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Abstract 

Mathematicians, mathematics researchers and educators are now arguing that an essential aim of 

mathematics education should be to equip students so they can adapt to new mathematical 

situations and use mathematics to solve authentic problems that arise in day-to-day life. This, 

mathematical flexibility – defined here as adaptation when dealing with number, magnitude or 

form – is important to mathematics researchers and educators, but the classroom context may not 

always promote flexibility. Building across converging lines of cognitive, social-psychological, 

and neuro-biological research, this study investigated whether mathematical flexibility might be 

profitably understood as a network of functional components. This study was designed to: 1) 

investigate the functional components of mathematical flexibility and contrast them with 

functional components of mathematical competence; and 2) evaluate the effectiveness of a 

network approach for understanding the relationship between environmental and individual 

components of mathematical flexibility. Results indicated that flexibility appeared to be 

associated with network activity which co-activated two or more other networks, while 

competence appeared to be characterized by a series of network activations which occurred 

individually and in sequence. Further, results suggested that the case study approach used here to 

identify network activity could reveal meaningful dynamics in network activity, and these 

dynamics could be related to flexible or competent performance. Implications for researchers and 

practitioners are identified in the discussion.  However, because this study was constrained by 

the ways in which flexibility was conceptualized and features of the methodology, limitations 

and directions for future research are also suggested.  
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CHAPTER ONE 

Introduction 

This study was designed to investigate the components of mathematical flexibility – a 

construct used in this study to describe mathematical activity that is contextually sensitive and 

adaptive. This investigation is important because some mathematicians, mathematics researchers 

and educators are now arguing that an essential aim of mathematics education should be to equip 

students so they can adapt to new mathematical situations and use mathematics to solve authentic 

problems that arise in day-to-day life. This skill set has been increasingly emphasized in Western 

Canada, where recent curriculum documents argue that successful mathematics education occurs 

only if students take mathematical risks, are curious and engage in mathematical projects 

(Governments of Yukon, Alberta, British Columbia, Manitoba, Northwest Territories, Nunavut 

and Saskatchewan, 2008). These documents suggest that the entire project of mathematics 

education exists to “prepare students to use mathematics confidently to solve problems” 

(Government of Yukon et al., 2008, p. 4). 

Similarly, researchers like Allan Schoenfeld have emphasized a view of mathematics 

education in which learners are "capable of interpreting the vast amounts of quantitative data 

they encounter on a daily basis, and of making balanced judgments on the basis of those 

interpretations.  …  They are flexible thinkers with a broad repertoire of techniques and 

perspectives for learning to think mathematically, dealing with novel problems and situations" 

(Schoenfeld, 1992, pp. 4-5). The study is based on the assertion, defended below, that deeper 

understandings of this mathematical flexibility can support the aims of both mathematics 

educators and academics investigating this phenomenon.  
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What is Mathematical Flexibility? 

Adaptive navigation of a changing mathematical environment is what I term 

mathematical flexibility. This phenomenon has been widely investigated across a variety of 

research programs. Across programs, terminology and research methods vary. These research 

programs have used a variety of other monikers: for example, number sense (Greeno, 1991; 

Dehaene 1999), central conceptual structures (Case & Okamoto, 1996) and mathematical 

thinking (Schoenfeld, 1992). Each construct foregrounds particular aspects of mathematical 

flexibility. 

One of the goals in this study was to triangulate across these research programs, and so I 

am using “mathematical flexibility” in a literal, dictionary sense, so that this construct  

encompasses enough to be consonant with multiple theoretical perspectives.  Flexible refers to "a 

ready capability to adapt to new, different, or changing requirements." Mathematics refers to 

"activity involving quantity, magnitude or form."  Thus, flexible mathematics describes 

adaptation to new, different or changing requirements when engaging with quantity, magnitude, 

or form.  

Researchers have already identified important aspects of mathematical flexibility. 

Drawing across research programs, four possible elements of mathematical flexibility can be 

identified. Table 1 relates these elements of mathematical flexibility with the sources of evidence 

which support their validity. 

Distinct Modules in the Brain   

 A team of cognitive scientists led by Robbie Case has argued that specific, semi-stable, 

networks of concepts and conceptual relations seem to undergo constant evolution and periodic 

revolution in the minds of students doing math (Case & Okamato, 1996).  These networks 
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identified by Case et al. (1996) seem to evolve and merge to support increasing levels of 

mathematical flexibility, first with whole numbers and eventually with rational numbers.  

Case‟s work (e.g., Case & Okamoto, 1996) specifies particular modules required for 

whole number flexibility and suggests how these mental structures develop. In this account, Case 

and Okamoto argue that a visual-spatial mental structure which recognizes which of two 

quantities is “more or less” becomes integrated with a structure for a socially-learned verbal 

counting routine. This composite structure functions as a mental number line for single-digit 

whole numbers.  After exposure to specific learning experiences and endogenous cognitive 

development, multiple counting lines are created for the 10s, 100s, and so on. Finally, Case and 

Okamoto suggest, these multiple counting lines are coordinated to create an “integrated 

bidimensional” structure – what teachers might refer to as an understanding of place value (Case 

& Okamoto, 1996).  

Using brain imaging research, Dehaene and his team have provided converging evidence 

for the existence of the structures proposed by Case: modules for „more and less‟ and verbal 

understandings of number. These studies have identified a horizontal section of intraparietal 

sulcus (HIPS) which shows increased activation when perceiving number, no matter what form 

the number is presented in. In Dehaene‟s (2004) research, the HIPS has been the only area which 

shows increased activation when subjects have been asked to identify which of a set of stimuli 

are numbers and it has not activated when subjects have been asked to look for colors or letters. 

The HIPS has been found to respond to subliminal presentation of number. It also shows 

increased activation in approximation tasks more than exact or rote ones (see Dehaene, Molko, 

Cohen & Wilson, 2004 for a review of this literature). Thus, Dehaene argues that the HIPS 

appears to function to recognize magnitude.   
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However, studies of subjects with brain lesions suggest that this fuzzy number line is 

distinct from other, verbal understandings of number. Dehaene, Dehaene-Lambertz and Cohen 

(1998) suggest that lesions to the HIPS “can be selective for calculation, with reading, writing, 

spoken recognition and pronunciation of Arabic digits and number words not being affected” (p. 

358). In one lesion study, the subject could recall some multiplication facts, though they were 

unable to discern the meaning of these facts (Dehaene et al., 2004). On the other hand, a patient 

with an intact HIPS but lesions to verbal areas could no longer retrieve multiplication facts, but 

could compare the magnitude of two numbers, do simple arithmetic and bisect an interval 

(Dehaene et al., 1998).  Thus, the HIPS appears to have functions that are distinct from other 

mental structures used in interacting with number, and Dehaene (2004) has found evidence of 

other brain areas responsible for interacting with number in a verbal, nominal way.  

These two research programs converge to suggest that there is a structure in the brain 

which functions to evaluate more and less and another that facilitates verbal interaction with 

number. It appears that these structures are distinct because brain lesion studies demonstrate their 

separability, and developmental evidence from Case et al. (1996) suggests that they begin as 

separate structures, merging only as experience and cognitive development allow. This modular 

structure can be considered a characteristic of cognitive systems, including systems for 

mathematical flexibility. 

New Structures May Be Old Structures, Newly Integrated  

In many theories emerging in cognitive psychology, complex cognitive activity is 

conceptualized as the integration of simpler cognitive structures. For example, Hauser (2006) 

conceptualizes human morality as the integration of structures for processing emotional 

experience and structures for higher level social decision making, using a third metacognitive 
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structure in the frontal lobe to coordinate the activity of these structures. Similarly, Adams 

(1998) argues that cognitive structures for reading are composed of phonological, orthographic, 

meaning and contextual “processors” which integrate to facilitate the rich cognitive activity we 

call „reading.‟ 

In studies of mathematical flexibility, complex mathematical cognition also tends to be 

conceptualized as integration of simpler cognitive units. For example, Dehaene‟s 

neuropsychological account of number sense argues that three distinct structures for processing  

number – as Arabic numerals, verbal sounds, and analogical magnitudes – combine to produce 

our robust sense of number (Dehaene, Piazza, Pinel & Cohen, 2003).  

Modeling development as the integration of already-present mental structures is also 

nicely illustrated by Moss and Case‟s (1999) work on rational numbers. Their 1999 paper on 

rational number sense (RNS) traces the development of a conceptual network which integrates 

visual-spatial and symbolic representations of rational numbers into a flexible understanding of 

rational numbers.  

In Moss and Case‟s theory, for which they have considerable empirical support, the RNS 

network consists of two integrated networks: one for doubling and halving numbers using verbal 

mental structures and another for visual-spatial conceptions like “half-full” and “mostly-empty.” 

My interpretation of this theory suggests that, if a student with robust RNS is asked to figure out 

how much liquid is in a quarter-full, 600 ml jar, their visual spatial structure for dividing "full" 

quantities into halves and quarters will connect with a symbolic/numerical structure for "halving 

numbers,” allowing them to simultaneously quarter both the visual-spatial quantity and the 

number. If a student‟s conception of doubling or halving is not connected with visual-spatial 

understandings of “full,” and “quarter full” their understandings are not integrated. This student 
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may be able to mechanically calculate ¼ of 600, but might be unable to intuit that “a fifth-full” 

of 600 ml is a little less than 150 ml. Or, they may be able to fill the jar so that it is ¼ full, but 

have no idea of how to figure out how much liquid is in the jar.  They may even be able to do 

both without understanding that the two operations are connected. However, Case and Moss 

posit, once a student has developed RNS (a new cognitive structure composed of integrated old 

structures), one conception is associated with the other, and students are able to estimate, solve 

“word problems,” detect errors that are off by an order of magnitude, and otherwise interact 

competently and fluidly with rational numbers. Recent fMRI research has supported this 

conceptualization, suggesting that by adulthood fractions are perceived as a whole and linguistic 

and visual spatial systems are fully integrated, so that linguistic conceptions of fractions are 

immediately perceived in terms of their magnitude and size and vice versa (Jacob & Neider, 

2009). 

Thus, research suggests that new mental structures, including those for mathematical 

flexibility, are created through the modification and integration of existing structures; and that 

these new structures function in ways that are qualitatively different from the functions of the 

structures that compose it.  

Same Behaviour, Different Thoughts 

Case‟s work (e.g., Case et al., 1996; Case & Okamoto, 1996; Moss & Case, 1999) has 

suggested that cognitive structures for mathematical flexibility tend to develop uniformly and 

evenly in terms of the observable behaviours produced by those structures. However, this same 

research suggests that similar behaviors can emerge from different cognitive activity. For 

example, Moss and Case (1999) asked three Grade 4 students to fill in 3/4 of a pie which had 
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been broken into 8 pieces.  Three students gave different explanations as they successfully filled 

3/4
th

 of the pie: 

 “There are two slices in a quarter so you need six [slices] to make three quarters [shades 

them]”  

 “[Shades six sections] I just keep the quarters and forget about the eighths.”  

 “I don't know ...Well let me see .... This is a half [student shaded four sections]... so you 

would need two more to make 3/4 [shades two more sections]” 

      (Moss & Case, 1999, pp. 137-138) 

Moss and Case argue that, in each of these examples, students made use of the same underlying 

structures (the visual-spatial and halving/doubling structures mentioned above). However, the 

particular way these structures integrated and activated depended on the particular student and 

the context. 

 Case‟s research suggests that different thinking paths can lead to the same outcome. 

Each student considered the novel problem in his or her own way, utilizing a point-of-view 

which allowed seeing the solution, yet each shaded the pie in the same way.  It follows that 

mathematical flexibility requires adaptability, not just the use of a particular strategy or point-of-

view to achieve an outcome. 

Seizing Opportunities for Flexibility  

 Even if structures for mathematical flexibility exist and are well integrated, adaptive 

performance requires that a person see and utilize an opportunity to be flexible.  For example, 

Greeno (1991) cites an account of a Brazilian street vendor who sold coconuts.  The vendor was 

accustomed to selling coconuts in units of three or one coconut.  One day a buyer requested ten 

coconuts while a researcher was observing. The researcher reported that the vendor, unused to 
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working with multiples of ten, reasoned aloud: "Three will be 105 ... with three more, that will 

be 210 ... I need four more....That is (pause) 315 ... I think it's 350."  (Carraher, Carraher & 

Schliemann, as cited in Greeno, 1991, p. 172).  

 I interpret this example as showing distinct cognitive structures combining in novel ways 

to produce adaptation to a novel context. The street vendor, unaccustomed to thinking about ten 

coconuts, used a "landmark" in his "quantity space" (Greeno, 1991), namely the price of three 

coconuts, to adaptively construct a price for ten coconuts. 

 Importantly, the vendor detected an opportunity to interact with this customer, using 

modules he had already acquired, to complete a unique and novel transaction.  One can easily 

imagine the vendor inflexibly saying "you must buy nine, or twelve coconuts" because he could 

not think of a way to calculate the cost. 

 Thus, it follows that seeing and using this opportunity to recombine his existing 

knowledge was essential to the flexibility the vendor demonstrated. These "characteristics of ... 

arrangements in the environment that support their contributions to interactive activity" have 

been termed affordances (Greeno, 1994, p.341).  Without detecting and using opportunities for 

novel mathematical activity – using affordances – mathematical flexibility may be impossible. 

Mathematical Flexibility in Context 

 The concept of mathematical flexibility is applied within a complex and multi-faceted set 

of research and teaching contexts. This section surfaces some of these contexts and discusses 

their implications for investigating mathematical flexibility.   

Mathematical Competence 

In contrast to mathematical flexibility, I argue that students may also engage in 

mathematical competence.  In this study, mathematical competence was defined as successfully 
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navigating mathematical activities without adapting preexisting mathematical knowledge. This 

definition suggests that mathematical competence exists relative to what a person has already 

been prepared to do and thus cannot be detected without knowledge of a person‟s past activity in 

a domain. If people adapt what they bring to a situation in light of particular mathematical 

affordances, they exhibit flexibility. If they navigate the situation without any adaptation or 

recombination of existing knowledge, and without attending to unique affordances in that 

particular situation, they exhibit competence. 

Teaching Mathematical Flexibility 

There is evidence that secondary teachers struggle when attempting to help their students 

become more flexible. For example, an investigation of teacher perceptions towards flexibility 

found that half the teachers studied did not believe lower achieving students should be taught 

“higher-order” mathematics at all because it would be too difficult and frustrating (Zohar, 

Degani, & Vaaknin, 2001).  In the context of the curriculum goals discussed above, this indicates 

that 45% of teachers in this study believed that the main goal of mathematical education – 

building mathematical flexibility – is unachievable for a sizeable subset of their students. 

Another study (Harel, 2008) focused on two teachers who had spent four weeks at a 

workshop where the  

workshop curriculum strongly emphasized meaning, and the workshop leader reinforced 

this at every opportunity. Asking participants to compare different solutions to 

nonstandard problems was one way of stressing meaning. The problems were unlike 

textbook exercises in that a correct solution method, and indeed the underlying 

mathematical content were not initially obvious (p. 117).  
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After the workshop, the two teachers were observed in the classroom. Subsequent analysis found 

that, even after training, meaning was de-emphasized in instruction in favor of procedural 

strategies justified on the basis of teacher authority rather than meaning. This analysis also 

suggested that, despite explicit training and teacher buy-in, students in both of the teachers‟ 

classes believed mathematics primarily involved procedural tasks.  

Flexibility and Linear Equations 

The present research study focuses attention on how students are mathematically flexible 

in the context of linear equations. In their research, Leinhardt, Zaslavsky and Stein (1990) have 

also focused on flexibility in linear equations, making a case for why this is important as an area 

of interest both to researchers and educators.  Leinhardt et al. (1990) highlight two aspects of 

linear equations which make it an important topic for students. First, they suggest that "functions 

and graphs is a topic in which two symbolic systems are used to illuminate each other” (p. 3). 

From the lens of mathematical flexibility, I conceptualize this domain as one where one symbol 

system (ordered pairs) substitutes for another (graphical) as students integrate structures that 

were previously distinct.  Second, Leinhardt et al. (1990) suggest that linear equations are a good 

way of examining patterns, because they allow focus on both the specific relation between two 

values and the graph or function that holistically describes that relationship. Linear equations 

facilitate simultaneous perception of holistic and individuated perceptions of mathematical 

relationships. 

Curriculum documents also suggest linear equations are an important domain for 

students. Linear functions are an essential part of the current BC Math curriculum (BC Ministry 

of Education, 2006) and have an even larger role in the new curriculum, which is being phased in 

in 2011.  A third of the current standard Grade 10 math course is devoted to linear functions (BC 
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Ministry of Education, 2006). Curriculum documents for Grade 11 and 12 assume knowledge of 

linear equations and curriculum documents for earlier grades emphasize developing structures 

for working with graphs and coordinates. 

Yet, despite the pedagogical and academic emphasis on flexibility in linear equations, 

insufficient research has examined flexibility in linear equations and in British Columbia (BC) it 

is underemphasized in instruction and evaluation. For example, 13 out of 15 problems on the 

most recently released provincial exam in BC have analogues in Math textbooks used in the 

province. Teachers, who expect these analogues on the exam, tend to prepare students for 

specific question types, removing the need for mathematical flexibility (personal experience). In 

12 years of working with students enrolled in Math 10 courses, I cannot remember a single 

instance of a teacher giving a student a task that required flexibility; almost every teacher I have 

observed has given explicit, step-by-step instructions for each problem type students will come 

across in independent work.  Thus, while mathematical flexibility in linear equations is an 

important curricular goal, researchers know little about it and teachers may struggle to help 

students become flexible.  

Fruitful Investigations into Mathematical Flexibility 

Understanding mathematical flexibility in terms of modular structures which integrate 

over time and experience to create new, functionally different structures may support the design 

and development of useful interventions. Two separate research groups studying mathematical 

flexibility have used this approach to design educational interventions.  

 As discussed above, Dehaene (2006) identified two sub-systems for encoding number: 

one for "non-verbal quantity representation and [the other for] developing symbolic 

representations of numbers, such Arabic numerals or number words" (p. 3). His proposal is that 
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these subsystems work together to allow for flexible estimation, calculation and numerical 

manipulation. After discovering these subsystems, Dehaene, along with Anna Wilson, built a 

software program that seeks to cement these modules together in the minds of students (Wilson, 

Dehaene, Pinel, Revkin, Cohen & Cohen, 2006). A trial of this program found improvement in 

measures of non-verbal quantity representation and subtraction. 

 Griffin (2004a) used a functional analysis she did with her research partner Robbie Case 

to inform an effective intervention to help students develop a "mental number line." Case et al. 

(1996) argue that two structures (subsystems) – one for detecting magnitude and another that can 

execute the counting routine – integrate, and produce this "mental number line." Griffin casts 

these systems in functional terms, suggesting that a counting schema "enables them to verbally 

count from one to five, use the one-to-one correspondence rule, and to use the cardinality rule" 

and a quantity schema "can compare two groups of objects that differ in size and tell which has a 

lot or a little" (Griffin, 2004b, p. 328). By looking at developmental progression of students 

across these functional capabilities, Griffin (2004b) designed a piece of software where each 

section build on the previous section, because they connect these subsystems in a way that is 

similar to natural development. After using this program, students were superior on all measures 

of mathematical and scientific tests used in the study (Griffin, 2004b). 

 Thus, identifying the functional subsystems that underlie a particular instance of 

flexibility has been a fruitful way of designing interventions that promote flexibility.  

The Present Investigation 

Mathematical flexibility, as defined in this study, appears to be a characteristic of 

successful math students and a major goal of mathematics education. However, flexibility is 

generally difficult to teach at the high-school level. In particular, linear functions is a domain of 
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high-school math that successful students must be able to navigate; but mathematical flexibility 

is unstudied in this domain, and seems to be rarely emphasized in instruction or evaluation.  

Further, following on the promising research conducted by Daheane, Griffin and Case, it 

appears that understanding mathematical flexibility in terms of functional sub-systems can lead 

to curriculum design that is effective. From this context I form my two research questions:  

1. How do functional components instrumental to mathematical flexibility interact with each 

other to produce flexibility in high-school students engaging with linear equations?  

2. How do these functional components differ from the operation of functional components 

instrumental to inflexible but procedurally competent performance in linear equations? 

 Addressing these research questions may advance understanding about an important 

element of learning (mathematical flexibility) in an important but unstudied domain (linear 

equations), using an approach for understanding (functional analysis) that has potential to 

directly benefit designers of educational curricula and interventions.  

To address these research questions, I:  1) set up a multiple case-study framework in 

which diverse subjects were given affordances to demonstrate both mathematical flexibility and 

procedural competency when working with linear equations, 2) observed activity in a variety of 

functional subsystems thought to be relevant to mathematical flexibility in linear equations in 

those contexts; and 3) identified patterns that emerged across these particular cases to inform 

understandings of how particular functional sub-systems might contribute to mathematical 

flexibility.  

In the next two chapters I elaborate on this study‟s purpose, theoretical grounding, and 

method. Chapter Two examines two existing strategies used to understand mathematical 

flexibility and establishes a theoretical lens and method designed to build on the strengths of 
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both approaches. In that chapter, I also propose a set of structures – networks – that may be 

active as students exhibit flexibility.  Chapter Three specifies the methodology for the study. In 

the final two chapters I present and discuss the results. Chapter Four builds on student-level data 

to report results in cross-student patterns of network activity and flexibility. Chapter Five 

discusses these results in the context of the study and suggests extensions and limitations of the 

protocol.  
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CHAPTER TWO 

Investigating Flexibility 

Two Approaches to Investigating Flexibility 

 Two approaches to understanding mathematical flexibility have been used by researchers. 

Each has its own strengths and weaknesses, and below, I elucidate both, and suggest a method 

and study design designed to capture the strengths of both approaches. 

Identifying Structures.  

 Researchers like Robbie Case and Stanlais Dehaene have investigated mathematical 

flexibility by identifying in-the-head structures which are instrumental for mathematical 

flexibility. These are conceptualized both as biological structures (e.g., a particular region of 

cortex) and functional structures (e.g., a structure for interacting with whole number). Dehaene 

emphasizes the relationship between biological structures and conscious experience / task 

performance (e.g., Dehaene et al., 2004); Case emphasizes development of functional structures 

over time (e.g., Case & Okamoto, 1996). However, both researchers switch between functional 

and biological perspectives; these are not mutually exclusive. Mental functions happen within 

the physical body, thus, they must have a biological basis (Dennett, 1991). Both researchers 

position particular in-the-head structures as instrumental for complex mathematical activity. 

 Dehaene‟s work is wide ranging, but tends to relate brain images to the subjective 

experience of subjects and the objective behaviors they display. These studies investigate a wide 

variety of subjects (for example, patients with brain lesions or Aboriginal tribes in South 

America) across a wide variety of experimental paradigms. 

  For example, in one study, Dehaene (2004) subliminally presented stimuli to subjects, 

some of which were numbers, some of which were letters. His subjects reported being unable to 
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see these stimuli, yet Dehaene reported seeing activation in the horizontal interparietal cortex 

(HIPS) when number was presented and not when letters were presented. This, says Dehaene, is 

“evidence for a micro-coding of quantities in intraparietal
 
cortex” (Naccache & Dehaene, 2001, 

p. 972). 

 Because individual experiments can be too narrow to warrant broad interpretation, an 

important part of Dehaene‟s contributions (e.g,. Dehaene et al., 2003; Dehaene, 1999) are 

theoretical syntheses of multiple experiments (some of these experiments are done by his team; 

some not). For example, Dehaene et al. (2003) differentiated the HIPS from another region 

implicated in mathematical flexibility – the angular gyrus  (AG) – by reviewing eight 

neuroimaging experiments (across several experimental paradigms) and 11 case studies of 

patients who had suffered lesions to their parietal lobe. Synthesizing these experiments and the 

case studies, Dehaene et al. (2003) suggested a reliable distinction between the AG and the HIPS 

– the AG facilitates verbal interaction with number, while the HIPS facilitates spatial interaction 

with number. Thus, a key element of structure identification is to synthesize across many small 

studies in order to hypothesize the role of particular physical structures. 

 Case‟s research synthesized empirical evidence in order to propose a developmental 

progression for mental structures that support mathematics (Case et al., 1996). Once he had 

hypothesized a specific developmental path, he looked for the predicted developmental 

progression, and, from that, inferred that the hypothesized mental structures exist.  

 For example, after looking across a set of developmental studies, Case (1992) argued that 

cognitive development tended to be even across people and across domains within a single 

person. He thus concluded that minds contain “central conceptual structures” that facilitate 

similar activity across different cognitive domains.  From there, he hypothesized a specific 
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developmental sequence of task performance capabilities and suggested a relationship between 

age and task performance in the domains of mathematics, social understanding and drawing.  

In mathematics, Case and Okamoto (1996) hypothesized that most 6 year olds can use a 

single mental number line, but eight year olds can coordinate two mental number lines – one for 

ones, and one for tens. They administered a variety of tasks, some of which required a single 

mental number line, others which required coordination of two number lines. When they looked 

for correlations (through factor analyses), they found that success on one of the coordinated  

number line questions was correlated with successful performance on other coordinated number 

line questions.  They also found that nearly all 8 year olds in the study could do coordinated 

number line tasks, but almost no 6 year olds could.  From this they concluded that there is a 

structure in the mind supporting a single number line, and, around age eight, that structure 

changes to allow coordination of two number lines (Case et al., 1996). This approach was cross-

sectional – they examined several students at one time, rather than the same student over time – 

but succeeded in identifying development of mental structures because they had a specific 

hypothesis about how these structures could be detected in the relationship between age and task 

performance. 

 I position the structure identification approach to mathematical flexibility as a tool rather 

than a methodology. This tool allows researchers to identify which particular structures facilitate 

which particular types of activity. In general, both Case and Dehaene‟s methodologies build on 

theoretical insight to make specific predictions about the contributions of particular structures to 

particular measurable aspects of mathematical cognition and flexibility. However, their specific 

methods differ greatly, and Dehaene, in particular, makes wide use of a variety of 

methodologies, from brain scan studies, to comparisons of Aboriginal South Americans and 
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French citizens, to literature syntheses in order to understand the structures underlying 

mathematical flexibility. 

 From a practical point-of-view, structure identification is useful for educational 

designers. As described above, Dehaene‟s work has been used to create an intervention for 

dyscalculia that has been successful at improving performance on math. The author of the 

software (Anna Wilson) reports it is designed to link the activity between verbal and spatial 

systems for number – a design consideration based specifically on the identification of these two 

brain regions as dissociable but integrated and essential to interacting fluidly with whole number 

(Wilson et al., 2006).  

 Structure identification, because it is so concrete, can also constrain theory in important 

ways. For example, Dehaene‟s triple-code theory of number suggests three structures that 

integrate to facilitate conception of number. This research is extremely widely cited (A Google 

Scholar search indicates that Dehaene‟s seminal book The Number Sense (1997, 1999) has been 

cited 1337 times); the triple-code theory is synthesized from a wide variety of experimental and 

research paradigms; and the theory is grounded in an empirically supported theory of mental 

structure and the role of consciousness in mental activity (Dehaene & Naccache, 2001). Thus, 

theories of mathematical cognition which do not take structures identified in the triple-code 

model into account risk ignoring structures which may be instrumental to mathematical 

cognition. 

 Perhaps structures can be easily integrated into interventions and research because the 

view that minds contain structures is an extremely intuitive way for humans to think. Carl 

Bereiter (2002) calls this intuition “mind as container,” and suggests that it has evolved as a 

fundamental human point of view, where "people [are] credited with a mind, and all of the 
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relevant cognitive or emotional stuff is thought of as residing in one or another of those minds," 

(Bereiter, 2002, p. 13). This stance is fruitful in predicting the behavior of a particular person – 

which is why it evolved (Dennett, 1978) – but it may break down when trying to uncover how 

the system that produces intentional behavior actually works because it emphasizes what is in the 

mind, rather than how the mind functions (See Dennett (1991) or Bereiter (2002) for a defense of 

this position). For example, Dehaene‟s triple code theory specifies the effect of specific brain 

lesions on simple task performance very accurately, without consideration of the relation 

between the three structures Dehaene posits. However, the triple code model has not been used 

to explain how these structures produce sophisticated mathematical flexibility deemed important 

by other researchers (like estimating the size of North America (Greeno, 1991)).  Dehaene 

concurs: “Higher-level cultural developments in arithmetic emerge through the establishment of 

linkages between this core analogical representation (the “number line”) and other verbal and 

visual representations of number notations” (Dehaene, 2001, p. 2). 

Tracing Relationships. 

 In contrast to “in-the-head” conceptualizations of mathematical cognition, flexibility can 

be conceptualized as a type of practice that occurs in transactions between mental and contextual 

structures as they support flexibility.  

 This approach has been utilized by social psychologists like James Greeno. Greeno‟s 

relational approach suggests that “conceptual understanding and conceptual growth are … 

achievements of interaction” (Greeno, 2007, p. 10) between individuals, groups of individuals 

and contextual factors. Interactions with other knowledgeable people and with the texts and 

symbols of mathematics allow people to build new knowledge. This new knowledge is manifest 

in an individual‟s new capacity to navigate mathematical environments. From this point of view, 
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flexibility refers to the ability to more or less competently navigate mathematical situations, 

rather than the presence or absence of any particular mental structure.  

 For Greeno, this flexibility depends on affordances, not on in-the-head structures. 

Affordances are “characteristics of objects and arrangements in the environment that support 

interactive activity [with these objects]” (Greeno, 1994, p. 241). Students are flexible when they 

utilize features of objects in the environment to adjust to a novel mathematical situation. For 

example, Greeno suggests that the most useful affordance in a mathematical conceptual object – 

like a number – is its ability to combine with other objects (as in addition, or multiplication).  

The numbers 4 and 6 have compositional affordances that allow them to combine to make 10 

through addition or 24 through multiplication. Utilizing this affordance means combining 4 and 6 

within an internal mental model of numbers and “seeing” 10 or 24 emerge within that internal 

mental model, depending on the affordance utilized. Thus, flexibility, which depends on 

individual-contextual interaction, results as students are able to utilize particular affordances in 

the environment to achieve flexible activity. 

 To uncover the individual-contextual transactions that support flexibility, Greeno 

emphasizes post-hoc analysis of discourse and traces of particular mathematical transactions. 

From these records, Greeno infers affordances that students have utilized and the social 

interactions from which this capacity has arisen. Rather than interpreting these data from a 

particular viewpoint, he suggests an approach where new ways of understanding the transaction 

flow from a process where existing conceptions are tried out, improved and melded together in 

order to fit the data (Greeno & MMAP, 1997). 

 An example of this process can be found in Greeno‟s 1991 treatise on “number sense.” 

Similar to flexibility, number sense refers to fluid and flexible activity in the domain of number. 
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After a deep synthesis of the existing research, Greeno suggests an extended metaphor for 

number sense, suggesting it requires navigation of a conceptual environment much like one 

might navigate a physical environment, like a city. Like a physical environment, flexibly 

navigating mathematical environments requires: 1) knowing what sites in the particular 

mathematical environment are important and how to utilize them; 2) how to move from place to 

place within that environment; 3) how to plan sequences of movement through that environment; 

and 4) how to create representations of the environment that can be used to support productive 

activity (Greeno, 1994).  

 The difference in emphasis between a relational, environmental understanding of 

mathematical cognition and an approach which emphasizes structures can be seen by contrasting 

how Greeno and Case view the development of basic whole number sense (being able to count, 

add and subtract). As described above, Case views whole number sense as emerging when 

visual-spatial structures for less and more merge with the counting routine to create a robust 

mental number line.  This number line then allows students to reason about whole numbers and 

demonstrate basic number sense. From Case‟s point of view, this process is fully dependent on 

the symbol systems and cultural tools with which a child interacts and develops. Students 

develop number lines when cultures have counting routines and numbers, and words for more 

and less, and when families provide ample opportunity for interaction with these cultural 

structures. However, Case suggests that a variety of activities all support similar development. 

He points to contrasts between Japanese and American students, who, despite very different 

specific experiences – Japanese students spend more time calculating with number, Americans 

spend more time using clocks and money - seem to have developed very similar general 

conceptual structures (Okamoto, Case, Bleiker & Henderson, 1996). Yet, though variation across 
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culture is small, within a culture, students with lower socio-economic status (SES) develop 

conceptual structures more slowly than those with higher SES.  Case concludes that culture 

impacts development through the types of activities it promotes, rather than the specific 

experiences it affords. Low SES students develop more slowly, argues Case, because they have a 

relative paucity of types of the types of experiences that lead to the development of central 

conceptual structures.  And Japanese and American students, despite very different specific 

experiences, develop similarly because they have the same types of experiences. 

 Like Case, Greeno suggests that counting operations and spatial properties of objects 

ground students‟ early understanding of addition and subtraction (Greeno, 1991). Greeno, too, 

emphasizes how whole number sense requires the internalization of spatial relationships found in 

the physical world. Numbers begin as objects that are arranged linearly – that is, spatially – in 

the physical world, and over time, Greeno argues, students internalize this spatial relationship, 

and create a mental model, where numbers are related by their position on the number line. The 

affordances that students use to operate with this model of a number line are also derived from 

features of the physical context. For example, Greeno cites research that suggests that flexible 

students use phrases like „tacking on‟ or „knocking off‟ to describe addition and subtraction, 

suggesting that a visual-spatial model is active within students‟ mind.  

 As Greeno points out, Case and Greeno‟s accounts of whole number sense may be 

consistent (Greeno, 2007). In both cases students use a mental structure with both symbolic and 

spatial properties to reason about numbers. However, Greeno sees this mental structure as being 

dependent on the specific contexts in which it developed. Because the counting routine is taught 

spatially (by counting a set of objects) and fairly universally, it is easily internalized into a 

mental model that has spatial and physical properties. Other more complex mathematical 
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flexibility – like linear equations – may require specific social experiences to facilitate the 

development of internal structures required for such activity. Thus, though Greeno suggests that 

internal structures are essential to mathematical flexibility, he foregrounds the specific 

experiences from which these structures develop and the ways in which these in-the-head 

structures relate to each other and contextual structures. 

 This approach – explaining abilities in terms of the social/contextual processes in which 

they are grounded – allows Greeno to construct rich understandings of complex examples of 

flexibility. An example of these rich constructions can be found in Greeno and Van De Sand‟s 

(2007) account of a transaction between two students and a teacher. The teacher had presented a 

complicated word problem to the class and asked the class to name the variable that would 

represent one of the features of the problem. When a student gave an unexpected answer, the 

teacher inquired further, and, with input from a second student, the teacher and students 

generated a solution to the problem that was fundamentally different from what the teacher had 

intended to teach, and what the student had intended when answering the teacher‟s question. 

Greeno and Van De Sand‟s account of this transaction is based on audio transcripts and records 

of what the teacher wrote during the interaction. By interpreting and connecting student 

utterances and traces of activity, Greeno and Van De Sand demonstrate how both student and 

teacher‟s mental structures (which they refer to as schemata) are changed through interaction 

with each other. This example illustrates the importance of situating the mental structures active 

during flexibility in their contexts. Seeing how these structures develop in light of the discourse 

taking place between student and teacher allows the researcher to position the interaction of 

mental structure and context as instrumental to flexibility, providing a rich, dynamic explanation. 
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 Greeno‟s approach has helped development in research and tools for practitioners. For 

researchers, he has emphasized individual-contextual interactions as a bridge between cognitive 

and situated perspectives (Greeno, 2007). This approach situates cognition within the 

environmental contexts which are instrumental to its development. As result, unique research 

environments have been developed such as the MMAP environment, where students interact 

with software designed to afford complex and flexible interactions with mathematical objects. 

Through this work, researchers have constructed richer depictions of students developing 

mathematical flexibility in environments that are complex relative to those typically studied by 

most in-the-head researchers. 

 For educators, Greeno‟s research has supported the development of tools – like the 

MMAP environment – that teachers can use in the classroom. Greeno points out that these 

programs drive students to “uncover the math” rather than “cover the math” (Greeno & MMAP, 

1997, p. 101), suggesting that they are designed to cause learning through interactions with 

materials that afford exploration. Because these programs are designed with an individual-

contextual interaction in mind, they are designed to afford complex and dynamic interactions that 

can affect learning and flexibility. Unlike the computer program designed by Dehaene‟s team 

(The Number Race), the MMAP environment does not explicitly attempt to change any 

particular structure within the mind; instead it offers opportunities to interact with mathematical 

objects, because the situated theory on which it is based predicts that these objects should 

become internalized into mental models and then become available for future reasoning and 

activity. 

 However, foregrounding relational understandings of flexibility, derived through post-

hoc analysis, may underemphasize the efficiency afforded by contributions like Case and 
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Dehaene‟s. These contributions help focus research, because they specify some of the design 

principles at work within the individual-contextual system, and thus, place important constraints 

on the types of theoretical analyses which are appropriate. For example, the establishment of the 

HIPS as the seat of visual-spatial numerical cognition (through the cross-paradigm synthesis 

discussed above) tells us that a theory of numerical cognition might benefit by including a role 

for a fuzzy analogical number line. The social processes emphasized by Greeno do not allow 

unlimited modification of existing in-the-head structures – what is in-the-head is constrained by 

millions of years of evolutionary design and the specific ontogeny of the individual under 

investigation. Thus, knowledge of what structures are instrumental in certain types of cognition 

can focus research efforts on targets which are likely to be productive. 

 As well, foregrounding contextual-individual interactions may underemphasize the ways 

in which individuals are themselves collections of structures interacting in complex and dynamic 

ways to produce the patterns of behavior we recognize as individuals. That individuals are 

collections of functional processes is a point emphasized in the field of cognitive science 

(Dennett, 1991; Minsky, 1988) because it facilitates powerful explanations that come from 

breaking down the individual into functional parts. This point-of-view makes the actions of the 

individual more easily interpretable because they are seen as emanating from a chaotic set of 

tractable functional processes.  

An Integrative Approach 

 Table 2 highlights the key features of the identifying structures approach to 

understanding mathematical flexibility, and the relating structures approach. In this section, I 

suggest a theoretical and empirical point-of-view that may capture the strengths of both 
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approaches. I then briefly trace the logic of my particular study in light of this theoretical and 

methodological point-of-view. 

 This study is designed to illuminate the question: How do functional components 

instrumental to mathematical flexibility interact with each other to produce flexibility in high-

school students engaging with linear equations? How do these differ from the operation of 

functional components instrumental to inflexible but procedurally competent performance in 

linear equations? In light of the above discussion, I suggest that a thorough approach to 

answering this question should allow for identification of in-the-head structures instrumental to 

mathematical flexibility and trace the relations between those in-the head-structures and 

contextual structures as flexibility or competence is demonstrated. This study explores the role of 

particular in-the-head structures, discerned through an extensive literature synthesis, while still 

capturing the unexpected and dynamic interplays of personal and contextual factors that 

constitute flexibility. 

Networks as a Model for Mathematical Flexibility 

 Though structural and relational approaches to mathematical flexibility contain different 

points of emphasis, both argue that particular mental structures are required for flexibility and 

that those structures develop out of contextual interactions. The research question for this study 

asks how structures instrumental to mathematical flexibility differ from those instrumental to 

competence. These structures may differ in terms of what they are or they may differ in terms of 

how they relate. Thus, there may be a benefit to an approach to flexibility which simultaneously 

emphasizes the structures that exist within a mind and the way in which these develop and relate. 

