap [25] studied feedback control of a rotating disk in an enclosure at 

flutter instability speed. They studied the effect of different gains on suppressing the 

transverse vibration of the disk. Gabrielson [26] presented the natural frequency of a disk 

with different boundary conditions and also different ratios of outer to inner diameter. 

Chen and Jhu [27] investigated the inplane vibrations of rotating disks. They studied the 

effect of clamping ration on the natural frequencies and critical speed of a rotating disk. 

Lee and Kim [28] developed direction frequency response functions for rotating disks. 

They then used this method to separate backward and forward travelling waves. Leissa, 

Laura, and Guiterez [29] studied the free vibration of circular plates having non-uniform 

edge loads. They studied edge supports having translational and rotational flexibilities 
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which both vary in an arbitrary manner around the boundary of the disk. Gutierrez and 

Laura [30] studied the transverse vibration of a circular plate with a concentric circular 

support. Tandon, Rao, and Agrawal [31] performed experimental studies on vibration and 

noise generated by computer hard disk drives. Irie, Yamada, and Aomura [32] studied 

vibration and stability of radially stiffened annular plates subjected to in plane forces 

uniformly distributed at the edges by means of the energy method. Huang and Chou [33] 

studied the vibration feedback control of rotating disks. They used the root locus 

approach for an infinite number of poles and zeroes. By means of one sensor and one 

actuator they designed a feedback control algorithm for suppressing vibration in rotating 

disks. Chen [34] used a transfer function model to design a feedback control algorithm 

for suppressing vibration of rotating disks at sub- and super-critical speeds. He used one 

sensor and one actuator to implement his feedback control algorithm. 

1.2.2. Elastically Constrained Spinning Disks 

There are some applications for spinning disks such as in saw mill industry where 

they are elastically constrained. The constraint is generally modelled with a mass-spring-

damper system. In this research work, only the spring component is considered. Figure 

1.3 shows the natural frequencies and the real parts of eigenvalues of the elastically 

constrained spinning disk with the aforementioned dimensions. It is assumed that the 

spring stiffness is mkN /4  and that it is acting at the outer rim of the disk. It can be seen 

that the frequency characteristics of the spinning disk is different from the unconstrained 

disk.  

 Chen et. al. [35] studied the interaction of the mode at sub- and super-critical 

speeds. He categorized modal interactions to be four and he studied the effect of each of 

the constraint parameters on the stability of the system at sub- and super-critical speeds. 

He concluded that the interaction between the natural frequencies of backward and 

reflected travelling waves causes flutter type instability for an elastically constrained disk 

as shown in Figure 1.3. 
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Figure 1.3. The (a) natural frequencies and (b) real part of the eigenvalues of an elastically 

constrained disk 
 

When flutter instability happens, the real parts of eigenvalues have positive parts. 

Another source of instability for an elastically constrained disk is at the location of 

critical speed. This type of instability is called “divergence instability.” When the 

divergence instability occurs, there is one eigenvalue for the system with a zero 

imaginary part and a positive real part. 

There are some works in the literature that studied the dynamics of elastically 

constrained spinning disks. Hutton, Chonan, and Lehmann [36] studied the dynamic 

response characteristics of rotating circular disks when subjected to the effect of forces 

produced by stationary spring guides. Young et al. [37] studied the free vibration of a 

rotation clamped disk under the constraint of an elastically fixed space oscillating unit. 

The unit he considered was composed of two parallel combinations of springs and 

dampers attached above and under a mass. He studied the flutter type instabilities 

imposed by these two units. 

Ouyang and Mottershead [38] studied the instability of a transverse vibration of a 

disk excited by two sliders on each side of the disk. He modeled the sliders with a mass-

spring-damper system. He considered the effect of friction due to movement of these two 

sliders on the disk which produces a fluctuating couple on the disk. 
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1.2.3. Effects of Rigid Body Translation on the Dynamics of Spinning Disks 

Some of the spinning disk applications may have the rigid body translational degree 

of freedom along the axis of rotations. In this case, Eq. (1.1) should be modified such that 

it takes into account the effect of the rigid body translational degree of freedom. 

When the rigid body translational degree of freedom is taken into account, the 

dynamic response of the disk will be different. Figure 1.4 shows the frequencies of the 

guided disk having the rigid body translational degree of freedom. Here it is also assumed 

that the spring stiffness is mkN /4  and it is acting at the outer rim of the disk. 

Through comparison of Figure 1.4 with Figure 1.3 it can be seen that when the disk 

is elastically constrained with one spring the divergence instability does not occur at the 

location of critical speeds. Thus, the speed ranges at which the disk is stable are changed 

when the disk has a rigid body translational degree of freedom. It may be also noted that 

at sub-critical speeds there is a natural frequency which is constant and does not change 

with the speed. This natural frequency corresponds to rigid body motion. The interaction 

of this natural frequency with other natural frequencies may produce flutter instability.  

 

 
Figure 1.4. The (a) natural frequencies and (b) real part of the eigenvalues of an elastically 

constrained disk having rigid body translational degree of freedom 
 

There has been a limited number of works that studied the effects of the rigid body 

translational degree of freedom on the stability characteristics of spinning disks. Yang 

[39] studied the vibration of spinning disks with translational and rotational rigid body 

motion. He considered the coupling effect between the rigid body motion and the annular 
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disk modal function. He showed that there is a stability region above the critical speed 

due to the coupling effect. 

Mote [40] studied the effect of a collar (which was allowed to move freely on the 

arbor) on the stability of a guided rotating disk. Price [41] studied the dynamics of the 

plates with clamped-free boundary conditions and studied the effect of a rigid body 

translational mode on the dynamic response of rotating plates. Chen and Wong [42] used 

finite element analysis to study the effect of evenly fixed spaced springs on the 

divergence instability of a rotating disk having translational degrees of freedom. Chen 

[43] studied the effect of rigid body tilting on the natural frequencies of a rotating disk. 

 

1.3. Nonlinear Theory of Vibration 

In the nonlinear theory of vibration, the effect of higher order stress terms in strain-

displacement relations are taken into account. Based on the linear theory of oscillations 

for spinning disks, disk deflection is unbounded at speeds corresponding to flutter or 

divergence instabilities. In fact, in these very cases, the disk deflection is beyond the 

validity range of linear equations of motion and it is necessary to use nonlinear equations 

for better predictions of the dynamics of spinning disks. 

1.3.1. Nonlinear Analysis and Basic Assumptions 

Nowinski [44] was amongst the first researchers to develop the nonlinear equations 

of motion for a spinning disk. He assumed the disk thickness to be much less than the 

outer radius. He also assumed that the disk is perfectly flat and is made of an isotropic 

material. He also assumed that the disk is free of any initial stress and that the effect of 

in-plane vibrations and rotary inertia are negligible. Based on these assumptions, he 

developed the nonlinear equations of motion of a spinning disk with speed Ω  in the 

space-fixed polar coordinate system ( ),( θr ) as:  

                       
( ) ( )

,
2
1

,,,2

2222

4
2

2
2

2

2

2

r
wrhwrh

trpwLwDw
t

w
t
wh

∂
∂

Ω−∇Ω−

+=∇+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

Ω+
∂∂

∂
Ω+

∂
∂

ρρ

θφ
θθ

ρ
                    (1.3) 



Chapter 1. Introduction 

 

 

 11 

                                          ( ) ( ) ,12,
2
1 24 Ω−+−=∇ νρφ hwwEhL                                    (1.4) 

,11
2

2

2

22

2
4

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

+
∂
∂

=∇
θrrrr

 

where ( )trp ,,θ  is an external surface pressure,φ  is the stress function and ( )φ,wL  is the 

operator that includes nonlinearities arising from the strain-displacement relations 
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Later on, Baddour et. al. [45] developed a full model of the nonlinear governing 

equations of motions considering the effects of in-plane displacements. The predicted 

responses based on the linear and nonlinear theories could be dramatically different. For 

instance, Figure 1.5 compares the linear and nonlinear analyses for a spinning disk with 

free-free boundary conditions at 1850 RPM. The rigid body degrees of freedom are taken 

into account in this analysis. The dimensions of the disk are the ones that are indicated 

previously. The disk was assumed to be elastically constrained by four linear springs at 

the radial locations: bb 88.0,58.0  and the angular positions Radj 41.0,65.0 ±±=θ . It can 

be seen that when the disk deflection is relatively small, e.g. 1/ <hw , there is no 

significant difference in the amplitude of disk oscillations. It may be noted that in this 

case, there is a small difference in the oscillation frequencies. When the level of 

nonlinearity is high enough (e.g., 1/ >hw ), the predicted amplitudes of oscillations and 

their frequencies through nonlinear analyses are very different compared to those 

predicted by the linear analysis. Therefore, there is a need to investigate the effect of 

large deformations on the dynamical behavior of spinning disks. The effect of large 

deformations can either be investigated experimentally or analytically. Both of these 

methods are discussed in this work. Also, through the nonlinear form of the equations of 

motion, one can study the effect of initial disk runout on the frequency behaviour of the 

spinning disks. 
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Figure 1.5. Linear and nonlinear response of the blade at 1850 RPM for hw / when (a) F= 1 N 

and (b) F=10N 
 

1.3.2. Disk Initial Runout 

Initial disk non-flatness can change the frequency characteristics of spinning disks. 

It also can change the critical speeds of spinning disks. To have a better understanding of 

the performance of spinning disks in real life applications, we have to know how the 

frequency and critical speed characteristics of spinning disks change when assuming the 

initial runout for them.  

In order to study the effect of initial runout on spinning disk natural frequencies, one 

must use the governing equations of motion for initially non-flat spinning disks. 

There have been a few studies in the literature that focus on the dynamics of non-flat 

disks. Jia [46] used the linear equation of motion to investigate the effect of runout on the 

vibration of a rotating disk. He approximated the runout of the blade with the summation 

of some modes having different nodal diameter numbers and then determined the 

deflection of the disk analytically. Since he used linear equations of motion, he could not 

study the effect of initial non-flatness on the frequency characteristics of spinning disks. 

Benson et al. [47] studied the effect of initial runout on the amplitude of oscillations, 

using both numerical and experimental techniques. At the same time, Carpino [48] 

investigated the effect of initial curvature of the dynamics of a disk rotating near a rigid 

surface.  

While the aforementioned studies employed linearized equations of motion, other 

literature studies have considered the effect of geometrical nonlinear terms on the 

response of a non-flat spinning disk. Chen et al. [49] used the nonlinear governing 
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equations of motion to investigate the impact of symmetrical initial runout on the 

amplitude of spinning disk deflection. He concluded that depending on the shape and 

level of initial non-flatness, the disk may snap from one side to another. To verify his 

results, he used a warped disk with an initial level of non-flatness almost eight times 

higher than the disk thickness. In another work, Chen et al. [50] used the nonlinear 

equations of motion to consider an unsymmetrical initial non-flatness for the disk. In this 

paper, he studied the effect of unsymmetrical terms on the snapping speed while the disk 

was spinning. 

1.3.3. Experimental Investigations on the Effects of Large Deformations 

As it was mentioned earlier, large deformations may substantially change the 

vibration characteristics of spinning disks. Large deformations can change the amplitude 

of disk oscillations and they can also modify the frequency characteristics of spinning 

disks. In most of the experimental research work available in the literature, the amplitude 

response of spinning disks has been investigated experimentally. 

Tobias and Arnold [51] investigated the effect of disk imperfections on the dynamic 

behavior of spinning disks. In their studies, they conducted experiments on the amplitude 

response of a spinning disk in the region of its critical speeds while subjected to a space 

fixed external force. They observed that a stationary wave develops in the region of a 

critical speed and collapses sometime after the critical speed. They did not consider the 

effect of large deformations on the frequency response characteristics of the disks that 

were tested. In another work [52], Tobias studied the large vibrations of stationary disks. 

He was able to record phase and amplitude jumps while the disk was being excited with a 

frequency close to one of its natural frequencies. 

Thomas et. al. [53] measured the amplitude response of an imperfect stationary disk. 

Due to the presence of imperfections, there were two different configurations associated 

with each mode. He was able to measure the amplitude response of each configuration 

and compare them with analytical predictions. Raman and Mote [54] conducted 

experiments to study the behaviour of an imperfect spinning disk near its critical speeds. 

In their experimental work they were able to observe the existence of a critical speed for 

very small disk deflections. 
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In all of the aforementioned studies, the amplitude response of spinning disks has 

been studied. There are a few investigations in the literature that are concerned with the 

effect of large deformations on the frequency behaviour of spinning disks. DAngelo and 

Mote [55] were amongst the first researchers to measure the oscillation frequencies of a 

spinning disk having large deformations. They noted that at supercritical speeds, the 

measured frequency of backward travelling waves maintain a constant level. 

Raman et. al. [56] investigated experimentally the post-flutter frequency response of 

spinning disks. They recorded sudden jump and drops in the frequency response of the 

disks tested. Also, they noticed that the frequency response of the backward travelling 

wave of one of the modes was nearly constant over a specific speed region. 

Namchelo and Raman [57] studied the vibrations of a spinning disk in a gas-filled 

enclosure. More recently, Jana et. al. [58] conducted experiments to investigate the 

aeroelastic phenomena of a disk rotating in air. They measured the amplitude and 

frequency responses of a spinning disk and noticed jumps and drops in the frequency 

response. They also reported that, in some supercritical speed ranges, a frequency lock-in 

phenomenon occurred. 

1.3.4. Numerical Investigations on the Effects of Large Deformations 

There has been an exhaustive amount of research work that explore the effects of 

geometrical nonlinear terms on the dynamics of spinning disks. 

Jana and Raman [59] investigated the nonlinear dynamics of a flexible spinning disk 

coupled to a precompressed spring. They studied large amplitude wave motions and their 

stability using the averaging method. Chen [60] also studied the steady-state deflection of 

a rotating disk in the neighbourhood of its critical speed and found that after surpassing 

the critical speed there are three steady state solutions to the nonlinear equation of motion 

and only one of them is stable in the presence of space-fixed damping. 

Nayfeh, Jilani, and Manzione [61] used the method of multiple scales to investigate 

the transverse nonlinear vibrations of a centrally clamped rotating circular disk. Chen 

[62] used the multiple scales method to investigate the internal resonance between a pair 

of forward and backward modes of a spinning disk under space fixed pulsating edge 

loads. Touze et al. [63] studied the nonlinear oscillations of a stationary disk with 
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imperfections. They also examined the coupling between preferential configurations and 

investigated its effect on the travelling wave components in the response. 

Yang and Hutton [64] used polynomial expansion functions as the approximation 

function in Galerkin’s method to solve the nonlinear equations of motion for thin rotating 

disks. Luo and Mote [65] used a new plate theory to study the effect of large amplitude 

displacements on the frequency behaviour of spinning disks. Based on energy principles 

they calculated the frequencies of a spinning disk with consideration of the effect of 

nonlinear terms. 

Arafat, Nayfeh, and Faris [66] studied the behaviour of an annular disk subjected to 

axisymmmetric in-plane thermal load with a clamped-clamped boundary condition. They 

investigated the effect of thermal loads on the natural frequencies of a stationary disk and 

found that, depending on the thermal load, there may be a three-to-one combination 

internal resonance between the modes having the same number of nodal diameters. 

Arafat and Nayfeh [67] studied a three-to-one internal resonance between the first 

and second axisymmetric modes of an annular disk with a clamped-clamped boundary 

condition, which was subjected to an external force and a thermal load. They used 

multiple scales to find the governing equations for the amplitudes and phases of the 

responses. Arafat and Nayfeh [68] used von Karman plate theory to study the 

combination of internal resonance for a thermally loaded annular plate subjected to 

harmonic excitation near primary resonance of one of the modes with a clamped-clamped 

boundary condition. Chen, Hua, and Sun [69] used von Karman’s plate theory to 

investigate the secondary resonance of a rotating disk under space fixed force. Heo, 

Chung, and Choi [70] used a finite element method to study the time domain response of 

a rotating disk misaligned from its axis of symmetry. In their analysis they considered 

both inplane and out of plane deformations of the disk. Raman and Mote [71] studied the 

large amplitude vibration of a rotating disk with imperfections near the critical speed. 

Manzione and Nayfeh [72] studied the transverse vibrations of a circular spinning 

disk with uniform thickness subjected to a space fixed spring-mass-dashpot system. They 

used the method of multiple scales to find the nonlinear coupled governing equations of 

the motion and they studied the stability of the equilibrium solutions. Jalali and 

Angoshtari [73] used a Hamiltonian formulation to study the dynamics of forced spinning 
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disks. Using a Poincare map, they showed that a one mode approximation of rotating 

disks may have chaotic behaviour. Also they studied the effect of structural damping and 

showed the existence of asymptotically stable limit cycles for the damped system. 

1.4. Objective and Scope 

In this thesis, the vibration characteristics of spinning disks are investigated. This 

research work aims to examine the linear and nonlinear vibration characteristics of 

spinning disks with applications to the saw mill industry. 

As was mentioned above, for some of the saw mills industries saw blades are not 

constrained in the inner rim and may have a rigid body translational degree of freedom. 

Thus, it is important to determine how the rigid body translational degree of freedom 

might affect the dynamics stability of saw blades at supercritical speeds. 

There are several sources of imperfections in real saw blades. One such source is the 

imperfection due to a lack of flatness. These types of imperfections can change the modal 

stiffness characteristic of a saw blade. As such, they can change the frequency and critical 

speed behaviour of saw blades. Therefore, in order to have a better understanding of the 

dynamics of real saws, there will be a discussion on the effect of imperfections on the 

frequency and critical speed behaviour of spinning disks. Runouts can be axisymmetric 

or unsymmetrical. As a first step, the axisymmetric case is investigated in this work. 

