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Abstract

We consider a pair of uncoupled conditional oscillators near a subcritical Hopf bifurcation that
are driven by two weak white noise sources, one intrinsic and one common. The effect of the
competition between the common and intrinsic noise forcing on the synchronization behaviour of
the phases of these two oscillators is studied.

Using a stochastic multiple scales method, we derive the envelope equations of the oscillators and
then use the theory of linearized stochastic differential equations as well as an asymptotic analysis
to study the probability density of the phase difference of the oscillators. It is found that common
noise increases the degree of synchrony in the pair of oscillators and that it can be characterized by
the ratio of intrinsic to common noise. Furthermore, the nonlinear dynamics of the oscillators can
affect the character of this synchronization in terms of the average phase difference. The results are
also related to the study of spike time reliability and possible implications are briefly discussed.
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Chapter 1

Introduction

Synchronization and coherence of multiple oscillators is of general interest to many scientific and
engineering disciplines, notably in biology and neurophysiology where modeling of various chemical
and cellular processes by dynamical systems is common [27, 37]. The electrophysiological behaviours
of individual cells are often studied using mathematical models like the Hodgkin-Huxley (HH) [20]
and Morris-Lecar (ML) models [31]. These models can be classified as oscillators because they
display repetitive behaviour under certain conditions. Modelling of individual cells is useful in
studying processes that occur on a larger scale, like travelling wave patterns in brain tissue and
coherent beating rhythm of the heart that depend on “collective oscillations”. Phenomena like
these often depend on the synchronization of cellular dynamics. Other applications such as these,
from a broad variety of disciplines, continue to motivate the study of oscillator synchronization.

Synchrony has been studied in weakly coupled oscillators for many years. It has been found that
identical oscillators synchronize when interaction occurs through diffusive coupling [34]. When the
dynamics of the oscillators are similar, but not identical, then oscillator entrainment with a constant
phase shift occurs. This study is also an early example of the method of phase reduction, where
the dynamics of a limit-cycle oscillator are described via a phase variable. In 1984, Kuramoto
laid much of the groundwork for the study of deterministic oscillations, including the method
of phase reduction [27]. Kuramoto is now a standard reference for those studying oscillations.
Within the field of neurophysiology, there is an array of possible interneuron coupling methods
(excitatory vs. inhibitory coupling, delayed coupling) mediated through synaptic coupling. There
is also a broad variety of dynamical behaviours that exist in various neuronal models (spiking,
bursting, mixed mode oscillations). As such, many works on the study of weakly coupled oscillators
have been written in a neurophysiological context [1, 6–9] using these models. A few of these
models are discussed in section 1.1.3. Given that many oscillatory systems are exposed to noise,
studies have also been undertaken to investigate the effects of stochastic forcing on oscillators
and coupled oscillatory systems [15, 29]. Stochastic effects in dynamical systems have long been
known to lead to behaviours that are unpredictable by deterministic theory. Several of them,
surprisingly, lead to increased orderly behaviour in certain dynamical systems. One of the most
famous examples is stochastic resonance, whereby stochastic forcing in conjunction with weak
periodic driving in a bistable potential results in well transitions that are in-phase with the periodic
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Chapter 1. Introduction

driving. The noise is an essential component to this phenomena as coherent transitions do not
exist if either the noise or periodic driving is eliminated from the dynamics. There are other similar
orderly behaviours induced by noisy forcing such as coherence resonance and self-induced stochastic
resonance, [14, 28, 38]. Many of these effects are counter-intuitive because any addition of noise
into a dynamical system is generally seen as having a detrimental effect on the coherence and order
of the system.

Recently it has been revealed that a common noise source synchronizes oscillators that are
uncoupled. That is, when two oscillators that are not interacting with each other experience the
same noisy forcing simultaneously, their dynamics begin to synchronize. This is another example
of order induced by noisy forcing and this result has attracted much attention since its discovery.
Noise induced synchronization is a non-intuitive result, but is not totally unexpected as it is widely
known that forcing two identical oscillating systems with the same smooth forcing function leads to
entrainment of their dynamics. The validity of noise induced synchronization has been confirmed
by experiments on olfactory bulb neurons [13].

There has also been a great deal of interest in noise induced oscillator synchronization as it
pertains to the phenomenon of Spike Time Reliability (STR) of neuronal cells. STR refers to the
phenomenon whereby repeated applications of rapidly fluctuating applied stimulus to a neuron
produce an essentially identical response with each application in the neuronal dynamics where
repeated application of a constant current fails to do so. Experiments involving prepared slices of
neuronal tissue have confirmed this phenomenon to be true several times [5, 30] and there is some
theoretical work supporting STR [4]. There are clear implications of STR on synchronization of
uncoupled oscillators. The main result of STR implies that if many similar neuronal oscillators are
subjected to the same noisy forcing simultaneously, their behaviour synchronizes, despite the fact
that the neurons are not interacting with each other. STR is discussed in more detail in section
1.1.4.

The study of oscillator synchronization has yielded two major methods that are often used to
characterize synchronous behaviour. The first is the probability density function for the phase dif-
ference. To compute the phase distribution, Fokker-Planck theory is usually incorporated into the
analysis[16]. Goldobin and Pikovsky use Fokker-Planck analysis to derive the probability density
for the phase difference of multiple phase oscillators [18]. They study a pair of phase oscillators in
two different situations. In one case, the oscillators under study have different angular velocities
and experience only common noise forcing and in the other, the oscillators are identical and experi-
ence both common and intrinsic noise forcing. They find that in both cases the differences between
the oscillating systems cause intermittent phase slips, which are brief periods of desynchronization
of phase oscillators, by observing the power law tails of the distribution and numerical simulations.
More recently, Nakao et al. studied synchrony of multiple oscillators by calculating the probability
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Chapter 1. Introduction

density function of the phase difference for a general class of limit-cycle oscillators with great suc-
cess [33]. Moreover the analytical results are very accurate quantitatively, when compared to the
numerical results. The work also predicts the emergence of multiple phase clusters of oscillators
under certain multiplicative noise conditions; a very non-intuitive result. This clustering is pre-
dicted by observing the probability density function for the phase difference from the mean. The
existence of common noise forcing in addition to intrinsic noise produces a peak at phase difference
zero (or multiple peaks) in the probability density function. This indicates a comparatively greater
probability of observing the phases of the oscillators near the same value and thus synchronous
behaviour exists, although it is not perfect. They predict the phase slipping observed in the simu-
lations in the presence of weak intrinsic noise by observing the power law tails of the distribution.
More recent studies of oscillator synchronization have built on these important analyses for both
uncoupled and coupled oscillators. Ly and Ermentrout applied a combination of Fokker-Planck,
Perturbation and Fourier analysis to the study of noise induced synchronization of coupled limit-
cycle neuronal oscillators [29]. The perturbation expansion method utilized in this work agrees
quite well with numerical data simulated using both a Monte-Carlo and numerical Fokker-Planck
solution. Other numerical studies involving the computation of the probability density function
from the Fokker-Planck equation for uncoupled oscillators have supported the conclusion of noise
induced synchronization of uncoupled limit-cycle oscillators [11]. The use of Fokker-Planck anal-
ysis allows the authors to derive the probability density function for the phase distribution and
determine qualities of the synchronization analytically, however the calculation of the Lyapunov
exponent is also a useful way of characterizing the dynamics.

Recent theoretical studies have revealed that the emergence of a negative leading Lyapunov
exponent is a good criterion for noise driven synchronization. In several studies where the phase
probability density is derived, the calculation is supplemented by the calculation of this Lyapunov
exponent [18, 33]. Teramae and Tanaka [43] found that a negative Lyapunov exponent is a strong
criterion for noise driven synchronization of a general class of oscillators. They define this Lya-
punov exponent for the synchronized state using the phase response curve [27]. Moreover, they
provide a general criterion under which two oscillators can display stable synchronization under this
characterization, which is that the phase response curve has a second derivative. Oscillators that
do not have this characteristic, such as the leaky integrate-and-fire model, appear to synchronize
in the presence of solely common noise but, in fact, spend time fluctuating about the synchro-
nized state in between intermittent phase slips with temporal distribution given by a power law
[32]. This is unlike oscillators with a continuous phase response curve, where the phase difference
becomes exponentially small in the presence of strictly common noise. The negative Lyapunov ex-
ponent criterion for synchrony is supported by Goldobin and Pikovsky [18] who perform a similar
calculation of the Lyapunov exponent on the Van der Pol-Duffing oscillator in conjunction with
the aforementioned Fokker-Planck analysis of the stochastic dynamics. The authors give a more
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Chapter 1. Introduction

general definition for the Lyapunov exponent of the phase difference equation in [19]. They confirm
that perfect synchronization is possible for idenitical phase oscillators forced with the same noise.
Furthermore, they discuss the effect of slightly different dynamics in multiple oscillators and find
that when the number of oscillators is greater than 2, perfect synchronization is not possible. They
also find that desynchronization of oscillators occurs when the common noise strength is sufficiently
large and the oscillator has a sufficient degree of nonisochronicity. All these conclusions are drawn
from analysis of the Lyapunov exponent which is often calculated numerically especially in the case
where intrinsic noise is of non-zero strength where analytical calculation is often not possible. In
the work of Nakao et al., the Lyapunov exponent confirms the existence of perfect synchrony when
intrinsic noise is not present [33]. By perfect synchrony, we mean there are no phase slips.

The current theory pertains to limit-cycle oscillators and phase reduction theory is applicable.
Specifically, phase reduction applies in the limit where perturbations from the limit-cycle do not
have a significant effect on the phase dynamics because the system is strongly attracted to the
limit-cycle. This is often the case when the oscillators are forced with weak noise. Other works
have also studied the validity of the method of phase reduction even in the presence of weak noise
forcing. Yoshimura and Arai study this question in detail and propose an alternative method of
phase reduction [44]. Further, they discover a mean shift in oscillator frequency as a result of the
noisy forcing. Teramae et al. studied the validity of phase reduction of stochastic oscillators and
determined a new phase equation is required in order to account for time-correlated noise and the
rate of attraction to the limit-cycle [42]. Their result is consistent with the results of both [44]
and previous results. This consistency is achieved by considering two different limits of the ratio
of noise-correlation time and decay rate to the limit-cycle.

To date, there is no existing theory that deals with the case of conditional oscillators subject
to common noise forcing as the oscillators do not exhibit limit-cycle behaviour in the absence of
noise. Conditional oscillators are characterized by sustained oscillations generated by forcing in a
system that would otherwise be quiescent; weakly attracted to a locally stable fixed point. These
sustained oscillations can be generated close to a Hopf Bifurcation point via the mechanism of
coherence resonance (also known as autonomous stochastic resonance) [45]. Coherence Resonance
(CR) refers to the phenomenon whereby the addition of noisy forcing into a nonlinear oscillator
generates a coherent response at an optimal noise level. When a dynamical system is subthreshold
to a Hopf Bifurcation, the noise can excite small oscillations close to the frequency of the oscillator
at the bifurcation point, and CR is observed. CR is explained in more detail in section 1.1.2.

This thesis aims to provide theory for stochastic phase dynamics for conditional oscillators
experiencing intrinsic and common noise forcing. Since we are studying the case of conditional
oscillators, the results from the study of the synchronization dynamics of limit-cycle oscillators do
not apply and there are no results related to conditional oscillators, to our knowledge. Further
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1.1. Background

to the goal of developing the aforementioned theory, is the study of the effects of common noise
on multiple conditional oscillators. We wish to see if the results of the study of noise-induced
synchronization hold in the case of coherent conditional oscillators. In particular, we attempt to
answer the following questions:

• Can noise-induced synchronization of conditional oscillators be realized?

• If noise-induced synchronization is possible, can it be characterized?

• Do different intrinsic noise strengths between oscillators have an effect on the dynamics?

We provide background on topics related to this thesis for the remainder of this chapter. To answer
the questions given above, we do the following. First, we give a canonical model for a conditional
oscillator in chapter 2. We perform a stochastic multiple scales analysis of the model to derive
stochastic amplitude and phase equations for the main mode of oscillation, which provide the basis
for our analysis of the dynamics. We then analyze the stochastic differential equations using both
linear theory and a perturbation analysis of the Fokker-Planck equation for the phase dynamics.
In chapter 3, we describe the numerical method used to simulate the system of equations and
give numerical results for the oscillator dynamics. We also compare the numerical results to the
analytical results derived in chapter 2.

