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Abstract

Throughout this thesis we will be primarily concerned with the area of a
rational right angle triangle, also known as a congruent number. The pur-
pose of this thesis is to present a family of congruent number elliptic curves
with rank at least three, as well as provide some insight into the distribution
of congruent numbers. We provide an in depth background on congruent
numbers and elliptic curves, as well as an overview of one of the key methods
that will be used in determining the rank of an elliptic curve.
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Chapter 1

Introduction

Although there are several equivalent definitions, the best way to define a
congruent number is to first recall a similar, well known, property involving
pythagorean triples. Pythagorean triples are defined as triples of positive
integers satisfying the equation x2 + y2 = z2, such that each triple forms a
right angle triangle with integer sides. Specifically, x, y and z can be defined
to generate all possible pythagorean triples [Ros05]. This in turn allows us
to find all possible integers m that will produce a right angle triangle with
integer sides [Ros05].

To turn this to the definition of a congruent number we need to consider
the possible integers n that will result in a right angle triangle with rational
sides. That is to say, congruent numbers are defined as follows.

Definition 1.1. A positive integer n is a congruent number if there exists
a rational right angle triangle with area n.

For example, 6 is a congruent number since there exists a rational right angle
triangle with area 6, namely the right angle triangle seen in Figure 1.1.

Figure 1.1: Rational right angle triangle with area 6.

Notably, congruent numbers were first documented in a 10th century
Arab manuscript and have since been studied by numerous scholars, in-
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Chapter 1. Introduction

cluding Euler, Fibonacci, and Fermat [AC74, Alt80, Kra86, Coa05, Cip09,
Cha06, Hem06, Tun83]. In 1225 Fibonacci was the first to show that 5 and 7
are congruent numbers [Cha06]. Fibonacci also stated, without proof, that
no congruent number n is exactly a square [Cha98]. It was not until four
centuries later that Fermat proved Fibonacci’s statement, using the method
of infinite descent. Specifically, Fermat proved that 1 is not a congruent
number [Cha98, DJS09, Coa05, Cip09, Cha06].

When discussing congruent numbers we are often interested in the con-
gruent number problem, which is as follows.

Given a positive integer n can we determine whether or not n is a
congruent number in a finite number of steps? [Cha98, Coa05, Hem06]

Since the 10th century many different definitions of congruent numbers have
been derived in order to try and solve the congruent number problem. How-
ever, unlike right angle triangles with integer sides the congruent number
problem remains unsolved [Cha98].

Even though congruent numbers in general have been around for a very
long time, and lots of work has gone into finding them, it took until 1915
to list all congruent numbers less than 100. This in turn led to another
goal “Finding all square-free congruent numbers less than 1000” [Alt80,
AC74, Cip09]. It was not until 1983 when Tunnell determined an equivalent
definition for a congruent number that ultimately allowed for all congruent
numbers less than 1000 to be determined [Cip09, Hem06]. Tunnell also
provided a simple criterion to determine whether or not a positive integer n
is a congruent number [Hem06, Ros05].

Theorem 1.2. [Hem06, Ros05, Kob92, Tunnell’s Theorem] Define

An = #
{
x, y, z ∈ Z|n = 2x2 + y2 + 32z2

}
Bn = #

{
x, y, z ∈ Z|n = 2x2 + y2 + 8z2

}
Cn = #

{
x, y, z ∈ Z|n = 4x2 + 2y2 + 64z2

}
Dn = #

{
x, y, z ∈ Z|n = 8x2 + 2y2 + 16z2

}
.

Suppose n is congruent, if n is even then

An = Bn

and if n is odd, then
2Cn = Dn.

If the Birch and Swinnerton-Dyer Conjecture (BSD Conjecture) holds for
curves of the form y2 = x3 − n2x then, conversely, these equalities imply
that n is a congruent number.

2



Chapter 1. Introduction

Proof. See [Kob92] for the logical structure of the argument.

As we can see the converse of Tunnell’s Theorem hinges on the BSD
Conjecture, which is still an open problem today. Details about the BSD
Conjecture are, however, beyond the scope of this thesis. Fortunately, the
results found in this thesis do not assume the BSD Conjecture, but it is
worth mentioning that the BSD Conjecture is one of the Clay Mathematics
Institutes Millennium Prize Problems and it is widely assumed to be true
[Hem06, Cip09].

Since 1983 a lot more work has been done to determine congruent num-
bers, including some results that do not use Tunnell’s Theorem. In 1986
Kramarz verified the converse of Tunnell’s Theorem for all square-free inte-
gers less than 2000 [Kra86]. By 1993, with the help of computers and the
use of Tunnell’s Theorem, all congruent numbers less than 10000 had been
determined [NW93]. Today’s results include computations for congruent
numbers up to 1 trillion, once again assuming Tunnell’s Theorem [Cip09].

Currently, Rubinstein and others have predicted that the number of
congruent numbers less than x, arising from even rank elliptic curves, is
asymptotically

cx3/4 log(x)11/8, (1.1)

where c is a constant. It is their hope to provide a better determination of
c, using the data produced from the computations for congruent numbers
up to 1 trillion [Cip09].

We now provide some of the other known results that do not assume
the BSD Conjecture. For instance, given distinct primes pi and qi where
pi ≡ qi ≡ i(mod 8) , i.e. pi = 8k + i and qi = 8l + i for some k, l ∈ Z, we
have the following results, as stated in [Hem06, Tun83].

1. p3 is not a congruent number.

2. p3q3, 2p5, 2p5q5 are not congruent numbers.

3. p5, p7 are congruent numbers.

4. 2p7, 2p3, p3q7, 2p3q5, 2p5q7 are congruent numbers.

One of the main results, to be presented in Chapter 5, is that we were able
to find a family of congruent numbers, for which the associated elliptic curve
satisfies a rank condition. These results have been accepted for publication
in the Canadian Mathematical Bulletin under the title “Congruent Number

3



1.1. Preliminaries

Elliptic Curves with rank at least Three”. Another main result, to be pre-
sented in Chapter 6, involves the distribution of congruent numbers and has
been recently published in the Proceedings of the Japan Academy, Series
A, under the title “On the Distribution of Congruent Numbers”. Before we
present these results we will provide the necessary background information
in the next section followed by an in depth chapter on congruent numbers.
In Chapter 3 we provide the necessary definitions and theorems for elliptic
curves followed by a discussion on how to calculate the rank of an elliptic
curve in Chapter 4.

1.1 Preliminaries

To start, we recall some basics from Abstract Algebra that can be found in
most first year Abstract Algebra textbooks. We begin with some definitions
involving binary algebraic structures, denoted by < G, ∗ >, where G is a set
and ∗ is a binary operator.

Definition 1.3. A group < G, ∗ > is a set G, closed under a binary opera-
tion ∗, such that

1. (a∗b)∗c = a∗ (b∗c) for all a, b, c ∈ G (i.e. ∗ is associative with respect
to G).

2. e ∗ a = a ∗ e = a for all a ∈ G and some element e ∈ G (i.e. there
exists an identity element e in G for ∗).

3. Corresponding to each a ∈ G, there is an element a′ ∈ G such that
a ∗ a′ = a′ ∗ a = e (i.e. G contains inverses with respect to ∗).

Definition 1.4. An abelian group < G, ∗ > is a group G where a ∗ b = b ∗ a
for all a, b ∈ G (i.e. ∗ is commutative).

Definition 1.5. Let < G, ∗ > and < G′, ∗′ > be binary algebraic struc-
tures, where G and G′ are both groups. Then a map φ of G into G′ is a
homomorphism if

φ(a ∗ b) = φ(a) ∗′ φ(b)

for all a, b ∈ G.

Definition 1.6. Let < G, ∗ > and < G′, ∗′ > be binary algebraic structures.
An isomorphism of G with G′, denoted by G ' G′, is a one-to-one function
φ mapping G onto G′ such that

φ(a ∗ b) = φ(a) ∗′ φ(b)

4



1.1. Preliminaries

for all a, b ∈ G.

We also define a generator for a group < G, ∗ > as an element a ∈ G that
generates G under the assumed binary operation ∗ (i.e. if G = {an|n ∈ Z}
for some a in G then we say that a is a generator for G). Lastly, we define
finitely generated abelian groups and recall the Fundamental Theorem of
Finitely Generated Abelian Groups, as follows.

Definition 1.7. A finitely generated abelian group < G, ∗ > is an abelian
group that contains a finite set of generators of G.

Theorem 1.8. [Fra03, Fundamental Theorem of Finitely Generated Abelian
Groups] Every finitely generated abelian group G is isomorphic to a direct
sum of cyclic groups in the form

Z
⊕
· · ·
⊕

Z
⊕

Zpv11
⊕
· · ·
⊕

Zpvss ,

where Z is a cyclic group with infinite order and Zpvii is a finite cyclic group

of prime power order, for some prime pi and some positive integer vi.

Next we have the Number Theory portion of the preliminaries where we
recall some basic definitions from this area. Throughout this thesis we will
be dealing with several different of equations, some of which we describe
as diophantine equations. Specifically, a diophantine equation is a type of
equation that requires that the solutions come from the set of integers.

Additionally, we need to define the following notation and terms.

Definition 1.9. The greatest common divisor of two integers a and b, which
are not both 0, is the largest integer that divides both a and b.

The notation that we use for the greatest common divisor of two integers a
and b is gcd(a, b) . For integers a and b we also use the notation a|b to mean
that a divides b and the notation a - b to mean that a does not divide b .

Definition 1.10. Let p be a prime number and n be a positive integer. If
pa|n but pa+1 - n, we say that pa exactly divides n, and we write pa ‖ n.

Another symbol that we should be aware of is +, which we use to sym-
bolize defined equality. Another symbol that we have already seen is ≡,
which defines a congruence. Along these lines we also need to define the
term congruence class.

Definition 1.11. A congruence class modulo m contains integers that are
mutually congruent modulo m.
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1.1. Preliminaries

For example the set of integers modulo 2 can be put into one of 2 con-
gruence classes, namely the class of integers that are congruent to 0 modulo
2 or the class of integers that are congruent to 1 modulo 2 (a.k.a the class
of even integers or the class of odd integers).