Real saw blades in cutting modes experience the application of radial, tangential, 

and lateral cutting forces. The lateral forces produce lateral deflections and when the 

lateral deflection is large compared to its thickness (e.g., greater than 0.3 of its thickness) 

the frequency and critical speed behaviour of saw blades change. This change is 

especially more noticeable at supercritical speeds. Therefore, the objective of this 

research work is to first study the effects of the rigid body translational degree of 

freedom, initial non-flatness, and large deformations on the dynamics of spinning disks. 

To meet these general objectives, the approach taken in this thesis consists of the 

following sub-objectives: 

To understand the stability mechanics of a guided rotating disk with rigid body 

translational mode. The linear theory will be used to study the effect of rigid body modes 

on the stability characteristics of an elastically constrained rotating disk. 
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To study the effect of symmetrical non flatness on the frequency response of an 

elastically constrained disk. Also the effect of such these imperfections on the critical 

speeds of different modes are of major concern. 

To experimentally investigate the amplitude and frequency characteristics of 

spinning disks under the application of a space fixed external force.  

To analytically investigate the effect of nonlinear terms on the frequency response of 

a rotating disk using a linearization method. The aim is to study the effect of the level of 

nonlinearity on the forced frequencies of a rotating disk.  

This thesis is presented in six chapters. In Chapter 2 a discussion on the linear model 

prediction for the stability of the disk is made. The linear equations of motion coupled 

with the rigid body translational mode are used to investigate the stability characteristics 

of an elastically constrained disk. The effect of the rigid body mode on the stability 

characteristics of a spinning disk is studied. Generally there are three types of interaction 

between the rigid body translational mode and bending modes: the rigid body 

translational mode may have interactions with a forward, backward, or reflected wave. 

The stability characteristics of the disk at the speeds corresponding to these types of 

interactions are studied. Also, a one mode approximation model around the critical speed 

is utilized to study the effect of the rigid body translational mode on the divergence 

instability of the disk. 

Chapter 3 is concerned with the effect of non-flatness on the frequency response of a 

spinning disk assuming symmetric non-flatness. Since the non-flatness is assumed to be 

axisymmetric, the equations of motion can be expressed in an inertial frame. The non-

flatness is assumed to be expressed as a summation of the eigenfunctions of the modes 

with a zero number of nodal diameters. As an approximation, the effect of higher order 

terms in the nonlinear equations of motion is neglected. Using this assumption the 

particular solution for the stress function is found from the compatibility relation. 

Substituting the stress function into the governing equation of motion and utilizing 

Galerkin’s method while neglecting higher order terms, a linearized system of equations 

is found. Using the obtained linear system, the effect of symmetrical non-flatness on the 

frequency response of an elastically constrained spinning disk is investigated. 



Chapter 1. Introduction 

 

 

 18 

Chapter 4 is concerned with the effects of large deformations on the amplitude and 

frequency characteristics of spinning disks. This chapter describes attempts made to 

experimentally study the effects of nonlinear terms on the dynamics of spinning disks 

under the applications of space fixed external forces. Three disks with the same inner and 

outer radii and different thicknesses were used. Different levels of force are applied to 

these three disks and their amplitudes of oscillation and frequencies were measured. 

Chapter 5 is primarily concerned with the effect of nonlinear terms on the forced 

frequency response of a disk using the linearization method. Using Galerkin’s method, 

the nonlinear equations of motion are discretized. The equilibrium solution for a spinning 

disk under the application of a space fixed external force is found. Then, the nonlinear 

equations of motion are linearized around that equilibrium solution to obtain a linearized 

system of equations of motion. These linearized equations of motion are used to study the 

effect of different levels of nonlinearity on the frequency response of a rotating disk. 

Finally, Chapter 6 presents the conclusions and suggestions for future investigations 

on this subject. 
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Chapter 2- On the Effects of Rigid Body 

Translational Mode* 

2.1. Introduction 

Elastically constrained rotating circular disks constitute components in many 

important engineering applications. In some of these applications the disks may be 

elastically constrained and have rigid body degrees of freedom. In these cases rigid body 

degrees of freedom need to be considered in the analysis of the vibration response. 

Hutton, Chonan, and Lehmann [1] studied the dynamic response characteristics of 

rotating circular disks when subjected to the effect of forces produced by stationary 

spring guides. Mote [2] studied the effect of a collar (which was allowed to move freely 

on the arbor) on the stability of a guided rotating disk. Price [3] studied the dynamics of 

plates with clamped-free boundary conditions and studied the effect of a rigid body 

translational mode on the dynamic response of rotating plates. Tian and Hutton  [4] 

developed an analytical model for modeling wood cutting of circular saws in order to 

understand the mechanism of washboarding. Jia [5] studied the vibration characteristics 

of a disk which has initial non-flatness. 

Jana and Raman  [6] investigated the nonlinear dynamics of a flexible spinning disk 

coupled to a precompressed spring. They studied large amplitude wave motions and their 

stability using the averaging method. Nayfeh, Jilani and Manzione [7] used the method of 

multiple scales to investigate the transverse nonlinear vibrations of a centrally clamped 

rotating circular disk.Yang and Hutton [8] used a polynomial expansion for the 

approximation function in the Galerkin method to solve the nonlinear equations of 

motion for rotating thin disks. 

                                                 

 
* A version of this chapter has been accepted for publication. Khorasany, R.M.H., and Hutton, S.G., 

2010, “ An Analytical Study on the Effect of Rigid Body Translational Degree of Freedom on the Vibration 

Characteristics of Elastically Constrained Rotating Disks”, International Journal of Mechanical Sciences.  
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Among all of the works that have been done so far in this subject, only a few of 

them have been concerned with the effect of rigid body degrees of freedom on the 

stability characteristics of spinning disks. Chen and Wong [9] used finite element 

analysis to study the effect of evenly fixed spaced springs on the divergence instability of 

rotating disks which have translation degrees of freedom. Yang [10] studied the 

transverse vibration of a disk with free-free boundary conditions and studied the effect of 

translational and tilting rigid body degrees of freedom.  He used numerical techniques to 

study the effect of rigid body degrees of freedom on the vibrations of a spinning disk.  

In this chapter, previous numerical work is generalized by the use of an analytical 

approach to investigate the stability characteristics of an elastically constrained spinning 

disk with one space fixed spring, around a critical speed. In order to do so, a three mode 

approximation is used around the critical speed and it is shown that the disk is neutrally 

stable at its critical speed. It is also confirmed that the critical speed does not change with 

changing the spring stiffness and it is the same as for the unguided disk 

For a spinning disk, the rigid body translational mode may interact with a forward, a 

backward or a reflected wave. An analytical approach is taken to investigate the stability 

characteristics of the guided disk for each of the above three types of interaction. 

2.2. Linear Equations of Motion 

A flexible spinning disk having a rigid body translational degree of freedom is 

considered. The inner radius of the disk is “a”, its outer radius is “b” and its thickness is 

‘h’.  The disk is assumed to be elastically constrained with one space fixed spring. The 

disk is rotating with an angular speed Ω about the z axis and is free to have rigid body 

translation along the z axis. Figure 2. 1 presents a schematic diagram of the annular 

spinning disk.  

In this chapter, we assume that the disk is capable of having rigid body translation. 

A flexible disk without having any rigid body degrees of freedom has three components 

of acceleration in the z direction: bending, Coriolis and centrifugal acceleration. When 

rigid body translation is added to the system, one more component of acceleration (rigid 

body translational acceleration, 0Z&& ) should be taken into account. This component of 

acceleration is uniform in the disk domain. By simply adding this component of 
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acceleration to the left hand side of the equation of motion (Hutton et. al. [1]), one can 

find the governing equation for the bending of the spinning disk (Eq. (2.1)). It has to be 

noted that we assume that there is no lateral external force acting on the disk. 

 

 
Figure 2. 1. A guided rotating disk with rigid body degrees of freedom 

 

In addition to the governing equation for the disk bending, we need one more 

equation which governs the rigid body translational motion in the z direction. The same 

components of acceleration that have been stated above are potentially present in the 

governing equation for the rigid body motion and one has to find the net effect of them 

on the rigid body motion. It has to be emphasized that that the Coriolis and centrifugal 

accelerations only exist for the preferential modes. Therefore, the net effect of these two 

terms in the governing equation of rigid body motion in the z direction is zero. The only 

two remaining acceleration components are: rigid body acceleration and bending 

acceleration. One has to integrate the bending acceleration over the disk area to find the 

effect of this component of acceleration on the motion of the spinning disk in the z 

direction. Since the disk is elastically constrained, the spring exerts a force in the z 

direction that appears in both of the governing equations. Therefore, the non-

dimensionalized equations of motion for an elastically constrained flexible spinning disk 

having rigid body translational degrees of freedom are obtained to be 
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where the relation between the actual parameters and normalized parameters (shown with 

prime) are 

,
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where w is the transverse deflection of the disk, 0Z is the rigid body translational degree 

of freedom, ρ is disk density, E is Young’s modulus, ν is Poisson’s ratio, DA  is the area 

of the disk, D is the disk rigidity, Ω is the rotation speed, ( )δ  is the Dirac delta function 

and k is the stiffness of the spring and ( )kkr θ, is its space fixed polar location in the 

inertial coordinate system. In the current paper it is assumed that the disk is rigidly fixed 

in its inner boundary to a collar. The collar is capable of having rigid body translation in 

the z direction. rrC , rC and θθC  are constants defining the  in-plane stresses due to 

rotation found from the following equations 
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2.3. Interaction Between a Backward Traveling Wave and Its Complex 

Conjugate with Rigid Body Translational Mode 

In order to investigate the stability of a guided disk at around its critical speed, a 

three mode approximation is used here. Let’s consider the following approximation for 

the eigenfunction of the disk at around its critical speed 
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where i is the imaginary unit ( 1− ), ( )rR w
mn

~  is the mode shape in the radial direction of 

the disk at round its critical speed. ( ) θimw
mn erR +~  and ( ) θimw

mn erR −~  are the backward and 

forward traveling waves, respectively, and wc1 and wc2 are their associated expansion 

coefficients, respectively. It is assumed that m  is positive. In order to simplify the 

equation of motion, we assume the natural frequency of the disk without rigid body 

degrees of freedom in the vicinity of the critical speed and in the inertial frame to be mnω~ . 

Indeed at the critical speed one of the natural frequencies of the system is zero. Therefore 

using Eq. (2.1) and ignoring the rigid body translation mode we can see that 
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It is assumed that the spring acts at 1=r  and 0=θ  and its stiffness is k . After 

substituting Eq. (2.3) into Eqs. (2.1) and (2.2) and using the general relation stated in Eq. 

(2.4) and then utilizing the Galerkin’s projection the following coupled linear equations 

are obtained 
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where k is the stiffness of the spring and ( )1~w
mnRR = . It should be mentioned that the 

natural frequencies of the two traveling waves interacting at the critical speed are the 

same but with opposite signs; therefore mnS is the same for both of the interacting 

traveling waves and equals ( )Ω+ mmnmn 2~~ ωω . In this equation mnω~ is assumed to be 

positive at the speed lower than the critical speed and negative for the speeds above the 

critical speed. If we substitute teλ instead of ( )tx~  in Eq. (2.5), the characteristic equation 

is: 
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Eq. (2.6) is a third order polynomial equation in terms of 2λ . Therefore in order to 

have three distinct roots for 2λ , the discriminant of Eq. (2.6) should be positive. The 

discriminant of the above equation is: 
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After substituting 1α , 2α , 3α  and 4α into Eq. (2.7), the discriminant is found to have 

the following form 
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In a very close vicinity of the critical speed, mnω~ is very close to zero. Therefore in 

the vicinity of critical speed we can conclude that .1<<mnS  As a result, it may be 

concluded from Eq. (2.8) that the only term which affects the sign of the discriminant in 

the vicinity of the critical speed is 0β . From Eq. (2.9a) it can be seen that 0β is a fourth 

order equation in terms of k . As shown in this equation, 2k can be factored out and these 
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remains  a second order polynomial equation in terms of k . So 0β can be written as 

0
24416 β′Ω km where 

              ( ) ( ) 2442222222224
0 16816414 DDDDD AmkAmmARkARAR Ω+Ω−Ω+++=′β      (2.10) 

 

Therefore, the sign of the discriminant in the close vicinity of the critical speed 

depends upon the sign of 0β ′ . 0β ′ is a second order polynomial equation in terms of k . If 

we put 00 =′β , the two roots of the equation for the stiffness are obtained to be 
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Since DA is always positive, from Eq. (2.11) it can be seen that the numerator is 

imaginary. Therefore, there is no real root for k which can makeβ ′ to be zero, based on 

Eq. (2.10). The coefficient of the second order term ( 2k ) in Eq. (2.11) is positive. 

Therefore it can be concluded that 0β ′  is always positive in the close vicinity of the 

critical speed for any value of k . As a result of that the discriminant of Eq. (2.6) is always 

positive. This implies that the characteristics equation has always three real roots for 2λ in 

the vicinity of the critical speed. In a close vicinity of the critical speed 1α , 2α , 3α  and 4α  

are always positive for any value of k . This means that the three real roots for 2λ must be 

negative which implies that all the eigenvalues at around the critical speed are imaginary. 

Indeed, the guided disk does not experience divergence type instability in the vicinity of 

the critical speed. If we substitute 0~ =mnω into Eq. (2.6) we can see that one of the roots 

for λ  is zero which implies that by adding a spring to the system the critical speed does 

not change and remains the same as the one for an unguided disk.  In order to investigate 

this issue numerically, a disk made of steel with clamped-free boundary conditions is 

considered. It is assumed that 2/112 mNeE = , 3.0=ν , 3/7800 mkg=ρ , 

3529.0== baη , mb 2159.0= , mmh 27.1= . In Figure 2. 2 comparisons between the 

normalized natural frequencies of the guided disk when 057.0=k and 85.2=k  (broken 

lines) with the unguided disk (solid lines) are carried out. It should be emphasized that 

057.0=k and 85.2=k  are normalized stiffness and the actual corresponding stiffness are 
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310 N/m and 4105× N/m, respectively. In this figures (m,n)b means the backward 

traveling wave of the (m,n) mode and ‘RB’ stands for the rigid body translational mode. 

It can be seen that by adding a spring to the system, at a critical speed of the unguided 

disk, divergence instability is not induced. In fact, the guided disk has the same critical 

speeds as the unguided disk.  

 

 
Figure 2. 2. Normalized natural frequencies of the guided disk (shown with the broken lines) 

versus normalized speed when (a) 057.0=k and (b) 85.2=k . The solid lines show the 
normalized natural frequencies of the unguided disk 

 

2.4. Interaction Between a Forward or Backward or Reflected Traveling 

Wave with Rigid Body Translational Mode 

Another interesting issue that we can look at is the interaction of rigid body 

translational mode with another bending mode at speeds other than the critical speed. 

Generally we have three types of interactions and they happen when the rigid body 

translational mode interacts with a forward, backward or a reflected traveling wave mode. 

In order to investigate these three types of interactions, we can use the following 

approximation for the eigenfunction of the rotating disk: 

                                                  ( ) ( ) ,~,,~
01 ZerRctrw imw

mn
w += θθ                                          (2.12) 

where ( ) θimw
mn erR~  is the backward or forward traveling wave component (depending on 

the sign of m) and wc1 is its associated expansion coefficient. When m is negative, the 

assumed mode is either a forward or reflected wave and when m  is positive, the assumed 
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mode is a backward wave mode. After substituting Eq. (2.12) into Eqs. (2.1) and (2.2) 

and utilizing the Gelerkin’s projection the following coupled linear equations are 

obtained 

                                                      ,0~~~~~~ =++ xKxGxM &&&                                               (2.13) 
where 
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where mnS  equals ( )Ω+ mmnmn 2~~ ωω . It is important to note that mnS is less than zero when 

we deal with a reflected wave and greater than zero when we deal with a backward or 

forward traveling wave. After substitution of tXex λ=~ into Eq. (2.13), the following 

characteristic equation is obtained 

                    ( ) .022 2234 =+Ω++++Ω+ kSkimkkRASAAimA mnDmnDDD λλλλ            (2.14) 
We assume that ωλ i=  whereω is a real number. After substitution of ωλ i=  into 

Eq. (2.14), the following characteristics equation is obtained 

           ( ) ( ) 022, 2234 =+Ω−++−Ω+= kSkmkkRASAAmAkf mnDmnDDD ωωωωω    (2.15) 
For a backward or forward wave it may be noted that kSmn is always positive. The 

general shape of ( )kf ,ω for any given values of k  using the characteristics of a 

backward or forward traveling wave is shown in Figure 2. 3. As it can be seen from this 

figure, when 0=ω , ( )kf ,ω is greater than zero. In order to show that when a backward 

or forward traveling wave interacts with the rigid body translational mode flutter type 

instability is not induced, we have to prove that Eq. (15) has always four real roots for a 

backward or forward wave. 

