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Abstract

It has been a topic of great interest in wood engineering to understand the
relationships between the different strength properties of lumber and the
relationships between the strength properties and covariates such as visual
grading characteristics. In our mechanical wood strength tests, each piece
fails (breaks) after surviving a continuously increasing load to a level. The
response of the test is the wood strength property – load-to-failure[13],
which is in a very different context from the standard time-to-failure[16]
data in Biostatistics. This topic is also called reliability analysis[13] in
engineering.

In order to describe the relationships among strength properties, we de-
velop joint and conditional survival functions by both a parametric method
and a nonparametric approach. However, each piece of lumber can only be
tested to destruction with one method, which makes modeling these joint
strengths distributions challenging. In the past, this kind of problem has
been solved by subjectively matching pieces of lumber, but the quality of
this approach is then an issue.

We apply the methodologies in survival analysis to the wood strength
data collected in the FPInnovations (FPI) laboratory. The objective of the
analysis is to build a predictive model that relates the strength properties to
the recorded characteristics (i.e. a survival model in reliability). Our conclu-
sion is that a type of wood defect (knot), a lumber grade status (off-grade:
Yes/No) and a lumber’s module of elasticity (moe) have statistically signif-
icant effects on wood strength. These significant covariates can be used to
match pieces of lumber. This paper also supports use of the accelerated fail-
ure time (AFT) model[12] as an alternative to the Cox proportional hazard
(Cox PH) model[16] in the analysis of survival data. Moreover, we conclude
that the Weibull AFT model provides a much better fit than the Cox PH
model in our data set with a satisfying predictive accuracy.

ii



Table of Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Kaplan-Meier Method . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Cox Proportional Hazards Model . . . . . . . . . . . . . . . . 2
1.5 Accelerated Failure Time Model . . . . . . . . . . . . . . . . 4

2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Exploratory Analysis and Preliminary Conclusions . . . . 13
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Graphical Presentation of Strength Properties Data . . . . . 13

3.2.1 Histogram of Strength Data . . . . . . . . . . . . . . 13
3.2.2 Exploring the Relationship Between the Strength Data

and Covariates . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Univariate Approaches to Modeling the Distributions . . . . 17

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Univariate Weibull Distribution . . . . . . . . . . . . 17
3.3.3 Univariate Kaplan–Meier Estimator . . . . . . . . . . 18
3.3.4 The 5th Percentile Estimators by the KM Approach . 22

3.4 Bivariate Approaches to Modeling the Distributions of (R,E)
and (T,E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iii



Table of Contents

3.4.1 Bivariate Weibull Distribution . . . . . . . . . . . . . 23
3.4.2 Bivariate KM Estimator . . . . . . . . . . . . . . . . 23

3.5 Tests for the Difference of Distributions . . . . . . . . . . . . 26
3.5.1 Graphical Approach by the KM Estimator and Log-

rank Test . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5.2 Test for the Difference Between Two MOE in the Two

Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Exploring the Association between MSRC and FC . . . . . . 29

3.6.1 Two-way Contingency Table . . . . . . . . . . . . . . 29
3.6.2 Test of Independence (Chi-square and Related Tests) 30
3.6.3 Describing the Strength of Association . . . . . . . . 31

4 Semi-parametric Survival Model . . . . . . . . . . . . . . . . 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 AIC Procedure For Variable Selection . . . . . . . . . . . . . 33
4.3 Application to Variable Selection . . . . . . . . . . . . . . . . 34

4.3.1 Method I: step () to select the best model according
to AIC statistic . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 Method II: Single term deletions . . . . . . . . . . . . 34
4.3.3 Comparing Nested Models . . . . . . . . . . . . . . . 35
4.3.4 Checking for Interaction . . . . . . . . . . . . . . . . 36

4.4 Model Diagnostics for the Cox PH Model . . . . . . . . . . . 38
4.4.1 Checking for the Proportional Hazards Assumption . 38
4.4.2 Assessing Goodness-of-Fit . . . . . . . . . . . . . . . 42
4.4.3 Checking for Outliers . . . . . . . . . . . . . . . . . . 42
4.4.4 Influential Observations . . . . . . . . . . . . . . . . . 44
4.4.5 Dealing with the Violation of the Proportional Haz-

ards Assumption . . . . . . . . . . . . . . . . . . . . . 44

5 Parametric Survival Models . . . . . . . . . . . . . . . . . . . 48
5.1 Exploring the Distribution of Load to Failure . . . . . . . . . 48
5.2 Variable Selection . . . . . . . . . . . . . . . . . . . . . . . . 49
5.3 Q-Q Plot to Check the AFT Assumption . . . . . . . . . . . 52
5.4 Model Diagnostics for the AFT Model . . . . . . . . . . . . . 53

5.4.1 Overall Goodness-of-Fit . . . . . . . . . . . . . . . . . 53
5.4.2 Checking for Outliers . . . . . . . . . . . . . . . . . . 53
5.4.3 Influential Assessment . . . . . . . . . . . . . . . . . . 57

5.5 Interpretation of Results . . . . . . . . . . . . . . . . . . . . 57
5.6 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 59

5.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 59

iv



Table of Contents

5.6.2 Description of Method . . . . . . . . . . . . . . . . . 59
5.6.3 Results for the Simulation . . . . . . . . . . . . . . . 60

5.7 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . 60

6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



List of Tables

2.1 Description of failures for dimension lumber. . . . . . . . . . 7
2.2 An example of coded single knot for three pieces of lumber . 8
2.3 An example of coded location of MSRC for four pieces of

lumber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Description of variables in both samples. . . . . . . . . . . . . 9
2.5 Original bending data. . . . . . . . . . . . . . . . . . . . . . . 10
2.6 Variables definition for the transformed bending data. . . . . 12
2.7 Transformed bending data. . . . . . . . . . . . . . . . . . . . 12

3.1 MLEs of univariate Weibull parameters for the bending data. 17
3.2 MLEs of univariate Weibull parameters for the tension data. 18
3.3 MLEs of ζ̂R

0.05, ζ̂T
0.05 and ρ̂. . . . . . . . . . . . . . . . . . . . . 18

3.4 KM estimation of survival function for MOR. . . . . . . . . . 20
3.5 KM estimation of survival function for MOT. . . . . . . . . . 20
3.6 KM estimators of percentiles in bending test. . . . . . . . . . 22
3.7 KM estimators of percentiles in tension test. . . . . . . . . . . 22
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Chapter 1

Introduction

1.1 Background

Survival analysis[16] is a collection of statistical techniques used to describe
and quantify time to event data. The methodological developments with the
most profound impact are the Kaplan-Meier method for estimating the sur-
vival function, the log-rank test[16] for comparing the equality of two or more
survival distributions, and the Cox proportional hazards (PH) model[16] for
examining the covariate effects on the hazard function. The accelerated fail-
ure time (AFT) model[16] was also proposed but less widely used. In this
report, we present the basic concepts, parametric methods (univariate and
bivariate Weibull distribution), nonparametric methods (the Kaplan-Meier
method and the log-rank test), a semi-parametric model (the Cox PH model)
and a parametric model (the AFT model) for analyzing survival data.

1.2 Weibull Distribution

Results of mechanical tests on lumber, wood composites, and wood struc-
tures are often summarized by a distribution function fit to data. The
Weibull distribution (named after Waloddi Weibull, a Swedish physicist who
used it in 1939 to describe the breaking strength of material) is playing an
increasingly important role in this type of research and has become a part
of several American Society of Testing and Materials standards. Due to one
of the parameters - the shape parameter - which allows it to be like a vari-
ety of other distributions, such as the normal, lognormal, and exponential
distributions, it is very popular with researchers. Its flexibility to model
experimental results makes the Weibull distribution a powerful tool in wood
utilization research.

The three-parameter Weibull distribution[10] is commonly used to char-
acterize lumber strength. The density function of the Weibull is

f(x;κ, λ, θ) =
κ

λ
(
x− θ

λ
)κ−1 exp[−(

x− θ

λ
)κ], (1.1)

1



1.3. Kaplan-Meier Method

where x ≥ θ, κ > 0 is the shape, λ > 0 is the scale, and θ is the location.
The distribution function of the Weibull is given by

F (x;κ, λ, θ) = 1− exp[−(
x− θ

λ
)κ]. (1.2)

Methods must be available to fit the distribution to a data set and pro-
vide statistically sound estimates of the parameters of the distribution. How-
ever, the effect that different ways of estimating a parameter has on estimat-
ing lower tail percentiles has not been widely researched. Fortunately, this
limitation of using the Weibull distribution to estimate lumber properties
does not affect our case since our data set is complete.

1.3 Kaplan-Meier Method

The Kaplan-Meier[16] estimator of survival is a nonparametric method of
inference concerning the survivor function S = Pr(Y > y). Let y(i) denote
the ith distinct ordered observation and be the right endpoint of the interval
Ii, i = 1, 2, ..., n. Also, let ni = # unbroken just before the level y(i), while
di = # broken at the level y(i). The K–M estimator of the survivor
function is then

Ŝ(y) =
k∏

i=1

(
ni − di

ni
),

where y(k) ≤ y < y(k+1).
Compared to the parametric method, probability statements obtained

from most nonparametric statistics are exact probabilities, regardless of the
shape of the population distribution from which the random sample was
drawn. However, the nonparametric method has several shortcomings such
as low power and lack of software. Fortunately, there is a R function called
by survfit which can calculate the K–M survival estimators.

1.4 Cox Proportional Hazards Model

Let Y represent survival load and the survival function be S(y) = Pr(Y >
y). One representation of the distribution of survival load is the hazard
function, which represents the instantaneous risk of breaking at the load
level y, conditional on survival to that time

h(y) = lim
4y→0

Pr[(y ≤ Y < y + ∆y)|Y ≥ y]
∆y

.

