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Abstract 

Background:  The formation of the multinucleated syncytial trophoblast of the human 

placenta is a critical step in pregnancy, which is prone to failure.  In these studies, I have 

examined the role of TWIST, a transcription factor identified as a key repressor of E-cad 

expression in normal and cancer cells of diverse origins, in the differentiation of human 

trophoblastic cells in vitro.  The invasion of extravillous cytotrophoblasts (EVTs) into the 

underlying maternal tissues and vasculature is a key step in human placentation.  The 

molecular mechanisms underlying the development of the invasive phenotype of EVTs 

include many of those first identified as having a role in cancer cell metastasis.  In view 

of these observations, I have examined the expression, regulation, and function of Twist, 

Runx2 and N-cad in human trophoblastic cells in vitro.   

Materials and Methods:  Gain or loss-of-function studies were then performed to 

determine the role of Twist in terminal differentiation and fusion in these cells.  The 

presence of multinucleated syncytium was confirmed by indirect immunofluorescence.  

Concentration- and time-dependent studies were performed to determine whether 

interleukin (IL)-1β and transforming growth factor (TGF)-β1 regulate Twist and Runx2 

mRNA and protein levels in EVTs.  Next, a siRNA strategy was employed to determine 

the role of Twist, Runx2 and N-cad in HTR-8/SVneo EVT cells.   

Results:  Exogenous expression of Twist resulted in a continuous and progressive 

decrease in E-cad expression and the subsequent formation of syncytium in BeWo cells 

maintained under normal culture conditions.  In contrast, siRNA specific for Twist 

inhibited the cAMP-mediated differentiation of these cells over time in culture.  The 

cytokines, IL-1β and TGF-β1, respectively induced the differential up- and down-
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regulation of Twist and Runx2 expression in primary cultures of EVTs in both a 

concentration and time-dependent manner.  Use of a siRNA strategy demonstrated that a 

reduction in Twist, Runx2 or N-cad in HTR-8/SVneo cells concomitantly decreased the 

invasiveness of these cells.   

Conclusions:  Collectively, my findings demonstrate that TWIST is an upstream regulator 

of the E-CAD-mediated terminal differentiation and fusion of human trophoblastic cells in 

vitro.  TWIST, RUNX2 and N-CAD are key molecules underlying the invasive capacity of 

EVTs. 
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CHAPTER 1:  OVERVIEW 

 

1.1:  Introduction 

 

   The human placenta plays a key role in regulating the growth, development, and 

survival of the fetus during pregnancy.  It is the site of transfer of respiratory gasses, 

nutrients and waste products between the maternal and fetal systems; it serves as a barrier 

against blood-borne pathogens and the maternal immune system; and it fulfills an 

endocrine role by secreting hormones, growth factors and other bioactive substances 

required for the establishment and maintenance of pregnancy.  The establishment and 

outcome of a pregnancy are highly dependent on the interactions and functional 

cooperation between the trophoblast and uterus (Pijnenborg et al., 1980; Aplin, 1991). 

Abnormal placental development is associated with clinical pathological conditions such 

as miscarriage, intrauterine growth restriction or preeclampsia (King and Loke, 1994; 

Benirschke and Kaufmannm, 2000).  Moreover, abnormal placental development 

associated with fetal aneuploidy contributes to early pregnancy loss (Salafia et al., 1993; 

van Lijnschoten et al., 1994).  In a similar manner, abnormal placental structure has 

deleterious effects on the growth of the fetus (Krebs et al., 1996; Macara et al., 1996). 

     The trophoblast is an extraembryonic fetal tissue originating from the trophectoderm 

of the blastocyst.  During placental development, three trophoblastic cell populations can 

be identified: cytotrophoblast stem cells and their derivative cell types:  the 

syncytiotrophoblast and the extravillous cytotrophoblast (Hertig et al., 1956; Denker, 

1993).  The multinucleated syncytial trophoblast is formed from underlying mitotically 
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active, mononucleate cytotrophoblasts, and its formation is a cellular process dependent 

upon on a precise series of membrane-mediated events (Douglas and King, 1990).  The 

cadherins are cell adhesion molecules capable of mediating the terminal differentiation 

and fusion of human cytotrophoblast (Getsios et al., 2000).        

     In order for a human placenta to develop and function properly, the embryonic 

trophoblastic cells must proliferate, differentiate and invade into the maternal 

endometrium (Aplin, 1991).  Studies have shown the important roles played by members 

of the cadherin subtype in cell differentiation during cancer development and cancer cell 

invasion (Oka et al., 1993; Hazan et al., 2000).  These findings allow us to identify the 

potential molecular mechanisms involved in trophoblast invasion, as the process of 

human trophoblast invasion utilizes similar molecular mechanisms as those of tumour 

cell invasion, albeit trophoblast invasion is a more tightly regulated, developmental 

process (Lala et al., 2002).  The acquisition of the invasive and metastatic phenotype, and 

the transformation of a cell, result from complex cellular processes that will most likely 

regulate the levels and actions of transcription factors that control the genetic program. 

Very often, the regulatory factors associated with tumourigenesis are required for early 

development of tissues, including epithelial-mesenchymal transition genes (Twist, Snail, 

Slug, TGF-β) and phenotypic genes (Runx transcription factors) (Morrison and Kimble, 

2006).   

     Careful control of gene expression by transcription factors is important in maintaining 

the physiological levels of proteins needed for normal cell function. However, expression 

of transcription factors can become aberrant in cancer cells due to epigenetic changes in 

chromatin, chromosome translocation or mutations (Yang et al., 2004; Blyth et al., 2005). 
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The main objective of my studies was to better understand the role(s) of cadherins in 

placental development.  I have examined transcription factors, known as TWIST and 

RUNX2 during the terminal differentiation of human trophoblastic cells.  In particular, 

TWIST is known to be a key regulator of cadherin-mediated interactions (Rosivatz et al., 

2002; Vesuna et al., 2008).  The ability of the cadherins to regulate the terminal 

differentiation of human trophoblastic cells was subsequently examined. 

     In this chapter, the development of the human placenta will be described with 

emphasis on the terminal differentiation of human cytotrophoblasts, particularly the 

molecular and cellular mechanisms involving the terminal differentiation of 

mononucleate cytotrophoblasts into either syncytiotrophoblasts or extravillous 

cytotrophoblasts.  The cell biology of the cadherin gene superfamily and the transcription 

factors, TWIST and RUNX2, will also be reviewed. 

 

1.2:  Human implantation and placentation 

 

1.2.1:  Terminal differentiation of human cytotrophoblasts 

      

     The first step in human implantation involves apposition and attachment of 

trophectodermal cells to the surface epithelium of the endometrium.  After this initial 

contact, the trophectodermal cells penetrate into the basement membrane of the maternal 

endometrium (Schlafke and Enders, 1975; Bentin-Ley et al., 2000).  These stages of 

development are crucial in the process of establishing a successful pregnancy.  Upon 

implantation, the embryonic trophectoderm consists of two distinct but inter-related 
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ephithelial cell layers: an inner layer of mitotically active cytotrophoblasts, and the outer 

syncytial trophoblast (Hertig et al., 1956) (Figure 1.1).  Even though the trophoblastic 

cell subpopulation that is involved in the earlier stages of invasion of maternal tissue is 

still not clearly defined (Pijnenborg, 1990; Aplin, 2000), histological studies have shown 

that both the cytotrophoblasts and the syncytial trophoblast interact with the epithelial 

cells in the endometrium (Enders, 1976).  During the third week after ovulation, these 

trophoblastic cells, after infiltration by a vascularized fetal mesenchyme, organize into 

mature chorionic villous structures.  The chorionic villi are made up of a single layer of 

villous cytotrophoblast cells that rest on a basement membrane, a mesenchymal core 

containing fetal blood vessels, and an outer layer of syncytial trophoblasts that are in 

contact with the maternal endometrium and blood.  The development and existence of the 

chorionic villi has been denoted as the hallmark of the human haemochorial placenta, 

whereby the fetal circulatory system is separated from the maternal blood cells 

throughout all stages of pregnancy by at least a single layer of trophoblastic cells, the 

syncytial trophoblast.  This epithelial layer is the most important maternal-fetal barrier 

(Boyd and Hamilton, 1970, McGann et al., 1994).      

     The structural and functional properties of the villous cytotrophoblasts and the 

multinucleated syncytial trophoblast are different.  For instance, the endoplasmic 

reticulum of villous cytotrophoblasts is poorly developed and non-vacuolated though it 

contains relatively large mitochondria and numerous free ribosomes (Boyd and Hamilton, 

1970; Contractor et al., 1977).   
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Figure 1.1. A) Schematic diagram representing human trophoblastic cell differentiation.  
Mononucleate cytotrophoblasts will undergo differentiation and fusion to form syncytial 
trophoblast or will proliferate and differentiate to become highly invasive extravillous 
cytotrophoblasts (EVTs).  B) Schematic diagram representing chorionic villi.  Zone A 
represents a floating villous consisting of mononuclear villous cytotrophoblasts entering 
the non-invasive pathway.  Zone B represents an EVT column.  Zone C represents the 
extravillous pathway. 
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     Villous cytotrophoblasts seem likely to be the primary site of synthesis of several 

peptide hormones, such as activin, inhibin and gonadotropin-releasing hormone (Khodr 

and Siler-Khodr, 1980; Miyake et al., 1982; Petraglia et al., 1991; 1996).  In contrast, 

syncytial trophoblast contains larger nuclei and has more developed organelles such as a 

vacuolated rough endoplasmic reticulum (RER) associated with protein synthesis, 

numerous mitochondria for steroid hormone biosysthesis, and Golgi apparatus and 

secretory vesicles for secretion functions (Boyd and Hamilton, 1970).  The syncytial 

trophoblast is initially formed during implantation and then maintained as a kind of 

steady-state structure at the maternal-fetal interface throughout pregnancy (Huppertz, 

1999).  The syncytial trophoblast is a dynamic structure that forms the continuous outer 

layer of the human placenta.  The majority of the biological functions of the human 

placenta, such as transporting gasses and nutrients from the maternal to the fetal 

circulation throughout pregnancy, is performed by the multinucleated syncytial 

trophoblast layer (Richard, 1961; Kliman et al., 1986).  Even though the mononucleate 

trophoblastic cells can produce human chorionic gonadotropin (hCG) at the earliest 

stages of pregnancy (Ohlsson et al., 1989), the syncytial trophoblast becomes the major 

source of this and most other peptide and steroid hormones produced by the human 

placenta throughout pregnancy for placental growth and for maternal adaptation to 

pregnancy (Hoshina et al 1982; Ringler and Strauss, 1990).  Defects in the formation of 

the syncytial trophoblast are suspected to lead to several complications such as 

intrauterine growth restriction and pre-eclampsia (Lee et al., 2001, Ishihara et al., 2002). 

     In 1887, Langhans first suggested the cellular basis for the terminal differentiation in 

his morphological studies of the villous cytotrophoblasts in the human placenta (Boyd 
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and Hamilton, 1970).  The human syncytial trophoblast is a terminally differentiated cell 

formed by post-mitotic fusion of the underlying villous cytotrophoblasts (Richard, 1961; 

Kliman et al., 1986).  Other investigations have proposed that the development of the 

multinucleated syncytial trophoblast occurs from nuclear duplication in the absence of 

cytokinesis, a process in which the cytoplasm of a single eukaryotic cell is divided to 

form two daughter cells (Sarto et al, 1982).  Functional studies using 3H-thymidine 

incorporation in human trophoblastic cells as well as succeeding studies have shown that 

the villous cytotrophoblasts are mitotically active and that nuclear division is completely 

absent in the multinucleated syncytial trophoblast in vivo (Richart, 1961; Galton, 1962; 

Gerbie et al, 1968).  Ultrastructural analysis of the human term placenta demonstrated the 

presence of intercellular junctions within the syncytial trophoblast as well as within the 

boundary of direct contact between the villous cytotrophoblasts and the syncytial 

trophoblast.  Furthermore, the junctional complexes within the syncytial trophoblast have 

been conceptualized as remnants of the cytotrophoblastic junctions that merged into the 

syncytial trophoblast cytoplasm following cellular fusion (Carter, 1964; Metz et al, 1979; 

Metz and Weihe, 1980).  

     Recent evidence has suggested that envelope-like human endogenous retrovirus 

(HERV) protein known as syncytin-2 is a crucial mediator of the fusion process involved 

in the syncytialisation of trophoblasts.  For example, real-time reverse transcription PCR 

and Western blot analyses in differentiating primary trophoblast cells have shown a direct 

correlation between mRNA and protein levels of Syncytin-2 and cell fusion.  

Furthermore, experiments with siRNA (small interfering RNA) transfected BeWo and 
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primary human trophoblast cells demonstrated an important diminution in the number of 

cell fusion processes upon repression of Syncytin-2 expression (Vargas et al., 2009). 

     To date, the molecular and cellular mechanisms that mediate the formation of the 

syncytial trophoblast from the underlying villous cytotrophoblasts remain poorly 

characterized. Detailed studies on the molecular and cellular biology in the formation of 

the syncytial trophoblast are of critical importance for interpretation and treatment of 

pregnancy complications.  

          A successful human pregnancy depends upon mononucleate cytotrophoblasts 

entering one of the two distinct and mutually exclusive pathways.  The villous 

cytotrophoblastic cells will proliferate and differentiate by fusion to form the outer 

syncytial trophoblast, as described above, or will enter the extravillous pathway to form  

highly invasive extravillous cytotrophoblasts (EVTs) (Bischof and Campana, 2000) 

(Figure 1.1).  

     In the extravillous pathway, cytotrophoblasts located within implanting chorionic villi 

differentiate into EVTs that invade deeply into the underlying maternal tissues and 

uterine vasculature, thus allowing an increased and controlled supply of blood flow to the 

placenta and ensuring an adequate supply of oxygen and nutrients to the developing fetus. 

This is a critical step in human pregnancy (Pijnenborg et al., 1983 and 1994; Aplin, 

1991).  

     Human EVTs can be divided into three populations, depending upon their molecular 

and morphological phenotypes and location within the extravillous compartment:     

intermediate cytotrophoblasts that proliferate are located near the villous basement 

membrane, interstitial cytotrophoblasts that will invade into the decidual stroma and 
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superficial myometrium, and endovascular cytotrophoblasts which will invade into the 

lumen of the spiral arteries (Pijnenborg et al., 1981, 1983; Roberston et al., 1986; Lala et 

al., 2002; Bischof and Irminger-Finger, 2005).  EVTs will undergo cell proliferation and 

break through the outer layer of the syncytial trophoblast to develop large cellular 

columns that stretch out into the maternal decidua (Enders, 1968; Muhlhauser et al., 

1993).  Subpopulation(s) of EVTs will eventually detach from the tips of these cellular 

columns and invade into the decidual stroma and superficial myometrium as individual 

mononucleate cells and invade into the uterine arterial vasculature to replace the 

endothelial cells (Pijnenborg et al., 1980, 1983).  This cellular event is believed to 

remodel the smooth muscle and elastin layers of the arteries and the underlying 

endothelial cells in these blood vessels that subsequently allow for increased maternal 

blood flow to the placenta later in pregnancy, and to thereby ensure an adequate supply of 

oxygen and nutrients to the developing fetus (Brosens et al, 1967; Pijnenborg et al, 

1983).   

     The basic structure of the human placenta has become established at the end of the 

first trimester of pregnancy and all of the distinct trophoblastic cell subpopulations exist 

at the maternal-fetal interface (Boyd and Hamilton, 1970).  Subsequently, trophoblastic 

cells continue to proliferate and differentiate, and promote placental growth until the end 

of pregnancy (Simpson et al, 1992).  Therefore, it is important to acquire a detailed 

understanding of the molecular mechanisms that regulate human trophoblast terminal 

differentiation, both fusion and invasion, during formation and organization of the human 

placenta.  
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1.2.2:  Models used in studying human placentation 

 

1.2.2.1:  Rodent models 

 

     Similarities have been noted between mouse and human in terms of placenta cell types 

(Carter, 2007) and genes controlling placental development (Rossant and Cross, 2001).  

The benefits of using the mouse as an experimental model include its short generation 

time.  Other major benefits include the availability of embryonic stem cells, which help in 

gene targeting and the development of transgenic lines (Carter, 2007). 

     However, there are many differences between murine and human placentation; these 

include fewer placental hormones and a different mode of implantation in the mouse 

(Carter, 2007).  More significantly, the transformation of uterine arteries in mice depends 

on maternal factors, such as the endothelium, rather than on trophoblasts and there is also 

limited trophoblast invasion in the mouse (Redline and Lu, 1989; Adamson et al., 2002; 

Pijnenborg, 2006).  It is important to bear in mind that there are still other differences 

between mouse and human placenta that need to be addressed, such as the labyrinthine 

rather than villous structure of the exchange area in the mouse and the presence of three 

layers of trophoblast in the interhaemal membrane (Carter, 2007).  Therefore, the mouse 

is considered to be a less than ideal experimental model for studies of trophoblast 

invasion and vascular remodelling, in relation to the situation in humans. 
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1.2.2.2:  Non-human primate models 

 

     Studies have shown similarities among humans, baboons and macaques in terms of 

how the spiral arteries are invaded and transformed (Blankenship and Enders, 2003).  

Importantly, as in humans, the placenta of Old World monkeys (Cercopithecidae), e.g. 

baboon and macaque, are villous and haemochorial (Hill, 1932).  Even though pre-

eclampsia appears to be a uniquely human disease (Martin, 2003), there are findings 

where Old World monkeys (Palmer et al., 1979) and great apes (Stout and Lemmon, 

1969) show symptoms that resemble pre-eclampsia.  However, trophoblast invasion in 

non-human primates is more restricted than in the humans, and the absence of interstitial 

trophoblast cells in the monkey is a major difference in comparison to human 

placentation (Carter, 2007).  Ethical issues and the high maintenance costs of primate 

colonies, as well as concerns for vulnerable or endangered species, limits the use of non-

human primates as animal models (Caldecott and Miles, 2005).  

  

1.2.2.3:  In vitro models of trophoblast differentiation 

 

1.2.2.3.1:  EVTs propagated from human first trimester placenta tissues 

 

     Irving et al. (1995) reported a pure yield of EVT cultures by isolation (cutting the villi 

with a surgical scissor and mince finely with a razor blade) from first trimester placenta 

tissues (6-12 weeks gestation), as confirmed through morphological and phenotypical 

analysis.  Indirect immunofluorescence showed that pure trophoblast outgrowths stain 
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100% positive for the epithelial cell markers cytokeratin 8 and 18, but do not stain for 

vimentin, a cell marker for mesenchymal cells (Irving et al., 1995).  In addition, equal or 

more than 90% of mechanically isolated EVTs from placenta tissue immunostained 

positive for cytokeratin and insulin-like growth factor-II (Aplin et al., 1999). Therefore, 

the expression of these markers in isolated EVTs from placenta tissues allows the 

confirmation of a valid model for investigating EVT cell biology. 

 

1.2.2.3.2:  Villous cytotrophoblasts isolated from human term placentae 

 

     Villous cytotrophoblasts are isolated by a digestive enzyme from human term 

placental tissues followed by purifying the cells by using either immunoselection or 

density gradients.  These cell isolating methods result in highly purified populations of 

mononucleate cytotrophoblasts (Kliman et al., 1987; Yui et al., 1994; Morrish et al., 

1997).  The cellular biology of mononucleate cytotrophoblasts mimics many of the 

cellular events associated with chorionic villous formation in vivo, for example, 

mononucleate cytotrophoblasts freshly isolated from human term placenta undergo 

aggregation, differentiation, and fusion to form a multinucleated syncytial trophoblast 

over time in culture.  The level of β human chorionic gonadotropin increases during the 

formation of multinucleated syncytium in these primary cell cultures (Hoshina et al., 

1982). 
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1.2.2.3.3:  Human trophoblastic cell lines 

 

1.2.2.3.3.1:  Choriocarcinoma cell lines 

 

     Progress in understanding of human trophoblast differentiation has been restricted due 

to the cellular and morphological differences that exist between human placenta and 

animal models, as well as the fact that in vivo human experimentation is difficult to 

justify.  Trophoblastic cell lines derived from choriocarcinoma cells have provided a 

useful alternative for investigating human trophoblast differentiation in vitro (King et al., 

2000).  Choriocarcinoma is a relatively uncommon malignant tumour of the human 

placenta that consists of mitotically active cytotrophoblasts (Benirschke and Kaufmann, 

2000).  The choriocarcinoma cell lines, known as BeWo, JEG-3 and JAR are the most 

commonly used cell lines.  

     BeWo choriocarcinoma cells undergo cellular differentiation in response to forskolin 

or cAMP (cyclic adenosine monophosphate) treatment (Seamon et al., 1981; Wice et al., 

1990).  In response to forskolin or 8-bromo-cAMP, BeWo cells show a marked reduction 

in DNA synthesis and within 48-96 hours of treatment these cells begin to fuse and form 

large syncytia (Coutifaris et al., 1991).  This constitutes an in vitro model to study the 

cellular and molecular processes involved in syncytial trophoblast formation.  

     JEG-3 choriocarcinoma cells are mononucleate trophoblastic cells that were 

established by Kohler et al. (1971).  When JEG-3 cells were treated with 8-bromo-cAMP, 

there was an increase in β human chorionic gonadotropin production; however these cells 

do not undergo differentiation to form a multinucleated syncytium under these culture 
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conditions (Chou et al., 1978; Burnside et al., 1985; Coutifaris et al., 1991).  Instead, 

JEG-3 cells have been used as an in vitro model to study the cell biology of 

mononucleate trophoblasts. 

     JAR is a choriocarcinoma cell line originating from a human malignant 

cytotrophoblastic tumor. JAR cells have been used, for example, to study the molecular 

mechanisms involved in iodide transport from mother to fetus (Arturi et al., 2002).  In 

preliminary gain-of-function studies using JAR cells transfected with an expression 

vector containing full-length Twist cDNA, I found significantly increased Twist mRNA 

expression, however the TWIST protein level remained unchanged (data not shown) and 

so these choriocarcinoma cells proved to be an unsuitable experimental system in which 

to study Twist-dependent effects. 

 

1.2.2.3.3.2:  HTR-8 cells 

 

     Studies of the trophoblast biology have been traditionally dependent on the use of 

primary trophoblast cultures from first trimester tissues (Kliman et al., 1986; Yagel et al., 

1989).  The drawback of using these primary cell cultures is their short life span, as the 

cells senesce after 5-6 passages.  Furthermore, short-term cultures are not appropriate for 

certain experiments, such as those involving genetic manipulations, because these studies 

usually require long-term culture.  Experiments using primary trophoblast cultures are 

also accompanied by high variability between samples due to heterogeneity in the cell 

population.  HTR-8 cells, an EVT cell line, also known as parental HTR-8 cells or  

sometimes referred to as HTR-8/SVneo, when the parental HTR-8 cells are transfected 
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with Simian Virus 40 (SV 40) large T antigen (Tag).  These transfected HTR-8/SVneo 

cells can normally be maintained in culture for more than 50 passages in comparison to 

their parental HTR-8 cells which senesced after 12-14 passages.  Furthermore, these 

transfected cells retain most phenotypic features as compared to their non-transfected 

parental HTR-8 cells (Graham et al., 1993).  HTR-8/SVneo cells also display a 

premalignant phenotype as indicated by hyperproliferative and hyperinvasive behaviour, 

and resistance to the anti-proliferation and anti-invasive effects of transforming growth 

factor β (TGF β) (Khoo et al., 1998).  HTR-8/SVneo cells cultured in hypoxic conditions 

(2% oxygen concentration) exhibit reduced cell invasive properties.  These cells also 

express cytokeratin and retain several important characteristics typical of primary 

cultures of first-trimester human cytotrophoblast cells, including altering their behaviour 

in response to a changing maternal environment (Kilburn et al., 2000). 

 

1.3: Cellular and molecular mechanisms involved in terminal differentiation of 

human trophoblasts 

 

1.3.1:  Extracellular matrix degradation  

 

     In general, the extracellular matrix (ECM) that surrounds cells is comprised of 

proteins such as collagen, fibronectin, laminin and proteoglycans. Degradation of the 

ECM is required during biological processes such as tumour invasion and early placental 

development.  Several key proteinases, such as those of the plasminogen activator (PA) 

family and the matrix metalloproteinase (MMP) family are activated to promote ECM 

degradation during these biological processes (MacDonald et al., 1998; Whiteside et al., 
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2001, Denys et al., 2004).  The roles of PA and MMP family members in human 

trophoblast differentiation are described in the following sections. 

 

1.3.1.1:  Plasminogen activators and their inhibitors  

 

     The plasminogen activators (PA) are substrate-specific proteinases that mediate 

cleavage of plasminogen to plasmin (Alfano et al., 2005).  PA exhibits a wide range of 

serine protease activities that target extracellular matrix components such as laminin and 

fibrin, as well as assisting in the activation of zymogen forms of MMPs (Vaseelli et al., 

1991; Andreasen et al, 2000; Durand et al, 2004).  The PA system consists of the 

urokinase-type PA (uPA), the tissue-type PA (tPA), the PA inhibitors-1 and -2 (PAI-1 

and PAI-2), and the uPA receptor (uPAR).  

     uPA is spatiotemporally expressed at the maternal-fetal interface during first trimester 

pregnancy in humans and higher primates (Hu et al., 1999; Feng et al, 2001).  uPA has 

also been identified in subpopulations of extravillous cytotrophoblasts (EVTs) that invade 

into decidual tissue and spiral arteries to ensure a continuous supply of blood to the 

placenta (Fisher and Damsky, 1993). Neutralizing antibodies specific for uPA inhibit the 

invasive capacity of EVTs (Graham et al., 1994).  Furthermore, IL-1β, which promotes 

trophoblast invasion, up-regulates uPA expression in EVTs (Karmakar and Das, 2002).  

