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Abstract

Unmanned aerial vehicles are becoming more and more useful tools for notonly

the military, but law enforcement, search and rescue and scientific data collection.

With the advent of inexpensive and reliable wireless communication, remote oper-

ators are now able to control fleets of UAVs cooperating towards the accomplish-

ment of their tasks. As the complexity and size of these fleets increase, distributed

control methods are needed – large fleet sizes will lead to intractable centralized

problems. Furthermore, UAVs, like most aircraft, are inherently hybrid systems,

combining both discrete and continuous dynamics. This thesis attempts to combine

hybrid and distributed control theories in a way useful for the operation of UAVs,

while taking communication delays inherent to a remote operator into account.

Specifically, we consider the stability of block upper-triangular switched linear

systems with switching delay, when switching between stable modes. We show

that the problem of proving globally uniformly asymptotic stability (GUAS) of a

block upper-triangular switched linear system can be reduced to provingGUAS

for each of its block diagonal subsystems. This allows for a scalable LMI-based

computational test for GUAS under arbitrary switching whose complexity depends

linearly on the number of block diagonal elements of the system. In cases for

which the system is not GUAS under arbitrary switching, we partition the state

space into regions in which switching will preserve GUAS despite a delay between

the state measurements and switching time. This is accomplished by adding a

delay buffer to standard Piecewise Lyapunov based partitions. Additionally, we

show that the effect of the delay buffer on the standard Piecewise Lyapunov based

partitions asymptotically approaches zero. Although we tailor these results to block

upper-triangular switched linear systems, they are applicable to any switched linear
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system with switching delay. These results are then extended to nonlinear switched

systems. We apply our results to the control of a formation of vehicles under

supervisory discrete control, and to switched systems under remote control. We

then finish by addressing the issue of interface design for continuous systems under

shared control, motivated by applications to pilot-automation interactions.
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Chapter 1

Introduction

1.1 Background and motivation

With the advent of inexpensive and reliable wireless communication, research on

remote and cooperative control of unmanned aerial vehicles (UAVs) became an

area of focus in the United States during the late 1990s and early 2000s [12]. These

versatile vehicles have many applications beyond traditional military uses, includ-

ing police surveillance and reconnaissance, search and rescue, andscientific data

collection [66]. The benefits of using UAVs over traditional manned aircraft are

tangible – for example, they eliminate the need to place highly trained operators

in harmful situations, and allow for extended periods of operation by switching

operators on the fly.

Although all of the aforementioned uses can be accomplished by a single UAV,

the efficiency and effectiveness of their completion can benefit substantially from

cooperation amongst a fleet of UAVs to accomplish the task. For example, in a

search and rescue mission, it is obvious that a fleet of 100 UAVs can cover more

terrain than a single UAV during the same timespan. However, an increase in

vehicle number invariably leads to an increase in system complexity, especially

when cooperation amongst the vehicles is necessary. If this complexity reaches a

level at which centralized control of the fleet is no longer feasible, then distributed

cooperative control methods are needed. Communication and physical constraints

can also lead to the need for distributed, rather than centralized, control schemes.
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Distributed control reduces the complexity of large, centralized problems by

dividing them into several smaller local problems. These techniques allow for

guarantees of global behavior, despite each vehicle accessing only local informa-

tion – an important and useful property when considering the applications of fleets

of UAVs. As such, distributed control of vehicles has been an area of much research

in recent years. For an excellent survey of recent results in multivehicle formation

control, see [53]. Recent research in distributed control has included work in vehi-

cle formation control [14, 22, 25, 68], consensus and swarming [36, 55, 56], mobile

sensor networks [13, 30, 35], control over uncertain channels [27–29], and optimal

control [24, 58], all under topological constraints. These methods all assume that

the dynamics of each subsystem can be represented by a continuous system.

However, UAVs, like most aircraft systems, have several discrete modes of op-

eration, each with different continuous dynamics, and therefore belongto a class

of systems known ashybrid systems. Hybrid systems, which combine discrete and

continuous dynamics, have become commonplace as cheap microcontrollers,fun-

damentally discrete devices, have become more or less ubiquitous in the control

of physical processes. Common examples of hybrid systems include thermostats,

smart cruise control and aircraft autopilots. Furthermore, in more advanced sys-

tems, hybrid controllers are often used, as they enable performance notachievable

with strictly continuous controllers. For example, a properly designed hybrid con-

troller is capable of having both fast response times and a robustness to noise [32],

a key property for real world systems. However, combining discrete andcontinu-

ous dynamics introduces further complexity to the analysis, as the discrete mode

switching pattern may now affect system stability.

Hybrid systems have received considerable attention in the past few decades.

Many results have been borrowed and extended from nonlinear theory, and hence

are mostly based on Lyapunov theory. In order to prove stability of a hybrid system

under arbitrary switching, a common Lyapunov function approach is used[46, 52].

However, there is as of yet no systematic way of constructing such a function for a

general hybrid system, if it exists, although there are results for when thefamily of

continuous dynamics satisfy certain Lie-algebraic conditions [2, 47]. Furthermore,

there exist converse Lyapunov theorems which are able to prove that a common

Lyapunov function does not exist for a given system [17, 38]. Regardless, if such
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a function cannot be found, the common recourse is to then use techniquesbased

on multiple Lyapunov functions, as introduced in [9, 38, 46, 57]. The essential

concept in these results is to ensure that the value of a piecewise Lyapunov function

constructed from the multiple Lyapunov functions decreases at a given rate over

time. Alternatively, as presented in [31], a dwell time approach can be used, in

which the average dwell time in each mode is bounded from below, and has a

direct effect on the convergence rate of the system. Finally, there havebeen some

strong results on the parametrization of switched stabilizing controllers [5, 33].

In the case of UAVs, all of the issues traditionally associated with hybrid sys-

tems are present. However, since these systems are generally remotely operated,

new challenges emerge. Specifically, a remote operator will have to contendwith

communication delays caused by wireless protocols and physical distance.Alter-

natively, if a fleet of UAVs is autonomous, but is attempting to coordinate mode

switches (a key requirement for provable stability, as will be explained in later

chapters), then the local “operator” will need to take into account synchronization

delays as well.

Although not directly related, there is a rich body of work on delay differential

equations, of which [23] is an excellent example. There has been some related

work on switched systems with delays in their dynamics [10, 26, 42] as well as

delays in detecting autonomous mode switches [37, 69, 70]. However, mostrele-

vant to our work is [67], where a delay between state measurements and switching

time is explicitly accounted for. Thisswitching delay, along with delays in the

state feedback, are addressed by providing upper bounds on the statedelays and a

lower bound on the average dwell-time such that asymptotic stability of the closed

loop is guaranteed. We distinguish our method from the approach taken in [67]

– rather than using a dwell-time argument, we provide state based constraints for

switching to guarantee asymptotic stability. It will be argued in Chapter 4 that these

two approaches are in fact complementary, each proving more useful for specific

applications.

It is clear that the benefits of UAVs, both as individual vehicles, and as fleets

under cooperative control, are substantial. These systems are inherently hybrid,

and in order to exploit their full potential, this should be taken into account in their

analysis and design. Merging the theories of hybrid systems and distributedcontrol
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will lead to large, scalable systems that incorporate the benefits and flexibility of

hybrid control. In light of this, this thesis addresses two main problems:

Problem 1. Find a scalable test for stability under arbitrary switching of a fleet of

identical vehicles with hybrid dynamics.

Problem 2. Find a method of synthesizing state constrained switching schemes

that are robust to a switching delay for a fleet of identical vehicles with hybrid

dynamics.

Of course, in real world applications, safety and performance requirements are

generally much more restrictive than simply proving stability of a system. In these

cases, formal verification techniques, such as model checking and reachability, can

be applied in order to ensure that these performance and safety criteria are satisfied.

When a user is introduced into the loop, this task becomes even more complex.

While verification techniques have been successfully applied to human-automation

systems modeled as discrete event systems (DES) [6, 11, 15, 19, 60, 61], less work

has been done on verification of continuous or hybrid human-automation systems

[45, 65]. In [54], an invariance-preserving abstraction was formulated for super-

visory hybrid systems: that is, the human input was limited to discrete inputs. In

the case of UAVs, and aircraft in general, there may also be a shared continuous

input to the system. In general, one does not want to limit the input of the human,

but rather provide them with the information they need to make informed decisions

with respect to safety. Thus, this thesis will also address the following problem:

Problem 3. How to present the user of a human-automation system under shared

continuous control the information necessary to preserve safety (defined in the

sense of reachable sets).

1.2 Contributions

The work presented in this thesis contributes to merging the theories of distributed

and hybrid systems. In particular, I focus on formations of vehicles under dis-

tributed control, wherein each vehicle’s dynamics are hybrid . My main contribu-

tions are, for formations of switched linear vehicles:
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• a scalable, computationally efficient test for stability under arbitrary switch-

ing of block upper-triangular systems.

• a proof that for state constraint based switching, only that subset of thestate

space corresponding to the block diagonal subsystems that are not stable

under arbitrary switching need to be taken into consideration.

and for general switched systems under remote supervisory control:

• a method of synthesizing state constraints that guarantee stability despite a

switching delay.

• a proof that these state constraints asymptotically approach standard (delay-

free) Lyapunov based constraints.

Finally, in the design of user-interfaces for systems under shared control, my main

contributions are:

• formal definitions of invariance, user-invariance, and user-assistedinvari-

ance for shared control systems, and their relationship to computed reachable

sets.

• a method to abstract the resulting reachable sets to a DES that contains min-

imal information regarding the effect of continuous human input on safety

• an application of these methods to a model of an actual aircraft incident [44].

1.3 Outline

This thesis is organized as follows:

Chapter 2 presents requisite mathematical preliminaries for hybrid system sta-

bility and modeling of vehicle formations via graph theory.

Chapter 3 presents definitions of stability for a switched linear system, and

a scalable test for asymptotic stability of block upper-triangular switched linear

systems. The results are illustrated through two examples.

Chapter 4 presents conditions on the state constraints and switching delay for

stability of a switched linear system.
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Chapter 5 extends the results of Chapter 4 to switched nonlinear systems with

stable mode dynamics.

Chapter 6 first presents a brief review of reachability analysis for continuous

and hybrid systems. Definitions of different levels of invariance are presented,

and methods of computing them using standard reachability tools are developed.

Finally I present an abstraction method which results in asafety-informativedis-

crete user-interface, and apply it to an example motivated by a documented aircraft

incident [44].

Chapter 7 offers directions for future work, and conclusions for the work pre-

sented here. Key results are summarized.

The work presented here has been published in or submitted to several confer-

ences and journal publications.

Results from Chapters 3 and 4 are presented in

• N. Matni and M. Oishi, “Stability of block upper-triangular switched linear

systems with switching delay,” Submitted toSystems & Control Letters, Feb

2010. (15 pages)

Results from Chapter 5 will be presented in

• N. Matni and M. Oishi, “Stability of switched nonlinear systems with bounded

switching delay,” Submitted toIEEE Trans. on Automatic Control, 2010.

• M. Oishi, N. Matni and A. Ashoori, “Stability of switched nonlinear systems

with bounded switching delay,” To appear inJournal of Nonlinear Systems

and Applications, August 2010.

Results from Chapter 6 are published in

• N. Matni and M. Oishi, “Reachability-based abstraction for an aircraft land-

ing under shared control,”American Control Conference, 2008, vol., no.,

pp.2278-2284, 11-13 June 2008

• N. Matni and M. Oishi, “Reachability analysis for continuous systems under

shared control: Application to user-interface design,”Proc. of the IEEE
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Conf. on Decision and Control/Chinese Control conference, 2009, pp.5929-

5934, 15-18 Dec. 2009. AwardedGeneral Chairs’ Recognition Award for

Interactive Papers.
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Chapter 2

Mathematical preliminaries

This chapter presents some basic results on the stability of hybrid systems, and

introduces some key concepts of graph theory. Finally, a model of a formation

of identical linear vehicles under distributed control is presented, along with some

key results on the stability of such systems.

