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Abstract

Likelihood based statistical inferences have been advocated by generations

of statisticians. As an alternative to the traditional parametric likelihood,

empirical likelihood (EL) is appealing for its nonparametric setting and de-

sirable asymptotic properties.

In this thesis, we first review and investigate the asymptotic and finite-

sample properties of the empirical likelihood, particularly its implication to

constructing confidence regions for population mean. We then study the

properties of the adjusted empirical likelihood (AEL) proposed by Chen

et al. (2008). The adjusted empirical likelihood was introduced to overcome

the shortcomings of the empirical likelihood when it is applied to statisti-

cal models specified through general estimating equations. The adjusted

empirical likelihood preserves the first order asymptotic properties of the

empirical likelihood and its numerical problem is substantially simplified.

A major application of the empirical likelihood or adjusted empirical

likelihood is the construction of confidence regions for the population mean.

In addition, we discover that adjusted empirical likelihood, like empirical

likelihood, has an important monotonicity property.

One major discovery of this thesis is that the adjusted empirical like-

lihood ratio statistic is always smaller than the empirical likelihood ratio

statistic. It implies that the AEL-based confidence regions always contain

the corresponding EL-based confidence regions and hence have higher cov-

erage probability. This result has been observed in many empirical studies,

and we prove it rigorously.

We also find that the original adjusted empirical likelihood as specified

by Chen et al. (2008) has a bounded likelihood ratio statistic. This may

result in confidence regions of infinite size, particularly when the sample
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Abstract

size is small. We further investigate approaches to modify the adjusted

empirical likelihood so that the resulting confidence regions of population

mean are always bounded.
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Chapter 1

Introduction

Likelihood based statistical inferences have been advocated by generations

of statisticians. Let us illustrate the likelihood approach through the prob-

lem of modeling the randomness of the wind speed which is an important

covariate in weather forecasting. In meteorology, the Weibull distribution

with shape and scale parameters is used to model the distribution of wind

speed (Corotis et al., 1978; Lun and Lam, 2000); that is, we postulate that

the distribution of the wind speed is Weibull with two unspecified parameter

values. Suppose we are given a set of observations of the wind speed, and

it is reasonable to assume that they are a random sample from a Weibull

distribution. Based on this assumption, we may calculate the probability of

obtaining the observed data, which is a function of these two parameters.

This function of the parameters is called the likelihood function. The like-

lihood function is an effective means of summarizing the information about

the unknown values of the parameters contained in the data: (1) the values

that maximize the likelihood function are often used as point estimates of

the unknown parameters, which are called the maximum likelihood estimates

(MLEs); (2) the likelihood function can be used to perform statistical tests

for hypothesis on the parameters, and to construct an confidence region for

the parameters. These likelihood based statistical inferences possess many

optimality properties under regularity conditions: (1) MLE is asymptotically

efficient in many senses, and give intuitively best explanation of the data;

(2) likelihood based statistical tests and confidence intervals or confidence

regions have good asymptotic and small-sample properties; (3) likelihood is

convenient for combining information from several data sources, and incor-

porating knowledge arising from outside of data, such as the domain and a

prior distribution of the parameter(s).
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Chapter 1. Introduction

Traditionally, the likelihood is defined through a pre-specified paramet-

ric model. However, the choice of the parametric model in some applications

can be a difficult issue. In the previous example, the Weibull distribution is

widely used to characterize the wind speed because it has been found to fit

a wide collection of wind data in many empirical studies. If the true distri-

bution of the wind speed cannot be fit well by a Weibull distribution, the

optimality properties of the likelihood approach will be in question. In com-

parison, the nonparametric methods for statistical inference do not require

specific parametric assumptions on the shape of the population distribution.

Among these methods, the empirical likelihood (EL) approach proposed by

Owen (1988, 1990) has gained increasing popularity. This approach retains

a likelihood setting without activating a parametric assumption, and shares

many desirable properties with the parametric likelihood.

In this thesis, we review and investigate the asymptotic and finite-sample

properties of empirical likelihood. In Chapter 2, we first present a short sum-

mary of the properties of the parametric likelihood, followed by an intro-

duction to the empirical likelihood. The profile empirical likelihood is then

introduced for population mean and parameters defined through general es-

timating equations. We also discuss the numerical algorithm for computing

the empirical likelihood and some asymptotic properties of the empirical

likelihood. One of major successes of the empirical likelihood is its easi-

ness to construct approximate confidence regions for parameter of interest.

The EL-based confidence region possesses many advantages: it has a data-

driven shape; it is invariant under parameter transformation; and it is range

respecting.

On the other hand, the empirical likelihood method has a few short-

comings. The EL-based confidence regions often have lower than specified

coverage probabilities, particularly when the sample size is small. This prob-

lem can be alleviated through Bartlett correction. However, the confident

region of the population mean, for instance, is confined within the convex

hull of the data. In some cases, even the convex hull of the data does not

have large enough coverage probability of the population mean. In addition,

the empirical likelihood is not defined at certain parameter values which may
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Chapter 1. Introduction

occur especially when they are defined through general estimating equations.

Consequently, the empirical likelihood approach may fail to make a sensible

inference in a particular application.

To overcome these shortcomings of the EL approach, Chen et al. (2008)

proposed an adjusted empirical likelihood (AEL). The adjusted empirical

likelihood is well defined on all parameter values defined through estimat-

ing equations. It shares the same desirable first-order asymptotic properties

with the empirical likelihood. Its numerical computation is much simpler

and faster. In Chapter 3, we first introduce and present some properties of

the adjusted empirical likelihood. We further investigate some finite-sample

properties of the adjusted empirical likelihood. One major discovery is that

the adjusted empirical likelihood ratio statistic is always smaller than that

of the empirical likelihood. Consequently, the AEL-based confidence re-

gions always contain the corresponding EL-based confidence regions. Thus,

it effectively rectifies the under-coverage problem suffered by the empirical

likelihood when the sample size is not large. We also discovered that the

adjusted empirical likelihood has a monotonicity property. Because of this,

the AEL-based confidence region for population mean is star-shaped. It

also enables us to design a simple algorithm for computing confidence re-

gions of multivariate population mean. It also leaves us an open question

whether the AEL-based confidence region for population mean is convex.

In addition, we find the original recipe of the adjusted empirical likelihood

given by Chen et al. (2008) results in bounded likelihood ratio statistic. As

a result, the AEL-based confidence regions can be unbounded. However,

this problem can be easily fixed. We propose one possible modification to

the adjusted empirical likelihood so that the corresponding likelihood ratio

statistic becomes unbounded.

In Chapter 4, We empirically examine the ability of the foregoing meth-

ods to statistical inference about population mean. Certain kinds of setting

are considered to investigate the finite-sample performances of the foregoing

methods.
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Chapter 2

Empirical Likelihood

Empirical likelihood (EL) is a nonparametric analogue of the classical para-

metric likelihood. The empirical likelihood method is first formalized in

the pioneering works of Owen (1988, 1990) for statistical inference on the

population mean. Qin and Lawless (1994) generalize empirical likelihood to

the case where parameters are defined through general estimating equations.

We call this method “empirical” because the empirical distribution, which

assigns equal point mass on the data point, plays a key role in the setting

of this method.

The empirical likelihood method provides a versatile approach that may

be applied to perform inference for a wide variety of parameters of interest,

and has been employed in a number of different areas of statistics. Qin and

Zhang (2007) apply the empirical likelihood method to make a constrained

likelihood estimation of mean response in missing data problems. Chen et al.

(2003) consider constructing EL-based confidence intervals for the mean of

a population containing many zero values in the area of survey. Chen et al.

(2002) design an EL-based algorithm to determine design weights in surveys

that meet pre-specified range restrictions. Chen and Sitter (1999) develop a

pseudo empirical likelihood approach to incorporating auxiliary information

into estimates from complex surveys. Chen et al. (2009) examine the perfor-

mance of EL-based confidence intervals for copulas. Chan and Ling (2006)

develop an empirical likelihood ratio test for GARCH model in time series.

Qin and Zhou (2005) propose an empirical likelihood approach for construct-

ing confidence intervals for the area under the ROC curve. Nordman and

Caragea (2008) present a spatial blockwise empirical likelihood method for

estimating variogram model parameters in the analysis of spatial data on a

grid. And many more varied topics.
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2.1. Parametric Likelihood

In Section 2.1, we briefly review the parametric likelihood inferences.

Section 2.2, 2.3 and 2.4 are contributed to summarizing the setting of em-

pirical likelihood. In Section 2.5, some asymptotic properties of empirical

likelihood are presented; we focus on results related to constructing approx-

imate confidence regions for parameter of interest. We also present many

finite-sample properties of the EL-based confidence region. In the end, we

point out the limitations of the empirical likelihood method and the corre-

sponding remedies in Section 2.6, which lead to the subject of Chapter 3.

2.1 Parametric Likelihood

Let F = {f(x; θ) : θ ∈ Θ} be a collection of probability density function

with respect to some σ-finite measure, where θ ∈ Rp is a parameter that

uniquely determines the form of the density and Θ is a p-dimensional set

of possible values for θ. Suppose a random sample X = (X1, X2, . . . , Xn)

is generated from one distribution of this probability family. Given that

X = x, the likelihood function of θ is defined as

Ln(θ |x) =

n∏
i=1

f(xi; θ).

The likelihood function is interpreted as the probability of obtaining the

observed sample if the parameter value equals θ. Hence, the likelihood

function provides a way to measure the plausibility of different parameter

values. If we compare the values of the likelihood function at two parameter

values θ1 and θ2 and find that

Ln(θ1 |x) > Ln(θ2 |x),

then the sample we observed is more likely to have occurred if θ = θ1 than

if θ = θ2. That is, θ1 is a more plausible value of θ than is θ2.

Take the wind speed example, where the two-parameter Weibull distri-

bution is postulated. The probability density function of the two-parameter

5



2.1. Parametric Likelihood

Weibull distribution is given by

f(x; k, λ) =
k

λ

(x
λ

)k−1
exp

{
−
(x
λ

)k}
, x ≥ 0,

where k > 0 is the shape parameter and λ > 0 is the scale parameter. In

this example, we have θ = (k, λ) and Θ = (0,∞) × (0,∞). If a collection

of wind data is available in the form of n independent observations x =

(x1, x2, . . . , xn), the likelihood function will be

Ln(k, λ |x) =

n∏
i=1

f(xi; k, λ)

=

(
k

λ

)n n∏
i=1

(xi
λ

)k−1
exp

{
−
(xi
λ

)k}

=
kn

λnk
exp

{
− 1

λk

n∑
i=1

xki + (k − 1)
n∑
i=1

log xi

}
.