We conclude this section with the following two terms.

Definition 1.12. The discriminant of x3 +ax2 + bx+ c is defined to be the
quantity

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Definition 1.13. Given a polynomial

P (x) = xn + an−1x+ · · ·+ a1x+ a0

of degree n with roots αi, i = 1, . . . , n and a polynomial

Q(x) = xm + bm−1x+ · · ·+ b1x+ b0

of degree m with roots βj , j = 1, . . . ,m the resultant ρ(P,Q) is defined by

ρ(P,Q) =

n∏
i=1

m∏
j=1

(αi − βj).

6



Chapter 2

Congruent Numbers

2.1 Introduction

Before we dive into the topic of congruent numbers we recall, from Chapter
1, the most common definition of a congruent number.

Definition 2.1. A positive integer n is a congruent number if there exists
a rational right angle triangle with area n.

We assume that the congruent numbers we are working with or searching
for are square-free (except in Chapter 6 when we discuss the distribution
of congruent numbers), since it is directly apparent from the definition of a
congruent number that if n is a congruent number then so too is nk2, for
some integer k.

Additionally, there are several equivalent definitions for a congruent
number, which can be summarized by the following theorem.

Theorem 2.2. The following 5 statements are equivalent definitions for a
positive integer n to be a congruent number.

(i) There exist x, y, z, t ∈ Z+ satisfying the rationalized Diophantine equa-
tions

x2 + ny2 = z2 and x2 − ny2 = t2,

as seen in [AC74, Alt80, Cha06, Kra86, God78, Tun83].

(ii) There exist x, y, z ∈ Z+ satisfying the rationalized Diophantine equation

x4 − n2y4 = z2, as seen in [AC74].

(iii) The elliptic curve
Y 2 = X3 − n2X

has non-trivial solutions ∈ Q [Hem06, Cha06, Cip09, Ben02, Hem06,
Kob92, Tun83].

7



2.1. Introduction

(iv) There exists a rational right angle triangle with area n [Cha06, NW93,
Cip09, Coa05, Kra86, Nem98, DJS09, Ben02, Hem06, Ros05, Kob92,
Tun83].

(v) There exist u, v, w ∈ Z+ with

nw2 = uv(u2 − v2),

as seen in [AC74, Alt80, God78, Kra86, DJS09].

Proof. ((i)⇒ (ii)) Assume that there exist x, y, z, t, n ∈ Z+ such that

x2 + ny2 = z2 (2.1)

and
x2 − ny2 = t2. (2.2)

Then multiplying Equations (2.1) and (2.2) gives us that

(x2 + ny2)(x2 − ny2) = z2t2

⇒ x4 − n2y4 = (zt)2.

Now, let w = zt such that

x4 − n2y4 = w2

is solvable, which is exactly what we needed to show.

((ii)⇒ (iii)) Assume that there exist x, y, w, n ∈ Z+ such that

x4 − n2y4 = w2.

Then

x4 − n2y4 = w2

⇒ x4

y4
− n2 y

4

y4
=

w2

y4

⇒
(
x
y

)4
− n2 =

(
w

y2

)2

⇒ x2

y2

[(
x
y

)4
− n2

]
=

x2

y2

[(
w

y2

)2
]

⇒
(
x
y

)6
− n2 x2

y2
=

(
wx

y3

)2

8



2.1. Introduction

Now, let X = x2

y2
and Y = wx

y3
such that(
x

y

)6

− n2x
2

y2
=

(
wx

y3

)2

⇒ X3 − n2X = Y 2.

This is exactly our elliptic curve definition, since X and Y are nonzero and
thus nontrivial.

((iii)⇒ (iv)) Assume that n is a positive integer and that there exist X,Y ∈
Q such that

Y 2 = X3 − n2X.

Now, let a = X2−n2

Y , b = 2nX
Y and c = X2+n2

Y so that

a2 + b2 = c2.

Thus, we have a rational right angle triangle with sides a, b, c and area equal
to n, since

ab

2
=

(X2 − n2)(2nX)

2Y 2

=
n(X3 − n2X)

Y 2

=
nY 2

Y 2

= n.

((iv) ⇒ (v)) Assume that n is a positive square-free integer and that there
exists a right angle triangle with sides a, b, c ∈ Q such that

a2 + b2 = c2 and n =
ab

2
.

First, we can scale a, b, c to conclude that there exist f, g, h ∈ Z+ with

f2 + g2 = h2, where f, g, h are relatively prime.

Then, the area of this triangle would be

n =
fg

2
.

9
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Now, using properties of pythagorean triples we know that there exist inte-
gers u and v such that f = u2−v2, g = 2uv and h = u2 +v2 [Dic20, Ros05].
Then

n =
2uv(u2 − v2)

2
= uv(u2 − v2),

which is exactly what we needed to show for the case when w2 = 1. We note
that a similar result occurs to include w2 when n is not square-free[Cha98].

((v)⇒ (i)) Assume that there exist u, v, n, w ∈ Z+ such that n is square-free,

nw2 = uv(u2 − v2)

and gcd(u, v) = 1 (or else we could divide out the gcd into w2). Then clearly
one of u, v, u2 − v2 is even and the other two are odd.

Case #1: Assume that u and v are odd then u2 − v2 is even. Next, let

β = 2uv ⇒ 2|β

and
α = u2 − v2 ⇒ 2|α, by assumption.

Note that β, α ∈ Z, since u, v ∈ Z+. Then

nw2 =
αβ

2
.

Now, let y = w so that

ny2 =
αβ

2
and note that

x2 =

(
u2 + v2

2

)2

=
(α

2

)2
+

(
β

2

)2

,

where x is in Z by definition of α and β. Then

ny2 =
αβ

2

=
αβ

2
+ x2 − x2

=
αβ

2
+
(α

2

)2
+

(
β

2

)2

− x2

=

(
α

2
+
β

2

)2

− x2.

10



2.1. Introduction

Therefore, let z = α
2 + β

2 (which is in Z by definition of α and β) such that

ny2 =

(
α

2
+
β

2

)2

− x2

⇒ ny2 = z2 − x2

⇒ x2 + ny2 = z2.

Similarly,

x2 =
(α

2

)2
+

(
β

2

)2

=
(α

2

)2
+

(
β

2

)2

+ ny2 − ny2

=
(α

2

)2
+

(
β

2

)2

+ ny2 − αβ

2

= ny2 +

(
α

2
− β

2

)2

.

So, let t = α
2 −

β
2 (which is in Z by definition of α and β) such that

x2 = ny2 +

(
α

2
− β

2

)2

⇒ x2 = ny2 + t2

⇒ x2 − ny2 = t2.

Hence, we have obtained the rationalized Diophantine equations in (i) with
x, y, z, t ∈ Z, which can be restricted to x, y, z, t ∈ Z+.

Case #2: Assume that u is even and v is odd then u2− v2 is odd. Next, we
can make similar substitutions to obtain the same result.

Case #3: Similarly, when v is even and u is odd then u2− v2 is odd and we
obtain the same result.
This completes the proof.

Historically, the term “Congruent number” is a result of the equivalent
definition stated in Theorem 2.2(i), since

x2 + ny2, x2 − ny2, and x2

11



2.2. Families of Congruent Numbers

are all congruent numbers modulo n [Cip09, Hem06, Kob92]. The most
current definition of a congruent number is the one involving elliptic curves,
as depicted in Theorem 2.2(iii) [Cip09]. This definition also gives us the
term congruent number elliptic curve.

2.2 Families of Congruent Numbers

Since the 10th century several families of congruent numbers have been
discovered. The purpose of this section is to present five families of congruent
numbers, given in Alter and Curtz’s paper [AC74], as well as proofs and
examples for each.

Lemma 2.3. [AC74] Given a, b ∈ Z+ if n = a4 + 4b4 then n is a congruent
number.

Proof. Given n = a4 + 4b4, for some a, b ∈ Z+, we need to show that there
exist x, y ∈ Z+ such that

x2 + ny2 and x2 − ny2

are both squares. Now, for n = a4 + 4b4 we have

x2 + ny2 = x2 + (a4 + 4b4)y2 (2.3)

and
x2 − ny2 = x2 − (a4 + 4b4)y2. (2.4)

So, let x = a8 + 24a4b4 + 16b8 and y = 4ab(4b4 − a4) in Equation (2.3) then

x2 +(a4 +4b4)y2 = (a8 +24a4b4 +16b8)2 +16(a4 +4b4)a2b2(4b4−a4)2 (2.5)

and upon factoring (2.5) becomes

(a8 + 32a2b6 − 8a4b4 + 8a6b2 + 16b8)2.

Similarly, when we let x = a8 + 24a4b4 + 16b8 and y = 4ab(4b4 − a4) in
Equation (2.4) we get that

x2 − (a4 + 4b4)y2 = (a8 − 32a2b6 − 8a4b4 − 8a6b2 + 16b8)2.

Therefore, let

z = (a8 + 32a2b6 − 8a4b4 + 8a6b2 + 16b8)

12



2.2. Families of Congruent Numbers

and
t = (a8 − 32a2b6 − 8a4b4 − 8a6b2 + 16b8).

Then we have shown that there exist x, y, z, t ∈ Z+ such that n = a4 + 4b4

is a congruent number by Theorem 2.2(i).

Example 2.4. If we let a = 1 and b = 2 in Lemma 2.3 then n = 14+4(24) =
65 is a congruent number. Using Theorem 2.2 (i) we see that for x = 97 and
y = 12

x2 + 65(y2) = 18769 = 1372

and
x2 − 65(y2) = 49 = 72.

Hence, the rationalized Diophantine equations

x2 + 65y2 = z2 and x2 − 65y2 = t2

are solvable with x = 97, y = 12, z = 137 and t = 7, which verifies that
n = 65 is a congruent number.

Lemma 2.5. [AC74] Given a, b ∈ Z+ if n = 2a4 +2b4 then n is a congruent
number.