2.1 Uniform asymptotic stability of hybrid systems

Due to the interaction between discrete and continuous dynamics in hybrid sys-

tems, stability of the system depends not only on the continuous dynamics of each

mode, but also on the switching pattern between these modes. It is well known

(cf. Example 2.1, [9]) that switching amongst stable modes can lead to an unsta-

ble system. Basic introductions to hybrid systems can be found in [8, 62], and an

overview of recent research efforts can be found in [18, 20].

We focus on systems in which the user has control over mode switches, but

the continuous dynamics are fully autonomous. In order to analyze the stabilityof

such a hybrid system, it is convenient to cast it into a switched system framework

ẋ = fσ(t)(t,x) (2.1)

wherex ∈ R
n, σ : R+ → P ⊂ N is a piecewise constant switching signal (we

denote the set of all piecewise constant switching signalsΣ), and F := { fp :

R+ ×D → R
n : p ∈ P} is a family of functions indexed byp that are piece-
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wise continuous int and locally Lipschitz inx onR+×D , with D ⊂ R
n a domain

containing the origin. We assume the origin to be an equilibrium point for each

fp ∈ F without loss of generality.

Definition 1. From [46]: A system (2.1) is locallyuniformly asymptotically stable

(UAS) if there exist positive constantδ and classK L functionβ such that the

solutions of 2.1, for all||x(t0)|| ≤ δ , satisfty

||x(t)|| ≤ β (||x(t0)||, t − t0), ∀t ≥ t0 (2.2)

Consider the following two well established stability theorems:

Theorem 1. (Common Lyapunov Function). From [46]: If all systemsẋ =

fp(x, t), fp ∈ F , share a common Lyapunov function, then (2.1) is UAS.

Theorem 2. (Multiple Lyapunov Functions). From [9]: Consider a switched

system (2.1). LetΣ∗ be the set of all piecewise constant switching signalsσ :

R+ → P for which

Vσ(τ−)(x)−Vσ(τ)(x) > 0 (2.3)

for each switching timeτ. Then (2.1) is UAS for allσ ∈ Σ∗.

Theorem 1 can be used to prove UAS under arbitrary switching for (2.1). If a

common Lyapunov function (CLF) does not exist or cannot be found, UAS may

still be proven for specific classes of switching schemes using Theorem 2.

Remark 1. Less conservative versions of Theorem 2 exist (cf. Chapter 3, [46]) –

however they result in more complex switching constraints, and are less suited to

our purposes.

In the case of linear switched systems, efficient linear matrix inequality based

computational methods allow for the rapid calculation of Lyapunov functions.

2.2 Introductory graph theory

There are many excellent texts on graph theory, including a recent text [21], and

those that focus on the Laplacian and its spectral properties [1, 3, 50].
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We describe the information flow between vehicles by defining a directed graph

G , consisting of a set ofN nodesV (a node for each vehicle), and a set of edges

E ∈ V ×V , where an edgee= (v1,v2) ∈ E , with v1,v2 ∈ V . The edges define

the direction of information flow between vehicles, with the first element ofe,

denoted tail(e), the information source, and the second element, denoted head(e),

the information sink.

The in-degree of a nodedi(v), is the number of edges withv as its head. We

define the normalized adjacency graph,A(G ), a square matrix of size|V |, as

Ai j =

{
1/di(vi) if (v j ,vi) ∈ E

0 otw

}
(2.4)

A path onG is an ordered set of vertices{v0,v1, ...,vn} such that(vi−1,vi) ∈ E

for i ∈ {1, ...,n}. A graphG is said to bestrongly connectedif there exists a path

from every vertex to every vertex.

As in [25], we define the graphLaplacianas

L = I −A (2.5)

and state some key results on its spectral properties, as these play an important role

in the stability of a fleet of vehicles flying in formation under distributed control.

Proposition 1. Zero is an eigenvalue of L, and its corresponding eigenvector is1T .

Proposition 2. All eigenvalues of L lie in a disk of radius 1 centered at1+ 0 j in

the complex plane.

Proposition 3. If G is strongly connected, the zero eigenvalue is simple.

2.3 Distributed control of vehicle formations

This section summarizes key results on formations of identical linear vehicles from

[25, 68]. Consider a fleet ofN identical vehicles, where theith vehicle’s dynamics

are given by

ẋi = Axi +Bui (2.6)
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wherexi ∈ R
n andui ∈ R

m. A local full-state feedback controller is assumed to

operate on each vehicle such that the closed loop dynamicsAcl of the individual

vehicles are stable.

It has been shown that the formation dynamics of a fleet of linear vehicles with

dynamics (2.6) can be described by [25, 68]

ẋ = (IN ⊗Acl +L⊗BK)x (2.7)

where IN is the N × N identity matrix, ⊗ denotes the Kronecker product,x =

[xT
1 ,xT

2 , ...,xT
N]T ∈ R

nN, K ∈ R
m×n is the linear formation feedback controller, iden-

tical for all vehicles, andL ∈ R
N×N is the graph Laplacian describing the fixed

communication topology of the formation.

As in [25, 68], we introduce a Schur transformation matrixU such that̃L =

U−1LU is upper triangular, and the diagonal entries ofL̃ are the eigenvalues ofL.

Applying the transformationT = U ⊗ In to (2.7) results in a block upper-triangular

system in the transformed coordinatesz= T−1x.

ż = (IN ⊗Acl + L̃⊗BK)z (2.8)

with block diagonal subsystems

żi = (Acl +λiBK)zi (2.9)

whereλi is an eigenvalue ofL. This transformation allows for the following results.

Theorem 3. From [25]: A formation feedback controller K stabilizes the forma-

tion dynamics in (2.7) if and only if it simultaneously stabilizes (2.9) for all eigen-

valuesλi of the graph Laplacian L describing the communication topology of the

formation.

Corollary 1. From [25]: A formation is stabilizable (in a distributed sense) if and

only if its communication graph is strongly connected.

11



Chapter 3

Stability of block

upper-triangular switched linear

systems under arbitrary

switching

We focus on switched linear systems under arbitrary switching. While the exis-

tence of a CLF is sufficient to prove stability, for systems of large dimension (e.g.

formations of vehicles under distributed control), standard LMI tools may fail due

to memory issues. Hence we focus on the same stability problem, but aim to solve

it by analyzing several LMIs of lower dimension rather than one full dimensional

problem. We do so by exploiting a transformation which results in the formation

being in block upper triangular form. We demonstrate the usefulness of ourmethod

on a 100-vehicle formation under distributed control.

3.1 Problem formulation

Consider a switched linear system

ẋ = Mσ x (3.1)
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wherex ∈ R
n, σ : [0,∞) → P ⊂ N is a piecewise constant switching signal, and

M := {Mp ∈ R
n×n : p∈P}, is a family of block upper-triangular Hurwitz state

matrices indexed byp.

Definition 2. Consider a family of block upper-triangular state matricesM :=

{Mp ∈ R
n×n : p∈ P ⊂ N}, indexed by p, with

Mp =




A1
p X12 · · · X1N

0 A2
p · · · ...

...
...

. . . X(N−1)N

0 0 · · · AN
p




(3.2)

and Ai
p ∈ R

ni×ni , where
N

∑
i=1

ni = n, i ∈ {1, ...,N}, and Xi j are the non-zero, off-

diagonal elements of Mp of appropriate dimension. ForA i := {Ai
p ∈R

mi×ni : p∈
P}, xi ∈R

ni the corresponding subset of the state vector x∈R
n, andσ : R+ →P

a piecewise constant switching signal,

ẋi = Ai
σ xi (3.3)

is the ith block diagonal subsystemof the switched linear system (3.1). Further-

more, the jth block diagonal subsystem is said to be lower (higher) than the ith

block diagonal subsystem if j> i ( j < i).

Definition 3. From [46]: a system (3.1) isglobally uniformly asymptotically sta-

ble (GUAS) underΣ∗, a set of piecewise constant switching signals, if there exist

positive constants c andµ such that the solution x(t) = Φσ (t,0)x(0) to (3.1), with

Φσ (t,0) the state transition matrix of (3.1), satisfies the following two equivalent

conditions:

||x(t)|| ≤ ce−µt ||x(0)|| (3.4)

||Φσ (t,0)|| ≤ ce−µt (3.5)

for all t ≥ 0, any initial state x(0) andany switching signalσ(·) ∈ Σ∗

Remark 2. If Σ∗ = {p}, p ∈ P, (i.e. σ(t) ≡ p), Definition 3 is equivalent to

GUAS of a linear system.
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Remark 3. If Σ∗ is the set of all piecewise constant switching signals, then (3.1) is

GUAS under arbitrary switching.

For the cooperative control of distributed systems, the block diagonal subsys-

tems of (3.1) have the same number of states as the individual subsystems. Thus

the main advantage of proving the stability of (3.1) by solely analyzing its block

diagonal subsystems it that it is highly scalable, as its complexity would be linear

in the number of subsystems. This is particularly relevant forN large enough to be

computationally prohibitive for current LMI solvers.

3.2 Scalable test for stability

We show that (3.1) is GUAS under a set of piecewise constant switching signalsΣ∗

if and only if each of its block diagonal subsystems is GUAS underΣ∗ by exploiting

its block upper-triangular structure. This is an extension of a well-known result in

which a switched linear system (3.1) withM a family of Hurwitz upper-triangular

state matrices is GUAS under arbitrary switching [2, 46, 47, 52]. Although we

focus on systems with static full-state feedback, the results are easily extendable to

dynamic controllers with partial state feedback, assuming detectability and stabi-

lizability of the system (cf. [25]).

Recall that for a linear system ˙x = Ax+ Bu with Hurwitz matrix A, the state

trajectoryx(t) can be exponentially bound, as in 3.4, if the inputu is exponentially

decaying, i.e. there exist positive constantsc, µ satisfying||u(t)|| ≤ ce−µt ||u(0)||.
Additionally, we define||H|| := max

x6=0

||Hx||
||x|| for H ∈ R

m×n, x ∈ R
n, in the usual

manner; hence||Hx|| ≤ ||H||||x||.

Theorem 4. A switched linear system (3.1) is GUAS under a set of piecewise con-

stant switching signalsΣ∗, if and only if each block diagonal subsystem of (3.1) is

also GUAS underΣ∗.

Proof. Assume without loss of generality that for the switched linear system (3.1),

Mp =

[
A1

p Bp

0 A2
p

]
(3.6)
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with Ai
p ∈ R

ni×ni , n1 +n2 = n, Bp ∈ R
n1×n2, andx = [xT

1 ,xT
2 ]T , with x1 ∈ R

n1, x2 ∈
R

n2.

If : Assume that ˙x1 = A1
σ x1 andẋ2 = A2

σ x2 are GUAS underΣ∗. From Definition

3, ||x2(t)|| ≤ c2e−µ2t ||x2(0)||, ∀σ ∈ Σ∗ for somec2, µ2 > 0. Treatingx2 as an

exponentially decaying input tox1,

x1(t) = Φ1
σ (t,0)x1(0)+

∫ t
0 Φ1

σ (t,τ)Bσ(τ)x2(τ)dτ (3.7)

with ||Φ1
σ (t,τ)|| ≤ ae−µ(t−τ), ∀σ ∈ Σ∗, for a, µ > 0, as in Definition 3. Since

||Bσ(τ)|| ≤ max
p∈P

||Bp|| := ||Bmax||,

||x1(t)|| ≤ ||Φ1
σ (t,0)||||x1(0)||

+ ||Bmax||
∫ t

0 ||Φ1
σ (t,τ)||||x2(τ)||dτ

≤ c1e−µ1t ||x1(0)||, ∀σ ∈ Σ∗
(3.8)

for c1, µ1 > 0, hence (3.1) is GUAS underΣ∗.

Only if: Assume (3.1) is GUAS underΣ∗. Then by Definition 3, there exist

positive constantsc, µ such that||x(t)|| ≤ ce−µt . It is clear that this holds forx(t)

if and only if it holds for all subsetsxi(t) of x(t). If there do not exist positive

constantsci , µi , satisfying||xi(t)|| ≤ cie−µit ||xi(0)|| ∀σ ∈ Σ∗ for i = {1,2}, then

the required constantsc, µ do not exist, which is a contradiction.

These results can be extended to N-block upper-triangular matrices of arbitrary

dimension by induction, beginning with the bottom block diagonal subsystem and

working upwards.