This suggests that uPA may play a key role in regulating EVT invasion during 

pregnancy.  

     PAI inhibits the proteolytic activity of uPA by forming a complex with uPAR in a 

covalent manner that results in a conformational change (Andreasen et al., 1990).  TGF-
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β1, a growth factor that inhibits trophoblast invasion, can up-regulate PAI-1 and PAI-2 in 

EVTs (Graham, 1997; Karmakar and Das, 2002). 

      In addition, PAI-1 and PAI-2 are differentially expressed during the terminal 

differentiation and fusion of villous cytotrophoblasts isolated from human term placenta.  

PAI-1 is highly expressed in freshly isolated mononucleate cytotrophoblasts, while PAI-2 

is highly expressed in the terminally differentiated syncytial trophoblast (Feinberg et al., 

1989).  

 

1.3.1.2:  Matrix metalloproteinases and their inhibitors 

 

     Matrix metalloproteinases (MMPs) are a homologous family of proteolytic enzymes.  

Based on their substrate specificity and structure, over 20 members of the MMP gene 

family are classified into four subgroups: the collagenases (MMP-1, MMP-8 and MMP-

13) that digest type I, II, III, VII, and X collagens, which are major constituents of 

interstitial ECM; the gelatinases (MMP-2 and MMP-9) that digest type IV collagen, a 

basement membrane protein; membrane-type MMPs (MMP-14, MMP-15 and  MMP-16) 

that are most commonly assigned a role in activating proMMP-2 by cleaving it at the cell 

surface; and the stromelysins (MMP-3, MMP-7, MMP-10, MMP-11, and MMP-12) that 

digest type IV, V and VII collagens, proteoglycans, laminin, fibronectin and elastin 

(Wang et al., 2000, Bischof et al., 2001; Cohen et al., 2006; Fingleton, 2006).  These 

proteinases hold a zinc atom in a highly conserved active site and are responsible for 

ECM remodelling (Brown and Giavazzi, 1995).  MMPs were initially thought to function 

mainly as enzymes that degrade the structural components of the ECM.  However, these 
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proteinases have been found to regulate tissue architecture through their effects on the 

ECM and intercellular junctions, by producing substrate-cleavage fragments, creating 

spaces for cells to migrate, thereby activating or deactivating signalling molecules, either 

directly or indirectly (Sternlicht and Werb, 2001).  

     MMPs are tightly controlled, due to their degradative potential, and are secreted as 

latent proenzymes.  The removal of an amino-terminal domain is required for the enzyme  

to be activated (Springman et al., 1990; Kleiner and Stetler-Stevenson, 1993).  This tight 

regulation of enzyme activity is necessary in normal physiological situations, such as in 

wound healing or morphogenesis (Brenner et al., 1989; Bullen et al., 1995).  However, 

there is excessive MMP expression in cancer progression (Brown et al., 1993; Davies et 

al., 1993).  This enables the tumour cells to grow and then invade into the blood 

circulation and lymphatic system, thus leading to tumour spread. 

     Current studies show that the relationship between MMP expression and cancer is 

complex.  For example, increased MMP activity may promote or inhibit tumour 

progression (Coussens et al., 2002) depending on factors such as the tumour site (primary 

or metastasis), the tumour stage and  the MMP substrate profile and enzyme localization 

(tumor vs. stromal) (Fridman, 2006).  MMP-2 and MMP-9 have been linked with the 

processes of cancer cell invasion and metastasis in humans, as these two proteinases have 

been associated in the progression of cervical uterine cancer (Libra et al., 2009).  

Furthermore, as the ECM may be the primary barrier to tumour growth and spread, 

MMPs may assist malignant tumour cells to overcome this barrier, and thus represent 

therapeutic targets in the treatment of cancer metastasis (Brown and Giavazzi, 1995).  
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     The membrane-type MMPs (MT-MMPs), form a distinct membrane-type subclass in 

the MMP family since all the others members are secreted in the soluble forms.  Instead, 

MT-MMPs induce the activation of pro-gelatinase A (68-kDa in gelatine zymography) on 

the cell surface into the activated form of 62-kDA fragments through a 64-kDa 

intermediate form (Sato et al., 1994; Takino et al., 1995).  MT-MMPs have a major 

impact on cancer development due to their cellular localization at the tumour-matrix 

interface, for example, MT1-MMP promotes tumour invasion (Fridman, 2006).  

Furthermore, loss-of-function studies targeting MT1-MMP or MT2-MMP completely 

abolish the ability of SNAIL to induce carcinoma cell invasion through the underlying 

basement membrane (Ota et al., 2009). 

     Several studies have shown that MMP-2 and MMP-9 synthesis and activation are also 

necessary for trophoblast invasion (Librach et al., 1991, Shimonovitz et al., 1994; Bishop 

and Campana, 2000; Isaka et al., 2003).  These two proteinases are differentially 

expressed in the first trimester (6-8 weeks) when trophoblast cells with MMP-2 being a 

key enzyme (gelatinase) are involved in trophoblast invasion through ECM degradation.  

In the late first trimester (9-12 weeks) trophoblasts, both of these gelatinases, MMP-2 and 

MMP-9 are involved in trophoblast invasion through degradation of collagen IV, the 

main component of the basement membrane (Librach et al., 1991; Xu et al., 2000; Staun-

Ram et al., 2004).  Besides regulating extravillous cytotrophoblast invasion, MMP-2 and 

MMP-9 are produced by the syncytial trophoblast and have a role in degradation and 

reformation of the placental basal lamina of chorionic villi (Sawicki et al., 2000).     

     The MMPs are inhibited by proteinase inhibitors known as tissue inhibitors of 

metalloproteinases (TIMPs). The TIMPs (TIMP-1, TIMP-2, TIMP-3 and TIMP-4) share 
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sequence identity with one another, and have similar activities towards the various 

members of the MMP gene family.  However some specificity is evidenced by the 

finding that TIMP-1 preferentially binds to MMP-9, while TIMP-2 and TIMP-3, but not 

TIMP-1, are effective inhibitors of Membrane Type-MMPs (Strongin et al., 1995).  

Several MMPs and TIMPs are co-expressed in trophoblasts, suggesting that the invasive 

capacity of cytotrophoblastic cells could depend on the relative expression of various 

MMPs and TIMPs (Freitas et al., 1999; Terrade et al., 2002). 

 

1.3.2:  Extracellular matrix deposition 

 

     The ECM plays crucial roles in maintaining tissue integrity as well as modulating 

cellular differentiation during development (Lin and Bissell, 1991; Adams and Watt, 

1993).  The ECM also modulates the terminal differentiation and fusion of villous 

cytotrophoblasts isolated from term placenta (Kao et al., 1988).  In humans, 

mononucleate cytotrophoblasts are separated from villous mesenchymal tissue by a 

basement membrane.  Several ECM components including collagen type IV, laminin, 

heparan sulphate and proteoglycan are found within the basement membrane (Earl et al, 

1990; Damsky et al., 1992; Onodera et al., 1997).  The glycoprotein fibronectin is, 

however, expressed at different gestational periods in the basement membrane (Yamada 

et al., 1987; Virtanen et al., 1988; Earl et al., 1990), and addition of fibronectin to 

primary cultures of cytotrophoblasts promotes syncytial trophoblast formation in vitro 

(Kao et al., 1988).  In addition, oncofetal fibronectin, an alternatively spliced variant of 

fibronectin, is synthesized and secreted by trophoblast cells in culture, and has been 
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identified at the contact sites between cytotrophoblast columns and the maternal decidua 

(Matsuura and Hakomori, 1985; Matsuura et al., 1989; Feinberg et al., 1991), suggesting 

that oncofetal fibronectin maintains placental-uterine interactions during pregnancy. 

     Another ECM component known as tenascin has anti-adhesive properties in vitro 

(Aufderheide and Ekblom, 1988).  This glycoprotein is expressed in areas beneath 

degenerating syncytium, at locations where cytotrophoblast cells proliferate (Castelluci et 

al., 1991; Damsky et al., 1992).  This suggests that tenascin may play a direct or indirect 

role in modulating villous cytotrophoblast differentiation.  

 

1.3.3:  ECM interactions:   the integrin gene superfamily of cell adhesion molecules 

 

     One of the best characterized groups of ECM receptors that mediate cell-ECM 

interactions are the integrins (Lochter, 1999).  Integrins are glycoproteins and members 

of a protein family that forms heterodimeric subunits that interact with various ECM 

components (van der Flier and Sonnenberg, 2001).  In mammals, 16 different integrin α 

and 8 different integrin β subunits are currently known (Giancotti, 1997).  The α and β 

subunits interact with each other noncovalently.  Each integrin has a specific set of 

extracellular ligands, and the ligand specificity of the different integrin heterodimers is 

determined by the specific combination of α and β subunits expressed on the cell surface 

(Lafrenie and Yamada, 1996).  Each subunit has a large extracellular domain, a single 

transmembrane domain, and a short, noncatalytic cytoplasmic tail, apart from the β4 

subunit that has a very large cytoplasmic domain (Colombatti et al., 1993).  Integrins are 

involved not only in adhesive functions between the cell and the ECM that provide 
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traction for movement and cell migration, but they can mediate cell-cell adhesion, and 

activate signal transduction pathways for anchorage-dependent survival and growth 

(Rosen et al., 1989). 

    Integrins are expressed in endometrial, decidual, and extravillous cytotrophoblasts 

(EVTs).  During early pregnancy, different members of integrin subtypes (αVβ3, α4β1, 

α5β1, α6β1 and α7β1) are expressed in trophoblast-endometrium interfaces.  During the 

differentiation of cytotrophoblasts along the extravillous pathway, expression of various 

integrins differs between proliferative and endovascular EVTs (Merviel et al., 2001).  

Function-perturbing antibodies to the α5β1 integrin subtype interrupt the organization of 

extravillous cytotrophoblast columns that form in chorionic villous explant cultures 

(Aplin et al., 1999).  Aberrant expression of αvβ3 is associated with infertility, and 

women with recurrent miscarriages have a lower expression of α4β1 and α5β1 integrins 

in the stroma during the implantation window (Skrzypczak et al., 2001).  Several other 

health issues such as preeclampsia and intrauterine growth restriction are believed to be 

caused by placental vascular problems that may explained by abnormalities in integrin 

patterns (Damsky et al., 1992; Aplin 1994, Merviel et al., 2001).   In female mice, lack of 

a functional integrin β1 gene results in normal early embryonic development, but there is 

a failure to implant properly, with subsequent embryonic death (Stephens et al., 1995). 

     Other factors known to be involved in the implantation process may act through 

integrins.  One example includes insulin-like growth factor-1 (IGF-1) mediated migration 

of EVTs that involves the αVβ3 integrin pathway (Kabir-Salmani et al., 2003 and 2004). 
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1.3.4:  Cell-cell interactions 

 

     Many studies have focused on the expression of various members of the 

immunoglobin (Ig) gene superfamily of Ca2+-independent cell adhesion molecules 

(CAMs) in human trophoblastic cells (Buck, 1992; Burrows et al., 1996).  For example, 

EVTs express vascular (V)-CAM-1, carcinoembryonic antigen (CEA)-CAM, melanoma 

(Mel)-CAM, platelet-endothelial (PE)-CAM-1, intercellular (I)-CAM, and neural (N)-

CAM during the first trimester of pregnancy (Damsky et al., 1992; Burrows et al., 1994; 

Shih and Kurman, 1996; Coukos et al., 1998; Bamberger et al., 2000).  A member of the 

selectin gene family of Ca2+-dependent CAMs called E-selectin, that mediates leukocyte-

endothelial cell interactions during inflammation, is also found in these EVT cells 

(Vestweber, 1992; Varki, 1994; Milstone et al., 2000).  There is evidence that E-selectin 

influences how the blastocyst rolls along the inner uterine wall prior to implantation 

(Hoozemans et al., 2004).  However, the biological function(s) of these CAMs at the 

maternal-fetal interface remains unclear and requires further investigation.  

     The regulated expression of gap junction components known as connexins (Cx), that 

help to establish cell-cell interactions, has been investigated during human trophoblast 

differentiation and invasion.  A Cx subtype known as Cx43 is expressed in isolated 

human trophoblastic cells (Cronier et al., 1994).  However, the role of gap junctions in 

the terminal differentiation and fusion of human villous cytotrophoblast remains to be 

elucidated.  Although gap junctions between villous cytotrophoblasts and the syncytial 

trophoblast in the first trimester placenta were detected in early ultrastructural 
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observations (De Viergilis et al., 1982), these junctions are not present in the 

trophoblastic cells from human term placenta (Metz et al., 1979 and 1980).      

 

1.4:  The cadherin superfamily 

 

     In view of the significant role of cell adhesion molecules involvement in regulating 

human trophoblast differentiation, we have focused our attention on the gene superfamily 

of cell adhesion molecules known as the cadherins.  Cadherins are a gene superfamily of 

integral membrane glycoproteins that mediate calcium-dependent cell adhesion through 

homophilic interactions.  The structural components of this gene family include an 

extracellular domain responsible for cell-cell interactions, a transmembrane domain, and 

a cytoplasmic domain that is linked to the cytoskeleton (Yagi and Takeichi, 2000).  This 

gene superfamily of cell adhesion molecules consists of two evolutionarily distinct 

subfamilies: classical cadherins, which are homophilic Ca2+-dependent cell-cell adhesion 

molecules; and non-classical cadherins (Yagi and Takeichi, 2000; Angst et al., 2001).  

Cadherins are widely known to regulate cell-cell adhesions, regulate cell shape, 

proliferation, migration, differentiation, and segregation, and are involved in intercellular 

signalling networks (Takeichi, 1991, 1995). 

 

1.4.1:  Classical cadherins 

 

     Over 15 members of the classical cadherin subfamily have been identified and are 

sub-classified into type I and type II cadherins.  The most commonly known members of 
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the cadherin gene superfamily consist of a carboxy terminal cytoplasmic domain, a 

transmembrane domain, and an amino terminal extracellular domain, (Grunwald, 1993) 

(Figure 1.2). Some of the classical type I cadherins include E-cadherin (E-cad), N-

cadherin (N-cad) and P-cadherin (P-cad).  The names of these cell adhesion molecules 

originated from their tissue distribution during mouse embryonic development; with E-

cad mainly expressed in epithelial cells, N-cad in neuronal cells and P-cad in the placenta 

(Nose and Takeichi 1986, Nagafuchi et al., 1987; Hatta et al., 1988; Suzuki et al., 1991).  

Type II classical cadherins include cadherin-6, -7, -8, -9, -10, -11, -12, -14, -19, and -20 

(Takeichi, 1995).  

     The classical cadherin subfamily is defined by their highly conserved cytoplasmic 

domain, which connect with catenins (α-catenin, β-catenin, γ-catenin [also called 

plakoglobin], and p120ctn) to form the cytoplasmic cell adhesion complex that is 

necessary for extracellular cell-cell adhesion (Shibamoto et al., 1995; Cavallaro et al., 

2002).  For example, β-catenin and γ-catenin bind to the same conserved site at the C-

terminal region of E-CAD in a mutually exclusive way (Ozawa et al., 1989; Nathke et 

al., 1994; Witcher et al., 1996), whereas p120ctn interacts with multiple sites in the 

cytoplasmic tail of E-CAD, including the juxtamembrane region (Ozawa, 1998; Yap et 

al., 1998).  It is also known that α-catenin binds directly to β-catenin and γ-catenin, and 

thereby connects the cytoplasmic cell adhesion complex to the actin cytoskeleton 

(Cavallaro et al., 2002). 

     Studies using X-ray diffraction analysis suggest that the N-CAD extracellular domain 

forms a dimer, in which two monomers are arranged in parallel at the plasma membrane 

by forming an “adhesion dimer” at their N-terminus.  An alternative model is that the two 
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monomers are arranged to form a rod- or cylinder-like oligomer rather than two 

monomers arranged in parallel (Takeichi, 1995).  In addition, Ca2+ is essential for 

cadherin function by linking the five subdomains to form a rod-shape morphology on the 

cadherin molecules (Tong et al., 1994). 

      Type I and type II cadherins consist five extracellular repeats (EC1-5), and the main 

difference between them is the presence of a histidine, alanine, valine (HAV) tripeptide 

within the extracellular repeat (EC1) that is closest to the N-terminus.  Cadherin 

molecules with a deletion of EC1 fail to mediate cell-cell interactions, suggesting that the 

HAV domain interactions between two CAMs may constribute to mediating homophilic 

protein-protein interaction (Takeichi, 1990; Knudsen et al., 1998).  However, the HAV 

motif is not conserved in Type II cadherins, and the molecular basis of the specificity of 

cadherin interactions remains unclear.  Furthermore, recent X-ray diffraction studies of   
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Figure 1.2.  Schematic diagram representing the basic structure of type 1 classical 
cadherins in the plasma membrane.  The cadherins are comprised of five extracellular 
subdomains (EC1-EC5). The EC1 subdomain contains the HAV, which is believed to 
play a role in cadherin-mediated adhesion.  The cytoplasmic subdomains are highly 
conserved regions interact with a family of cytoplasmic proteins known as the catenins. 
CP1 interacts with p120ctn and CP2 forms complexes with either β or γ-catenin and α-
catenin. These interactions are believed to link the cadherins to the actin-based 
microfilaments (MF) of the cytoskeleton. 
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the extracellular domain of the Xenopus Type I cadherins suggest that other extracellular 

interfaces are involved in cadherin interactions, including the conserved tryptophan side 

chain at the membrane-distal end of a cadherin that intercalates into a conserved 

hydrophobic pocket in the corresponding partner (Boggon et al., 2002). 

     Classical cadherins undergo calcium-dependent cell-cell adhesion in a homophilic 

manner, preferentially binding to like molecules, although in some cases a particular 

cadherin subtype may interact heterophilically with another cadherin subtype when two 

cell populations are mixed (Takeishi, 1995).  Therefore, the interactions between two 

given cadherins can be classified into three categories: little or no heterophilic 

interactions; weak heterophilic interactions; and those in which homophilic and 

heterophilic interactions are not distinguishable (Nakagawa et al., 1995; Takeichi, 1995). 

     Although the activity of Type I cadherins in tissue formation has been widely studied, 

with a focus on their cell adhesive properties, this is not the case for many Type II 

cadherins.  However, some of the type II molecules are expressed in loosely associated 

cells, suggesting a weaker cell-cell interaction compared to type I molecules (Takeichi, 

1995; Gumbiner, 1996). 

 

1.4.2:  Classical cadherins involvement in developmental processes  

 

     In addition to maintaining the structural integrity of cells and tissues, cadherins control 

a wide range of cellular behaviours (Huber et al., 1996; Larue et al., 1996).  They 

regulate cell polarization (Larue et el., 1994; Riethmacher et al., 1995), and cell 
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movements including cell sorting and cell migration (Nose et al., 1988; Takeichi, 1988; 

Steinberg and Takeichi, 1994). 

     E-cad-deficient mouse embryos cannot normally develop into blastocysts, thus 

confirming the importance of E-cad in the organization of pre-implantation embryos 

(Larue et al., 1994; Riethmacher et al., 1995). N-cad, like E-cad, is critical during 

embryonic development.  Indeed, the loss of either of these cadherin subtypes results in 

early embryonic death (Larue et al., 1994; Radice et al., 1997a).  In addition, in mice 

without functional N-CAD, the myocardium is malformed, causing arrest of heart 

development, and the neural tube and somites are also not properly formed (Radice et al., 

1997a).  However, null mutant mice R-cadherin (R-cad) or P-cadherin (P-cad) are viable 

and fertile (Radice et al., 1997b; Dahl et al., 2002). 

 

1.4.3:  Classical cadherins and cancer 

 

          The majority of human cancers originate from epithelial cells.  These epithelial 

cells are organized by a number of specific intercellular junctions, including adherens-

type-junctions, tight junctions and desmosomes, which are interconnected with the actin 

and intermediate filament cytoskeleton (Cavallaro et al., 2002).  Among the cell-cell 

adhesion molecules, cadherins appear to play a crucial role in establishing adherens-type-

junctions (Takeichi, 1995; Huber et al., 1996; Yagi and Takeichi, 2000).  It is well known 

that cell-cell adhesion is changed markedly during the development of malignant cancers 

(Cavallaro et al., 2002).  For instance, loss of E-CAD-mediated cell-cell adhesion is a 

requirement for tumour cell invasion and metastasis formation (Birchmeier and Behrens, 
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1994).  Recent evidence demonstrates that N-cad is dominant over E-cad in metastatic 

progression and is overexpressed in a subset of cancer types in addition to the loss of E-

cad (Derycke et al., 2004; Hazan et al., 2004).  Nieman et al. (1999) reported that forced 

expression of N-cad causes E-cad to be down-regulated in breast cancer cells.  The 

increase of N-cad expression increases the resistance to apoptotic stimuli, and a more 

invasive and motile cell phenotype and metastasis in nude mice (Cavallaro et al., 2002 

and 2004; Jiang et al., 2007), thus demonstrating opposite effects to E-cad.  It has been 

suggested in that a switch from epithelial to mesenchymal cadherins supports the 

transition from benign to an invasive, malignant tumor phenotype. 

     In contrast, Rosivatz et al. (2004) suggest that E-CAD transcriptional repression may 

not play a major role in colon cancer pathogenesis, and other studies did not always 

observe a correlation between reduced E-CAD immunohistochemistry and tumor 

progression.  However, in the latter study, the same tumors had N-CAD 

immunoreactivity in 44% of the cases.  It seems that N-cad has an invasion promoting 

effect, as earlier shown for other carcinomas, and that N-cad induced invasion activities 

can even overcome the E-CAD tumor suppressive function (Hazan et al., 1997; Nieman 

et al., 1999).  This suggests that the “cadherin switch” can vary in a tumor-specific 

manner. 

     As discussed previously, villous cytotrophoblasts differentiating along the EVT 

pathway utilize similar molecular mechanisms to those employed in cancer cells (Bischof 

et al., 2001; Lala et al., 2002).  Unlike cancer cell invasion, normal EVT invasion into the 

maternal endometrium and vasculature is highly regulated (Graham et al., 1993; Irving et 
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al., 1995).  We therefore speculate that cadherins play an important role in human 

trophoblast invasion. 

     Several mechanisms are involved in the loss of E-CAD function during 

tumourigenesis; these include mutation or deletions of the E-cad gene itself, transcription 

repression of the E-cad gene, hypermethylation of CpG islands or chromatin 

rearrangements in the E-cad promoter region, as well as in the β-catenin gene (Hirohashi, 

1998).  

          Several studies have highlighted transcription repression as the major mechanism 

leading to decreased E-cad expression (Schipper et al., 1991; Bussemakers et al., 1992; 

Brabant et al., 1993).  E-cad transcription repressors belong to three families: i) TWIST; 

ii) SNAIL (SNAIL1, SNAIL2 (SLUG), SNAIL3), and ZEB1 (DeltaEF1)/ ZEB2 (SIP1), 

and interact with the E-cad gene promoter (Cano et al., 2000; Comjin et al., 2001; Bolos 

et al., 2003).  For example, in many human carcinomas of the ovary, liver, colon, and 

gastrointestinal tract, Snail expression correlates with inhibition of E-cad expression 

(Blanco et al., 2002; Jiao et al., 2002).  Furthermore, TWIST has been shown to 

transcriptionally repress E-cad in breast cancers (Yang et al., 2004; Vesuna et al., 2008). 

     In human gastric cancer, an increase in Snail mRNA expression is associated with a 

down-regulation of E-cad.  An increase in N-cad mRNA levels was also detected in the 

same tumours, likely due to the overexpression of Twist (Rosivatz et al., 2002).  Twist 

also induces N-cad expression in prostate carcinoma cells (Alexander et al., 2006).  This 

suggests these EMT regulators could play different roles in gastric carcinogenesis 

depending on the histological subtype (Rosivatz et al., 2002).  In relation to the 

mechanism that regulates E-cad, in vivo footprinting analysis shows that the positive 
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regulatory elements of the E-cad promoter (the CCAAT-box) were bound by 

transcription factors in cells that expressed E-cad but not in non-expressing cells 

(Hirohashi, 1998).  

 

1.4.4:  Classical cadherins and placentation 

 

    It is acknowledged that morphogenesis and cell differentiation depend, in part, on the 

regulated expression of cell surface glycoproteins and their connections to the 

cytoskeleton (Edelman, 1988).  Some of these adhesion molecules are well-characterized 

including E-CAD (Damsky et al., 1984; Takeichi, 1991; Kemler et al., 1989).  