Proof. Given n = 2a4 + 2b4, for some a, b ∈ Z+, we need to show that there
exist x, y ∈ Z+ such that

x2 + ny2 and x2 − ny2

are both squares. Now, for n = 2a4 + 2b4 we have

x2 + ny2 = x2 + (2a4 + 2b4)y2 (2.6)

and
x2 − ny2 = x2 − (2a4 + 2b4)y2. (2.7)

So, let x = a8 + 6a4b4 + b8 and y = 2ab(a4 − b4) in Equation (2.6) then

x2 + (2a4 + 2b4)y2 = (a8 + 6a4b4 + b8)2 + 4(2a4 + 2b4)a2b2(a4 − b4)2 (2.8)

and upon factoring (2.8) becomes

(a8 + 4a2b6 − 2a4b4 + 4a6b2 + b8)2.

13



2.2. Families of Congruent Numbers

Similarly, when we let x = a8 + 6a4b4 + b8 and y = 2ab(a4− b4) in Equation
(2.7) we get that

x2 − (2a4 + 2b4)y2 = (a8 − 4a2b6 − 2a4b4 − 4a6b2 + b8)2.

Therefore, let
z = (a8 + 4a2b6 − 2a4b4 + 4a6b2 + b8)

and
t = (a8 − 4a2b6 − 2a4b4 − 4a6b2 + b8).

Then we have shown that there exist x, y, z, t ∈ Z+ such that n = 2a4 + 2b4

is a congruent number by Theorem 2.2(i).

Example 2.6. If we let a = 1 and b = 2 in Lemma 2.5 then n = 2(14) +
2(24) = 34 is a congruent number. Using Theorem 2.2(i) we see that for
x = 145 and y = 12

x2 + 34(y2) = 25921 = 1612

and
x2 − 34(y2) = 16129 = 1272.

Hence, the rationalized Diophantine equations

x2 + 34y2 = z2 and x2 − 34y2 = t2

are solvable with x = 145, y = 12, z = 161 and t = 127, which verifies that
n = 34 is a congruent number.

Lemma 2.7. [AC74] Given a, b ∈ Z+ if n = a4 − b4 then n is a congruent
number.

Proof. Given n = a4 − b4, for some a, b ∈ Z+, we need to show that there
exist x, y ∈ Z+ such that

x2 + ny2 and x2 − ny2

are both squares. Now, for n = a4 − b4 we have

x2 + ny2 = x2 + (a4 − b4)y2 (2.9)

and
x2 − ny2 = x2 − (a4 − b4)y2. (2.10)

14



2.2. Families of Congruent Numbers

So, let x = b2(a4 + b4) and y = 2ab3 in Equation (2.9) then

x2 + (a4 − b4)y2 = b4(a4 + b4)2 + 4(a4 − b4)a2b6 (2.11)

and upon factoring (2.11) becomes

b4(a4 + 2a2b2 − b4)2.

Similarly, when we let x = b2(a4 + b4) and y = 2ab3 in Equation (2.10) we
get that

x2 − (a4 − b4)y2 = b4(a4 − 2a2b2 − b4)2.

Therefore, let z = b4(a4 + 2a2b2 − b4)2 and t = b4(a4 − 2a2b2 − b4) then
we have shown that there exist x, y, z, t ∈ Z+ such that n = a4 − b4 is a
congruent number by Theorem 2.2(i).

Example 2.8. If we let a = 2 and b = 1 in Lemma 2.7 then n = 24−14 = 15
is a congruent number. Using Theorem 2.2(i) we see that for x = 17 and
y = 4

x2 + 15y2 = 529 = 232

and
x2 − 15y2 = 49 = 72.

Hence, the rationalized Diophantine equations

x2 + 15y2 = z2 and x2 − 15y2 = t2

are solvable with x = 17, y = 4, z = 23 and t = 7, which verifies that n = 15
is a congruent number.

Lemma 2.9. [AC74] For integers a and b with opposite parity if nk2 =
a4 + 6a2b2 + b4, for some integer k, then n is a congruent number.

Proof. Recall by Theorem 2.2(v) that every congruent number n is of the
form nk2 = uv(u2 − v2), with k, u, v ∈ Z+. So, let

u = f2, v = g2, u− v = h2 and u+ v = nk2

where f, g, h, k, n ∈ Z+. Then n is a congruent number since

uv(u2 − v2) = n(fghk)2.

Now,
h2 + g2 = f2 (since u - v + v = u)
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2.2. Families of Congruent Numbers

is a pythagorean triple such that there exist a, b ∈ Z+ with

h = a2 − b2, g = 2ab, and f = a2 + b2, (2.12)

where exactly one of a, b is even and the other is odd [Dic20, Ros05]. So,
assume that h, g, f are defined as in (2.12) then

f2 + g2 = nk2

⇒ (a2 + b2)2 + (2ab)2 = nk2

⇒ a4 + 6a2b2 + b4 = nk2.

Hence, nk2 = a4 + 6a2b2 + b4 is a family of congruent numbers when a and
b have opposite parity.

Example 2.10. If we let a = 1 and b = 2 in Lemma 2.9 then n = 14 +
6(12)(22) + 24 = 41 is a congruent number. Using Theorem 2.2(i) we see
that for x = 881 and y = 120

x2 + 41y2 = 1366561 = 11692

and
x2 − 41y2 = 185761 = 4312.

Hence, the rationalized Diophantine equations

x2 + 41y2 = z2 and x2 − 41y2 = t2

are solvable with x = 881, y = 120, z = 1169 and t = 431, which verifies that
n = 41 is a congruent number.

Lemma 2.11. [AC74] For integers a, b with opposite parity if nk2 = a4 −
6a2b2 + b4 then n is a congruent number.

Proof. Once again, recall by Theorem 2.2(v) that every congruent number
n is of the form nk2 = uv(u2 − v2), with k, u, v ∈ Z+. So, let

u = f2, v = g2, u+ v = h2 and u− v = nk2

where f, g, h, k, n ∈ Z+. Then n is a congruent number since

uv(u2 − v2) = n(fghk)2.

Now,
f2 + g2 = h2
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2.2. Families of Congruent Numbers

is a pythagorean triple such that there exist a, b ∈ Z+ with

f = a2 − b2, g = 2ab, and h = a2 + b2, (2.13)

where exactly one of a, b is even and the other is odd [Dic20, Ros05]. So,
assume that f, g, h are defined as in (2.13) then

f2 − g2 = nk2

⇒ (a2 − b2)2 + (2ab)2 = nk2

⇒ a4 − 6a2b2 + b4 = nk2.

Hence, nk2 = a4 − 6a2b2 + b4 is a family of congruent numbers when a and
b have opposite parity.

Example 2.12. If we let a = 4 and b = 1 in Lemma 2.11 then n = 44 −
6(42)(12) + 14 = 161 is a congruent number. Using Theorem 2.2(i) we see
that for x = 305 and y = 24

x2 + 161y2 = 185761 = 4312

and
x2 − 161y2 = 289 = 172.

Hence, the rationalized Diophantine equations

x2 + 161y2 = z2 and x2 − 161y2 = t2

are solvable with x = 305, y = 24, z = 431 and t = 17, verifying that n = 161
is a congruent number.

17



Chapter 3

Elliptic Curves

3.1 Introduction

Although elliptic curves do not resemble ellipses it is of some interest to note
that the curves originated from the study of computing the arc length of an
ellipse [ST93]. In general, an equation of the form

y2 + axy + by = x3 + cx2 + dx+ e,

with coefficients a, b, c, d and e in Q, is an elliptic curve under certain restric-
tions. However, for our purposes we are primarily interested in a shorter
form and as such define the following.

Definition 3.1 (Elliptic Curve in Weierstrass Normal Form). An equation
of the form

E : y2 = x3 + ax2 + bx+ c

where a, b, and c are integers is an elliptic curve if the discriminant of x3 +
ax2 + bx+ c is not 0 (i.e. the discriminant D = −4a3c+a2b2 + 18abc−4b3−
27c2 6= 0).

We note that the non-zero restriction on the discriminant of the cubic is nec-
essary, since certain properties about elliptic curves do not hold otherwise.
The discriminant requirement directly corresponds to a cubic with three dis-
tinct roots (real and/or complex). That is to say if the cubic, x3+ax2+bx+c,
has a double root or a triple root then the equation y2 = x3 + ax2 + bx+ c
is not an elliptic curve. Examples of elliptic curves can be seen in Figure
3.1 and Figure 3.2 and examples of cubic equations with double and triple
roots (and hence not elliptic curves) can be seen in Figure 3.3 and Figure
3.4, respectively.
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3.2. Group Law

Figure 3.1: Elliptic curve with
three real roots, y2 = x(x+1)(x−
1).

Figure 3.2: Elliptic curve with one
real root, y2 = (x+1)(x2−4x+5).

Figure 3.3: Cubic equation with a
triple root, y2 = x3.

Figure 3.4: Cubic equation with a
double root, y2 = x2(x+ 1).

Given an elliptic curve E we are interested in the set of rational points
on E, denoted by E(Q) . Before we can discuss the structure of E(Q) we
must define the group law associated with rational points on elliptic curves.

3.2 Group Law

Given two rational points on elliptic curve E can we find another rational
point? The answer is yes. Before we can determine the other rational point,
which is defined by the group law, we must first define the composition law.

So, let E(Q) be the set of rational points on an elliptic curve E and let ∗
be the binary composition law operator that maps E(Q)×E(Q) into E(Q).
Then for each (P,Q) ∈ E(Q) × E(Q) we denote the element ∗((P,Q)) by
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3.2. Group Law

P ∗Q. We define P ∗Q to be the third intersection point of the line PQ with
the elliptic curve E [ST93, SZ03, Hus04, Sil86]. Similarly, if there is only one
rational point P on the elliptic curve then we consider P ∗P to be the third
intersection point of the tangent line created at P with the elliptic curve
E (where the tangent line is assumed to pass through the point P twice)
[ST93, SZ03, Hus04, Sil86]. The composition law, also known as the chord
and tangent method, is illustrated in Figure 3.5 and Figure 3.6 [Hus04].