Corollary 2. A switched linear system (3.1) is GUAS under arbitrary switching if

and only if each block diagonal subsystem of (3.1) is also GUAS under arbitrary

switching.

To illustrate the benefits of our approach, consider aP mode,N block system

(3.1), with each subsystem (3.3) of dimensionn. Analysis of (3.1) as a whole would

involve solvingP+ 1 LMIs in R
Nn×Nn – for largeN this quickly becomes pro-

hibitively expensive in terms of memory requirements. However, applying Corol-

lary 2, we solveN sets of(P+1) LMIs in R
n×n, each easily computed. To quantify
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Figure 3.1: Shown on a log scale are the number of decision variables Matlab
requires to solve an LMI proving GUAS under arbitrary switching for
(1) a two mode distributed system with 100 subsystems (△) and (2) a
single block diagonal two mode subsystem (◦).

the benefits of our method, we compare the number of decision variables Matlab

requires to solve an LMI proving GUAS under arbitrary switching for a full system

as opposed to for an individual subsystem. Figure 3.1 shows, on a log scale, the

number of decision variables needed for a two mode distributed system with 100

subsystems, with subsystem dimension ranging from 2 to 10.

The derivation of Theorem 4 and Corollary 2 hinges on three key assumptions:

(1) a fixed communication topology, (2) all vehicles are identical at all times and

(3) all vehicles have linear dynamics. These assumptions are required to preserve

the properties of Kronecker multiplcation so that the system can be transformed

into block upper-triangular form. If the communication topology changes, then the

graph Laplacian will as well, requiring a new coordinate transformation to apply

Theorem 4. However, if the communication topology is fairly reliable, this should

not cause instability – so long as topology changes do not occur too quickly, a

dwell time argument [31] can be used to show that this will not destabilize the

system. Once the new communication framework has been established, our results

can once again be applied to prove GUAS under arbitrary switching.
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The case of addressing fleets of either non-identical or nonlinear systems is

much more difficult. The properties of the Kronecker product break down, and the

system can no longer be transformed into block upper-triangular form, although

preliminary results based on Lyapunov [14] and optimal control [22] theory do

exist. We assume the existence of a supervisory discrete controller that coordinates

mode switches – we believe this to be reasonable since the communication cost of

transmitting a mode switch is very low compared to transimitting continuous state

information. Furthermore, UAV systems have inner control loops that, through

dynamic extension and feedback linearization, allow for a vehicle’s dynamics to

be reasonably approximated by a double integrator [59]. Hence our results are

applicable to outer control loop design for actual fleets of UAVs.

Finally, we note that although the examples in the following section have been

tailored to UAV applications, the results are much more general. Theorem 4 and

Corollary 2 can be used to prove scalable stability of any distributed switchedlinear

system with a supervisory discrete controller. Possible application areas include

interconnected pulp and paper mills, chemical and biological batch processes, and

network flow control, to name a few.

3.3 Examples: formations of double integrators

Consider a fleet ofN identical vehicles as described by (2.7), in which the three

position variables are decoupled, and the acceleration in each direction is controlled

separately. We can thus limit our analysis, without loss of generality, to vehicles

moving in one dimension with vehicle dynamics

A =

[
0 1

0 0

]
B =

[
0

1

]
(3.9)

with xi ∈ R
2, ui ∈ R.

Mode switches amongst the vehicles must occur simultaneously, since asyn-

chronous switching causes the system to lose its block upper-triangular structure.

Hence, we consider the case in which a supervisory logic controller switches the

linear formation feedback controller of all vehicles, such thatK = Kσ : R
2 → R,

with σ a piecewise constant switching signal that maps toP ⊂ N. This remote
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supervisory controller is meant to represent a UAV operator remotely changing

the UAVs’ operation modes in order to meet mission objectives or in responseto

environmental disturbances.

Thus the transformed system (2.8) becomes

ż = (IN ⊗Acl + L̃⊗BKσ )z (3.10)

with block diagonal subsystems

żi = (Acl +λiBKσ )zi (3.11)

with λi an eigenvalue ofL. We assume thatKp has been chosen such that (3.11)

is Hurwitz for all p ∈ P and all eigenvalues ofL. Traditional LMI methods can

then be applied to the block diagonal subsystems, rather than to the entire system,

to show GUAS under arbitrary switching (Theorem 4). For aP mode system, we

have thus reduced the problem toN sets ofP+1 LMIs in R
2×2 as opposed toP+1

LMIs in R
2N×2N.

Five vehicle system

Consider first an illustrative example, a five vehicle system with

Acl =

[
0 1

−1 −1

]
K1 = [−20 −5]

K2 = [−4 −6]
(3.12)

and

L =




4 −1 −1 −1 −1

0 2 −1 0 −1

−1 −1 3 −1 0

−1 0 −1 3 −1

−1 −1 0 0 2




(3.13)

switching randomly betweenK1 and K2. The communication topology defined

by the unnormalized Laplacian (3.13) is illustrated in Figure 3.2, in which arrows

indicate the flow of information (state measurements), obtained through the UAVs’

sensors. Note that the graph is strongly connected, satsifying the condition for
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Veh. 3Veh. 1Veh. 5

Figure 3.2: Communication topology defined by the graph Laplacian (3.13)
used in the 5 vehicle example. Arrows indicate the flow of information
(state measurements). The graph is fully connected, satisfying Corollary
1, but each vehicle has access to only a subset of the fleet’s total state.

stabilizability imposed by Corollary 1, but that each vehicle only has access to

a subset of the fleet’s total state, a consequence of the vehicles’ limited sensing

abilities. The block diagonal subsystems are given by (3.11), withλi ∈ {3.0108,

4.6180, 4.6180, 2.3819, 2.3819}. For each of the five block diagonal subsystems, a

GQLF was found by solving three LMIs inR2×2 to obtain five symmetric positive

definite matrices:

P1 =

[
88.8184 −27.8822

−27.8822 64.5339

]
,

P2 = P3 =

[
0.0041 −0.0099

−0.0099 0.0831

]
,

P4 = P5 =

[
1.6822 −3.3996

−3.3996 22.0348

]
.

(3.14)

By Corollary 2, the GQLFsV i(xi) = xT
i Pixi , i ∈ {1, ...,5} prove GUAS under

arbitrary switching for the system as a whole. Figure 3.3 shows simulation results

(top plot) for an arbitrary switching signal (bottom plot).
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Figure 3.3: Simulation results for the five vehicle system given by (2.8),
(3.12) and Laplacian (3.13), with mode switches occurring according
to the arbitrary switching signalσ shown in the bottom plot. Shown are
the position (top plot, solid) and velocity (top plot, dashed) variables of
each of the vehicles.

100 vehicle system

Consider a 100 vehicle system with the sameAcl, K1 and K2 as in (3.12). The

LaplacianL (not presented) is normalized such that all of its eigenvalues lie within

a disk of radius 1 centered at 1+0 j in the complex plane (cf. Proposition 2), and

strongly connected such that its zero eigenvalue is simple (cf. Proposition 3), a

necessary condition for the stability of such systems (cf. Corollary 1). For bothK1

andK2, the block diagonal subsystems given by (3.11) are stable for all eigenvalues

of L.

Solving three LMIs inR
200×200 in Matlab was not possible on a dual core

2.40Ghz Intel-based machine with 4GB RAM due to the dimensionality of the

system and ensuing memory requirements. Exploiting Corollary 2, we solve 100

sets of three LMIs to obtain a GQLF for each block diagonal subsystem instead.

The LMIs solved are inR2×2 for block diagonal subsystems for whichλi is real,

and are inR4×4 whenλi is complex. Simulation results are shown in Figure 3.4

for an arbitrary switching signal, depicted in Figure 3.5. As expected, despite
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Figure 3.4: Simulation results for the 100 vehicle system given by (2.8),
(3.12) and a strongly connected normalized Laplacian, with arbitrary
switching signalσ shown in Figure 3.5. For such a large system, show-
ing GUAS under arbitrary switching for the entire system proves to be
computationally prohibitive unless stability is proven via Corollary 2.
Shown are the position and velocity variables of each of the vehicles.

arbitrary switching, the vehicles’ positions and velocities converge to zero. These

results are equally applicable when the states are not driven to zero, butto some

internally consistent offset values [24].
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Figure 3.5: Arbitrary switching signalσ for the 100 vehicle system given
by (2.8), (3.12) and a strongly connected normalized Laplacian. The
simulation results are presented in Figure 3.4.
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Chapter 4

Stability of switched linear

systems under constrained

switching

Communication and other types of delays are often present in distributed sys-

tems under cooperative control. This delay can represent a remote supervisory

discrete controller (such as a human operator triggering mode changes) receiving

delayed measurements, or the time required to synchronize a simultaneous mode

switch amongst several subsystems. In the previous chapter, GUAS under arbi-

trary switching for a fleet of UAVs was proven by finding a CLF for each block

diagonal subsystem. If this can be accomplished for all block diagonal subsys-

tems, communication delays do not need to be taken into account – all switching

sequences, delayed or not, will preserve stability.

However, not all systems have a CLF. The following delay-free canonical ex-

ample from [9] illustrates how, for some systems, the switching sequence deter-

mines if the global behavior of the system is stable or not.

Example 1. From [9]: Consider a two mode switched linear system

ẋ = Aσ x (4.1)
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Figure 4.1: Trajectory for (4.1), with switching sequence such that ˙x = A1x
in the second and fourth quadrants, and ˙x = A2x in the first and third
quadrant, with initial conditionsx(0) = [10−6,0]T over the time span
[0,1]s. Despite individual modes having stable dynamics, the overall
system behavior is that of an unstable one.

with A := {A1,A2}, where

A1 =

[
−1 10

−100 −1

]
A2 =

[
−1 100

−10 −1

]
(4.2)

By switching modes such thatẋ = A1x in the second and fourth quadrants, andẋ=

A2x in the first and third quadrant, the system exhibits unstable behavior. Shown in

Figure 4.1 is the system trajectory in phase space starting from initial conditions

x(0) = [10−6,0]T over the time span[0,1]s. However, if we reverse the switching

scheme such thatẋ= A1x in the first and third quadrant, anḋx= A2x in the second

and fourth quadrant, the resulting system is stable. Shown in Figure 4.2 is the

system trajectory in phase space starting from initial conditions x(0) = [1,0]T over

the time span[0,1]s.
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Figure 4.2: Trajectory for (4.1), with switching sequence such that ˙x = A1x
in the first and third quadrants, and ˙x = A2x in the second and fourth
quadrant, with initial conditionsx(0) = [1,0]T over the time span[0,1]s.
With this switching sequence, the system is GUAS.

4.1 Stability under state constrained switching

Example 1 clearly demonstrates how differentstate-constraintbased switching

rules can affect the GUAS of a system for which no CLF exists. Supposethat

that for some of the block diagonal subystems (3.3) of (3.1), no CLF can be found.

While stability under arbitrary switching is not possible, stability may hold for cer-

tain classes of switching signals. We address Problem 2 by first developing state

constraint based switching signals such that (3.1) is GUAS under delay-free switch-

ing. We then introduce adelay bufferwhich adjusts the delay-free state constraints

to be robust to switching delays.

Specifically, we focus on theith block diagonal subsystem (3.3), and for ease

of notation, omit thei (sub)superscripts. For each modep∈ P, letVp(x) = xTPpx

be the associated Lyapunov function, wherex ∈ R
n and Pp = PT

p > 0 is a real

symmetric positive definite matrix.

Theorem 5. Consider a delay free switched system (3.1). LetΣ∗ be the set of

piecewise constant switching signalsσ : R+ → P such that, for each switching
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instantτ, x(τ) ∈ S̄ (σ(τ),σ(τ−)), where

S̄ (q, p) := {x∈ R
n : Vp(x)−Vq(x) = xT(Pp−Pq)x > 0} (4.3)

Then (3.1) is GUAS underΣ∗.

Proof. As in [9], Theorem 2.7.

The condition imposed by Theorem 5 ensures that the piecewise Lyapunov

function (PLF)Vσ(t)(x) constructed from the the multiple Lyapunov functionsVp, p∈
P, is strictly decreasing at switching instants. However, in remote supervisory

control, communication and other delays introduce a switching delay between state

measurements and mode switches. Consequently, we include a switching delayTD

between the state measurements and switching time in our model – the discrete

controller will only have access to a delayed state measurementx(τ −TD) in de-

termining whether the condition imposed by Theorem 5 will be violated if a mode

switch occurs at timeτ.

