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Abstract

Parametric subharmonic instability (PSI) is a nonlinear interaction between a res-
onant triad of waves, in which energy is transferred from low wavenumber, high
frequency modes to high wavenumber, low frequency modes. In the ocean, PSI is
thought to be one of the mechanisms responsible for transferring energy from M2

internal tides (internal gravity waves with diurnal tidal frequency) to near-inertial
waves (internal gravity waves with frequency equal to the local Coriolis frequency)
near the latitude of 28.9◦. Due to their small vertical scale, near-inertial waves
generate large vertical shear and are much more efficient than M2 internal tides at
generating shear instability needed for vertical mixing, which is required to maintain
ocean stratification.

The earlier estimate of the time-scale for the instability is an order of mag-
nitude larger than the time-scale observed in a recent numerical simulation (MacK-
innon & Winters, 2005) (MW). An analytical model was developed by Young et al.
(2008) (YTB), and their findings agreed with the MW estimation; however as YTB
assumed a constant Coriolis force, the model cannot explain the intensificaiton of
PSI near 28.9◦ as observed in the model of MW; in addition, the near-ineartial waves
can propagate a significant distance away from the latitude of 28.9◦.

This thesis extends the YTB model by allowing for a linearly varying Coriolis
parameter (β-effect) as well as eddy diffusion. A linear stability analysis shows
that the near-inertial wave field is unstable to perturbations. We show that the
β-effect results in a shortening in wave length as the near-inertial waves propagate
south; horizontal eddy diffusion is therefore enhanced to the south, and limits the
meridional extent of PSI. The horizontal diffusion also affects the growth rate of
the instability. A surprising result is that as the horizontal diffusion vanishes, the
system becomes stable; this can be demonstrated both analytically and numerically.

Mathematically, the β-effect renders the spatial differential operator nonnor-
mal, which is characterized with the aid of pseudo-spectra. Our results suggest the
possibility of large amplitude transient growth in near-inertial waves in regimes that
are asymptotically stable to perturbations.
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Chapter 1

Introduction

The ocean is constantly covered by waves, which can range from small ripples gen-

erated by a gentle breeze, to giant rogue waves found in storms. These waves exist

due to gravity: if the water surface is perturbed upwards, gravity will act on the

water to pull the surface downwards to restore the surface back to its equilibrium;

however most often it will overshoot, causing a depression to form, and gravity will

now act on the water surrounding the depression to fill in the depression. This

sequence will occur repeatedly, which results in the familiar waves we observe on

the ocean surface.

Gravity waves are not confined to surface of the ocean, as they also exist

underneath the surface. Due to differences in temperature and salinity, the density

in the ocean typically increases with depth, and therefore when a parcel of water is

perturbed downwards, the denser ambient fluid provides a positive buoyancy that

acts as a restoration force. The resulting waves are called internal gravity waves

(IGWs), and these waves are characterized by the up and down motion of isopycnal

(constant density) surfaces.

These internal gravity waves have several features that differ from their coun-
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terparts on the surface. Firstly, the sharp density contrast between air and water

results in a much higher frequency of oscillation for the surface waves; the typical

time scale for surface waves observed near a beach is measured in seconds. In con-

trast, the restoration force for IGWs is provided by a more gentle density gradient,

and the frequency of vertical oscillations can be characterized by the Brunt-Väisälä

frequency N :

N =

√
− g

ρ0

dρ

dz
, (1.1)

where g is the gravitational acceleration, ρ0 is the characteristic density, and z is the

vertical coordinate. Below the ‘mixed layer’ on the surface of the ocean, which is

uniform in density and extends up to 50m, the buoyancy frequency decreases from

10−2s−1 to about 10−4s−1 in the deep ocean (about 4000m) (Thorpe, 2005); these

frequencies correspond to time-scales ranging from minutes to hours.

The IGWs also have a much larger spatial scale compared to surface gravity

waves. For example the internal waves associated with the diurnal tide can span the

entire depth of the ocean (103m), while having horizontal scales measured in tens of

kilometres, which is in stark contrast to surface waves that typically have heights of

0.1 − 10m and horizontal wavelengths of perhaps a tens of meters. A consequence

of the large horizontal scale of IGWs is that IGWs are susceptible to the Coriolis

effect, which is reflected in the dispersion relation:

k2 + l2

m2
=

ω2 − f2

N2 − ω2
(1.2)

which stipulates a relationship between (k, l,m) ≡ ~k (the wavenumbers in the x,

y, and z direction respectively1), and the frequency of the wave ω. f denotes the

Coriolis parameter, which depends on the earth’s rate of rotation (Ω = 7.27 ×
1Throughout this thesis we will adhere to the convention in oceanography by orienting

the positive x−axis towards east, positive y−axis towards north, and positive z− upwards
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10−5s−1) and latitude (φ):

f = 2 Ω sinφ. (1.3)

Since the wavenumbers are real, and N � f in general, an implication of (1.2) is

that an IGWs can only exist if N ≥ ω ≥ f . In addition one can use (1.2) to show

the direction of the group velocity makes an angle of α with the horizontal plane,

where α satisfies:

tanα =

√
k2 + l2

m2
=

√
ω2 − f2

N2 − ω2
. (1.4)

Since the energy propagates along the direction of the group velocity, this shows that

in general IGWs transports energy both in the horizontal and vertical direction,

which is in contrast to the surface waves where energy is propagated along the

surface. Two limiting cases can be considered:

1. ω → N : in this case the angle of propagation tends to 90◦, which corresponds

to vertical oscillations with frequency N .

2. ω → f (The near-inertial limit): in this limit the angle of propagation tends

to 0, and energy is propagated horizontally. In addition, as the RHS of (1.2)

vanishes as ω → f , m2 must be large relative to k2+l2 in order for the equation

to hold. Since the wave number are inversely proportional to the spatial scale,

this implies that the vertical scale m−1 must become small compared to the

horizontal scale (k2 + l2)−1/2.

1.1 IGWs and the dynamics of the ocean

As warm water has a lower density than cold water, the constant heating at the

surface will in principle result in a warm layer near the surface, and the rest of the

ocean will consist of cold dense water underneath. In reality the density profile is
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much smoother due to mixing, and one can find circulations that span the entire

depth of the ocean (the thermo-haline circulation for example ). Molecular diffusion

itself cannot account for the mixing, as the diffusivity of heat and salt are in the order

of 10−6 − 10−7m2s−1, while the diffusivity needed to maintain the stratification is

estimated to be 10−4m2s−1 (Munk & Wunsch, 1998). It is believed that the breaking

of internal waves is responsible for the turbulence, and the diapycnal (across density

surfaces) mixing that follows (Laurent & Garrett, 2002).

Munk & Wunsch (1998) estimated that 2.1TW of energy is needed to main-

tain the stratification in the abyssal ocean via mixing; as an additional 2.6TW of

energy is dissipated through turbulence mixing in the shallow oceans, a total energy

source of 4.7TW needed. Wind induced mixing, either directly near the surface, or

indirectly via the excitation of geostrophic motions and internal gravity waves, pro-

vides 1.2TW of energy. The remaining 3.5TW is supplied by the various modes of

tides due to the sun and the moon; amongst the modes, the semi-diurnal component

of the lunar tide (denoted by M2) is the dominate source, accounting for 2.5TW.

The effect of the moon’s gravity field on the earth is not uniform everywhere

on the surface, and the minute difference is sufficient to cause a deformation in

the ocean: the result is that the ocean bulges out along the earth-moon axis, both

towards and away from the moon. As the earth rotates around its axis, a point on

the surface over the ocean will experience a rise and a subsequent fall in the sea-level

as it passes through a bulge. As most locations will pass through both bulges, the

result is the semi-diurnal tide that occurs approximately twice daily, or every 12

hours and 25 minutes.

Since the earth’s rotation rate (7.292×10−5s−1) is much higher than the rate

at which the moon orbits around the earth (2.662×10−6s−1), we can view the earth
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as a sphere moving through a viscous film of fluid held in place by the gravity of the

moon. The friction between the earth and the ocean causes the earth’s rotational

rate to slow down, as well as a misalignment of the tidal bulge along the moon-

earth axis. The misalignment in turn imparts a torque on the moon, causing it to

gain rotational momentum and increase its distance from the earth. The rotational

energy is partially dissipated in the ocean, and partially transferred into the orbital

energy of the moon, causing it to move further away from the earth. The modern

value of lunar recession, obtained via laser ranging, is determined to be 3.82 cm/year

(Dickey et al., 1994), which corresponds to a tidal dissipation rate at 2.5 TW (Munk

& Wunsch, 1998).

Tidal dissipation in the ocean

The subject of tidal dissipation can be dated back to Sir G.I. Taylor (1920) and Sir

Harold Jeffreys (1921). Taylor estimated the the frictional dissipation over the Irish

sea alone to be 0.051 TW, while Jeffreys estimated the global dissipation over shallow

seas to be 1.1 TW; later Miller (1966) pegged the value at 1.6TW, while recent

values inferred by satellite data is for the M2 mode is 1.8TW (Egbert, 1997; Munk

& Wunsch, 1998). The discrepancy between the estimated dissipation over shallow

seas and the total dissipation calculated from astronomical data can be attributed to

the excitation of internal gravity waves due to bottom topography in the deep ocean.

While the conversion over continental shelves is long known, the conversion over deep

ocean has been thought to be insignificant until recently (Garrett, 2003). Part of

the reason for the revision is due to the availability of satellite altimetry data, which

suggests that dissipation over the deep ocean is responsible for converting 1TW of

energy (Egbert & Ray, 2000, 2001).

5



The mechanism behind the tidal conversion is simple: as the tide moves

around the earth, the water in the ocean is moved back and forth; in the presence of

submarine ridges, the density surfaces are perturbed and internal gravity waves are

launched in a fashion similar to lee waves generated by mountains. These internal

gravity waves (called internal tides) then propagate from the bottom up into the

open ocean, carrying energy upwards that ultimately leads to overturning and mix-

ing (Garrett, 2003). These internal tides can be observed with the aid of satellite

altimetry: for example, Ray & Mitchum (1997) reported internal tides propagating

away up to 500km away from the Hawaiian Islands, primary as mode-1 baroclinic

tide. The baroclinic tides often have the same frequency as the underlying barotropic

tide due to the weak background tidal current (Garrett & Kunze, 2007), while the

horizontal structure is around 20-100km (Laurent & Garrett, 2002). The Richard-

son number for these internal tides exceeds unity, suggesting that the internal tide

cannot lead to overturning directly; it is believed that energy is cascaded down via

non-linear wave-wave interaction into smaller scale internal waves, which are more

effective at causing over-turnings (Laurent & Garrett, 2002)..

Non-linear wave interactions in internal gravity waves are thought to be

responsible for shaping and maintaining the energy spectra of internal waves in the

open ocean into the so-called Garrett-Munk (GM) spectrum (Müller et al., 1986;

Thorpe, 2005). Garrett & Munk (1972, 1975) proposed a model for the observed

energy spectra of internal waves that is in remarkable agreement with experimental

data from different sites; this suggests that there is a single universal mechanism

responsible for cascading energy from large scale motion to small scale mixing.

As abyssal mixing is an essential component to the dynamics of large scale ocean

circulations that in turns play a pivotal role in our climate, the GM spectrum and
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ocean mixing have received plenty of attention over the last forty years.

Non-linear wave interactions have been explored theoretically since the 1960’s.

Phillips (1960, 1961) considered two waves with frequencies and wave-numbers

(ω1,~k1) and (ω2,~k2), and considered a third mode whose frequency and wave-number

satisfy the resonance condition:

ω1 ± ω2 = ω3 , (1.5)

~k1 ± ~k2 = ~k3 . (1.6)

In this case, the third wave will be forced resonantly, and energy is transfered from

the first two modes into the third. Bretherton (1964) considered the interaction

between a triad of discrete modes, where ω1 + ω2 = ω3 and ~k1 + ~k2 = ~k3, and

provided a heuristic argument for the evolution equation of the amplitudes ai:

iω1
∂a1

∂t
= D̂a∗2a3 , (1.7)

iω2
∂a2

∂t
= D̂a∗1a3 , (1.8)

iω3
∂a3

∂t
= D̂a1a2 , (1.9)

where D̂ is a real coefficient that describes the interaction, and generally depends on

the wave-numbers. Hasselmann (1966, 1967) studied weak non-linear wave interac-

tion for a continuous field of waves that is assumed to be Gaussian and statistically

stationary (‘the random phase hypothesis’). McComas & Bretherton (1977) used a

similar method to investigate the resonance interaction in the GM spectrum; they

numerically computed the energy transfer in the spectrum, and concluded that the

process is dominated by three classes of interactions: induced diffusion, elastic scat-

tering, and parametric subharmonic instability. For Induced diffusion, wave action

(wave energy divided by frequency) diffuses from a high-frequency, high-wavenumber
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mode to one that has similar frequency and wavenumber. Elastic scattering occurs

between two high frequency modes, with similar horizontal wave numbers but oppo-

site vertical wave number; in this case there is rapid energy transfer between the two

high frequency modes leaving the third low frequency mode largely unchanged. The

last class of interaction is parametric subharmonic instability (PSI), where a large

scale wave decays into two small scale waves with half the frequency. An important

observation is that among the three pathways PSI is the only mechanism where

energy is transferred into waves with a much different wave number. For a thorough

discussion, please see McComas & Bretherton (1977) or Müller et al. (1986).