     In regard to embryonic development and placental morphogenesis, E-CAD has been 

gaining much attention (Coutifaris et al., 1991) because antibodies against E-CAD have 

shown to inhibit the compaction of preimplantation mouse embryos:  a developmental 

process that involves blastomere adhesion and formation of intercellular junctions (Hyafil 

et al., 1980; Damsky et al., 1983; Vestweber and Kemler, 1984).  In addition, E-cad 

mRNA and protein levels are high in freshly isolated villous cytotrophoblasts and 

decrease as the cells begin to undergo differentiation and fusion to form multinucleated 

syncytia (Coutifaris et al., 1991; Rebut-Bonneton et al., 1993).  Similarly, E-CAD has 

been localized on the surface of cytotrophoblasts in situ, but not on the surface of the 

syncytiotrophoblast (Eidelman et al., 1989).  Furthermore, immunoneutralization 

experiments using an antiserum directed against the cell adhesion domain of cadherins 

found inhibition of the formation of syncytia in comparison to an antiserum against the 

cytoplasmic tail of E-cad, which had no effect upon aggregation and fusion of these cells 



 33

(Blaschuk et al., 1990; Pouliot et al., 1990; Coutifaris et al., 1991; Farookhi and 

Blaschuk, 1991).  

     A type II classical cadherin known as cadherin-11 (Cad-11) plays an important role in 

mediating trophoblast-endometrium interactions.  Its expression increases during the 

formation of multinucleated syncytia in primary cultures of human cytotrophoblasts. 

When cad-11 was transfected into poorly invasive JEG-3 choriocarcinoma cells, this 

resulted in the formation of multinucleated syncytia in the transfected JEG-3 cell cultures 

(MacCalman et al., 1996; Getsios and MacCalman, 2003).  This suggests that cad-11 

contributes to the morphological and functional differentiation of the multinucleated 

syncytial trophoblast. 

 

1.5:  TWIST- A basic helix-loop-helix transcription factor 

 

     The Twist gene encodes a transcription factor that was originally identified in 

Drosophila.  The human Twist gene is located at 7p21 and comprises two exons that are 

separated by an intron. TWIST contains a conserved basic helix-loop-helix (bHLH) 

domain (Bourgeois et al., 1996) (Figure 1.3).  The function of bHLH transcription factors 

depends on the DNA-binding region and an HLH motif that mediates homodimerization 

or heterodimerization with other HLH proteins to form a functional dimer that can 

recognize and bind to a DNA motif called the E-box (Benezra et al., 1990; Massari and 

Murre, 2000; Castanon and Baylies, 2002).   
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Figure 1.3.  Schematic diagram representing of the protein structure of the human Twist.  
The TWIST protein has 202 amino acids with a basic helix-loop-helix domain. The basic 
(b) is the DNA-binding region and the helix-loop-helix mediates homodimerization or 
heterodimerization with other HLH proteins to form a functional dimer. 
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Post-translational modifications like phosphorylation can alter the dimerization choices 

of TWIST, either promoting homodimer or heterodimer formation (Firulli et al., 2005), 

and different TWIST dimerization partners could have specific effects on the 

transcription regulatory function of TWIST.  It has been suggested that TWIST as a 

heterodimer functions is a transcription repressor, while TWIST homodimers favour the 

upregulation gene expression by functioning as a transcription activator.   For example, in 

studies of human cranial suture patterning and Drosophila mesoderm development, 

TWIST homodimers function as transcriptional activators (Castanon et al., 2001; 

Connerney et al., 2006).  

 

1.5.1:  Twist- A key player in cell differentiation and morphogenesis 

 

     Twist is expressed in mesodermal and cranial neural crest cells during embryogenesis 

in vertebrate and invertebrate development (Thisse et al., 1988; Fuchtbauer, 1995).  

Studies have shown that mutated Twist results in a twisted phenotype in Drosophila 

embryos, suggesting the expression pattern of Twist is associated with the formation and 

specification of the mesoderm (Thisse et al., 1988; Leptin, 1991).  Heterozygous Twist 

mutant mice show a number of craniofacial defects, including a narrow palate and 

craniosynostosis.  This is similar to patients with a skeletal dysplasia termed Saethre-

Chotzen’s syndrome, in which reported mutations were found to involve the bHLH 

domain of the Twist gene (El Ghouzzi et al., 1997; Bourgeois et al., 1998).  

      Furthermore, Bialet et al. (2004) demonstrated that the molecular defect in the 

Saethre-Chotzen syndrome is caused by haploinsufficiency at the Twist locus.  This gene 
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mutation which leaves TWIST’s bHLH domain intact but disrupts its TWIST box results 

in a serious form of the disease, with limb patterning defects (Gripp et al., 2000; Bialet et 

al., 2004).  Bialet et al. (2004) has also shown that TWIST inhibits osteoblast 

differentiation by interfering with RUNX2, a member of the RUNX family of 

transcription factors which function through interacting with specific domains in these 

proteins; i.e., the TWIST box (a domain distinct from their bHLH domains) and a 

RUNX2 DNA binding domain.  

 

1.5.2: Twist and cancers 

 

     Twist is linked to metastases of a wide range tumour types including those of ovary, 

breast and prostate tissues (Kwok et al., 2005; Puisieux et al., 2006; Hosono et al., 2007). 

Recently, Twist was shown to play a key role in inducing cell movement and tissue 

reorganization during invasion and metastasis in breast cancer.  Indeed Twist clearly 

appears to be one of the most strongly up-regulated genes responsible for invasiveness 

and/or intravasation of mouse mammary tumors (Yang et al., 2004).  Twist also has anti-

apoptotic effects and can play a role in cell survival (Maestro et al., 1999).  Yang et al. 

(2004) reported that suppression of Twist expression in highly metastatic mammary 

carcinoma cells specifically inhibits their metastasis to the lung.  Furthermore, inhibition 

of Twist expression using small interfering RNA (siRNA) significantly impairs the 

metastatic ability of the most metastatic tumour cell lines (Yang et al., 2004). 

     EMT is characterized by the gain of mesenchymal cell markers such as N-CAD, 

vimentin, smooth musle actin, and fibronectin; and the lost of epithelial markers such as 
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E-CAD and catenins (Thiery, 2003; Ridisky, 2005).  The loss of E-CAD protein and/or 

transcriptional repression of E-cad mRNA are hallmarks of EMT, both in cancer 

progression and embryonic development (Thiery, 2002 and 2003). As mentioned 

previously, a major mechanism leading to decreased E-CAD levels seems to be a 

decrease in E-cad transcription (Bussemakers et al., 1993).  TWIST is known to play a 

key role in E-cad repression and EMT induction (Yang et al., 2004).  Inactivation of 

Twist reduces migration and invasion abilities of androgen-independent prostate cancer 

cells, and is correlated with induction of E-cad expression as well as morphologic and 

molecular changes linked with EMT (Kwok et al., 2005).  In line with its function in 

EMT, TWIST represses transcription from the E-cad promoter via the E-boxes that are 

also targeted by SNAIL and SIP1 (Comijn et al., 2001).  In addition, high TWIST levels 

are also linked with deep myometrial invasion of cancer cells and were concurrent with 

decreased E-CAD levels, a hallmark of EMT (Satoru et al., 2006).  

     The gain of N-cad expression, a mesenchymal marker, may increase motility and 

invasion of carcinoma cells as well (Cavallaro et al., 2002).  The switch from E-CAD to 

N-CAD is mediated by a number of transcription factors, including TWIST, SIP1 and 

SNAIL1 (Rosivatz et al., 2004).  As mentioned earlier, TWIST has been shown to be 

essential for the initiation of N-cad expression in Drosophilla (Oda et al., 1998) and in 

cancer cell invasion (Alexander et al., 2002; Rosivatz et al., 2002).  The effect of TWIST 

on inducing N-cad is exerted by a direct interaction with an E-box cis-element located 

within the first intron of the N-cad gene (Alexandra et al., 2006).  
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     Since Twist has regulatory and functional roles in both cancer differentiation and 

normal differentiation, we speculate that Twist may play an important role in human 

trophoblast differentiation. 

 

1.6:  Runt-related Gene (Runx) family      

 

     The Runx family is composed of three closely related genes; Runt-related gene 1 

(Runx1), Runt-related gene 2 (Runx2), and Runt-related gene 3 (Runx3), each with 

tissue-specific functions and are homologous to the Drosophila gene runt.  RUNX 

proteins are scaffolding transcription factors, which contain a runt homology domain that 

serves as the DNA-binding domain.  They localize to subnuclear domains and translate 

cell signals through the formation of gene promoter regulatory complexes (Zaidi et al., 

2001 and 2003).  An essential feature of RUNX proteins is their C-terminal nuclear 

matrix targeting signal (NMTS) domain that mediates the organization of regulatory 

complexes (Zaidi et al., 2004) (Figure 1.4).  They can form heterodimers with the 

transcriptional co-activator core binding factor β (CBF β)/ polyoma enhancer binding 

protein 2β (PEBP 2β) in vitro (Komori, 2006).  

     RUNX proteins control different aspects of embryonic development, and they are 

usually anti-proliferative in cellular differentiation in normal tissues.  In addition, these 

transcription factors are known for their pathogenic function in different human diseases 

(Guo et al., 2002; Pratap et al., 2003; Wotton et al., 2004).  RUNX proteins are known to 

be involved in haematopoiesis (RUNX1), osteogenesis (RUNX2), and neurogenesis 

(RUNX3), and are also involved in other developmental processes.  For example,  
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Figure 1.4.  Schematic diagram representing of the protein structure of the human Runx2.  
The RUNX2 protein consists of runt homology domain (RHD) that serves as the DNA-
binding domain, the nuclear localization signal (NLS) that directs newly synthesized 
protein into the nucleus and the nuclear matrix targeting signal (NMTS) domain that 
mediates the organization of regulatory complexes. 
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conditional expression of Runx1 in an endothelial progenitor cell line from the aorta-

gonad mesonephros region in mice, initiated Vascular Endothelial-cadherin expression 

and greatly enhanced the vascular network formation activity of the cells, suggesting that 

Runx1 plays a role in angiogenesis through Vascular Endothelial-cadherin (Iwatsuki et 

al., 2005).  Furthermore, RUNX1 and RUNX3 have both been identified to play a role in 

the nervous system of mice.  RUNX1 plays a role in the nociceptive development of the 

sensory neurons, however, RUNX3 is responsible for the proprioceptive sensory neurons. 

Both of these developmental processes are critical in neuronal development (Inoue and 

Ito, 2008). 

     RUNX proteins can function as cell context-dependent tumour suppressors or 

oncogenes (Blyth et al., 2005).  Aberrant expression of Runx genes is associated with cell 

transformation and tumour progression (Pratap et al., 2006).  For example, Runx1 

mutations and chromosomal translocations have been associated with leukemia subtypes. 

Amplification of Runx1 is associated with poor prognosis in childhood B-cell leukemia 

(Osato and Ito, 2005), and loss of Runx3 predisposes mice to gastric hyperplasia (Lau et 

al., 2006).  

     Recently, the study of RUNX3 in tumour pathogenesis is gaining more attention in the 

field of cancer research.  The RUNX3 transcription factor has been identified to be a 

downstream effector of the transforming growth factor-β (TGF-β) signalling pathway in 

controlling cell proliferation, cell invasion, cell adhesion and apoptosis.  This 

transcription factor has also been shown to play a role as a tumour suppressor in 

colorectal and gastric cancers (Subramanian et al., 2009).  However, RUNX3 functional 
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inactivation caused by mutation or epigenetic silencing has been seen in a wide range of 

tumour origins from early progression to malignancy (Chuang and Ito, 2010).  

 

1.6.1:  Runt-related Gene 2 (Runx2)   

 

     Runx2 expression was initially reported in T cells during thymic development and 

regulates the osteoblast-specific expression of osteocalcin (Ducy and Karsenty, 1995; 

Satake et al., 1995; Ducy et al., 1997).  Loss of function mutations of Runx2 are linked to 

Cleidocranial dysplasia syndrome in humans (Otto et al., 2002). 

     Runx2 provides an important mechanistic linkage between cell fate, proliferation, 

growth control, and lineage commitment.  Runx2 has been characterized in bone tissue 

and is expressed in mesenchymal lineage cells promoting the osteoblast phenotype for 

bone formation (Otto et al., 1997, Pratap et al., 2006).  RUNX2 is the most specific 

molecular marker of osteoblast lineage; it is needed to induce osteoblast differentiation as 

well as to regulate most of the genes characteristic of the osteoblast phenotype (Ducy et 

al., 1997; Komori et al., 1997; Otto et al., 1997).  Runx2-/- mice demonstrate a complete 

lack of both intramembranous and endochondral ossification due to the absence of 

osteoblast differentiation (Otto et al., 1997).  RUNX2 can also act as a suppressor of 

ribosomal RNA (rRNA) synthesis (Zaidi et al., 2001; Young et al., 2007).  It is also 

highly expressed in several other tissue types, including the testis (Ogawa et al., 2000), 

mammary epithelium (Inman and Shore, 2003), endothelial cells (Sun et al., 2001), and 

prostate and breast tumours (Yeung et al., 2002; Barnes et al., 2003). 



 42

     Runx2 also promotes vascular endothelial growth factor (VEGF) expression in 

hypertrophic chondrocytes to mediate angiogenesis during bone synthesis.  Runx2 is 

highly expressed in human and mouse models of angiogenesis, suggesting a possible 

function for RUNX2 in neovascularisation of adult tissues.  Inactivation of the Runx2 

gene in mice leads to an absence of vascularisation, in addition to the abnormal bone 

formation described above (Ducy et al., 1997; Zelzer et al., 2001). 

 

1.6.1.1:  Runx2 and cancers  

 

     The proper control of gene expression by transcriptional regulators is crucial in 

balancing the physiological levels of proteins necessary for normal cell function.  

However, the expression and activities of master transcription factors such as RUNX, 

TWIST and HOX can become irregular due to mutation, epigenetic changes in chromatin 

or chromosomal translocations, and can alter the expression of their downstream targets 

in cancer cells (Yang et al., 2004; Blyth et al., 2005; Grier et al., 2005).  The oncogenic 

potential of Runx2 is suggested by high levels of endogenous RUNX2 in breast and 

prostate cancer cells associated with aggressive tumour growth in bone (Barnes et al., 

2004; Javed et al., 2005).  However, tumours do not appear in heterozygotes with 

haploinsufficiency of Runx2, suggesting Runx2 does not have a role in tumour 

suppression (Blyth et al., 2005). 

     In cancer cells, Runx2 can activate expression of adhesion proteins, matrix 

metalloproteinases and angiogenic factors that are related to the invasive properties of 

metastatic cancer cells (Pratap et al., 2006a), and MMPs have long been implicated in 
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tumour invasion and metastasis (Egeblad and Werb, 2002).  RUNX2 transciption factor 

plays a role in regulating MMP-9 expression and promoting cell invasion in bone 

metastatic cancer cells (Pratap et al., 2005).  This is important because one of the 

processes required for trophoblast invasion is the degradation and remodelling of the 

MMPs (Cohen et al., 2006).  

 

1.6.1.2:  Regulation and activation of Runx2 

 

     Increased transcription, epigenetic modifications in chromatin, or silencing of Runx2 

repressor proteins have been linked to upregulation of Runx2 expression in breast and 

prostate cancer cells (Spencer and Davie, 2000; Young et al., 2005).  Dysregulation of 

post-translational modifications (acetylation, ubiquitination, and phosphorylation) can 

affect the transcriptional activity of Runx2 in cancer cells (Bae and Lee, 2006; Jeon et al., 

2006). 

     TGF-β treatment decreases Runx2 expression in osteoblasts, and repeated TGF-β 

treatment also decreases the amount of functional RUNX2 binding to DNA (Komori, 

2006).  In addition, Runx2 mediates the responses of cells to signal pathways that are 

often hyperactive in tumours, including those initiated by TGF-β and other growth 

factors.  The Smads act as effectors of TGF-β to induce changes in gene expression.  

TGF-β binds to the TβRI/ TβRII receptor complex at the cell surface and activates 

SMAD 2 and SMAD 3 through phosphorylation, these then form complexes with SMAD 

4 and translocate into the nucleus.  These complexes link with transcription factors to 

regulate gene expression through DNA binding (Feng and Derynck, 2005).  
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1.6.1.3:  Interactions between RUNX2 and TWIST 

 

     The Saethre-Chotzen (SC) syndrome is characterized by increased osteogenesis and 

premature fusion of cranial sutures caused by Twist mutations (Yousfi et al., 2002).  

Decreased Twist production causes a narrow sutural space and fusion of bone domains 

(Yoshida et al., 2004).  Other studies have shown that RUNX2 activity is necessary for 

the regulation of osteoblast differentiation and in the osteogenic switch (Lian et al., 

2004).  Bialek et al. (2004) suggested Twist may regulate the developmental action of 

RUNX2 in bone formation.  

     The TWIST box located within the carboxyterminal 20 residues of TWIST is 

necessary for anti-osteogenic function in mice (Bialek et al., 2004), and it is known to 

bind with the runt DNA-binding domain of RUNX2 to inhibit RUNX2 transactivation 

activity (Lian et al., 2004).  A decreased level of TWIST may promote RUNX2 function 

through the lack of inhibitor protein and by the enhancement of its own promoter activity 

(Yoshida et al., 2005).   

A point mutation in the TWIST box leads to an acceleration of bone formation in 

heterozygous and homozygous mice (Bialek et al., 2004).  Furthermore, TWIST box 

mutations in humans prevent the ability of TWIST to inhibit RUNX2 transactivation 

(Seto et al., 2007).  Cell-free pull-down assays with recombinant RUNX2 and TWIST 

proteins have suggested a direct physical interaction between RUNX2 and TWIST.      

     In contrast, Komari et al. (2007) show that Runx2 gene expression was unaltered upon 

transient knock down of Twist in periodontal ligament (PDL) cells using short 
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interference RNA (siRNA), suggesting that regulatory interactions between TWIST and 

RUNX2 are tissue or cell dependent. 
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1.7:  Hypothesis and rationale: 

 

     A successful implantation depends upon mononucleate cytotrophoblasts entering one 

of two distinct and mutually exclusive pathways.  The villous cytotrophoblastic cells will 

proliferate and differentiate by fusion to form the outer syncytial trophoblast, or enter the 

extravillous pathway to form highly invasive EVTs.   

     Previous studies have shown that the down-regulation of E-cad is associated with the 

terminal differentiation and fusion of human villous cytotrophoblasts in vitro.  There is 

increasing evidence to suggest that this subpopulation of cytotrophoblasts develop an 

invasive phenotype via molecular and cellular mechanisms adopted by metastatic tumour 

cells. N-cad has been assigned an integral role in tumour progression and the onset of 

metastasis but its role in human trophoblastic cell invasion is not known.  In view of 

these observations, the regulated and inverse expression of E-cad and N-cad is a possible 

mechanism that mediates terminal differentiation of human trophoblastic cells in vitro.   

     The functions of these classical cadherins are known to be regulated, at least in part, 

by transciption factors in normal development and in cancer progression.  The basic 

helix-loop-helix transcription factor TWIST, as well as the scaffold transcription factor 

RUNX2, play integral roles in the onset and progression of cancer in a wide variety of 

tissues.  This has prompted the following hypotheses: 

1. That the expression of E-cad and N-cad is tightly regulated by TWIST and/or RUNX2 

during the terminal differentiation of human trophoblastic cells in vitro, which was 

investigated as described in Chapters 3 and 4 using BeWo cells, primary EVTs and HTR-

8/SVneo cells.  
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2. That N-cad plays a key role in regulated development of an invasive phenotype in 

EVTs, which was investigated as described in Chapter 4 using primary EVTs and HTR-

8/SVneo cells.  

3. That Runx2 plays a key role in regulated development of an invasive phenotype in 

EVTs, which was investigated as described in Chapter 5 using primary EVTs and HTR-

8/SVneo cells.  

 

The specific objectives of my studies were:  

1. To identify a role for Twist in regulating the cadherin-mediated terminal differentiation 

of human trophoblastic cells (in both villous and extravillous pathways).  

2. To identify a role for N-cad in regulating human trophoblastic cell invasion in vitro.   

3. To identify a role for Runx2 in regulating human trophoblastic cell invasion in vitro.   
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CHAPTER 2: MATERIALS AND METHODS 

 
 
2.1:  Tissues 

 

     Samples of first trimester placental tissues were obtained from women undergoing 

elective termination of pregnancy (gestational ages ranging from 6-12 weeks).  The use 

of these tissues was approved by the committee for Ethical Review of Research on the 

use of Human Subjects, University of British Columbia, Vancouver, BC, Canada.  All 

women provided informed written consent. 

 

2.2:  Cells 

 

     Cultures of EVTs were propagated from first trimester placental explants as 

previously described (Getsios et al, 1998).  Briefly, chorionic villi were washed three 

times in PBS.  The villi were finely minced and plated in 25cm2 tissue culture flasks 

containing Dulbecco’s Modified Eagle’s Medium (DMEM) containing 25 mM glucose, 

L-glutamine, antibiotics (100 U/ml penicillin, 100 µg/ml streptomycin) and supplemented 

with 10% fetal bovine serum (FBS).  The fragments of the chorionic villi were allowed to 

adhere for 2-3 days, after which any non-adherent tissue was removed.  The villous 

explants were cultured for a further 10-14 days with the culture medium being replaced 

every 48 h.  The EVTs were separated from the villous explants by a brief (2-3 min) 

trypsin digestion at 37°C and plated in 60 mm2 culture dishes in DMEM supplemented 

with antibiotics and 10% FBS.  The purity of the EVT cultures was determined by 
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immunostaining with a monoclonal antibody directed against human cytokeratin 

filaments 8 and 18 (data not shown).  These cellular markers have been used to determine 

the purity of human EVT cultures (MacCalman et al, 1996).  Only cell cultures that 

exhibited at least 90% immunostaining for cytokeratin were included in these studies. 

     HTR-8/SVneo, an EVT cell line, was obtained as a gift from Dr Charles H. Graham 

(Queen’s University, Kingston, ON, Canada).  Culturing of HTR-8/SVneo has been 

described previously (Graham et al., 1993).  HTR-8/SVneo cells were harvested from 

ongoing cultures with 0.125% (w/v) trypsin in EDTA buffer. HTR-8/SVneo cells were 

cultured in 100mm culture dishes (Becton Dickinson and Co, Franklin Lakes, NJ, USA) 

containing Dulbecco’s Modified Eagle’s Medium (DMEM) containing 25 mM glucose, 

L-glutamine, antibiotics (100U/ml penicillin, 100 µg/ml streptomycin) and supplemented 

with 10% fetal bovine serum (FBS). 

     BeWo and JEG-3 choriocarcinoma cell lines (American Type Culture Collection, 

Rockville, MD, USA) were harvested from ongoing cultures with 0.125% (w/v) trypsin 

in EDTA buffer. BeWo and JEG-3 cells were cultured in 100mm culture dishes (Becton 

Dickinson and Co, Franklin Lakes, NJ, USA) containing F12 Kaighn’s medium (F12K) 

containing L-glutamine, antibiotics (100U/ml penicillin, 100 µg/ml streptomycin) and 

supplemented with 10% fetal bovine serum (FBS). 
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2.3:  Experimental culture conditions 

 

     BeWo cells (2.5 x 105 cells) were plated in 35 mm2 tissue culture dishes and grown to 

80% confluency.  Cells were treated with or without 8-bromo-cAMP (1.5mM; Sigma-

Aldrich, St Louis, MO, USA) for 0, 12, 24, 36 or 48 h.  According to the manufacturer, 

cell-permeable 8-bromo-cAMP has greater resistance to hydrolysis by 

phosphodiesterases than cAMP.  The dosage (1.5mM) of 8-bromo-cAMP was chosen 

based on previous studies from my laboratory. 

     EVTs (5 x 106 cells) (passages 4-6) were plated in 60 mm2 tissue culture dishes 

(Becton Dickinson and Co, Franklin Lakes, NJ, USA) and grown to 80% confluency.  

The cells were then washed with PBS and cultured in DMEM under serum-free 

conditions.  Twenty four hours after the removal of serum from the culture medium, the 

cells were again washed with PBS before cultured in the presence of TGF-β1 (0.001, 

0.01, 0.1, 1 or 10 ng/ml) or IL-1β (1, 10, 100 or 1000 IU/ml) for 24 h or TGF-β1 (5 

ng/ml) for 0, 6, 12, 24, or 48 h or IL-1β (100 IU/ml) for 0, 12, 24, or 48 h. EVTs cultured 

in the presence of vehicle (0.1% ethanol) served as controls for these studies. The 

treatment time and dosage for TGF-β1 and IL-1β were chosen based on previous studies 

from my laboratory. 

     To inhibit the regulatory effects of TGF-β1 and IL-1β on Runx2 mRNA and protein 

levels in these primary cell cultures, EVTs were cultured in the presence of either TGF-

β1 (10 ng/ml) alone or in combination with a function-perturbing monoclonal antibody 

directed against human TGF-β1 (10 µg/ml; Sigma Aldrich) or IL-1β (100 IU/ml) alone or 
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in combination with a function-perturbing monoclonal antibody directed against human 

IL-1β (1 or 2 µg/ml; Sigma Aldrich) for 24 h. 

     The time points and the concentrations of cytokines and corresponding function-

perturbing antibodies used in these studies were based upon previous reports (Huang et 

al, 1998; Chung et al, 2001).  All of the EVT cell cultures were harvested for either total 

RNA or protein extraction. 