The premise behind our results is the same as that of Theorem 5: we impose

conditions such that the PLFVσ(t)(x) is strictly decreasing, despite a switching

delay. In order to accomodate the effect of the time delay, we introduce adelay

buffer γ – this delay buffer introduces “no-switch” zones along the boundaries of

S̄ (q, p) to ensure that system trajectories do cross over intoS̄ (q, p)c during the

switching delay period. We computeγ by tracking the possible variations in the

current and next modes’ Lyapunov functions during the switching delay.

Lemma 1. For a switched system (5.1), assume thatσ(t) ≡ p for t ∈ [τ −TD,τ).

Then there exists positive constants ci andµi such that

||xi(t)|| ≤ cie−µi(t−(τ−Td))||xi(τ −TD)||
∀t ∈ [τ −TD,τ)

(4.4)

for any xi corresponding to the ith block diagonal subsystem, andτ ≥ TD.

Proof. Consider||[xT
i+1, ...,x

T
N]T || as an exponentially decaying input to the dynam-

ics ofxi , and apply Remark 2.
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In the following, we defineQp(q) := −(AT
q Pp+PpAq) to track the evolution of

modeq’s Lyapunov function whileσ(t) = p. Note thatQp(q) = QT
p(q) ∀p,q∈P.

Theorem 6. LetΣTD be the set of piecewise constant switching signalsσ : R+ →P

such that, for each switching instantτ, x(τ −TD) ∈ S (σ(τ),σ(τ−),τ), with

S (q, p,τ) := {x∈ R
n : xT(Pp−Pq)x

||x||2 > γ(q, p,τ)} (4.5)

the set of states for which switching from mode p to q is allowed for a time-varying

delay buffer

γ(q, p,τ) =
c2

pe−2λpτ

2λp
(e2λpTD −1)(λmax(Qp(p))−min(0,λmin(Qq(p)))) (4.6)

and constants cp,λp > 0 for mode p as in Definition 3. Then (3.1) is GUAS under

ΣTD .

Proof. By Theorem 5, a sufficient condition forσ ∈ Σ∗ is that at each switching

instantτ
Vp(x(τ))−Vq(x(τ)) > 0 (4.7)

whereσ(τ−) = p andσ(τ) = q. We show thatΣTD ⊆ Σ∗ by finding a lower bound

for (4.7) given onlyx(τ −TD), and partitioning the state space accordingly.

We seek to boundVp(x) andVq(x) from below and above, respectively.

Vp(x(τ)) = Vp(x(τ −TD))+
∫ τ

τ−TD
V̇p(x(t))dt

= Vp(x(τ −TD))− ∫ τ
τ−TD

xT(t)Qp(p)x(t)dt
(4.8)

By the Courant-Fischer theorem

λmin(Qp(p))||x||2 ≤ xTQp(p)x ≤ λmax(Qp(p))||x||2 (4.9)

andλmin(Qp(p)) > 0, we obtain

Vp(x(τ)) ≥ Vp(x(τ −TD))− ∫ τ
τ−TD

λmax(Qp(p))||x(t)||2dt (4.10)
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Applying (3.4) and evaluating the integral, we obtain a lower bound forVp(x(τ)).

Vp(x(τ)) ≥ Vp(x(τ −TD))

− c2
pe−2λpτ

2λp
(e2λpTD −1)λmax(Qp(p))||x(τ −TD)||2

(4.11)

Similarly, to find an upper bound toVq(x(τ)),

Vq(x(τ)) = Vq(x(τ −TD))− ∫ τ
τ−TD

xT(t)Qp(q)x(t)dt

≤ Vq(x(τ −TD))− ∫ τ
τ−TD

λmin(Qp(q))||x(t)||2dt
(4.12)

If λmin(Qp(q)) < 0, the integral term is positive, and we use the upper bound

for ||x(t)|| given by (3.4) to further bound (4.10), and obtain a result similar to

(4.11). However, ifλmin(Qp(q)) ≥ 0, the integral term is negative, and we require

a lower bound for||x(t)|| to further bound (4.10). In general, such a lower bound

is unavailable, but can be conservatively approximated as 0. Combining these two

cases, an upper bound for (4.12) is

Vq(x(τ)) ≤ Vq(x(τ −TD))

− c2
pe−2λpτ

2λp
(e2λpTD −1)min(0,λmin(Qp(q))))||x(τ −TD)||2

(4.13)

Combining (4.11), (4.13) with (4.7),

Vp(x(τ−TD))−Vq(x(τ−TD))

||x(τ−TD)||2 > γ(q, p,τ) (4.14)

whereγ is as given in (4.6). Noticing thatVm(x) = xTPmx for m∈ P, and letting

S (q, p,τ) be the subset ofRn where (4.14) holds, we obtain (4.5).

Thus, for any piecewise constant switching signalσ ∈ ΣTD , we haveσ ∈ Σ∗,

thusΣTD ⊆ Σ∗.

An interesting consequence of this approach is that the delay bufferγ is in fact

a time varying quantity. This time dependence occurs because the upper bound

of the time derivative of the Lyapunov functions (4.9) is proportional to thenorm

of the state||x(t)||, a time varying quantity. For switching signalsσ ∈ ΣTD , a

system (3.1) is GUAS, and the state norm asymptotically approaches zero – conse-

quently,so does the time derivative of each Lyapunov function. This observation,
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and its consequences on the time-varying parititions, are summarized in the fol-

lowing corollary:

Corollary 3. For σ ∈ΣTD , as t→∞, the delay buffer adjusted partitionS (q, p,τ)→
S̄ (q, p) for all p,q∈ P.

Proof. We fix a “next mode”q and study the evolution ofS (q,σ(t), t) under a

switching signalσ ∈ ΣTD in order to determine how these regions evolve over time.

We define the functionalγ(q, ·, ·) : P×R+ →R, evolving under a switching signal

σ ∈ ΣTD , as

γ(q,σ(t), t) =

c2
σ(t)e

−2λσ(t)t

2λσ(t)
(e2λσ(t)TD −1)(λmax(Qσ(t)(σ(t)))−min(0,λmin(Qq(σ(t)))))

(4.15)

For all p,q∈ P, t ≥ TD, γ(q, p, t) ≥ 0. It follows thatγ(q,σ(t), t) ≥ 0 ∀σ ∈
ΣTD .

Define

α = maxσ(t)
c2

σ(t)

2λσ(t)
(e2λσ(t)TD −1)

β = maxσ(t)(λmax(Qσ(t)(σ(t)))−min(0,λmin(Qq(σ(t)))))

Λ = minσ(t) λσ(t)

(4.16)

Then

0 ≤ γ(q,σ(t), t) ≤ αβe−2Λt (4.17)

Thusγ(q,σ(t), t) → 0 ast → ∞ for all σ ∈ ΣTD . Letting the final active mode ofσ
be p, the result follows.

Corollary 3 shows that by waiting long enough before switching, the delay

buffer γ for any mode pair can be made as small as desired. Specifically, if for

someτ∗,γ∗ ∈ R, γ(p,q,τ∗) < γ∗, thenγ(p,q, t) < γ∗ for all t ≥ τ∗ – once this

condition is satisfied, it is satisfied for all future times, and hence can be thought of

as await-timecondition. In contrast, the average dwell-time condition presented

in [31], and its extension to switched systems with switching and state delays [67],

must be satisfied after each mode switch in order to guarantee asymptotic stability
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of a switched linear system. Wait-time instead provides a timeτ∗ after which

the effect of the delay buffer becomes negligible. In practical applications, the

wait-time condition and the average dwell-time conditions can in fact be seen as

being complementary. Our method will prove useful when mode switches needto

occur rapidly, and may violate dwell-time conditions; on the other hand, dwell-time

arguments can be used when mode switches occur at a slower pace, elminating the

need for state measurements to be transmitted back to the remote operator.

Alternatively, we can considerS (q, p,τ) as a conservative estimate of̄S (q, p)

that has been propagated backwards in tme forTD seconds. It can be argued that

a natural alternative to our method would be to use reachability techniques (cf.

[4, 43, 51, 63], among others) to compute this backwards propagation, rather than

using our initially conservative estimate. This reachability computed set may ini-

tially be less conservative, as it does not rely on bounds on derivatives in its com-

putation. Although in some cases, this might yield useful results, we argue that

our approach has some important advantages over reachability based techniques.

Most importantly, the computed reachable set is static, and hence does not allow

the remote operator to take advantage of the decreasing effect of the delay buffer.

4.2 Design and implementation strategies

Theorems 4 and 6 aid in the design and analysis for switched linear systems un-

der distributed control. Theorem 4 is first used to prove GUAS under arbitrary

switching for as many block diagonal subsystems as possible. Theorem 6 isthen

used to synthesize state based constraints for the remaining block diagonalsub-

systems. Specifically, consider a switch from modep to modeq occuring at time

t = τ, and an index setI ⊆ {1, ...,N} comprised of the indices of all block diag-

onal subsystems that are not GUAS under arbitrary switching. For eachi ∈ Ina,

thetime-varying partitionS i(q, p,τ) corresponding to theith block diagonal sub-

system needs to be computed. Only when the delayed measurementxi(τ −TD) ∈
S i(q, p,τ) for all i ∈I , that is for all block diagonal subsystems for which a CLF

does not exist, will a mode switch fromp to q be guaranteed to preserve GUAS

despite a switching delay.

To reduce the complexity of these state based constraints as much as possible,
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the designer of such systems will want to minimize the number of block diagonal

subsystems (3.3) that are not GUAS under arbitrary switching. From Lemma1, we

see that for block diagonal subsystems of lower index, the effect of other states on

its bounding constants is more significant. If these subsystems are not GUASunder

arbitrary switching, these larger bounding constants will in turn increase the effect

of the delay buffer (4.6) on the state partitions. Hence, a prudent designstrategy

would be to (1) choose a communication topology that minimizes the number of

block diagonal subsystems that are not GUAS under arbitrary switching and (2) to

exploit the Schur transformation’s ability to arbitrarily order eigenvalues to ensure

that all of these unstable block diagonal subsystems are placed in the lowest blocks

possible. State constraints can then be developed according to Theorem 6for each

of these block diagonal subsystems.

In some cases, the structure of the setsS (q, p,τ) (4.5) can be quickly deter-

mined by examining the spectral properties ofPp−Pq. If λmin(Pp−Pq) > γ(q, p,τ),

thenS (q, p,τ) = R
n – the safe switching region from modep to modeq consti-

tutes the entire state space, so a switch from modep to q can be triggered at any

time. Similarly, if λmax(Pp −Pq) < γ(q, p,τ), thenS (q, p,τ) = /0, and the safe

switching region is empty – a remote operator will have to wait forγ to decrease

enough such thatλmax(Pp−Pq) > γ(q, p,τ) before a switch may be triggered safely.

By computing these minimum (maximum) eigenvalues beforehand, it can quickly

be determined if a given mode switch at timet = τ will always (never) be guaran-

teed to preserve GUAS despite a switching delay.

4.2.1 Application to fleets of UAVs

The wait-time condition has a very important consequence when applied to UAV

systems: often times a UAV will operate in a given mode for an extended period

of time (e.g. “return to base”) before switching through other modes more rapidly

(e.g. “lower landing gear”, “change flaps configuration”, “acquire glide slope”).

However, since the wait-time is not reset after each mode switch, the effectof the

delay buffer on the state partitions during the final sequence of rapid modeswitches

will already have decayed to a negligible level.
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4.3 Example: remote supervisory control of a switched
linear system

The application in this section is a continuation of Example 1. Although the dy-

namics are not directly related to a UAV system, they illustrate both the effec-

tiveness and generality of the developed methods. It is also important to notethat

although the results were derived in the context of fleets of identical switched linear

vehicles, they are equally applicable to any switched linear system.