We conclude that common noise forcing increases the degree of synchrony in uncoupled con-
ditional oscillators by observing peaks in the probability density function for the phase difference
indicating increased probability of observing the oscillators in-phase with each other. Moreover,
we find that the degree of synchronization can be characterized by the ratio of intrinsic to common
noise. We also discover that different intrinsic noises and amplitude dependent phase variation
lead to a peak in the probability density not centered at phase difference zero, indicating that one
oscillator, on average, leads the other in terms of phase behaviour. The conclusions are laid out in
more detail in chapter 4. Possible directions for further research are also given.

1.1 Background

1.1.1 Stochastic modelling

Most real world processes are subject to some degree of stochasticity. Due to this, the study of
stochastic processes is essential to learning about many real world processes. Moreover, stochastic
modeling often leads to dynamics that deterministic modeling cannot predict. However, one cannot
apply standard calculus and differential equations theory; stochastic calculus is required. There
are many texts written about stochastic calculus and modeling [16, 25, 36]. The application of

5



1.1. Background

stochastic calculus and stochastic differential equations (SDEs) has had a broad impact on many
diverse areas. For example, financial mathematics where the stochastic Ito integral is an essential
tool. The sciences have also benefitted from stochastic modelling. Chemical reactions are now rou-
tinely modeled with stochastic considerations meant to capture the fact that a chemical reaction
is fundamentally about individual interactions of molecules, rather than a continuum of reaction
[17]. Much like ordinary differential equations, most SDEs do not have exact, closed-form solutions.
Thus, numerical solutions are important. Given the probabilistic nature of SDEs, the correspond-
ing numerical methods have important considerations, such as the type (mode) of convergence
in addition to the order of convergence relative to time step size that is normally considered in
numerical methods for simulating ODEs [25]. Since we are studying noisy oscillators, stochastic
modeling techniques are essential and many of the concepts and techniques we refer to can be found
in standard works on stochastic differential equations.

1.1.2 Coherence resonance

Coherence resonance (CR) refers to the appearance of coherent oscillations in the behaviour of an
excitable dynamical system in the presence of a noisy forcing term in a quiescent parameter range.
In particular it can refer to the emergence of coherent behaviour at an optimal noise strength of
intermediate value. It is an excellent example of the emergence of orderly behaviour in a dynamical
system due to the presence of noise.

In the 1980s and 1990s, the phenomenon of stochastic resonance was a popular research topic.
In classical stochastic resonance, one studies a noisy particle in a bistable potential with periodic
driving. It is observed that oscillations between the wells in the bistable potential can be driven by
a combination of noisy forcing and periodic forcing [3]. When there is no noise present, the driving
is not strong enough to drive transitions between the wells of the potential. In the presence of weak
noise, transitions are rare. When the noise is too strong it overwhelms the underlying dynamics
and the particle transitions between the wells with no coherent behaviour. Stochastic resonance
occurs when transitions between the wells occur in phase with the periodic driving at an optimal
level of noise. This phenomenon has found applications in climate science, where the transition
between ice ages and warmer periods is thought to be driven by this mechanism [35]. Stochastic
resonance has also found applications in other sciences [40]. It was found later that noisy resonance
phenomena occur in systems that do not rely on periodic driving to induce transitions, but rather
depend on the intrinsic dynamics of the system to which the noise is applied.

In 1997, Pikovsky and Kurths undertook a study of the Fitzhugh-Nagumo (FHN) equations in
the presence of a noisy forcing term [38]. They found that very coherent oscillations could be driven
at an optimal noise strength and gave a measure for that coherence in terms of an autocorrelation
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1.1. Background

function, C(τ):

C(τ) =
〈ȳ(t)ȳ(t+ τ)〉
〈ȳ2(t)〉

, ȳ = y − 〈y〉 (1.1)

where 〈y〉 denotes the time average of y. Using this coherence measure, they found that oscillations
of the FHN model were much more pronounced for a moderate level of noise, and coined the term
“coherence resonance” (CR) to describe this behaviour. The FHN equations are, in some sense,
the canonical model for an excitable system and have been instrumental in the study of excitable
systems. It is the excitable nature of the FHN system that allows for the coherent oscillations. In
[38], the system is taken to be close the bifurcation point that separates the qualitative behaviours.
When noise is used as a perturbative forcing, it repeatedly excites the system and drives coherent
oscillations. As in stochastic resonance, the noise cannot be too strong or too weak, or oscillations
are not coherent.

The work of Pikosky and Kurths is widely regarded as the seminal work on CR, although Gang
et al. had described a similar mechanism in 1993 [14]. They noticed that even in the absence of
periodic driving oscillations could be made most coherent at a moderate level of noise for a system
with a saddle-node bifurcation separating limit-cycle oscillations from quiescent behaviour in the
absense of noise. When at the critical value of the bifurcation parameter, the authors observe that
a characteristic frequency close to that corresponding to the period of the limit-cycle behaviour
is heightened when noisy forcing is introduced into the dynamics, indicating that the limit-cycle
behaviour of the system is excited by the noisy forcing. They introduce a quality factor for the
coherence of oscillations, β.

β = h(∆ω/ωp)−1 (1.2)

where h is the height of the power spectrum at the characteristic frequency ωp, and ∆ω is the width
of the peak. This is similar to the signal-to-noise ratio in traditional stochastic resonance. There
are other types of noise-induced resonance behaviours that are similar, yet different from CR [28].

CR is observed in this thesis as we drive small oscillations about a fixed point near a Hopf
bifurcation using weak noise forcing. The forcing excites the main mode of oscillation leading to a
increase in the Fourier power spectrum at a frequency close to that of the frequency at the onset of
the Hopf bifurcation. The more appropriate measure of coherence is given by β in this case. This
problem has been studied by Yu et al. in [45].

1.1.3 Neurophysiological models

Neurophysiological modelling, and indeed much of mathematical biology, can be traced back to
the work of Hodgkin and Huxley who, in 1952, published work on modelling the behaviour of the
membrane potential in a squid giant axon [20]. This work spawned much of the work that followed
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1.1. Background

in mathematical biology. The model is given by a set of four nonlinear ordinary differential equa-
tions, based from Kirchoff’s current laws and experimental measurements to determine refractory
behaviour of various ion gates that exist in the axon. The model may have a large degree of quan-
titative variability, but the qualitative behaviours persist for a range of parameters. One of the
most important qualities that the Hodgkin-Huxley (HH) model captures is excitability of neuronal
cells. A system of nonlinear equations is ‘excitable’ if a relatively small stimulus can induce a large
excursion of the systems trajectory in phase space. A stimulus of ‘insufficient size’ perturbs the
system, but the trajectory returns to a neighbourhood of a stable fixed point without the excursion
behaviour.

The Morris-Lecar (ML) Model is a simplification of the wildly successful HH model [31]. It was
not derived directly from the HH model, but was derived through a similar methodology. Initially
it was derived from experimental observations of a barnacle muscle fiber, but captures many of the
same behaviours that the HH model predicts for excitable cells.The advantage of the ML model is
the fact that it is a two variable system, which allows for the application of phase plane analysis.
Similar analyses are much more difficult with the four dimensional HH model. The Morris-Lecar
model is as follows:

C
dV

dt
= −gCam∞(V )(V − VCa)− gKW (V − VK)− gL(V − VL) + Iapp, (1.3)

dW

dt
= φ(V )(w∞(V )−W ) (1.4)

where

m∞(V ) =
1
2

(
1 + tanh

(
V − V1

V2

))
, (1.5)

w∞(V ) =
1
2

(
1 + tanh

(
V − V3

V4

))
, (1.6)

φ(V ) = Λ cosh
(
V − V3

2V4

)
. (1.7)

V is the membrane potential and W is the percentage of open potassium gates. The constants gi and
Vi represent various ion conductances and potential values, resp. Iapp is the applied current. It is a
bifurcation parameter for this system. Below the critical value of this parameter, the Morris-Lecar
model is quiescent and beyond it the system experiences sustained oscillations. Depending on the
values of the parameters of the system, the bifurcation that separates quiescence and oscillations is
different. For a Type-I ML oscillator, this bifurcation is a saddle-node bifurcation and the behaviour
of the oscillations is characterized by an arbitrarily low firing frequency. For a Type-II ML oscillator,
the bifurcation is a subcritical Hopf bifurcation. In this case, the onset of firing occurs at a finite
frequency. Both Type-I and Type-II ML oscillators have applications for modeling of real world

8



1.1. Background

neurons. Pyramidal cells are thought to possess Type I excitability properties [41], while mitral
cells are Type II [10]. For typical parameter values for both Type I and Type II behaviour, refer
to [23].

Both Type-I and Type-II ML oscillators are excitable, but with different dynamical conse-
quences. Close to the bifurcation point in the quiescent regime, a sufficiently strong perturbation
to a Type I oscillator results in a single spike before returning to a neighbourhood of the equilib-
rium. In the case of a Type II oscillator, a sufficiently strong perturbation pushes the trajectory
of the system onto the stable limit-cycle that coexists with the locally stable fixed point resulting
in oscillations. Return to the fixed point is accomplished by lowering the bifurcation parameter
such that the limit-cycle does not exist and the only equilibrium is the stable fixed point. The
bifurcation parameter may be treated as a dynamical variable on a slower time scale than that of
the action potentials making the system three dimensional. This slow variable oscillates about the
bifurcation point resulting in trains of action potentials separated by quiescent periods. This is the
dynamical phenomenon known as bursting.

Noise is present at all levels of the nervous system and recent modeling of neurons using HH
or ML models often includes white noise to model the stochastic effects. Some noise effects can be
intrinsic and some are common. Intrinsic noise usually models intracellular processes such as ion
exchange, while the common noise shared by multiple neurons represents input from other external
sources like other neurons.

1.1.4 Spike time reliability

When a neuron is subjected to an applied current of a sufficient strength in the current clamp
experiment, the membrane potential spikes until the applied current is turned off. Spike Time
Reliability (STR) refers to the phenomenon whereby repeated applications of rapidly fluctuating
stimulus to a neuron produce a precisely timed train of spikes with each application in the neuronal
dynamics where repeated application of a constant current fails to do so. A neuron which displays
the characteristic behaviour of STR is reliable.

STR has been observed experimentally in a number of works. In 1976, Bryant and Segundo
observed that repeated application of a Gaussian white noise stimulus to the same nerve cell (Aplysia
californica abdominal ganglion) produced an identical, time-invariant response [5]. Mainen and
Sejnowski made a similar observation in cortical neurons, but also made a comparison to stimulating
the neuron with repeated application of a constant current [30]. They observed that when driven
with a constant current, the variance in the times of the spikes increased from the time of stimulus
application. The variance in the interspike intervals would add up over time; the first spike time
had low variability but the last spike time was highly variable. This desynchronization of the timing
of the spikes may or may not be due to stochastic effects intrinsic to the neuronal cell. Brette and
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1.1. Background

Guigon showed that aperiodic forcing for a broad class of neuronal oscillators allows for reliable
responses and that even periodic forcing does not result in reliable spiking [4]. A newer study by
Galan et al. blends the theoretical and experimental approach to study STR [12]. It is found
that there exists an optimal time scale for reliability of neurons, where the reliability is defined as
the correlation of time displaced voltage traces. The authors also describe the connection between
stochastic synchrony of oscillators and STR: If many similar neuronal oscillators are subjected
to the same noisy forcing simultaneously, their behaviour synchronizes, despite the fact that the
neurons are not interacting with each other.

10



Chapter 2

Analysis

2.1 The model

We consider the canonical λ−ω oscillator with parameters such that the system is subthreshold but
near a subcritical Hopf Bifurcation. This model corresponds with the normal form for a Type-II
Morris Lecar oscillator with parameters near the critical value of the applied stimulus needed to
induce a steady spiking behaviour [39]. The oscillators are subject to both an intrinsic and extrinsic
(common) noise forcing. The model is given by the following stochastic differential equations:dxi = [λ(ri)xi − ω(ri)yi] dt+ δi dηi(t) + δC dηC(t)

dyi = [ω(ri)xi + λ(ri)yi] dt, i = 1, 2, r2
i = x2

i + y2
i

. (2.1)

The functions ηi, ηC are Wiener processes (standard Brownian motions) that satisfy 〈ηj(t)〉 = 0
and 〈ηj(t)ηk(t − τ)〉 = 1{j=k}δ(τ) where j, k ∈ {1, 2, C} and 〈η〉 denotes the time average of η.
δi, δC are the respective strengths of the noise sources. Notice that the term δCdηC(t) affects both
oscillators i = 1, 2 identically. dηC is refered to as the common noise forcing term for this reason.
The other two noise terms dη1, dη2 are the intrinsic noise sources and only affect their respective
oscillators.