 

2.4:  Generation of first-strand complementary DNA (cDNA) 

 

     Total RNA was prepared from placenta tissues, cultures of EVTs and choriocarcinoma 

cell lines using an RNeasy Mini Kit (Qiagen, Inc, CA, USA) following a protocol 

recommended by the manufacturer.  The total RNA extracts were then treated with 

deoxyribonuclease-1 to eliminate possible contamination with genomic DNA.  To verify 

the integrity of the RNA, aliquots of the total RNA extracts were electrophoresed in a 1% 

(w/v) denaturing agarose gel, containing 3.7% (v/v) formaldehyde, and the 28 S and 18 S 

ribosomal RNA subunits visualized by ethidium bromide staining.  The purity and 

concentration of total RNA in each of the extracts were determined by optical 

densitometry (260/280nm) using a Du-64 UV-spectrophotometer (Beckman Coulter, 

Mississauga, ON, Canada). 

     Aliquots (~1 µg) of the total RNA extracts prepared from placenta tissues and each of 

the trophoblastic cell cultures were then reverse-transcribed into cDNA using the First 

Strand cDNA Synthesis Kit, according to the manufacturer’s protocol (Amersham 

Pharmacia Biotech, Oakville, ON, Canada). 
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2.5:  Primer design 

 
 
     Oligonucleotide primers for human Twist, Runx2, E-cad and N-cad were produced 

according to sequences deposited in GenBank (Accession No.: NM_000474, 

NM_004348, NM_004360 and NM_001792 respectively; National Center for 

Biotechnology Information, Bethesda, MD, USA).  The housekeeping gene, 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was used as an internal control 

(Getsios et al, 1998b).  Oligonucleotide primers corresponding to the nucleotide 

sequences for Twist, Runx2, E-cad and N-cad were synthesized at the Nucleic Acid and 

Protein Synthesis Unit, University of British Columbia, Vancouver, Canada.  The 

nucleotide sequences of these primers and the expected sizes of the PCR products are 

listed in Table 2.1. 

     A second set of primers specific for Runx2, N-cad or GAPDH, were also prepared in 

Table 2.2.  These primers were used for the real-time quantitative (q) RT-PCR.  
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Table 2.1. Oligonucleotide primers for Twist, Runx2, E-cad, N-cad and GAPDH mRNA 
amplification (Semi-quantitative PCR) 
________________________________________________________________________ 
      
    mRNA                                Primers (5’-3’)                           Size (bp)     Position on cDNA  No. of  cycles 
________________________________________________________________________ 
      
Twist 
    Upstream (5 end)        AGTCCGCAGTCTTACGAGGA          576             646-665                     30                  
    Downstream (5 end)   GCAGAGGTGTGAGGATGGT                               1222-1204 
E-cad 
    Upstream (5 end)        TGGATGTGCTGGATGTGAAT          560             1548 -1567                 30                  
    Downstream (5 end)   ACCCACCTCTAAGGCCATCT                              2107-2088 
N-cad 
    Upstream (5 end)        ACAGTGGCCACCTACAAAGG         391             654-673                      30                  
    Downstream (5 end)   TGATCCCTCAGGAACTGTCC                              1045-1026 
GAPDH 
    Upstream (5 end)        ATGTTCGTCATGGGTGTGAACCA  378              449-471                     22 
   Downstream (5 end)   TGGCAGGTTTTTCTAGACGGCAG                      821-799       
______________________________________________________________________________________                   
 
 
 
 
 
Table 2.2. Real-time qPCR primers for Runx2, N-cad and GAPDH mRNA  
________________________________________________________________________ 
      
                   mRNA                                                                                Primers (5’-3’)                                         
________________________________________________________________________ 
      

Runx2 
                Upstream (5 end)                                                       AGCCCTCGGAGAGGTACCA                        

Downstream (5 end)                                                  TCATCGTTACCCGCCATGA                          
N-cad 

                 Upstream (5 end)                                                      TGGGAATCCGACGAATGG                           
                 Downstream (5 end)                                                 GCAGATCGGACCGGATACTG                      

GAPDH 
                 Upstream (5 end)                                                      GAGTCAACGGATTTGGTCGT                       
                Downstream (5 end)                                                 GACAAGCTTCCCGTTCTCAG                        
______________________________________________________________________________________     
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2.6:  Semi-quantitative RT-PCR 

 
 
     Semi-quantitative RT-PCR was performed using the primer sets specific for Twist, 

Runx2, E-cad, N-cad or GAPDH, and template cDNA generated from the total RNA 

extracts prepared from BeWo, JEG-3, EVTs, HTR-8/SVneo cell cultures or placenta 

tissue (villi).  The PCR cycles were repeated 15-40 times to determine a linear 

relationship between the yield of PCR products from representative samples of these cells 

or tissue and the number of cycles performed.  The optimized numbers of cycles 

subsequently used to amplify Twist, Runx2, N-cad, E-cad and GAPDH are listed in Table 

2.1. 

     All PCR reactions were performed on three separate occasions.  PCR was also 

performed using the primer sets specific for Twist, Runx2, E-cad or N-cad and aliquots of 

total RNA extracts prepared from BeWo, JEG-3, EVTs, HTR-8/SVneo cell cultures or 

placenta tissue (villi) (i.e. non-transcribed RNA) or DEPC-treated water (negative 

control) under the same conditions as described above. 

     An aliquot (10 µl) of the Twist, Runx2, E-cad or N-cad PCR products was subjected 

to electrophoresis in a 1% agarose gel and visualized by ethidium bromide staining.  The 

intensity of ethidium bromide staining of the PCR products was analysed by UV 

densitometry (Biometra, Whiteman Co., Frederick, MD, USA).  The absorbance values 

obtained for Twist, Runx2, E-cad or N-cad were then normalized relative to the 

corresponding GAPDH absorbance value. 

 

 



 55

2.7:  Real-time-quantitative (q) RT-PCR 

 

     The first-strand cDNA generated from the HTR-8/SVneo cell cultures served as a 

template for qRT-PCR using the ABI PRISM 7000 sequence detection system 

(PerkinElmer Applied Biosystems, Foster City, CA) equipped with a 96-well optical 

reaction plate.  Real-time qPCR was performed using 12.5 µl SYBR Green PCR master 

mix (PerkinElmer Applied Biosystems), 7.5 µl of primer mixture (300nM), and 5 µl of 

cDNA template [diluted 1:7 (vol/vol)] under the following optimized conditions: 52 C for 

2 min followed by 95 C for 10 min and 40 cycles of 95 C for 15 sec and 60 C for 1 min.  

All PCRs were performed in duplicate, with the mean being used to determine mRNA 

levels.  A control containing DEPC-treated water instead of sample cDNA was included 

in each plate.  Each set of primers generated a single PCR product of the appropriate size 

when visualized by agarose gel electrophoresis after qRT-PCR. Nucleotide sequences of 

the resultant PCR products were confirmed by BLAST (http:// www.ncbi.nlm-.nih.gov).  

The amplification efficiency was determined by plotting log cDNA dilution against �CT (

�CT = CT.Target - CT.GAPDH), the slope of which was close to zero, indicating maximal and 

similar efficiency of the target and reference genes (data not shown).  CT stands for Cycle 

threshold and is a measurement for the number of PCR cycles (in Real-time PCR) needed 

to get a fluorescent signal. Relative Runx2 or N-cad mRNA levels were determined using 

the formula 2-���T where ��CT = (CT.Target - CT.GAPDH) x – (CT.Target - CT.GAPDH) 0.  In this 

formula, X represents siRNA transfection with control cultures being assigned a value of 

zero (Kenneth JL and Thomas DS, 2001).  Data were analysed using SDS 2.0 software 
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(PerkinElmer Applied Biosystems).  This experimental approach was further validated by 

the observation that differences between the CT for the target gene and GAPDH remained 

relatively constant for each amount of cDNA examined. 

 

2.8:  Western blot analysis 

 
     Cultures of EVTs or choriocarcinoma cell lines were washed three times in PBS and 

incubated in 100 µl of cell extraction buffer (Biosource International, Camarillo, CA, 

USA) supplemented with 1.0 mM phenylmethylsulphonyl fluoride and protease-inhibitor 

cocktail for 30 min on a rocking platform.  The cell lysates were centrifuged at 10 000 x 

g for 10 min at 4°C and the supernatants used for Western blot analysis.  The 

concentrations of protein in the cell lysates were determined using a BCA kit (Pierce 

Chemicals, Rockford, IL, USA).  Aliquots (approximately 30 µg) of the cell lysates were 

prepared, and subjected to electrophoresis and immunoblotting, as previously described 

(MacCalman et al., 1996) using antibodies directed against human TWIST (Santa Cruz 

Inc, Santa Cruz, CA, USA), RUNX2 (Santa Cruz Inc, Santa Cruz, CA, USA), E-CAD 

(Transduction Laboratory, Lexington, KY, USA) or N-CAD (Upstate, Lake Placid, NY, 

USA).  To standardize the amounts of protein loaded into each lane, the blots were 

reprobed with a polyclonal antibody directed against human β-actin (ACTIN) (Sigma 

Aldrich).  The Amersham enhanced chemiluminescence system was used to detect the 

amount of each antibody bound to antigen with exposure to X-ray film.  The absorbance 

values (density) obtained for TWIST, RUNX2, E-CAD or N-CAD by densitometry were 

then normalized relative to the corresponding ACTIN absorbance value. 
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2.9:  siRNA transfection 

 

     siRNA (Qiagen, Valencia, CA, USA; 150 ng/ 35mm2 culture dish) targeting human 

Twist mRNA (5’-AAGAACACCTTTAGAAATAAA-3’), Runx2 mRNA (5’-CACCT 

TGACCATAACGTCTT-3’) or N-cad mRNA (5’ AAGGAGTCAG CAGAAGTTGAA-

3’) was transfected into BeWo or HTR-8/SVneo cells using HiPerFect Transfection 

Reagent (Qiagen, Valencia, CA) according to a protocol outlined by the manufacturer. 

BeWo or HTR-8/SVneo cells transfected with a non-silencing or scrambled siRNA (5’-

AAT TCT CCG AAC GTG TCA CGT-3’), served as negative controls for these studies.  

     Following optimization of the HiPerFect:siRNA concentration ratio, experiments were 

performed using BeWo or HTR-8/SVneo cells that had been transfected with either 

siRNA or scrambled siRNA for 0, 12, 24, 36 or 48 h. 

 

2.10:  Expression vector 

  

     A full length human Twist cDNA (GenBank ID: BC036704) in pOTB7 vector was 

purchased from ATCC (Manassas, VA, USA). Twist cDNA was ligated into the BamH 

I/EcoRI site of pEF1α expression vector (Invitrogen, Carlsbad, CA) using standard 

molecular biology techniques.  A clone (pEF1α-Twist) containing the Twist cDNA in the 

forward orientation was subsequently identified by DNA sequence analysis.  Transfection 

reagent alone served as a control in my studies. 
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2.11:  Generation of stably transfected BeWo cell line 

 

     Stable transfections were performed to establish BeWo cell line constitutively 

expressing pEF1α-Twist. pEF1α-Twist expression vectors (2.0 µg/ml) was transfected 

into BeWo cells using LipofectamineTM 2000 reagent (Invitrogen, Carlsbad, CA) 

according to the manufacturer’s protocol.  Cells that were successfully transfected with 

pEF1α-Twist expression vectors were first selected after 24 h of culture using G418 

antibiotic (400 µg/ml F12K; Invitrogen).  Positives were then sub-cultured by limiting 

dilution and expanded into a cell line that was maintained in the selection medium.  

 

2.12:  Indirect immunofluorescence 

 

     Indirect immunofluorescence was performed using BeWo cells that had been plated 

on glass coverslips and fixed in methanol at -20°C for 2 min.  Coverslips were incubated 

with primary antibodies for 45 min at 37°C.  Primary antibodies were detected by using 

Alexa Fluor conjugated secondary antibodies (Molecular Probes, Eugene, OR, USA). 

BeWo cell nuclei were stained with 4’, 6-diamidino-2-phenylindole (DAPI; Sigma, St 

Louis, MO).  The coverslips were examined by using a Leica DMR microscope/ Orca 

Hamamatsu system and analyzed with OpenLab software (Improvision, Lexington, MA, 

USA).  The antibodies used for indirect immunofluorescence are similar to the antibodies 

used in western blotting. 
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2.13:  Matrigel invasion assay 

 

     Cellular invasion assays were performed by using Transwells fitted with Millipore 

Corp. membranes coated with a thin layer of growth factor-reduced Matrigel (6.5-mm 

filters, 8-µm pore size; Costar, Toronto, ON, Canada) as previously described (Zhou et 

al, 1997; Xu et al, 2002).  Briefly, 2.5 x 104 cells/250 µl of DMEM supplemented with 10 

% FBS were plated in the upper wells of the Transwell invasion chambers.  The 

Transwells were then immediately immersed into the lower wells of the invasion 

chambers which contained 1.2 ml of DMEM.  Invasion assays were performed for 24 h in 

a humidified environment (5% CO2) at 37°C, after which cells attached to the porous 

membranes were fixed in 4% paraformaldehyde, and cells from the upper surface of the 

Matrigel layer were completely removed by gentle swabbing.  The remaining cells that 

had invaded into the Matrigel and appeared on the underside of the filters were fixed and 

stained using a Diff-Quick Stain Kit (Dade AG, Dudingen, Switzerland) according a 

protocol outlined by the manufacturer.  The filters were then rinsed with water, excised 

from Transwells, and mounted upside-down onto glass slides.  Invasion indices were 

determined by counting the number of stained cells in 10 randomly selected, non-

overlapping fields at 40x magnification using a light microscope.  Each cell culture was 

tested in triplicate wells, on three independent occasions. 
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2.14:  Statistical analysis 

 

     The absorbance values obtained from the semi-quantitative RT-PCR, real-time RT-

PCR products and the fluorograms generated by Western blotting were subjected to 

statistical analysis using GraphPad Prism 4 computer software (San Diego, CA, USA). 

Statistical differences between the absorbance values were assessed by analysis of 

variance (ANOVA). Differences were considered significant when P < 0.05.  Significant 

differences between the means were determined using Dunnett’s test.  The results are 

presented as the mean relative absorbance (+ SEM) obtained from 4 different 

experiments. 
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CHAPTER 3: TWIST REGULATES CADHERIN-MEDIATED 

DIFFERENTIATION AND FUSION OF HUMAN TROPHOBLASTIC CELLS IN 

VITRO 

 

3.1:  Introduction and rationale 

 

     The human placenta plays a key role in regulating growth, development, and survival 

of the fetus during pregnancy (Aplin, 1991).  It is the site of transfer of respiratory gasses, 

nutrients and waste products between the maternal and fetal systems.  It serves as a 

barrier against blood-borne pathogens and the maternal immune system.  It also fulfills an 

endocrine role by secreting hormones, growth factors and other bioactive substances 

required for the establishment and maintenance of pregnancy.  Upon implantation, 

cytotrophoblastic cells proliferate and differentiate to form syncytial trophoblasts, the 

outer cell layers of chorionic villi (Kaufman, 1985).  Less recognized is that the syncytial 

trophoblast, a large multinucleated cell that forms the continuous outer layer of the 

human placenta, is responsible for the majority of biological functions assigned to this 

dynamic tissue (Richart, 1961; Kliman et al., 1986).  

     The multinucleated syncytial trophoblast is formed from the underlying layer of 

mitotically active, mononucleate cytotrophoblasts, involving a cellular process dependent 

upon a precise series of membrane-mediated events (Douglas and King, 1990).  The 

cadherins are likely molecular players that mediate terminal differentiation and fusion of 

the cytotrophoblast.  They belong to a gene superfamily of integral membrane 

glycoproteins that mediate calcium-dependent cell adhesion through homophilic 
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interactions.  There is a marked reduction in E-cad expression during the aggregation, 

differentiation and fusion of human trophoblastic cells in vitro (MacCalman et al., 1996; 

Getsios et al., 2000).  Immunoneutralization studies have shown that an antiserum 

directed against the extracellular domain of E-CAD inhibits the formation of syncytial 

trophoblast (Coutifaris et al., 1991).  Taken together, these observations have led to the 

proposal that down-regulation of E-cad plays discrete roles in differentiation and fusion 

events of human trophoblastic cells in vitro.  Although the molecular mechanisms 

underlying the down-regulation of E-cad during these cellular events remain to be 

elucidated, transcriptional repression mechanisms have emerged as one of the crucial 

processes for down-regulating E-cad expression during embryonic development (Carver 

et al., 2001; Castanon and Baylies, 2002; Thiery, 2003) and tumourigenesis 

(Bussemakers et al., 1994; Baudry et al., 2003; Yang et al., 2004).  In particular, the 

highly conserved basic helix-loop-helix (bHLH) transcription factor known as TWIST 

has been shown to inhibit human E-cad gene expression (Yuen et al., 2007; Zhang et al., 

2007).  

     Previous studies have demonstrated that down-regulation of E-cad is necessary during 

the terminal differentiation and fusion of human trophoblasts in vitro (Coutifaris et al., 

1991; MacCalman et al., 1996; Getsios et al., 2000), but none of these studies have 

investigated the transcriptional factors that may down-regulate E-cad during these 

processes in vitro.  Taken together, it is possible that Twist is involved in the mechanisms 

underlying the formation and organization of the human placenta through down-

regulation of E-cad.  In these studies, I first determined the levels of Twist and E-cad 

mRNA and protein during the terminal differentiation and fusion of BeWo cells cultured 
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in the presence of 8-bromo-cAMP by using semi-quantitative RT-PCR and Western 

blotting, respectively.  Next, by establishing a stably transfected cell line containing 

Twist cDNA or utilizing a siRNA targeting Twist, I examined whether Twist is capable 

of promoting the terminal differentiation in these trophoblastic cells through affecting E-

cad expression. Immunofluorescence staining was used in these studies to examine the 

morphological changes and the localization of TWIST and E-CAD in these cells. 

     Dr. S. Getsios helped perform the immunofluorescence staining in Figure 3.3 and Dr. 

H. Zhu helped perform the semi-quantitative RT-PCR, Western blot and 

immunofluorescence staining in Figures 3.8 and 3.9. 
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3.2:  Results 

 
3.2.1:  8-bromo-cAMP promotes the terminal differentiation and fusion of BeWo 

cells in association with altered Twist and E-cad expression  

 

     Twist mRNA was present in cultured BeWo cells, and its levels remained relatively 

constant over 2 days culture in the absence of 8-bromo-cAMP (Figure 3.1 A).  However, 

a significant increase (P < 0.05) in Twist mRNA levels was detectable when the BeWo 

cells were cultured in the presence of a fixed concentration of 1.5 mM 8-bromo-cAMP 

for 24 h (Figure 3.1 A).  Levels of Twist mRNA in these cell cultures continued to 

increase up to 48 h after treatment.  The E-cad mRNA levels remained relatively constant 

in BeWo cells cultured in the absence of 8-bromo-cAMP (Figure 3.2 A).  However, E-

cad mRNA levels were significantly decreased in BeWo cells cultured in the presence of 

1.5 mM 8-bromo-cAMP for 36 h, with levels continuing to decline up to 48 h (Figure 3.2 

A). 

     Western blot analysis revealed the presence of a 28 kDa TWIST protein species in all 

BeWo cell cultures (Figure 3.1B).  TWIST protein levels remained relatively constant in 

BeWo cells cultured in the absence of 8-bromo-cAMP (Figure 3.1 B).  In agreement with 

the RT-PCR analysis, there was a significant increase (P < 0.05) in TWIST levels in 

BeWo cells cultured in the presence of 8-bromo-cAMP (1.5 mM) for 24 h, and these 

levels  continued  to increase up to 48 h after treatment (Figure 3.1B).  E-CAD protein 

levels remained relatively constant in BeWo cells cultured in the absence of 8-bromo-

cAMP (Figure 3.2 B), but there was significant reduction in E-CAD levels in BeWo cells 
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cultured in the presence of 1.5 mM 8-bromo-cAMP for 36 h (Figure 3.2 B). Levels of E-

CAD protein in these cell cultures continued to decrease up to 48 h after treatment. 

     By using indirect immunofluorescence, a low level of TWIST was found to be 

localized in the nuclei of mononucleate cytotrophoblasts (Figure 3.3 a) when the cells 

were cultured in the absence of 8-bromo-cAMP. In contrast, a higher level of TWIST 

immunoreactivity was found to be primarily localized in the nuclei of the syncytial 

trophoblast (Figure 3.3 d) 36 h after treatment with 1.5 mM 8-bromo-cAMP.  

Immunoreactive E-CAD was localized to areas of cell-to-cell contact when the cells were 

cultured in the absence of 8-bromo-cAMP (Figure 3.3b).  In contrast, E-CAD 

immunoreactivity was distributed in a diffuse manner along the surface of the 

multinucleated syncytium after cells were cultured for 36 h in the presence of 1.5 mM 8-

bromo-cAMP (Figure 3.3 e). 

 

3.2.2:  Twist siRNA inhibits the terminal differentiation and fusion of BeWo 

choriocarcinoma cells in the presence of 8-bromo-cAMP 

 

     In order to repress the increase in Twist expression in BeWo cells after treatment with 

1.5 mM 8-bromo-cAMP, I utilized a siRNA complementary to human Twist mRNA. 

Transfection of BeWo cells with this siRNA inhibited Twist mRNA and protein levels 

(Figures 3.4 A and B) from being up regulated after co-treatment of these cells with 1.5 

mM 8-bromo-cAMP up to 48 h.  In contrast, there was a significant increase in Twist 

mRNA and protein levels in BeWo cells transfected with a non-silencing scrambled 

siRNA under the same culture conditions and time frame (Figures 3.4 A and B).  The 
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levels of E-cad mRNA and protein remained relatively constant at all time points 

examined in these studies when the cells were transfected with Twist siRNA (Figures 3.5 

A and B).  There was, however, a significant reduction in E-cad mRNA and protein 

levels in BeWo cells transfected with non-silencing scrambled siRNA over the same time 

frame (Figures 3.5 A and B). 

     I also assessed whether inhibiting Twist upregulation resulted in a concomitant 

decrease in terminal differentiation and fusion of BeWo cells in culture.  When these 

cells were transfected with Twist siRNA in the presence of 1.5 mM 8-bromo-cAMP for 

36 h, low levels of TWIST immunoreactivity were localized to the nuclei of the syncytial 

trophoblast (Figure 3.6 a-c).  As well, E-CAD was localized to areas of cell-cell contact 

under the same conditions (Figure 3.6 d-f).  In contrast, when BeWo cells were 

transfected with non-silencing, scrambled siRNA in the presence of 1.5 mM 8-bromo-

cAMP for 36 h, TWIST was clearly localized to the nuclei of the syncytial trophoblast 

(Figure 3.7 a-c).  As well, E-CAD immunostaining was reduced in the multinucleated 

syncytium that formed in the trophoblastic cell cultures under these conditions (Figure 

3.7 d-f). 

     Furthermore, to determine whether BeWo cells transfected with Twist siRNA in the 

presence of 1.5 mM 8-bromo-cAMP remained mononucleated, I examined the 

distribution of desmoplakin in these cell cultures.  Desmoplakin is an essential 

component of desmosomal junctions and has been used as a marker to determine cell 

boundaries in a wide variety of normal and malignant epithelial cells in vitro, including 

human trophoblasts (Douglas and King, 1990; Green and Gaudry, 2000; Getsios and 

MacCalman, 2003).  Desmoplakin immunoreactivity was readily detectable at areas of 
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cell-cell contact (Figure 3.6 g-i) when BeWo cells were transfected with Twist siRNA in 

the presence of 1.5 mM 8-bromo-cAMP for 36 h.  In contrast, desmoplakin 

immunoreactivity was distributed diffusely along the surface of the multinucleated 

syncytium when BeWo cells were transfected with non-silencing, scrambled siRNA in 

the presence of 1.5 mM 8-bromo-cAMP for 36 h (Figure 3.7 g-i). 

 

3.2.3:  pEF1α-Twist promotes the terminal differentiation and fusion of BeWo cells: 

correlation with E-cad mRNA and protein levels 

 

     In order to manipulate the up-regulation of Twist expression independently of cAMP, 

BeWo cells were stably transfected with the Twist expression vector pEF1α-Twist.  

Following selection of transfected cells by G418 treatment (described in Materials and 

Methods, section 2.11), a pool of stable transfectants was maintained and used for 

experiments. 

     The increase in Twist in BeWo cells transfected with pEF1α-Twist was concomitant 

with a reduction of E-cad mRNA and protein levels (Figures 3.8 A and B).  In contrast, 

E-cad mRNA and protein were unchanged or minimally affected in mock transfected 

BeWo cells as compared to the untransfected parental cell line. 

     TWIST immunostaining was readily detectable in BeWo cells that were transfected 

with pEF1α-Twist (Figure 3.9 a), and E-CAD immunostaining was diffuse along the cell 

boundary in the multinucleated syncytium that formed in these cell cultures (Figure 3.9 

b).  In contrast, TWIST was barely detectable in the nuclei of the mononucleate 
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cytotrophoblasts of mock transfected cells (Figure 3.9 d), while E-CAD was localized to 

areas of cell-cell contact in the mock transfected BeWo (Figure 3.9 e).  