At first consider a backward traveling wave. If we substitute Ω−−= mmn 2~
1 ωω  into 

Eq. (2.15), the following expression is found 

                                  ( ) ( ) .2~,2~ 22 Ω+−=Ω−− mAkRkmf mnDmn ωω                                (2.16) 
Also if we substitute mnωω ~

2 =  into Eq. (2.15), the following expression is found 

                                               ( ) ( ) .~,~ 22
mnDmn AkRkf ωω −=                                             (2.17) 
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Figure 2. 3. A general shape for ( )kf ,ω  using the characteristics of a backward or forward 

traveling wave 
 

From Eqs. (2.16) and (2.17) it can be seen that at Ω−−= mmn 2~
1 ωω  and mnωω ~

2 = , 

( )kf ,ω  is always negative for a backward traveling wave. For a backward or forward 

traveling wave, 2ω is always positive. For a backward traveling wave 1ω  is always 

negative. For a forward traveling wave, 1ω is negative for the speeds less than the critical 

speed and for the speeds above the critical speed it is positive. Therefore, for a forward 

traveling wave we use DAk−=3ω  , instead of 1ω , which is always a negative real 

value. If we substitute 3ω into Eq. (2.15), the following expression is obtained 

                                                   ( ) ., 2kRkAkf D −=−                                               (2.18) 
This equation implies that for a backward or forward traveling wave, there always 

exists a point in the left and right hand side of the vertical axis (Figure 2. 3) at which 

( )kf ,ω  is less than zero. Also in order to show that the plotted graph (Figure 2. 3) is a 

general shape of ( )kf ,ω  for a backward or forward traveling wave, we also have to show 

that ( )kf ,ω  has two inflection points. If we differentiate Eq. (2.15) with respect to ω , 

the following equation is obtained 

                              ( ).21212 22
2

2

kkRASAAmAf
DmnDDD ++−Ω+=

∂
∂ ωω
ω

                     (2.19) 

Eq. (2.19) is a second order polynomial in terms ofω . Since the coefficients of the 

second and zero order terms have opposite signs, therefore the discriminant of the above 

equation is always greater than zero. As a result of that, Eq. (2.15) always has two 

inflection points. Having two inflection points for ( )kf ,ω  implies that this function 

always has two local minima and one local maximum. Therefore based on the above 
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reasonings, Figure 2. 3 is a general shape of ( )kf ,ω  for a backward or forward traveling 

wave.  

Finally since ( )kf ,ω  always has two local minima and one local maximum and also 

since this function is positive at 0=ω and negative at 1ωω = and 2ωω = for a backward 

wave (and negative at 1ωω = and 3ωω =  for a forward traveling wave) ; it can be 

concluded that this function always has four real roots. Two of the real roots are positive 

and the other two are negative values. This implies that the interaction between the rigid 

body translational mode and a backward or forward traveling wave does not induce 

flutter type instability. 

When the rigid body translational mode interacts with a reflected traveling wave 

mode, the situation is different and speed dependent. As was mentioned above, for a 

reflected traveling wave, mnS is negative. Eq. (2.15) can be decomposed into two parts: 

the first part which does not depend upon the spring stiffness and the second part which 

depends upon the spring stiffness. Therefore we can write Eq. (2.15) in the following 

from 

                                             ( ) ( ) ( ),,,, 21 kfkfkf ωωω +=                                           (2.20) 
where  

( ) ,2, 234
1 ωωωω mnDDD SAAmAkf −Ω+=  
( ) ( ) .2, 22

2 kSkmkkRAkf mnD +Ω−+−= ωωω  
( )kf ,2 ω is a second order polynomial equation in terms ofω . The discriminant of this 

equation ( ( )kf ,2 ω ) is found to be  

                                              ( )[ ].14 2222
mnD SRAmk ++Ω=Δ                                       (2.21) 

As can be seen from Eq. (2.21), the sign of the discriminant does not depend upon 

the stiffness of the spring. The sign only depends upon the speed, the mode itself and the 

disk characteristics such as area and also the radial position of the spring. Since mnS is 

negative for a reflected wave, the two roots of ( )kf ,1 ω  are positive real values and the 

other two roots are zero. There are two possibilities: either the discriminant of ( )kf ,2 ω is 

negative or positive. As a first step we assume that the discriminant of ( )kf ,2 ω is 

positive. In this case ( )kf ,2 ω has two real solutions forω  for any given value of spring 
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stiffness and both of them are negative real values. Figure 2. 4 shows a typical plot for 

( )kf ,1 ω  and ( )kf ,2 ω  (using Eqs. (2.16) and (2.17) and the fact that 1ω and 2ω  are the real 

roots of ( )kf ,1 ω ). By increasing the stiffness of the spring, the local maxima of ( )kf ,2 ω  

moves upward. This figure shows the plot of ( )kf ,2 ω  for a relatively small and large 

value of spring stiffness ( k ). From this graph it can be seen that for a sufficiently small 

value of spring stiffness, ( )kf ,ω has four real roots of which three of them are positive 

and the fourth one is negative. If the stiffness is further increased to a certain level (e.g. 

stiffness is equal to −
1k ), a situation is reached at which ( )kf ,ω  only intersects the 

horizontal axis at two points. This case can be qualitatively verified from Figure 2. 4 

when the spring stiffness is relatively high. This point is the starting point of flutter type 

instability. It should be noted that −
1k  depends upon the mode, disk characteristics and 

rotation speed. 

 
Figure 2. 4. A typical plot of ( )kf ,1 ω (solid line) and ( )kf ,2 ω for a relatively small (dotted line) 

and large (dashed line) value of k  when the discriminant of ( )kf ,2 ω is positive 
 

Since the discriminant of ( )kf ,2 ω is assumed to be positive, it can be concluded that 

the maximum value of ( )kf ,2 ω for any given value of spring stiffness is always positive. 

So if the stiffness is further increased (e.g. stiffness is equal to +
1k ) a situation is reached 

in which ( )kf ,ω starts to have four real roots again. In this case again, three of the real 
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roots are positive real values and the last one is negative. This stiffness ( +
1k ) corresponds 

to the stiffness for which the flutter type instability disappears for a given rotation speed. 

Therefore at any speed that the discriminant of ( )kf ,2 ω is positive when +− << 11 kkk , the 

interaction of the backward wave and rigid body translational does not produce flutter 

type instability. Determination of the explicit values for +
1k and −

1k is difficult. 

Another possible situation is that the discriminant of ( )kf ,2 ω is less than zero. In this 

case ( )kf ,2 ω  does not have any real roots. Also for any given value of the spring 

stiffness, ( )kf ,2 ω  is always negative as shown in Figure 2. 5. One of the major 

differences between this situation and the previous situation is that ( )kf ,2 ω always lies 

below the horizontal axis for a nonzero given value of spring stiffness. In this case, when 

the spring stiffness is relatively small, ( )kf ,ω  has four real roots of which three of them 

are positive and the fourth one is negative.  

 
Figure 2. 5. A typical plot of ( )kf ,1 ω (solid line) and ( )kf ,2 ω for a relatively small (dotted line) 

and large (dashed line) value of k  when the discriminant of ( )kf ,2 ω is negative 
 

From Figure 2. 5 it can be seen that by increasing the stiffness of the spring to a 

certain level ( −
2k ), a situation is reached at which ( )kf ,ω  does not have four real roots 

any more. In this case, a flutter type instability is induced due to interaction between the 

rigid body mode and the reflected wave. From Figure 2. 5, it may be noted that by further 
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increasing the spring stiffness the flutter type instability does not disappear. Therefore, 

for any −> 2kk , the disk losses its stability due to flutter type instability. 

Figure 2. 6 shows non-dimensional natural frequencies (measured by a stationary 

observer) plotted against non-dimensional speed of the spinning disk with clamped-free 

boundary conditions for different levels of spring stiffness. The spring stiffneses in this 

figure are normalized. It is assumed that the disk has a rigid body translational degree of 

freedom, as explained previously.  

 
Figure 2. 6. The interaction between the (0,2) mode of the clamped disk with rigid body 

translational mode when (a) 1=k , (b) 2=k , (c) 5=k , (d) 10=k , (e) 410=k  and (f) 610=k  
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 In Figure 2. 6, a two-mode approximation is used and the interaction between the 

(0,2) bending mode and the rigid body translation mode is investigated. The response 

depends upon the relationship between the magnitude of the spring stiffness and the 

bending stiffness of the (0,2) mode. For sufficiently high values of k  the spring behaves 

as a rigid support. It can be seen that when the reflected wave of (0,2) mode interacts 

with the rigid body translational mode, flutter type instability is induced. It may be noted 

that as the stiffness increases up to 410=k , the region of flutter type instability moves 

toward higher speeds.  

By a comparison between Figure 2. 6e and Figure 2. 6f it may be noted that although 

the spring stiffness is increased above 410  the response does not change and thus the 

spring acts as a rigid support and the starting point of flutter type instability is the same 

for both of these plots ( 410=k  and 610=k ) and occurs at 72.14=Ω . This speed 

corresponds to the starting region of speeds at which the discriminant of ( )kf ,2 ω is 

negative. As can be seen from these figure, when the stiffness changes from 410=k to 
610=k , the starting point of flutter type instability regions does not change. Also for any 

speed greater than 72.14=Ω , there is a threshold of the stiffness such that if the spring 

stiffness exceeds this threshold, the disk looses its stability due to flutter instability and 

never disappears. This flutter instability is induced due to interaction between the rigid 

body translational mode and the reflected wave of (0,2) mode. It is difficult to find an 

explicit value for the speed at which the gradient of ( )kf ,2 ω starts to be negative and also 

to find the stiffness threshold that was discussed above. 

2.5. Conclusions 

Using analytical calculations, the effect of rigid body translational motion on the 

stability characteristics of an elastically constrained disk with only one space fixed spring 

was studied. It was shown that because of the effect of the rigid body translational degree 

of freedom, divergence instability does not take place. In fact, it was shown that in this 

case the guided disk still has the same critical speeds as the unguided disk. This result 

corresponds to the fact that the bending wave speed in the disk is not altered by the 

presence of a point constraint. 
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Using analytical calculations, it was shown that the interaction of a forward or 

backward traveling wave with the rigid body translational mode does not induce flutter 

type instability. When the rigid body translational mode interacts with a reflected 

traveling wave, there are two possibilities: the discriminant of ( )kf ,2 ω is (i) positive or 

(ii) negative. It was shown that in the first case (discriminant is positive) there is a range 

of spring stiffness ( )+− << 11 kkk  for which flutter type instability will be induced. In the 

second case (discriminant is negative), if the spring stiffness exceeds a certain value 

( )−> 2kk , then flutter instability will be induced and never disappear as the spring 

stiffness is increased. 



Chapter 2. On the Effects of Rigid Body Translational Mode 

 

 

 

 

41 

2.6. References 

[1]    Hutton, S.G., Chonan, S., and Lehmann, B.F., 1987, “Dynamic Response of a 

Guided Circular Saw,” Journal of Sound and Vibration, 112, pp. 527-539. 

[2]    Mote, C.D., 1977, “Moving Load Stability of a Circular Plate on a Floating Central 

Collar,” Journal of Acoustical Society of America, 61, pp. 439-447. 

[3]   Price, K.B., 1987, “Analysis of the Dynamics of Guided Rotating Free Center 

Plates,” Ph.D. Dissertation, University of California, Berkeley. 

 [4]   Tian, J.F., and Hutton, S.G., 2001, “Cutting-Induced Vibration in Circular Saws,” 

Journal of Sound and Vibration, 242, pp. 907-922. 

[5]    Jia, H. S., 2000, “Analysis of Transverse Runout in Rotating Flexible Disks by 

Using Galerkin’s Method,” International Journal of Mechanical Sciences, 42, pp. 

237-248. 

 [6]   Jana, A., and Raman, A., 2005, “Nonlinear Dynamics of a Flexible Spinning Disc 

Coupled to a Precompressed Spring,” Nonlinear Dynamics, 40, pp. 1-20. 

[7]   Nayfeh, A. H., Jilani, A., and Manzione, P., 2001, “Transverse Vibrations of a 

Centrally Clamped Rotating Circular Disk,” Nonlinear Dynamics, 26, pp. 163-178. 

[8]    Yang, L., and Hutton, S.G., 1998, “Nonlinear Vibrations of Elastically-Constrained 

Rotating Discs,” Journal of Vibration and Acoustics, 120, pp. 475-483. 

[9]   Chen, J.S., and Wong, C.C., 1995, “Divergence Instability of a Spinning Disk with 

Axial Spindle Displacement in Contact With Evenly Spaced Stationary Springs,” 

Journal of Applied Mechanics, 62, pp. 544-547.  

[10]  Yang, S.M., 1993, “Vibration of a Spinning Annular Disk with Coupled Rigid-Body 

Motion,” Journal of Vibration and Acoustics, 115, pp. 159-164. 

 



Chapter 3. On the Effects of Initial Runout 

 

 

 42 

Chapter 3- On the Effects of Initial Runout* 

3.1. Introduction 

Rotating disks have many industrial applications. However, no real disks are 

perfectly flat. Even if they are manufactured with the utmost care, imperfections will still 

exist. Although much research has been done on the subject of spinning disks [1-3], in 

most of these studies, the disk is assumed to be perfectly flat. 

In some spinning disk applications, the lateral displacement of the disk is large 

compared to its thickness. For these, one must consider the effect of geometrical 

nonlinear terms in order to better predict the disk vibration behavior. Nowinski [4], one 

of the first researchers to study the nonlinear equations of motion of a spinning disk, 

presented a formulation for the nonlinear vibration of rotating disks. Later on, Yang and 

Hutton [5] used a polynomial approximation for the function in the Galerkin’s method to 

solve the nonlinear equations developed by Nowinski. They studied the effect of 

geometrical nonlinear terms on the frequency behavior of a spinning disk.  

All of the aforementioned researchers assumed that the disk was perfectly flat. There 

have been a few works in the literature concerned with the effect of initial runout on the 

dynamics of a spinning disk. Benson et al. [6] studied the effect of initial runout on the 

amplitude of oscillations, using both numerical and experimental techniques. At the same 

time, Carpino [7] investigated the effect of initial curvature of the dynamics of a disk 

rotating near a rigid surface. Later, Jia [8] used the linear equations of motion, which 

allow for initial non-flatness, to study the effect of initial runout on the amplitude of disk 

deflection. He also investigated its effect on in-plane stress distributions. 

While the abovementioned studies employed linearized equations of motion, other 

literature has considered the effect of geometrical nonlinear terms on the response of a 

                                                 

 
* A version of this chapter has been accepted for publication. Khorasany, R.M.H., and Hutton, S.G., 

2010, “The Effect of Axisymmetric Non-Flatness on the Oscillation Frequencies of a Rotating Disk,” 

ASME Journal of Vibration and Acoustics.  
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non-flat spinning disk. Chen et al. [9] used the nonlinear governing equations of motion 

to investigate the impact of symmetrical initial runout on the amplitude of spinning disk 

deflection. He concluded that depending on the shape and level of initial non-flatness, the 

disk may snap from one side to another. To verify his results, he used a warped disk with 

an initial level of non-flatness almost eight times higher than the disk thickness. In 

another work, Chen et al. [10] used the nonlinear equations of motion to consider an 

unsymmetrical initial non-flatness for the disk. In this paper, he studied the effect of 

unsymmetrical terms on the snapping speed while the disk was spinning. 

To the best of our knowledge, no research has been done to date on the effect of the 

initial runout on the frequency behavior of a spinning disk. In this paper, we use the 

previously developed nonlinear governing equations of motion for a disk with an initial 

runout to study the effect of an assumed initial runout on the frequency behavior. The 

initial runout is assumed to be of the axisymmetric type. The equations of motion are 

expressed in a fixed frame to allow future studies to more conveniently study the effect of 

space fixed constraints. It is assumed that the bending deflection of the disk is small 

compared to its thickness. Accordingly, we can neglect some nonlinear terms in the 

equation of motion. Using Galerkin’s method, the equations of motion are discretized. 

The developed equations are then used to study the effect of initial axisymmetric runout 

on the frequency behavior of the disk. The mechanism by which the frequency is affected 

by the lack of flatness is discussed. Also, the effect of the lack of flatness on the critical 

speed behavior of the disk is studied. For verification purposes, the numerical results are 

compared with those predicted by a commercial software. 

3.2. Formulation 

The normalized form of the equations of motion of a spinning disk with initial 

runout in an inertial frame is [10] 
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The equations of motion are non-dimensionalized using the following non-

dimensional variables (the actual parameters are denoted by primes) 
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where Rw0 is the initial deformation (non-flatness) of the disk, w  is the transverse 

displacement, E is Young’s modulus,ν  is Poisson’s ratio, h  is the disk thickness, D is the 

flexural rigidity of the disk, ρ  is the density, outer radius is b, andφ  is the stress 

function. Ω is the rotation speed of the disk, measured in a polar coordinate system 

designated by ( )θ,r .  

In order to make the equations of motion easier to manipulate, the displacement field 

is defined as 

                                                              .0
Rwwu −=                                                        (3.3) 

Substitution of the newly defined displacement field (Eq. (3.3)) into Eqs. (3.1) and 

(3.2), results in the following non-dimensionalized equations of motion: 

                    

( ) ( )
( ) ( )[ ] ( ) ( )[ ]

( ) ( ) ,
2
1

2

2

,00
222

,,0
1

,,
1

,0
2

,0
1

,

,
2

,
1

,0
4

2

2
2

2

2

2

⎟
⎠
⎞

⎜
⎝
⎛ +++∇Ω−

+−++++

++=∇+
∂
∂

Ω+
∂∂

∂
Ω+

∂
∂

−−−−

−−

r
RR

r
R

r
R

r
R

rr

rrr
R

wurwur

wurrwurwur

rrwuuu
t

u
t
u

θθθθ

θθ

φεεφ

φφε
θθ

             (3.4) 

 

               

( ) ( )[ ( )
( ) ( ) ( )]

( ) ,12

2

2

,0
2

.0
1

,,
2

,
1

,0,0
2

.0
1

,
2

,
12

,
2

,
1

,
2

,
1

,
4

εν

φ

θθθθθθ

θθθθθθ

Ω−+

+−+−−

×−+−++−=∇
−−−−−−

−−−−−−

RR
rrrr

R
rr

R
r

rrrrr

wrwruururwwrwr

ururururururu

          (3.5)   

In many industrial applications of spinning disks, the runout is nearly axisymmetric. 

Therefore, in this paper we study the effect of axisymmetric runout on the frequency 

behavior. Assuming that the initial runout is axisymmetric, the equations of motion can 

be simplified as follows: 
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                          (3.7) 

Chen et al. [9] assumed that in the snapping phenomenon of a spinning disk with 

initial axisymmetric non-flatness, the deformations may be considered axisymmetric. 