In this example, we may be interested in answering the following question:

given the observed sample, what value of θ is the most plausible? Let θ̂n(x)

be the global maximum of Ln(θ |x):

θ̂n(x) = argmax
θ

Ln(θ |x).

We call θ̂n(x) the maximum likelihood estimate of θ. As a function of the

random sample X, θ̂n = θ̂n(X) is called the maximum likelihood estimator

(MLE) of θ. Intuitively, the MLE is a reasonable choice for a point estimator:

the observed sample is the most likely when the MLE is the parameter value.

The MLE possesses two important properties by its construction. Firstly,

the MLE is range respect; the range of the MLE coincides with the range

of the parameter. Secondly, the MLE is invariant under parameter trans-

formation. Suppose a distribution family is indexed by a parameter θ, but

the interest lies in finding an estimator of some function of θ, say η(θ). If

θ̂n is the MLE of θ, then η(θ̂n) is the MLE of η(θ). The second property

of MLE allows us to study a parameter that does not appear in the density
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2.1. Parametric Likelihood

function. In the wind speed example, we may be interested in the mean of

the wind speed, say µ. Note that µ can be expressed as a function of k and

λ: µ = λΓ(1 + k−1) where Γ(·) is the gamma function. Hence, if k̂ and λ̂

are the MLEs of k and λ respectively, then µ̂ = λ̂Γ(1 + k̂−1) is the MLE of

µ.

MLE possesses many nice asymptotic properties under some mild con-

ditions on f(x; θ). Firstly, MLE is a consistent estimator of the parameter,

i.e. MLE converges to the true parameter value almost surely as the sample

size increases. Secondly, MLE is asymptotically efficient in the sense that its

asymptotic variance equals the Cramér-Rao bound as the sample size tends

to infinity.

In applications, we may prefer a guess of a region of parameter values to a

guess of a single parameter value. We can imagine that those parameter val-

ues that are slightly “different” from the MLE are also good candidates of the

true parameter value. The likelihood function can be used to quantify the

“difference” between any parameter value and the MLE. According to the

definition of the MLE, the likelihood ratio Rn(θ |x) = Ln(θ |x)/Ln(θ̂n |x) is

always less than 1. Thus, we may choose some constant c ∈ (0, 1) and claim

that the true parameter value is likely contained in the following region of

parameter values:

CRc = {θ : Rn(θ |x) ≥ c}. (2.1)

The purpose of using a region estimator rather than a point estimator is

to have some guarantee of capturing the true value of parameter. The

certainty of this guarantee is quantified by the probability of CRc covering

the true parameter value, Pr{θ ∈ CRc} = Pr{Rn(θ |x) ≥ c}. With this

in mind, we may choose the constant c such that CRc has a pre-specified

coverage probability. The guaranteed coverage probability is also called the

confidence level of CRc. Thus, we need to know the distribution of Rn(θ |X).

In general, the exact distribution of Rn(θ |X) is hard to determine. Wilks

(1938) proves that under some wild conditions −2 logRn(θ |X) converges

to χ2
p in distribution as n → ∞, provided that the true parameter value is

7



2.2. Definition of Empirical Likelihood

θ. This asymptotic result is known as Wilks’ theorem.

Using this χ2 approximation, we may choose c in equation (2.1) to be

exp{−χ2
p(α)/2}, where χ2

p(α) denotes the upper α quantile of χ2
p, for small

α. The resulting approximate 100 (1− α)% confidence region for θ is

CR =
{
θ : Rn(θ |x) ≥ exp{−χ2

p(α)/2}
}

= {θ : −2 logRn(θ |x) ≤ χ2
p(α)}.

Similar to the MLE, the foregoing confidence region is also range respect and

invariant under parameter transformation to some degree. In the example

of the wind speed, if CR is an approximate 95% confidence region for the

parameter (k, λ) then CR′ = {λΓ(1 + k−1) : (k, λ) ∈ CR} is an at least

approximate 95% confidence region for the mean µ.

As widely recognized, the statistical inferences based on parametric like-

lihood has its own risk: If the true distribution deviates from the parametric

distribution that we assume for the data, the foregoing nice properties of

these inferences on the parameter of interest may be deprived of.

The difficulties in choosing a parametric family make many statisticians

turn to nonparametric methods for statistical inferences. These nonparamet-

ric methods include the jackknife, the infinitesimal jackknife, the bootstrap

method, and the empirical likelihood method. Each nonparametric method

has its own advantages, but most of them are lack of a likelihood setting.

The empirical likelihood method stands out since it combines the reliability

of the nonparametric methods and the flexibility and effectiveness of the

likelihood approach.

2.2 Definition of Empirical Likelihood

In this section, we present the setting of empirical likelihood.

SupposeX1, X2, . . . , Xn are independent and identically distributed (i.i.d.)

d-dimensional random vectors with unknown distribution F0 for some d ≥ 1.

8



2.2. Definition of Empirical Likelihood

The empirical likelihood of any distribution F is defined as

L(F ) =
n∏
i=1

F ({Xi}),

where F (A) is Pr(X ∈ A) for X ∼ F and A ⊆ Rd.
The definition of empirical likelihood is a direct analogue of paramet-

ric likelihood: the probability of observing the sample under the assumed

distribution. The major difference between empirical likelihood and para-

metric likelihood is that the former is defined over a very broad range of

distributions. That is, there are practically no restrictions on the shape of

the distribution under consideration. The name “empirical likelihood” is

adopted because the empirical distribution of the sample plays a key role in

the setting of empirical likelihood. The empirical distribution is defined as

Fn =
1

n

n∑
i=1

δXi ,

where δx denotes the distribution under which Pr(X = x) = 1. The empiri-

cal likelihood is maximized at the empirical distribution.

Proposition 2.1. Suppose X1, X2, . . . , Xn ∈ Rd for some d ≥ 1 are in-

dependent random vectors with a common distribution F0 and Fn is the

corresponding empirical distribution. For any distribution F 6= Fn, we have

L(F ) < L(Fn).

Proof. Let pi = F ({Xi}) for i = 1, 2, . . . , n. It is easy to see that pi ≥ 0 and∑n
i=1 pi ≤ 1. Using a well-known fact that the arithmetic mean of a sequence

of nonnegative numbers is always larger than or equal to its geometric mean,

we have

Ln(F ) =
n∏
i=1

pi ≤

(
1

n

n∑
i=1

pi

)n
≤ n−n. (2.2)

The last equality in (2.2) holds if and only if all pi’s are equal and
∑n

i=1 pi =

1. This inequality implies that L(F ) attains its maximum n−n at F =

9



2.3. Profile Empirical Likelihood of the Population Mean

Fn.

By analogy with the definition of MLE under parametric model, we

say that the empirical distribution Fn is the maximum empirical likelihood

estimate (MELE) of the distribution F . In this spirit, the MELE of the

population mean µ =
∫
x dF (x) is µ̂n =

∫
x dFn(x) =

∑n
i=1Xi/n = X̄n,

which is the sample mean.

The properties of X̄n under some mild conditions have already been

well studied: X̄n is an unbiased and consistent estimator of µ; it has the

smallest asymptotic variance among all the unbiased estimators of µ; it is

asymptotic normal distributed; and so on. In this thesis, we mainly focus on

the problem of constructing confidence regions for µ through the empirical

likelihood. For this purpose, we introduce the profile empirical likelihood in

the next section.

2.3 Profile Empirical Likelihood of the

Population Mean

Let X1, X2, . . . , Xn be i.i.d. d-dimensional random vectors with unknown

distribution F .

By analogy with the Wilks’ theorem, we may also use the ratio of the

empirical likelihood as a basis for constructing confidence regions. The em-

pirical likelihood ratio for a distribution F is defined as

Rn(F ) =
Ln(F )

Ln(Fn)
.

By Proposition 2.1, Rn(F ) ≤ 1 and the equality holds if and only if F = Fn.

Recall that the population mean is a functional of the population distri-

bution. The likeliness of a specific value of µ can be inferred from this

relationship. In the literature of empirical likelihood, we define the profile

10



2.3. Profile Empirical Likelihood of the Population Mean

empirical likelihood of µ as

Ln(µ) = sup

{
Ln(F ) :

∫
x dF (x) = µ

}
. (2.3)

By analogy with the parametric likelihood ratio, we may define the profile

empirical likelihood ratio function of µ as

Rn(µ) =
Ln(µ)

Ln(X̄n)
= sup

{
Rn(F ) :

∫
x dF (x) = µ

}
, (2.4)

Yet without requiring the support of F being confined within the set of

observed values ofX, this profile empirical likelihood ratio for the population

mean always equals 1. We illustrate this point as follows. For any given µ,

let ε be a positive constant smaller than 1 and

xµ =
1

ε
µ− 1− ε

ε
X̄n.

We construct a mixture distribution Fµ,ε = (1− ε)Fn+ ε δxµ . Note that the

mean of (Fµ,ε) is µ and

Rn(Fµ,ε) =
Ln(Fµ,ε)

Ln(Fn)
=

[(1− ε)/n]n

(1/n)n
= (1− ε)n.

Hence for any pre-specified value of µ, Rn(Fµ,ε) can be made arbitrarily

close to 1 as long as ε is sufficiently small. As a result, Rn(µ) defined by

equation (2.4) always equals 1 for any µ. Hence, this definition of the profile

likelihood ratio function is not useful for constructing confidence regions.

The above problem can be easily solved by requiring the support of

F being contained in the set of observed values of X. As proposed by

Owen (1988), the empirical likelihood ratio will be profiled for a parameter

over only the distributions with support on the data set. In other words,

only distributions such that pi = F ({Xi}) > 0 and
∑n

i=1 pi = 1 will be

considered. We denote such a distribution F as F � Fn. The definition of

11



2.3. Profile Empirical Likelihood of the Population Mean

the profile empirical likelihood for µ in the literature is given by

Ln(µ) = sup

{
Ln(F ) : F � Fn,

∫
x dF (x) = µ

}
= sup

{
n∏
i=1

pi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

piXi = µ

}
. (2.5)

Without further clarification, we refer to “profile empirical likelihood” as

“empirical likelihood” from now on.