Figure 3.5: Geometric interpreta-
tion of P ∗Q on the curve
y2 = (x+ 1)(x2 − 4x+ 5).

Figure 3.6: Geometric interpreta-
tion of P ∗ P on the curve
y2 = (x+ 1)(x2 − 4x+ 5).

Now, this might be all well and good but what if we do not even have one
rational point on the elliptic curve? To solve this problem we assume that
the elliptic curve has a rational point, known as the rational point at infinity,
denoted by O [ST93, SZ03, Hus04, Sil86]. That is to say we assume that
there exists at least one rational point on the elliptic curve E and call that
point O. Given this rational point at infinity we define O∗O = O where the
line at infinity meets the curve with multiplicity three at O [ST93, Sil86].
For some rational point P on E we also define O∗P = P ∗O to be the third
point of intersection between the vertical line at P and the elliptic curve
E [ST93, Sil86]. Specifically, O ∗ P is the reflection of P about the x-axis
[ST93].

We are now ready to introduce the binary group law operator + associ-
ated with E(Q), where O is assumed to be the rational point at infinity on
E. Assume that P and Q are rational points on E. Then we define P +Q
to be the reflection of P ∗Q about the x-axis [ST93]. That is to say

P +Q = O ∗ (P ∗Q),

where O∗(P ∗Q) is the third point of intersection on the vertical line through
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3.3. Mordell’s Theorem

P ∗Q with the elliptic curve E. The group law operator is visually depicted
in Figure 3.7.

Figure 3.7: Geometric interpretation of P +Q on the curve
y2 = (x+ 1)(x2 − 4x+ 5).

Furthermore, given rational points P,Q and R on the elliptic curve E
we also have the following rules associated with the group law operator,
previously defined [ST93].

P +Q = Q+ P (commutative)

P +O = O + P = P (identity element O)

P + (−P ) = (−P ) + P = O (inverses)

(P +Q) +R = P + (Q+R) (associative),

where −P is the notation for the reflection of P about the x-axis (i.e. −P =
O ∗ P ). These properties can be easily proved using the definition of the +
operator and the underlying ∗ operator (except the last one which requires a
lengthy computation)[ST93]. It can also be shown that E(Q) forms a group
under + [ST93]. Furthermore, Louis Mordell was able to elaborate on the
structure of E(Q) [ST93].

3.3 Mordell’s Theorem

Given the preliminary background information in Abstract Algebra we recall
the following theorem, which was proved in 1922 by Louis Mordell [tFE],

Theorem 3.2. [ST93, Hem06, Cha06, SZ03, Hus04, Sil86, Mordell’s Theo-
rem] Let E be the elliptic curve given by

E : y2 = x3 + ax2 + bx,
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3.3. Mordell’s Theorem

where a and b are integers. Then the group of rational points E(Q) is a
finitely generated abelian group, under the group law operator +.

Proof. See [ST93, Chapter III], [Hus04, Chapter 6], or [Sil86, Chapter VIII].

In summary, Mordell’s Theorem states that for an elliptic curve of the
form y2 = x3 + ax2 + bx, where a and b are integers, there exists a finite set
of rational points that will generate all of the rational points on the elliptic
curve using the group law operator, as defined in the previous section.

As a result of Mordell’s Theorem, we can apply Theorem 1.8 to the group
of rational points on an elliptic curve E, i.e.

E(Q) ' Z
⊕
· · ·
⊕

Z
⊕

Zpv11
⊕
· · ·
⊕

Zpvss ,

where Z is a cyclic group with infinite order and Zpvii is a finite cyclic group

of prime power order (for some prime pi and some positive integer vi) [ST93,
Hem06, Cha06, SZ03, Hus04, Sil86]. This in turn leads us to the rank r of
the elliptic curve E.

Definition 3.3. Let E be an elliptic curve with an associated finitely gen-
erated abelian group E(Q). The number of generators with infinite order in
E(Q) is the rank r of the elliptic curve E.

For example let
E : y2 = x3 − 25x.

Then using the MAGMA code in Appendix B we find that

E(Q) ' Z
⊕

Z2

⊕
Z2,

which implies that the rank of E is 1. Note that the group of rational points
on an elliptic curve is finite if and only if the rank of the elliptic curve is 0
[ST93].

Now we already stated in Theorem 2.2 that an integer n is a congruent
number if the elliptic curve Y 2 = X3−n2X has non-trivial rational solutions.
This in turn directly relates to the following lemma.

Lemma 3.4. [Kob92, Hem06, DJS09, Ben02, Kra86, NW93, Nem98, Kob92]
A positive integer n is a congruent number if and only if the elliptic curve

E : y2 = x3 − n2x

has rank at least 1.
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3.3. Mordell’s Theorem

Proof. See [Kob92, Chapter I Section 9], [Hem06, Chapter 2 Section 10],
[Cha06], or [Kob92, Chapter I Section 9].

We provide the following example as reinforcement, since Lemma 3.4
will be a useful tool in later chapters.

Example 3.5. Consider,

E := y2 = x3 − 62x.

Using the MAGMA code in Appendix B we find that the rank of E is 1,
thereby verifying that 6 is a congruent number by Lemma 3.4.

In the next chapter we present the method that we will be using to
determine the rank of an elliptic curve.
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Chapter 4

Rank Calculation

4.1 Method of 2-descent

Given an elliptic curve of the form y2 = x3 + ax2 + bx with a, b ∈ Z we
can sometimes determine the rank of the curve using the 2-descent method
described in this section [ST93].

We start by defining

E : y2 = x3 + ax2 + bx and E : y2 = x3 + ax2 + bx

where a = −2a and b = a2 − 4b [ST93]. The process of determining the
rank of E requires that we look at both curves E and E. So let Γ be
the rational points on E and let Γ be the rational points on E. Then for
the multiplicative group of non-zero rational numbers, denoted by Q∗, and
the subgroup of squares of Q∗, namely Q∗2 =

{
u2 : u ∈ Q∗

}
, define the

homomorphisms [ST93]

α : Γ −→ Q∗

Q∗2
and α : Γ −→ Q∗

Q∗2

such that

α(P ) =


1(modQ∗2), for P = O,
b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y)

and

α(P ) =


1(modQ∗2), for P = O,

b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y).

Then the rank r, of the elliptic curve E, satisfies the following equation
[ST93]:

2r =
|α(Γ)| · |α(Γ)|

4
,

where | · | denotes the cardinality of set (i.e. the number of elements in the
set). Using the definition of α(Γ) and α(Γ), to find elements in each set we
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4.1. Method of 2-descent

need to find rational numbers on the respective elliptic curves where the x
coordinates are distinct modulo squares.

As another perspective, Silverman and Tate state that the group α(Γ)
consists, modulo Q∗2, of at least 1 and b. They also state that α(Γ) contains
all divisors b1 of b, as long as b1 6≡ 1, b(modQ∗2) and the equation

N2 = b1M
4 + aM2e2 + b2e

4 where b = b1b2

has an integral solution (N,M, e) ∈ Z, with the restriction that M 6= 0, e 6= 0
and gcd(M, e) = gcd(N, e) = gcd(b1, e) = gcd(b2,M) = gcd(M,N) = 1
[ST93].

Similarly, the group α(Γ) consists, modulo Q∗2, of 1, b, and all divisors
b1 of b, as long as b1 6≡ 1, b(modQ∗2) and the equation

N2 = b1M
4 + aM2e2 + b2e

4 where b = b1 b2

= b1M
4 − 2aM2e2 + b2e

4 since a = −2a

has an integral solution (N,M, e) ∈ Z [ST93]. We also require that M 6=
0, e 6= 0 and gcd(M, e) = gcd(N, e) = gcd(b1, e) = gcd(b2,M) = gcd(M,N) =
1 [ST93].

Altogether, this gives us a method for determining the rank of E, pro-
vided that we are able to determine if each of the curves generated by the
divisors of b and b have solutions or not. It is also important to note that
calculating the rank of an elliptic curve using the 2-descent method can be
rather time consuming, depending on how many square free divisors there
are of b and b.

In addition, we can apply the following theorem to easily determine all
of the rational points of finite order on E.

Theorem 4.1. [ST93, Cha06, Sil86, Nagell-Lutz Theorem] Let

E : y2 = f(x) = x3 + ax2 + bx+ c

be an elliptic curve with integer coefficients; and let D be the discriminant
of the cubic polynomial f(x)

D = −4a3c+ a2b2 + 18abc− 4b3 − 27c3.

Let P = (x, y) be a rational point of finite order, also known as a torsion
point. Then x and y are integers and either y = 0, in which case P has
order two, or else y divides D.
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4.2. Worked Example

Proof. See [ST93, Chapter II], or [Sil86, Chapter VIII].

We note that the Nagell-Lutz’ Theorem is not an if and only if statement
[ST93]. That is to say for each of the rational points P = (x, y) that satisfy
y = 0 or y divides D we need to check that there exists an integer n ≥ 1
such that nP = 0, in order to verify that P has finite order [ST93]. All in
all, using the 2-descent (if successful) and the possible points of finite order
from Nagell-Lutz’ Theorem we can fully determine the group structure for
E(Q).

4.2 Worked Example

To re-enforce the 2-descent method we provide the following example.

Example 4.2. Determine the rank of y2 = x3 − 232x.

Solution: Using the 2-descent method we need to find all elements of α(Γ)
and α(Γ) when a = 0, b = −232, a = 0 and b = 4 · (232).

Given b = b1b2, we know that α(Γ) contains b(modQ∗2), and b1(modQ∗2)
when there exist N,M, e ∈ Z such that

N2 = b1M
4 + aM2e2 + b2e

4

with M 6= 0. In our case b = −232 such that the divisors of b are ±1,±23
and ±232. However, 232 ≡ 1(modQ∗2) and −232 ≡ −1(modQ∗2) so we need
only consider b1 = 1,−1, 23,−23. Since, b(modQ∗2) and 1 are automatically
in α(Γ) we get that −1, 1 ∈ α(Γ).

For the remaining b1 values consider the following equations:

(i) N2 = −23M4 + 23e4

(ii) N2 = 23M4 − 23e4.