They then simplified the equations of motion accordingly. Here, we do not make this 

assumption and it will be seen that the initial axisymmetric non-flatness can change the 

frequency behavior of all the modes. Eqs. (3.6-7) are the simplified nonlinear equations 

of motion. To discretize the equations of motion, we approximate the stress function and 

transverse displacement as the summation of known spatial functions with unknown 

time-dependent coefficients. Then, using Galerkin’s method, we discretize the equations 

of motion. 

The disk is assumed to have an inner radius ‘a’. It is also assumed that it has 

clamped-free boundary conditions. Therefore, at the inner rim ( ba=η ), the transverse 

displacement and its slope vanish as follows: 

                                                ,0 η== ratu                                         (3.8) 
                                                .0, η== ratu r                                         (3.9) 

At the outer rim, the bending moment and Kirchoff edge reaction are zero. In non-

dimensional form, they can be expressed as follows: 
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Moreover, at the inner rim, radial and hoop displacement must vanish, as is 

expressed in the following forms: ([11]) 
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Also, at the outer rim, in-plane stresses rrσ  and θσ r  are zero. In terms of the non-

dimensional variables, these boundary conditions can be written ([11]) 
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The stress function can be separated into two parts: homogenous ( hφ ) and particular 

( pφ ). The homogenous part is a function of speed and satisfies the speed-dependent part 

of Eq. (3.7). The particular part is a function of lateral displacement and satisfies the 

nonlinear part of Eq. (3.7). Therefore, one can write the stress function in the following 

form: 

                                                             .ph φφφ +=                                                      (3.16) 
From Eq. (3.7), the governing equation for hφ is obtained as follows: 

                                                      ( ) .12 24 ενφ Ω−=∇ h                                               (3.17) 
The general solution for hφ , using Eq. (3.17) is obtained as  
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ε
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1c  and 2c  are constants that can be found using the boundary conditions. Since hφ  is 

not a function of θ , the boundary condition stated in Eq. (3.15) is automatically satisfied. 

Also, if we substitute hφ  into Eq. (3.13), we see that this boundary condition is also 

automatically met. Using Eq. (3.18) and the boundary conditions stated in Eqs. (3.12) and 

(3.14), 1c  and 2c  are found to be 
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3.3. Solution Method 

In this part, the equations of motion are discretized using Galerkin’s method. The 

eigenfunctions of the following two eigenvalue problems are used as the approximation 

functions in Galerkin’s method: 

                                                           ( ) ,44 uu u
mnλ=∇                                                    (3.19) 

                                                           ( ) .44 φλφ φ
mn=∇                                                   (3.20) 

The eigenfunctions of Eq. (3.19) are ( ) θλ mrRU mn
u
mnmn sin=  and ( ) θλ mrR mn

u
mn cos  

and the eigenfunctions of Eq. (3.20) are assumed to 

be ( ) θλφ φ mrR mnmnmn sin= and ( ) θλφ mrR mnmn cos . Here, m is the number of nodal diameters 

and n  is the number of nodal circles. In this paper, a mode with m number of nodal 

diameters and n number of nodal circles is shown as the ( )mn,  mode. The associated 

boundary conditions for the eigenvalue problem stated in Eq. (3.19) are those stated in 

Eqs. (3.8-15), assuming that the speed is zero. The eigenfunctions of the eigenvalue 

problem stated in Eq. (3.19) form an orthonormal basis. Therefore, any initial 

axisymmetric runout can be approximated in terms of the eigenfunctions of Eq. (3.19) as 

follows: 
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where R
iW 0  is the amplitude of runout corresponding to an axisymmetric mode with 

i nodal circles (and zero nodal diameter) and RN is the number of axisymmetric modes 

with which the runout of the disk can be approximated. The transverse displacement can 

be described by a modal expansion as:  
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In Eq. (3.22), M and N are, respectively, the number of nodal diameters and nodal 

circles that have been used in the approximation. Based on Eq. (3.7), the governing 

equation for the particular part is 
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If we substitute ( )tru ,,θ from Eq. (3.22) into Eq. (3.23), some second-order 

expressions will appear in the right-hand side in terms of the coefficients of the expansion 

functions ( u
mnS and u

mnC ). Of course, to better predict the frequency behavior of the disk, 

one must consider all of the terms. In this paper, as an approximation, we assume that the 

bending deflection of the disk is small compared to disk thickness. In other words, we 

suppose that the ratio of hu is small enough that we can neglect the effect of the 

nonlinear terms that appear in the equations of motion. Therefore, those terms that are 

second order regarding u
mnS and u

mnC can be neglected. After dismissing these terms in Eq. 

(3.23), the following governing equation is obtained for the particular part of the stress 

function: 

                                   ( )[ ].,0,
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,
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,
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,0
4
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p wurururw −−− −+−=∇ θθφ                              (3.24) 

To solve the above equation, the particular part of the stress function is 

approximated as follows: 
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The eigenfunctions of the eigenvalue problems stated in Eqs. (3.19) and (3.20) are 

normalized using the following relations: 

,∫ =
S

njmiijmn dSUU δδ  

.∫ =
S

njmiijmn dS δδφφ  

In the above two relations, ijδ is the Kronecker delta and S is the disk domain. After 

substituting Eqs. (3.25) and (3.22) into Eq. (3.24) and multiplying both sides by 

( ) θλφφ prR pqpq sin  and another time by ( ) θλφφ pR pqpq cos , and integrating the resultant over 

the area of the plate, using the orthogonal property of the eigenfunctions, the following 

equations are obtained for the coefficients of the expansion functions of the particular 

part of the stress function:  
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From Eqs. (3.26), it may be noted that the coefficient of the sinusoidal term in the 

stress function depends solely upon the coefficient of the sin waves of the lateral 

displacement. In other words, the amplitude of the sinusoidal terms in the stress function 

do not depend upon the amplitude of the cos waves of the lateral deflection. Also, the 

coefficients of the approximating functions with m nodal diameters only depend upon the 

coefficients of the expansion function of transverse displacement with the same number 

of nodal diameters. Indeed, this means that in this case the transverse displacement of a 

mode with m nodal diameters can only affect the in-plane stress (due to bending) of a 

mode with the same number of nodal diameters. Therefore, Eqs. (3.26) can be rewritten 

in the following form: 
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where 
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If we substitute pφ (from Eqs. (3.26)) into Eq. (3.6), second-order expressions will 

appear in terms of the coefficients of the expansion functions of the transverse 

displacement. As mentioned earlier, we assume that the transverse displacement of the 

disk is small enough that we can ignore these terms. After dismissing the second-order 

terms, the following governing equation of motion is obtained: 
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If we substitute Eqs. (3.22) and (3.27) into Eq. (3.28) and multiply both sides once 

by ( ) θλ prR u
pq

u
pq sin  and another time by ( ) θλ pR u

pq
u
pq cos , then integrate the resultant over 

the area of the plate, using the orthogonal property of the eigenfunctions, we will obtain 

the following equations:  
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As the disk rotates at a certain speed, an equilibrium solution for Eqs. (3.29) can be 

found by neglecting time-dependent terms. These equilibrium solutions are called ue
mnS and 

ue
mnC , corresponding to the amplitude of ‘sin’ and ‘cos’ waves. Here, we consider some 

perturbations for the amplitude of sin and cos waves, shown by ( )tSu
mn

ˆ and ( )tCu
mn

ˆ , 

respectively. Therefore, we can write 

                                                       ( ) ( ) ,ˆ ue
mn

u
mn

u
mn StStS +=                                             (3.30a) 

                                                      ( ) ( ) .ˆ ue
mn

u
mn

u
mn CtCtC +=                                            (3.30b) 

After substituting Eqs. (3.30) into Eqs. (3.29), the equations of motion in terms of 

considered perturbations, ( )tSu
mn

ˆ and ( )tCu
mn

ˆ , are obtained. These are similar to Eqs. (3.29), 

with the forcing term ( 0C
mnF )being neglected and the coefficients of the expansion 

functions, ( )tS u
mn  and ( )tCu

mn , being replaced by ( )tSu
mn

ˆ and ( )tCu
mn

ˆ , respectively. These 

equations can be used to investigate the effect of axisymmetric runout on the frequency 

behavior of a spinning disk. 

3.4. Numerical Simulations 

In this section, the previously developed governing equations of motion are used to 

investigate the effect of disk runout on the oscillation frequencies of a non-flat spinning 

disk. For this purpose, an in-house code is written, based on the developed equations. The 

disk in this analysis is assumed to have clamped-free boundary conditions. It is also 

assumed that 2/112 mNeE = , 3.0=ν , 3/7800 mkg=ρ , 3529.0=η , mb 2159.0= , 

mmh 27.1= . Table 3. 1 summarizes the ratio of initial disk deflection due to runout at 

the outer rim to its thickness when 1000 =R
iW ( 4...,,1,0=i ). 

Table 3. 1. Ratio of disk deflection to its thickness at the outer rim when 1000 =R
iW  

Runout RW00 RW10 RW20 RW30 RW40 
( ) hw 10′ 0.5972 0.5926 0.5868 0.5855 0.5849 
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To verify the accuracy of the results obtained by the proposed method, the 

abovementioned disk with an initial non-flatness is modeled in the widely used 

commercial software, ANSYS. The non-flatness is assumed to be in the form of the (0,0) 

mode. A shell element (Shell63) is used for meshing the disk. The frequencies of the first 

four modes of the stationary disk are calculated using the proposed formulation and the 

ANSYS software. The results are displayed in Table 3. 2. There is a close agreement 

between the results predicted by the current analysis and those predicted by ANSYS. 

 

Table 3. 2. Comparison between the results of the proposed analysis and those predicted by 
ANSYS 

 10000 =
RW 20000 =

RW 30000 =
RW 

Mode Current ANSYS Current ANSYS Current ANSYS 
(0,0) 8.358 8.309 9.915 9.852 12.042 11.963 
(0,1) 7.971 7.928 8.539 8.489 9.387 9.331 
(0,2) 9.164 9.111 9.270 9.215 9.438 9.381 
(0,3) 13.999 13.911 14.006 13.916 14.016 13.927 

 

In Figure 3. 1, the calculated oscillation frequencies of the spinning disk when the 

runout is zero are compared with those where the runout is assumed to be in the form of 

the (0,0) mode. In the current analysis it is assumed that 7=M . Also, after doing a 

convergence test it is found that if we select 4=N , the change in the calculated 

frequencies are negligible and the convergence is achieved.   The dotted lines show the 

frequency results when the runout is assumed to be 10000 =
RW ; the solid lines show the 

results when the disk is assumed to be perfectly flat. Among all the modes shown in this 

figure, the frequencies of the (0,0) and (0,1) modes are more affected by assuming that 

the disk has an initial runout. The frequencies of the oscillations of the other modes also 

change by a very small amount, which cannot be distinguished in this figure. As the 

rotation speed increases, the difference between the calculated frequencies of the warped 

and unwarped disk decreases. This is because increasing the rotation speed makes the 

disk flatten and the effect of runout decrease.  

The above example shows that the modal stiffness of some of the modes change as 

the initial runout is considered in the analysis. The effect of the initial runout on the 

stiffness of the mode shapes can be inferred from Eqs. (3.28). As may be observed from 
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these equations, the modal stiffness due to the lack of flatness is influenced by the 

term ( )( )( )( )∑∑
= =

RN

i

N

q
mqnmnmqi aLwup

0 0
02

φ . In fact, the sign of this term indicates whether the initial 

runout increases or decreases the modal stiffness of each mode. It is difficult to determine 

the sign of this term analytically, and hence numerical investigations are employed here. 

These revealed that for any mode (n,m), this term is always negative. Indeed, the initial 

axisymmetric runout increases modal stiffness. On the other hand, since the modal mass 

of each mode is unchanged, an axisymmetric initial runout increases the frequencies of 

the oscillations of each mode, as can be verified in Figure 3. 1. 

 
Figure 3. 1. Non-dimensionalized oscillation frequencies versus non-dimensionalized rotation 

speed when the runout is zero (solid lines) and when 10000 =
RW (broken lines) 

 

Figure 3. 2 shows the frequencies of the oscillations of the spinning disk versus the 

rotation speed when the initial runout is assumed to be in the shape of the (1, 0) mode. In 

this plot, it is supposed that 10010 =
RW . In this case also, the oscillation frequencies of all 

the modes are changed by assuming that the disk is not perfectly flat. Unlike the previous 

results shown in Figure 3. 1, in this case the change in the frequencies of the oscillations 

of the (0,1) mode is not significant when compared to the other modes, and it cannot be 

distinguished in this figure.  When the disk is not perfectly flat and has small oscillations, 

an in-plane stress is induced in the disk due disk non-flatness (in addition to the in-plane 

stress induced due to the effect of rotation). The effect of this in-plane stress on the (0,1) 
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mode is smaller than that on the other modes when the non-flatness is in the shape of 

(1,0) mode. 

 
Figure 3. 2. Non-dimensionalized oscillation frequencies versus non-dimensionalized rotation 

speed when the runout is zero (solid lines) and when 10010 =
RW (broken lines) 

 
It is noted that the initial runout changes the critical speeds of the disk. The critical 

speed is a speed at which one of the frequencies of the oscillations of the spinning disk is 

zero. (The effect of the initial runout on the critical speed of the spinning disk will be 

discussed later.) Moreover, by comparing Figure 3. 1 with Figure 3. 2, it is evident that 

different forms of the initial runout may result in different oscillation frequencies for a 

given mode. Therefore, it may be concluded that the level of increase in the modal 

stiffness of each mode for a given shape of the initial runout is different from one mode 

to another. 

To further study the effect of disk runout on the oscillation frequency of the modes, 

the disk is here assumed to be stationary. Different levels of runout with different 

axisymmetric shapes are assumed and the results are obtained numerically. In Figure 3. 3, 

the frequencies of the first four modes of the stationary disk when the runout is assumed 

to be in the form of the (0,0) mode are plotted against the level of non-flatness. It may be 

noted that, in general, the frequencies of all the modes shown in this graph increase as the 

level of non-flatness increases. It also may be observed that the frequencies of the 

oscillations of the (0,0), (0,1), (0,2) and (0,3) modes increase by 86.12, 35.56, 6.08 and 

0.22 percent, respectively, as RW00 increases from zero to 400. In this example, the non-
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flatness in the shape of the (0,0) mode has the most substantial effect on the oscillation 

frequency of the (0,0) mode and the least effect on that of the (0,3) mode. It should be 

emphasized that the imperfection of the disk which is due to the lack of flatness is 

assumed to be axisymmetric. Therefore, for a non-flat stationary disk, the oscillation 

frequencies of the backward and forward traveling waves of each mode are the same. It is 

also interesting that in this case, the rate of change of the oscillation frequency of the 

(0,0) mode with respect to change in RW00  is high enough that the frequency of its 

oscillations exceeds those of (0,2) and (0,3) modes when RW00  changes from zero to 400. 

 
Figure 3. 3. Non-dimensionalized oscillation frequencies of the stationary disk when the non-

flatness is assumed to be in the shape of the (0,0) mode 
 

In Figure 3. 4, the frequency behavior of the stationary disk when the runout is 

assumed to be in the shape of the (1,0) mode is plotted against the level of non-flatness. 

As can be seen in this figure, unlike the previous case, the frequency of oscillations of the 

(0,3) mode is highly affected by the disk’s non-flatness. Based on the current numerical 

analysis, it is found that the frequencies of the oscillations of the (0,0), (0,1), (0,2) and 

(0,3) modes increase by 107.19, 55.33, 30.02 and 44.23 percent, respectively, as 
RW10 increases from zero to 400. Unlike the previous instance, the frequency of the 

oscillations of the (0,0) mode does not exceed that of the (0,3) mode when RW01 increases 

from zero to 400.  
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Figure 3. 4. Non-dimensionalized oscillation frequencies of the stationary disk when the non-

flatness is assumed to be in the shape of the (1,0) mode 
 

Figure 3. 5 and Figure 3. 6 show the oscillation frequencies of the stationary disk 

when the disk non-flatness is assumed to be in the form of the (2,0) and (3,0) modes. The 

frequency of the oscillations of the (0,0), (0,1), (0,2) and (0,3) modes increases by 

153.01, 80.30, 67.22 and 132.47 percent, respectively, when RW20 increases from zero to 

400. Also, the oscillation frequencies of these modes increase by 167.08, 87.23, 54.44 

and 146.93 percent, respectively, as RW30 increases from zero to 400. 

 
Figure 3. 5. Non-dimensionalized oscillation frequencies of the stationary disk when the non-

flatness is assumed to be in the shape of the (2,0) mode 
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Figure 3. 6. Non-dimensionalized oscillation frequencies of the stationary disk when the non-

flatness is assumed to be in the shape of the (3,0) mode  
 

In the first case, corresponding to the initial runout in the shape of the (0,0) modes 

(shown in Figure 3. 3), there are two modes for which the increase in oscillation 

frequencies is less than ten percent as the level of non-flatness changes from zero to four 

hundred. It is interesting to note that in the cases corresponding to the initial runout in the 

form of the (1,0), (2,0) and (3,0) modes (shown in Figure 3. 4, Figure 3. 5 and Figure 3. 

6), the increase in the oscillation frequencies of all the modes is almost always above 

thirty percent. Therefore, it may be concluded that the frequencies of oscillations are 

substantially affected by the initial runout in the shape of axisymmetric modes with a 

higher number of nodal circles. It may also be observed that as the number of nodal 

circles for the initial shape increases, the oscillation frequency increases, too. 