2



1.4. Cox Proportional Hazards Model

Models for survival data usually employs the hazard function or the log
hazard. Survival analysis typically examines the relationship of the sur-
vival distribution to covariates. Most commonly, this examination entails
the specification of a linear-like model for the log hazard. For example, a
parametric model based on the exponential distribution may be written as

log hi(y) = α + β1xi1 + β2xi2 + ... + βkxik,

or equivalently,

hi(y) = exp(α + β1xi1 + β2xi2 + ... + βkxik),

that is, as a linear model for the log-hazard or as a multiplicative model
for the hazard. Here, i is a subscript for observation, and the x’s are the
covariates. The constant α in this model represents a kind of log-baseline
hazard, since log hi(y) = α (or hi(y) = eα) when all of the x’s are zero.
The baseline hazard function α(y) = log h0(y) is unspecified, so the Cox PH
model is

log hi(y) = α(y) + β1xi1 + β2xi2 + ... + βkxik,

or again equivalently,

hi(y) = h0(y) exp(β1xi1 + β2xi2 + ... + βkxik).

This model is semi-parametric because while the baseline hazard can take
any form, the covariates enter the model linearly. Consider, now, two obser-
vations i and j that differ in their x-values, with the corresponding linear
predictors

θi = β1xi1 + β2xi2 + ... + βkxik

and
θj = β1xj1 + β2xj2 + ... + βkxjk

The hazard ratio for these two observations,

hi(y)
hj(y)

=
h0(y)eθi

h0(y)eθj
=

eθi

eθj

is independent of the load y. This defines the “proportional hazards prop-
erty”. The general rule is that if the hazard functions cross over load, the
PH assumption is violated.

We are not making assumptions about the form of h0(y) (the nonpara-
metric part of model)– the shape of underlying hazard. Parameter estimates

3



1.5. Accelerated Failure Time Model

are interpreted the same way as in parametric models, except that no shape
parameter is estimated.

Even though the baseline hazard is is not specified, we can still get a
good estimate for regression coefficients β, hazard ratio, and adjusted hazard
curves. The beauty of the Cox approach is that this vagueness creates no
problems for such critical estimations.

1.5 Accelerated Failure Time Model

The accelerated failure time model is an alternative to the Cox PH model
for the survival time data. Under AFT models we measure the direct effect
of the predictor variables on the survival time instead of the hazard as in the
Cox PH model. This characteristic provides an easier interpretation of the
results since the parameters measure the effect of the corresponding covariate
on the mean survival time. As with the Cox PH model, the AFT model
describes the relationship between survival probabilities and covariates.

Given a set of covariates (X1, X2, ..., Xp), the model is S(y) = S0( y
η(x)),

where S0(y) is the baseline survival function and η(x) = exp(α1x1 + α2x2 +
... + αpxp), an ‘acceleration factor’ that is a ratio of survival times corre-
sponding to any fixed value of S(y).

Under an accelerated failure time model, the covariate effects are as-
sumed to be constant and multiplicative on the time scale, that is, the
covariate impacts on survival by a constant factor (acceleration factor).

Based on the relationship between the survival function and hazard func-
tion, the hazard function for an individual with covariates X1, X2, ..., Xp is
given by:

h(y) =
1

η(x)
h0(

y

η(x)
).

The corresponding log-linear form of the AFT model with respect to
load Y is given by:

log Yi = µ + α1X1i + α2X2i + ... + αpXpi + σεi,

where µ is the intercept, σ is the scale parameter and εi is a random variable
assumed with a specified distribution. For each distribution of εi, there is
a corresponding distribution for Y . The AFT models are named for the
distribution of Y rather than the distribution of εi or log Y .

4



Chapter 2

Data Description

The data come from tests conducted at a FPI/Forintek laboratory. We have
two samples of lumber, each of size 98. We applied the bending (R) strength
test to generate one sample and the tension (T) strength test to generate
the other. In these two tests, as loads (bending or tension stress) increased,
each piece will remain intact (“survive”) for a while until it breaks. The
values of MOR and MOT are recorded (unit: psi 103) at the point where
the stress is applied (usually at a random location near the center). The
break occurs somewhere else along the board. Figure 2.1 and 2.2 show how
a piece of lumber is broken in these two tests.

Figure 2.1: The bending test.

This is a transformed time-to-failure(load-to-failure) problem, and
it is very typical in survival analysis. Stiffness or elasticity (E) is measured
in both of the above two tests to give the values of MOE (unit: psi 106).
As each piece of lumber can only be broken once, we only have MOE and
MOR in the bending data, while in the tension data we only have MOE and

5



Chapter 2. Data Description

Figure 2.2: The tension test.

MOT. Interest lies in the relationships amongst MOR, MOT and MOE.
As each piece of lumber is tested, the characteristic deemed most likely

to cause the lumber’s failure during the test - maximum strength reduc-
ing characteristic (MSRC) - is recorded in coded form. Examples of such
characteristics are “knot”, “grain”, “shake” and “split”. The MSRC is the
grader’s best guess before testing the board as to why it will fail. The failure
code (FC) is the characteristic visually judged by the grader to have caused
the piece to fail after testing. They could be the same if the failure occurs
because of the MSRC. The association between them will be explored later.

There are 10 different causes of failure recorded in the data set, including
“knot combination”, “grain”, “shake” and “split”, while around 80% of
defects in MSRC and FC are due to “knot” (including both a single knot
and a combination of knots). We have the data set available in the form of
an excel spreadsheet. The coding system of measurements[3, 14, 15] (e.g.
MSRC) is quite complicated as shown in Table 2.1.

6



C
h
ap

ter
2.

D
ata

D
escrip

tion

Table 2.1: Description of failures for dimension lumber.

Code Cause of Failure Code Cause of Failure
10 knot combination (pith present) nn % of cross-section displaced by knot (total)
20 knot combination (no pith) nn % of cross-section displaced by knot (total)
23 knot cluster (pith present) nn % of cross-section displaced
24 slope of grain (wide face) nn actual slope
25 grain deviation nn % of cross-section where deflection is greater than 1:4
26 cross grain (narrow face) nn actual slope
27 shake and checks 01 not through and less than 2’ long

02 not through and more than 2’ long
03 through and less than 2’ long
04 through and more than 2’ long
05 shake breaks less than 2/3 the edge
06 shake breaks more than 2/3 the edge

28 split nn average length of both sides
35 bark pocket
45 machine damage 01 saw cut through edge

02 all other saw cuts
03 mechanical damage at edge
04 all other mechanical damage

7



Chapter 2. Data Description

For the single knot coding system, knots are allowed to be coded nu-
merically with respect to size, orientation and location in the member of
cross-section. All possible knot configurations have been incorporated into
10 ”knot classes”. For knot classes 1 through 9, the first digit designates
the knot location on either the tension (0) or the compression (1) edge in
bending tests. The second digit identifies the knot class (1-9). The next 4
to 8 digits are used for the required knot measurements. When the first two
digits are 10, it indicates a knot class 10 and up to three sub-knots (starting
from the largest) that can be individually coded with a 10 followed by the
10-digit knot code.

As an example, in Table 2.2, for the 1st piece of lumber, a knot class 1 is
considered to be MSRC. For the 2nd piece, a knot class 8 and a knot class 4
are considered to be MSRC 1 and MSRC 2. For the 3rd piece, a knot class
10 is considered to be the MSRC and up to three sub-knots (starting from
the largest) are individually recorded as MSRC 1, MSRC 2 and MSRC 3.
Here, the MSRC 1 is regarded as the most severe one.

Table 2.2: An example of coded single knot for three pieces of lumber.

Lumber MSRC1 MSRC2 MSRC3
1 0107001300
2 1810151104 1413002200
3 100810062710 100314152705 101314092920

In addition to the defects in MSRC and FC coded in the excel spread-
sheet, we also have the corresponding location of MSRC coded. Location is
a four-digit code describing the location of the defect or failure within the
piece. The first digit indicates whether the defect or failure is located on the
tension edge (0), compression edge (1), or both edges (2). The next three
digits give the average location of the defect or failure along the length of
the piece. As an example, look at Table 2.3.

The random number location (RNL) is the number of inches from the
centre of the test span to the worst MSRC (e.g. MSRC 1) - a random integer
from 0 to 36. For most of our tests, the MSRC must be randomly located in
the test span, and the test span is always less than the length of the lumber.

In summary, we have two samples, MOR and MOT, each of size 98. For
each specimen of these two samples, we have the following recorded variables
as shown in Table 2.4.

Table 2.5 presents the original layout of bending data in the spreadsheet.

8



Chapter 2. Data Description

Table 2.3: An example of coded location of MSRC for four pieces of lumber.

Lumber MSRC1 MSRC2 MSRC3 Loc1 Loc2 Loc3
1 0808131202 0025
2 1810151104 1413002200 1057 0058
3 101909142903 101315092722 100309122713 1042 1042 0042
4 2407 2705 2050 0052

Table 2.4: Description of variables in both samples.

Variables Descriptions
MOR/ MOT Module of bending or tension ( Load to break )
MOE Module of elasticity
MSRC MSRC( 1-3 measures with 2 to 12 digits)
MLoc locations of 3 MSRC ( 1-3 measures with 4 digits)
FC Failure characteristic (1-3 measures with 2 to 12 digits)
Floc locations of 3 FC ( 1-3 measures with 4 digits )
RNL Random number location ( 2 digits from 0 to 36)
Off-grade Indicator of off-grade piece (1= yes, 0= no)
Species 1 = Spruce, 2 = Pine, 3 = Fir
Moisture Degree of moisture

9
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Table 2.5: Original bending data.

] MSRC1 MSRC2 MSRC3 MLoc1 MLoc2 MLoc3 speci mois offg moe mor
1 0108131202 0025 2 14.8 0 1.65 6.04
2 1810151104 1413002200 1057 0058 2 13.7 0 1.44 6.59
3 101909142903 101315092722 100309122713 1042 1042 0042 2 15.5 0 1.43 7.46
4 2407 2705 2050 0052 2 14.4 0 1.58 8.95
5 101320172602 100904093015 1043 1028 2 13.6 0 1.36 3.09
6 1014 2111 2 15.7 0 1.46 8.74
7 101912103404 1068 2 15.4 0 1.83 9.94
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
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Chapter 2. Data Description

At this stage, to convert MSRC into meaningful covariates, I only look at
MSRC1 as it is regarded as the most severe defect. Also, the first two digits
of data strings in MSRC1 capture most of information of defect categories.
Based on the “Forintek Knot and Failure Code” descriptions, it is reasonable
to classify MSRC1 into 2 variables - knot and size of knot (ksize).

