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Abstract

Unmanned aerial vehicles are becoming more and more useful tools fonlyot

the military, but law enforcement, search and rescue and scientific dateticoile

With the advent of inexpensive and reliable wireless communication, remete op

ators are now able to control fleets of UAVs cooperating towards thenguisi-

ment of their tasks. As the complexity and size of these fleets increase, utstkrib

control methods are needed — large fleet sizes will lead to intractable lcssdra

problems. Furthermore, UAVS, like most aircraft, are inherently hybrgtesys,

combining both discrete and continuous dynamics. This thesis attempts to combine

hybrid and distributed control theories in a way useful for the operatidh's,

while taking communication delays inherent to a remote operator into account.
Specifically, we consider the stability of block upper-triangular switcheétfine

systems with switching delay, when switching between stable modes. We show

that the problem of proving globally uniformly asymptotic stability (GUAS) of a

block upper-triangular switched linear system can be reduced to pr&umgS

for each of its block diagonal subsystems. This allows for a scalableiadéd

computational test for GUAS under arbitrary switching whose complexitgaiép

linearly on the number of block diagonal elements of the system. In cases for

which the system is not GUAS under arbitrary switching, we partition the state

space into regions in which switching will preserve GUAS despite a delayeestw

the state measurements and switching time. This is accomplished by adding a

delay buffer to standard Piecewise Lyapunov based partitions. Addlipmnee

show that the effect of the delay buffer on the standard Piecewisaubhgabased

partitions asymptotically approaches zero. Although we tailor these resultsto b

upper-triangular switched linear systems, they are applicable to any sa/lichar



system with switching delay. These results are then extended to nonlinéaresiv
systems. We apply our results to the control of a formation of vehicles under
supervisory discrete control, and to switched systems under remote lcono
then finish by addressing the issue of interface design for continustessy under
shared control, motivated by applications to pilot-automation interactions.
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Chapter 1

Introduction

1.1 Background and motivation

With the advent of inexpensive and reliable wireless communication, cFsear
remote and cooperative control of unmanned aerial vehicles (UAVs3rbe an
area of focus in the United States during the late 1990s and early 20003 it3e
versatile vehicles have many applications beyond traditional military usesdinclu
ing police surveillance and reconnaissance, search and rescusgiantific data
collection [66]. The benefits of using UAVs over traditional manned direnae
tangible — for example, they eliminate the need to place highly trained operators
in harmful situations, and allow for extended periods of operation by siugch
operators on the fly.

Although all of the aforementioned uses can be accomplished by a single UAV
the efficiency and effectiveness of their completion can benefit sulztafrom
cooperation amongst a fleet of UAVs to accomplish the task. For example, in a
search and rescue mission, it is obvious that a fleet of 100 UAVs caer caore
terrain than a single UAV during the same timespan. However, an increase in
vehicle number invariably leads to an increase in system complexity, especially
when cooperation amongst the vehicles is necessary. If this complexityaga
level at which centralized control of the fleet is no longer feasible, therilslited
cooperative control methods are needed. Communication and physisataiots
can also lead to the need for distributed, rather than centralized, corttehes.



Distributed control reduces the complexity of large, centralized problems by
dividing them into several smaller local problems. These techniques allow fo
guarantees of global behavior, despite each vehicle accessing oalynfmrma-
tion — an important and useful property when considering the applicatidlests
of UAVs. As such, distributed control of vehicles has been an area ofimasearch
in recent years. For an excellent survey of recent results in multiesttionation
control, see [53]. Recent research in distributed control has includediwvehi-
cle formation control [14., 22, 25, 68], consensus and swarming B3&¢g, mobile
sensor networks [13, 30, 35], control over uncertain channet2k7 and optimal
control [24, 53], all under topological constraints. These methodssallrae that
the dynamics of each subsystem can be represented by a continutus.sys

However, UAVSs, like most aircraft systems, have several discrete snafdmp-
eration, each with different continuous dynamics, and therefore beétoaglass
of systems known dsybrid systemsHybrid systems, which combine discrete and
continuous dynamics, have become commonplace as cheap microcontfotiers,
damentally discrete devices, have become more or less ubiquitous in thel contro
of physical processes. Common examples of hybrid systems include thatsnos
smart cruise control and aircraft autopilots. Furthermore, in more addagys-
tems, hybrid controllers are often used, as they enable performanaehievable
with strictly continuous controllers. For example, a properly designeddhgon-
troller is capable of having both fast response times and a robustnedseq3itj,

a key property for real world systems. However, combining discretecantinu-
ous dynamics introduces further complexity to the analysis, as the discrege mod
switching pattern may now affect system stability.

Hybrid systems have received considerable attention in the past fewefeca
Many results have been borrowed and extended from nonlinear {fewhhence
are mostly based on Lyapunov theory. In order to prove stability of adhglgstem
under arbitrary switching, a common Lyapunov function approach is[4€s&2].
However, there is as of yet no systematic way of constructing such ddarior a
general hybrid system, if it exists, although there are results for wheanméy of
continuous dynamics satisfy certain Lie-algebraic conditions |2, 47thEtmore,
there exist converse Lyapunov theorems which are able to prove tlah@an
Lyapunov function does not exist for a given system [17, 38]. Ri#gas, if such
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a function cannot be found, the common recourse is to then use techbiages

on multiple Lyapunov functions, as introduced in [9, 38, 46, 57]. Themssd
conceptin these results is to ensure that the value of a piecewise Lydjpmation
constructed from the multiple Lyapunov functions decreases at a giterover

time. Alternatively, as presented in [31], a dwell time approach can be used
which the average dwell time in each mode is bounded from below, and has a
direct effect on the convergence rate of the system. Finally, thereldiemresome
strong results on the parametrization of switched stabilizing controllers]5, 33

In the case of UAVS, all of the issues traditionally associated with hybrid sys
tems are present. However, since these systems are generally remotakgdpe
new challenges emerge. Specifically, a remote operator will have to comténd
communication delays caused by wireless protocols and physical distaltee.
natively, if a fleet of UAVs is autonomous, but is attempting to coordinate mode
switches (a key requirement for provable stability, as will be explained im late
chapters), then the local “operator” will need to take into account sgnration
delays as well.

Although not directly related, there is a rich body of work on delay difiéeg
equations, of which [23] is an excellent example. There has been sdatedre
work on switched systems with delays in their dynamics [10, 26, 42] as well as
delays in detecting autonomous mode switches [37, 69, 70]. However retest
vant to our work is [67], where a delay between state measurements doklisg
time is explicitly accounted for. Thiswitching delay along with delays in the
state feedback, are addressed by providing upper bounds on thdedtate and a
lower bound on the average dwell-time such that asymptotic stability of the closed
loop is guaranteed. We distinguish our method from the approach takzfilin [6
— rather than using a dwell-time argument, we provide state based constoaints f
switching to guarantee asymptotic stability. It will be argued in Chapter 4 thsg the
two approaches are in fact complementary, each proving more usefgpédaific
applications.

It is clear that the benefits of UAVs, both as individual vehicles, andezsdl
under cooperative control, are substantial. These systems are itérgdorid,
and in order to exploit their full potential, this should be taken into accountin th
analysis and design. Merging the theories of hybrid systems and distritéed|

3



will lead to large, scalable systems that incorporate the benefits and flexilfility o
hybrid control. In light of this, this thesis addresses two main problems:

Problem 1. Find a scalable test for stability under arbitrary switching of a fleet of
identical vehicles with hybrid dynamics.

Problem 2. Find a method of synthesizing state constrained switching schemes
that are robust to a switching delay for a fleet of identical vehicles with ibdybr
dynamics.

Of course, in real world applications, safety and performance reqeints are
generally much more restrictive than simply proving stability of a system. In these
cases, formal verification techniques, such as model checking actthisbty, can
be applied in order to ensure that these performance and safety critesitiafied.
When a user is introduced into the loop, this task becomes even more complex.
While verification techniques have been successfully applied to humamatiom
systems modeled as discrete event systems (DIES) [6, 11, 15, 19, f@s81jork
has been done on verification of continuous or hybrid human-automatibensy
[45, 65]. In [54], an invariance-preserving abstraction was fortedldor super-
visory hybrid systems: that is, the human input was limited to discrete inputs. In
the case of UAVs, and aircraft in general, there may also be a shanéidwaus
input to the system. In general, one does not want to limit the input of the human
but rather provide them with the information they need to make informed desision
with respect to safety. Thus, this thesis will also address the followindgrob

Problem 3. How to present the user of a human-automation system under shared
continuous control the information necessary to preserve safety (definthe
sense of reachable sets).

1.2 Contributions

The work presented in this thesis contributes to merging the theories of disttibu
and hybrid systems. In particular, | focus on formations of vehicles ude
tributed control, wherein each vehicle’s dynamics are hybrid . My main ikonatr
tions are, for formations of switched linear vehicles:
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e a scalable, computationally efficient test for stability under arbitrary switch-
ing of block upper-triangular systems.

e a proof that for state constraint based switching, only that subset efdte
space corresponding to the block diagonal subsystems that are nlet stab
under arbitrary switching need to be taken into consideration.

and for general switched systems under remote supervisory control:

e a method of synthesizing state constraints that guarantee stability despite a
switching delay.

e a proof that these state constraints asymptotically approach standand (dela
free) Lyapunov based constraints.

Finally, in the design of user-interfaces for systems under sharedtanyr main
contributions are:

e formal definitions of invariance, user-invariance, and user-assistedi-
ance for shared control systems, and their relationship to computecl#ach
sets.

e a method to abstract the resulting reachable sets to a DES that contains min-
imal information regarding the effect of continuous human input on safety

e an application of these methods to a model of an actual aircraft incidelnt [44

1.3 Outline

This thesis is organized as follows:

Chapter 2 presents requisite mathematical preliminaries for hybrid system sta-
bility and modeling of vehicle formations via graph theory.

Chapter 3 presents definitions of stability for a switched linear system, and
a scalable test for asymptotic stability of block upper-triangular switchedrlinea
systems. The results are illustrated through two examples.

Chapter 4 presents conditions on the state constraints and switching delay for
stability of a switched linear system.



Chapter 5 extends the results of Chapter 4 to switched nonlinear systems with
stable mode dynamics.

Chapter 6 first presents a brief review of reachability analysis for continuous
and hybrid systems. Definitions of different levels of invariance arsgmied,
and methods of computing them using standard reachability tools are dedelope
Finally | present an abstraction method which results gatety-informativelis-
crete user-interface, and apply it to an example motivated by a documéntedta
incident [44].

Chapter 7 offers directions for future work, and conclusions for the work pre-
sented here. Key results are summarized.

The work presented here has been published in or submitted to sevefiex-co
ences and journal publications.

Results from Chapters 3 and 4 are presented in

e N. Matni and M. Qishi, “Stability of block upper-triangular switched linear
systems with switching delay,” Submitted$ystems & Control Letter&eb
2010. (15 pages)

Results from Chapter 5 will be presented in

¢ N. Matni and M. Qishi, “Stability of switched nonlinear systems with bounded
switching delay,” Submitted tlEEE Trans. on Automatic Contra2010.

e M. Oishi, N. Matni and A. Ashoori, “Stability of switched nonlinear systems
with bounded switching delay,” To appeardournal of Nonlinear Systems
and ApplicationsAugust 2010.