Clearly, the solution (N,M, e) = (0, 1, 1) satisfies both of the above equa-
tions such that

α(Γ) = {1,−1, 23,−23} (4.1)

⇒ |α(Γ)| = 4 (4.2)

Similarly, for b = b1 b2 we know that α(Γ) contains b(modQ∗2), and
b1(modQ∗2) when the equation

N2 = b1M
4 + aM2e2 + b2e

4
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has an integral solution with M 6= 0. Now, upon removing squares we get
that the square free divisors of b are ±1,±2,±23 and ±46. Since, b(modQ∗2)
is automatically in α(Γ) we get that 1 ∈ α(Γ). We now consider the following
equations:

(i) N2 = −M4 − 4 · 232e4

(ii) N2 = 2M4 + 2 · 232e4

(iii) N2 = −2M4 − 2 · 232e4

(iv) N2 = 23M4 + 4 · 23e4

(v) N2 = −23M4 − 4 · 23e4

(vi) N2 = 2 · 23M4 + 2 · 23e4

(vii) N2 = −2 · 23M4 − 2 · 23e4.

Clearly, N2 ≥ 0 and we requireM 6= 0 such that Equations (i), (iii), (v), (vii)
will not have any integer solutions and can therefore be eliminated. Using
the MAPLETM code in Appendix A we find that (N,M, e) = (410, 17, 1) is
a valid solution for Equation (ii) such that 2 ∈ α(Γ).

So far we have that
α(Γ) = {1, 2} .

However, the remaining equations, (iv) and (vi), are a little bit harder to
solve, namely because they actually do not contain solutions. Our approach
will be to show that one of the remaining equations does not have a solution.
Then we can apply the fact that the |α(Γ)| must be a power of 2 such that
the other equation cannot have solutions either.

From Equation (iv) we see that

N2 ≡ 3M4(mod 4)

⇒ N2 ≡ 3(mod 4),

since the gcd(b2,M) = 1 we must have that M is odd and not divisible by 4
such that M4 ≡ 1(mod 4). However, N2 ≡ 3(mod 4) has no solutions, so we
can conclude that N2 = 23M4+4 ·23e4 has no solutions. This in turn allows
us to conclude that Equation (vi) must also have no solutions. Therefore,

α(Γ) = {1, 2} (4.3)

⇒ |α(Γ)| = 2 (4.4)

27



4.2. Worked Example

so that

2r =
|α(Γ)| · |α(Γ)|

4
=

4 · 2
4

= 21.

Thus, the rank of y2 = x3 − 232x is 1. Note that we could have also
determined rational points on E or E such that the x coordinate, modulo
squares, would be in Γ or Γ, respectively.
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Chapter 5

Congruent Number Curves
of Moderate Rank

The purpose of this chapter is to present an infinite family of congruent
number elliptic curves having moderate rank. In our case, the term moderate
rank means rank at least three. In Section 5.1 we present the main theorem
for this chapter, as well as some preliminary results, followed by Section 5.2
which contains the proof to the main theorem.

Now, it may not seem very beneficial to find an infinite family of con-
gruent number elliptic curve with rank at least three but it turns out that
even general elliptic curves with rank at least three are rare. Using a typical
sample set of all elliptic curves A. Brumer and O. McGuinness studied the
ranks of 310716 elliptic curves to find that only 4.08% of these curves have
rank at least 3 [BM90]. We also note that the largest known rank for a
congruent number elliptic curve is 6 [DJS09], which re-enforces the signifi-
cance of finding infinitely many congruent number elliptic curves with rank
at least 3.

5.1 Rank Three Results

To start, we present the main result for this chapter in the following theorem.

Theorem 5.1. [JS] The curve

w2 = t4 + 14t2 + 4

has infinitely many rational points. Let (t, w) with t 6= 0 be one of them. Set
t = u/v where u and v are integers with gcd(u, v) = 1. Define the positive
integer n by

n = 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4). (5.1)

Then the congruent number elliptic curve y2 = x(x2 − n2) has rank at least
three.
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5.1. Rank Three Results

We provide the following example, not as proof of Theorem 5.1 but to
illustrate the results.

Example 5.2. The point (t, w) =
(
1
2 ,

11
4

)
is on the curve

w2 = t4 + 14t2 + 4.

Then by Theorem 5.1 let u = 1 and v = 2 such that n = 42486. Using the
MAGMA code in Appendix B we find that the curve

y2 = x3 − 424862x

has rank of at least 3. Note that the actual output from MAGMA is “Warn-
ing: rank computed (3) is only a lower bound (It may still be correct,
though)”. However, since Theorem 5.1 is only stating a rank of at least
three these results do coincide with the theorem.

Before we prove Theorem 5.1 in Section 5.2 we will need the following
helpful lemmas.

Lemma 5.3. [JS] If u and v are integers with gcd(u, v) = 1 then the quan-
tities

(i) ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

(ii) ±6(u4 + 2u2v2 + 4v4)

(iii) ±2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

(iv) ±2(u4 + 2u2v2 + 4v4)

are not equal to squares in Q.

Proof. The proof for each case is similar so we will prove Case i) in detail
and summarize the other three cases accordingly.

Case i) Assume that u and v are integers such that the gcd(u, v) = 1. Then
we need to show that

± 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) (5.2)

is not a square in Q. The only subcase that we need to consider
is the subcase where u is even and v is odd, since we require that
gcd(u, v) = 1 and we see that the other three subcases either cannot
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occur or by properties of even and odd addition and multiplication
will result in

2 ‖ ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4),

which clearly implies that ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) is
not a square in Q.
So, assuming that u is even and v is odd we can let u = 2k for some
k ∈ Z and apply properties of even and odd numbers such that (5.2)
becomes

±6(24k4 + 23k2v2 + 4v4)(24k4 + 25k2v2 + 4v4).

Hence,
25 ‖ ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4),

since we can factor out 25 and the remaining factors

3, (22k4 + 2k2v2 + v4) and (22k4 + 23k2v2 + v4)

are odd, so that

±3(22k4 + 2k2v2 + v4)(22k4 + 23k2v2 + v4)

must also be odd. Therefore, ±6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)
is not a square in Q.

Case ii) Similarly, for integers u and v assume that the gcd(u, v) = 1 with
u even and v odd. Then

23 ‖ ±6(u4 + 2u2v2 + 4v4),

so that ±6(u4 + 2u2v2 + 4v4) is not a square in Q.

Case iii) Once again, assume that u and v are integers such that gcd(u, v) =
1 with u even and v odd. Then

25 ‖ ±2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4),

so that ±2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) is not a square in Q.

Case iv) Lastly, assume that u and v are integers such that the gcd(u, v) = 1
with u even and v odd. Then

23 ‖ ±2(u4 + 2u2v2 + 4v4),

so that ±2(u4 + 2u2v2 + 4v4) is not a square in Q.
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Lemma 5.4. [JS] If u and v are nonzero integers with gcd(u, v) = 1 then
the quantities

(i) ±(u4 + 2u2v2 + 4v4)

(ii) ±(u4 + 8u2v2 + 4v4)

are not equal to squares in Q.

Proof. Clearly, if u and v are nonzero integers with gcd(u, v) = 1 then the
only possible way for any of the quantities

(i) ±(u4 + 2u2v2 + 4v4)

(ii) ±(u4 + 8u2v2 + 4v4)

to be squares would occur in the positive cases of (i) and (ii). So, by way of
contradiction assume that one of the quantities is a square such that

(u4 + 2u2v2 + 4v4) = z21

or

(u4 + 8u2v2 + 4v4) = z22 ,

for some z1, z2 ∈ Z. Equivalently, either

u2

v6
(u4 + 2u2v2 + 4v4) = z21

u2

v6

⇒ u6

v6
+

2u4

v4
+

4u2

v2
=

z21u
2

v6

or

u2

v6
(u4 + 8u2v2 + 4v4) = z22

u2

v6

⇒ u6

v6
+

8u4

v4
+

4u2

v2
=

z22u
2

v6
.

Now, let x = u2

v2
and yi = ziu

v3
, for i = 1, 2, be the rational points on the

above curves. Then by substitution either

x3 + 2x2 + 4x = y21 (5.3)
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or

x3 + 8x2 + 4x = y22, (5.4)

respectively, such that (5.3) and (5.4) are elliptic curves by definition. Using
the MAGMA code in Appendix B we find that the rank of both (5.3) and
(5.4) is 0. This in turn gives us that there is a finite number of rational
points on (5.3) and (5.4), by Theorem 3.2.

Once again using the MAGMA code in Appendix B we find that the only
finite rational point on (5.3) is (x, y) = (0, 0). This, however, is not a valid

solution for x = u2

v2
since u is required to be a nonzero integer. Similarly, we

also have that the only finite rational points on (5.4) are (0, 0), (−2, 4) and
(−2,−4), of which none correspond to a nonzero x = u2/v2 with u and v
being integers. Hence, there does not exist z1, z2 ∈ Z such

(u4 + 2u2v2 + 4v4)

or

(u4 + 8u2v2 + 4v4)

are squares in Q.

Lemma 5.5. [JS] For integers u, v such that the gcd(u, v) = 1 we have

(i) 3 - (u4 + 8u2v2 + 4v4),

(ii) 3 - (u4 + 2u2v2 + 4v4).

Proof. Let u, v be integers such that the gcd(u, v) = 1. Then we need to
show that 3 does not divide either of the quantities (u4 + 8u2v2 + 4v4) or
(u4 +2u2v2 +4v4). First, consider each of the quantities modulo 3 such that

(u4 + 8u2v2 + 4v4) ≡ (u4 + 2u2v2 + v4)(mod 3)

≡ (u2 + v2)2(mod 3)

and

(u4 + 2u2v2 + 4v4) ≡ (u4 + 2u2v2 + v4)(mod 3)

≡ (u2 + v2)2(mod 3).