To specify the categorical variable–“knot”, we take the first two digits
of the MSRC1 data string as they capture most of relevant information on
defects:

1. If the first two digits belong to (0, 9]
⋃

[11, 20), knot = 1(a single knot);

2. If the first two digits are equal to 10
⋃

20
⋃

23, knot = 2(a knot com-
bination);

3. Otherwise, knot = 0(defects other than knot).

To quantify the numerical variable – “ksize”:

1. The value of ksize for a single knot, class 20 or class 23 knot combina-
tion is given by the 3rd and 4th digits of MSRC1 data string.

2. The value of ksize for a class 10 knot combination is mainly given by
the 5th and 6th digits, or 3rd and 4th digits in some few cases.

3. The value of ksize for other defect is 0.

Therefore, for bending data, we have variables defined as in Table 2.6,
and the layout of bending data with transformed covariates is in Table 2.7.

11



Chapter 2. Data Description

Table 2.6: Variables definition for the transformed bending data.

Variables Descriptions
knot 1=a single knot, 2=a knot combination, 0=other
ksize the size of knot or 0 for non-knot defects
rnl random number for location of MSRC
Off-grade Indicator of off-grade piece (1= yes, 0= no)
loc location of defect
face edge of defect:0=tension, 1=compression, 2=both
Species 1 = Spruce, 2 = Pine, 3 = Fir
Moisture Degree of moisture
moe module of elasticity
mor module of rupture

Table 2.7: Transformed bending data.

Specimen knot ksize rnl offg loc face species moisture moe mor
1 1 12 7 0 44 0 2 14.8 1.65 6.0424
3 0 0 22 1 22 2 2 13.7 1.44 6.5902
5 1 101 9 0 29 1 2 15.5 1.43 7.4588
9 1 9 5 0 13 0 2 14.4 1.58 8.9549
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
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Chapter 3

Exploratory Analysis and
Preliminary Conclusions

3.1 Introduction

Exploratory data analysis (EDA) is detective work. It comprises techniques
to visualize patterns in data.

3.2 Graphical Presentation of Strength
Properties Data

3.2.1 Histogram of Strength Data

For bending and tension tests, let’s first explore the shape of distributions of
the strength properties data: MOR, MOT and MOE in both tests. Based
on their histograms and density curves in Figure 3.1, we see that all of
the distributions are asymmetrical and in fact right-skewed, which is very
typical for survival data. Moreover, the two density curves of MOE from
the two tests seem to be identical, and the side-by-side boxplots of MOE in
these two tests are almost overlapped. This indicates that there may be no
significant difference between the two MOE’s in the two tests.

3.2.2 Exploring the Relationship Between the Strength
Data and Covariates

We next explore the relationships between the strength data and all other
variables. With bending test data, we classify these variables into continuous
and categorical. Then, we use scatterplots and side-by-side boxplots to
visualize the relationships between MOR and these two types of variables
respectively.

Figure 3.2 displays MOR against continuous variables. The non-parametric
curve using lowess shows the pattern of association between the MOR and

13



3.2. Graphical Presentation of Strength Properties Data

Figure 3.1: Distributions of the strength properties data.
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3.2. Graphical Presentation of Strength Properties Data

Figure 3.2: MOR against continuous variables, with a lowess smooth curve.
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other variables in pairs. We see that there is a positive association between
MOR and MOE, but no specific patterns for MOR and other variables.

Figure 3.3 shows the side-by-side boxplots of MOR against the categor-
ical variables – “knot”,“offg”,“species” and “face”. It shows that a piece of
lumber with a “single knot” as MSRC1, “off-grade”, “pine” species, or the
defect is on the tension edge will produce a relatively lower MOR.

The tension test data display the same patterns as the bending test data
in terms of associations between the strength property MOT and other vari-
ables. From the plots above, we can see that distributions of strength prop-
erties are very typical for survival data. Thus, to model their distributions,
we may consider both a parametric approach (e.g. Weibull distribution) and
a non-parametric method (e.g. Kaplan-Meier estimator).
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3.2. Graphical Presentation of Strength Properties Data

Figure 3.3: MOR against categorical variables.
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3.3. Univariate Approaches to Modeling the Distributions

3.3 Univariate Approaches to Modeling the
Distributions

3.3.1 Introduction

Interests lies in the relationships between the MOR, MOT and MOE. More-
over, in lumber strength testing, people are usually interested in the weakest
boards (e.g. the population strength 5th percentile– ζ0.05 or lower). Next, I
will use both parametric and nonparametric approaches to estimate the ζ0.05

for each type of strength as well as their ratio. Using the population 5th
percentiles for MOR and MOT as an example, the ratio is ρ = ζR

0.05/ζT
0.05.

3.3.2 Univariate Weibull Distribution

Assuming Weibull population distributions and independent samples, the
three parameters in (1.1) can be estimated using maximum likelihood via
numerical optimization in R.

Let (κi, λi, θi), i = 1, 2, be the true parameters for two independent
3-parameter Weibull distribution populations, and (κ̂i, λ̂i, θ̂i), i = 1, 2, be
the corresponding maximum likelihood estimates from two samples, where
κi > 0 is the shape, λi > 0 is the scale, and θi is the location.

Table 3.1 displays the maximum likelihood estimates (MLEs) of parame-
ters in the three parametric Weibull distribution for the MOR data. where

Table 3.1: MLEs of univariate Weibull parameters for the bending data.

Quantity Value Standard Error
λ̂1 4.726 0.590
κ̂1 3.325 0.511
θ̂1 2.460 0.537

λ(psi× 103), κ(unitless) and θ(psi× 103):
Similarly, Table 3.2 displays the maximum likelihood estimates (MLEs)

of parameters in the three parametric Weibull distribution for the MOT
data. where λ(psi× 103), κ(unitless) and θ(psi× 103):

Since the distribution function of the Weibull is given by (1.1),

F (x;κ, λ, θ) = P (X ≤ x) = 1− exp[−(
x− θ

λ
)κ],

17



3.3. Univariate Approaches to Modeling the Distributions

Table 3.2: MLEs of univariate Weibull parameters for the tension data.

Quantity Value Standard Error
λ̂2 3.610 0.362
κ̂2 2.556 0.335
θ̂2 0.901 0.297

the population 5th percentile ζ0.05 is then given by

P (X ≤ ζ0.05) = 0.05 = 1− exp[−(
ζ0.05 − θ

λ
)κ].

Solving this equation we get

ζ0.05 = λ[− ln(0.95)]
1
κ + θ.

Thus, we can easily get the ratio given by

ρ =
ζR
0.05

ζT
0.05

=
λ1[− ln(0.95)]

1
κ1 + θ1

λ2[− ln(0.95)]
1

κ2 + θ2

.

By the invariance property of MLEs, we can obtain the corresponding
MLEs of ζ̂R

0.05, ζ̂T
0.05 and ρ̂ can be calculated by substituting (κ̂i, λ̂i, θ̂i)i=1,2

in Table 3.3.

Table 3.3: MLEs of ζ̂R
0.05, ζ̂T

0.05 and ρ̂.

Quantity Value Standard Error 95% Confidence Interval

ζ̂R
0.05 4.394(psi× 103) 0.180(psi× 103) ( 4.041 , 4.747 ) (psi× 103)

ζ̂T
0.05 2.030(psi× 103) 0.137(psi× 103) ( 1.761 , 2.299 ) (psi× 103)
ρ̂ 2.164 0.171 ( 1.829 , 2.499 )

3.3.3 Univariate Kaplan–Meier Estimator

To explore the distribution of MOR, MOE and MOT, we could also use the
non-parametric Kaplan-Meier estimators of their survival functions S(y) =

18



3.3. Univariate Approaches to Modeling the Distributions

Figure 3.4: KM curves for MOR and MOE in the bending test.
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3.3. Univariate Approaches to Modeling the Distributions

Pr(Y > y). Using the R function survfit, we plot the Kaplan-Meier curves
of MOR (left) and MOE (right) with 95% error bands in Figure 3.4.

As well as the KM estimators of Pr(MOR > mor) in Table 3.4, where
ni= # at risk before mori, di= # that break at mori.

Table 3.4: KM estimation of survival function for MOR.

mori ni di Pr(MOR > mori) std.err lower 95% CI upper 95% CI
3.09 98 1 0.9898 0.0102 0.97010 1.0000
3.67 97 1 0.9796 0.0143 0.95199 1.0000
3.94 96 1 0.9694 0.0174 0.93587 1.0000
4.63 95 1 0.9592 0.0200 0.92080 0.9992

. . . . . . .

. . . . . . .

. . . . . . .

Similarly, the KM curves for MOT (left) and MOE (right) with 95%
error bands in the tension test are shown in Figure 3.5.

as well as the KM estimators of Pr(MOT > mot) in Table 3.5, where
ni= # at risk before moti, di= # that break at moti.

Table 3.5: KM estimation of survival function for MOT.

moti ni di Pr(MOT > moti) std.err lower 95% CI upper 95% CI
1.21 98 1 0.9898 0.0102 0.97010 1.0000
1.80 97 1 0.9796 0.0143 0.95199 1.0000
1.82 96 1 0.9694 0.0174 0.93587 1.0000
1.83 95 1 0.9592 0.0200 0.92080 0.9992

. . . . . . .

. . . . . . .

. . . . . . .

20



3.3. Univariate Approaches to Modeling the Distributions

Figure 3.5: KM curves for MOT and MOE in the tension test.
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3.3. Univariate Approaches to Modeling the Distributions

3.3.4 The 5th Percentile Estimators by the KM Approach

It is very handy to use the KM method to get the 5th percentile estimates
(ζ̂R

0.05, ζ̂T
0.05 and ζ̂E

0.05) using a formula given by Mara and Jong (2004)[16].
Table 3.6 and 3.7 show the KM estimators of percentiles for bending and
tension, respectively.

Table 3.6: KM estimators of percentiles in bending test.