 Such an approach might be found in a view of mathematical flexibility (and cognition in 

general) as emerging from a network of mental and environmental structures. This viewpoint 
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seems useful for two reasons. First, a network model accounts for the features of mathematical 

flexibility already identified by researchers like Case, Dehaene and Greeno. Second, a network 

model allows for both contextual and mental structures to be viewed as functional sub-systems 

within a larger “transaction” between organism and environment. Transactions are a way of 

conceptualizing human activity as fundamentally inseparable from the contexts in which it 

occurs, and to see activity as a whole rather than as separable into distinct entities or components 

(Dewey, 1946). As I will discuss below, network models of mathematical flexibility allow for a 

view of context and individual as cohered, without losing the contributions particular individual 

or contextual factors might make to the nature of the transaction. 

Networks as Effective Models of Minds.  

A network is a mathematical model of a dynamic system, consisting of nodes joined by 

edges (Girvin & Newman, 2002). At the most abstract level, nodes represent structures in a 

system and edges represent the connections between these structures. Nodes send information to 

other nodes through their edges, which can be modeled as having both weight and direction. An 

edge with a high connection weight will allow information to flow more easily between the 

nodes it connects than an edge with a low connection weight.  Edges that are directed send 

information in one direction only; networks that are undirected permit the flow of information in 

both directions. 

Networks can be used to model a wide variety of phenomena, including the Internet, 

social networks, industrial relationships, metabolic networks, blood vessels, postal delivery 

routes, and, importantly for this study, mental processes (Newman, 2003). Networks are 

effective models of systems that are complex and non-linear, like the brain. The brain is 

composed of 100 million neurons, which have 100 billion connections between them. Research 
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has shown that the processing that happens between these neurons occurs in parallel, and non-

linearly, suggesting that networks might be an effective way to model the activity of a mind. In 

fact, the use of the term „network‟ when referring to cognitive structures is widespread across the 

different areas of psychology.   

 One way of conceptualizing mental networks is to see nodes as representing a particular 

function performed in the mind and edges as connections that allow the activity of a structure to 

spread and influence other mental functions. This approach can be considered functionalist. 

Functionalism refers to the view that "what makes something a mind (or a belief, or a pain, or a 

fear) is not what it is made of, but what it can do. We appreciate this principle as uncontroversial 

in other areas, especially in our assessment of artifacts. What makes something a spark plug is 

that it can be plugged into a particular situation and deliver a spark when called upon” (Dennett, 

1996, p. 68).  From this perspective, networks can be said to contain a particular structure when a 

unique function for that structure is identified.  

 Research on networks (Girvin & Newman, 2002) suggests that five properties of 

networks may be consistent with known properties of mathematical cognition and flexibility, 

which may suggest that networks are a useful way of modeling mathematical flexibility. First, 

networks have a modular structure; so do the components of mathematical flexibility. Second, 

networks have hubs – structures instrumental to particular activity – and thus are vulnerable to 

system-wide breakdown when a hub is unable to function; similarly, research suggests that 

mathematical flexibility depends on particular modules (like the HIPS), and without them, even 

the most basic mathematical activity is impossible. Third, hubs can connect to a variety of sub-

networks, meaning that similar network output can be generated by different in-network activity, 

as long as those networks feed into the same hub; similarly, mathematics researchers have 
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discovered that a wide variety of cognitive activity that can support a whole number sense that 

looks similar across people (Okamoto et al., 1996).  Fourth, cognitive networks are auto-

associative, so that activation of any sub-network will tend to activate the entire larger network 

of which it is a part; similarly, mathematical cognition seems to require that a small piece of the 

context (an affordance) trigger a wide network of cognitive processes. Fifth, the hierarchical 

nature of cognitive networks allows specific experiences to facilitate progressively more 

productive representations of the external world as top-down modules learn to recognize the 

general in the specific; mathematical flexibility requires mental models that model mathematical 

objects, a reciprocal interaction between specific learning and general understandings that leads 

to more adaptive responses over time. Because these five features of networks are also features 

of mathematical cognition, I suggest that networks are an appropriate model for mathematical 

cognition.  

Networks as Equating Mental and Contextual Structures. 

  Networks allow mathematical flexibility and competence to be viewed as a transaction 

between individual and context. From a network perspective, both context and individual are 

thought to combine to form a qualitatively different „object‟ – a transaction – distributed in time 

and space, which cannot be reduced to independent contributions of context and individual. 

However, past research which has emphasized the role of context in internal mental activity has 

still posited the individual and the environment as distinct and described them as distinct entities.  

 A network view of mathematical flexibility situates the contribution of individual and 

context in a larger system (network), representing the irreducible, dynamic entity that individual 

and context combine to make. At any moment in the network, individual and contextual 

structures (nodes) are in some state, as a result of the states and connections of connected nodes 
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at previous moments. Nodes transmit their states across edges, to other nodes, affecting how 

those nodes exist at the next point in time. 

 From this point of view, parts of the network are distinct when they have distinct 

functions. For example, based on Case and Greeno‟s research programs, it seems reasonable to 

suggest that visual-spatial nodes that compare relative size and verbal nodes for counting both 

make distinct functional contributions to the activity of the whole number network. Although this 

approach may appear to isolate the contribution of particular nodes, creating undue simplicity, 

isolated node activity can only be interpreted in light of its connection to other nodes in the 

present, past and future. Case‟s developmental account of whole number sense suggests that the 

visual-spatial and verbal networks merge over time, as their activation is amplified and fused by 

other nodes which function as monitors of mental activity. At some developmental point, each of 

these nodes communicates their activity to the monitoring nodes. The monitoring nodes in turn 

amplify and stabilize the activity of the visual-spatial and verbal nodes. Over time, these nodes 

fuse into a composite node that functions to interact with whole number. The extent to which 

they are fused at any moment depends on how they activate; this, in turn, depends on what 

networks were active at previous moments, and how their activity was transmitted. Thus, 

understanding whole number sense requires both an understanding of the structures involved, 

and how they interact and develop over time.  

 A network approach foregrounds the ways in which mental and contextual structures 

(nodes) operate as a whole and isolates parts of the network by function rather than location. As 

a result, contextual and individual factors can be seen in the same light – as functional 

components of a larger system. As a hypothetical example, consider how a calculator functions 

in a network where a dyscalculic student works on a math problem. For a student who cannot 
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calculate internally (perhaps because of lesions to the HIPS), the calculator functions as a node 

for whole number sense, functioning to allow quick and fluid interaction with numerical entities. 

The information produced by this node is transmitted through photons (light particles), which hit 

the retina, and become spike trains of electricity, moving through neurons in the brain. This 

electrical activity in the brain excites other nodes, which use this information in the service of 

more complex and widely distributed activity (like solving a word problem, for example). In a 

non-dyscalculic student, one can imagine observing identical behavior, except that the function 

of interacting with whole number takes place within the HIPS instead of the calculator. Whether 

the calculator and the HIPS represent the same structure (functioning to interact with whole 

number) may be an open question; but from a functionalist, network perspective, this question 

will be decided by comparing the relative functions of the calculator and HIPS. If they are 

identical, then the networks may be said to be the same, even though the location and substrate 

of the function differs. If the functions are different, the networks can be said to be different.  

Implications of a Network Theory for Mathematical Flexibility with Linear Equations, and 

the Research Questions of the Study 

 The ways in which features of networks are analogous to descriptions of mathematical 

flexibility and cognition suggests that networks can be used to fruitfully model networks of 

individuals-in-context exhibiting mathematical flexibility. A network model also suggests that 

network nodes are best understood in functional terms, and should be described in terms of what 

they can do, rather than what or where they are.
1
. 

                                                 
1
 Conceptualizing nodes as „doing‟ things – as though nodes are themselves intentional beings with beliefs, wants  

and goals – may be an important tool for conceptual  progress within cognitive science, though it caries the risk of 

oversimplifying complex processes, (Dennett, 1991, Minsky, 1988). As the functions of these nodes are further 

specified, there may come a point where intentional explanations of nodes are not as powerful as biological design 

explanations (e.g., explaining neuronal activity in terms of potassium/sodium channels). The network perspective I 

have put forward does not privilege human beings as „real‟ or „genuine‟ intentional systems vs. „pseudo‟ intentional 
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 Thus, a network theory has the potential to account for the situated and relational nature 

of cognitive processes emphasized by Greeno, while preserving the contribution of specific 

mental structures within the individual-contextual network. A network theory allows for an 

individual to be both a structure within a larger system and itself a combination of the sub-

networks that compose individuals. Thus, observing activity as though occurring in a network 

preserves the benefits of both the identifying structures and tracing relationships approaches to 

understanding flexibility. 

 In this study I used a case study framework that allowed tracing complex and dynamic 

contextual-individual interactions to investigate the qualities of mathematical flexibility. The 

approach I used was based on the above network theory of mathematical flexibility. My plan was 

to: 

1. Examine prior research to determine what network nodes have been associated with 

mathematical flexibility in linear equations, and hypothesize how they contribute to 

mathematical flexibility in linear equations.  

2. Choose a heterogeneous set of participants, so that the networks students brought to the 

study would be as different as possible. Identify, at the start of the study, as best as 

possible, how network nodes had developed within each participant, as a result of past 

individual-contextual transactions. 

3. Ask subjects to engage with a set of tasks, some of which were designed to afford 

mathematical flexibility, some of which were designed to afford mathematical 

                                                                                                                                                             
systems like thermostats, dogs or trees; instead, what makes a system intentional is how effective intentional 

explanations are at predicting the behavior of the system. This can create a situation that may be intuitively 

confusing – that nodes can act on their intentions without being conscious or aware of them.  A thorough defense of 

this position is beyond the scope of this thesis. 
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competence. Observe activity in the nodes known to be relevant to mathematical 

flexibility. 

Candidate functional components of mathematical flexibility have been identified by 

researchers. In the next section, I summarize  from across research programs to identify a 

preliminary set of functional components (nodes) that are likely to be involved when individuals 

flexibly engage with linear equations. 

Candidates for Networks Involved in Mathematical Flexibility 

 In this section, I propose a set of networks likely to be recruited in mathematical 

flexibility with linear equations. For each, I also build from literature to describe how I attempted 

to measure activity in those networks in this study. 

Domain Specific Cognitive Networks 

 The existence of hubs in networks implies that every domain of human activity has 

networks instrumental to that activity. In cognitive psychology, a variety of these domain 

specific networks have been identified. For example, a network involving a region of 

orbitalfrontal cortex has been identified as essential to moral reasoning (Hauser, 2006). In any 

domain in which we are examining mathematical competence or mathematical flexibility, we 

should expect to find networks specific to the functions required in that domain. 

Measurement Strategies.  

 Within linear equations, it is unclear what networks are essential to flexibility. However, 

curriculum documents contain descriptions of seven distinct functional capacities that constitute 

successful performance in the linear equations section of the course. The capacities reflected in 

curriculum documents are typically the outcome of an extensive curriculum creation process 

which, in turn, depends on the cultural history of linear equations in the minds of those creating 
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the curriculum. Thus these seven functional capacities provide a good starting point for 

investigating the domain-specific functional components of linear equations flexibility:  

 Solve problems involving slopes of line-segments 

 Give the equation of a line, once it's uniquely specified 

 Solve problems using slopes of parallel or perpendicular line segments 

 Relate ordered pairs, a 'rule' and a graph 

 Identify x/y-intercepts, domain/range, and slope of a graph from an equation  

 Sketch linear equations given the equation (in either standard or general form) 

 Make linear models (equations) of real situations.  

 Linear equations may also depend on networks that function to support sub-competencies 

within mathematics. Mathematics is a cumulative field and linear equations require competence 

with algebra, coordinate systems, and fractions (personal experience). This study was designed 

to assess both what students brought to the study in terms of these networks and notable 

activations of those networks during the study itself. Again, what students brought to the study 

was assessed in ways consistent with the BC learning outcomes.  

Metacognitive Networks 

 Metacognition is an area of cognition that has been studied from a variety of 

perspectives, under a large number of names, and across disciplines as diverse as economics, 

psychology, philosophy, education and biology. For this study, I positioned metacognition as 

networks which function to modulate and adapt other active networks. Schoenfeld (1992, 1997) 

suggests that metacognitive processes in mathematics can be differentiated into “(a) individuals‟ 

declarative knowledge about their cognitive processes, (b) self-regulatory procedures, including 

monitoring and „on-line‟ decision-making, (c) beliefs and affects, and their effects on 
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performance” (Schoenfeld 1992, pp. 38-39).  Individuals‟ declarative knowledge comprises their 

knowledge about their own and others‟ thinking and learning processes while self-regulation 

refers to students‟ approaches to managing their engagement in mathematics activity. Students‟ 

metacognition has also been associated with students‟ beliefs and affect about the discipline of 

mathematics and their work in mathematics, and how those influence their activity in 

mathematics (Schoenfeld, 1992). 

 Effective metacognitive networks may be instrumental to mathematical flexibility. 

Declarative knowledge of cognitive processes is important for helping students make realistic 

assessments of what they can accomplish and for choosing effective strategies to handle complex 

problems (Schoenfeld, 1987). Effective self-regulation during mathematical activity is essential 

for seeing and utilizing affordances (Schoenfeld, 1987). Beliefs and affects about mathematics 

influence the ways students engage in mathematical activity (Schoenfeld, 1987). 

 The lens with which Schoenfeld views metacognition highlights aspects of metacognition 

which can be observed directly or by asking students targeted questions  – stated beliefs and 

affect, propositional self-knowledge, and how activity changes during problem solving – and the 

relationship between those actions and mathematical flexibility. This approach can be viewed as 

relational, emphasizing the way in which metacognitive activity relates to other cognitive 

strategies and how metacognitive activity is part of a larger cluster of mental activity supporting 

complex problem solving. However other approaches, which can be understood as identifying 

structures, provide complementary insights which can be used to further organize understandings 

of metacognition. 
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Narrative and Experiential Metacognition. 

 Structural approaches to understanding metacognition have identified two distinct 

networks supporting metacognition. The first network generates beliefs about the self, 

declarative affect and declarative knowledge through "higher order self-reference characterized 

by neural processes supporting awareness of a self that extends across time" (Farb, Segal, 

Mayberg, Bean, McKeon, Fatima & Anderson, 2007, p. 7).  I will refer to this network as the 

narrative-metacognitive network. This network's function is to model the network itself. This 

self-modeling forms a "strange loop" that is fundamentally self-referential and circular 

(Hofstadter, 2006).   The “declarative knowledge about … cognitive processes,” and “beliefs and 

affects” identified by Schoenfeld (1987) may be outputs of this network because they seem to 

require awareness of a self that exists across time and the use of linguistic networks. 

 Farb et al. (2007) argue that the narrative-metacognitive network may "represent an 

overlearned mode of information processing that has become automatic through practice, 

consistent with established findings on training-induced automaticity" (p. 7) and that "narrative 

generation as a default state of self-reference is increasingly supported by neural evidence” (p. 

2). 

 The second network involves "viscerosomatic cortical areas [which] support an 

immediate information processing network of identity, distinct from abstract and narrative 

representations of the self" (Farb et al., 2007, p. 8).  It also inhibits "cognitive elaboration on any 

one mental event in favor of broadly attending to more temporally proximal sensory objects, 

canvassing thoughts, feelings and physical sensations without selecting any one sensory object. 

This network avoids rumination by disengaging attentional processes of self-referential 
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elaboration," (Farb et. al, 2007, p. 2). I will refer to this as the experiential-metacognitive 

network.  

 The “self-regulatory” procedures, including monitoring and "on-line" decision-making” 

proposed by Schoenfeld (1992) may be conceptualized as part of this experiential network. 

Because this network supports "broad attentional focus centered on momentary experience, 

including internal thoughts, emotions and external sensory events, in addition to bodily 

sensations" (Farb et. al, 2007, p. 7), it may provide the information needed to make on-line 

adjustments to cognitive strategies. 

 Christoff, Gordon, and Smith (in press) have argued that a state of defocused attention 

may be one of the key factors facilitating creative thought. I expect that the experiential 

metacognitive network will be essential to flexible mathematics because a key characteristic of 

flexible mathematics is the creative reactivation and recombination of networks that already 

exist. 

 However, metacognition may be a function of both experiential and narrative networks 

acting in integrated ways. In Farb et al.‟s (2007) work, these networks could only be observed 

separately because the subjects were trained mediators who had been specifically trained to 

activate the experiential network without activating the narrative network. Christoff, Gordon, and 

Smith (in press) suggest that executive functions, found close to areas recruited for narrative 

generation, are required to evaluate the quality of outputs from the networks supporting this 

more "defocused" state. Thus it is likely that these two networks interact, providing a robust 

metacognitive network capable of integrating the self across time with current experience. This 

study was designed to explore how these two networks operated as students exhibited flexibility 

with linear equations. 
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Measurement Strategies.  

 Although Schoenfeld (1987) has created a taxonomy of metacognitive activity – beliefs 

and affect, self-regulatory procedures and knowledge of cognition – his empirical work tends to 

focus on the dynamics between activities that emerge as students engage with novel problems 

rather than looking for examples of metacognition as he has defined it. Typically, Schoenfeld 

(e.g., 1999) has used graphics to present these dynamics across time. The horizontal axis 

indicates time; the vertical axis contains categorical descriptions of student cognitive activity 

(i.e., reading, analyzing, exploring, planning, implementing, and verifying). Filled in regions 

indicate that a particular activity occurred at a particular time. Figure 1 gives an example of an 

Activity Across Time (AAT) graph from a previous study.  In this example, Schoenfeld has 

traced the activity of a dyad as they solved a nonstandard problem.
2
 The benefit of this graphic is 

that it highlights both what students were doing and the relationships between these actions 

across time. For example, it captures how students moved from exploring the conceptual space 

of the problem to planning to implementing this plan. For parsimony, I will refer to this type of 

graphic as an AAT graph. 

 This study tracked metacognition by building on this approach. Similar to Schoenfeld, 

this study captured self-regulatory activity by looking at dynamics in cognitive activity across 

time. However, for this study, the categories of activity tracked also included the networks that 

may be essential to mathematical flexibility, rather than only the cognitive activity Schoenfeld 

tracks. The study involved explicitly tracking active beliefs or affects, self-regulatory activity, 

and stated knowledge about cognitive processes.  As well, the study attempted to track 

metacognitive activity that was narrative, experiential, or both, across time. As a result, it was 

                                                 
2
 The specific problem is not available, except in a book I have not been able to locate. 
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hoped that I could track the activity of metacognitive networks and how they interact. A more 

detailed description of how AAT graphs were used to detect network activation can be found in 

Chapter 3. 

 Up to now, assessing narrative or experiential metacognition has been done with brain 

imaging techniques. Observing this activity indirectly and without using brain imaging 

techniques has not to my knowledge been done; thus, a coding procedure was designed and was 

tested as a preliminary analytical step, to ensure coding procedures were consonant with the 

nature of the data. This coding procedure contrasted ways in which traces and utterances 

indicated reference to the self across time from ways in which they indicated on-line and 

experiential awareness.  Because this was a new approach, this study offered a test of the 

feasibility of this approach in investigating these kinds of metacognitive networks.  

 The above approach suggests an effective way to observe metacognition as it occurs, but 

it does not capture the metacognitive profile that students bring to activities.  Although every 

activity occurs as a transaction in context, individuals acquire mental networks that increase the 

propensity of certain network activation states.  Thus, strategies for measuring what students 

brought to the study in terms of metacognition were also important. Schoenfeld (1989) has 

created an instrument which allows exploration of a set of beliefs about mathematics. The 

instrument contains over 70 questions, too many to include in the study without taking an 

unreasonable amount of time. In this study, subsets of those questions were administered before 

students began the problems in the study as a way to understand the beliefs about themselves and 

mathematics that students brought to the study. A discussion of the specific questions used in the 

instrument can be found below. 
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 Capturing what students can say in general about their cognitive and self-regulatory 

processes has not been done in Schoenfeld‟s work, nor have I been able to find other instruments 

based on Schoenfeld‟s taxonomy. It is not clear that capturing self-regulatory or cognitive 

processes is possible in general as the transactional/contextual nature of mental activity suggests 

an irreducible relation between mental and contextual activity. However, in order to see if 

students‟ general self-perceptions did relate meaningfully to measures of self-regulation and 

cognitive processes, a set of open-ended questions were designed to elicit what students knew 

about their cognitive and self-regulatory processes in math, for flexibility, and for linear 

equations specifically. These are detailed in Chapter 3. 

Core Mathematical Networks 

 Daheane (Dehaene et al., 2004; Dehaene, 1999) has suggested that three networks serve 

to perceive and interact with number in general.  

 The first is a core quantity system, analogical to an internal "number line." This network 

functions to output proximity relations between number and is used primarily in addition and 

subtraction, particularly operations which are not memorized (i.e., that have a sum or difference 

greater than 10).  

 The second is a network that manipulates numbers in verbal form. This "region is part of 

the language system, and contributes to number processing only inasmuch as some arithmetic 

operations, such as multiplication, make particularly strong demands on a verbal coding of 

numbers" (Dehaene et al., 2003, p. 494). It is used primarily in multiplication and exact 

calculation, particularly addition or subtraction facts which are memorized.   
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 A third network interacts with number in Arabic numeral form. This region recognizes 

the meaning of Arabic numerals without having to convert them to verbal representations 

(Dehaene, 1999). 

 It is unclear how relative strengths or deficits within these networks affect competence 

and flexibility. Participants for this study were selected to ensure that they were competent with 

linear equations, thus it was unlikely that severe deficits in any of these networks existed. It is 

unclear how differences in these networks across participants affect flexibility; one of the aims of 

this study was to understand if and how these networks are instrumental to flexibility.    

Measurement Strategies.  

 Deficits in the core analogical networks are known to affect estimation, and exact 

calculation with addends greater than 10 (Dehaene et al., 2004).  Deficits in the verbal region are 

known to cause difficulty with overlearned facts. It is unclear how difficulties processing Arabic 

digits can be observed outside of brain imaging paradigms. For this study, a set of timed 

estimation, exact calculation and multiplication tasks was given to each subject as a rough 

measure of the activity of each network. To discriminate between Arabic and verbal forms of 

number, tests of multiplication and exact calculation were given with both Arabic and linguistic 

numbers presented.  

Contextual Networks 

 This study had several contextual features which may have influenced the ways in which 

flexibility and competence were demonstrated. First, students engaged with problems designed 

by the researcher. These problems formed part of the context and their structure afforded 

particular ways of engaging flexibly or competently. Second, subjects had opportunities to 

interact with the researcher, including opportunities to explain and ask about problems they had 
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just worked on. The way in which the questions were asked and the nature of the interaction with 

the researcher may have afforded particular ways of responding or have activated particular 

networks within a subject. Third, the study itself allowed students access to a calculator, paper, 

and a sheet with the problems on them. Ways in which students interacted with these tools 

represented components of the individual-contextual transaction. Finally, the specific protocol of 

the study formed part of the context. In particular, the intake interview may have activated 

certain mental networks that were then more available to subjects during the study and the follow 

up questions may have activated or amplified the activity of mental networks.  

Measurement Strategies.  

 As the above analysis of Greeno‟s (1991) research suggests, capturing interactions 

between context and individuals requires rich description of complex interactions and analysis of 

those interactions that is relational and dynamic.  Central to this approach is recording all activity 

that occurs in an integrated and high fidelity way. This study was designed to support rich 

dynamic analysis in many ways. Subjects were tape and video recorded, their utterances 

transcribed, and traces of all work or activity were collected; all of these were linked to a central 

timeline that recorded timing of key features of the study protocol (e.g., changes between 

problems, asking of follow up questions). The visual format adapted from Schoenfeld‟s (1989) 

work allowed dynamic descriptions of complex mathematical activity.  

 Thus, this study facilitated the types of rich understandings researchers like Greeno have 

deemed central to understanding individual-context transactions instrumental to mathematical 

flexibility. 
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Consciousness  

 I define consciousness in a functional way: It serves to make the activity of modular 

processes in the cognitive network available to other modular processes, including those which 

are not connected by a hub. Heuristically, consciousness can be considered momentary "fame in 

the brain" (Dennett, 2001) – when activity from a particular network becomes famous 

throughout the entire mental network. As Dehaene puts it: "This model emphasizes the role of 

distributed neurons with long-distance connections, particularly dense in prefrontal, cingulate, 

and parietal regions, which are capable of interconnecting multiple specialized processors and 

can broadcast signals at the brain scale in a spontaneous and sudden manner" (Dehaene & 

Changeux, 2004, p. 1148). 

 It is unclear what the role of consciousness is in mathematical flexibility or mathematical 

competence.  On the one hand many researchers have emphasized linguistic aspects of 

consciousness (Dennett, 1991), and Christoff, Gordon, and Smith (2007) have suggested that this 

linguistic network may interfere with creative thought. So being more conscious may interfere 

with mathematical flexibility, but support mathematical competence by allowing access to 

prelearned verbal sequential memories of over-learned tasks.  On the other hand, the deep auto-

association required to activate a wide ranging network may depend on consciousness to achieve 

this auto-association, particularly between distant brain regions.  Thus, though I predicted that 

the content of consciousness would affect mathematical flexibility and mathematical 

competence, I did not predict how. 

Measurement Strategies.  

 Dennett (1991) has suggested heterophenomenology as an approach to capturing what 

people are conscious of from self-reports, without assuming they have privileged access to their 
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own consciousness. A commitment to heterophenomenology entails enlisting the participant in 

the task of reporting their conscious experience and considering this data not as a true fact about 

reality, but as a usable interpretation of the participant‟s point of view.  In terms of accessing 

conscious experience, this can be done either during or after the activity in question. 

Because this study attempted to distinguish the activity of narrative and experiential 

metacognitive networks and narrative networks may, as suggested above, be a dominant thinking 

mode in day-to-day life, it was essential not to promote the activity of this network by asking 

students to reflect verbally mid-problem. Thus, in this study, participants were asked to reflect on 

what they were thinking as they solved problems after attempting the problems. These utterances 

were interpreted as indicating what subjects believed they were conscious of while working on 

these problems. 

Summary 

 Table 3 shows the networks expected to be active in students demonstrating flexibility 

with linear equations. For each I define the function of the network, its expected effect on 

mathematical flexibility, the sources of evidence for the network‟s potential role, and research 

supported measurement strategies. The next chapter describes the specific methodology I used in 

the present study to explore how these functional components could be observed and related to 

mathematical flexibility and competence. 
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CHAPTER THREE 

The purpose of this study was to uncover the dynamic relationships between different 

kinds of networks (see Table 3) as students exhibited flexibility and competence with linear 

equations. To achieve this goal, I used a multiple case study design.  Five students were selected 

and observed approaching a set of linear equations problems designed by the researcher to afford 

competence or flexibility. Before beginning the problems, students were interviewed in order to 

identify the state of the mental networks believed to be instrumental in linear equations 

flexibility. Then students were engaged in solving math problems and asked follow up questions 

about their thinking while doing so. Throughout, activation of networks specified in Table 3 was 

observed. Analysis traced the interaction between mental networks and linked these interactions 

to the data collected during the semi-structured interview. Finally, the researcher looked across 

cases to identify generalities that held across the particular cases examined in the study.  

Participants met with the researcher once for two hours. Participants were interviewed, 

and then engaged in, and reflected on linear equations problems designed to afford competence 

or flexibility. 

Research Design 

 To investigate functional components underlying mathematical flexibility as they are 

engaged in context, this study used a case study framework in which a combination of methods 

(i.e., interviews, traces, observations) were employed to better understand students‟ engagement 

in mathematical problem-solving. The case study methodology was designed to capture the 

dynamic activity of mental and contextual structures which are potentially instrumental to 

flexibility, as suggested by research on mathematical flexibility. This section elaborates and 

justifies this approach. 
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 Yin (1994) suggests that a case study approach can be useful when asking “Why” or 

“How” questions of a phenomenon which is not easily divorced from its context. Mathematical 

flexibility may be such a phenomenon, as Greeno‟s (1991) relational approach to investigating 

flexibility suggests.  Yin also points out that case studies are well equipped to address 

transactions “in which there will be many more variables of interest than data points” (Yin, 2004, 

p. 13). Because mathematical flexibility depends on the complex interplay of a host of known 

and unknown cognitive and contextual structures, it seems reasonable to expect that many 

instrumental variables will need to be investigated simultaneously. Thus, a case study approach 

may provide a productive approach for investigating mathematical flexibility. 

 In some cases case studies can rely on theory development before data are collected to 

focus data collection and analysis (Yin, 1994). This analysis can then, in turn, be used to evaluate 

the theory from which it was generated. This study is based on a network theory of mathematical 

flexibility (established in Chapter 2), and a corresponding literature synthesis; measures of 

activity during the case study are based on this theoretical approach. The interpretation strategy 

(described below) affords evaluation of these theoretical predictions.  

 However, it was unclear how useful the theoretical approach described above would be 

for understanding mathematical flexibility. Exploring the explanatory effectiveness of a network 

theory was also supported by a case study approach. Central to a network theory is the notion of 

hubs – functional structures within the network which are instrumental to mathematical 

flexibility. It was unclear if the functional components under investigation would be discernable 

or relatable to flexibility and competence. It was possible that a network theory of linear 

equations would add little parsimony to understanding mathematical flexibility and that analysis 

would best done from a different theoretical framework (Greeno‟s environmental metaphor of 
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mathematics, for example). Though the study used network theory to structure observation and 

analysis, it is possible that this theoretical approach may have been less helpful than other 

theoretical lenses, and a case study framework allowed this possibility to be evaluated. 

 Because the goal of this study was to uncover what is instrumental to exhibiting 

mathematical flexibility in linear equations, a multiple-case study with a theoretical replication 

logic was used. Theoretical replication refers to searching for contrasting results across cases, all 

of which support or reject aspects of the underlying theory (Yin, 1994). This is different from a 

literal replication study in that results are not expected to be identical, but are expected to support 

or weaken theoretical propositions. In this study several students (cases) were observed 

interacting with problems that may have afforded flexibility or competence. Analysis looked 

across these cases and interpreted observations, survey responses and traces in light of the 

network theory of mathematical flexibility defended below. The goal was to use this approach to 

identify relationships between mental and contextual structures as they supported flexibility. It 

was hoped that these relationships were expressed in general enough terms that they held within 

and across cases. Thus, multiple-case studies provided several person-context interactions from 

which to evaluate theory and a theoretical replication logic allowed for multiple sources of 

theoretical support without expecting identical results between cases. 

 Yin (2004) suggests five distinct phases to the design and implementation of multiple-

case, theoretical replication case studies. In the first phase, a theory is developed to inform study 

design, data collection and analysis. The theory developed for the present study can be found in 

Chapter 2. In the second phase, case selection and the design of data collection protocols occur. 

Case selection and data collection protocols can be found below. In the third phase, multiple case 

studies are conducted and individual case reports are written. The procedures used in this case 
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study can be found below. In the fourth and final phase, cross-case analysis is used to modify 

initial theory. The interpretation strategy that was used in the present study can be found at the 

end of this chapter and the results and corresponding discussion comprise Chapters Four and 

Five of this thesis.  

Participant Selection 

 The study included five students in high-school enrolled in Principles of Mathematics 11 

and 12 (or the equivalent) who could all perform competently with linear equations and who 

received a 73% or above in Principles of Mathematics 10. Contrasting mathematical competence 

with flexibility was central to the study and sampling from students who have succeeded in 

mathematics, continue to take mathematics and who can perform competently with linear 

equations may have made students more likely to exhibit mathematical competence in linear 

equations during the study. Because the study design required in-depth interaction with the 

researcher, only students with sufficiently strong English language skills (to read problems and 

engage in a semi-structured interview) were included in the study. 

 In addition, the researcher attempted to attract a set of students who had a diverse set of 

mental networks. Each participant had his or her own history of specific experiences with 

mathematics, and those experiences likely shaped the design of their particular mental network. 

Having variation across student experience may have increased the chances that their particular 

mental networks varied in design, which in turn increased the validity of generalizations made 

across cases.  From a network perspective, learning differences represent differences in network 

structure. Thus, students with distinct learning strengths and challenges were included where 

possible.  To that end, volunteers were enrolled in the study until reasonable diversity in the 

sample was achieved.  
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Students were recruited through a poster indicating the purpose of the study, the time 

involved, compensation, the researchers and an e-mail parents or guardians of interested 

participants could use to contact the researchers. This poster was posted in public locations, like 

coffee shops, or public spaces intended for postering. The poster was also distributed to contacts 

of the researcher who made it available to prospective participants (with permission from any 

associated organizations). 

Prospective participant parent/guardians contacted the researcher to find out about the 

study. If a student wanted to participate, a tentative appointment time was set and they were e-

mailed a consent and assent form to return at their appointment. 

Data Collection  

Understanding which networks were active while participants were working on problems 

and how they interacted was a major challenge and goal of the study. Networks activate without 

necessarily causing any behavioral sign of their activation, so they may be hard to observe; some 

of the specific networks under investigation are not usually observed in the context of complex, 

flexible mathematics; and there is minimal research holistically observing the particular group of 

networks specified for the study. In light of these challenges, a main goal of the study was 

exploring if and how the study protocol supported observation and inference of network 

activation. In the study, data were collected to attempt to identify both the mental networks that 

students brought to the study and the ways that those networks interacted with contextual 

features of the study to produce more or less flexible mathematics. 

Semi-Structured Interview. 

The semi-structured interview (SSI) asked a variety of questions intended to surface the 

state of the mental networks students brought to the study. The protocol for this interview can be 
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found in Appendix A. Table 4 connects particular questions in the SSI with the functional nodes 

it was designed to uncover. Some of the questions designed to uncover metacognitive activity 

were taken from Schoenfeld (1989); others were created by the researcher to explore new ways 

of getting at network activation. Measures for core mathematical networks were based on the 

triple code model (Dehaene, 1999). Measures of cognitive networks were based on the core skills 

required for successful performance in linear equations as defined in Chapter Two. 

Traces of Student Activity While Solving Problems. 

 Students were asked to work on six problems, three of which were designed to afford 

competence, and three of which were designed to afford flexibility (see Table 5 for the questions 

used). As they worked on problems, audio and video recordings were made for transcription. In 

addition, traces of student work, found on paper distributed to participants to use to record their 

work and answers, were collected. It was hoped that these data would facilitate understanding of 

which networks were active and when they were active during problem solving.  It was unclear if 

these data would facilitate fruitful analysis of network activity as set out in Chapter Two. 

However, an adaptation of Schoenfeld‟s AAT graphs (described below) was included in the 

protocol to allow these data to inform understandings of which networks were active and when. 

Student Perceptions of Their Own Activity. 

 Structured introspection may be a promising way of surfacing another source of data 

about which mental networks are active and when they are active. After each problem, students 

were asked a series of follow up questions (see Appendix B).  I designed the follow-up questions 

myself, based on personal experience, because they were largely designed to probe 

metacognitive networks (experiential and narrative) for which self-reflection protocols have not 

yet been generated. In the first (Follow1), students were asked, “Can you take me through how 
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you solved this problem? Give me as much detail as possible about what you were thinking, 

feeling, and what you were trying to do at each stage of the problem.” This question was 

designed to probe the experiential and narrative metacognitive networks simultaneously, by 

putting students “back in the moment” and asking them to describe what they experienced.   

 After they responded, participants were asked a second follow-up question (Follow2): “If 

a friend were about to attempt this problem, what should they know?” This question was 

designed to isolate narrative metacognitive network activity by asking students to consider 

themselves as existing across time, relating to another person in verbal form (which I 

hypothesized focuses attention away from the defocused, in-the-moment processes active in the 

experiential metacognitive network).  

 As a final follow-up question (Follow3), students were asked, “Do you have any 

questions about this problem? I am happy to answer any questions you have, if you‟d like to 

clarify anything, or see where you went wrong [if their performance was not successful].” The 

researcher attempted to answer their questions as literally as possible. This question was 

designed to surface where conflicts between mental networks occurred, and how students 

attempted to resolve those conflicts.  By doing this, I hoped to identify relationships between 

network nodes as they were active while solving the problem. 

Procedure  

Overview 

 Participants met with the researcher for a single session. This session took a maximum of 

2 hours.  The session had two components: in the first, the networks students brought to the 

study were surfaced using the SSI; in the second, students engaged with linear equation problems 

designed to afford either competence or flexibility.  
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Surfacing The Networks Students Brought to the Study 

 As discussed above, participants were interviewed as to what networks they brought to 

the study. This part of the study took less than 1 hour. As described above, the SSI used as a 

guide in interviewing students was an exploratory protocol, drawing on Schoenfeld (1989), the 

work of Dehaene (2004), the core cognitive networks used in linear equations, and the hunches 

of the researcher. 

Working With, and Reflecting On, Problems Which Afforded Flexibility or Competence 

After completing the SSI, students engaged with six problems (two sets of three 

problems) involving linear equations (see Table 5) and answered a series of follow up questions 

for each problem. This part of the study took between 30-60 minutes. Students answered follow-

up questions immediately after completing each problem.  

Within each set, one problem was designed to afford competence, the other designed to 

afford flexibility. Problems designed to afford competence could be solved by straightforward 

application of one or more of the seven competencies specific to linear equations, as detailed in 

Chapter 2. Problems that afforded flexibility could not be solved with basic application of these 

competences, but could be solved by recombining these competencies in novel ways. Each 

flexibility problem had multiple paths to the correct solution, so it was unclear what cognitive 

path students would take, but the problems could not be solved with standard application of 

procedures as they are generally taught in BC schools.  

 The two problems within each set were matched in terms of linguistic demands, the linear 

equations concepts that were relevant, and problem structure. Each problem required use of 

particular domain-specific networks drawn from curriculum documents. Two problem elements 

distinguished problems designed to afford competency from those that afforded flexibility: 1) 
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researcher experience with students taking Principles of Mathematics 10 suggested a set of 

problems which are typical and used across schools and on provincial exams – problems 

designed to afford competence were drawn from this set, while those affording flexibility were 

not; and 2) problems designed to afford flexibility contained an added element not usually found 

in typical linear equations problems. For example, one problem asked students to find the slope 

of the line joining (a, b) and (3a, 2b).  Most students would have seen many problems asking 

them to calculate slope given two points; or given slope and one point, to find a possible second 

point. However, these problems typically use specific rational numbers, rather than variables. 

The inclusion of variables required students to also simplify like terms and then express the 

resulting slope as a relation between two variables, rather than as a rational number. Though 

simplifying like terms is a basic mathematical operation taught in Grade 9 and used throughout 

high-school mathematics, its use in this context appears to require flexibility, because it is not 

typically used in this context. 

 After each problem, students were asked a series of follow up questions designed to 

allow them to recollect and report on their mental experiences while working on the problems, as 

described above. Because it was essential to observe on-line activity with minimal amplification 

of the narrative metacognitive network, students were not asked to reflect on their activity until 

they had finished the problem. As discussed above, this might have made observing network 

activity during the activity more challenging. 

 At the end of the sessions, students were thanked for participating and asked if they 

would like to hear about the results of the study when the study was complete. If they asked to 

learn about the results, the researcher agreed to contact students to set up a meeting once the 

study was complete.. 
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Data Synthesis and Interpretation 

Interpretation of Network Activation 

 Understanding which networks were active while participants were working on problems, 

and how they interacted, was a major challenge of this project. It was also central to the data 

interpretation strategy described below. As discussed above, networks activate without 

necessarily causing any behavioral sign of their activation; some of the specific networks under 

investigation are not usually observed in the context of complex, flexible mathematics; and there 

is minimal research holistically observing the particular group of networks specified for the 

study. In light of these challenges, a main goal of the study was exploring if and how the study 

protocol might support observation and inference of network activation. 