Results from Chapter 6 are published in

¢ N. Matni and M. Oishi, “Reachability-based abstraction for an aircrafi{a
ing under shared controlAmerican Control Conference, 2008&0l., no.,
pp.2278-2284, 11-13 June 2008

e N. Matni and M. Oishi, “Reachability analysis for continuous systems under
shared control: Application to user-interface desigatdc. of the IEEE



Conf. on Decision and Control/Chinese Control conference, 20p%929-
5934, 15-18 Dec. 2009. Awardé&kneral Chairs’ Recognition Award for
Interactive Papers



Chapter 2

Mathematical preliminaries

This chapter presents some basic results on the stability of hybrid systeths, an
introduces some key concepts of graph theory. Finally, a model of a fiama

of identical linear vehicles under distributed control is presented, aldtfigseme

key results on the stability of such systems.

2.1 Uniform asymptotic stability of hybrid systems

Due to the interaction between discrete and continuous dynamics in hybfid sys
tems, stability of the system depends not only on the continuous dynamicstof ea
mode, but also on the switching pattern between these modes. It is well known
(cf. Example 2.1, [9]) that switching amongst stable modes can lead to & uns
ble system. Basic introductions to hybrid systems can be found in [8, 6&@Jamn
overview of recent research efforts can be found in [18, 20].

We focus on systems in which the user has control over mode switches, but
the continuous dynamics are fully autonomous. In order to analyze the stability
such a hybrid system, it is convenient to cast it into a switched system frarkew

X= fa(t)(t,X) (21)

wherex € R", 0 : R, — £ C N is a piecewise constant switching signal (we
denote the set of all piecewise constant switching sigaglsand .7 = {f;:
Rix 2 —R" : pe £} is a family of functions indexed by that are piece-



wise continuous i and locally Lipschitz ik onR . x 2, with 2 C R" a domain
containing the origin. We assume the origin to be an equilibrium point for each
fp € Z without loss of generality.

Definition 1. From [46]: A system (2.1) is locallyniformly asymptotically stable
(UAS) if there exist positive constadtand class# . function 8 such that the
solutions of 2.1, for al||x(to)|| < &, satisfty

X < B(Ix(to)[|,t —to), Yt =t (2.2)

Consider the following two well established stability theorems:

Theorem 1. (Common Lyapunov Function). From [46]: If all systemsx =
fo(xt), fp € ., share a common Lyapunov function, then (2.1) is UAS.

Theorem 2. (Multiple Lyapunov Functions). From [S]: Consider a switched
system (2.1). LeE* be the set of all piecewise constant switching sigrals
R, — &2 for which

Va(r*)(x) _Vo(r)(x) >0 (2.3)

for each switching time. Then (2.1) is UAS for alb € >*.

Theorem 1 can be used to prove UAS under arbitrary switching for.(&.4)
common Lyapunov function (CLF) does not exist or cannot be fourdss thay
still be proven for specific classes of switching schemes using Thearem 2

Remark 1. Less conservative versions of Theorem 2 exist (cf. Chaptar 3, 146]
however they result in more complex switching constraints, and are Uéssl $0
our purposes.

In the case of linear switched systems, efficient linear matrix inequality based
computational methods allow for the rapid calculation of Lyapunov functions.

2.2 Introductory graph theory

There are many excellent texts on graph theory, including a recen2ttjxtgnd
those that focus on the Laplacian and its spectral properties [1, 3, 50].
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We describe the information flow between vehicles by defining a directg@thgra
¢, consisting of a set dll nodes?” (a node for each vehicle), and a set of edges
& €V x ¥, where an edge = (vi,V2) € &, with v1,v, € #. The edges define
the direction of information flow between vehicles, with the first elemeng, of
denoted tail), the information source, and the second element, denoteddhead(
the information sink.

The in-degree of a nodd (v), is the number of edges withas its head. We
define the normalized adjacency grapf¥/), a square matrix of siZe¢/’|, as

0 otw @4

A = {1/di(vi) if (vj,vi)e(g’}

A path on¥ is an ordered set of verticdsp, v1, ...,y } such thatvi_1,vi) € &
fori e {1,...,n}. A graph¥ is said to bestrongly connected there exists a path
from every vertex to every vertex.

As in [25], we define the grapbaplacianas

L=1-A (2.5)

and state some key results on its spectral properties, as these play animuobeta
in the stability of a fleet of vehicles flying in formation under distributed control.

Proposition 1. Zero is an eigenvalue of L, and its corresponding eigenvectbr.is

Proposition 2. All eigenvalues of L lie in a disk of radius 1 centeredlat Oj in
the complex plane.

Proposition 3. If ¢ is strongly connected, the zero eigenvalue is simple.

2.3 Distributed control of vehicle formations

This section summarizes key results on formations of identical linear vehiolas fr
[25, 68]. Consider a fleet df identical vehicles, where tH& vehicle’s dynamics
are given by

Xi = A% + Bu (2.6)
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wherex; € R" anduy; € R™. A local full-state feedback controller is assumed to
operate on each vehicle such that the closed loop dynafgjast the individual
vehicles are stable.

It has been shown that the formation dynamics of a fleet of linear vehicles with
dynamics (2.6) can be described oy [25, 68]

X = (IN®Aq+L@BK)X (2.7)

wherely is the N x N identity matrix, ® denotes the Kronecker product,=
XI,x2,....x\]T € R"N, K € R™" s the linear formation feedback controller, iden-
tical for all vehicles, and. € RN*N is the graph Laplacian describing the fixed
communication topology of the formation.

As in [25, 68], we introduce a Schur transformation mablixsuch that_ =
U~LLU is upper triangular, and the diagonal entrie4 afre the eigenvalues tf
Applying the transformatiom =U ® 1, to (2.7) results in a block upper-triangular
system in the transformed coordinages T~ 1x.

z = (IN®Ag+L®BK)z (2.8)

with block diagonal subsystems

5 = (Ad+ABK)z (2.9)
whereA; is an eigenvalue df. This transformation allows for the following results.

Theorem 3. From [25]: A formation feedback controller K stabilizes the forma-
tion dynamics in (2.7) if and only if it simultaneously stabilizes (2.9) for all eigen
valuesA; of the graph Laplacian L describing the communication topology of the
formation.

Corollary 1. From [25]: A formation is stabilizable (in a distributed sense) if and
only if its communication graph is strongly connected.
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Chapter 3

Stability of block
upper-triangular switched linear
systems under arbitrary
switching

We focus on switched linear systems under arbitrary switching. While the exis
tence of a CLF is sufficient to prove stability, for systems of large dimengian (
formations of vehicles under distributed control), standard LMI tools mihylfee

to memory issues. Hence we focus on the same stability problem, but aim to solve
it by analyzing several LMIs of lower dimension rather than one full dircered
problem. We do so by exploiting a transformation which results in the formation
being in block upper triangular form. We demonstrate the usefulness ofethiod

on a 100-vehicle formation under distributed control.

3.1 Problem formulation

Consider a switched linear system

% = MgX (3.1)
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wherex € R", 0: [0,0) — & C N is a piecewise constant switching signal, and
M = {Mp e R™" : pe #}, is afamily of block upper-triangular Hurwitz state
matrices indexed by.

Definition 2. Consider a family of block upper-triangular state matrice :=
{Mp e R™" : pe & C N}, indexed by p, with

AL Xz - XN
0 AZ ... :
Dot XiN-oN
o o0 -. A'r\Jl

and Ag e RN, Wherezlni =n, i€ {1,..,N}, and X; are the non-zero, off-
diagonal elements of pof appropriate dimension. For' := {A, e R™*" : pe

2}, % € R" the corresponding subset of the state vecter®", ando : R, — &
a piecewise constant switching signal,

5 = Ax (3.3)

is the " block diagonal subsystewf the switched linear system (3.1). Further-
more, the | block diagonal subsystem is said to be lower (higher) than the i
block diagonal subsystem if5j i (j < ).

Definition 3. From [46]: a system (3.1) iglobally uniformly asymptotically sta-
ble (GUAS) undefz*, a set of piecewise constant switching signals, if there exist
positive constants ¢ ang such that the solution(k) = ®(t,0)x(0) to (3.1), with
®,(t,0) the state transition matrix of (3.1), satisfies the following two equivalent
conditions:

IX(®)]] < ce™||x(0)]| (3.4)

||Pg(t,0)]| < ce ™ (3.5)

forallt > 0, any initial state x0) andany switching signab(-) € =*

Remark 2. If ¥ = {p}, pe &, (i.e. o(t) = p), Definition 3 is equivalent to
GUAS of a linear system.
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Remark 3. If Z* is the set of all piecewise constant switching signals, then (3.1) is
GUAS under arbitrary switching

For the cooperative control of distributed systems, the block diagobal/su
tems of (3.1) have the same number of states as the individual subsystenss. Th
the main advantage of proving the stability of (3.1) by solely analyzing its block
diagonal subsystems it that it is highly scalable, as its complexity would be linear
in the number of subsystems. This is particularly relevanNftarge enough to be
computationally prohibitive for current LMI solvers.

3.2 Scalable test for stability

We show that (3.1) is GUAS under a set of piecewise constant switchinglskj
if and only if each of its block diagonal subsystems is GUAS uadday exploiting
its block upper-triangular structure. This is an extension of a well-kn@salt in
which a switched linear system (3.1) wit a family of Hurwitz upper-triangular
state matrices is GUAS under arbitrary switching [2, 46, 47, 52]. Although w
focus on systems with static full-state feedback, the results are easily ektero
dynamic controllers with partial state feedback, assuming detectability ane stab
lizability of the system (cf. [25]).

Recall that for a linear system= Ax+ Bu with Hurwitz matrix A, the state
trajectoryx(t) can be exponentially bound, as in 3.4, if the inpig exponentially

decaying, i.e. there exist positive constanjtg satisfying||u(t)|| < ce Ht||u(0)||.
[[Hx]]

[IX]

Additionally, we defing||H|| := m%x for H € R™", x € R", in the usual
X

manner; hencgHx|| < [|H||||]|.

Theorem 4. A switched linear systern (3.1) is GUAS under a set of piecewise con-
stant switching signal&*, if and only if each block diagonal subsystem of (3.1) is
also GUAS undeE*.

Proof. Assume without loss of generality that for the switched linear syster (3.1),

A5 Bp

M, —
P 0 A

(3.6)
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with Al, € R"™" ny+np = n, By € R™*™, andx = [x],xJ]T, with x; € R™, x, €
R,

If : Assume thak; = ALx; andx, = AZx, are GUAS undeE*. From Definition
3, |[%(t)]| < coeH2||x2(0)||, Vo € =* for somec,, o > 0. Treatingx, as an
exponentially decaying input tq,

Xi(t) = BL(t,00x(0)+ J P (t, T)Bo(rxe(T)dT (37)

with ||®L(t,7)|| < ae -0 vo € £, fora, u > 0, as in Definitior 3. Since
Bo(r)l| < QQ%IIBMI = ||Bmax|,

)]l < [[®5,0)|ha(0)]
+ [1Bmad | 51056, )] xo(1)] T (3.8)
ciex(0)]], Vo € 5

IN

for ¢y, p1 > 0, hence (3.1) is GUAS undér.

Only if: Assume (3.1) is GUAS undeéx*. Then by Definition 3, there exist
positive constants, u such that|x(t)|| < ce M. Itis clear that this holds fax(t)
if and only if it holds for all subsets;(t) of x(t). If there do not exist positive
constants;, L, satisfying||xi(t)|| < cie Ht||x(0)|| Vo € Z* for i = {1,2}, then
the required constants u do not exist, which is a contradiction. O

These results can be extended to N-block upper-triangular matricesitvhar
dimension by induction, beginning with the bottom block diagonal subsystem and
working upwards.