1.2 Parametric subharmonic instability

Parametric subharmonic instability allows a wave to spontaneously excite daughter

waves with higher wave numbers with half the frequency; it is a special case of (1.5)

where ω1 = ω2 = ω3/2. Since the semi-diurnal internal tide has frequency angular

frequency M2 = 2π/12.42hr = 1.405 × 10−4s−1, the daughter waves will have

frequency ω = M2/2 = 7.026×10−5s−1. As mentioned earlier, internal gravity waves

can exist only if the frequency is greater than the local Coriolis frequency; thus for

the daughter waves to exist, the latitude must satisfy the inequalityM2/2 ≥ 2Ω sinφ,

or φ ≤ 28.9◦. The implication is that PSI can only occur between the equator up to

the critical latitude 28.9◦. At the critical latitude the daughter waves have frequency

that is equal to the local Coriolis frequency, and therefore they are near-inertial

oscillations (NIO).

While PSI have received some attention over the 1970’s, the interest waned

as it was believed that the energy transfer via PSI occurs over a time-scale of 100

days for the mode-1 internal tide, which is too slow compared to other processes to
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remove energy efficiently (Olbers & Pomphrey, 1981); however the interest in PSI

have been renewed in recent years due to several new studies. Hibiya et al. (1998,

2002) carried out a set of numerical experiments, where a quasi steady internal

wave field was perturbed by injecting energy into the first vertical mode at the M2

freqency. For the experiment at 49◦N, the spectra did not differ significantly over

10 inertial period; on the other hand, the energy was quickly transfered to the high

wave-number modes in the f < ω < 2f range within 10 inertial periods at 28◦N.

MacKinnon & Winters (2005) (henceforth MW) solved the full 3-D equation

of motions numerically with a linearly stratified background; a mode-1 internal tide

was excited at the southern boundary, which propagated northward in the presence

of background noise. After the initial spin-up, instabilities started to develop near

the critical latitude. The instability had much finer vertical structure compared to

the mode-1 internal tide, and a plot of temporal spectra plot reveals a high spectral

content over the M2/2 frequency. At the same time the energy flux associated

with internal tide decreased by 62.5% as it crossed the critical latitude. In addition

the time scale of the energy transfer was estimated to be 10 days, which was an

order of magnitude smaller than the estimation of Olbers & Pomphrey (1981). MW

attributed the disparity to the fact that the estimation of Olbers & Pomphrey was

based on the random phase assumption, but from the numerical simulation the

interaction were clearly much more coherent. The efficiency of PSI led the authors

to describe this as the ‘subtropical catastrophe’. Simmons (2008) ran a global ocean

model with realistic geometry, and observed energy transfer into the M2/2 modes

near the critical latitude as well. A longitudinal cross section near a internal tide

generation site showed that PSI intensified near the surface, possibly due to the

non-linear stratification.
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Recent field measurements also pointed to the presence of PSI activity in

the ocean. For example, Rainville & Pinkel (2006) compared the vertical profiles

at a site near Hawaii with strong internal tide activity (nearfield) to a site that is

further away, and found a strong link between the semi-diurnal energy flux at the

nearfield site and the diurnal energy flux at the farfield site; this suggested that as

the internal tide radiates away from the generation site it transfers energy down to

the diurnal mode via PSI. Carter & Gregg (2006) came to a similar conclusion based

on another set of data from the Hawaii area. Through a bicoherence analysis they

were able to demonstrate that the strength of the M2/2 diurnal mode was correlated

to the strength of the M2 internal tide. Alford et al. (2007) estimated the reduction

in energy flux as the internal tide crosses the critical latitude to be 10-20%, which

is significantly smaller than the 62% in MW; they suggested that the presence of

higher modes de-tuned the resonance and leads to a reduction in efficiency.

Young et al. (2008) (henceforth YTB) constructed an analytical model based

on a multiple time scale approach, where the time scale over which evolution of the

PSI instability takes place was slower than the inertial time scale f−1. With this

assumption the Boussinesq equations were simplified into a PDE that describes

the evolution of the PSI wave. For simplicity the latitude was restricted to the

critical latitude 28.9◦, so that the daughter waves are near-inertial. The stability of

a plane wave internal tide in a linearly stratified ocean was considered, and using

realistic parameters the growth rate of the unstable near-inertial mode agreed with

MW in order of magnitude. YTB also considered the stability problem in a more

realistic density stratification; using Gill’s model for the ocean stratification, the

most unstable normal modes for the near-inertial field were found to be concentrated

just under the mixed layer.
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1.3 Goals

The goal of this thesis is to expand on the model of PSI derived by YTB; in particular

we will allow the Coriolis force to vary with latitude, and assess its effect on PSI.

The rational behind this modification is that over the time-scale for PSI (10 days),

there is significant propagation of the near-inertial waves, and thus the constant

Coriolis parameter assumption may not be justified. In addition, we would like to

investigate the effect of dissipation to determine if it is crucial to the instability,

in particular to the understanding to vertical scale selection that appeared in the

numerical simulations.
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Chapter 2

Mathematic Description of PSI

A familiar example of resonance occurs when a simple harmonic oscillator is forced

at its natural frequency. Here we will first consider the following equation, which

describes an oscillator forced by a weak (ε� 1) periodic driver with frequency 2:

y′′ + ω2y = ε y∗ e2it. (2.1)

The presence of y∗ (the complex conjugate of y) in the forcing term indicates that

the forcing is moderated by feedback from the oscillator. Since the natural frequency

for the oscillation is ±ω, the homogenous solutions are eiωt and e−iωt. These two

solutions will result in forcing terms that are proportional to ei(2−ω)t and ei(2+ω)t

respectively on the RHS of (2.1). As long as ω 6= 1, the forcing will be at a frequency

that differs from the natural frequency, and hence no resonance will occur.

On the other hand, when ω = 1 both the homogenous solution and the

corresponding forcing will contain eit, and in this case resonance will occur. One

can analyse (2.1) through a multiple time scale approach. As the coupling is weak

due to the small parameter ε, we would expect the amplitude of y to grow over a slow

time scale T = εt. If we seek an ansatz to (2.1) of the form y(t, T ) = A(T )ei(t−π/4),
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we will have:

2iεA′(T )ei(t−π/4) +O(ε2) = εA(T )ei(t+π/4), (2.2)

Equating the O(ε) terms leads to a differential equation for A(T ):

dA

dT
=

1
2
A (2.3)

The above equations can be considered as a toy model for PSI, as the natural

frequency of the oscillator is half the frequency of the driver, and therefore the

resonant condition ω1 +ω2 = ω3 (where ω1 = ω2 = ω/2) is satisfied. In addition the

model predicts that the amplitude of y(t) will grow as eεt, indicating that the driver

is transferring energy into the oscillator, and the amplitude grows exponentially over

the slow timescale.

With this example in mind, we will now derive the model equations for PSI.

The PSI model we will be using here is identical to the one derived by Young et al.

(2008) except for two modifications. The first is the inclusion of the latitudinal

dependence of the Coriolis force via a linearization of the Coriolis parameter f =

f0 + βy. In addition, we will include dissipation into our model, which was not

considered by Young et al. As these two modifications can be easily included in the

rigorous asymptotic derivation of the governing equations outlined in Young et al,

we will not repeat the derivation here; instead we will take a more heuristic approach

by assuming a priori that the PSI modes will have frequency M2/2, and derive the

governing equations.

2.1 Derivation of the PSI model

The starting point is the hydrostatic Boussinesq equations linearized around the

background flow fields (U, V,W,B, P ), which denote the velocities, buoyancy, and
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pressure respectively. Since we are interested in the PSI in a mode-1 internal tide

with frequency 2f0 = M2, the background fields will be proportional to e−2if0t and

have amplitudes depending only on the spatial coordinates (x, y, z), which respec-

tively denote the coordinates in the east-west, north-south, and vertical directions.

Notice that our model is not a complete triad resonance, since the amplitudes of

the background fields are time independent, and do not diminish as energy is being

extracted from the internal tide. It can be viewed as a linearized model for the triad

resonance, where the amplitudes of the daughter waves are small, and therefore the

feedback on the internal tide (also referred to as the ‘pump wave’) can be neglected.

With (u, v, w, b, p) denoting the perturbations associated with the NIO, we have:

ut + Uux + V uy +Wuz + uUx + vUy + wUz − fv + px + µ(−∇2)nu = 0, (2.4)

vt + Uvx + V vy +Wvz + uVx + vVy + wVz + fu+ py + µ(−∇2)nv = 0, (2.5)

−b+ pz = 0, (2.6)

ux + vy + wz = 0, (2.7)

bt + Ubx + V by +Wbz + uBx + vBy + wBz + wN2
0 = 0, (2.8)

where ∇2 = ∂2
x + ∂2

y + ∂2
z . The last terms in (2.4) and (2.5) describe the dissipative

process, and the exponent n = 0, 1, 2 corresponds to the linear drag, eddy diffusion,

and hyperdissipation model respectively. In the ocean, the presence of stratification

implies that the turbulence is not necessarily isotropic, and horizontal mixing occurs

much more readily than mixing vertically due to stable vertical stratification. For

example, the measured eddy horizontal diffusivity in a dye-release experiment in

open ocean ranged from 10−2 to 103m2s−1 depending on the scale (Ledwell et al.,

1998), while the vertical eddy diffusivity is of the order of 10−5m2s−1 (Ledwell et al.,

1993, 1998); therefore in the eddy diffusion model, the dissipation term is split into
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its vertical and horizontal components:

µ(−∇2)nu = µH(−∇2
H)nu+ µV (−∂zz)nu , (2.9)

where ∇2
H = ∂2

x+∂2
y , and µH and µV are the horizontal and vertical eddy diffusivity

respectively. We will ignore the diffusion of buoyancy b.

We can further simplify the equations using the assumptions stated in YTB.

Since the background flow has a much larger vertical scale, any z-derivatives of the

background variables can be ignored in (2.4) and (2.5). YTB assumed the buoyancy

perturbations to be small compared to N2, and therefore the coupling terms (prod-

uct of pumpwave and near-inertial variables) in(2.8) are small compared to wN2,

and it will be the time derivative bt providing the balance in (2.8). Introducing the

complex variables

U = u+ iv, ξ = x+ iy, (2.10)

the horizontal derivatives can then be written as:

∂ξ =
1
2

(∂x − i∂y), ∂ξ∗ =
1
2

(∂x + i∂y). (2.11)

We can then simplify (2.4) to (2.8) to:

Ut + UUx + V Uy +WUz + (Ux + iVx)u+ (Uy + iVy)v

+ ifU + 2pξ∗ + µH(−∇2
H)nU + µV (−∂2

zz)
nU = 0,

(2.12)

−b+ pz = 0, (2.13)

ux + vy + wz = 0, (2.14)

bt + wN2
0 = 0. (2.15)

Since PSI primarily transfers energy to waves with half the frequency, we seek os-

cillatory solutions with frequency f0; more specifically, we will assume that the
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solutions are of the form:

U = LA(x, y, z, t)e−if0t, (2.16)

where L = ∂zf
2
0N
−2∂z. The other near-inertial fields can then be obtained from

(2.13) to (2.15):

w = −f2
0N
−2Aξze−if0t + c.c., (2.17)

b = if0Aξze−if0t + c.c., (2.18)

p = if0Aξe−if0t + c.c. (2.19)

It is worth noting that while obtaining b though (2.15), we have made use of the

assumption that the near-inertial period f−1
0 is much larger than the time scale on

which b evolves, and the variation of the amplitude can be ignore. b can then be

obtained by integrating wN2 with respect to time. We will also linearize the Coriolis

parameter f around the critical latitude:

f = f0 + βy. (2.20)

Once the pressure p is found, it can be substituted, together with the expres-

sion of U into (2.12). The first term in (2.12), Ut, becomes:

Ut = −if0LAe−if0t + LAte−if0t. (2.21)

The main contributors to the slower tendency LAt arise from the terms that

have the same phase (otherwise there are rapid cancellations over the diurnal cycle)

i.e. the resonant terms. The others, referred to as non-resonant terms (NRT) can

then be discarded. Among the coupling terms, only (Ux + iVx)u + (Uy + iVy)v are

resonant:

(Ux + iVx)u+ (Uy + iVy)v = 1
2U(Ux + Vy + iVx − iUy) + 1

2U∗(Ux − Vy + iVx + iUy)

= (U + iV )ξ∗LA∗e−if0t +NRT, (2.22)

16



We will denote (U + iV )ξ∗ by 1
2Υ. Ignoring the NRT, the amplitude equation (2.12)

then becomes:

LAt + iβyLA+ 1
2 if0∇2

HA+ µH(−∇2
H)nLA+ µV (−∂zz)nLA+ 1

2ΥLA∗ = 0. (2.23)

2.1.1 The pumpwave train

As in Young et al, we will consider a pumpwave that is periodic in the horizontal

directions with horizontal wave numbers (k, l), and frequency ω = 2f0 + 2σ, where

2σ � 2f0 is defined as the de-tuning frequency. Assuming that the pressure field

associated with the pumpwave is given by:

P = a cos(kx+ ly − ωt)p1(z) (2.24)

where p1(z) is the eigenfunction of the first vertical mode. We can then retrieve the

corresponding horizontal velocities through the linear Boussinesq equations. Defin-

ing φ = kx+ ly − ωt, we have:

U =
[

akω

ω2 − f2
0

cosφ− alf0

ω2 − f2
0

sinφ
]

p1(z) , (2.25)

V =
[

alω

ω2 − f2
0

cosφ+
akf0

ω2 − f2
0

sinφ
]

p1(z), (2.26)

Plugging U and V into the definition of Υ, and retaining only the parts that results

in resonance:

Υ = 2(U + iV )ξ∗ =
ia(k + il)2

2(ω − f0)
ei(kx+ly−2σt)p1(z). (2.27)

We can ignore the argument of (k + il)2 since it just represents a constant phase

shift of a. Defining

υ =
a(k2 + l2)
2(ω − f0)

≈ a(k2 + l2)
2f0

(2.28)
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as the amplitude of the pumpwave, we have:

Υ = iυei(kx+ly−ωt)p1(z) . (2.29)

In the numerical model of MacKinnon & Winters (2005), the ocean was assumed to

be linearly stratified and have a constant buoyancy frequency: N(z) = N0. In this

case the first vertical mode will be:

p1(z) = cos
( π
H
z
)
, (2.30)

where H is the depth of the ocean. The dispersion relationship for internal gravity

waves then results in a constraint on the horizontal wavenumbers k and l:

k2 + l2 =
ω2 − f2

0

N2
0 − ω2

π2

H2
≈ 3π2f2

0

N2
0H

2
, (2.31)

where the buoyancy frequency N0 is assumed to be much larger than f0.

