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Abstract

Measurement error occurs frequently in observational studies investigating
the relationship between exposure variables and a clinical outcome. Error-
prone observations on the explanatory variable may lead to biased esti-
mation and loss of power in detecting the impact of an exposure variable.
When the exposure variable is time-varying, the impact of misclassification
is complicated and significant. This increases uncertainty in assessing the
consequences of ignoring measurement error associated with observed data,
and brings difficulties to adjustment for misclassification.

In this study we considered situations in which the exposure is time-
varying and nondifferential misclassification occurs independently over time.
We determined how misclassification biases the exposure outcome relation-
ship through probabilistic arguments and then characterized the effect of
misclassification as the model parameters vary. We show that misclassifica-
tion of time-varying exposure measurements has a complicated effect when
estimating the exposure-disease relationship. In particular the bias toward
the null seen in the static case is not observed.

After misclassification had been characterized we developed a means
to adjust for misclassification by recreating, with greatest likelihood, the
exposure path of each subject. Our adjustment uses hidden Markov chain
theory to quickly and efficiently reduce the number of misclassified states
and reduce the effect of misclassification on estimating the disease-exposure
relationship.

The method we propose makes use of only the observed misclassified
exposure data and no validation data needs to be obtained. This is achieved
by estimated switching probabilities and misclassification probabilities from
the observed data. When these estimates are obtained the effect of mis-
classification can be determined through the characterization of the effect of
misclassification presented previously. We can also directly adjust for mis-
classification by recreating the most likely exposure path using the Viterbi
algorithm.

The methods developed in this dissertation allow the effect of misclassifi-
cation, on estimating the exposure-disease relationship, to be determined. It
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Abstract

accounts for misclassification by reducing the number of misclassified states
and allows the exposure-disease relationship to be estimated significantly
more accurately. It does this without the use of validation data and is easy
to implement in existing statistical software.
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Chapter 1

Introduction

In many epidemiological and clinical studies we wish to model a health re-
lated outcome, Y , dependent on an explanatory variable corresponding to
some exposure status, X, and certain measured potential confounders Z.
Sometimes the measured exposure status, denoted by X∗, is an imperfect
surrogate for the actual exposure X. This is known as exposure misclas-
sification and it is very important to account for in these studies. Carroll,
Ruppert, Stefanski and Crainiceanu (2006) found that measurement error
in the explanatory variable:

• causes bias in parameter estimation for statistical models;

• masks the features of the data;

• leads to a profound loss of power for detecting relationships between
variables.

An example of this is when a prescription is dispensed to a patient but the
medication is not taken. If the exposure measure is taken from the pre-
scription records, then our data would assume that the patient was exposed
to the treatment when actually no exposure occurred. This will cause our
estimates to be biased and is a serious problem in many studies. Hence
the goal of adjustment for mis-measurement is to achieve roughly unbiased
estimates to reveal the relationship between Y and X indirectly, based on
the measurements of Y , X∗ and perhaps other correctly recorded covariates
Z. In binary contexts the degree of misclassification is determined by the
sensitivity and specificity, (SNi, SPi) respectfully:

SNi = Pr(X∗ = 1|X = 1, Y = i), SPi = Pr(X∗ = 0|X = 0, Y = i),
(1.1)

for i = 0, 1.
In simple contexts it is reasonable to assume the actual exposure and

the recorded exposure are both binary and X∗ depends on (X,Y, Z) only
through X, which is know as nondifferential misclassification. Then

SN = Pr(X∗ = 1|X = 1), SP = Pr(X∗ = 0|X = 0). (1.2)
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1.1. Problem Formulation

In this situation it is known that exposure misclassification biases the at-
tenuation factor:

Attenuationfactor =
X∗coefficient in the (Y |X∗, Z) regression
Xcoefficient in the (Y |X,Z) regression

(1.3)

toward the null (0 < AF < 1) when estimating the exposure-disease associa-
tion (Gustafson 2004). Therefore there is a tendency to report an artificially
weak association between the exposure and response in ignoring measure-
ment error on the exposure. This bias increases when either the sensitivity
or specificity of the classification decreases or if the correlation between X
and Z increases. Furthermore, when the exposure prevalence approach 0 or
1, measurement error induces serious and unstable attenuation toward the
null. It is also known that in these contexts adjusting for exposure misclassi-
fication has little to no effect on the ‘nearer to null’ endpoint of the interval
estimate for the coefficient of X∗. That is, misclassification adjustment will
not strengthen the evidence for the existence of an exposure-disease asso-
ciation (Gustafson 2004). The simple contexts defined above for modeling
misclassification bias are very restrictive and most medical studies do not
fall into this category. Greeland and Gustafson (2006) found that no general
conclusion could be made regarding the direction of estimated association
when the nondifferential misclassification requirement on a binary exposure
is not satisfied, or when the exposure variable is polychotomous. Further
discussion of measurement in continuous or polychotomous exposure vari-
ables or when misclassification is differential is found in Gustafson (2004)
and Carrol et al. (2006).

To account for measurement error in all the situations described above
complete information on the outcome variable Y , true exposure X and sur-
rogate exposure X∗ is needed for a small proportion of the data (validation
sample). The true exposure status for the majority of study subjects (main
study) remains unobservable or cannot be precisely measured.

1.1 Problem Formulation

In this thesis we restrict our attention to misclassification on a time-varying
binary exposure variable with no other measured covariates and we assume
no measurement error arising in the outcome of interest Y . When the actual
binary exposure status is time-varying all of the rules about how the bias
affects our results no longer hold.

We assume that the actual binary exposure status across timeX1, X2, X3, . . .

2



1.1. Problem Formulation

is a Markov chain with switching probabilities:

P (Xi = 1|Xi−1 = 0) = φ1, P (Xi = 0|Xi−1 = 1) = φ2, (1.4)

and that these time-varying exposures are misclassified (Xj → X∗j ) indepen-
dently over time. This misclassification is assumed to be nondifferential and
can be characterized by (SN, SP ). To characterize the effect of exposure
misclassification we consider a linear outcome model of the form

E(Yi|X1, . . . , Xi) = α+ ψXi, (1.5)

and a linear outcome model including lag terms such as

E(Yi|X1, . . . , Xi) = α+ γXi−1 + ψXi. (1.6)

Even in this simple case when very strong assumptions are made about
the dependence of exposure-status over time, misclassification of the time-
varying exposure will have a significant effect. This effect will be different
then the attenuation toward the null seen in the static case.

In this thesis we characterize and adjust for the effect of time-varying ex-
posure misclassification and thereby increase the accuracy of the estimates
and allow for correct inference to be made about the effect of time-varying
exposure. This adjustment is obtained without the use of a validation study
to determine the misclassification model, (X∗1:n|X1:n), and is easily imple-
mented in statistical software.

The thesis is organized as follows. Chapter 2 provides general results
on how the effect of misclassification was determined. Chapter 3 character-
izes the effect of misclassification for specific examples and depicts general
trends that result. Chapters 4 and 5 describe how to adjust for misclassifica-
tion using Markov chain theory and display results from simulation studies.
Chapter 6 provides overall conclusions and remarks on further research.
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Chapter 2

Bias Determination for
Time-Varying Exposure
Misclassification

Let the outcome variable Y be dependent on exposure variable X. If Y is
modeled on the misclassified exposure variable X∗ then bias results. In the
simple case this bias and how misclassification affects the exposure-outcome
relationship can be computed exactly.

2.1 Bias Calculation

Assume the actual binary exposure-status across time is
X1:n = (X1, X2, X3, . . . , Xn) and that these time-varying exposures are mis-
classified (Xj → X∗j ) as X∗1:n = (X∗1 , X

∗
2 , X

∗
3 , . . . , X

∗
n). Assume this misclas-

sification occurs independently over time and is nondifferential. Then for a
linear outcome model

E(Yn|X1:n) = X1:nΨ, (2.1)

the outcome variable Y depends on X∗1:n through the relationship

E(Yn|X∗1:n) = E {E(Yn|X1:n,X∗1:n)|X∗1:n}
= E {(X1:nΨ)|X∗1:n}
= E {X1:n|X∗1:n}Ψ.

The joint distribution of X and X∗ is calculated by

Pr(X1:n,X∗1:n) =

[
Pr(x1)

n∏
i=2

Pr(xi|x1 . . . xi−1)

]
n∏
i=1

Pr(x∗i |xi), (2.2)

where

Pr(x∗i |xi) =

{
(SN)x

∗
i (1− SN)1−x∗i if xi = 1,

(1− SP )x
∗
i (SP )1−x∗i if xi = 0,

(2.3)
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2.1. Bias Calculation

and Pr(xi|x1 . . . xi−1) is determined by the switching probabilities.
In this thesis we are interested in the special case where the exposure is

governed by a Markov chain, Pr(xi|x1 . . . xi−1) = Pr(xi|xi−1) and Pr(x1)
is taken to be the stationary probability distribution of the ergodic Markov
chain.