Corollary 2. A switched linear systern (3.1) is GUAS under arbitrary switching if
and only if each block diagonal subsystem of (3.1) is also GUAS untéraayy
switching.

To illustrate the benefits of our approach, considerraode,N block system
(3.1), with each subsystem (3.3) of dimensioinalysis of (3.1) as a whole would
involve solvingP + 1 LMIs in RN™Nn _ for JargeN this quickly becomes pro-
hibitively expensive in terms of memory requirements. However, applyingl€o
lary 2, we solveN sets of(P+ 1) LMIs in R™", each easily computed. To quantify
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Figure 3.1: Shown on a log scale are the number of decision variables Matlab
requires to solve an LMI proving GUAS under arbitrary switching for
(1) a two mode distributed system with 100 subsystefmsgnd (2) a
single block diagonal two mode subsystem (

the benefits of our method, we compare the number of decision variablesoMatla
requires to solve an LMI proving GUAS under arbitrary switching forladystem
as opposed to for an individual subsystem. Figure 3.1 shows, on addgy Hue
number of decision variables needed for a two mode distributed system v@ith 10
subsystems, with subsystem dimension ranging from 2 to 10.

The derivation of Theorem 4 and Corollary 2 hinges on three key adgump
(1) a fixed communication topology, (2) all vehicles are identical at all timés an
(3) all vehicles have linear dynamics. These assumptions are requireestrye
the properties of Kronecker multiplcation so that the system can be traresfior
into block upper-triangular form. If the communication topology changes, ttie
graph Laplacian will as well, requiring a new coordinate transformation pdyap
Theorem 4. However, if the communication topology is fairly reliable, this Ehou
not cause instability — so long as topology changes do not occur too quikly
dwell time argument [31] can be used to show that this will not destabilize the
system. Once the new communication framework has been establishedsults re
can once again be applied to prove GUAS under arbitrary switching.
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The case of addressing fleets of either non-identical or nonlineamsysse
much more difficult. The properties of the Kronecker product breakdawd the
system can no longer be transformed into block upper-triangular formguajth
preliminary results based on Lyapunov [14] and optimal contrcl [22] ihelo
exist. We assume the existence of a supervisory discrete controller trdtrates
mode switches — we believe this to be reasonable since the communication cost of
transmitting a mode switch is very low compared to transimitting continuous state
information. Furthermore, UAV systems have inner control loops that, ¢rou
dynamic extension and feedback linearization, allow for a vehicle’s dyrsataic
be reasonably approximated by a double integrator [59]. Hence oultsese
applicable to outer control loop design for actual fleets of UAVs.

Finally, we note that although the examples in the following section have been
tailored to UAV applications, the results are much more general. Thearerd 4 an
Corollary 2 can be used to prove scalable stability of any distributed switirtezat
system with a supervisory discrete controller. Possible application arelasién
interconnected pulp and paper mills, chemical and biological batch pes;esdd
network flow control, to name a few.

3.3 Examples: formations of double integrators

Consider a fleet oN identical vehicles as described hy (2.7), in which the three
position variables are decoupled, and the acceleration in each directartiisltzd
separately. We can thus limit our analysis, without loss of generality, to leshic
moving in one dimension with vehicle dynamics

0 1 0
A= B= (3.9)
0 0 1
with x; € R2, u; € R.

Mode switches amongst the vehicles must occur simultaneously, since asyn-
chronous switching causes the system to lose its block upper-trianguietusé:.
Hence, we consider the case in which a supervisory logic controller ssititie
linear formation feedback controller of all vehicles, such #at K, : R? — R,
with o a piecewise constant switching signal that mapsAa_ N. This remote
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supervisory controller is meant to represent a UAV operator remotelggohg
the UAVS’ operation modes in order to meet mission objectives or in resgonse
environmental disturbances.

Thus the transformed system (2.8) becomes

z = (IN®Ag+L®BKy)z (3.10)

with block diagonal subsystems

z = (Ad+AiBKo)z (3.11)

with A an eigenvalue of. We assume thd, has been chosen such that (3.11)
is Hurwitz for all p € &2 and all eigenvalues df. Traditional LMI methods can
then be applied to the block diagonal subsystems, rather than to the entine sys
to show GUAS under arbitrary switching (Theoram 4). Fé& mode system, we
have thus reduced the problemNeets ofP+1 LMIs in R?*? as opposed tB+ 1
LMIs in R2N*2N,

Five vehicle system

Consider first an illustrative example, a five vehicle system with

[ o 1 Ky=[-20 —5]
Acl—[_l _1] Ko 4 —6 (3.12)

and ) i
4 -1 -1 -1 -1

0 2 -1 0 -1
L=| -1 -1 3 -1 0 (3.13)
-1 0 -1 3 -1
-1 -1 0 0 2

switching randomly betweeK; andK,. The communication topology defined
by the unnormalized Laplacian (3.13) is illustrated in Figure 3.2, in which arrow
indicate the flow of information (state measurements), obtained through the’ UAV
sensors. Note that the graph is strongly connected, satsifying the conftitio
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Veh. 5 Veh. 3

AN

Figure 3.2: Communication topology defined by the graph Laplacian (3.13)
used in the 5 vehicle example. Arrows indicate the flow of information
(state measurements). The graph is fully connected, satisfying Corollary
1, but each vehicle has access to only a subset of the fleet's total state.

stabilizability imposed by Corollary' 1, but that each vehicle only has access to
a subset of the fleet’s total state, a consequence of the vehicles’ limitethgen
abilities. The block diagonal subsystems are given by (3.11), Ayith {3.0108,
4.6180, 46180, 23819, 23819}. For each of the five block diagonal subsystems, a
GQLF was found by solving three LMIs iR?*? to obtain five symmetric positive
definite matrices:

o _ | 888184 —27.8822
7| Z278822 645339

0.0041 —0.0099
=P = 3.14
ek [—0.0099 00831] 844
1.6822 —3.3996
Pa=h= .
—3.3996 220348

By Corollary 2, the GQLF¥'(x) = X' Bx;, i € {1,...,5} prove GUAS under
arbitrary switching for the system as a whole. Figure 3.3 shows simulatialiges
(top plot) for an arbitrary switching signal (bottom plot).

19



Vehicle States

10—

AR
L\
5+, W\
/ S~
o Y e
§ P —
5P’
-10 L
0 1 2 3 4 5
time (seconds)
Switching Signal
2 .
@
=)
<)
=
1
0 1 2 3 4 5

time (seconds)

Figure 3.3: Simulation results for the five vehicle system given oy (2.8),
(3.12) and Laplacian (3.13), with mode switches occurring according
to the arbitrary switching signat shown in the bottom plot. Shown are
the position (top plot, solid) and velocity (top plot, dashed) variables of
each of the vehicles.

100 vehicle system

Consider a 100 vehicle system with the safe Ky andK; as in (3.12). The
LaplacianL (not presented) is normalized such that all of its eigenvalues lie within
a disk of radius 1 centered att10j in the complex plane (cf. Proposition 2), and
strongly connected such that its zero eigenvalue is simple (cf. Propasjti@an 3
necessary condition for the stability of such systems (cf. Corcllary I)b&iin K,
andKj, the block diagonal subsystems given by (3.11) are stable for all eyes/

of L.

Solving three LMIs inR?%%<290 jn Matlab was not possible on a dual core
2.40Ghz Intel-based machine with 4GB RAM due to the dimensionality of the
system and ensuing memory requirements. Exploiting Corcllary 2, we sob/e 10
sets of three LMIs to obtain a GQLF for each block diagonal subsysteteaiths
The LMIs solved are irR?*? for block diagonal subsystems for whidhis real,
and are inR*** when J; is complex. Simulation results are shown in Figure 3.4
for an arbitrary switching signal, depicted in Figure 3.5. As expecteditdes
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Figure 3.4: Simulation results for the 100 vehicle system given by (2.8),
(3.12) and a strongly connected normalized Laplacian, with arbitrary
switching signalo shown in Figure 3.5. For such a large system, show-
ing GUAS under arbitrary switching for the entire system proves to be
computationally prohibitive unless stability is proven via Corollary 2.
Shown are the position and velocity variables of each of the vehicles.

arbitrary switching, the vehicles’ positions and velocities converge ta Zdrese
results are equally applicable when the states are not driven to zerm, $oine
internally consistent offset values [24].
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Figure 3.5: Arbitrary switching signalo for the 100 vehicle system given
by (2.8), (3.12) and a strongly connected normalized Laplacian. The

simulation results are presented in Figure 3.4.
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Chapter 4

Stability of switched linear
systems under constrained
switching

Communication and other types of delays are often present in distributed sys
tems under cooperative control. This delay can represent a remotevisopg
discrete controller (such as a human operator triggering mode chaeges)img
delayed measurements, or the time required to synchronize a simultaneous mode
switch amongst several subsystems. In the previous chapter, GUAS antd
trary switching for a fleet of UAVs was proven by finding a CLF for each block
diagonal subsystem. If this can be accomplished for all block diagotslysu
tems, communication delays do not need to be taken into account — all switching
sequences, delayed or not, will preserve stability.

However, not all systems have a CLF. The following delay-free caabeic
ample from [9] illustrates how, for some systems, the switching sequence dete
mines if the global behavior of the system is stable or not.

Example 1. From [€]: Consider a two mode switched linear system

X = AgX (4.1)
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Figure 4.1: Trajectory for (4.1), with switching sequence such that A;x
in the second and fourth quadrants, ang Ayx in the first and third
quadrant, with initial condition(0) = [1076,0]T over the time span
[0,1]s. Despite individual modes having stable dynamics, the overall
system behavior is that of an unstable one.

with &7 := {A1,A2}, where

1 10 _1 100
AL — A, — 4.2
! [ ~100 —1] g [ 10 -1 ] (4.2)

By switching modes such that A;x in the second and fourth quadrants, ang

Aox in the first and third quadrant, the system exhibits unstable behaviowrsimo
Figure 4.1 is the system trajectory in phase space starting from initial conditions
x(0) = [1076,0]T over the time spafD,1]s. However, if we reverse the switching
scheme such that= A;x in the first and third quadrant, anxdl= Axx in the second

and fourth quadrant, the resulting system is stable. Shown in Figure 4.2 is the
system trajectory in phase space starting from initial conditiai® x [1,0]" over

the time spano, 1]s.
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Figure 4.2: Trajectory for (4.1), with switching sequence such that A;x
in the first and third quadrants, amd="Ayx in the second and fourth
quadrant, with initial conditions(0) = [1,0]" over the time spaf0, 1]s.
With this switching sequence, the system is GUAS.

4.1 Stability under state constrained switching

Example 1 clearly demonstrates how differatéite-constraintbased switching
rules can affect the GUAS of a system for which no CLF exists. Suptiate
that for some of the block diagonal subystems(3.3) of (3.1), no CLF edound.
While stability under arbitrary switching is not possible, stability may hold for cer
tain classes of switching signals. We address Problem 2 by first devglstaite
constraint based switching signals such that (3.1) is GUAS under deavitch-
ing. We then introduce delay buffewhich adjusts the delay-free state constraints
to be robust to switching delays.