In this definition of Ln(µ), the sample mean X̄n is its maximum point.

We naturally define the profile empirical likelihood ratio for µ as

Rn(µ) =
Ln(µ)

Ln(X̄n)

= sup

{
Ln(F )

Ln(Fn)
: F � Fn,

∫
x dF (x) = µ

}
= sup

{
n∏
i=1

npi : pi > 0,

n∑
i=1

pi = 1,

n∑
i=1

piXi = µ

}
. (2.6)

For the convenience of discussing asymptotic properties, we prefer working

on the profile empirical likelihood ratio statistic defined as

Wn(µ) = −2 logRn(µ).

Because Rn(µ) is the maximum value of
∏n
i=1 npi subject to some con-

straints, Wn(µ) is the minimum value of −2
∑n

i=1 log(npi) subject to the

same constraints. We will refer to a set of weights {pi}ni=1 that satisfy these

constraints as sub-optimal weights for Wn(µ).

The second constraint may also be written as

n∑
i=1

pi(Xi − µ) = 0. (2.7)

The calculation of Rn(µ) and Wn(µ) at a given parameter value amounts to

solving a constrained optimization problem. The Lagrange’s method is well

12



2.3. Profile Empirical Likelihood of the Population Mean

suited in this situation. Take Wn(µ) as an example. Let us define

H(p1, p2, . . . , pn;λ, η) = −2

n∑
i=1

log(npi)− nλT
[

n∑
i=1

pi(Xi − µ)

]

+ η

(
n∑
i=1

pi − 1

)

with λ ∈ Rd and η ∈ R being the lagrange multipliers.

Setting the derivatives of H with respect to λ and η to zero, we recover

the two equality constraints on pi’s. Differentiating H with respect to pi

and setting the derivatives equal to zero, we get

0 =
∂H

∂pi
=

1

pi
− nλT (Xi − µ) + η (2.8)

Multiplying the above equation by pi and summing over i, with the help of

two constraints, we get

0 =

n∑
i=1

pi
∂H

∂pi
= n+ η.

It gives us η = −n. Substituting this result into equation (2.8) gives the

optimal weights

pi =
1

n

1

1 + λT (Xi − µ)
, i = 1, . . . , n. (2.9)

The value of λ can be computed through the constraint

n∑
i=1

pi(Xi − µ) =
n∑
i=1

1

n

Xi − µ
1 + λT (Xi − µ)

= 0.

Equivalently, we have

n∑
i=1

Xi − µ
1 + λT (Xi − µ)

= 0. (2.10)

13



2.4. Empirical Likelihood and General Estimating Equations

The above equation can be easily solved numerically. From now on, we

will refer to the weights given by equation (2.9) as the optimal weights for

Wn(µ).

Once the value of λ is obtained, we can compute Wn(µ) through

Wn(µ) = 2

n∑
i=1

log[1 + λT (Xi − µ)]. (2.11)

The primal constrained optimization problem for Wn(µ) must work on n

variables p1, p2, . . . , pn. Equation (2.11) shows that Wn(µ) has a simple

analytic expression, and the constrained optimization problem is reduced

to finding an appropriate root λ to equation (2.10). This simple expression

of Wn(µ) has two advantages. Firstly, this expression of Wn(µ) provides a

feasible approach to calculate Wn(µ) numerically. Chen et al. (2002) propose

a modified Newton’s algorithm for finding the root to equation (2.10), whose

algorithmic convergence is guaranteed when the solution exists. Secondly,

this expression helps us study the asymptotic behavior of Wn(µ). In the

investigation of the asymptotic properties of Wn(µ), the property of λ plays

a key role.

2.4 Profile Empirical Likelihood for Parameters

Defined Through General Estimating

Equations

In additional to make inference on population means, empirical likelihood

finds many applications to parameters defined in a nonparametric way. For

instance, Owen (1991) applies empirical likelihood to make inference on the

regression coefficients in linear models. In general, we can often define some

parameters of interest through the so-called “general estimating equations”.

For a random variable X ∼ F , a p-dimensional parameter θ can be defined

as the solution to

EF [g(X; θ)] = 0 (2.12)

14



2.4. Empirical Likelihood and General Estimating Equations

for some q-dimensional mapping g(X; θ) with q ≥ p. The above system is

known as the general estimating equation (GEE), and g(x; θ) is called the

estimating function. When g(x; θ) = x− θ, the parameter θ is the mean of

X. When g(s; θ) = I(x ≤ θ) − α for some α ∈ (0, 1), θ is the α quantile of

X.

The classic setting of GEE has q = p. Given a simple random sample

X1, X2, . . . , Xn, an estimator of θ, say θ̂, can be obtained as the solution to

EFn [g(X; θ)] =
1

n

n∑
i=1

g(Xi; θ) = 0. (2.13)

Since Fn is the MELE of F , it implies that this estimator is the MELE of θ.

In econometrics applications, however, most interest attaches to the case

of over-identification with q > p (Imbens, 2002; Hansen, 1982; Hall, 2005).

In this case, equation (2.13) may not have any solutions.

Empirical likelihood provides a natural approach to overcome this prob-

lem. Qin and Lawless (1994) develop a theory for the EL-based statistical

inference for parameters defined through general estimating functions. They

propose to define the profile empirical likelihood for θ as

Ln(θ) = max

{
n∏
i=1

pi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi g(Xi; θ) = 0

}
.

The corresponding profile empirical likelihood ratio for θ becomes

Rn(θ) =
L(θ)

L(Fn)
= max

{
n∏
i=1

npi : pi > 0,
n∑
i=1

pi = 1,
n∑
i=1

pi g(Xi; θ) = 0,

}
.

(2.14)

The likelihood ratio statistic is then given by

Wn(θ) = −2 logRn(θ).

Similar to the case of the population mean discussed in Section 2.3, Wn(θ)
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can be written as

Wn(θ) = 2
n∑
i=1

log[1 + λT g(Xi; θ)] (2.15)

with λ being the solution to

n∑
i=1

g(Xi; θ)

1 + λT g(Xi; θ)
= 0. (2.16)

In the framework of general estimating equation, the MELE of θ, which

is defined as the maximum point of Ln(θ), is not so trivial as that for pop-

ulation mean. One of the main contributions of Qin and Lawless (1994) is

that they demonstrate the asymptotic normality of the MELE of θ under

some regularity conditions on the estimating function. In addition, they

justify the use of the empirical likelihood ratio statistic for testing or ob-

taining confidence regions for parameters in a completely analogous way to

the parametric likelihood approach. But the main interest of this thesis lies

in the statistical inference for population mean, so we will not explore this

topic further here.

2.5 Asymptotic Properties of Empirical

Likelihood and EL-Based Confidence Regions

The most impressive result in Owen (1988, 1990) is the following asymptotic

limiting distribution of Wn(µ).

Theorem 2.2. Let X1, X2, . . . , Xn be a simple random sample from some d-

dimensional population X and Wn(µ) is the empirical likelihood ratio statis-

tic for the population mean µ. If the variance-covariance matrix of X is

positive definite and the true value of µ is µ0, then

Wn(µ0)
d−→ χ2

d, as n→∞. (2.17)

Theorem 2.2 suggests an approximate 100(1−α)% confidence region for
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2.5. Asymptotic Properties and EL-Based Confidence Regions

µ in the form of

CRα = {µ |Wn(µ) ≤ χ2
d(α)},

where χ2
d(α) is the upper α quantile of χ2

d. Hall and La Scala (1990) and

Owen (2001) point out that the confidence region CRα is always convex.

This is clearly a nice property to practitioners. We summarize their result

as Proposition 2.3 with a simple proof.

Proposition 2.3. Let X1, X2, . . . , Xn be a random sample from some pop-

ulation X and Wn(µ) be the empirical likelihood ratio statistic for the pop-

ulation mean. Suppose µ1 6= µ2 and µ1, µ2 ∈ CRα, and µ is a convex

combination of µ1 and µ2. Then µ ∈ CRα.

Proof. Let {pi}ni=1 and {qi}ni=1 be the optimal weights forWn(µ1) andWn(µ2),

respectively. For any µ such that µ = ξ µ1 + (1− ξ)µ2 for some 0 ≤ ξ ≤ 1,

it is easy to verify that {ri = ξ pi+(1− ξ) qi}ni=1 are sub-optimal weights for

Ln(µ). Note also that ξ pi + (1 − ξ) qi ≥ pξi q
1−ξ
i for i = 1, 2, . . . , n. Hence,

we have

Ln(µ) ≥
n∏
i=1

ri =
n∏
i=1

[ξ pi + (1− ξ) qi] ≥
n∏
i=1

pξi q
1−ξ
i = [Ln(µ1)]

ξ [Ln(µ2)]
1−ξ.

It follows that

Wn(µ) ≤ ξ Wn(µ1) + (1− ξ)Wn(µ2) ≤ ξ χ2
d(α) + (1− ξ)χ2

d(α) = χ2
d(α).

By definition of CRα, we conclude that µ ∈ CRα. This completes the

proof.

Following this proposition, we can see that Wn(µ) has some kind of

monotonicity property.

Corollary 2.4. Assume the same conditions as in Proposition 2.3. Let v

be a d-dimensional unit vector and consider the half line defined by X̄n + tv

for t > 0. Then Wn(X̄n + tv) is an increasing function of t.
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2.5. Asymptotic Properties and EL-Based Confidence Regions

Proof. For any 0 < t1 < t2, let µ1 = X̄n + t1 v and µ2 = X̄n + t2 v. Note

that µ1 is a convex combination of µ2 and X̄n.

Consider a confidence region for µ, CR = {µ : Wn(µ) ≤ Wn(µ2)}. Note

that µ2 and X̄n always fall inside of this region. By Proposition 2.3, µ1 also

belongs to CR and thus Wn(µ1) ≤Wn(µ2).

Corollary 2.4 justifies a simple algorithm for numerically finding the

boundary of the confidence region. We briefly describe this algorithm in the

case of bivariate mean:

1. Choose a sufficiently dense sequence of angles from 0 to 2π, for ex-

ample, an arithmetic sequence from 0 to 2π with common difference

2π/M for some sufficiently large positive integer M .