Note that both of the quantities are congruent to (u2 + v2)2 modulo 3. It
remains to show that 3 does not divide (u2 + v2)2.
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By way of contradiction assume that 3 does divide (u2 + v2)2. Then

(u2 + v2)2 ≡ 0(mod 3). (5.5)

Considering squares modulo 3, for some x ∈ {0, 1, 2}, we have that x2 ≡
0(mod 3) when x = 0 and x ≡ 1(mod 3) when x = 1, 2. Therefore,

(u2 + v2)2 ≡ 0(mod 3)

⇒ u2 + v2 ≡ 0(mod 3)

⇒ u2 ≡ v2 ≡ 0(mod 3).

This however yields a contradictions since gcd(u, v) = 1, by assumption.
Therefore 3 does not divide (u2 + v2)2 which is enough to show that 3 does
not divide (u4 + 8u2v2 + 4v4) or (u4 + 2u2v2 + 4v4).

Lemma 5.6. [JS] For integers u, v with gcd(u, v) = 1, neither of the fol-
lowing quantities is equal to a square in Q.

±(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4).

Proof. Clearly, −(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) cannot be a square
in Q. It remains to show that

(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) (5.6)

is not a square in Q.
We start by showing that if (5.6) is a square in Q then this would require

that each of
(u4 + 2u2v2 + 4v4) (5.7)

and
(u4 + 8u2v2 + 4v4) (5.8)

must be squares in Q. In order to show that each of the factors is a square
we consider the resultant of (5.7) and (5.8), since we can use the resultant
of two factors to find all possible greatest common divisors (gcds) of the two
factors (as seen in [Wal05]). We can then use the possible gcds to show that
each of the factors only have squares in common.

Using the MAPLETM code in Appendix A we find that the resultant of
these factors is 20736v16, with respect to u, and 20736u16, with respect to
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v. This in turn implies that either 2 and/or 3 must divide (5.7) and (5.8),
since 20736 = 2834 and gcd(u, v) = 1.

Recall from Lemma 5.5 that 3 does not divide (5.7) or (5.8). Also, if
2 does divide (5.7) and (5.8) then this would imply that u is even and v
is odd, which directly gives us that 4 exactly divides (5.7) and 4 exactly
divides (5.8). However, 4 is a square which is enough to show that if (5.6)
is a square in Q then each of (5.7) and (5.8) must be squares in Q.

Finally, using Lemma 5.4 we see that each of (u4 + 2u2v2 + 4v4) and
(u4 + 8u2v2 + 4v4) cannot be squares in Q so that (u4 + 2u2v2 + 4v4)(u4 +
8u2v2 + 4v4) is not a square in Q.

Lemma 5.7. [JS] There exist infinitely many pairs of rational numbers
(t, w) such that

w2 = t4 + 14t2 + 4.

Proof. We need to show that there exist infinitely many rational points on
the curve

w2 = t4 + 14t2 + 4. (5.9)

Equivalently, we can show that there exist infinitely many rational points
on the elliptic curve

Y 2 = X3 − 6588X + 39312,

since the MAPLETM code in Appendix A shows that the two curves are bi-
rationally equivalent. Recall that an elliptic curve contains infinitely many
rational points if the rank of the elliptic curve is at least 1. Using the
MAGMA code in Appendix B we find that rank of Y 2 = X3−6588X+39312
is 1. Hence, w2 = t4 + 14t2 + 4 contains infinitely many rational points.

5.2 Proof of the Main Theorem

We are now prepared to prove Theorem 5.1.

Proof. Recall from Lemma 5.7 that the curve

w2 = t4 + 14t2 + 4 (5.10)
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has infinitely many rational points. Now, let (t, w) be a rational point
on (5.10) with t 6= 0, and set t = u/v where u and v are integers with
gcd(u, v) = 1. Then for

n = 6(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)

it remains to show that the curve

y2 = x3 − n2x (5.11)

has rank, r, at least three. Using the 2-descent method described in Chapter
4 it is enough to show that 2r ≥ 8, since this would imply that r is at least
3. More specifically, since

2r =
|α(Γ)| · |α(Γ)|

4

we will show that |α(Γ)| ≥ 32.
As described in Chapter 4 let Γ be the group of rational points on the

elliptic curve y2 = x3 − n2x and let Γ be the group of rational point on the
elliptic curve y2 = x3 + 4n2x. Then we need to find as many elements of
α(Γ) and α(Γ) where

α(P ) =


1(modQ∗2), for P = O,
b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y)

and

α(P ) =


1(modQ∗2), for P = O,

b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y),

as defined in Chapter 4.
By definition, α(Γ) contains b(modQ∗2). Also recall that, for b = b1b2,

α(Γ) contains b1(modQ∗2) when the equation

N2 = b1M
4 + aM2e2 + b2e

4

has a solution with M 6= 0. In our case b = −n2 such that the divisors of b
include ±1,±n and ±n2, plus the divisors of n. However, n2 ≡ 1(modQ∗2)
and −n2 ≡ −1(modQ∗2) such that −1, 1 ∈ α(Γ), and we need to only
consider b1 = n,−n and all other divisors of n.

So, for b1 = n and b1 = −n consider the following equations:
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(i) N2 = nM4 − ne4

(ii) N2 = −nM4 + ne4.

Clearly, the solution (N,M, e) = (0, 1, 1) satisfies both of the above equa-
tions. Furthermore, Lemma 5.3(i) shows that n is not a square such that
n,−n ∈ α(Γ). So far we have

α(Γ) ⊇ {1,−1, n,−n} .

To find more elements of α(Γ) we consider the following non-torsion
points, that satisfy y2 = x3 − n2x,

P1 = (x, y) =
(
−36u2v2(u4 + 8u2v2 + 4v4), 36uv(u2 − 2v2)(u4 + 8u2v2 + 4v4)2

)
,

P2 = (x, y) =
(
12(u4 + 2u2v2 + 4v4)2, 36(u4 − 4v4)(u4 + 2u2v2 + 4v4)2

)
,

P3 = (x, y) =
(
−36u2v2(u4 + 2u2v2 + 4v4), 36uv3(u4 + 2u2v2 + 4v4

)2
w).

It is easy to show that P1 and P2 are on y2 = x3 − n2x, just make direct
substitutions for x and y. For P3 we need to recall that w2 = t4 + 14t2 + 4
and t = u/v such that

y2 = (−36u2v2(u4 + 8u2v2 + 4v4))3 − n2(−36u2v2(u4 + 8u2v2 + 4v4))

⇒ y2 = 1296u2v2(u4 + 14u2v2 + 4v4)(u4 + 2u2v2 + 4v4)4

⇒ y2

v4 = 362u2v2

((u
v

)4

+ 14
(u
v

)2

+ 4

)
(u4 + 2u2v2 + 4v4)4

⇒ y2

v4 = 362u2v2(t4 + 14t2 + 4)(u4 + 2u2v2 + 4v4)4

⇒ y2 = 362u2v6w2(u4 + 2u2v2 + 4v4)4

⇒ y = ±36uv3w(u4 + 2u2v2 + 4v4)2.

It remains to show that P1, P2 and P3 are not congruent modulo Q∗2 to each
other or any of the other points already in α(Γ). To start, consider

α(P1) ≡ −(u4 + 8u2v2 + 4v4)(modQ∗2).

Then using Lemma 5.4 (ii) we see that ±(u4 + 8u2v2 + 4v4) is not a square
in Q such that −(u4+8u2v2+4v4) ⊆ α(Γ), since clearly ±(u4+8u2v2+4v4)
is not congruent to ±1 or ±n. Using Lemma 5.3(ii) we see that ±α(P1)n is
not a square in Q either such that

α(Γ) ⊇ S1 +
{
±1,±n,±(u4 + 8u2v2 + 4v4),±n(u4 + 8u2v2 + 4v4)

}
.
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Now, consider

α(P2) ≡ 3(modQ∗2).

Then clearly 3 is not a square in Q, however it remains to show that α(P2) 6≡
s(modQ∗2) for all s ∈ S1. So, consider the case where the congruence holds
then there would exist integers c1, c2 with c1, c2 ∈ {0, 1} such that

α(P2) ≡ ±nc1
(
u4 + 8u2v2 + 4v4

)c2 (modQ∗2)
⇒ 3 ≡ ±nc1

(
u4 + 8u2v2 + 4v4

)c2 (modQ∗2).

Upon comparing powers of 3 on both sides of the congruence we see, by
Lemma 5.5(i), that c1 = 1. Hence,

3 ≡ ±n(modQ∗2) when c2 = 0 (5.12)

and/or

3 ≡ ±n
(
u4 + 8u2v2 + 4v4

)
(modQ∗2) when c2 = 1. (5.13)

For congruence (5.12) we deduce that 2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4)
must be a square modulo Q, since n = 6(u4+2u2v2+4v4)(u4+8u2v2+4v4).
However, by Lemma 5.3(iii) we know that 2(u4 + 2u2v2 + 4v4)(u4 + 8u2v2 +
4v4) is not a square modulo Q. Similarly, in order for congruence (5.13)
to hold we would require that 2(u4 + 2u2v2 + 4v4) be a square modulo Q,
which contradicts Lemma 5.3(iv). Altogether, this gives us that α(P2) 6≡
s(modQ∗2) for all s ∈ S1 such that

α(Γ) ⊇ S2 +< 1, n, (u4 + 8u2v2 + 4v4), 3 >,

where the elements of S2 are generators for the subgroup of α(Γ) and |S2| =
16.

Finally, consider

α(P3) = −(u4 + 2u2v2 + 4v4)(modQ∗2).