In the general λ − ω system, the function λ(ri) determines the behaviour of the amplitude,
while ω(ri) determines the frequency behaviour for the oscillator. For our study we consider the
following functions for λ(ri) and ω(ri):

λ(ri) = λb + αr2
i + γr4

i , ω(ri) = ω0 + ω1r
2
i .

The constants λb, α and γ are parameters that determine the bifurcation structure of the oscillators
amplitudes. The values of these constants determine the criticality of the Hopf Bifurcation that
occurs at λb = 0. We take λb to be our bifurcation parameter. To ensure that the system has a
subcritical bifurcation for the deterministic system (δ1 = δ2 = δC = 0), we choose α > 0, γ < 0.
This leads to the bifurcation diagram seen in Figure 2.1. One can do some standard stability
analysis on the deterministic system to see that the ri = 0 state is locally stable for λb < 0 and
unstable for λb > 0. Attention is focused on the regime λb < 0, |λb| � 1; close to the bifurcation
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2.2. Multiple scales analysis

point. In this parameter regime, the λ-ω model is a conditional oscillator, with a weakly decaying
amplitude. The noise drives coherent oscillations about the fixed point, as per the mechanism of
coherence resonance. A limit-cycle may exist depending on the parameters of the system. The
noise strengths are taken to be sufficiently small such as to limit the possibility of jumping to the
stable limit-cycle, if it exists. In the absence of noise, the amplitude decays to zero.

From the form of ω(ri), one can see that the frequency of the small oscillations is, to leading
order, equal to ω0. The frequency of oscillations changes depending on the amplitude of the
oscillator and this change is determined by the ωir2

i term.

−6 −4 −2 0 2
−1

−0.5

0

0.5

1

λ2

r

Figure 2.1: Bifurcation diagram of r =
√
x2 + y2 vs. λ2 in the case of the deterministic system

(δ1 = δ2 = δC = 0) for a single oscillator given by (2.1). Other parameters include: ε = 0.1,
α = 0.2, γ = −0.2. Solid (dashes) lines indicate stability (instability). Black (Gray) lines indicate
a fixed point (periodic orbit). The data for this diagram was generated using XPPAUT

2.2 Multiple scales analysis

2.2.1 Deterministic analysis, parameter scalings

To analyze the small oscillations that are sustained by the noisy driving, we apply a multiple scales
analysis to the system of equations (2.1) [21, 24]. We apply a classical multiple scales analysis to
the deterministic system (i.e: (2.1) with δ1 = δ2 = δC = 0) to obtain the scalings of parameters
for which weakly damped oscillations appear in the dynamics. These oscillations must not occur
on the stable limit-cycle. As such, we look for small oscillations that occur within the knee of the
bifurcation diagram that are of small magnitude. Writing xi, yi as an asymptotic series with ε as
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2.2. Multiple scales analysis

a small parameter yields

xi = εxi,0 + ε2xi,1 + ... (2.2)

yi = εyi,0 + ε2yi,1 + ... (2.3)

Notice that we assume {xi, yi} = O(ε) because we are looking for the amplitude equations for
small oscillations. Since we are looking close to the Hopf bifurcation point, λ∗b = 0, we perform an
asymptotic expansion in the bifurcation parameter near the bifurcation point,

λb = ε1λ1 + ε2λ2 +O(ε3). (2.4)

We also introduce long time scales T1 = εt, T2 = ε2t. Rewriting (2.1) using these scalings gives

(
∂

∂t
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ ...

)[
εxi,0 + ε2xi,1 + ...

εyi,0 + ε2yi,1 + ...

]

=

[
λ(ri) −ω(ri)
ω(ri) λ(ri)

][
εxi,0 + ε2xi,1 + ...

εyi,0 + ε2yi,1 + ...

]
. (2.5)

We consider the contributions to this equation to each order in ε and solve the resulting equations.
To leading order (O(ε)), we get the following equation:

O(ε) :
∂

∂t

[
xi,0

yi,0

]
+

[
0 ω0

−ω0 0

][
xi,0

yi,0

]
= 0. (2.6)

The solution to this equation is given by[
xi,0

yi,0

]
=

[
Ai cos(ω0t)−Bi sin(ω0t)
Ai sin(ω0t) +Bi cos(ω0t)

]
, (2.7)

where Ai, Bi are functions of the long time scales. This is the main oscillatory mode of solutions.
The next order equation is given by

O(ε2) :
∂

∂t

[
xi,1

yi,1

]
+

[
0 ω0

−ω0 0

][
xi,1

yi,1

]

= − ∂

∂T1

[
xi,0

yi,0

]
+

[
λ1 0
0 λ1

][
xi,0

yi,0

]
. (2.8)

By the Fredholm alternative, the right-hand side of (2.8) must be orthogonal to the nullspace of
the adjoint of the operator acting on xi,0 in (2.6) to get a solution for {xi,1, yi,1}. In the context
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2.2. Multiple scales analysis

of multiple scales analysis, this is known as eliminating the secular terms. Define the matrix
differential operator M as follows:

M =

(
∂

∂t
+

[
0 ω0

−ω0 0

])
(2.9)

One can show using the definition of the adjoint that the adjoint of M , M∗ = −M . Thus, the null
space of M∗ is given by

null(M∗) = span

{[
cos(ω0t)
sin(ω0t)

]
,

[
− sin(ω0t)
cos(ω0t)

]}
(2.10)

Taking the inner product of the null space of M∗ and the right hand side of (2.8) and applying the
orthogonality condition gives the conditions for eliminating the secular terms,

∫ 2π/ω0

0
(cos(ω0t), sin(ω0t)) ·

(
− ∂

∂T1

[
xi,0

yi,0

]
+

[
λ1 0
0 λ1

][
xi,0

yi,0

])
dt = 0, (2.11)

∫ 2π/ω0

0
(− sin(ω0t), cos(ω0t)) ·

(
− ∂

∂T1

[
xi,0

yi,0

]
+

[
λ1 0
0 λ1

][
xi,0

yi,0

])
dt = 0. (2.12)

Evaluating the above integrals gives the following equations:

∂

∂T1
Ai = λ1Ai,

∂

∂T1
Bi = λ1Bi. (2.13)

Notice that if λ1 > (<) 0, the parameters are such that the fixed point is unstable (locally stable)
and O(ε) perturbations result in exponential growth (decay) on time scale T1. We study the case
where there is no exponential growth or decay on time scale T1, which requires that λ1 = 0 and
also that the leading order solution experiences no variation on the time scale T1. It follows that
the solution has no variation on time scale T1: ∂xi/∂T1 = ∂yi/∂T1 = 0. Then the nonlinear terms
{α, ω1} influence the slow time dynamics. Proceeding to the next order, we get the following
equation:

O(ε3) :
∂

∂t

[
xi,2

yi,2

]
+

[
0 ω0

−ω0 0

][
xi,2

yi,2

]

= − ∂

∂T2

[
xi,0

yi,0

]
+

[
λ2 + αr2

i,0 −ω1r
2
i,0

ω1r
2
i,0 λ2 + αr2

i,0

][
xi,0

yi,0

]
. (2.14)

To eliminate the secular terms of the right-hand side of this equation, we take the inner product
of the right hand side of (2.14) with the null space of M∗, as for the O(ε2) equations. We find the
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2.2. Multiple scales analysis

following equations must be satisfied:

∂

∂T2
Ai = (λ2 + αr2

i,0)Ai − ω1r
2
i,0Bi (2.15)

∂

∂T2
Bi = ω1r

2
i,0Ai + (λ2 + αr2

i,0)Bi. (2.16)

It is shown later that this is consistent with our results from the stochastic analysis, which is
performed in essentially the same spirit. The analysis of the deterministic system has yielded
appropriate scalings with which to analyze the stochastically forced system. To construct small
amplitude oscillations (of order ε) for this system, the bifurcation parameter λb must be within
O(ε2) of the critical value, λ∗b = 0 and negative. If λ2 > 0, then the zero solution is unstable and
the oscillators’ amplitudes experience local exponential growth on the slow time scale. In this case,
the oscillatiors are driven onto the limit-cycle that exists in this regime. If α2 − 4γε2λ2 < 0 and
λ2 < 0 the system has a bistable behaviour where both the zero amplitude solution and the limit-
cycle are locally stable. If α2−4γε2λ2 > 0 and λ2 < 0, then only the zero amplitude solution exists
and it is stable. Provided the initial conditions are sufficiently close to zero amplitude, sufficiently
weak perturbations do not drive the system onto the limit-cycle that may or may not exist in (2.1),
depending on the parameters. We take λ2 < 0 from now on and choose it such that the system is
in the knee of the Hopf bifurcation (α2 − 4γε2λ2 > 0), unless stated otherwise. The time scale for
the slow dynamics is T2 = T = ε2t.

2.2.2 Stochastic multiple scales analysis

We derived the parameter scalings necessary to observe small oscillations (O(ε)) from the deter-
ministic multiple scales analysis (T = ε2t, λb = ε2λ2, λ2 = O(1) < 0). To derive the equations of
evolution for the envelope functions Ai, Bi in the general case, (i.e. non-deterministic system), we
apply a multiple scales analysis similar to that in [26] to include the stochastic contribution.

We assume {xi, yi} has a form similar to the leading order solution from the deterministic
analysis (2.7), [

xi

yi

]
=

[
Ai cos(ω0t)−Bi sin(ω0t)
Ai sin(ω0t) +Bi cos(ω0t)

]
(2.17)

where Ai = Ai(T ), Bi = Bi(T ) are stochastic processes and evolve on time scale T = ε2t. This is
valid in the small noise approximation,

0 < δ1, δ2, δC � 1. (2.18)

Notice that we have not specified the order for the noise strengths; only that they are less than
O(1). We only require that the noise strengths are of the order such that they affect the behaviour
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2.2. Multiple scales analysis

of Ai, Bi. Secondly, we look for evolution equations of Ai, Bi on the slow time scale with the
intrinsic and common noise components expressed as two different noise processes,

dAi = ψAidT + σAiIdξAiI(T ) + σACdξAC(T ), (2.19)

dBi = ψBidT + σBiIdξBiI(T ) + σBCdξAC(T ) (2.20)

where each ξab(T ) represents a Wiener process operating on time scale T . The subscript I indicates
the effect of intrinsic noise forcing, while C indicates the effect from common noise. We separate
them to better distinguish their respective effects. Notice that the common noise forcing is identical
in this ansatz. We expect it to be identically affecting both pairs of oscillators as the effect in (2.1)
is identical also.