 The study protocol was designed to provide rich descriptions of participant activity as 

they worked on problems. Traces of student work were collected from paper participants used to 

record their answers. Video and audio tapes recorded utterances, gestures and facial expressions. 

Follow up questions gave reports of participants‟ internal experience and afforded them 

opportunities to ask questions which might have revealed more about their internal experience. 

For each case, rich descriptions of student activity were generated and analyzed by the 

researcher. Data analysis approaches were used to interpret these rich descriptions and try out 

different ways of interpreting network activation. 

 Analysis of rich description to generate parsimonious interpretations of network 

activation may be limited in its efficacy. It may be that particular utterances, activity, and traces 

are too vague to be reliably considered the product of a particular network. Because students 

were not asked to reflect mid-problem, follow up questions may not have reliably indicated 

which networks were active at which times.  
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To provide a complementary, more structured lens from which to view data, the protocol 

included creation of two versions of Schoenfeld‟s AAT graphs which could be used to inform 

data interpretation. AAT graphs track activity across time as students work. It was hoped that 

analysis of AAT graphs in the study would allow dynamics of student activity, and network 

activity, to emerge. 

 The first type of AAT graph (AAT1) was based loosely on the Schoenfeld (1992) 

example discussed earlier. These graphs track student activity across time during problem 

solving. Schoenfeld tracked categories of activity germane to the dyad activity he was observing 

– reading, analyzing, exploring, planning, implementing, and verifying. In this study, AAT1 

graphs were constructed in an attempt to replicate the concrete types of activity Schoenfeld 

discussed, but using categories relevant to the activity under study here. These categories were 

finalized during initial data analysis to ensure they matched what students actually did.  

 It was hoped that analysis of this type of AAT1 graph would allow temporal patterns of 

network activation to emerge. These graphs show dynamics of activity across time; within a 

network theory, changes in activity represent changes in network states. Thus, from each change, 

the activity of particular networks might be inferred. However, because activity was tracked 

using categories of activity, rather than network states, it was not clear up front whether or not 

these inferences would be valid. 

 To provide a second view of cognitive dynamics across the study, a second type of AAT 

graph (AAT2) was used to analyze data. Rather than track participant level activity, AAT2 

graphs tracked activity within the networks under investigation. In-context observation of these 

networks (as they are defined above) is a new research aim, and the method I tried was 

exploratory. Table 6 details each of the networks under investigation and gives exploratory 
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criteria that were applied to try to identify network activation. For example, student utterances 

relating to belief, affect, or assessment of cognitive capacity and utterances in which the 

participant is the subject were interpreted as narrative-metacognitive activity.  

Analysis of AAT2 graphs was designed to focus on looking for patterns of network 

activation within students and then across students. It was hoped that relating these patterns to 

exhibited flexibility and competence –within and across students – would illuminate how 

network activation can support flexibility. However, AAT2 graphs specify only which networks 

are active – not how they are active or how they are transmitting activation to other networks. 

This limitation may have hindered the ability of the study to uncover how network activation 

related to flexibility. As well, the exploratory nature of the criteria used may have hindered their 

validity, because they were not explicitly derived from other research. Thus, while it was hoped 

that the AAT2 graphs would illuminate relationships between functional networks and 

flexibility; but, because activation was measured only as off/on and using exploratory criteria, 

whether or not the graphs would ultimately prove useful was unclear.    

 In sum, three types of observation were used to support detection of network activation. 

First, rich descriptions of student activity afforded opportunities to posit parsimonious inferences 

about network activity. Second, AAT1 graphs were designed to illuminate activity dynamics and 

seeing change in activity across time, and to facilitate understanding of which networks are 

active and how they supported or inhibited flexibility. Third, AAT2 graphs were designed to 

attempt to track network activity itself, allowing direct analysis of network activation (though 

threats to validity made this approach difficult). 

 Every utterance and recordable action, by definition, results from activation of a variety 

of functional nodes, including ones I have not specified. Thus, detecting node activation was 
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necessarily fuzzy and exploratory. Reliably and validly detecting activation in functional nodes 

was a test of my methodology. If I found that differentiating one node from another was too 

difficult, this would suggest that this methodology might not suffice to accomplish what I set out 

to do. 

Relating Flexibility, Competence, and Network Activation 

My main synthetic strategy was to triangulate across transactions within a case and then 

to triangulate across cases to identify increasingly general conclusions about flexibility and 

competence in linear equations. Triangulation refers to substantiating hypotheses by synthesizing 

across distinct lines of evidence, preferably with distinct data collection methods as well, in order 

to evaluate theoretical predictions (Eistentat, 1989). In this study, each student engaged in six 

separate problems – in which traces of written work, and audio and videotapes of activity were 

collected; as well, follow-up questions were asked– giving audio and video data; and students 

completed the SSI, giving audio and video data that was transcribed. Table 4 relates affordances 

for observation during the study with the functional networks observed. This set of data was 

designed to be broad enough to afford triangulation that could inform theory. Within a case, I 

used an iterative method of triangulation, using a single piece of data, or a hunch, to inform a 

hypothesized relationship between functional nodes. I then examined documentary evidence 

(artifacts and audio/video tapes) to attempt to falsify or qualify these hypothesized relationships.  

Relationships that stood up more strongly to this process were considered to be better 

triangulated, and a more valid picture of relationships that existed within that student‟s mental 

networks.  After this process, each case had a set of hypothesized relationships between 

functional nodes and their contribution to flexibility. I then used the same process to look for 

increasingly general patterns across students. Again, I examined documentary evidence (traces, 
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utterances, and audio/video tapes), to attempt to falsify or qualify these hypothesized 

relationships. Relationships that stood up more strongly to this process were considered better 

triangulated and a more valid picture of relationships that existed across students. 

 Importantly, I did not expect to find stable general relationships like “experiential 

metacognitive networks always cause mathematical flexibility.” The network model is more 

dynamic than traditional causal models, where constructs are expected to have an independent 

and consistent effect on a dependent variable. Instead, I looked for general relationships like 

“experiential metacognitive networks can inhibit narrative metacognitive networks, and if they 

do, they tend to activate both cognitive networks for linear equations, and facilitate switching 

fluidly between those networks.” This type of generalization is consistent with the stable but 

non-linear patterns found within networks. 
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CHAPTER FOUR 

Results 

 The purpose of this study was to contrast network activity as students exhibited 

mathematical flexibility with network activity when students exhibited mathematical 

competence, while working in linear equations. In this report of findings, I focus attention on 

what I learned about the relationship between student problem-solving, network activity, and 

flexible or competent performance. I provide a descriptive report of each student‟s activity while 

working on each of the six problems, including characterizing elements of their activity on each 

problem as competent or flexible performance in mathematics. These reports include 

descriptions of network activity in mental and contextual networks thought important to 

mathematical flexibility.  I then integrate across these problem-by-problem activity reports to 

identify student-specific patterns in network activation and relate these patterns to student 

flexibility and competence.   Finally, I offer an integrative analysis of patterns in network 

activity/flexibility that were observable across cases. But because a parallel goal in this thesis 

was to test out a relatively new methodological approach, in this chapter I begin by drawing 

attention to affordances and limitations I discovered in my methodology, and explain what steps 

were taken to improve the quality of inference that could be made from the data. 

Characterizing Students’ Participation in Mathematical Problem-Solving 

The methodological plan in this study was to analyze data from written, audio, and video 

traces of student activity in order to characterize network activation while participants were 

working through mathematics problems and to relate that activity to flexible or competent 

performance. As described earlier, a variety of data were collected to inform understanding of 

students‟ activity during problem solving. Participant work on each problem was recorded on 
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sheets provided by the researcher. Video records of students‟ problem-solving performance were 

collected on a video camera with an SD memory card. To aid in analyzing the rich combination 

of data, participant answers to follow up questions were transcribed by a research assistant. In 

this section, I briefly describe how I ultimately treated the data in order to best derive an 

understanding of students‟ network activity. 

Describing Students’ Problem-Solving Activity. 

In order to make sense of students‟ problem-solving activity, I started by segmenting 

problem-solving into time intervals that seemed to represent coherent units of activity, and 

assigned these with “activity codes.” The particular activity codes were derived from participant 

activity, and designed to be as theory-neutral as possible. The codes used included thinking; 

writing; talking; reading; and using calculator. Activity codes were supplemented with “activity 

descriptions” – brief but specific descriptions of what that participant was doing during the coded 

period. The specific descriptions were created by triangulating activity captured on video with 

written work, and with participant perceptions of their work as reflected in responses to the 

follow up questions. As such, descriptions represent the best effort of the researcher to detect 

what participants were thinking and doing during each problem, but were subject to errors 

stemming from undetectable activity, or misperception of activity.   

The a priori analysis plan called for activity reports to be summarized in two types of 

activity graphs that could characterize each student‟s engagement in each of six problems: AAT 

and AAT2 graphs. AAT graphs, based on Schoenfeld‟s (1997) research, were planned to 

represent activity across time. AAT2 graphs were proposed as a way of tracing network 

activation across time. However, once the data were examined, it became clear that detection of 

network activation was possible at some points, but not at all points. Creation of AAT2 graphs, 
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then, risked giving a misleading visual impression, as a large portion of network activity was not 

observable. 

As a result, the decision was made to use AAT graphs as the framework for 

characterizing problem-solving performance. AAT graphs were created with assistance from a 

research assistant, working from a template set of charts. Tables of coded activity were converted 

into graphs, where each activity code was „on‟ as horizontal bars (see Figure x for an example).  

The x-axis represents the time elapsed in the problem, and the y-axis represents the categories of 

activities. The bars are annotated with a number, which corresponds to a chart of “activity 

details,” which are located under the x-axis.   

Interpreting Network Activity. 

Next, I conducted a careful analysis of the extent to which networks were activated 

during these activity sequences, based on the scheme found in Table 5 focused on network 

coding. I provide descriptions of network activation observed within “activity reports.” Network 

activity did not map perfectly onto the time intervals generated for AAT graphs, so network 

activity is coded as corresponding to particular sets of activity details.  However, this coding is 

temporally imprecise – network activity is likely to be occurring in time intervals that do not 

correspond directly to observable behavior – and thus, the recorded activities to which network 

activity corresponds should be considered accurate, but loosely connected to observable activity.  

Note that I also found, during data coding, that it was difficult to consistently characterize 

metacognitive statements or behaviour as narrative or experiential based on the data collected. 

Instead, I focused on describing activities that could be classed metacognitive, and drew 

conclusions about activation of metacognitive networks, including an analysis of their 

experiential and narrative nature, based on patterns observed in those more broadly coded data.  
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In order to create coding criteria for recognizing activity in metacognitive networks, I 

drew on Schoenfeld‟s (1992) three part taxonomy of metacognition in mathematical problem 

solving (as described earlier). In line with this framework, network activity was coded as 

metacognitive if there was evidence of: 1) expression of belief or affect; 2) declarative 

knowledge about cognitive processes; or 3) self-regulatory procedures like monitoring or on-line 

decision-making. Note that applying these coding criteria did not associate a metacognitive label 

with all actions that may be positioned as metacognitive in other research. Specifically, activity 

unaccompanied by expression of belief or affect, or declarative knowledge was not termed 

metacognitive network activation, unless I could detect specific activity related to “making a 

decision.” This coding choice was made to account for the possibility that particular networks 

may produce activity that looks „metacognitive‟ (in the broadest sense), because of the ways in 

which networks interact, but does not actually require active networks that state belief and affect, 

declarative knowledge, or make decisions. If this transaction level metacognition occurred, it 

could be considered a property of the transaction as a whole, emerging from the interactions of 

non-metacognitive networks, rather than from particular metacognitive network activity within 

that transaction.  

The approach of using clear evidence of a “decision” as evidence for metacognitive 

network activity may have had some limitations. This approach was most challenging in cases of 

participants shifting and applying strategies. When inferring metacognitive activity in the 

absence of clearly articulated declarative knowledge about cognitive processes, I looked for 

evidence of activity related to shifting activity, or enacting a strategy. This evidence included 

activity that seemed to function to shift activity or strategize (e.g., pausing, thinking, 

subvocalizing), or evidence of cognition related to this “decision.” This approach to associating 
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metacognitive activation with decision-making risked missing important metacognitive network 

activity, but had the benefit of increasing the chance that activity identified represented 

metacognitive network activation, rather than “metacognition” emerging from non-

metacognitive network interactions.  

Identifying Flexibility and Competence. 

Student activity was also coded as flexible or competent. In the theoretical framework 

presented earlier, I conceptualized activity as flexible when there is adaptation to new, different 

or changing requirements when engaging with quantity, magnitude, or form. Activity was 

conceptualized as competent when a student navigates the situation without any adaptation or 

recombination of existing knowledge and without attending to unique affordances in that 

particular situation. Following these definitions, if triangulation between data sources suggested 

that particular activity was an adaptation of competent activity, this activity was coded as 

flexible. If evidence of adaptation was not present, the activity was coded as competent.  

One implication of this coding scheme is that activity was coded as competent whenever 

there was insufficient evidence to view the activity as flexible. Therefore, behavior coded as 

competent may have reflected either competent activity, or flexible activity which did not leave a 

trace of that flexibility. In order to increase the validity of competence coding, evidence of the 

competent nature of the activity is noted where possible. In particular, student self-reports of 

their work were used to construct understandings of when students were interacting with linear 

equations competently. In cases where the competent nature of the activity was unclear, this was 

noted in the activity reports. 

 In contrast with the research plan, flexible and competent activity were ultimately coded 

on the activity level, rather than the problem level. Though the initial research question intended 
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to contrast flexible and competent problem solving, the results indicate that  flexibility and 

competence may be more effectively conceptualized as referring to particular units of activity 

within a problem, rather than to the nature of the problem solving as a whole. As will be shown 

below, in several cases, students showed evidence of both flexible and competent activity within 

a single problem.  Thus, the decision was made to code activity as flexible or competent, rather 

than characterizing problem solving performance overall as flexible or competent.  

 Initial analysis plans also suggested framing three categories of activity: competent, 

flexible, and incompetent. However, when coding, it appeared that problem-solving included a 

mix of competent and flexible activity, and “incompetence” was hard to define, except as a 

relatively unmeaningful judgment of whether activity lead to a successful or unsuccessful 

outcome. The decision was made to code activity as flexible or competent, and to omit the 

incompetent category.  

Activity Reports   

To characterize students‟ problem-solving, I ultimately pulled together activity reports 

for each problem solved by each participant. Activity reports represent the core results of the 

study. Activity reports were generated through an iterative process. First, student activity was 

coded to indicate what students were doing at each moment during the problem. This activity 

was translated by the researcher into narrative descriptions of student activity, which were then 

combined with transcripts of how students described their activity during follow-up questions.  

Together, with the AAT graph, these narratives provide a rich description of how the student 

acted during problem solving. From these results, I coded activity in terms of network activation, 

and in terms of flexibility and competence. Descriptions of network activity and flexibility 

follow the rich illustrations of that activity. At the end of each student‟s question reports, I 
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summarize key patterns of network activation and flexibility, and their connections, that can be 

found for a particular student. 

Clayton
3
 

At the time of this study, Clayton was a student going into Grade 12 at a private school 

for students who have a language-based learning disability. He reported getting a B in Math 10 

(73%-86%) but could not remember his mark exactly.  Clayton was easy going and relaxed. He 

was comfortable interacting with the researcher. When asked about his strengths and challenges, 

Clayton did not identify strengths, but discussed his weaknesses: "I‟m dyslexic but I don‟t know 

if ...I guess sometimes it‟s different but I‟m not sure for math really. I guess math was … in 

elementary school [it] was sort of the problem…but then when I came here it started to really 

unfold a bit a bit better.”   Table 7 indicates which of Clayton‟s activities were competent or 

flexible. 

Problem C1 

Activity Description. 

The AAT graph describing Clayton‟s activity in this first problem is presented in Figure 

2. After using the wrong formula initially, Clayton was able to solve this problem successfully. 

Clayton began his work on this problem by clarifying what the researcher‟s expectations were 

(“Do you want me to draw a graph?”). Once the researcher informed him that he could provide 

any work that gave insight to his thinking, Clayton restated this (“so basically, show you what 

I‟m thinking”). After returning his attention to his paper, he wrote down the mid-point formula. 

After a brief pause, he drew an x/y axis, and sketched a line with the points given in the question. 

                                                 
3
 Names of participants have been changed. 
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While in thought, Clayton (C) realized that the midpoint formula did not afford him a solution to 

the problem, and he crossed it out and clarified with the researcher (R): 

C:  Uh, if I can't remember the formula for slope or whatever? 

R:  Can I see what you did there? 

C:  I think that's the midpoint formula 

R: That is the midpoint formula, that's right. I'll tell you the formula, if you'd like. It's 

y2-y1 over x2-x1 

C: Oh, ok, yeah yeah yeah. 

Armed with the slope formula, Clayton made quick work of the rest of the problem, writing 

the slope formula, and plugging in the values given to get the correct answer.   

 In response to a follow-up question asking him to describe his thinking through the 

problem, Clayton replied: 

C:  Well, I guess first I got mixed up with the formula. I started using midpoint 

formula, then I realized that that gives you two points so then I was like, ok that's 

not it. So I decided to draw out - sketch a graph. Then you told me what the slope 

formula is, and I was able to just plug in y2 and y2 and x2 and x1.  

R: And what do you think would have happened if I hadn‟t give you the formula, 

what would you have done? 

C:  Probably would make my life harder, and try to find the area in here, which 

would also give you the slope, right? 

Affordances to Detect Network Activation. 

First, Clayton‟s problem solving activity suggested use of domain specific networks for 

midpoint formula, joining points to make a line, and the slope formula.  That Clayton wrote the 
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midpoint formula immediately after beginning the question suggests that a „midpoint formula 

network‟ was activated by the question text itself. It is possible that the two coordinates in the 

question text triggered activation in cognitive networks that can deal with sets of coordinates 

(which might include a network for the midpoint formula). From Clayton‟s activity, I infer that 

the midpoint formula activated most strongly. However, later, Clayton realized that the midpoint 

would not help him, and after asking for help, he dampened the midpoint network activity and 

used other domain specific networks to solve the problem. Clayton‟s plotting and joining of the 

two points early in the question indicates that domain specific networks for algebraic/visual-

spatial representation of coordinate systems were also active during the question.  

Networks supporting algebraic use of the slope formula were instrumental to Clayton‟s 

successful performance. After seeking a reminder as to the slope formula, Clayton easily used 

this formula to solve the problem, without pausing to think or ask questions. Though he needed a 

reminder as to the content of this formula, it is likely that network began to activate earlier in the 

question, as he sought out the formula once the midpoint formula had failed.  His speed and 

competence with the formula suggests that, once activated, for Clayton, this network supported a 

well-practiced algebraic procedure for finding the slope, given two points. 

Core mathematical networks for exact calculation were active late in the question, when 

Clayton mentally calculated the result of the slope formula. 

It may be the case that metacognitive networks supported Clayton‟s shift away from the 

midpoint formula, and his parsing of the expectations for the question. After two minutes of 

trying to use the midpoint formula to determine the answer, Clayton said “Uh – if I can‟t 

remember the formula for slope of whatever?” This utterance represents declarative knowledge 

about cognitive processes, and thus may be understood as metacognitive network activity.  
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Finally, Clayton made use of two key contextual networks: the paper, and the researcher. 

For Clayton, interactions with the researcher seemed to afford activation of relevant domain 

specific networks. Twice during the problems, Clayton sought clarification or information from 

the researcher which impacted the domain specific networks active immediately following. For 

example, when asking about the slope formula, the researcher‟s response activated the domain 

specific network for slope, affording him a cognitively simple path to the solution. Previous to 

his utterance, Clayton must have known the slope formula was important (since he asked about 

it), and therefore that network must have been activated to some extent; but his use of the 

contextual network (i.e. the researcher) strengthened the activation of the domain specific 

network in such a way that he could easily solve the problem. 

 Clayton also used the paper to highlight the visual-spatial aspects of the problem, and to 

store formula and calculation information. Early in his activity, Clayton sketched the graph 

depicted in the question.  As soon as formula was in his head, he wrote it down. He also wrote 

down all calculation steps, doing none in his head.  Thus, it seems possible that, for Clayton, the 

paper affords storing of information and problem representations, so that they do not need to be 

stored in his brain.  

Clayton showed competence in the way he applied the midpoint and slope formulas, and 

wrote down their results and intermediate calculations. Though only the slope formula 

contributed to his successful solution, both formulas were applied easily and accurately. The 

activity seems to have been supported by relevant domain specific and contextual networks.  

Clayton showed flexibility during this problem by obtaining the slope formula from the 

researcher and employing it. The mid-point formula, which Clayton initially used, returns two 

distinct values (one for x and one for y). Once Clayton had obtained these two values, he crossed 
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out the midpoint formula, and asked the researcher “So, if I can‟t remember the slope?” At this 

point in the question, Clayton could see from his work that there were two points in the answer, 

rather than a single value, and thus realized that his formula wouldn‟t afford him an answer. He 

adapted to this situation by probing the researcher for the information he was missing. 

Ultimately, this flexibility was essential to solving the problem, as it afforded him the necessary 

domain specific network activation needed to competently solve the problem.  

This flexibility may have been supported by network activity. In this flexible activity, 

Clayton used a contextual network (the two points he wrote on his paper) to activate 

metacognitive and contextual networks (saying to the researcher: “Uh, if I can‟t remember the 

slope of whatever?”, which, in turn, activated domain specific networks (for slope formula), 

which he then used to correctly and competently solve the problem. This adaptation seemed to be 

triggered by activity in the contextual network of his paper, which in turn, activated the relevant 

metacognitive and domain specific networks.  

Problem F1 

Activity Description. 

The AAT graph describing Clayton‟s activity in this second problem is presented in 

Figure 3.  Clayton solved this problem quickly and easily. He began by reading the question, 

possibly twice (given the time that he took, and that the particular school he attends has very 

small classes and gives explicit strategy instruction for problem solving). After he read the 

problem, he wrote the slope formula, inserted the relevant terms, and simplified the algebraic 

expressions to obtain the slope of the line in simplified form. He did pause to think twice during 

the problem, though only for a few seconds. 
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In response to a follow-up question asking him to describe his thinking through the problem, 

Clayton replied: 

C: Basically the same was solving the other problem using the slope formula. I was also 

thinking like since 3a - I'm guessing if this point was a or something, but it's 3a so it's 3 

times as long. Same with 2b - it'd be twice as long. 

R: How did you use that in solving the problem? 

C: I didn't actually. I don't know. Maybe I was just thinking about drawing a graph and 

then it occurred to me that I could just use the slope formula 

Affordances to Detect Network Activation. 

Clayton‟s work on this problem afforded detection of activation of domain specific, core 

mathematical, metacognitive, and contextual networks. First, Clayton‟s activity shows evidence 

that domain specific networks for slope, algebraic manipulation, and visual-spatial coordinates 

were active. Clayton‟s quick use of the slope formula suggests that it was highly active – his 

work in the previous question may have activated it. At the end of the problem, Clayton 

simplified two easy algebraic expressions. His detection of this affordance suggests that 

networks for algebraic simplification were active during the problem, and were recruited to 

complete the problem. Early in the problem, Clayton drew an x/y axis, suggesting that initially 

visual spatial networks for coordinate graphing were active. 

 This question does not require the use of core mathematical networks, except for very 

simple, highly automatic calculations (3-1, and 2-1). Clayton was able to solve this problem 

quickly and easily, suggesting a minimal role for metacognitive activity. However, Clayton‟s 

shift away from his initial step – drawing an x/y axis – to an algebraic method may have 
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represented a metacognitive shift in strategy (or it may have been a direct interaction between 

contextual and domain specific networks).  

Finally, contextual networks were used to store information. As in the previous question, 

Clayton used the paper to highlight the visual-spatial aspects of the problem, and to store formula 

and calculation information. Throughout the problem, he wrote all steps, doing none in his head.  

Thus, it seems possible that, for Clayton, the paper affords storing of information and problem 

representations, so that they do not need to be stored in his brain. 

Clayton‟s activity in this question appeared to be a competent extension of his competent 

activity in the previous problem. He quickly and easily solved the problem, and appeared to use 

the same domain specific networks, in the same way, suggesting competence supported by these 

slope networks. Clayton‟s activity in the question did not appear to have detectible examples of 

flexibility. 

Problem C2 

Activity Description. 

The AAT graph describing Clayton‟s activity in this third problem is presented in Figure 

4.  Again Clayton seemed to perceive this problem as fairly simple, and he solved it quickly and 

accurately. After reading the question, he divided the page into two columns and labeled them 

Company A and Company B. In each column he wrote the access fee, determined the portion of 

the cost that relates to minutes by multiplying the relevant numbers, and added this to the system 

access fee.  

In response to a follow-up question asking him to describe his thinking through the problem, 

Clayton replied: 
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C: Ok, well basically there's Company A and B. Company A, you'd start off having to pay 

12.50....that's for the plan right? And then 20 cents a minute. Uh, so the monthly fee is 

12.50 for company A, and then if you 30 minutes that month you'd times how much it cost 

per minute by the 30 minutes - that equals to 6 dollars. Then you add the two together – 

the monthly fee and how many minutes you used so the total is 18.50 for Company A. And 

basically the same thing for company B but with different number, but the total would be 

16.60 for company B.   

Affordances to Detect Network Activation. 

In this question, Clayton may have activated domain specific networks for knowledge of 

cell-phone plan pricing. These likely included networks for calculating total costs given a per 

minute cost, as he demonstrated competence in this area. Although it is possible that these 

networks are in fact more general mathematical networks for linear equations, the fact that he did 

not write general equations or talk about the problem as requiring an equation suggests that the 

networks were more specific to cell-phone pricing or at least to consumer spending.  

Though Clayton used the calculator to do most arithmetic, he did once add two numbers 

in his head, indicating activity in core mathematical networks. Clayton‟s choice to divide the 

page in two represents a metacognitive decision to attack the two companies in the question 

separately. Activity in contextual networks was evident when, as in previous problems, Clayton 

used the paper to store calculation and information, including the results of intermediate 

calculation. In this problem, Clayton also used a calculator to multiply (rather than using core 

mathematical or domain specific networks).  

All students solved this problem in a competent manner, including Clayton. He 

immediately calculated the costs accurately, suggesting that this competence was supported by 
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domain specific networks for cell-phone pricing. Clayton‟s activity in the question did not appear 

to have detectible examples of flexibility. 

Problem F2 

Activity Description. 

 The AAT graph describing Clayton‟s activity in this fourth problem is presented in 

Figure 5.  Clayton struggled with this question, and ultimately gave up before positing an 

answer. Clayton began by reading the question. This question is similar linguistically to the 

previous question and uses the same companies. Initially, he interpreted the question as asking 

“which of the companies in the previous question was least expensive?” He clarified that 

understanding with the researcher: 

C: Can I just link them together? Or do want me to go through the same steps I just did? 

R: Link them together? What do you mean by link them together? 

C: Cause it says your friend asks you is Company A cheaper than Company B.  

R: When is Company A cheaper? 

C: Is that all I have to answer? Do I have to go through the same steps? 

R: No you don't have to show anything, you just have to answer that question. Maybe that 

question is not worded clearly.  

C: No I think I got it.  

R: You think you got what it's asking? 

At this point, the researcher was unsure how Clayton was understanding the question, but 

Clayton began to write “Company A is cheaper when dealing with the cost of its minutes,” and 

the researcher did not continue the interaction. However, this writing suggests that Clayton still 

saw this problem as requiring him to summarize the results of the previous problem. Clayton 
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then stopped, thinking that he had solved the question. However, the researcher, concerned that 

the problem had been worded poorly, offered some clarification: 

R: I think that question is poorly worded, so I'm going to re-ask it… I want to know up to 

what point - in terms of how many minutes per month you're using - is company A 

cheaper than company B. So I'm not looking for something like, at 15 minutes company A 

is cheaper, I'm looking for a range. Do you get what I mean? 

C: Like? 

R: It might be that up to 500 minutes Company A is cheaper than Company B, but if 

you're going to use more than 500 minutes, Company B is cheaper. 

 Clayton then suggested using the T(i) formula from a different unit of Grade 10 math 

(sequence and series). The researcher suggested that this approach was not the intended 

approach, though it may have worked. The researcher and Clayton continued to discuss how to 

interpret the task. Ultimately, they were not able to achieve understanding, and Clayton looked 

back at the previous question for a minute. After a minute, he indicated to the researcher that he 

was done with the question.  

In response to a follow-up question asking him to describe his thinking through the problem, 

Clayton replied: 

C: Well I guess I was just trying to figure out what - like - how many days or months it 

would take for Company A to be cheaper in the long run. 

R: And how were you thinking about that? 

C: Well I was looking back to this other question- where it gave you the numbers for how 

much it would cost per month. So basically in one month Company A was more expensive 
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but not by much...like a buck or something. And uh, so then, I guess probably two months 

it'd be....Company A would be cheaper to have, but I didn't know how to find that amount. 

Affordances to Detect Network Activation. 

Clayton‟s work on this problem afforded detection of activation of domain specific, 

metacognitive, and contextual networks. This question clearly activated all the domain specific 

networks that had been active in the previous question. This is evidenced by the fact that Clayton 

was cognitively stuck on the idea that the previous question contained the insight relevant for 

this question. Networks for other formulas from Grade 10 math, specifically the formula to find a 

term in an arithmetic sequence, were also active. The researcher‟s comment that this formula was 

probably not helpful may have dampened activity in this network. 

As with most other students, networks for representing linear relationships with an 

equation did not activate. Even during a follow-up explanation, Clayton did not seem to note the 

affordance for comparison that creating an equation for each company would provide. A likely 

hypothesis is that his way of understanding the problem – as a continuation of the last problem – 

blocked any other understandings of the problem. As well, it seems that the researcher‟s attempts 

to explain the problem were not helpful in promoting use of these networks. 

Clayton did no calculation or number work during the question, and thus did not activate 

his core mathematical networks. 

Metacognition networks supported Clayton in asking for clarification and in looking back 

at his previous work.  Early in the problem, Clayton asked for clarification, believing that his 

strategy (to report the results of the previous question) was too simple. However, Clayton cut off 

this discussion – “No, I got it” – and returned to his strategy. Although clearly the researcher was 

ineffective in explaining the question, it is also likely that Clayton was having trouble shifting 
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strategies. This suggests a lack of metacognitive activation where it may have been useful. Even 

if the question was unclear, inhibitory metacognitive networks may have helped Clayton to stop 

network activity related to the last question that may have been interfering with his cognition. 

Late in the problem, it was clear to Clayton that he did not understand how to approach the 

problem. At that point, he asked if he could look back at his work, and spent a minute combing 

through the previous question, looking for insight or clues, suggesting metacognitive activation. 

Clayton thought for a moment, crossed out his previous work, thought for a moment, then asked 

if he could look back at his work.  

As in previous questions, Clayton used multiple discussions with the researcher to extend 

and confirm his understanding of the question. This was not fruitful in this problem, as Clayton 

and the researcher were not able to communicate about the task demands in a way that afforded 

success on the problem. Because relevant domain-specific cognitive networks were not active, 

Clayton had nothing to outsource to the paper. Thus unlike previous problems, there was no 

meaningful interaction with the paper or other contextual networks.  

Clayton‟s confusion in the problem suggests that it may not be appropriate to code any of 

Clayton‟s activity as competent. Follow-up questions suggest Clayton did not understand the 

question, despite repeated conversations with the researcher. And it was difficult to code his 

activity as coming from competent use of networks that he brought to the study. 

 Clayton did exhibit flexibility during the problem when he suggested using the t(i) 

formula for identifying terms in an arithmetic sequence to solve the problem. Clayton was stuck, 

and he adapted by searching internally for a cognitive network related to the task at hand, and 

checking the utility of that network by talking to the researcher. Although the formula Clayton 

activated did not easily afford a successful solution, his searching for an alternative represents 
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adaptation to the question. From a network lens, flexibility was triggered by activity in 

contextual networks (the researcher‟s comment that the proposed answer did not answer the 

intended question), which in turn activated domain specific networks (for the t(i) formula) and 

use of contextual networks (for checking the domain specific network with the researcher).  

Clayton continued to exhibit flexibility by then looking back on his previous work for 

possible insight (though he did not find any). Adapting to the state of not knowing how to answer 

the question, Clayton‟s metacognitive networks (for shifting away from the approach he had 

been using) triggered activity in contextual networks (his reading work on previous questions) in 

an attempt to activate relevant domain specific networks. This contextual activity did not trigger 

domain-specific networks that could have helped solving the problem, and thus Clayton‟s 

flexibility in this problem did not support successful performance.  

Problem C3 

Activity Description.  

 The AAT graph describing Clayton‟s activity in this fifth problem is presented in Figure 

6.  Clayton solved this question easily and quickly. After reading the question, Clayton spoke to 

the researcher to check his understanding. After clarifying that finding the slopes of both lines 

would afford him a correct solution, he made quick work of the question. First he separated the 

points into two lines and called their slopes m1 and m2. He then wrote the slope formula and 

calculated these slopes directly.  

In response to a follow-up question asking him to describe his thinking through the problem, 

Clayton replied: 

C: The lines aren't parallel because they have 2 different slopes. 

R: Take me through what you were thinking and feeling. 
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C: So they have two lines, I separated them from line 1 and line 2 so that it'd be finding 

two different slopes, m1 and m2. So I found m2 and the slope for that line is 2, and the 

slope for the second line is 4, so I used the slope formula  y2-y1 / x2-x1, so I found the 

slopes and they're not equal. Is that correct? 

R: Yes, that's correct. Can you tell me why you drew an x and y axis? 

C: It was just going through my head that maybe it would be easier, but I just realized 

that I can plug them into the equation 

Affordances to Detect Network Activation. 

In this problem, Clayton used domain specific, algebraic networks for slope that had been 

active throughout the study. As well, Clayton‟s choice to confirm with the researcher that finding 

the slopes of both lines would lead to success suggests that networks relating parallel lines to 

slopes were active throughout the problem. Clayton performed several in-the-head calculations, 

suggesting networks for exact calculation were also active.  

This problem was fairly easy for Clayton and thus required less metacognition. However, 

it is likely that metacognition networks supported Clayton in checking his understanding of the 

problem with the researcher. He confirmed his understanding that finding the slopes would allow 

him to check if the lines are parallel and thus was able to attack the rest of the problem with 

competence and confidence.  

As in previous problems, Clayton used paper to record calculations and the slope 

formula. Again, this included intermediate steps. As well, Clayton used the researcher to check 

the usefulness of his proposed strategy. This strategy afforded him an assurance that he was on 

the right track, but the exact function of this affordance is unclear. 
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Clayton‟s activity in this question was coded as competent. He made use of the slope 

formula and quickly calculated and compared the slopes of both lines. This activity seemed to be 

supported by domain specific networks for slope and parallel lines, core mathematical networks, 

and contextual/metacognitive network transactions. 

Problem F3 

Activity Description. 

The AAT graph describing Clayton‟s activity in this final problem is presented in Figure 

7.  Clayton was able to construct equations for both lines but did not equate them and thus did 

not get the correct answer. After reading the question, Clayton directly asked the researcher “so 

what am I looking for?” The researcher did not answer directly, to give Clayton a chance to try 

the question.  Clayton labeled the points in the question text, drew an x/y axis, and drew line CD. 

After a moment of thought, he subvocalized “ok, I understand.” He then calculated the slope of 

CD and created an expression for the slope of AB (which involves variables and thus is not equal 

to a number). However, after about 15 seconds of thought, Clayton indicated he was done with 

the problem. Though he had correctly identified the slope of CD and an expression for the slope 

of AB, he did not equate the two, and thus could not provide a solution to the question. 

In response to a follow-up question asking him to describe his thinking through the 

problem, Clayton replied: 

C:  Basically I drew a line – maybe to try and help me and don't think it really did - 

where c and d were on a graph. So, I got that, and then I found the slope of CD to see if it 

would do anything. And maybe if I were to find the slope of AB, I could use that, to find 

the values of a and b with the slope from CD. 
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Affordances to Detect Network Activation. 

Clayton‟s work on this problem afforded him detection of activation of domain specific, 

core mathematical, metacognitive, and contextual networks. In this problem, Clayton used 

networks for slope that had been active throughout the study. However, unlike in the previous 

question, domain specific networks for relating slope to parallel lines were not active - at least 

not enough to afford equating the slope of CD and the expression for the slope of AB.   

Networks for exact calculation were active when the slope of AB was calculated 

In this problem, metacognitive networks seemed to support Clayton‟s perception that he could 

successfully solve the problem. He subvocalized to himself “ok, I understand.” However, 

because this utterance was followed by a period of quiet thought, it is possible that this narrative 

understanding did not support actual performance on the problem. Its function from this point of 

view might have been to give him the confidence to continue. However, because this utterance 

was surrounded by quiet thought, the nature of the metacognition occurring cannot be known for 

sure. Metacognitive networks must have also helped Clayton decide he did not know how to 

approach the problem once expressions for the slopes had been made. However, there was no 

behavioral evidence or information in the follow up question to indicate how he decided that 

problem should be over; thus, we can‟t be sure of the exact function of this metacognition. 

Clayton tried to use discussion with the researcher to directly ask for task demands. 

Because his request was so specific, the researcher told Clayton he couldn‟t answer the question. 

Given Clayton‟s frequent use of this strategy, it is likely that domain experts are a key element of 

contextual networks for Clayton, and that this lack of help constrained him from using this 

contextual network to support his successful answering of the problem. As in previous problems, 

Clayton used paper to store all information and calculations. 
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Clayton showed competence during this problem when he set up expressions for the 

slopes of both lines and when he graphed CD; this suggests use of domain specific networks in 

this competent activity. Clayton‟s activity in the question did not appear to have detectible 

examples of flexibility. 

Patterns in Network Activation and Flexibility Across Problems: Clayton 

Across problems, Clayton consistently activated useful domain specific networks for 

midpoint formula, slope formula, algebraic manipulation, cell-phone pricing, and relating slopes 

to parallel lines. Clayton‟s networks for slope seemed to be largely algebraic and were essential 

to his success across tasks. He did not make notable use of visual spatial representations of slope 

during the study; though he graphed some of the lines in the problem, those representations 

seemed to represent a problem-solving routine, rather than informing his solutions (he never 

referred to these drawings). Once primed, this algebraic slope network afforded Clayton success 

on several problems; however, the network for slope needed to be primed by the researcher. 

Initially, Clayton tried to use the midpoint formula, but stopped when it outputted two values. 

However, once this network was active, Clayton showed the ability to use the formula adaptively 

and to connect it to his networks for parallel lines.  

Clayton showed effective use of core mathematical networks for exact calculation. He 

was able to calculate easily and made no errors. There is no evidence that Clayton used 

analogical mathematical networks; he showed no sign of estimation or intuition with relative 

sizes of number.  

In one case, Clayton‟s metacognitive activity – subvocalizing – seemed to function to 

sustain the activation of previously active domain specific networks. In problem C3, Clayton 

subvocalized to himself – “OK, I understand” – and then paused to think. As suggested above, in 
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this case, the activity may have served to keep active networks for slope and parallel lines. 

Subvocalization can occur undetected (e.g., in the head) and so it is unclear if this example 

represents a general pattern of subvocalization to keep domain specific networks active.   