     To confirm that the mononucleate BeWo cells transfected with pEF1α-Twist 

underwent terminal differentiation and fusion to form multinucleated syncytium, I 

examined the distribution of desmoplakin in these cell cultures.  In BeWo cells 

transfected with pEF1α-Twist, desmoplakin immunoreactivity was diffuse along the 

peripheral membrane of the multinucleated syncytium that formed in these cell cultures 

(Figure 3.9 c).  In contrast, intense desmoplakin staining was readily detectable at areas 

of cell-cell contact in mononucleate BeWo cells after transfection with the reagent alone 

(Figure 3.9 f). 
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Figure 3.1. Effects of cAMP on Twist mRNA and protein levels in BeWo cell cultures. 

A)  Semi-quantitative PCR analysis of Twist mRNA levels in BeWo cells cultured in the 

presence or absence (control) of a fixed concentration of 1.5 mM 8-bromo-cAMP 

(cAMP)  for 0, 12, 24, 36, or 48 h (lanes 1-5, respectively).  A 100-bp ladder is shown in 

lane M (marker) with the size of the cDNA indicated at the right. The Twist mRNA 

levels in each sample were normalized to the corresponding GAPDH mRNA levels.  B)  

Representative fluorogram of a Western blot containing total protein (30 µg) extracted 

from BeWo cells cultured in the presence or absence (control) of 1.5 mM cAMP for 0, 

12, 24, 36, or 48 h (lanes 1-5, respectively) and probed with rabbit polyclonal antibodies 

against TWIST or human β-actin.  The Amersham ECL system was used to detect 

antibody bound to antigen.  The resultant fluorograms were scanned and the absorbance 

values obtained for TWIST protein were normalized to the absorbance values obtained 

for human β-actin (ACTIN).  The results from four sets of experiments were standardized 

to the 0 h control and are represented (mean + S.E.M., n = 4) in the bar graphs (*, P < 

0.05 compared to 0 h control). 
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Figure 3.2. Effects of cAMP on E-cad mRNA and protein levels in BeWo cell cultures. 

A)  Semi-quantitative PCR analysis of E-cad mRNA levels in BeWo cells cultured in the 

presence or absence (control) of 1.5 mM 8-bromo-cAMP (cAMP) for 0, 12, 24, 36, or 48 

h (lanes 1-5, respectively).  A 100-bp ladder is shown in lane M (marker) with the size of 

the cDNA indicated at the right. Values for E-cad mRNA levels in each sample were 

normalized to the corresponding GAPDH mRNA levels.  B) Representative fluorogram 

of a Western blot containing 30 µg of total protein extracted from BeWo cells cultured in 

the presence or absence (control) of 1.5 mM cAMP for 0, 12, 24, 36, or 48 h (lanes 1-5, 

respectively) and probed with a mouse monoclonal antibody directed against E-CAD. 

The blots were then re-probed with a polyclonal antibody specific for human β-actin.  

The Amersham ECL system was used to detect antibody bound to antigen. The resultant 

fluorograms were scanned and the absorbance values for E-cad were normalized to the 

corresponding absorbance values for human β-actin (ACTIN).  The results derived from 

both these analyses and from three other sets of experiments were standardized to the 0 h 

control and are represented (mean + S.E.M., n = 4) in the bar graphs (*, P < 0.05 

compared to 0 h control). 
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Figure 3.3. Immunolocalization of TWIST and E-CAD in BeWo cells cultured in the 

presence or absence (control) of 1.5 mM 8-bromo-cAMP (cAMP).  Double-label 

immunofluorescence was carried out for BeWo cells cultured in the absence (a, b and c) 

or presence of 1.5 mM cAMP for 48 h (d, e and f).  The cells were fixed and 

immunostained with a rabbit polyclonal antibody directed against TWIST (a and d) and a 

mouse monoclonal antibody directed against E-CAD (b and e).  DAPI was used to detect 

the nuclei in these BeWo cell cultures (c and f).  The experiment was repeated on three 

independent occasions.  Scale bar represents 50 µm. 
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Figure 3.3 
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Figure 3.4. Effects of Twist siRNA on Twist mRNA and protein levels in BeWo cells 

cultured in the presence of 1.5 mM 8-bromo-cAMP (cAMP).  A) Semi-quantitative PCR 

analysis of Twist mRNA levels in BeWo cells transfected with siRNA specific for Twist 

or a scrambled control siRNA and cultured in the presence of 1.5 mM cAMP for 0, 12, 

24, 36, or 48 h (lanes 1-5, respectively).  A 100-bp ladder is shown in lane M (marker)  

with the size of the cDNA indicated at the right.  The Twist mRNA levels in each sample 

were normalized against the corresponding GAPDH mRNA levels.  B) Representative 

fluorogram of a Western blot containing 30 µg of total protein extracted from BeWo cells 

cultured after transfection with siRNA specific for Twist or a scrambled control siRNA in 

the presence of a 1.5 mM cAMP for 0, 12, 24, 36, or 48 h (lanes 1-5, respectively), and 

probed with rabbit polyclonal antibodies directed against TWIST or human β-actin.  The 

Amersham ECL system was used to detect antibody bound to antigen.  The resultant 

fluorograms were scanned and the absorbance values for TWIST were normalized to the 

absorbance values for human β-actin (ACTIN) in the corresponding samples.  The results 

from these analyses and from three other sets of experiments were standardized to the 0 h 

control and are represented (mean + S.E.M., n = 4) in the bar graphs (*, P < 0.05 

compared to 0 h control). 
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Figure 3.5. Effects of Twist siRNA on E-cad mRNA and protein levels in BeWo cells 

cultured in the presence of 1.5 mM 8-bromo-cAMP (cAMP).  A) Semi-quantitative PCR 

analysis of E-cad mRNA levels in BeWo cells transfected with siRNA specific for Twist 

or a scrambled control siRNA and cultured in the presence of 1.5 mM cAMP for 0, 12, 

24, 36, or 48 h (lanes 1-5, respectively).  A 100-bp ladder is shown in lane M (marker)  

with the size of the cDNA indicated to the right.  The E-cad mRNA levels in each sample 

were normalized to the corresponding GAPDH mRNA levels.  B) Representative 

fluorogram of a Western blot containing 30 µg of total protein extracted from BeWo cells 

cultured after transfection with siRNA specific for Twist or a scrambled control siRNA in 

the presence of a fixed concentration of cAMP (1.5 mM) for 0, 12, 24, 36, or 48 h (lanes 

1-5, respectively), and probed with mouse monoclonal antibody directed against E-CAD 

or polyclonal antibody against human β-actin.  The Amersham ECL system was used to 

detect antibody bound to antigen.  The resultant fluorograms were scanned and the 

absorbance values obtained for E-CAD were normalized to the absorbance values 

obtained for human β-actin (ACTIN) in corresponding samples.  The results from these 

analyses and from three other sets of experiments were standardized to the 0 h control, 

and are represented (mean + S.E.M., n = 4) in the bar graphs (*, P < 0.05 compared to 0 h 

control). 
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Figure 3.6. Immunolocalization of TWIST, E-CAD and desmoplakin (DESMOPLAKIN) 

in BeWo cells transfected with siRNA specific for Twist in the presence of 1.5 mM 8-

bromo-cAMP (cAMP).  Photomicrographs of immunoreactive TWIST (a), E-CAD (d) 

and desmoplakin (g) expression in BeWo cells transfected with siRNA specific for Twist 

and cultured in the presence of 1.5 mM cAMP for 36 h.  The cells were fixed and 

immunostained with either a rabbit polyclonal antibody against TWIST or a monoclonal 

antibody against E-CAD.  A rabbit polyclonal antibody against desmoplakin was used as 

a marker for cell-cell borders.  DAPI was used to detect the nuclei of these BeWo cells 

(b, e and h). Merged signals are shown on the right (c, f and i).  The experiment was 

repeated on three independent occasions.  Scale bar represents 50 µm. 
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Figure 3.6   
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Figure 3.7. Immunolocalization of TWIST, E-CAD and desmoplakin (DESMOPLAKIN) 

in BeWo cells transfected with a scrambled control siRNA in the presence of 1.5 mM 8-

bromo-cAMP (cAMP).  Photomicrographs of immunoreactive TWIST (a), E-CAD (d) 

and desmoplakin (g) in BeWo cells transfected with a scrambled control siRNA and 

cultured in the presence of 1.5 mM cAMP for 36 h.  The cells were fixed and 

immunostained with either a rabbit polyclonal antibody against TWIST, a monoclonal 

antibody against E-CAD, or a rabbit polyclonal antibody against desmoplakin.  DAPI 

was used to detect the nuclei of these BeWo cells (b, e and h).  Merged signals are shown 

on the right (c, f and i).  The experiment was repeated on three independent occasions. 

Scale bar represents 50 µm. 
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Figure 3.7 
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Figure 3.8. Twist and E-cad mRNA and protein levels in BeWo choriocarcinoma cells 

stably transfected with pEF1α-Twist.  A) Semi-quantitative PCR analysis of Twist or E-

cad mRNA levels in untransfected BeWo cells (Wild), mock transfected BeWo cells 

(Reagent), or BeWo cells transfected with pEF1α-Twist (pEF1α-Twist).  Values for 

Twist or E-cad mRNA levels in each sample were normalized to their corresponding 

GAPDH mRNA levels.  B) Representative fluorogram of a Western blot containing 30 

µg of total protein extracted from untransfected BeWo cells (Wild), mock transfected 

BeWo cells (Reagent), or BeWo cells transfected with pEF1α-Twist (pEF1α-Twist) and 

probed with specific antibodies directed against TWIST or E-CAD.  The blots were then 

re-probed with a polyclonal antibody specific for human β-actin.  The Amersham ECL 

system was used to detect antibody bound to antigen.  The resultant fluorograms were 

scanned and the absorbance values obtained for TWIST or E-CAD were normalized to 

the absorbance values obtained for human β-actin (ACTIN) in corresponding samples.  

The results from these analyses and from three other sets of experiments were 

standardized to the values of the transfection reagent control and are represented (mean + 

S.E.M., n = 4) in the bar graphs (*, P < 0.05 compared to control). 
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Figure 3.9. Immunolocalization of TWIST, E-CAD and desmoplakin (DESMOPLAKIN) 

in BeWo cells stably transfected with pEF1α-Twist (pEF1α-Twist) or in mock transfected 

BeWo cells (Reagent). The Twist overexpressing cells (a-c) or the mock transfected cell 

(d-f) were fixed and immunostained with either a rabbit polyclonal antibody against 

TWIST (a and d), a mouse monoclonal antibody against E-CAD (b and e), or a rabbit 

polyclonal antibody against desmoplakin (c and f).  DAPI was used to detect the nuclei in 

these BeWo cell cultures.  The experiment was repeated on three independent occasions. 

Scale bar represents 50 µm. 
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Figure 3.9 
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3.3:  Discussion and summary 

 

     Twist was first identified in Drosophila melanogaster as one of the zygotic genes 

required for dorsoventral patterning and mesoderm differentiation during embryogenesis 

(Thisse et al., 1987; Gitelman, 1997). This transcription factor is recognized as an 

organizer of epithelial-mesenchymal transition (EMT) during gastrulation and regulator 

of mesoderm differentiation (Thisse et al., 1987; Leptin et al., 1990).  Twist has also been 

found to play an important role in cancer metastasis and was first reported in a breast 

cancer model, which suggested that Twist induced EMT and resulted in the promotion of 

tumour invasion (Yang et al., 2004). Similarly, disruption of E-CAD-mediated cell 

adhesion seems to be crucial in the EMT from non-invasive to invasive tumour cells 

(Comijn et al., 2001; Yang et al., 2004; Lee et al., 2006). Also, disruption of E-CAD-

mediated cell adhesion has been related to a more infiltrative growth pattern in different 

types of cancers (Sakuragi et al., 1994; Cheng et al., 1996; Bremnes et al., 2000).  In 

agreement, high Twist expression was seen to be correlated with deep myometrial 

invasion by endometrial cancer cells and is concurrent with decreased E-cad expression 

(Kyo et al., 2006).                                                      

     In my own studies, I observed a differential expression of Twist and E-cad during the 

terminal differentiation and fusion of a human trophoblastic cell line in vitro.  These 

results suggest that TWIST controls the expression of E-cad, and that together they play 

an important role in human placental development.  Importantly, the finding that Twist is 

up-regulated and E-cad is down-regulated when BeWo cells undergo differentiation and 
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fusion to become syncytia, suggests that TWIST may serve as a transcription repressor of 

E-cad during this highly regulated series of membrane-mediated processes.      

     My observation of E-cad down-regulation during Twist-regulated differentiation and 

fusion of human trophoblastic cell line in vitro is consistent with other reports that loss of 

E-cad expression is a critical process during human trophoblast differentiation (Coutifaris 

et al., 1991; Getsios et al., 2003).  For example, E-CAD has been shown to be present on 

the surface of cytotrophoblasts in situ, but not on the surface of the encompassing 

syncytiotrophoblast (Eidelman et al., 1989).  Furthermore, the loss of E-CAD function by 

function-perturbing antibodies against E-CAD disrupted the aggregation of mononucleate 

cytotrophoblasts isolated from the human term placenta, which in turn inhibited the 

formation of multinucleated syncytia in cell cultures (Coutifaris et al., 1991).  

     Primary trophoblast cultures were not used in my studies mainly because these 

samples contain heterogeneous populations of isolated cyto- and syncytial trophoblasts 

(Nasiry et al., 2006).  To circumvent this problem, I used the fusigenic BeWo 

choriocarcinoma cell line, which has long been known to respond to increased 

intracellular cAMP by differentiating into a multinucleated syncytial trophoblast (Pattillo 

and Gey, 1968; Wice et al., 1990). 

     Here, I also demonstrate that siRNA directed against Twist disrupts the formation of a 

multinucleated syncytium in BeWo cells undergoing terminal differentiation and fusion. 

My gain-of-function studies showed that heterologous Twist overexpression promotes the 

formation of multinucleated syncytia in these cell cultures.  Collectively, and since E-cad 

expression was inversely altered in response to enhanced or reduced Twist expression, 

both these studies provide further evidence that E-CAD-mediated differentiation and 
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fusion of human trophoblastic cells are regulated by Twist.  My results have also shown 

that terminal differentiation and fusion of human trophoblastic cells are accurately 

reproduced in culture at both the morphological and molecular levels. 

     Suppression of Twist expression in highly metastatic mammary carcinomas or 

prostate cancer cells inhibits their ability to invade or metastasize (Hoek et al., 2004; 

Yang et al., 2004; Kwok et al., 2005; Hosono et al., 2007).  On the other hand, elevated 

levels of Twist mRNA are associated with malignant transformation of melanoma cells, 

increase the risk for recurrence and for poor survival in epithelial ovarian carcinoma 

patients, and induce mesenchymal components and facilitate cell motility of various 

tumour cells (Kang and Massague, 2004; Yang et al., 2006; Hosono et al., 2007).  The 

major functions of E-CAD are to mediate cell-cell adhesion and to play a pivotal role in 

the formation and maintenance of many epithelial tissues (Suzuki et al., 1996).  Changes 

in cellular adhesion molecules like E-CAD are important for the invasive and metastatic 

capacity of human cancers (Takeichi M, 1993; Wijnhoven et al., 2000).  For instance, 

decreased membranous immunoreactivity of E-CAD has also been shown to predict 

lymph node metastasis in atypical carcinoids (Pelosi et al., 2005).  In contrast, increased 

cytoplasmic immunoreactivity of E-CAD has been suggested to result in loss of cell 

polarity and differentiation in pancreatic intraepithelial neoplasia (Al-Aynati et al., 2004). 

     Several studies have strongly suggested that transcription repression is a major 

mechanism leading to decreased E-cad expression (Schipper et al., 1991; Bussemakers et 

al., 1992; Brabant et al., 1993; Dorudi et al., 1993).  This commonly involves silencing 

of E-cad transcription through E-boxes in its promoter region.  In transient reporter 

assays, over-expression of Twist in human mammary epithelial cells inhibited E-cad 
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promoter activity (Yang et al., 2004).  TWIST represses transcription from the E-cad 

promoter through the E-box sequence, 5’-CANNTG-3’, which is also targeted by SNAIL 

and SIP1 (Lee et al., 2006).   

     Other ways of silencing E-cad gene expression have been recognized, including gene 

truncation mutations and loss of heterozygosity (LOH) (Yoshiura et al., 1995, Berx et al., 

1996; Huiping et al., 1999; Droufakou et al., 2001).  However, these mechanisms appear 

to be utilized in only a subset of E-cad-negative invasive lobular carcinomas, therefore 

suggesting that a transcriptional repression mechanism of the E-cad promoter by TWIST 

plays a major role in the pathogenesis of these tumours (Yang et al., 2004).  Although 

several studies have shown that promoter methylation can influence E-cad expression 

(Yoshiura et al., 1995; Xue et al., 2003; Lombaerts et al., 2006), this has not always been 

found (Tamura et al., 2000), and the mechanisms responsible for down-regulation of E-

cad may be cell type-specific.           

     The function of bHLH transcription factors like TWIST relies on the basic DNA-

binding region and the HLH structure that allows monomers to form functional dimers 

that can identify and bind to the E-box DNA motif (Massari and Murre, 2000).  The basic 

domain mediates the interaction with DNA (Elleberger et al., 1994; Ma et al., 1994) and 

bHLH proteins bind as dimers to the consensus hexanucleotide sequence E-box, 

(Ephrussi et al., 1985).  TWIST forms both homodimers (T/T) and heterodimers with 

E2A E proteins (T/E) (Connerney et al., 2006).  It has been suggested that TWIST 

heterodimers function as a transcription repressor, and that TWIST homodimers up-

regulate expression of the target gene by functioning as a transcription activator 

(Castanon et al., 2001; Connerney et al., 2006).  However, it remains to be determined if  



 91

the interaction of TWIST with these E-boxes occurs directly, via interactions with E2A 

proteins or via indirect mechanisms (Lee et al., 2006).  In Drosophila, Twist can increase 

the expression of Snail, a known repressor of E-cad transcription (Ip et al., 1992). 

However, Twist expression fails to induce Snail in human mammary epithelial cells that 

had undergone EMT (Yang et al., 2004).  This agrees with the observation that TWIST 

and SNAIL function independently in mice (Carver et al., 2001; Soo et al., 2002). 

     In summary, I have determined that Twist is capable of regulating E-CAD-mediated 

differentiation and fusion of human trophoblastic cells in vitro, and these results have 

contributed to a new understanding of TWIST’s function as a transcriptional repressor 

during terminal differentiation and fusion of human trophoblasts (Figure 3.10).  

Furthermore, my studies suggest that TWIST and E-CAD may serve as novel molecular 

markers for early detection of potential pregnancy disorders such as pre-eclampsia, 

intrauterine growth restriction (IUGR) and miscarriage.  
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Figure 3.10.  A schematic diagram of a proposed role of Twist in regulating E-cad-
mediated terminal differentiation and fusion of human trophoblastic cells.  cAMP 
upregulates TWIST levels.  TWIST down-regulates E-cad expression to mediate the 
formation of multinucleated syncytial trophoblast from mononucleate cytotrophoblasts. 
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CHAPTER 4:  TWIST REGULATES CADHERIN-MEDIATED INVASION OF 

HUMAN TROPHOBLASTIC CELLS IN VITRO 

 
4.1:  Introduction and rationale 
 
 
     Successful implantation depends on the differentiation of mononucleate 

cytotrophoblasts via two distinct and mutually exclusive pathways.  The villous 

cytotrophoblastic cells will proliferate and differentiate by fusion to form the outer 

syncytial trophoblast; or enter the extravillous pathway to form highly invasive 

extravillous cytotrophoblasts (EVTs) (Bischof and Campana, 2000).  In the extravillous 

pathway, these cells invade deeply into the underlying maternal tissues (Pijnenborg et al., 

1980).  EVTs invade the uterine stroma and superficial myometrium as individual 

mononucleate cells, penetrate the basal lamina, and replace the endothelia of uterine 

vasculature.  This allows an increase in blood supply to the placenta and ensures an 

adequate supply of oxygen and nutrients to the developing fetus, a critical step in human 

pregnancy (Aplin., 1991; Pijnenborg et al., 1983 and 1994).  Failure of this process is 

associated with clinical pathological conditions such as miscarriage, intrauterine growth 

retardation, or preeclampsia (King and Loke, 1994).  The process of human trophoblast 

invasion utilizes similar molecular mechanisms as those of tumour cell invasion, albeit 

trophoblast invasion is more tightly regulated (Lala et al., 2002). 

     The precise control of trophoblastic cell differentiation along the extravillous pathway 

has been demonstrated to occur through regulated changes in cell-cell and cell-matrix 

interactions, and the modification of distinct extracellular matrix (ECM) components 
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through proteolytic degradation and/or activation (Lala and Hamilton, 1996; MacCalman 

et al., 1998; Chakraborty et al., 2002).  

     To date, the molecular mechanisms that regulate trophoblast differentiation and 

invasion during formation and organization of the human placenta remain to be 

elucidated. TWIST, a highly conserved basic helix-loop-helix (bHLH) transcription 

factor, is known to play a key role in promoting tumour metastasis and is associated with 

potent invasiveness and poor prognosis of epithelial cancer (Thiery, 2002; Kang and 

Massague, 2004; Vernon et al., 2004; Yang et al., 2004; Kwok et al., 2005; Lee et al., 

2006).  In addition, Twist mRNA levels were found to be up-regulated in the highest 

grade of gliomas (Elias et al., 2005).  TWIST has also been shown to be a key regulator 

of N-cad expression in different types of cancer cell lines (Alexander et al., 2006; 

Rosivatz et al., 2002).  TWIST is essential for the initiation of N-cad expression in 

Drosophila (Oda et al., 1998).      

     N-CAD is a member of the superfamily of integral membrane glycoproteins that 

mediate calcium-dependent cell adhesion (Takeichi, 1995; Suzuki, 1996).  During cancer 

progression, there is an increase in expression of N-cad (Tomita et al., 2000; Derycke et 

al., 2004; Hazan et al., 2004).  Other studies have shown a functional role for N-CAD in 

promoting an invasive phenotype.  For example, exogenous expression of N-cad in breast 

epithelial cells and squamous epithelial cells results in a more invasive phenotype (Islam 

et al., 1996; Nieman et al., 2000).  To date, N-cad has received significant attention in 

cancer studies (Hazan et al., 2000).  

     Based on these observations, I hypothesize that Twist plays a key role in trophoblastic 

cell invasion through regulation of N-cad expression during human pregnancy.  In my 
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studies, I first determined the expression levels of Twist and N-cad in the villi of first 

trimester human placentas, in cultures of highly invasive EVTs, and in two 

choriocarcinoma cell lines (JEG-3 and BeWo) by using semi-quantitative RT-PCR and 

Western blotting.  Next, by using a Matrigel invasion assays, I determined the ability of 

interleukin (IL)-1β and transforming growth factor (TGF)-β1, two cytokines that are 

spatiotemporally expressed at the maternal-fetal interface (Graham et al., 1991 and 

1993), to regulate trophoblastic cell invasion and Twist expression in these cells.   Loss-

of-function studies using siRNA for Twist were employed to determine the role of Twist 

or N-cad in trophoblastic cell invasion.  Finally, by using a function-perturbing antibody 

directed against N-CAD, the role of N-cad  in regulating the invasive phenotype of these 

cells was assessed. 
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4.2:  Results 

 
 
4.2.1:  Determining the levels of Twist and N-cad mRNA and protein levels in the 

human placenta, highly invasive EVTs, and poorly invasive trophoblastic cell lines. 

 

     Semi-quantitative RT-PCR and Western blot analysis show that Twist was expressed 

in the first trimester human placenta and highly expressed in EVTs propagated from first 

trimester human placenta (refer to Section 2.2 in Materials and Methods for preparation 

details) and HTR-8/SVneo, a human EVT cell line.  In contrast, Twist mRNA and 

proteins levels were significantly lower in poorly invasive JEG-3 and BeWo 

trophoblastic cell lines (Figure 4.1A and B).   

     I then determined the expression of N-cad in human placental tissue, EVTs, and 

trophoblastic cell lines.  N-cad expression was absent in the first trimester human 

placenta.  It was barely detectable at the mRNA level and absent at the protein level in 

poorly invasive JEG-3 and BeWo trophoblastic cell lines.  In contrast, N-cad mRNA and 

protein levels were higher significantly in EVTs and HTR-8/SVneo cells (Figure 4.2A 

and B). 

 

4.2.2: IL-1β and TGF-β1 respectively promote and restrain the invasive ability of 

EVT primary cultures. 

      
     Previous studies have shown that IL-1β and TGF-β1 play major regulatory roles in the 

establishment of pregnancy (Graham and Lala, 1991; Chakraborty et al., 2002).  In view 
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of these observations, I examined the ability of these two cytokines to regulate the 

invasive ability of EVT primary cultures.   

     My results show that the addition of a vehicle (ethanol) to the culture medium of 

EVTs had no significant effect on the invasiveness of these cells,  but a significant 

increase in EVT invasion was observed when these cells were treated with IL-1β (Figure 

4.3A).  In contrast, TGF-β1 significantly reduced the invasive ability of these cells 

(Figure 4.3B).   

     I also examined the effect of TGF-β1 on HTR-8/SVneo cell invasion, but found  that 

these cells did not response at all to TGF-β1 treatment (data not shown). 