In this case, we need to show that α(P3) 6≡ s(modQ∗2) for all s ∈ S2. So,
consider the case where the congruence holds then there would exist integers
e1, e2 and e3 with e1, e2, e3 ∈ {0, 1} such that

α(P3) ≡ ±3e1ne2(u4 + 8u2v2 + 4v4)e3(modQ∗2)
⇒ −(u4 + 2u2v2 + 4v4) ≡ ±3e1ne2(u4 + 8u2v2 + 4v4)e3(modQ∗2).
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Upon comparing powers of 2 on both sides of this congruence, as in the
proof of Lemma 5.3, we deduce that

22m ‖ 3e1ne2(u4 + 8u2v2 + 4v4)e3 ,

for some non-negative integer m. However, as determined in the proof of
Lemma 5.3, there is an odd power of 2 exactly dividing n, such that e2 must
be 0. Therefore,

− (u4 + 2u2v2 + 4v4) ≡ ±3e1(u4 + 8u2v2 + 4v4)e3(modQ∗2). (5.14)

Comparing powers of 3 on both sides of (5.14) implies that e1 = 0, by
Lemma 5.5. So, either

− (u4 + 2u2v2 + 4v4) ≡ ±1(modQ∗2) when e3 = 0 (5.15)

and/or

−(u4+2u2v2+4v4) ≡ ±(u4+8u2v2+4v4)(modQ∗2) when e3 = 1. (5.16)

For congruence (5.15) we deduce that −(u4 + 2u2v2 + 4v4) must be a square
modulo Q. However, by Lemma 5.4(i) we know that −(u4 + 2u2v2 + 4v4)
is not a square modulo Q. Similarly, in order for congruence (5.16) to hold
we would require that (u4 + 2u2v2 + 4v4)(u4 + 8u2v2 + 4v4) be a square
modulo Q, which is contradicted by Lemma 5.6. Altogether, this gives us
that α(P3) 6≡ s(modQ∗2) for all s ∈ S2 such that

α(Γ) ⊇ S2 ∪
{
−(u4 + 2u2v2 + 4v4)

}
,

which contains at least 17 elements. Then since |α(Γ)| must be a power
of 2 we have that |α(Γ)| ≥ 32, which is enough to show that the rank of
y2 = x3 − n2x is at least 3.
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Chapter 6

The Distribution of
Congruent Numbers

Previously, it has been shown that every congruence class modulo eight
contains infinitely many congruent numbers [Cha06]. That is to say, modulo
8 there exist infinitely many positive integers n such that the rank of the
associated elliptic curve, y2 = x3 − n2x, is at least 1. In general, it has
been shown that every congruence class modulo m contains infinitely many
congruent numbers for any integer m greater than 1 [Ben02]. The goal of
this chapter is to prove a similar result involving congruent numbers where
the rank of the associated elliptic curve is at least 2.

6.1 Rank Two Results

We begin by presenting the main theorem that will be proved in Section 6.2.

Theorem 6.1. [JS10] If m > 1 is an integer then any congruence class
modulo m contains infinitely many congruent numbers n, inequivalent mod-
ulo squares, such that the rank of y2 = x(x2 − n2) is greater than or equal
to 2.

We note that in Theorem 6.1, n is any positive integer not just a square-
free integer. Before we prove Theorem 6.1 we need to recall the following
theorem, that was conjectured by Mordell and then later proved by Faltings
in 1983, where the term genus is a well-defined quantity associated with any
algebraic curve [Hus04].

Theorem 6.2. [Hus04, Remark 6.4] [Faltings Theorem] Let E be a non-
singular curve (i.e. all the roots are distinct) of genus strictly greater than
1. Then the set E(Q) of rational points on E is finite.

Proof. See [Fal83].

We also need to prove the following lemma.
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Lemma 6.3. [JS10] Let t 6∈ {0,−1,−1/3} be a rational number and define
f(t) by

f(t) = t(t+ 1)(3t+ 1)(9t4 + 24t3 + 26t2 + 8t+ 1). (6.1)

Then the elliptic curve
y2 = x3 − f(t)2x (6.2)

has rank greater than or equal to 2, for all but finitely many values of t.

Proof. Given a rational number t 6= 0,−1,−1/3 let r be the rank of the
elliptic curve

y2 = x3 − f(t)2x, (6.3)

where f(t) is as described in Equation (6.1). As in Chapter 4, let Γ be the
group of rational points on the elliptic curve y2 = x3 − f(t)2x and let Γ be
the group of rational point on the elliptic curve y2 = x3 + 4f(t)2x. Then we
need to find as many elements of α(Γ) and α(Γ) where

α(P ) =


1(modQ∗2), for P = O,
b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y)

and

α(P ) =


1(modQ∗2), for P = O,

b(modQ∗2), for P = (0, 0),
x(modQ∗2), for P = (x, y).

Using the 2-descent method, as described in Chapter 4, we need to show
that 2r ≥ 4, since this would imply that the rank of y2 = x3 − f(t)2x is at
least 2. More specifically, since

2r =
|α(Γ)| · |α(Γ)|

4

we will show that |α(Γ)| ≥ 8 and |α(Γ)| ≥ 2.
To start, recall that α(Γ) contains 1 and b(modQ∗2), and for b = b1b2

α(Γ) also contains b1(modQ∗2) when the equation

N2 = b1M
4 + aM2e2 + b2e

4

has a solution with M 6= 0. In our case b = −f(t)2 such that 1,−1 ∈ α(Γ)
by definition, since −f(t)2 ≡ −1(modQ∗2). Then we need to only consider
b1 = f(t),−f(t) plus all other divisors of f(t).

Now, for b1 = f(t) and b1 = −f(t) consider the following equations:
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(i) N2 = f(t)M4 − f(t)e4

(ii) N2 = −f(t)M4 + f(t)e4.

Clearly, the solution (N,M, e) = (0, 1, 1) satisfies both of the above equa-
tions. It remains to show that ±f(t) is not a square in Q. So, consider

Y 2 = ±f(t) = ±t(t+ 1)(3t+ 1)(9t4 + 24t3 + 26t2 + 8t+ 1). (6.4)

Using the MAPLETM code in Appendix A we find that Equation (6.4) is
a genus 3 curve such that by Theorem 6.2 there are only finitely many
solutions. Therefore, except for finitely many t values, we have

α(Γ) ⊇ {1,−1, f(t),−f(t)} .

To find another element of α(Γ) we consider the following non-torsion
point P1 = (x1, y1), that satisfies y2 = x3 − f(t)2x, where

x1 = −4t2(t+ 1)2(3t+ 1)2(9t4 + 24t3 + 26t2 + 8t+ 1)

(3t2 + 2t+ 1)2

y1 =
2t2(t+ 1)2(3t+ 1)2(3t2 − 1)(9t4 + 24t3 + 26t2 + 8t+ 1)2

(1 + 2t+ 3t2)3
.

It remains to show that P1 is distinct modulo Q∗2, in α(Γ). So, consider

α(P1) ≡ −(9t4 + 24t3 + 26t2 + 8t+ 1)(modQ∗2).

Then clearly P1 is not congruent to ±1 or ±f(t) modulo Q∗2 as long as
α(P1) is not a square itself. However, if α(P1) is a square in Q then we
would have

Y 2 = ±(9t4 + 24t3 + 26t2 + 8t+ 1). (6.5)

Now, we need to only consider the positive case of (6.5), since the negative
case yields no rational solutions for all rational values of t. So, consider

Y 2 = (9t4 + 24t3 + 26t2 + 8t+ 1),

which using the MAPLETM code in Appendix A we find is bi-rationally
equivalent to

Y 2 = t3 − 5616t+ 120960. (6.6)

Using the MAGMA code in Appendix B we find that the rank of (6.6) is
zero. Therefore, by definition, we have that there are only finitely many
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points that satisfy (6.6). This in turn gives us that, except for finitely many
t values,

α(Γ) ⊇ {1,−1, f(t),−f(t), (9t4 + 24t3 + 26t2 + 8t+ 1),

−(9t4 + 24t3 + 26t2 + 8t+ 1)}.

Then since |α(Γ)| must be a power of 2 we have that |α(Γ)| ≥ 8.
Next consider b = 4f(t)2 such that 1 ∈ α(Γ) by definition. Then we need

to only consider b1 = 4f(t),−4f(t), as well as the other divisors of 4f(t).
We start with the following non-torsion point, P2 = (x2, y2), that satisfies
y2 = x3 + 4f(t)2x,

(x2, y2) = ((4t2(9t4 + 24t3 + 26t2 + 8t+ 1), 4t2(9t4 + 24t3 + 26t2 + 8t+ 1)2).

It remains to show that α(P2) is not a square in Q. So, consider

α(P2) ≡ (9t4 + 24t3 + 26t2 + 8t+ 1)(modQ∗2).

This, however, is the same as −α(P1) which we already showed was a square
in Q∗2 for only finitely many rational t values. Hence,

α(Γ) ⊇
{

1, (9t4 + 24t3 + 26t2 + 8t+ 1)
}

such that |α(Γ)| ≥ 2. Altogether, we have shown that the rank of

y2 = x3 − f(t)2x

is at least 2, for finitely many rational t values, since

2r =
|α(Γ)| · |α(Γ)|

4

≥ 8 · 2
4

= 4.

6.2 Proof of the Main Theorem

We are now ready to prove Theorem 6.1.
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6.2. Proof of the Main Theorem

Proof. Let m be a positive integer grater than 1. Then we need to show
that every congruence class modulo m contains infinitely many congruent
numbers n, inequivalent modulo squares, such that the associated elliptic
curve, y2 = x3 − n2x, has rank at least 2.

So, consider the integer a ∈ {1, 2, . . . ,m}, which is a representative of a
congruence class modulo m. Then we need to show that there exist infinitely
many positive integers n such that n ≡ a(modm), the rank of the associated
elliptic curve, y2 = x3−n2x, is at least 2 and the n’s are inequivalent modulo
squares. To do this we define the integer n to be

n +
f(am2x2)

m2x2
, (6.7)

where f is as defined in (6.1) and x = 1, 2, . . .. So,

n = a(am2x2 + 1)(3am2x2 + 1)(9(am2x2)4

+24(am2x2)3 + 26(am2x2)2 + 8am2x2 + 1),

which is clearly a positive integer greater than zero and clearly n ≡ a(modm).
Moreover, by scaling Lemma 6.3 we have that the rank of y2 = x3 − n2x
is at least 2, which also implies that n is a congruent number by Lemma
3.4. So far, since a and m are arbitrary and x = 1, 2, . . . we have shown
that there exist infinitely many congruent numbers n in each congruence
class modulo m such that the associated elliptic curve has rank at least 2.
It remains to show that there exist infinitely many n’s that are inequivalent
modulo squares.