Specifically, we focus on th# block diagonal subsystern (3.3), and for ease
of notation, omit the (sub)superscripts. For each mage 2, letV,(x) = x" Pox
be the associated Lyapunov function, whe&re R" and P, = P,I > 0 is a real
symmetric positive definite matrix.

Theorem 5. Consider a delay free switched system (3.1). Iebe the set of
piecewise constant switching signats R, — & such that, for each switching
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instantt, x(1) € . (o(1),0(17)), where

Z(@,p) = {XERM : Vp(X) —Vg(X) = XT (Pp — Py)x > 0} (4.3)
Then (3.1) is GUAS undér.

Proof. Asin [S], Theorem 2.7. O

The condition imposed by Theorem 5 ensures that the piecewise Lyapunov
function (PLF)Vy ) (X) constructed from the the multiple Lyapunov functidfys p €
Z, is strictly decreasing at switching instants. However, in remote supeyvisor
control, communication and other delays introduce a switching delay betwaen s
measurements and mode switches. Consequently, we include a switchingglelay
between the state measurements and switching time in our model — the discrete
controller will only have access to a delayed state measurexientTp) in de-
termining whether the condition imposed by Theorem 5 will be violated if a mode
switch occurs at time.

The premise behind our results is the same as that of Thecrem 5: we impose
conditions such that the PL¥;(x) is strictly decreasing, despite a switching
delay. In order to accomodate the effect of the time delay, we introdulssay
buffer y — this delay buffer introduces “no-switch” zones along the boundafies o
j(q, p) to ensure that system trajectories do cross overﬁ"i_(q, p)€ during the
switching delay period. We compuieby tracking the possible variations in the
current and next modes’ Lyapunov functions during the switching delay

Lemma 1. For a switched system (5.1), assume tbét) = p fort € [T — Tp, 7).
Then there exists positive constantsied 1 such that

()] < ce =TT x(T —To)|

vt € [1—Tp, 1) (44)

for any x corresponding to thé'i block diagonal subsystem, amd> Tp.

Proof. Considet|[x[, ,...,x\]"|| as an exponentially decaying input to the dynam-
ics ofx;, and apply Remark 2. O
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In the following, we defind;(q) := —(Aq P+ PpAq) to track the evolution of
modeq's Lyapunov function whiles (t) = p. Note thatQp(q) = Qg(q) Vp,ge Z.

Theorem 6. Let=™ be the set of piecewise constant switching sigaal®, — &
such that, for each switching instantx(t — Tp) € (o (1),0(17), 1), with

T (P,—
S(a,p,1) = {xeR": XA yigp 1)} (4.5)
the set of states for which switching from mode p to q is allowed for a time-varying
delay buffer

2 a—2ApT
cpe p

Va,pT) = F5— (e — 1)(Ama(Qp(P)) — Min(0, Amin(Qq(p))))  (4-6)

and constants g Ap > 0 for mode p as in Definition 3. Then (3.1) is GUAS under
s,

Proof. By Theorem 5, a sufficient condition far € >* is that at each switching
instantt
Vp(X(1)) = Vg(x(1)) >0 (4.7)

whereg(17) = pando (1) = . We show thaE™ C 5* by finding a lower bound
for (4.7) given onlyx(t — Tp), and partitioning the state space accordingly.
We seek to bounllp(x) andVy(x) from below and above, respectively.

Vp(X(T)) = Vp(X(T—To)) + f{_p, Vp(x(1))dt

. (4.8)
= Vp(X(T=Tb)) — J{_7, X" (1)Qp(P)x(t)dt
By the Courant-Fischer theorem
Amin(Qp(P))IXI1? < X" Qp(P)X < Amax(Qp(P))|[X]|? (4.9)
andAmin(Qp(p)) > 0, we obtain
Vo(X(1)) = Vp(X(T—To)) — J{_1, Amaxd(Qp(P))|IX(t)|[?dt (4.10)
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Applying (3.4) and evaluating the integral, we obtain a lower boun®§ox(T1)).

Vo(X(1)) = Vp(X(T —Tb))

et 4.11
-G N Dk QP -T)F

Similarly, to find an upper bound ¥,(x(1)),
Vo(X(D)) = Vg(X(T=To)) = Ji_7, X" ()Qp(ax(t)dt .12

< Vg(X(T=Tb)) = Ji_7, Amin(Qp(a))[[X(t) | |?dt

If Amin(Qp(0)) < O, the integral term is positive, and we use the upper bound
for ||x(t)|| given by (3.4) to further bound (4.10), and obtain a result similar to
(4.11). However, ifAmin(Qp(q)) > 0O, the integral term is negative, and we require
a lower bound fott|x(t)|| to further bound (4.10). In general, such a lower bound
is unavailable, but can be conservatively approximated as 0. Combinisg tilve
cases, an upper bound for (4.12) is

Vo(X(1)) = Vg(X(1—Tp))

. | (4.13)
— 253 (€T — 1) min(0, Amin(Qp(a)))) [X(T — To) |2
Combining (4.11), (4.13) with (4.7),
Vo(X(T—Tp))—Vq(X(T—Tp))
T hawrE > YaRD (4.14)

wherey is as given in (4.6). Noticing that,(x) = x" Pnx for me 22, and letting
Z(q,p,T) be the subset d&k" where (4.14) holds, we obtain (4.5).

Thus, for any piecewise constant switching sigoat >, we haveo € ¥,
thusx™ C 5*, O

An interesting consequence of this approach is that the delay yifen fact
a time varying quantity. This time dependence occurs because the uppet bou
of the time derivative of the Lyapunov functions (4.9) is proportional tortbien
of the state||x(t)||, a time varying quantity. For switching signatsc =™, a
system|(3.1) is GUAS, and the state norm asymptotically approaches zenge-c
guently,so does the time derivative of each Lyapunov functidns observation,
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and its consequences on the time-varying parititions, are summarized in the fol-
lowing corollary:

Corollary 3. For g € £, ast— «, the delay buffer adjusted partitio# (q, p, T) —

Z(q,p) forall p,ge 2.

Proof. We fix a “next mode"q and study the evolution of”(q, o(t),t) under a
switching signabr € =™ in order to determine how these regions evolve over time.
We define the functionak(q, -,-) : # x R — R, evolving under a switching signal
occ3™, as

y(g,0(t),t) =
C2 . 872A0<1)t

W(e%w — 1) (Amax Qo) (a(t))) —min(0, Amin(Qq(a (1)))))
(4.15)
For allp,ge 2, t > Tp, y(q,p,t) > 0. It follows thaty(q,o(t),t) > 0Vo €
>To,

Define
a = Mmaq %(e”"“)“’—l)
B = maxyq(Amad Qo) (0 (t))) —mMin(0,Amin(Qq(a(t))))) (4.16)
N = mino(t)/\a(t)
Then
0 < yq,0(t)t) <ape (4.17)

Thusy(qg, o(t),t) — 0 ast — = for all o € =™, Letting the final active mode af
be p, the result follows. Ol

Corollary 3 shows that by waiting long enough before switching, the delay
buffer y for any mode pair can be made as small as desired. Specifically, if for
somet*, y* € R, y(p,q,7%) < y*, theny(p,q,t) < y* for all t > t* — once this
condition is satisfied, it is satisfied for all future times, and hence can bglthot
as await-time condition. In contrast, the average dwell-time condition presented
in [31], and its extension to switched systems with switching and state dzldys [67
must be satisfied after each mode switch in order to guarantee asymptotic stability
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of a switched linear system. Wait-time instead provides a tirhafter which
the effect of the delay buffer becomes negligible. In practical applicsitidre
wait-time condition and the average dwell-time conditions can in fact be seen as
being complementary. Our method will prove useful when mode switchestoeed
occur rapidly, and may violate dwell-time conditions; on the other hand, dwell-time
arguments can be used when mode switches occur at a slower pace, elyrtimatin
need for state measurements to be transmitted back to the remote operator.
Alternatively, we can conside¥’(q, p, T) as a conservative estimateﬁ?(q, p)
that has been propagated backwards in tmelfoseconds. It can be argued that
a natural alternative to our method would be to use reachability technigfies (c
[4, 43,51, 63], among others) to compute this backwards propagaditrerthan
using our initially conservative estimate. This reachability computed set may ini-
tially be less conservative, as it does not rely on bounds on derigativies com-
putation. Although in some cases, this might yield useful results, we argtie tha
our approach has some important advantages over reachability balseid|tes.
Most importantly, the computed reachable set is static, and hence dodfonot a
the remote operator to take advantage of the decreasing effect of tlyebdéiar.

4.2 Design and implementation strategies

Theorems 4 and 6 aid in the design and analysis for switched linear systems un
der distributed control. Theorem 4 is first used to prove GUAS undetraunp
switching for as many block diagonal subsystems as possible. Theorethehis
used to synthesize state based constraints for the remaining block diagbnral
systems. Specifically, consider a switch from mgd® modeq occuring at time
t =1, and an index se¥ C {1,...,N} comprised of the indices of all block diag-
onal subsystems that are not GUAS under arbitrary switching. Forieach,,
thetime-varying partition#' (g, p, T) corresponding to th&" block diagonal sub-
system needs to be computed. Only when the delayed measungfitentlp) €
Z(q,p, 1) foralli € .7, that s for all block diagonal subsystems for which a CLF
does not exist, will a mode switch fromto g be guaranteed to preserve GUAS
despite a switching delay.

To reduce the complexity of these state based constraints as much as possible
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the designer of such systems will want to minimize the number of block diagonal
subsystems (3.3) that are not GUAS under arbitrary switching. From Leinme

see that for block diagonal subsystems of lower index, the effect ef states on

its bounding constants is more significant. If these subsystems are not Gdes
arbitrary switching, these larger bounding constants will in turn increaseftact

of the delay buffer (4.6) on the state partitions. Hence, a prudent desipegy
would be to (1) choose a communication topology that minimizes the number of
block diagonal subsystems that are not GUAS under arbitrary switchith@2a to
exploit the Schur transformation’s ability to arbitrarily order eigenvaluesitue

that all of these unstable block diagonal subsystems are placed in the bocs
possible. State constraints can then be developed according to Thetoepabh

of these block diagonal subsystems.

In some cases, the structure of the sgt&, p, 1) (4.5) can be quickly deter-
mined by examining the spectral propertie®pf-Py. If Amin(Po—Py) > v(d, p, T),
then.”(q, p, 7) = R" — the safe switching region from mogeto modeq consti-
tutes the entire state space, so a switch from nyotieq can be triggered at any
time. Similarly, if Amax(Po — Py) < y(0, p,T), then.7(q,p,7) = 0, and the safe
switching region is empty — a remote operator will have to waityféo decrease
enough such thaimax(Po— Py) > y(q, p, T) before a switch may be triggered safely.
By computing these minimum (maximum) eigenvalues beforehand, it can quickly
be determined if a given mode switch at tilne 7 will always (never) be guaran-
teed to preserve GUAS despite a switching delay.

4.2.1 Application to fleets of UAVs

The wait-time condition has a very important consequence when applied to UAV
systems: often times a UAV will operate in a given mode for an extended period
of time (e.qg. “return to base”) before switching through other modes morélyap
(e.g. “lower landing gear”, “change flaps configuration”, “acquilieeslope”).
However, since the wait-time is not reset after each mode switch, the effdwt
delay buffer on the state partitions during the final sequence of rapid svatishes

will already have decayed to a negligible level.
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4.3 Example: remote supervisory control of a switched
linear system

The application in this section is a continuation of Example 1. Although the dy-
namics are not directly related to a UAV system, they illustrate both the effec-
tiveness and generality of the developed methods. It is also important tthabdte
although the results were derived in the context of fleets of identical svdtiitear
vehicles, they are equally applicable to any switched linear system.