2.1.2 The simplified amplitude equation

We now look for solutions of the form

A ≈ cos(mz) e−iσt
[
eik1xA1(y, t) + eik2xA∗2(y, t)

]
, (2.32)

where m is the local vertical wave number, and the horizontal wave numbers satisfy

the resonant condition:

k1 + k2 = k . (2.33)

If we assume that the vertical scale of the instabilities, m−1, is small compared to

scale over which the buoyancy frequency and the vertical structure of the pump wave

vary, N and p1(z) will be approximately constant. Taking N(z) to be some charac-

teristic frequency N0 and p = 1, we can introduce the scaled vertical wavenumber

m̃ ≡ f0m

N0
, (2.34)
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and the differential operator L becomes:

LA = −m̃2A , (2.35)

Substituting (2.29) and (2.32) into the amplitude equation (2.23) and separating the

two harmonic components, we obtain a pair of coupled partial differential equations

for the amplitudes Aj(y, t). With the horizontal length scale (λ) and time scale (τ)

defined as

λ =
(

f0

2m̃2β

)1/3

, τ =
1
λβ

, (2.36)

the non-dimensionalized equations are:

iA1t̃ = −A1ỹỹ +
(
ỹ − b̃− ã− σ̃

)
A1 + υ̃eil̃ỹA∗2 − iµ̃H

[
κ1A1 + (−1)nA1ỹ2n

]
,

(2.37)

−iA2t̃ = −A2ỹỹ +
(
ỹ − b̃+ ã− σ̃

)
A2 + υ̃e−il̃ỹA∗1 + iµ̃H

[
κ2A2 + (−1)nA2ỹ2n

]
.

(2.38)

In the above equations, the t̃ = λβt and ỹ = y/λ are the non-dimensionalize in-

dependent variables, and k̃j = λkj and l̃ = λl are the non-dimensionalized wave

numbers. The non-dimensionalized pump wave amplitude υ̃, de-tuning frequency σ̃

and dissipation parameter µ̃ are given by:

υ̃ =
υ

2βλ
, σ̃ =

σ

βλ
, µ̃ =

µH
λ2n+1β

. (2.39)

The parameters ã and b̃ are defined as:

ã = −λ
2(k2

1 − k2
2)

2
, b̃ = −λ

2(k2
1 + k2

2)
2

. (2.40)

The effective wave number is defined by:

κi = k̃2n
i

(
1 +

µVm
2n

µHk2n
i

)
(2.41)
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(2.37) and (2.38) can be further simplified by removing some parameters, as their

effects on the system can be understood easily. For example b̃+ σ̃ can be removed

via a shift in spatial coordinates ỹ − b̃ − σ̃ → ỹ together with a suitable constant

phase shift in A1,2, and therefore the effect of these two parameters is limit to a

shift of the origin. If we assume that k1 = k2, the dissipative term −iµ̃Uκi can also

be removed by a change of variable: Ai → e−µ̃HκitAi ; this suggests that the effect

of dissipation in the zonal and vertical direction is to suppress the amplitude of the

PSI waves without altering the meridional structure, and hence we can ignore it.

Finally we can also remove the parameter ã via (A1, A2) → (
eiãtA1, e−iãtA2

)
, and

therefore the effect of ã is limited to a frequency shift.

With the above simplifications, as well as dropping the tildes, we have:

iA1t = −A1yy + yA1 + υeilyA∗2 − iµH(−1)n∂2n
y A1, (2.42)

−iA2t = −A2yy + yA2 + υe−ilyA1 + iµH(−1)n∂2n
y A2. (2.43)

(2.42) and (2.43) will serve as the basis for the rest of this study.

2.2 Parameter estimation

We will close this chapter by providing a summary of the oceanographically relevant

values for the physical parameters used in our scaling. In table 2.1, the pump

wavenumber l and amplitude υ are similar to the ones used in YTB. The buoyancy

frequency of 0.0087s−1 is a value that is typically found in regions just underneath

the mixed layer. These values, together with a vertical wave number of 100m, give

a time scale of 30.5 days and a length scale of 19km; this length scale corresponds

to a change of 0.171◦ in latitude.
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M2 tidal frequency 1.405× 10−4s−1

Coriolis frequency, f0 = 1
2M2 7.02× 10−5s−1

Planetary vorticity gradient, β 2.003× 10−11 m−1 s−1

Buoyancy frequency, N0 2π/720s = 0.0087s−1

Vertical wavenumber, m 2π/100m
Pump wavenumber, l 2π/125km
Pump amplitude υ 1/5days

Length scale, λ = (f0N
2
0 /2f

2
0m

2β)1/3 19km
Time scale, 1/βλ 30.5 days
Eddy viscosity scale, λ3β 1.36× 102m2s−1

Non-dimensional pump amplitude, υ̂ = υ/(2βλ) 3.04
nondimesnional pump wavenumber, l̂ = λl 0.946

Table 2.1: Parameter values
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Chapter 3

Dissipative Problem

In this chapter we will explore the solutions to the PDEs (2.42) and (2.43) derived

in the previous chapter. We will mostly focus on the regular eddy dissipation model

by taking n = 1, which results in

iA1t = −(1− iµ)A1yy + yA1 + υeilyA2, (3.1)

−iA2t = −(1 + iµ)A2yy + yA2 + υe−ilyA1. (3.2)

A set of energy equations can be derived for (3.1) and (3.2). The total energy density

E can be defined as:

E ≡ 1
2(u2 + v2) = 1

2 |LA|2 . (3.3)

E is proportional to |A1|2+|A2|2, and thus En = |An|2 for n = 1, 2 can be interpreted

as energy density for our equations. From (3.1) and (3.2), we can derive the following

energy equations:

E1t + J1y = −D1 + S, (3.4)

E2t + J2y = −D2 + S, . (3.5)
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with the meridional energy flux defined as

Jn(y, t) ≡ i(−1)n
(
A∗nAn y −AnA∗n y

)− µH (An yA∗n +A∗n yAn
)
. (3.6)

The energy loss due to dissipation is given by

Dn(y, t) ≡ 2µH |A2
n y| , (3.7)

and finally the energy source due to PSI is:

S = −iυ
(
eilyA2A

∗
1 − e−ilyA∗2A1

)
. (3.8)

3.1 An initial value problem

The controlling parameters in (3.1) and (3.2) are the dissipation (µH), the amplitude

of the pumpwave/forcing (υ), and the meridional wave number of the pumpwave (l).

In the absence of the pumpwave and effect of dissipation, the equations reduce to

the Schrödinger equation with a linear potential, which describes a particle falling

under the influence of gravity. This is can be explained via a slowly varying wave

approximation. Assuming that µH and υ are small (and thus can be ignored), the

A1 equation takes the form:

iA1t = −A1yy + yA1 (3.9)

For the slowly varying wave approximation, we will assume A1 = eiφ, where φ =

φ(y, t) is the phase. Defining the frequency ω̂ = −φt and wave number k̂ = φy, the

dispersion relation for (3.9) is

ω̂ = k̂2 + y. (3.10)

Differentiating (3.10) with respect to y, and noting that ω̂y = −φty = −k̂t, we now

have a PDE for k̂:

k̂t + 2k̂k̂y = −1, (3.11)
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which can be solved using the method of characteristics. The solution is given by

k̂ = −t + k̂0 on the characteristic curves y − y0 = −t2 + 2k̂0t, where k̂0 and y0 are

respectively the initial wave number and position of the wave packet. The form of

the characteristic curves suggest that the wave packet will indeed follow a ballistic

trajectory, with the wave-packet having velocity dy/dt = 2k = 2(t− k̂0); this suggest

that for t > k̂0 the wave-packet will have negative velocity, and will be moving south.

Eliminating t from the solution results in:

k̂2 = k̂2
0 + (y0 − y), (3.12)

which indicates that the wave number increases as the wave-packet travels south.

With the above observations, we can now formulate an initial value problem

for PSI. Consider a perturbation in the near-inertial wave field in the form of a

Gaussian wave packet with wave-number k0 > 0 and :

A1(y, 0) = e−(y−y0)2/σ cos(k0y) =
1
2

(
e(y−y0)2/σeik0y + e(y−y0)2sigmae−ik0y

)
(3.13)

According to the analysis above, we expect the perturbation to split into two wave

packets. The component with e−ik0y travels south, while the component with eik0y

will first travel north up to y = k2
0 + y0 before turning south. In the presence of the

pump-wave (i.e. υ > 0), the near-inertial wave-packets will grow due to PSI, and

we would like to understand how the growth depends on the parameters.

3.1.1 Numerical scheme

As with other wave-type problems on an infinite domain, We will demand that the

amplitude of the near-intertial waves decay to 0 as y → ±∞; however there are

some practical issues with truncating the problem to a finite domain [yL, yR] for the

numerical calculations as the boundary conditions (BC) at infinity are now applied
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on a finite interval. For the right boundary yR, the wave packet will be reflected

before it reaches yR provided that the initial kinetic energy is not too high, and thus

we can simply set A1(yR, t) = A2(yR, t) = 0.

The situation at the left boundary yL is complicated by the presence of

−Aiyy + yAi in (3.1) and (3.2); the slowly varying wave theory predicts that the

wave number increases as
√|y| as y → −∞ (see (3.12)). This presents us with a

dilemma: on one hand the domain needs to be large in order for the wave amplitude

to decay sufficiently to justify imposing a zero Dirichlet condition, but as the domain

is extended by moving yR towards −∞ the grid needs to be refined to resolve the

increasingly rapid oscillations.

One way to resolve this issue is to impose an absorbing boundary condition

(ABC) in conjunction with truncation of the domain. There are two main types of

ABCs: PDE-based and material based (for a brief review, see Zheng (2007)). PDE-

based ABC relies on the ability to factor the differential operator, which in turn can

be used to derive a radiative boundary condition that only allows out-going waves at

the boundary. On the other hand, the material based ABC incorporates a sponge-

like layer near the endpoint to absorbed outgoing waves. One class of material based

ABC is the perfectly matched layer (PML), which was used by Berenger (1994) for

the study of Maxwell’s equations in electro-magnetics. It was also used sucessfully in

both linear and non-linear Schrödinger’s equation with variable potentials (Zheng,

2007).

As it is not clear how our equations can be factored to derive a radiative BC

on the boundary, we will adopt the PML technique as outlined in Zheng (2007) for

this numerical study. The main idea behind the method is to extend the computa-

tional domain from [yL, yR] to [yLR, yR] with yLR < yL. The PDE with the PML
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is identical to the original PDE in the original domain of interest, while the PDE

is modified in the sponge layer [yLR, yL] by introducing an additional dissipative

term that strongly damps out-going waves. The solutions are expected to decay

exponentially, and hence a zero Dirichlet BC can be imposed at y = yLR.

The primary function of the sponge layer is to ensure that the initial per-

turbation is not reflected back into the boundary, and thus allowing us to consider

cases where the dissipation is too small to damp out the perturbations before it

reaches the boundary. With the introduction of a PML, the second derivatives are

modified via:

A1yy → − 1
1− i ζ(y)

d
dy

(
1

1− i ζ(y)
A1y

)
(3.14)

A2yy → − 1
1 + i ζ(y)

d
dy

(
1

1 + i ζ(y)
A2y

)
. (3.15)

The absorption function ζ(y) is chosen to be:

ζ(y) =

 ζ0(y − yl)4 if yLR < y < yL

0 if yL ≤ y < yR

(3.16)

Equations (3.1) and (3.2) together with the initial condition

A1(y, 0) = e−(y+25)2/5 cos(
√

26y), A2(y, 0) = 0 (3.17)

are solved using a Crank-Nicolson finite difference scheme, which has the advantage

of being unconditionally stable (Garcia, 1999).

We will now present a sample solution, where the computational grid is

uniform both in space and time, with time-step ∆t = 0.00005 and 4000 spatial grid-

points over [−100, 50]. A sponge layer is located at [−100, 85] with the ζ0 = 0.01.

The amplitudes of the near-inertial wave field, |A1| and |A2|, are shown in Figure

3.1. We can see that the wave packet splits up into two components that travel in
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opposite directions. The northward propagating packet follows a ballistic trajectory

while spreading out. At the same time we can see that as the wave packet moves

through the domain it excites a standing wave that grows in amplitude over time.

The standing wave is concentrated near the origin (the critical latitude), and the

amplitude rapidly drops off to the south. This is not surprising as the effect of

dissipation will be more potent as the wave-number increases to the south.
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Figure 3.1: The results from a numerical computation of the PSI model. |A1| and
|A2| are plotted in panels (a) and (b) respectively. The parameters used are υ = 0.25,
l = 0, and µH = 0.01, with the spatial domain being [−85, 50] and a sponge layer
located at [−100,−85]. Only the data from [−90, 10] is shown here.

3.2 Normal modes

The standing wave solutions can be best understood via an analysis of normal modes.

The standing wave solution in the IVP decays exponentially to the south of the

origin, and therefore we do not need to include a sponge layer in our problem.