As indicated earlier in some of the cases, the frequency of the oscillations of the 

(0,0) mode exceeds that of the (0,2) and (0,3) modes. Table 3. 3 summarizes the level of 

the initial runouts for which the frequency of the (0,0) mode exceeds that of the (0,2) and 

(0,3) modes for the range of non-flatness studied in this paper. The bar (‘-’) indicates that 

for the specified shape of the initial runout, the frequency of the (0,0) mode does not 

exceed that of the (0,3) mode. When the initial non-flatness is in the shape of the (2,0) 

mode, the frequency of oscillations of the (0,0) mode exceeds that of the (0,2) mode for 

relatively low levels of non-flatness. 
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Table 3. 3. Level of runout by which the frequencies of the oscillations of the (0,0) mode exceed 
those of the (0,2) and (0,3) modes 

 (0,2) (0,3) 
RW00 160.97 382.66 
RW10 168.97 - 
RW20 157.01 - 
RW30 129.97 - 

 

It was observed that different shapes of the initial non-flatness may have different 

effects on the oscillation frequencies of the mode shapes. To explain the effect of each 

form of the disk non-flatness on the oscillation frequency of a given mode, one should 

determine the mechanism by which the runout may affect the frequency behavior.  

As previously noted, the particular part of the stress function is approximated by the 

summation of the eigenfunctions of an eigenvalue problem. The coefficients of these 

approximations are found in Eq. (3.27). According to this equation, when the disk has an 

initial runout and its transverse deflection is not zero (i.e. u
mqS or u

mqC is not zero), the 

particular part of the stress function is not zero. An in-plane stress is induced, due to the 

interaction between the disk runout and its transverse deflection. This in-plane stress is in 

addition to that caused by the effect of disk rotation. The distribution of this in-plane 

stress is different from one shape of disk non-flatness to another.  

To see how the level and shape of the runout may change the frequency behavior of 

the disk, we will now consider the (n,m) mode. The general form of the particular part of 

the stress function is given in Eq. (3.25). As previously discussed, only the terms in the 

particular part of the stress function that have m nodal diameters affect the modal 

stiffness of the (n,m) mode.   

It is clear that the expansion functions used to approximate the particular part of the 

stress function are orthonormal. Therefore, for this mode, among all the approximating 

functions with m  number of nodal diameters, the one that also has n  number of nodal 

circles may be considered more effective in determining the modal stiffness of that mode. 

Thus, for this mode one may be able to look at φ
mnS  and φ

mnC and explain the effect of 

initial runout on the frequency behavior of some of the modes.  
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From Eq. (3.27) it is observed that φ
mnS  and φ

mnC  are proportional to φ
mnqa . If we 

substitute the particular part of the stress function into the equation of motion, among all 

the values of φ
mnqa  (for different values of q ), the one that may directly change the modal 

stiffness of mode (n,m) is φ
mnna . In other words, the effect of φ

mnna  on the modal stiffness 

of the assumed mode may be considered more substantial than that of other values of 
φ
mnqa  ( nq ≠ ). It should be emphasized that other values of φ

mnqa  ( nq ≠ ) may affect the 

modal stiffness of the (n,m) mode as well. 

As shown in the foregoing analysis, one may be able to look at φ
mnna  for the (n,m) 

mode to explain the effect of different shapes of the initial non-flatness on the frequency 

behavior of the disk. Table 3. 4 summarizes the values of φ
mnna for different mode shapes, 

assuming two different forms of the initial runout. In this table it is assumed that the level 

of initial runout for all of the forms is 1000 =R
iW . 

Table 3. 4. φ
mnna for different modes and different forms of initial runout when 1000 =R

iW  
 RW00 RW10 

(0,0) 31043.4 −× 31076.2 −×
(0,1) 31062.1 −× 41094.6 −×
(0,2) 41024.2 −× 31086.1 −× 
(0,3) 51074.4 −× 31099.2 −×
(0,4) 61008.6 −× 31002.3 −×

 

In Figure 3. 3 it was observed that when the initial runout was assumed to have the 

shape of the (0,0) mode, the frequency behavior of the (0,0) mode is highly affected and 

that of the (0,3) mode is unaffected to some extent. Table 3. 4 shows that the value of 
φ
mnna for the (0,0) and (0,3) modes—when the non-flatness is assumed to be in the form of 

the (0,0) mode—are 31043.4 −× and 51074.4 −× , respectively. These values of φ
mnna  indicate 

that the effect of induced in-plane stresses due to the initial runout and bending deflection 

on the oscillation frequency of the (0,3) mode is less significant than that for the (0,0) 

mode. Therefore, it may be concluded that the modal stiffness of the (0,3) mode is 
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changed less compared to that of the (0,0) mode when considering the initial non-flatness 

of the disk. 

It must be emphasized that one may use the above approach to compare the effect of 

an assumed initial runout on the frequency behaviors of two different modes only if their 

values for φ
mnna  are different by at least one to two orders of magnitude.  

When the initial runout is in the form of the (1,0) mode, the values of φ
mnna  have 

almost the same order of magnitude and some of them are close together. Therefore, in 

this case this approach cannot be employed to explore the effect of an assumed initial 

runout on the frequency behavior of the disk. In such cases, complex analytical methods 

should be used. Indeed, from Table 3. 4, it may generally be concluded that when the 

initial runout is in the form of the (1,0) mode, all of the oscillation frequencies are 

affected for the range of the initial runout considered here. To see why some modes are 

more affected by the initial runout in this form, some other mathematical tools should be 

employed.  

It was seen that not only does the frequency behavior of the disk change with the 

shape and level of the disk’s non-flatness, its critical speeds change as well. Using the 

developed solution method, the effect of different forms of the initial runout on the 

critical speed behaviour of the disk is studied. In Figure 3. 7, the non-dimensionalized 

critical speed of the (0,2) mode is plotted against the level of initial non-flatness for 

different shapes of the initial runout. It can be seen that the critical speed of the (0,2) 

mode is less affected by the initial runout in the shape of (0,0) mode compared to the 

other forms of the initial runout. This is because when the initial runout is in this form, 

the contribution of the induced in-plane stress due to the lack of flatness on the modal 

stiffness of this mode is small compared to that of the other forms of the initial runout. 

This can be verified in Table 3. 4. 

Figure 3. 8 shows the effect of non-flatness on the non-dimensionalized critical 

speed behavior of the (0,3) mode. As may be seen, for this mode among all of the shapes 

of the initial runout considered here, the ones in the form of the (0,0) mode and the (3,0) 

mode have the lowest and highest influence on its critical speed, respectively. Also, in 

Figure 3. 9, the non-dimensionalized critical speed of the (0,4) mode is plotted against the 
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level of non-flatness, assuming different shapes for the initial runout. Again, based on 

these results, among all of the forms of the initial runout considered, those that are in the 

shape of (0,0) and (3,0) modes have the lowest and highest effect on the critical speed of 

this mode, respectively.  

 
Figure 3. 7. Change in the critical speed of the (0,2) Mode, assuming different shapes of runout 

(the legends show the shape of initial non-flatness) 
 

 
Figure 3. 8. Change in the critical speed of the (0,3) Mode, assuming different shapes of runout 

(the legends show the shape of initial non-flatness) 
 



Chapter 3. On the Effects of Initial Runout 

 

 

 62 

As it may be seen in Table 3. 4, the effect of induced in-plane stress, due to the disk 

non-flatness in the form of (0,0) mode, on the modal stiffness of the (0,3) and (0,4) 

modes is lower than those of the other forms of initial non-flatness. Therefore, the critical 

speeds of these two modes is less effect by the initial non-flatness in the form of the (0,0) 

mode compared to other modes. Numerical investigations show that when the disk non-

flatness is in the form of the (3,0) mode, the induced in-plane stress due to lack of 

flatness contributes more toward the modal stiffness of the (0,3) and (0,4) modes 

compared to other forms of initial non-flatness. Therefore, the critical speeds of these two 

modes are more affected by the initial non-flatness in the (3,0) mode compared to the 

other forms of non-flatness. 

 
Figure 3. 9. Change in the critical speed of the (0,4) Mode, assuming different shapes of runout  

(the legends show the shape of initial non-flatness) 
 

3.5. Conclusions 

This chapter presents the results of an investigation into the effect of initial 

axisymmetric runout on the frequency behavior and critical speed behavior of a spinning 

disk. The nonlinear equations of motion based on Von Karman’s plate model were used. 

As an approximation, it was assumed that the bending deflection of the disk was small 

compared to its thickness. Using this assumption and Galerkin’s method, the equations of 
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motion were discretized. The proposed method for finding the oscillation frequencies of 

the static disk was verified by comparing the results with those obtained using ANSYS. 

In general, it was found that the initial runout increased the modal stiffness of the 

modes. For a given shape of runout, the level of increase in the modal stiffness was 

different from one mode to another. Since the initial runout was assumed to be 

axisymmetric, there was no separation between the oscillation frequencies of the 

backward and forward travelling waves of a given mode at zero speed. It was also found 

that the oscillation frequencies of the disk oscillations were more affected by the initial 

runout in the shape of axisymmetric modes with a higher number of nodal circles. 

The mechanism by which the initial axisymmetric runout affected the modal 

stiffness of the modes was discussed. It was found that an in-plane stress due to lack of 

flatness and bending deflection was induced in the disk domain. This in-plane stress 

distribution had different effects for different mode shapes. It was observed that when the 

initial runout was in the form of the (0,0) mode, the modal stiffness of some of the modes 

were not affected extensively by the disk non-flatness. 

Also, the effect of an assumed initial runout on the critical speed behavior of some 

of the modes was considered. It was found that the initial axisymmetric runout increased 

the critical speed of the spinning disk. Generally speaking, the more complicated the 

shape of the initial runout, the greater its effect on the critical speeds of the disk. 
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Chapter 4- Experimental Investigations on the 

Nonlinear Frequency Behavior * 
 

4.1. Introduction 

Rotating disks constitute key elements in many industrial applications ranging from 

hard disk drives to aircrafts rotors. In some engineering applications such as the wood 

cutting industry, the disk may be subjected to the application of space-fixed lateral forces. 

These lateral forces produce lateral displacements that may not be small compared to the 

disk thickness. In such circumstances, the effect of geometrical nonlinear terms cannot be 

ignored. As such, the linear equations of motion cannot accurately predict the response of 

the disks.  

Tobias and Arnold [1] investigated the effect of disk imperfections on the dynamic 

behavior of spinning disks. In their studies, they conducted experiments on the amplitude 

response of a spinning disk in the region of its critical speeds while subjected to a space 

fixed external force. They observed that a stationary wave develops in the region of a 

critical speed and collapses sometime after the critical speed. They did not consider the 

effect of large deformation on the frequency response characteristics of the disks tested. 

Chen et al. [2] used the nonlinear governing equations of motion to investigate the impact 

of symmetrical initial runout on the amplitude of spinning disk deflection. They 

concluded that, depending on the shape and level of initial non-flatness, the disk may 

exhibit snap through buckling. They verified experimentally their theoretical results using 

a warped disk with an initial level of non-flatness almost eight times higher that of the 

disk thickness. In another work, Chen et al. [3] used the nonlinear equations of motion to 

consider an unsymmetrical initial non-flatness for the disk. In this work, he studied the 

                                                 

 
* A version of this chapter has been submitted for publication. Khorasany, R.M.H., and Hutton, S.G., 

2010, “Vibration Characteristics of Rotating Thin Discs, Part I: Experimental Results”.  
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effect of unsymmetrical terms on the snapping speed while the disk was spinning. Again, 

they verified their results using an experimental set up. 

Thomas et. al. [4] measured the amplitude response of an imperfect stationary disk. 

Due to the presence of imperfection, there are two different configurations associated 

with each mode. He was able to measure the amplitude response of each configuration 

and compare them with analytical predictions. Raman and Mote [5] conducted 

experiments to study the behavior of an imperfect spinning disk at around its critical 

speeds. In their experiments, they were able to record the existence of a critical speed for 

very small disk deflections. DAngelo and Mote [6] conducted an experimental study on 

the frequency and amplitude behavior of a disk which was spinning in a fluid. They 

studied the effect of fluid density on the frequency response. They found a lock-in 

phenomena for the frequency behavior at supercritical speeds.   

Raman et. al. [7] investigated experimentally the post-flutter frequency response of 

spinning disks. They recorded sudden jump and drops in the frequency response of the 

disks tested. Also, they noticed that the frequency response of the backward traveling 

wave of one of the modes was nearly constant over a specific speed region. Namchelo 

and Raman [8] studied the vibrations of a spinning disk in a gas filled enclosure. More 

recently, Jana et. al. [9] conducted experiments to investigate aeroelastic phenomena of a 

disk rotating in air. They measured the amplitude and frequency responses of a spinning 

disk and noticed jumps and drops in the frequency response. They also reported that, in 

some supercritical speed ranges, a frequency lock-in phenomenon occurred. 

The primary objective of the present work is to study the frequency response of 

spinning disk under the application of a space fixed external force.  Of particular interest 

is to determine how the frequencies of a spinning disk change when the applied force 

gives rise to deflections that are not small compared to the disk thickness. 

4.2. Experimental Setup 

A schematic of the experimental setup is shown in Figure 4. 1.  Four space fixed 

inductance probes, with a linear range of 0.25in, were used to measure the displacement 

of four different points located around the rim of the spinning disk. In order to find the dc 
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level of the disk displacement, the deflection for each probe was averaged over a period 

of two seconds. 

Different levels of disk deflection were induced by the application of an air jet 

whose pressure could be varied to provide different levels of displacement (and 

nonlinearity). The air jet was located on the opposite side of the blade to probe 3. In order 

to optimize modal excitation an electromagnet was also used to provide white noise 

excitation over the frequency range 0-100Hz.  

Results were obtained by measuring the vibration profile of the disk at the four 

probes as the speed was run up from 0 RPM to 4,000 RPM and run down from 4,000 

RPM to 0 RPM at a constant rate over a time interval of 500sec. Three different levels of 

air jet excitation were applied to each rotating disk providing different levels of disk 

deflection.  

 Using National Instrumentation software “Signal Express” the data was analyzed to 

produce waterfall and frequency colour maps that illustrated the variation of disk 

frequencies with rotational speed. Three disks with different thicknesses were used in the 

tests. All of them were made from steel. The inner diameter was clamped to the arbor by 

a 6 in. collar and the outer diameter was free. This clamping arrangement was not stiff 

enough to produce a perfectly clamped boundary condition. The disks used in these tests 

were typical of those used as wood cutting saw blades. As such they were not perfectly 

flat. The disk dimensions and flatness indicators are given in Table 4. 1. “Mean dish” 

refers to average displacement measured at the rim perpendicular to a plane passing 

through the disk in the clamp, and runout refers to the maximum difference between the 

mean value and the value at any other point on the disk rim. As can be seen the 0.030in 

disk had a significant amount of dishing, and when clamped suffered snap through 

buckling causing the dishing to change signs. 

 

Table 4. 1. Disk Dimensions and Flatness Indicators (inches) 
Disk Inner Dia.  Outer Dia.  Thickness  Mean Dish Runout 
#1 6 17 0.050 0.006 0.005 
#2 6 17 0.040 0.005 0.003 
#3 6 17 0.030 0.011 0.005 
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Figure 4. 1. The Experimental Setup 

 

4.3. Experimental Results 

4.3.1. Disk #1 – 0.050” Thickness 

Figure 4. 2 shows the measured frequency response of the 0.050” disk for different 

levels of applied force for both run up and run down over the speed range dc to 

4000RPM. In this figure 0w is the maximum deflection of the stationary disk at the outer 

rim caused by the application of air jet. In Figure 4. 3 the dc amplitude response of the 

spinning disk versus speed is plotted. The amplitude is measured at the location of probe 

3. The dc amplitude is calculated using the mean value of two seconds of displacement 

data. The disk deflection is measured from the position of the disk after the application of 

air-jet excitation when the disk is stationary. Mode (n,m) refers to  a mode with n and m 

nodal circles and diameters, respectively. 

From Figure 4. 2a-b it may be noted that when only white noise excitation is used, 

the frequency response shows behavior which is characteristic of a linear system. The 

frequencies of backward traveling waves decrease smoothly and reach a speed where the 

measured frequency is zero or close to zero. This speed is the critical speed of that mode. 

However, the response at these low frequencies is noisy and it is difficult to make 

definitive statements about the frequency paths in this region. Although air jet excitation 

is not used for Figure 4. 2a-b, it seems that the frequencies of the backward traveling 

waves of the (0,2) and (0,3) modes maintain a constant level for a small speed range 
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between 2800 RPM and 3200 RPM. The waterfall plot given in Figure 4. 4 more clearly 

defines the paths of the measured frequencies of the (0,2) and (0,3) modes. 

 In Figure 4. 3a, (no applied air jet force) it may be noticed that several stationary 

waves  develope and then collapse in the critical speed region between 2800 RPM and 

3200 RPM (in the run-up case). Although the disk deflection is small at sub-critical 

speeds, at supercritical speeds the ratio of dc deflection to thickness reaches almost 0.37. 

At such levels, nonlinear effects are important. However the level of the applied force is 

insufficient to sustain the developed stationary waves over a significant speed range.  

Figure 4. 2c and Figure 4. 2d show the response when 1.00 =hw . In these two cases 

the measured frequencies, at sub-critical speeds, are essentially the same as those 

measured in the case with only white noise excitation. A major difference occurs when 

the speed approaches the first critical speed around 2800RPM. At this speed, the 

measured frequencies of the backward traveling waves of the (0,2) and (0,3) modes level 

off and have a nearly constant frequency. From Figure 4. 3b it can be seen that in the run-

up case, 2800 RPM represents the onset of development of a stationary wave. The 

primary instability [7] that occurs at this speed causes the amplitude of the disk response 

to grow. 

 From Figure 4. 3b it may be noted that the amplitude of the dc displacement 

fluctuates at speeds above 2800RP. This is due to the fact that the level of nonlinearity is 

relatively small and the stationary wave cannot be sustained over a large speed range and 

thus collapses shortly after development.  From Figure 4. 2b, it can be seen that the 

critical speeds of the (0,2), (0,3) and (0,4) modes lies between 3000 to 4000 RPM. 