In other cases, Clayton's metacognitive activity seemed to function to indirectly activate 

inactive domain specific networks through use of contextual networks – the paper, and the 

researcher.  As Clayton became aware that he was unsure of what to do in a problem (e.g., in 

problems C1, F2, and F3), he asked the researcher, directly or indirectly, for support. The 

support he sought was either a specific formula or a procedure, suggesting that he was hoping to 

activate the relevant domain specific networks. Once he felt these networks were active, he 

moved on to apply the procedure or formula he had discerned, sometimes with success (i.e., 

problem C1); sometimes not (i.e., problems F2 and F3).  

   The paper was also an important contextual network for Clayton. Twice Clayton 

noticed a problem with his work on the page and shifted strategies, suggesting that activity in the 

contextual network (changes to what was written on the paper) triggered metacognitive network 

activation.  For example, his discussion with the researcher, which primed the slope formula, 

occurred after he wrote the two values which outputted from the mid-point formula and realized 

he wanted only one value. Though “two values” are intrinsic to the midpoint formula, and he 

likely could have predicted that two values would be produced if he were asked, Clayton did not 

notice this until he had written and viewed the values on the page.  

For Clayton, then, metacognitive and contextual networks may be highly integrated, and 

metacognitive networks may function to interact with contextual networks; combined, these 

networks seemed to function to indirectly activate domain specific networks. When talking with 

the researcher, metacognitive networks seemed to trigger contextual activity (i.e., he decided to 
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interact with the researcher). When interacting with the paper, activity in the contextual network 

(i.e., changes to what was written) seemed to trigger metacognitive network activity (i.e. a new 

strategy decision).  

These contextual and metacognitive transactions sometimes afforded Clayton flexibility. 

When Clayton abandoned the midpoint formula in the first question and indirectly asked for the 

slope formula, he may have been responding to a disconnect between the result of the midpoint 

formula and his knowledge that the correct answer would have only one number.  It seems as 

though the result of the midpoint formula (as revealed through contextual networks) triggered 

this flexibility.  

Clayton also showed flexibility when he became stuck in question F2, and tried, 

unsuccessfully, to find the solution. The flexibility in this question also seemed to be explainable 

as an interaction between contextual and metacognitive networks, in the service of activating the 

correct domain specific network. Clayton, realizing that he needed a new strategy (metacognitive 

activation) asked the researcher (contextual network) if there was a link to a formula from 

another unit in math (domain specific network). His interaction with the researcher dampened 

that domain specific network (as the researcher suggested it would not be useful). Clayton then 

probed another contextual network (looking back at his work booklet), unsuccessfully searching 

for an affordance to utilize in the question. Thus, across these examples of flexibility, it appeared 

that Clayton‟s flexible adjustments involved transactions between contextual and metacognitive 

networks.  

Adam 

At the time of this study, Adam was a student entering Grade 12. He was a full-time 

badminton player and thus worked out of a distance school with support from tutors. He reported 
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strong performance in Math 10 (89%). Adam was relaxed and confident in his work. He 

discussed his work easily with the researcher and seemed to enjoy the process of being in the 

study.  Adam described himself as good at math, reporting "my strength I guess is that I‟m 

naturally, I think, pretty good at math...so...like once as soon as I have the concept I‟m gonna 

like get it really fast but..my weakness is,  I lack the...I don‟t put in enough time...into it." 

Note that, as was the case with other students, Adam‟s activity report was constructed 

based on observations, video records, and responses to follow-up questions. Unfortunately, 

written traces of his problem-solving activity were accidentally discarded. But little information 

was ultimately lost, because Adam was clear in his descriptions of his activity during the 

problems and most traces of written activity were also captured on video.  Table 8 indicates 

which of Adam‟s activities were competent or flexible. 

Problem C1 

Activity Description. 

The AAT graph describing Adam‟s activity in this first problem is presented in Figure 8.  

Adam worked through this question quickly and easily, but because of a small calculation error, 

he did not obtain the correct answer. Adam began by quickly labeling the points in the question 

text and writing the points down in the slope equation (without actually writing the equation 

itself). After pausing briefly to think, he realized he had mislabeled the points and corrected the 

labeling. He then calculated the slope, reduced the fraction, and circled an answer that was 

incorrect because of a small calculation error from subtracting.   

In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 
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A: First I try to remember the formula of it…cause that‟s the easiest way to answer 

it...and I remembered it‟s y2 minus y1 over x2 minus x1...just to help with this.  So this is 

my first thought...pretty sure that my first thought is like, if my brain thinks it, no point in 

me like, changing it...cause...I dunno I‟ve heard rumours that...you know the first thought 

it‟s the true instinct, just go with it.  So uh then I uh put down here which one is my x2 

and which one … I decided y2 minus y1...did the math, over x2 or...x1, did the 

math...although…I just realized that I did the math wrong which is pretty sad.  Um...it 

would be...over 4, not 2...3.  So yeah I just didn‟t check the problem over which I should 

have done, but technically I did here so it still counts.  Yeah I just did the math…? 

Affordances to Detect Network Activation. 

 In this question Adam showed use of domain specific networks for finding slope given 

two points. His labeling of the points in the question text showed evidence of a domain specific 

network for working with slope questions – he later mentioned this labeling as something a 

student working on this problem should know to do, suggesting that he may have domain 

specific networks for these types of problems. 

 Mathematical networks supporting exact calculation were activated to subtract the 

coordinates; ultimately, they did not afford the correct solution. However, during follow up, as 

he talked through the question, Adam noticed himself that the calculation was wrong, suggesting 

that this network is capable, at some times, of doing this calculation. 

 During the question, Adam showed metacognitive activity when he stopped to think 

about the question and then corrected his labeling of the question text. He did not change any of 

the numbers in his slope equation as a result, suggesting that this relabeling helped him think, in 



 

86 

 

his head, about which subtraction equations was required. As mentioned above, this subtraction 

was ultimately incorrect.  

 In terms of contextual networks, Adam did not speak to the researcher during the 

question. He used the paper to write an equation with the points as well as to record his fractional 

answer and a reduced form of that answer. Later, after the question, Adam noticed his calculation 

error by reviewing the paper, suggesting the contextual networks supported detection of this 

error. 

Adam‟s performance on this question mostly consisted of competent activity, consistent 

with his perception that he “just did the math.” Adam showed competence in his annotation of 

the points in the question text, use of the slope formula, and calculation of the slope. Follow-up 

questions suggest this was easy for Adam and relatively automatic. This activity seemed to be 

supported by domain specific and calculation networks for using slope formula and exact 

calculation. Adam did show flexibility when he corrected the annotation he had made to the 

points – initially, he had mislabeled x2, y2 and x1, y1. In this case a contextual network (the 

writing on the paper) triggered a metacognitive shift (to correcting the points) which impacted 

the contextual network (what was written on the paper). It is unclear if this activity supported 

Adam‟s fluid use of the slope formula or if it had no impact on his performance.  

Problem F1 

Activity Description. 

The AAT graph describing Adam‟s activity in this second problem is presented in Figure 

9.  Adam solved this problem quickly and correctly. As in the previous problem, he labeled the 

points in the question text as x2, y2 and x1, y1. He then correctly wrote the slope equation using 

the points from the question, subtracted them in his head, and wrote down the answer.  
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In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 

A: Uh well there‟s no variable…or number variable, so I uh...I think that‟s what the term 

is, trying to sound smart on camera...uh...so I did the exact same thing and then the last 

stage I numbered them to make sure I knew which one was x1, y1, y2, x2...and then I 

again plugged them again to where they should be using the formula...and..then I just 

subtracted them...and I knew 2b minus b would be 1b and 3a minus a is 2a….so. 

Affordances to Detect Network Activation. 

Adam‟s work on this problem afforded detection of activation of domain specific, 

metacognitive, and contextual networks. Domain specific networks for slope, and for working 

with algebraic equations were active during this problem: Adam correctly transferred the 

variables into the slope equations and performed the algebraic calculation required easily.  This 

question does not require the use of core mathematical networks, except for very simple, likely 

highly automatic calculations (3-1 and 2-1). 

 Adam answered this question quickly and fluidly and without notable metacognitive 

activity. This may be because he followed a procedure identical to the one he used in the 

previous problem, thus minimizing the need for modification of network activation. Adam‟s 

report that he “did the exact same thing” as in the previous question was not coded as a 

metacognitive decision, as it was challenging to detect if this was a report of what Adam thought 

when starting the problem or if it was a post-hoc explanation for a direct interaction between 

contextual networks (the question text) and domain specific networks (for slope questions). 

Adam did not interact with the researcher. He did access contextual networks when he used the 

paper to label the points in the question text, create a slope equation, and write the answer. 
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 Adam‟s activity in this question appeared to be a competent extension of his competent 

activity in the previous problem. He quickly and easily solved the problem and appeared to use 

the same domain specific networks, in the same way, suggesting competence. Adam‟s activity in 

the question did not appear to have detectible examples of flexibility. 

Problem C2 

Activity Description. 

 The AAT graph describing Adam‟s activity in this third problem is presented in Figure 

10.  To begin this question, Adam wrote the system access fees for both companies. After a brief 

pause, he wrote an equation for Company A and solved it in his head, fluidly writing the answer. 

He began an equation for Company B, noticed a mistake, and after a search for the eraser, 

corrected his equation. Adam then asked if he could use a calculator and, when he was told yes, 

he used the calculator to find the total cost for Company B and wrote it down.   

In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 

A: Um..well first I was just trying to pick out the important numbers?  Um, and then I 

figured out what‟s the question...so at first I took out...uh...12.5 no matter what and that 

it‟s...20 cents times each minute.  The second I took 10 no matter what and it‟s 22 cents 

per...times each minute.  So then I uh...read like on that it‟s 30 minutes a month, so I 

...um...plugged in the...I did 30 times .2, like 30 times the minutes...like the amount of 

minutes, which gave me ...um...6 for the first month...and then I added with the 12.5 

access fee no matter what and that gave me $2.5 a month.  The second one I did 30 times 

22 and it gave me 10...yeah it gave me 6.6 and I added that with the 10 and that gave me 

a...$16.6 per month bill which was cheaper.   
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Affordances to Detect Network Activation. 

 Domain specific networks for real-life linear equations were active during this problem. 

During follow-up Adam indicated that this was a very straightforward problem, suggesting that 

networks for situations with this structure were active and easily available. It is unclear if these 

networks are particular to cell-phones or general to real-life linear equations situations. Networks 

for exact calculation were used to find the total of Company A. 

 Adam showed use of metacognitive networks when he noticed and erased an error he had 

made in the equation for Company B. As well, he recognized the benefit of a calculator, and 

asked for access to one mid-problem, suggesting metacognitive network activity.  

Adam interacted with the researcher by asking if it was possible to use a calculator. He 

wrote important information at the start of the problem and created written expressions for the 

calculations required to get the correct answer. He also wrote the correct answer. He interacted 

with a calculator to find the cost of Company B.  

Adam‟s creation of expressions for both companies and calculation of the relevant costs 

may have represented competent activity; his follow-up answer suggests that this activity was 

done through activating a train of domain-specific networks which supported each step of the 

problem solving process. Adam exhibited flexibility when he asked the researcher if he could use 

a calculator. Though many students used calculators, in other cases these formed part of the 

problem context, because they were on the table. However, the researcher forgot to offer a 

calculator to Adam, and thus his behaviour represents an adaptation to his evaluation that manual 

calculation would take too long for his taste, a calculator could speed him up, and the researcher 

might have access to a calculator. From a network point of view, this represents metacognitive 

activity (awareness that a calculator would speed things up and that he didn‟t have one) 
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triggering contextual activity (discussion with the researcher) which changed the nature of 

relevant contextual networks (in that the context now contained a calculator). This flexibility was 

not essential to the problem solution, but allowed Adam to speed up, suggesting that he was 

adjusting his pace through this flexibility.  

Problem F2 

Activity Description. 

The AAT graph describing Adam‟s activity in this fourth problem is presented in Figure 

11.  Adam solved this problem successfully by finding the difference in system access fees and 

dividing that by the difference in per-minute costs to find the number of minutes at which 

Company B would be equal to Company A. Because the meaning of the question text had been 

confused by earlier participants, the researcher asked Adam to read the question and confirm his 

understanding of the problem. After discussion, it appeared that Adam had correctly interpreted 

the problem and he began. First, he wrote the difference between the two companies‟ system 

access fees - $2.50. Next, he wrote the difference between their per-minute fees - $0.02. He then 

used the calculator to divide $2.50 by $0.02, and got a result of 125. He thought that might be the 

answer and began to guess and test; he first calculated the per-minute cost of 125 minutes at 

$0.20, and then the cost of 125 minutes at $0.22. After finding that the difference between his 

answers was $2.50 – equal to the difference he had calculated between the access fees – he 

concluded that the answer was 125 and announced that to the researcher. 

In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 

A: Um first I took out um...first I thought like...uh it‟s...gonna be difficult, then I 

uh...realized that...basically all I had to do was...what‟s the difference, so how much do I 
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need to make so that‟s...12.50 minus 10 which gives me my 250 number...then what‟s the 

difference in these 2…uhh .22 minus .02 so that gives me that number...and then I took a 

random guess and hoped that if I divide them it would give me my number which was 125 

which was the right number...um...and it‟s the in between number where they‟ll be the 

same.  I then guessed and checked….so predominantly checked after that...so I did .20 

times 125 which gave me 25 for the first one, second one .22 gave me 27.5, the difference 

there was my 250 variable….so then I had…. 

R:  Now when you say you took a random guess, was it really a random guess?  

A: I...figured somewhere it would be divide but I knew even if it wasn‟t divide if it was 

add I would still...I mean if it was multiplication, there was only two things it could be 

so…. 

R: How do you know that?  

A: Um...I don‟t.  

R: Or maybe I should ask you, why did you think that? I‟m not trying to challenge your 

knowledge.  

A: Um...I just realized that...and I knew from the previous question that it couldn‟t be 

like...2.5 minutes that would be enough. So I knew if you divide 250 by .02 it would be a 

number. If you multiply minutes, I‟m pretty sure you‟d get a smaller number...so to divide 

this is really the only option now that I think about it.   

 In this problem, Adam showed evidence of domain specific networks for linear equation 

situations, as his activity suggested competence interacting with the structure of the cost 

functions for both companies. 
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 In this question, it seemed as though Adam‟s successful performance was highly 

supported by core mathematical networks, in particular those for analogical calculation. For 

example, Adam chose to divide the difference in system access fees by the difference in per-

minute cost; he later reported this was a “random guess.” Upon further questioning, Adam 

suggested that division was the intuitive choice, though he was uncertain it was correct. This 

suggests possible activation of visual-spatial networks for number, possibly activating without 

verbal mediation. Alternatively, it could be chance that division was the first operation that 

occurred to Adam and is unrelated to his core mathematical networks.  

 Throughout this problem, Adam made several choices that facilitated his successful 

solution. First, he chose to calculate the difference between the per-minute and system access 

fees. Second, he chose to divide those numbers. Third, he chose to guess and test the answer 

from division, because it seemed intuitive. It is possible that each of these choices was supported 

by metacognitive activation. It is clear that the decision to calculate the differences in cost was 

explicit and clear, though how useful the outcome would be was unknown to Adam. Similarly, 

the “random” choice to divide the differences represents a decision to play with the relevant 

numbers in order to produce a plausible answer that could be used for guess and test. In both 

cases, metacognitive networks seem to have supported Adam in choosing an operation and to 

provide a plausible value in order to afford activity in the following stage. Additionally, his 

choice to guess and test with 125, once division had provided that number, reflects metacognitive 

awareness that 125 is a reasonable answer and an appropriate decision is to check that number 

(compared to, for example, the .008 he would have got had he reversed the numerator and 

denominator). Thus, metacognitive activity in this question supported decisions that produced 

values that moved him forward in the question. 
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 Though I chose to code this activity as metacognitive, there is some reason to believe this 

activity does not represent metacognitive network activation. There is no direct evidence of 

declarative knowledge of cognitive processes, affect or belief, or strategy shifting. Instead, I infer 

strategy shifting from the fact that Adam described thinking narratively about his choices at the 

moment he chose to divide and to find the differences between the fees and that it seemed as 

though such a move might require explicit decision making. However, it is also conceivable that 

this response from Adam is a post-question artifact of being asked to construct an explanation of 

this activity. It is possible that core mathematical activation directly triggered domain specific 

and other core mathematical networks rather than requiring mediation by metacognitive 

networks.   

 Adam‟s overall strategy – to generate a plausible number using the information given, 

and guess and test it – may reflect metacognitive activation at the beginning of the problem. 

Describing the beginning of the question, Adam said “first I thought like...uh it‟s...gonna be 

difficult, then I uh...realized that...basically all I had to do was…[explains entire procedure].” 

This phrasing suggests that the strategy of creating candidates for guess and test was chosen 

explicitly, and before beginning the problem, rather than coming as Adam seized an affordance 

later in the problem, or being automatically triggered by the question text. If this activity 

represents metacognitive network activation, then the choices to find the differences, divide, and 

guess and test may have stemmed from this metacognitive activity, rather than in-problem 

metacognitive activity. 

 Use of contextual networks occurred when Adam spoke with the researcher (at the 

researcher‟s request) to ensure the question made sense.  He also used the paper to record 

intermediate calculations, and the calculator to guess and test the answer. 
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Though Adam‟s activity in this question was largely flexible, Adam demonstrated 

competence, at the end of the question, when he used domain specific networks for guessing and 

testing to verify the answer that emerged from his flexible activity.  Adam showed flexibility 

when he obtained the difference between the access fees and the monthly costs, and when he 

divided these differences. Follow-up questions suggest that Adam was unsure how this would 

play out, but that he suspected this information might be useful for finding candidate values of 

minutes to guess and test.  In both finding the difference and dividing, Adam was unsure of the 

effect of his step, but he recognized that he did not know what to do and that these actions were 

likely to lead to candidate values for minutes that could be plugged into the equations to verify 

the answer. 

From a network point of view, Adam seemed to use activation in analogical core math 

networks (his sense of the differences; his sense of the result of dividing) to activate 

metacognitive activity (choosing a calculation strategy), which activated other core math 

networks (for finding exact values), in turn producing candidate values that could be used in 

domain specific networks (for guessing and testing). As discussed above, it is also possible that 

this flexibility occurred without support from metacognitive networks. However, it does seem 

clear that interactions between core mathematical networks and domain specific networks were 

instrumental to this flexibility.  

Problem C3 

Activity Description. 

The AAT graph describing Adam‟s activity in this fifth problem is presented in Figure 

12.  Adam solved this problem quickly and announced the correct answer. He did not prove his 

answer algebraically, but his justification for his response seemed valid. Adam began this 
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problem by drawing an x/y axis and circling the points in the question text. After a moment of 

thought, he plotted the first pair of points and joined them. After a second moment of thought, he 

plotted and joined the second pair of points. This process took over 30 seconds and as he drew 

the points, Adam kept tracing over the line and putting circles at evenly spaced intervals across 

the lines. He then announced, “they are not parallel.” After some discussion with the researcher, 

he provided a justification for his answer:  “to prove it, if I extend their lines, they cross, and 

parallel lines wouldn‟t cross.”  

In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 

A:  Um...I read it.  At first I was kinda like well this seems pretty intense and then I read 

it again and thought okay just plug the points and...I knew...I ? They knew they were not 

going to be parallel because they had different slopes, I could tell just by looking at 

it…and… 

R: And that occurred to you early in the question that they had different slopes?  

A: Uh not...no.  Not so much that they had different slopes but it occurred to me 

that...um...well that they just looked different, so…that‟s how I solved the question.   

R: What looked different?  

A: Just the… 

R: The lines?  

A: No, just the two um… 

R: Points 

A: …points looked different.  Like...these…they looked different.  The numbers looked 

different.   
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Affordances to Detect Network Activation. 

 Domain specific networks for graphing coordinate systems seemed to be active during 

this question. It appears that both algebraic and visual-spatial networks for slope were active. 

Adam‟s reported “I could tell they were going to be parallel because they had different slopes. I 

could tell just by looking,” suggesting a role for visual spatial networks for slope. However, he 

also suggested that the particular points afforded him an explanation, suggesting algebraic 

conceptions of slope were also active. Networks for parallel lines were also active, and 

connected to visual-spatial representations of slope. 

 Adam did not calculate or work with number in any obvious way, suggesting that core 

mathematical networks were not active as he solved the problem. However, it is possible that, as 

he traced over his lines, he was calculating proportions between points. 

 It was unclear if Adam showed metacognitive network activity during this question. He 

did not shift strategies or show verbal mediation of the task. He seemed to simply draw lines and 

infer from inspection that they were not parallel. However, his inspection took 30 seconds and 

may have represented metacognitive activation of two domain specific networks simultaneously 

(for algebraic and visual-spatial understandings of slope). Though there is not explicit evidence 

for this interpretation, it may be the most parsimonious way of understanding how and why 

Adam sustained his attention for such a long time on his problem representations. Contextually, 

Adam used the paper to create a visual-spatial representation of the problem. 

 The way Adam constructed a visual-spatial representation of the problem – by plotting 

and joining the points – appears to represent competent activity, supported by domain specific 

networks for visual spatial understandings of slope. Adam showed flexibility when he stared at 

the problem for 30 seconds, tracing over it with his pen. He was unsure of how to adapt his work 
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to provide a coherent solution and used the experience of staring at the problem to generate an 

appropriate solution. Though his flexibility did not afford a successful solution (in that he did not 

prove his answer algebraically), it did afford a consistent and correct interpretation of the 

problem. From a network point of view, Adam‟s flexibility seemed to occur as metacognitive 

networks sustained activation of two domain-specific networks (for algebraic and visual-spatial 

representations of slope) which, after connecting, supported an accurate and coherent solution.  

Problem F3 

Activity Description. 

  The AAT graph describing Adam‟s activity in this final problem is presented in Figure 

13.  Adam solved this problem by successfully equating expressions for the slopes of the two 

lines and solving for a pair of coordinates that satisfied the equation. Adam began the problem 

by subvocalizing to himself “[on the first line] the slope is one over two so….” He then wrote the 

slope “1/2” and an expression for the slope of the second line.  He then gave the researcher a 

solution. As the researcher began to ask the follow up questions, Adam quickly interrupted 

“Arrrrrrrrrr. That wouldn‟t make them parallel. Crap!” When the researcher indicated he could 

go back to the problem, Adam thought for nearly 30 seconds. He asked for lined paper, but when 

told there was none, continued to think. He then drew an x/y axis and drew one of the lines. After 

more thought, and tracing of lines with his pen, he began to do calculations on the paper. What 

he wrote could not be specifically detected from video evidence, but follow-up questions suggest 

that Adam put in a value for one of the variables and found the other, using the fact that the 

slopes needed to be equal. Throughout the cycles of thinking and writing, Adam subvocalized, 

seemingly with number. Eventually, Adam gave a correct answer orally. 
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In response to a follow-up question asking him to describe his thinking through the 

problem, Adam replied: 

A: Uh...well first I‟ve realized that….to get these...the slopes have to be even...and so I 

noticed okay...5 and this has to be 2.5 and 4, has to be 8 to get the slope...and I thought I 

had the question solved and I realized they‟re the same the line and...lines can‟t be 

touching so I can‟t use that…so then I had to um...essentially I figured out the slope for 

the other line which was 2...and I had to make...using these numbers…make this slope so 

I chose...used the same numbers that would be here, although I didn‟t really have to...so I 

made it 2.5...and uh...add those cause they‟re negative 2.5 so you get 6.5...when 

subtracted...and something minus 5 over 6.5 gets you 2, so just do the math it‟s 18 minus 

5 gives you over 6.5 gets you 2.   

Affordances to Detect Network Activation. 

 Domain specific networks for parallel lines and their relationship to slope appeared to be 

active throughout the problem. Networks for algebraic relations involving two variables 

appeared to be active; Adam was able to mentally compute what a second variable would be 

after choosing a value to plug in for variable number. Adam did mental calculations to find the 

second variable, given the first, suggesting activation in core mathematical networks. 

 Adam showed evidence of metacognitive activation when he realized he had the incorrect 

answer – as the researcher asked him to verbalize his solution, he interrupted to say he realized 

his solution was incorrect. He then spent nearly a minute thinking, clearly looking for a strategy. 

After this long period, he began the algebraic solution that ultimately worked. However, mid-

thought, he asked for lined paper, which suggests he may have had a visual-spatial solution in 

mind, before turning to an algebraic strategy.  
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 Adam interacted with the researcher to determine that his first solution was wrong. He 

also created a visual spatial representation of the lines on the paper, as well as algebraic 

expressions for the slopes of the two lines.  

Adam‟s activity in this question was coded as competent, even though some elements of 

Adam‟s activity suggested some flexibility. During this problem, Adam had several long periods 

of inaction, suggesting that he may have been adapting mentally. However follow up answers 

and Adam‟s activity in the question may suggest that these adaptations were competent: they 

were automatically done, without any adjustment of activity. Each step appeared to flow easily 

from the previous step, including rumination and error checking. This competent activity seemed 

to be supported by domain specific networks for finding slopes and equating parallel lines. 

Patterns in Network Activation and Flexibility: Adam 

Adam seems to have activated domain specific networks that were capable of supporting 

a variety of activities. Networks for finding slope were active and used throughout the problems. 

Adam‟s activity suggested he had well integrated networks for visual spatial and algebraic 

notions of slope that were integrated with networks for parallel lines. This was evidenced by his 

use of a mostly visual spatial strategy in question C3 (parallel lines), but an algebraic strategy in 

C1 (slopes). These two networks were likely to be integrated, given Adam's follow up response 

to C3, which indicated an intuitive understanding of the relationship between the points and the 

slope. As well, questions C2 and F2 were solved correctly, suggesting domain specific networks 

for real-life linear situations were available to support performance.   

In general, core mathematical networks were well developed. However, in the first 

question, Adam did make a small calculation error, which he later caught. It is unclear what this 

implies for the nature of his core mathematical networks. Adam showed a network for 
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approximate calculation that was well integrated with domain specific and metacognitive 

networks. His solution to the flexible cell phone question (F2) indicates an intuitive sense of the 

difference between the system access fees and the per minute costs and what operation (division) 

might afford information that could lead to answering the question.  

Adam's metacognitive networks seemed to support him in detecting errors, possibly using 

a narrative metacognitive network. Twice, through talking to the researcher, he detected errors in 

his work  – one a calculation error, one a subtle error in question F3 (parallel lines). Throughout 

the problems, Adam showed evidence of subvocalization - he talked to himself frequently. His 

explanations for his work were clear and narrative in form, while other students gave more 

disjointed, stream-of-consciousness-style explanations. Thus, this may indicate that for Adam, 

error checking can be effective, and is supported by linguistic metacognitive networks.  

However, twice Adam noticed small errors online, while working. Though 

subvocalization was present often in his work, it was not clear if he was subvocalizing when he 

found errors himself. This may indicate activity in experiential networks, which may integrate 

with narrative networks to provide robust metacognition. 

Adam's metacognitive networks also supported him in asking the researcher for 

contextual tools that would support his performance. In one question, he asked for a calculator 

mid-problem; in another he asked for lined paper. In both cases, the request came mid-question, 

suggesting that this metacognitive activity emerged from an interaction with the question, rather 

than being generated when Adam was planning how to approach the question. This may imply 

that experiential metacognition may have supported Adam‟s interaction with contextual 

networks. 
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 Finally, Adam showed experiential metacognitive activity when he made strategic 

choices in the flexible cell-phone question (F2).  His follow-up answers to that question suggest 

that he was unsure how dividing the differences in system access fees by the difference in per 

minute costs would help, but he intuitively suspected it would. It is possible that experiential 

networks, working with analogical core mathematical networks, activated in response to his 

perception of the size of that ratio, and supported Adam in choosing a strategy that would lead to 

the correct answer.  

In terms of contextual networks, Adam used the paper to record his work and to construct 

visual spatial and algebraic representations of the questions. He interacted with the researcher to 

ask for tools that would support him, like a calculator and lined paper.  

Adam demonstrated three types of flexibility: adaptively correcting his work, constructing 

novel solutions, and intentional rumination.  Each of these seemed to be a function of different 

network activation. First, Adam found errors in his annotations of the points in the first slope 

question (C1); as mentioned above, this occurred while checking over the problem on his paper. 

This flexibility may have been afforded by an interaction between metacognitive network 

activity (for checking over problems) and contextual networks (the paper). This flexibility 

seemed to require the use of contextual networks – specifically the paper. Adam was able to see 

his error because it was right in front of him. In other questions, the follow-up step of looking 

over his work seemed to trigger awareness of errors. So it seems that Adam's flexible corrections 

were a function of metacognitive networks interacting with contextual networks.  

Second, Adam successfully used an intuitive strategy to construct a novel solution for a 

challenging cell-phone problem (F2). This problem has no straightforward solution, and it is not 

typically seen in Grade 10 classrooms. Adam, however, saw the relationships between the 
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difference in system access fees and the difference in per-minute costs. His responses to follow-

up questions suggested that this awareness may have come from activating analogical core 

mathematical networks. It appears that this activity in analogical core mathematical networks 

flowed to other networks to afford a correct and novel solution  ( i.e. the relative sizes of the 

differences in these numbers activated metacognitive networks that in turn activated  networks 

for particular exact calculation strategies).  

Finally, Adam also exhibited flexibility as he solved question C3 (parallel). Adam spent 

time staring at the question, tracing over the lines, and filling in the points. This activity cannot 

have contributed logically to the solution, but it may have afforded the network activity required 

to see that the lines were not parallel.  He ultimately gave a non-algebraic, visual-spatial 

explanation for his answer. His problem-solving activity may have represented integrated 

activity between experiential and narrative metacognitive networks, domain specific networks 

for algebraic and visual-spatial networks for slope. Specifically, experiential metacognitive 

networks may have been activated by his tracing over the shapes on the page (a contextual 

network), while narrative metacognitive networks may have made sense of that experience, in 

turn activating domain specific networks for algebraic and visual spatial networks. His oral 

solution to the problem may thus have represented a transaction between five networks: two 

metacognitive, two domain specific, and one contextual. Ultimately, Adam demonstrated robust 

applications of flexibility. Across instances, this flexibility varied in function, in effectiveness, 

and in terms of the networks implicated. 

George  

At the time of this study, George was entering Grade 12 at a school for children who have 

learning disabilities. This school is known locally for providing highly scaffolded instruction and 
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explicit strategy instruction. In terms of testing in mathematics, most students at this school are 

tested on questions quite similar to those that they have seen during instruction. In the semi-

structured interview, George did not report any significant challenges in math and suggested he 

was a kinesthetic and auditory learner. George worked very quickly in the study and seemed 

eager to show that he could do the work with minimal help.   Table 9 indicates which of 

George‟s activities were competent or flexible. 

Problem C1 

Activity Description. 

The AAT graph describing George‟s activity in this first problem is presented in Figure 

14.  George solved this problem quickly, easily and correctly. He wrote the slope formula, filled 

in the coordinates from the question text, mentally performed the subtraction required, and 

simplified the resulting fraction to get the correct answer.  

In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G: First stage was just write out the formula...which is y2 - y1 or x2 - x1.  Then put in the 

values… 9-3 over 10-2.  Then do the subtraction and then simplify the... which is 6/8, 

then simplify that down to 3/4.   

Affordances to Detect Network Activation. 

 Domain specific networks for slope formula and for working for coordinate systems 

appeared to be active, as evidenced by George‟s writing of the slope formula and ease with the 

coordinates. It does not appear that visual spatial networks were active, as all representations of 

the problem were algebraic. 
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 Core mathematical networks for exact calculation seemed to support George when he 

simplified the expressions within the slope equation. George showed no overt signs of 

metacognitive activation. He didn‟t shift strategies or comment on belief, affect, or cognitive 

processes, and solved the entire problem quickly and fluidly. Contextual networks were active 

when George used the paper to record the results of calculations at each step. He did not speak 

with the researcher during the problem. 

 George‟s responses to follow-up questions suggested that an easily accessible train of 

domain specific network activations facilitated a quick and competent solution to the problem; 

these included networks for slope equations and for exact calculation. George‟s activity in the 

question did not appear to have detectible examples of flexibility.  

Problem F1 

Activity Description. 

The AAT graph describing George‟s activity in this second problem is presented in 

Figure 15.  George solved this problem correctly in a nearly identical fashion to the first 

problem. First he wrote the slope formula. Next he inserted the points. Then he mentally 

subtracted the algebraic expressions to give the correct answer.  

In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G: It‟s very similar …with the formula first...then fill in the values...in this case variables, 

2b-2 over 3a-a.  You get…. b/2a, which can‟t be reduced...so I‟d say this is b/2a 

Affordances to Detect Network Activation. 

 As in the previous problem, domain specific networks for algebraic understandings of 

slope appeared to be active, but there was no evidence of visual-spatial networks being active. In 
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addition, George seemed to make use of domain-specific networks supporting subtraction of 

algebraic expressions; this was evident when he mentally subtracted the algebraic terms. 

 This question does not require the use of core mathematical networks, except for very 

simple, likely highly automatic calculations (3-1, and 2-1). Again, George showed no overt signs 

of metacognitive activation. He didn‟t shift strategies and solved the entire problem quickly and 

fluidly. Contextual networks were implicated when George used the paper to record the results 

of calculations at each step. He did not speak with the researcher during the problem. 

 George appeared to solve this problem competently, as all his activity was accurate and 

quick. George also suggested in his responses to follow-up questions that he was able to 

implement the same competent routine as in the previous question. It seems as though domain-

specific networks for slope were instrumental in George‟s competence. George‟s activity in the 

question did not appear to have detectible examples of flexibility. 

Problem C2 

Activity Description. 

The AAT graph describing George‟s activity in this third problem is presented in Figure 

16.  George solved this problem easily and correctly. George began by reading the problem, 

while the researcher got a calculator. Once George had a calculator, he divided the page in two. 

He wrote an equation for Company A, then used the calculator to solve it, and write down the 

answer. He did the same for Company B and thus completed the problem.  

In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G: Uh...you have to...take the time...amount per minute, multiply it by the number of minutes to 

get the rates for actual use...and then add in the system access fee...which for A...the total was 

$18.50 and for B it was $16.60.   
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Affordances to Detect Network Activation. 

 This question showed evidence of domain specific networks for linear equation 

relationships. George was easily able to see from the question text how to construct equations for 

the cost of the two plans. It is unclear from his activity and responses to follow-up questions if 

the activated network was primarily related to math questions or to cell phone plans, but his 

follow-up answer may suggest activation in networks for cell-phones. 

 George used the calculator to do calculations during the question, so it is likely that core 

mathematical networks were not active during the question. As in the previous two questions, 

George showed minimal metacognitive activation. His activity was quick, fluid, and seemed not 

to change during the question. Contextual networks were active when George used the paper to 

record the results of calculations at each step. He did not speak with the researcher during the 

problem. 

 George‟s follow-up questions suggest that this problem was solved competently, using 

domain specific networks for real-life cell phone plans.  George‟s activity in the question did not 

appear to have detectible examples of flexibility. 

Problem F2 

Activity Description. 

 The AAT graph describing George‟s activity in this fourth problem is presented in Figure 

17.  George struggled with this problem, trying two approaches before giving an answer (through 

guess and test) that was close to the correct answer, but not right. George began this question by 

talking it through with the researcher (at the researcher‟s request). After showing that he 

understood the problem, he created a table of values to show the results of both companies for 

different amounts of minutes. He used the calculator to fill in the table of values, and said to the 
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researcher, “I know it‟s between the 30
th

 and 60
th

 minute.” However, after pausing to think for a 

moment, he changed strategies. George then wrote equations for Companies A and B. He 

divided the equation for Company A by .2 on both sides, creating a true, but unhelpful relation 

(y/.2=y+10). As well, he used the same variable (y) in two places in the same equation, to 

represent two different things.  He stopped to think and then said, “I can‟t remember how to 

write the formula for that right now.” After the researcher informed him that he could stop the 

question at any time, George went back to the calculator, and finished the question by 

announcing, incorrectly, that the two companies are equal at the 116
th

 minute. 

In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G:Uhm...initial I started with the table of values but the end trying to … I wasn‟t properly 

accounting for the difference in the monthly access fee…so then I tried to write it out as an 

equation but...I couldn‟t quite remember how to write it out properly...so I wasn‟t able to work 

with that...so...that to an approximation with the guess and check.   

R: Mm hmm.  So you did some guess and check?  

G: Yeah.  

… 

R: Oh, how were you feeling during the problem?  

G: Uh, a bit irritated that I couldn‟t remember.  

Affordances to Detect Network Activation. 

George‟s work on this problem affording detection of activation of domain specific, core 

mathematical, metacognitive, and contextual networks. Domain specific networks for algebraic 

representations of linear equation situations appeared to be active in this problem. However, 

because George used the same variable for cost and minutes, it seems like these networks were 
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unable to support correct solutions to the problem and may not have been well developed. As 

well, domain specific networks for guessing and testing with values were active, as evidenced by 

the table of values George created.  

 George did no mental calculation during the problem, and thus core mathematical 

networks were probably not active during this question. 

 George showed metacognitive awareness of his progress on the problem and its relation 

to the researcher‟s perception of his performance. This was manifest in declarative knowledge – 

twice he made comments to the researcher explaining his inability to complete a certain part of 

the problem. For example, during the table of values, right before he shifted to a new strategy, he 

said to the researcher, “I know it‟s between the 30
th

 and 60
th

 minute.” While the answer did not 

actually fall within that range, it may have been that metacognitive networks were active and 

trying to find useful information in George‟s table of values.  

 George also decided to switch strategies once he realized that the table of values was not 

fruitful. He was clearly trying to move from guess and test to an equation-based solution. 

However, once he shifted, he was unable to solve the problem, and thus was “irritated” that he 

“can‟t remember how to write the formula for that.” This suggests that his metacognitive switch 

was from “guess and test” to equations, but no more specific than that. He assumed the existence 

of a formula for “that” and when it didn‟t occur to him, he felt frustrated.  

 Finally, George showed metacognitive activity when he, after expressing that he couldn‟t 

find the right equation, continued guessing and testing. He didn‟t find a correct solution, but 

instead stopped once he reached a number close to the solution. It may be that this metacognitive 

shift represented an attempt to finish the problem quickly, but close to the solution, as a way of 

ensuring the researcher believed he understood the problem. Possibly, if he had really been 
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shifting to the right solution, he would have continued guessing and testing until he found the 

correct answer.  

 George used the paper to create a table of values and to write out potential equations for 

the company costs. Additionally, contextual networks were utilized when George spoke to the 

researcher frequently during this problem. He expressed his frustration at not finding the right 

“equation,” and indicated that he thought the answer was between the 30
th

 and 60
th

 minute. 

Although there is no direct evidence, it‟s possible that George expressed his inability to find the 

right equation as a way of getting the researcher‟s permission to be finished. However, when the 

researcher told George that he would have to decide if the problem was finished, George 

returned to guessing and testing until he had a more respectable (but still wrong) solution. Thus, 

George may have been interacting with the researcher in order to ensure the researcher saw him 

as smart and capable, or to ensure he understood when the question was considered complete.  

The way in which George guessed and tested in this problem may have represented 

competent activity. He seemed able to plug in values to the equation easily, and calculate the cost 

at a variety of minute values. This seemed to be supported by domain specific networks for guess 

and test.  