Consider the two mode switched linear system (4.1) described in Example 1
with a switching delaylp = .1s. As illustrated previously, unstable switching se-
guences exist, and hence no CLF exists for this switched linear systerordAcc
ing to Theorem 6, we partition the state space into delay buffer adjustedisegio
Z(2,1,t) and.~” (1, 2,t), which provide switching restrictions that preserve GUAS
despite the switching delay. Figure 4.3 shows snapshao#s(@f 1,t) (white) evolv-
ing over time under the switching signalt) = 1. In accordance to Corollary 3,
< (2,1,t) converges to the standard Lyapunov based partitioﬁfﬂg, 1) as the
delay buffery(2,1,t) approaches zero.

Figure 4.4 shows the evolution ¢f2, o (t),t) and of Vio(t) := (x(t)T (P, —
P)x(t))/(||x(t)||?), and the switching signat € =™ generated by switching when-
ever possible without violating the constraints imposed by Theorem 6. Initially
y(2,1,t) > Amax(PL — P») is too large to allow any mode switches a2, 1,t) =
0. After approximately Bs, the delay buffer has decayed enough such/l2al, t)
< Amax(PL — P), and a mode switch is triggered as soon as the delayed trajec-
tory x(t — Tp) enters.”(2,1,t). In Figure 4.5, we zoom in on whexit — Tp) €
< (2,1,t) for the first time, at = 1. Clearly,Vi2(T) > 0, satisfying the stability
requirements imposed by Theorem 5. The resulting trajectory in the phase sp
is presented in Figure 4.6, with subsets of the trajectory evolving accotding
x = Apx plotted in black (dark), and those evolving accordingcte Axx plotted
in cyan (light), where a switch occurs as soon as the trajectory entegsom i&f
the state space in which switching is allowed. Notice that convergence toithe or
gin is much faster once switching begins to occur more regularly, illustrating the
potential benefits of applying hybrid control to a system.
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Figure 4.3: Snapshots of the”(2,1,t) (white) evolving over time under the
switching signalo(t) = 1. .#/(2,1,t) converges to the standard Lya-
punov based partitioning”(2,1) (Corollary 3).
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Figure 4.4: Evolution of the delay buffey(2, a(t).t) overlaid withVi(t) =
(x()T(PL—Po)x(1))/(||x(t)||?), and the switching signal generated by
switching whenever possible without violating the constraints imposed
by Theorem 5. Initiallyy(2,1,t) > Amax(PL — P,) is too large to allow
any mode switches, and consequent)(2,1,t) = 0. After approxi-
mately 13s, y(2,1,t) < Amax(P1 — P»), and a mode switch is triggered
as soon as the delayed trajecta(y— Tp) enters¥(2,1,t).
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Figure 4.5: From Figure 4.4, a close view of whetit — Tp) € .(2,1,T)
for the first time at = 1. Clearly,Vi(T) > 0, satisfying the stability
requirements imposed by Theorem 5.
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Figure 4.6: Trajectory in the phase space generated by systern (4.2), switch-
ing according to a signat € =™, with subsets of the trajectory evolving

according toc= Arx plotted in black (dark), and those evolving accord-
ing to X = Axx plotted in cyan (light).
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Chapter 5

Stability of switched nonlinear
systems under constrained
switching

Although arich and wide range of systems can be modeled as having limeandy

ics, many systems exist which have inherently nonlinear properties. Irifyier,

we extend results from Chapter 4 to nonlinear switched systems. We bein by
troducing the switched nonlinear systems to be studied in this chapter, asswell a
the relevant definitions of stability. Similarly to Chapter 4, we use a PLF approa
to stable switching despite a switching delay by introducing a delay bufferan-qu
tify the effect of the switching delay on the delay free PLF based partitigves.
then present two examples of stable switching despite a switching delay.

5.1 Problem formulation

Consider a switched nonlinear system
%= fo) (t,X) (5.1)

withxe R", 0 : R, — £ C N a piecewise constant switching signal, afid=
{fp: Ry x 2 —R": pe 2} afamily of functions indexed bp that are piecewise
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continuous irt and locally Lipschitz ikonR, x 2, 2 ¢ R" a domain containing
the origin. We assume the origin to be an equilibrium point for efch .7
without loss of generality. The following definitions all deal with local stability,
unless specificed otherwise.

Definition 4. Modified from [41]: the equilibrium point x= 0 of (5.1) isstable
underZ*, a set of piecewise constant switching signalggif- 0 36 = d(¢&,tp) >0
such that

[X(to)|| < & = [IX(V)|| <& "t >tg>0 (5.2)
forall o € ¥*.
Lemma 2. Modified from [41]: the equilibrium point x= 0 for (5.1) is

e uniformly stable (US) undex* if and only if there exists a clasg” function
a and a positive constant ¢, independentyptuch that

[Ix(®)]] < a(lx(to)]), vt =to =0, V|[X(to)[| < ¢ (5.3)

forall o € ~*.

e uniformly asymptotically stable (UAS) und&f if and only if there exists a
classz ¢ functionf3 and a positive constant ¢, independentyosuch that

[Ix(®)]] < B([[x(to)[|;t —to), Vt =10 > O, V||x(to)|| < C (5.4)

forall o € ~*.

Remark 4. If * = {p}, (i.e. o(t) = p), the previous definition and lemma are
equivalent to standard definitions of stability for a nonlinear system.

Remark 5. The results of Lemma 2 will hold globally foreco.

We focus on systems which cannot be shown to be stable under arbitrary
switching. Specifically, we address the problem of determining state basteti-s
ing constraints such that (5.1) is stable, US, UAS or GUAS, despite a bdund
delay between state measurements and switching tinssyitching delay We fo-
cus on systems (£.1) for whicl is comprised of functions that have the same
type of stability.
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5.2 Stability under state constrained switching

We begin by assuming that for system (5.8)= f,(t,x), p € & has astable
equilibrium pointx* = 0 over a domainz C R". We assume that there exists a
continuously differentiable Lyapunov functidr(t,x) : R; x 2 — R satisfying
the following standard conditions (cf. [41])

Vp(t,x) >0 (5.5)
N, 9V,
il - o < ]
5+ g f(tx) <O (5.6)

for allt > 0 and allx € 2\{0}. In addition, we assume that the functidfe, o)
as given in Definition 4 is invertible, such that for adytg € R, one can compute

e=¢(d,t) (5.7)

satisfying (5.2).
In order to establish stability of (£.1), we define a piecewise continuous Lya
punov function
V(t,X) = Vgt (t,X) (5.8)

and characterize a class of switching signals such thzt (5.8) is noragirege de-
spite a switching delay of duratioky. As in the linear case, we first develop delay
free state parititions that ensure (5.8) is strictly decreasing, and thenuo&ad
delay buffer to compensate for the effect of the switching delay. Onamage
compute the delay buffer by bounding the possible changes in the Lyajumo

tion of the current modeVg(t,x)) and the Lyapunov function of the next mode
(V4(t,x)) over the period of the time delay. We first make two assumptions that
allow the time derivative of the two Lyapunov functiovig(t, x) andVy(t,x) to be
bounded.

Assumption 1. There exists a clas#” functionap(||x||) such that

Ny 9V,
_ < B F < .
ap(|[x]]) ot + ox fo(t,x) <0 (5.9)

Assumption 2. There exists a class¢” function aqp(||x||) and a real constant
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bgp € {—1,1} such that

oVg 9V,
7{14‘7;%('[7)() < bapagp(|x[) (5.10)

Note that these assumptions are not restrictive at all — for example, they will
hold if the Lyapunov functions are all Lipschitz continuous (a very brdads of

functions), as this will limit the magnitude of their derivatives.

Theorem 7. Let 25 be the set of piecewise constant switching sigoal® , — &2
such that/(5.1) is stable. L&& be the set of piecewise constant switching signals
such that, for each switching instantx(t —Tp) € .*(o(1),0(1™), T), with

Z0,p,T) = {Xe€Z : Vp(1—Tp,X) —Vo(T—Tp,X) > y*(q, p,T)}
(5.11)
the set of states for which switching from mode p to mode q is allowed for a time-
varying delay buffer

V(a.p,T) = To-[ap(e(|[x(T =Tol|),7—To))

(5.12)
+max(0, bap) - aqp(€(IIX(T = Tol1), T = To))

with £(-,-) is given as in (5.7) and(-), dqp(-), and by, satisfy Assumptions 1 and
2. Then((5.1) is stable unde#. .
Proof. From Lyapunov stability theory, a sufficient condition for a switching signa

o € Z8is that the piecewise continuous Lyapunov function (5.8) be non-iniageas
This is equivalent to requiring that at each switching instant

Vp(T,X(T)) —Vq(T,%(1)) >0 (5.13)

with (17) = pando (1) = g. We show that$ C 2° by finding a lower bound
for (5.13) based only on information available when the switch is triggered, i.e
X(t —Tp), and partitioning the state space such that (5.13) holds at each switching
instant, despite a switching deldy.

We seek to bounil,(t,x) andVy(t,x) from below and above, respectively.

Vo(T.X(T)) = Vp(T—To,X(T—To)) + [lp, (G + 52 Tp(tX) ) dt  (5.14)
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Applying (5.9) we obtain
Vp(TX(1)) > Vp(T=To,X(T=To)) = [{ 1, ap([[X(®)[)dt ~ (5.15)

Applying (5.2),(5.7) to boundix(t)|| over[t — Tp, T), the integrand becomes con-
stant @p(£(||x(T —Tp)||, T —Tp))). Thus evaluating the integral, we obtain a lower
bound forVp(7,X(T)) givenx(t —Tp),

Vp(T.X(T) 2> Vp(T—To,X(T~To)) — To - ap(e(||X(T — To)[[.T— To))
(5.16)
Similarly, to find an upper bound ,(7,x(1)),

oV, oV,
Vo(T.X(T) = Vo(t=To.X(T=To)) + fip, (G2 + 52 fp(t,) ) dit

i (5.17)
< V(T —To,X(T —To)) + [7_, Papagp(|[x(t)[[)dt

If bqp =1, the integral term is positive, and we use the upper boundxay||
given by (5.2), (5.7) to further bound (5.15), and obtain a result simil¢b.4%).
However, ifbgp = —1, the integral term is negative, and we require a lower bound
for ||x(t)|| to further bound (5.15). In general, such a lower bound is unavailable,
but can be conservatively approximated as 0. Combining these two aasgsper
bound for (5.17) is

Vo(T,X(T)) < Vg(T—Tp,X(T—Tp))

+max0,bgp) - To - Agp(&(|X(T —To)|[, 7 —To)
(5.18)

Combining (5.15), (5.18) with (5.13),

Vo(T—ToX(T—To)) ~Va(T-Tox(T-To)) > y(.p.7)  (5.19)

with y® given as in (5.12). Letting”5(q, p,T) be the subset o where (5.19)
holds, we obtair (5.11). Thus, for any piecewise constant switchinglsigaa sy,
we haveo ¢ 35, thusz%D C s, O

The sets?’5(q, p, T) thus partition the state space into regions where switching
from modep to modeq ensures (5.8) is nhon-increasing, guaranteeing the stabil-
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ity of (5.1), despite a switching delaly. Computing the delay buffey® given a
delayed measuremextr — Tp) is trivial once functionsx,, aqp and constanbyqp
have been determined, and can be easily be performed online, resulticgnm-a
putationally efficient manner of verifying whether a desired switch betvieen
modes is allowable.