To determine the effect of misclassification, the joint probability distribu-
tion of E {X1:n|X∗1:n} is tabulated for all 2n possible values of X∗1:n. The 2n

values of E {X1:n|X∗1:n}Ψ are then expressed via the binary expansion with
2n coefficients. This one-to-one correspondence determines the relationship
between Y and X∗,

E(Yn|X∗1:n) = βnX
∗
n + βn−1X

∗
n−1 + . . .+ β12...n(X∗1X

∗
2 . . . X

∗
n). (2.4)

This calculation allows us to determine the coefficients and the bias
that results from using misclassified time-varying exposure measurements
and how quantities such as sensitivity, specificity and Markov switching
probabilities affect these quantities. Code for this calculation is presented
in Appendix A.
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Chapter 3

Bias Characterization for
Time-Varying Exposure
Misclassification

When examining a time-varying exposure that is subject to misclassification
the normal rules of attenuation toward the null shown for the static case in
Gustafson (2004) do not apply. This is true even in the most simplistic case.

Assume that the actual binary exposure-status across time isX1, X2, X3, . . .
and that these time-varying exposures are misclassified (Xj → X∗j ) indepen-
dently over time. This misclassification is assumed to be nondifferential and
can be characterized by (SN, SP ). To characterize the effect of exposure
misclassification we consider a linear outcome model and a linear outcome
model including a lag term. Even in this simple case misclassification of the
time-varying exposure will have significant effect. This is shown for specific
examples in the next two sections.

3.1 Bias Characterization for Linear Outcome
Model

To show the effect of time-varying exposure misclassification we consider a
specific example. Let the binary exposure X1, X2, X3, . . . be a Markov chain
with switching probabilities:

P (Xi = 1|Xi−1 = 0) = φ1, P (Xi = 0|Xi−1 = 1) = φ2, (3.1)

for i = 2, 3, . . . n. We assume that the Markov chain is in its stationary
distribution which implies that

P (X1 = 0) =
φ2

φ1 + φ2
, P (X1 = 1) =

φ1

φ1 + φ2
. (3.2)

We further assume that the outcome variable only depends on the current
exposure variable, with ψ = 1. Then at the fourth exposure observation we

6



3.1. Bias Characterization for Linear Outcome Model

have
E(Y4|X1, . . . , X4) = X4. (3.3)

The choice of ψ = 1 is made without loss of generality and all results hold
for arbitrary ψ. The choice of the fourth observation is also arbitrary and
was chosen for computational convenience. Results hold for n exposure
observations.

Equation (3.4) implies that the relationship of the outcome variable de-
pendent on the misclassified exposure will have the form

E(Y4|X∗1 , . . . , X∗4 ) = β4X
∗
4 + β3X

∗
3 + . . .+ β1234(X∗1X

∗
2X
∗
3X
∗
4 ), (3.4)

where if (SN = 1, SP = 1) then X∗i = Xi and β(−4) = ~0 and β4 = 1.
In the linear outcome model the largest coefficients are β4, β3 and β34.

All other coefficients are estimated to be close to zero. Figure 3.1 displays the
coefficient magnitudes when (SN = 0.8, SP = 0.95) and common switching
probability φ1 = φ2 = φ = 0.2 .
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3.1. Bias Characterization for Linear Outcome Model

3.1.1 Effect of the Exposure Switching Probability

To determine how the switching probabilities of the exposure Markov chain
affect the misclassification coefficients and model bias, we calculate these
quantities for fixed (SN, SP ) as φ1 and φ2 vary. We define model bias as
the sum of the absolute differences between the coefficients (main effects and
all interaction terms) of the linear outcome model when misclassification is
present (βj) and when misclassification is not present (ψj),

Bias =
∑
i

|ψi − βi|. (3.5)

In all calculations Pr(X1) is taken to be the stationary probability distri-
bution of the ergodic Markov chain defined in equation 3.2.

If the two exposure switching probabilities are equal (φ1 = φ2 = φ),
Figure 3.2 shows how the coefficient determination changes with φ when
(SN = 0.8, SP = 0.95). From Figure 3.2 we can see that β4 is determined
to be closest to the coefficient in the correctly classified exposure model when
φ ≈ 0.3. The other misclassification coefficients are closest to the coefficient
in the correctly classified exposure model at the same point as the bias is
minimized at φ = 0.5.

When φ = 0.5 the next state is not affected by the previous state so
there is no dependence in the exposure Markov chain. This means that for
this model only the last exposure is important and we are essentially in the
static case. This causes the familiar attenuation toward the null to occur.
This is reflected by β(−4) ≈ ~0 and β4 = 0.77.

When both switching probabilities (φ1, φ2) are allowed to vary indepen-
dently, similar effects are shown. Figure 3.3 shows a determination surface
for the misclassification coefficient β4 when both switching probabilities vary
and (SN = 0.8, SP = 0.95). We can see that β4 increases as switching prob-
ability 1, φ1, increases until φ1 ≈ 0.3 and then decreases after that. We can
also see that β4 remains almost constant as φ2 varies except when φ2 gets
very small. When φ2 is small it causes a strong negative effect on the de-
termination of β4. Figure 3.4 shows that the magnitude of β3 remains close
to zero unless φ2 is small. The magnitude of β3 becomes greatest when
φ1 ≈ 0.3 and φ2 is low. The magnitude of β34 also becomes greatest when
φ1 ≈ 0.3 and φ2 is low. This is shown in Figure 3.5. This implies that as φ2

approaches its lower limit the effect of exposure misclassification becomes
greatest. This is reflected in Figure 3.6 where we can see that the bias in-
creases significantly when φ2 is close to zero. The bias is most apparent
when both switching probabilities approach zero or one.
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3.1. Bias Characterization for Linear Outcome Model
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3.1. Bias Characterization for Linear Outcome Model

Switching Probability 1

0.2

0.4
0.6

0.8

Sw
itching Probability 2

0.2

0.4

0.6
0.8

beta4

0.2

0.4

0.6

Effect of Switching Probability on the Determination of β4

Figure 3.3: Effect of switching probabilities, (φ1, φ2), on determination of
β4 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).

10



3.1. Bias Characterization for Linear Outcome Model

Switching Probability 1

0.2

0.4
0.6

0.8

Sw
itching Probability 2

0.2

0.4

0.6
0.8

beta3

−0.4
−0.2
0.0
0.2

0.4

0.6

Effect of Switching Probability on the Determination of β3

Figure 3.4: Effect of switching probabilities, (φ1, φ2), on determination of
β3 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).
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Figure 3.5: Effect of switching probabilities, (φ1, φ2), on determination of
β34 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).
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Figure 3.6: Effect of switching probabilities, (φ1, φ2), on bias for time-
varying exposure misclassification when (SN = 0.8, SP = 0.95).

When the values of (SN, SP ) change, the determination surface of the
misclassification coefficients differ with respect to the switching probabilities.
The shapes of the determination surface for bias remains mostly unaffected
by change in (SN, SP ) but the determination surface for β4, β3 and β34 shifts
depending on the relative magnitude of (SN, SP ). When SN is small relative
to SP, such as (SN = 0.8, SP = 0.95), Figure 3.3 shows that the maximum of
β4 occurs around φ1 ≈ 0.3. When SN is large relative to SP, such as (SN =
0.95, SP = 0.8), the maximum of β4 is shifted right and occurs around
φ1 ≈ 0.7, as shown in Figure 3.7. When SN and SP are approximately
equal then the determination surface for β4 is roughly symmetric and the
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maximum occurs when φ1 ≈ 0.5, as shown in Figure 3.8. Similar asymmetric
behavior is displayed by β3 and β34 as shown by Figure 3.9 and Figure 3.10.

This asymmetric behavior is believed to occur because by changing the
(SN, SP ) we are just relabeling the states that are measured with precision.
When SN is smaller than SP, the unexposed state is measured with more
precision therefore misclassification has the least effect when φ1 is low. When
SN is larger then SP misclassification has the least effect when φ1 is high.
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Figure 3.7: Effect of switching probabilities, (φ1, φ2), on determination of
β4 for time-varying exposure misclassification when (SN = 0.95, SP = 0.8).
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Figure 3.8: Effect of switching probabilities, (φ1, φ2), on determination of
β4 for time-varying exposure misclassification when (SN = 0.9, SP = 0.9).
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Figure 3.9: Effect of switching probabilities, (φ1, φ2), on determination of
β3 for time-varying exposure misclassification when (SN = 0.95, SP = 0.8).
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Figure 3.10: Effect of switching probabilities, (φ1, φ2), on determination of
β3 for time-varying exposure misclassification when (SN = 0.9, SP = 0.9).
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3.1.2 Effect of the Sensitivity and Specificity