Consider the two mode switched linear system (4.1) described in Example 1

with a switching delayTD = .1s. As illustrated previously, unstable switching se-

quences exist, and hence no CLF exists for this switched linear system. Accord-

ing to Theorem 6, we partition the state space into delay buffer adjusted regions

S (2,1, t) andS (1,2, t), which provide switching restrictions that preserve GUAS

despite the switching delay. Figure 4.3 shows snapshots ofS (2,1, t) (white) evolv-

ing over time under the switching signalσ(t) ≡ 1. In accordance to Corollary 3,

S (2,1, t) converges to the standard Lyapunov based partitioningS̄ (2,1) as the

delay bufferγ(2,1, t) approaches zero.

Figure 4.4 shows the evolution ofγ(2,σ(t), t) and ofV12(t) := (x(t)T(P1 −
P2)x(t))/(||x(t)||2), and the switching signalσ ∈ΣTD generated by switching when-

ever possible without violating the constraints imposed by Theorem 6. Initially

γ(2,1, t) > λmax(P1−P2) is too large to allow any mode switches andS (2,1, t) =

/0. After approximately 1.3s, the delay buffer has decayed enough such thatγ(2,1, t)

< λmax(P1 −P2), and a mode switch is triggered as soon as the delayed trajec-

tory x(t −TD) entersS (2,1, t). In Figure 4.5, we zoom in on whenx(t −TD) ∈
S (2,1, t) for the first time, att = τ. Clearly,V12(τ) > 0, satisfying the stability

requirements imposed by Theorem 5. The resulting trajectory in the phase space

is presented in Figure 4.6, with subsets of the trajectory evolving accordingto

ẋ = A1x plotted in black (dark), and those evolving according to ˙x = A2x plotted

in cyan (light), where a switch occurs as soon as the trajectory enters a region of

the state space in which switching is allowed. Notice that convergence to the ori-

gin is much faster once switching begins to occur more regularly, illustrating the

potential benefits of applying hybrid control to a system.
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Figure 4.3: Snapshots of theS (2,1, t) (white) evolving over time under the
switching signalσ(t) ≡ 1. S (2,1, t) converges to the standard Lya-
punov based partitioningS̄ (2,1) (Corollary 3).
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Figure 4.4: Evolution of the delay bufferγ(2,σ(t), t) overlaid withV12(t)
△
=

(x(t)T(P1−P2)x(t))/(||x(t)||2), and the switching signal generated by
switching whenever possible without violating the constraints imposed
by Theorem 6. Initiallyγ(2,1, t) > λmax(P1−P2) is too large to allow
any mode switches, and consequently,S (2,1, t) = /0. After approxi-
mately 1.3s,γ(2,1, t) < λmax(P1−P2), and a mode switch is triggered
as soon as the delayed trajectoryx(t −TD) entersS (2,1, t).
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requirements imposed by Theorem 5.
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ing according to a signalσ ∈ ΣTD , with subsets of the trajectory evolving
according to ˙x= A1x plotted in black (dark), and those evolving accord-
ing to ẋ = A2x plotted in cyan (light).
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Chapter 5

Stability of switched nonlinear

systems under constrained

switching

Although a rich and wide range of systems can be modeled as having linear dynam-

ics, many systems exist which have inherently nonlinear properties. In this chapter,

we extend results from Chapter 4 to nonlinear switched systems. We begin byin-

troducing the switched nonlinear systems to be studied in this chapter, as well as

the relevant definitions of stability. Similarly to Chapter 4, we use a PLF approach

to stable switching despite a switching delay by introducing a delay buffer to quan-

tify the effect of the switching delay on the delay free PLF based partitions.We

then present two examples of stable switching despite a switching delay.

5.1 Problem formulation

Consider a switched nonlinear system

ẋ = fσ(t)(t,x) (5.1)

with x ∈ R
n, σ : R+ → P ⊂ N a piecewise constant switching signal, andF :=

{ fp : R+×D →R
n : p∈P} a family of functions indexed byp that are piecewise
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continuous int and locally Lipschitz inx onR+×D , D ⊂ R
n a domain containing

the origin. We assume the origin to be an equilibrium point for eachfp ∈ F

without loss of generality. The following definitions all deal with local stability,

unless specificed otherwise.

Definition 4. Modified from [41]: the equilibrium point x= 0 of (5.1) isstable

underΣ∗, a set of piecewise constant switching signals, if∀ε > 0 ∃δ = δ (ε, t0) > 0

such that

||x(t0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ t0 ≥ 0 (5.2)

for all σ ∈ Σ∗.

Lemma 2. Modified from [41]: the equilibrium point x= 0 for (5.1) is

• uniformly stable (US) underΣ∗ if and only if there exists a classK function

α and a positive constant c, independent of t0, such that

||x(t)|| ≤ α(||x(t0)||), ∀t ≥ t0 ≥ 0, ∀||x(t0)|| < c (5.3)

for all σ ∈ Σ∗.

• uniformly asymptotically stable (UAS) underΣ∗ if and only if there exists a

classK L functionβ and a positive constant c, independent of t0, such that

||x(t)|| ≤ β (||x(t0)||, t − t0), ∀t ≥ t0 ≥ 0, ∀||x(t0)|| < c (5.4)

for all σ ∈ Σ∗.

Remark 4. If Σ∗ = {p}, (i.e. σ(t) ≡ p), the previous definition and lemma are

equivalent to standard definitions of stability for a nonlinear system.

Remark 5. The results of Lemma 2 will hold globally for c= ∞.

We focus on systems which cannot be shown to be stable under arbitrary

switching. Specifically, we address the problem of determining state based switch-

ing constraints such that (5.1) is stable, US, UAS or GUAS, despite a bounded

delay between state measurements and switching time, orswitching delay. We fo-

cus on systems (5.1) for whichF is comprised of functions that have the same

type of stability.
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5.2 Stability under state constrained switching

We begin by assuming that for system (5.1), ˙x = fp(t,x), p ∈ P has astable

equilibrium pointx∗ = 0 over a domainD ⊂ R
n. We assume that there exists a

continuously differentiable Lyapunov functionVp(t,x) : R+ ×D → R satisfying

the following standard conditions (cf. [41])

Vp(t,x) > 0 (5.5)

∂Vp

∂ t
+

∂Vp

∂x
fp(t,x) ≤ 0 (5.6)

for all t ≥ 0 and allx∈ D\{0}. In addition, we assume that the functionδ (ε, t0)

as given in Definition 4 is invertible, such that for anyδ , t0 ∈ R+, one can compute

ε = ε(δ , t0) (5.7)

satisfying (5.2).

In order to establish stability of (5.1), we define a piecewise continuous Lya-

punov function

V(t,x) = Vσ(t)(t,x) (5.8)

and characterize a class of switching signals such that (5.8) is non-increasing, de-

spite a switching delay of durationTD. As in the linear case, we first develop delay

free state parititions that ensure (5.8) is strictly decreasing, and then introduce a

delay buffer to compensate for the effect of the switching delay. Once again, we

compute the delay buffer by bounding the possible changes in the Lyapunov func-

tion of the current mode (Vp(t,x)) and the Lyapunov function of the next mode

(Vq(t,x)) over the period of the time delay. We first make two assumptions that

allow the time derivative of the two Lyapunov functionsVp(t,x) andVq(t,x) to be

bounded.

Assumption 1. There exists a classK functionαp(||x||) such that

−αp(||x||) ≤
∂Vp

∂ t
+

∂Vp

∂x
fp(t,x) ≤ 0 (5.9)

Assumption 2. There exists a classK function αqp(||x||) and a real constant
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bqp ∈ {−1,1} such that

∂Vq

∂ t
+

∂Vq

∂x
fp(t,x) ≤ bqpαqp(||x||) (5.10)

Note that these assumptions are not restrictive at all – for example, they will

hold if the Lyapunov functions are all Lipschitz continuous (a very broadclass of

functions), as this will limit the magnitude of their derivatives.

Theorem 7. LetΣs be the set of piecewise constant switching signalsσ : R+ →P

such that (5.1) is stable. LetΣs
TD

be the set of piecewise constant switching signals

such that, for each switching instantτ, x(τ −TD) ∈ S s(σ(τ),σ(τ−),τ), with

S s(q, p,τ) := {x∈ D : Vp(τ −TD,x)−Vq(τ −TD,x) ≥ γs(q, p,τ)}
(5.11)

the set of states for which switching from mode p to mode q is allowed for a time-

varying delay buffer

γs(q, p,τ) = TD · [αp(ε(||x(τ −TD||),τ −TD))

+max(0,bqp) ·αqp(ε(||x(τ −TD||),τ −TD))]
(5.12)

with ε(·, ·) is given as in (5.7) andαp(·), αqp(·), and bqp satisfy Assumptions 1 and

2. Then (5.1) is stable underΣs
TD

.

Proof. From Lyapunov stability theory, a sufficient condition for a switching signal

σ ∈ Σs is that the piecewise continuous Lyapunov function (5.8) be non-increasing.

This is equivalent to requiring that at each switching instantτ,

Vp(τ,x(τ))−Vq(τ,x(τ)) ≥ 0 (5.13)

with σ(τ−) = p andσ(τ) = q. We show thatΣs
TD

⊆ Σs by finding a lower bound

for (5.13) based only on information available when the switch is triggered, i.e.

x(τ −TD), and partitioning the state space such that (5.13) holds at each switching

instant, despite a switching delayTD.

We seek to boundVp(t,x) andVq(t,x) from below and above, respectively.

Vp(τ,x(τ)) = Vp(τ −TD,x(τ −TD))+
∫ τ

τ−TD

(
∂Vp

∂ t +
∂Vp

∂x fp(t,x)
)

dt (5.14)
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Applying (5.9) we obtain

Vp(τ,x(τ)) ≥ Vp(τ −TD,x(τ −TD))− ∫ τ
τ−TD

αp(||x(t)||)dt (5.15)

Applying (5.2),(5.7) to bound||x(t)|| over [τ −TD,τ), the integrand becomes con-

stant (αp(ε(||x(τ −TD)||,τ −TD))). Thus evaluating the integral, we obtain a lower

bound forVp(τ,x(τ)) givenx(τ −TD),

Vp(τ,x(τ)) ≥ Vp(τ −TD,x(τ −TD))−TD ·αp(ε(||x(τ −TD)||,τ −TD))

(5.16)

Similarly, to find an upper bound toVq(τ,x(τ)),

Vq(τ,x(τ)) = Vq(τ −TD,x(τ −TD))+
∫ τ

τ−TD

(
∂Vq

∂ t +
∂Vq

∂x fp(t,x)
)

dt

≤ Vq(τ −TD,x(τ −TD))+
∫ τ

τ−TD
bqpαqp(||x(t)||)dt

(5.17)

If bqp = 1, the integral term is positive, and we use the upper bound for||x(t)||
given by (5.2), (5.7) to further bound (5.15), and obtain a result similar to(5.16).

However, ifbqp = −1, the integral term is negative, and we require a lower bound

for ||x(t)|| to further bound (5.15). In general, such a lower bound is unavailable,

but can be conservatively approximated as 0. Combining these two cases,an upper

bound for (5.17) is

Vq(τ,x(τ)) ≤ Vq(τ −TD,x(τ −TD))

+max(0,bqp) ·TD ·αqp(ε(||x(τ −TD)||,τ −TD)
(5.18)

Combining (5.16), (5.18) with (5.13),

Vp(τ −TD,x(τ −TD))−Vq(τ −TD,x(τ −TD)) ≥ γs(q, p,τ) (5.19)

with γs given as in (5.12). LettingS s(q, p,τ) be the subset ofD where (5.19)

holds, we obtain (5.11). Thus, for any piecewise constant switching signal σ ∈Σs
TD

,

we haveσ ∈ Σs, thusΣs
TD

⊆ Σs.

The setsS s(q, p,τ) thus partition the state space into regions where switching

from modep to modeq ensures (5.8) is non-increasing, guaranteeing the stabil-
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ity of (5.1), despite a switching delayTD. Computing the delay bufferγs given a

delayed measurementx(τ −TD) is trivial once functionsαp, αqp and constantbqp

have been determined, and can be easily be performed online, resulting in acom-

putationally efficient manner of verifying whether a desired switch betweentwo

modes is allowable.

Consider the following two corollaries in which we strengthen our results for

US and UAS mode dynamics.