The domain can be truncated at a point sufficiently far south, and a zero Dirichlet

boundary condition can be imposed. Assuming An = Ane
γt, where γ = γR + iγI ,
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(3.1) and (3.2) become:

(1− iµ)A1yy = (y − iγ)A1 + υeilyA2, (3.18)

(1 + iµ)A2yy = (y + iγ)A2 + υe−ilyA1. (3.19)

This system is now an eigenvalue problem, and the boundary conditions are the

same as the PDE: |An| → 0 as y → ±∞.

3.2.1 Numerical solution

To investigate the effect of the three parameters υ, l, and µ on the eigenvalues,

we will compute the eigenvalues numerically. The second derivatives in (3.18) and

(3.19) are discretized using a centered final difference scheme, and the eigenvalue

problem becomes a matrix eigenvalue problem; the matrix is large but sparse, which

can be handled via the eigs function in MATLAB. eigs is an iterative numerical

scheme that estimates the eigenvalues for matrices, and it is useful when only part

of the spectra is of interest.

We will compute the spectra over [yL, 50] for some yL, and impose zero

Dirichlet boundary condition at both end-points. We will then take the limit as

yL → −∞; if the eigenvalues converge to a limit, the limit can be interpreted as the

eigenvalues of the problem over the infinite interval. We found that the eigenvalues

and eigenfunctions only differ slightly with the zero Dirichlet BC is replaced by a

sponge layer at the southern boundary, and therefore we will ignore the sponge layer

in this section.

Zonally propagating pump-wave: l = 0

Figure 3.2 shows the result for a series of calculations with υ = 1, and l = 0. The

eigenvalue problem is solved over a domain of [−100, 50], and the real part of the
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normalized eigenfunctions <(A1) over [−60, 10] are plotted on the left column of

figure 3.2. µ = 1, 10−1, 10−2, 10−4, and 0 were used in the calculations; the plots

are arranged in decreasing order of µ from top to bottom. One can see that in

all cases, the eigenfuction is oscillatory to the south (when y < 0), while to the

north of the turning point y = 0, the eigenfunction quickly decays to 0, indicating

that the near-inertial waves are evanescent as expected. On the bottom row, the

numerically computed eigenfunction (blue curve) is almost indistinguishable from

the Airy function (red curve) in the absence of dissipation; in §3.2.2 we will show that

the Airy function is the exact solution to the inviscid problem. When dissipation

is increased to 10−4, the eigenfunction still resembles the airy function, but the

amplitude to the south is significantly reduced. As dissipation is increased further,

the wave becomes more and more localized to the turning latitude.

The spectra for each case is plotted on the right column. In the inviscid limit

µ = 0 (bottom panel) the eigenvalues are either purely real (growing or decaying

modes), or purely imaginary (neutral modes). The fastest growing mode has a

growth rate close to 1. As the dissipation increases, to µ = 10−2, the majority of

the modes become decaying, with a handful of modes that remain unstable. When

the dissipation is further increased to 1, all but one of the modes become stable, and

the growth rate of the unstable mode is now significantly lower then the inviscid

case. The eigenvalues becomes insensitive to yL for yL < −100, and therefore the

computed spectra should be a good approximation to the spectra on the infinite

interval.
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Figure 3.2: Effect of dissipation on the spectrum: l = 0: The dissipation parameter
used (from top to bottom) are µ = 1 , 10−1 , 10−2 , 10−4 , and 0. On the left column
the real part of the eigenfuctions associated with the fastest growing modes are
plotted in blue, while in the last two panel the airy function Ai(y) is also plotted in
red. On the right column the spectra are plotted, with the abiscissa and ordinate
being respectively the imaginary part and the real part (the growth rate) of the
eigenvalues. υ = 0 for all calculations.

More general case: l 6= 0

We will now turn to the case where l is no longer zero. In figure 3.3, the re-

sults from a set of computations with υ = 1 and l = 0.1 is shown, with µ =

1, 10−1, 10−2, 10−3, 10−4, and 0. The computations are repeated over the domain

[yL, 20], where yL was varied to determine the effect of truncation. The results with

yL = −100 are plotted in blue, while the results with yL = −150 are plotted in red.

Notice that only parts of the eigenfunctions over [−80, 10] are shown, and the scale

for the frequency of the spectra plot is different from figure3.2.

For large values of dissipation (top two rows in figure 3.3), the results from

both values of yL agree, showing that neither the eigenfunction nor the physically
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Figure 3.3: Effect of dissipation on the spectrum: l = 0.1: The dissipation parameter
used (from top to bottom) are µ = 1, 10−1, 10−2, 10−3, 10−4, and 0. On the left
column the real part of the eigenfuctions associated with the fastest growing modes
are plotted; in blue are the results from using a domain of [−100, 20], while the
curves in red are based on a domain of [−150, 20]. The corresponding spectra are
respectively plotted with blue dots and red circes. The abiscissa and ordinate are
respectively the imaginary part and the real part (the growth rate) of the eigenvalues.
υ = 1 for all calculations

31



interesting portion of the spectra is affected by the change in yL. As in the l = 0

case, the eigenfunction decays quickly to zero due to dissipation, and there are a

small number of discrete unstable modes. When dissipation is decreased to 10−2, the

two computations agree for the fastest growing mode, but the spectra plot reveals

that the domain length starts to affect the computation. The computation with

yL = −100 suggests the presence of unstable modes that have non-zero frequency

(i.e. γI 6= 0), while the computation with yL = −150 suggests that all unstable

modes have zero frequency.

As the dissipation is decreased further (bottom three rows), the picture is

very different from the l = 0 case. The spectra plots show that most unstable modes

now have non-zero frequency, and the frequency increases as the yL →∞. The plots

of the eigenfunction reveal that the waves are no longer localized to the turning

latitude; instead, the bulk of the wave is located at the center of the domain, and

moves as the boundary moves southwards. We will refer these modes as ‘boundary

modes’.

To get a better understanding of the transition between the boundary and

localized modes as µ changes, we performed a series of computations where yL and µ

were varied systematically: the boundary was moved from yL = −80 to yL = −200,

and for each series µ was varied from 10−4 to 1, with υ = 1 and l = 0.1. The results

are presented in figure 3.4, where the frequency (γI) and growth rate (γR) of the most

unstable mode are plotted as a function of dissipation. When the dissipation is small

(µ ≈ 10−3), the growth rate (bottom panel) depends on yL, but the sensitivity is

reduced as dissipation vanishes; the graph suggests that as we approach the inviscid

limit, the growth rate will converge to a value that is independent of yL; however,

while the frequency (top panel) is insensitive to dissipation, the frequency remains
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Figure 3.4: Effect of computational domain on the eigenvalues. The frequency (γI ,
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and l = 0.1 for all calculations.
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dependent on yL. The effect of yL on the eigenvalues for the inviscid problem (µ = 0)

is shown in the inset of figure 3.4. The growth rate depends very weakly on yL, but

the frequency increases approximately as l
√
yL (plotted as the green dashed line).

The eigenfunctions for the unstable modes in the inviscid problem resemble the

boundary modes plotted in the bottom panel of figure 3.3.

A question regarding these boundary modes is whether they are artifacts re-

sulting from grid instabilities, but this can be discounted since the rapid oscillations

in the eigenfunctions are well resolved, and a change in grid size does not affect the

result. It is also not due to the zero Dirichlet boundary condition imposed at the

southern boundary, as the eigenvalues and eigenfunction of the boundary modes are

only affected minimally if the zero Dirichlet BC is replaced by a sponge layer or

a radiative (Sommerfeld) type boundary condition that eliminates incoming waves

at the boundary. Since the frequency of the boundary mode does not appear to

converge, and the location of peak of the eigenfunctions changes as the yL is moved

to the south, the conclusion is that these modes are un-physical.

We will now return to figure 3.4. From the inviscid limit, the growth rate of

these boundary modes rapidly decreases as dissipation is increased, with the mode

from yL = −200 being most susceptible to dissipation. There is a sudden break in

the graph when µ inceases to 10−2.5, and the numerically computed growth rates

now converge to a single curve, and no longer depends on yL. The frequency also

undergoes a similar transition: as the frequency increases pass the transition near

µ ≈ 10−2.5, all the curves collapse to abruptly to 0. This marks the transition from

the boundary modes to modes where both the eigenvalues and eigenfunctions are

independent of the location of the boundary. These new modes are physically mean-

ingful since the choice of the locaion of the boundary does not affect the structure
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or growth rate of the mode. The eigenfunctions are similar to the localized modes

in the top three panels of figure 3.3.

A curious feature is that the effect of dissipation on these localized modes is

not monotonic: while an increase in dissipation for larger values of µ stabilizes the

system, the growth rate in fact increases with µ when dissipation is small (between

10−2.5 to 10−1.7); this result rather surprising, as one would normally expect dis-

sipation to have a stabilizing effect. We will explore this behaviour via the energy

equations in §3.2.3.

We will now present a couple of plots in figure 3.5, which summarize the effect

of the various parameters on the growth rate for υ = 4 (top panel) and υ = 6 (bottom

panel). The two plots are qualitatively similar. For l = 0 (top series), γR ≈ υ when

the dissipation is small, and decreases monotonically as µ increases. For l 6= 0, the

non-monotonic effect of dissipation on growth rate observed earlier holds for a wide

range of l. An increase in l reduces the growth rate, and for sufficiently large value

of l, the normal modes become stable for small µ. For example, when l = 2.5 and

υ = 4 (bottom series in the top panel of figure 3.5), the growth rate is negative for

µ < 10−0.5.
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3.2.2 Analytical results

We will now develop some analytical results which provides support to our numeri-

cally computed growth rates. The most important result is an analytical prediction

for limit where 0 < l � 1 and µ � 1, as it confirms our numerical results showing

that µ→ 0 stabilizes the system for a non-zero l. The problem with µ = l = 0 can

be solvable exactly, which is then used as the basis of a perturbative solution with

l and µ as a small parameter.

A zonally propagating pump-wave in the inviscid limit

We will first consider the inviscid limit (µ = 0), as well as a pump-wave that prop-

agates zonally (l = 0), as in this regime the eigenvalue problem can be diagonalized

and solved exactly:A1(y)

A2(y)

 =

 υ −iγ −
√
υ2 − γ2

iγ +
√
υ2 − γ2 υ


c1Ai(y −

√
υ2 − γ2)

c2Ai(y +
√
υ2 − γ2)

 (3.20)

The fundamental solutions are Ai(y±
√
υ2 − γ2), where Ai(y) is the Airy function of

the first kind. The argument of Ai(y) must be real for Ai(y) to remain bounded as

y → ±∞, which implies that γ must be real and υ2 − γ2
R ≥ 0. The latter condition

implies that there is a continuous spectrum of normal modes, with growth rates

satisfying the inequality:

−υ ≤ γR ≤ υ . (3.21)

The maximum growth rate is γRmax = υ, which agrees with the numerically ob-

tained growth rates (c.f. figure 3.5 and the bottom panel of figure 3.3). The

eigenfunctions associated with the fastest growing mode are A1(y) = Ai(y) and

A2(y) = iAi(y). Using (3.6), It can be shown that the meridional energy flux is
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identically 0. The interpretation is that the fastest growing near-inertial oscillations

excited by a zonally propagating pump-wave will only transport energy zonally.

Young et al. (2008) found the growth rate for a zonally propagating pump-

wave at the critical latitude 28.9◦ to be (with the variables non-dimensionalized as

the present study):

γRmax =
√
υ2 − (b+ σ)2 , (3.22)

Curiously the factor b+σ in (3.22) is identical to the spatial shift we initially ignored

in the IVP problem, yet it plays no role in the growth rate for our analysis. It is

perhaps instructive to re-concile the two results.

Discarding the β-effect term yAn, and re-inserting b+ σ into our equations,

the eigenvalue problem becomes:

A1yy = (−(b+ σ)− iγ)A1 + υ A2 , (3.23)

A2yy = (−(b+ σ) + iγ)A2 + υ A1 , (3.24)

Since y does not explicitly appear in the equations, we can seek solutions that are

periodic in y: A1 = eil1y and A2 = e−il2y. To satisfy the resonant condition, the

wave numbers must satisfy l1 + l2 = 0, and the eigenvalues are:

iγ = i

√
υ2 − [l21 − (b+ σ)

]2
. (3.25)

YTB considered the reduced 2-dimensional model in the absence of the β−effect,

and seeked solutions that are uniform in y; this is equivalent to setting l1 in (3.25)

to be 0 and we will recover their result (3.22). On the other hand, there is no

reason to restrict ourselves to meridionally uniform solutions, and thus (3.25) is a

more general result for the model of YTB. This equation suggests that maximum

growth rate γmax = υ can be achieved when l1 =
√
b+ σ, and therefore there is

scale selection in the y-direction at the critical latitude.
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This scale selection behaviour is consistent with our model. If we retain

b+ σ in our governing equations, the corresponding eigenfuction is Ai (y − (b+ σ))

which has a turning point at y = b + σ; to the south of the turning point the Airy

function is periodic with local wave-number
√|y − (b+ σ)|, while to the north the

wave becomes evanescent. Now if (b + σ) � 1, then the critical latitude y = 0 lies

to the south of the turning point; therefore the waves at the critical latitude will be

periodic with wave-number
√

(b+ σ), which is consistent with the analysis in the

preceding paragraph.