2. Along each direction defined as a unit vector Φm = (cosφm, sinφm)T

with φm being an angle selected in Step 1, we search for a positive real

number tm such that Wn(X̄n+tm Φm) is sufficiently close to the critical

value determined by the χ2 approximation. Since Wn(µ) is increasing

along any direction starting from X̄n, as asserted in Corollary 2.4, a

simple bisection algorithm is effective.

3. Let {X̄n + tm Φm,m = 1, 2, . . . ,M} be the boundary points obtained

in Step 2.

With this set of points, we not only can visualize the confidence regions

through a two-dimensional plot, but can also calculate the approximate area

of the confidence regions. Apparently, the approximation becomes better

when M gets larger, but the exact accuracy is difficult to determine.

EL-based confidence region has many celebrating properties. We sum-

marize some as follows:

1. EL-based confidence region has a data-driven shape. Figure 2.1 shows

the boundary of the EL-based 95% confidence region for the bivari-

ate mean based on a data set of 10 observations generated from a

bivariate gamma distribution. It is seen that the shape of the confi-
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Figure 2.1: A two-dimensional example of EL-based confidence region

dence region based on the widely-used normal approximation is pre-

determined even before the data are available. On the contrary, the

EL-based confidence region automatically reflects the emphasis on the

data set. It is an appealing property to many practitioners since it

upholds the principle of “letting the data speak.”

2. EL-based confidence region is range respecting and transformation in-

variant. For example, the confidence interval for the correlation always

lies between −1 and 1.

3. The EL-based confidence region is Bartlett-correctable. In both para-

metric likelihood based and EL-based confidence regions, we select

the critical value using the limiting distribution of the likelihood ratio

statistic. Such approximations introduce error to the coverage accu-

racy of the resulting confidence regions. The actual coverage proba-
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2.6. Limitations of Empirical Likelihood

bility of the confidence region does not exactly agree with the nom-

inal level. In the parametric setting, the coverage accuracy can be

improved by the so-called Bartlett correction on the likelihood ratio

statistic (Barndorff-Nielsen and Cox, 1984). As shown by Diciccio

et al. (1991), the empirical likelihood ratio statistic is also Bartlett

correctable. We will discuss it further in Section 2.6.1.

2.6 Limitations of Empirical Likelihood

While empirical likelihood has many nice properties as shown in Section 2.5,

there are situations where its applications meet some practical obstacles.

In this section, we discuss two related issues which lead to the adjusted

empirical likelihood in Chapter 3.

2.6.1 Under-Coverage Problem

Theorem 2.2 suggests using the limiting distribution of Wn(µ) to calibrate

the EL-based confidence region for µ. As expected, the coverage probability

of the resulting confidence region does not exactly match the pre-specified

confidence level. Diciccio et al. (1991) shows that

Pr{µ0 ∈ CRα} = Pr{Wn(µ0) ≤ χ2
d(α)} = 1− α+O(n−1). (2.18)

Simulation results reveal that EL-based confidence regions suffer from the

so-called “under-coverage” problem. That is, its coverage probability is

lower than the nominal level particularly when the sample size is small or

the population is skewed. Diciccio et al. (1991) prove that the empirical

likelihood is Bartlett correctable; a simple correction on Wn(µ0) can improve

the approximating precision given in equation (2.18) fromO(n−1) toO(n−2).

Empirical studies reveal that the Bartlett correction significantly improves

the coverage rate of the EL-based confidence regions.

The error in the approximation is partially accounted to the fact that the

expectation of Wn(µ0) does not match the expectation of the corresponding

limiting distribution. Thus, the coverage accuracy may be improved by
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2.6. Limitations of Empirical Likelihood

rescaling Wn(µ). Asymptotically, it is found that

E[Wn(µ)] = d

[
1 +

b

n
+O(n−2)

]
with b being a constant depending on the first four moments of the pop-

ulation X. By applying the χ2 approximation to Wn(µ)/(1 + b n−1), the

resulting confidence region has higher precision; the coverage error is re-

duced from order n−1 to of order n−2. More precisely,

Pr

{
Wn(µ0)

1 + b/n
≤ χ2

d(α)

}
= Pr

{
Wn(µ0) ≤ χ2

d(α)

(
1 +

b

n

)}
= 1− α+O(n−2). (2.19)

The asymptotic derivation of equation (2.19) is long and complex. The

details can be found in Diciccio et al. (1991).

The constant b in equation (2.19) is called the Bartlett correction fac-

tor. The value of b depends on the first four moments of the population

distribution. Its value must be estimated based on data in applications.

Replacing b by a
√
n-consistent estimator in equation (2.19) will not affect

the theoretical result.

The Bartlett correction is also applicable for EL-based confidence regions

for parameters defined through general estimating equation (2.12). The

Bartlett correction factor b is determined by the distribution of g(X; θ).

Liu and Chen (2010) provide a detailed discussion on how to calculate the

Bartlett correction factor in the framework of general estimating equation.

2.6.2 The No-Solution Problem

As described in Section 2.4, Wn(θ) equals the minimum value of−2
∑n

i=1 log(n pi)

over all sub-optimal weights {pi}ni=1. Hence Wn(θ) is well defined if and only

if there exists at least one set of sub-optimal weights. Let CH{· · · } be the

convex hull expanded by the set of points inside {}. Then, Wn(θ) is well
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2.6. Limitations of Empirical Likelihood

defined when

0 ∈ CH{g(Xi; θ), i = 1, 2, . . . , n}. (2.20)

We take the population mean µ as an example. Condition (2.20) is satisfied

if and only if 0 ∈ CH{Xi − µ, i = 1, 2, . . . , n}. Equivalently, we must have

µ ∈ CH{Xi, i = 1, 2, . . . , n}. When µ is one-dimensional, condition (2.20)

can be further simplified to X(1) < µ < X(n). Let Θ0 be the set of θ over

which condition (2.20) is satisfied. We can see that Θ0 is determined by

the data. For complex estimating equations, it can be hard to specify the

structure of Θ0.

Owen (2001) proves that the true parameter value θ0, defined as the

unique solution to equation (2.12), is contained in Θ0 almost surely as

n→∞ under some regularity conditions on the estimating function. For θ

is not close to θ0 or when the sample size is small, it is very possible that

θ /∈ Θ0 and thus equation (2.16) is not solvable. When θ /∈ Θ0, it is conven-

tional to define Wn(θ) = ∞. However, this setting has its own limitations.

Firstly, for any two different parameter values θ1, θ2 /∈ Θ0, we are unable

to evaluate their relative plausibility based on Wn(θ). Secondly, using this

setting implies that the confidence region is always a subset of Θ0, which is

determined by the data. This can be a problem when even Θ0 itself does

not achieve the desired confidence level especially when the sample size is

small.

Aiming to solve the no-solution problem of empirical likelihood, Chen

et al. (2008) propose an adjustment to the original empirical likelihood such

that the resulting adjusted empirical likelihood (AEL) is well defined for

all possible parameter values. Chapter 3 is contributed to summarizing the

well-studied asymptotic properties of the adjusted empirical likelihood, and

investigating the finite-sample properties of AEL-based confidence regions

mainly in the case of population mean.
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Chapter 3

Adjusted Empirical

Likelihood

To overcome the obstacle caused by the no-solution problem in the appli-

cation of empirical likelihood, Chen et al. (2008) propose an adjustment to

empirical likelihood. The resulting adjusted empirical likelihood is attract-

ing for its easy computation and desirable asymptotic properties. Recently,

this method has found its applications in various areas. Zhu et al. (2009)

incorporate the adjusted empirical likelihood and the exponentially tilted

likelihood, and apply it to the analysis of morphometric measures in MRI

studies. Liu and Yu (2010) propose a two-sample adjusted empirical like-

lihood approach to construct confidence regions for the difference of two

population means. Variyath et al. (2010) introduce the information criteria

under adjusted empirical likelihood to variable/model selection problems.

In this chapter, we first review the setting of the resulting adjusted em-

pirical likelihood (AEL) and its asymptotic property. In addition, we present

some new results on the finite-sample properties of the adjusted empirical

likelihood.

3.1 Adjusted Empirical Likelihood and

AEL-Based Confidence Regions

Let us start with a simple example. Suppose that we have a random sample

of n bivariate observations, and we are interested in the population mean µ.

Now consider a value of µ outside of CH{Xi, i = 1, 2, . . . , n}. Apparently,

such a value of µ does not satisfy condition (2.20), and therefore Wn(µ)
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3.1. Adjusted Empirical Likelihood and AEL-Based Confidence Regions

is not well defined. The idea of the adjustment proposed by Chen et al.

(2008) is to add a pseudo observation Xn+1 into the data set such that

µ ∈ CH{Xi, i = 1, 2, . . . , n+ 1}. More specifically, we may choose Xn+1 as

Xn+1 = µ+ an (µ− X̄n), (3.1)

for some positive constant an; or equivalently, we may write

Xn+1 − µ = −an (X̄n − µ). (3.2)

The rationale of adding such a pseudo point is illustrated in Figure 3.1.

Note that X̄n =
∑n

i=1Xi/n is always an interior point of CH{Xi, i =

1, 2, . . . , n}. Suppose µ be a parameter value outside of the convex hull

of {X1, X2, . . . , Xn}. Let us first draw a ray from X̄n towards µ, and let

Xn+1 be a point on the further side of µ. Apparently, the constant an deter-

mines how far Xn+1 should be placed. It is seen that µ is an interior point

of the convex hull of {X1, X2, . . . , Xn+1}.
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(a) Plot of Xi’s
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(b) After adding a pseudo point

Figure 3.1: A two-dimensional example showing the position of the pseudo
point.

24



3.1. Adjusted Empirical Likelihood and AEL-Based Confidence Regions

This adjustment is generally applicable. For any given value of θ, let

gi(θ) = g(Xi; θ) and ḡn(θ) =
∑n

i=1 gi(θ)/n. And the pseudo observation is

defined as

gn+1(θ) = −an ḡn(θ). (3.3)

By including this pseudo observation into the data set, the empirical likeli-

hood ratio statistic for θ becomes

W ∗n(θ; an) = −2 logR∗n(θ; an) (3.4)

with

R∗n(θ) = (n+ 1)n+1 L∗n(θ; an),

and

L∗n(θ; an) = max

{
n+1∏
i=1

pi : pi > 0,

n+1∑
i=1

pi = 1,

n+1∑
i=1

pi gi(θ) = 0

}
.