Consider the following two corollaries in which we strengthen our results for
US and UAS mode dynamics.

Corollary 4. LetZ" be the set of piecewise constant switching sigoal® , —

& such that(5.1) is uniformly stable. LE#S be the set of piecewise constant
switching signals such that, for each switching instant

X(t—Tp) € SY(0o(1),0(T7),T), with

S(a,p,T) = {XEZ : V(T —Tp,X) —Vo(T—Tp,X) = (q,p,7)}
(5.20)
the set of states for which switching from mode p to mode q is allowed for a time-
varying delay buffer

y*(a,p, 1) = Tolap(ap(|x(t—Tol])

| (5.21)
+max(0, bgp) agp(atp(|X(T — To[1)))]

wherea(-) satisfies (5.3) and(-), aqgp(-),and hy, satisfy Assumptions 1 and 2.

Proof. Similar to Theorem 7: When bounding equaticns (5.15) and (5.17), we use
ap(||x(T —Tp)||) as an upper bound fdfx(t)|| over [T — Tp, T) instead of (5.2),
(5.7). O

Corollary 5. Let>"2sbe the set of piecewise constant switching sigoal® , —
2 suchthat/(5.1) is UAS. L&4%°be the set of piecewise constant switching signals
such that, for each switching instantx(t — Tp) € Y80 (1),0(17), T), with

U, p,T) = {XxeZ : V(T —Tp,X) —Vu(T—Tp,X) > V3q,p, 1)}

(5.22)
the set of states for which switching from mode p to mode q is allowed for a time-
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varying delay buffer

Ve(a,p. 1) = [y, ap(Bp(IIX(T—To)[,t— (T = Tp)))dt

+max(0, bgp) [; 1, Aqp(Bp(|IX(T —To)||,t = (T —Tp)))dt
(5.23)

whereap(-), dqp(-), and kyp satisfy Assumptions 1 and 2, afigl -) is the bounding
function (5.4) for mode p.

Proof. Similar to Theorem 7: When bounding equaticns (5.15) and (5.17), we use
Bo(|[X(tT—Tp)||,t — (1 —Tp)) as an upper bound foix(t)|| over[r — Tp, T) instead
of (5.2), (5.7). O

As in the linear case, the delay buffgf*sis time dependent, and an analogous
wait-time condition applies here.

Corollary 6. For 0 € 2§%, as t— o, the time-varying partition”*®%q, p, 1) —
Z18(q, p, 1) for all p,q € &2, where

S, p,T) = {XER" 1 Vp(x) = Vg(x) > 0} (5.24)

is a delay free PLF based patrtitioning of the state space which guarante8bA
(5.12).

Proof. We fix a “next mode’q and study the evolution o#""3%q, o(t),t) under a
switching signab € 23%°in order to determine how these regions evolve over time.
We define the functionat?¥(q,-,-) : & x R, — R, evolving under a switching
signalo € 2% as

V3(q, 0(t),t) = {1 Aoy (Bo (Xt —To)|[,r — (t—Tp)))dr

+max0,bgo)) i1, Agoy(Bow (Xt —To)||,r — (t — Tp)))dr
(5.25)

For allo € 252, (5.1) is UAS, and by Lemnia 2, there exists a clas” function
B satisfying (5.4). Hencéx(t)|| — O ast — oo, implying that the integral terms in
(5.25) asymptotically approach 0 as well. Thus the delay byff&tq, o(t),t) — 0
ast — o for all 0 € 23 Letting the final active mode of be p, the result
follows. O
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The results in this section can be applied to any nonlinear switched system,
including a single switched nonlinear UAV. Furthermore, although not slealab
to large systems, these results could also be combined with the Lyapunal/ base
proofs of stability of fleets of nonlinear systems found in [14], extendirar th
applicability to smaller fleets of UAVs under distributed control.

5.3 Design and implementation issues

In general it will not be possible to obtain analytical expressions for Huessary
bounding functiong,. While Lyapunov theory guarantees the existence of such a
function, it is the solution of an ordinary differential equation (ODE) {ldieorem

4.9, Lemma 4.4 and Appendix C.5, [41]), which may not have an analytib@ so
tion. Fortunately, the ODE is scalar, so numerical and curve fitting methodseca
used to obtain conservative analytic bounds on thefgfeinctions.

5.4 Examples

5.4.1 Autonomous nonlinear switched system with UAS mode
dynamics

Consider a system (5.1) witlf = { f1(x), f2(X)}, x= [x,%]" € R? and f;

— 23S — 28
ey = | a0 2] (5.26)
—X1 — X2+ X1X2
—Xp— X3
fa(x) = 5.27
2(X) [ a2 ] (5.27)

restricted taZ := {x € R? : ||x||3 < 1}, with a switching delaylp = .01s.

Table 5.1 presents the Lyapunov functions, constants, ctaganctions and
class.z . functions needed to apply Corollery 5. The functiané), aji(-) and
constantsd;; are all obtained by exploiting the equivalence of norms @/&and
the fact thatx|" < |x|° for all r > sand|x| < 1. The functiong3;(-,-) are solved as
in Theorem 4.9, Lemma 4.4 and Appendix C.5 of [41]. The resulting scald OD
is second order, and has an analytic solution.

42



L] Ve | aily) | o) [ bii | B(nS)
1] B | 22 | 257 | 1| (i)’

T
2/
2| 368+%8) | 22 | 3 | 1 |2(&)

Table 5.1: Functions and constants necessary to apply Corollary 5 to Example
1

Figure 5.1 shows snapshots.gf'35(2,1,t) (white) evolving over time under
the switching signatr(t) = 1. Initially, #4252, 1,t) is not very large (recal that the
domain is the unit circle), but as the system evolves, the buffer éf&2, 1,t)
decreases, and its effect becomes less important. As can be seen, #@skt)
converges to the delay-free PLF based partitioning (5.24). A samplettrajén
the phase space is presented in Figure 5.2, with subsets of the trajeaitvingv
according tox'= f1(x) plotted in black (dark), and those evolving according to
x = fp(X) plotted in cyan (light). A switch occurs as soon as the trajectory enters
a region of the state space in which switching is allowed. We note that the system
initially spends a relatively long time in mode 2 becaug¢2,1,t) is relatively
small (Figure 5.1). In the last snapshot of Figure 54(2,1,t) occupies approx-
imately half of the unit circle. Hence, as the effect of the time delay lesseps as
decreases, switching between modes is enabled and occurs morafigque

5.4.2 Linear switched system with time-varying UAS mode dyni@aics
Consider a system (5.1) witlf = { f1(t,x), f2(t,X)},

g = | aTabx ] (5.28)
X1 — X2
with X = [xg,%]" € R andg; : Ry — R
at) = 5 (5.29)
_ ¢
Bt = o (5.30)
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Figure 5.1: Snapshots of the partitior¥25(2, 1,t) (white) evolving over time
under the switching signad(t) = 1. Notice that the black (no-switch
partition) shrinks, such tha?¥’"3%2,1,t) approaches the delay free par-
titioning .7Y2%(2,1,t) (5.24).
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Figure 5.2: Trajectory in the phase space generated by a two mode system
(5.26), (5.27). Switching obeys a signale Z52° with subsets of the
trajectory evolving according te= f1(x) plotted in black (dark), and
those evolving according to= f,(x) plotted in cyan (light).
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i | ki|ci Vi(X) ai(y) | aji(y) | bji | Bi(r,s)
10338+ +aq®)@| 72 | 22 | 1| 208
2110 @+@+amt)E| 3y | 52 | -1 v2eis

Table 5.2: Functions and constants necessary to apply Corol ary 5 to Example
2

with a switching delayip = .01s.
By noting that each continuously differentialgét) satisfies

(5.31)

for somek;,c; > 0, it is possible to construct the necessary Lyapunov functions,
class# functions, and class”.Z functions. These functions and constants were
solved for in a similar manner as those in the previous example, except ingkis ca
equivalence of norms was not necessary as all terms were secard dittese
functions, along with the necessary constdqis;, are shown in Table 5.2. A
sample trajectory in the phase space is depicted in Figure 5.2, with subsegs of th
trajectory evolving according to= f1(x) plotted in black (dark), and those evolv-

ing according tox = f,(x) plotted in cyan (light), where a switch occurs as soon as
the trajectory enters a region of the state space in which switching is allowed. We
see that in this example, as opposed to Example 5.4.1, switching occurs naich les
frequently. This highlights the effect of both the system dynamics andury@ap
function structures on delay buffer.
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Figure 5.3: Trajectory in the phase space generated by Example 5.4.2.
Switching obeys a signat € 2155, with subsets of the trajectory evolv-
ing according tax = f1(x) plotted in black (dark), and those evolving
according tax = f(x) plotted in cyan (light).
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Chapter 6

Safety in human-automation
systems under shared control

The partitions of the state space developed in Chapters 4 and 5 can b&oused
inform the design of a user interface indicating to the user which modesyjf an
can safely be switched to given the current delayed measurement. Qécbare,
“safety” is interpreted in the sense of theoretical stability, as given in Diefis
4 and 1 and Lemma 2. When performance and safety requirements godbeyon
stability (e.g. aerodynamic envelope protection in A/C) additional analysis and
design methods are required.

Computational techniques for verification can create new levels of coide
and reliability in safety-critical systems such as as aircraft autopilots, dxyigir
ing where failures might occur, and how human operators can avoid thé&8a|7
39, 65]. Verification of human-automation systems introduces further carhple
because it involves not only the automation, but also the way in which theniser
teracts with the automation [6]. The user-interface both provides informiatite
user about the underlying automation, and allows the user to issue input calama
to the system. Formal methods have been used to verify user-interfacetechad
discrete event systems [1.1, 15, 19, 34, 39]. Estimation has been ustitipade
the human’s actions [45] through patrticle filters. We consider continugateras
that have inputs from both the human and the automation, and extend rigiachab
analysis and controller synthesis [45, 54, 65] to human-automation systetas u

47



continuous shared control. Since we cannot guarantee what actidmsntiza will
take, we focus on guarantees that the correct information has beedgutdo the
human, in order to achieve a desired task. Whaevthis information is displayed
is vitally important to effective human-automation interaction, we restrict trgse
to the portion of this problem we can quantifyhatinformation is displayed.

We begin with a description of the continuous system under shared ctmtrol
be studied in this chapter. We then introduce reachability techniques applied to v
ification and develop an algorithm for generating provably correctinserfaces.
The chapter concludes with an example: a civil jet aircraft operating imtrak
mode.”

6.1 Modeling

Consider a continuous system under shared control
%= f (X, Uc, Up) (6.1)

with statesx e .2” C R", automation-controlled continuous inpute % = [uU., Uc],
human-controlled continuous input € %, = [uy,, Un], with u, < 0,T, > 0. We as-
sume that the automation inpug= uc(X) is strictly a function of the state, whereas
the human input, = un(r) is a function of a human-controlled reference input
r € % = [I'min,'max]. Consider the following motivating example.

Example 2. Consider the double integrator system

X = AX+B(Ug(X)+ Un(r))

01 T
A=y o]’ B:[o 1] (6.2)
W(X) = ~3-signixs), () =r

with state xc 2" C R?, automatic control input g [—3, 3], human control input
un € [—3,3] and constraint set” = [-5,5] x [-5,5].