Applying Ito’s Formula to the expressions for xi, yi given by (2.17) and substituting (2.19, 2.20)
where appropriate gives

dxi =
∂xi
∂t

dt+
∂xi
∂Ai

dAi +
∂xi
∂Bi

dBi

+
1
2

(
∂2xi
∂A2

i

dA2
i + 2

∂2xi
∂Ai∂Bi

dAidBi +
∂2xi
∂B2

i

dB2
i

)
, (2.21)

⇒ dxi = −εω0[Ai sin(ω0t)−Bi cos(ω0t)]dt

+ε cos(ω0t)[ψAidT + σAiIdξAiI + σACdξAC ]

−ε sin(ω0t)[ψBidT + σBiIdξAiI + σBCdξBC ], (2.22)

⇒ dyi = εω0[Ai cos(ω0t)−Bi sin(ω0t)]dt

+ε sin(ω0t)[ψAidT + σAiIdξAiI + σACdξAC ]

+ε cos(ω0t)[ψBidT + σBiIdξAiI + σBCdξBC ]. (2.23)

Comparing (2.22, 2.23) to (2.1) with (2.17) substituted in for xi, yi:

ε3(cos(ω0t)
[
(λ2 + αR2

i )Ai − ω1R
2
iBi
]
− sin(ω0t)

[
(λ2 + αR2

i )Bi + ω1R
2
iAi
]
)dt

+δidηi(t) + δCdηC(t) (2.24)

= ε(cos(ω0t)ψAi − sin(ω0t)ψBi)dT + ε(cos(ω0t) [σAiIdξAiI + σACdξAC ]

− sin(ω0t) [σBiIdξBiI + σBCdξBC ])

ε3(cos(ω0t)
[
(λ2 + αR2

i )Bi + ω1R
2
iAi
]

+ sin(ω0t)
[
(λ2 + αR2

i )Ai − ω1R
2
iBi
]
)dt (2.25)

= ε(cos(ω0t)ψBi + sin(ω0t)ψAi)dT + ε(cos(ω0t) [σBiIdξBiI + σBCdξBC ]

+ sin(ω0t) [σAiIdξAiI + σACdξAC ])

where R2
i = A2

i + B2
i . Using projections similar to deterministic analysis and consistent with

Baxendale [2], we determine expressions for ψAi , ψBi by focusing on the drift components of the
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2.2. Multiple scales analysis

equation. Consistent with the multiple scales assumption, we treat terms that evolve on time scale
T as constants and evaluate the following:∫ 2π/ω0

0
(cos(ω0t), sin(ω0t)) · ((2.24), (2.25)) dt, (2.26)∫ 2π/ω0

0
(− sin(ω0t), cos(ω0t)) · ((2.24), (2.25)) dt. (2.27)

From this integration, we determine the functions ψAi , ψBi . The result is consistent with what is
observed in the deterministic analysis above.

ψAi = (λ2 + αR2
i )Ai − ω1R

2
iBi, ψBi = ω1R

2
iAi + (λ2 + αR2

i )Bi. (2.28)

This projection to determine ψAi , ψBi is identical to eliminating the secular terms from the higher
order equations for ε as done in the multiple scales analysis of the deterministic system. To de-
termine the stochastic component we follow Baxendale [2]. To obtain the values of the constants
{σA1I , σB1I σA2I , σB2I , σAC , σBC}, we consider the diffusion terms of the averaged generator for
the original system (2.1) and the generator for the equations given by (2.19, 2.20). The diffusion
terms of the generators must be equal to each other for consistency. Expressing the noise terms on
the slow time scale and using the properties of the Wiener process gives

dη(t) = dη(ε−2T ) = ε−1dη(T ), where η(t) is a Wiener process on time scale t. (2.29)

We write the diffusion terms of the generator [36] for the stochastic processes given by the orig-
inal system (2.1) and the ansatz (2.19, 2.20). These diffusion terms are given by D2

orig,i, D
2
new,i

respectively,

D2
orig,i =

(
δ2
i + δ2

C

2ε2

)
∂2

∂x2
i

, D2
new,i =

(
σ2
AiI

+ σ2
AC

2

)
∂2

∂A2
i

+

(
σ2
BiI

+ σ2
BC

2

)
∂2

∂B2
i

(2.30)

To determine the averaged diffusion operator, we change variables from (xi, yi) to (Ai, Bi) for D2
orig,i

so that both operators are expressed in the same variables. Then, we average the resulting operator
over the one period of oscillation on the fast time scale. Denote the averaged diffusion operator for
the original system by D̄2

orig,i.

D2
orig,i =

(
δ2
i + δ2

C

2ε4

)(
cos2(ω0t)

∂2

∂A2
i

− 2 cos(ω0t) sin(ω0t)
∂2

∂Ai∂Bi
+ sin2(ω0t)

∂2

∂B2
i

)
,(2.31)

D̄2
orig,i =

∫ 2π/ω0

0
D2
orig,i dt =

(
δ2
i + δ2

C

4ε4

)(
∂2

∂A2
i

+
∂2

∂B2
i

)
. (2.32)
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2.3. Determining the linearized probability density function

To ensure consistency of the multiple scales analysis, we equate the coefficients of the diffusion
operators, keeping in mind that we want to separate intrinsic and common noise effects:

D̄2
orig,i = D2

new,i,(
δ2
i + δ2

C

4ε4

)(
∂2

∂A2
i

+
∂2

∂B2
i

)
=

(
σ2
AiI

+ σ2
AC

2

)
∂2

∂A2
i

+

(
σ2
BiI

+ σ2
BC

2

)
∂2

∂B2
i

. (2.33)

We get the following values for the noise strengths for the ansatz (2.19, 2.20):

σAiI = σBiI =
δi√
2ε2

, σAC = σBC =
δC√
2ε2

. (2.34)

Thus, we have determined the SDEs for Ai, Bi, i = 1, 2:

dAi =
[
(λ2 + αR2

i )Ai − ω1R
2
iBi
]
dT +

δi√
2ε2

dξAiI +
δC√
2ε2

dξAC , (2.35)

dBi =
[
ω1R

2
iAi + (λ2 + αR2

i )Bi
]
dT +

δi√
2ε2

dξBiI +
δC√
2ε2

dξBC . (2.36)

Notice that because of the noisy forcing, the amplitude of the oscillations does not evolve to
the steady state where Ai = Bi = 0. In effect, the noise excites the main mode of oscillation
{cos(ω0t), sin(ω0t)}. Notice the noise strengths must be O(ε2) to ensure consistency of the mul-
tiple scales analysis. Now that the stochastic differential equations that describe the envelope of
oscillations for the original system have been derived, we perform an analysis of the linearized
system.

2.3 Determining the linearized probability density function

For small amplitudes Ri � 1, we linearize (2.35, 2.36) about Ri = 0.

dAi = λ2Ai dT +
δi√
2ε2

dξAiI +
δC√
2ε2

dξAC (2.37)

dBi = λ2Bi dT +
δi√
2ε2

dξBiI +
δC√
2ε2

dξBC . (2.38)

In this approximation, the terms Ai, Bi evolve as Ornstein-Uhlenbeck (OU) processes, which are
straightforward to analyze. Unfortunately, as with any linear approximations, nonlinear effects are
lost. We lose the amplitude dependent frequency variation, described by ω1, as well as the nonlinear
amplitude effects. In particular, there is no possibility of jumping onto the stable limit-cycle, which
may coexist with the stable fixed point depending on the value of λ2. Due to the fact that the
system is forced with weak noise and experiencing small oscillations where the nonlinear effects are
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2.3. Determining the linearized probability density function

essentially negligible, this linear approximation can be justified, provided the noise is sufficiently
weak.

We start with the probability density function for the Ai, Bi, denoted P (A1, B1, A2, B2). Writ-
ing out the full system in matrix form gives the following:

d ~A = λ2
~A+ Bd~ξ, ~A =


A1

B1

A2

B2

 , d~ξ =



dξA1I

dξB1I

dξA2I

dξB2I

dξAC

dξBC


,

B =
1√
2ε2


δ1 0 0 0 δC 0
0 δ1 0 0 0 δC

0 0 δ2 0 δC 0
0 0 0 δ2 0 δC

 . (2.39)

The probability density function for {Ai, Bi} given by (2.39) is

P (A1, B1, A2, B2) =
1

(2π)2
√

Det[σ]
exp

[
−1

2
~ATσ−1 ~A

]
(2.40)

where σ = (−2λ2)−1BBT . We denote the phase of oscillator i by φi = arctan(Bi/Ai), and the
amplitude Ri in the same way as above. Technically, the phase of the oscillator should be defined
as φi = arctan(yi/xi), but it is easily shown to be equivalent to the above definition by our
change of coordinates (2.17). The joint probability density for amplitude and phase, denoted by
P (R1, φ1, R2, φ2) is given by [16]:

P (R1, φ1, R2, φ2) = CR1R2 exp
[
π2

λ2
C × (∆2R

2
1 + ∆1R

2
2 −

δ2
C

ε4
R1R2 cos(φ2 − φ1)

]
. (2.41)

where

C =
λ2

2

π2(∆1∆2 − (δ4
C/4ε8))

, ∆i =
δ2
i

2ε4
+
δ2
C

2ε4
. (2.42)

The end goal of this analysis is to obtain the density of the phase difference Φ = φ2 − φ1, of these
two oscillators when driven by a mixture of common and intrinsic noise forcing. We denote the
density by P̄ (Φ). Using the standard definition of the marginal probability density function we can
obtain an expression for said density:

P̄ (Φ) =
∫ π

−π

∫ ∞
0

∫ ∞
0

P (R1, φ1, R2,Φ + φ1) dR1dR2dφ1. (2.43)
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2.3. Determining the linearized probability density function

Evaluating such an integral is a non-trivial task as, in general, P is a Gaussian distribution with
correlated terms. We evaluate this integral by deriving the general solution to another integral of
the same form.

Consider the following integral:

I =
∫ ∞

0

∫ ∞
0

rs exp
(
−ar2 − bs2 + crs

)
dr ds, a, b ≥ 0. (2.44)

To evaluate it, we first apply a linear coordinate transformation, Q to diagonalize the quadratic
form in the exponential:

ar2 + bs2 − crs =
[
r s

] [ a −1
2c

−1
2c b

][
r

s

]
=
[
r s

]
QDQ−1

[
r

s

]
, (2.45)

where

Q =

 e1c

a−b−
√

(a−b)2+c2
e2c

a−b+
√

(a−b)2+c2

e1 e2

 ,
[
e1

e2

]
=



√1 +
(

c

a−b−
√

(a−b)2+c2

)2
−1

√1 +
(

c

a−b+
√

(a−b)2+c2

)2
−1


D =

[
1
2(a+ b) + 1

2

√
(a− b)2 + c2 0

0 1
2(a+ b)− 1

2

√
(a− b)2 + c2

]
.

One can show with a little bit of work that Q is unitary (i.e: Q−1 = QT ). The requirement of a
unitary transformation allows us to diagonalize the quadratic form. We apply the transformation[

r

s

]
= Q

[
r̂

ŝ

]
(2.46)

to the integral. Depending on the value of c, the result changes due to a flipping of the region of
integration. If c > 0, then:

I =
∫ Uŝ

Lŝ

∫ Ur̂

Lr̂

(Q11Q21r̂
2 + (Q11Q22 +Q12Q21)r̂ŝ+Q12Q22ŝ

2) exp
[
−D11r̂

2 −D22ŝ
2
]

Det[Q] dr̂dŝ,

(2.47)
where

Lr̂ = −Q22Q
−1
21 ŝ, Ur̂ = −Q12Q

−1
11 ŝ, Lŝ = 0, Uŝ =∞. (2.48)
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2.3. Determining the linearized probability density function

If c < 0, then

I =
∫ Ur̂

Lr̂

∫ Uŝ

Lŝ

(Q11Q21r̂
2 + (Q11Q22 +Q12Q21)r̂ŝ+Q12Q22ŝ

2) exp
[
−D11r̂

2 −D22ŝ
2
]

Det[Q] dŝdr̂,

(2.49)
where

Lŝ = −Q21Q
−1
22 r̂, Uŝ = −Q11Q

−1
12 r̂, Lr̂ = 0, Ur̂ =∞ (2.50)

and Qij denotes the ith row and jth column of Q. In both cases c > 0 and c < 0, this transformation
maps the domain of integration to an infinite triangular domain. Considering the case where c 6= 0,
we evaluate (2.47, 2.49) with the software package MAPLE to obtain

I = α
(π

2
+ arctan(β)

)
+ γ (2.51)

where

α = −Det[Q]
4

Q12Q22D11 +Q11Q21D22

(D11D22)3/2
, (2.52)

β =
Q12Q22D11 +Q21Q11D22

-Det[Q]
√
D11D22

, (2.53)

γ =
Det[Q]2

4D11D22
. (2.54)

Now that we have an expression for the above integral, in terms of the values of the entries of the
matrices Q and D, we can begin to perform the back substitutions to get the integral, I, in terms of
a, b, c. Performing the necessary back substitutions for various quantities appearing in the resulting
expression for I we see that:

α =
c

(4ab− c2)3/2
, β =

c√
4ab− c2

, γ =
1

4ab− c2
. (2.55)

Comparing to (2.43, 2.41), we see that

P̄ (Φ) = β1(Φ)
[π

2
+ arctan

(
β2(Φ)

)]
+ β3(Φ), (2.56)
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2.3. Determining the linearized probability density function

where the terms β1(Φ), β2(Φ) and β3(Φ) are as follows:

β1(Φ) =
δ2
C cos(Φ)

(
∆1∆2 − (δ4

C/4ε
8)
)

4πε4(∆1∆2 − δ4
C cos2(Φ)/(4ε8))3/2

, (2.57)

β2(Φ) =
δ2
C cos(Φ)√

4ε8∆1∆2 − δ4
C cos2(Φ)

, (2.58)

β3(Φ) =
1

2π

(
∆1∆2 − (δ4

C/4ε
8)

∆1∆2 − δ4
C cos2(Φ)/(4ε8)

)
. (2.59)

Notice the properties of this solution. First, it is an even function of Φ. Notice also that when
δC = 0, P̄ (Φ) is constant, indicating that in the absense of common noise the phases are completely
desynchronized in the linearized regime. Also notice that when δC > 0, the distribution ceases to
be uniform, indicating that the common noise forcing is indeed having some effect on the phase
dynamics that is different from the effect of the intrinsic noise forcing. We show in Chapter 3 that
this probability distribution matches simulated data from the original system (2.1) quite well in
regimes where this approximation is appropriate.