To determine how SN and SP affect the impact of misclassification, for fixed
switching probability φ, determination surfaces are created as SN and SP
vary. Figure 3.11 shows that when φ = 0.2 at low SN and high SP the effect
of misclassification is greatest. A similar surface is produced when φ = 0.8.
This shows that when there is a switching probability that is not around
0.5, bias does not behave in a linear fashion with respect to (SN, SP ) and
high sensitivity is necessary for bias minimization. Figure 3.12 shows that
when φ = 0.5 bias does behave in a linear way, decreasing as either SN or
SP increases.
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Figure 3.11: Effect of sensitivity and specificity on bias for time-varying
exposure misclassification when φ = 0.2.
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Figure 3.12: Effect of sensitivity and specificity on bias for time-varying
exposure misclassification when φ = 0.5.
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Sensitivity and specificity have a linear effect on the determination of β4.
When φ = 0.2, high values of specificity cause misclassification to have the
least impact on the determination. When φ = 0.5, sensitivity and specificity
have an equal effect on the determination of β4, and when φ = 0.8, high
values of sensitivity cause misclassification to have the least impact on the
determination of β4. This is shown in Figure 3.13 and Figure 3.14.
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Figure 3.13: Effect of sensitivity and specificity on determination of β4 for
time-varying exposure misclassification when φ = 0.2.
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Figure 3.14: Effect of sensitivity and specificity on determination of β4 for
time-varying exposure misclassification when φ = 0.8.
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The determination of β3 is affected by SN and SP in a non-linear way.
Figure 3.15 shows that when φ = 0.2, β3 is positive and approaches zero
as SN approaches one. Figure 3.16 shows that when φ = 0.8 β3 is nega-
tive and also approaches zero as SN approaches one. When φ = 0.5 β3 is
approximately zero and (SN, SP ) have no effect on the determination.
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Figure 3.15: Effect of sensitivity and specificity on determination of β3 for
time-varying exposure misclassification when φ = 0.2.
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Figure 3.16: Effect of sensitivity and specificity on determination of β3 for
time-varying exposure misclassification when φ = 0.8.
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3.1. Bias Characterization for Linear Outcome Model

The determination surface for β34 formed as (SN, SP ) vary is hyperbolic
and the value of β34 cannot easily be predicted based on values of (SN, SP ).
This is seen in Figure 3.17. When φ = 0.5, β34 is approximately zero and
(SN, SP ) have no effect on its determination.

When determining the effect of sensitivity and specificity, symmetric
behavior as φ moves away from 0.5 is observed. The switching probabilities
and (SN, SP ) interact in a reciprocal way. This is can be explained by the
symmetry that is obtained by just relabeling the exposed and unexposed
states.
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Figure 3.17: Effect of sensitivity and specificity on determination of β34 for
time-varying exposure misclassification when φ = 0.2.
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3.2 Bias Characterization for Linear Outcome
Model with Lag Term

To determine the effect of misclassification on a linear outcome model with
lag term we consider a specific example. We again consider the binary
exposure X1, X2, X3, . . . to be a Markov chain with switching probabilities
φ1 and φ2, and independent nondifferential misclassification determined by
(SN, SP ). We further assume that the outcome variable depends on the
current exposure variable with coefficient one and the previous lag term
with coefficient 0.5. Therefore at the fourth exposure observation we have

E(Y4|X1, . . . , X4) = X4 + 0.5X3. (3.6)

This relationships implies that the outcome variable dependent on the mis-
classified exposure will have the form

E(Y4|X∗1 , . . . , X∗4 ) = β4X
∗
4 + β3X

∗
3 + . . .+ β1234(X∗1X

∗
2X
∗
3X
∗
4 ), (3.7)

where if (SN = 1, SP = 1) then X∗i = Xi and β4 = 1, β3 = 0.5 and βj = 0
otherwise. In this case we study the behavior of the main effects β4, β3 and
β2. Figure 3.18 shows that when (SN = 0.8, SP = 0.95) and φ = 0.2 most
of the other coefficients are estimated to be close to zero with the exception
of some interaction terms. Figure 3.18 shows that under these condition
the value of β3 is overestimated. This means that when including lag terms
misclassification can overestimate the effect of previous exposure.
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φ = 0.2

3.2.1 Effect of the Exposure Switching Probability

To determine how the Markov switching probabilities affect the determina-
tion of misclassification coefficients and model bias, we again calculate these
quantities for fixed (SN, SP ) as φ1 and φ2 vary. Through this character-
ization many similarities can be seen between linear outcome models with
lagged terms and linear model outcome models without lagged terms. Fig-
ure 3.19 shows that when lagged terms are included the determination of
the leading coefficient (β4) behaves similarly as when there is no lagged term
present. When (SN = 0.8, SP = 0.95) the familiar determination surface is
seen with a sharp increase to the maximum obtained at φ1 ≈ 0.3 and then
slow descent as φ1 increases. This shape is also observed for the determi-
nation surface of β3 except that φ2 has a greater effect. As φ2 get small
we see that the value of β3 increases rapidly causing its effect to be over-
estimated. This can be seen in Figure 3.20. From Figure 3.3, Figure 3.19
and Figure 3.20 we can see that the determination of misclassification coeffi-
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3.2. Bias Characterization for Linear Outcome Model with Lag Term

cients for exposure measurements that are present in the correctly specified
linear outcome model behave similarly regardless of whether lagged terms
are present or not.

The last misclassification coefficient that was examined was β2. The ran-
dom variable X2 is not in the linear outcome model so if the exposure status
is correctly classified then it should be zero. We can see from Figure 3.21
that the determination of β2 behaves similarly to the determination to β3

in the linear outcome model without lagged term. The determination of
these coefficients correspond because they are both coefficients for the first
random variable that is not included in the true linear outcome model.

The determination of the effect of switching probabilities on linear out-
come models with lagged term have shown many similarities with the effect
of switching probabilities on linear outcome models without lagged terms.
Figure 3.22 shows that this correspondence is also displayed in the determi-
nation of bias.
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Figure 3.19: Effect of switching probabilities, (φ1, φ2), on determination of
β4 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).
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Figure 3.20: Effect of switching probabilities, (φ1, φ2), on determination of
β3 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).
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Figure 3.21: Effect of switching probabilities, (φ1, φ2), on determination of
β2 for time-varying exposure misclassification when (SN = 0.8, SP = 0.95).
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Figure 3.22: Effect of switching probabilities, (φ1, φ2), on Bias for time-
varying exposure misclassification when (SN = 0.8, SP = 0.95).

3.2.2 Effect of the Sensitivity and Specificity

To determine how SN and SP affect the impact of misclassification in a linear
outcome model with a lag term, determination surfaces are created as SN
and SP vary and φ is fixed. The coefficient of most interest in the outcome
model with a lag term is that of β3. Figure 3.24 and Figure 3.25 show that
when φ is large β3 behaves similar to β4 in the linear model with no lag term.
When φ is small something quite different occurs. When misclassification
is present random variables that are in the true model almost always have
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their effect on the outcome variable underestimated. This is not the case
for β3 when φ is small. Figure 3.23 shows that depending on sensitivity
and specificity β3 can either be under or over estimated. This can cause
a big problem in analysis because of the uncertainty of whether the lagged
exposure effect is truly more important when misclassification is present or
if it is truly less important.
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Figure 3.23: Effect of sensitivity and specificity on determination of β3 for
time-varying exposure misclassification with lagged term when φ = 0.2.

32



3.2. Bias Characterization for Linear Outcome Model with Lag Term

Sensitivity

0.5

0.6

0.7

0.8

0.9
1.0S

pecificity

0.5

0.6

0.7

0.8

0.9

1.0

b
e
ta

3

0.0

0.1

0.2

0.3

0.4

0.5

Effect of Sensitivity and Specificity on the Determination of β3 when φ=0.5

Figure 3.24: Effect of sensitivity and specificity on determination of β3 for
time-varying exposure misclassification with lagged term when φ = 0.5.
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Figure 3.25: Effect of sensitivity and specificity on determination of β3 for
time-varying exposure misclassification with lagged term when φ = 0.8.
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The determination surfaces for β4 and bias behave the same as in the pre-
vious model, as shown in Figure 3.26, Figure 3.27, Figure 3.28, Figure 3.29
and Figure 3.30. For β2 we can see from Figure 3.31 that the determination
surface behaves similarly to the determination to β3 in the linear outcome
model without lagged term. The determination of these coefficients corre-
spond because they are both coefficients for the closest exposure term that
is not included in the true linear outcome model.
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Figure 3.26: Effect of sensitivity and specificity on determination of β4 for
time-varying exposure misclassification with lagged term when φ = 0.2.
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Figure 3.27: Effect of sensitivity and specificity on determination of β4 for
time-varying exposure misclassification with lagged term when φ = 0.5.
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Figure 3.28: Effect of sensitivity and specificity on determination of β4 for
time-varying exposure misclassification with lagged term when φ = 0.8.
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Figure 3.29: Effect of sensitivity and specificity on determination of bias
for time-varying exposure misclassification with lagged term when φ = 0.2.
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Figure 3.30: Effect of sensitivity and specificity on determination of bias
for time-varying exposure misclassification with lagged term when φ = 0.5.
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Figure 3.31: Effect of sensitivity and specificity on determination of β2 for
time-varying exposure misclassification with lagged term when φ = 0.2.
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3.3 The Effect of the Number of Exposure
Measurements

In the previous two section we have arbitrarily chosen to study the effect
of time-varying misclassification at the fourth exposure measurement. This
choice was made due to computational efficiency, not for any reasons per-
taining to misclassification. The results derived for the fourth time point
will also hold, approximately, for any other number of time points greater
then two as long as the exposure Markov chain is in its stationary distribu-
tion. This is because when the Markov chain is stationary the misclassified
Markov chain will also be stationary because SN and SP are constant over
time. The results are not exactly equivalent because as the number of time
points increases so does the number of misclassification coefficients. This
causes βj to vary slightly but for all intents and purposes the results are
the same. In our analysis we have chosen Pr(X1) to be the Markov chain’s
stationary distribution so the results are not dependent on the number of
exposure measurements that are taken. This can be seen in Figure 3.32
where we examine the relationship:

E(Yn|X∗1:n) = βnX
∗
n + βn−1X

∗
n−1 + . . .+ β12...n(X∗1X

∗
2 . . . X

∗
n). (3.8)

The lines for both βn and βn−1 are horizontal indicating effectively no change
with respect to number of exposure measurements. The curve for bias in-
creases but this is believed to be solely the result of the exponentially in-
creasing number of misclassification coefficients. If the exposure Markov
chain is far from its stationary distribution then the number of exposure
measurements might have an impact on the effect of misclassification and
this should be investigated.
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βn−1 for linear outcome model when (SN = 0.8, SP = 0.95) and φ = 0.2.
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Chapter 4

Adjustment for
Misclassification Using
Discrete-Time Hidden
Markov Process

Time-varying misclassification, where the underlying exposure is assumed
to be a Markov chain, is an example of a hidden Markov chain. A hidden
Markov model is a statistical model in which the system being modeled is
assumed to be a Markov process with unobserved states. A hidden Markov
model can be considered as a simple dynamic Bayesian network. The hid-
den Markov model and situations analyzed via the Kalman filter can be
considered the most simple dynamic Bayesian networks.

In a regular Markov model, the state is directly visible to the observer,
and therefore the state transition probabilities are the only parameters. In a
hidden Markov model, the state is not directly visible, but output, dependent
on the state, is visible. Each state gives rise to a probability distribution over
the possible output symbols. Therefore the sequence of symbols generated
by a hidden Markov model gives some information about the sequence of
states.

When time-varying misclassification is present the possible output sym-
bols are the misclassified exposure measurements while the states of the
hidden Markov chain are the true, correctly classified, exposure status. By
modeling time-varying misclassification using hidden Markov chains, esti-
mates can be obtained for the Markov transition probabilities as well as
the misclassification probabilities (SN, SP ). After estimates for transition
probabilities and misclassification probabilities are obtained, the most likely
path through the underlying states can be recreated using the Viterbi Algo-
rithm. This recreated path is an estimate of the underlying exposure status
and thus can be used to adjust for misclassification using this estimated
path as the time-varying exposure status in an exposure-disease model.
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4.1 Discrete-Time Hidden Markov Process

We denote the observed sequence as {X∗i }, for i = 1, . . . , n and the hidden
Markov chain as {Xi}, for i = 1, . . . , n. The history of the observed process
up to time i is denoted by,

X1:i = (X1, . . . , Xi), (4.1)

where i = 1, . . . , n. We define X∗1:i similarly.
The hidden Markov chain has m states denoted by 0, 1, . . . ,m − 1 and

the underlying Markov chain has transition probability matrix denoted by
Π, where the (j, k)th element is

πjk = Pr(Xi+1 = k|Xi = j) for i = 1, . . . , n; j, k = 0, . . . ,m− 1. (4.2)

In this analysis the Markov chain is assumed to be homogeneous, which
means that for each j and k, πjk is constant over time. The Markov chain
can be stationary or non-stationary. A Markov chain is said to be stationary
if the marginal distribution is the same over time, i.e. for each j, δij =
Pr(Xi = j) is constant for all i. The stationary marginal distribution is
denoted by δs = (δ1, . . . , δm).

4.2 Inference for Discrete-Time Hidden Markov
Process

To conduct inference for hidden Markov chains we must maximize the likeli-
hood function. To do this the EM algorithm is used, since we only know the
observations and not the sequence of states producing them (Durbin 1998).
For this expectation algorithm the complete data likelihood, Lc, is

Lc = Pr(X∗1 = x∗1, ..., X
∗
n = x∗n, X1 = x1, ..., Xn = xn). (4.3)

This can be shown to be

Lc = Pr(X∗1 = x∗1|X1 = x1)Pr(X1 = x1)
n∏
i=2

Pr(X∗i = x∗i |Xi = xi)Pr(Xi = xi|Xi−1 = xi−1),

and hence, substituting model parameters, we get

Lc = δ1,x1πx1x2πx2x3 . . . πxn−1xn

n∏
i=1

Pr(X∗i = x∗i |Xi = xi), (4.4)

44



4.3. Recreating the Path Through True Exposure States

so

logLc = log δ1,x1 +
n∑
i=2

log πxi−1xi +
n∑
i=1

logPr(X∗i = x∗i |Xi = xi). (4.5)

Hence the complete data likelihood is split into three terms: the first relates
to parameters of the marginal distribution of the Markov chain, the second
to the transition probabilities, and the third to the distribution parameters
of the observed random variable (MacDonald and Zucchini 1997).

When the hidden Markov chain is assumed to be non-stationary, the
complete data likelihood has a neat structure, in that delta only occurs in the
first term, Π only occurs in the second term, and the parameters associated
with the observed probabilities only occur in the third term. Hence, the
likelihood can easily be maximized by maximizing each term individually.
In this situation, the estimated parameters using EM algorithm will be the
exact maximum likelihood estimates.

When the hidden Markov chain is assumed to be stationary, δ = δΠ,
and then the first two terms of logLc determine the transition probabilities
Π. This raises more complicated numerical problems, as the first term is
effectively a constraint. This is dealt with in a slightly ad-hoc manner by
effectively disregarding the first term, which is assumed to be relatively
small. In the M-step, the transition matrix is determined by the second
term, then δ is estimated using the relation δ = δΠ (Harte 2010). Both these
methods give maximum likelihood estimates for the transition probabilities
and the misclassification probabilities (SN, SP ).

4.3 Recreating the Path Through True Exposure
States

To adjust for time-varying misclassification we want to estimate the true
time-varying exposure states of each subject. To do this we can predict the
most likely sequence of the true Markov exposure states given the observed
misclassified states using the Viterbi algorithm. The purpose of the Viterbi
algorithm is to globally decode the underlying hidden Markov state at each
time point. It does this by determining the sequence of states (k∗1, . . . , k

∗
n)

which maximizes the joint distribution of the hidden states given the entire
observed process,

(k∗1, . . . , k
∗
n) = argmaxk1,...,knε{1,2,...,m}Pr(X1 = k1, . . . , Xn = kn|X∗1:n = x∗1:n).

The algorithm has been taken from Zucchini (2005).
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Determining the a posteriori most probable state at time i is referred to
as local decoding,

k∗i = argmaxkε{1,2,...,m}Pr(Xi = k|X∗1:n = x∗1:n).

Once the sequence of states (k∗1, . . . , k
∗
n) which maximizes the joint distri-

bution of the hidden states is determined, this can be used as an estimate of
the true time-varying exposure status for each subject. With this estimated
exposure Markov chain, inference can be done using a plug-in method. This
is done by using this estimate as the time-varying exposure status and de-
termining the exposure-outcome relationship using this estimated Markov
chain.

4.4 Adjusting for Misclassification: True
Exposure Path Recreation

In order to demonstrate the performance of adjusting for time-varying mis-
classification using the most-likely path through true exposure states, we
conduct a simulation study under four cases. In each case the underlying
time-varying exposure and misclassification are generated under the same
conditions. The exposure-outcome model differs in each situation and the
effectiveness of the adjustment is evaluated.

The R package ‘HiddenMarkov’ contains functions for the analysis of
discrete time hidden Markov models, Markov modulated GLMs and the
Markov modulated Poisson process. It includes functions for simulation,
parameter estimation, and the Viterbi algorithm. The package is currently
under development and it is designed for a single long Markov chain not a
series of longitudinal data. This means that transition probabilities and mis-
classification probabilities cannot be accurately estimated when there only
exist short hidden Markov chains. In the time-varying exposure case this is
the type of data we are interested in, so the transition probabilities and mis-
classification probabilities need to be estimated by a different means. The
package can still accurately calculate the most likely path through hidden
states using the Viterbi algorithm when estimates for transition probabili-
ties and misclassification probabilities are available. This means that when
accurate estimates of transition probabilities and misclassification probabili-
ties exist, such as from a validation study, then the most likely path through
true exposure states can be determined. This allows misclassification to be
adjusted for by recreating the most likely true exposure path for each sub-
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ject. The effectiveness of this adjustment is shown through the simulation
study in the next section.

4.4.1 Data Simulation

To demonstrate the performance of misclassification adjustment, 500 Monte
Carlo samples were simulated as follows:

1. The total number of subjects is N = 1, 000 and the number of exposure
measurements on each subject is n = 10

2. For each subject i generate an exposure Markov chainsXi1, Xi2, . . . Xi,n

where the first exposure measurement Xi1 is generated from the sta-
tionary distribution of the Markov chain. The Markov chain is defined
by its transition probabilities.

• (φ1 = 0.1, φ2 = 0.3)

• Pr(Xi1 = x) = 0.25x(1− 0.25)1−x for x = 0, 1.

3. Generate the exposure outcome model in two cases:

• Yij ∼ N(Xij , 0.1) for i = 1, . . . , N and j = 1, . . . , n.

• Yij ∼ N(Xij + 0.5Xi,j−1, 0.1) for i = 1, . . . , N and j = 2, . . . , n.