 

4.2.3: Time-dependent effects of IL-1β and TGF-β1 on Twist mRNA and protein 

levels in EVTs 

 

     Significant increases in Twist mRNA and protein levels (P < 0.05) were detected in 

primary EVTs cultured in the presence of 100 IU IL-1β for 24 h that were maintained or 

even slightly elevated after 48 h culture (Figure 4.4A and B).  In contrast, the addition of 

TGF-β1 to the culture medium of these primary cells caused a significant decrease in 

Twist mRNA and protein levels after 24 h.  Levels of Twist mRNA and protein 

expression continued to decrease until 48 h after treatment with this cytokine (Figure 

4.5A and B). 
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4.2.4: Concentration-dependent effects of IL-1β and TGF-β1 on Twist mRNA and 

protein levels in EVTs 

 

     A significant increase (P < 0.05) in Twist mRNA and protein levels was detected in 

primary EVTs cultured for 24 h in the presence of 100 and 1000 IU IL-1β, with 1000 IU 

of IL-1β having the greatest effect (Figure 4.6A and B). 

      Twist mRNA and protein expression levels were significantly decreased in EVTs 

cultured in the presence of TGF-β1 (5 and 10 ng/ml) for 24 h, but not at lower 

concentrations of this cytokine utilized with these primary cell cultures (Figure 4.7A and 

B).   

 

4.2.5: Decreased Twist down-regulates N-cad expression and reduces the invasive 

capacity of HTR-8/SVneo cells 

 
     I utilized siRNA complementary to human Twist mRNA to decrease Twist expression 

in cultures of the HTR-8/SVneo EVT cell line.  As a control, HTR-8/SVneo cells were 

transfected with a non-silencing (NS) scrambled siRNA.  Transfection of HTR-8/SVneo 

cells with Twist siRNA significantly decreased Twist (Figure 4.8A and B) and N-cad 

(Figure 4.9A and B) mRNA and protein levels in these cell cultures after 36 h when 

compared to the control treatments.  

     I next determined whether a reduction in Twist expression in HTR-8/SVneo resulted 

in a concomitant decrease in their invasive capacity.  I performed invasion assays using  

Matrigel-coated Transwell chambers. My results show that the numbers of cells that 

penetrated the Matrigel barrier and appeared on the underside of the Millipore filter were 
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significantly lower in cultures of HTR-8/SVneo transfected with Twist siRNA than in 

cultures transfected with scrambled control siRNA (Figure 4.10). 

 
4.2.6:  Loss of N-cad reduces the invasive capacity of HTR-8/SVneo cells 

 
     In order to directly reduce the N-cad mRNA and protein levels in HTR-8/SVneo cells, 

these cells were transfected with siRNA specific for N-cad.  To assess siRNA efficacy, 

real-time RT-PCR and Western blot analysis were performed.  The results demonstrated 

a significant reduction in N-cad mRNA and protein levels (Figure 4.11A and B) 

compared to HTR-8/SVneo cells transfected with a non-silencing scrambled siRNA.   

     I examined whether a reduction in N-cad levels in HTR-8/SVneo cells resulted in a 

concomitant decrease in their invasive capacity.  The number of cells that penetrated the 

Matrigel and reached the underlying side of the filter of the Transwell invasion chambers 

was significantly lower in cultures of HTR-8/SVneo cells transfected with N-cad siRNA 

versus cell cultures that were transfected with non-silencing scrambled siRNA (Figure 

4.12).  

     To determine whether the reduction in the invasive capacity of HTR-8/SVneo cells 

transfected with N-cad siRNA was potentially caused by a loss of N-CAD cell-cell 

adhesion function, HTR-8/SVneo cells were cultured in the presence of a N-CAD 

function-perturbing antibody that binds to the N-CAD extracellular domain.  The 

invasive ability of the antibody-treated cells was then assayed as previously described.  A 

pan-cadherin antibody that binds to the N-CAD intracellular domain was used as the 

control.  My results showed that an N-CAD extracellular domain-specific antibody-

mediated perturbation of endogenous N-CAD function led to a significantly less invasive 
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phenotype in HTR-8/SVneo cells, when compared to cells cultured with the control pan-

cadherin antibody (Figure 4.13). 
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Figure 4.1. Twist mRNA and protein levels in human placenta, highly invasive EVTs, 

and poorly invasive trophoblastic cell lines. A) Semi-quantitative RT-PCR analysis of 

Twist mRNA levels in first trimester placenta, EVTs, HTR-8/SVneo cells, JEG-3 or 

BeWo cells (lanes 1-5 respectively).  A 100 bp ladder is shown in lane M (marker) with 

the size of the target cDNA indicated at the right.  The photomicrographs were scanned 

using a laser densitometer.  The absorbance values for Twist mRNA were then 

standardized to the absorbance value obtained for GAPDH mRNA levels.  The 

experiment was repeated on three independent occasions.  The results are presented 

(mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to EVT control).  B)  

Representative fluorogram of a Western blot containing 30 µg of total protein extract 

prepared from a first trimester placenta, EVTs, HTR-8/SVneo cells, JEG-3 cells or BeWo 

cells (lanes 1-5 respectively).  Western blot analysis was performed using a polyclonal 

antibody against TWIST.  The resultant fluorograms were scanned and the absorbance 

values obtained for TWIST protein levels were normalized to the absorbance values 

obtained for human β-actin (ACTIN) in the corresponding samples.  The experiment was 

repeated on three independent occasions.  The results are presented (mean + S.E.M., n = 

4) in the bar graph (*, P < 0.05, compared to EVT control). 
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Figure 4.1 
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Figure 4.2. N-cad mRNA and protein levels in human placenta, highly invasive EVTs, 

and poorly invasive trophoblastic cell lines.  A)  Semi-quantitative RT-PCR analysis of 

N-cad mRNA levels in first trimester placenta, EVTs, HTR-8/SVneo cells, JEG-3 or 

BeWo cells (lanes 1-5 respectively).  A 100 bp ladder is shown in lane M (marker) with 

the size of the target cDNA indicated at the right.  The photomicrographs were scanned 

using a laser densitometer.  The absorbance values for N-cad mRNA were then 

standardized to the absorbance value obtained for GAPDH mRNA levels.  The 

experiment was repeated on three independent occasions.  The results are presented 

(mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to EVT control).  B) 

Representative fluorogram of a Western blot containing 30 µg of total protein extracts 

prepared from first trimester placenta, EVTs, HTR-8/SVneo cells, JEG-3 cells or BeWo 

cells (lanes 1-5 respectively).  Western blot analysis was performed using a monoclonal 

antibody against N-CAD.  The resultant fluorograms were scanned and the absorbance 

values for N-CAD were normalized to the absorbance values obtained for human β-actin 

(ACTIN) in the corresponding samples.  The experiment was repeated on three 

independent occasions.  The results are presented (mean + S.E.M., n = 4) in the bar graph 

(*, P < 0.05, compared to EVT control). 
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Figure 4.2 
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Figure 4.3.  Regulatory effects of IL-1β and TGF-β1 on EVT invasion.  EVTs were either 

treated with IL-1β (A) or TGF-β1 (B) for 24 h.  The cells were then placed in the upper 

well of Transwell invasion chambers.  After a further 24 h of incubation, the porous 

membranes from the bottom of the Transwell were removed and fixed, stained, and 

mounted upside-down on a glass microscope slide.  Invasion was determined by counting 

the number of cells that had invaded through the thin pre-coated layer of Matrigel on the 

top of the porous (8 µm) membrane and migrated through the pores to the underside of 

the membrane.  Cells were visualized using a light microscope, and counted in three 

randomly selected fields of each membrane.  Each cell line was plated in triplicate wells, 

and the experiment was repeated on three independent occasions.  The results are 

presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to control). 
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Figure 4.3 
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Figure 4.4. Time-dependent effects of IL-1β on Twist mRNA and protein levels in EVTs.  

A) Semi-quantitative RT-PCR analysis of Twist mRNA levels in EVTs cultured in the 

presence of 100IU/ml IL-1β for 0, 12, 24, or 48 h (lanes 1-4, respectively).  A 100 bp 

ladder is shown in lane M (marker) with the size of the target cDNA indicated at the 

right.  A representative photomicrograph of the ethidium bromide-stained gels is 

presented.  Gels generated from this and three other independent experiments were 

analysed by densitometry and subjected to statistical analysis.  The data are represented 

(mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 h control).  B) 

Representative fluorogram of a Western blot containing 30 µg of total protein extracted 

from corresponding EVTs cultures treated with 100IU/ml IL-1β for 0, 12, 24, or 48 h 

(lanes 1-4, respectively) and probed with a rabbit polyclonal antibody against TWIST or 

human β-actin.  The Amersham enhanced chemiluminescence (ECL) system was used to 

detect antibody bound to antigen. The resultant fluorograms were scanned and the 

absorbance values obtained for TWIST were normalized to the absorbance values 

obtained for human β-actin (ACTIN) in the samples.  The results derived from this 

analysis and from three other studies were standardized to the untreated control and are 

represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 h 

control).  
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Figure 4.4 
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Figure 4.5. Time-dependent effects of TGF-β1 on Twist mRNA and protein levels in 

EVTs.  A) Semi-quantitative RT-PCR analysis of Twist mRNA levels in EVTs cultured 

in the presence of 5 ng/ml TGF-β1 for 0, 6, 12, 24, or 48 h (lanes 1-5, respectively).  A 

100 bp ladder is shown in lane M (marker) with the size of the target cDNA indicated at 

the right.  A representative photomicrograph of the ethidium bromide-stained gels is 

presented.  Gels generated from this and three other independent experiments were 

analysed by densitometry and subjected to statistical analysis.  The data are represented 

(mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 h control).  B)  

Representative fluorogram of a Western blot containing 30 µg of total protein extracted 

from corresponding EVTs cultures treated with 5 ng/ml TGF-β1 for 0, 6, 12, 24, or 48 h 

(lanes 1-5, respectively) and probed with a rabbit polyclonal antibody against TWIST or 

human β-actin.  The Amersham enhanced chemiluminescence (ECL) system was used to 

detect antibody bound to antigen. The resultant fluorograms were scanned and the 

absorbance values obtained for TWIST were normalized to the absorbance values 

obtained for human β-actin (ACTIN) in the corresponding samples.  The results derived 

from this analysis and from three other studies were standardized to the untreated control 

and are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 h 

control).  
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Figure 4.5 
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Figure 4.6. Concentration-dependent effects of IL-1β on Twist mRNA and protein levels 

in EVTs. A) Semi-quantitative RT-PCR analysis of Twist mRNA in EVTs cultured in the 

presence of IL-1β (0, 1, 10, 100 or 1000 IU/ml; lanes 1-5, respectively) for 24 h.  A 100 

bp ladder is shown in lane M (marker) with the size of the target cDNA indicated at the 

right.  Representative photomicrographs of the resultant ethidium bromide-stained gels 

are presented.  Gels generated from this and three other independent experiments were 

analysed by densitometry and subjected to statistical analysis.  The data are represented 

(mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 IU/ml control).  B)  

Representative fluorogram of a Western blot containing 30 µg of total protein extracted 

from corresponding EVTs cultures treated with IL-1β (0, 1, 10, 100 or 1000 IU/ml; lanes 

1-5, respectively) for 24 h and probed with rabbit polyclonal antibodies against TWIST 

or human β-actin.  The Amersham enhanced chemiluminescence (ECL) system was used 

to detect antibody bound to antigen.  The resultant fluorograms were scanned and the 

absorbance values obtained for TWIST were normalized to the absorbance values 

obtained for human β-actin (ACTIN) in the corresponding samples.  The results derived 

from this analysis and from three other studies were standardized to the untreated control 

and are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 

IU/ml control).  
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Figure 4.6 
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Figure 4.7. Concentration-dependent effects of TGF-β1 on Twist mRNA and protein 

expression levels in EVTs.  A) Semi-quantitative RT-PCR analysis of Twist mRNA in 

EVTs cultured in the presence of TGF-β1 (0, 0.01, 0.1, 1, 5 or 10 ng/ml; lanes 1-6, 

respectively) for 24 h.  A 100 bp ladder is shown in lane M (marker) with the size of the 

target cDNA indicated at the right. Representative photomicrographs of the resultant 

ethidium bromide-stained gels are presented.  Gels generated from this and three other 

independent experiments were analysed by densitometry and subjected to statistical 

analysis.  The data are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 

compared to 0 ng/ml control) in the graph.  B) Representative fluorogram of a Western 

blot containing 30 µg of total protein extracted from corresponding EVTs cultures treated 

with TGF-β1 (0, 0.01, 0.1, 1, 5 or 10 ng/ml; lanes 1-6, respectively) for 24 h and probed 

with rabbit polyclonal antibodies against TWIST or human β-actin.  The Amersham 

enhanced chemiluminescence (ECL) system was used to detect antibody bound to 

antigen.  The resultant fluorograms were scanned and the absorbance values obtained for 

TWIST were normalized to the absorbance values obtained for human β-actin (ACTIN) 

in the corresponding samples.  The results derived from this analysis and from three other 

studies were standardized to the untreated control and are represented (mean + S.E.M., n 

= 4) in the bar graph (*, P < 0.05 compared to 0 ng/ml control).  

 

 

 

 

 



 114

Figure 4.7 
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Figure 4.8. Effects of Twist siRNA on Twist mRNA and protein levels in HTR-8/SVneo 

cell cultures.  A)  Semi-quantitative RT-PCR analysis of Twist mRNA levels in cells 

transfected with a scrambled control siRNA (lane 1) or siRNA specific for Twist (lane 2) 

for 36 h.  A 100 bp ladder is shown in lane M (marker) with the size of the target cDNA 

indicated at the right. Values for Twist mRNA levels in each sample were normalized to 

the corresponding GAPDH mRNA levels.  The data are represented (mean + S.E.M., n = 

4) in the bar graph (*, P < 0.05 compared to scrambled control siRNA). B) 

Representative fluorogram of a Western blot containing 30 µg of total protein extracted 

from HTR-8/SVneo cells cultured with a scrambled control siRNA (lane 1) or siRNA 

specific for Twist (lane 2) for 36 h and probed with rabbit polyclonal antibodies against 

TWIST or human β-actin.  The Amersham ECL system was used to detect antibody 

bound to antigen.  The resultant fluorograms were scanned and the absorbance values 

obtained for TWIST protein levels were normalized to the absorbance values obtained for 

human β-actin (ACTIN) in the corresponding samples.  The results derived from this 

analysis and from three other studies were standardized to the scrambled control siRNA 

and are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 

scrambled control siRNA).  
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Figure 4.8 
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Figure 4.9. Effects of Twist siRNA on N-cad mRNA and protein levels in HTR-8/SVneo 

cell cultures.  A)  Semi-quantitative RT-PCR analysis of N-cad mRNA levels in cells 

transfected with a scrambled control siRNA (lane 1) or siRNA specific for Twist (lane 2) 

for 36 h.  A 100 bp ladder is shown in lane M (marker) with the size of the target cDNA 

indicated at the right. Values for N-cad mRNA levels in each sample were normalized to 

the corresponding GAPDH mRNA levels.   The data are represented (mean + S.E.M., n = 

4) in the bar graph (*, P < 0.05 compared to scrambled control siRNA).  B) 

Representative fluorogram of a Western blot containing 30 µg of total protein extracted 

from HTR-8/SVneo cells transfected with a scrambled control siRNA (lane 1) or siRNA 

specific for TWIST (lane 2) for 36 h and probed with mouse monoclonal antibody against 

N-CAD or rabbit polyclonal antibody against human β-actin.  The Amersham ECL 

system was used to detect antibody bound to antigen.   The resultant fluorograms were 

scanned and the absorbance values obtained for N-CAD protein levels were normalized 

to the absorbance values obtained for human β-actin (ACTIN) in the corresponding 

samples.  The results derived from this analysis and from three other studies were 

standardized to the scrambled control siRNA and are represented (mean + S.E.M., n = 4) 

in the bar graph (*, P < 0.05 compared to scrambled control siRNA).  
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Figure 4.9 
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Figure 4.10.  Reduced Twist expression decreases the invasive capacity of HTR-8/SVneo 

cells.  HTR-8/SVneo cells were transfected with a scrambled control siRNA (lane 1) or 

siRNA specific for Twist (lane 2) for 24 h.  The cells were then placed in the upper wells 

of Transwell invasion chambers.  After a further 24 h of culture, the porous membranes 

from the bottom of the Transwells were removed and fixed, stained and mounted upside-

down on a glass microscope slide.  Invasion was determined by counting the number of 

cells that had invaded through the thin pre-coated layer of Matrigel on the top of the 

porous (8 µm) membrane and migrated through the pores to the underside of the 

membrane.  Cells were visualized using a light microscope, and counted in three 

randomly selected fields of each membrane.  Each cell line was plated in triplicate wells, 

and with the experiment was repeated on three independent occasions.  The results are 

presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to HTR-

8/SVneo scrambled control siRNA). 

 

 

 

 

 

 

 

 

 

 



 120

Figure 4.10 
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Figure 4.11.  Effects of N-cad siRNA on N-cad mRNA and protein levels in HTR-

8/SVneo cell cultures. A) Real-time PCR analysis of N-cad mRNA levels transfected 

with a scrambled control siRNA (lane 1) or siRNA specific for N-cad (lane 2) for 36 h.  

Values for the levels of the N-cad mRNA levels in each sample were normalized to the 

corresponding GAPDH mRNA levels.  The data are represented (mean + S.E.M., n = 4) 

in the bar graph (*, P < 0.05 compared to scrambled control siRNA).  B) Representative 

fluorogram of a Western blot containing total protein extracted from HTR-8/SVneo cells 

transfected with a scrambled control siRNA (lane 1) or siRNA specific for N-cad (lane 2) 

for 36 h and probed with mouse monoclonal antibody directed against N-CAD or rabbit 

polyclonal antibody against human β-actin. The Amersham ECL system was used to 

detect antibody bound to antigen.  The resultant fluorograms were scanned and the 

absorbance values obtained for N-CAD protein levels were normalized to the absorbance 

values obtained for human β-actin (ACTIN) in the corresponding samples.  The results 

derived from both these analyses and from three other sets of experiments were 

standardized to the scrambled control siRNA and are represented (mean + SEM., n = 4) 

in the bar graphs (*, P < 0.05 compared to scrambled control siRNA). 
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Figure 4.11 
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Figure 4.12.  Reduced N-cad levels decrease the invasive capacity of HTR-8/SVneo cells.  

HTR-8/SVneo cells were transfected with a scrambled control siRNA (lane 1) or siRNA 

specific for N-cad (lane 2) for 24 h.  The cells were then placed in the upper wells of 

Transwell invasion chambers.  After a further 24 h of incubation, the porous membranes 

from the bottom of the Transwells were removed and fixed, stained and mounted upside-

down on a glass microscope slide.  Invasion was determined by counting the number of 

cells that had invaded through the thin pre-coated layer of Matrigel on the top of the 

porous (8 µm) membrane and migrated through the pores to the underside of the 

membrane.  Cells were visualized using a light microscope, and were counted in three 

randomly selected fields of each membrane.  Each cell line was plated in triplicate wells, 

and the experiment was repeated on three independent occasions.  The results are 

presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to scrambled 

control siRNA). 
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Figure 4.12 
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Figure 4.13.  Disruption of N-CAD function decreases the invasive ability of HTR-

8/SVneo cells. HTR-8/SVneo cells were treated with a control pan-cadherin antibody 

(lane 1) or an N-CAD function-perturbing antibody (lane 2) for 24 h.  The cells were then 

placed in the upper wells of Transwell invasion chambers.  After a further 24 h of 

incubation, the porous membranes from the bottom of the Transwells were removed and 

fixed, stained, and mounted upside-down on a glass microscope slide.  Invasion was 

determined by counting the number of cells that had invaded through the thin pre-coated 

layer of Matrigel on the top of the porous (8 µm) membrane and migrated through the 

pores to the underside of the membrane.  Cells were visualized using a light microscope, 

and were counted in three randomly selected fields of each membrane.  Each cell line was 

plated in triplicate wells, and the experiment was repeated on three independent 

occasions.  The results are presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, 

compared to control pan-cadherin (PAN-CAD) antibody). 
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Figure 4.13 
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4.3: Discussion and summary 

 

     My studies demonstrate that Twist and N-cad are highly expressed in highly invasive 

EVTs propagated from first trimester human placenta and the HTR-8 EVT cell line but 

are not readily detectable in the poorly invasive JEG-3 and BeWo cell lines.  In addition, 

IL-1β and TGF-β1 were found to have differential effects on Twist mRNA and protein 

levels in primary cultures of EVTs, and this suggests that these molecules play important 

roles in human trophoblastic cell invasion. 

     Extravillous trophoblasts (EVTs) can be divided into two populations: 1) interstitial 

cytotrophoblasts that will invade into the decidual stroma and superficial myometrium; 

and 2) endovascular cytotrophoblasts which will invade into the lumen of the spiral 

arteries (Pijnenborg et al., 1981; Pijnenborg 1983; Roberston et al., 1986).  In order for 

the human placenta to properly form, the trophoblast must invade into the uterus, which 

involves attachment of these cells to the extracellular matrix (ECM), degradation of the 

matrix, and migration.  The spiral arteries of the placental bed also have to undergo a 

certain degree of alteration.  The interaction between the invasive cytotrophoblast and the 

spiral artery vessel wall is the major step in achieving these physiological modifications 

(Lyall, 2006).  Trophoblast invasion is controlled by cell adhesion molecules including 

cadherins, which are expressed on the surface of cytotrophoblasts that interact with the 

ECM of the decidua (Kreis et al., 1993; Alberts et al., 1994).  

     The cadherin N-CAD has been shown to have the ability to mediate homotypic cell 

aggregation as well as the ability to form heterotypic adhesions in various cell types 

including stromal fibroblasts, vascular endothelial cells, smooth muscle cells, and 
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myofibroblasts (Hazan et al., 1997; Tran et al., 1999; Li et al., 2001; De Wever et al., 

2003).  For instance, by increasing the interaction with the surrounding stroma, N-CAD is 

able to promote invasion and metastasis (Hazan et al., 1997).  In addition, the 

transcription factor Twist has been reported to increase vascular volume and vascular 

permeability by increasing vascular endothelial growth factor (VEGF) synthesis, and 

inducing in vivo angiogenesis (Mironchik et al., 2005). 

      In my studies, when I used a siRNA strategy targeting Twist in human trophoblastic 

cells, the invasive ability of these cells was significantly reduced.  Others have also 

reported that inactivation of Twist suppressed the migration and invasion abilities of 

androgen-independent prostate cancer cells (Kwok et al., 2005).  In my studies, when the 

invasive ability of trophoblastic cells was reduced in the presence of Twist siRNA, I also 

observed decreased N-cad mRNA and protein levels in these cells.  This suggests that 

Twist regulates human trophoblast invasion via N-cad.  Furthermore, my results show 

that by directly limiting N-cad expression in a Twist-independent manner (i.e. with N-

cad-directed siRNA) in human trophoblastic cells, the invasive ability of these cells was 

significantly reduced.      

     My loss-of-function studies in which either Twist or N-cad was targeted have clearly 

shown a concomitant reduction in the invasive ability of human trophoblastic cells.  

Furthermore, by blocking the extracellular domain of N-CAD with a function-perturbing 

antibody, the invasive ability of these trophoblastic cells was reduced.  This novel finding 

further strengthens the growing consensus that trophoblast invasion utilizes similar 

molecular mechanisms to those of tumour cell invasion. 



 129

     As previously mentioned, decreased Twist expression, which is involved in cancer 

metastasis, was found to be associated with down-regulation of N-cad in a variety of 

cancer tumours such as osteosarcomas (Guo et al., 2007).  However, in my study, I could 

not determine whether TWIST interacts with N-cad directly or indirectly.  In a prostate 

cell line, TWIST did not show an increase in promoter-binding activity, but was found to 

regulate N-cad expression through its direct interaction with an E-box regulatory element 

located within the first intron of the N-cad gene (Alexander et al., 2006).   

     Rosivatz et al. (2004) suggest that E-cad transcriptional repressors may not play a 

major role in colon cancer pathogenesis, and other studies have not always found a 

correlation between reduced E-CAD immunohistochemistry and tumour progression.  It 

seems that N-cad induced invasion activities can even overcome the E-cad tumour 

suppressive function (Hazan et al., 1997; Nieman et al., 1999).  In my preliminary data, I 

observed that when I silenced Twist expression in human trophoblastic cells, E-cad 

expression levels remain unchanged (data not shown).  This requires further validation, 

but indicates that the “cadherin switch” varies in a tumour or tissue-specific manner. 

     Collectively, my results have clearly identified TWIST and its associated protein, N-

CAD, to be key molecules in human EVT invasion (Figure 3.14).  To my knowledge, this 

is the first study to demonstrate the regulation of trophoblast invasion by Twist through 

its role in the induction of N-cad gene expression.  TWIST and N-CAD may serve as 

useful diagnostic and prognostic tools or novel therapeutic targets for human 

trophoblastic diseases such as miscarriage, intrauterine growth restriction (IUGR), or 

preeclampsia.  
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Figure 4.14.  A schematic diagram of a proposed role of Twist in regulating N-cad-
mediated differentiation of human trophoblastic cells.  Silencing Twist expressing by 
siRNA stategy reduces N-cad expression level and reduces the invasion ability of human 
trophoblastic cells. 
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CHAPTER 5: A KEY ROLE FOR RUNX2 IN HUMAN TROPHOBLAST 

INVASION. 