At this point, we take the opportunity to define a parameter, K, which can help characterize
the synchronization behaviour of the system:

K =
δ2
C

2ε4
√

∆1∆2
=
[(

1 +
δ2

1

δ2
C

)(
1 +

δ2
2

δ2
C

)]−1/2

. (2.60)

Notice that K ∈ [0, 1] for all values of noise strengths. K = 0 and K = 1 correspond to the cases
of no common noise and only common noise, respectively. Making the appropriate substitutions
into (2.57, 2.58, 2.59) leads to the following:

β1(Φ) =
K cos(Φ)

(
1−K2

)
2π(1−K2 cos2(Φ))3/2

, (2.61)

β2(Φ) =
K cos(Φ)√

1−K2 cos2(Φ)
, (2.62)

β3(Φ) =
1

2π

(
1−K2

1−K2 cos2(Φ)

)
. (2.63)

We see that, to leading order, only the ratio of intrinsic to common noise strengths is important in
determining the character of the phase probability density function. Notice that when K = 0, the
phase difference probability density function is uniform, as we would expect given that there is no
common forcing. When K = 1, the density is zero everywhere except at Φ = 0 where a singularity
occurs. This suggests the existence of a δ-function solution centred at Φ = 0 when K = 1. We
discuss this case later in section 2.5.1.
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2.3. Determining the linearized probability density function

As mentioned, this linearized approximation for the SDEs (2.35, 2.36) has eliminated the effect
of the amplitude-dependent phase term (ω1R

2
i ), which become important when the oscillators

experience intrinsic noise of different strengths as we show later. It also eliminates higher order
amplitude effects (αR2

i ). To capture the effects of these terms, we perform a different asymptotic
analysis of the amplitude and phase equations as given in section 2.4.

2.3.1 Moments for amplitude derived from distribution

To calculate the various moments of amplitude from the probability density function given by (2.41,
2.42), we must integrate (2.41) over all the values of Φ = φ2 − φ1, φ1. Notice that the evaluation
of that involves an integral of the form ∫ π

−π
ea cos(x) dx (2.64)

which is non-trivial. To evaluate this, we evaluate a contour integral in the complex plane. Let
z = eix. The integral is now a path integral around the unit circle in the complex plane moving
counterclockwise. Denote it by Γ.

z = eix, dz = iz dx ⇒
∫ π

−π
ea cos(x) dx = −i

∫
Γ
e

a
2

(z+z̄)z−1 dz (2.65)

where z̄ denotes the complex conjugate of z. Observe that as we have defined z, we have that
z̄ = z−1. Rewrite the integral as follows:

− i
∫

Γ
e

a
2

(z+z̄)z−1 dz = −i
∫

Γ

1
z

exp
(a

2
z +

a

2
z−1
)
dz (2.66)

We can now write the exponential terms as a power series and apply Cauchy’s residue theorem to
this integral.

exp
(az

2

)
=

∞∑
n=0

1
n!

(az
2

)n
(2.67)

⇒ −i
∫

Γ

1
z

exp
(a

2
z +

a

2
z−1
)
dz (2.68)

= 2πResz=0

[
1
z

exp
(a

2
z +

a

2
z−1
)]

= 2πResz=0

[
1
z

( ∞∑
n=0

1
n!

(az
2

)n)( ∞∑
n=0

1
n!

( a
2z

)n)]

= 2π
∞∑
n=0

a2n

22n(n!)2
(2.69)
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2.3. Determining the linearized probability density function

This integral converges for all a ∈ R by the comparison test as follows:

∞∑
n=0

a2n

22n(n!)2
≤

M−1∑
n=0

a2n

22n(n!)2
+

∞∑
n=M

a2n

22n
(
a
2 + k

)2n <∞ (2.70)

where M is the first positive integer such that M !2 > (a/2 + k)2M and (a/2 + k) > a/2. Using this
result we have the marginal probability density function for the amplitudes determined from the
linear theory, P̂ :

P̂ (R1, R2) = 4π2CR1R2 exp
[
π2

λ2
C × (∆2R

2
1 + ∆1R

2
2)
]
×[ ∞∑

n=0

1
(n!)2

(
1
2

λ2δ
2
CR1R2

ε4∆1∆2 − (δ4
C/4ε4)

)2n
]

(2.71)

We include a short moment calculation here for a consistency check for later calculations. To
calculate the expected moments for R1, we evaluate the following integral

E[RN1 ] =
∫ ∞

0

∫ ∞
0

RN1 P̂ (R1, R2) dR1dR2 (2.72)

= 4π2C

∫ ∞
0

∫ ∞
0

[ ∞∑
n=0

1
(n!)2

(
δ2
C

2ε4
π2C

λ2

)2n

RN+1+2n
1 R1+2n

2

]
×

exp
[
π2

λ2
C × (∆2R

2
1 + ∆1R

2
2)
]
dR1dR2

(2.73)
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2.3. Determining the linearized probability density function

To interchange the infinite integration and infinite summation, we appeal to the monotone cover-
gence and dominated convergence theorems.

E[RN1 ] = 4π2C
∞∑
n=0

[
1

(n!)2

(
δ2
C

2ε4
π2C

λ2

)2n

×∫ ∞
0

∫ ∞
0

RN+1+2n
1 R1+2n

2 exp
[
π2

λ2
C × (∆2R

2
1 + ∆1R

2
2)
]
dR1dR2

]
(2.74)

= 4π2C
∞∑
n=0

[
1

(n!)2

(
δ2
C

2ε4
π2C

λ2

)2n ∫ ∞
0

RN+1+2n
1 exp

[
C1R

2
1

]
dR1×∫ ∞

0
R1+2n

2 exp
[
C2R

2
2

]
dR2

]
(2.75)

where C1,2 =
π2

λ2
C∆2,1 (2.76)

= 4π2C
∞∑
n=0

1
(n!)2

(
δ2
C

2ε4
π2C

λ2

)2n Γ(1 + n+N/2)Γ(1 + n)
4(−C1)1+n+N/2(−C2)1+n

(2.77)

where Γ is the Gamma function which satisfies Γ(n+1) = n! if n ∈ Z+. Rewrite the factorial terms
using this property:

E[RN1 ] = π2C

∞∑
n=0

Γ(n+ 1 +N/2)
Γ(n+ 1)

(
δ2
C

2ε4
π2C

λ2

)2n 1
(−C1)1+n+N/2(−C2)1+n

(2.78)

We cannot evaluate this sum when N is odd, given the difficulties in evaluating quotients of the
Gamma function involving non-integer arguments. Considering the case N = 2, we get

E[R2
1] =

π2C

C2
1C2

∞∑
n=0

(n+ 1)
(
δ4
C

4ε8
π4C2

λ2
2C1C2

)n
=

λ3
2∆1

C2π4

(
4ε8

δ4
C − 4ε8∆1∆2

)2

= −∆1

λ2
(2.79)
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2.4. Asymptotic analysis of amplitude and phase equations, Fokker-Planck equation

We also wish to evaluate E[R−1
1 ]. Unfortunately, we cannot evaluate it, but we can show that it

exists by observing that the sum converges.

E[R−1
1 ] =

π5/2C

−C2

√
−C1

∞∑
n=0

(1 · 3 · 5 · · · · · 2n− 1)
2n(n!)

(
δ4
C

4ε8
π4C2

λ2
2C1C2

)n
(2.80)

=
π5/2C

−C2

√
−C1

∞∑
n=0

xnK
2n where xn =

(
1− 1

2n

)
xn−1, x0 = 1 (2.81)

≤ π5/2C

−C2

√
−C1

∞∑
n=0

K2n <∞ (2.82)

Thus E[R−1
1 ] exists. This exercise supports the calculation of the moments of amplitude undertaken

in section 2.4.1, where we use a different approach to calculate the moments of amplitude that allows
us to include the nonlinear effects.

2.4 Asymptotic analysis of amplitude and phase equations,

Fokker-Planck equation

From the equations (2.35, 2.36) we derive equations for the scaled amplitude and phase. Applying
Ito’s formula to get SDEs for Ri, φi gives the following SDEs for amplitude and phase:

dRi =
(
Ri(λ2 + αR2

i ) +
1
2

∆iR
−1
i

)
dT +

1√
2ε2

[cos(φi)(δidξAiI + δCdξAC)

+ sin(φi)(δidξBiI + δCdξBC)] (2.83)

dφi = ω1R
2
i dT +

1√
2ε2Ri

[cos(φi)(δidξBiI + δCdξBC)

− sin(φi)(δidξAiI + δCdξAC)] , i = 1, 2 (2.84)

To derive a FPE for these four SDEs (2.83, 2.84) is straightforward, but the solution of such
an equation is less straightforward. Even numerical computation is not desirable as the FPE is
dependent on four variables, making it a computationally expensive problem to solve. One can
try to separate the amplitude and phase contributions to the FPEs in the method highlighted in
[33], but this is not possible. Instead we look for a reduction based on the observation that the
amplitude Ri and phase φi evolve on different time scales. We consider the SDEs for R1, φ1, noting
that the same analysis applies for R2, φ2. Rescaling R1 = ρs, where s = O(1), and ρ � 1 and
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2.4. Asymptotic analysis of amplitude and phase equations, Fokker-Planck equation

substituting into (2.83) yields

ds =
(
s(λ2 + αρ2s2) +

∆1

2ρ2s

)
dT +

1√
2ρε2

[cos(φ1)(δ1dξA1I + δCdξAC)

+ sin(φ1)(δ1dξB1I + δCdξBC)] . (2.85)

Then for
√

∆i ≤ ρ � 1 in the equation for s, the leading order terms for the drift and diffusion
dynamics evolve on the slow T time scale. With λ2 < 0, the linear terms in (2.85) indicate mean
reverting behavior on the T scale. This suggests that Ri then has mean reverting behavior on the T
scale. Small values of Ri in the drift terms in (2.84) describes evolution on the even slower ∆iT time
scale for φ. We see later that this scaling assumption for R1 is consistent with the calculation of
the expectation value of the first moment of amplitude. The difference in time scales in the Ri and
φi suggests an evolution of R reminiscent of a quasi-steady approximation, where the more rapid
variation of Ri treated as independent of φi. Then we look for an approximation of the probability
density function for Ri, φi, i = 1, 2 where Ri evolves independently of φi, while φi maintain their
Ri-dependence.

We then integrate the SDE (2.84) against the distribution for Ri. The end result is that the
various moments of Ri are replaced with their expected values. Thus, we get the following modified
SDEs for the phases,

dφi = ω1E[R2
i ]dT +

1√
2ε2

E[R−1
i ] [cos(φi)(δidξBiI + δCdξBC)

− sin(φi)(δidξAiI + δCdξAC)] , i = 1, 2 (2.86)

We thus achieve a pseudo-separation of the amplitude and phase components for the oscillators,
and we consider the phase behaviour that includes the influence of the Ri through its moments.
There is some analogy to the approximation used in [18, 43], where the authors undertake an
analysis of the phase equations via a phase reduction technique of the original system of equations
under study. In those studies, the phase reduction is justified as perturbations from the limit-cycle
are shown to return to a small neighbourhood of the limit cycle very quickly, which allows for a
characterization of the dynamics through the phase. In our problem, due to the separation of time
scales, our moment approximation is, in some sense, similar to assuming close proximity to the
limit-cycle in the above studies.