Quantity Value Standard Error 95% Confidence Interval

ζ̂R
0.05 4.70(psi× 103) 0.503(psi× 103) ( 3.714 , 5.686 ) (psi× 103)

ζ̂E
0.05 1.30(psi× 106) 0.0.0395(psi× 106) ( 1.223 , 1.378 ) (psi× 106)

Table 3.7: KM estimators of percentiles in tension test.

Quantity Value Standard Error 95% Confidence Interval

ζ̂T
0.05 2.03(psi× 103) 0.285(psi× 103) ( 1.471 , 2.589 ) (psi× 103)

ζ̂E
0.05 1.30(psi× 106) 0.0.028(psi× 106) ( 1.245 , 1.355 ) (psi× 106)

It has been shown that the KM estimators are pretty close to the esti-
mators for the Weibull distribution approach in Table 3.3, but the standard
errors of KM estimators are relatively larger than the ones by Weibull ap-
proach. One reason is the nonparametric method is usually less precise
than the parametric one. Also, the two estimated values of ζE

0.05 for bending
and tension are almost the same, which indicates that the lumbers in two
different tests might be homogeneous in terms of elasticity.
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3.4. Bivariate Approaches to Modeling the Distributions of (R,E) and (T,E)

3.4 Bivariate Approaches to Modeling the
Distributions of (R,E) and (T,E)

3.4.1 Bivariate Weibull Distribution

The density function of the bivariate Weibull[12] is:

f(x, y;κ1, λ1, θ1, κ2, λ2, θ2, δ) =
κ1

λ1
(
x− θ1

λ1
)

κ1
δ
−1 κ2

λ2
(
y − θ2

λ2
)

κ2
δ
−1

×{(x− θ1

λ1
)

κ1
δ + (

y − θ2

λ2
)

κ2
δ }δ−2{[(x− θ1

λ1
)

κ1
δ + (

y − θ2

λ2
)

κ2
δ ]δ +

1
δ
− 1}

× exp{−[(
x− θ1

λ1
)

κ1
δ + (

y − θ2

λ2
)

κ2
δ ]δ} (3.1)

For estimating of the bivariate Weibull parameters, a feasible method has
been developed by Richard, James and David (1999)[2]. We first estimated
the shape (κ), scale (λ) and location (θ) parameters from the two marginal
distributions, using standard theory for the univariate Weibull. Given these
parameter estimates (κ1, λ1, θ1, κ2, λ2, θ2), we can find the dependence pa-
rameter estimate δ using maximum likelihood be numerical optimization
in R. We can get the log of the likelihood log L for a random and uncen-
sored sample, and the MLEs of parameters can be obtained by minimizing
−2 log L.

A three-parameter Weibull distribution has the survival function,

F (x, y) = P [X > x, Y > y]

= exp{−[(
x− θ1

λ1
)

κ1
δ + (

y − θ2

λ2
)

κ2
δ ]δ}, 0 < δ ≤ 1 (3.2)

Therefore, once the parameters κ1, λ1, θ1, κ2, λ2, θ2 and δ are estimated,
we can easily estimate the survival probability for the bivariate data (x, y).

3.4.2 Bivariate KM Estimator

A bivariate version of the KM estimator does exist. To describe it we let
(Xi, Yi)(i = 1, ..., n) be n independent and identically distributed pairs of
loads to failure with survival function F (x, y) = Pr(X ≥ x, Y ≥ y). Since
Xi and Yi are the observed loads, it is natural to estimate Pr(X ≥ x, Y ≥ y)
by the empirical survival function:

Ŝ(x, y) = n−1
n∑

i=1

I(Xi ≥ x, Yi ≥ y) (3.3)
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3.4. Bivariate Approaches to Modeling the Distributions of (R,E) and (T,E)

And the asymptotic variance of this estimator is given by:

V̂ ar(Ŝ(x, y)) = Ŝ(x, y)− [Ŝ(x, y)]2.

Lin and Ying (1993)[9] provide evidence in favor of this approach. Also,
our data are uncensored, which makes our problem much easier than the
censored case.

Then, as an example, for the MOR data, we can compare the estimates
of the survival function S(e, r) computed with (3.2) and by (3.3) in the
following Table 3.8:

Table 3.8: Ŝ(e, r) by Bivariate Weibull and by Bivariate KM.
(e, r)(psi× 106, psi× 103) Ŝ(e, r) by (4) Ŝ(e, r) by (5)

(1.65, 6.042) 0.1327 0.1330
(1.65, 6.590) 0.1122 0.1146
(1.65, 7.459) 0.1020 0.0762
(1.36, 7.867) 0.2143 0.1960
(1.36, 4.791) 0.8061 0.7952
(1.36, 5.664) 0.7041 0.6840
(1.36, 5.363) 0.7347 0.7318
(1.36, 7.318) 0.3367 0.3112
(1.17, 7.459) 0.2857 0.2982
(1.17, 8.955) 0.0612 0.0558
(1.17, 3.095) 1.0000 0.9974
(1.17, 8.740) 0.0918 0.0757
(1.17, 9.939) 0.0204 0.0100

. . .

. . .

. . .

It seems that these two estimates are pretty close to each other, which
confirms that both parametric and nonparametric survival analysis approaches
to lumber strength appears to work well. Besides, we could graph the 3-
dimensional scatterplot for each method as shown in Figure , and it is ob-
vious that these two estimates are almost the same.
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3.4. Bivariate Approaches to Modeling the Distributions of (R,E) and (T,E)

Figure 3.6: Comparison of Bivariate Weibull and KM Estimates.
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3.5. Tests for the Difference of Distributions

3.5 Tests for the Difference of Distributions

3.5.1 Graphical Approach by the KM Estimator and
Log-rank Test

A central objective of the study described in this thesis is the relationship
between strength and its covariates. For a categorical covariate, we may
graph the the KM curves for strength data for different covariate categories,
so that we can see if different categories make a difference in the distribution
of strength.

With bending data, Figure 3.7 displays the KM curves of “mor” against
4 categorical covariates – “knot”, “offg”, “species” and “face”, respectively.
It seems that the KM curves are parallel for “offg” and “knot” (overall -
there are slight cross-overs when MOR is either small or large). But they
are decidedly nonparallel for “species” and “face”. That is, the differences
between KM curves for “knot” and “offg” are relatively larger than the other
two covariates.

The KM curves give us an insight into the difference of survival func-
tions in two or more groups, but whether this observed difference is sta-
tistically significant requires a formal statistical test. One commonly used
non-parametric tests for comparing two or more survival distributions is the
log-rank test. The log-rank test compares the observed number of failures
with the expected number of failures for each group. The null hypothesis
asserts no difference between survival curves in two or more groups.

That test yields p-values of 0.00623 (knot), 0.00215 (offg), 0.749 (species)
and 0.312 (face). Therefore, the differences we observed above of MOR
survival curves made by “knot” and “offg” are statistically significant, which
indicates that “knot” and “off” may be the important predictors for MOR.

3.5.2 Test for the Difference Between Two MOE in the
Two Tests

Another topic of interest is that difference between the two MOE population
distributions for bending and tension. The two KM curves are sketched in
Figure 3.8 and we observe that they are almost identical. Also, by the log-
rank test, their difference is not statistically significant with a very large
p-value 0.995, a finding consistent with the previous conclusion suggested
by Figure 3.1 – the two density curves of MOE in the two cases are almost
identical.
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3.5. Tests for the Difference of Distributions

Figure 3.7: KM curves of MOR against categorical covariates. Notice that
unlike the curves for “species” and “face”, those for “offg” and “knot” are
quite parallel.
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3.5. Tests for the Difference of Distributions

Figure 3.8: KM curves of MOE in the two cases. Notice that the curves for
two tests are almost identical.
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3.6. Exploring the Association between MSRC and FC

3.6 Exploring the Association between MSRC
and FC

Recall that MSRC means the grader’s best guess before testing the board
as to why it will fail, while FC is the characteristic visually judged by the
grader to have caused the piece to fail after testing. They could be the
same if the failure occurs because of MSRC.

3.6.1 Two-way Contingency Table

If two variables are measured at categorical levels (eg. nominal or ordinal),
we assess their relationship by crosstabulating the data in a two-way con-
tingency table[1]. A two-way contingency table is a two-dimensional (rows
× columns) table formed by ‘cross-classifying’ subjects or events on two
categorical variables. One variable’s categories define the rows while the
other variable’s categories define the columns. The intersection (crosstab-
ulation) of each row and column forms a cell, which displays the count
(frequency) of cases classified as being in the applicable category of both
variables. Table 3.9 is a simple example of a hypothetical contingency ta-
ble that crosstabulates student gender against answer on one question of an
exam; a total of 100 students are described.

So, we can set up the 2-way contingency table between MSRC and FC,
as shown in Table 3.10, using the first two digits in the characteristic de-
scriptions since they capture the most of the visual information on lumber
defects. Note the total of observations is 195 (not 196), since we have one
missing datum in the data set.

Table 3.9: Example of A Hypothetical Two-way Contingency Table. Here
we see “gender” being broken down by a subject’s answer to an examination
question (1= “Yes”; 0= “No”).

Answer
Gender Yes No Total
Male 38 12 50

Female 10 40 50
Total 48 52 100
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3.6. Exploring the Association between MSRC and FC

Table 3.10: Two-way Contingency Table of MSRC and FC.
FC

MSRC 01-09 10-19 20-60 Total
01-09 42 14 20 76
10-19 20 41 15 76
20-60 7 11 25 43
Total 69 66 60 195

3.6.2 Test of Independence (Chi-square and Related Tests)

For ease of understanding, let’s take the data in Table 3.9 for example. If the
characteristics Gender and Answer were not associated (the null hypothesis
of independence), we can easily calculate the expected counts in each cell,
i.e., the number of cases we would expect based on their total distribution
in the sample. Given that the sample contains exactly 50% male and 50%
female, were there no association between Gender and Answer, we would
expect exactly half of those answering ‘Yes’ (48) to be male, i.e., 48÷2 = 24.
The actual formula for computing the expected count (E) in any cell of a
contingency table is: E = (row total× column total)÷ (grand total). Thus,
for the “Male/Yes” cell, E = (50× 48)÷ 100 = 24.