Therefore, when the stationary wave associated with one of these modes collapses the 

stationary wave for the next mode starts to develop after a short increase in speed.  

From the dc amplitude response plotted in Figure 4. 3b, it can be seen that in the run 

up case when the speed approaches 3800 RPM, the last stationary wave collapses which 

is an indication of a secondary instability [7]. As shown Figure 4. 2c , the run up case, in 

the speed range of 2800 and 3200 RPM there is the initiation of a lock-in phenomena in 

the measured frequency of the (0,0) mode. After this speed range, when the last 
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stationary nodal diameter wave collapses, a jump in the measured frequency of the (0,0) 

mode is evident.  

From Figure 4. 3b, it can be seen that in the run down case, the stationary wave 

starts to develop at a speed close to 3600 RPM. A drop at this same speed, in the 

frequency of the (0,0) mode, is also evident in the run down case shown in Figure 4. 2d,. 

The frequency of this mode then remains almost constant until the speed reaches 2800 

RPM. 

Raman et al. [7] has identified two types of instabilities that arise in the study of 

spinning disks. The first type of instability is called “primary instability”. In this set of 

experiments, primary instability happens when the spinning disk is subjected to a 

constant space fixed force and is rotating at a speed close to one of its critical speeds. In 

this situation the dc amplitude response of the spinning disk starts to increase and a 

stationary wave starts to develop. Another type of instability called “secondary 

instability” gives rise to the collapse of the stationary wave. At the speed corresponding 

to this type of instability, a sudden change in the amplitude and the frequency of the wave 

occurs. At the speed corresponding to the secondary instability a bifurcation occurs 

which is an indication of the existence of multiple solution branches. The results in 

Figure 4. 2c,d and also Figure 4. 3b  indicate that the secondary instabilities occur at 3800 

and 3600 RPM on run up and rundown, respectively.  

In Figure 4. 2e and Figure 4. 2f, the measured frequencies are plotted for the case 

where 4.00 =hw . In this case the measured frequencies of the forward and backward 

traveling of the (0,2) mode at zero speed are found (by extrapolating the curves to zero 

speed) to be more separated than the cases with no air jet excitation or when 1.00 =hw . 

The separation of these frequencies for the (0,1) mode is not so significant. 

 Application of the air jet destroys the axial symmetry of the disk resulting in 

separation of the zero speed frequencies. Hutton et. al. [11] showed that, in the linear 

case, adding space fixed springs to a rotating disk system, destroys disk symmetry and 

results in separate backward and forward traveling waves frequencies of the same mode 

at zero speed. Another source of separation in the measured frequencies is the presence of 

non symmetric internal residual stresses.  
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Table 4. 2 presents estimates of the frequencies of the (0,2)f and (0,2)b modes of the 

stationary wave as a function of initial disk displacement produced by the air jet (‘f’ and 

‘b’ stand for forward and backward traveling waves, respectively). The frequency values 

presented in this table correspond to the run-up case. From this table it may be noted that 

the difference between the measured frequencies of the backward and forward traveling 

waves of the (0,2) mode increases as the initial displacement due to the air jet excitation 

increases.   

Figure 4. 2e and Figure 4. 2f show the measured frequencies when 4.00 =hw . As 

may be noted from these two figures, at sub-critical speed, the measured frequency is 

close to the linear frequency response (Figure 4. 2a). It may also be noted that backward 

traveling waves of the (0,2) and (0,3) modes decreases smoothly when the speed 

increases until it reaches 2800 RPM. At around 2800 RPM, a stationary wave starts to 

develop. It is observed that the developed stationary wave is in the form of the (0,3) mode 

as shown in Figure 4. 5. After this speed, the measured frequencies of the backward 

traveling waves of the (0,2) and (0,3) modes maintain a constant level up to 4000 RPM.  

It also can be seen that the frequencies of the backward and forward traveling waves of 

the (0,2) and (0,3) modes do not approach zero. 

Since there is no sign of a sudden drop or change in the frequency and amplitude 

responses, it can be concluded that in this case, for the range of speed used, there is no 

secondary instability. It also can be seen that not only the frequencies of these two modes 

maintain a constant level, the frequency curves for other modes also diverge from their 

linear paths. For example, the curve for the frequency response of the (0,6) mode bends 

and tends to level off and maintain a constant level. This behaviour can be attributed to 

the fact that the dc configuration of the rotating disk now has strain energy characteristics 

different from those possessed by the disk in its zero speed configuration. 

When the speed decreases from 4000 RPM in the run down case, the dc amplitude 

and measured frequencies, follow almost the same path as measured in the run up case. 

This is because the developed stationary wave is stable at all speeds below 4000 RPM. 

Figure 4. 2g and Figure 4. 2h shows the measured frequency response of the disk for 

the case of 6.00 =hw . Once again, the measured frequencies of the (0,2) and (0,3) modes 
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are almost constant in the speed range that the stationary wave is developed. There is not 

a significant difference between this case and the previous one with 4.00 =hw . 

Figure 4. 2e-h clearly indicate that no backward travelling waves (for these levels of 

nonlinearity) approach a zero frequency level. Instead, as they approach their critical 

speeds they veer off to adopt constant levels independent of speed. Thus no critical 

speeds exist for these cases. Figure 4. 5 plots the mode shape of the DC response of Disk 

1for  6.00 =hw  at 3600RPM estimated from the data obtained from the  four 

displacement probes and show the response is primarily in the (0,3) mode 

 

Table 4. 2. Estimated Frequencies at Zero Speed (Hz); (0,2) Mode 
 (0,2)b (0,2)f Difference (Hz) 

0.00 =hw 65.5 66.2 0.7 

1.00 =hw 66.4 68.1 1.7 

4.00 =hw 67.3 70.2 2.9 

6.00 =hw 67.7 70.9 3.2 
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Figure 4. 2. Frequency Response of Disk #1 for Different Force Levels 

Run-Up:     (a) 0.00 =hw , (c) 1.00 =hw , (e) 4.00 =hw , (g) 6.00 =hw  
Run-Down: (b) 0.00 =hw , (d) 1.00 =hw , (f) 4.00 =hw , (h) 6.00 =hw  
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Figure 4. 3. Disk 1- DC Displacement versus Speed (probe 3)  

 (a) 0.00 =hw  , (b) 1.00 =hw , (c) 4.00 =hw  (d) 6.00 =hw  
 
 

 
Figure 4. 4. Disk 1- Waterfall plot with white noise magnetic excitation ( 0.00 =hw ) in the run-

up case 
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Figure 4. 5. Disk 1- DC amplitude at 3600 RPM at the location of four probes (shown with stars) 

and the (0,3) mode curve fitting (solid lines) when 6.00 =hw  
 

4.3.2. Disk #2 – 0.040” Thickness 

The maximum displacement that the air jet could produce in the 0.050” disk was 

6.00 =hw .  To examine the effect of higher levels of nonlinearity, a thinner disk was 

used which, when subjected to the same maximum air jet force, produced higher levels of 

displacement. Figure 4. 6 shows the measured frequency response of this disk, as a 

function of speed, for different values of hw0  for a 0.040” disk. Figure 4. 7 show the 

associated measured DC deflections versus speed.  

When the air-jet excitation is not used ( 00 =hw ), and for the speeds below the first 

critical speed (2600 RPM), the measured frequency response shows linear characteristics. 

From Figure 4. 7a it may be noted that in the run-up case, at around the first critical speed 

(2600RPM), a stationary wave starts to develop. Also, from Figure 4. 6a it may be seen 

that the measured frequencies of the backward traveling waves of the (0,2) and (0,3) 

modes maintain a constant level for a small speed range  (1000 RPM)  starting at 2600 

RPM. In the speed range between 2600 and 3600 RPM several stationary waves develop 

and collapse (Figure 4. 7a) as the disk speed increases. The last stationary wave collapses 

suddenly at 3600 RPM and as a result a sudden jump in the frequency response of the 

(0,0) mode is evident in Figure 4. 6a. 

 In the run-down case in Figure 4. 7a, the first stationary wave starts to develop 

around 3200 RPM. From 4000 to 3200RPM the DC response is small and thus linear 
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behaviour would be expected in this region. From Figure 4. 6b it may be seen that from 

4000 to 3200 RPM the measured frequency response is somewhat noisy and definitive 

statements are difficult to make regarding the character of the measured response.  

In the run down case, with no air jet excitation, a secondary instability occurs close 

to 3200RPM (Figure 4. 7a). As a result of this instability, a sudden drop in the measured 

frequency of the (0,0) mode is notable in Figure 4. 6b. 

In all cases in Figure 4. 6, with non zero force excitation, the development of a 

stationary wave coincides with a speed regime in which the low frequency modes are 

essentially invariant with blade speed. This behaviour appears to be consistent with the 

“lock-in” phenomenon described by Jana et. al [9]. It may be noted that this behaviour 

occurs with the (0,0) mode as well as the nodal diameter modes. 
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Figure 4. 6. Frequency Response of Disk #2 for Different Force Levels 

Run-Up:     (a) 0.00 =hw , (c) 5.00 =hw , (e) 0.10 =hw , (g) 0.20 =hw  
Run-Down: (b) 0.00 =hw , (d) 5.00 =hw , (f) 0.10 =hw , (h) 0.20 =hw  
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Figure 4. 7. Disk 2- DC Displacement versus Speed  (probe 3)  

 (a) 0.00 =hw  , (b) 5.00 =hw , (c) 0.10 =hw  (d) 0.20 =hw  
 

4.3.3. Disk #3 – 0.030” Thickness 

This disk is very thin; it is approximately 5 times more flexible than the 0.050” disk 

and displays different characteristics to the previous two blades. For the previous two 

disks the initial runout was small. In the case of Disk #3 this was not the case and the non 

clamped disk was dished (see Table 4. 1). In the process of clamping the disk to the 

arbor, snap through buckling occurred. This resulted in a deformation of the disk into 

approximately the shape of the (0,0) mode with a displacement at the rim of 0.055”. Thus 

significant internal stresses would have been induced by the clamping process. 

The mean amplitude of the disk, at the location of all four probes, is presented in 

Figure 4. 8 for the case where 5.00 =hw . The amplitude is measured from its zero speed 

deformed position. Up to approximately 2300 RPM all of the points move in the same 
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direction. This indicates that the disk deflection is in the form of the (0,0) mode as it 

tends to straighten out due to centrifugal effects. Although the air pressure is applied to 

the disk at one specific point (location of probe #3), the disk deflections have almost the 

same amplitudes at all probe locations up to approximately 2000 RPM. Above 2000 RPM 

the disk is no longer dished and for speeds higher than 2300 RPM the probes move in 

different directions. From the mean amplitudes measured at the location of probes, it may 

be concluded that a stationary wave is developed for the speeds higher than 2300 RPM. 

In Figure 4. 9 the measured frequencies of the spinning disk, using different levels 

of nonlinearity, are plotted against the speed. From Figure 4. 9a, the lowest critical speed 

appears to be in the region of 2600RPM. The plots with non zero force are very noisy for 

frequencies below 40Hz but there appears to be evidence, at frequencies above this, of 

the backward travelling waves displaying the same behaviour as previous disks with the 

frequency tending toward a constant value above speeds of 2600RPM. There does not 

appear to be any evidence that the (0,0) mode is excited for  speeds below 2000 RPM. 

In Figure 4. 10c a snap through buckling is indicated at 1300RPM. This is also 

reflected in Figure 4. 9e,f where there appears to be a discontinuous frequency response 

at 1300RPM for all modes resulting from the changed modal configuration at this speed. 

 
Figure 4. 8. DC displacement of disk #3, when 5.00 =hw at all probes 
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Figure 4. 9. Frequency Response of Disk #3 for Different Force Levels 

Run-Up:     (a) 0.00 =hw , (c) 5.00 =hw , (e) 0.10 =hw , (g) 0.20 =hw  
Run-Down: (b) 0.00 =hw , (d) 5.00 =hw , (f) 0.10 =hw , (h) 0.20 =hw  
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Figure 4. 10. Disk 3- DC Displacement versus Speed  (probe 3)  

 (a) 0.00 =hw  , (b) 5.00 =hw , (c) 0.10 =hw  (d) 0.20 =hw  

4.4. Conclusions 

Experimental results have been presented that illustrate the vibration behavior of 

three uniform, thin, spinning disks of different thicknesses (0.050”, 0.040” and 0.030”) 

subjected to a constant lateral force of different magnitudes. In particular frequency and 

amplitude characteristics are measured as a function of speed and applied force.  Using 

different levels of air-jet excitation, different levels of nonlinearity are induced and the 

resulting responses recorded and compared to linear behaviour. 

The 0.050” and the 0.040” disks had behaviour characteristic that were similar. The 

thinnest disk 0.030” behaved in a different manner. This difference in behaviour was in 

part due to the large dished runout of this disk which caused it to undergo snap through 

buckling when clamped to the arbor. It also may be that this disk is so thin that its 
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characteristics were more dictated by membrane behaviour than the other two disks. 

Further conclusions will be restricted to the behavior of the 0.050” and 0.040” disks.    

DC displacement results obtained for speeds below the lowest critical speed were 

not sensitive to the level of nonlinearity for the tests conducted in this study. At and 

above the critical speed the results obtained illustrated the important effects of 

nonlinearity. At very low levels of nonlinearity the dc response in the critical speed 

region was characterized by the formation and collapse of stationary waves over a short 

speed interval. Above a certain level of nonlinearity stationary waves developed and were 

stable up the maximum speeds tested. It should be noted that these stationary waves were 

measured using a two second averaging algorithm and in practice would consist of both a 

dc component (as recorded) plus a superimposed frequency component (not recorded). 

The formation of these stationary waves coincided with a change in the path of the 

frequencies of the backward travelling waves of all the modes recorded. At the speed 

corresponding to the formation of the stationary waves the backward travelling waves 

veered from their linear path to one where the frequency remained constant with speed. 

Thus the effect of the nonlinearity was to modify the lowest backward traveling waves 

such that they do not experience a zero natural frequency. As a result a pure standing 

wave does not exist in the presence of nonlinearity. This in turn indicates that the 

theoretical critical speed, based upon linear analysis, does not exist in the presence of 

nonlinearity. A consequence of the backward travelling waves adopting a constant value 

is that there are no reflected waves and thus no supercritical speed conditions for flutter 

instability arise. 

The experimental results verified that the introduction of a space fixed external force 

causes separation of the backward and forward traveling waves of a given mode at zero 

speed. This would be expected due to the lack of symmetry of the internal stresses 

distribution. Further, it would be expected that the resulting nodal patterns would be such 

as to provide minimum and maximum frequencies for the existing imperfection 

distribution. Of course it is likely that the disks tested had other imperfections that 

contributed to the lack of symmetry which would add to and affect this issue. 
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Chapter 5- Analytical Investigations on the 

Nonlinear Frequency Behavior * 
 

5.1. Introduction 

Spinning disks have many industrial applications. In some the disk deflection 

exceeds the limit at which the linear theory is valid. In these circumstances, the frequency 

predictions based upon the linear theory are not accurate and geometric nonlinear effects 

must be considered. 

Theoretical studies of this problem using linear analysis started with the work of 

Lamb and Southwell [1]. They investigated the transverse linear vibration of a flat, 

isotropic circular disk of uniform thickness rotating about its axis with constant angular 

velocity. Mote [2] analyzed the free vibration characteristics of centrally clamped, 

variable thickness disks by the Rayleigh-Ritz technique. Natural frequencies of transverse 

vibration were computed taking into consideration rotational and thermal in-plane stress 

as well as purposely induced initial stresses. Hutton et. al. [3] studied the dynamic 

response characteristics of rotating circular disks when subjected to the effect of forces 

produced by stationary spring guides. Chen and Bogy [4] used the orthogonality 

properties that govern the modes, to develop a method for finding the derivative of mode 

shapes with respect to a certain parameter. Using this method, they found the derivative 

of the natural frequencies of the system with respect to constraint parameters such as 

mass, damper and stiffness. Tian and Hutton [5] developed an analytical model of a 

wood-cutting circular saw blade for the purpose of understanding the mechanics of a 

lateral vibration instability known as washboarding. The governing equation developed 

contains inertial, gyroscopic and stiffness terms with the cutting forces being represented 

                                                 

 
* A version of this chapter has been submitted for publication. Khorasany, R.M.H., and Hutton, S.G., 

2010, “Vibration Characteristics of Rotating Thin Discs, Part II: Analytical Predictions”.  
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by the product of a time-dependent periodic function and the lateral displacement of the 

saw teeth. 

There is also an extensive body of research work that considers the effect of 

geometrical nonlinear terms on the response of spinning disks. Nowinski [6] presented a 

formulation for the nonlinear vibration of rotating disks due to large displacements. 

Tobias [7] studied the nonlinear vibrations of imperfect rotating discs and Jana and 

Raman [8] investigated the nonlinear dynamics of a flexible spinning disk coupled to a 

pre-compressed spring. They studied large amplitude wave motions and their stability 

using the averaging method. Nayfeh, Jilani and Manzione [9] used the method of 

multiple scales to investigate the transverse nonlinear vibrations of a centrally clamped 

rotating circular disk. Chen [10] used the multiple scales method to investigate the 

internal resonance between a pair of forward and backward modes of a spinning disk 

under spaced fixed pulsating edge loads. Touze et. al. [11] studied the nonlinear 

oscillations of a stationary disk with imperfections. They studied the coupling between 

preferential configurations and investigated its effect on the traveling wave components 

in the response.  

Yang and Hutton [12] used polynomial expansion functions as the approximation 

function in the Galerkin’s method to solve the nonlinear equations of motion for rotating 

thin disks. Luo and Mote [13] used a new plate theory to study the effect of large 

amplitude displacements on the frequency behavior of spinning disks. Based on energy 

principles they calculated the frequencies of a spinning disk considering the effect of 

nonlinear terms.  