Corollary 4. Let Σus be the set of piecewise constant switching signalsσ : R+ →
P such that (5.1) is uniformly stable. LetΣus

TD
be the set of piecewise constant

switching signals such that, for each switching instantτ,

x(τ −TD) ∈ S us(σ(τ),σ(τ−),τ), with

S us(q, p,τ) := {x∈ D : Vp(τ −TD,x)−Vq(τ −TD,x) ≥ γus(q, p,τ)}
(5.20)

the set of states for which switching from mode p to mode q is allowed for a time-

varying delay buffer

γus(q, p,τ) = TD[αp(ᾱp(||x(τ −TD||))
+max(0,bqp)αqp(ᾱp(||x(τ −TD||)))]

(5.21)

whereᾱp(·) satisfies (5.3) andαp(·), αqp(·),and bqp satisfy Assumptions 1 and 2.

Proof. Similar to Theorem 7: When bounding equations (5.15) and (5.17), we use

ᾱp(||x(τ −TD)||) as an upper bound for||x(t)|| over [τ −TD,τ) instead of (5.2),

(5.7).

Corollary 5. LetΣuas be the set of piecewise constant switching signalsσ : R+ →
P such that (5.1) is UAS. LetΣuas

TD
be the set of piecewise constant switching signals

such that, for each switching instantτ, x(τ −TD) ∈ S uas(σ(τ),σ(τ−),τ), with

S uas(q, p,τ) := {x∈ D : Vp(τ −TD,x)−Vq(τ −TD,x) ≥ γuas(q, p,τ)}
(5.22)

the set of states for which switching from mode p to mode q is allowed for a time-
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varying delay buffer

γuas(q, p,τ) =
∫ τ

τ−TD
αp(βp(||x(τ −TD)||, t − (τ −TD)))dt

+max(0,bqp)
∫ τ

τ−TD
αqp(βp(||x(τ −TD)||, t − (τ −TD)))dt

(5.23)

whereαp(·), αqp(·), and bqp satisfy Assumptions 1 and 2, andβp(·) is the bounding

function (5.4) for mode p.

Proof. Similar to Theorem 7: When bounding equations (5.15) and (5.17), we use

βp(||x(τ −TD)||, t−(τ −TD)) as an upper bound for||x(t)|| over[τ −TD,τ) instead

of (5.2), (5.7).

As in the linear case, the delay bufferγuas is time dependent, and an analogous

wait-time condition applies here.

Corollary 6. For σ ∈ Σuas
TD

, as t→ ∞, the time-varying partitionS uas(q, p,τ) →
S̄ uas(q, p,τ) for all p,q∈ P, where

S̄ uas(q, p,τ) := {x∈ R
n : Vp(x)−Vq(x) > 0} (5.24)

is a delay free PLF based partitioning of the state space which guarantees UAS of

(5.1).

Proof. We fix a “next mode”q and study the evolution ofS uas(q,σ(t), t) under a

switching signalσ ∈ Σuas
TD

in order to determine how these regions evolve over time.

We define the functionalγuas(q, ·, ·) : P ×R+ → R, evolving under a switching

signalσ ∈ Σuas
TD

, as

γuas(q,σ(t), t) =
∫ t
t−TD

ασ(t)(βσ(t)(||x(t −TD)||, r − (t −TD)))dr

+max(0,bqσ(t))
∫ t
t−TD

αqσ(t)(βσ(t)(||x(t −TD)||, r − (t −TD)))dr
(5.25)

For allσ ∈ Σuas
TD

, (5.1) is UAS, and by Lemma 2, there exists a classK L function

β satisfying (5.4). Hence||x(t)|| → 0 ast → ∞, implying that the integral terms in

(5.25) asymptotically approach 0 as well. Thus the delay bufferγuas(q,σ(t), t)→ 0

as t → ∞ for all σ ∈ Σuas
TD

. Letting the final active mode ofσ be p, the result

follows.
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The results in this section can be applied to any nonlinear switched system,

including a single switched nonlinear UAV. Furthermore, although not scalable

to large systems, these results could also be combined with the Lyapunov based

proofs of stability of fleets of nonlinear systems found in [14], extending their

applicability to smaller fleets of UAVs under distributed control.

5.3 Design and implementation issues

In general it will not be possible to obtain analytical expressions for the necessary

bounding functionsβp. While Lyapunov theory guarantees the existence of such a

function, it is the solution of an ordinary differential equation (ODE) (cf.Theorem

4.9, Lemma 4.4 and Appendix C.5, [41]), which may not have an analytical solu-

tion. Fortunately, the ODE is scalar, so numerical and curve fitting methods can be

used to obtain conservative analytic bounds on the trueβp functions.

5.4 Examples

5.4.1 Autonomous nonlinear switched system with UAS mode
dynamics

Consider a system (5.1) withF = { f1(x), f2(x)}, x = [x1,x2]
T ∈ R

2 and fi

f1(x) =

[
−x1 +2x3

2−2x4
2

−x1−x2 +x1x2

]
(5.26)

f2(x) =

[
−x2−x3

1

x1−2x3
2

]
(5.27)

restricted toD := {x∈ R
2 : ||x||22 ≤ 1}, with a switching delayTD = .01s.

Table 5.1 presents the Lyapunov functions, constants, classK functions and

classK L functions needed to apply Corollary 5. The functionsαi(·), α ji (·) and

constantsb ji are all obtained by exploiting the equivalence of norms overR
n and

the fact that|x|r < |x|s for all r > s and|x| < 1. The functionsβi(·, ·) are solved as

in Theorem 4.9, Lemma 4.4 and Appendix C.5 of [41]. The resulting scalar ODE

is second order, and has an analytic solution.
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i Vi(x) αi(y) α ji (y) b ji βi(r,s)

1 x2
1 +x4

2 2y2 2.5y2 1
(

4r2

r2s+2

) 1
4

2 1
2(x2

1 +x2
2) 2y2 3y2 1 2

(
2r2

r2s+2

) 1
2

Table 5.1: Functions and constants necessary to apply Corollary 5 to Example
1

Figure 5.1 shows snapshots ofS uas(2,1, t) (white) evolving over time under

the switching signalσ(t)≡ 1. Initially, S uas(2,1, t) is not very large (recal that the

domain is the unit circle), but as the system evolves, the buffer delayγuas(2,1, t)

decreases, and its effect becomes less important. As can be seen, the set S (2,1, t)

converges to the delay-free PLF based partitioning (5.24). A sample trajectory in

the phase space is presented in Figure 5.2, with subsets of the trajectory evolving

according to ˙x = f1(x) plotted in black (dark), and those evolving according to

ẋ = f2(x) plotted in cyan (light). A switch occurs as soon as the trajectory enters

a region of the state space in which switching is allowed. We note that the system

initially spends a relatively long time in mode 2 becauseS (2,1, t) is relatively

small (Figure 5.1). In the last snapshot of Figure 5.1,S (2,1, t) occupies approx-

imately half of the unit circle. Hence, as the effect of the time delay lessens asγ
decreases, switching between modes is enabled and occurs more frequently.

5.4.2 Linear switched system with time-varying UAS mode dynamics

Consider a system (5.1) withF = { f1(t,x), f2(t,x)},

fi(x) =

[
−x1−gi(t)x2

x1−x2

]
, (5.28)

with x = [x1,x2]
T ∈ R

2 andgi : R+ → R

g1(t) = 3
1+t (5.29)

g2(t) = et

(1+et) (5.30)
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Figure 5.1: Snapshots of the partitionS uas(2,1, t) (white) evolving over time
under the switching signalσ(t) ≡ 1. Notice that the black (no-switch
partition) shrinks, such thatS uas(2,1, t) approaches the delay free par-
titioning S̄ uas(2,1, t) (5.24).

−0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x
1

x 2

Figure 5.2: Trajectory in the phase space generated by a two mode system
(5.26), (5.27). Switching obeys a signalσ ∈ Σuas

TD
, with subsets of the

trajectory evolving according to ˙x = f1(x) plotted in black (dark), and
those evolving according to ˙x = f2(x) plotted in cyan (light).
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i ki ci Vi(x) αi(y) α ji (y) b ji βi(r,s)

1 3 3 x2
1 +(1+g1(t))x2

2 7y2 2y2 1 2e−
3
8sr

2 1 0 x2
1 +(1+g2(t))x2

2 3y2 5y2 −1
√

2e−
3
4sr

Table 5.2: Functions and constants necessary to apply Corollary 5 to Example
2

with a switching delayTD = .01s.

By noting that each continuously differentiablegi(t) satisfies

0≤ gi(t) ≤ ki

−ci ≤ ġ(t) ≤ g(t)
(5.31)

for someki ,ci ≥ 0, it is possible to construct the necessary Lyapunov functions,

classK functions, and classK L functions. These functions and constants were

solved for in a similar manner as those in the previous example, except in this case,

equivalence of norms was not necessary as all terms were second order. These

functions, along with the necessary constantski ,ci , are shown in Table 5.2. A

sample trajectory in the phase space is depicted in Figure 5.2, with subsets of the

trajectory evolving according to ˙x = f1(x) plotted in black (dark), and those evolv-

ing according to ˙x = f2(x) plotted in cyan (light), where a switch occurs as soon as

the trajectory enters a region of the state space in which switching is allowed. We

see that in this example, as opposed to Example 5.4.1, switching occurs much less

frequently. This highlights the effect of both the system dynamics and Lyapunov

function structures on delay buffer.
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Figure 5.3: Trajectory in the phase space generated by Example 5.4.2.
Switching obeys a signalσ ∈ Σuas

TD
, with subsets of the trajectory evolv-

ing according to ˙x = f1(x) plotted in black (dark), and those evolving
according to ˙x = f2(x) plotted in cyan (light).
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Chapter 6

Safety in human-automation

systems under shared control

The partitions of the state space developed in Chapters 4 and 5 can be usedto

inform the design of a user interface indicating to the user which modes (if any)

can safely be switched to given the current delayed measurement. Of course, here,

“safety” is interpreted in the sense of theoretical stability, as given in Definitions

4 and 1 and Lemma 2. When performance and safety requirements go beyond

stability (e.g. aerodynamic envelope protection in A/C) additional analysis and

design methods are required.

Computational techniques for verification can create new levels of confidence

and reliability in safety-critical systems such as as aircraft autopilots, by predict-

ing where failures might occur, and how human operators can avoid them[7, 15,

39, 65]. Verification of human-automation systems introduces further complexity

because it involves not only the automation, but also the way in which the userin-

teracts with the automation [6]. The user-interface both provides informationto the

user about the underlying automation, and allows the user to issue input commands

to the system. Formal methods have been used to verify user-interfaces modeled as

discrete event systems [11, 15, 19, 34, 39]. Estimation has been used to anticipate

the human’s actions [45] through particle filters. We consider continuous systems

that have inputs from both the human and the automation, and extend reachability

analysis and controller synthesis [45, 54, 65] to human-automation systems under
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continuous shared control. Since we cannot guarantee what actions thehuman will

take, we focus on guarantees that the correct information has been provided to the

human, in order to achieve a desired task. Whilehowthis information is displayed

is vitally important to effective human-automation interaction, we restrict ourselves

to the portion of this problem we can quantify:what information is displayed.

We begin with a description of the continuous system under shared controlto

be studied in this chapter. We then introduce reachability techniques applied to ver-

ification and develop an algorithm for generating provably correct user-interfaces.

The chapter concludes with an example: a civil jet aircraft operating in “manual

mode.”

6.1 Modeling

Consider a continuous system under shared control

ẋ = f (x,uc,uh) (6.1)

with statesx∈X ⊆R
n, automation-controlled continuous inputuc ∈Uc = [uc,uc],

human-controlled continuous inputuh ∈ Uh = [uh,uh], with uh < 0,uh > 0. We as-

sume that the automation inputuc = uc(x) is strictly a function of the state, whereas

the human inputuh = uh(r) is a function of a human-controlled reference input

r ∈ R = [rmin, rmax]. Consider the following motivating example.

Example 2. Consider the double integrator system

ẋ = Ax+B(uc(x)+uh(r))

A =

[
0 1

0 0

]
, B =

[
0 1

]T

uc(x) = −3·sign(x2), uh(r) = r

(6.2)

with state x∈ X ⊆ R
2, automatic control input uc ∈ [−3,3], human control input

uh ∈ [−3,3] and constraint setC = [−5,5]× [−5,5].