The larger the difference between the observed (O) and expected (E) cell
counts, the less likely that the null hypothesis of independence holds true,
i.e., the stronger the evidence that the two variables are related. In our
example, the large difference between the observed (O = 38) and expected
(E = 24) cell counts for the Male/Yes cell suggests that being male is
associated with greater likelihood of answering ‘Yes’.

To determine whether or not the row and column categories for the
table as a whole are independent of each other, we compute Pearson’s
chi-square statistic (X2):

X2 =
∑

[
(O − E)2

E
] ,

where O = observed frequency and E = expected frequency. As indicated
in the formula, one first computes the difference between the observed and
expected frequencies in a cell, squares this difference, and then divides the
squared difference by that cell’s expected frequency. These values are then
summed (the

∑
symbol) over all the cells, yielding the value of X2. In our

example, X2 = 31.41.
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3.6. Exploring the Association between MSRC and FC

The value of X2 is then compared to a critical value that is based on the
number of rows and columns (df = degrees of freedom = (number of rows−
1)× (number of columns− 1)) and obtained from a chi-square distribution
table. If the value of X2 is less than this critical value, then we cannot reject
the null hypothesis and we conclude that the data do not provide evidence
of an association. If the value of X2 exceeds the critical value, then we re-
ject the null hypothesis and conclude that the variable categories are indeed
associated.

In our example, df = 1 and the chi-square critical value for a significance
level of α = 0.05 is 3.84. Since our calculated X2 is 31.41 which clearly
exceeds this critical value, we may conclude that gender is associated with
answer in the exam.

If the minimum expected count for any cell in a contingency table is
less than 5, then the chi-square approximation to the distribution of the X2

statistic may not be accurate. In this case, an alternative is Fisher’s Exact
Test. If one or more of the expected counts in the cells of a contingency
table are less than 5 or when the row or column totals are very uneven,
Fisher’s exact test is more desirable.

In our real 2-way contingency table,where

H0: there is no association between MSRD and FC
H1: there is association between MSRC and FC

our calculated X2 is 43.9383, and the corresponding p-value is approximately
0, which indicates that we should reject the null hypothesis and in favor of
the hypothesis that independence doesn’t hold here, there is association
between MSRD and FC. The Fisher’s exact test also produces a p-value
close to 0, which confirms the conclusion of the Chi-square test.

3.6.3 Describing the Strength of Association

If there is an association, it may be desirable to then describe the strength
of the association. We use correlation-like measures such as the Phi coefficient
and Cramer′s V to describe the strength of relationship between nominal
variables, since MSRC and FC are measured at nominal level. These co-
efficients range from 0 to 1 since you cannot have a ‘negative’ relationship
between nominal variables.

The Phi coefficient (φ) is a measure of nominal association applicable
only to 2× 2 tables. It is calculated as:

φ =

√
X2

N
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3.6. Exploring the Association between MSRC and FC

where X2 = the value of Pearson′s chi−square, and N = the sample size.
In our example, the Phi coefficient =

√
31.41
100 = 0.56, suggesting a moder-

ately strong association.
For contingency tables that are larger than 2× 2, Cramer′s V [1] is the

choice of nominal association measure. The formula for Cramer′s V is given
by:

V =

√
X2

N(k − 1)

where N is the sample size and k is the lesser of the number of rows or
columns. Since in 2×2 tables k = 2, Cramer′s V equals the Phi coefficient
for 2× 2 tables.

Therefore, since our calculated X2 is 43.9383, the strength of association
between MSRC and FC is

√
43.9383

195(3−1) = 0.34, suggesting a relatively weak
association. However, making a low V level is inevitable with such a small
data set. If we also include information on MSRC2 and MSRC3 to construct
the two-way contingency table, a larger V should be produced in no doubt.
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Chapter 4

Semi-parametric Survival
Model

4.1 Introduction

Let’s first fit a semi-parametric survival regression model - CoxPH model[6,
7, 17]. Since in the CoxPH model, the baseline hazard function h0(t) is
nonparametric and no distributional assumption is needed for the survival
data, it is easier to start with it.

As an example, for bending data, we may fit a CoxPH model for MOR
with covariates: knot, ksize, random number location(rnl), off-grade indica-
tor(offg), location of defect(loc), face of defect(0=on the tension edge, 1=on
the compression edge, 2=on the both edges) , species, moisture and MOE.

4.2 AIC Procedure For Variable Selection

Comparisons between a number of possible models, which need not neces-
sarily be nested nor have the same error distribution, can be made on the
basis of the statistic

AIC = −2× log(maximumlikelihood) + k × p,

where p is the number of parameters in each model under consideration and
k is a predetermined constant. This statistic is called Akaike’s (1974)
information criterion (AIC); the smaller the value of this statistic, the
better the model. This statistic trades off goodness of fit (measured by the
maximized log likelihood) against model complexity (measured by p). Here
we shall take k as 2.

So, we can rewrite the AIC in the context of the Cox PH model:

AIC = −2× log(maximumlikelihood) + 2× b,

where b is the number of β coefficients in each model under consideration.
The maximum likelihood is replaced by the maximum partial likelihood.
The smaller the AIC value the better is the model.
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4.3 Application to Variable Selection

First, we fit the initial Cox PH model for the bending data using all possible
covariates:

coxph.fit1 < −coxph(Surv(mor) ∼ factor(knot) + ksize + rnl +
factor(offg) + loc + factor(face) + factor(species) + moist + moe)

Table 4.1 presents summary(coxph.fit1) as below:

Table 4.1: Summary of the initial Cox PH model.

coef exp(coef) se(coef) z p
factor(knot)1 1.81 6.13 0.42 4.27 0.00 ∗ ∗ ∗
factor(knot)2 0.92 2.50 0.39 2.32 0.02 ∗
ksize 0.00 0.99 0.00 -0.20 0.84
rnl 0.02 1.01 0.01 1.36 0.17
offg 1.70 5.49 0.53 3.16 0.00 ∗∗
loc 0.00 1.00 0.00 0.14 0.88
factor(face)1 -0.48 0.62 0.26 -1.81 0.07
factor(face)2 0.46 1.57 0.35 1.28 0.20
factor(species)2 0.47 1.59 0.43 1.07 0.28
factor(species)3 1.25 3.47 1.18 1.04 0.29
moist 0.22 1.24 0.13 1.56 0.12
moe -5.82 0.00 1.06 -5.46 0.00 ∗ ∗ ∗

Thus, we can see the covariates “ knot”, “off-grade” and “moe” are
significant at level of 0.05.

4.3.1 Method I: step () to select the best model according to
AIC statistic

Table 4.2 shows p-values corresponding to variables selected by step(coxph.fit1).
From Table 4.3, we may see that the stepwise method chooses 3 covari-

ates: knot, off-grade and moe.

4.3.2 Method II: Single term deletions

Table 4.4 displays the result of single term deletions method drop 1 (coxph.fit1, test =
“Chi”):
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4.3. Application to Variable Selection

Table 4.2: Stepwise model path for the main effects model on the bending
data.

Step Df AIC
667.16

- moist 1 667.89
- factor(face) 2 668.45
- factor(offg) 1 672.74
- factor(knot) 2 682.11

- moe 1 698.23

Table 4.3: p-values of covariates in the model selected by step ().

coef exp(coef) se(coef) z p
factor(knot)1 1.440 4.22207 0.363 3.97 7.3e-05 ∗ ∗ ∗
factor(knot)2 0.730 2.07554 0.367 1.99 4.7e-02 ∗
factor(offg)1 1.692 5.42779 0.528 3.20 1.4e-03 ∗∗
factor(face)1 -0.407 0.66565 0.241 -1.69 9.1e-02
factor(face)2 0.374 1.45321 0.350 1.07 2.9e-01
moist 0.214 1.23845 0.130 1.65 9.9e-02
moe -5.931 0.00266 1.069 -5.55 2.9e-08 ∗ ∗ ∗

So, we see that deletion of knot, off-grade and moe will lead to a
significant increase in AIC values, which indicates that these 3 variables are
likely to be the most important covariates.

4.3.3 Comparing Nested Models

So far, we obtain the same reduced model by Method I and Method II.
Next, we will compare this reduced model to the initial full model. Nested
models can be compared using the likelihood ratio test (LRT).

Symbolically we may describe a model as follows:

full model : coxph.fit1 < −coxph(Surv(mor) ∼ factor(knot) + ksize +
rnl + factor(offg) + loc + factor(face) + factor(species) + moist +
moe)
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4.3. Application to Variable Selection

Table 4.4: Drop 1 model path for the main effects model on the bending
data.

Df AIC LRT Pr(Chi)

673.69
factor(knot) 2 690.73 21.042 2.697e-05 ∗ ∗ ∗
ksize 1 671.73 0.044 0.834587
rnl 1 673.56 1.866 0.171930
factor(offg) 1 679.24 7.554 0.005987 ∗∗
loc 1 671.71 0.021 0.883448
factor(face) 2 676.11 6.417 0.050423
factor(species) 2 671.32 1.635 0.441493
moist 1 674.17 2.483 0.115061
moe 1 704.00 32.315 1.311e-08 ∗ ∗ ∗

reduced model by method I and II : cox1 < −coxph(Surv(mor) ∼
factor(knot) + factor(offg) + moe)

anova(cox1, coxph.fit1) gives:

loglik Chisq Df p
1 -330.38
2 -324.84 11.063 8 0.20

Conclusion: the LRT test shows no evidence against the reduced model
(p− value= 0.20), which indicates the difference between these two models
is not significant, and we prefer the smaller reduced model cox1.