The specific aim of this chapter is to investigate the effects of large deformation on 

the frequency behavior of spinning disks. The response of a thin, idealized rotating disc 

subjected to a space fixed external force (and the resulting nonlinear deformations) is 

analyzed. In particular the frequency behaviour of travelling waves at supercritical speeds 

is investigated. 

To validate the accuracy of the numerical predictions, comparisons are made with 

experimental results presented in a companion paper [14] which is chapter 4 of this 

thesis, (hereafter referred to as Part I). 
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5.2. Formulation 

A thin annular disk of thickness h , inner radius a  and outer radius b (with hb >> ) is 

considered. It is assumed that the disk is perfectly flat and made of an isotropic 

homogenous material with Young’s modulus E , Poisson’s ratioν and density ρ . It is also 

assumed that the disk is free of any initial stress and that the effect of in-plane vibrations 

and rotary inertia are negligible. Based on these assumptions, Nowinski [6] developed the 

nonlinear equations of motion of a spinning disk with speed Ω  in the space-fixed polar 

coordinate system ( ),( θr ) as: 
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where w is the transverse deflection of the disk, φ is the stress function, F is a space-

fixed applied external force acting at ( )FFr θ, . The above equations are in normalized 

form. The relations between the actual (denoted by prime) and normalized parameters are 
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( )23 112 ν−= EhD  is the disk flexural rigidity. The effect of in-plane stresses are 

taken into account via the stress function. The solution of Eq.(5.2) consists of two 

components hφ (homogeneous solution) and pφ (particular solution)  where hφ  is speed 

dependant and pφ   is displacement dependant. 
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In this chapter, it is assumed that the spinning disk is clamped at the inner rim and 

free at the outer rim. Therefore, at the inner rim (
b
a

=η ) the boundary conditions have 

the following form 
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At the outer rim the bending moment and Kirchhoff edge reaction are zero which in 

the nondimensional form can be expressed as [12]: 
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Moreover at the inner rim, radial and hoop displacements must vanish. These 

constraints can be expressed in the following forms [8] 
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Also, at the outer rim, in-plane stresses rrσ  and θσ r  are zero.  In terms of the non 

dimensional variables, these boundary conditions can be written as: 
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As was discussed above, the stress function can be decomposed into two different 

parts as follows 

                                                            .ph φφφ +=                                                         (5.7) 
The associated boundary conditions for the homogenous part of the stress function 

are those stated in (5.5a) and (5.6a). After finding the homogenous part of the stress 

function and substituting into the boundary conditions stated in Eqs (5.5-6), the speed 

dependent part of these equations will be satisfied. Therefore, the associated boundary 

conditions for the particular part of the stress function are the ones that are stated in Eqs. 
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(5.5) and (5.6) neglecting the speed dependent parts. After finding the homogenous part 

of the stress function through Eq. (5.2), the following expression is obtained: 

                                           ( ) .321ln 42
2

2
1

ε
νφ rrcrch Ω−++

=                                      (5.8) 

The homogenous part of the stress function is only a function of ‘r’. 1c  and 2c  are 

constants that can be found using the appropriate boundary conditions for the 

homogenous part of the stress function. Since hφ  is not a function ofθ , the boundary 

condition stated in Eq. (5.6b) is automatically satisfied. Also if we substitute hφ from Eq. 

(5.8) into Eq. (5.5b) we find that this boundary condition is also automatically satisfied. 

Using Eq. (5.8) and the boundary conditions stated in Eqs. (5a) and (6a), 1c  and 2c  are 

found to be 
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Numerous techniques can be used to develop a solution method for the governing 

equations. In the present paper, the Galerkin’s method is used with approximating 

functions derived from the solution of the eigenfunctions of the following two eigenvalue 

problems: 

( ) ,44 ww w
mnλ=∇  

( ) .44 φλφ φ
mn=∇  

The first eigenvalue problem stated in the above is associated with the transverse 

deflection and the second one is associated with the stress function. The eigenfunctions of 

the transverse displacement eigenvalue problem stated in the above are assumed to be: 

( ) ( ) θλθλ mrRandmrRW mn
w
mnmn

w
mnmn cossin=  and those of the stress function are 

assumed to be ( ) ( ) θλθλφ φφ mrRandmrR mnmnmnmnmn cossin= .  The boundary conditions 

of the above eigenvalue problems are given in Eqs. (5.3) and (5.4) for the transverse 

displacement eigenvalue problem and in Eqs. (5.5) and (5.6) with the assumption that the 

speed is zero for the stress function eigenvalue problem. Therefore, the transverse 

displacement and stress function can be approximated by modal expansions: 
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M and N are the number of nodal diameters and nodal circles which have been used 

in the approximation, respectively. It should be noted that the eigenfunctions are 

normalized using the following relations 
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where ijδ is the Kronecker delta and S is the disk domain. After substitution of Eq. (5.9) 

into Eq. (5.1) and then multiplying both sides one time by ( ) θλ prR w
pq

w
p sin  and another 

time by ( ) θλ prR w
pq

w
p cos , and then integrating the resultant over the area of the plate, 

using the orthogonal property of the eigenfunctions, the following equations are obtained 
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It should be noted that the above equations are nonlinear ordinary differential 

equations in terms of the coefficients of the expansion functions and those of the stress 

function. The source of nonlinearity comes from the term ( )φ,wL . The coefficients of the 

approximation functions for the stress function can be found as a function of those of the 

transverse displacement. In order to do so, we substitute Eq. (5.9) into nonlinear part of 

Eq. (5.2) and then multiply both sides one time by ( ) θλφφ prR pqpq sin  and another time 

by ( ) θλφφ pR pqpq cos . After integrating the resultant over the area of the plate, using the 

orthogonal property of the eigenfunctions, the following equation will be obtained 
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5.3. Linearization 

In Chapter (Experimental Results), it was seen that when the amplitude of 

oscillations is significant compared to the disk thickness, the measured frequency 

response was both a function of speed and a function of the magnitude of the disk 

displacement. For low levels of nonlinearity, the measured frequencies show the 

characteristics of a linear system.  

To analyze the effect of large deformations on the frequency behavior of the disk, at 

any given speed we conduct a linear perturbation analysis. In this analysis we find the 

equilibrium solution of the spinning disk under the application of a space fixed external 

force and conduct a small displacement linear vibration analysis about this equilibrium 

condition. The equilibrium solution found corresponds to the dc amplitude of oscillations 

recorded in the experimental tests. After linearizing about the numerically found 

equilibrium solution, a set of coupled linear equations in terms of the coefficients of the 

expansion functions for the transverse displacement are obtained. Using the linearized 

form of the equations, we can study the effect of large deformation on the small 

displacement frequency behavior of the spinning disks.  

Substituting Eqs. (9) and (10) into Eqs. (11) and (12), the following nonlinear 

ordinary differential equations are obtained 
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Equations (5.13) are nonlinear equations in terms of the generalized coordinates of 

the transverse displacement and stress function defined in Eqs. (5.9) and (5.10). In order 

to solve these equations, we have to find φ
mnS  and φ

mnC  in terms of w
mnS  and w

mnC . In order 

to do so, we substitute the transverse displacement from Eq. (5.9) into Eq. (5.12). After 

doing so, the following expressions are found for the coefficients of the stress function: 
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where mpumpu II 81 ,..., and also ))()((1))()((2))()((1 ,, uvpqmnuvpqmnuvpqmn LwwLwpLwp and 

))()((2 uvpqmnLww are defined in the Appendix A. As can be seen from Eqs. (5.14), φ
mnS and 

φ
mnC  are second order functions of w

mnS and w
mnC . If we substitute φ

mnS and φ
mnC  from Eqs. 

(5.14) into Eqs. (5.13), it can be seen that w
mnS&& and w

mnC&& are third-order functions of w
mnS and 

w
mnC . 

Using the Newton-Raphson method, the equilibrium solutions can be found. At any 

given speed, by investigating the stability characteristics of the possible equilibrium 

solutions, the dc displacement of a spinning disk is found. This dc displacement 

corresponds to a set of equilibrium solution for the coefficients of the expansion 

functions. This set of equilibrium solution is assumed to be{ }LLL ew
mn

ew
mn CS . Therefore, 

around the equilibrium position we can write: 
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                      ( ) ( ){ }LLL tCtS w
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ˆˆ              (5.15) 
After substituting Eq. (5.15) into Eqs. (5.13) and dropping the hats, the following 

linearized equations of motion are obtained 
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φe
mnS  and φe

mnC  can be obtained by substituting ew
mnS  and ew

mnC into Eqs. (5.14). Also 
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By introducing { }LLL w
mn

w
mn CS=x  and after substitution of Eqs. (5.17) into Eqs. 

(5.16),  the linearized equations of motion in the following form is obtained 

                                                        .0=++ KxxCxM &&&                                                (5.18) 
By inspecting Eq (5.16), it may be noted that some of the time independent parts are 

a function of the equilibrium position. These terms come from the in-plane stress 

distribution due to the middle plane stretching. In fact, these are the terms that come from 

the geometrical nonlinear effects and we call them to be NLK . Therefore, the nonlinear 

stiffness matrix is a function of disk dc displacement. There are some other terms in the 

stiffness part of Eq. (5.16) that are not affected by the equilibrium position of a spinning 

disk. These terms have the coefficients such as ( )( )224
Ω−mw

mnλ  or 

( )))((
1

))(( mnmjmnmj LwdLwh −+ ε . These are the terms that contribute towards the linear part of 

the stiffness matrix. Using Eq. (5.18), we can find the eigenvalues of the linearized 

system. 
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5.4. Numerical Analysis 

In this section the linearization method that was developed in the previous section is 

used to study the effect of large deformations on the frequency characteristics of a 

rotating disk with clamped-free boundary conditions. Attention is confined to the analysis 

of the disc with outer diameter 17.0”, inner diameter 6.0” and plate thickness 0.050” It is 

assumed that psiE 61029×= , 3.0=ν , 3/487 ftlb=ρ , In the numerical results presented 

in this paper, it is assumed that the external force is applied at outer rim and 0=Fθ . 

Figure 5. 1 shows the natural frequencies (measured by a stationary observer) versus 

the speed for the spinning disk, using linear form of the equations of motion. The 

associated mode shape for each frequency path is indicated in the graph. Mode (n,m) 

indicates a mode with n nodal circles and m nodal diameters respectively. As can be seen 

from this figure; 2890, 2410 and 2740 RPM are the first three critical speeds associated 

with  the (0,2), (0,3) and (0,4) modes, respectively. It may be noted that the lowest critical 

speed is associated with the (0,3) mode. 

 

 
Figure 5. 1. Linear natural frequencies of the disk versus rotation speed 

 

A multi-mode approximation is used to calculate the frequencies of the spinning and 

stationary the disk. It is assumed that the spinning disk is under the application of a space 

fixed external force. In the nonlinear analysis it is assumed that M=6 and N=4. Here, for 
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the purpose of clarity, the frequencies calculated using the above mentioned procedure 

are called “nonlinear frequencies”.  

5.4.1. Stationary Disk 

In the experimental part (Part I, Chapter 4) it was seen that the application of a 

sufficiently large space fixed external force resulted in splitting of the measured 

frequencies of the backward and forward traveling waves for a stationary disk. In Figure 

5. 2, the nonlinear frequencies of the backward and forward traveling waves of three 

modes are calculated for different levels of nonlinearity. 0w  is the maximum deflection 

of the stationary disk at the outer rim measured at the point of application of the space 

fixed external force. As expected, the nonlinear frequencies of all the modes increase as 

the level of nonlinearity increases. The nonlinear frequencies of forward traveling waves 

are more affected than those of the backward traveling waves. As hw0   increases from 

zero to four, the nonlinear frequencies of the forward traveling waves of the (0,2), (0,3) 

and (0,4) modes increase by approximately  14, 21 and 11 percent, respectively. 

These increases are caused by the increased internal stresses induced in the disk due 

to the application of the lateral force. It may be noted that this force induced internal 

stress distribution is space-fixed and therefore in the case of disc rotation, does not 

display the same characteristics as in the case where stresses or imperfections are fixed in 

the disk as was the case in the work of Tobias [15]. 

The case 00 =hw , represents the case where there is no applied force and the stress 

distribution is the disk is symmetric. In this case the natural frequencies of each mode at 

zero speed consist of repeated pairs. When hw0 is sufficiently large, the resulting non-

symmetrical stress distribution will result in two separate frequencies at zero speed. 

These two frequencies are associated with nodal configurations that correspond to the 

maximum and minimum frequencies of the disc under the given stress distribution. 

 



Chapter 5. Analytical Investigation on the Nonlinear Frequency Behavior 

 

 

 97 

 
Figure 5. 2. The nonlinear frequencies of the backward (solid lines) and forward (broken lines) 

traveling waves of (a) (0,2), (b) (0,3), and (c) (0,4) modes of the stationary disk 
 
 

Figure 5. 3 shows the particular part of the stress function ( pφ ) and the resulting 

radial and hoop stresses in the normalized radial direction for three different angular 

directions when 40 =hw   

 If the lateral displacement is small compared to the disk thickness then the induced 

stress due to middle plane stretching is small and the nonlinear stiffness is negligible with 

respect to the linear stiffness. It may be noted from Figure 5. 2 that when hw0 is less 

than 0.3, the difference between the nonlinear frequencies of the backward and forward 

traveling waves is negligible.  
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Figure 5. 3. (a) The particular part of the stress function, (b) the nonlinear radial stress and (c) the 
nonlinear hoop stress along the normalized radial direction for three different angular directions 

when 40 =hw  

5.4.2. Spinning Disk 

In the experimental results presented in Chapter 4, it was seen that the magnitude of 

disk deformation has a significant effect upon the frequency characteristics of a rotating 

disc. In this section of the paper the ability of the developed analysis to predict these 

characteristics is examined.   

In the comparison of the analysis and the experiment results there are a number of 

specific issues that need to be considered.  Analysis is, of course, an idealized exercise 

which may or may not represent the behaviour of the real system. In this particular study 

the discs used were typical of those used in the wood cutting industry of Canada (the 

major motivation of this work being the development of high speed saws). 

a) As such the residual stresses in the discs were unknown although likely to be 

small.  
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b) The clamping arrangement used was unlikely to provide the level of fixity 

assumed in the analysis (i.e. the assumption of zero slope at the inner 

boundary was not exactly true) 

c) No attempt was made to include effects due to run out, unbalance, 

aerodynamic interaction, disc imperfections or stresses induced by the 

clamping process. The effect of runout on the frequency behavior of spinning 

disks has been previously studied by Khorasany and Hutton [16]. 

As will be seen in the results presented later there were discrepancies between the 

computed natural frequencies at zero speed and those calculated. These were likely 

primarily due to incorrect clamp stiffness modeling and unknown internal stresses.  

Given that the purpose of the present work was to explore the effects of speed and 

geometric nonlinearity, the analysis was formulated to allow for the input of measured 

zero speed frequencies. In this way the zero speed characteristics were accurately 

modeled and resulting predictions relied upon speed and nonlinear effects not upon zero 

speed characteristics. 

Analytical calculations are presented for the disc with a thickness of 0.050” and for 

a number of different levels of nonlinearity. The case with a low level of 

nonlinearity, 1.00 =hw , is considered first. Figure 5. 4 compares the numerical and the 

experimental results for the disc frequencies as a function of blade speed. Figure 5. 4a 

shows the analytical predictions assuming the inner boundary to be fully clamped. The 

broken and solid lines show the linear and nonlinear predictions, respectively. Figure 5. 

4b presents the experimental results found in Chapter 4 of this thesis for this same disc. 

There is not good agreement between the calculated and measure zero speed frequencies 

due to reasons previously mentioned. This disagreement then propagates through the 

analysis to give inaccurate critical speeds. In general the response characteristics are 

representative of a linear system.  

From Figure 5. 4a it may be noted that the first critical speed corresponds to that of 

the (0,3) mode and occurs at approximately 2400 RPM. It may be seen that starting at a 

speed in the region of this first critical speed, the predicted nonlinear frequency of all the 

backward traveling waves veer from their linear paths to follow an  almost constant path 
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before collapsing back on to the predicted values for the linear case. This behaviour is 

repeated at a total of three different speeds in the region of the three lowest critical 

speeds. A similar phenomenon may be noted with the reflected waves. In this case the 

frequencies level off then jump up back to their linear path. These effects are not 

reflected in the measured data. In Figure 5. 4b, the frequency jumps and drops are 

illustrated by vertical arrow pointing upward and downward, respectively. Also, the 

speed ranges at which the measured frequencies do not change are shown by horizontal 

lines.  

Figure 5. 5 compares the associated measured and computed dc deflections at the 

location where the external force was applied. The dc amplitude is calculated from the 

disk deflected position after the application of the space fixed external force. It can be 

seen that the configuration of the stationary wave existing due to the applied force is 

further developed at speeds in the region of the critical speeds of the three lowest modes. 

As the predicted critical speeds do not coincide with the measured values, the speeds at 

which stationary waves appear do not agree with the measured values. Since the level of 

nonlinearity is relatively small, the developed stationary waves cannot be sustained over 

a significant speed range. From this figure it can be seen that the predicted speeds for the 

arising of the stationary waves are consistent with the speeds at which the predicted 

nonlinear frequencies of the backward traveling waves veer to a constant level.  

In the numerical results it is seen that when a stationary wave is developed, the 

calculated frequencies tend to maintain a constant level. From Figure 5. 5, it may be seen 

that in the experiment, the first stationary wave is developed from 2800 RPM to 3200 

RPM.  