4. Misclassify the Markov chain X∗i1, X
∗
i2, . . . X

∗
i,n with (SN = 0.85, SP =

0.95).

5. Recreate the most likely exposure path Xest
i1 , X

est
i2 , . . . X

est
i,n using the

Viterbi algorithm with estimates (SN0 = 0.85, SP0 = 0.95, φ10 =
0.1, φ20 = 0.3).

6. Consider two different exposure outcome models:

• E(Yij |Xi,1:j) = β1Xij

• E(Yij |Xi,1:j) = β1Xij + β2Xi,j−1

7. Fit each exposure outcome model using

L(β) =
N∏
i=1

n∏
j=1

f(Yij |di,1:j), (4.6)

where di,1:j = Xi,1:j , X∗i,1:j , orXest
i,1:j when estimating βtrue, βmisclassified,

or βestimate respectively.
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4.4.2 Simulation Results

The simulation can be broken into four cases. Cases are determined by
the form of the linear outcome model (lagged term or no lagged term) and
whether the model has been correctly specified. In each case the coefficient
estimates for the exposure outcome model are presented based on the true
data, misclassified data and estimated data. The simulation standard de-
viation for the 500 Monte Carlo Samples and Monte Carlo 95% confidence
interval are also presented in the tables below. The percentage of Misclas-
sified states, before and after the most likely path recreation, are presented
in Table 4.1.

% of States Std. Dev. 95% CI
Misclassified 6.88 0.26 (6.86, 6.90)
Misclassified after Recreation 6.00 0.29 (5.97, 6.03)

Table 4.1: Comparison of the percentage of misclassified states before and
after Viterbi path recreation when a sample of 1,000 subjects was taken with
10 observations per subject. (SN = 0.85, SP = 0.95), (φ1 = 0.1, φ2 = 0.3).

Case 1 .
True Model: E(Yij |Xi,1:j) = Xij

Assumed Model: E(Yij |Xi,1:j) = βXij

Coeff. Coeff.est Std. Dev. 95% CI
βtrue 1.000 0.0008 (0.9999, 1.0001)
βestimate 0.823 0.0035 (0.8227 0.8233)
βmisclassified 0.762 0.0033 (0.7617, 0.7623)

Table 4.2: Simulation results for misclassification adjustment in discrete
time for linear outcome model with no lag term when (SN = 0.85, SP =
0.95), (φ1 = 0.1, φ2 = 0.3) and a sample of 1,000 subjects was taken with 10
observations each.
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Case 2 .
True Model: E(Yij |Xi,1:j) = Xij + 0.5Xi,j−1

Assumed Model: E(Yij |Xi,1:j) = βXij

Coeff. Coeff.est Std. Dev. 95% CI
βtrue 1.269 0.0018 (1.2688, 1.2692)
βestimate 1.095 0.0047 (1.0946, 1.0954)
βmisclassified 0.987 0.0047 (0.9866, 0.9874)

Table 4.3: Simulation results for misclassification adjustment in discrete
time for a misspecified linear outcome model with no lag term when (SN =
0.85, SP = 0.95), (φ1 = 0.1, φ2 = 0.3) and a sample of 1,000 subjects was
taken with 10 observations each.

Case 3 .
True Model: E(Yij |Xi,1:j) = Xij + 0.5Xi,j−1

Assumed Model: E(Yij |Xi,1:j) = β1Xij + β2Xi,j−1

Coeff. Coeff.est Std. Dev. 95% CI
β1true 1.000 0.0010 (0.9999, 1.0001)
β1estimate 0.791 0.0049 (0.7906, 0.7914)
β1misclassified

0.806 0.0031 (0.8057, 0.8063)
β2true 0.499 0.0010 (0.4989, 0.4991)
β2estimate 0.472 0.0051 (0.4716, 0.4724)
β2misclassified

0.539 0.0031 (0.5387, 0.5393)

Table 4.4: Simulation results for misclassification adjustment in discrete
time for linear outcome model with lagged term when (SN = 0.85, SP =
0.95), (φ1 = 0.1, φ2 = 0.3) and a sample of 1,000 subjects was taken with 10
observations each.
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Case 4 .
True Model: E(Yij |Xi,1:j) = Xij

Assumed Model: E(Yij |Xi,1:j) = β1Xij + β2Xi,j−1

Coeff. Coeff.est Std. Dev. 95% CI
β1true 0.999 0.0010 (0.998, 1.000)
β1estimate 0.768 0.0045 (0.7676, 0.7684)
β1misclassified

0.712 0.0032 (0.7117, 0.7123)
β2true 0.000 0.0010 (-0.0001, 0.0001)
β2estimate 0.073 0.0046 (0.0726, 0.0734)
β2misclassified

0.195 0.0029 (0.1947, 0.1953)

Table 4.5: Simulation results for misclassification adjustment in discrete
time for linear outcome model with misspecified lagged term when (SN =
0.85, SP = 0.95), (φ1 = 0.1, φ2 = 0.3) and a sample of 1,000 subjects was
taken with 10 observations each.

The results above show that recreation of the true exposure path using the
Viterbi algorithm, with the true values of (SN, SP ) and (φ1, φ2), reduces
the number of misclassified states and positively adjusts for misclassifica-
tion. The coefficient estimates of the exposure outcome model are signifi-
cantly closer to the true exposure outcome model. This adjustment is least
effective when we are fitting an exposure outcome model with lag term that
matches the data generating model. Although there are significantly less
misclassified states this is not reflected in the coefficient estimates. This
model does however adjust the estimate for β2 so that an artificially strong
association between the outcome and the lagged exposure term is no longer
observed. The adjustment is most effective in adjusting for misclassification
when a misspecified model is fit including extra lagged terms. This is very
beneficial because when model selection procedures are employed most pro-
cedures start with a saturated/partially saturated model and then remove
covariates that are not significant. We see that in Case 4 when the expo-
sure status Xn−1 had no association with the outcome variable βmisclassified
was still large, indicating a relationship between Xn−1 and Y that did not
exist. When the most likely exposure path was recreated the effect of Xn−1

dropped dramatically and βestimate was close to zero, indicating no associa-
tion. This is very helpful for model selection and allows artificial associations
that result from misclassification to be minimized.
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Chapter 5

Adjustment for
Misclassification Using
Continuous-Time Hidden
Markov Process

Continuous time Markov chains have found a wide application in the medical
and social sciences, especially in studies that consist of data that record life
history of exposures for individuals. In this chapter we consider continuous
time Markov process with panel data. The panel data consists of the states
occupied by the individuals under study at a sequence of discrete time points
but no information is available about the timing of events between obser-
vation times. One of the most useful properties of continuous-time Markov
chains is their ability to model multi-state processes under this type of panel
data.

In practice most time-varying exposures will occur according to a con-
tinuous time process. Modeling time-varying exposure by a continuous time
Markov process allows transitions between exposure states to happen at any
time and allows for transitions to happen between observations. Observa-
tion times of the process are arbitrary and they no longer need to be equally
spaced. The ability for continuous time Markov chains to model panel data
means exact transition times do not need to be observed. These advantages
of continuous time Markov chains make them a very important extension
of discrete time Markov processes. All the theory for hidden Markov chains
in discrete time can be extended to continuous time hidden Markov chains,
making continuous time hidden Markov processes a very powerful tool for
modeling and adjusting for misclassification. By modeling time-varying mis-
classification using a continuous time hidden Markov chain, estimates can be
obtained for the Markov transition probabilities as well as the misclassifica-
tion probabilities (SN, SP ). This can be done using only the observed data
so a validation sample does not need to be obtained. This estimation can be

51



5.1. Continuous-Time Markov Process

extended to allow transition intensities and misclassification probabilities
to depend on accurately measured covariates. Due to the fact the mis-
classification probabilities can depend on measured covariates, differential
misclassification can be modeled by letting outcome status be a covariate.
In this thesis we only consider time-varying exposure and misclassification
that does not depend on covariates.

When estimates for transition probabilities and misclassification proba-
bilities are obtained the path through the underlying states can be recreated
with highest probability using the Viterbi Algorithm. This recreated path is
an estimate of the true underlying exposure status and thus can be used to
adjust for misclassification using this estimated Markov chain as the time-
varying exposure status of each subject.

5.1 Continuous-Time Markov Process

Suppose individuals move independently among m states according to a
continuous-time Markov process. Let X(t) be the state occupied at time t
by a randomly chosen individual. For 0 ≤ s ≤ t, let P (s, t) be the m ×m
transition probability matrix with entries

pij(s, t) = Pr(X(t) = j|X(s) = i), (5.1)

for i, j = 0, 1, ...,m− 1. This process can be specified in terms of the tran-
sition intensities,

qij(t) = lim∆t→0
pij(t, t+ ∆t)

∆t
, i 6= j (5.2)

and
qii(t) = −

∑
i 6=j

qij(t), i = 1, ..., k, (5.3)

and let Q(t) be the m × m transition intensity matrix with entries qij(t).
In this chapter only the time homogeneous models are investigated which
implies qij(t) = qij . In the time homogeneous case the process is stationary
and

P (t) = P (s, s+ t) = P (0, t), (5.4)

in this case we can write

P (t) = eQt =
∞∑
h=0

Qhth/h!. (5.5)
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We can also allow qij = qij(β) to depend on b functionally independent
parameters β1, β2, ..., βb. If each individual’s multi-state transitions depend
on measured covariates then adjustments can be made using, a generalized
Cox proportional hazards model. This entails setting the transition rate
functions of an individual’s covariates as follows:

q(x) = ψ(x;β)q0, (5.6)

where x is a vector of patient covariates, β the corresponding coefficients,
and q0 the baseline transition rate. ψ() can take several parameterizations
including the exponential, linear, logistic, and augmented family forms.