4.3.4 Checking for Interaction

step(cox1,∼ .2)
Conclusion: Adding the interaction term makes the AIC values increase

and we may conclude that there is no need to add interactions, so our final
model is cox1.

cox1 < −coxph(Surv(mor) ∼ factor(knot) + offg)

Table 4.5 presents the results of summary(cox1):
Based on the above summary output of cox1, we may make the following

comments:
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Step Df AIC
668.75

+ factor(offg):moe 1 669.66
+ factor(knot):moe 2 671.33

+ factor(knot):factor(offg) 2 672.65
- factor(offg) 1 673.06
- factor(knot) 2 677.90

- moe 1 696.64

Table 4.5: p-values of covariates in the final model.

coef exp(coef) se(coef) z p
factor(knot)1 1.049262 2.855543 0.316801 3.312 0.000926 ∗ ∗ ∗
factor(knot)2 0.691564 1.996836 0.361133 1.915 0.055495
factor(offg)1 1.452420 4.273444 0.491035 2.958 0.003098 ∗∗
moe -4.811266 0.008138 0.936015 -5.140 2.75e-07 ∗ ∗ ∗

1. The estimated coefficient for the single knot as MSRC is 1.049 with
very small p-value. Hence, fixing other covariates, the hazard ratio
between the lumber with a single knot as MSRC and the one with knot
combination as MSRC is exp(1.049)/exp(0.692) = 2.85554/1.99684 =
1.43, which means that the prior ones are 1.43 times more likely than
the later ones to fail( having shorter survival). Similarly, the hazard
ratio between the lumber with a single knot as MSRC and the ones
with other defects than knot is 2.856, which means that the prior ones
are 2.856 times more likely than the later ones to fail( having shorter
survival). This is consistent with the side-by-side boxplots of “mor”
against “knot” in the exploratory data analysis (EDA), which shows
lumbers with a single knot as MSRC posses the lowest “mor” than
ones with other two categories of “knot” as MSRC.

2. The estimated coefficient for the offgrade pieces of lumber is 1.452,
and exp(1.452) = 4.273, which means the offgrade pieces of lumbers
are 4.273 times weaker than standarded ones. This is also consistent
with the conclusion in EDA.

3. Fixing other covariates, lumbers with higher moe have a decreased
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hazard than the ones with lower moe. This is quite reasonable in
common sense as the higher elasticity a piece of lumber the less likely
that the failure will occur.

4.4 Model Diagnostics for the Cox PH Model

As in the case of a linear or generalized linear model, it is desirable to
determine whether a fitted Cox regression model adequately describes the
data. The model checking procedures below are based on residuals. In
linear regression methods, residuals are defined as the difference between the
observed and predicted values of the dependent variable. However, when the
partial likelihood function is used in the Cox PH model, the usual concept
of residual is not applicable.

We will discuss three major residuals that have been proposed for use in
connection with the Cox PH model: the Scaled Schoenfeld residuals[5],
the Deviance residuals[18] and the Cox-Snell residuals[8]. Then we
will talk about influence assessment and strategies for analysis of nonpro-
portional data.

4.4.1 Checking for the Proportional Hazards Assumption

The main assumption of the Cox PH models is proportional hazards[16].
Proportional hazard means that the hazard function of one individual is
proportional to the hazard function of the other individual, i.e., the hazard
ratio is constant over time. There are several methods for verifying that a
model satisfies the assumption of proportionality.

The kth Schoenfeld residual (Schoenfeld, 1982) defined for the kth sub-
ject on the jth explanatory variable xj is given by

rsjk = δkx
j
k − aj

k,

where δk is the kth subject’s censoring indicator, xj
k is the value of the jth

explanatory variable on the kth individual in the study,

aj
k =

∑
m∈R(yk) exp(x′mβ̂)xj

m∑
m∈R(yk) exp(x′mβ̂)

,

and R(yk) is the risk set at time yk. The MLE β̂ is obtained from maxi-
mizing Cox’s partial likelihood function. The Shoenfeld residuals for each
predictor xj must sum to zero. We define the scaled Schoenfeld residuals
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4.4. Model Diagnostics for the Cox PH Model

by the product of the inverse the estimated variance-covariance matrix of
the kth Schoenfeld residual and the kth Schoenfeld residual, so that the kth
Schoenfeld residual has an easily computable variance-covariance matrix.

Tests and graphical diagnostics for proportional hazards may be based
on the scaled Schoenfeld
residuals. Conveniently, the cox.zph function calculates tests of the pro-
portional hazards assumption for each covariate, by correlating the corre-
sponding set of scaled Schoenfeld residuals with a suitable transformation of
load (the default is based on the Kaplan−Meier estimate of the survival
function, i.e., Ŝ(r) for the bending data). If the PH assumption holds for
a particular covariate then the scaled Schoenfeld residual for that covariate
will not be related to survival time. Using the cox.zph function, rho is the
Pearson product-moment correlation between the scaled Schoenfeld residu-
als and survival time. The null hypothesis is that the correlation between the
scaled Schoenfeld residuals and the ranked survival time is zero. Rejection
of the null hypothesis concludes that the PH assumption is violated.

As mentioned, cox.zph computes a test for each covariate, along with
a global test for the model as a whole:

cox.zph(cox1) gives:

factor(knot)1 -0.0875 0.694 0.4048
factor(knot)2 0.1215 1.491 0.2220
offg 0.0439 0.190 0.6633
moe -0.0524 0.319 0.5722
GLOBAL NA 9.179 0.0568

Therefore, there is no statistically significant evidence of non-proportional
hazards for any of the covariates, and the global test is also not quite statis-
tically significant. These tests are sensitive to linear trends in the hazard.
Moreover, we may plot the scaled Schoenfeld residuals against load-to-failure
for each covariate in Figure 4.1:

Interpretation of these graphs is greatly facilitated by smoothing, for
which purpose cox.zph uses a smoothing spline, shown on each graph by a
solid line; the broken lines represent ±2−standard−error envelopes around
the fit. Systematic departures from a horizontal line are indicative
of non-proportional hazards. The assumption of proportional hazards
appears to be supported for the covariate offg (which is, recall, a dummy
variable, accounting for the two bands in the graph) and moe. However,
there appears to be a trend in the plot for knot, with the knot effect
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4.4. Model Diagnostics for the Cox PH Model

Figure 4.1: Scaled Schoenfeld residuals against load-to-failure.
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Figure 4.2: Graphical check of the PH assumption.
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increasing with load. That is, the variability band for knot (a categorical
variable with 3 levels, accounting for the 3 bands in the graph) displays
a positive slope over load, suggesting non-proportionality of hazard and
conflicting with the finding of the cox.zph test.

An alternative (and less sensitive) means of testing the proportional
hazards assumption is to plot log[− log S(r)] vs log(r) in Figure 4.2.

We conclude that the log[− log S(r)] vs load plots are parallel for offg
while nonparallel for knot, implying that the proportional hazards assump-
tion has been violated for knot, which is supported by the Schoenfeld resid-
ual plots. Therefore, it gives us some concern about whether the Cox PH
model is appropriate.
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4.4.2 Assessing Goodness-of-Fit

The ith Cox-Snell residual is defined as

rCi = Ĥ0(ti)× exp(x′iβ̂) = Ĥi(ti) = − log Ŝi(ti),

where Ĥ0(ti) and β̂ are the MLE’s of the baseline cumulative hazard function
and coefficient vector, respectively.

rCi = − log Ŝi(ti) will have a unit exponential distribution with fR(r) =
exp(−r). Let SR(r) denote the survival function for the Cox-Snell residual
rCi. Then,

SR(r) =
∫ ∞

r
exp(−x)dx = exp(−r),

and
HR(r) = − log SR(r) = − log(exp(−r)) = r.

Therefore, we plot the cumulative hazard function HR(rCi) versus Cox-
Snell residual rCi to check the fit of the model. This gives a straight line
with unit slope and zero intercept if the fitted model is correct. Note the
Cox-Snell residuals will not be symmetrically distributed about zero and
cannot be negative.

Then, we assess the goodness of fit for this Cox PH model by residual
plots. A plot of the Cox-Snell residuals against the cumulative hazard of
Cox-Snell residuals is presented in Figure 4.3. There is some obvious evi-
dence of a systematic deviation from the straight line with an intercept zero
and a slope one, which gives us some concern about the adequacy of the
fitted model.

4.4.3 Checking for Outliers

The ith deviance residual is defined by

rDi = sign(rmi)
√
−2{rmi + δi log(δi − rmi)},

where the function sign() is the sign function which takes the value 1 if rmi

is positive and -1 if rmi is negative; rmi = δi−rCi is the martingale residual;
and δi = 1 for uncensored observation, δi = 0 for censored observation.

In a fitted Cox PH model, the hazard of failure for the ith individual at
any time depends on the value of exp(β′xi) that is called the risk score.
A plot of deviance residuals versus the risk score is a helpful diagnostic to
assess a given individual on the model. Potential outliers will have deviance
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4.4. Model Diagnostics for the Cox PH Model

Figure 4.3: Cumulative hazard plot of the Cox-Snell residual for Cox PH
model.
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4.4. Model Diagnostics for the Cox PH Model

residuals whose absolute values are very large. This plot will give infor-
mation about characteristics of observations that are not well fitted by the
model.

A plot of deviance residuals against the covariates can also be obtained.
Any unusual patterns may suggest features of the data that have not been
adequately fitted for the model. Very large or very small values suggest that
the observation may be an outlier in need of special attention.

The plots of deviance residuals against the risk score, index and covari-
ates are given in Figure 4.4. They show only one possible outlier, but none of
them seems to be systematically distributed about zero. Therefore, overall,
we have some concern about the adequacy of the fitted Cox PH model.

4.4.4 Influential Observations

Figure 4.5 shows the change in each regression coefficient when each obser-
vation is removed from the data (influence statistics). The changes plotted
are scaled in units of standard errors and changes of less than 0.1 are of
little concern.

These plots give us an idea of the influence individual observations have
on the estimated regression coefficients for each covariate. Most of the
changes in the regression coefficients are less than 0.1 s.e.’s of the coeffi-
cients and all others are less than 0.2 s.e.’s. Therefore, data sets where
the influence plot is tightly clustered around zero indicate an absence of
influential observations.

4.4.5 Dealing with the Violation of the Proportional
Hazards Assumption

From the analyses conducted so far, we conclude that the proportional haz-
ards assumption has been violated for the variable “knot”. One method of
dealing with this is to stratify the model by “knot”. This means that we
produce a separate baseline hazard function for each level of “knot”. How-
ever, by stratifying, we cannot obtain a hazard ratio for “knot” since the
‘knot effect’ is absorbed into the baseline hazard.