George exhibited flexibility when he created general equations for the two lines. Though 

these equations were neither true nor helpful, given that George was stuck, this action represents 

adaptation to the problem. As George progressed, he continued to show flexibility, when he 

attempted to divide the two equations for the lines. Once the equations had been made, George 

needed to find a way to have them give an answer, so he attempted to apply division to produce a 

correct answer. After this technique didn‟t succeed, George continued to show flexibility by his 

expression of frustration to the researcher. George reported feeling irritated; this expression of 
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frustration may have served to modulate that irritation, by indirectly asking the researcher for 

support. It is unclear if George knew that his utterance would motivate a response from the 

researcher, but this seems reasonable, as the utterance was clearly directed at the researcher, and 

George appeared to expect a response.  Finally, after George was told he could end the problem 

when he liked, he returned to his initial strategy – guess and test. George may have been 

managing the researcher‟s perception of his ability and thus returned to his initial strategy 

(though he could have stopped the question) to get a response closer to the actual answer. 

When this flexibility is examined from a network perspective, it appears that George 

metacognitively activated domain specific networks (for creating equations), which impacted 

contextual networks (his paper), in turn activating domain specific networks (for working with 

equations). When this did not afford a solution, he used contextual networks (the researcher) to 

impact domain specific networks for task demands (“end the question when you like”), leading 

to reactivation of a domain specific network (for guessing and testing) in the service of an 

incorrect, but close solution.   

Problem C3 

Activity Description. 

The AAT graph describing George‟s activity in this fifth problem is presented in Figure 

18.  George answered this question quickly and correctly. George began this question by reading 

the problem and subvocalizing to himself that the slopes must be equal. After a moment of 

thought, he wrote the slope formula and filled it in twice, once for each line. After pausing for 

moment, he mentally calculated the slopes, wrote them down, and said to the researcher “No, 

they won‟t be truly parallel.” 
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In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G: Uh...no they won‟t be truly parallel. 

R: Yeah.  

G: Uh...the slope doesn‟t match...which means that...they will eventually cross.   

Affordances to Detect Network Activation. 

 Domain specific networks for slope appeared to be active during this question, as 

evidenced by George‟s use of the slope formula. As well, his subvocalization early in the 

question may have afforded activation of networks for parallel lines and their relation to slope. 

During this subvocalization, he told himself that he was looking for parallel lines.  

 George did two simple subtraction equations in his head, suggesting that he was using 

core mathematical networks for exact calculation. 

 Early in the problem, George told himself that the slopes of the lines must be equal. This 

may have represented a metacognitive activation of the domain specific networks for parallel 

lines and their relationship to slope. Alternatively, they may have represented a verbal 

restatement of that domain specific activation after the activation had occurred.  In the first case, 

this subvocalization would have represented metacognitive activity in the sense of indicating a 

decision to activate networks for slope; in the second, this subvocalaization would have 

represented metacognitive activity in the sense of revealing declarative knowledge of cognitive 

processes. Although both explanations are possible, the fact the George launched into a 

successful solution immediately after subvocalizing suggests that the first case is more likely, 

and that his activity represents metacognitive activation of domain specific networks. 
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 Throughout the problem, George wrote down subcalculations on paper, utilizing 

contextual networks. He did not use a calculator or talk to the researcher.  

 George showed evidence of competence throughout this problem, for example in writing 

the expressions for both lines and checking if they were equal. Competence is suggested by the 

ease with which George did these activities and was likely supported by domain specific 

networks (for parallel lines, slope, and algebra), and metacognitive activity (subvocalization). He 

did not show detectable examples of flexibility. 

Problem F3 

Activity Description. 

The AAT graph describing George‟s activity in this final problem is presented in Figure 

19.  George solved the problem quickly and with a correct method, but, because of a small 

calculation error, he got an incorrect answer. George began by reading the question while 

subvocalizing to himself. He then muttered, “so the lines must be parallel,” and began to 

calculate the slope in his head. He miscalculated, getting 5 as the answer to 10-4, and wrote an 

incorrect slope of 5/3. He then wrote an expression for the slope of the second line. After 

inspecting the equation for a moment, he wrote b=10, a=1. This answer is incorrect; however, 

had 5/3 been the correct slope, George‟s answer would have been correct.  

In response to a follow-up question asking him to describe his thinking through the 

problem, George replied: 

G: Uh, for them to never to touch they‟d have to be parallel, which means their slope 

must be equal. So then you...write out...you solve for the slope of … which is 5 over 3. 

And then you can...run that through which…pretty much...shows what you need to put 

in...and then... 
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Affordances to Detect Network Activation. 

 Domain specific networks for slope appeared to be active throughout the problem, as well 

as networks relating slope to parallel lines. The network for slope likely included the slope 

formula, as that was written immediately.  As well, networks for algebraic representations of 

slope seemed to be active, as evidenced by George‟s expression for the slope of the second line.  

 George mentally calculated both the slope of the first line and a set of points that would 

satisfy the expression for the second line. This suggests that networks for core math were active, 

and coactive with domain specific networks for algebra.  Early in the question, George 

subvocalized that the lines would be parallel. As in the last question, this may have represented 

metacogntive activation of necessary domain specific networks. George recorded all intermediate 

calculations on paper, using that contextual network. He did not interact with the researcher. 

 George showed evidence of competence throughout this problem, in writing the 

expressions for both lines, equating them, and solving them. Competence is suggested by the 

ease with which George did these activities,and was likely supported by domain specific 

networks (for parallel lines, slope, and algebra) and metacognitive activity (subvocalization). He 

did not show detectable examples of flexibility.  

Patterns in Network Activation and Flexibility: George 

George‟s problem-solving activity suggested activation of highly accessible and useful 

domain specific networks. These networks tended to be algebraic rather than visual-spatial, as 

George did not draw any graphs during the study. He showed easy activation of networks for 

slopes, the relationship to slopes and parallel lines, and for real-life linear equations. In most 

cases, activation of these networks supported successful performance.  
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  In terms of core mathematical networks, although he made some important errors, overall 

George showed capacity with exact calculation. Still, he seemed to prefer using the calculator. 

Though George did not mention any learning differences, the school he is at may suggest that he 

has a learning issue. If this is the case, use of the calculator as a strategy may make sense, if it 

reduces the memory demands of calculation. Calculator use may also have been an explicit 

strategy taught at school. 

George showed low levels of metacognitive activation across the problems, perhaps 

because he solved many questions quickly and easily. Most of his metacognitive activation 

seemed to be narrative in nature.  He seemed to use narrative metacognitive networks to 

subvocalize while solving problems; these subvocaliations (about what the question entails) 

appeared to activate and keep active the relevant domain specific networks for equating slope 

that he needed to solve questions involving parallel lines. In addition, he made comments twice 

to the researcher explaining his inability to solve a problem ("I can't remember the formula"). 

George's lack of acknowledgment of any challenges in math in the SSI, the statement he made, 

and his tone and reported irritation at his errors, may indicate that these metacognitive networks 

serve to sustain George's perceptions of himself as a good learner in math; showing frustration 

when he was unable to be successful may represent a violation to his metacognitive narrative 

expectation that he will not make such errors, and, when errors occur, he may feel compelled to 

explain them. Of course, this explanation, though it seems parsimonious and consistent with 

George, is speculative, and thus, may not be correct. 

George used paper in all questions to record nearly all of his work. This suggests, that, 

for George, the paper is an important component of his contextual network for math. However, 

he did not show any evidence of using this activity to support activation of other networks - he 
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didn't look back at his work, and he didn't correct it when it was wrong - which may indicate that 

this use of paper is automatic and an artifact of his competence in his mathematics with no 

functional role.  George only spoke to the researcher to express frustration and seek implicit 

permission to finish the problem he was working on. This may suggest that, for George, 

contextual networks involving experts in the domain may afford him information about the task 

and his performance relative to expectations. 

George was highly competent with most of the questions, and showed no flexibility, 

except in question F2 (cell-phone). In that question, George saw early that guess and test would 

be a lengthy process. At that point, he switched to trying to create equations for both lines; 

however, errors in those equations impaired successful performance. George then continued to 

exhibit flexibility and expressed his frustration to the researcher. When the researcher did not 

offer explicit support, he returned to guess and test, in order to get a more respectable answer. 

Again, this may suggest that George was managing his perceptions of himself as a successful 

math student -- giving up, though explicitly allowed by the researcher, would not have afforded 

him a perception of himself as having “almost got it.” A return to guess and test facilitated an 

answer that was close to the correct answer, and thus was close to successful performance from 

George's point of view. Again, this is a speculative interpretation, and though it seems a 

reasonable reflection of the data, it requires significant inference and thus is susceptible to error. 

From this point of view, George‟s only discernable flexibility involved adapting to the problem 

in order to keep his self-perception consistent.  

Because George showed flexibility in only one question, it may not be valid to generalize 

from this example to explain how flexibility is related to network activity for George. However, 

within that question, George showed several examples of flexibility and each of these seemed to 
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use metacognitive activation to connect activity between contextual and domain specific 

networks. On the other hand, George showed examples of competence throughout the study. In 

each case of competence, George seemed to rely heavily on domain specific networks, making 

relatively little use of contextual and core mathematical networks. These domain specific 

networks seemed well developed and easily accessible.  

Farley  

At the time of this study, Farley had just completed principles of Math 10, and he 

estimated that his mark was a B at the end of term.  He worked through the problems as quickly 

as he could and with a minimum of writing. His body and tone suggested that he wanted to move 

the study along quickly, though he was pleasant and friendly. Initially, Farley did not identify 

any differences in the way he learns, but, once asked how he differs from his peers, he said, "I 

think that I learn faster...I‟m less attentive definitely so it makes me...it takes me more time but 

when I...when I…[am attentive], I tend to be very attentive, and I learn very quickly.”   Table 10 

indicates which of Farley‟s activities were competent or flexible. 

Problem C1 

Activity Description. 

  The AAT graph describing Farley‟s activity in this first problem is presented in Figure 

20.  Farley solved this problem correctly, in his head. After the researcher asked Farley to begin, 

Farley thought, looking around the room. After a few seconds he began to read the problem. 

After thinking for 10 seconds, he wrote the correct answer – ¾ - down on the sheet.  

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 
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F: Well at first I tried to remember the formula for a slope...like n equals........and then I 

calculate the difference between 2 and 10, for me 9...so then 3 and 9...so 6...then 2 and 

10..2 and 10 is 8...and then simplify that by dividing by 2, 3 and 4.   

Affordances to Detect Network Activation. 

 Across the problems, it was challenging to discern Farley‟s network activation, as a great 

deal of his work was in his head. However, based on his follow-up questions it seems that 

domain specific networks for understanding slope were active, but they did not support explicit 

representation of the slope formula. Farley knew that slope required him to find the ratio of the 

vertical and horizontal differences between the points, but he pointed out that “for optimal 

performance, you would use the slope formula.” This suggests that his network didn‟t include 

nodes for the explicit representation of the slope formula.  

 Farley did mental subtraction during this question, suggesting core mathematical 

networks for exact calculation were active. Farley demonstrated no overt metacognitive activity. 

It seemed as though the strategy he used came quickly and intuitively and required little 

metacognitive control. Farley made minimal use of the paper – he used it only to write down his 

final answer. He did not interact with the researcher. There was almost no use of contextual 

networks. 

 Farley‟s activity in this question appeared entirely competent, as Farley easily subtracted 

and divided the relevant values to obtain slope. This activity appeared to be supported by domain 

specific networks for slope (which didn‟t include the slope formula) and core mathematical 

networks for calculation. Farley‟s activity in the question did not appear to have detectible 

examples of flexibility. 
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Problem F1 

Activity Description. 

The AAT graph describing Farley‟s activity in this second problem is presented in Figure 

21.  Again Farley solved this problem in his head. After briefly reading the question, he wrote 2a 

on the paper as a numerator on a fraction. He then crossed that out and wrote the correct answer. 

The entire question was answered in under 25 seconds.  

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 

F: The same way I solved the last one, difference between 3a and a is 2a, and the 

difference between b and 2b is b.   

R: Okay.  And here‟s a follow up, were you using the slope formula?  

F: Ah. No.  

Affordances to Detect Network Activation. 

 Domain specific networks for slope were active throughout the question, but again, they 

didn‟t support use of the slope formula. In a follow-up question the researcher asked Farley if he 

had used the slope formula, and he said no. Later, he indicated that the slope formula “wouldn‟t 

work because you can‟t subtract 3a and a.” In fact, that is exactly what Farley had done to 

answer the question. Core mathematical networks for very simple exact calculation appeared to 

be active in this question.  

Again, metacognitive activity was challenging to discern. However, Farley showed a 

disconnect between his narrative understandings of the problem and the strategy he used. As 

discussed above, he subtracted and followed the exact procedures of the slope formula; however, 

he explicitly denied that he used that formula and suggested that it is unuseable in such a 
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situation. This suggests that certain networks within Farley‟s mind functioned to interact with 

slope relations; but these networks did not always activate narrative metacognitive awareness, 

thus leading to a disconnect between what the explanations generated by narrative networks and 

what domain specific networks are doing. Farley made minimal use of the paper, and did not talk 

to the researcher. There was almost no use of contextual networks. 

 Farley‟s activity in this question appeared competent, with Farley subtracting the relevant 

values and dividing, quickly, easily and accurately. This competence was supported by Farley‟s 

domain specific network activity (in slope and algebraic networks). Farley‟s activity in the 

question did not appear to have detectible examples of flexibility. 

Problem C2 

Activity Description. 

The AAT graph describing Farley‟s activity in this third problem is presented in Figure 

22.  In this problem, Farley cycled through periods of writing and thinking until he wrote an 

answer that was correct for company A, but not for company B. He wrote on the paper 4 times 

during the problem and appeared to spend about 30 seconds writing in total. However, by the end 

of the question he had written only “A: $18.50 / B: $19.10.” It was challenging to discern what 

was written at each point during the question, because so much time was spent writing, but very 

little ink was on the paper.  

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 

F: Uh, just try...to...uh trying to do question …  which is...uh...just adding…multiplying 

20 from the first company and 22 for the second company by 30, and then adding it to 

either $12.50 or $10.00.   



 

120 

 

Affordances to Detect Network Activation. 

Farley‟s work on this problem afforded detection of activation of domain specific, core 

mathematical, metacognitive, and contextual networks. Based on Farley‟s responses to follow-up 

questions, it seems as though domain specific networks for cell-phone plans were active, as well 

as those for linear relations. Farley indicated that this question was exceptionally easy, 

suggesting that more “formal” mathematical networks were not required (e.g., networks for 

creating linear equations to represent real life situations).  

 Core mathematical networks for calculation appeared to be active throughout the 

question, as Farley did all calculations in his head. However, his calculation for Company B was 

not correct. Again, Farley showed little overt evidence of metacognitive activity. His belief that 

the question was very easy may suggest that the problem required little metacognitive 

monitoring or adjustment.  Farley did not store intermediate calculations on the paper, only final 

results. He did not interact with the researcher. Again, he made no meaningful use of contextual 

networks.  

 Farley‟s activity in this question seemed entirely competent, though it was mostly in his 

head. He generated answers quickly and reported simply applying the requisite addition and 

multiplication (though, his final answer was not correct). Farley‟s activity in the question did not 

appear to have detectible examples of flexibility. 

Problem F2 

Activity Description. 

The AAT graph describing Farley‟s activity in this fourth problem is presented in Figure 

23.  Farley struggled to understand what this problem was asking, and ultimately was unable to 

give a correct answer, instead giving true, but very specific statements about the relative costs of 
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the companies (his final answer was “Company A costs more after 4 hours”). After briefly 

reading the problem, Farley began by discussing what type of answer was appropriate with the 

researcher. At that point Farley appeared to have a good idea of what the problem was asking; 

after a brief period he wrote and said, “Company A is cheaper when you talk more.” After the 

researcher clarified that he was looking for a numerical answer, Farley began to write (it was 

unclear what he was writing). He then used his calculator to check the relative costs of both 

companies with four hours of talking. This took over a minute. The researcher and Farley then 

had a brief dialogue: 

F: Uh...if you talk 4 hours a month, company A would be cheaper than company B. 

R: Okay. Is that the answer? 

F: Uh, is that the answer?  

R: Uh, I can tell you in two [follow up] questions.  

F: I just checked it on the calculato.r 

Farley‟s answer was true, but not what the researcher was looking for as a correct answer. 

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 

F: I just plugged in a value...for how many minutes you talk and how many hours you 

talk...and there‟s 60 minutes in an hour so 4 hours gives you 240 minutes….240 x 20 + 

$12.50 would give you the cost of company a, 240 x 22 + $10.00 would give you the cost 

of company b, and in these circumstances company a would be cheaper than company b.   

Affordances to Detect Network Activation. 

 Domain specific networks for cell phone costs appeared to be active, as evidenced by 

Farley‟s facility in finding the cost of cell phone use for each company. It appears as though 
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networks for comparing and relating two linear equations were not active. It is unclear whether 

networks for algebraic representation of linear equations situations were active, as Farley did not 

write a general equation at any time.  Most of the calculation in this question occurred on the 

calculator, instead of using core mathematical networks.  

 Farley showed little evidence of metacognitive activation. Though he did shift strategy 

(from giving a general answer, to using specific costs for a specific number of minutes), he did 

so in response to a specific request from the researcher for a numerical answer, and there 

appeared to be no other activation of metacognitive networks.  However, Farley may have used 

metacognitive activation to manage the effort he put forth in this question. In this question, the 

researcher initiated a conversation with Farley to ensure the question was correctly understood, 

and it seemed as though Farley understood. Though it is possible that Farley‟s ultimate answer 

was a literal response to the researcher‟s request for a “numerical answer,” it is also possible that 

Farley‟s activity represented a deliberate and metacognitive choice to use a low effort strategy. 

This interpretation is consistent with the researcher‟s observations of Farley‟s approaches to 

problem-solving and with Farley‟s stated preference for doing as little work as possible, and 

thus, this activity was coded as metacognitive.  

 This transaction was the only one in the study which seemed to be characterized only by 

flexibility, with no detectible examples of competence. Although Farley‟s calculation of the cost 

of both companies at 4 hours of talking time may have reflected application of a competent 

routine, in this context, his activity was interpreted as part of a larger flexible adaptation to 

minimize task demands.  

 Farley seemed to exhibit flexibility through this question by strategically answering the 

question in a way that minimized calculation and writing. Conversations with the researcher 
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seemed to make clear that a correct answer would require a statement of the conditions under 

which one company would be cheaper than the other. However, Farley‟s strategies were low 

calculation, low writing strategies. This may suggest an adaptation to the question; rather than 

engaging in the effortful mental processes required to give an answer, Farley chose a strategy 

which afforded him minimal work.. Though I used this reasoning to code the activity as flexible, 

it is also possible that he simply did not understand the question; if this was the fact of the 

matter, than this activity would not be flexible, nor should his network activity be understood as 

metacognitive. This type of flexibility was challenging to relate to network activation. Farley 

may have used metacognitive activation (to evaluate task demands) to activate domain specific 

networks (for activity that would be acceptable, but that didn‟t require guess and test or 

equations).  

Problem C3 

Activity Description. 

The AAT graph describing Farley‟s activity in this fifth problem is presented in Figure 

24.  Farley solved this problem correctly and with ease. He first mentally calculated the slope of 

the first line; he then calculated the slope of the second. After a brief pause to think, he wrote 

“no, they have different slopes,” ending the question. 

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 

F: Well I know that uhm...in order for the lines to be parallel they have to have the same 

slope...so I calculated the slope of both lines and they had different slopes so they aren‟t 

parallel.   
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Affordances to Detect Network Activation. 

 Domain specific networks for finding slope, given points, appeared to be active, as were 

domain specific networks for parallel lines. Farley did several in-the-head calculations to find the 

slopes of the two lines suggesting activation of core mathematical networks. Again, there was 

minimal evidence of metacognitive activation. Farley seemed to know intuitively and quickly 

what to do, and he dispatched the problem with ease.  Farley did not use the paper for 

intermediate calculation, but did use it to write the two slopes and to indicate that the lines were 

not parallel. Thus he did not use contextual networks to solve the problem. 

 Farley appeared to draw on networks for slope throughout the study. He seemed to apply 

them easily and quickly in this question, suggesting competent activity supported by domain 

specific networks for slopes, relating parallel lines, and core mathematical networks. Farley‟s 

activity in the question did not appear to have detectible examples of flexibility. 

Problem F3 

Activity Description. 

The AAT graph describing Farley‟s activity in this final problem is presented in Figure 

25.  Farley solved this problem correctly, after a long period of rumination. Farley began the 

question by asking the researcher if he was looking for “actual values” since there were many 

possible solutions. After answering yes, the researcher asked for Farley to expand on his idea 

that there were many possible values, but after realizing this discussion could be distracting, 

asked Farley to return to the problem. After joking with his mom (who was in the room) that she 

would struggle with this problem, Farley began to think for a long period of time, almost 

motionless. He later reported that he was cycling between thoughts about his evening work shift 

and the question. After almost a minute, he wrote a 4. A few more seconds later he announced, 
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“Ok, it‟s really hard for me to envision this … it‟s going to take a while.” After another minute 

of silent, almost motionless thought, he crossed out the four, and wrote a correct solution.  

In response to a follow-up question asking him to describe his thinking through the 

problem, Farley replied: 

F: Well first I had no idea what the hell I was gonna do, but I figured if I could make the 

second line parallel...not parallel, horizontal or vertical...for some reason that would 

stop it from crossing paths with the other one...I realized … that if they were parallel they 

wouldn‟t touch.  So I just gave the second one the same slope as the first one.   

R: And when you were sitting there thinking, what was going through your mind?  

F: Lots of things.   

R: What kinds of things.  Tell me as much as you can remember.   

F: Well I was...because of the way my brain works while I was trying to solve the 

problem, I was also paying attention to the fact that my mother had put on her 

jacket...which means that she must be cold, which means that it‟s probably not very nice 

out today, which means that I‟m probably not going to end up selling very many [Dairy 

Queen] blizzards today when I got to work, which means it‟s going to be a slow night at 

work.   

R: So you‟re thinking about that? Okay, were you going back and forth between that and 

the math thought, or was that sort of a self-contained thought?  

F:  No, there‟s a back and forth.   

R: So what math stuff was going through your head while you were going back and forth 

through your daily plan.   
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F: Uh...well...what math stuff that was going on through my head was I don‟t understand, 

I don‟t understand...I have no idea how to do this, and yeah...and then I realized that I 

could make them parallel and they would never cross.   

Affordances to Detect Network Activation. 

 Domain specific networks for parallel lines, and their relationship to slope appeared to be 

active in this question. Farley indicated that he understood that he could “make the lines parallel” 

(i.e., give them the same slope). Domain specific networks for predicting the conditions for his 

evening job were also active during this problem, as evidenced in his transcript, above. Algebraic 

networks also appeared to be active, as Farley solved for one variable, given a value for another, 

in his head. During this problem Farley did several in the head calculations as part of getting the 

slope of one line and finding values that work in the second line, suggesting use of core 

mathematical networks.  

 Farley realized early in the problem that there was an infinity of solutions and sought 

clarification from the researcher. This indicated metacognitive activity in the service of correct 

task interpretation. Farley recognized that he didn‟t understand what a good answer looked like, 

and asked for clarification.  

 In his follow up questions, Farley also told the researcher that, as he was thinking about 

the answer (for almost two minutes) he was switching between thinking about the problem, and 

thinking about his evening. It is possible that this represented a lack of metacognitive control. 

Farley may simply have had trouble controlling what he was thinking about. However, it‟s also 

possible that Farley‟s activity represented a specific metacognitive strategy, namely to distract 

himself long enough to take a fresh look at the problem. Farley indicated that he was saying to 

himself, “I don‟t understand. I don‟t understand.” It is possible that he shifted to thinking about 
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work as way of giving him a break from those thoughts, allowing his mathematical networks to 

solve the problem, unencumbered by narrative networks which, at that point, were activating in 

an unhelpful way. During that break, those networks were able to see a path to a solution, 

evidenced by Farley‟s statement, “I realized I could make them parallel,” and offered their 

activation to other networks by putting that realization into consciousness.  

 Contextual networks were highly implicated in this question relative to other questions. 

Farley interacted with the researcher to ensure that he had a correct interpretation of the task. He 

also used the paper to store an intermediate number (4), which he ultimately did not use in the 

problem. This represented the only time Farley used the paper to store intermediate calculations 

during the study.  

Because much of Farley‟s work was in his head, it was difficult to discern exactly the 

nature of his activity; however, it seems as though Farley‟s calculation of a pair of values that 

satisfied the question represented competent activity. There is little direct evidence, but this was 

done correctly, and it seems reasonable that Farley would have been comfortable with such a 

procedure, given his propensity to calculate in his head. This activity was likely supported by 

domain specific networks for solving algebraic equations. 

 Farley exhibited flexibility when he clarified his understanding of the task demands with 

the researcher. For other students, clarifying task demands represents competent behaviour, but 

in this context, this activity may have represented an adaptation, as Farley had not interacted 

with the researcher during any questions at that point. However, in this question, Farley saw that 

the most efficient use of his effort was to get clarification up front. From a network point of 

view, metacognitive activity (the decision to ask the researcher) may have activated a contextual 

network (the researcher) to aid in activating the right type of domain specific networks. 
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As well, Farley may have exhibited flexibility when ruminating, cycling between 

thoughts about his evening and thoughts about the question. This repeated distraction may have 

afforded him a fresh look at the problem each time his thoughts cycled back to the question. The 

suggestion that this cycle may have been flexible is supported by the observation that he did 

ultimately obtain a correct answer for the question, suggesting his activity functioned to afford 

him the answer. From a network point of view, his sense that he was not getting the answer 

(metacognitive activity) co-activated domain specific networks (for slopes of parallel lines, and 

the demands of his evening) to produce new domain specific activity (for setting the expressions 

equal mentally and solving) that allowed him to correctly solve the problem. 

Patterns in Network Activation and Flexibility: Farley 

Like other students, Farley appeared to make extensive use of domain specific networks 

for slope.  There is evidence, though, that for Farley, this network did not include an explicit 

representation of the slope formula. Farley did most slope calculations mentally and he never 

wrote the formula down. At one point, when the researcher asked him what a friend should know 

about the problem, he suggested they should use the slope formula. The researcher then asked if 

he had just used the slope formula, and Farley said, “no.” This suggests that, although Farley‟s 

networks for slope supported the exact calculations associated with the slope formula, his 

networks did not include explicit, algebraic representation of that formula. In addition, Farley 

drew on domain specific networks for parallel lines, their relationship to slope, and manipulation 

of algebraic expressions. These networks appeared to be active while solving problems and to 

support successful performance.  

It also appeared that networks for cell-phone plans were active in questions C2 and F2 

(cell phone). The way in which Farley answered those questions suggested a primarily real-life 
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network, rather than a linear relationship network. As a result, Farley was not able to solve 

question F2. It also appeared that domain specific networks for relating external conditions (the 

weather) to predictions of Farley's evening job were active, given his report of the impact of 

weather on his sales in question F3 (parallel lines).  

Farley did a great deal of mental math, rarely using the paper. Thus, it appears that 

Farley's core mathematical networks were well established and easy to recruit. He did multi-step 

algebra in his head. 

Farley showed very little metacognitive activity through the study. Only two questions 

showed metacognitive network activity. In question C1 (slopes), Farley used the slope formula, 

but was not aware of it, suggesting a disconnect between narrative and experiential 

metacognitive networks.  Farley also once asked for clarification of a specific question (in F3). 

In this case, he was ensuring that the researcher was looking for a single pair of values. It is 

possible, given Farley's desire to move quickly through the material, and his lack of 

metacognitive activity elsewhere, that he was trying to ensure that his interpretation was right, 

because other interpretations (i.e., a general algebraic equation describing the relationship) may 

have taken longer. From this point of view, metacognition may have served to help Farley reach 

his goal of completing the study quickly.  

Farley's cycling between thinking about his evening work and his task may have 

represented a general metacognitive strategy of distraction to afford insight. The researcher has 

heard several anecdotal reports from students with attention problems indicating that distracting 

oneself from a problem, and then immediately returning to it, can support insight and flexibility. 

Given Farley's reported attention issues, this may be partly what happened, when he successfully 

solved the problem during cycles of thinking about work and the problem. 
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As suggested above, Farley‟s metacognitive activity may have been characterized by a 

disconnect between experiential metacognitive/domain-specific networks and narrative 

metacognitive networks. In questions C1 and F1, Farley did not realize narratively that he was 

using the slope formula, even though he was. In question F3, Farley was telling himself “I don‟t 

understand, I don‟t understand” while, at the same time, domain-specific and experiential 

metacognitive networks were correctly solving the problem. Thus, narrative networks did not 

seem to activate in an integrated way with domain-specific and experiential networks for Farley.  

Farley did not seem to see the paper as part of a useful contextual network for doing 

problems. He only recorded answers on them, and that may be because that's what the study 

entailed, rather than him seeing an affordance in writing down answers. Similarly, Farley rarely 

interacted with the researcher, except briefly in the last question, suggesting that he did not see a 

need to use that contextual network in solving the problems. 

It is possible that Farley's activity in question F2 (cell-phone) represented a flexible 

adaptation to a challenging problem by using  a metacognitive strategy of minimizing calculation 

and writing. In Farley's semi-structured interview he indicated feelings of extreme negative 

emotions to describe working on problems he already knows how to do (he used words like 

despise, avoid and unmotivating) to describe his experience with mathematics.  Despite 

extensive conversations with the researcher, Farley did not seem to apply the task interpretation 

discussed, possibly because he realized how lengthy a process it might be to answer that 

question.  At the same time, Farley‟s activity may not have represented a desire to minimize 

work, and instead may have simply represented a misinterpretation of the problem.  

Farley also exhibited flexibility when he afforded himself insight into question F3, by 

thinking about his evening work shift. This may seem counterintuitive, but as discussed above, it 
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is a strategy that kids with attention issues have anecdotally reported using; and in this case, it 

was effective. It is difficult to pinpoint exactly what type of network activation affords this 

flexibility. In follow-up, Farley seemed to believe that this “happened to him” rather than him 

choosing to distract himself. At the same time, experiential metacognitive activity (which, for 

Farley, may not be well linked with narrative metacognition) may have been dynamically 

changing domain specific network activation in response to internal vicero-somatic feedback 

about the effectiveness of that domain specific activation (i.e., experimental networks may 

monitor the predicted reward from amplifying to a particular network, and thus, cycle back and 

forth between two networks, shifting when the predicted reward from attending to a particular 

network goes below a particular point).  

For Farley, flexibility may have involved combinations of a variety of experiential and 

domain specific networks, but included minimal activation of narrative metacognitive networks. 

On the other hand, Farley‟s competence seemed to have been largely supported by domain 

specific network activation. Metacognitive, core mathematical and contextual networks were 

largely ignored by Farley during the study, particularly when he exhibited competence.  

Harriet  

At the time of this study, Harriet was entering Grade 12 at a local school that provides 

"Jewish Education." She reported an 83 in Math 11. Harriet's semi-structured interview gave a 

strong impression of how she sees herself as a learner. Harriet showed an explicit preference for 

flexible mathematics over competent mathematics when she discussed her strengths and 

weaknesses: 

H: I‟ve always been pretty good at math.  I‟m not...that great at like…you know, linear 

systems, which is apparently what we‟re doing.  ….  But um...I don‟t know.  I really like 
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trig...Uh, I like...things that...I can like...figure out, but now like...if it‟s like...something 

that requires like thinking, as opposed to just plugging in a formula, but like not where 

it‟s like...I don‟t know, just it‟s something about the lines and graphs that just…I don‟t 

really understand it.  

R: Okay.  And you don‟t like the formulaic stuff as much.  

H: I don‟t mind formulas...it‟s just like...it‟s more fun for me...when it‟s something I can 

like figure out.  Like if I see a formula and I can figure out a way to do it...not using the 

formula.  

R: Yeah.  You prefer that.  

H: Yeah.  But I like having the formula because if I can like look at something that‟s like 

already been done, I can figure out how to do it without someone telling me.  ... But 

like...so I like to like look at the formula and think “well, what if I do this instead...would 

it still come out the same?” and stuff like that.  

R: ...  So then what would you say your weaknesses are in math?  

H: Um...well I‟d say my weaknesses are regarding like school math…. I think I‟m really 

really good at it so I never practice and sometimes that gets me really behind.  

R: Yeah.  And so what do you do when that happens? 

H: Nothing.  

R: Has that been a problem forever, and across different subjects, or…? 

H: Yeah.  I...I, I don‟t...I have a really poor work ethic.   

R:  Poor work ethic.  Can you tell me more about that?  

H:   Um...I like...I rarely do any homework at all.  Um...I‟ve always had this problem 

where...this sounds really conceited but like where I think that like I‟m so smart that like I 
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don‟t have to do any homework.  Um...kind of like...it‟s like “Oh whatever, if I don‟t do 

this I‟ll still be ok” not like “I‟m so smart I can just make it up” it‟s just...it doesn‟t really 

click in my head that if I don‟t do it, it could really affect me later.  Even though like I 

know it does, I just like go like uh...go on Facebook and just do it eventually. …. Like I 

don‟t think I‟ve done any math homework all year.  

R: Is there anything different or distinct about the way you learn in general?  That you 

know of …. 

H: Well I have ADD.  So there‟s that, I don‟t really know how that affects my learning 

math, but um...I...I have like a really short attention span.  I don‟t know, I like math 

though.  I..um...I just...I find it hard to concentrate on some things...um...what was the 

question again? Sorry.  

Table 11 indicates which of Harriet‟s activities were competent or flexible. 

Problem C1 

Activity Description. 

The AAT graph describing Harriet‟s activity in this first problem is presented in Figure 

26.  Harriet solved this question correctly by counting the rise and run and dividing the two. 

Harriet began this question by drawing an x/y axis. She then created ten marks along each axis, 

representing units. She graphed both points, then went back to ensure she had the correct number 

of unit marks. Finally she counted the rise and the run, tracing the distance with her pen. She 

then wrote the rise over run and simplified the fraction to get the correct answer.  

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 
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H: "Ok, well first I was like, ok, we'll I'll draw a graph.  Then I drew the graph and 

realized I didn't make enough space, so I made it bigger. And then I drew the points on 

the graph, and I connected the line, poorly. And then I did rise over run... so I just 

counted up and over between the two points....and I think that's what I supposed to do 

[trails off]. 

Affordances to Detect Network Activation. 

 Domain specific networks for slope appeared to be active during this problem, as 

evidenced by her use of “rise over run.” These networks seemed to support counting the rise and 

run, rather than subtracting the x and y values to obtain the rise and run. It is possible that the 

phrase  “rise over run” for Harriet, supports a counting approach to slope, since neither the slope 

formula or even the word slope were mentioned in her responses to the follow up questions.  

Very basic core mathematical networks for counting were used during this problem, but given 

her approach, it seems as though networks for calculation were not active.  

 Harriet used metacognitive networks to monitor the appropriateness of her graph and to 

ensure the unit marks on the axes allowed her to make the graph she needed. This was evidenced 

by the fact that she returned to this task after graphing the line. It is unclear if this activity was 

essential to solve the problem or graph the line more accurately, or if it was an intentional 

distraction to allow her mind time to process the next step.  

 In terms of contextual networks, Harriet used the paper to construct a visual-spatial 

representation of the line, which she used to correctly solve the problem. She also recorded an 

intermediate calculation for slope on the paper, as well as a reduced form of the final answer. 

 Harriet showed competence in the way she solved this problem. She easily and quickly 

drew the graph and counted the slope.  This activity appeared to be supported by domain specific 
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networks for slope (which, though they afforded calculation of slope, did not explicitly include 

the slope formula). This competence also seemed to be supported by contextual networks, which 

afforded her drawing of the question.  Harriet‟s activity in the question did not appear to have 

detectible examples of flexibility. 

Problem F1 

Activity Description. 

The AAT graph describing Harriet‟s activity in this second problem is presented in 

Figure 27.  Harriet was not able to solve this problem, because early in the problem she chose to 

use specific values for a and b, rather than solve the problem in general. Though her final answer 

was correct, given her choices for a and b, it was not correct in general. Harriet began this 

problem by drawing an x/y axis and creating unit marks along the axes. She then selected 

possible values for a and b (a=1, b=2). Based on these values, she graphed the point (a,b) as (1,2) 

and (3a,2b) as (3,4). She then joined the points, and traced the line with her pen, estimating rise 

and run. She drew a 1x1 grid over the 1
st
 quadrant of the graph, and counted her rise and run. 

With a shrug, she wrote m=1 on the top of the page.  

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 

H: Well I don't think I know how to do this, but then I drew a graph, and then I was like I 

have no idea if like a and b are supposed to be something. Well I mean like, obviously 

they're supposed to be something, but I mean if I'm supposed to be able to figure out what 

it was. So I was like k let's assume that 1 would be 1 and b would be 2...and then I plotted 

1,2 and then that would make this one 3 and 4 because you know . 1 times 1 and two 

times two .... um... and so I plotted the second point and then I did rise over run. 
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Affordances to Detect Network Activation. 

 Domain specific networks for rise and run appeared to be active during this problem. As 

in the previous problem, it seems as though these networks supported counting for Harriet, but 

not necessarily finding the differences between the points using subtraction or using the explicit 

slope formula. Domain specific networks supporting “plugging  in values for variables” were 

also evident. Harriet approached this problem specifically, assigning values to a and b, and 

working out the implications of that assignment.  

 Very basic core mathematical networks for counting were used during this problem, but 

again networks for calculation did not appear to be active. Harriet showed metacognitive 

activation when she tried to count the rise over run, realized that this counting was unreliable, 

and drew a 1x1 grid to help her count more accurately. It may be that discovering counting was 

difficult triggered a network for a new strategy (drawing a grid). 

 Contextual networks were implicated when the paper was used to create a visual-spatial 

representation of the problem. Ultimately, this representation was too specific (assigning specific 

values to a and b), and didn‟t support a more general answer.  Harriet did not interact with the 

researcher during the problem. 

 Harriet seemed to exhibit competence early in this problem when she drew an x/y axis, 

and late in the problem, when she counted slope. In both cases she seemed to be using domain 

specific networks to support this competence, one for drawing axes, another for counting slope. 

Harriet exhibited flexibility in her choice of specific values for a and b. Her follow up answer 

suggests that she was sure that a and b should "be something" but was not sure if she should give 

them. However, after thought, she realized that choosing values would afford her a graph, which 

she could then use to count slope, and so she did it.  As well, Harriet‟s choice to use a grid to 
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make counting rise and run easier also represents flexibility. When her initial counting strategy 

seemed too imprecise, she realized a grid would clarify the rise and run. 

 This flexibility may be understood as the result of network activation. Harriet 

metacognitively activated a domain specific network (plugging in values) to create a situation in 

a contextual network (her paper). She then created a new element in the contextual network 

(drawing a grid over the lines) to facilitate use of a domain specific network (for counting slope), 

all in the service of an accurate, but non-general (and thus incorrect) answer. 

  

Problem C2 

Activity Description. 

The AAT graph describing Harriet‟s activity in this third problem is presented in Figure 

28.  Harriet solved this question easily and correctly. Harriet began by reading the first sentence 

aloud and then silently reading the rest of the problem in her head. She quickly wrote 

expressions for the cost of both companies at 30 minutes. She calculated the cost of Company A 

on her calculator, wrote it down, mentally calculated the cost of Company B, and wrote that 

down as well.  

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 

H: Well first I was like „I don't know how to do this" because I was looking at it, and at 

first I thought it was one of the ones where you like let a equal and do the like.....the two 

equations and find the variables...but then I was like there really are no variables since 

they give you all the information, and so t...I was like well.... it's gonna be 20 cents per 

one minute and there's 30 of them plus whatever the access fee is, and then I was like „Oh 

that's easy, why didn't I see that before.‟ 
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Affordances to Detect Network Activation.  