For the phase difference Φ defined above and the phase variable φ1, the FPE for the probability
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2.4. Asymptotic analysis of amplitude and phase equations, Fokker-Planck equation

density function q(Φ, φ1) is given by [16],

∂q

∂T
= −ω1(E[R2

2]− E[R2
1])

∂q

∂Φ
− ω1E[R2

1]
∂q

∂φ1

+
1
2

[
[∆1E[R−1

1 ]2 + ∆2E[R−1
2 ]2]

∂2q

∂Φ2
−
δ2
C

ε4
E[R−1

1 ]E[R−1
2 ]

∂2

∂Φ2
(cos (Φ)q)

+2
∂2

∂Φ∂φ1

(
(−∆1E[R−1

1 ]2 +
δ2
C

2ε4
E[R−1

1 ]E[R−1
2 ] cos (Φ))q

)
+[∆1E[R−1

1 ]2]
∂2q

∂φ1
2

]
. (2.87)

This is now an advection diffusion equation in 2 dimensions with anisotropic diffusion. Given that
this is a FPE for phase behaviour, the boundary conditions for this system are periodic, and the
solution must be normalized:

∂m+n

∂Φm∂φn1
q(−π, φ1) =

∂m+n

∂Φm∂φn1
q(π, φ1), (2.88)

∂m+n

∂Φm∂φn1
q(Φ,−π) =

∂m+n

∂Φm∂φn1
q(Φ, π),

where m,n ≥ 0 and ∫ π

−π

∫ π

−π
q(Φ, φ1) dΦdφ1 = 1. (2.89)

To get a sense of what affects the behaviour of solutions to the FPE, we derive E[R2
i ], E[R−1

i ] in
terms of the system parameters.

2.4.1 Deriving the moments including nonlinear effects

To compute the expected values of the moments for the amplitude we return to the equations given
by our ansatz for the coefficents of the dominant oscillatory modes for the amplitude: Ai, Bi, (2.35,
2.36). As above, we assume that R2

i is small, and obtain linearized SDEs (2.37, 2.38) which are
OU-Processes. Moreover, we can see that linearizing the SDEs has resulted in a decoupling of Ai
from Bi terms and thus a separable probability density for each component, assuming there are
negligible correlation effects. We explain below why this assumption is acceptable in the range of
parameters where the OU approximation is appropriate. The probability density function, ρi for
the ith independent oscillator is given by

ρi(A,B) = ρAi(A)ρBi(B) where ρAi(A) =
√
−λ2

∆iπ
exp

(
λ2

∆i
A2

)
(2.90)
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Performing the change of variables (Ai, Bi) → (Ri, φi), and change of measure, we find that to
leading order the distribution for the amplitude of oscillator i, ρi, is given by

ρi(Ri) =
−2λ2Ri

∆i
exp

(
λ2

∆i
R2
i

)
(2.91)

Notice that this distribution agrees with (2.41, 2.42) in the limit where no common noise is present,
and thus the oscillators are independent. Various expected moments of amplitude can easily be
calculated from this distribution.

E[R2
i ] = −∆i

λ2
, E[R−1

i ] =
√
−λ2π

∆i
(2.92)

We also evaluate the first moment of amplitude, E[Ri] =
√
π∆i/(−4λ2). This serves as confirmation

that our rescaling of Ri = O(
√

∆i) that we used to derive the FPE (2.87) in section 2.4 is of the
correct order. Notice that the second moment above is exactly the same as (2.79). This is important
to point out that we get exactly the same leading order moments when we compute them using the
linear distribution (2.41). Thus our assumption of negligible correlation effects is justified. Using
this leading order solution (2.91), we compute the corrections to the leading order solution caused
by the nonlinear terms.

Using the SDEs for the amplitude of the oscillator i given in (2.83), we can write a FPE for the
probability density function for the amplitude of the oscillator which includes the nonlinear effects,
denoting the steady state solution to this equation with ρ̂i(R)

0 = − ∂

∂R

[(
R(λ2 + αR2) +

1
2

∆iR
−1

)
ρ̂i

]
+

∆i

2

(
∂2ρ̂i
∂R2

)
, ρ̂i = ρ̂i(R) (2.93)

It is easy to check that when α = 0, we find the density function ρi satisfies (2.93) exactly. With
this in mind, we define the corrected steady state distribution as follows

ρ̂i = ρig, where g = g(R) = exp

(
n∑
k=0

akR
k

)
(2.94)

where n is some terminal indexing integer. Substituting this into (2.93) gives the following equation:

0 =
[
8∆iαR

3 + 4αλ2R
5
]
g(R) +

[
∆i(2αR4 −∆i − 2λ2R

2)
] dg
dR
−∆2

iR
d2g

dR2
(2.95)

Substituting in the expression for g given by (2.94) allows us to solve for the coefficients, ak. This
is done by separating all contributions on the polynomial basis in the variable R. Doing so yields
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2.4. Asymptotic analysis of amplitude and phase equations, Fokker-Planck equation

the following equations for various orders in R:

O(1) : 0 = −∆2
i a1 (2.96)

O(R) : 0 = −4∆2
i a2 −∆2

i a
2
1 (2.97)

O(R2) : 0 = −9∆2
i a3 − 2∆ia1λ2 − 4∆2

i a1a2 (2.98)

O(R3) : 0 = 8∆iα− 16∆2
i a4 − 4∆ia2λ2 −∆2

i (4a
2
2 + 6a3a1) (2.99)

O(R4) : . . . .

Solving for the constants {ak} yields that a0 is free, a1,2,3 = 0 and a4 = α
2∆i

. The freedom in
choosing a0 allows for normalization of the corrected distribution such that integrating it over all
R ∈ [0,∞) equals 1. The corrected probability density function is given by

ρ̂i(R) = ci

(
−2λ2R

∆i

)
exp

(
λ2

∆i
R2 +

α

2∆i
R4

)
(2.100)

where ci is the normalization constant. This distribution is valid for R small. Unfortunately the
density function that results is not normalizable as α > 0 and the distribution diverges. This is a
result of the local subcritical Hopf bifucation that occurs in the deterministic system for λb = 0.
To pick the normalization constant, we expand the quartic term in the exponential as a Taylor
series: exp (αR

4

2∆i
) ≈ 1 + αR4

2∆i
. Using this approximation, the distribution is now normalizable. This

expansion of the distribution is justified as we need only consider small values of Ri since we are
forcing the oscillators with very weak noise which keeps the amplitude near the steady state and
away from the large amplitude limit-cycle.

ρ̂i(R) = ci

(
−2λ2R

∆i

)
exp

(
λ2

∆i
R2

)(
1 +

α

2∆i
R4

)
, ci = (1 + α∆i/λ

2
2)−1. (2.101)

Taking the integral of this distribution and setting it equal to 1 gives us the solution for ci given
in (2.101). We compute the approximate moments for amplitude, incorporating the effect of the
lowest order nonlinearity in λ(ri):

E[R2
i ] = ci

(
−∆i

λ2
− 3α∆2

i

λ3
2

)
E[R−1

i ] = ci

(√
−λ2π

∆i
+

3α
8

√
π∆i

−λ3
2

)
. (2.102)

It should be noted that exact distribution for the amplitude could be normalized if we were to
include the effect of γ < 0, the highest order nonlinearity in λ(ri). It would result in exponential
decay of the amplitude distribution for values of r = εR beyond the amplitude of the stable limit-
cycle. The effect of γ is negligible for R small. We use the moments (2.102) in our asymptotic
solution for the FPE.
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2.5. Stationary solutions to the reduced Fokker-Planck equation

2.4.2 Reduction of Fokker-Planck equation for phase difference

Now that we have expressions for the moments of the distributions, we reduce the FPE to study
the phase difference, rather than the distribution of phases themselves. We integrate (2.87) over
all φ1 ∈ [−π, π] to get the following reduced FPE:

∂p

∂T
= −ω1(E[R2

2]− E[R2
1])

∂p

∂Φ
+

1
2

{
[∆1E[R−1

1 ]2 + ∆2E[R−1
2 ]2]

∂2p

∂Φ2

−
δ2
C

ε4
E[R−1

1 ]E[R−1
2 ]

∂2

∂Φ2
(cos (Φ)p)

}
(2.103)

where p = p(Φ) is the marginal probability density distribution for the phase difference: p(Φ) =∫ π
−π q(Φ, φ1) dφ1. The resulting FPE is an anisotropic advection-diffusion equation in one variable.

Substituting the moments (2.102) for Ri, i = 1, 2 in (2.103) yields:

∂p

∂T
= m1

∂p

∂Φ
+m2

∂2p

∂Φ2
−m3

∂2

∂Φ2
(cos (Φ)p). (2.104)

where

m1 =
ω1

λ2

[
(∆2c2 −∆1c1) +

3α
λ2

2

(
∆2c

2
2 −∆1c

2
1

)]
, (2.105)

m2 =
1
2

[
−λ2π(c2

1 + c2
2) +

3απ
4|λ2|

(∆1c
2
1 + ∆2c

2
2) +

9α2π

−64λ3
2

(∆2
1c

2
1 + ∆2

2c
2
2)
]
, (2.106)

m3 =
δ2
Cc1c2

2ε4

[
−λ2π√
∆1∆2

+
3απ
8|λ2|

(√
∆1

∆2
+
√

∆2

∆1

)
+

9α2π

−64λ3
2

√
∆1∆2

]
, (2.107)

and {ci, i = 1, 2} are as defined as above.

2.5 Stationary solutions to the reduced Fokker-Planck equation

We solve for the stationary distribution for this FPE (2.104). Integrating (2.104) with ∂p/∂T = 0
yields the following solution for p:

p(Φ) = ([m2 −m3 cos(Φ)] exp [f(Φ)])−1 ×
(∫

M1 exp[f(Φ)] dΦ +M2

)
(2.108)

f(x) = 2m1 arctan

(
(m2 +m3) tan (x/2)√

m2
2 −m2

3

)
(2.109)

where M1,M2 are constants chosen for normalization and periodicity (2.88, 2.89). In this form the
analytical solution does not yield very much information about the qualities of the distribution.
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2.5. Stationary solutions to the reduced Fokker-Planck equation

Instead we look for an asymptotic solution of the form p = p0 + ∆1p1 +O(∆2
i ), based on the small

noise approximation (∆i � 1). When we plug this asymptotic solution into (2.104), we get the
following order equations for the stationary distribution:

O(1) : 0 =
∂2

∂Φ2
[(1−K cos (Φ))p0] (2.110)

O(∆1) : 0 = a1
∂p0

∂Φ
+

∂2

∂Φ2
[(a2 + a3 cos (Φ))p1] +

∂2

∂Φ2
[(a4 + a5 cos (Φ))p0] (2.111)

where

a1 = (z − 1)
ω1

λ2

(
1 +

3α
λ2

2

)
, a2 = −λ2π, a3 = λ2πK (2.112)

a4 = πα(1 + z)
(

1
λ2

+
3

8|λ2|

)
, a5 = − 3απ

8|λ2|
(1 + z)K, z = ∆2/∆1.

We see that the parameter K has reappeared in the calculuations. By inspection, one can derive
the leading order solution from the leading order equation, (2.110). Integrating this equation, then
enforcing both normalization and periodicity yields

p0(Φ) =
√

1−K2

2π(1−K cos(Φ))
. (2.113)

From this we can notice important qualities about the solution to the FPE. If K = 0, corresponding
to the case of no common noise, the probability density for Φ is uniform on [−π, π]. As K is
increased, the height of the probability density at Φ = 0 increases as well. As K gets close to 1,
the probability distribution becomes very peaked until a singularity occurs at Φ = 0. We show in
section 2.5.1 that the solution to (2.110) is the Dirac-δ function centered at Φ = 0 when K = 1.