We call a set of weights of {pi}n+1
i=1 sub-optimal for W ∗n(θ; an), R∗n(θ; an) or

L∗n(θ; an) if they satisfy the above equality constraints.

Using the Lagrange’s method, we can easily show that the optimal

weights are given by

pi =
1

n+ 1

1

1 + λT gi(θ)
, i = 1, 2, . . . , n+ 1,

where λ is the solution to

n+1∑
i=1

gi(θ)

1 + λT gi(θ)
= 0.
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As a consequence, W ∗n(θ; an) can be expressed as

W ∗n(θ; an) = 2
n+1∑
i=1

log[1 + λT gi(θ)].

Compared to the original empirical likelihood, adjusted empirical likelihood

has many desirable properties. Firstly, adjusted empirical likelihood yields a

sensible value of likelihood at any putative parameter value, and this allows

us to evaluate the plausibility of any parameter value. On the contrary, the

original empirical likelihood is well defined only over a data-dependent sub-

set of the parameter space, and this subset is difficult to specify numerically

when the estimating function g(x; θ) is complex.

Secondly, the first order asymptotic property of Wn(θ0), where θ0 is the

true value of θ, is largely preserved for W ∗n(θ0; an). For example, W ∗n(θ0; an)

has the same limiting distribution as that of Wn(θ0) as long as an = op(n
2/3).

Thus, the χ2 calibration is still applicable to constructing confidence regions

for parameter of interest. That is, CR∗α = {θ : W ∗n(θ; an) ≤ χ2
q(α)} remains

an approximate 100(1− α)% confidence region for θ.

Thirdly, AEL-based confidence regions can achieve coverage precision

of higher order with appropriately chosen an. The positive constant an

in the definition of the pseudo point can be used as a tuning parameter

which controls the level of adjustment. Recall that EL-based confidence

regions have the under-coverage problem, and they are Bartlett correctable

to achieve higher order precision. Apparently, tuning the size of an may

achieve the same good. This is exactly what has been proposed in Liu

and Chen (2010). They discover that when an = b/2 with b being the

Bartlett correction factor, the coverage accuracy of AEL-based confidence

regions is of order n−2, which is the same as that of Bartlett-corrected EL-

based confidence regions. The sign of b matters in the adjusted empirical

likelihood. In the one-dimensional case, b is positive for any distribution.

When the dimension is higher than 1, empirical studies (Liu and Chen,

2010) seem to support that b is positive, but theoretical justification is still

needed.
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Fourthly, although the original motivation of the adjusted empirical like-

lihood method is to handle the no-solution problem confronted with the EL

method, empirical studies (Chen et al., 2008; Liu and Chen, 2010) reveal

that AEL-based confidence regions have higher coverage rate than EL-based

confidence regions. Note that this does not imply that the AEL-based con-

fidence regions have more accurate coverage rates than the corresponding

EL-based confidence regions, though it is often the case because EL-based

confidence regions have the under-coverage problem. We will demonstrate

this empirical discovery rigorously in Section 3.2.

3.2 Finite-Sample Properties of Adjusted

Empirical Likelihood for Population Mean

We devote this section to the finite-sample properties of the adjusted em-

pirical likelihood mainly in the case of population mean.

3.2.1 Monotonicity of W ∗
n(µ; an) in µ

It is desirable that the confidence region of any parameter is convex. Empir-

ical evidences seem to support that AEL-based confidence region for popula-

tion mean is convex. This is yet to be confirmed theoretically. In this section,

we prove that like Wn(µ), the adjusted likelihood ratio statistic W ∗n(µ; an)

also has a monotonicity property. As mentioned earlier in Section 2.5, this

property is critical for the numerical computation of multidimensional con-

fidence regions.

Theorem 3.1. Suppose we have a random sample X1, X2, . . . , Xn from

some population X, and W ∗n(µ; an) is the adjusted empirical likelihood ratio

statistic for the population mean. For any d-dimensional unit vector v, con-

sider the half line X̄n+tv for t ≥ 0. Then W ∗n(X̄n+tv; an) is an increasing

function of t.

Proof. For any 0 < t1 < t2, let µ1 = X̄n + t1 v and µ2 = X̄n + t2 v. Note
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that

W ∗n(µ; an) = −2 logR∗n(µ; an) = −2 logL∗n(µ; an)− 2 log(n+ 1)n+1,

and the logarithm transformation is monotone. It suffices to show L∗n(µ1; an) ≥
L∗n(µ2; an).

Let {pi}n+1
i=1 be the optimal weights for L∗n(µ2; an). If we can find a set

of sub-optimal weights {qi}n+1
i=1 for L∗n(µ1; an) such that

∏n+1
i=1 qi ≥

∏n+1
i=1 pi,

then the conclusion of the theorem follows since L∗n(µ1; an) ≥
∏n+1
i=1 qi.

For i = 1, 2, . . . , n, we define

ri =
pi

1− pn+1
.

Then we have

n∑
i=1

ri (Xi − µ2) +
pn+1

1− pn+1
(Xn+1 − µ2) = 0.

Substituting Xn+1 − µ = −an (X̄n − µ) and letting k = pn+1 an/(1− pn+1),

we have

n∑
i=1

ri (Xi − µ2) = k (X̄n − µ2) = (X̄n − µ2) + (k − 1) (X̄n − µ2).

Define

L̃n(φ) = max

{
n∏
i=1

si : si > 0,

n∑
i=1

si = 1,

n∑
i=1

si (Xi − µ2) = φ

}
.

That is, L̃n(φ) is the profile empirical likelihood for φ = E[X1 − µ2]. It is

easy to verify that L̃n(φ) is maximized at φ̄n =
∑n

i=1(Xi−µ2)/n = X̄n−µ2,
and {ri}ni=1 is the optimizing weights for L̃n(φ2) with φ2 = (X̄n−µ2) + (k−
1) (X̄n− µ2). Denote φ1 = (X̄n− µ2) + (k− 1) (X̄n− µ1). Note that µ1 is a

convex combination of µ2 and X̄n. Hence φ1 is also a convex combination

of φ2 and φ̄n. By the monotonicity property of L̃n(φ) (Corollary 2.4), we
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have L̃n(φ1) ≥ L̃n(φ2).

Let {si}ni=1 be the optimal weights for L̃n(φ1), and define qn+1 = pn+1

and qi = (1 − pn+1) si for i = 1, 2, . . . , n. We can easily verify that {qi}n+1
i=1

is a set of sub-optimal weights for L∗n(µ1). Hence,

L∗n(µ1; an) ≥
n+1∏
i=1

qi

= pn+1 · (1− pn+1)
n

n∏
i=1

si

≥ pn+1 · (1− pn+1)
n

n∏
i=1

ri

= pn+1 · (1− pn+1)
n

n∏
i=1

pi
1− pn+1

=

n+1∏
i=1

pi

= L∗n(µ2; an).

Hence, W ∗n(µ1; an) ≤W ∗n(µ2; an).

According to Theorem 3.1, we find that X̄n is the minimum point of

W ∗n(µ; an), and AEL-based confidence regions for the population mean are

at least star-shaped with X̄n being the center. In the case of the univari-

ate mean, the AEL-based confidence regions are still intervals. This result

guarantees that the bisection algorithm described in Section 2.5 also works

in finding the boundary of the AEL-based confidence region.

Whether AEL-based confidence regions for population mean are convex

or not is still not clear, though it seems to be the case in the simulation

studies.

3.2.2 Monotonicity of W ∗
n(θ; an) in an

Empirical studies in Chen et al. (2008) and Liu and Chen (2010) reveal

that the AEL-based confidence regions have higher coverage rate than the
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corresponding EL-based confidence regions. Intuitively, the gain in cover-

age rate of AEL-based confidence regions may be explained by the way how

the adjusted empirical likelihood ratio statistic is constructed. As argued

by Hua (2009), for testing the null hypothesis H0 : θ = θ0, the pseudo point

gn+1(θ0) is always placed at a position that is in favor of the null hypothe-

sis. Thus, the adjusted empirical likelihood ratio statistic tends to favor the

null hypothesis and deflates the type-I error. Consequently, the AEL-based

confidence regions has higher coverage rate compared to the correspond-

ing EL-based confidence regions. It turns out that this observation can be

proved rigorously. Theorem 3.2 reveals the monotonicity of W ∗n(θ; an) in

an, and an interesting relationship between adjusted empirical likelihood

and empirical likelihood as a special case. It implies that the AEL-based

confidence region strictly contains the corresponding EL-based confidence

region.

Theorem 3.2. Suppose X1, X2, . . . , Xn is a random sample from some

population X, and Wn(θ) and W ∗n(θ; an) are the empirical likelihood ratio

statistic and the adjusted empirical likelihood ratio statistic defined by equa-

tions (2.15) and (3.4), respectively. We adopt the conventional value ∞ for

Wn(θ) when it is not well defined. Then we have

(1) W ∗n(θ; an) = Wn(θ) if an = 0.

(2) W ∗n(θ; an) is a decreasing function of an on the closed interval [0, n].

Proof. (1) When an = 0, we have gn+1(θ) = 0. Hence, W ∗n(θ; 0) becomes

W ∗n(θ; 0) = 2
n+1∑
i=1

log[1 + λT gi(θ)]

= 2
n∑
i=1

log[1 + λT gi(θ)],

where λ is the solution to

n+1∑
i=1

gi(θ)

1 + λT gi(θ)
=

n∑
i=1

gi(θ)

1 + λT gi(θ)
= 0.
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It is clear that the expression of W ∗n(θ; 0) and the equation to λ coincide

with those in the definition of Wn(θ) (equation (2.15) and (2.16)). That is,

we have W ∗n(θ; 0) = Wn(θ).

(2) We will only give the proof in the case of population mean µ for sim-

plicity; the proof is the same for the case of general estimating equation.

Without loss of generality, we also fix µ = 0 and assume X̄n 6= 0.