 It appears that domain specific networks for situations with a linear structure were active. 

Unlike other participants, Harriet‟s answers to follow up questions indicated that she understood 

this problem as an academic math problem, rather than relying on less academic understanding 

of cell phone prices (“I was looking at it, and it first I thought it was [a systems of equations 

problem] … but then I [realized] … they give you all the information”).  Harriet was able to infer  

the linear structure of this problem and make the requisite calculations, suggesting that networks 

supporting these situations were active. Harriet did some calculating in her head – in particular 

finding the cost of Company B – which suggests that core mathematics networks for exact 

calculation were active. 

 Harriet‟s follow-up response cited above suggests that she shifted strategies early in the 

problem. Her perception of the task changed from a linear system to plugging values into two 

separate equations.  It is possible that this realization/strategy switch was function of 

metacognitive networks monitoring the usefulness of particular task interpretations and adjusting 

network activity accordingly. Harriet used the paper to record equations for the cost of both 

companies at 30 minutes of talking and to record the answers, indicating use of contextual 

networks.  

 Harriet‟s activity during this problem seemed to be competent. She easily shifted 

strategies into a plugging-in approach that afforded her a quick and easy solution. This 

competence seemed to be supported by domain specific networks (including those for real-life 

cell phones and linear equations) and core mathematical networks. Harriet did not show evidence 

of flexibility during this problem. 
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Problem F2 

Activity Description. 

The AAT graph describing Harriet‟s activity in this fourth problem is presented in Figure 

29.  Harriet spent 10 minutes coming up with the correct solution to this problem. To begin, she 

read the question, asked if she could look back at her previous work, and recorded the results of 

the last question on the page. She then started using the calculator – she later reported that she 

was trying to divide the difference between the system access fees ($2.50) by the per minute 

costs.  When she couldn‟t make sense of her answer, she started to guess and test. Harriet would 

choose a number of minutes, and calculate the cost of both companies for that number of 

minutes. After nearly 7 minutes of guessing and testing with different values for number of 

minutes, she got the correct answer and wrote it down.   

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 

H: Ok, well, I didn't know how to do it. Ahhh...I'm sure there's an easy way to do it that I 

overlooked. Ummm so, after a while of not understanding like what to do, I was like, K, 

well I'm just going to..... do trial and error until I figure it out - well actually, first I was 

like, k, it was like the difference between these two is like 2.5 and then I was like k, so, I 

did like 2.5/something, and I don't remember why I did that. I did 2.5/.2 because it's 20 

cents a minute, and I was like well, that's how much is .... like....how much more this one 

has to be than that one? or something? I don't really know what I was doing, I just kind 

of ...I just kind of try things and I don't remember why I was thinking that that would 

work. But it came up with 12.5 which was the same number as that, so I assumed it meant 

something, I just didn't know what. ....uh...and then I gave up on that because it didn't 
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really seem to be working, and I just, went down along the number line, until eventually I 

got to 125, and they both came out to be 37.5. 

Affordances to Detect Network Activation.  

 Early in the question, it seemed as though domain specific networks that could relate the 

difference in system access fees and the per-minute cost were active. However, these networks 

were either not active enough to support effective performance, or not specific enough, as they 

did not lead to a successful solution.  Later in the question, domain specific networks for 

calculating the result of a linear equation, given an input variable (minutes) seemed to be active, 

as Harriet searched for the solution.  It also appears as though a network provided candidate 

minute values. As Harriet progressed through guess and testing, her candidate values got closer 

and closer to the answer. This suggests some organized mental activity in terms of selecting 

candidate values, which may have been associated with a domain specific network, a 

metacognitive network, or a combination of both.  

 Harriet used the calculator to do all calculations during the questions, so it is unlikely 

exact calculation networks were involved. The selection of candidate values for m may have 

required core mathematical networks for detection of magnitude, as her selections became 

increasingly accurate as the question progressed.  

 Harriet shifted strategies two minutes into the problem. Initially, she tried to come to a 

logical conclusion by working with the difference in system access fees. However, after realizing 

the numbers coming from this process didn‟t make sense, she decided to guess and test. It may 

be that metacognitive networks supported this decision, by helping Harriet detect that she was 

not getting closer to the answer. It‟s also possible that metacognitive networks helped Harriet 

stay focused during her guess and test period. She guessed and tested for seven minutes – a long 
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time relative to other students. Though there is no direct evidence for this, it seems possible that 

metacognitive networks might have kept the guessing and testing networks active for a long 

enough period to obtain the correct response. 

 Contextual networks were also implicated in how Harriet solved the problem. She asked 

the researcher about the parameters for the study (“Can I look back?”). She also used the paper to 

record 17 different costs for different numbers of minute values. She never referred to these, so it 

is unclear why she wrote them down.  

 Harriet‟s guess and test approach may have represented competent activity. The phrasing 

of her follow up answer, “I‟m just going to do …. trial and error,” suggests that she considered 

this an inelegant but obvious route to the answer, and her fluidity and ease with the strategy 

suggest competence as well. This competence seemed to be supported by domain specific 

networks for guess and test, linear equations, cell-phone plans and contextual networks (the 

paper and the calculator).  

 Harriet showed flexibility when she divided the system access fee by the per minute costs 

as an initial strategy. Harriet suggested that she was “just kinda [trying] things” – which suggests 

that she may have been searching for a strategy to solve the problem that didn‟t require guess 

and test. Once this approach failed to be fruitful, she moved to guess and test, which may also 

have represented a flexible adaptation to the problem, by adjusting to use a strategy that was 

slow but sure (guess and test).  

 Though Harriet solved the problem, her initial flexibility was not essential to her solution. 

Harriet first went down the wrong path (flexibly) by using activation in analogical core math 

networks (about the relative size of the costs of the companies) to activate metacognitive activity 

(choosing to divide numbers) that she thought might be useful (but were not). Metacognitive 
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activation (detection that this strategy did not work) then activated domain specific networks (for 

guessing and testing) that were used to solve the problem. 

Problem C3 

Activity Description. 

The AAT graph describing Harriet‟s activity in this fifth problem is presented in Figure 

30.  Harriet did not solve this problem correctly because she made an incorrect inference from 

the points given in the question. Harriet began this problem by verbalizing her strategy to the 

researcher (“so draw it?”). Though the researcher did not confirm that this was the correct 

strategy, Harriet graphed all four points and joined the two lines. After looking at her graph, 

Harriet announced “I can tell you how they‟re parallel without drawing the lines.” 

 The researcher and Harriet engaged in a discussion about Harriet‟s solution. She gave a 

lengthy explanation relating the points in one line to the points in the other. She indicated that 

adding „1‟ to the points from one line would prove that they were parallel (this is not true). Even 

with follow-up questions and triangulation between written records and video evidence, I have 

been unable to discern what strategy she was using here. However, it seems as though 

assumptions about using addition to relate points afforded an opportunity to see lines as parallel, 

even though they were not.  

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 

H: Ok, well, I can tell you how I know they're parallel without drawing this graph. Ok, 

well this one is 2 and 4 and  you just add one to either side which means they‟re going to 

be slightly more over but like exactly in the same place. And it's the same as this one, but 
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you minus 2.  I mean 1. ....so like the coordinates are like equal, but like one less or one 

more on either side. 

… 

H: I drew the graph, just to be sure it was parallel. And then as I was looking at the 

coordinates I noticed the relationships between them, and then I was like I guess I didn't 

need the graph but I guess it kind of proves I did it.  

Affordances to Detect Network Activation. 

 Domain specific networks for parallel lines appeared to be active, but it was unclear what 

type of activity they supported. Until late in the follow-up questions, it did not appear that 

Harriet understood that parallel lines must have the same slope. So, although networks 

supporting both algebraic and visual spatial understandings of parallel lines were active (as 

evidenced by her visual spatial and algebraic solutions), it is unclear what actions these networks 

afforded Harriet and it seems that these networks did not relate slope to parallel lines.  

 Based on Harriet‟s oral proof for her answer, it seems as though core mathematical 

relationships were central to her conclusion that the lines were parallel. However, because I have 

been unable to discern what Harriet was thinking, it is unclear what these networks contributed 

to the activity. 

 Harriet began the problem by drawing both lines, but then abruptly launched into an oral, 

algebraic justification of her conclusion. This switch occurred rapidly, right after she completed 

her second line graph. This may indicate metacognitive activity. Harriet detected an affordance 

in the points, which allowed her to make a proof that made sense to her. As a result, she shifted 

away from her graph and launched into an algebraic explanation. 
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 Contextual networks were active when Harriet used the paper to construct a visual-spatial 

representation of the problem. She also discussed her proof orally with the researcher rather than 

providing formal written mathematics.  

 Harriet began this problem competently, by drawing an x/y axis and graphing both lines, 

a process which seemed to be supported by domain specific and contextual networks (the paper). 

Harriet‟s construction of an algebraic explanation for why the lines are parallel may have 

indicated flexibility. Though the explanation was incorrect, it seemed to represent an attempt by 

Harriet to deal with the fact that her graphs did not afford her a proof. She saw a potential 

affordance in the points given and used that to construct an explanation she thought might prove 

what she could see in her diagram. From a network point of view, Harriet appeared to 

metacognitively co-activate two domain specific networks (visual-spatial and algebraic networks 

for slope) to generate a domain specific and incorrect algebraic explanation for how the question 

works. 

Problem F3 

Activity Description. 

The AAT graph describing Harriet‟s activity in this final problem is presented in Figure 

31.  Harriet solved this problem correctly. She began by drawing an x and y axis. After 

mentioning to the researcher “I talk to myself while I‟m doing this,” she graphed and joined the 

points in the given lines. After a moment of thought, she wrote down an equation for the slope of 

the second two points. She corrected this twice and finally got a correct expression.  

 Harriet then informed the researcher that there were many possible values that would 

make the lines parallel and gave the example of (11,1), but suggested that this was not an 

acceptable answer, as she thought the question asked for values that would not make the lines 
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parallel. The researcher, inferring that she had misinterpreted the problem (which asked for 

points that would make the lines parallel) confirmed this understanding (“so it couldn‟t be 11 and 

1?”). As she responded Harriet realized her misinterpretation, and corrected her answer (“it 

would be 11 and 1”).   

In response to a follow-up question asking her to describe her thinking through the 

problem, Harriet replied: 

H: Can I just....say that....I mean like there could be like 100 of things that it could be but 

basically anything ...it can't be anything that would make this fraction 2. so like. uh. 

ummmm.......11 and ....uh 7, no, not 7, it's the other way around..... 11 and 1. What? ...Yes 

R: Yeah that's right. So it couldn't be 11 and 1? 

H: Uhhh, no ...well that would make them parallel if it was 11 and 1. 

R: And what's the question asking you?  

H: If the lines never touch, so yeah if they‟re parallel, so it would be 11 and 1. 

R: So tell me what you did to solve the problem. 

H: Well, I drew this line, and then I found the slope of it, even though I didn't really need 

to draw it. and then I got the slope of that because of what you told me in the first 

one...the y1 ...the y minus the y and the x minus the x ... and then I wrote that and I was 

thinking about ....uh.....when we do factoring, we were like - oh - cause it has to - don‟t 

know - equal 0 or something.  

R: So that popped into your mind? 

H: You know how it's like x does not equal 5 or something like that? 

R: Oh, well then they can't have the same slope because minutes ago because you just 

said two minutes ago that if they have the same slope then they're parallel. Well I guess I 
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read the question wrong, because I thought that meant that if they like -- anything that 

they're not parallel. But I understood the question - I just kind of read it backwards. 

Affordances to Detect Network Activation. 

 Domain specific networks for parallel lines and their relation to slope appeared to be 

active in this problem. In the previous problem, this network did not seem to be active. However, 

during the follow up to the previous question the researcher explained the relationship, and 

Harriet was able to activate that network during this problem. It also seems as though algebraic 

networks were active during this problem as Harriet solved for one variable, given a value for the 

second variable. As well, she created an algebraic expression of the second slope. Harriet solved 

for the correct solution in her head, suggesting that core mathematical  networks for exact 

calculation activated with networks for algebra to afford her a correct solution.  

 Metacognitive networks appeared to be active early in the problem, when Harriet noticed 

that she was talking aloud and mentioned to the researcher that she talks to herself. I coded this 

activation as metacogntive because it seemed as though a network activated in response to the 

verbal activity and afforded Harriet an opportunity to mention that.  

 Later in the problem, metacognitive network activation may have supported a shift from 

using a visual-spatial representation of the problem to working on an algebraic solution. Though 

this activity was coded as metacognitive, it is unclear if the visual representation directly 

activated domain specific networks for algebraic representations of slopes, or if metacognitive 

networks functioned to shift from a visual representation which was not working to an algebraic 

slope relation –which had been mentioned in the follow ups to the previous question – that might 

afford a correct solution. Because the move seemed deliberate, and Harriet described cycling 
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through domain specific networks looking for a useful one, this activity was coded as 

metacognitive.   

 Harriet used the paper to construct a visual-spatial representation of the problem and to 

construct expressions for both slopes, showing use of contextual networks.  Harriet also used 

interaction with the researcher as a way of giving her answer. She didn‟t write it, but instead 

provided a detailed justification to the researcher of her solution. This interaction allowed her to 

find and correct her mistake in the task interpretation.   

 Harriet showed evidence of competent activity at the start of the problem when she drew 

a graph of the line. Additionally, after flexibly using the slope to construct expressions for the 

slopes of both lines, she appeared to competently equate these expressions and mentally solve for 

a pair of values that satisfied this equation. This competence may have been supported by 

network activity in domain specific networks parallel lines, slope and algebra, a metacognitive 

activation shifting towards an algebraic solution, and networks for exact calculation.  

Harriet showed flexibility when she used the slope formula to construct expressions for 

the slopes of both lines. Unlike other students (Farley excepted), Harriet had not used the slope 

formula in any of the previous questions. However, her response to follow-up questions on the 

previous question had included discussion of the slope formula, and during this question, Harriet 

used it fruitfully to obtain the correct answer. This represents adaptation to the problem and to 

interacting with slope in general. The previous follow-up questioning had afforded her use of a 

new tool  -- the slope formula – which she put to work right away. 

From a network viewpoint, it is possible to infer that, in the previous question (C2), 

Harriet had made a metacognitive request (to hear the correct answer) that activated a domain 
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specific network (for the slope equation) which Harriet metacognitively activated in F3 as part of 

flexible activity which afforded a correct solution. 

Patterns in Network Activation and Flexibility: Harriet 

Across problems, it appeared that Harriet made effective use of domain specific networks 

for working with slope. Initially, these networks did not seem to include explicit representation 

of the slope formula. However, in the follow up to C3 (parallel lines), the researcher and Harriet 

discussed the slope formula, and, in the final question, F3 (parallel lines), Harriet used the 

formula explicitly to solve the problem correctly. This may suggest that Harriet's domain specific 

networks for slope changed over the course of the study, accommodating explicit representation 

of the slope formula and connections to parallel lines that could be used productively. 

Harriet also showed evidence of understanding general linear equation relationships in 

her work on the cell-phone questions (C2 and F2). She wrote linear equations for both, and 

reported thinking about the problem in a formal mathematical, rather than 'cell-phone' modality. 

In addition, Harriet used visual-spatial domain specific networks for slope during questions that 

were solved by other students without such a diagram. This may suggest that Harriet saw visual-

spatial relationships as primary within this domain.  As well, domain specific networks for 

calculating with linear equations and for plugging in values were evident across problems. 

Harriet used a counting approach to find rise and run, rather than subtraction. This 

observation does not  necessarily indicate that exact calculation networks for subtraction were 

not functioning for Harriet, but it does suggest that her core mathematical networks included 

those for counting. 

Harriet also showed evidence of network activation for approximate calculation when she 

selected candidate values for the number of minutes in question F2 (cellphone) and in her 
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incorrect oral answer for question C3 (parallel lines). In F2, each guess from guessing and testing 

was closer to the answer and thus suggested that approximate calculation networks afforded 

candidate values to domain specific networks. In addition, Harriet initially tried to divide the 

system access fees and the per minute costs, possibly suggesting an approximate sense that these 

numbers might afford successful performance. In C3 (parallel lines), Harriet relied on an 

intuitive, non-specific relationship between the coordinates to justify her incorrect answer. These 

examples imply that approximate calculation networks may have formed an important part of 

Harriet's networks for mathematics. 

Harriet reported that she "just tries things" and that was evident throughout the study.  

Harriet made a complete shift in strategy in three of the questions, suggesting a metacognitive 

network for strategy shifting (e.g., her shift from algebraic approaches to guess and test in F2). It 

is unclear this was supported by narrative or experiential activity, but it is possible that 

experiential networks detected incongruities in the problem and interacted with narrative 

networks to affect a strategy shift.  This shifting seems to have had two metacognitive 

components, one to detect a lack of success with the current strategy and another to suggest 

candidate strategies. Harriet also showed metacognitive awareness of her experience when she 

reported that she “talks to herself” mid-problem. It seems as though she noticed her behavior and 

decided to explain it to the researcher.  

Harriet used the paper to construct visual spatial representations of the situations in 

problems C1 and F1 (slopes) and C3 and F3 (parallel lines). She then used these representations 

actively in her problem solving, looking at them, tracing over them, and reasoning about them. 

Thus, for Harriet, the paper may have provided an important contextual network where 

understandings could be constructed and analyzed. Harriet did not generally interact with the 
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researcher, except to provide oral justification for her answers. This suggests that Harriet did not 

see asking for help as an important contextual affordance.  

In general, Harriet's performance was highly flexible, though not always successful. She 

demonstrated flexibility in 4 of the 6 questions. One thread in Harriet's flexibility was a tendency 

to try strategies without any clear idea of where they would lead. For example, in question F1 

(slopes), Harriet chose values for a and b. She later reported that she was unsure of what this 

strategy would afford, but she was confident it could be used fruitfully.  Similarly, in question  

F2 (cell-phone), Harriet divided the system access fee by the per minute cost because she was 

"just trying things." In both cases, the trigger for flexibility seems to be an awareness that a 

strategy was needed and a hunch that a particular strategy might change the way she was 

understanding the problem, thus affording a solution.  This type of activation may have been 

experientially metacognitive. Her responses to follow-up questions suggested that Harriet could 

not describe linguistically the expected effect of these strategies, yet she seemed to have a 

“feeling” that they would work. This pattern of activity might be associated with an experiential 

network proposing candidate solutions, with some input from narrative networks. 

Harriet also seemed to use contextual affordances to trigger flexible activity. For 

example, in the follow up to question C3 (parallel lines), the researcher and Harriet talked about 

the explicit slope formula. In the following question, she used this formula to construct 

expressions for slope, though she had not done that previously. This suggests that Harriet, 

hearing the slope formula, detected an opportunity for its use and recruited it.  In question C3, 

Harriet used the drawing of the lines and the specific points in the question to construct an oral 

explanation for an incorrect solution. Again, Harriet seemed to be looking in the contextual 
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networks for activation she could internalize, and to extrapolate from that to find strategies for 

problems.  

Patterns in Network Activity Across Students 

In this section, I report findings of a cross case analysis of patterns in network activity 

apparent across students. First, across students, it appears that domain specific networks were 

instrumental to successful performance. All students showed evidence of networks for slope, for 

connecting slope to parallel lines, and for modeling real world equations. The results presented 

here focus on patterns in slope and real-world equations networks, as those networks appeared to 

show meaningful patterns across students.  

It appears as though networks for slope were required for successful performance by 

these students in some problems focused on linear equations (specifically, questions C1, C2, F1 

and F3). That said, the networks appeared to afford success in different ways, varying in the 

extent to which they supported explicit use of the slope formula and included visual-spatial and 

algebraic networks.  

For example, problem-solving activity on these problems suggested that three students 

(George, Clayton and Adam) had networks for slope that facilitated interaction with the explicit 

slope formula, while two students (Farley and Harriet) appeared to have networks for slope that 

did not include the explicit slope formula. More specifically, George‟s, Clayton‟s and Adam‟s, 

networks for slope seemed to function to facilitate algebraic calculation using an explicit 

representation of the slope formula. For example, in each question, George wrote the slope 

formula explicitly, and then in a step-by-step fashion proceeded to plug in values and simplify 

accordingly. The instrumental nature of this algebraic form for these students could be seen in 

Clayton's activity - he was unable to solve the problem until he asked the researcher for the 
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formula. Once the network for slope was active, he was able to use it in a variety of questions 

and it supported successful performance.  

  Farley completed most calculations in his head, denying that he had used the slope 

formula. However, his activity descriptions indicated that his operations were identical to what 

would be done with that formula (i.e., he subtracted the relevant values and divided them). It is 

unclear, then, exactly how Farley was perceiving and working with the activity of his slope 

network, but his responses suggest that the explicit formula may not have contributed to his 

competent use of slope on many problems. In Harriet‟s case, networks for slope also seemed  

implicit, as well as visual-spatial. Harriet drew graphs in each question. She found slope by 

counting rise and run rather than subtracting. The activation pattern may have arisen because 

Harriet could not remember the slope formula and did not want to ask. Later, once the formula 

was brought up in follow-up questions, she did use it explicitly. However, the fluidity with which 

she drew visual-spatial representations and ease with which found slope using these 

representations suggest that this type of representation was more easily accessible than algebraic 

notions of slope. 

Students‟ networks for slope also seemed to differ in the extent to which visual-spatial 

representations were included. Again, Harriet seemed to depend more on a visual-spatial than on 

an algebraic representation (even if she used an algebraic representation easily when reminded of 

the formula). For George and Clayton, algebraic networks seemed to represent their sole network 

for slope, while no visual-spatial representation of slope appeared (e.g., using a drawing of line 

to work with slope).  Adam‟s networks seemed to fluidly integrate network structures for visual 

spatial and algebraic understandings of slope.  His performance on question C3 (parallel lines) 

suggested that he understood the problem simultaneously in algebraic and visual-spatial modes, 
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using the joint activation to construct an answer for the question. Thus, across students, results 

suggest that slope networks supported successful performance, but that the form of those 

networks varied across students in the extent to which they included visual-spatial 

representations of slope and the explicit slope formula. 

Across students, in addition to networks for slope, all students seemed to activate 

networks supporting real-life applications of linear equations. These networks varied in the 

extent to which they were integrated with other domain specific networks for formal 

mathematics. For example, slope formulas did not seem to contribute to successful performance 

on the two problems involving cell phone plans. Instead, all five students activated domain 

specific networks for real-life linear equations in the first cell-phone problem and used these 

networks to solve the first question correctly (except Farley, who made a calculation error). It is 

reasonable to assume that most students in the study had experience with cell phone plans and 

how they are priced. Follow-up responses and activity reports indicate that this question was 

considered exceptionally easy by students, perhaps because they were so used to working 

mathematically in this context.  

However, for most students, this network activation in C2 may have interfered with 

performance on the second cell-phone problem (F2). All students except Harriet seemed to 

interpret question C2 in a very literal and contextual way. If „real-life‟ contextual networks for 

cell-phones were active in C2, they may have stayed active in the following question, impairing 

activation of formal mathematical domain specific networks. The two students who successfully 

solved question C2 ultimately verified their solutions with guess and test approaches, perhaps 

because networks for formal algebraic networks were less active than those for real-life cell 

phone pricing. That said, George did attempt to construct an algebraic relationship. So it may not 
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have been that students were unaware that more formal representations of the problem were 

possible, but the activity of relevant networks may not have been sufficient at that time to 

support their use. 

  Only one student, Harriet, seemed to activate domain specific networks for linear 

equations when working on the cell-phone questions. In her case, there may have been a link 

between her activation of networks for mathematical equations in C2 and her competence with 

the guess and test strategy in F2. Framing C2 in algebraic terms may have afforded Harriet a 

more formal mathematical network state in F2, allowing her to succeed where three other 

students had not.  

Second, core mathematical networks for exact calculation were utilized by all students, 

but only some seemed to make use of analogical networks for number approximation. Across 

participants, exact calculation was used throughout the problems. There were two errors – one by 

Adam and one by George. Adam caught his error during follow-up questioning. George did not. 

But in both cases, the error did not impact the activity of other networks and the questions were 

solved in a logically sound manner. In general, exact calculation networks seemed to function as 

expected and supported performance with minimal effect on other networks. 

Only Adam and Harriet showed any activation of analogical core mathematical networks, 

and this was in questions F2 (both students, cell-phone) and C3 (Adam, parallel lines). Both 

started F2 by trying to relate the system access fee to the per-minute costs. Harriet divided one 

by the other, while Adam divided the differences between both companies. However, in both 

cases, it seems as though the relative sizes of those numbers triggered a strategy for relating 

those numbers. In Adam‟s case, he acknowledged this explicitly in his response to follow-up 
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questions, indicating that his intuition suggested these differences might produce useful values 

for guess and test. This method did not work for Harriet, as the numbers she divided did not 

produce good candidate values. Yet, it seemed that later in the question, this analogical network 

was still active, as her candidates for guess and testing got increasingly accurate. It is of note that 

only Adam and Harriet were able to solve this problem, and thus it‟s possible that successful 

performance on this problem was supported by analogical networks for core mathematics. 

Third, participants appeared to vary in terms of activity in their metacognitive networks. 

For George and Farley, metacognitive activation was seen less frequently, seemed to sustain 

activity in domain specific networks, and may have been related to their goals of completing the 

study quickly. For Adam, Clayton and Harriet, metacognition activation was seen more 

frequently, seemed to support increasing activation in domain specific and contextual networks, 

was less-determinate, and may have been related to their goals of engaging deeply with the 

problems in the study. 

George and Farley showed metacognitive activation in three and two questions, 

respectively, compared to Adam, Harriet and Clayton, who showed metacognitive activation in 

five, six and six questions, respectively. Within problems, Adam, Harriet and Clayton appeared 

to activate metacognitive networks more frequently, and for longer periods of time.   

George‟s metacognitive activity seemed to function to manage his self-perceptions and to 

keep himself on-track. For example, at the start of both parallel lines questions, George reminded 

himself that the lines would have equal slopes, perhaps sustaining activity of networks relating 

slopes and parallel lines. In question F3, Farley‟s metacognitive networks appeared to activate 

two disparate networks simultaneously, to afford insight. In both cases, metacognitive activation 

appeared to sustain activation in active domain specific networks.  



 

156 

 

On the other hand, Adam, Harriet and Clayton‟s metacognition seemed to facilitate 

strategic shifts by increasing activation in domain specific networks which were not sufficiently 

active to support performance. For example, strategic shifts occurred for all three students as a 

result of metacognitive interaction with the work they had done on the paper. For example, as 

Adam began to trace the paper and ruminate in question C3 he seemed to have no strategy for 

showing how the lines were parallel. However, this metacognitive network activation appeared 

to facilitate interaction between the paper and his in-the-head networks, in turn integrating 

activation between visual spatial and algebraic networks for slope. This integrated network then 

appeared to facilitate an oral algebraic and visual spatial justification for his answer, suggesting 

that this metacognitive activation afforded a strategy shift that led to the correct answer. For 

Harriet, Clayton and Adam, network activity also appeared to support spreading activation from 

contextual to domain specific networks, to recruit needed domain specific networks. For 

example, both Harriet and Clayton used discussions with the researcher to activate networks for 

slope which they later used in both competent and flexible activity. 

 Variation in metacognitive activity may have also been related to the goals of students.  

George and Farley completed the study very quickly, and, within each question, seemed to be 

working as fast as possible. The researcher had the impression that George seemed eager to 

prove that he could do these problems very quickly and correctly, and that Farley was eager to do 

these problems quickly, and with a minimum of writing. In follow-up questions, neither took the 

opportunity (offered by the researcher) to obtain clarification about problems they had struggled 

with.  On the other hand, Adam, Harriet and Clayton spent longer doing the study, and all three 

asked frequently about their answers, and were eager to understand the correct solutions; they 

also used network activation afforded by interactions with the researcher in future questions 
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(Adam excepted). In addition, Adam, Harriet, and Clayton seemed to enjoy doing the problems, 

and were more willing to try alternative approaches. 

 Adam, Harriet and Clayton also appeared to show less automatic activation of cognitive 

networks, and more flexible domain specific networks, relative to Farley and George. In each 

question, Farley and George seemed to pick definite strategies quickly, and tried to implement 

them sequentially. For example, once Farley selected an approach for F2, he seemed unable to 

adjust it, even though repeated interactions with the researcher may have suggested to him that 

this approach was not leading to the correct answer. When George worked on F2, he did 

metacognitively switch strategies – from guess and test, to creating equations, back to guess and 

test. However, in each case his shift was quick, and he gave up at the first sign of trouble.  He 

seemed to expect that, if a strategy worked, it would work instantly, and as soon as he ran into 

trouble, he shifted again, back to his original, more linear strategy of guess and test. 

In contrast, within the more metacognitively active students, strategies tended to be less 

determinate, and more exploratory – both Harriet and Adam reported trying things to see what 

would happen. These metacognitive activations could be considered exploratory in the sense that 

they did not seem to support a predetermined activation of domain specific networks. Instead, 

they appear to support the activation and recombination of domain specific and contextual 

networks in novel ways. For example, on F2, both Harriet and Adam used networks that detected 

analogical magnitude to activate domain specific networks for manipulating the differences 

between the costs of the two companies. They both reported being unsure of what this would 

produce, but they both expressed hope that it would produce good candidate values for guess and 

test. In Adam‟s case, it did, and he used this to solve the problem. In Harriet‟s case it did not, and 

she abandoned this approach in service of a more successful one. In both cases, metacognitive 
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strategies supported activity that had no clear outcome, but that could affect contextual-

individual transaction (i.e. the task conditions) in a way that would support further network 

activation.  

 The differences in metacognitive activity observed across students may be related to the 

relative activation of narrative and experiential networks. Previous research has suggested 

distinct roles for narrative and experiential metacognitive networks: narrative networks construct 

metacognitive explanations of behavior across time, while experiential networks function to 

monitor experience without verbal mediation.  George‟s metacognitive activity seemed highly 

narrative, and neither he nor Farley seemed to have an experiential connection to the work. In 

addition, Farley may have shown a disassociation between narrative and experiential networks 

when he was unaware narratively that he was using the slope formula. For other students, 

metacognitive activity seemed to be characterized by sensitivity to the features of the problem, as 

they were unfolding before the participants. For example, Adam and Harriet corrected errors as 

they looked over their own work; they also tried strategies when they couldn‟t predict the 

outcome, and then used the results of that strategy to afford further action. It may be the case that 

narrative and experiential networks were more tightly integrated for these students, and that 

allowed narrative networks to elaborate and amplify experiential metacognitive activity; this 

integration may imply a qualitatively different sort of metacognitive network than students 

whose narrative and experiential networks are more separate. The validity of this conclusion is 

unclear, as it was challenging to differentiate narrative and experiential activity. 

 In sum, these results appear to indicate a difference in metacogntive network activity 

activation across students. Some students showed more metacognitive activation, and slower, 

less rigid activation of domain specific cognitive networks; these students‟ metacognitive 
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activation seemed to function to afford strategy shifts, activation of cognitive networks, and error 

detection. Other students showed considerably lower levels of metacognitive activation; and 

rigid strategy choice and rigid activation of domain specific networks. These students‟ 

metacognitive activation seemed to function to afford sustaining cognitive networks, and seeking 

to maintain perceptions of self, and reinforce the goals of these students – to finish the study 

quickly and competently.  

 Fourth, contextual networks seemed to function to: 1) be a record of intermediate steps; 

2) activate metacognitive networks that supported strategy shifts and error detection; 3) change 

domain specific or contextual network activity; and 4) facilitate task interpretation. These 

functions could be seen in student interactions with two main contextual networks: the paper, 

and the researcher.  

In some cases, students recorded intermediate calculations on the paper. For example, 

George and Clayton both wrote down every intermediate calculation that they did during the 

problems. The function of recording calculations was unclear, but, for some students, it did not 

appear to support strategy shifts or error detection. Neither used their paper to afford error 

detection, and they did not seem to review what they had written.  For George especially, there 

was no evidence that use of the paper led to any successful performance – competent or flexible. 

It‟s possible that use of the paper to write intermediate calculations is supported by a network 

which is specific to the domain „doing math problems in an academic context.‟ This domain 

specific network may transfer the output of intermediate steps to paper, when paper is provided. 

However, this network may be unconnected to other cognitive and metacognitive networks, 

suggesting that, in some cases, recording intermediate calculations may not have an instrumental 

role in the way students solve problems.   
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 In addition to recording calculations, for some students the paper appeared to support 

students in detecting errors, and promoting shifts in strategy, mediated by metacognitive network 

activity. Like George and Clayton, Harriet and Adam also wrote down a great deal of their work, 

and constructed visual spatial representations of several problems. However, comparison of their 

work with George and Clayton indicates a less linear, less narrative progression to their work. 

While George and Clayton‟s work followed step by step, and would make marking easy for most 

teachers, Harriet and Adam‟s work was disjointed, unclear and strewn across the page. This may 

suggest that, for Harriet and Adam, the paper serves as an explicit representation of internal 

mental activity, and a place to hold representations in a „virtual working memory,‟ thus reducing 

the mental energy required to keep these representations active. Both Harriet and Adam appeared 

to follow examinations of these representations with metacognitive activity, and then strategy 

shifts or detection errors. Thus, for some students, the paper functioned to facilitate error 

detection and shifts in strategy, and these shifts were often mediated by metacognitive network 

activity.  

 Another contextual network students made use of was the researcher. Discussions with 

the researcher were used by some students to activate needed domain specific and contextual 

networks, and to aid in task interpretation. Adam requested both a calculator, and lined paper 

from the researcher, suggesting that he saw the researcher as able to activate other relevant 

contextual networks, that would in turn, afford successful performance. Clayton spoke frequently 

to the researcher to obtain additional information about relevant formulas, and his task 

interpretations, suggesting that, for Clayton, activity in contextual networks (i.e. things the 

researcher said) activated domain specific networks.  Similarly, Harriet used discussion during 
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the follow-up questions to activate domain specific networks she later used. Contextual networks 

may, for some students, function to affect the activity of other networks.  

 In sum, the results indicate that network activity could be detected, and that patterns 

could be drawn across students. Successful performance on some questions appeared to require 

well-developed networks for slope. All students showed evidence of such a network, but 

networks varied in the extent to which they supported algebraic, visual spatial, and formula 

based interaction with slope. All students appeared to activate „real-life‟ networks for cell-phone 

pricing in C2. This appeared to interfere with performance in question F2, by blocking activation 

of networks for linear equations in all students except Harriet, who, in C2, appeared to have 

more formally mathematical networks active. In core mathematical networks, analogical 

detection of magnitude appeared to support Harriet and Adam‟s successful performance on F2; 

but, networks for exact calculation did not seem to impact performance for most students in most 

questions. Metacognitive activation appeared to function differently for different students. For 

some (George and Farley), metacognitive activation appeared to be less frequent, more 

determinate, and appeared to maintain network activation. For others (Adam, Clayton and 

Harriet), metacognitive activation was more frequent, less determinate, and appeared to activate 

networks that had not yet been used.  Contextual networks appeared to support a variety of 

activities. The paper provided by the researcher served to record intermediate steps and 

representations. For some students (George and Clayton), this activity appeared unconnected to 

other network activity; for others (Adam and Harriet), it appeared to afford metacognitive 

activation, in turn, changing activation in other contextual or domain specific networks. 

Interactions with the researcher appeared to afford more robust task interpretation and affect 

activation in other domain specific or contextual networks.  
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Patterns in Flexibility and Competence  

 For this study, flexibility was defined as activity demonstrating adjustment to new or 

changing conditions when engaging with quantity, number or form. Competence was 

conceptualized as mathematical activity that does not contain adaptation or recombination of 

existing knowledge or attunement to the affordances of that situation. 

 The results of this study suggest that 1) particular questions afforded flexibility more 

than others, but that flexibility could be detected in all problems; 2) across students competence 

seemed to be inversely related to flexibility, and flexibility was exhibited by different students 

for different reasons, and 3) flexibility appeared to occur as metacognitive networks co-activated 

or integrated  activity of two or more non-metacognitive networks, while competence appeared 

to occur as a sequence of network activations.  

Patterns in Flexibility Across Questions. 

 The study protocol contained six problems for students to work on: three designed to 

afford competence (C1, C2, C3) and three designed to afford flexibility (F1, F2, F3). These 

problems were matched linguistically, and in terms of the domain specific linear equations 

networks thought to be required. In this section, I describe patterns of flexible activity observed 

within each question, and draw across these results to suggest patterns in flexibility, and their 

relationship to question conditions. Briefly, the results appear to indicate that, while question F3 

afforded flexibility to most students, all questions afforded flexibility. In all cases, flexibility 

seemed to be generated by task conditions in which the state of the transaction did not appear (to 

the participant) to support successful performance.  Students seemed to be adapting to different 

elements of the problems and flexibility did not tend to extend across an entire problem. Though 

notions of successful performance seemed to vary across students, in each case, once a student 
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became aware that they needed help to achieve their goal, a variety of flexible behaviors 

manifested. 

 Question C1 (Slope) was, for most students, an opportunity to demonstrate competence 

working with slope. Most students did not demonstrate adjustment to any elements of the task, 

and further, follow up questions indicated that straightforward set of activities were employed 

competently to obtain the answer. However, without a way of working with slope, competence 

on this question was challenging, and the one student who had forgotten this formula exhibited 

flexibility in indirectly asking the researcher for the relevant formula. Thus, most students had 

the domain specific networks required for the question, and did not tend to exhibit flexibility on 

this question. 

 Question F1 (Slope) was, also, for most students, an opportunity to show competence. 

Nearly all students reported using the same competent routine as in question C1. However, 

Harriet demonstrated how this question can promote flexibility, if the relevant domain specific 

networks are not sufficiently active. Harriet‟s networks for slope did not include those for the 

slope formula – her only way of working with slope was to count the rise and the run. As a 

result, she adapted, showing flexibility, and chose specific values for a and b – though she was 

not sure that would work – and calculated slope, given those values. Though this didn‟t afford 

her a correct solution, it is a good fit for the notion of flexibility put forward in this study. 

Harriet, unsure of what to do, adapted to the question by trying a strategy she had seen work in 

other contexts – plugging in values.  

 Question C2 (Cell Phone) was also considered by all students to be easy, and all students 

except Farley got the question correct. All students appeared to competently use domain specific 



 

164 

 

knowledge for cell-phones competently in sequence, and the only errors were a result of 

miscalculation. Conversely, most students appeared to find question F2 (Cell Phone) very 

challenging, and all students demonstrated some flexibility during the problem. F2 was also the 

most difficult question in that all students reported finding it challenging (except Farley), and 

only Adam and Harriet solved it correctly. For nearly all students, even interpreting this question 

was challenging; the researcher, after seeing this with Clayton, made sure to ensure students 

understood what was being asked of them, but still, Farley and Clayton did not seem to 

understand what the question asked. This difficulty with the question appeared to afford a variety 

of examples of flexibility 

 Clayton demonstrated flexibility by looking back at his previous work to see if he could 

detect an affordance that could be used in the question. Though he did not, during that time he 

came up with a new strategy – using the T(i) formula from another unit. This strategy is related, 

but unlikely to help him solve the problem, and the researcher, in response to his asking, 

suggested it was not the intended solution, and Clayton abandoned it. Both Harriet and Adam 

detected that the relative ratios of the system access fees, and the per-minute costs might be 

related to the correct solution, and both tried to work with these values, flexibly, unsure of where 

it might lead. Though both solved the question correctly, only Adam was able to use this flexible 

move to afford correct performance; Harriet switched to a guess and test method.  