Consider trajectories starting fromx(0) = [4,3]T ∈ C under different human

inputs (Figure 6.1). 1) The human inputr = −2
3uc(x) drives the state out of the
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Figure 6.1: Trajectories for Example 2 starting fromx(0) = [4,3]T for which:
1) (⋄) the user acts as a disturbance 2) (◦) the user is “hands-off” and 3)
(△) the user acts as a control input. The constraint setC is drawn with
a solid red line.

constraint set (⋄), effectively acting as a disturbance, leading to safety failure. 2)

When the human is “hands off” the controls (r = 0), the resulting trajectory (◦) also

exits the constraint setC . If system safety is to be preserved the humanmustassist

the automation. 3) When the human inputr = uc(x) co-operates with the automa-

tion. The resulting trajectory (△) remains within the constraint setC , preserving

system safety.

6.2 Invariance under shared control

In order to accomodate a system under shared continuous control, we take into ac-

count how interactions between the human input and the automation input affect

system safety. Our approach is to broadly classify the human’s input as:1) a distur-

bance, driving the system to unsafety, 2) neutral (“hands-off”), implying uh(r) = 0,

or 3) a controlled input, assisting the automation in preserving safety. Consider the

following three types of invariant sets.

Definition 5. For a setWI ⊆ X to beinvariantwith respect to a constraint setC ,
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all trajectories x(t) which start inWI must remain withinC for all t ≥ 0 for all

continuous human input uh ∈ Uh.

WI = {x(0) ∈ C | ∀uh ∈ Uh ∃uc ∈ Uc such that x(t) ∈ C ∀t ≥ 0} (6.3)

Definition 6. For a setWUI ⊆ X to beuser-invariantwith respect to a constraint

setC , all trajectories x(t) which start inWUI must remain withinC for all t ≥ 0

for all uh ∈ UUI ⊆ Uh.

WUI = {x(0) ∈ C | ∀uh ∈ UUI ∃uc ∈ Uc such that x(t) ∈ C ∀t ≥ 0} (6.4)

Definition 7. For a setWUAI ⊆ X to beuser-assisted-invariantwith respect to a

constraint setC , there must exist a control input pair(uh,uc) ∈ UUAI ×Uc such

that all trajectories x(t) which start inWUI will remain withinC for all t ≥ 0. Here,

UUAI ⊆ Uh.

WUAI = {x(0) ∈ C | ∃(uh,uc) ∈ UUAI ×Uc such that x(t) ∈ C ∀t ≥ 0} (6.5)

Invariant sets are computed by effectively treating the human input as a dis-

turbance input. Often, this very conservative assumption leads toWI = { /0}, and

in many systems, treating the operator as a disturbance is not realistic or neces-

sary. By bounding the control authority given to the user when they are acting as a

disturbance, a less conservative and possibly more useful result canbe obtained.

User-invariant sets are effectively computed by ignoring the human input(as-

suminguh = 0), hence some human inputs (outside the allowable range) may cause

the state to exit the constraint set. The guarantee of safety is weaker than for in-

variant sets.

A user-assisted-invariant set represents the portion of the state spacein which

it is possible for the human to apply a prescribed input which maintains system

safety.

The important distinction between user-invariant and user-assisted-invariant

sets is that there are portions of user-assisted-invariant sets in which thehuman

mustapply an input to preserve system safety, as the automation is unable to pre-

vent failure on its own. By contrast, in a user-invariant set, the humanmayapply
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an input to assist the automation to keep the system safe, but does not haveto. In

user-invariant sets, bounds on the human input can be interpreted as a recommen-

dation – remaining within these bounds guarantees safety, but exceeding them will

not cause failure. In user-assisted-invariant sets, the constraints are much stricter –

an input must be applied to preserve system safety, and failing to do so will even-

tually lead to a violation of the safety constraints. The relationship between these

sets will be described in Section 6.3.

6.2.1 Using invariant sets to create a user-interface

The algorithm in [54] for user-interface design for supervisory hybrid systems to

preserve system safety involves three steps: 1) separation of the hybrid system

into subsystems which contain no human-initiated discrete inputs, 2) calculation

of the reachable set (to be defined formally in the next section) for each subsystem,

and 3) abstraction to a discrete event system based on the reachability result. The

reachability result partitions the state-space into intersections of “safe” or“unsafe”

regions in each subsystem.Our aim is to abstract (6.1) to a discrete event sys-

tem that conveys the safety information of multiple invariant, user-invariant and

user-assisted-invariant sets,Wi , i ∈ {1, ...,n}, to the user. Having this information

allows the user to determine if the current state is in an invariant, user-invariant or

user-assisted-invariant subset of the state space, and consequently, whether or not

there are safety restrictions on the human input.To accomplish this, 1) compute

the invariant, user-invariant and user-assisted-invariant sets of (6.1) with respect

to the constraint setC , and 2) abstract the computed invariant, user-invariant and

user-assisted-invariant sets to a DES. This DES conveys the safety information

contained in these sets to the user.

6.3 Calculating reachable sets

Computing the reachable set involves representing all of the states which have

a path to a target set. As in [64], for ˙x = f (x,u,d), with control inputu ∈ U ,

disturbance inputd ∈D , and constraint setC , the “target” is encoded implicitly as

a level set functionW 0 = C c = {x∈X |J0(x) < 0}, J0 : X →R. The boundary of

the target set is propagated backwards in time according to the system dynamics.
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Figure 6.2: The safe, marginally safe and recoverably safe setsW−1, W0 and
W1 (Example 2), computed by treating the user as a disturbance, “hands
off” and as a controlled input, respectively.

Finding the backwards reachable setW (t) requires solving the terminal value time-

dependent modified Hamilton-Jacobi partial differential equation

0 = ∂J(x,t)
∂ t +min

[
0,H

(
x, ∂J(x,t)

∂x

)]

H
(

x, ∂J(x,t)
∂x

)
= max

u∈U
min
d∈D

∂J(x,t)
∂x

T
f (x,u,d)

(6.6)

with J(x,0)= J0(x) fort = 0 such that the invariant set isW (t)= {x∈X | J(x, t)≥ 0}.
Although the user typically acts to preserve system safety, it is extremely dif-

ficult and often non-generalizable to explicitly model a user’s control actions. In-

stead, we compute an arbitrary number of reachable sets that encompass the full

range of possible user behaviors. Define the setUi ⊆ Uh as a reduced set of inputs

Ui = αiUh,αi ∈ [0,1], i ∈ {−N, ...,0, ...M} (6.7)

whereN andM are the arbitrarily chosen number of safe sets and recoverably safe

sets, respectively.
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6.3.1 Safe sets

Let i = −N, ...,−1, with N the number ofsafe setsWi to be calculated by solving

(6.6) with the Hamiltonian

Hi

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

min
uh∈Ui

∂J(x,t)
∂x

T
f (x,uc,uh) (6.8)

andUi = αiUh, αi ∈ (0,1] αi+1 < αi such thatUi+1 ⊂ Ui . Note that the following

property holds [16]:

W−N ⊂ W−N+1 ⊂ . . . ⊂ W−1 (6.9)

The setsWi , i ∈ {−N, ...,−1} are “safe” because they represent portions of the

state-space in which the user can apply any inputuh ∈ Ui without violating the

constraints for safety. The invariance preserving control law isnot enforced along

the boundaries of the sets, allowing the user to transition between sets by choosing

inputsuh /∈ Ui .

Example 2: The safe setW−1, calculated with

H−1

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

min
uh∈U−1

∂J(x,t)
∂x

T
f (x,uc,uh)

= ∂J(x,t)
∂x1

x2 + | ∂J(x,t)
∂x2

|
(6.10)

andU−1 = 2
3Uh is shown in Figure 6.2. As expected, the initial conditionx(0) =

[4,3]T , lies outside ofW−1.

6.3.2 Marginally safe sets

Let i = 0, andU0 = 0 to calculate themarginally safe setW0 by solving (6.6) with

Hamiltonian

H0

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

∂J(x,t)
∂x

T
f (x,uc,0) (6.11)

The setW0 is “marginally safe” because it represents the portion of the state-space

in which the automation is capable of maintaining system safety without user in-

terference or assistance. As long as the user remains neutral, or “hands-off” the

controls, safety is guaranteed.
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Example 2: W0 (shown in Figure 6.2) is calculated with

H0

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

∂J(x,t)
∂x

T
f (x,uc,0)

= ∂J(x,t)
∂x1

x2 +3| ∂J(x,t)
∂x2

|
(6.12)

As expected,x(0) = [4,3]T /∈ W0.

Lemma 3. Safe sets and marginally safe sets are user-invariant.

Proof. By construction: ForWi , i ∈{−N, ...,−1} computed withuh∈Ui ⊆Uh, for

all x(0)∈Wi , x(t)∈C for all t ≥0 as long asuh∈Ui . ThusWi , i ∈{−N, ...,−1} are

user-invariant by definition. Similarly, forW0 computed withuh ∈ U0 = 0⊂ Uh,

for all x(0) ∈ Wi , x(t) ∈ C for all t ≥ 0 as long asuh ∈ U0. ThusW0 is user-

invariant.

6.3.3 Recoverably safe sets

Let i = 1, ...,M, with M the number ofrecoverably safe setsWi to be calculated by

solving (6.6) with the Hamiltonian

Hi

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

max
uh∈Ui

∂J(x,t)
∂x

T
f (x,uc,uh) (6.13)

with Ui = αiUh, αi ∈ (0,1] and αi < αi+1 such thatUi ⊂ Ui+1. Note that the

following property holds [16]:

W1 ⊂ W2 ⊂ ... ⊂ WM (6.14)

The setsWi , i ∈ {1, ...,M} are “recoverably safe” because they contain portions of

the state space in which there always exists a control pair(uh,uc) ∈Ui ×Uc which

maintains system safety. As with safe sets, the invariance preserving control law

is not enforced along the boundaries of the sets. The recoverably safe setsprovide

information about what the usermustdo in order to preserve system safety, in case a

disturbance input (external or user-applied) pushes the system into a configuration

that the automation is unable to recover from on its own (i.e. states outside ofW0).

54



Example 2: The recoverably safe setW1 is calculated with

H1

(
x, ∂J(x,t)

∂x

)
= max

uc∈Uc

max
uh∈U1

∂J(x,t)
∂x

T
f (x,uc,uh)

= ∂J(x,t)
∂x1

x2 +6| ∂J(x,t)
∂x2

|
(6.15)

andU1 = Uh. Sincex(0) = [4,3]T ∈W1, with appropriate user assistance, a trajec-

tory starting atx(0) will remain safe.

Lemma 4. Recoverably safe sets are user-assisted-invariant.

Proof. By construction: For Wi , i ∈ {1, ...,M} computed withuh ∈ Ui ⊆ Uh, for

all x(0) ∈ Wi , there exists a control pair(uh,uc) ∈ Ui ×Uc such thatx(t) ∈ C for

all t ≥ 0. ThusWi , i ∈ {1, ...,M} are user-assisted-invariant by definition.

To summarize, we constructedN+M+1 sets to encompass all possible human

input. Combining (6.9) and (6.14),

W−N ⊂ W−N+1 ⊂ ... ⊂ W0 ⊂ W1 ⊂ ... ⊂ WM (6.16)

The setW0 acts as a reference – if the system is in a state outside ofW0, a human

input mustbe applied to prevent failure, as the automation is unable to preserve

safety unassisted. The setWM corresponds to the standard “safe” invariant set

[54]; its complementW M corresponds to the unsafe subset of the state-space. A

controller could be synthesized to ensure that the setWM is never exited and safety

is preserved.

6.4 Abstraction to a DES

Definition 8. Let the index i denote the safety level of the invariant setWi , where

safety level decreases as i increases. Let the safety level of a point x∈ X ⊆ R
n be

given by the smallest i such that x∈ Wi . A region of the state spaceM ⊆ C has a

homogeneous safety leveli if all x ∈ M have the same safety level i.

Definition 9. A DES abstraction of a continuous system under shared control (6.1)

is consideredsafety informativeif 1) each mode corresponds to a region of the
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state space which has homogeneous safety level and 2) the DES conveyswhether

the system is in a user-invariant or user-assisted-invariant subset ofthe state space.