When an = n, it is easy to verify that weights {pi = 1/(n + 1)}n+1
i=1

are sub-optimal for W ∗n(0;n) and thus are optimal for W ∗n(0;n). Therefore,

W ∗n(0;n) = 0 ≤ W ∗n(0; an) for any an < n. Next we will only consider

an ∈ [0, n).

Note that W ∗n(0; an) can be expressed as

W ∗n(0; an) = 2
n+1∑
i=1

log(1 + λTXi),

where Xn+1 = −an X̄n, and λ satisfies

n+1∑
i=1

Xi

1 + λTXi
= 0. (3.5)

The derivative of W ∗n(0; an) with respect to an is

dW ∗(0; an)

dan
=

n+1∑
i=1

(
dλ
dan

)T
Xi

1 + λTXi
+

λT dXn+1

dan

1 + λTXn+1

=

(
dλ

dan

)T n+1∑
i=1

Xi

1 + λTXi
+

λT (−X̄n)

1 + λTXn+1

= − λT X̄n

1 + λTXn+1
,

where we substitute equation (3.5).

If the derivative of W ∗n(0; an) is always negative, then we know W ∗n(0; an)

is a decreasing function of an. Our task is to prove that the derivative of

W ∗n(0; an) is negative for an ∈ [0, n), or equivalently to prove λT X̄n > 0.
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Consider the following function

f(t) =
n+1∑
i=1

λTXi

1 + t · λTXi
.

Note that

f(0) =
n+1∑
i=1

λTXi = λT
n∑
i=1

Xi + λT (−an X̄n) = (n− an)λT X̄n,

f(1) =

n+1∑
i=1

λTXi

1 + λTXi
= λT

n+1∑
i=1

Xi

1 + λTXi
= 0.

We also notice that the derivative of f(t)

df(t)

dt
=

n+1∑
i=1

[
− λTXi · λTXi

(1 + t · λTXi)2

]
= −

n+1∑
i=1

(
λTXi

1 + t · λTXi

)2

is always negative, and thus f(t) is a decreasing function of t. Therefore,

we have f(0) > f(1), that is (n − an)λT X̄n > 0. Since an < n, we find

λT X̄n > 0. Consequently, W ∗n(0; an) is a decreasing function of an, and it

completes the proof.

Figure 3.2 plots the EL and AEL likelihood ratio statistics based on an

artificially generated data set. It clearly shows that W ∗n(µ; an) ≤Wn(µ) for

all µ. As a consequence, the AEL-based confidence interval for µ contains

the corresponding EL-based confidence interval and hence the former has

higher coverage probability. This conclusion is generally true for parameters

defined through general estimating equation. It enhances the results in Liu

and Chen (2010) that AEL-based confidence regions where an = b/2 with b

being the Bartlett correction factor has not only higher coverage accuracy

but also higher coverage probability.
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Figure 3.2: An example showing the effect of the pseudo point on the like-
lihood ratio statistic.

3.2.3 Boundedness of W ∗
n(µ; an)

Suppose X1, X2, . . . , Xn ∈ Rd are independent random vectors from some

population X, and θ ∈ Rp is the parameter of interest defined through

general estimating equation (2.12). The EL-based approximate 100(1−α)%

confidence region for θ is defined as

CRα = {θ : Wn(θ) ≤ χ2
q(α)}

where χ2
q(α) is the upper α quantile of χ2 distribution with q degrees of

freedom. The AEL-based 100(1 − α)% confidence region is defined in the

same way except for replacing the foregoing Wn(θ) by W ∗n(θ; an).

In the case of population mean, since Wn(µ) is only well defined for µ in

the convex hull of the sample, and Wn(µ) tends to infinity as µ approaches
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to the boundary of the convex hull, the EL-based confidence region for

population mean is always of finite size. On the other hand, however, we

find that W ∗n(θ; an) is bounded from above for any given n. Hence, AEL

may give unbounded confidence region when the sample size is not large

enough, or the confidence level (1 − α) is too high. We state this result as

follows.

Theorem 3.3. Suppose we have a finite sample X1, X2, . . . , Xn and let

W ∗n(θ; an) be the adjusted empirical likelihood ratio statistic defined in equa-

tion (3.4). For any θ, we have

W ∗n(θ; an) ≤ −2n log

[
(n+ 1) an
n (1 + an)

]
− 2 log

[
n+ 1

1 + an

]
.

Proof. Let

q1 = q2 = · · · = qn =
1

n

an
1 + an

,

qn+1 =
1

1 + an
.

It is clear that qi > 0 and
∑n+1

i=1 qi = 1. In addition, it is seen that

n+1∑
i=1

qi gi(θ) =
an

1 + an

1

n

n∑
i=1

gi(θ) +
1

1 + an
[−an ḡn(θ)]

=
an

1 + an
ḡn(θ)− an

1 + an
ḡn(θ)

= 0.

Hence, {qi}n+1
i=1 is a set of sub-optimal weights for W ∗n(θ; an). According to

the definition of W ∗n(θ; an), we thus have

W ∗n(θ; an) ≤ −2

n+1∑
i=1

log[(n+ 1) qi] = −2n log

[
(n+ 1) an
n (1 + an)

]
− 2 log

[
n+ 1

1 + an

]
.

It completes the proof.

For the population mean, the next theorem shows that the upper bound

34



3.2. Finite-Sample Properties of Adjusted Empirical Likelihood

in Theorem 3.3 is the supremum of W ∗n(µ; an).

Theorem 3.4. Let X1, X2, . . . , Xn be i.i.d. d-dimensional random vectors

and µ be the population mean. Denote M as the upper bound in Theorem 3.3.

For any d-dimensional unit vector v, consider the half line X̄n + tv with

t > 0. We have

lim
t→∞

W ∗n(X̄n + tv; an) = M.

Proof. We will present proof for the case when d = 1 and for the case when

d > 1 separately.

Case 1: d = 1. We will only present the proof of the theorem in the case

where µ→ −∞; the proof in the case where µ→∞ is similar.

Let {pi}n+1
i=1 be the optimal weights for W ∗n(µ; an). We prove the result in

three steps. Firstly, we demonstrate that lim
µ→−∞

pn+1 = 1/(1+an). Secondly,

we further show that lim
µ→−∞

pi = an/[n (1 + an)] for i = 1, 2, . . . , n. In the

final step, the conclusion of the proposition readily follows.

Step 1. Consider any µ such that µ < X(1). Note that {pi}n+1
i=1 satisfy

n+1∑
i=1

pi (Xi − µi) = 0.

From the above equation, we get

n∑
i=1

pi (Xi − µ) = −pn+1 (Xn+1 − µ) = pn+1 an (X̄n − µ).

Thus,

pn+1 =
n∑
i=1

pi (Xi − µ)

an (X̄n − µ)
.

Note that 0 < X(1) − µ ≤ Xi − µ ≤ X(n) − µ for i = 1, 2, . . . , n, and
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∑n
i=1 pi = 1− pn+1. Hence

pn+1 ≤
n∑
i=1

pi (X(n) − µ)

an (X̄n − µ)
=

∑n
i=1 pi
an

X(n) − µ
X̄n − µ

=
1− pn+1

an

X(n) − µ
X̄n − µ

.

Since pn+1 < 1, we get an upper bound for pn+1 from the above equation:

pn+1 ≤
X(n) − µ

an (X̄n − µ) + (X(n) − µ)
.

Similarly, we get a lower bound for pn+1:

pn+1 ≥
X(1) − µ

an (X̄n − µ) + (X(1) − µ)
.

Letting µ→ −∞, we get

1

1 + an
≤ lim

µ→−∞
pn+1 ≤ lim

µ→−∞
pn+1 ≤

1

1 + an
.

Hence,

lim
µ→−∞

pn+1 =
1

1 + an
. (3.6)

Step 2. For i = 1, 2, . . . , n+ 1, pi can be expressed as

pi =
1

n+ 1

1

1 + λ (Xi − µ)
(3.7)

for some λ. By equation (3.7) with i = n+ 1, we have

λ = −
(n+ 1)− p−1n+1

(n+ 1)(Xn+1 − µ)
=

(n+ 1)− p−1n+1

an (n+ 1)(X̄n − µ)
.

For i = 1, 2, . . . , n, substituting this expression of λ into equation (3.7) leads

36



3.2. Finite-Sample Properties of Adjusted Empirical Likelihood

to

pi =
1

n+ 1

[
1 +

(n+ 1)− p−1n+1

(n+ 1) an

Xi − µ
X̄n − µ

]−1

=

[
(n+ 1) +

(n+ 1)− p−1n+1

an

Xi − µ
X̄n − µ

]−1
.

Letting µ→ −∞ and using equation (3.6), we get

lim
µ→−∞

pi =

[
(n+ 1) +

(n+ 1)− (1 + an)

an

]−1
=

1

n

an
1 + an

.

Step 3. Since {pi}n+1
i=1 are the optimal weights for W ∗n(µ; an), we have

W ∗n(µ; an) = −2
n+1∑
i=1

log[(n+ 1) pi].

Consequently,

lim
µ→−∞

W ∗n(µ; an) = lim
µ→−∞

−2

n+1∑
i=1

log[(n+ 1) pi]

= −2n log

[
(n+ 1) an
n (1 + an)

]
− 2 log

[
n+ 1

1 + an

]
,

which is the conclusion.

Case 2: d > 1. For any d-dimensional unit vector v and t > 0, let {pi}n+1
i=1

be the optimal weights for W ∗n(X̄n + tv; an). Consider Yi = vT (Xi − X̄n)

for i = 1, 2, . . . , n+ 1. It is easy to verify that

n+1∑
i=1

pi (Yi − t) = 0.

37



3.2. Finite-Sample Properties of Adjusted Empirical Likelihood

Define

R̃∗n(t; an) = max

{
n+1∏
i=1

(n+ 1) pi : pi > 0,
n+1∑
i=1

pi = 1,
n+1∑
i=1

pi (Yi − t) = 0

}
,

and W̃ ∗n(t; an) = −2 log R̃∗n(t; an). Since {pi}n+1
i=1 are sub-optimal weights

for W̃ ∗n(t; an), we have

W̃ ∗n(t; an) ≤W ∗n(µ; an) ≤M.

We have already proved that limt→∞ W̃
∗
n(t; an) = M . Consequently, we get

M = lim
t→∞

W̃ ∗n(t; an) ≤ lim
t→∞

W ∗n(µ; an) ≤ lim
t→∞

W ∗n(µ; an) ≤M.