 
5.1:  Introduction and rationale 
 

     The trophoblastic cells form the outer layer of the blastocyst and play an essential role 

in implantation and placentation during human pregnancy.  The cytotrophoblast stem 

cells are specialized epithelial cells of the placenta which can undergo two differentiation 

pathways (Zhou et al., 1997).  In one pathway, the cytotrophoblast cells fuse to form 

multinucleated syncytial trophoblast cells, which are involved in maternal-fetal 

exchanges and placental endocrine functions.  In the other pathway, the cytotrophoblasts 

differentiate into the invasive extravillous cytotrophoblast (EVT) cells.  These EVT cells 

invade the maternal uterine wall and its blood vessels to establish the flow of oxygenated 

blood to the placenta (Aplin et al., 1991).  Proper trophoblast invasion is critical for a 

healthy pregnancy, and insufficient invasion is associated with preeclampsia, intrauterine 

growth restriction and recurrent miscarriage (Goldman-Wohl and Yagel, 2002).       

     Cells at the maternal-fetal interface are exposed to numerous cytokines, growth factors 

and hormones that play critical roles in mediating the processes required for cell invasion 

(Chakraborty et al., 2002).  The processes required for trophoblast invasion include 

degradation and remodelling of the extracellular matrix (ECM) components, and 

regulated changes in cell-cell and cell-matrix interactions (MacCalman et al., 1998, 

Chakraborty et al., 2002; Cohen et al., 2006).   

     The RUNX proteins (runt-related transcription factor) are a family of transcription 

factors that contain a DNA-binding runt domain (Ito, 1999).  The Runx2 gene (also 
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known as PEBP2α/AML3/CBFA1) is essential for osteoblast development and proper 

bone formation (Otto et al., 1997).  In cancer cells, Runx2 is capable of activating the 

expression of adhesion proteins, matrix metalloproteinases (MMPs) and angiogenic 

factors known to be associated with invasive properties of metastatic cancer cells (Pratap 

et al., 2006).  

     Interleukin-1β (IL-1β) is a cytokine that plays a major regulatory role in the 

establishment of pregnancy (Salamonsen et al., 2000, 2003; Fazleabas et al., 2004).  In 

particular, IL-1β has been shown to increase the invasiveness of primary cultures of 

trophoblastic cells (Librach et al., 1994; Simon et al., 1994; Karmakar and Das, 2002).  

Conversely, another cytokine, transforming growth factor-β1 (TGF-β1) is highly 

expressed in both fetal and maternal cellular compartments of the term human placenta 

and reduces trophoblastic cell invasion (Lala and Graham, 1990; Graham and Lala, 1991, 

1992; Godkin and Dore, 1998), TGF-β1 also plays a key regulatory role in placenta 

development and function (Graham and Lala, 1991).  Nevertheless, the precise 

mechanisms that regulate trophoblast invasion are not fully understood. 

     Cadherins play an important role in embryogenesis.  The neural cell adhesion 

molecule, N-cadherin (N-CAD), serves as a key molecule during gastrulation and neural 

crest development.  In previous studies, I have identified that N-cad plays a role in human 

trophoblastic cell invasion.  Furthermore, in cancer, the expression of N-cad in epithelial 

cells alters cell morphology to a fibroblastic phenotype, enhancing their motility and 

invasive potential (Derycke and Bracke, 2004).  Studies have shown that N-cad plays 

critical roles in the invasive properties of various cancer cell types, such as those of the 
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colon, breast and pancreas (Nieman et al., 1999; Nakajima et al., 2003; Rieger-Christ et 

al., 2004).  

     In view of the above observations, I hypothesized that Runx2 expression plays a key 

role in regulating human trophoblastic cell invasion by modulating N-cad expression.  In 

this study, by using semi-quantitative RT-PCR and Western blotting, I have examined 

Runx2 mRNA and protein levels in human placental tissues and cells.  Furthermore, I 

have examined the ability of IL-1β and TGF-β1 to regulate Runx2 mRNA and protein 

expression levels in primary cultures of EVTs.  By using the Matrigel invasion assay, I 

have also identified a role for Runx2 in human trophoblastic cell invasion through 

silencing Runx2 expression using a siRNA strategy.  Finally, I determined whether N-cad 

can be regulated by Runx-2 in human trophoblastic cell invasion. 
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5.2:  Results 
 
 
 
5.2.1:  Runx2 is expressed in human placenta, highly invasive EVTs, and poorly 

invasive trophoblastic cell lines. 

 

     Prior to these studies, nothing was known about the expression of Runx2 in the human 

placenta.  Semi-quantitative RT-PCR and Western blot experiments revealed the 

presence of Runx2 mRNA and protein in first trimester human placenta. Runx2 mRNA 

and protein were most abundant in primary EVTs and HTR-8/SVneo EVT cells but were 

present in very low amounts in JEG-3 and BeWo cells (Figure 5.1A and B). 

 

5.2.2: Time-dependent effects of IL-1β on Runx2 mRNA and protein levels in 

human EVTs 

 

     IL-1β (100 IU/ml) treatment resulted in a significant increase in Runx2 mRNA levels 

in primary EVTs after 24 h of culture, with maximum levels being detected in cells 

cultured in the presence of this cytokine for 48 h (Figure 5.2A).  Treatment with 100 

IU/ml IL-1β for 24 h induced an approximately 1.4-fold increase in Runx2 mRNA, while 

the same treatment for 48 h induced approximately a 1.5-fold increase.  In 

correspondence with the fold-increases in mRNA, RUNX2 protein levels in EVT cultures 

increased approximately 1.6-fold by treatment with 100 IU/ml IL-1β for 24 h, and 

increased approximately 1.8-fold upon treatment for 48 h (Figure 5.2B). 
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5.2.3:  Time-dependent effects of TGF-β1 on Runx2 mRNA and protein levels in 

human EVTs 

 

A significant decrease in Runx2 mRNA levels was detected in EVTs cultured in the 

presence of 5 ng/ml TGF-β1 for 24 h and 48 h (Figure 5.3A).  Treatment with 5 ng/ml 

TGF-β1 for 24 h induced approximately a 30% decrease in Runx2 mRNA, while the 

same treatment for 48 h induced an approximately 35% decrease in these primary cell 

cultures.  In agreement with the results obtained using semi-quantitative RT-PCR, 

RUNX2 protein levels decreased approximately 30% upon treatment with 5 ng/ml TGF-

β1 for 24 h, and approximately 35% after the same treatment for 48 h (Figure 5.3B). 

 

5.2.4:  Concentration-dependent effects of IL-1β on Runx2 mRNA and protein levels 

in human EVTs 

 

     Increasing concentrations of IL-1β increased the Runx2 mRNA levels present in 

primary cultures of human EVTs in a concentration-dependent manner (Figure 5.4A).  

However, significant increases in Runx2 mRNA levels were only observed in EVTs 

treated with higher concentrations of IL-1β (10, 100 or 1000 IU/ml) in these studies.  IL-

1β at 10 IU/ml induced approximately a 1.3-fold increase in Runx2 mRNA levels, while 

100 and 1000 IU/ml induced approximately 1.5 and 1.7-fold increases, respectively. 

     In agreement with the results obtained using semi-quantitative RT-PCR, IL-1β 

increased RUNX2 protein levels in EVT cultures in a concentration-dependent manner 

(Figure 5.4B).  In correspondence with the fold-increases in mRNA, RUNX2 protein 
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levels were increased 1.4-fold by 10 IU/ml of IL-1β, 1.6-fold by 100 IU/ml of IL-1β and 

1.8-fold by 1000 IU/ml of IL-1β. 

 

5.2.5:  Concentration-dependent effects of TGF-β1 on Runx2 mRNA and protein 

levels in human EVTs 

 

     TGF-β1 decreased Runx2 mRNA levels in primary EVTs in a concentration-

dependent manner.  A significant decrease in Runx2 mRNA was observed only in EVTs 

treated with the highest concentrations of TGF-β1 (1 or 10 ng/ml) (Figure 5.5A).  TGF-

β1 at 1 ng/ml induced a 20% decrease in Runx2 mRNA, while treatment with 10 ng/ml 

TGF-β1 resulted in a 30% decrease in Runx2 mRNA.  TGF-β1 treatment also reduced 

RUNX2 protein levels in primary cultures of EVTs in a concentration-dependent manner 

(Figure 5.5B).  In accordance with the fold-decreases in mRNA, RUNX2 protein levels 

were decreased 25% by 5 or 10 ng/ml of TGF-β1. 

 

5.2.6:  Attenuation of cytokine-modulated Runx2 mRNA and protein levels in EVTs 

using neutralizing antibodies directed against IL-1β or TGF-β1  

    
     Function-perturbing monoclonal antibodies directed against either IL-1β or TGF-β1 

had no significant effect on Runx2 mRNA and protein levels in my primary EVTs after 

24 h of culture (data not shown). However, IL-1β-mediated increases in the Runx2 

mRNA and protein levels in these primary cell cultures were inhibited by the addition of 

an anti-IL-1β neutralizing antibody to the culture medium for 24 h.  IL-1β at 100 IU/ml 

together with anti-IL-1β antibody at 1 µg/ml induced approximately a 26% decrease in 
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Runx2 mRNA compared to the control treatment (IL-1β at 100IU/ml), while IL-1β at 100 

IU/ml together with anti-IL-1β antibody at 2 µg/ml induced approximately a 35% 

decrease in Runx2 mRNA compared to the control treatment (IL-1β at 100IU/ml) (Figure 

5.6A).  In accordance with these fold-decreases in mRNA, RUNX2 protein expression 

was decreased 30% by 100 IU/ml of IL-1β together with anti-IL-1β antibody at 1 µg/ml, 

and 35% by 100 IU/ml of IL-1β together with anti-IL-1β antibody at 2 µg/ml (Figure 

5.6B).  Similarly, the monoclonal antibody against TGF-β1 abolished the decrease in 

Runx2 mRNA and protein levels observed in EVTs cultured in the presence of this 

cytokine. TGF-β1 at 10 ng/ml together with anti-TGF-β1 antibody at 10 ug/ml induced 

approximately a 1.3-fold increase in Runx2 mRNA compared to control (TGF-β1 at 10 

ng/ml) (Figure 5.7A).  A similar fold-increase (1.4-fold) in RUNX2 protein expression 

was observed under these conditions (Figure 5.7B). 

 

5.2.7:  Inhibition of Runx2 expression down-regulates N-cad mRNA and protein 

levels and reduces the invasive capacity of HTR-8/SVneo cells 

 

     In order to repress Runx2 expression in cultures of HTR-8/SVneo cells, I utilized 

siRNA complementary to human Runx2 mRNA.  Transfection of HTR-8/SVneo cells 

with this siRNA significantly decreased Runx2 mRNA and protein levels in these cell 

cultures after 36 h compared to cells transfected with a non-silencing, scrambled siRNA 

(Figure 5.8A and B).  The N-cad mRNA and protein levels were significantly decreased 

after 36 h of siRNA targeting Runx2, compared to HTR-8/SVneo cells transfected with 

non-silencing, scrambled siRNA in these studies (Figure 5.9A and B).  
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     I also examined whether a reduction in Runx2 expression in HTR-8/SVneo cells 

results in a concomitant decrease in their invasive capacity using Matrigel coated 

Transwell chambers.  The number of cells that penetrated the Matrigel and reached the 

underside of the membrane in the Transwell invasion chambers was significantly lower in 

cultures of HTR-8/SVneo cells which had been transfected with Runx2 siRNA compared 

to cell cultures that had been transfected with non-silencing, scrambled siRNA (Figure 

5.10).  
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Figure 5.1. Runx2 mRNA and protein expression levels in human placenta, highly 

invasive EVTs and poorly invasive trophoblastic cell lines.  A) Semi-quantitative PCR 

analysis of Runx2 mRNA levels in first trimester placenta, primary EVT cell cultures, 

HTR-8/SVneo cells, JEG-3 or BeWo cells (lanes 1-5, respectively).  A 100 bp ladder is 

shown in lane M (marker) with the size of the target cDNA indicated at the right.  The 

photomicrographs were scanned using a laser densitometer.  The absorbance values 

obtained for Runx2 were then standardized to the absorbance value obtained for GAPDH 

mRNA levels.  The experiment was repeated on three independent occasions.  The results 

are presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to EVTs 

control).  B) Representative fluorogram of a Western blot containing 30 µg of total 

protein extract prepared from first trimester placenta, primary EVT cell cultures, HTR-

8/SVneo cells, JEG-3 cells or BeWo cells.  Western blot analysis was performed using a 

polyclonal antibody against RUNX2.  The resultant fluorograms were scanned and the 

absorbance values obtained for RUNX2 protein levels were normalized to the absorbance 

values obtained for β-actin (ACTIN) in the corresponding samples.  The experiment was 

repeated on three independent occasions.  The results are presented (mean + S.E.M., n = 

4) in the bar graph (*, P < 0.05, compared to EVT control). 

 

 

 

 

 

 



 140

Figure 5.1    
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Figure 5.2. Time-dependent effects of IL-1β on Runx2 mRNA and protein levels in 

EVTs.  A) Semi-quantitative RT-PCR analysis of Runx2 mRNA levels in EVTs cultured 

in the presence of 100 IU/ml IL-1β for 0, 12, 24, or 48h (lanes 1-4, respectively). A 

100bp ladder is shown in lane M (marker) with the size of the target cDNA indicated at 

the right.  A representative photomicrograph of the ethidium-stained gels is presented.  

Gels generated from three other independent experiments were analysed by densitometry 

and subjected to statistical analysis.  The data are represented (mean + S.E.M., n = 4) in 

the bar graph (*, P < 0.05 compared to 0h control).  B) Representative fluorogram of a 

Western blot containing 30 µg of total protein extracted from corresponding EVTs 

cultures treated with 100 IU/ml IL-1β for 0, 12, 24, or 48h (lanes 1-4, respectively) and 

probed with a rabbit polyclonal antibody against RUNX2 or human β-actin. The 

Amersham enhanced chemiluminescence (ECL) system was used to detect antibody 

bound to antigen. The resultant fluorograms were scanned and the absorbance values 

obtained for RUNX2 were normalized to the absorbance values obtained for human β-

actin (ACTIN) in the samples.  The results derived from this analysis and from three 

other studies were standardized to the untreated control and are represented (mean + 

S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0h control).  
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Figure 5.2 
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Figure 5.3. Time-dependent effects of transforming growth factor-β1 (TGF-β1) on Runx2 

mRNA and protein levels in EVTs.  A) RT-PCR analysis of Runx2 mRNA levels in 

EVTs cultured in the presence of 5 ng/ml TGF-β1 for 0, 6, 12, 24 or 48h (lanes 1-5, 

respectively).  A 100-bp ladder is shown in lane M (marker) with the size of the target 

cDNA indicated at the right.  A representative photomicrograph of the resultant ethidium 

bromide-stained gels is presented.  Gels generated from this and three other independent 

experiments were analysed by densitometry and subjected to statistical analysis.  The 

data are presented as (mean absorbance + S.E.M., n = 4) in the bar graph (*, P < 0.05 

compared to 0 h control). B) Representative fluorogram of a Western blot containing 30 

µl of total protein extracted from corresponding EVT cultures treated with 5 ng/ml TGF-

β1 for 0, 6, 12, 24 or 48h (lanes 1-5, respectively) and probed with a rabbit polyclonal 

antibody against RUNX2 or human β-actin.  The Amersham enhanced 

chemiluminescence system was used to detect antibody bound to antigen.  The resultant 

fluorograms were scanned and the absorbance values obtained for RUNX2 were 

normalized to the absorbance values obtained for human β-actin (ACTIN) in the samples.  

The results derived from this analysis as well as those from three other studies were 

standardized to the untreated control and are represented (mean + S.E.M., n = 4) in the 

bar graph (*, P < 0.05 compared to 0h control). 
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Figure 5.3  
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Figure 5.4. Concentration-dependent effects of IL-1β on Runx2 mRNA and protein levels 

in EVTs.  A) Semi-quantitative RT-PCR analysis of Runx2 mRNA in EVTs cultured in 

the presence of vehicle alone (lane 1) or increasing concentrations of IL-1β (1, 10, 100 or 

1000 IU; lanes 2-5, respectively).  A 100-bp ladder is shown in lane M with the size of 

the target cDNA indicated at the right.  Representative photomicrographs of the resultant 

ethidium bromide-stained gels are presented.  Gels generated from this and three other 

independent experiments were analysed by densitometry and subjected to statistical 

analysis.  The data are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 

compared to 0 IU/ml control).  B) Representative fluorogram of a Western blot 

containing 30 µg of total protein extracted from corresponding EVT cultures treated with 

vehicle alone (lane 1) or increasing concentrations of IL-1β (1, 10, 100 or 1000 IU; lanes 

2-5, respectively) and probed with rabbit polyclonal antibodies against RUNX2 or human 

β-actin.  The Amersham enhanced chemiluminescence (ECL) system was used to detect 

antibody bound to antigen.  The resultant fluorograms were scanned and the absorbance 

values obtained for RUNX2 were normalized to the absorbance values obtained for 

human β-actin (ACTIN) in the samples.  The results derived from this analysis as well as 

those from three other studies were standardized to the untreated control and are 

represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 IU/ml 

control). 
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Figure 5.4 
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Figure. 5.5. Concentration-dependent effects of TGF-β1 on Runx2 mRNA and protein 

levels in EVTs.  A) Semi-quantitative RT-PCR analysis of Runx2 mRNA in EVTs 

cultured in the presence of vehicle alone (lane 1) or increasing concentrations of TGF-β1 

(0.001, 0.01, 0.1, 1 or 10 ng/ml; lanes 2-6, respectively).  A 100-bp ladder is shown in 

lane M with the size of the target cDNA indicated at the right.  Representative 

photomicrographs of the resultant ethidium bromide-stained gels are presented.  Gels 

generated from this and three other independent experiments were analysed by 

densitometry and subjected to statistical analysis.  The data are represented (mean + 

S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 ng/ml control) in the graph.  

B) Representative fluorogram of a Western blot containing 30 µg of total protein 

extracted from corresponding EVTs cultures treated with vehicle alone (lane 1) or 

increasing concentrations of TGF-β1 (0.001, 0.01, 0.1, 1 or 10 ng/ml; lanes 2-6, 

respectively) and probed with rabbit polyclonal antibodies against RUNX2 or human β-

actin. The Amersham enhanced chemiluminescence (ECL) system was used to detect 

antibody bound to antigen.  The resultant fluorograms were scanned and the absorbance 

values obtained for RUNX2 were normalized to the absorbance values obtained for 

human β-actin (ACTIN) in the samples.  The results derived from this analysis as well as 

those from three other studies were standardized to the untreated control and are 

represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 0 ng/ml 

control).  
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Figure 5.5 
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Figure 5.6. Attenuation of IL-1β-mediated increase in Runx2 mRNA and protein levels in 

EVTs.  A) Semi-quantitative RT-PCR analysis of Runx2 mRNA levels in EVTs cultured 

with vehicle alone (lane 1), IL-1β alone (100 IU/ml; lane 2), IL-1β (100 IU/ml) plus 1 

ug/ml of an anti-IL-1β antibody (lane 3) or IL-1β (100 IU/ml) plus 2 ug/ml of an anti-IL-

1β antibody (lane 4) for 24 h.  A 100 bp ladder is shown in lane M with the size of the 

target cDNA indicated at the right.  A representative photomicrograph of the resultant 

ethidium bromide-stained gels is presented.  Gels generated from this and three other 

independent experiments were analysed by densitometry and subjected to statistical 

analysis.  The data are presented as (mean + S.E.M., n = 4) in the bar graph (a, P < 0.05 

compared to untreated control; b, P < 0.05 compared to cytokine alone).  B) 

Representative fluorogram of a Western blot containing 30 ug of total protein extracted 

from corresponding EVT cultures treated with cultured with vehicle alone (lane 1), IL-1β 

alone (100 IU/ml; lane 2), IL-1β (100 IU/ml) plus 1 ug/ml of an anti-IL-1β antibody (lane 

3) or IL-1β (100 IU/ml) plus 2 ug/ml of an anti-IL-1β antibody (lane 4).  The blots were 

probed for RUNX2 and human β-actin (ACTIN). The data are presented as (mean + 

S.E.M., n = 4) in the bar graph (a, P < 0.05 compared to untreated control; b, P < 0.05 

compared to cytokine alone). 
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Figure 5.6 
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Figure 5.7. Attenuation of TGF-β1-mediated decreases in Runx2 mRNA and protein 

levels in EVTs.  A)  Semi-quantitative RT-PCR analysis of Runx2 mRNA levels in EVTs 

cultured with vehicle alone (lane 1), TGF-β1 alone (10 ng/ml; lane 2) or TGF-β1 (10 

ng/ml) plus anti-TGF-β1 antibody (10 ug/ml; lane 3).  A 100 bp ladder is shown in lane 

M with the size of the target cDNA indicated at the right.  A representative 

photomicrograph of the resultant ethidium bromide-stained gels is presented.   Gels 

generated from this and three other independent experiments were analysed by 

densitometry and subjected to statistical analysis.  The data are presented in the bar graph 

as (mean + S.E.M., n = 4; a, P < 0.05 compared to untreated control; b, P < 0.05 

compared to cytokine alone).  B) Representative fluorogram of a Western blot containing 

30 ug of total protein extracted from corresponding EVT cultures treated vehicle alone 

(lane 1), TGF-β1 alone (10 ng/ml; lane 2) or TGF-β1 (10 ng/ml) plus anti-TGF-β1 

antibody (10 ug/ml; lane 3).  The blots were probed for RUNX2 and human β-actin 

(ACTIN).  The data are presented in the bar graph as (mean + S.E.M., n = 4; a, P < 0.05 

compared to untreated control; b, P < 0.05 compared to cytokine alone). 
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Figure 5.7 
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Figure 5.8. Effects of Runx2 siRNA on Runx2 mRNA and protein levels in HTR-

8/SVneo cell cultures.  A) Real-time RT-PCR analysis of Runx2 mRNA levels in cells 

transfected with a scrambled control siRNA (lane 1) or siRNA specific for Runx2 (lane 

2) for 36 h.  Values for Runx2 mRNA levels in each sample were normalized to the 

corresponding GAPDH mRNA levels.  The data are represented (mean + S.E.M., n = 4) 

in the bar graph (*, P < 0.05 compared to scrambled control siRNA).  B) Representative 

fluorogram of a Western blot containing 30 µg of total protein extracted from HTR-

8/SVneo cells cultured with a scrambled control siRNA (lane 1) or siRNA specific for 

Runx2 (lane 2) for 36 h and probed with rabbit polyclonal antibodies against RUNX2 or 

human β-actin.  The Amersham ECL system was used to detect antibody bound to 

antigen.  The resultant fluorograms were scanned and the absorbance values obtained for 

RUNX2 protein levels were normalized to the absorbance values obtained for β-actin 

(ACTIN) in the samples.  The results derived from this analysis and from three other 

studies were standardized to the scrambled control siRNA and are represented (mean + 

S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to scrambled control siRNA).  
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Figure 5.8 
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Figure 5.9. Effects of Runx2 siRNA on N-cad mRNA and protein levels in HTR-

8/SVneo cell cultures.  A) Real-time RT-PCR analysis of N-cad mRNA levels transfected 

with a scrambled control siRNA (lane 1) or siRNA specific for Runx2 (lane 2) for 36 h. 

Values for N-cad mRNA levels in each sample were normalized to the corresponding 

GAPDH mRNA levels.  The data are represented (mean + S.E.M., n = 4) in the bar graph 

(*, P < 0.05 compared to scrambled control siRNA). B) Representative fluorogram of 

Western blot containing 30 µg of total protein extracted from HTR-8/SVneo cells 

cultured with a scrambled control siRNA (lane 1) or siRNA specific for Runx2 (lane 2) 

for 36 h and probed with mouse monoclonal antibody against N-CAD or rabbit 

polyclonal antibody against human β-actin.  The Amersham ECL system was used to 

detect antibody bound to antigen. The resultant fluorograms were scanned and the 

absorbance values obtained for N-CAD protein levels were normalized to the absorbance 

values obtained for human β-actin (ACTIN) in the samples.  The results derived from this 

analysis and from three other studies were standardized to the scrambled control siRNA 

and are represented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05 compared to 

scrambled control siRNA).  
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Figure 5.9 
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Figure 5.10. Reduced Runx2 levels decrease the invasive capacity of HTR-8/SVneo cells.  

HTR-8/SVneo cells were transfected with a scrambled control siRNA (lane 1) or siRNA 

specific for Runx2 (lane 2) for 24 h.  The cells were then placed in the upper wells of 

Transwell invasion chambers.  After a further 24 h of incubation, the porous membranes 

from the bottom of the Transwells were removed and fixed, stained and mounted upside-

down on a glass microscope slide.  Invasion was determined by counting the number of 

cells that invaded through the thin pre-coated layer of Matrigel on the top of the porous (8 

µm) membrane.  Cells were visualized using a light microscope, and counted in three 

randomly selected fields of each membrane.  Each cell line was plated in triplicate wells, 

and the experiment was repeated on three independent occasions. The results are 

presented (mean + S.E.M., n = 4) in the bar graph (*, P < 0.05, compared to HTR-

8/SVneo scrambled control siRNA). 
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Figure 5.10 
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5.3: Discussion and summary 

 

     Runx2 expression has been mostly characterized in bone tissue (Otto et al., 1997), but 

it has also been found to be highly expressed in several other tissue types, including the 

testes (Ogawa et al., 2000), mammary epithelium (Inman and Shore, 2003), endothelial 

cells (Sun et al., 2001), and in prostate and breast tumours (Yeung et al., 2002; Barnes et 

al., 2003).  In this study I have examined the expression of Runx2 in first-trimester 

human placenta tissue and in four human trophoblastic cell types:  highly invasive 

primary EVTs, the immortalized EVT cell line HTR-8 cells/SVneo, and the poorly 

invasive JEG-3 and BeWo choriocarcinoma cell lines.  Runx2 was expressed in placental 

tissue, and the high levels of Runx2 expression in highly invasive EVT cells suggest that 

Runx2 plays a role in trophoblast invasion.  Furthermore, the two choriocarcinoma cell 

lines, which are considered much less invasive, display significantly lower Runx2 

expression.   