Consider trajectories starting frorf0) = [4,3]" € ¥ under different human
inputs (Figure 6.1). 1) The human input= —%uc(x) drives the state out of the
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Figure 6.1: Trajectories for Example 2 starting froxi0) = [4,3]" for which:
1) (¢) the user acts as a disturbance@)the user is “hands-off” and 3)
(A) the user acts as a control input. The constrainset drawn with
a solid red line.

constraint setq), effectively acting as a disturbance, leading to safety failure. 2)
When the human is “hands off” the controis=£ 0), the resulting trajectoryj also
exits the constraint s&f. If system safety is to be preserved the hunmarstassist

the automation. 3) When the human input uc(X) co-operates with the automa-
tion. The resulting trajectory/{) remains within the constraint s&t, preserving
system safety.

6.2 Invariance under shared control

In order to accomodate a system under shared continuous control,svietakac-
count how interactions between the human input and the automation inpett affe
system safety. Our approach is to broadly classify the human’s inpliy agdistur-
bance, driving the system to unsafety, 2) neutral (“hands-off”))ying un(r) =0,

or 3) a controlled input, assisting the automation in preserving safety. Gorlal
following three types of invariant sets.

Definition 5. For a set#] C 2 to beinvariantwith respect to a constraint s&t,
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all trajectories Xt) which start in’#; must remain withiri” for all t > 0 for all
continuous human inputLe %,.

W = {X(0) € € | Yunh € %, Juc € % such that xt) € € Vt > 0} (6.3)

Definition 6. For a set#(;; C 2 to beuser-invariantvith respect to a constraint
set%, all trajectories Xt) which start in’{;; must remain withirg” for allt > 0
for all un, € 24, € .

#01 = {X(0) € € | Yuh € %) Juc € % such that xt) € ¢ Vt > 0} (6.4)

Definition 7. For a set#{(,a C 2 to beuser-assisted-invariamtith respect to a
constraint sets’, there must exist a control input pafun, Us) € Za1 X % such
that all trajectories Xt) which start in{;; will remain within¢ for allt > 0. Here,
Usn < Un.

Hoa = {X(0) € € | Iun,Uc) € 2 X % such that k) € € vt >0} (6.5)

Invariant sets are computed by effectively treating the human input as a dis
turbance input. Often, this very conservative assumption lead4 te {0}, and
in many systems, treating the operator as a disturbance is not realistic g nece
sary. By bounding the control authority given to the user when theydimegeas a
disturbance, a less conservative and possibly more useful resuieaatained.

User-invariant sets are effectively computed by ignoring the human {@aguit
suminguy = 0), hence some human inputs (outside the allowable range) may cause
the state to exit the constraint set. The guarantee of safety is weakeothan f
variant sets.

A user-assisted-invariant set represents the portion of the stateispahizh
it is possible for the human to apply a prescribed input which maintains system
safety.

The important distinction between user-invariant and user-assistedainva
sets is that there are portions of user-assisted-invariant sets in whid¢tuizn
mustapply an input to preserve system safety, as the automation is unable to pre-
vent failure on its own. By contrast, in a user-invariant set, the humayapply
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an input to assist the automation to keep the system safe, but does nod have
user-invariant sets, bounds on the human input can be interprete@esnamen-
dation — remaining within these bounds guarantees safety, but exceeglingvit

not cause failure. In user-assisted-invariant sets, the constradmsueh stricter —

an input must be applied to preserve system safety, and failing to do sovevilt e
tually lead to a violation of the safety constraints. The relationship betweea thes
sets will be described in Section 5.3.

6.2.1 Using invariant sets to create a user-interface

The algorithm in [54] for user-interface design for supervisory lt/Bystems to
preserve system safety involves three steps: 1) separation of thig Isylstem
into subsystems which contain no human-initiated discrete inputs, 2) calculation
of the reachable set (to be defined formally in the next section) for edodystem,
and 3) abstraction to a discrete event system based on the reachahility Tee
reachability result partitions the state-space into intersections of “safaheafe”
regions in each subsysten®ur aim is to abstract (6.1) to a discrete event sys-
tem that conveys the safety information of multiple invariant, user-invariadt a
user-assisted-invariant set¢;, i € {1,...,n}, to the user. Having this information
allows the user to determine if the current state is in an invariant, user-iagaor
user-assisted-invariant subset of the state space, and consequdrdther or not
there are safety restrictions on the human inpufo accomplish this, 1) compute
the invariant, user-invariant and user-assisted-invariant sets QfW&H respect

to the constraint set’, and 2) abstract the computed invariant, user-invariant and
user-assisted-invariant sets to a DES. This DES conveys the safetynaifon
contained in these sets to the user.

6.3 Calculating reachable sets

Computing the reachable set involves representing all of the states whieh ha
a path to a target set. As in [64], far= f(x,u,d), with control inputu € %,
disturbance inpul € 2, and constraint séf’, the “target” is encoded implicitly as
alevel set function? o = ¢° = {x€ 2 | Jo(x) < 0}, Jo: 2" — R. The boundary of
the target set is propagated backwards in time according to the systemidgna
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Figure 6.2: The safe, marginally safe and recoverably safe géts %, and
#1 (Example 2), computed by treating the user as a disturbance, “hands
off” and as a controlled input, respectively.

Finding the backwards reachable éft) requires solving the terminal value time-
dependent modified Hamilton-Jacobi partial differential equation

0 = ‘”f;(’t) +min [O,H (x, “g(’t)ﬂ

AIx)\ AOM
H (x ) = maxmin f(x,u,d
’oox uew deg 9% (x,u,d)

(6.6)

with J(x,0) = Jo(x) fort = 0 such that the invariant seti (t) = {x€ 2" | J(x,t) > O}.
Although the user typically acts to preserve system safety, it is extremely dif-
ficult and often non-generalizable to explicitly model a user’s control astién-
stead, we compute an arbitrary number of reachable sets that encongpédss th
range of possible user behaviors. Define theZgat %, as a reduced set of inputs

U = 0%, a; €[0,1], i € {—N,...,0,..M} (6.7)

whereN andM are the arbitrarily chosen number of safe sets and recoverably safe
sets, respectively.
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6.3.1 Safe sets

Leti = —N,...,—1, with N the number okafe sets to be calculated by solving
(6.€) with the Hamiltonian

oy AIx)\ L a3(xt) T
Hi (x, % ) = max min =5 f(X, Uc, Un) (6.8)
and% = o;%, a; € (0,1] aj+1 < a; such that’4.1 C %. Note that the following
property holds [16]:

W NCHW N1 C...CH 1 (6.9)

The sets¥?;, i € {—N,...,—1} are “safe” because they represent portions of the
state-space in which the user can apply any input % without violating the
constraints for safety. The invariance preserving control lamotenforced along
the boundaries of the sets, allowing the user to transition between setsdsirano
inputsun, ¢ %.

Example 2 The safe se¥ 1, calculated with

_ T
H_q (x, aJ(gf(”) = max min aJlgf(’t) f (X, Uc, Un)
UcE€ X UnEX -1 (6.10)
_9J(xt) aJ(xt)
- (7X1 X2+‘ (9)(2 |

and%_1 = 3% is shown in Figure 6.2. As expected, the initial conditigd) =
[4,3]", lies outside of/ ;.

6.3.2 Marginally safe sets

Leti = 0, and%y = 0 to calculate thenarginally safe se¥; by solving (6.6) with
Hamiltonian

:
Ho (x, ‘“W)) — max228" £ (x, ug, 0) (6.11)

The set#} is “marginally safe” because it represents the portion of the state-space
in which the automation is capable of maintaining system safety without user in-
terference or assistance. As long as the user remains neutral, ois*bfihthe
controls, safety is guaranteed.
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Example 2 %4 (shown in Figure 6.2) is calculated with

.

Ho (X, mg;n) = maZ(’th’;’t) f (X, Uc,0) (6.12)
Ucegc .

23(x, 2J(x,

0(;11))(2 +3 a(;;t)‘

As expectedx(0) = [4,3]T ¢ #5.
Lemma 3. Safe sets and marginally safe sets are user-invariant.

Proof. By constructionFor %4, i € {—N,...,—1} computed withu, € % C %, for
allx(0) € #;,x(t) e Cforallt > 0aslong asi € %. Thus#;, i€ {—N,...,—1} are
user-invariant by definition. Similarly, fo# computed withuy, € 29 = 0 C %,
for all x(0) € #;, x(t) e C for all t > 0 as long asuy, € %. Thus#j is user-
invariant. Ol

6.3.3 Recoverably safe sets

Leti =1,...,M, with M the number ofecoverably safe set4; to be calculated by
solving (6.6) with the Hamiltonian

(o X)) aIx) T
Hi (x 2552 = max max?Et £ (x, e, ) (6.13)
with % = ai%, a; € (0,1] and a; < ai,1 such thatZ C %.1. Note that the
following property holds [16]:

WL CWoC...C W (6.14)

The sets#4,i € {1,...,M} are “recoverably safe” because they contain portions of
the state space in which there always exists a control pgitc) € % x % which
maintains system safety. As with safe sets, the invariance preservingldamtr

is notenforced along the boundaries of the sets. The recoverably safgreete
information about what the usetustdo in order to preserve system safety, in case a
disturbance input (external or user-applied) pushes the system intdfiguration
that the automation is unable to recover from on its own (i.e. states outsig .of

54



Example: 2 The recoverably safe s#t; is calculated with

aIxy)\ aIxy) T
Hi (X, ax ) = urfegzzurh@é o (X Uc,Un)
AJ(xt) 2J(xt)

= @Xl X2+6| dxz ‘

(6.15)

and?4 = %. Sincex(0) = [4,3]T € 74, with appropriate user assistance, a trajec-
tory starting a(0) will remain safe.

Lemma 4. Recoverably safe sets are user-assisted-invariant.

Proof. By constructionFor %, i € {1,...,M} computed withu,, € % C %, for
all x(0) € #;, there exists a control pafun, Uc) € % x % such thaix(t) € ¢ for
allt > 0. Thus#;, i € {1,...,M} are user-assisted-invariant by definition. [

To summarize, we constructdt M + 1 sets to encompass all possible human
input. Combining (6.9) and (6.14),

W NCH N1 C...CHCH1LC...CH¥u (6.16)

The set#j acts as a reference — if the system is in a state outsi@),oh human
input mustbe applied to prevent failure, as the automation is unable to preserve
safety unassisted. The sg{, corresponds to the standard “safe” invariant set
[54]; its complement#’ corresponds to the unsafe subset of the state-space. A
controller could be synthesized to ensure that thé/gets never exited and safety

is preserved.

6.4 Abstraction to a DES

Definition 8. Let the index i denote the safety level of the invariant&etwhere
safety level decreases as i increases. Let the safety level of a poidf X R" be
given by the smallest i such thatx#. A region of the state spac# C ¢ has a
homogeneous safety levidf all x € .# have the same safety level i.

Definition 9. A DES abstraction of a continuous system under shared control (6.1)
is consideredsafety informativeif 1) each mode corresponds to a region of the
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state space which has homogeneous safety level and 2) the DES cohedlysr
the system is in a user-invariant or user-assisted-invariant subske¢state space.