To be able to estimate the transition probabilities we must determine
the likelihood function. Suppose that a random sample of N individuals is
observed at times t0, t1, ..., tn. If Nijl denotes the number of individual in
state i at tl−1 and j at tl then conditioning on the distribution of individuals
among states at t0 the likelihood function for β is

L(β) =
n∏
l=1


m∏

i,j=1

pij(tl−1, tl)Nijl

 . (5.7)

5.2 Maximum Likelihood Estimation

Maximum likelihood estimation can be conducted to estimate transition
probabilities when these transitions depend on measured covariates or when
they do not. This is done using an efficient quasi-Newton procedure that
uses first derivatives of logL(β) to compute P (t;β) = exp(Q(β)). For a
given β, Q(β) is decomposed into Q = ADA−1. Here D = diag(d1, ..., dk),
where d1, ..., dk are the distinct eigenvalues of Q, and A is the k × k matrix
whose jth column is the right eigenvector corresponding to dj . Then

P (t) = Adiag(ed1t, ..., edkt)A−1. (5.8)

Using this expression for P (t) in our likelihood function and using the quasi-
Newton (or scoring) procedure the MLE can be determined. This procedure
is implemented in the R package msm.

5.3 Continuous Time Hidden Markov Process

In a hidden continuous Markov model the states of the Markov chain are not
observed. The observed data are governed by some probability distribution
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conditionally on the unobserved state. The evolution of the underlying
Markov chain is governed by a transition intensity matrix Q. Hidden Markov
models are mixture models, where observations are generated from a certain
number of unknown distributions. However the distribution changes through
time according to states of a hidden Markov chain. Multi-state models with
misclassification are hidden Markov models. Here the observed data are
states, assumed to be misclassification of the true, underlying states. As an
extension to the simple multi-state model, the msm package can fit a general
multi-state model with misclassification. For patient i, and observation
time tij , observed states X∗ij are generated conditionally on true states Xij

according to a misclassification matrix E. This is a m ×m matrix, whose
(r, s) entry is

ers = Pr(X∗(tij) = s|X(tij) = r) (5.9)

which we assume to be independent of time t. When the exposure misclas-
sification is binary then this matrix is completely determined by (SN, SP ).
Analogously to the entries of Q, some of the ers may be fixed to reflect
knowledge of the diagnosis process. For example, the probability of mis-
classification may be negligibly small for non-adjacent states. Thus the pro-
gression through underlying states is governed by the transition intensity
matrix Q, while the observation process of the underlying states is governed
by the misclassification matrix E. Both Q and E can depend on accurately
measured covariates but in this thesis we only consider the case where both
do not.

5.4 Inference for Continuous-Time Hidden
Markov Process

Consider now a hidden Markov model in continuous time. The true state of
the model Xij evolves as an unobserved Markov process. Observed data x∗ij
are generated conditionally from true states Xij = 1, 2, . . . ,m according to
a set of distributions f1(x∗|θ1), f2(x∗|θ2), . . . , fn(x∗|θm) respectively, where
θr is a vector of parameters for the state r distribution.

A type of EM algorithm known as the Baum-Welch or forward-backward
algorithm is commonly used for hidden Markov model estimation in contin-
uous time (Bureau et al 2000).

To develop the likelihood for a continuous time hidden Markov process
we start at looking at each subject separately. The ith subject’s contribution
to the likelihood is
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Li = Pr(x∗i1, . . . , x
∗
imi

)

=
∑

Pr(x∗i1, . . . , x
∗
imi
|Xi1, . . . , Ximi)Pr(Xi1, . . . , Ximi),

where the sum is taken over all possible paths of underlying statesXi1, . . . , Ximi

(Jackson 2009) . Assume that the observed states are conditionally inde-
pendent given the values of the underlying states. Also assume the Markov
property, Pr(Xij |Xi,j−1, . . . , Xi1) = Pr(Xij |Xi,j−1). Then the contribution
Li can be written as a product of matrices by decomposing the overall sum
in equation 5.11 into sums over each underlying state. The sum is accu-
mulated over the unknown first state, the unknown second state, and so on
until the unknown final state, so

Li =
∑
Xi1

Pr(x∗i1|Xi1)Pr(Xi1)
∑
Xi2

Pr(x∗i2|Xi2)Pr(Xi2|Xi1)

. . .
∑
Ximi

Pr(x∗imi
|Ximi)Pr(Ximi |Ximi−1),

where Pr(x∗ij |Xij) is the misclassification probability density, in the binary
case determined by (SN, SP ). For general hidden Markov models, this is
the probability density fXij (x∗ij |θXij ).

Pr(Xi,j+1|Xij) is the (Xij , Xi,j+1) entry of the Markov chain transition
matrix P (t) = (pij(t))1≤i,j≤n evaluated at t = ti,j+1− tij . Let f be the vec-
tor with rth element the product of the initial state occupation probability
Pr(Xi1 = r) and Pr(x∗i1|r), and let 1 be a column vector consisting of ones.
For j = 2, . . . ,mi let Tij be the n× n matrix with (r, s) entry

Pr(x∗ij |s)prs(tij − ti,j−1). (5.10)

Then the likelihood contribution for subject i is

Li = fTi2Ti3 . . . Timi1. (5.11)

5.5 Recreating the Exposure Path for
Continuous Time Hidden Markov Processes

The most common method of reconstructing a continuous time hidden Markov
chain is the Viterbi algorithm. The Viterbi algorithm is a dynamic pro-
gramming algorithm for finding the most likely sequence of hidden states.
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Originally proposed by Viterbi (1967), it is also described by Durbin et al.
(1998) and Macdonald & Zucchini (1997). For continuous-time models it
proceeds as follows. Suppose that a hidden Markov model has been fitted
and a Markov transition matrix P (t) and misclassification matrix E are
known. Let vk(ti) be the probability of the most probable path ending in
state k at time ti.

1. Estimate vk(t1) using known or estimated initial-state occupation prob-
abilities.

2. For i = 1, . . . , N , calculate vl(ti) = el,X∗
ti

maxk vk(ti−1)Pkl(ti − ti−1).
Let Ki(l) be the maximizing value of k.

3. At the final time point tN , the most likely underlying state X̂∗N is the
value of k which maximizes vk(tN ).

4. Retrace back through the time points, setting X̂∗i−1 = Ki(X̂∗i ).

5.6 Adjusting for Misclassification: True
Exposure Path Recreation in Continuous
Time

To demonstrate the performance of adjusting for time-varying misclassifica-
tion using the most-likely path through true exposure states, we conduct a
simulation study under four cases. In each case the underlying time-varying
exposure and misclassification are generated under the same conditions, then
differing exposure-outcome models are developed and the effectiveness of the
misclassification adjustment is evaluated through the estimation of transi-
tion and misclassification probabilities, the number of misclassified states
and the estimation of the exposure-outcome model.

The R package ‘msm’ consists of functions for fitting general continuous
time Markov and hidden Markov multi-state models to longitudinal data.
Both Markov transition rates and the hidden Markov output process can be
modeled in terms of covariates. A variety of observation schemes are sup-
ported, including processes observed at arbitrary times, completely-observed
processes, and censored states. The package can estimate transition proba-
bilities as well as misclassification probabilities from the observed data. This
allows adjustment for misclassification to be done with only the observed
misclassified data so a validation study is not needed. This package can
also calculate the most likely path through hidden states using the Viterbi
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algorithm. This allows misclassification to be adjusted for by recreating the
true exposure path of each individual in continuous time. The effectiveness
of this adjustment is shown through the simulation study below.

5.6.1 Data Simulation

To demonstrate the performance of misclassification adjustment, 500 Monte
Carlo samples were simulated as follows:

1. The total number of subjects is set to N = 1, 000 and the number of
exposure measurements on each subject is set ton = 10.

2. For each subject i generate a continuous time exposure Markov chain
Xi(t) for t ≥ 0 where the first exposure measurement Xi(0) is gener-
ated with equal probability of being exposed (Xi(0) = 1) or unexposed
(Xi(0) = 0) and the transition intensities are:

• (q01 = 0.2, q10 = 0.3).

3. Censor the continuous Markov chain by observing the process state
of subject i at time points ti1, ti2, . . . , ti,n to obtain the observation
Xi(ti1), Xi(ti2), . . . , Xi(ti,n) (panel data where there is no information
about the process between tij).

4. Generate the exposure-outcome model from Xi(tij) in two cases:

• Yij ∼ N(Xi(tij), 0.1) for i = 1, . . . , N and j = 1, . . . , n.