Short wave theory

We can use the analytical solution to the µ = l = 0 problem in the previous section

to make progress analytically for cases where the the parameters υ and l are non-zero

but small. It is convenient to consider a change in variables:

f(y) = A1e
−ily/2 − iA2e

ily/2, ig(y) = A1e
−ily/2 + iA2e

ily/2 (3.26)

Our equations then become:

f ′′ − lg′ − l2

4
f + µg′′ + µlf ′ − µl

2

4
g − yf − (υ + γ)g = 0 , (3.27)

g′′ + lf ′ − l2

4
g − µf ′′ + µlg′ + µ

l2

4
f − yg − (υ − γ)f = 0 . (3.28)

In the previous section, the numerical results suggest that the unstable modes have

frequency that vanishes (γI = 0), and therefore we will assume that γ, f and g in

(3.27) and (3.28) are purely real. In addition we can easily verify that f(y) = Ai(y),

g(y) = 0, and λ = υ are solutions to the above system. With a small parameter

defined as ε =
√
µ, as well as the assumption that l scales as ε3/2 (i.e. l = l3/2ε

3/2),
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(3.27) and (3.28) becomes

f ′′ − l3/2ε3/2g′ + ε2g′′ − yf − (υ + γ)g = O(ε5/2) , (3.29)

g′′ + l3/2ε
3/2f ′ − ε2f ′′ − yg − (υ − γ)f = O(ε5/2) . (3.30)

Inner solution

We will seek an expansion of the form:

f = Ai(y) + ε1/2f1/2(y) + · · · , (3.31)

g = ε1/2g1/2(y) + εg1(y) · · · , (3.32)

γ = υ + εγ1 + · · · . (3.33)

Plugging (3.31) to (3.33) into (3.29) and (3.30) and gathering the O(ε1/2) terms, we

have:

f ′′1/2 − yf1/2 = 2υg1/2 , (3.34)

g′′1/2 − yg1/2 = 0 . (3.35)

(3.35) is satisfied by g1/2 = rAi(y), where r is a constant that is to be determined

later. Since (Ai′)′′ = (Ai′′)′ = (yAi)′, a particular solution to (3.34) is

f1/2 = 2υrAi′(y) . (3.36)

Moving on to O(ε) terms in (3.30), we have:

g′′1 − yg1 = γ1Ai, (3.37)

which has the particular solution:

g1 = −γ1Ai′(y) , (3.38)
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To summarize, the inner solution is:

f = Ai(y) + ε1/22υrAi′(y) + · · · , (3.39)

g = ε1/2rAi(y)− εγ1Ai′(y) + · · · , (3.40)

The Outer Region

As y → −∞, standard asymptotic formulae for the Airy function give (Abramowitz

& Stegun, 1964):

Ai(y) ∼ 1√
π 4
√−y sin

(
φ+

π

4

)
and (3.41)

Ai′(y) ∼
4
√−y√
π

cos
(
φ+

π

4

)
, (3.42)

where φ(y) = 2
3 |y|3/2 is the phase. Since the solution becomes increasingly oscil-

latory, we anticipate that some of the derivatives we neglected in the inner region

may become important. In addition, (3.42) suggests that the O(ε) term in g(y)

grows as y → −∞, which leads to a break in the order. Both of these observations

point to the existence of an outer solution which we will need to match onto the

inner solution (which we will relabel as fin and gin) given by (3.39) and (3.40). To

proceed we will define Y = εy as the outer variable; notice that in terms of the outer

variable,

f ∼ ε1/4
[

1
4
√−Y sin

(
φ(Y )
ε3/2

+
π

4

)
+ 2υr 4

√−Y cos
(
φ(Y )
ε3/2

+
π

4

)]
and (3.43)

g ∼ ε3/4
[

r
4
√−Y sin

(
φ(Y )
ε3/2

+
π

4

)
− γ1

4
√−Y cos

(
φ(Y )
ε3/2

+
π

4

)]
, (3.44)

41



We have scaled the inner solutions to remove the constant factor of 1/
√
π. Motivated

by the form of the inner solution, we seek a WKBJ-type solution in the outer region:

fout = ε1/4
[
R1(Y ) sin

(
φ(Y )
ε3/2

)
+R2(Y ) cos

(
φ(Y )
ε3/2

)]
and (3.45)

gout = ε3/4
[
S1(Y ) sin

(
φ(Y )
ε3/2

)
+ S2(Y ) cos

(
φ(Y )
ε3/2

)]
. (3.46)

In terms of the outer variable, the scaled equations are:

ε2
d2fout
dY 2

− l3/2ε5/2
dgout
dY

+ ε4
d2gout
dY 2

− Y

ε
f − (2υ + εγ1)g = O(ε5/2) , (3.47)

ε2
d2gout
dY 2

+ l3/2ε
5/2dfout

dY
− ε4d

2fout
dY 2

− Y

ε
g + εγ1f = O(ε5/2) , (3.48)

We will now proceed with the asymptotic expansion by substituting (3.45)

and (3.46) into (3.47) and (3.48). The leading order equation gives:

dφ

dY
= ±√−Y (3.49)

for both equations. We will take the negative root as its integral is consistent

with the definition of the phase function φ(Y ) = 2
3 |Y |3/2. At the next order, the

equations contain both sine and cosine terms, and their coefficients must vanish for

the equations to hold. We can therefore extract four equations:

2
dR1

dY

dφ

dY
+R1

d2φ

dY 2
= 2υS2 (3.50)

2
dR2

dY

dφ

dY
+R2

d2φ

dY 2
= −2υS1 (3.51)

2
dS1

dY

dφ

dY
+ S1

d2φ

dY 2
= −γ1R2 − l3/2

dφ

dY
R1 − dφ

dY

2

R2 (3.52)

2
dS2

dY

dφ

dY
+ S2

d2φ

dY 2
= +γ1R1 − l3/2

dφ

dY
R2 +

dφ

dY

2

R1 (3.53)

These can be simplified by defining η = 4
√

8υ
√−Y , and R̂n, Ŝn = Rn

√
η, Sn

√
η.
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With dφ
dY = −√−Y = −η/ 4

√
8υ, d2φ

dY 2 = 4
√

8υ/(2η), (3.50) to (3.53) simplifies to:

R̂1η =
2υ
4
√

8υ
Ŝ2 (3.54)

R̂2η = − 2υ
4
√

8υ
Ŝ1 (3.55)

Ŝ1η =
1

4
√

8υ

[
−γ1R2 +

η
4
√

8υ
l3/2R1 − η2

√
8υ
R2

]
(3.56)

Ŝ2η =
1

4
√

8υ

[
γ1R1 +

η
4
√

8υ
l3/2R2 +

η2

√
8υ
R1

]
(3.57)

Eliminating Ŝ1 and Ŝ2 from (3.54) to (3.57), and defining A = γ1

√
υ
2 and B =

l3/2

2
4
√

υ
2 , we have a pair of coupled second order ODE:

R̂1ηη −
(
η2

4
+A

)
R̂1 = BηR̂2 (3.58)

R̂2ηη −
(
η2

4
+A

)
R̂2 = −BηR̂1 (3.59)

It turns out that the pair can be uncoupled by defining F1 = R̂1 + iR̂2 and F2 =

R̂1 − iR̂2, the differential equations for F1 and F2 are:

F1ηη −
(

1
4

(η + 2iB)2 +B2 +A

)
F1 = 0 , (3.60)

F2ηη −
(

1
4

(η − 2iB)2 +B2 +A

)
F2 = 0 , (3.61)

both of which have parabolic cylinder functions as solutions. For the outer solutions

fout(Y ) and gout(Y ) we demand that they decay to zero as Y → −∞, which is

equivalent to |F1,2| → 0 as η →∞. The standard solutions to the parabolic cylinder

equations are given by U(a, x) and V(a, x), and only U(a, x) decays as x → ∞
(Abramowitz & Stegun, 1964). Hence we have:

F1(η) = c1U(B2 +A, η + 2iB) and F2(η) = c2U(B2 +A, η − 2iB) , (3.62)

where c1 and c2 are constants that are determined by matching with the inner

solution.
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Matching

To match up the inner and outer regions, the outer solution should take the form

of (3.45) and (3.46) as Y → 0. To facilitate matching, we will expand (3.45) and

(3.46)

fin ∼ ε1/4
[(

1
4
√−Y + 2υr 4

√−Y
)

sin
(
φ(Y )
ε3/2

)
+
(

1
4
√−Y − 2υr 4

√−Y
)

cos
(
φ(Y )
ε3/2

)]
,

(3.63)

gin ∼ ε3/4
[(

r
4
√−Y + 2υ 4

√−Y
)

sin
(
φ(Y )
ε3/2

)
+
(

r
4
√−Y − 2υ 4

√−Y
)

cos
(
φ(Y )
ε3/2

)]
,

(3.64)

with the constant factors
√

2/2 being scaled out.

Comparing the fin and fout from (3.45), we will need the coefficients of the

sine and cosine terms to match as Y → 0. Remembering that R̂n = Rn
√
η and

√−Y = η/ 4
√

8υ, it suggests that near Y = 0, the matching conditions are:

R̂1(η) ∼ 4
√

8υ + 2υrη and R̂2(η) ∼ 4
√

8υ − 2υrη ,

=⇒ R̂1(0) = R̂2(0) = 4
√

8υ and R̂′1(0) = −R̂′2(0) = 2υr . (3.65)

Similarly, comparing gin and gout gives

Ŝ1(η) ∼ r 4
√

8υ − γ1η and Ŝ2(η) ∼ r 4
√

8υ + γ1η .

=⇒ Ŝ1(0) = Ŝ2(0) = r
4
√

8υ and Ŝ′1(0) = −Ŝ′2(0) = −γ1 . (3.66)

With the help of (3.54) to (3.57), we can see that the boundary conditions given by

(3.66) are automatically satisfied as long as the boundary conditions in (3.65) are

satisfied. The conditions R̂1(0) = R̂2(0) and R̂′1(0) = −R̂′2(0) from (3.65) in turn

require that

F1(0) = iF2(0) and F ′1(0) = −iF ′2(0) (3.67)
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or equivalently, U(B2 +A, 2iB) −iU(B2 +A,−2iB)

iU ′(B2 +A, 2iB) −U ′(B2 +A,−2iB)


c1
c2

 =

0

0

 , (3.68)

For the system (3.68) to have a non-trivial solution, the determinant of the matrix

must vanish:

U(B2 +A, 2iB)U ′(B2 +A,−2iB) + U(B2 +A,−2iB)U ′(B2 +A, 2iB) = 0 . (3.69)

Now the Wronskian of U(a, x) and U(a,−x) is given by

(U(a, x))′ U(a,−x)− U(a, x)(U(a,−x))′ = U ′(a, x)U(a,−x) + U(a, x)U ′(a,−x) ,

(3.70)

where the prime here denotes the derivative with respect to the second argument;

therefore (3.69) demands that the Wronskian of U(B2 + A, x) and U ′(B2 + A,−x)

must vanish at x = 2iB. Since both U(B2 +A, x) and U(B2 +A,−x) are solutions

to the parabolic cylinder equation

d2U
dx2
−
(

1
4
x2 +B2 +A

)
U = 0 , (3.71)

the Wronskian must be a constant due to Abel’s identity1. Therefore if the Wron-

skian of U(B2 +A, x) and U ′(B2 +A,−x) were to vanish at x = 2iB, it must vanish

at x = 0 as well. In other words,

U(B2 +A, 0)U ′(B2 +A, 0) = 0 . (3.72)

With the formulae for U and U ′ at the origin from Bender & Orszag (1999), as well

as noting that that the Gamma function Γ(z) diverges when z is zero or a negative

1Abel’s identity states that for a linear second order differential equation y′′ + p(x)y′ +
q(x)y = 0, the Wronskian is given by C exp

(− ∫ p(x)dx
)
. For the parabolic cylinder equa-

tion p(x) = 0, and hence the Wronskian is a constant.
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integer, we have:

U(B2 +A, 0) = 0 ⇐⇒ 3
4

+
1
2

(B2 +A) = 0 ,−1 ,−2 ,−3 · · · ,

U ′(B2 +A, 0) = 0 ⇐⇒ 1
4

+
1
2

(B2 +A) = 0 ,−1 ,−2 ,−3 · · · ,

where N and Z denotes the set of natural numbers and the set of integers respectively.

Together these two conditions imply B2 +A = − (−1
2 + n

)
, where n ∈ N. Reverting

back to the original variables, we find that the correction to the eigenvalue is:

γ1 = −
(

2n− 1
2

)√
2
υ
−
l23/2

4
(3.73)

The prediction for the eigenvalue is therefore:

γ = υ + εγ1 = υ − (2n− 1)
√

µ

2υ
− l2

4µ
(3.74)

Therefore the fastest growing mode corresponds to n = 1, which in turn gives

U ′(B2 +A, 0) = U ′(−1/2, 0) = 0.

To complete our analysis, we will need to determine the constant r in the

inner solution. Note that R̂1(Y ) = (F1 + F2)/2, and with the aid of (3.68) we can

eliminate c1, leaving one undetermined coefficient for R̂1. In addition, we have not

used the conditions R̂1(0) = 4
√

8υ and R̂′1(0) = 2υr in (3.65) during our matching;

after some algebra, these conditions will give:

r =
i 4
√

8υ
2υ
U ′(−1/2,−2iB)
U(−1/2, 2iB)

. (3.75)

Notice that U(−1/2, x) = e−x
2/4 satisfies (3.71) (Temme, 2010), and therefore

r = − l3/2√
2υ

. (3.76)
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3.2.3 Energetics

To explain the unexpected results observed in the previous section, we will examine

the energetics associated with the normal modes. If we substitute the normal mode

solutions Aj(y)eγ−i(ω−a))t into the energy equations (3.4) and (3.5), we will have:

2γ|A1|2 = −J1y −D1 + S , (3.77)

2γ|A2|2 = −J2y −D2 + S . (3.78)

Integrating over the entire domain, the equations become:

γ =
(
−D̂1 + Ŝ

)/
2|Â1|2 =

(
−D̂2 + Ŝ

)/
2|Â2|2 , (3.79)

where the hatted variables are the integrated values over the entire domain. In

addition we have assumed that Jn vanishes as y → ±∞ since |An| → 0. The

energy equation for the normal mode problem simply states that the growth rate

of the instability is determined by the difference between energy source due to PSI

activity (Ŝ) and energy sink due to dissipation (D̂1). Figure 3.6 shows the results

for υ = 1 and l = 0, where total energy source Ŝ and total dissipation D̂1 are

calculated using the most unstable eigenfuctions, and are normalized by the wave-

energy |Â1|2. Not surprisingly, the dissipative term D̂1 (green dots) increases as the

dissipation increases; at the same time, the energy source Ŝ (blue dots) also decreases

significantly (20 % compared to the inviscid case), indicating that dissipation also

disrupts the energy transfer. At higher dissipation a significant portion of the energy

(≈ 50%) generated via PSI is dissipated away.