 George demonstrated flexibility in the question several times. He began by trying guess 

and test, which I coded as competent, as it seemed fluid and automatic. However, he could see 

that it wasn‟t working, and tried to construct equations that related minutes and cost for both 

companies. However, a misconception – that minutes and cost could be represented by the same 

variable – meant that he was unable to reason or work with these equations. He then expressed 
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his frustration to the researcher, which I interpreted as seeking permission to stop the problem. 

When the researcher suggested he could stop when he liked, he returned to guess and test to get a 

more reasonable strategy. Given this motivational component to George‟s flexibility, it may be 

that George‟s flexibility activity in F2 supports movement through a variety of domain specific 

network activations, in an attempt to succeed at „appearing to be reasonably competent on this 

problem‟ rather than „finding the point at which Company A is cheaper than Company B.‟ This 

interpretation explains why some of his flexibility seemed to modulate emotional and task 

related activity, rather than the intellectual content of the problem. 

 Finally, Farley showed flexibility in choosing a strategy that minimized the work, in 

written form, and in terms of the mental work required to solve the problem. He used the 

calculator to guess and test, but seemed in general to want to solve the problem as quickly as 

possible, and with a minimum of effort. His ultimate answer, though technically a “numerical 

answer,” as requested by the researcher, may not reflect the absolute function of his networks in 

general, but rather the activity of those networks given his motivation for the task. 

 Thus, question F2 afforded many opportunities to observe flexibility; this flexibility 

appeared to represent adaption to different elements of the problem. Adam, George and Clayton, 

appeared to adapt in an attempt to get the correct answers. George and Farley appeared to adapt 

emotional and task related activity, modulating effort and emotional challenge. For all students, 

this flexibility appeared when students realized they did not know what to do. 

 Question C3 (parallel lines) was solved competently by George, Clayton and Farley, but 

appeared to afford flexible activity to both Harriet and Adam. George, Clayton and Farley all 

solved the problem easily with no notable adjustment to their activity. However, for Adam, 
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flexibility was manifest as he started at the problem, tracing over the lines, and filling the dots. 

This silent thought was followed by an explanation of the problem that indicated he had related 

his visual spatial and algebraic understandings of the problem. This explanation seemed correct, 

and I coded Adam has having solved the problem correctly though he did not „prove‟ his answer. 

Harriet got the wrong answer, after staring at the problem for a while. She, as well, had 

constructed visual spatial representations, and was looking at the relationships between these 

representations and the points given in the question. Her explanation was difficult to parse, and 

not correct, but it did indicate a flexible combination of those two networks. For both Harriet and 

Adam, flexibility seemed to be related to their sense that they could solve the problem, but that 

they did not know what steps were next.  

 Question F3 (parallel lines) afforded flexibility to Harriet and Farley. Harriet, in C3, had 

discussed the slope formula with the researcher. She had not yet used it explicitly in the study, 

but she made use of it immediately. Farley‟s activity was hard to code. He reported cycling 

between the question and his evening plans. I coded this behavior as flexible because it seemed 

to be an adaption to his state of not knowing what to do, though it may not have been conscious. 

Farley did get the correct answer, and it may be that becoming “distracted” (as he suggested he 

does) is actually an adaption to not knowing what to do. Simply allowing himself to ruminate 

may have facilitated the network activation required to solve the problem. Farley later reported 

that he began this strategy because he had no idea what to do, suggesting that this flexibility was 

generated by task conditions where he was unsure what to do.  

 In sum, of the three problems designed to afford flexibility, only F2 appeared to reliably 

afford flexibility across students. Within this problem, what was being adapted appeared to vary 

across students. George and Farley appeared to be adjusting elements of the motivational context 
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of the problem, while Harriet, Clayton and Adam appeared to adjust elements related to the 

problem solution. However, within F2, all flexibility appeared to flow from task conditions 

where students were unsure of the next step, or how to get a solution.  

This result appears to hold across problems. Though most questions did not consistently 

afford flexibility, when task conditions suggested to a student that they did not know what to do, 

flexibility tended to appear. As a result, questions designed to afford competence sometimes 

afforded flexibility, because particular students did not have the network resources to deal with 

particular problems (for example, Harriet‟s lack of an explicit slope formula in C2). Appreciating 

these two findings together may imply that F2 tended to afford flexibility because it created task 

conditions where a student didn‟t know what to do. As a result, students attempted to promote 

activity in networks they thought might help (some contextual, some domain specific); to the 

extent that these networks did help (e.g. Adam, Harriet), this flexibility promoted successful 

performance.  

Patterns of Flexibility and Competence Across Students. 

The results suggest that students varied in how often they exhibited flexibility, and the 

purpose of their flexibility. Additionally, levels of flexibility appeared to be inversely related to 

levels of competence. Students with high levels of flexibility in the study (Adam and Harriet) 

showed flexibility that focused on obtaining a correct solution; students with lower levels of 

flexibility (George and Farley) showed high levels of competence. The more flexible students 

appeared to adapt their activity to support success on the problem, while less flexible students 

appeared to adapt their activity to modulate their internal emotional state.  



 

168 

 

 George and Farley showed high levels of competence, and low levels of flexibility, 

employing domain specific networks quickly, and usually correctly.  For George and Farley, 

their competence seemed to imply that flexibility was rarely required – and when it was, the 

adjustments appeared to affect emotional network activity, rather than the networks observed in 

this study.  For example, George, in F2, reported being “irritated, ” and Farley appeared 

frustrated both times he exhibited flexibility (minimizing work in F2, and dealing with the fact 

that “I don‟t get it, I don‟t get it” in F3).  These transactions represent flexibility as defined – as 

an adjustment of activity when dealing with number or form – but the question of whether these 

constitute mathematical flexibility in the way that researchers and teachers understand it will be 

taken up in the discussion. Additionally, the lack of emotional networks in the protocol and 

theoretical approach used makes it difficult to fully interpret this flexibility, another point which 

will be taken up in the discussion.  

 Clayton appeared to show flexibility more often than Farley or George, and when he did 

(questions C1 and F2), it was centered around the use of contextual networks (the researcher, his 

previous work), to activate domain specific networks that would help him solve the problem (for 

example, his activation of the slope formula through discussion with the researcher in C1).  

Clayton also appeared to exhibit competence frequently. Thus Clayton appeared to be a student 

with a variety of competent strategies, who flexibly activated contextual networks, to afford him 

activation in domain specific networks that would, in turn, afford more competent activity. 

 Adam and Harriet both demonstrated flexibility frequently, and the adaptations shown 

appeared to be centered around affording success on the problem. For example, both played with 

the numbers given in F3 to try and generate a candidate answer they could guess and test.  In 

question C3, Adam ruminated, merging domain specific networks for algebra and visual spatial 
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networks, and obtaining a correct solution. Even when this flexibility did not afford success – for 

example Harriet‟s failed attempt to use values for a and b in question F1 – it was clear that the 

adaptive activity functioned to afford adjustment of the answer, rather than the emotional state of 

the student.  Adam and Harriet did also demonstrate competence, but less frequently than other 

students. 

 Thus, the results appear to indicate that some students responded to the problems in the 

study with high levels of competence, and low levels of flexibility. When they did exhibit 

flexibility, it tended to be related to emotional network activity. Other students appeared to 

exhibit flexibility more often, and showed less competent activity. These students tended to be 

flexible in order to obtain the correct answer. 

Patterns in Flexibility, Competence and Network Activation. 

The results seem to indicate that across all examples of flexibility, metacognitive 

networks appear to merge the activity of at least two other networks: either a contextual and a 

domain specific network, or a combination of in-the-head networks. The network activity may be 

contrasted with competent activity, which appeared to be associated with a string of networks 

activating in sequence.  

Metacognitive networks appeared to co-activate other networks in all examples of 

flexibility. In some cases flexibility occurred as metacognitive networks co-activated two in-the-

head networks.  For example, metacognitive activation appeared to merge the activity of visual 

spatial and algebraic networks for slope, as Adam flexibly constructed an oral explanation for 

F3. Similarly, Adam co-activated networks for exact calculation, guess and test, and analogical 

magnitude in his correct and flexible solution for F2. In other cases, metacognitive networks 
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seemed to function to activate contextual networks that would in turn activate a domain specific 

network. For example, in C1, Clayton used metacognitive network activity to activate a 

contextual network (discussion with the researcher), which, in turn, activated his domain specific 

network for working with slope algebraically. Similarly, Harriet‟s success on F2 may be a result 

of contextual activity with the researcher during the previous problem‟s follow up questions. 

This contextual activity appears to have triggered metacognitive activity, which in turn activated 

domain specific networks for slope that included the slope formula.  

In addition, flexibility generally involved the co-activation, or sequential activation of 

two or more networks, that were not yet fully integrated. For example, Adam‟s activity in C3 

indicated rumination and co-activation of networks for algebraic and visual spatial conceptions 

of slope. His accurate oral answer drew on both networks; but the time spent ruminating may 

suggest that this co-activation was instrumental in affording this explanation. Similarly, Farley‟s 

co-activation of domain specific networks for work and slope of parallel lines in F3, appeared to 

afford him activation of a new domain specific network that integrated networks for solving 

algebra problems, and relating parallel lines and slopes. 

These two patterns in flexibility- metacognitive networks bridging the activity of two 

other networks, and the emerging integration of not-yet-integrated networks – can be contrasted 

with patterns of activation in competent activity. Unlike flexible behavior, competent behavior 

seems to be associated with a string of metacognitively unconnected domain specific activity. 

For example, in C1, George used a contextual network (the paper) to record the result of a 

connected series of domain specific activities (writing slope formula, plugging points, 

calculating, simplifying) that afforded him the correct answer. In C2, almost all students 

activated a series of domain specific networks (for finding the variable component of the cost, 
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the fixed component of the cost, and calculating them) that were applied rapidly and accurately. 

In F1, Adam used a series of domain specific activations to get the correct answer (annotating 

points, writing slope formula, inserting points, simplifying algebraic expression). 

Though metacognition does not appear to link these network activations, metacognitive 

network activity may be part of the series of competent network activity. There were examples of 

metacognitive activity appearing during competent activity. For example, Harriet appeared to use 

metacognitive network activity to look back at her previous work in question F2. Unlike Clayton, 

who also looked back at his work, Harriet‟s metacognitive activity appeared to be automatic, and 

there was no evidence that her looking back represented an adjustment. Similarly, George 

appeared to use subvocalization in C3 and F3 (metacognitive network activation) to keep active 

the domain specific networks supporting his competence.  

Thus, the results appear to indicate that, within this study, flexibility occurred when 

metacognitive network activity co-activated or integrated activity of two or more networks, 

while competence was characterized asa more rigid sequence of domain specific, contextual, and 

occasionally metacognitive, network activities. Flexibility did not appear to be accounted for by 

the presence of metacognitive activity. Instead, metacognitive activity needed to function to co-

activate other networks, in order to afford flexibility. 
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CHAPTER FIVE 

Discussion 

 This purpose of this study was to investigate the functional components of mathematical 

flexibility and contrast them to functional components of mathematical competence. Promoting 

flexible performance by students is considered an important aim of mathematics education, and 

understanding flexibility is a goal of education, psychology and neuroscience research. However, 

educators report challenges in affording their students mathematical flexibility, and current 

research paradigms have struggled to integrate the diverse strands of research that contain 

knowledge about flexibility. Detecting how particular functional components are instrumental to 

flexibility may serve to inform both the practice of instructors and the models researchers use to 

understand flexibility. 

 In order to investigate these questions, a three stage process occurred. In the first stage, I 

integrated across research programs in neuroscience, psychology, and education / social 

psychology to construct a network approach to conceptualizing flexibility that might afford 

investigation that integrates across these disciplines. In the second stage, I constructed a research 

protocol that might allow me to both answer the research question and evaluate the effectiveness 

of the protocol to answer questions about flexibility. Finally, after implementing this protocol, I 

engaged in an iterative process of results generation, where I drew on descriptions and traces of 

student activity to infer the activity of particular cognitive and contextual networks and relate 

that network activity to patterns in student flexibility. 

 In this chapter, I first discuss what those results may imply for methodological 

approaches for studying flexibility. Next, I examine what could be learned about mathematical 
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flexibility from the results of this study. Third, I discuss limitations to the study, Finally, I 

suggest directions for future research that could complement or refine the results of the study.  

Methodological Affordances and Challenges 

 The protocol for this study was designed to afford observation of network activation, the 

networks students bring to the study, and mathematical flexibility. In this section, I suggest ways 

in which this protocol facilitated these observations, and limitations to the methodology that 

impaired this observation.   

Network Activation. 

 The study was designed to examine if relevant network activation implicated in problem-

solving could be inferred by triangulating between observations of activities, and artifacts 

generated through activity. In general, it seems that the protocol and study as implemented did 

facilitate observation of activity in the networks hypothesized to be important to mathematical 

flexibility in linear equations. However, challenges emerged in detecting activity in networks for 

consciousness, in discriminating between experiential and narrative metacognitive activity, and 

in accounting for all activity that appeared essential to problem solving. 

 In some cases, I was able to infer network dynamics in a way that informed 

understanding of students‟ problem solving. For example, in question C3, Adam ruminated and 

stared at the problem for a long time, tracing over the line he had drawn and over the points on 

the line. From a network perspective, it appeared that Adam was co-activating visual-spatial and 

algebraic networks for slope, possibly triggered by metacognitive network activity.  In his oral 

answer to the question, Adam appeared to draw on both visual-spatial and algebraic notions of 

slope in constructing his explanation. The dynamics of this activity may be usefully accounted 
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for by a network theory, which would suggest that as activation spread from metacognitive nodes 

to domain specific nodes, integrated networks emerged that could support new activity. The 

period of rumination may also be explained by a network approach. According to the network 

theory I propose, spreading activation occurs across time and co-activation of this network 

activity must hit some critical activation level before it influences activity.  

 In addition, the results suggested that meaningful patterns in network activity could be 

drawn across students and problems, and that those patterns could be related to flexible 

mathematics.  For example, metacognitive networks appeared to function in two distinct ways: to 

sustain domain specific network activation and to co-activate two or more networks.  Results 

suggested that these patterns in network activation varied across students: two students‟ 

metacognitive activation appeared to function to sustain domain specific network activity, while 

three other students‟ metacognitive activity appeared to support co-activation of two or more 

networks. The students who tended to co-activate also appeared to be more frequently flexible, 

and flexible in the service of obtaining a correct answer. This may suggest that this pattern of 

metacognitive network activation is associated with successful problem solving, which in turn, 

may suggest that this protocol is able to discern patterns in network activity and relate them to 

flexible mathematics.  

 Although the methodological approach used here had promise, in that meaningful 

patterns in network activity could be detected and related to flexible mathematics, there were 

limitations to what could be observed. Networks of consciousness and narrative/experiential 

metacognition were challenging to observe. First, activity in networks for consciousness was not 

observed in this study. For this study, consciousness can be conceptualized as network activity 

that functions to transmit information from one network to another. It was hoped that answers to 
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follow-up questions would indicate what students were conscious of as they solved problems. 

However, even though follow-up questions were designed to ask students to probe their 

experience of the question, it was difficult to interpret these as accurate descriptions of conscious 

activity. Instead, student responses seemed to be narratives that made sense of student activity 

retrospectively. There is some evidence (Dennett, 1991) that narrative descriptions of previous 

activity may not reflect actual conscious experience. Practically, I found this to be the case, as 

follow-up answers gave little insight into the ways in which networks were communicating. In 

fact, at key points where networks seemed to be co-activating and communicating – for example, 

Farley‟s co-activation of work and parallel lines networks in F3 – introspection seemed to 

produce little useful information about conscious activity. Although Farley knew he was thinking 

about these two ideas, he had no way of describing how this communication functioned to 

facilitate his correct solution. Thus, the study protocol did not afford detection of activity in 

networks for consciousness.  

 Narrative/experiential networks were also difficult to observe. Previous research suggests 

distinct roles for narrative and experiential metacognitive networks (Farb et al., 2007). Narrative 

networks construct metacognitive explanations of behavior across time, while experiential 

networks function to monitor experience without verbal mediation. This protocol had two 

features designed to afford discriminations between those networks. First, coding criteria 

differentiated between these networks, associating narrative network activation with students‟ 

using terminology that related the self across time (use of the pronoun “I” for example), and 

experiential networks with using terminology related to experience. Second, follow-up questions 

were designed to discriminate between these networks by first asking students to recount their 

experience (experiential) and then asking them what they would tell a friend about the problem 
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(narrative). In practice, neither of these protocol features appeared to afford reliable 

discrimination between different forms of metacognitive network activity. It was difficult to 

apply coding criteria reliably, given that utterances from students included both descriptions of 

experience and notions of the self across time. The first follow up question elicited integrated 

responses that drew on both narrative and experiential factors, sometimes in highly combined 

ways. When students indicated what they would tell a friend, they generally restated their answer 

to the first question in more concise terms. Further, during observations of problem-solving 

performance, I found that much metacognitive activity was not accompanied by utterances at all. 

It was inferable from activity, but not from how the participants talked about their activity 

(rendering the coding criteria irrelevant). 

 The study did contain examples of students using narrative to subvocalize and keep 

themselves on track, or showing metacognitive activity without any trace of narrative activity.  

Further, when students subvocalized, using narrative networks, this tended to help them maintain 

current network activation. Experiential networks were anecdotally associated with insight and 

flexibility. However, these conclusions should be considered as very preliminary and robust 

patterns were not drawn for the above reasons. Thus, the experiential/narrative distinction may 

be important, but reliable detection of this activity may require more nuanced methodological 

tools. 

 Challenges in differentiating between narrative and experiential forms of metacognition 

might have been a function of the grain size of the study, which focused on coherent activity as 

the smallest unit of behavior. Research on metacognitive networks (Farb et al., 2007) suggests 

that the activity of these two types of networks is highly integrated in most people, and there is 

some evidence that mindfulness training is required to disassociate their activity. From this point 
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of view, it makes sense that verbal and behavioral traces of activity are not fine grained enough 

to discern the activity of these two networks. Instead, measurement tools which can detect 

meaningful activity across very short time spans (e.g., 200 milliseconds), may be required to 

fully understand the interplay between these networks.  

 The above analysis suggests that the protocol used in this study was not able to reveal 

dynamics in some networks thought to be important to flexibility (i.e., consciousness; 

metacognitive). In addition, there was evidence that other networks instrumental to flexibility 

were not factored into the initial model, or systematically observed. For example, activation in 

networks for emotion was observed during the study.  Both Farley and George appeared 

frustrated during the only times they exhibited flexibility and this frustration appeared to 

influence that flexibility. They appeared to adjust their activity to reduce their negative emotion, 

rather than to get the correct answer. Some other theories of adaptive behaviour (like self-

regulation) have suggested that regulation of emotion is essential to effective academic work and 

to adaptability (Butler, Cartier, Schnellert, Gagnon, Higginson & Giammarino, 2005).The lack of 

affordance to systematically identify emotion from a network point of view may have limited the 

study‟s power. Emotional networks may play a powerful role in flexibility.  

 Similarly, some research has suggested that networks which maintain predictions of 

future activity affect how other networks activate (Hawkins, 2004), but these networks were not 

accounted for in the protocol. In the results above, students tended to exhibit flexibility when 

they didn‟t know what to do. However, detection of when they didn‟t know what to do was not 

accounted for in my description of network activation. This detection may be accounted for by 

networks that function to predict what should happen. Once other networks contradict that 

prediction, meta-networks may detect this conflict, and spur network activity to adjust. A 
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possible instance of this occurred when Clayton realized that the midpoint formula, which he 

used in C1, would not afford him a correct answer. He noticed that the midpoint formula yielded 

two points, when he needed a single point. He then flexibly obtained the formula he needed. 

Though this explanation accounts for this activity from an activity point of view, it does not 

explain all of the network activity that afforded this flexibility, and in particular, how networks 

for predicting outcomes might have been implicated.  

 In sum, the protocol used in this study seemed to afford detection of important forms of 

network activity that could be related meaningfully to flexibility, suggesting the usefulness of 

this general approach. That said, the methodological tools used here were not effective in 

detecting networks for consciousness and experiential as opposed to narrative metacognition and 

failed to target some forms of network activity (i.e., in emotional and predictive networks) that 

might have been central to flexibility. Future research could extend the approaches used here to 

more sensitively tap into these networks and assess their role in problem-solving activity. 

Networks Students Bring. 

The network theory put forward in this study suggests that students bring network 

structures to activity (in the sense that a particular student‟s networks can function to afford 

particular activity), and that these structures are a result of previous activity. A semi-structured 

interview was included in the protocol, in order to facilitate triangulation of activity with the 

networks students appeared to bring to the study. Though the semi-structured interview provided 

a useful lens into the general approaches and self-perceptions students brought to the study, in 

general, it did not appear to contribute greatly to the results, or serve a particularly useful source 

of data for triangulating network activity. 
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 Specifically, the SSI was designed to capture network structures brought to the study 

(metacognitive, domain specific, core mathematical), as well as students‟ perceptions of their 

strengths and weaknesses in mathematics. Data about students‟ narrative understandings of their 

strengths and weaknesses in math did prove useful in interpreting some of their activities, but the 

SSI did not appear to afford investigation of network structure.  

The way that the SSI facilitated interpretation of student activity can be seen in Farley‟s 

and Harriet‟s responses. Farley exhibited strong negative emotion during the SSI when 

discussing “boring” math work. This was later useful in interpreting what flexibility appeared to 

afford for Farley (i.e., management of that negative emotion). Harriet, in the question about her 

strengths and weaknesses, reported an explicit preference for solving problems flexibly rather 

than competently. This finding helped me interpret Harriet‟s frequent exhibitions of flexibility as 

consistent with her preferred ways of working.  

However, other questions designed to probe network structure did not give data that 

could be used with reliability to understand the nature of these networks. Further, tests of domain 

specific and core mathematical networks did not prove useful in uncovering the networks 

students brought to the study, perhaps because the questions were too easy. All students 

answered all domain specific networks accurately. Core mathematical tests, again, were too easy, 

and did not afford more meaningful triangulation of network activity that occurred during the 

study. As a result, most of the SSI was not used in inferring network activity for the study. 

However, an anecdotal experience with Harriet suggests that had the SSI been written with a 

focus on flexibility, investigating stated perceptions of flexibility, and perhaps students‟ 

propensity to find novel solutions to problems, more robust triangulation around student patterns 

of flexibility could have been made. Future research may employ redesigned SSIs which focus 
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on student perceptions of flexibility, or from new ways of uncovering the networks students 

bring to the study. 

More generally, a major limitation in this study was with challenges in determining what 

students bring in terms of networks. To the extent that future research can solve this challenge, 

more accurate and reliable triangulation of results can be expected. Thus, it may be important for 

future research to focus on ways of detecting what students bring in terms of networks. 

 Flexibility. 

 Flexibility was defined broadly in the coding criteria as an adaption of previously learned 

activity to the problem. Applying these criteria did appear to afford  identification of flexibility, 

as defined, and in some cases, was in line with research and teacher perceptions of mathematical 

flexibility. Multiple sources of data – traces, student follow up questions, and activity reports – 

facilitated rich descriptions of student activity, and a large number of flexible activities were 

observed, across questions and students.  Some of these examples appear to reflect flexibility as 

it is understood by researchers. Schoenfeld, for example, frames flexibility as about developing 

“thinkers with a broad repertoire of techniques and perspectives for learning to think 

mathematically, dealing with novel problems and situations” (Schoenfeld, 1992, pp. 4-5). 

Clayton‟s activity in F2 may be an example of this type of flexibility: he used a variety of 

techniques (guess and test, discussion with the researcher, looking back at his work) to parse a 

problem he did not understand. Similarly, Adam‟s activity in F2 showed flexible activity 

centered around playing with the numbers in the problem to afford a useful guess and test value. 

In both cases, participants appear to use a broad variety of techniques to handle a new, 

challenging situation.  
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 However, the broadness of the flexibility definition may have also resulted in labeling 

activity as flexible in ways that were not consistent with what researchers and educators mean 

when they talk about flexibility. Researchers (e.g., Greeno 1991, Schoenfeld 1998) have spoken 

of flexibility in a way that foregrounds adaptive proficiency with the mathematical situation. 

Educators have focused on the need for mathematically capable citizens (Schoenfeld, 1992, pp. 

4-5). Not all flexible activity in this study appeared to be related to proficiency with the situation, 

or to indicate a mathematical capable citizen. For example, in C2, Adam asked for a calculator. 

This activity was coded as flexible, as there was no calculator on the table, and this activity 

represented an adjustment of activity to Adam‟s desire to go faster.  It is not clear if Adam‟s 

activity represented flexibility in the sense of contributing to his proficiency.  In one sense, it did 

not – his activity did not really help him deal with the problem, which he could have solved 

without a calculator. In another sense, it did – adjusting the time a problem is going to take by 

using contextual affordances may be consistent with facility in dealing with novel problems or 

situations. So, although the broad definition of flexibility used in the study may have included 

some activity that is outside the scope of flexibility as understood by educators and researchers, 

other aspects of flexibility that were detected may have been consistent with flexibility as it is 

generally understood by educators and researchers.  

This protocol may identify flexibility more effectively if future research contains a 

rigorous theoretical investigation and refinement of the constructs in this study. The constructs in 

this study are fuzzy, and detecting flexibility was challenging. However, the phenomenon of 

flexibility has been studied across a wide variety of paradigms. A deep theoretical investigation 

could serve to clarify the relevant controversies, and consolidate language around points of 

agreement; the more successful this is, the more that researchers will be able to „speak the same 



 

182 

 

language‟ across disciplines, and the more likely that studies of flexibility will identify flexibility 

in ways that make sense to researchers and teachers.  

The grain size of the study may have also limited affordances to observe flexibility in 

student activity. Activity was coded as flexible when adaption to the problem occurred. 

However, the fundamental unit detected was coherent behavioral activity. Other research (e.g. 

Dehaene 2004, Dennett 1991) suggests that important mental events happen on the scale of 

milliseconds, not seconds, and their detection may require sensitive physiological measures that 

were missing from this protocol. As a result, it is possible that important adjustments occurred 

that could not be inferred from traces of activity, and therefore, the flexible activity identified 

should be considered a meaningful subset of the flexible activity which actually occurred (i.e., 

the “behaviorally observable” subset of activity).  Future research may benefit from approaches 

which observe flexibility on other time scales. 

What Was Learned About Mathematical Flexibility and Networks That Support It 

 This section highlights what was learned about mathematical flexibility and the networks 

that support it. First, I address how the results of this study support and extend existing 

understandings of mathematical flexibility. Second, I discuss the way that contextual/in-the-head 

interactions were observed in this study and how this may inform understanding of individual-

environment transactions. Third, I contrast the functional components of mathematical flexibility 

with the components of mathematical competence, to provide a provisional answer to the 

research question that motivated this study.  

 The results of this study appear consistent with previous research on mathematical 

flexibility, which has suggested four key features of mathematical flexibility: 1) distinct modules 
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in the brain contribute separately to flexibility (Case et al., 1996; Case & Okamoto, 1996; 

Dehaene 2004); 2) structures supporting flexibility may be combinations of older structures 

which integrate over time (Moss & Case, 1999); 3) different patterns of activity can lead to 

similar behavior (Moss and Case, 1999); and 4) a student must detect an affordance  in order to 

exhibit flexibility – it is not enough simply to „have‟ the needed structures (Greeno, 1991). The 

results of this study support these features, and can afford a deeper understanding of each of 

these features. 

 First, results indicate that particular networks were required, in particular contexts, to 

support flexibility. For example, domain specific modules for slope appeared central to 

flexibility in many of the problems posed here. For example, Adam, who appeared to have 

robust, integrated visual-spatial and algebraic networks for slope, was able to use this integrated 

network to solve C2. On the other hand, Clayton‟s networks for slope appeared more rigid and 

were less automatic (as they had to be primed by the researcher). This appeared to impair 

Clayton‟s ability to use these networks flexibly in F3. He failed to equate his expressions for 

slope, which would have afforded him a solution.  This failure of flexibility may have been a 

result of slope networks that were less adaptable and robust than Adam‟s, whose slope networks 

appeared to be supportive of his flexibility.  

Networks for modeling real life situations with formal linear equations may also have 

been essential to successful flexibility in question F2 (cell phone), while the strong activation of 

domain specific networks for real-life cell phone pricing in question C2 (cell phone) appeared to 

interfere with student performance on F2, by blocking activation of these networks for working 

with linear equations.  For most students, activity in F2 did not include activation of networks for 

mathematical linear equations, and as a result, students were not able to flexibly activate those 



 

184 

 

domain specific networks in this new context (it appeared no students had seen problems like 

this one previously). However, as discussed above, in C2, Harriet did appear to activate more 

formal mathematical networks, which appeared to contribute to her successful and flexible 

performance on F2. Thus, it may be the case that particular domain specific networks contributed 

to successful applications of flexibility in this question. 

However, though domain specific networks for slope appeared essential to examples of 

flexibility that supported successful performance, in all cases of flexibility, metacognitive 

networks appeared to sequentially or co-activate two or more networks in novel ways. This 

mutual activation appeared to afford the adjustments that constitute flexibility, suggesting that 

this type of metacognitive activity – simultaneous co-activation of other networks – may be 

central to flexibility in all cases.  

Thus, the results from this study support the finding that particular modules may be 

required to show flexibility in particular contexts. Activity in slope networks and linear equations 

networks may have been instrumental to some mathematical flexibility. Activity in metacogntive 

networks which served to co-activate or sequentially activate other networks appeared 

instrumental to all mathematical flexibility. This appears consistent with the findings of other 

researchers that particular networks may be central to flexibility in particular domains (e.g. 

Dehaene, 2004).  

 However, these results also indicate that domain specific networks that seem very similar 

may differ in subtle ways that affect flexibility. For example, domain specific networks for slope 

varied greatly across participants. For some, these networks supported algebraic activity with 

slope only (e.g., George). For others, these networks seemed to support visual-spatial activity 
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(e.g., Harriet). In others, these networks seemed to integrate visual-spatial and algebraic activity 

(e.g., Adam). Each of these students exhibited different patterns of flexibility which appeared to 

relate to differences in those networks. For example, a lack of algebraic networks for Harriet 

seemed to force her to rely on visual-spatial representations in F1. As a result, she got a solution 

that worked for the particular visual-spatial representation she chose, but was not as general as a 

result that could have been obtained with an algebraic representation. This may suggest that, 

within a type of module, many variations of network structure can exist and these variations may 

have implications for performance. As a result, caution should be exercised in generalizing about 

how types of modules will affect performance; instead, differentiating within a type of module 

should be emphasized as a way of predicting differences in flexibility. 

 Second, the results are consistent with research by Case (1999) and others which 

indicates that complex modules may be created as modules connect and integrate over time.  

This can be seen by contrasting the activity of Harriet and Adam. Both Harriet and Adam 

showed flexibility throughout the study, and often used similar approaches to solve the problems 

(i.e., F1, C3). However, Adam was more able to solve the problems than Harriet. It is possible 

that these differences in performance could be explained by differences in the integration of their 

algebraic and visual-spatial networks. For example, in C3, both Harriet and Adam stared at their 

visual-spatial representations of the problem and then gave oral solutions. However, Adam‟s was 

accurate, while Harriet‟s was not. Harriet, who appeared to have a weaker integration with 

algebraic networks for slope, seemed to construct an algebraic explanation that was not coherent 

and drew false conclusions. On the other hand, Adam‟s behavior as he looked over the graph 

suggests that he was merging visual-spatial and algebraic interpretations – he circled and re-

circled points and drew his hand up and down the line. His explanation was coherent, accurate 



 

186 

 

and drew a true conclusion. Thus, results indicate that structures may need to integrate in 

particular ways to support flexible behavior.  

 Third, previous research on mathematical flexibility has indicated that similar activity can 

be generated by different internal mental activity (Moss and Case, 1999). The results of this 

study seem to support this finding.  For example, all students successfully solved question C1. 

However, some students used a rigid sequence of algebraic domain specific network activities to 

solve the problem (George, Adam and Farley), another student invoked contextual networks 

(Clayton), and another used visual-spatial, domain-specific networks (Harriet). Similarly, both 

Harriet and Adam adapted flexibly to question F2 and got the same, correct answer. Both started 

the question by using analogical mathematical networks. However, Adam was able to follow that 

strategy to completion, while Harriet had to move to guess and test to find a solution, as that 

network did not support generation of useful candidate values. In this case, initial network 

activity and final answers were very similar, but intermediate mental activity was quite different. 

 This example also illustrates the converse to the above finding: that similar mental 

activity can lead to very different outcomes. Both Adam and Harriet began the problem with the 

same intuition and used very similar strategies. However, a small difference – that Adam worked 

with the differences in values and Harriet used the values themselves – ended up affording very 

different paths to the correct solution. This indicates that small differences in the structure of 

mental networks can lead to large differences in observable behaviour, a finding that has 

implications for flexibility, but that I have not seen mentioned in research.  

 Finally, previous research on mathematical flexibility indicates that, even when relevant 

networks are active, an affordance must be seized for flexibility to occur (Greeno, 1994). 
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George‟s performance in F3 is a clear example of that finding. Although he successfully 

constructed equations for both slopes, and activity in previous questions indicated strong 

networks for relating parallel lines and slopes and solving algebra problems, he was not able to 

solve the problem. This suggests that, for George, it was not enough to have the relevant 

networks. He also needed to see an affordance to combine those networks in a way that would 

support a correct answer.   

In addition to supporting research findings related to the four key features of 

mathematical flexibility, the results of this study may be useful in resolving a tension in the 

research between approaches to understanding mathematical problem-solving that foreground 

contextual factors and approaches that foreground in-the-head networks. Results from this study 

suggested significant ways in which in-the-head and contextual networks interact. In several 

examples of flexibility observed in the study, metacognitive networks appeared to facilitate 

communication between contextual and in-the-head networks. For example, in C1, Clayton 

requested the slope formula from the researcher. Once he had it, the domain specific network for 

it was active (including how to use it) and he was successful in solving the problem. In question 

F2, George expressed frustration at not having the solution (i.e., interacting with a contextual 

network). The response of the researcher – that he could finish when he wanted – triggered 

metacognitive activity which functioned to select a strategy that would afford him a better, but 

not right, answer. This in turn, triggered domain specific networks for guess and test to 

reactivate.  These findings suggest that these coordinations between in-the-head and contextual 

networks may be mediated by particular metacognitive networks that function to co-activate 

networks. 
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Further, these results suggest that flexibility can be usefully conceptualized as 

interactions between contextual networks and in-the-head networks, rather than having 

contextual networks interact with „individuals‟ or in-the-head networks interacting with “the 

environment.” For example, in Clayton‟s case, metacognition triggered contextual networks 

which triggered domain specific activity; in George‟s, contextual networks triggered 

metacognitive networks which triggered domain specific networks. Theoretically considering 

both individuals and environments to be composed of interconnecting networks affords a 

nuanced view of individual-environment transactions, where activity does not need to be 

mediated by the whole individual or whole environment. This affordance is a major feature of 

this model, as it privileges neither the cognitive nor situated perspective, but instead affords 

interactions between these points of view.  

In addition to extending findings on flexibility, and affording nuanced views of 

contextual-individual interactions, the results of this study may offer a provisional answer to the 

original research question: what functional components underlie flexibility, and how do those 

contrast with those that underlie competence? The results suggest that metacognitive activity 

may serve to connect contextual networks with domain specific networks, or connect two or  

more domain specific networks, and that this combination of network activity is central to 

flexibility. At the same time, this type of metacognitive activity is not sufficient to affect 

flexibility; results suggest that domain specific and contextual networks must also be able to 

activate. In contrast, competence in this study seemed to be characterized by a sequence of 

domain specific and contextual network activity occurring without metacognitive co-activation. 

When metacognitive activity was associated with competence, it appeared to function to sustain 

activation of already-active networks.   
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In addition, the results seem to suggest an essential condition that must occur in the 

individual-contextual transaction before flexibility will occur. The student must recognize a need 

to adapt. Besides Harriet, all students seemed to default to competent approaches, invoking 

flexibility only when the transaction demanded it. This may have occurred when the sequence of 

domain specific network activations in the competent approach triggered a contextual or 

metacognitive network state that suggested a need for an adaptation. For example, George began 

F3 by using a competent strategy of guess and test. This strategy broke down, as George realized 

that finding the correct answer this way would take a long time. He detected this by seeing in his 

chart that he was far from a solution. This contextual activity triggered a metacognitive strategy 

shift, which, in turn, triggered domain specific networks for algebraic relationships. Thus, failed 

competence can trigger flexibility.  

In addition, it appears that competence is not a prerequisite for flexibility, but may, in fact 

interfere with flexibility. Students who showed fluid and automatic competence (like George and 

Farley) also showed far fewer examples of flexibility, and that flexibility was less focused on 

correctly solving the problem. This suggests that students who depend on competence for 

success may struggle to be flexible. On the other hand, students like Adam and Harriet showed 

many examples of flexibility, but they seemed less competent in the sense that they were slower 

to consider problems, stated a preference for flexibility (Harriet), and successfully worked 

themselves out of tricky situations through adaptation. Thus, as the constructs of flexibility and 

competence develop, it will be important to consider the ways in which exhibiting one of these 

constructs may interfere with the other. 

That said, it is possible that interference between competence and flexibility observed in 

this study was an artifact of the way they were defined. Flexibility requires adaptation; 
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competence requires lack of adaptation. Thus, that one appears to preclude the other may, at first, 

appear tautological. However, it is theoretically possible that students who apply procedures 

quickly, easily and automatically also would be first to find opportunities to be flexible. In this 

case their work could have been characterized by frequent rapid shifts between flexible and 

competent behaviour. On the other hand, students who showed low levels of flexibility could 

have, in theory, also shown incompetence, stopping questions immediately, or early during a 

question. Because the results appear to indicate a reciprocal relationship between competence 

and flexibility, and there are other relationships between competence and flexibility that are 

theoretically conceivable, this finding may be understood as a genuine finding, rather than an 

artifact of coding criteria.   

Thus, these results suggest that flexibility and competence were significantly different in 

this study. Flexibility was characterized by metacognitive co-activation of two or more networks, 

while competence was characterized by more rigid sequences of network activity. Further, 

competence appeared to be a default mode, with flexibility having appeared only in response to 

challenge during the problem. These findings may have implications for theory, research and 

practice, and these implications are discussed in the following section. 

Implications for Theory, Research, and Practice 

The results of this study may have uses for theories of mathematical flexibility, by 

demonstrating the effectiveness of a functional approach that avoids foregrounding of situated or 

contextual factors in transactions. In the 1990s, a debate emerged in the research about the 

benefits of situated vs. cognitive perspectives in understanding human activity (see Greeno 2007  

for a review of both sides of this debate). Both sides of this debate agree that both situated and 

personal factors impact activity; however they disagree in terms of which factors should be 
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foregrounded, or seen as „causing‟ the activity of the other factor. The results of this study 

suggest an integrative approach that emphasizes the function of different factors affecting 

activity, rather than their location in 3D space (i.e. inside a human body, or in a „context‟). For 

example, in this study, both George and Clayton solved question C1 using an identical 

behavioral approach – they activated the domain specific network for working with algebraic 

slopes, plugged in the values, and simplified. However, George activated the network for slope 

internally, after reading the problem and then metacognitively amplifying the activity of that 

domain specific network. Clayton, activated the network for slope by asking the researcher for it. 