• Yij ∼ N(Xi(tij) + 0.5Xi(ti,j−1), 0.1) for i = 1, . . . , N and j =
2, . . . , n.

5. Misclassify the Markov chainX∗i (ti1), X∗i (ti2), . . . , X∗i (ti,n) with (SN =
0.8, SP = 0.95).

6. Estimate the transition intensities (q01, q10) and misclassification prob-
abilities (e11, e00) using the R function msm.

7. Recreate the most likely exposure pathXest
i (ti1), Xest

i (ti2), . . . Xest
i (ti,n)

using the Viterbi algorithm with the estimates obtained in previous
step.

8. Consider two different exposure-outcome models:

• E(Yij |Xi(ti,1:j)) = β1Xi(ti,j)

• E(Yij |Xi(ti,1:j)) = β1Xi(ti,j) + β2Xi(ti,j−1)
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9. Fit each exposure-outcome model using

L(β) =
N∏
i=1

n∏
j=1

f(Yij |di(ti,1:j)), (5.12)

where di(t1,1:j) = Xi(ti,1:j), X∗i (ti,1:j), or Xest
i (ti,1:j) when estimating

βtrue, βmisclassified, or βestimate respectively.

5.6.2 Simulation Results

The simulation can be broken into four cases. Cases are determined by
the form of the linear outcome model (lagged term or no lagged term) and
whether the model has been correctly specified. In each case the coefficient
estimates for the exposure outcome model are presented based on the true
data, misclassified data and estimated data. The simulation standard devi-
ation from the 500 Monte Carlo samples and 95% Monte Carlo confidence
intervals are also presented in the tables below. The percentage of misclassi-
fied states, before and after the most likely path recreation, are presented as
well as estimates for transitions intensities (q01, q10), corresponding transi-
tion probabilities (p01, p10) and misclassification probabilities (e11, e00). The
misclassification probabilities corresponding to (SN, SP ) respectively. The
transition probabilities are calculated using the matrix exponential of Q.

Case 1 .
True Model: E(Yij |Xi(ti,1:j)) = Xi(ti,j)
Assumed Model: E(Yij |Xi(ti,1:j)) = βXi(ti,j)

Parameter Param.est Std. Dev. 95% CI
q01 0.200 0.0152 (0.199, 0.201)
q10 0.301 0.0282 (0.299, 0.304)
p01 0.157 0.0094 (0.156, 0.158)
p10 0.237 0.0168 (0.235, 0.239)
e11 0.800 0.0214 (0.798, 0.802)
e00 0.950 0.0607 (0.945, 0.955)

Table 5.1: Simulation results for continuous time hidden Markov parameters
when (SN = 0.8, SP = 0.95), (q01 = 0.2, q10 = 0.3) and a sample of 1,000
subjects was taken with 10 observations per subject.
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% of States Std. Dev. 95% CI
Misclassified 9.50 0.30 (9.47, 9.53)
Misclassified after Recreation 8.70 0.42 (8.66, 0.874)

Table 5.2: Comparison of the percentage of misclassified states before and
after Viterbi path recreation when a sample of 1,000 subjects was taken
with 10 observations per subject. The parameters used for this recreation
are shown in Table 5.1.

Coeff. Coeff.est Std. Dev. 95% CI
βtrue 1.000 0.0023 (0.9998, 1.0002)
βestimate 0.820 0.0112 (0.819, 0.821)
βmisclassified 0.790 0.0071 (0.789, 0.791)

Table 5.3: Simulation results for misclassification adjustment in continuous
time for linear outcome model with no lag term when (SN = 0.8, SP =
0.95), (q01 = 0.2, q10 = 0.3) and a sample of 1,000 subjects was taken with
10 observations each.
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Case 2 .
True Model: E(Yij |Xi(ti,1:j)) = Xi(tij) + 0.5Xi(ti,j−1)
Assumed Model: E(Yij |Xi(ti,1:j)) = β1Xi(ti,j)

Parameter Param.est Std. Dev. 95% CI
q01 0.201 0.0121 (0.201, 0.202)
q10 0.301 0.0276 (0.299, 0.303)
p01 0.158 0.0076 (0.157, 0.159)
p10 0.237 0.0178 (0.235, 0.239)
e11 0.800 0.0179 (0.798, 0.802)
e00 0.951 0.0057 (0.950, 0.952)

Table 5.4: Simulation results for continuous time hidden Markov parameters
when (SN = 0.8, SP = 0.95), (q01 = 0.2, q10 = 0.3) and a sample of 1,000
subjects was taken with 10 observations per subject.

% of States Std. Dev. 95% CI
Misclassified 9.48 0.30 (9.45, 9.51)
Misclassified after Recreation 8.64 0.38 (8.61, 8.67)

Table 5.5: Comparison of the percentage of misclassified states before and
after Viterbi path recreation when a sample of 1,000 subjects was taken
with 10 observations per subject. The parameters used for this recreation
are shown in Table 5.4.
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Coeff. Coeff.est Std. Dev. 95% CI
βtrue 1.281 0.0049 (1.2806, 1.2814)
βestimate 1.092 0.0212 (1.090, 1.094)
βmisclassified 1.015 0.0097 (1.014, 1.016)

Table 5.6: Simulation results for misclassification adjustment in continuous
time for linear outcome model with misspecified no lag term when (SN =
0.8, SP = 0.95), (q01 = 0.2, q10 = 0.3) and a sample of 1,000 subjects was
taken with 10 observations per subject.

Case 3 .
True Model: E(Yij |Xi(ti,1:j)) = Xi(tij) + 0.5Xi(ti,j−1)
Assumed Model: E(Yij |Xi(ti,1:j)) = β1Xi(ti,j) + β2Xi(ti,j−1)

Parameter Param.est Std. Dev. 95% CI
q01 0.200 0.0142 (0.199, 0.201)
q10 0.296 0.0272 (0.293, 0.299)
p01 0.158 0.0093 (0.157, 0.159)
p10 0.233 0.0177 (0.231, 0.235)
e11 0.798 0.0210 (0.796, 0.800)
e00 0.950 0.0060 (0.949, 0.951)

Table 5.7: Simulation results for continuous time hidden Markov parameters
when (SN = 0.8, SP = 0.95), (q12 = 0.2, q21 = 0.3) and a sample of 1,000
subjects was taken with 10 observations per subject.
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% of States Std. Dev. 95% CI
Misclassified 9.50 0.33 (9.47, 9.53)
Misclassified after Recreation 8.68 0.42 (8.64, 8.72)

Table 5.8: Comparison of the percentage of misclassified states before and
after Viterbi path recreation when a sample of 1,000 subjects was taken
with 10 observations per subject. The parameters used for this recreation
are shown in Table 5.7.

Coeff. Coeff.est Std. Dev. 95% CI
β1true 1.000 0.0031 (0.9997, 1.0003)
β1estimate 0.837 0.0163 (0.836, 0.838)
β1misclassified

0.712 0.0089 (0.711, 0.713)
β2true 0.499 0.0027 (0.4987, 0.4993)
β2estimate 0.479 0.0287 (0.476, 0.482)
β2misclassified

0.576 0.0081 (0.575, 0.577)

Table 5.9: Simulation results for misclassification adjustment in continuous
time for linear outcome model with lag term when (SN = 0.8, SP = 0.95),
(q12 = 0.2, q21 = 0.3) and a sample of 1,000 subjects was taken with 10
observations per subject.
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Case 4 .

True Model: E(Yij |Xi(ti,1:j)) = Xi(tij)
Assumed Model: E(Yij |Xi(ti,1:j)) = β1Xi(ti,j) + β2Xi(ti,j−1)

Parameter Param.est Std. Dev. 95% CI
q01 0.199 0.0126 (0.198, 0.200)
q10 0.301 0.0241 (0.299, 0.303)
p01 0.157 0.0084 (0.156, 0.158)
p10 0.237 0.0157 (0.236, 0.238)
e11 0.801 0.0195 (0.799, 0.803)
e00 0.950 0.0058 (0.949, 0.951)

Table 5.10: Simulation results for continuous time hidden Markov param-
eters when (SN = 0.8, SP = 0.95), (q01 = 0.2, q10 = 0.3) and a sample of
1,000 subjects was taken with 10 observations per subject.
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% of States Std. Dev. 95% CI
Misclassified 9.49 0.33 (9.46, 9.52)
Misclassified after Recreation 8.67 0.40 (8.63, 8.71

Table 5.11: Comparison of the percentage of misclassified states before and
after Viterbi path recreation when a sample of 1,000 subjects was taken
with 10 observations per subject. The parameters used for this recreation
are shown in Table 5.10.