The two models are given as below:

cox1 < −coxph(Surv(mor) ∼ factor(knot) + offg + moe, method =
“breslow”)
cox2 < −coxph(Surv(mor) ∼
strata(factor(knot)) + offg + moe, method = “breslow”)
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4.4. Model Diagnostics for the Cox PH Model

Figure 4.4: Deviance residuals against the risk score,index and covariates.
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4.4. Model Diagnostics for the Cox PH Model

Figure 4.5: Influence statistics.
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4.4. Model Diagnostics for the Cox PH Model

We may compare these two models using the AIC criterion. Since the
stratified model cox2 provides a smaller AIC value than the previous model
cox1, we may conclude that the stratified model gives a better fit for this
data. However, if the covariate “knot” is of primary interest, this method is
not recommended. Therefore, we may try other appropriative alternatives,
such as the accelerated failure time model that will be discussed in the
sequel.
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Chapter 5

Parametric Survival Models

The accelerated failure time (AFT) model[4, 7, 11] is another alternative of
the Cox PH model when the PH assumption is violated. The AFT model can
be used to express the magnitude of effect in a more accessible way in terms
of the difference between groups in survival strength. Under AFT models we
measure the direct effect of the explanatory variables on the survival strength
instead of hazard, as we do in the PH model. This characteristic allows for
an easier interpretation of the results because the parameters measure the
effect of the corresponding covariate on the mean survival strength.

5.1 Exploring the Distribution of Load to Failure

The most commonly used AFT models include the exponential AFT model,
Weibull AFT model, log-logistic AFT model, and log-normal AFT model.
The AFT models are named for the distribution of survival data.

Since each parametric distribution is defined by a different hazard func-
tion, we can check the consistency of survival data with a specific distribution
by investigating the corresponding underlying linearity. Four different plots
can be obtained and the corresponding distributions indicated if these plots
form a straight line pattern. The plots and their associated distributions are
given in Table 5.1, where Z(p) means the pth quantile from the standard
normal distribution.

Table 5.1: Plots and associated distributions.

Plot Distribution indicated by a straight line pattern
-log[S(t)] vs. t Exponential, through the origin
log[−log(S(t))] vs. log(t) Weibull
log[(1− S(t))/S(t)] vs. log(t) Log-logistic
Z[1-S(t)] vs. log(t) Log-normal
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5.2. Variable Selection

We present these four different plots based on the bending data in Fig-
ure 5.1. By comparing the straightness of these lines, we may see that the
distribution of bending data is more likely to be one of Weibull, log-normal,
or log-logistic. Also, it seems that the bending data should not be from the
exponential distribution because the line is far away from the straight line
through the origin. Note it is the left hand tail that accounts in applications,
and the left hand tail observations seem more likely to be from the Weibull
distribution as they present a slightly better straight line through the origin.

5.2 Variable Selection

We fit the bending data using exponential, Weibull, log-logistic, and log-
normal AFT models. In both univariate and multivariate AFT models,
“knot” , “offg” and “moe” are statistically significantly associated with load
to failure MOR. No interactions are statistically significant in multivariate
AFT models. There is no big difference for the estimated Weibull, log-
logistic and log-normal models, but the estimated exponential model is quite
different. This indicates the distribution of MOR may be far away from the
exponential distribution. The results from the different AFT models applied
to the bending data are presented in Table 5.2, where η is the estimated
acceleration factor.
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5.2. Variable Selection

Figure 5.1: Exploring distribution of load to failure.
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Table 5.2: Results from AFT models for the bending data.

Coef Exponential Weibull Log-logistic Log-normal
α sd η p α sd η p α sd η p α sd η p

µ 1.41 0.45 1.44 0.00 1.41 0.00 1.42 0.00
knot1 -0.21 0.36 0.81 0.55 -0.23 0.04 0.79 0.00 -0.23 0.06 0.79 0.00 -0.21 0.05 0.81 0.00
knot2 -0.10 0.38 0.90 0.78 -0.12 0.04 0.88 0.02 -0.10 0.06 0.90 0.10 -0.10 0.06 0.90 0.11
ksize -0.00 0.01 1.00 0.98 0.00 0.00 1.00 0.97 0.00 0.00 1.00 0.97 -0.00 0.00 1.00 0.88
rnl -0.00 0.01 1.00 0.85 0.00 0.00 1.00 0.15 -0.00 0.00 1.00 0.32 -0.00 0.00 1.00 0.24
offg -0.30 0.50 0.74 0.54 -0.23 0.06 0.79 0.00 -0.25 0.10 0.77 0.02 -0.33 0.08 0.71 0.00
loc 0.00 0.01 1.00 0.95 0.00 0.00 1.00 0.99 0.00 0.00 1.00 0.77 0.00 0.00 1.00 0.61
face1 0.07 0.24 1.07 0.76 0.07 0.03 1.07 0.03 0.07 0.03 1.07 0.07 0.07 0.03 1.07 0.06
face2 -0.00 0.34 1.00 0.99 -0.06 0.04 0.94 0.19 -0.02 0.05 0.98 0.77 0.01 0.05 1.01 0.83
spec2 -0.04 0.41 0.96 0.91 -0.06 0.05 0.94 0.29 -0.05 0.06 0.95 0.43 -0.04 0.06 0.96 0.55
spec3 -0.11 1.13 0.89 0.92 -0.18 0.15 0.83 0.23 -0.13 0.15 0.87 0.38 -0.09 0.18 0.91 0.62
mois -0.02 0.12 0.98 0.86 -0.03 0.01 0.97 0.16 -0.02 0.01 0.98 0.30 -0.02 0.01 0.98 0.29
moe 0.66 0.83 1.93 0.42 0.77 0.11 2.15 0.00 0.64 0.12 1.89 0.00 0.64 0.13 1.89 0.00
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5.3. Q-Q Plot to Check the AFT Assumption

For the parametric models we discuss here, the AIC is given by

AIC = −2× log(maximumlikelihood) + 2× (a + b),

where a is the number of parameters in the specific model and b the num-
ber of one-dimensional covariates. For example, a = 1 for the exponential
model, a = 2 for the Weibull, log-logistic, and log-normal models. In Ta-
ble 5.3, we compared all these AFT models using statistical criteria–AIC.
Note the smaller AIC is the better. The Weibull AFT model appears to
be an appropriate AFT model according to AIC compared to other AFT
models. However, the exponential model provides the worst fit, which is
consistent with the conclusion we drawn from Figure 5.1.

Table 5.3: AIC in the AFT models.

Model Log-likelihood a b AIC
Exponential -283.6 1 12 593.1685

Weibull -139 2 12 306.0937
Log-logistic -144.4 2 12 316.8026
Log-normal -144.5 2 12 317.0219

5.3 Q-Q Plot to Check the AFT Assumption

An initial method for assessing the potential for an AFT model is to produce
a quantile-quantile plot. For any value p in the interval (0,100), the pth
percentile is

t(p) = S−1(
100− p

100
).

Let t0(p) and t1(p) be the pth percentiles estimated from the survival
functions of the two groups of survival data. The percentiles for the two
groups may be expressed as

t0(p) = S−1
0 (

100− p

100
),

t1(p) = S−1
1 (

100− p

100
),
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5.4. Model Diagnostics for the AFT Model

where S0(t) and S1(t) are the survival functions for the two groups. So we
can get

S1[t1(p)] = S0[t0(p)].

Under the AFT model, the assumption is S1(t) = S0[t/η], and so

S1[t1(p)] = S0[t1(p)/η].

Therefore, we get
t0(p) = η−1t1(p).

The percentiles of the survival distributions for the two groups can be
estimated by the KM estimates of the respective survival functions. If the
accelerated failure time model is appropriate, a plot of percentiles of the
KM estimated survival function from one group against another should be
given an approximate straight line through the origin. The slop of this line
will be an estimate of the acceleration factor η−1.

For the 3-level categorical covariate “knot”, we have 3 possible pairwise
combinations. The Q-Q plot in Figure 5.2 approximates well a straight line
from the origin indicating that the AFT model may be appropriate.

5.4 Model Diagnostics for the AFT Model

5.4.1 Overall Goodness-of-Fit

We check the goodness of fit of the model using residual plots. The cumula-
tive hazard plot of the Cox-Snell residuals in the Weibull model is presented
in Figure 5.3. The plotted points mostly lie on a line that has a unit slope
and zero intercept. So there is no reason to doubt the suitability of this
fitted Weibull model. Comparing Figure 4.3 with Figure 5.3, we may see
that the Weibull AFT model provides a much better fit than the Cox PH
model. We conclude that the Weibull produces the best fitting AFT model
based on AIC criteria and residuals plot.

5.4.2 Checking for Outliers

Similarly, the plots of deviance residuals against the risk score, index and
covariates are given in Figure 5.4. They display only one possible outlier, but
none of them seem to be systematically distributed about zero. Therefore,
overall, we have little concern about the adequacy of the fitted log-normal
AFT model.
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5.4. Model Diagnostics for the AFT Model

Figure 5.2: Q-Q plot for load to failure.
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5.4. Model Diagnostics for the AFT Model

Figure 5.3: Cumulative hazard plot of the Cox-Snell residual for the Weibull
AFT model.
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5.4. Model Diagnostics for the AFT Model

Figure 5.4: Deviance residuals against the risk score, index and covariates.
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5.5. Interpretation of Results

5.4.3 Influential Assessment

Figure 5.5 shows the change in each regression coefficient when each obser-
vation is removed from the data (influence statistics). The changes plotted
are scaled in units of standard errors. Changes of less than 0.04 are of little
concern.

These plots give us an idea of the influence individual observations have
on the estimated regression coefficients for each covariate. Most of the
changes in the regression coefficients are less than 0.02 s.e.’s of the coef-
ficients and all others are less than 0.03 s.e.’s. Therefore, data sets where
the influence plot is tightly clustered around zero indicate an absence of
influential observations.