So, by way of contradiction assume that there exists a finite set of nonzero
rational numbers di where i = 1, . . . k that are inequivalent modulo squares
such that for each value of x in (6.7) we have

f(am2x2)

m2x2
= diY

2, (6.8)

where Y is a rational number dependent on x (i.e. there are only finitely
many n’s that are incongruent modulo squares). However, since there are
an infinite number of distinct x values this would imply that there exists an
infinite set of distinct points on the set of algebraic curves defined in (6.8).
Using the MAPLETM code in Appendix A we find that the algebraic curves
defined in (6.8) have genus 5, of which we know by Theorem 6.2 that for each
di there are only finitely many points satisfying each equation. Therefore,
there must exist infinitely many numbers n that are inequivalent modulo
squares.

44



6.2. Proof of the Main Theorem

Altogether, we have that there exist infinitely many congruent numbers
n, inequivalent modulo squares, in each congruence class modulo m such
that the associated elliptic curve has rank at least 2.
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Chapter 7

Future Work

Future work in this area would involve congruent numbers, elliptic curves
or congruent number elliptic curves.

In the field of congruent numbers there are several topics that people
may find interesting. For instance, one might look at finding another equiv-
alent definition for a congruent number, as in Theorem 2.2. As we saw in
Chapter ?? the more we know about congruent numbers the closer we are
to solving the congruent number problem. The definition of a congruent
number involving elliptic curves has brought us significantly closer to solv-
ing the congruent number problem and without this discovery we may not
know nearly as much about congruent numbers [Cip09].

Another interesting topic of consideration would be to find more families
of congruent numbers, similar to Chapter 2 Section 2.2. One might also
be interested in looking closer at the statistical distribution of congruent
numbers, as Rubinstein does in Chapter 1.

Specifically, given the results found in this thesis one might try to prove
that for an integer m > 1 any congruence class modulo m contains infinitely
many congruent numbers n, inequivalent modulo squares, such that the rank
of y2 = x(x2 − n2) is greater than or equal to 3. Suffice it to say, there are
still many open questions surrounding congruent numbers making this field
of study interesting and beneficial to any inquisitive person.

When discussing elliptic curves it is important to remember that we do
not necessarily need to talk about congruent number elliptic curves. A lot
of work has been done with elliptic curves in general, however there are still
some open problems surrounding this topic, including the BSD conjecture
[Cip09]. The BSD conjecture is widely believed to be true and would provide
significant results, including the verification of Tunnell’s Theorem [Hem06].

Now for some future work involving congruent number elliptic curves.
Based on the results found in Chapter 5 one might be interested in finding
more families of congruent number elliptic curves with moderate rank, as
well as individual congruent number elliptic curves with significant rank.
Currently, the highest known rank of a congruent number elliptic curve is
only 7 but it would be interesting to find higher ranks and possibly work
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Chapter 7. Future Work

with those individual curves to find families of congruent number elliptic
curves with equivalent rank [DJS09].

In closing, I would like to say that the study of congruent numbers and
congruent number elliptic curves is significant to many researchers for the
simple reason that they are interesting, and that there are still a lot of
unanswered questions [Cip09]. I thoroughly enjoyed working with congru-
ent numbers and congruent number elliptic curves, and I look forward to
continuing my work in this area.
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Appendix A

MAPLE Code

The calculations in this section were executed using MAPLE 12 where > is
used to reference MAPLE input and center text is used to reference MAPLE
output.

A.1 Worked Example Calculations from
Section4.2

Finding the rank of y2 = x(x2 − 232).
> e3Γ := N2 + 23M4 − 23e4 :

> seq(seq(isolve(e3Γ]),M = 1..10), e = 1..10);

{N = 0} , {N = 0} , {N = 0} , {N = 0} , {N = 0} ,

{N = 0} , {N = 0} , {N = 0} , {N = 0} , {N = 0}

> soln := subs(N = 0, e3Γ]);

soln := 23M4 − 23 e4

> seq(isolve(soln), e = 1..10);

{M = 1} , {M = −1} , {M = 2} , {M = −2} , {M = 3} ,

{M = −3} , {M = −4} , {M = 4} , {M = −5} , {M = 5} ,

{M = −6} , {M = 6} , {M = −7} , {M = 7} , {M = −8} ,

{M = 8} , {M = 9} , {M = −9} , {M = −10} , {M = 10}

Hence there exists a soln satisfying the gcd conditions, namely (0, 1, 1).
> with(numtheory):

> divisors(2116);

{1, 2, 4, 23, 46, 92, 529, 1058, 2116}
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A.2. Chapter 5 Calculations

> e32 := N2 − 2M4 − 1058e4 :

> seq(seq(isolve(e32),M = 1..50), e = 1..50);

{N = −410} , {N = 410} , {N = −1640} , {N = 1640} , {N = −9430} ,

{N = 9430} , {N = −37720} , {N = 37720}

> soln1 := subs(N = 410, e32);

soln1 := 168100 − 2 M 4 − 1058 e4

> seq(isolve(soln1), e = 1..10);

{M = −17} , {M = 17}

> factor(subs(M = 17, soln1));

−1058 (e− 1) (e+ 1)
(
e2 + 1

)
Hence, the solution (410, 17, 1) satisfies the equation and the gcd conditions.

A.2 Chapter 5 Calculations

Finding the resultants for the factors defined in Lemma 5.6.
> f := u4 + 2u2v2 + 4v4 :

> g := u4 + 8u2v2 + 4v4 :

> resultant(f, g, u);

20736v16

> resultant(f, g, v);

20736u16

> ifactor(20736);

(2)8(3)4

Converting w2 = t4 + 14t2 + 4 to y2 = x3 − 6588x + 39312 in the proof of
Lemma 5.7.
> with(algcurves) :

> f := t4 + 14t2 + 4− w2 :

> genus(f, t, w);

1
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A.3. Chapter 6 Calculations

> newf := expand(subs(t = 3t, f));

81t4 + 126t2 + 4− w2

> sol := Weierstrassform(newf, t, w, x, y);[
x3 − 6588x+ y2 − 39312,

−2(21 t2+4−2w)
t2

, −8(4+63 t2−2w)
t3

, −4y
468+84x+x2

, −12
−30096−672x+4x2

468+84x+x2

]
> subs(x = −x, sol[1]);

−x3 + 6588x+ y2 − 39312

Similarly, we can convert Y 2 = (9t4 + 24t3 + 26t2 + 8t+ 1) to Y 2 = t3 −
5616t+120960 by first scaling t by 1/3 and then applying theWeierstrassform
command in MAPLETM.

A.3 Chapter 6 Calculations

Genus calculations corresponding to Equation (6.4) and Equation (6.8, re-
spectively.
> with(algcurves);

> genus(x(x+ 1)(3x+ 1)(9x4 + 24x3 + 26x2 + 8x+ 1) + y2, x, y);

3

> genus(dy2−am2x2(am2x2+1)(3am2x2+1)(9(am2x2)4+24(am2x2)3+26(am2x2)2+8am2x2+1)
(m2x2) , x, y);

5
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Appendix B

MAGMA Code

The calculations in this section were done using an online trial version of
MAGMA Version 2.16-10, which can be found at

http://magma.maths.usyd.edu.au/calc/.

B.1 Elliptic Curve Calculations

Calculating the rank of the elliptic curve y2 = x3 − 25x defined on page 22.
Input:
E := EllipticCurve([−25, 0]);
MordellWeilGroup(E);
Rank(E);
Output:
Abelian Group isomorphic to Z/2 + Z/2 + Z
Defined on 3 generators
Relations:
2 ∗ $.1 = 0
2 ∗ $.2 = 0
1

Calculating the rank of the elliptic curve y2 = x3 − 62x in Example 3.5.
Input:
E := EllipticCurve([−62, 0]);
Rank(E);
Output:
1

Calculating the rank of the elliptic curve y2 = x3−424862x in Example 5.2.
Input:
E := EllipticCurve([−424862, 0]);
Rank(E);
Output:
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Warning: rank computed (3) is only a lower bound
(It may still be correct, though)
3

Calculating the rank of x3 + 2x2 + 4x = y21 and x3 + 8x2 + 4x = y22 in the
proof of Lemma 5.4.

Input:
E1 := EllipticCurve([0, 2, 0, 4, 0]);
Rank(E1);
E2 := EllipticCurve([0, 8, 0, 4, 0]);
Rank(E2);
Output:
0
0

Finding the rational points on x3 + 2x2 + 4x = y21 and x3 + 8x2 + 4x = y22
in the proof of Lemma 5.4.

Input:
E1 := EllipticCurve([0, 2, 0, 4, 0]);
MordellWeilGroup(E1);
RationalPoints(E1 : Bound := 1000);
E2 := EllipticCurve([0, 8, 0, 4, 0]);
MordellWeilGroup(E2);
RationalPoints(E2 : Bound := 1000);
Output:
Abelian Group isomorphic to Z/2
Defined on 1 generator
Relations:
2 ∗ $.1 = 0
{@(0 : 1 : 0), (0 : 0 : 1)@}
Abelian Group isomorphic to Z/4
Defined on 1 generator
Relations:
4 ∗ $.1 = 0
{@(0 : 1 : 0), (0 : 0 : 1), (−2 : 4 : 1), (−2 : −4 : 1)@}

Note that the torsion subgroup of E1 is isomorphic to Z/2 which implies
that there are only 2 points of finite order, namely the point at infinity and
(0, 0). Also note that the torsion subgroup of E2 is isomorphic to Z/4 which
implies that there are only 4 points of finite order, namely the point at in-
finity, (0, 0), (−2, 4) and (−2,−4).
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Calculating the rank of the elliptic curve Y 2 = X3 − 6588X + 39312 in the
proof of Lemma 5.7.

Input:
E := EllipticCurve([0, 0, 0,−6588, 39312]);
Rank(E);
Output:
1

Calculating the rank of the elliptic curve Y 2 = t3 − 5616t + 120960 in the
proof of Lemma 6.3.

Input:
E := EllipticCurve([0, 0, 0,−5616, 120960]);
Rank(E);
Output:
0
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