From the experimental results presented in Figure 5. 4b, a lock-in phenomena (as 

previously noted by DAngelo and Mote [17]) in the measured frequencies of the 

backward traveling waves of the (0,5) and (0,6) modes are evident. After the collapse of 

the stationary wave at 3200 RPM shown in Figure 5. 5, drops in the measured 

frequencies of these two modes can be discerned. From the experimental results shown in 

Figure 5. 5, it can be seen that after the collapse of the first stationary wave, another 

stationary wave is developed at around 3400 RPM and collapses at 3800 RPM. From the 

experimental results illustrated in Figure 5. 4b it can be seen that the measured frequency 
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of the (0,0) mode jumps at 3200, due to the collapse of the first stationary wave. Another 

jump in the measured frequency of this mode is notable at almost 3800 RPM at which the 

second stationary wave collapses. 

 

 
Figure 5. 4. Nonlinear frequencies of the spinning 0.05 in.-thick disk when 1.00 =hw , (a) 

numerical results (broken and solid lines show the linear and nonlinear results, respectively), (b) 
experimental results (run-up case) 

 
 

 
Figure 5. 5. A comparison between the numerical and experimental results (run-up case) for the 

dc amplitude of oscillations when 1.00 =hw  at the location of the applied external force 
 

To see how the numerical results compare with the experimental ones when the 

level of nonlinearity is higher, the case with 6.00 =hw  is considered. In Figure 5. 6, the 

numerical and experimental results for the nonlinear frequencies are presented. In Figure 
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5. 7a comparison between the dc amplitude of oscillations for the numerical and 

experimental results is presented.  

In this case the analysis is conducted using the frequency values of the stationary 

disc measured in the experimental work. As may be seen there is very good agreement 

between the predicted and measured frequency values, and the dc displacements, at all 

speeds. It may thus be concluded that the modeling of the speed and geometric non linear 

displacement effects is appropriate. 

A further observation from the experimental results shown in Figure 5. 6b is the 

splitting of the forward and backward travelling waves at zero speed which is particularly 

noticeable for the (0,2) mode. This behaviour is also reflected in the analytical results. 

From Figure 5. 7 it may be seen both that the predicted dc displacements 

corresponds closely to the measured values and that a stationary wave arises at a speed in 

the region of 2800RPM. From Figure 5. 6a,b it may also be seen that the backward 

travelling waves depart from their  linear behaviour and take up values that are constant 

with speed (so called “frequency locking” [17] ) starting in this same speed region. Thus 

the change in frequency can be attributed to the development of the new equilibrium 

configuration. It is not clear as to why the frequency maintains a constant value for 

increasing speed. Further, the analytical and experimental results indicate that there is a 

curve veering between the nonlinear frequencies of the backward traveling waves of the 

(0,2) and (0,3) modes before they maintain a constant level. 

 

 
Figure 5. 6. Nonlinear frequencies of the spinning disk when 6.00 =hw , (a) numerical results 

 (b) experimental results (run-up case) 
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Figure 5. 7. A comparison between the numerical and experimental results (run-up case) for the 

dc amplitude of oscillations when 6.00 =hw  
 

To study the disk nonlinear frequency behavior under an even higher level of 

nonlinearity, the case with 0.20 =hw  is considered. Figure 5. 8 and Figure 5. 9 show the 

calculated frequency and dc amplitude (measured at the force location) behavior of the 

disk, respectively, under this condition. It should be noted that the dc amplitude is 

calculated from the deflected disk position after application of the space fixed external 

force. Therefore, to find the actual dc deflection we have to add 0.20 =hw  to the 

calculated results. Again, in Figure 5. 8 the broken and solid lines show the linear and 

nonlinear calculated frequencies, respectively. 

 As expected, it can be seen that in this case, there is a notable split between the 

nonlinear frequencies of the backward and forward traveling waves of the stationary disk. 

It may also be noted that in this case, even at subcritical speeds, there is a significant 

difference between the linear and nonlinear frequencies. The curve veering that was 

notable at high speeds in the previous cases exists at subcritical speeds in this case. It can 

also be seen that, starting at a speed in the region of the lowest critical speed, the 

predicted nonlinear frequencies veer off and take up constant values as the speed further 

increases. Although the initial deflection of the disk is more than three times larger than 
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the previous case shown in Figure 5. 6, there is not a significant difference in the 

calculated nonlinear frequencies at very high speeds. 

From Figure 5. 9 it may also be noted for this high level of nonlinearity the the 

predicted stationary wave is initiated at a speed below the lowest critical speed. This 

result is also consistent with the experimental results presented by Tobias and Arnold 

[15]. 

 
Figure 5. 8. Calculated linear (broken lines) and nonlinear frequencies (solid lines) of the 

spinning disk when 0.20 =hw  
 

 
Figure 5. 9. Dc amplitude of oscillation when 0.20 =hw  
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5.5. Conclusions 

An analysis of the frequency and amplitude response of rotating thin discs when 

subjected to geometric non linear displacements has been presented, and the results 

obtained have been shown to agree well with experimental observations. 

For a stationary disk under the application of a space fixed external lateral point 

force large displacements result in in-plane stresses in the disk. Since the loading is not 

symmetric, this stress distribution is not symmetric. As a result of this lack of symmetry 

the frequencies of the forward and backward traveling waves of the preferential modes of 

the stationary disk do not coincide. Numerical results were presented that quantified this 

effect. 

Numerical results were compared with experimental predictions for the case of a 

spinning disk subjected to a space-fixed point force. It was shown numerically that, for 

sufficiently high degrees of nonlinearity, the existing force induced stationary wave is 

significantly further developed starting in the region of the linear critical speed. Above 

this speed the calculated (and measured) frequencies diverge significantly from the paths 

predicted by linear theory. It was shown that the resulting frequencies then maintain an 

essentially constant value in the speed range considered. This nonlinear behaviour was 

also clearly evident in the experimental results. These results give rise to the following 

observations for displacement levels where non linear effects are sufficiently high: 

d) Unlike the linear case, there is no speed for which any of the backward 

travelling waves have zero frequency. Thus no critical speed (in the linear 

sense) exists. 

e) There are no reflected waves as predicted by linear analysis. 

f)  No low frequency crossings occur between backward and forward travelling 

waves for speeds above the lowest (linear) critical speed. 

g) At speeds above the linear critical speed the computed and measured 

frequencies are independent of speed. So called  “frequency lock-in” occurs  

For low levels of nonlinearity, stationary waves form and collapse within a small 

speed band. At the collapse of such waves, a drop in the frequencies of the backward 
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traveling waves and a jump in those of the forward and reflected traveling waves were 

evident in the predicted results. Again this effect was not seen in the experimental results. 
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Chapter 6- Summary and Conclusions 
 

6.1. Summary and Conclusions 

The main contributions in this thesis can be summarized as follows: 

 

1) An analytical approach has been taken to investigate the stability characteristics of 

an elastically constrained spinning disk having rigid body translational degree of 

freedom. 

Using a two-mode approximation, the stability characteristics of an elastically 

constrained spinning disk were investigated. It has been assumed that the disk under 

consideration was constrained with a one space fixed spring. At first it was shown that 

the divergence instability does not occur at the speed corresponding to the linear critical 

speed of the unconstrained spinning disk. In fact, it was shown that at the critical speeds 

of an elastically constrained spinning disk with one spring, having a rigid body 

translational degree of freedom is the same as that of the unguided disk [1]. 

Using an analytical technique, the stability characteristics of an elastically 

constrained disk with a rigid body translational degree of freedom at the location of the 

interaction of the rigid body mode with a forward, backward, and reflected travelling 

wave was studied. It was shown that the interaction between a forward or backward 

travelling wave with the rigid body translational mode does not produce instability. 

Furthermore it was shown that the interaction between a forward or backward 

travelling wave with the rigid body translational mode does not induce flutter type 

instability. When the rigid body translational mode interacts with a reflected travelling 

wave, the flutter type instability may be induced. It was also shown that, depending on 

the mode and speed characteristics, the region of flutter type instability may move to 

higher speeds. 

 

2) The effect of initial runout on the frequency and critical speed behavior of spinning 

disks was investigated. 
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The nonlinear equations of motion for non-flat spinning disks based on Von 

Karman’s plate theory were used. It was assumed that the initial runout is axisymmetric. 

It was also assumed that the initial runout could be written as the summation of the mode 

shapes with zero nodal diameters. After substituting the pre-assumed shape for the initial 

non-flatness, neglecting nonlinear terms, and using Galerkin’s method, a set of coupled 

linearized equations of motion were obtained. Using these equations, the effect of the 

initial lack of flatness on the frequency behaviour of spinning disks was studied [2]. 

It was found that the interaction of the initial runout and the bending deflection 

induces an in-plane stress in the disk. In general, it was found that the initial runout 

increases the natural frequencies of the stationary disk. The natural frequencies of some 

of the modes of the stationary disk were found to be less sensitive to some of the forms of 

initial runout compared to other modes. This is due to the induced in-plane stresses in the 

disk where in these cases have less effect on the modal stiffness in these modes. It was 

also found that due to assuming the form of the initial non-flatness as axisymmetric, the 

calculated frequencies for the backward and forward travelling waves of a given 

preferential mode were the same at zero speed. 

It also was found that in the assumption of an initial non-flatness for a spinning disk, 

the critical speed is changed. It was determined that the lack of flatness increases the 

critical speeds, though the critical speeds of some of the modes were less sensitive to 

some of the forms of the initial lack of flatness compared to those of the other modes. 

Generally, the more complicated the shape of the initial runout, the greater its effect on 

the critical speeds of the disk. 

 

3) Experimental studies were conducted in order to measure the frequency response 

characteristics for rotating disks both in an idling mode as well as when subjected to 

a space fixed lateral force. The applied lateral force (produced by an air jet) was 

such as to produce displacements large enough that non-linear geometric effects 

were important for the determination of the disk frequencies. Experiments were 

conducted on thin annular disks of different thicknesses and with the inner radius 

clamped to the driving arbor. 
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The experimental results showed that in the cases where the level of nonlinearity 

was relatively low, several stationary waves were developed. Since the level of 

nonlinearity was relatively low, the stationary waves were not sustained over a large 

speed range. It was noticed that at the speeds corresponding to the formation of the 

stationary waves, the backward travelling waves veered from their linear path to one 

where the frequency remained constant with speed. This behaviour was also evident for 

the forward travelling waves. It was observed that when the stationary waves collapse, a 

sudden drop in the measured frequencies of the backward travelling waves and a sudden 

jump in those of the forward and reflected travelling waves occur. 

It was seen that when the level of nonlinearity was large enough, stationary waves 

were developed and they were stable up to the maximum speed attainable for the 

experiments. Furthermore, in these cases the measured frequencies of the backward and 

forward travelling waves veered from their linear paths and maintained an almost 

constant level. Therefore, the effect of large deformations was to modify the lowest 

backward travelling waves such that they do not experience a zero natural frequency. As 

such, the pure standing wave predicted based on the linear theory of vibrations does not 

exist in these cases. In other words, the critical speed that was predicted on the basis of a 

linear analysis does not exist in the presence of nonlinearity. 

Since the applied external force due to the application of an air jet was not 

axisymmetric, the induced in-plane stresses were also not axisymmetric. As a result, a 

separation in the measured frequencies of the stationary disk for the preferential modes 

was noticeable. The level of separation increases by increasing the level of initial 

nonlinearity. 

 

4) The effects of geometrical nonlinear terms on the frequency characteristics of a 

spinning disk under the application of a space fixed external force were studied. The 

governing equations were based on the Von Karman plate theory. After discretizing 

the nonlinear equations of motion, the equilibrium solution was found. The 

nonlinear equations of motion were linearized around the equilibrium solution and a 

set of coupled linear equations of motion were obtained. Using these equations, the 
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effect of large deformation on the oscillation frequencies of a spinning disk was 

studied. 

It was found that due to the application of a space fixed point force, a non-

symmetric in-plane stress is induced in the disk. This stress distribution causes a 

separation in the calculated nonlinear frequencies of the backward and forward travelling 

waves of a given preferential mode. It was found that this separation increases with the 

increase in the level of nonlinearity. 

Numerical results were compared to the experimental results. It was seen that when 

the level of nonlinearity is relatively small, several stationary waves develop and then 

collapse. At the speed corresponding to the collapse of a stationary wave, a sudden drop 

and jump in the calculated frequencies of the backward and forward travelling waves, 

respectively, was noticeable. In this case, these drops and jumps were not seen in the 

experimental results. 

When the level of nonlinearity was relatively large, a stationary wave was developed 

that was sustained over the speed range considered in this work. It was noticed that at the 

speed in which the stationary wave begins to develop, the calculated frequencies of the 

backward and forward travelling waves diverge from the paths predicted by the linear 

theory. It was shown that the resulting frequencies then maintain an essentially constant 

value in the speed range considered. Therefore, the numerical analysis based on the large 

deformation assumption predicts that there is no such speed at which the backward 

travelling waves of the preferential modes experience zero natural frequency. It was also 

predicted that for a sufficiently higher level of nonlinearity there would not be any 

reflected waves. 

The experimental results were compared with the numerical results. It was seen that 

due to initial stresses, lack of flatness, and boundary conditions, there was no good 

comparison between the measured frequencies and the calculated frequencies for the 

stationary disk. Thus to conduct a better comparison, the measured frequencies for the 

stationary disk were used in the analytical solution. In doing so, it was seen that a very 

good agreement exists between the calculated frequencies and the mean deflection of the 

spinning disk. 
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6.2. Recommendations for Future Work 

To increase our understanding of the dynamics of spinning disks, it is suggested that 

future works should be concerned with the following aspects: 

• To study the effect of unsymmetrical lack of flatness on the dynamics of spinning 

disks. In Chapter 3 it was assumed that the lack of flatness is axisymmetric. This 

assumption may not be valid in all of the spinning disk applications.  

• To study the effect of the lack of flatness on the cutting performance of circular 

saws. Since the lack of flatness changes the modal characteristics of spinning 

disks, it can also affect the cutting performance of spinning disks, too. 

• To study the effect of geometrical nonlinear terms on the cutting performance of 

spinning disks. It was seen that the geometrical nonlinear terms can change the 

dynamics of spinning disks at supercritical speeds. Thus, the cutting performance 

of circular saws can change with the level of nonlinearity. 

• To study the effect of an elastic constraint on the nonlinear frequencies of spinning 

disks. At first, this problem can be looked at experimentally. Then, by finding a 

good model for the constraint and considering the effect of geometrical nonlinear 

terms, the experimental results can be compared with numerical results.  

 

 

 

 



Chapter 6. Summary and Conclusions 

 

 

 114 

6.3. References 

[1]    Khorasany, R.M.H. and Hutton, S.G., 2010, “An Analytical Study on the Effect of 

Rigid Body Translational Degree of Freedom on the Vibration Characteristics of 

Elastically Constrained Rotating Disks,” International Journal of Mechanical 

Sciences, 52, pp. 1186-1192. 

[2]   Khorasany, R.M.H. and Hutton, S.G., 2010, “The effect of axisymmetric non-

flatness on the frequency response of a spinning disk”, ASME Journal of Vibration 

and Acoustics, 132, 051012, pp.1-8. 

 

 



Appendix A. 

 

 

 

115 

Appendix A. 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+

∂
∂

∂
∂

+
⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

∂
∂

∂
∂

=

∫

∫

rdrrRrR
r
m

r
rR

rr
rR

rdrrRrR
r
p

r
rR

rr
rRLwp

w
uv

w
uv

w
mn

w
mn

w
mn

w
mnpqpq

w
uv

w
uvpqpq

pqpq
w
mn

w
mn

uvpqmn

λλλλ

λλ
λλ

η

φφ

η

φφ
φφ

1

2

2

2

2

1

2

2

2

2

))()((1

1

1

 

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−= ∫ rdrrRrR
rr

rR
r

rR
rr

rR
r

mpLwp w
uv

w
uvpqpq

pqpqw
i

w
mn

w
mn

w
mn

uvpqmn λλ
λ

λλ
η

φφ
φφ

1

22))()((2
11112

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
+

∂
∂

∂
∂

= ∫ rdrrRrR
r
p

r
rR

rr
rRLww uvuv

w
pq

w
pq

w
pq

w
pq

w
mn

w
mn

uvpqmn
φφ

η
λλ

λλ1

2

2

2

2

))()((1
12  

( ) ( ) ( ) ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

−= ∫ rdrrRrR
rr

rR
r

rR
rr

rR
r

mpLww uvuv
w
pq

w
pq

w
pq

w
pqw

mn
w
mn

w
mn

w
mn

uvpqmn
φφ

η
λλ

λ
λλ1

22))()((2
11112

( ) ( ) ( ) ( ) ( )rdrrRrR
r
m

rr
rR

rrrr
rRLwh w

pq
w
pq

w
mn

w
mn

w
mn

w
mn

hhw
mn

w
mn

mppqmn λλλφφλπδ
η∫ ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∂
∂

∂
∂

+
∂
∂

∂
∂

=
1

2

2

2

2

2

2

))((

( ) ( ) ( )∫ ⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

+
∂

∂
Ω−=

1

2

2

2

22
2

))((
3

2η
λλλπδ rR

r
m

r
rR

rr
rRrLwd w

mn
w
mn

w
mn

w
mn

w
mn

w
mn

mppqmn  

( ) ( ) ( )∫=
π

θθθθ
2

01 sinsinsin dupmI mpu              ( ) ( ) ( )∫=
π

θθθθ
2

02 sincossin dupmI mpu  

( ) ( ) ( )∫=
π

θθθθ
2

03 sinsincos dupmI mpu             ( ) ( ) ( )∫=
π

θθθθ
2

04 sincoscos dupmI mpu  

( ) ( ) ( )∫=
π

θθθθ
2

05 cossinsin dupmI mpu             ( ) ( ) ( )∫=
π

θθθθ
2

06 coscossin dupmI mpu  

   
( ) ( ) ( )∫=

π
θθθθ

2

07 cossincos dupmI mpu             
( ) ( ) ( )∫=

π
θθθθ

2

08 coscoscos dupmI mpu  

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