The results for l = 0.1 is plotted in figure 3.7. For larger dissipation, the

situation is very similar to the l = 0 case: The total dissipation D̂1 increases signif-

icantly while the energy source Ŝ drops. On the other hand, as µ → 0 the system
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Figure 3.6: Energetics of PSI: l = 0. Ŝ (blue dots) and D̂1 (green dots) from
(3.79) are calculated and normalized by using the eigenfunctions, and are plotted
here as a function of µ. The numerically computed growth rate (red dots) and
the asymptotic prediction from (3.74) (dashed line) are also plotted for comparison.
υ = 1 and yL = −200.
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Figure 3.7: Energetics of PSI: l = 0.1. Ŝ (blue dots) and D̂1 (green dots) from (3.79)
are calculated and normalized by using the eigenfunctions, and are plotted here as a
function of µ. The numerically computed growth rate (red dots) and the asymptotic
prediction from (3.74) (dashed line) are also plotted for comparison. The vertical
line separates the boundary modes and the localized modes. υ = 1 and yL = −1500.

behaves very differently compared to the l = 0 case: when µ drops below 10−2, the

energy source Ŝ drops off rapidly while the energy dissipation D̂1 increases. These

two effects combine to stabilize the system when the dissipation is sufficiently small.

To further understand the stability problem in the small dissipation limit,

we will now examine the energetics more closely. If we integrate (3.77) from y to

∞, ∫ ∞
y

S(s)ds =
∫ ∞
y

D1(s)ds+ 2γ
∫ ∞
y
|A1(s)|2ds− J1(y) , (3.80)
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(3.80) states that total energy generated via PSI to the north of y is either dissi-

pated, converted into PSI wave, or transported out of the region between y and ∞.

(which is represented by J1(y). We will consider the three modes that are close to

the stability boundary (γR = 0) with dissipation µ1 = 0.002238, µ2 = 0.002512,

and µ3 = 0.002818; these modes correspond to the growth rates marked by A, B,

and C respectively in figure 3.7. The four terms in (3.80) are computed using the

eigenfunctions (normalized such that max(|A1|) = 1) and are plotted in 3.8 together

with the eigenfunction.

From the plot of |A1|2 in panel a, we can see clearly that the waves become

more and more de-localized as µ decreases; the eigenfunctions are very similar near

the turning latitude, but the eigenfunction for µ3 (blue curve) decays significantly

faster than the eigenfunction for µ1 (red curve). A plot of
∫∞
y |A1(s)|2ds (panel

b) illustrates the delocalization more precisely: the energy density integral for µ3

becomes constant when y ≈ −120, while for µ1 it converges only when y < −280.

Earlier we saw that the dissipation increases as µ decreases, and the plot of

energy flux J1 in panel c provides a possible explanation: as µ decreases, the merio-

dional energy flux becomes more negative, meaning that more energy is transported

southwards by the PSI waves. As the waves become increasingly oscillatory to the

south, dissipation is more effective since it increases with the wave-number. Thus

in this regime the energy generated near the critical latitude is transported to the

south where it is dissipated away, and the end result is that the global dissipation

increases despite a decrease in the dissipation parameter.

The other phenomenon we have observed earlier is that the overall energy

source via PSI Ŝ also decreases with µ.
∫∞
y S(s)ds is plotted in panel (e) of figure

3.8, which demonstrates how the source term changes over the domain. For µ3
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(blue curve), it first increases rapidly as we move south and away from the turning

point, indicating there is significant energy input near the critical latitude. For µ2

(green curve), the integral increases much slower near the critical latitude compared

to the previous case, and therefore energy input via PSI is greatly reduced. When

µ further decreases to µ3, the integral becomes negative near the turning latitude,

showing that the energy is in fact being drained from the PSI waves into the pump

wave. The integral continues to decrease as we head south until y = −50, where

a minimum is reached and the integral starts to increase; thus the source term is

positive to the south of y = −50, and energy is transfered from the pump-wave into

the PSI waves. The net transfer of energy Ŝ is small as the drain of energy to the

north is balanced by the gain of energy to the south.
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Figure 3.8: Energetics of PSI near the stability boundary. The eigenfunctions for µ =
0.002238 (red), µ = 0.002512 (green), and µ = 0.002818 (blue) are used to compute
the various terms in the energy equation (3.80). (a) |A1|2. (b)

∫∞
y |A1(s)|2ds. (c)

J1. (d)
∫∞
y D1(s)ds. (e)

∫∞
y S(s)ds. υ = 1 and yL = −1500. Please note that the

range for the horizontal axis in (a) is −100 < y < 5 but the range for (b) to (e) is
−400 < y < 5.
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3.3 More initial value problems

A couple of Initial value problems will now be presented to further illustrate some

of the properties of our PSI model discussed in §3.2.

3.3.1 Transient growth

Figure 3.9 shows the result of an initial value problem where υ = 2, l = 0.5,

µ = 0.028. The computational domain is [−200, 50], with a PML located between

[−200, 185]. The normal mode analysis shows that the system is asymptotically

stable, as the eigenvalue calculation shows the maximum growth rate to be γR =

−0.3267. The initial perturbation is in the form of a Gaussian wave packet:

A1(y, 0) = e−(y+25)2/5 cos(
√

26y), A2(y, 0) = 0 (3.81)

In the top panel of figure 3.9, |A1| is plotted for 0 ≤ t ≤ 2.5 and −80 ≤ y ≤ 5. As in

the example shown in §3.1, the wave packet splits into two components that travel

in opposite directions; between the wave packets, the wave amplitude experiences

a growth due to PSI. This growth continues exponentially, and the wave amplitude

increases from O(1) to O(105) by t = 20 (see the second panel); the growth comes

to an end at t ≈ 20, and the wave amplitude subsequently decays exponentially

at a rate that is consistent with the eigenvalue analysis. In figure 3.10 the wave

amplitude |A1| at various times are plotted, which illustrates the transient growth

more clearly.

The numerical result suggests that a very significant transient growth is

possible, even though the system is asymptotically stable. We will be examining

transient growth in much greater detail in §4.3.2.
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3.3.2 Boundary modes

The second example is one where a boundary mode eventually dominates the nu-

merical solution. In figure 3.11, the amplitude of the wave |A1| is plotted at various

times for υ = 2, l = 0.1 and µ = 10−4; the computational domain is similar to

the previous example. Panel (a) shows the initial perturbation given by a Gaussian

wave packet centred at y = −75:

A1(y, 0) = e−(y+75)2/5 cos(
√

75y), A2(y, 0) = 0 . (3.82)

The initial dynamics is similar to the previous example, where an exponentially

growing mode is excited between the wave packets (panels (b) to panel (f)); the

difference however is that the mode eventually gives way to an exponentially growing

boundary mode that dominates the solution (panels (g) to (l)). Note that the wave

profile appears to be solid due to the rapid oscillations, which are well resolved

by the grid used in the numerical computation. As in the normal mode anlysis in

§3.2.1, the type of boundary conditions (zero dirichlet, sponge layer or radiative)

had minimal effect on the growth rate of the unstable boundary modes in the IVP.
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Figure 3.9: An initial value problem with transient growth The results from a nu-
merical computation of the PSI model. |A1| is plotted in the top two panel, with
the top panel showing the initial growth from t = 0 to 2.5. The second panel shows
the entire computation from t = 0 to 40. Note that the color scale is different for
the two plots. A similar set of plots for |A2| are produced in the bottom two panels.
The parameters used are υ = 2, l = 0.5, and µ = 0.028, with the spatial domain
being [−185, 50] and a sponge layer located at [−200,−85]. Only the data from
[−80, 5] is shown here.
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Figure 3.10: An initial value problem with stable normal modes. |A1| at various
times are plotted. The parameters used are υ = 2, l = 0.1, and µ = 0.028, with the
spatial domain being [−185, 50] and a sponge layer located at [−200,−85]. Only the
data from [−80, 30] is shown here.
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Figure 3.11: An initial value problem with boundary mode. |A1| at various times
are plotted here. The parameters used are υ = 2, l = 0.1, and µ = 10−4, with the
spatial domain being [−185, 50] and a sponge layer located at [−200,−85]. Only the
data from [−200, 10] is shown.
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3.4 Summary

In this chapter we have presented an initial value problem in which a perturbation

in form of a Gaussian wave packet results in exponential growth, and a normal

mode analysis confirms the existence of unstable modes. The stability problem was

investigated numerically, as well as analytically in the limit of small dissipation and

small pump wavenumber (i.e. l� 1 and µ� 1). When l is non-zero, the unexpected

result is a vanishing dissipation has a stabilizing effect, which is confirmed by an

initial value problem; however the IVP also showed that a significant transient

growth is possible even when the PSI-waves are asymptotically stable. In the next

chapter we will explore the transient growth, as well as the stability of the PSI-model

in the inviscid limit.
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Chapter 4

PSI in the Inviscid Limit

The goal of this chapter is to further understand the PSI model in the inviscid limit.

There are two questions we would like to address:

1. What is the shape of the spectrum for the inviscid problem? In the previous

chapter, as we decreased the dissipation parameter (µ), the spectra eventually

became contaminated by unstable boundary modes that have little physical

meaning. While the analytical and numerical results suggests that the discrete

unstable modes will eventually become stable as µ→ 0, it is not clear if there

are other physical modes present.

2. What is the nature of the large transient growth observed in some initial value

problems? We are interested in understanding the mathematical explanation

behind the transient growth in an asymptotically stable system.
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4.1 Stability of the inviscid problem

To address the first question, we will solve the inviscid problem analytically via a

Fourier transform. Setting µ in (3.18) and (3.19) to zero, the inviscid equations are:

A1yy = (y − iγ)A1 + υeilyA2, (4.1)

A2yy = (y + iγ)A2 + υe−ilyA1. (4.2)

Applying Fourier transform F{·} to the equations, and defining F (q) = F{A1(y)e−ily/2}
and G(q) = F{A2(y)eily/2}, we have

dF
dq

= i
(
q2 + 1

4 l
2 + ql − iγ

)
F + iυG , (4.3)

dG
dq

= iυF + i
(
q2 + 1

4 l
2 − ql + iγ

)
G . (4.4)

Note that under Fourier transform, y is transformed into i d
dq . These equations can

be further simplified by a change of variable:

F̂ (q) = ei
“

1
3 q

3+
1
4 l

2q
”
F (q) and Ĝ(q) = ei

“
1
3 q

3+
1
4 l

2q
”
G(q) . (4.5)

(4.3) and (4.4) become:

dF̂
dq

= i(ql − iγ)F̂ + iυĜ , (4.6)

dĜ
dq

= iυF̂ − i(ql − iγ)Ĝ . (4.7)

We can eliminate one of the equations to form a second order ODE. For example,

using (4.7) to eliminate Ĝ in (4.6), we have:

d2F̂

dq2
+
[
(lq − iγ)2 + υ2 − il

]
F̂ = 0 . (4.8)

Defining z ≡
√

il
2

(
q − iγ

l

)
and H(z) = F̂ (q) the equation can be manipulated into

the standard parabolic cylinder equation:

d2H

dq2
−
[

1
4
z2 +

(
− iυ2

2l
− 1

2

)]
H = 0 . (4.9)
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In this case the solutions are U(a, z) and U(a,−z), where a = − iυ2

2l − 1
2 ; their

Wronskian is given by (Temme, 2010):

W =
√

2π
Γ(1

2 + a)
=
√

2π
Γ(− iυ2

2l )
, (4.10)

which will not vanish since the gamma function is finite along the imaginary axis.

Thus these two solutions to (4.14) are linearly independent, and form a satisfactory

basis.To carryout the inverse Fourier transform, H must remain bounded as q →
±∞; however we can demonstrate that this cannot be true if γR 6= 0.

We will first consider q → ∞. In this case arg z ≈ π/4, and the asymptotic

formula for |z| � 1 is given by (Temme, 2010):

U(a, z) ∼ e− 1
4
z2z−a−1/2 +O(1/z2) . (4.11)

Now since

z2 =
il

2

(
q2 − 2

iγ

l
q − γ2

l2

)
=
il

2

(
q2 − γ2

l2

)
+ γq , (4.12)

e−z
2/4 will be bounded as q → ∞ if and only if γR ≥ 0. On the other hand, as

q → −∞, arg z ≈ −3π/4, and the appropriate asymptotic formula is

U(a, z) ∼ e− 1
4
z2z−a−

1
2 − i

√
2π

Γ(1
2 − a)

eiπae
1
4
z2za−

1
2 +O(1/z2) . (4.13)

In this case the first term contains e−z
2/4, which will increase without bounds unless

γR ≤ 0. Combining the two constraints, we arrive at the conclusion that γR = 0 for

U(a, z) to be bounded. For the other solution U(a,−z), a similar analysis will lead

to the same conclusion.