We compute the first order correction to the distribution, p1, by solving (2.111). After renor-
malizing the distribution and enforcing periodicity, we obtain the following result:

p1(Φ) =
ω1(z − 1)

(
arctan

(
(1+K) tan (Φ/2)√

1−K2

)
− Φ

2

)
λ2

2π
2(1−K cos (Φ))

−
√

1−K2(a4 − a5 cos (Φ))
−2λ2π2(1−K cos (Φ))2

+
(a5K − a4)

2λ2π2
√

1−K2(1−K cos (Φ))
. (2.114)
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2.5. Stationary solutions to the reduced Fokker-Planck equation

2.5.1 K = 1 and the δ-function solution

When K = 1, the asymptotic solution (2.113, 2.114) above is invalid, since it is non-integrable.
When K = 1, then the steady state solution to p solves:

0 =
∂2

∂Φ2
[(1− cos (Φ))p] (2.115)

The reason we drop the advection term is because K = 1 implies that δ1, δ2 = 0 (δC < ∞) which
eliminates the coefficient for the advection term. The standard method of integration yields a
solution for (2.115) that is singular at Φ = 0. Trying to enforce normalization on such this solution
is not possible. An alternative method of solution is required.

To find such a solution, we use the theory of generalized functions [22] which yields the following
theorem: Given a function f(Φ) that is n-times continuously differentiable, then

f(Φ)δ(n)(Φ) =
n∑
j=0

(−1)(n−j)
(
n

j

)
f (n−j)(0)δ(j)(Φ) (2.116)

where f (n)(Φ) denotes the nth derivative of f with respect to Φ. Expanding out (2.115), we get the
following:

0 =
∂2p̄

∂Φ2
− cos(Φ)

∂2p̄

∂Φ2
+ 2 sin(Φ)

∂p̄

∂Φ
+ cos(Φ)p̄. (2.117)

It is easy to show that p = δ(Φ) solves (2.115), by applying the above theorem to the terms in.
This indicates perfect synchronization of the oscillators when K = 1.

p(Φ) = δ(Φ) when K = 1. (2.118)

In chapter 3, we simulate a sample trajectory for the K = 1 case and see that the oscillators only
forced with common noise eventually evolve to pure synchrony after an initial transcient phase
difference.
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Chapter 3

Numerical Work

In this chapter, we give some details about the numerical method we used to numerically compute
realizations of the model and compare the numerical simulations with our analytical theory.

3.1 Numerical method

To simulate the stochastic differential equations (2.1), we use the explicit order 2.0 weak scheme
given by Kloeden and Platen [25]. In this case the term ‘weak’ means that the numerical method
generates solutions that give convergence in the functionals for the system, like the moments and
probability densities. This stands in contrast to a ‘strongly’ convergent numerical method where
the solution converges pathwise to a given definite noisy realization. The order ‘2.0’ means that
such quantities converge to second order in the size of the time step. In our case, we are interested
in probability densities for Φ and moments of amplitude, so using a weakly convergent method is
justified. This method is of higher order than the Euler-Maruyana approximation that is often the
standard numerical method used for simulating SDEs. Said method has weak convergence order
1.0.

The order 2.0 weak scheme is as follows. If we denote the deterministic component of the right
hand side of (2.1) by ~f and let ~x(n)

i = [x(n)
i , y

(n)
i ]T , where the superscript denotes the nth time-step,

then the stepping scheme is given by:

~x
(n+1)
i = ~x

(n)
i +

1
2

[
~f(~Ξ(n)) + ~f(~x(n)

i )
]

∆(n)
t + δi∆(n)

ηi
+ δC∆(n)

ηC
, (3.1)

~Ξ(n) = ~x
(n)
i + ~f(~x(n)

i )∆(n)
t + δi∆(n)

ηi
+ δC∆(n)

ηC
. (3.2)

One can see by a brief inspection that this is somewhat analogous to the explicit trapezoidal rule for
numerical integration (also known as Heun’s method). The terms ∆(n)

t , ∆(n)
ηi , ∆(n)

ηC are the discrete
increments of time, the independent noise forcing for the ith oscillator and the common noise forcing,
respectively, at the nth time step. ∆(n)

ηi , ∆(n)
ηC are sampled from the normal distribution of variance

one and scaled by (∆(n)
t )1/2, following the standard Euler step rules for SDEs.

For all histograms below, we simulate the system (2.1), for a sufficiently long time to obtain a
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3.2. Numerical simulations, comparison to analysis

reasonably large data set: t = 5000. We also eliminate a sufficiently large component of the time
series (0 ≤ t < 300) to ensure that the system has settled to a statistical equilibrium. We also
simulate multiple time series; 5 for each plot, unless stated otherwise. We also take ∆(n)

t = 10−2

for all n. We use standard parameters in all simulations, unless stated otherwise, given in Figure
3.1. The code used for the simulations is given in Appendix A.

Parameter Value
λ2 -3
α 0.2
γ -0.2
ω0 0.9
ω1 1.2
ε 0.1

Table 3.1: Standard parameters used in all numerical simulations, unless stated otherwise.

3.2 Numerical simulations, comparison to analysis

3.2.1 Moments of amplitude

In section 2.3.1, we derived a probability density function for the amplitudes of the oscillators
maintaining the correlative effects of the common noise (2.71). In section 2.4.1, we neglected the
correlative effects to get the probability density function for the amplitude. These density functions,
to leading order, were that of OU-processes. The nonlinear corrections perturb these probability
density functions away from the probability density function for the OU-process. We test the
accuracy of the moments of amplitude from the asymptotic analysis given in section 2.4.1 and also
test whether any correlative effects exist for the amplitudes of the original system.

Using the numerical method described above, we simulate the original system (2.1) for two
different sets of noise strengths. To test whether the amplitude dependent phase variation has
an effect on the predicted amplitudes, we simulate the system with noise strengths δ1 = δC =
0.008, δ2 = 0.003. To test the effect of correlated noise on the amplitude distribution, simulate
the original system with intrinsic noise strengths equal to zero and δC = 0.01. The results are
shown in Figure 3.1. From the plots, we can see that neither amplitude dependent phase variation,
nor correlation of noise affect the distribution of amplitudes. Moreover, the results confirm that
the probability density function (2.101) from which the moments of amplitude (2.102) are derived
is accurate and that the inclusion of the nonlinear effects has negligible effect on the amplitude
distribution for sufficiently small noise (i.e: limited probability of transition to large amplitude
oscillations on the limit cycle).
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3.2. Numerical simulations, comparison to analysis
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Figure 3.1: Normalized histogram data for the amplitudes of the coupled oscillators compared to
the marginal amplitude distributions for R1 and R2 given by (2.91) (solid) and (2.101) (dashed).
Standard parameters are used. Left (Right): δ1 = 0.008, δ2 = 0.003, δC = 0.008 (δ1 = δ2 = 0, δC =
0.01)
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3.2. Numerical simulations, comparison to analysis

3.2.2 Phase difference

We simulate the original system for δ1 = δ2 as seen in Figure 3.2. From left to right, top to
bottom the strength of the common noise is increased, while the intrinsic noise strengths are held
equal and constant. Given the equal strength of intrinsic noises, and the theoretical distribution
computed in the previous sections we expect the distribution of phases to be peaked at Φ = 0. This
means that in-phase oscillation is the most likely state for this system. As the relative strength
of the common noise is increased, corresponding to an increase in the parameter K, we see that
the distribution becomes more peaked, approaching the δ-function solution as K → 1. What this
means is that as the common noise is increased relative to the intrinsic noise strength, the state
of in-phase oscillation is becomes more likely. We expect from the theory that we have derived
that in the limit K → 1, the state of the system evolves to exact synchrony. Looking at Figure
3.3 supports this. After an initial transcient phase difference, the system evolves to a state of pure
synchrony over the long time scale until the oscillators become virtually indistinguishable in terms
of their behaviour.

We also do a comparison of the quality of the fits provided from both the linear distribution
for the phases P and that of the asymptotic solution p. We can see that the linear distribution
P matches the simulated data quite well. The asymptotic distribution does not match as well,
although it is qualitatively correct capturing the increase in probability of observing the oscillators
in a synchronized state as the common noise is increased. The asymptotic solution is however able
to capture effects that the linearized distribution cannot as we show next.

Amplitude-dependent phase evolution

The importance of the asymptotic solution is apparent in the case when the parameters of the
system yield amplitude dependent phase evolution. This occurs when ω1 6= 0 and ∆1 6= ∆2.
When this is true, the correction to the leading order asymptotic solution, p1 has a non-zero odd
component. This indicates that the distribution of phase differences has a peak centered at a non-
zero value. This phase shift cannot be captured using the linear distribution, but the asymptotic
distribution has little problem capturing this effect, qualitatively as seen in Figure 3.4.

In Figure 3.4, we simulate the system for two different values of ω1 and δC , and plot the linear
and asymptotic distributions over the data. In essence, the effect of the amplitude-dependent
phase evolution is to, on average, advance or delay the phase of one oscillator relative to the other.
The average phase difference is positive (negative) when ω1(∆2 −∆1) is positive (negative). One
would expect this, given the form of ω(ri). The noisy forcing tends to increase the amplitude of
the oscillator. If one is noisier than the other, than there is a non-zero average difference in the
amplitude. In the lower right plot of Figure 3.4, which does not fall under the asymptotic regime,
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Figure 3.2: Histograms of simulated phase data of the original system, (2.1), plotted against the
asymptotic solution for p̄(Φ). Parameters used in this simulation are the standard (ω0 = 0.9,
ω1 = 1.2, λ2 = −3, ε = 0.1, δ1 = δ2 = 0.004). Notice that by our choices of noise strength we
have ∆1 = ∆2, and that we increase the common noise strength from left to right, top to bottom
(δC = 0, 0.001, 0.004, 0.01). Grey: Histogram of simulated data. Black, solid (dashed): Asymptotic
solution (Linear distribution). All noise parameters are chosen to ensure that the trajectory remains
near the stable steady state, and moves onto the stable limit-cycle that exists in this parameter
regime with very limited probability.
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Figure 3.3: A sample time series for the system given by (2.1) when δ1,2 = 0, δC = 0.005 (i.e:
K = 1), with all initial conditions sampled from the normal distribution with mean 0 and standard
deviation 0.05. Despite the different initial conditions, the trajectories of the system begin to
overlap as t gets larger eventually becoming indistinguishable, as seen from the difference in the
images on the left and right. Standard parameters are used.
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Figure 3.4: Histograms of simulated phase data of the original system, (2.1), plotted against the
asymptotic solution for p̄(Φ) (solid) and the distribution derived from the linearization (dashed).
Parameters used in this simulation are (ω0 = 0.9, ε = 0.1, λ2 = −3). The intrinsic noise strengths
are δ1 = 0, δ2 = 0.009. Left(Right): δC = 0.003(0.009). Top(Bottom): ω1 = 5(20). The data in the
lower right has parameters that are not in the asymptotic regime. The green line is the stationary
solution to (2.104), computed using a finite-element method.
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3.2. Numerical simulations, comparison to analysis

we solve for the stationary solution for (2.104) using a finite element method. The generally good
correspondence between the finite element solution and the simulated data serves as a confirmation
of sorts that our FPE, (2.104) corresponds to the data nicely, even in the limit when the amplitude-
dependent frequency term has noticeable effect due to both the large value of ω1 and the relatively
large difference between noise strengths.

Inside vs. outside the knee

We also test whether the position of the bifurcation parameter λ2 being inside or outside the range
of values where a transition to the stable limit cycle is possible has any effect. In particular, we
test the extent to which the small noise approximation can be applied in the presence of increasing
noise strengths in regions where there is no danger of moving onto the stable limit cycle (i.e: regions
where λ(r) = 0, has no real solutions for r). Whether or not we are inside or outside the knee
has no effect on the validity of our results, nor does it change the synchronization behaviour of the
system in a significant way, as we can see in Figure 3.5. In this figure, we display the simulated data
from two oscillators with equal intrinsic noises and some common noise driving, with one oscillator
having the bifurcation parameter inside the knee and the other outside the knee.