Coeff. Coeff.est Std. Dev. 95% CI
β1true 1.000 0.0025 (0.9998, 1.0002)
β1estimate 0.750 0.0163 (0.749, 0.751)
β1misclassified

0.707 0.0079 (0.706, 0.708)
β2true 0.000 0.0030 (-0.0003, 0.0003)
β2estimate 0.087 0.0275 (0.085, 0.089)
β2misclassified

0.238 0.0077 (0.237, 0.239)

Table 5.12: Simulation results for misclassification adjustment in continuous
time for linear outcome model with misspecified lag term when (SN =
0.8, SP = 0.95), (q01 = 0.2, q10 = 0.3) and a sample of 1,000 subjects was
taken with 10 observations per subject.
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The results above show that we can accurately determine the estimates
of transition probabilities and misclassification probabilities. This is done
without any other information available besides the observed panel data so
a validation study is not needed. When estimates for transition probabilities
and misclassification probabilities are obtained then we can use the results
of Ch.3 to see how this form of misclassification affects the coefficients. This
allows us to have some intuition on how estimation of the exposure-outcome
model will be affected and allows us to better interpret our results. It can
also be seen that the Viterbi algorithm, supplied with the estimates of Q
and E, is effective in reducing the number of misclassified states. This re-
duction allows the coefficient estimates of the exposure-outcome model to
be more accurate and reduces the effect of misclassification. The adjust-
ment is most effective in adjusting for misclassification when a misspecified
model is fit including extra lagged terms. This is very beneficial because
when model selection procedures are employed most procedures start with
a saturated/partially saturated model and then remove covariates that are
not significant. We see that in Case 4 when the exposure status X(tn−1)
had no association with the outcome variable, β2misclassified

was still large,
indicating a relationship between X(tn−1) and Y that did not exist. When
the most likely true exposure path was recreated the effect of Xn−1 dropped
dramatically from β2misclassified

= 0.238 to β2estimate = 0.087. This is very
helpful for model selection and allows artificial associations that result from
misclassification to be minimized.
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Chapter 6

Conclusion and Future Work

In this dissertation we concentrate on time-varying exposure misclassifi-
cation. We determine and characterize the bias that results from time-
varying misclassification for various misclassification parameters and time-
varying exposure parameters. We have also determined two separate, easily-
implemented adjustment methods that allow for estimation of the misclas-
sification parameters and exposure parameters while reducing the effect of
misclassification. When potential measurement error on the time-varying
exposure is not accounted for, statistical assessment of the impact of the
exposure variable on a health related outcome is misleading. The direction
in which the association between the actual but unobserved explanatory
variable and the response is biased, unpredictable and substantial.

The bias that results from misclassification is determined by tabulating
the discrete probability distribution of Pr(X1:n, X

∗
1:n) and then the one-

to-one correspondence between the discrete probability distribution and all
the combinations of the random variables (X∗1:n) is used to determine the
coefficients in E(Yn|X∗1:n). This allows us to determine how misclassified
time-varying exposure measurements affect the exposure outcome associa-
tion. This development is presented in Chapter 2. Code for this determina-
tion is presented in Appendix A. This calculation allows us to characterize
the effect of misclassification on the estimation of the regression coefficients
and model bias. This is done by determining the effect of misclassification
while (SN, SP ) vary as well as when the exposure switching probabilities,
(φ1, φ2), vary. The results of this characterization are presented in Chapter
3. It can be seen that (SN, SP ) and (φ1, φ2) cause the effect of misclassifica-
tion to change in a complicated way and no general rule can be determined
to describe how misclassification affects the association between the actual
explanatory variable and the response. This characterization allows the
effect of misclassification to be determined for certain values of the misclas-
sification parameters. Therefore we can use this to develop intuition on how
the exposure effect is attenuated.

To adjust for the effect of misclassification we use algorithms for discrete
time hidden Markov chains and continuous time hidden Markov chains to
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try and determine the true exposure by recreating the most likely path
through the unobserved true exposure states (Chapter 4 and 5). These al-
gorithms are easy to use and are already implemented in standard software.
By using inferential techniques for hidden Markov chains in continuous time
we are able to estimate the misclassification parameters (SN, SP ) as well
the switching probabilities (φ1, φ2) with only the observed data and no val-
idation study is needed. These parameter estimates allow us to use the
misclassification characterization of Chapter 3 to determine how the coeffi-
cients in the exposure outcome model are affected. When these parameter
values are determined we can also adjust for the effect of misclassification
in a more direct way by determining the most likely exposure path using
the Viterbi algorithm. We can then determine the exposure-outcome rela-
tionship with this recreated path. It is shown through simulation that this
recreated path allows a more accurate exposure-outcome relationship to be
estimated and diminishes the effect of misclassification.

One analogous technique that parallels the adjustment method used in
this thesis is that of regression calibration. Regression calibration recon-
structs X using X∗ and then regresses Y on this reconstruction. In re-
gression calibration Y is regressed on E(X|X∗) (Carroll et al. 2006). Our
adjustment method regresses Y on the mode(X|X∗). In principal E(X|X∗)
could also be used in our analysis and possible advantages could be achieved.

The adjustment for misclassification presented in this paper can be im-
plemented in a quick and easy way. It does not, however, remove the effect
of misclassification entirely. We can see that when using the recreated ex-
posure path the coefficient estimates of the exposure outcome model are
still biased but they are much closer then the coefficients obtain using the
observed misclassified data. The adjustment is most effective when the
assumed model has more lagged terms than the true model. This allows
proper model selection to be conducted by including many lag terms and
then removing the ones that are not significant. The adjustment that we
have proposed only makes use of the hidden Markov chain and techniques
associated with hidden Markov theory. It only uses the observed data X∗

and the outcome variable Y is not used to predict the true exposure status
X. A more complete adjustment for misclassification would use a Bayesian
framework that would include both X∗ and Y to predict X. The use of Y
might enable more accurate prediction of X and adjustment would be more
efficient but it would also be much more complicated to implement. The ad-
justment presented in this dissertation can be easily used by clinicians and
epidemiologists and is effective at reducing the effect of misclassification.

The misclassification adjustment in this thesis can be extended in many
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ways. The inferential procedure implemented in the R package ‘Hidden-
Markov’ for discrete time hidden Markov chains can be extended to use
longitudinal data so that accurate estimation of transition probabilities and
misclassification probabilities can be calculated. This would allow for ad-
justment for misclassification to be done without a validation study in the
discrete time case, as it is done in the continuous time case. In the contin-
uous time case the function ‘msm’ allows transition probabilities to depend
on covariates. Therefore, if there is reason to believe the exposure status
of a subjects switches based on accurately measured covariates, this can
be accounted for. Our adjustment method can also be easily extended to
adjust for differential misclassification. This can be done by using the out-
come variable Y as a covariate for misclassification probabilities. The R
package ‘msm’ also allows for misclassification probabilities to depend on
covariates so existing software has the ability to account for differential mis-
classification. If the outcome variable Y is binary then the hidden Markov
adjustment is still effective but how misclassification affects the results is un-
known. The measurement error problems arising from combinations of the
above scenarios are worth exploring. Further research should be conducted
to improve the validity of scientific findings in epidemiological studies.
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Appendix A

R Code for Bias
Determination

#defining the total number of random variables (X,X*), (SN,SP) and
$(\phi_1, \phi_2)$
n=8
SN<-0.8
SP<-0.95
swit1<-Switch1[k]
swit2<-Switch2[l]

# creating all combination of true data and misclassified data
com<-t(rep(0,n))
for(i in 1:n){
com<-rbind(com,t(combn(1:n, i, tabulate, nbins = n)))
}
d<-data.frame(com)

# creating all combination of misclassified data
com2<-t(rep(0, n/2))
for(i in 1:I(n/2)){
com2<-rbind(com2,t(combn(1:I(n/2), i, tabulate, nbins = I(n/2))))
}

# determining stationary distribution for Markov chain
marMat<-cbind(c(-swit1,1), c(swit2,1))
sol<-solve(marMat)%*%c(0,1)

# determining Pr(X, X*)
prob<-NULL
px4<-NULL

for(i in 1:2^n){
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#determining $Pr(X)$
r<-NULL
r[1]<-sol[I(d[i,1]+1)]
for(j in 2:I(n/2)){
if(d[i,j-1]==0){
r[j]<-(1-abs(d[i,j]-d[i,j-1]))*(1-swit1)+abs(d[i,j]-d[i,j-1])*swit1
}
if(d[i,j-1]==1){
r[j]<-(1-abs(d[i,j]-d[i,j-1]))*(1-swit2)+abs(d[i,j]-d[i,j-1])*swit2
}
}
px14<-prod(r)

# determine $Pr(X^*|X)$
x<-com[i,1:I(n/2)]
xs<-com[i,I(n/2+1):n]
pStar<-prod(x*(SN^xs*(1-SN)^(1-xs)) + (1-x)*((1-SP)^xs*SP^(1-xs)))

# determing $Pr(X^*,X)$
prob[i]<-px14*pStar
}

# determing $Pr(X_4==1|X)$
x4<-NULL
xstar<-NULL
for(i in 1:length(com2[,1])){
x4[i]<-sum(prob[d[,4]==1 & d[,5]==com2[i,1] & d[,6]==com2[i,2] &
d[,7]==com2[i,3] & d[,8]==com2[i,4] ])
xstar[i]<-sum(prob[d[,5]==com2[i,1] & d[,6]==com2[i,2] &
d[,7]==com2[i,3] & d[,8]==com2[i,4] ])
}
Eprob<-x4/xstar
#Creating the one-to-one correspondence
mat<-data.frame(com2)
Emat2<-model.matrix(~ X1*X2*X3*X4, mat)
# Determining $\beta$
E2<-solve(Emat2)%*%$Eprob
row.names(E2)<-names(as.data.frame(Emat2))
E2
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