     It is known that IL-1β promotes human trophoblast invasion (Karmakar and Das, 

2002) and in my studies it increased the expression of Runx2 in EVTs.  It has also been 

shown that IL-1β increases the invasiveness of trophoblast cells, at least in part through 

the up-regulation of MMP-2 and MMP-9 (Karmakar and Das, 2002), which are key 

molecules in human trophoblast invasion (Staun-Ram et al., 2004).  While my results 

showed that IL-1β induces the expression of Runx2, I also demonstrated that TGF-β1 

suppresses Runx2 expression in EVTs and this is important because TGF-β1 reduces the 

invasiveness of trophoblasts (Graham and Lala, 1991).  TGF-β1 has been previously 

shown to decrease the functional activity of Runx2 by promoting an interaction between 
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SMAD3 and the Runx2 proteins in osteoblast cells (Alliston et al., 2001).  RUNX2 forms 

co-regulatory complexes with Smads and other co-activator and co-repressor proteins that 

are organized in subnuclear domains to regulate gene transcription.  In addition, Runx2 

can also mediate the responses of cells to hyperactive signalling pathways in tumours in 

response to TGF-β and other growth factor signals.  These observations strongly suggest 

that RUNX2 is a key molecule in regulating human trophoblastic cell invasion (Pratap et 

al., 2006).     

     A siRNA knockdown of Runx2 in metastatic breast cancer cell lines reduced their 

invasive properties.  In contrast, forced expression of Runx2 in non-metastatic breast 

cancer lines induced a three-fold increase in cellular invasion (Pratap et al., 2005).  In my 

loss-of-function study, I was able to demonstrate that a decrease in Runx2 expression is 

concomitant with a reduction in human trophoblast invasion. 

     Studies by Pratap et al. (2005) have provided experimental evidence that Runx2 can 

regulate the expression of MMP-9 and cellular invasion in breast cancer cell lines.  They 

have demonstrated through chromatin immunoprecipitation that RUNX2 is recruited to 

the MMP-9 promoter.  In other studies, Hazan et al. (2000) demonstrated that increased 

MMP-9 production in N-cad–expressing breast cancer cells occurred in response to 

fibroblast growth factor-2 and that this provided the cells with a greater ability to 

penetrate matrix protein barriers.  

     In my previous studies, I have demonstrated that N-CAD is a significant player in a 

molecular mechanism underlying the invasive capacity of EVTs in vitro.  In addition, it 

has been previosuly reported that N-cad is a potential target of RUNX2 in embryonic 

bone tissue (Chua et al., 2009). In this study, I have identified a role for Runx2 in 
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regulating N-cad in human trophoblastic cells. In support of this, when HTR-8/SVneo 

cells were transfected with siRNA against Runx2, N-cad expression was significantly 

reduced along with a reduction in the invasive ability of the cells. 

     In summary, my results provide evidence that RUNX2 is a key molecule in mediating 

human trophoblast invasion through regulating N-cad (Figure 5.11).  However, further 

studies will be necessary to address the molecular interaction between RUNX2 and N-

cad. 
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Figure 5.11. A schematic diagram of a proposed role of Runx2 in regulating N-cad-
mediated differentiation of human trophoblastic cells.  Silencing Runx2 expressing by 
siRNA stategy reduces N-cad expression level and reduces the invasion ability of human 
trophoblastic cells. 
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CHAPTER 6: GENERAL DISCUSSION  
 
 
6.1: Discussion  
 

     In my studies, I have investigated the roles of the transcription factors TWIST and 

RUNX2, and the cell adhesion molecules E-CAD and N-CAD, in the villous (non-

invasive) and extravillous (invasive) pathways in human trophoblastic cells.  

     When studying the terminal differentiation of human cytotrophoblasts in vitro, I used 

both primary cultures of human trophoblasts and human trophoblastic cell lines. There 

are both advantages and disadvantages when using these cell cultures. The advantage of 

using primary cell cultures is their close biological and morphological proximity to the 

human placenta.  However, there is a number of limitations to these primary cell cultures.  

Due to limited access to term placental tissues, I switched to using the BeWo 

trophoblastic cell line in order to study the cellular and molecular mechanisms in the 

villous pathway.   As previously mentioned, BeWo cells have been widely used to study 

syncytialization in human trophoblasts in the presence of 8-bromo cAMP (Seamon et al., 

1981; Wice et al., 1990).  Furthermore, the advantages of using a cell line include their 

immortal and consistent characteristics, cell purity, and commercial availability.  To 

investigate the extravillous pathway, I used primary EVTs for regulatory studies with 

cytokines such as TGF-β1 and IL-1β, because HTR-8/SVneo cells do not respond to 

TGF-β1 treatment in my experiments and as reported by another group (Graham et al., 

1993).  As for the functional studies, I chose to use HTR-8/SVneo cells because these 

cells are easier to transfect and their characteristics are more uniform, as mentioned 

earlier. 
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     My studies have provided a greater understanding of the cellular and molecular 

mechanisms that mediate the formation and organization of the human placenta, and 

demonstrate that Twist can regulate and promote cellular fusion (Figure 6.1).  In addition, 

my studies have suggested a role for Twist, Runx2 and N-cad in regulating EVT invasion 

(Figure 6.2). 

     In the first part of my studies, I examined the expression of Twist and E-cad during 

the terminal differentiation and fusion of BeWo cells, a human trophoblastic cell line.  I 

observed Twist was up-regulated and E-cad was down-regulated during the 

differentiation and fusion processes in human trophoblastic cells.  In gain- or loss-of-

function studies, I have shown that increasing Twist expression promotes terminal 

differentiation and fusion of human trophoblastic cells through down-regulation of E-cad 

expression.  

     In the second part of my studies, I investigated whether Twist and N-cad may play 

important roles in human trophoblast cell invasion.  I first examined the expression of 

Twist and N-cad in highly invasive EVTs and the poorly invasive JEG-3 and BeWo 

human trophoblastic cell lines.  My results have revealed that Twist and N-cad are highly 

expressed in highly invasive EVTs but the expression of both is significantly lower in the 

poorly invasive human trophoblastic cell lines. 

     Next, I determined the regulatory effects of IL-1β and TGF-β1, two cytokines known 

to control trophoblast invasion (Graham and Lala, 1991; Karmakar and Das, 2002), on 

primary cultures of EVTs.  I found a differential regulation of Twist expression.  Twist 

expression increases after IL-1β treatment in a time- and concentration-dependent 

manner.   
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Figure 6.1.  A schematic diagram of a proposed role of Twist in regulating terminal 
differentiation and fusion of human trophoblastic cells. (a) cAMP up-regulates TWIST 
levels and down-regulates E-cad expression to promote the formation of syncytial 
trophoblast.  (b) Silencing Twist expression inhibited TWIST levels from up-regulated 
and E-cad expression from down-regulated in cAMP-induced BeWo cells. These cells 
remain as mononucleate cytotrophoblasts.  (c) Stable transfection with Twist expression 
vectors in BeWo cells reduces E-cad expression and promotes the formation of syncytial 
trophoblast. 
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Figure 6.2.  A schematic diagram of the proposed roles of Twist, Runx2 and N-cad in 
regulating the invasive ability of human trophoblastic cells.  TGF-β1 down-regulates 
Twist and Runx2 expression and reduces the invasion ability of EVTs.  IL-1β up-
regulates Twist and Runx2 expression and increases the invasion ability of EVTs.  
Silencing Twist or Runx2 expression reduces N-cad expression and reduces the invasion 
ability of HTR-8/SVneo cells.  Silencing N-cad expression reduces the invasion ability of 
HTR-8/SVneo cells. 
  

Invasion Invasion 

N-cad 

    

 

  

 

 

 

 

N-cad 

   Runx2 Twist Twist Runx2 

Extravillous pathway (invasion) 

TGF-ββββ1 

 
IL-1ββββ 

 



 167

In contrast, Twist expression with TGF-β1 treatment decreases in a time and 

concentration-dependent manner.  However, IL-1β and TGF-β1 have no effects upon N-

cad expression, suggesting that other growth factors may be involved in regulating N-cad 

expression in human EVTs. 

     I continued to determine a role for Twist in human trophoblast invasion by performing 

a gain-of-function study using JEG-3 cell line.  Although Twist mRNA level increased, 

the protein level remains unchanged.  Therefore, I could not determine a role for Twist in 

trophoblast invasion in these cell models.  

     I then took an opposite approach by using a loss-of-function study to silence Twist 

expression.  This demonstrated that down-regulation of Twist reduced the invasive 

capacity of the EVT cell line and the expression of N-cad, suggesting that Twist 

promotes trophoblast invasion via N-cad.   

     Next, I performed a loss-of-function study by utilizing a siRNA strategy to silence N-

cad expression to investigate a role for this CAM in human trophoblastic cell invasion.  

My results show that by silencing N-cad expression the trophoblastic cells became 

significantly less invasive.  I continued to determine a functional role for N-CAD in these 

trophoblastic cells by using a function-perturbing antibody against the extracellular 

binding domain of N-CAD.  This antibody effected a significant reduction in 

trophoblastic cell invasion, thus confirming a functional role of N-CAD in human 

trophoblastic cells in vitro. 

     I continued to investigate whether Runx2 plays important roles in human trophoblast 

cell invasion.  First, I demonstrated that Runx2 is highly expressed in highly invasive 

EVTs, but it is present at significantly lower levels in poorly invasive JEG-3 and BeWo 
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trophoblastic cell lines.  Next, I investigated whether IL-1β and TGF-β1 were able to 

respectively promote and repress Runx2 mRNA and protein levels in EVTs.  I found that 

IL-1β significantly increases Runx2 expression, while TGF-β1 significantly reduces 

Runx2 expression.  Taken together, these observations support my hypothesis that Runx2 

plays an important role in human trophoblast invasion.  In my loss-of-function study, 

silencing Runx2 expression results in significant reduction on N-cad expression and 

reduces the invasive ability of HTR-8/SVneo cell. 

     Membrane fusion plays a critical role in development.  For example, it mediates the 

fertilization of the egg and sperm (Wilson and Snell, 1998), and the formation of 

myotubes from the mononucleate myoblasts in the embryo (Nadal-Ginard, 1987).  In 

addition, during human placentation, it mediates the formation of the syncytial 

trophoblast from the mononucleate cytotrophoblasts (Kliman et al., 1986).  Cell fusion 

not only brings about morphological changes in these trophoblastic cells, but also 

influences the physiology of the cells.  For instance, the formation of the syncytial 

trophoblast plays a critical role in the onset of placental hormone production (Hoshina et 

al., 1982; Cronier et al., 1994).  

     Fox (1964) demonstrated a decrease in the thickness of the syncytial trophoblast layer 

and an increase in the number of villous cytotrophoblasts in human placental specimens 

from pregnancies complicated by intrauterine hypoxia. A reduction in the formation of 

syncytial trophoblast structures in cultures of villous cytotrophoblasts isolated from the 

term placenta was observed in patients suffering from preeclampsia, a condition in 

pregnancy characterized by a sharp rise in blood pressure together with large amounts of 

protein in the urine (Pijnenborg et al., 1996). 
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     It has been well documented that cell differentiation and morphogenesis depend partly 

on the regulated expression of cell adhesion molecules.  The commonly known cell 

adhesion molecules that play a role in terminal differentiation and fusion of human 

cytotrophoblasts include CAD-11 (MacCalman et al., 1997) and E-CAD (Coutifaris et 

al., 1991).  High levels of E-CAD were immunolocalized to the surface of BeWo cells 

before they undergo terminal differentiation and fusion, and E-CAD is needed for the 

cells to undergo cell aggregation prior to cell fusion (Coutifaris et al., 1991).  Down-

regulation of E-cad expression has been shown to be necessary to promote the formation 

of syncytial trophoblast (Coutifaris et al., 1991; Getsios et al., 2003).  In a similar 

manner, E-cad expression was also down-regulated during the formation of 

multinucleated osteoclasts from bone marrow mononucleate cells in mice (Suda et al., 

1992).   

     Several studies have identified the ability of growth factors to regulate the terminal 

differentiation and fusion of villous cytotrophoblasts.  One example would be epidermal 

growth factor (EGF) that is produced by both decidual cells and trophoblastic cells at the 

maternal-fetal interface (Hofmann et al., 1992; Morrish et al., 1998; Leach et al., 1999).  

Blocking EGF receptor function using an anti-EGF-receptor monoclonal antibody 

increases E-cad expression in primary cultures of human trophoblastic cells (Rebut-

Bonneton et al., 1993; Al Moustafa et al., 1999).  This suggests that EGF can down-

regulate E-cad expression in human trophoblastic cells.  EGF treatment of A431 cells, an 

epidermoid cancer cell line, has been shown to increase cAMP accumulation induced by 

forskolin (Ball et al., 1990).  In addition, cAMP analog has shown to increase MAPK-1/3 
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and cAMP response element-binding protein (CREB) phosphorylation in BeWo cells 

(Maymo et al., 2010).   

     TWIST, a helix-loop-helix transcription factor that has long been implicated in 

embryonic morphogenesis, also promotes epithelial-mesenchymal transition (EMT) 

through the down-regulation of E-cad in a wide range of cancer cells (Yang et al., 2004, 

Kwok et al., 2005, Yuen et al., 2007).  Yang et al. (2004) demonstrated that Twist 

transcriptionally represses E-cad in human breast cancer cells through direct interaction 

with an E-Box present in the promoter region of E-cad.  As mentioned before, I did not 

determine the actual mechanism by which up-regulated Twist expression effects down-

regulated E-cad expression in these trophoblastic cells.  However, it is possible that 

TWIST represses E-cad through direct contact with the E-box present in the promoter 

region of E-cad during the terminal differentiation and fusion of human villous 

cytotrophoblasts in vitro.  In order to examine whether the repression of E-cad by TWIST 

in my studies is determined by the E-box located within the promoter region, luciferase 

reporter gene assays will have to be carried out to assess the transcription efficiency of 

the E-cad promoter with an E-box mutation.   My studies are the first to investigate a role 

for the Twist gene in terminal differentiation of human cytotrophoblasts in vitro.  

Collectively, the observations from my studies suggest that Twist and E-cad, which 

mediate EMT processes in cancer cells, can also influence the terminal differentiation 

and fusion of human trophoblasts.  Additional studies will be needed to identify the 

underlying mechanisms that increase Twist expression in the human trophoblast 

differentiation. 
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     Increased expression of N-cad promotes the motility and invasion of carcinoma cells 

(Nienam et al., 1999; Cavallaro et al., 2002; Hazan et al., 2000).  Studies have suggested 

that N-cad-expression in cancer cells may promote homophilic interactions with N-cad 

expressing tissues such as endothelia and stroma (Hazan et al., 2000).  For example, N-

CAD mediates the transmigration of melanomas through the vascular endothelium 

(Sandig et al., 1997).  Although it is tempting to speculate that N-cad expression in EVTs 

may facilitate adhesion with the endometrial stroma or the maternal endovascular cells to 

facilitate the remodelling of the endothelial lining, my single cell model could not 

confirm this. 

     Besides facilitating homophilic cell adhesion between cancer cells and normal cells, 

N-cad is also believed to promote cell invasion through cell signalling events (Hazan et 

al., 2004).  It has been reported that in breast cancer cell invasion, there is an interaction 

between N-CAD and fibroblast growth factor receptor 1 (FGFR1) at the cell surfaces to 

form an extracellular complex.  This complex is formed by the interaction between the 

extracellular domain of N-CAD and immunoglobulin domains 1 and 2 of FGFR-1, which 

eventually stabilizes FGFR-1 and leads to prolonged mitogen-activated protein kinase 

(MAPK) activation (Kim et al., 2000;  Suyama et al., 2002).   

     Hazan et al. (2004) proposed that while N-cad promotes homophilic cell-adhesive 

mechanisms, E-cad controls tumour progression.  Previous studies have reported that 

down-regulation of E-cad is necessary for cancer cells to become invasive (Onder et al., 

2008).  However, preliminary data from our laboratory (Alex Beristain, unpublished data) 

show that the exogenous expression of N-cad in JEG-3 cells leads to increased invasion 

without altering the expression of E-cad.  Similarly, Nieman et al. (1999) have reported 
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that N-cad plays a dominant role over the high expression of E-cad in promoting breast 

cancer cell invasion.  In contrast, exogenous expression of E-cad resulted in decreased 

invasiveness and reduction of N-cad expression in tumour cells expressing endogenous 

N-cad (Yanagisawa and Anastasiadis, 2006).  Indeed, the molecular mechanisms in 

which N-cad and E-cad regulate invasion remain unclear, probably due to the differences 

in cell types.   

     TWIST is able to increase N-cad expression in a variety of cancer cells (Alexander et 

al., 2002; Rosivatz et al., 2002).  Although the precise mechanism by which Twist 

regulates N-cad in human trophoblastic cells is unknown, others have found that the 

effect of TWIST on the induction of N-cad mRNA requires an E-box located within the 

first intron of the N-cad gene (Alexandra et al., 2006).   

     RUNX2 is a scaffolding transcription factor, which has been well documented to play 

a role in osteoblast differentiation (Otto et al., 1997).  Runx2-null mutations in mice 

result in severe bone deficiency as well as hypothyroidism, a disease caused by 

insufficient production of thyroid hormones (Harada and Roden, 2003; Endo and 

Kobayashi, 2010).  Runx2 is phosphorylated and can be activated by the MAPK pathway 

(Xiao et al., 2000).  Runx2 is known to play key roles in angiogenesis (Zelzer et al., 

2001), and vascular invasion of bone and is highly expressed in endothelial cells 

(Mundlos, 1999; Enomoto et al., 2000).  Runx2 has been termed an oncogene and it is 

highly expressed in different types of cancer cells, including breast and prostate cancer 

cells (Barnes et al., 2004; Javed et al., 2005, Pratap et al., 2006b).  These studies have 

provided additional support that Runx2 play an important role in regulating human 

trophoblast invasion.  My results are also the first to show a regulatory linkage between 
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Runx2 and N-cad.  However, further studies will be necessary to identify the molecular 

mechanisms on how Runx2 regulates N-cad expression. 

     Transforming growth factor-β1 (TGF-β1) is a secreted protein that controls cell 

growth, cell proliferation, cell differentiation and apoptosis (Ghadami et al., 2000; 

Vaughn et al., 2000).  TGF-β1 has been assigned major regulatory roles in placental 

development and in decidualization of the endometrial stroma (Godkin and Dore, 1998; 

Karmakar and Das, 2002).  This growth factor binds to a type II receptor dimer, which 

recruits and phosphorylates a type I receptor dimer to form a hetero-tetrameric complex 

(Wrana et al., 1992).  The type I receptor then phosphorylates receptor-regulated SMADs 

(R-SMADs) to form R-SMAD/coSMAD (e.g. SMAD4) complexes in the nucleus to 

regulate targeted gene expression (Souchelnytskyi et al., 2001; Feng and Derynck, 2005).  

TGF-β is able to differentially regulate Twist expression in a variety of cell types (Leu et 

al., 2008; Mori et al., 2009; Murakami et al., 2010) and to decrease RUNX2 binding to 

DNA (Komori, 2006).  

     Interleukin-1β (IL-1β) is a pro-inflammatory cytokine that plays a key regulatory role 

in the establishment of pregnancy (Salamonsen et al., 2000, 2003; Fazleabas et al., 2004).  

IL-1β can bind to type 1 IL-1 receptor protein, IL-1 binding activates IL-1 receptor 

associated kinase-1 and -2 (IRAK-1 and -2),  IRAK-1 then recruits TNF receptor 

associated factor 6 (TRAF6) to the IL-1 receptor complex and activates two pathways, 

one leading to the map-erk kinase (MEK)/ c-Jun N-terminal kinases (JNK) signalling 

system and the other leading to nuclear factor kappa-light-chain-enhancer of activated B 

cells (NF-kB) activation (Muzio et al., 1997; Allan and Rothwell, 2001; Wang et al., 

2001). Several NF-kB targets include Twist, snail1, zeb1 (Min et al., 2008). 
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6.2: Summary and Conclusions 

 

     My studies are the first to find that Twist is up-regulated and E-cad is down-regulated 

during the terminal differentiation and fusion of human trophoblastic cells.  By using 

gain- and loss-of-function studies, I was able to demonstrate that Twist is a key regulator 

of E-cad in these trophoblastic cells.  My results also show that Twist regulates cadherin-

mediated morphological and functional differentiation of human trophoblastic cells.    

The second part of my thesis describes studies that identify a role for Twist in 

extravillous cytotrophoblasts.  These demonstrated that Twist promotes human 

trophoblastic cell invasion through down-regulating N-cad expression.  In a loss-of-

function study in which N-cad expression was silenced, there was a significant reduction 

of trophoblastic cell invasion.  Finally, I was able to demonstrate that Runx2, which is 

known to regulate cancer invasion, also regulates human trophoblastic cell invasion.  In 

addition, silencing Runx2 expression caused a significant down-regulation of N-cad 

expression.      

     Although the molecular mechanisms involved in the terminal differentiation of human 

trophoblast are rather complex, my findings help in furthering the understanding of many 

diseases that are linked to human placentation. 
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6.3: Future directions 

 

     A successful human pregnancy depends upon mononucleate cytotrophoblasts entering 

one of two distinct and mutually exclusive pathways.  Villous cytotrophoblastic cells 

proliferate and differentiate by fusion to form the outer syncytial trophoblast, or enter the 

extravillous pathway to form highly invasive extravillous cytotrophoblasts. However, the 

molecular mechanisms involved in determining which pathway the mononucleate 

cytotrophoblasts will enter remain to be elucidated. Studies have shown that the 

interaction between TWIST and RUNX2 involves unique domains in these proteins, the 

twist box and the RUNX2 DNA binding domain (Lian et al., 2004), and it will be 

necessary to determine if the fate of mononucleate cytotrophoblast is differentially or co-

ordinately regulated by Twist and Runx2 expression. 

 

6.3.1:  Investigate the regulation and function of Runx2 in human trophoblast cell 

fusion  

 

     First, it will be necessary to examine Runx2 mRNA and protein expression levels in 

BeWo choriocarcinoma cells undergoing terminal differentiation and fusion in response to 

the secondary intracellular signalling molecule 8-bromo-cAMP, by using semi-quantitative 

RT-PCR and Western blotting, respectively.  Subsequently, gain- or loss-of-function 

studies could be carried out using these cells and either a mammalian expression vector 

containing a cDNA encoding Runx2 or siRNA specific for this transcription factor, 

respectively.  In addition to examining subsequent Runx2 and E-cad mRNA and protein 

expression levels in these cell cultures, the presence or absence of multinucleated syncytia 
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will be confirmed by indirect immunofluoresence using antibodies directed against 

RUNX2, E-CAD or DESMOPLAKIN, a cellular marker of mononucleate 

cytotrophoblasts. 

 

6.3.2:  Investigate whether the inter-related expression of Runx2 and Twist 

determines the differentiation pathway of mononucleate cytotrophoblasts 

 

     My preliminary findings demonstrate that Twist expression levels correlate with 

Runx2 expression levels in human trophoblastic cell invasion.  Further investigation is 

needed into the regulatory effects between Twist and Runx2 in the formation of the 

multinucleated syncytial trophoblast of the human placenta.  The co-coordinated or 

differentially regulated expression of Twist and Runx2 in human trophoblastic cells could 

be the determining factor for whether the mononucleate cytotrophoblasts enter either the 

villous or invasive pathway.  

     In future studies, I would investigate the relationship(s) between Runx2 and Twist in 

terminal differentiation of human trophoblastic cells, either by transfecting a siRNA for 

Runx2 or Twist into BeWo cells that can undergo terminal differentiation and fusion in 

response to the secondary intracellular signalling molecule 8-bromo-cAMP.  Semi-

quantitative RT-PCR and Western blotting can be used to examine Runx2 and Twist 

mRNA and protein levels in these trophoblastic cells. 
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6.3.3:  Immunolocalization of TWIST and RUNX2 at the human maternal-fetal 

interface during pregnancy 

 

     If TWIST and RUNX2 in fact play critical role in formation, maintenance, and/or 

function of the maternal-fetal interfacen then it would be important to be confirm that 

these proteins are indeed localized here during one or more stages of pregnancy.  Tissue 

sections will be prepared from archived permanent paraffin blocks containing maternal-

fetal tissues (n=3) obtained during the first trimester of pregnancy.  These tissue sections 

will be immunostained using a commercially available polyclonal antibody directed 

against human TWIST or RUNX2.  A nonspecific isotype-matched antibody would 

served as an appropriate negative control for these experiments. 
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