We also simulate the system outside the knee of the bifurcation diagram to test the limits of our
multiple scales approximation without the risk of the system evolving to limit-cycle behaviour by
choosing λ2 such that no limit-cycle exists. In Figure 3.6, we choose λ2 = −6, α = 0.2, γ = −0.2
and simulate the system for increasing values of the noise strength. The choose of parameters
means the system is just outside the knee for the stable limit-cycle behaviour. For the multiple
scales approximation to be valid, we must have δi = O(ε2), i = 1, 2, C. Moreover, the linear and
asymptotic solutions for the phase difference probability density functions require that ∆i be small.
From top to bottom, δ1 = δ2 = δC = ε2, 5ε2, 10ε2. Clearly as the noise strength is increased beyond
the small noise limit, both the linear and asymptotic approximations cease to be useful and the
phase distribution approaches uniformity.
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Figure 3.5: Histograms of simulated phase data of the original system, (2.1), plotted against the
asymptotic solution for p̄(Φ) (solid) and the distribution derived from the linearization. Parameters
used in this simulation are the standard (ω0 = 0.9, ω1 = 1.2, ε = 0.1). The noise strengths are
δ1 = δ2 = δC = 0.001. Left (Right): λ2 = −3(−10). This puts the system inside (outside) the knee
in the left (right) figure.
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Figure 3.6: Histograms of simulated phase data of the original system, (2.1), plotted against the
asymptotic solution for p̄(Φ) (solid) and the distribution derived from the linearization. Parameters
used in this simulation are the standard (except for λ2 = −6). Top/Middle/Bottom: δ1 = δ2 =
δC = 0.01/0.05/0.1.
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Chapter 4

Discussion and Conclusions

In this thesis, we present a pair of identical uncoupled conditional oscillators with parameters chosen
such that the system is near a subcritical Hopf Bifurcation and forced with weak white noise. The
noisy forcing is the additive sum of an intrinsic noise source and common noise source, acting
identically on both. While this problem has been studied several times in the context of limit-
cycle oscillators, this is the first study undertaken of noise-induced synchronization of uncoupled
conditional oscillators.

We applied a stochastic multiple scales method that allowed us to study the effect of the weak
noisy forcing on a canonical λ-ω model. Using a separation of time scales, we study the effect
of the noise as it effects the envelope functions of deterministic oscillations. We see that small,
nearly regular oscillations are driven by CR, similar to [45] and that the amplitude can be modeled
as a stochastic process on the slow time scale, while the deterministic oscillations evolve on the
fast time scale. The calculation of the drift terms for the envelope equation was carried out in
the same spirit as the standard multiple scales method. To compute the effects of the white noise
forcing, we compare the diffusion terms of the generators of the original and transformed system
using the method given in [2]. Due to the presence of both common and intrinsic noise forcing, we
maintain the distinction between the two in our derivation of the envelope equations so as to better
distinguish their effects later in the analysis. The scaling of the noise strength coefficients in the
envelope SDEs, δi/ε2, δC/ε2 reflects the amplification of the noisy forcing on the long time scale.

We derive the probability density function for the amplitudes and phases of the oscillators to
leading order, based on the linearization of the stochastic differential equations for which a well-
established theory exists [16]. We use this probability density function to compute the marginal
densities for the phase difference and amplitude, the latter of which we use to study the related
moments. The marginal phase distribution reveals that the existence of weak common noise forcing
does indeed increase the degree of synchrony as seen by the development of a peak in the probability
density at Φ = 0. We find that the degree of synchrony for the oscillators can be characterized by
the parameter K =

[(
1 + δ2

1/δ
2
C

) (
1 + δ2

2/δ
2
C

)]−1/2, which is bounded on a closed interval between
0 and 1. It indicates that the degree of synchrony of small oscillations is largely determined by the
ratio of intrinsic to common noise.

A perturbation analysis of the stochastic equations is applied in order to confirm the result from
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Chapter 4. Discussion and Conclusions

the linear theory. This asymptotic analysis involves the reduction of a four dimensional system to a
two dimensional system using a moment approximation for amplitude components. The moments
are calculated using a perturbation expansion method, which allows us to include lower order
nonlinear effects in the amplitude evolution, although they do not have a significant effect on the
corresponding probability density function for the amplitude when the small noise requirement is
considered (Fig. 3.1). The asymptotic solution for the probability density of the phase difference
indeed confirms the results from the linear theory. That is, the presence of common noise increases
the degree of synchronization of uncoupled conditional oscillators and that the parameter K can
be used to characterize the synchronization, to leading order. Moreover, the asymptotic analysis
predicts that different intrinsic noise strengths have an effect on the frequency of oscillation near
the bifurcation when the system has amplitude-dependent frequency variation. When one oscillator
experiences noise forcing that has a greater strength than the other, the phase of that oscillator
generally leads or follows that of the other one, depending on the sign of the parameter ω1, which
determines the frequency variation of the amplitude. This is an effect that is not observable in the
phase distribution derived from the linearization. The precise degree of proximity to the bifurcation
(λ2, ε) and amplitude nonlinearities (α) do not have an effect on the leading order solutions for
the phase distribution. They do have an effect on the first order corrections for the asymptotic
solution, however. The quantitative differences between the asymptotic and linear solutions for the
probability density functions are significant.

We test our theory by simulating the original system and comparing to our analytically derived
distributions. We see that the addition of a common noise source to these conditional oscillators
near a subcritical Hopf Bifurcation does indeed increase the degree of synchrony for this system.
The linear theory matches the numerical data quite well, but does not capture the effect caused by
the combination of different intrinsic noise strengths and amplitude-dependent phase evolution. It
is unlikely that this shift in the peak indicates out-of-phase entrainment of the phases. It is more
likely that it indicates the system spends more time near synchrony, but the faster oscillator has
a tendency to slip. An interesting observation is that in the case where the amplitude dependent
phase variation is of comparable order to the noisy forcing, then the numerically computed solution
to the FPE (2.104) matches the data quite well (see Fig. 3.4).

We test the limits of the small-noise approximation and found that we must have δi, δC ∼ ε2

in order for the theory to hold. The small noise limit must hold as it is required for consistency
of the multiple scales method (i.e δi, δC = O(ε2)) or the noise dominates the fast time dynamics.
Moreover, the analysis of both the linear process and the asymptotic limit, require that ∆1 and
∆2 be small, as we eliminate nonlinearities by assuming that R2

i � 1 and we find E[R2
i ] = O(∆i).

Increasing the values of δi, δC to values a few times greater than ε2 invalidates both the linear and
asymptotic theory and we notice that the analytical solutions break down. In this case, the noisy
forcing becomes more dominant in the slow time behaviour. These conclusions are similar to those
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drawn in [26].

This study may have implications for the study of spike time reliability and synchronization of
membrane potential oscillations in type II neurons. The bursting behaviour that is possible in type
II neurons that occurs by passing through the Hopf Bifurcation point may be synchronized by the
following mechanism. The phase synchronization observed in the conditional oscillators increases
the likelihood of a perturbation common to both oscillators pushing the oscillators beyond the
manifold separating the excursion dynamics from quiescence. In this case, that manifold is the
unstable limit cycle separating the fixed point at the origin and the stable limit cycle.

4.1 Future work

To extend this work, there are more challenges that could be undertaken with some effort.

• Determining the effect of common noise on structurally identical conditional oscillators, but
with different strengths affecting each. An application for this work would be voltage atten-
uation along inputs of various lengths and compositions entering neuronal cells. Would the
common noise still induce synchronization, or would amplitude dependent frequency variation
result in desynchronization?

• Determining the precise effect that the mechanism described above has on the synchronization
of uncoupled bursting Type II Morris-Lecar neuronal models. Does the hypothesis given in
the previous section hold?

• Working on improving the asymptotic approximation to the full FPE, if at all possible. Can
we increase the quantitative accuracy of the asymptotic approximation?
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Appendix A

Code

In this appendix, we give some of the code used to simulate the original system of oscillators. Data
simulated from this code was piped into a data file and manipulated using MATLAB to generate
the figures in this thesis. The command gasdev(arg) generates a random variable using arg as a
seed.

Program A.1 C program that simulates a single or multiple time series of the original system of
equations (2.1).

/*

*

* This C file when compiled will simulate the two canonical conditional

* experiencing correlated noise near a subcrit. HB.

* Created by William Thompson on 29/10/09.

* Copyright 2009 University of British Columbia. All rights reserved.

*

*/

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

.....

/* RHS1 will calculate the RHS of the DE for the x variable*/

double RHS1(double t, double y[2], double p[6])

{

//p is the parameter vector p = (lambda2,alpha,gamma,omega0,omega1,epsilon)

double ans;
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double rsq;

rsq = y[0]*y[0] + y[1]*y[1];

ans = (p[5]*p[5]*p[0] + p[1]*rsq + p[2]*rsq*rsq)*y[0] - (p[3] + p[4]*rsq)*y[1];

return(ans);

}

/* RHS2 will calculate the RHS of the DE for the y variable*/

double RHS2(double t, double y[2], double p[6])

{

//p is the parameter vector p = (lambda2,alpha,gamma,omega0,omega1,epsilon)

double ans;

double rsq;

rsq = y[0]*y[0] + y[1]*y[1];

ans = (p[5]*p[5]*p[0] + p[1]*rsq + p[2]*rsq*rsq)*y[1] + (p[3] + p[4]*rsq)*y[0];

return(ans);

}

main()

{

double t0,tf,dt,dtrt,t,temp[2],k1[2],k2[2],k3[2],k4[2];

double x[2][2];

double p[6];

double deltaI[2];

double deltaC;

int n;

int idum = 1;

int numRuns;

double tRec; //time at which to start recording the data

init_genrand(time(NULL)); //seed the random number generator with clock.

t0 = 0; //initial time

tf = 2000; //final time

dt = 0.01; //time step

dtrt = sqrt(dt);

n = ceil(tf/dt) + 1; //number of time steps required

numRuns = 1; //number of time series to simulate
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tRec = 300; //time to start recording data to avoid transcient effs.

p[0] = -3; //lambda_2

p[1] = 0.2; //alpha

p[2] = -0.2; //gamma

p[3] = 0.9; //omega_0

p[4] = 1.2; //omega_1

p[5] = 0.1; //epsilon

deltaI[0] = 0.0000; //delta_1

deltaI[1] = 0.0000; //delta_2

deltaC = 0.001; //delta_C

printf("%e %e %e %e %e \n",p[0],p[1],p[4],p[5],0.0);

printf("%e %e %e %e %e \n",deltaI[0],deltaI[1],deltaC,0,0);

//Generate the common noise signal, unscaled.

double *noiseC;

double (**noiseI);

//Allocate memory

noiseC = (double*) malloc(n*sizeof(double));

noiseI = malloc(2*sizeof(double*));

noiseI[0] = (double*) malloc(n*sizeof(double));

noiseI[1] = (double*) malloc(n*sizeof(double));

int Z;

int k;

for(Z=1;Z<=numRuns;Z++)

{

for (k=1;k<=n;k++)

{

noiseC[k] = gasdev(&idum);

noiseI[0][k] = gasdev(&idum);

noiseI[1][k] = gasdev(&idum);

}
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//Simulate the uncoupled oscillators

t = 0;

x[0][0] = 0.05*gasdev(&idum); //initial condition on x1

x[0][1] = 0.05*gasdev(&idum); //initial condition on y1

x[1][0] = 0.05*gasdev(&idum); //initial condition on x2

x[1][1] = 0.05*gasdev(&idum); //initial condition on y2

if(tRec == 0)

{

printf("%e %e %e %e %e \n",t,x[0][0],x[0][1],x[1][0],x[1][1]);

}

int s;

double gam[2];

for(k=2;k<=n;k++) //iterate over all time steps

{

for(s=0;s<=1;s++) // iterate over the number of oscillators

{

gam[0] = x[s][0] + dt*RHS1(t,x[s],p);

gam[0] = gam[0] + deltaI[s]*dtrt*noiseI[s][k] + deltaC*dtrt*noiseC[k];

gam[1] = x[s][1] + dt*RHS2(t,x[s],p);

//Apply 2nd order explicit weak scheme from Kloeden and Platen

temp[0] = x[s][0] + dt/2*(RHS1(t,gam,p) + RHS1(t,x[s],p));

temp[0] = temp[0] + deltaI[s]*dtrt*noiseI[s][k] + deltaC*dtrt*noiseC[k];

temp[1] = x[s][1] + dt/2*(RHS2(t,gam,p) + RHS2(t,x[s],p));

x[s][0] = temp[0];

x[s][1] = temp[1];

}

t = t + dt;

if(t >= tRec)

{

printf("%e %e %e %e %e \n",t,x[0][0],x[0][1],x[1][0],x[1][1]);

}
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}

}

free(noiseC);

free(noiseI);

}
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