From a network theory, these two activities are very similar. From this lens, both situated and 

cognitive findings can „speak the same language‟ by referring to the function of particular 

networks, and attempting to differentiate networks by function rather than location. 

This theoretical move has implications for research designs that afford investigation of 

individual-contextual transactions, including those investigating mathematical flexibility. 

Investigations that use a functional network theory to inform study design can frame individual 

and contextual networks in terms of what they do, rather than what and where they are. As a 

result, researchers can look at the situated/cognitive debate as an empirical one; there may be a 

difference in how situated and cognitive factors function, and this difference may be best 

explained by their location (inside a human body, or an environment); or, they may turn out to be 

genuinely interchangeable, with contextual and internal nodes functioning identically for 

different people. There may be particular network activity that must occur in a body, and 

particular network activity that must occur in a context; or both bodies and environments may be 

capable of supporting the same sorts of network activities.  From a network perspective, a 
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commitment is not required in the research design; this may represent a significant theoretical 

contribution.  

This study also contributes to academic conceptions of mathematical flexibility by 

highlighting the ways in which flexibility emerges from interactions between in-the-head and 

environmental networks, supported by metacognitive co-activation of these networks. Further, 

the results may suggest that overlearned domain specific activity may interfere with flexibility. 

These findings have been highlighted in a variety of research on cognition but have been 

underemphasized in research on mathematical flexibility.  

In addition, the results may help researchers generalize other research findings about 

flexibility, by showing them in a new population. The findings about mathematical flexibility 

upon which this study is based are largely based on studies of elementary students. These results 

support and extend that knowledge (as described above), but they do so in a population of 15-17 

year old students. This may suggest that findings about flexibility in elementary students may 

hold as students get older. Future research may benefit from observing the relationship between 

network activity and flexibility in other contexts, including other grades, or other areas of math. 

For example, understanding flexibility in more heavily visual spatial areas of math (like 

geometry) could either validate the above findings in other contexts or provide useful nuance for 

educators and researchers. 

The present study may also have implications for teachers, though its findings need to be 

replicated and extended for these implications to warrant action. However, results may suggest 

that typical instruction in mathematics may support competence at the cost of flexibility. Often 

students are shown a set of domain specific activities, and then, those networks are reinforced 

with a series of questions that incrementally use those networks in more sophisticated ways. 
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Because each question builds on the previous in clear ways, and instruction often includes 

explicit strategies for these questions, students are often given opportunities to exhibit 

competence, but not flexibility. The results of this study suggest that students must be genuinely 

confused as to what to do before they will exhibit flexibility. If instruction does not afford these 

opportunities, students will not practice being flexible. Since there was also some evidence that 

students differed in how often they exhibited flexibility, this lack of practice may be self-

reinforcing, causing reliance on competent approaches, in turn further reducing practice with 

flexibility. Thus, there may be value for teachers in providing opportunities for students to be 

confused or unsure of what to do, and to allow those to resolve. At the same time, these results 

should not be taken to suggest that domain specific instruction has no value; without the relevant 

domain specific networks to draw on, there are no mental resources to use flexibly, and this was 

also evident in the results . There were students who used the metacognitive co-activation that 

appears to be a hallmark of flexibility, but because they could not employ the correct domain 

specific network, this flexibility did not appear to contribute to performance. But there may be 

value in supplementing direct instruction in domain specific activity with ambiguous, multi-

network problems. 

 In addition, this study may have implications for teachers who believe that most students 

may not be capable of showing flexibility, or thinking flexibly about math. This belief may come 

from a conception of flexibility as requiring competence as a precondition. However, these 

results indicate that flexibility is afforded when the individual-contextual transaction requires 

adaptation, and that students both successful and not, will show flexibility. As a result, these 

students‟ lack of flexibility may not be a function of inherent „inflexibility‟, but rather, a lack of 

relevant contextual and domain specific networks to draw on when exhibiting flexibility. 
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Ironically, struggling students may receive more practice in flexibility, since they are generally 

less able to access relevant domain specific networks, and may need training in how to be more 

competent in order to be more successfully flexible. 

Conversely, it may be challenging to teach flexibility to highly competent learners. 

George may have been an example of such a learner. Exhibiting flexibility was very frustrating 

for him, and he was eager to end the state of confusion that motivated his flexibility. Teaching 

George to tolerate that experience, after years of developing competence, may be challenging. 

Thus, competent students may need both emotional support in tolerating the conditions that give 

rise to flexibility, and opportunities to do math where competent routines will not support 

successful performance. 

Limitations 

The way in flexibility was conceptualized and observed in this study may have limited 

the results. Flexibility was assumed to be operating on the level of the question, with particular 

questions in the protocol designed to afford flexibility or competence. In practice, flexibility was 

often fleeting, manifesting for a moment before the student would return to more rigid sequences 

of domain specific activity. This suggests that flexibility should be a construct that operates on 

the grain size of a coherent activity, rather than a question or task. Future research may benefit 

from protocols which take this into account, and include questions designed to afford both 

flexibility and competence. 

Flexibility was also assumed to be built on competence, and this may have impacted the 

sample selection in a way that may have limited observation of different types of flexibility. 

Some of the most insightful opportunities to observe flexibility (e.g. Clayton, C1; Harriet, F1) 

occurred when students appeared not to exhibit competence. However, because I assumed 
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students must be competent to be flexible, participants were required to have grade of 73% or 

higher in Math 10. Had the inverse relationship between flexibility and competence been 

apparent, the selection pool might have been opened up to allow observation of flexibility in less 

competent students, which might have afforded different observations about how flexibility 

works. 

 The choice of which networks to observe also limited how the protocol accounted for 

flexible behaviour. For example, the lack of a role for emotional networks in the model impacted 

the ability of the protocol to account for some flexible behaviour. A construct of „negative 

emotion‟ was brought in during analysis to help make sense of George and Farley‟s flexibility, 

but it is likely that including emotional networks as part of literature review and theoretical 

approach could have afforded more robust understanding of emotional networks. For example, it 

islikely that measuring anxiety from galvanic skin response, facial expressions, and emotion self-

reports could afford rich triangulation of emotional network activity, which could be related to 

flexibility. 

The conceptualization of flexibility may have been limited by an overlap with the 

conceptualization of metacognitive network activity. Flexibility, as defined above, refers to 

adaptation when dealing with number and form; and, networks for metacognitive activity may 

include those for self-regulatory procedures, including on-line decision making and strategy 

shifting. If metacognitive activity includes on-line decision making, and flexibility requires on-

line adaptation, it may be that these two constructs measure aspects of the same underlying 

phenomena. This possibility seems supported by the fact that these constructs were used as labels 

for specific student activity, and metacognitive and flexible labels were frequently applied to the 

same activities.  
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Though flexibility and metacognitive network activity may correlate, they may 

foreground distinct aspects of the student-environment transaction. Though metacognitive 

activation occurred in all flexible transactions, so did domain specific network activation, 

suggesting that metacognition, by itself, may not „be‟ or „explain‟ flexibility. Additionally, 

metacognitive activation was not sufficient to predict flexibility – there were several cases of 

metacognitive activation supporting competent activity.  This suggests that metacognitive 

activity and flexibility may be usefully differentiated: metacognition refers to activity which 

functions to state belief, affect, declarative knowledge of cognitive strategy, or facilitate on-line 

decision making; flexibility refers to the set of activities (usually accompanied by metacognitive 

network activity) that can be coherently understood as representing the „adaptation‟ to the 

mathematical situation.  That said, the overlap between these conceptualizations may limit the 

validity of the results, and future research may benefit from more carefully differentiating these 

constructs.  

In addition to issues with conceptualization, the procedure used had intrinsic limitations 

that may have affected the interpretation of these results. For example, the study was preliminary 

and very small. The sample used in the problem consisted of high SES students, three of whom 

attended expensive private schools. The problems were consistent with British Columbia 

curricula. Thus, it may be the case that the above conclusions do not apply across SES or cross-

culturally, or outside the small group of students who were observed. The conclusions above, 

therefore, are tentative, and require triangulation with other studies in the same paradigm, and 

other paradigms. Conclusions should be interpreted cautiously, and seen primarily as 

contributions to the methodological puzzle of how to study flexibility. Future research may 

benefit from extending this protocol to other students, and in other contexts. 
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In addition, the grain size in the study was „coherent units of activity.‟ Flexibility and 

competence which occurred on scales smaller then a unit of activity were not observed; but, this 

does not mean they do not exist. As a result, the conclusions about flexibility found above should 

be limited to transactions that are understood on the level of the activity. Studies that investigate 

micro-activity, on the millisecond scale, or activity over the life of an organism may find 

different patterns in flexibility.  

Finally, the specific problems that students worked on may have afforded only a subset of 

possible flexible behaviors. It is conceivable that other types of questions afford flexibility 

differently, and may not have the same properties (for example, metacognition may not feature in 

all forms of flexibility). Thus, conclusions should be limited to types of problems that students 

faced in this study, and future research may benefit from inclusion of a wider variety of problems 

within protocols designed to study mathematical flexibility. 

Directions for Research 

In addition to the suggestions already made in relation to future directions for research, 

intersections with brain research, intervention studies, and theories of human adaption like self-

regulated learning may afford richer understandings of flexibility and its relationship to network 

activation.  

The power of brain research to afford understandings of network activity has not yet been 

fully realized, and may be a useful direction for research on mathematical flexibility. For 

example, EEG studies have the potential to provide a fine grained record of mental activity that 

can be triangulated with behavioral data to increase both reliability and validity of conclusions 

drawn from that data. EEG allows temporal precision of brain activity to the 100 millisecond; 
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and approximate locational precision. Had EEG been used in this study, the question of narrative 

vs. experiential metacognition might have been addressed in a more satisfying way. Farb et al 

(2007) have established the location of these networks, and their activity could have been 

triangulated with exhibited flexibility and domain specific activity.   

 In addition to brain research, this study would be complemented by intervention studies 

that attempt to increase the extent and effectiveness of student flexibility. These studies could be 

performed by action researchers –teachers – who work collaboratively in groups to design and 

test interventions that increase flexibility. The results of these studies could then be triangulated 

with behavioral and brain studies to provide a robust multi-diciplinary view of mathematical 

flexibility with implications for researchers and practitioners.  

 In addition, an important goal for future research may be to triangulate findings from a 

network theory of mathematical flexibility with findings from other research and theoretical 

approaches that try to make sense of human adaptive behaviour. Outside of mathematical 

flexibility, other research has provided complex and useful accounts of adaptive behaviour. For 

example, research on self-regulated learning (SRL) (e.g., Butler et al., 2005) can inform 

understanding of how layers of context can interact with personal factors, and cognitive and 

metacognitive strategies to produce recursive cycles of „strategic‟ behaviour. Findings from these 

approaches may inform design of studies of mathematical flexibility  

Additionally, studies in other diciplines like SRL may benefit from insight gained from 

studies of flexibility. For example, the results of this study may inform the relationship between 

what, in self-regulated terms, might be called „cognitive strategies.‟ Some theories of self-

regulation suggest that student actions are supported by „cognitive strategies‟ for doing the work. 
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The results of this study suggest ways that an activation of a particular cognitive strategy (e.g. 

using a real-life model for cell-phone prices), can interfere with activation of another cognitive 

strategy (e.g. using a formal linear equation to represent cell-phone prices). This finding may 

inform inferences that can be made when studying adaptive behaviour from a self-regulated 

perspective.  

As a network theory of flexibility is integrated with other research paradigms, it is 

possible that cross-disciplinary insights will occur. Brain research can afford observation of 

network activity on different temporal scales. Intervention research may surface the classroom 

implications of flexibility in a way that informs a network theory. And other theories of adaptive 

behaviour can inform, and be informed by, studies of flexibility that foreground the role of 

network activation.  

Closing and Conclusion 

 The results of this study suggest that network approaches may have a key role to play in 

understanding mathematical flexibility, as the contributions they afford seem to be applicable 

across a wide variety of research programs, and can serve to integrate the findings of programs 

that do not easily speak the same language. The relationship between functional components of 

individual-contextual transactions and flexibility has implications for teachers, who are 

increasingly asked to help students become flexible, and for researchers, who see flexibility as 

important to understanding cognition in mathematics. This study employed a network approach 

to understanding flexibility, and results indicate that this type of approach may have been an 

effective way to understand functional components of flexibility. These results are based on a 

protocol that drew across research programs in a variety of disciplines; the findings, too, appear 

to inform a wide variety of research programs. Thus, it appears that a network approach may 
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facilitate deep understandings of mathematical flexibility that can be useful across a wide variety 

of disciplines, and for a wide variety of purposes.  
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Appendices 

Appendix A – Semi-Structured Interview 

Note: This protocol was used in “Exploring Flexible Mathematics in Linear Equations” to 

uncover how mental networks supporting mathematical flexibility are structured within that 

particular participant.  

Protocol notes: Students answered questions orally, in person. The format was semi-structured. 

While I will cover the topics identified here, the exact wording may have changed, and follow-up 

questions might have been asked, depending on responses from the student. Students were 

informed that they may choose not to answer any question, at any time. 

Protocol 

1. I thanked the students for volunteering to participate. 

2. I provided some context about the study and purpose for the session, such as “In this 

research study I‟m interested in learning more about how students think when they are 

solving math problems. So, in our conversation here, I‟m just going to ask you a little bit 

about your experience with mathematics and ask you to solve a couple of math 

problems”. 

Demographics. 

3. Name: 

4. School:  

5. Grade: 

6. First term math mark 

7. Current math mark 
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8. Can you tell me a little bit about your history with mathematics? What are your strengths 

in mathematics? What are some of the challenges you‟ve had? Is there anything distinct 

or different about the way you learn? How do you know? 

Metacognition - Experience of Math. 

9. Can you describe as vividly as possible what it‟s like for you to do math homework? Tell 

me about where you work, how you‟re working and how you ¬feel when working. 

10. Can you describe as vividly as possible what it‟s like for you to be in math class? Tell me 

what the class is like, how you feel, and what you‟re thinking about during class. 

11. Can you describe as vividly as possible what it‟s like for you to take a math test? How do 

you usually feel during the test? 

a. [Optional probes “Can you tell me more about that? Can you give me a specific 

example of that? Is that always the case, or are there cases when that hasn‟t 

applied”] 

Metacognition  - Understandings of Self In Math.  

12. Tell me about your strengths and weaknesses in mathematics. 

13. Tell me the history of math in your life. Tell me about your best years and years that were 

more of a challenge. What has been easy, what has been hard? Start from when you were 

young, and build to today. 

14. What do you tell yourself when you‟re thinking about doing your math homework? 

15. What changes should be made to how math is taught? 

16. What do your friends think about math? Do you agree? 

17. What strategies do you use when you run into a problem with your homework? 
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Metacognition – Beliefs and Emotions. 

Rate from „not true‟ to „very true‟ (4 point scale) 

18. The reason I try to learn mathematics is… 

19. To  help me think more clearly in general. 

20. It‟s required for my program. 

21. I want to do well in the course. 

22. It‟s interesting. 

23. I‟ll get in trouble if I don‟t. 

24. I feel stupid if I can‟t understand something. 

25. I don‟t want to look dumb. 

26. To make the teacher think I‟m a good student. 

27. When you get the wrong answer to a math problem 

28. It is absolutely wrong – there‟s no room for argument. 

29. You only find out when it‟s different from the book‟s answer or when the teacher tells 

you. 

30. You have to start all over in order to do it right. 

a. General Perceptions. 

31. Some people are good at math and some just aren‟t. 

32. In mathematics something is either right or it‟s wrong. 

33. Good mathematics teachers show students lots of different ways to look at the same 

question. 

34. Good math teachers show you the exact way to answer the math questions you‟ll be 

tested on. 



 

208 

 

35. Everything important about mathematics is already known by mathematicians. 

36. In mathematics you can be creative and discover things by yourself. 

37. Math problems can be done correctly in only one way. 

Required Mathematical Skills. 

Fractions. 

38. Represent 3/8ths as a fraction 

39. Add 3 ½ and  (-5/7) 

40. Divide ½ by (-2/3) 

Algebra. 

41. 4(x-2)=3x-3 

42. 7/x=4 

43. 6(x-3)=3x+3(x-6) 

44. 5(x+3)-3(2x-1)=2x+10 

Coordinates. 

45. Graph the line joining (1/2, 2 1/2 ) and (-.2, 5) 

46. Where on the coordinate plane do you find points with negative x‟s and negative y‟s 

Core Mathematical Networks. 

Verbal. 

47. Answer 20 multiplication facts as quickly as you can (presented in verbal form) 

Magnitude. 

48. Estimate the answers to 20 addition, subtraction, multiplication and division questions 

with non-typical answers (i.e. not standard multiplication facts or addition subtraction 

with answers less than 10). 

Arabic. 

49. Answer twenty, two-step calculation questions as fast as possible (presented in verbal 

form). 
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50. Answer twenty, two-step calculation questions as fast as possible (presented in Arabic 

form). 
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Appendix B – Follow Up Questions 

Note: This protocol was used in “Exploring Flexible Mathematics in Linear Equations.” These 

questions allowed participants to indicate what they were thinking and doing as they solved 

linear equations problems. 

Protocol notes: These questions were asked orally, in sequence, after participants had completed 

each „Linear Equation Problem.” The format was semi-structured. While I will cover the topics 

identified here, the exact wording may have changed, and follow-up questions may have been 

asked, depending on responses from the student. 

Protocol 

1. Can you take me through how you solved this problem? Give me as much detail about 

what you were thinking, feeling, and what you were trying to do at each stage of the 

problem 

2. If a friend were about to attempt this problem, what should they know? 

3. Do you have any questions about this problem? I am happy to answer any questions you 

have, if you‟d like to clarify anything, or see where you went wrong [if their performance 

was not successful].”  
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Appendix D – Tables and Figures 

Table  A1 

Four Possible Aspects of Mathematical Flexibility  

Aspect of Flexibility  Sources of evidence  

There are distinct modules in the brain 

which support mathematical flexibility. 

Each module is responsible for a 

particular functional component of 

mathematical flexibility.  

Robbie Case‟s developmental model of 

central conceptual structures (Case et 

al., 1996); Stanlais Dehaene‟s (2004) 

neuropsychological „number sense‟ 

research.  

New functional components are built as 

these modules integrate.  

Moss and Case‟s (1999) developmental 

model of „rational number sense‟; Case 

et al.‟a (1996) research on „whole 

number sense‟; Dehaene‟s (2004) triple 

code model of „number sense.‟  

There is wide variation in the way that 

these modules connect and integrate.  

Examples of student reasoning from 

Moss and Case‟s (1999) rational 

number sense work.  

In any particular context, flexibility 

requires that a person must recognize 

and utilize an opportunity use these 

functional components.  

Greeno‟s (1991) situated account of 

number sense;  Gibson‟s (cited in 

Greeno 1991) theory of affordances.  
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Table  A2 

Features of two distinct but related approaches to understanding mathematical flexibility  

 Identifying Structures  Tracing Relationships  

Exemplars  Case et al. (1996); Dehaene (2004)  Greeno (1991, 2007)  

Function  To identify in-the-head structures instrumental 

to mathematical cognition and flexibility.  

To relate individual-context transactions with 

changes how students act in mathematical 

situations.  

Tools  Syntheses of studies to produce hypotheses 

about structures relevant to particular activity;  

cross-paradigm programs of research to 

evaluate these hypotheses  

Analysis of discourse and traces to posit 

relationships between individual and contextual 

structures  

Key Benefits  Specification of functional structures 

instrumental to mathematical flexibility; 

hypothesis generation and testing.  

Captures dynamic and rich interplay of personal and 

contextual factors in mathematical flexibility; 

sensitive to unhypothesized features of flexibility.  

Potential Limitations  May underemphasize the role of the 

environment in affecting cognition.  

May oversimplify the „individual,‟ and 

underemphasize the underlying machinery of which 

people are composed.  
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Table  A3 – Part 1 

Types of Networks Potentially Instrumental to Mathematical Flexibility  

 Function  Evidence That Suggests the 

Network Exists  

Measurement Strategies to 

Understand What Students 

Bring to the Proposed 

Study  

Measurement Strategies 

to Detect Network 

Activation During the 

Study  

Domain-Specific 

Networks for Linear 

Equations  

To do the  cognitive 

functions associated 

with linear equations.  

Theoretical claim that 

suggest „hubs‟ exist in 

networks to support 

domain-specific activity; 

output of curriculum 

design process specifies 

distinct functional 

capabilities required for 

linear equations.  

Ask students to 

demonstrate functional 

components of linear 

equations suggested by 

curriculum documents.  

Observe traces of work 

for evidence of particular 

cognitive functions.  

Domain-Specific 

Networks for other 

required Mathematical 

Competencies  

To perform domain-

specific mathematical 

activity required in 

linear equations, but 

not specific to the 

linear equations 

domain.  

Personal experience;  

competence with algebra, 

coordinate systems, and 

fractions is required for  

competence with linear 

equation.  

Ask students to 

demonstrate functional 

components of algebra, 

coordinate systems and 

fractions suggested by 

curriculum documents.  

Observe traces of work 

for evidence of particular 

cognitive functions.  

Narrative-

Metacognitive 

Networks / Networks 

for belief, affect, and  

declarative knowledge 

of cognitive capacity  

To generate narrative 

knowledge about the 

self, declarative affect, 

and declarative 

knowledge.  

fMRI evidence from Farb 

et al.; Schoenfeld‟s 

taxonomy of metacognition 

includes declarative self-

knowledge.  

Ask students questions 

from Schoenfeld‟s beliefs 

about mathematics survey; 

ask open-ended questions.  

Use Schoenfeld‟s graphic 

method of tracing 

dynamics of activity; 

examine traces and 

audio/video recordings 

for reference to the self.  
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Table  A3 – Part 2 

Networks potentially instrumental to mathematical flexibility  

  

 Function  Evidence That Suggests the 

Network Exists  

Measurement 

Strategies to 

Understand What 

Students Bring to the 

Proposed Study  

Measurement Strategies to 

Detect Network Activation 

During the Study  

Experiential-

Metacognitive 

Networks / 

Networks for 

monitoring of on-

line activity  

Modeling temporally 

proximal sensory objects, 

canvassing thoughts, 

feelings and physical 

sensations without selecting 

any one sensory object  

fMRI evidence from Farb et al.; 

Schoenfeld‟s taxonomy of 

metacognition includes on-line 

decision making;  Christoff e. 

al.‟s emphasis on defocused 

attention as fundamental to 

creativity  

Open-ended questions  Use Schoenfeld‟s graphic 

method of tracing dynamics of 

activity; examine traces of 

work and audio/video 

recordings for reference to 

experience.  

Core Mathematical 

Networks  

To detect magnitude, and 

interact with number in 

Arabic and verbal forms.  

Dehaene's triple-code theory of 

Number Sense 

Ask students to 

perform a set of 

estimation, calculation, 

and multiplication 

tasks  

Examine traces, utterances, and 

videos for  examples of 

estimation, calculation or 

multiplication.  

Contextual 

Networks  

To activate, inhibit, and 

change in-the-head networks 

through  the sensory organs  

.   

Theory of affordances; situated 

cognition research; Greeno‟s 

environmental metaphor for 

number sense.  

N/A  Trace interactions between 

specific aspects of context 

(specific problems, interactions 

with researcher) and activity of 

in-the-head structures.  

Consciousness 

Networks  

To make the outputs of other 

networks available across 

the cortex.  

Dennett and Dehaene‟s respective 

theories of consciousness.  

Open-ended questions 

about math and 

metacognition  

Questions which ask students 

to reflect on their thinking and 

activity; opportunities to ask 

the researcher  
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Table A4 

Affordances for Observation During the Proposed Study  

Network  Affordances for observation  Specific Item Numbers  

Domain-Specific Networks for 

Linear Equations  

Mini quiz in SSI; traces and utterances during activity; 

utterances and behavior during follow up questions  

SSI(5) 

C(1-3); F (1-3) 

Follow (1-3)  

Domain-Specific Networks for 

other required Mathematical 

Competencies  

Mini quiz in SSI; traces and utterances during activity; 

utterances  

SSI (6)  

Narrative-Metacognitive 

Networks / Networks for belief, 

affect, and  declarative 

knowledge of cognitive 

capacity  

Questions in SSI; utterances  and strategies while working 

on tasks; utterances and behavior during follow up 

questions  

SSI(2,4) 

C (1-3); F(1-3) 

Follow (1- 3)  

Experiential-Metacognitive 

Networks / Networks for 

monitoring of on-line activity  

Questions in SSI; utterances  and strategies while working 

on tasks; utterances and behavior during follow up 

questions  

SSI(3) 

C (1-3); F(1-3) 

Follow (1- 3)  

Core Mathematical Networks  Questions in SSI; fluidity in calculation and numerical 

intuition while working on tasks.  

SSI(7) 

C(1-3); F(1-3) 

Contextual Networks  Traces and utterances during activity; utterances and 

behavior during follow up questions; analysis of  activity 

dynamics  

C (1-3); F(1-3) 

Follow (3)  

Networks for Consciousness  Utterances throughout the study indicate what a student is 

aware of at that time.  

All items  
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Table A5 

Questions Designed to Afford Flexibility or Competence  

Affords Competence  Affords Flexibility  

C1  Find the slope of the line joining (2,3) and (10,9) F1 Find the slope of the line joining (a,b) and (3a,2b) 

C2 A friend is trying to figure out what cellphone plan 

to purchase. Company A offers a monthly system 

access fee of $12.50, and charges $.20/minute; 

Company B offers a monthly fee of $10, and charges 

$.22/minute. How much is 30 minutes a month if you 

use Company A? Company B?  

F2 A friend is trying to figure out what cellphone plan to 

purchase. Company A offers a monthly system access 

fee of $12.50, and charges $.20/minute; Company B 

offers a monthly fee of $10, and charges $.22/minute. 

Your friend asks you "When is Company A cheaper 

than Company B?"  

C3  A line passes through (2,4) and (5,10). Another 

line passes through (3,5) and (4,9). Are the lines 

parallel? Can you prove it? 

F3 A line passes through (2,4) and (5,10). Another line 

passes through (a,5) and (4,b). Give possible values for 

'a' and 'b' if the lines never touch.  
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Table A6 

Exploratory Criteria for Detecting Network Activation  

Network  Detecting  Activation  

Domain-Specific Networks for Linear 

Equations  

Traces of linear equations „operations,‟ ; utterances  in follow up questions 

referring to particular linear equations processes used;  

Domain-Specific Networks for other 

required Mathematical Competencies  

Traces of algebra, fractions or coordinate use.; utterances  in follow up questions 

referring to particular processes used;  

Narrative-Metacognitive Networks / 

Networks for belief, affect, and  declarative 

knowledge of cognitive capacity  

Utterances relating to belief, affect or cognitive capacity; utterances with the 

participant as subject;  

Experiential-Metacognitive Networks / 

Networks for monitoring of on-line activity  

Changes in activity or strategy during problem solving, utterances or videos 

representing changes in emotional state, notable changes in behavioral affect  

Core Mathematical Networks  Participants calculate or interact with number; participant descriptions of 

calculation during problem solving.  

Contextual Networks  Interaction with contextual features (paper, calculator); interactions with 

researcher  

Networks for Consciousness  Student descriptions of the content of their conscious experience during follow 

up questions.  



 

219 

 

 

Table A7 

Competent and Flexible Behaviours Exhibited by Clayton For Each Question  

 C1 – Slope Competent  F1 – Slope Flexible  
C2 – Cell Phone 

Competent  

Competent 

Behaviours  

Writing mid-point formula (2) 

Creating x/y axis (3) 

Writing slope formula (6) 

Clarifying what the question is asking for (1) 

Use of slope formula (1-5) 

Simplification of algebraic expression 

(6) 

Algebraic expressions (1,2)  

Parsing question text (2) 

Creation of expressions for 

companies a and b (5-11) 

Calculation of company 

costs (12,13) 

Flexible 

Behaviours  

Crossing out midpoint formula and indirectly 

asking for the slope formula (2,3) 

Clayton realized that the midpoint formula returned two 

values, but that he needed a single value. He then realized 

that the researcher would know best what to do, and asked 

"So, if I can't remember the slope?" 
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Table A7 – Part 2  

Competent and Flexible Behaviours Exhibited by Clayton For Each Question  

 
F2 – Cell Phone Flexible  C3 – Parallel Lines Competent  F3 – Parallel Lines Competent  

Competent 

Behaviours  

 Use of slope formula  for each line 

(3,4) 

Calculation of slope for each line (5,6)  

Annotating points and drawing axis 

(3,4) 

Writing slope formula (6) 

Creating expressions for slope (7,8) 

Flexible 

Behaviours  

Linking question to T(i) formula.  (4) 

Unsure of how to answer the question, 

Clayton searched in his head for other related 

tools that might be of use. 

Looking back at previous question (6) 

Unsure of how to answer the question, 

Clayton looked through his previous work for 

something that might trigger knowledge of an 

affordance  
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Table A8 

Competent and Flexible Behaviours Exhibited by Adam For Each Question  

 
C1 – Slope Competent  F1 – Slope Flexible  C2 – Cell Phone Competent  

Competent 

Behaviours  

Annotating slope points (1) 

Putting points into equation (2) 

Calculating slope (4) 

Annotating slope points (1) 

Use of slope formula (2-3) 

Simplification of algebraic 

expression (4) 

Creation of expressions for companies 

a and b (2,4,) 

Calculation of company costs (3,6,7) 

Flexible 

Behaviours  

Correcting annotation (3) 

Once Adam looked at the points he had put 

into the slope equation, he noticed that they 

were incorrect, and chose to adapt them. 

This 'looking over' step suggests flexibility; 

contextual features triggered and adaptation 

so that the variables would be more 

flexible.  

 Asking if he can use a calculator (5) 

After looking at his equation for Company B, 

he realized that the question would be easier if 

he could use a calculator. The researcher had 

not explicitly offered one, but Adam seized 

this opportunity, and asked the researcher for a 

calculator.  
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Table A8 – Part 2  

Competent and Flexible Behaviours Exhibited by Adam For Each Question  

 F2 – Cell Phone Flexible  C3 – Parallel Lines Competent  F3 – Parallel Lines Competent  

Competent 

Behaviours  

Verifying that cost is equal for both 

companies at 125 minutes (6) 

Creation of x/y axis and plotting 

points (1-4) 

Creation of initial solution (1-3) 

Realization that solution is wrong (4) 

Plugging in one value to find another 

(5-13) 

Flexible 

Behaviours  

Finding difference in access fees and 

monthly costs (2,3) 

This interaction may be flexible, as follow-up 

questions indicate that Adam was not entirely 

sure how this problem would play out given 

this strategy.  

Dividing differences in access fees 

and monthly costs (4) 

Follow-up questions indicate that Adam felt 

this was likely to lead to a useable number, 

but unsure of the meaning of that, and unsure 

that it would work. 

Starting at problem, tracing with pen, 

filling in dots on line (5) 

Unsure exactly what was happening, but 

possibly, Adam was mentally activating his 

notions of slope and the visual spatial 

representation of that line. After tracing for 

over 20 seconds, he was able to construct an 

explanation for why they are not parallel. 
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Table A9 

Competent and Flexible Behaviours Exhibited by George For Each Question  

 C1 – Slope Competent  F1 – Slope Flexible  C2 – Cell Phone Competent  

Competent 

Behaviours  

Use of slope formula  (1-2) 

Simplification of fractions  (3) 

Use of slope formula (2-3) 

Simplification of algebraic 

expression (4)  

Creation of expressions for companies 

a and b (2,5) 

Calculation of company costs (3,6) 

Flexible 

Behaviours  
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Table A9 – Part 2  

Competent and Flexible Behaviours Exhibited by George For Each Question  

 F2 – Cell Phone Flexible  
C3 – Parallel Lines 

Competent  
F3 – Parallel Lines Competent  

Competent 

Behaviours  

Using 'Trial and error" to solve  the question 

(2,3) 

Use of slope formula  for 

each line (1-4) 

Calculation of slope for each 

line 5 

Use of slope formula for each line (1-

4) 

Creation of slope expressions for both 

lines (5-6) 

Plugging in a value for 'a' to find a 

value for 'b' (7) 

Flexible 

Behaviours  

Creation of general equation for lines (5,6) 

Equations neither right, nor helpful, but given that 

George was stuck, it was all he could think to do.  

Attempt to divide equations for lines (7) 

Once equations made, George needed to find a way to 

have them give  an answer, so he attempted to apply 

division 

Expression of frustration to researcher (8) 

George reported feeling irritated; this expression may 

serve to modulated (flexibility) that irritation, but 

indirectly asking the researcher for support. 

Return to guess and test (9) 

George may have been managing the researcher's 

perception of his ability, and thus returned to his initial 

strategy (though he could have stopped the question) to 

get a response closer to the actual answer.  
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Table A10 

Competent and Flexible Behaviours Exhibited by Farley For Each Question  

 C1 – Slope Competent  F1 – Slope Flexible  
C2 – Cell Phone 

Competent  

Competent 

Behaviours  

Mentally calculating slope (1) Mentally calculating slope and 

simplifying algebraic expressions (1,2)  

Mentally calculating cost 

of both companies (one 

incorrectly)  (1-3) 

  

Flexible 

Behaviours  

   

 

  



 

226 

 

 

Table A10 – Part 2  

Competent and Flexible Behaviours Exhibited by Farley For Each Question  

 F2 – Cell Phone Flexible  C3 – Parallel Lines Competent  F3 – Parallel Lines Competent  

Competent 

Behaviours  

 Mentally calculating, then writing 

slope (1-3)  

Mentally calculating values (9) 

Flexible 

Behaviours  

Answering question in way that 

minimizes calculation  and writing. 

(1-4) 

This interaction may be flexible, as follow-

up questions indicate that Adam was not 

entirely sure how this problem would play 

out given this strategy.  

   

 Clarifying that correct answers include  

actual values (1-2) 

Farley recognized that, to correctly answer the 

question, he could clarify tasks demands, and thus, 

reduce his work. 

Varying thinking between nightly plans, and 

the question (7-9) 

Though 'unintentional' this  strategy may have 

facilitated his correct answer by allowing him 'find' the 

correct answer in his mind.  
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Table A11 

Competent and Flexible Behaviours Exhibited by Harriet For Each Question  

 
C1 – Slope Competent  F1 – Slope Flexible  

C2 – Cell Phone 

Competent  

Competent 

Behaviours  

Creation of x/y axis with unit marks (1-2)  

Graphing and joining of points (3-5) 

Counting and dividing rise and run (6-8) 

  

Making x/y axis and making unit 

marks to start question (1-2) 

Counting slope of equation (8-9) 

Creation of expressions for 

companies a and b 

Calculation of company 

costs 

Flexible 

Behaviours  

 Choosing values for a and b and 

graphing (3-6) 

Follow up answer suggests that she was sure 

that a and b should "be something" but not sure 

if she should give them. However, after 

thought, she realized that choosing values 

would afford her a graph, which she could then 

use to count slope, and so she did it.   

Drawing grid to make counting rise 

and run easier (7) 

Adaptation for fact that she did not have slope 

formula ; once she realized she couldn't count 

precisely she needed to add a counting aid (the 

grid) to facilitate calculation of slope.  
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Table A11 – Part 2  

Competent and Flexible Behaviours Exhibited by Harriet For Each Question  

 F2 – Cell Phone Flexible  C3 – Parallel Lines Competent  F3 – Parallel Lines Competent  

Competent 

Behaviours  

Using 'Trial and error" to solve  the 

question (7-10)  

Asks to look back at the last question 

and copies result (1-2) 

Drawing axis and graphing points. (2-7) 

  

Creation of axis (1,3) 

Drawing of graph (4-6) 

Plugging in pairs of number (9) 

Flexible 

Behaviours  

Dividing system access by per minute 

costs (2-3) 

Harriet suggests that she was 'just kinda  

[trying] things" 

Constructing algebraic explanation for 

why the lines are parallel (8-9) 

Harriet explained that, as she looked at the 

points, she realized that they were parallel, and 

that it was a function of their relationship. 

Ultimately, the relationship Harriet saw was too 

hard to discern. However, it makes sense to 

interpret this explanation as flexible, a s Harriet 

was clearly trying to use knowledge of the 

arithmetic relationship between the points to 

explain this situation.  

Using the slope formula to 

construct expressions for slope (7 ) 

Though there had been many affordances 

to use the slope formula, she had not used 

it independently. However, our discussion 

in the follow up to the  previous question 

included discussion of the slope formula. 

Harriet then utilized this formula to 

successfully get the answer.  
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Figure A1. Schoenfeld‟s (1992) strategy for tracing problem-solving activity. 
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Figure A2. Clayton‟s AAT for the Calculate Slope (Competent) Question  
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Figure A3. Clayton‟s AAT for the Calculate Slope (Flexible) Question.  
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Figure A4. Clayton‟s AAT for the Cell Phone (Competent) Question.  
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Figure A5. Clayton‟s AAT for the Cell Phone (Flexible) Question.  
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Figure A6. Clayton‟s AAT for the Parallel Lines (Competent) Question. 
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Figure A7. Clayton‟s AAT for the Parallel Lines (Flexible) Question.  
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Figure A8. Adam‟s AAT for the Calculate Slope (Competent) Question. 
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Figure A9. Adam‟s AAT for the Calculate Slope (Flexible) Question.  
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Figure A10. Adam‟s AAT for the Cell Phone (Competent) Question.  
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Figure A11. Adam‟s AAT for the Cell Phone (Flexible) Question.  
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Figure A12. Adam‟s AAT for the Parallel Lines (Competent) Question 
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Figure A13. Adam‟s AAT for the Parallel Lines (Flexible) Question.  
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Figure A14. George‟s AAT for the Calculate Slope (Competent) Question  
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Figure A15. George‟s AAT for the Calculate Slope (Flexible) Question.  
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Figure A16. George‟s AAT for the Cell Phone (Competent) Question.  
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Figure A17. George‟s AAT for the Cell Phone (Flexible) Question.  
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Figure A18. George‟s AAT for the Parallel Lines (Competent) Question. 
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Figure A19. George‟s AAT for the Parallel Lines (Flexible) Question.  
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Figure A20. Farley‟s AAT for the Calculate Slope (Competent) Question  
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Figure A21. Farley‟s AAT for the Calculate Slope (Flexible) Question.  
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Figure A22. Farley‟s AAT for the Cell Phone (Competent) Question.  
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Figure A23. Farley‟s AAT for the Cell Phone (Flexible) Question.  



 

252 

 

 

 

Figure A24. Farley‟s AAT for the Parallel Lines (Competent) Question. 
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Figure A25. Farley‟s AAT for the Parallel Lines (Flexible) Question.  
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Figure A26. Harriet‟s AAT for the Calculate Slope (Competent) Question  
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Figure A27. Harriet‟s AAT for the Calculate Slope (Flexible) Question.  
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Figure A28. Harriet‟s AAT for the Cell Phone (Competent) Question.  
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Figure29.1. Harriet‟s AAT for the Cell Phone (Flexible) Question (0-5 min).  
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Figure A29.2. Harriet‟s AAT for the Cell Phone (Flexible) Question (5-10 min).  
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Figure A30. Harriet‟s AAT for the Parallel Lines (Competent) Question. 
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Figure A31. Harriet‟s AAT for the Parallel Lines (Flexible) Question. 