Hence

lim
t→∞

W ∗n(µ; an) = M.

This completes the proof.

Theorem 3.3 reveals that W ∗n(θ; an) is a bounded function of θ; Figure 3.3

shows the relationship between the upper bound and the sample size when

an = log(n)/2. When the sample size is small or the dimension is high, the

upper bound of W ∗n(θ; an) is likely to be smaller than the upper α quantile of

the χ2 distribution. When this happens, the approximate confidence region

based on the χ2 calibration becomes the entire parameter space. Figure 3.4

shows the minimum sample size needed for the adjusted empirical likelihood

method to give bounded confidence regions versus different degrees of free-

dom and confidence levels.

Even if the minimum sample size is attained in a particular situation, the

adjusted empirical likelihood method may still produce unreasonably large

confidence regions. For example, suppose we have a univariate sample of size

5 and we would like to construct the AEL-based 95% confidence interval for

the population mean. As proposed by Chen et al. (2008), an is chosen to

be log(5)/2 = 0.805. For this choice of an, the upper bound of W ∗n(µ; an)
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Figure 3.3: Plot of upper bound against sample size

is 3.851, which is only slightly larger than the upper 5% quantile of the χ2
1

distribution, 3.841. Because of this, the resulting confidence interval is very

long. We can imagine that the coverage rate is much higher than the nom-

inal level 95%. Figure 3.5 illustrates this point with a data set of 5 points

generated from N(0, 1).

In the case of population mean, we may modify the adjusted empirical

likelihood method so that the resulting W ∗n(µ; an) becomes unbounded from

above. To motivate such a modification, let us once again look into Theo-

rem 3.3. We view W ∗n(µ; an) as a function of an while regarding µ as a fixed

constant satisfying µ 6= X̄n. It is seen that W ∗n(µ; an) equals Wn(µ) when

an = 0, and W ∗n(µ; an) is a decreasing function of an on the closed interval

[0, n]. See Figure 3.6 for an illustration. Attempting to make W ∗n(µ; an)
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Figure 3.4: Plot of required sample size for various critical values

unbounded from above, we consider replacing the constant an by

an(µ) = an · exp

{
−
√

(X̄n − µ)T S−1n (X̄n − µ)

}
, (3.8)

where Sn is the sample variance-covariance matrix. We assume that Sn is

nonsingular.

The resulting W ∗n(µ; an(µ)) is always larger than W ∗n(µ; an) but smaller

thanWn(µ) for any value of µ since an(µ) is always smaller than an but larger

than 0. As µ deviates from X̄n, an(µ) tends to zero and thus W ∗n(µ; an(µ))

approaches W (µ). As a result, W ∗n(µ; an(µ)) is unbounded from above. Fig-

ure 3.7 visualizes the effect of an(µ) in the univariate case.

The modified adjusted empirical likelihood possesses two key advantages.

Firstly, the modified adjusted empirical likelihood ratio statistic preserves

the monotonicity of the adjusted empirical likelihood, and therefore the cor-
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Figure 3.5: The EL-based and AEL-based 95% confidence intervals for the
population mean

responding confidence region is star-shaped and bounded. Based on the

foregoing discussion, we can imagine that the AEL-based confidence region

contains the confidence region based on the modified adjusted empirical like-

lihood while the latter one contains the EL-based confidence region. Fig-

ure 3.8 shows the 95% approximate confidence regions based on the empirical

likelihood method, the adjusted empirical likelihood method and the modi-

fied adjusted empirical likelihood method.

Secondly, it is seen that the multiplier in the definition of an(µ) converges

to 1 of order n−1/2 as n → ∞ when µ equals the true value µ0. This

fact implies the modified adjusted empirical likelihood preserves both the

first-order and second-order asymptotic properties of the original adjusted

empirical likelihood.

Obviously, there are many choices for the multiplier in the definition of
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Figure 3.6: W ∗n(µ; an) as a function of an

an(µ). Based on the foregoing discussion, we may require the multiplier

should satisfy:

(1) it decreases to 0 as µ deviates from X̄n; and

(2) it converges to 1 of order n−1/2 as n increases.

If a multiplier satisfies these two conditions, the corresponding modified

adjusted empirical likelihood not only gives bounded confidence regions,

but also preserves the asymptotic and finite-sample properties of the original

adjusted empirical likelihood presented in this thesis.

With these two conditions in mind, we can see that there are still many

kinds of choice for the multiplier. The “optimal” choice of multiplier would

be an interesting topic for future research.

In the literature, there is another variant of adjusted empirical likelihood

that gives unbounded likelihood ratio statistic. Emerson and Owen (2009)
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Figure 3.7: The effect of an(µ)

also discover the boundedness of W ∗n(µ; an), and they consider a different

way to modify the adjusted empirical likelihood so as to get an unbounded

likelihood ratio statistic in the case of population mean. They propose

adding two pseudo points to the original sample. More specifically, for any

µ 6= X̄n, the first pseudo point Xn+1 is also added on the further side of

µ but the distance between Xn+1 and µ is a constant s, and the second

Xn+2 is added such that X̄n is the midpoint of Xn+1 and Xn+2. Then the

likelihood ratio statistic is defined as

W ∗n(µ) = −2 max

{
n+2∑
i=1

log[(n+ 2) pi] : pi > 0,

n+2∑
i=1

pi = 1,

n+2∑
i=1

pi (Xi − µ) = 0

}
.

The resulting method is called the balanced augmented empirical likelihood

method. The method is called “balanced” because the sample mean of
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Figure 3.8: The 95% approximate confidence regions produced by EL, AEL
and modified AEL

{X1, X2, . . . , Xn+2} is maintained at X̄n. They demonstrate this likelihood

ratio statistic is unbounded from above, and establish the finite-sample rela-

tionship between this modified likelihood ratio method and the well-known

Hotelling’s T 2 test through the tuning parameter s. This topic is beyond

the scope of the thesis; details can be found in Emerson and Owen (2009).
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Chapter 4

Empirical Results

In this chapter, we conduct simulation studies on the finite-sample properties

of the empirical likelihood method and its several variants. Particularly, we

investigate the coverage probabilities and the sizes of a number of confidence

regions for population mean.

Constructing confidence regions for population mean based on a simple

random sample of n observations is a classical problem in statistical infer-

ence. The most widely-used method of constructing confidence regions for

population mean is based on the Hotelling’s T 2 statistic

T 2
n(µ) = n (X̄n − µ)TS−1n (X̄n − µ),

where X̄n and Sn are the sample mean and the sample variance-covariance

matrix, respectively. If the population distribution is multivariate normal of

dimension d, then (n−d)T 2(µ0)/[d (n−1)] is known to have an F distribution

with d and n − d degrees of freedom where µ0 is the true parameter value.

A 100(1− α)% confidence region for µ is given by

CR =

{
µ : T 2

n(µ) ≤ d (n− 1)

n− d
Fd, n−d(α)

}
,

where Fd, n−d(α) denotes the upper α quantile of F distribution with d and

n− d degrees of freedom. When d = 1, Hotelling’s T 2 statistic becomes the

square of the well-known Student’s t statistic.

Many practitioners prefer using this kind of confidence region based on

normal approximation because of its easy calculation and straightforward

interpretation. Moreover, many numerical studies have found that the fore-

going form of confidence region has surprisingly accurate coverage rate even
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when the population distribution is not normal and the sample size is small.

We investigate the coverage rates and the sizes of approximate 90% and

95% confidence intervals/regions in the cases of one-dimensional mean and

two-dimensional mean. Seven methods are considered:

1. The Hotelling’s T 2 method, denoted as T 2;

2. The original empirical likelihood method, denoted as EL;

3. The adjusted empirical likelihood method with an = log(n)/2, denoted

as AEL;

4. The modified adjusted empirical likelihood method with an = log(n)/2,

denoted as MAEL;

5. The Bartlett corrected empirical likelihood method, denoted as EL∗;

6. The adjusted empirical likelihood method with an = b/2 where b is

estimated by moments, denoted as AEL∗;

7. The modified adjusted empirical likelihood method with an = b/2

where b is estimated by method of moments, denoted as MAEL∗;

4.1 Confidence Intervals for One-Dimensional

Mean

Three sample sizes (n = 5, 10, 50) are considered. For each sample size, we

generated 1, 000 samples from each of the following four distributions:

1. Standard normal distribution, denoted as N(0, 1);

2. χ2 distribution with 1 degree of freedom, denoted as χ2
1;

3. Exponential distribution with rate 1, denoted as Exp(1); and

4. A normal mixture 0.1 N(−9, 1)+0.9 N(1, 1), denoted as 0.1 N1+0.9 N2.

For each sample, we calculated the 90% and 95% confidence intervals. Ta-

ble 4.1 reports the coverage frequencies, and Table 4.2 gives the average

lengths of the corresponding intervals.
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Table 4.1: Coverage rates for one-dimensional mean

Nominal level

0.9 0.95

N(0, 1) n = 5 n = 10 n = 50 n = 5 n = 10 n = 50

T 2 0.895 0.909 0.892 0.956 0.952 0.949
EL 0.757 0.858 0.889 0.815 0.913 0.935
AEL 0.881 0.910 0.897 1.000 0.954 0.945
MAEL 0.796 0.884 0.896 0.845 0.928 0.942
EL∗ 0.782 0.876 0.891 0.834 0.921 0.939
AEL∗ 0.797 0.880 0.891 0.855 0.923 0.939
MAEL∗ 0.779 0.870 0.889 0.831 0.917 0.937

χ2
1

T 2 0.785 0.809 0.898 0.840 0.857 0.940
EL 0.663 0.766 0.892 0.733 0.832 0.943
AEL 0.789 0.827 0.905 0.995 0.881 0.951
MAEL 0.709 0.804 0.904 0.765 0.856 0.947
EL∗ 0.691 0.784 0.901 0.757 0.850 0.946
AEL∗ 0.715 0.792 0.901 0.770 0.853 0.947
MAEL∗ 0.688 0.782 0.900 0.749 0.843 0.945

Exp(1)