Therefore for if H is to remain bounded as q → ±∞, γR = 0. What the

analysis above suggests is that for the inviscid problem, there are no unstable normal

modes. On the other hand, both U(a, z) and U(a,−z) remains bounded whenever

γ is purely imaginary. Thus a continuous spectrum of eigenvalues exists, and the

corresponding eigenfunction can be obtained by reversing the Fourier transform.
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4.2 Non-normal operators and transient growth

Traditionally in fluid mechanics, the hydrodynamical stability is considered through

normal mode analysis, where infinitesimally small perturbations can grow exponen-

tially into finite amplitude disturbances for unstable flows. The growth rates for

the normal modes are given by the eigenvalues, while the spatial structure is de-

scribed by the eigenfunctions. Normal mode analysis have been quite successful for

problems such as the Rayleigh-Bèrnard instability and Taylor-Couette instability, as

experimental and analytical prediction for instability agree (Trefethen et al., 1993).

However for shear flows such as plane Couette and Poiseuille flows, the onset of

turbulence occurs at Reynolds number much lower than the threshold predicted by

theory (Trefethen et al., 1993; Butler & Farrell, 1992). For example, Couette flows

are theoretically stable for all Reynolds numbers, but transition to turbulence was

observed in laboratory at Reynolds number of ≈ 360 (Tillmark & Alfredsson, 1992).

For plane Poiseuille flow, the critical Reynolds number unstable normal modes for

the Orr-Sommerfeld equation is Re > 5772.22 (Orszag, 1971), while transition to

full turbulence was observed for Re as low as 1000 (Carlson et al., 1982).

Since the 1990’s, the limitation of the normal mode analysis was gradually

recognized. It turns out that for a problem where the operator is ‘normal’ (i.e. the

eigenfunctions are orthogonal), the behaviour of the system is completely determined

by the spectra. The linear operators in the Rayleigh-Bèrnard and Taylor-Couette

stability problems fall into this category, and therefore the normal mode analysis

succeeded in predicting the onset of instability (Trefethen et al., 1993). In contrast,

the Orr-Sommerfeld operator for shear instabilities is in fact ‘non-normal’, in the

sense that the eigenfunctions are not orthogonal. A consequence of non-orthogonal

eigenfunctions is that while the long term behavior of a system is dictated by the
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spectra, these systems can have significant transient growth, which the normal mode

analysis fails to capture.

4.2.1 A simple example

The following example was used by Farrell & Ioannou (1996) to illustrate some of

the features of non-normal operators. Consider a simple 2× 2 matrix:

A =

−1 − cot θ

0 −2

 , (4.14)

A matrix M is defined to be normal if MM † = M †M , where † denotes the Hermitian

transpose1. Here we have

AA† −A†A =

cot2 θ cot θ

cot2 θ 0

 , (4.15)

and therefore A is normal only if θ = π/2, and becomes increasingly non-normal

as θ → 0. It turns out that the non-normality can play an important role in the

transient behaviour of a dynamical system. Farrell & Ioannou (1996) considered the

following dynamical system:
dx
dt

= Ax . (4.16)

The matrix A has eigenvalues r = −1 and r = −2 with eigenvectors v1 = (1, 0) and

v2 = (cos θ, sin θ), and the general solution is given by:

x = c1e
−t

1

0

+ c2e
−2t

cos θ

sin θ

 . (4.17)

Consequently all solutions are asymptotically stable (i.e. x → 0 as t → ∞ for all

initial conditions x0), with decay rate −1. Farrell & Ioannou (1996) continued on

1A Hermitian transpose is also known as the conjugate transpose
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to demonstrate that an asymptotic stability analysis does not capture the dynamics

of the system as θ → 0. In this limit, v2 → v1, and the eigenvectors become almost

parallel to each other. The ramification is that if the initial condition is almost

orthogonal to these eigenvectors, c1 and c2 have to be large and have opposite signs

in order for the initial condition to be satisfied. For example, the solution with

initial condition x0 = (sin θ,− cos θ), which is orthogonal to v2, will be given by

c1 = sin θ + cos θ cot θ = csc θ and c2 = − cot θ; clearly in this case as θ → 0, c2

decreases without bound, and c1 → −c2. The solution to the initial value problem

is

x = e−t

csc θ

0

+ e−2t

sin θ − csc θ

− cos θ

 . (4.18)

Now as t increases, the second term will quickly vanish, while the first term can

have a magnitude much greater than unity if θ is small. As |x0| = 1, this indicates

that the amplitude experiences a significant growth before decaying. To further

illustrate this, notice that the solution to (4.16) with initial condition x(0) = x0 can

be written as:

x = eAtx0 , (4.19)

If we restrict ourselves to initial conditions that satisfies |x0| = 1, then

max |x| = max
|x0|=1

|eAtx0| = ||eAt|| , (4.20)

where || · || denotes the induced matrix 2-norm. ||eAt|| is therefore a measure of the

maximum magnitude of x. In figure 4.1, ||eAt|| for θ = π/2,π/4,π/10, and π/100

are plotted as a function of time. For all four cases, the curves all become a straight

line with slope -1 in accordance with the asymptotic stability analysis. The main

difference is that for θ = π/2, which corresponds to A being a normal matrix, the

solution decays with a decay rate of -1 for all t. On the other hand, as θ decreases
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Figure 4.1: Transient growth for a simple dynamical system. ||eAt|| is plotted for four
values of θ: θ = π/2,π/4,π/10, and π/100, where A is defined in (4.14). Also plotted
as dash line is the initial growth rate give by 1

2(−3+csc θ), and the asymptotic decay
rate -1 for θ = π/2. Note that the vertical axis is in logarithmic scale.

to π/4 and π/10, A becomes increasingly non-normal, and the decay in ||eAt|| is

delayed. For π/100, the difference is even more remarkable, as ||eAt|| increased

almost an order of magnitude before decaying. The initial growth rate near t = 0 is

given by the maximum eigenvalue of (A+A†)/2, which in this case is 1
2(−3 + csc θ)

(Farrell & Ioannou, 1996). This suggests that for positive initial growth the criterion

is θ < π/9.244. From figure 4.1, we can see that for θ = π/10 < π/9.244, ||eAt||
indeed increases slightly near t = 0. For θ = π/100, the curve for ||eAt|| agrees well

with the predicted initial growth rate of 1
2(−3 + cscπ/100).
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4.2.2 Non-normal operators and fluid dynamics

This simple example in the previous section illustrates that while the dynamics of

a normal system can be characterized by the eigenvalues, they do not capture the

transient behaviour for non-normal systems. This fact was demonstrated clearly in

a study by Reddy et al. (1993) where the Orr-Somerfeld operator in the Poiseuille

problem was analyzed; for a Reynolds number in the stable regime, the energy

increased by a factor of 51 before the perturbation decayed away. Similarly, Butler

& Farrell (1992) investigated the optimal excitation of perturbations in a plane

Couette flow, and found energy amplifications of O(1000) despite Couette flow being

stable. The implication of these findings is that transient growth can amplify small

perturbations and trigger the transition to turbulence without the need to normal

mode instability. Non-normal operators also received attention in the geophysical

fluid dynamics community in recent years, for example in the studies of baroclinic

instability, error amplification in weather forecast, El Niño, and the stability of

thermohaline circulation (Farrell & Ioannou, 1996; Trefethen & Embree, 2005, Ch.

23, and references therein).

4.3 Pseudospectra and PSI

4.3.1 Pseudospectra

Properties of a non-normal operator/matrix can be characterized by the pseudospec-

tra. For ε ≥ 0, the ε-pseudospectra of matrix A, σε(A), is defined as the set of z ∈ C

such that z is an eigenvalue of A+E for some perturbation matrix ||E|| ≤ ε (Reddy

et al., 1993). For normal operators, a perturbation to the matrix A of size ||E|| ≤ ε
will perturb the spectra of A, σ(A), by a distance no more than ε. On the other
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hand, for a non-normal matrix the eigenvalues can be perturbed much larger than

the perturbation to the matrix (Reddy et al., 1993). The pseudospectra has to be

computed numerically for most cases, and it provides a convenient way to visualize

the degree of non-normality of an matrix operator.

One important information that can be extracted from the pseudospectra is

the lower bound to the maximum of ||eAt||. Suppose that αε(A) is the supremum of

the real part of σε(A), then the following inequality holds:

sup
t≥0
||eAt|| ≥ αε(A)/ε . (4.21)

Since (4.2) holds for all ε ≥ 0, a good estimate for the lower bound is the Kreiss

constant, which is defined as

K(A) = sup
ε≥0

αε(A)/ε , (4.22)

which leads to

sup
t≥0
||eAt|| ≥ K(A) . (4.23)

For details, please see Reddy et al. (1993) or Chapters 14 ad 15 in Trefethen &

Embree (2005).

4.3.2 Transient growth

We will now consider our stability problem in the context of pseudospectra. Re-

writing (3.1) and (3.2),

A1t = −i
[
−(1− iµ)A1yy + yA1 + υeilyA2

]
, (4.24)

A2t = −i
[
(1 + iµ)A2yy − yA2 − υe−ilyA1

]
. (4.25)

(4.24) and (4.25) can be written as a dynamical system:

d ~A

dt
= −iM ~A , (4.26)
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where M is the matrix resulting from a spatial discretization. In this section we are

going to discretized the spatial derivative using a spectral collocation (or pseudo-

spectral) method using Chebyshev polynomial as interpolant (see Weideman &

Reddy (2000) or Trefethen (2000) for more details). While the resulting matrix

is dense compared to the finite difference scheme used in chapter 3, its smaller size

allow for the use of eig in MATLAB to compute the full set of eigenvalues; in

addition it results in much better convergence in the calculation of the pseudospec-

tra. We have compared the spectra for the same set of parameters using the same

method, and they agree over the region of interest.

In §3.3.1, we have seen that for υ = 2, l = 0.5, and µ = 0.028, the PSI waves

grew significantly before decaying as predicted by the normal mode analysis, and we

would like to investigate this transient growth with the aid of the pseudospectra as-

sociated with the spatial operator. The pseudospectra for the corresponding matrix

M is calculated using the eigtool package2 for MATLAB. Due to the extra factor

of −i in (4.26), we will have to consider the imaginary part of the spectrum and

pseudospectra for information pertaining to growth. In figure 4.2, we can see that

all eigenvalues (black dots) lie below the real axis, and therefore the normal modes

are stable, confirming the long term behaviour exhibited by the IVP in §3.3. On

the other hand, the pseudospectra protrudes significantly above the real-axis, indi-

cating that the discretized matrix M is highly non-normal. By considering σε(M)

for ε = 10−3, we can see that a perturbation of O(10−3) results in an O(1) shift

in the eigenvalues. Since the operator is non-normal, the transient growth we have

observed in the IVP should not be surprising.

We will now take a closer look at the transient growth in the corresponding
2Thomas G. Wright. EigTool. http://www.comlab.ox.ac.uk/pseudospectra/

eigtool/, 2002.
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Figure 4.2: Pseudospectra for a stable system. The ε-pseudospectra for the dis-
cretized spatial operator M for (4.24) and (4.25) is plotted (from top to bottom) as
level curves for ε = 10−2, 10−3, . . . 10−14. The eigenvalues are plotted as black dots.

IVP by considering the total energy contained in the PSI waves:

Etot(t) =
∫ ∞
−∞

(|A1|+ |A2|) dy (4.27)

In figure 4.3, Etot (normalized so that the Etot(0) = 1) is plotted as a function of

time (blue curve). We can see that the energy increased to almost 1013 times the

initial energy before the decay sets in at a rate predicted by the eigenvalues (dashed

black line). The magnitude of growth is consistent with the lower bound given by

(4.21): from figure 4.2, the ε-pseudospectra for ε = 10−7 have a maximum imaginary

part of 0.187, and therefore the lower bound for the maximum growth of ||eAt|| will
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be 1.87×106, which is equivalent to an increase in energy by a factor of ≈ 3.5×1012.

This estimation is plotted in figure 4.3 as the blue dotted line, which shows that the

observed amplification is in line with the prediction given by the pseudo spectra.

In figure 4.3, Etot for µ = 0.033 (green curve) and µ = 0.038 (red curve) are

also plotted for comparison. The dissipation parameter µ appears to only have a

minor effect on the transient growth rate; the onset of transient growth is delayed

slightly for µ = 0.038, but in all three cases the transient growth is exponential with

comparable growth rates. The transient growth continues pass t > 15, before the

growth/decay predicted by the normal mode analysis sets in.

The growth rate for Etot in the transient phase is estimated to be ≈ 2.6,

whereas the asymptotic growth rates are -0.65, 0.015, and 0.50 respectively for

µ = 0.028, 0.033, and 0.038. This indicates that the transient growth plays a

significant role in the evolution of the PSI-waves, particularly in cases where the

normal modes are neutral or stable; even when unstable normal modes are present,

the transient growth can still occur at a significantly shorter time scale compared

to the asymptotic growth.

We will present a plot to illustrate the dependence of transient growth on

the initial condition. In figure 4.4, we have plotted Etot for five different initial

configurations (see table 4.1). We have not explored in depth the optimal excitation

that leads to the maximum transient growth, but from the figure we can notice that

the wave-number of the perturbation affects the transient growth significantly.

The physical significance of our result is that transient growth, rather than

unstable normal modes, appears to be the dominant force in the excitation of PSI-

waves in certain regimes; even in cases where the PSI-waves are asymptotically

stable, the transient growth may be sufficiently large for a transition into a non-
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Figure 4.3: Transient growth in a time dependent problem. The total energy for the
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the right are the asymptotic growth/ decay predicted by the eigenvalues, while the
blue dotted line is the minimum growth predicted by the pseduospectra.

linear regime.
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Figure 4.4: Initial condition and transient growth. The total energy Etot for different
initial conditions are plotted as a function of time. υ = 2, l = 0.5, and µ = 0.028.