5.5 Interpretation of Results

Finally, we may fit the Weibull AFT model with only statistically significant
covariates – “knot”, “offg” and “moe”:

wei < −survreg(Surv(mor) ∼ factor(knot)+offg+moe, dist = “weibull”)

The summary for this model is given in Table 5.4:

Table 5.4: Summary for the final Weibull AFT model.

coef se(coef) η(coef) p
(Intercept) 1.0174 0.1796 1.47e-08
factor(knot)1 -0.1428 0.0412 0.8669274 5.31e-04 ∗ ∗ ∗
factor(knot)2 -0.0978 0.0471 0.9068303 3.79e-02 ∗
offg -0.2118 0.0661 0.8091265 1.35e-03 ∗∗
moe 0.7057 0.1119 2.0252639 2.86e-10 ∗ ∗ ∗
Log(scale) -1.9688 0.0786 - 2.00e-138
Loglik(model)= -145

Conclusion: the acceleration factor (η) for “offg” is 0.81 (less than 1),
which indicates that the smaller survival load is more likely for off-grade
lumber. The η’s for “knot” is also less than 1 imply that this variable yields
a lower load to failure, and the “single knot” group is more likely to break
than the “knot combination” group since it has a even smaller acceleration
factor. The acceleration factor (η) for “moe” is 2.03 (more than 1), which
indicates that the larger survival load is more likely for the piece of lumber
with higher MOE. These conclusions are consistent with the ones drawn
from application of the Cox PH model.
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5.5. Interpretation of Results

Figure 5.5: Influence statistics.
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5.6. Simulation Study

5.6 Simulation Study

5.6.1 Introduction

In practice the model relating the strength of a piece of lumber to its co-
variates cannot be known and we explore through simulations studies the
inferential effect of mis-specifying that model. However, to constrain the
scope of our study to a practical limit, we will assume that the structural
link between the response and the covariates is correct based on our belief
that diagnostic assessments of data would suggest a reasonable choice for
that link. Thus we restrict our studies to the effect of mis-specifying the
random error component of an AFT model for the strength. More precisely,
we looked at the estimates for the coefficients in that link when the standard
Normal distribution, the Cauchy t1 distribution, the Student t2 distribution
and the standard Gumbel distribution are assumed for the error distribution
when the true distribution is none of these. The details follow below.

A simulation study was conducted to compare the estimates for the
AFT models with Weibull, exponential, log-normal and log-logistic distri-
bution assumptions. Also, one of our interests is to investigate predic-
tive accuracy. One commonly used measure of predictive accuracy is the
expected squared error of the estimate. This quantity is defined as the ex-
pected squared difference between predicted and observed values, that is,
the average squared difference between predicted and observed values if the
experiment were repeated finitely often and new estimates were made at
each replication.

5.6.2 Description of Method

Our final log-linear form of the AFT model with respect to load Y is given
by:

log Yi = µ + α1 knoti + α2 offgi + α3 moei + σ εi,

where µ = 1.0, α11 = −0.1,α12 = −0.1,α2 = −0.2, α2 = 0.7 and σ = 0.1 are
fixed. The significant X variables knot, offg and moe values from the origi-
nal sample are also fixed with respect to replication of the study. The errors
εi was generated parametrically from a standard Normal distribution, from
a Cauchy t1 distribution, from a Student t2 distribution and from a standard
Gumbel distribution. The response values Yi, however, are randomly gener-
ated by the AFT model, because of the error component of the model. We
would then regress the response values Yi on the fixed X matrix (knot, offg
and moe) to obtain the regression coefficients estimates at each replication.
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5.7. Cross-Validation

We may also obtain the average squared difference between predicted and
observed values 1

98

∑
(Yi − Ŷi)2 at each replication.

Since there are 4 settings of the errors term distributions and 4 settings of
AFT models with different distribution assumptions ( Weibull, exponential,
log-normal and log-logistic), there were total 4 × 4 (16) different settings
of simulation conducted. Each simulation involved 1000 replications with a
sample size 98.

5.6.3 Results for the Simulation

For each simulation, the estimates were computed using the Weibull AFT
model, the exponential AFT model, the log-normal AFT model and the
log-logistic model. Let’s take the coefficient α2 for the covariate “offg” for
example. Table 5.5 shows the average values of the parameter estimates for
α2 and their standard deviations over the 1000 replications with 4 different
error terms.

Table 5.5: True value α2 = −0.2. Expected value, standard deviation of
parameter estimates.

Setting Weibull Exponential Log-normal Log-logistic
Normal -0.211(0.08) -0.214(0.07) -0.212(0.07) -0.211(0.07)

Cauchy t1 -0.224(0.15) -0.261(0.32) -0.240(0.35) -0.253(0.34)
Student t2 -0.233(0.46) -0.276(0.57) -0.265(0.47) -0.269(0.57)
Gumbel -0.245(2.10) -0.292(6.12) -0.283(5.10) -0.288(5.12)

Overall, based on this simulation study, the Weibull AFT model shows
better estimations on this coefficient, which are closer to the true values.
The patterns of other coefficients are the same in most cases. Moreover,
the mean of predictive accuracy 1

98

∑
(Y − Ŷ )2 over 1000 replications shows

that the Weibull AFT model with a standard normal error performed better
than other models since it gave the smallest mean predictive accuracy. This
confirms our choice of the Weibull AFT model once again.

5.7 Cross-Validation

A stringent test of a model is an external validation - the application of
the ‘frozen’ model to a new population. It is often the case that the failure
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5.7. Cross-Validation

of a model to validate externally could have been predicted from an hon-
est (unbiased) ‘internal’ validation. One well-known method for obtaining
nearly unbiased internal assessments of accuracy is cross-validation. To un-
cover problems that may make prediction models misleading or invalid, the
predictive accuracy has to be unbiasedly validated using cross-validation.

Each time, we drop one record from the sample and the remaining data
are used as a training (model development) sample. That model is ‘frozen’
and applied to the dropped out sample for computing predictive survival
probability. For example, we drop record 98, then fit a model on records 1
to 97 and use this model to predict the 98th record, so on so forth.

The following plot Figure 5.6 gives us an idea of how well the predicted
survival curve from the final Weibull AFT model tracks observed Kaplan-
Meier estimates. The predicted survival is slightly larger than the observed
in the lower tail and smaller than the observed in the upper tail. However, we
see that predicted survival curve mainly falls within the 95% error bounds of
the observed survival curve. Therefore, it does not produce large deviations
from the true values.
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5.7. Cross-Validation

Figure 5.6: Comparing observed and predicted survival curves.
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Chapter 6

Conclusion and Discussion

This study is based on the wood strength data collected in a FPInnova-
tions (FPI) laboratory. We employed survival analysis methods in this very
different context - load to failure problem. A finding of the present study
shows that a type of wood defect (knot), a lumber grade status (off-grade:
Yes/No) and a lumber’s modulus of elasticity (moe) have statistically sig-
nificant effects on wood strength properties including bending strength and
tension strength.

Forms of non-parametric and parametric bivariate-strength survival func-
tions (Biv-KM and Biv-Weibull) have been explored to obtain the joint
strength distributions. Association between MSRC and FC was also ex-
amined by the Cramer’s V statistic and found to be just 0.3, indicating the
strength of association is not that strong. However, this measure of strength
highly depends on how the covariate values are aggregated into sub cate-
gories and in our case, these lumber categories were fairly fine, making a
low V level inevitable with such a small dataset.

The Cox PH model is routinely applied to the analysis of survival data,
but the proportional hazards (PH) assumption does not hold for ‘knot’ in
this analysis. We also use four different accelerated failure time (AFT)
models to fit the data. We found that the Weibull AFT model was the
best fit for this dataset. The study considered here provides an example of
a situation where Cox PH model is inappropriate and where the Weibull
AFT model provides a better description of the data. We see that the
Weibull AFT model is a more valuable and realistic alternative to the Cox
PH model in some situation. Moreover, the AFT model has a more realistic
interpretation in terms of an effect on expected load to failure and provides
more informative results. To this content the AFT model has explanatory
advantage in that covariates have a direct effect on load to failure rather
on hazard functions as in the Cox PH model. Therefore, we suggest that
using the Cox PH model may not be the optimum approach. The AFT
model may provide an alternative method to fit some survival data. This
final Weibull AFT model can be used to make the current lumber grading
system (currently highly relays on graders’ experience) more powerful and
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Chapter 6. Conclusion and Discussion

reliable.
Both of the Cox PH model and the Weibull AFT model yield exactly the

same significant covariates - ‘knot’, ‘off-grade’ and ‘moe’, indicating these
three are the most important predictors in our reliability modeling. In our
study, a piece of lumber with a ‘knot’ defect is more likely to break than one
with other defects; in particular, a piece of lumber with a ‘single knot’ defect
is even more likely to break than one with a ‘knot combination’ defect. Not
surprising, off-grade lumber is more likely to have lower survival loads than
the standard ones. Also, the piece of lumber with a higher ‘moe’ is more
likely to have a higher survival load.

As mentioned above, after applying these survival analysis methods to
wood strength properties, we obtained the same significant covariates -
‘knot’, ‘offg’ and ‘moe’ in both bending strength data and tension strength
data. These significant covariates can be used to match pieces of lumber in
describing the relationships among strength properties. Obtaining matched
pairs in this way helps solve the challenging problem that a single piece of
lumber cannot be broken twice by two different strength tests. This is a
major potential application of reliability modeling analysis conducted here,
and this could even be used in other situations for example in analyzing the
duration of load for lumber. We should also recognize the fact that a small
sample size makes it difficult to find significant predictors and that in future
work, a larger sample should be collected to find more others.

In practice the model relating the strength of a piece of lumber to its
covariates cannot be known and we explore through simulations studies the
inferential effect of misspecifying that model. These studies were conducted
to compare the coefficients estimates from the AFT models with Weibull, ex-
ponential, log-normal and log-logistic distribution assumptions. The Weibull
AFT model leads to somewhat better estimates of coefficients than the other
incorrectly specified models. As well, it provides the best mean predictive
accuracy. This confirms our choice of the Weibull AFT model once again.

Finally, to uncover problems that may make prediction models mislead-
ing or invalid, predictive accuracy has been unbiasedly assessed using cross-
validation. We observe that predicted survival curve from the final Weibull
AFT model tracks the observed Kaplan-Meier estimates very well. This
study has shown the power of employing survival analysis methods in re-
liability in this very different context from that which originally led to its
development.
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