6.4.1 Generation of modes

Let i = −N, . . . ,0, . . . ,M, whereN is the number of safe sets, andM is the num-

ber of recoverably safe sets. Define a map from the continuous state-space to the

discrete state-space, based on a partition that dividesX into N + M + 2 disjoint

regionsqi as follows:

1. W−N → q−N

2. Wi ∩W i−1 → qi , for i = −N+1, ...,0, ...,M,

3. W M → qunsa f e

Lemma 5. Modes defined by the above mapping represent cells of the state-space

with homogeneous safety level.

Proof. By construction:For W−N → q−N, the cell defined byW−N is of homo-

geneous safety level−N. For modesWi ∩W i−1 → qi , i ∈ {−N +1, ...,0, ...,M},

recall that by (6.16),Wi−1 ⊂Wi . Therefore the cellsWi ∩W i−1 are by definition of

homogeneous safety leveli. Thus the modesqi , i ∈ {−N, . . . ,0, . . . ,M} correspond

to cells of the state-space that have homogeneous safety level.

Example 2: The cells in Figure 6.2 map to modesq−1,q0,q1 andqunsa f e, as

shown in Figure 6.4.

6.4.2 Transition function

Define the set of eventsΣ = {σup,σdown}, corresponding to an increase or decrease

in safety level, respectively. These events are state-based transitions that occur

when the state crosses into a neighboring cell:

σup : x(t−) ∈ Wi ∩W i−1 → x(t+) ∈ Wi−1

σdown : x(t−) ∈ Wi−1∩W i → x(t+) ∈ W i−1∩Wi
(6.17)
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An important consequence of (6.16) for this mapping is that transitions can only

occur between neighboring modes. Hence the transition functionR is defined as

R(qi ,σup) = qi−1, i ∈ {−N+1, ...,0, ...,M}
R(qi ,σdown) = qi+1, i ∈ {−N, ...,0, ...,M−1}

R(qM,σdown) = qunsa f e

(6.18)

Note that in general,σup may not exist.

6.4.3 Construction of the DES

The discrete event systemG = (Q,Σ,R) is constructed as illustrated in Figure 6.3.

Since the designer decides how many modes to generate,G is of minimal mode

cardinality. Details of the abstraction (and proof of its determinism) are presented

in [54].

Lemma 6. The discrete event system G= (Q,Σ,R) as defined in Figure 6.3 is

safety informative.

Proof. The first condition is satisfied by Lemma 5. The second condition is satis-

fied by construction: modesqi , i ∈ {−N, ...,0} correspond to user-invariant subsets

of the state-space by Lemma 3, and modesqi , i ∈ {1, ...,M} correspond to user-

assisted-invariant subsets of the state-space by Lemma 4. The transitionR(q0,σdown)=

q1 from (6.18) corresponds to a transition from a user-invariant to a user-assisted-

invariant subset of the state-space.

The main advantage is that this abstraction provides the user with a warn-

ing that their actions may lead to unsafety. When in a user-invariant mode (i.e.

qi , i ∈ {−N, ...,0}), the user is informed of safety restrictions on their input, but

also free to violate these restrictions if they choose to. Is the user input violates

safety restrictions, the system simply transitions to a user-assisted-invariant mode

(i.e. qi , i ∈ {1, ...,M}), indicating what input the usermustapply in order to main-

tain system safety. Essentially, the user-assisted-invariant modes act asa buffer,

allowing the user to “recover” to a higher safety level before the system enters the

unsafe region of the state-space. Having multiple user-assistant-invariant modes

provides more opportunities for correction. As the mode indexi increases, so does
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qunsa f eq−N q−N+1

σdownσdown

σup σup

σdown

σup

σdown

σup

q0 qM

Figure 6.3: DES G = (Q,Σ,R), an abstraction of (6.1), constructed using
(6.16) and reachability calculated with Hamiltonians (6.8), (6.11) and
(6.13). The dashed transitions indicate a repeated pattern of transitions
for a generic system withN+M +1 modes, eventually passing through
q0.

qunsa f eq0q−1 q1

σup σup σup

σdown σdown σdown

Figure 6.4: DES G = (Q,Σ,R) for Example 2. Note thatq−1 represents a
region in the continuous state-space that is safe,q0 represents a region
that is marginally safe,q1 represents a region that is recoverably safe,
andqunsa f erepresents a region that is unsafe.

the necessity for control action - a designer may choose to have increasing levels

of alerts corresponding to increasing level of unsafety.

For Example 2, this algorithm results in the DES in Figure 6.4. Inq−1, the

user is free to apply any input|r| ≤ 2 without risking transitioning to a lower safety

level. If the user violates these constraints, the system may transition intoq0. In

this case, if the user is “hands-off” the controls (r = 0), the automation will still

be able to maintain system safety. Once again, the user is free to apply inputs that

drive the system to a lower safety level. However, once inq1, the usermustapply

an inputr = 3·sign(x2) to maintain that safety.
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6.5 Example: aircraft in manual mode

Consider manual control mode of the aircraft longitudinal dynamics introduced

in [48], in which the flight crew sets the reference flight path angle, while the

automation performs low level control tasks. Using the short period approximation,

the statex= [α , θ̇ ,γ] consists of angle of attackα , pitch rateθ̇ , and flight path angle

γ [49]. The reference inputr ∈ R consists of the reference flight path angle forγ.

Elevator deflectionδe is used to implement a static full-state feedback controller,

yielding the closed loop dynamics [48]:

fMAN (x, r) = Ax+B(uc(x)+uh(r))

= Aclx+Bclr
(6.19)

with uc(x) = −Kx, uh(r) = Nr r and

Acl =




−0.6486 0.9376 −0.0963

−2.6226 −3.0477 −3.0803

0.6486 0.0624 0.0963




Bcl = −2.3
[
−0.0418 −1.3391 0.0418

]T

(6.20)

whereK is a state feedback matrix such thatAcl has eigenvalues at−1.2,−1.2±
0.12j, andNr = −2.3.

State constraints (due to the flight envelope) and control constraints (dueto

feedback under saturation) define

J0(x) = minx{Jstate
0 (x),Jsat

0 (x)}, with

Jstate
0 (x) = minx{x−xmin,xmax−x}
Jsat

0 (x) = minx{umax−maxr∈R δe(x, r),

minr∈R δe(x, r)−umax}

(6.21)

with state boundsxmin ≤ x≤ xmax, xmin = [−11.5◦,−15◦,−13.3◦], xmax = −xmin,

umax = 50◦, andr ∈ R = [−13.3◦,13.3◦].

ChoosingN = M = 1, invariant setsW−1,W0 andW1 are calculated as shown in

Figure 6.5 (dark green solid, light yellow transparent, and red mesh, respectively).

Safe setW−1 is computed by bounding the pilot’s input to 25% ofR, a reasonable
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Figure 6.5: The solid green (dark), transparent yellow (light) and red mesh
sets represent, respectively, safe setW−1, marginally safe setW0, and
recoverably safe setW1. W−1 is user-invariant (the user can apply any
inputuh ∈U−1 without affecting system safety).W0, although also user-
invariant, is computed assuminguh(r) = 0 (the automation can preserve
safety without interference or assistance from the user).W1 is user-
assisted-invariant – for states within this set but not contained inW0, the
usermustapply an input to preserve system safety.

estimate of pilot behavior under normal operating conditions, withα−1 = .25|N|rmax
umax

,

U−1 = α−1Uh, and Hamiltonian as defined in (6.8). Marginally safe setW0 is

calculated as in (6.11). Recoverably safe setW1 is calculated withα1 = |N|(rmax)
umax

=
(2.3)(13.3◦)

50◦ , andU1 = α1Uh – we assume the pilot has full control authority, as per

(6.13).

The state space is partitioned into four disjoint regions:W−1 → q−1, W0 ∩
W −1 → q0, W1∩W 0 → q1, andW 1 → qunsa f e. The transition functionRand DES

G are shown in Figure 6.4 (the same DES as in Example 2, although the eventsσup

andσdown correspond to state-based transitions defined in Figure 6.5).

The DES can be used as a user-interface, whose main benefit is that the flight

crew knows at all times 1) what inputs can be applied without affecting system

safety, 2) what inputs can be applied that reduce system system safety without

causing failure and 3) what inputs must be applied to preserve system safety.
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Chapter 7

Conclusions

7.1 Summary

Unmanned aerial vehicles, both as individiual aircraft and as fleets, have a wide

range of applications – beyond traditional military uses, they can be used for such

diverse tasks as surveillance and reconnaissance, search and rescue, and scientific

data collection. These versatile aircraft remove highly trained pilots and operators

from potentially dangerous situations, and allow for extended operation periods.

However, like most aircraft, UAVs are fundamentally hybrid systems, whichwhen

combined with remote operation, introduces new challenges to their design and

analysis.

The work presented in this thesis contributes towards extending and combining

hybrid and distributed systems theory, such that the resulting systems are scalable

and robust to switching delays. For fleets of identical switched linear systems un-

der distribtued control, I showed how to prove GUAS under arbitrary switching

in a scalable and computationally efficient manner. For systems not shown to be

stable under arbitrary switching, I introduced a delay buffer to traditionalstate con-

straint based switching schemes such that stability is preserved desptied a bounded

switching delay. This has applications to a remote supervisory controller triggering

mode switches over a communication channel that introduces delays. Theseresults

generalize to linear switched systems, as well as to certain classes of nonlinear

switched systems. In all cases, the delay buffer and its effect on systemstability
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was computed by bounding the derivative of each mode’s Lyapunov function over

the time delay period, essentially examining a worst case scenario. However, I

also showed that for UAS systems, the delay buffer approaches zero,establishing a

wait-time condition, since the effect of the time delay on state based switching be-

comes negligible by waiting long enough. With wireless communication becoming

more and more reliable, and unmanned vehicles becoming more complex and au-

tonomous, our theory provides a step forward in allowing the benefits of switched

systems to be safely incorporated.

I conclude with results in interface design for systems under shared continuous

control based on formal verification techniques, motivated by applicationsto pilot-

automation interaction. I developed an algorithm for generating a provably correct

user interface that accomodates all possible user intent. In doing so, I donot limit

the user’s actions, but rather provide the information necessary for them to ascer-

tain the effects of their actions on system safety. I conclude with an example based

on a model of an actual incident in which faulty pilot-automation interaction led to

catastrophic failure of a civil jet aircraft.

7.2 Future work

Avenues for future work include, but are by no means limited to, extending these

results to input to state stability of distributed hybrid systems, using our results to

extend optimal control of switched linear systems to be robust to a switching delay,

as well as dealing with quantized and corrupted state measurements.

In Chapter 3, a key restriction is that all subsystems switch modes simulta-

neously. I aim to address this, as in real-world applications this may prove to be

an unrealistic assumption. A first step in this direction would be to show that for

systems with slower dynamics, if there is a relatively short period of heterogeneity

amongst the vehicles during switching, then this period can be neglected without

significant consequence to system stability or performance.

In Chapters 4 and 5, I assume that all modes are stable. It is important to

extend these results to systems in which modes are unstable, such that stabiliz-

ing switching schemes robust to switching delays can be developed. Many high

performance systems (e.g. fighter planes) require switching to unstable modes to
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achieve necessary behavior. Furthermore, the work presented in these two chapters

is certainly conservative, as the bounds used in obtaining the results are not tight,

and improvements in this area would certainly add to their usefulness. Finally, the

investigation of heuristics for choosing the various Lyapunov functions such that

the safe switching regions are maximized would prove useful as well.

Chapter 6 limits analysis to continuous time systems. Although an informal

merging of these results with hybrid system verification is presented in [48],a

complete theory of user-interface design will necessitate a formal combination of

the two results into general definitions, theorems and algorithms. How the con-

cepts of safe, marginally safe and recoverably safe subsets generalize to a hybrid

space needs to be investigated. Furthermore, it is important to note that only dis-

crete information is presented to the user as of yet. The inclusion of continuous

time information, such as time remaining in the current mode given the present

state/input configuration, could prove beneficial.

Finally, our approach of exploiting the block upper-triangular structure of many

distributed systems under cooperative control agrees well with recent techniques

used to reduce the complexity of reachability computations [40]. If our results can

be combined with these recent advances, the result will be large distributedsystems

that are provably safe, despite bounded control authority.
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