Table 4.1: Initial conditions for figure 4.4

A1(y, 0) A2(y, 0)
IC1 e−(y+25)2/5 cos(

√
5y) 0

IC2 e−(y+25)2/5 cos(
√

5y) ie−(y+25)2/5 cos(
√

5y)
IC3 e−(y+25)2/5 cos(

√
40y) 0

IC4 e−(y+25)2/5 cos(
√

15y) 0
IC5 e−(y+25)2/5 cos(

√
25y) 0
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4.3.3 Numerical difficulties

The non-normality in operators/matrices also results in complications during nu-

merical computations of eigenvalues, since the operator is sensitive to errors; the

round off errors act as a perturbation to the matrix, and if the operator is non-

normal, the perturbation is sufficient to shift the eigenvalues. An example of the

round-off errors can be detected in figure 4.2; near the center of the plot where the

three branches meet, the eigenvalues are not symmetric about the imaginary axis,

and they are sensitive to slight changes in the domain length.

Reddy et al. (1993) considered the Airy operator

i
Re

d2

dy2
+ y , (4.28)

as a model for the Orr-Sommerfeld operator in shear-flow instabilities. The spectra

of the Airy operator consists of three branches in a ‘Y’-shape, which resembles the

spectrum in figure 4.2. Reddy et al. found the operator to be non-normal, and the

eigenvalues near the intersection were difficult to compute as they were sensitive to

perturbations; the sensitivity increased with as the Reynolds number Re increased.

Notice that the Airy operator is in fact part of the spatial operator in our PSI-model,

and Re → ∞ in Reddy et al. corresponds to µ → 0 in our model. Thus in hind

sight, we should not be surprised by the non-normality of our eigenvalue problem

in the inviscid limit.

The effect of round-off error is much more evident in figure 4.5, where the

eigenvalues for discretized operator with υ = 6, l = 1.5 and µ = 0.1 are computed

using two different level of precision. In the right panel, the eigenvalues are calcu-

lated using double precision floating point, and we can see that the eigenvalues line

up along the boundary of the pseduospectra with ε = 10−14. In the left panel, the
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eigenvalues for the same matrix were computed with single precision; the eigenvalues

near the center now lie along the pseudospectra for ε = 10−6. At the same time,

the eigenvalues in the lower left and right regions of the spectra are very similar for

the two computations, showing that a change in numerical precision did not affect

the accuracy significantly for these parts of the spectra.

When the non-normality becomes severe, the round-off error prevents the

eigenvalues near the center from being calculated accurately. The growth rate pre-

dicted by our asymptotic theory in §3.2.2 (c.f. (3.74)) for υ = 6, l = 1.5 and µ = 0.1

is 0.346. In panel (b) of figure 4.5, the predicted eigenvalue of 0.346i is right in

the middle of the area enclosed by the eigenvalues perturbed due to round-off error.

Due to the severe non-normality, the true eigenvalue cannot be resolved even by the

eigs command in MATLAB.

This effect of non-normality is the most prominent in the transition region

between the boundary modes in the inviscid limit to the localized modes. The

example considered above is marked in panel (b) of figure 3.5 by A. As the largest

γR reported by the eigenvalue calculation near A is the perturbed eigenvalue due to

the round-off error rather than the true eigenvalue, the growth rate is potentially

overestimated. This explains why the numerically calculated growth rate agrees

with the prediction for larger values of µ, but they break off suddenly from the

prediction when µ becomes too small. By computing the pseudospectra near the

breaking point for decreasing values of µ, we have confirmed that the round off error

starts affecting the eigenvalue with the largest growth rate precisely at the breaking

point in the plot.

The non-normality of the matrix also affected the use of iterative schemes,

such as the eigs function in MATLAB, for the computation of eigenvalues. In
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Figure 4.5: Effect of non-normality on the calculation of eigenvalues The eigenvalues
computed for υ = 6, l = 1.5 and µ = 0.1 for (a) single precision floating point, and
(b) double precision floating point.

particular, when the eigenvectors become almost linearly dependent, the convergence

in such iterative schemes can be significantly slowed (Trefethen & Embree, 2005);

this has been a problem for our calculations, especially in the invisicid limit. An

additional complication is that even when the iterations converge, the estimated

eigenvalues (Ritz values) are not guaranteed to be close to the actual eigenvalues

(Trefethen & Embree, 2005). Indeed in the inviscid limit we encountered difficulty

in using eigs to compute the eigenvalues as the convergence was slow.

4.4 Summary

In this chapter we considered the stability of the inviscid PSI problem, and concluded

that there are no unstable normal modes. In addition, as µ→ 0, the spatial operator

in our model becomes non-normal. A consequence of the non-normality is that a

significant transient growth can occur with suitable perturbations, and the transient

75



growth can in fact dominate the dynamics of PSI. Therefore in the inviscid limit,

the PSI model may best be understood via its transient dynamics, rather than the

traditional modal instability.
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Chapter 5

Discussion

5.1 Horizontal dissipation

In this thesis, we have formulated a linear model for PSI, and explored its behaviour

in Chapter 3. Solving the PDE numerically as an initial value problem revealed

the presence of exponentially growing normal modes, which suggest that the PSI

problem can be formulated in a normal mode stability analysis. The main result is

that for a meridionally propagating pumpwave (i.e. l 6= 0), instability can only occur

when the horizontal eddy viscosity µH is sufficiently large. Through the analysis

of the energy equation, the stability in the inviscid limit can be attributed to two

factors. A reduction in µH increases the meridional energy flux towards the equator,

which prevents a build up of energy in the PSI waves near the critical latitude. At

the same time the energy transfer from the pump wave to the PSI waves is also less

effective.

The β-effect and the dissipation together limit the horizontal extent of PSI.

As the PSI-waves are near-inertial at the critical latitude of 28.9◦, the decrease in

Coriolis force to the south implies that the horizontal wave number must increase,
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and therefore the wave energy is dissipated away more rapidly to the south. This

provides an alternative mechanism to the localization of PSI seen in MacKinnon

& Winters (2005), where the localization was attributed to a vertical divergence in

energy flux preventing a build up of energy to the south of the critical latitude.

Depending on the horizontal scale, the horizontal eddy diffusivity measured

from dye-release experiments ranges from 10−2 m2s−1 for a horizontal scale of 0.1km

to 103m2s−1 at a scale of 1000km (Ledwell et al., 1998). The intermediate values of

100 − 101m2s−1 correspond to µ ∼ 10−2 − 10−1 since the eddy diffusivity is scaled

by λ3β = 1.36 × 102m2s−1. For this range of µ, our model predicts that the PSI

activity will be localized to between 15-30 units, or 300-600km, to the south of the

critical latitude (c.f. figure 3.3 for example). For comparison, the Hawaiian Islands,

which is a strong site for generation of mode-1 internal tides, lies between 19.5◦N to

22◦N, or approximately between 750 to 1000 km south of the critical latitude. Thus

the meridional extent of PSI imposed by horizontal eddy diffusion can be significant

compared to other length scales, such as the source location for the pump-wave.

For an near-intertial wave, we can demonstrate that the horizontal eddy

diffusivity is significant compared to vertical eddy diffusion. For a plane wave, the

horizontal and vertical eddy diffusion can respectively be characterized by µH(k2+l2)

and µVm
2. We wish to consider the ratio between the two quantities. Using the

dispersion relation for an internal wave with the near-inertial approximation ω = f0,

f = f0 + βy, and N � f

µH(k2 + l2)
µVm2

=
µH
µV

ω2 − f2

N2 − f2
≈ µH
µV

−2f0βy

N2
. (5.1)

Taking µV = 10−5m2s−1, µH = 10m2s−1 and the parameters from table 2.1, the
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last term in (5.1) is:
µH(k2 + l2)
µVm2

=
−y

27km
(5.2)

What this tells us is that near the origin, the vertical dissipation is much larger

than the horizontal dissipation, which is expected since near the critical latitude, the

vertical structure of near-inertial waves is much finer than the horizontal structure;

however as the wave packet moves south, the horizontal wave number increases, and

at 27km south of the critical latitude the horizontal dissipation is the same order

of magnitude as the vertical dissipation. This justifies the include of the horizontal

dissipation in our model.

In summary, while horizontal dissipation was included originally as a cure

for numerical issues (boundary modes), it is clear that it is in fact dynamically

significant for an near-inertial wave on the β-plane.

The normal mode problem of our PSI model is also interesting from a math-

ematical perspective. We were able to calculate the exact solution to the eigenvalue

problem with µ = l = 0, where a continuous spectrum of unstable modes are possi-

ble when υ > 0. On the other hand, while a continuous spectrum of eigenfunctions

also exists for the inviscid problem with µ = 0 but l 6= 0, the eigenfunctions are all

stable. This suggests that µ = l = 0 is a singular limit as we cannot recover the

solutions by taking l→ 0. The inviscid solutions appear to be singular as well since

the growth rate of the discrete normal modes in the dissipative problem tends to

−∞ as µ→ 0.
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5.2 Transient growth

Another interesting mathematical property of our model is the non-normality of

the spatial operator. As we approach the inviscid limit, the eigenfunctions for the

operator become parallel to each other, which caused difficulties in our numerical

computations for eigenvalues. A closer look at our spatial differential operator re-

vealed connections to the Orr-Sommerfeld operator for the stability problem in plane

Poiseuille and Couette flows, and the Airy operator, which are all non-normal.

One of the ways the non-normality manifests itself in a time dependent prob-

lem is through transient growth. Through a series of initial value problems, we have

demonstrated that transient growth is indeed possible, despite the system being

asymptotically stable. Even in cases where the system is asymptotically unstable,

the transient growth rate is in fact much higher than the growth rate for the unstable

normal modes.

The amplitude and wavelength of the pump-wave considered in YTB corre-

sponds to υ ≈ 3 and l ≈ 1 with our scaling. With 10−2 < µ < 10−1, the PSI is in the

regime where the growth rate increases with dissipation (c.f. panel (a) of figure 3.3).

For µ = 0.05, the normal modes are all stable, yet the pseudo-spectra indicates the

possibility of large amplitude transient growth (see figure 5.1). The implication is

that the transient growth we observed may be oceanographically relevant; transient

growth may be the mechanism via which a transition into non-linear regime takes

place, rather than via normal mode instability.
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Figure 5.1: Pseudospectra for a stable system. The ε-pseudospectra for υ = 3, l = 1,
and µ = 0.05 are plotted as level curves for ε = 10−1, 10−3, . . . 10−8. The eigenvalues
are plotted as black dots. The operator is discretized using a spectral collocation
method using Chebyshev polynomials as interpolant over the domain [−75, 75]

5.3 Outstanding issues

In this thesis we have established that dissipation plays an important role in the

stability of PSI. However a number of key questions remain:

1. What are the implications of a realistically stratified ocean?

Through-out this thesis we have assumed a linearly stratified ocean, and the

vertical structure of the PSI wave and that of the pump wave are assumed to

be independent. Further more, the pump-wave is assumed to be a plane wave.
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A more realistic profile for the ocean is the Gill’s profile, where the ocean

is modeled by a mixed layer with uniform density near the surface, and the

density increases smoothly below the mixed layer (Gill, 1984). Mathematically,

the buoyancy frequency is given by:

N(z) =

 0 if 0 ≤ z ≤ hmix
N0/(z − z0) if z ≥ hmix

(5.3)

The internal-tides associated with this profile can be solved analytically, and

these can be used in place of the planar pump-wave in our model. YTB

investigated PSI with the Gill’s profile on the f -plane, and found intensification

of PSI at the base of the mixed layer. On the other hand, the measurements of

Alford et al. (2007) found PSI activity extending much deeper into the ocean.

By generalizing our model to a realistically stratified ocean, we can perhaps

better reproduce the observations.

2. How is the vertical scale of the PSI-waves determined?

Another aspect of PSI that demands clarification is the vertical scale selection.

The numerical results of MacKinnon & Winters (2005) and the field data of

Alford et al. (2007) both suggest that PSI favours a particular vertical scale.

In the current model the vertical wavenumber m is a scaling parameter, and

therefore it is not clear immediately whether vertical scale selection occurs.

3. What is the optimal excitation for transient growth?

For parameters that are oceanographically relevant, our analysis earlier in-

dicated the potential for significant transient growth. We have also demon-

strated that the transient growth depends strongly on the initial perturbation.
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Therefore to fully understand PSI in the ocean, we must understand the rela-

tionship between the perturbation and the subsequent transient growth.

4. When does non-linearity become dynamically important?

Both YTB and the current study is based on the linear model of PSI, but It is

clear in our model that perturbations are either transiently or asymptotically

unstable, and small perturbations can be amplified to the point where a con-

stant amplitude for the pump-wave is no longer valid. In addition the main

motivation for the study of PSI is to understand the energy transfer out of

internal tides, which requires a model with genuine three-mode coupling that

is similar to (1.7) to (1.9). Our linear model essentially takes the form:

i
∂A1

∂t
+ propagation terms = ΥA2 , (5.4)

i
∂A∗2
∂t

+ propagation terms = ΥA∗1 , (5.5)

which is similar to the three mode model of Bretherton (1964). In the deriva-

tion of our PSI model (chapter 2), the evolution equation for the pump-wave

can be derived if we allow the background variables to vary on the slow time

scale. We expect the third equation to take the form of:

i
∂Υ
∂t

+ propagation terms = A1A2 . (5.6)

The fully non-linear equations will allow us to explore a wider range of prob-

lems and resolve some outstanding issues. One important issue is the dis-

crepancy between the catastrophic loss of energy from the internal tide in the

numerical model of MacKinnon & Winters (2005), and the more moderate loss

measured by Alford et al. (2007); while the results of YTB and our study sug-

gests that the time-scale over which the instability occurs is oceanographically
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relevant, one must study non-linear effects such as saturation of the instability

and the feedback on the pump-wave to fully understand the PSI in the ocean.
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