6.4.1 Generation of modes

Leti=—N,...,0,...,M, whereN is the number of safe sets, aMlis the num-
ber of recoverably safe sets. Define a map from the continuous state-&pthe
discrete state-space, based on a partition that divitieinto N + M + 2 disjoint
regionsg; as follows:

1. W_N — 0-N
2. #inWi_1—q, fori=—-N+1,....0,...,M,
3. 7M — Qunsafe

Lemma 5. Modes defined by the above mapping represent cells of the state-space
with homogeneous safety level.

Proof. By construction:For # N — g_n, the cell defined by# y is of homo-
geneous safety levelN. For modes#,N#i_1 —qi, i € {-N+1,...,0,....M},
recall that by (6.16)7;_, C #;. Therefore the cell¥; N#;_1 are by definition of
homogeneous safety levielThus the modes;, i € {—N,...,0,...,M} correspond
to cells of the state-space that have homogeneous safety level. Ol

Example 2 The cells in Figure 6.2 map to modgs1,do, 01 and Qunsafe as
shown in Figure 6.4.

6.4.2 Transition function

Define the set of evenis= { 0yp, Odown}, COrresponding to an increase or decrease
in safety level, respectively. These events are state-based transitadnsctur
when the state crosses into a neighboring cell:

Ouwp: XAT)eHNHi1—X(tT) € #ia

1 - (6.17)
Odown: X(AT)EHanNW | —>x{AT) e W i_1nNH,
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An important consequence of (6.16) for this mapping is that transitions rign o
occur between neighboring modes. Hence the transition funBtismefined as

R(0i,0up) = Gi-1, i€{-N+1,..0,..,M}
R(Gi, Odown) = Gir1, i1€{-N,..,0,...M—1} (6.18)
R(OM, Odown) = Ounsafe

Note that in generaly,, may not exist.

6.4.3 Construction of the DES

The discrete event syste@= (Q, %, R) is constructed as illustrated in Figure 6.3.
Since the designer decides how many modes to gendsatepf minimal mode
cardinality. Details of the abstraction (and proof of its determinism) are prege
in [54].

Lemma 6. The discrete event system=(Q,%,R) as defined in Figure 6.3 is
safety informative.

Proof. The first condition is satisfied by Lemrna 5. The second condition is satis-
fied by construction: modes, i € {—N,...,0} correspond to user-invariant subsets
of the state-space by Lemma 3, and modes € {1,...,M} correspond to user-
assisted-invariant subsets of the state-space by Lemma 4. The traR&i00qown) =
gx from (6.18) corresponds to a transition from a user-invariant to aasssted-
invariant subset of the state-space. Ol

The main advantage is that this abstraction provides the user with a warn-
ing that their actions may lead to unsafety. When in a user-invariant mode (i.e.
g, i € {—N,...,0}), the user is informed of safety restrictions on their input, but
also free to violate these restrictions if they choose to. Is the user inputesola
safety restrictions, the system simply transitions to a user-assisted-ivaode
(i.e.qi, i € {1,...,M}), indicating what input the usenustapply in order to main-
tain system safety. Essentially, the user-assisted-invariant modes adiuffer,
allowing the user to “recover” to a higher safety level before the systaerethe
unsafe region of the state-space. Having multiple user-assistant-inviantaes
provides more opportunities for correction. As the mode iridegreases, so does
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Figure 6.3: DES G = (Q,%,R), an abstraction of (6.1), constructed using
(6.16) and reachability calculated with Hamiltonians (6.8). (6.11) and
(6.13). The dashed transitions indicate a repeated pattern of transitions
for a generic system witN + M 4 1 modes, eventually passing through

Jo-

Odown Odown Odown

SN T T N

O_up Uup Oup

Figure 6.4: DES G = (Q,Z,R) for Example 2. Note that|_; represents a
region in the continuous state-space that is sgfeepresents a region
that is marginally safeq, represents a region that is recoverably safe,
andqunsaferepresents a region that is unsafe.

the necessity for control action - a designer may choose to have inagydesgais
of alerts corresponding to increasing level of unsafety.

For Example 2, this algorithm results in the DES in Figure 6.4q91gp, the
user is free to apply any inplit| < 2 without risking transitioning to a lower safety
level. If the user violates these constraints, the system may transitioggntia
this case, if the user is “hands-off” the controts< 0), the automation will still

be able to maintain system safety. Once again, the user is free to apply inguts th

drive the system to a lower safety level. However, once;irthe usemustapply
an inputr = 3-sign(xz) to maintain that safety.
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6.5 Example: aircraft in manual mode

Consider manual control mode of the aircraft longitudinal dynamics intedu
in [4€], in which the flight crew sets the reference flight path angle, whiée th
automation performs low level control tasks. Using the short period appation,

the statex= [a, 0, y] consists of angle of attaak, pitch ratef, and flight path angle

y [4€]. The reference inpute & consists of the reference flight path angle yor
Elevator deflectiord is used to implement a static full-state feedback controller,
yielding the closed loop dynamics [48]:

fman (X,1) = Ax+B(U(X) +Un(r))

(6.19)
Ag X+ Bgr
with ug(x) = —KX, up(r) = N;r and
06486 09376 —0.0963
Au = | —26226 —3.0477 —3.0803
0.6486 00624 00963 (6.20)
;
By = -23[ -00418 —1.3391 00418

whereK is a state feedback matrix such th#gf has eigenvalues at1.2, —1.2 +
0.12j, andN; = —2.3.

State constraints (due to the flight envelope) and control constraintstqdue
feedback under saturation) define

Jo(X) = min{J5¥x),I5(x)}, with
JEX) = ming{X— Xmin, Xmax— X}
J5x) = ming{Umax— MaXcz d(X,),
Min;cz Oe(X,1) — Umax}

(6.21)

with state boundSmin < X < Xmax, Xmin = [—11.5°, =15, —13.3°], Xmax = —Xmin,
Umax= 50°, andr € #Z = [-13.3°,13.3°].

Choosing\N =M =1, invariant set¥” 1,%#p and#1 are calculated as shown in
Figure 6.5 (dark green solid, light yellow transparent, and red megtectgely).
Safe set#” ; is computed by bounding the pilot’s input to 25%%f a reasonable
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Figure 6.5: The solid green (dark), transparent yellow (light) and red mesh
sets represent, respectively, safe #et, marginally safe se¥y, and
recoverably safe sé¥;. #_1 is user-invariant (the user can apply any
inputuy, € %71 without affecting system safety), although also user-
invariant, is computed assuminog(r) = O (the automation can preserve
safety without interference or assistance from the us#f).is user-
assisted-invariant — for states within this set but not containétjrthe
usermustapply an input to preserve system safety.

estimate of pilot behavior under normal operating conditions, with= %';X"W
U 1 = d_1%, and Hamiltonian as defined in (6.8). Marginally safe ggtis
calculated as ir (6.11). Recoverably safe’gis calculated withay = % =
%, and71 = a1% — we assume the pilot has full control authority, as per
(6.13).

The state space is partitioned into four disjoint regiot¥s:1 — g_1, #oN
W _1— Qo, V1N W o — qu, and# 1 — Qunsafe The transition functiolR and DES
G are shown in Figure 6.4 (the same DES as in Example 2, although the eygnts

and ogyown correspond to state-based transitions defined in Figure 6.5).

The DES can be used as a user-interface, whose main benefit is thaghhe fl
crew knows at all times 1) what inputs can be applied without affecting syste
safety, 2) what inputs can be applied that reduce system system satfletyitw
causing failure and 3) what inputs must be applied to preserve systety. saf
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Chapter 7

Conclusions

7.1 Summary

Unmanned aerial vehicles, both as individiual aircraft and as fleets, davide
range of applications — beyond traditional military uses, they can be ussddh
diverse tasks as surveillance and reconnaissance, search eunel i@sd scientific
data collection. These versatile aircraft remove highly trained pilots anchiope
from potentially dangerous situations, and allow for extended operationdge
However, like most aircraft, UAVs are fundamentally hybrid systems, wivicén
combined with remote operation, introduces new challenges to their design and
analysis.

The work presented in this thesis contributes towards extending and combinin
hybrid and distributed systems theory, such that the resulting systemsaablsc
and robust to switching delays. For fleets of identical switched linearragste-
der distribtued control, | showed how to prove GUAS under arbitrary &witc
in a scalable and computationally efficient manner. For systems not shoven to b
stable under arbitrary switching, | introduced a delay buffer to traditistadé con-
straint based switching schemes such that stability is preserved desptiedded
switching delay. This has applications to a remote supervisory controlleetigg
mode switches over a communication channel that introduces delays. résake
generalize to linear switched systems, as well as to certain classes of aonline
switched systems. In all cases, the delay buffer and its effect on sysaduitity

61



was computed by bounding the derivative of each mode’s Lyapunatifumover
the time delay period, essentially examining a worst case scenario. However
also showed that for UAS systems, the delay buffer approacheseztablishing a
wait-time condition, since the effect of the time delay on state based switching be-
comes negligible by waiting long enough. With wireless communication becoming
more and more reliable, and unmanned vehicles becoming more complex and au-
tonomous, our theory provides a step forward in allowing the benefits itftsvad
systems to be safely incorporated.

| conclude with results in interface design for systems under shared gonsin
control based on formal verification techniques, motivated by applicatibopitot-
automation interaction. | developed an algorithm for generating a provahigat
user interface that accomodates all possible user intent. In doing smat dimit
the user’s actions, but rather provide the information necessary for tih@scer-
tain the effects of their actions on system safety. | conclude with an exampéelb
on a model of an actual incident in which faulty pilot-automation interaction led to
catastrophic failure of a civil jet aircraft.

7.2 Future work

Avenues for future work include, but are by no means limited to, extendieggth
results to input to state stability of distributed hybrid systems, using our results to
extend optimal control of switched linear systems to be robust to a switchiag de

as well as dealing with quantized and corrupted state measurements.

In Chapter 3, a key restriction is that all subsystems switch modes simulta-
neously. | aim to address this, as in real-world applications this may prove to b
an unrealistic assumption. A first step in this direction would be to show that for
systems with slower dynamics, if there is a relatively short period of hederity
amongst the vehicles during switching, then this period can be neglectedutvitho
significant consequence to system stability or performance.

In Chapters 4 and 5, | assume that all modes are stable. It is important to
extend these results to systems in which modes are unstable, such that stabiliz-
ing switching schemes robust to switching delays can be developed. Nigimy h
performance systems (e.g. fighter planes) require switching to unstabksrmd
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achieve necessary behavior. Furthermore, the work presentedéntmweshapters

is certainly conservative, as the bounds used in obtaining the resultstaight,

and improvements in this area would certainly add to their usefulness. Finally, th
investigation of heuristics for choosing the various Lyapunov functioich shat

the safe switching regions are maximized would prove useful as well.

Chapter 6 limits analysis to continuous time systems. Although an informal
merging of these results with hybrid system verification is presented in §8],
complete theory of user-interface design will necessitate a formal combirttio
the two results into general definitions, theorems and algorithms. How the con-
cepts of safe, marginally safe and recoverably safe subsets geadoatihybrid
space needs to be investigated. Furthermore, it is important to note thatienly d
crete information is presented to the user as of yet. The inclusion of coosnuo
time information, such as time remaining in the current mode given the present
state/input configuration, could prove beneficial.

Finally, our approach of exploiting the block upper-triangular structtinreamny
distributed systems under cooperative control agrees well with recemtitgies
used to reduce the complexity of reachability computations [40]. If oultsesan
be combined with these recent advances, the result will be large distriygtmns
that are provably safe, despite bounded control authority.
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