T 2 0.829 0.849 0.884 0.875 0.896 0.932
EL 0.712 0.799 0.878 0.765 0.869 0.934
AEL 0.829 0.864 0.892 0.999 0.913 0.945
MAEL 0.751 0.831 0.888 0.800 0.889 0.945
EL∗ 0.734 0.824 0.886 0.785 0.884 0.941
AEL∗ 0.749 0.828 0.886 0.813 0.887 0.941
MAEL∗ 0.722 0.819 0.884 0.773 0.878 0.940

0.1 N1 + 0.9 N2

T 2 0.648 0.677 0.896 0.724 0.764 0.944
EL 0.474 0.625 0.909 0.534 0.660 0.952
AEL 0.636 0.660 0.923 0.999 0.718 0.959
MAEL 0.522 0.645 0.918 0.573 0.680 0.959
EL∗ 0.497 0.632 0.920 0.547 0.666 0.957
AEL∗ 0.516 0.637 0.921 0.584 0.670 0.957
MAEL∗ 0.495 0.632 0.917 0.545 0.665 0.957
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Table 4.2: Confidence interval lengths for one-dimensional mean

Nominal level

0.9 0.95

N(0, 1) n = 5 n = 10 n = 50 n = 5 n = 10 n = 50

T 2 1.797 1.130 0.474 2.341 1.395 0.567
EL 1.178 0.966 0.465 1.371 1.150 0.556
AEL 1.729 1.135 0.485 18.201 1.398 0.581
MAEL 1.307 1.046 0.480 1.521 1.239 0.574
EL∗ 1.266 1.019 0.472 1.466 1.213 0.564
AEL∗ 1.328 1.031 0.472 1.596 1.232 0.565
MAEL∗ 1.240 1.002 0.470 1.438 1.189 0.562

χ2
1

T 2 2.252 1.497 0.660 2.933 1.847 0.791
EL 1.447 1.265 0.657 1.675 1.500 0.790
AEL 2.156 1.491 0.685 22.802 1.844 0.825
MAEL 1.614 1.370 0.678 1.882 1.621 0.815
EL∗ 1.547 1.339 0.675 1.782 1.587 0.813
AEL∗ 1.624 1.361 0.676 1.941 1.626 0.814
MAEL∗ 1.542 1.327 0.673 1.791 1.572 0.809

Exp(1)

T 2 1.686 1.077 0.468 2.196 1.329 0.561
EL 1.091 0.913 0.464 1.266 1.084 0.557
AEL 1.617 1.075 0.484 17.075 1.327 0.581
MAEL 1.215 0.989 0.479 1.415 1.170 0.574
EL∗ 1.169 0.965 0.474 1.349 1.145 0.569
AEL∗ 1.226 0.979 0.474 1.467 1.169 0.569
MAEL∗ 1.150 0.949 0.472 1.333 1.125 0.566

0.1 N1 + 0.9 N2

T 2 4.796 3.309 1.498 6.246 4.083 1.796
EL 3.076 2.801 1.468 3.562 3.327 1.756
AEL 4.591 3.302 1.532 48.563 4.088 1.834
MAEL 3.433 3.032 1.517 4.006 3.592 1.812
EL∗ 3.289 2.978 1.497 3.792 3.536 1.791
AEL∗ 3.456 3.032 1.498 4.138 3.633 1.792
MAEL∗ 3.234 2.921 1.491 3.739 3.460 1.782
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4.2 Confidence Regions for Two-Dimensional

Mean

We also consider constructing confidence regions for the population mean of

the following bivariate distributions:

1. Standard normal distribution, N(0, I2);

2. Distribution of (X1, X2) where X1 ∼ Γ(U, 1) and X2 ∼ Γ(U−1, 1) with

U ∼ Uniform(1.5, 2), denoted as Gamma-Gamma.

3. (X1, X2) is bivariate normal distributed with Var(X1) = Var(X2) = 1

and Cov(X1, X2) = ρ given ρ ∼ Uniform(0, 1), denoted as

Normal-Uniform.

Two sample sizes (n = 10, 50) are considered. For each sample size, we

generated 1, 000 samples from each of the above three distributions. Ap-

proximate 90% and 95% confidence regions were calculated. The coverage

frequencies and average areas of the confidence regions based on various

methods are summarized in Table 4.3 and 4.4. Note that the area of confi-

dence region is calculated approximately.

4.3 Summary

Under the standard normal model, T 2 has very accurate coverage rates com-

pared to its nonparametric alternatives except the AEL. It is because that

T 2-based confidence interval/region achieves the nominal level in theory re-

gardless of the sample size. The performance of the nonparametric methods

gets better when the sample size increases. Under other distribution mod-

els, the performances of all methods in small sample cases are unsatisfactory.

Especially in the mixture normal model, the coverage rates are dramatically

lower than the nominal level.

On average, T 2-based confidence interval/region has larger size than its

nonparametric alternatives. It makes sense since T 2-based confidence in-

terval/region has higher coverage rate. Because of this trade-off between
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Table 4.3: Coverage rates for two-dimensional mean

Nominal level

0.9 0.95

N(0, I2) n = 10 n = 50 n = 10 n = 50

T 2 0.904 0.909 0.952 0.958
EL 0.766 0.898 0.833 0.946
AEL 0.883 0.917 0.966 0.958
MAEL 0.813 0.914 0.861 0.956
EL∗ 0.801 0.907 0.852 0.952
AEL∗ 0.826 0.907 0.876 0.952
MAEL∗ 0.795 0.905 0.848 0.952

Gamma-Gamma

T 2 0.827 0.877 0.878 0.930
EL 0.708 0.876 0.766 0.921
AEL 0.827 0.892 0.926 0.935
MAEL 0.736 0.887 0.795 0.929
EL∗ 0.742 0.887 0.797 0.928
AEL∗ 0.760 0.884 0.816 0.928
MAEL∗ 0.727 0.882 0.781 0.928

Normal-Uniform

T 2 0.920 0.899 0.959 0.960
EL 0.752 0.890 0.831 0.944
AEL 0.897 0.907 0.977 0.958
MAEL 0.807 0.896 0.867 0.953
EL∗ 0.797 0.894 0.858 0.951
AEL∗ 0.822 0.894 0.882 0.951
MAEL∗ 0.790 0.894 0.849 0.948

coverage probability and the size of confidence region, it is difficult to say

which method has better performance. How to evaluate the performance

of certain kind of confidence region based on both the coverage probability

and the region size is still an open question.

Surprisingly, the AEL keeps up with T 2 in terms of both coverage rate

and confidence interval/region size for most cases. However, note that the
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Table 4.4: Confidence region areas for two-dimensional mean

Nominal level

0.9 0.95

N(0, I2) n = 10 n = 50 n = 10 n = 50

T 2 1.963 0.304 2.812 0.401
EL 1.115 0.287 1.422 0.378
AEL 1.821 0.314 3.511 0.414
MAEL 1.293 0.306 1.644 0.401
EL∗ 1.260 0.299 1.600 0.392
AEL∗ 1.356 0.299 1.799 0.393
MAEL∗ 1.211 0.296 1.537 0.388

Gamma-Gamma

T 2 1.872 0.316 2.681 0.417
EL 1.031 0.302 1.307 0.398
AEL 1.715 0.330 3.331 0.436
MAEL 1.194 0.321 1.519 0.422
EL∗ 1.161 0.318 1.466 0.419
AEL∗ 1.269 0.319 1.779 0.420
MAEL∗ 1.117 0.314 1.410 0.413

Normal-Uniform

T 2 1.676 0.263 2.401 0.347
EL 0.954 0.251 1.218 0.330
AEL 1.558 0.274 3.001 0.362
MAEL 1.107 0.267 1.408 0.351
EL∗ 1.081 0.261 1.374 0.344
AEL∗ 1.168 0.262 1.568 0.345
MAEL∗ 1.038 0.259 1.319 0.340

AEL-based confidence interval has substantially higher than nominal cov-

erage rate when the sample size is 5 and the nominal level is 95% in the

univariate case. It is in accordance with the discussion in Section 3.2.3. In

this situation, the upper bound of the adjusted empirical likelihood ratio

statistic is only slightly larger than the critical value. It results in very long

interval, which in turn possesses higher-than-expected coverage probability.
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4.3. Summary

As expected, the MAEL is a compromise between the EL and the AEL.

We observe that the performance of MAEL is more similar to that of EL

than that of AEL especially in the bivariate case. It may be due to the

fact that the multiplier in the definition of pseudo point in MAEL decreases

to 0 very fast as µ deviates from X̄n; the decreasing is even faster as the

dimension increases. It implies the difference between the MAEL and EL

likelihood ratio statistics is smaller than that between the MAEL and AEL

likelihood ratio statistics.

The EL∗, AEL∗ and MAEL∗ have similar performance because they are

known to be precise up to the same order n−2.
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Chapter 5

Conclusion

The main interest of this thesis lies in the finite-sample properties of ad-

justed empirical likelihood and its implication to constructing confidence

regions for population mean. The monotonicity property of the adjusted

empirical likelihood ratio statistic guarantees that AEL-based confidence

regions for population mean are at least star-shaped. It is a desirable prop-

erty for confidence regions because of its intuitive interpretation. We also

discovered the connection between empirical likelihood and adjusted empir-

ical likelihood as a special case of a more general conclusion, which justified

the empirical observation that AEL-based confidence regions have higher

coverage probability than the corresponding EL-based confidence regions.

The boundedness of adjusted empirical likelihood ratio statistic reveals that

constant level of adjustment may produce inappropriate confidence regions

when the sample size is not large enough or the nominal confidence level is

too high. We attempted to modify the level of adjustment so as to obtain

an unbounded likelihood ratio statistic, and justified the proposed modifica-

tion preserves both asymptotic and finite-sample properties of the original

adjusted empirical likelihood.

As future research, the convexity of AEL-based confidence regions for

population mean is of interest; current empirical studies support this propo-

sition. On the other hand, the choice of an(µ) also remains an interesting

topic. As discussed in Section 3.2.3, we may adjust the trade-off between

the coverage probability and the size of confidence region for population

mean. If we can come up with a sensible criterion to evaluate certain kind

of confidence regions by taking both its coverage probability and its size into

consideration, we may be able to find a family of an(µ) such that the result-

ing AEL-based confidence region for population mean has both asymptotic
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Chapter 5. Conclusion

and finite-sample advantages.
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