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Abstract

Computing solution concepts in games is an important endeavor in the field of algorithmic

game theory. This thesis explores two contexts – simultaneous games and sequential games

– for computing solution concepts in games where some or all of the decisions of players can

be modeled as integer vectors.

In the case of simultaneous games, the problem of computing pure strategy in Nash

equilibrium (pure NE) is considered in two classes of compactly represented games ; that

is, games where the set of players, actions or utilities are expressed compactly by an input

smaller than the standard normal form representation. The first class considered is integer

programming games where actions are sets of integer points and utilities have a special

difference of piecewise linear convex structure. The second class considered is symmetric

games with general piecewise linear utilities. Both classes can be highly expressive of general

normal form games, but can also be highly compact. The main results are polynomial-time

algorithms for counting and finding pure NE when certain parameters are fixed and where the

input is a description of the piecewise linear utilities. In both cases this can yield improved

efficiency over known algorithms.

In the case of sequential games, the problem of finding optimal “optimistic solutions” to

bilevel integer programs are explored. In particular by using recent results from parametric

integer programming, a polynomial-time (in fixed dimension) algorithm is derived. Existence

results for optima in a more general setting involving a multilinear lower level objective

representing leader-controlled units costs are also stated using a decomposition of the original

ii



problem into a finite set of simpler subproblems. This decomposition theorem is derived from

an algebraic theory of integer programming using Gröbner bases.

Another contribution of this work is the use of a theory of encoding lattice points in

polytopes as rational generating functions to encode sets of pure equilibria and bilevel op-

timal solutions, which are viewed as lattice point sets. This encoding then yields efficient

algorithms to count, enumerate and optimize over our sets of interest.
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Chapter 1

Introduction

Understanding how groups of decision-makers make decisions when the outcomes they face

depend intimately on one another’s choices is a fundamental problem which researchers in

a variety of fields have taken on as a challenge for well over a century. Such scenarios have

come to be known as games and the subject which studies them as game theory.

The field attained maturity with work the work of Von Neumann and Morgenstern in

1944 [64] and had arguably its most famous result in John Nash’s landmark paper [63]

published in 1951, which established the subject’s must enduring result: every game where

each decision-maker is restricted to have a finite number of choices has an appealing “solution”

called a Nash equilibrium. The word “solution” is put in quotations because the idea of

what constitutes a satisfactory solution to a game is itself a matter of research and debate.

Alternate ways of looking at how a game is structured and played lead to different “solution

concepts”, of which Nash equilibrium is an example.

Of much more recent concern, particularly since the advent of the Internet as a source of

meaningful games with large numbers of players with rich sets of actions, is the computational

considerations implicit in different solution concepts. Indeed, for a group of players to attain

a Nash equilibrium they would be faced with a computational problem, which prompts an

immediate question: is there an efficient way to solve this problem? This is in the realm

of computational complexity and the context for most of the results contained within this

thesis. The offshoot of game theory which concerns itself with such questions has come to

be known as algorithmic game theory [66]. The contention of many researchers in this field
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is that if a solution concept does not admit efficient computation, then this puts into doubt

the validity of that concept. Nash equilibria are one such example generally believed to be

“difficult”1 to compute and hence puts into question whether players would be able to make

decisions according to its predictions [67].

Motivated by a search for games with efficiently computable solution concepts, my thesis

explores the computational complexity of computing solution concepts in sequential and

simultaneous games which involve at some point in their analysis a central concern with

integer points in polyhedra. One example is when the actions of some or all players are

described by integer vectors bounded by sets of linear inequalities. Another is when the

outcomes of the game are sufficiently described by integer “counts” of players who play

certain actions. Concern with integer decision variables has been well-studied in discrete

optimization, and the work found here explores extensions of that work to game theoretic

settings.

A fundamental contribution of the this thesis is the provision of an efficient means of

“counting” equilibria; that is, we provide algorithms which count the exact number of equi-

libria in a game. As opposed to problems in discrete optimization where there is little interest

in describing the number of optimal solutions – as long as you can find one of them – in game

theoretic problems, the ability to give an exact count of the number of equilibria has some

appealing consequences. Indeed, when a game has multiple equilibria there is an inherent

challenge in predicting the outcome: which equilibria will arise? Will the players to be able

to simultaneously coordinate their actions to arrive at any one of the equilibria? Thus it is

common in studies in applied game theory and operations management to focus on game

situations where there is a unique equilibrium; in other words, an equilibrium count of one

[14]. This is a theme we will return to throughout the thesis and motivates the use of one

1It was recently shown that the problem is complete for the complexity class PPAD, which, informally
speaking, is the class of computational problems for finding fixed points. For details see [67].
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our key methodological tools: rational generating functions.

The following two sections describe the two major settings considered in this thesis.

1.1 Computing pure Nash equilibria

One solution concept that has received a significant amount of attention is pure strategy

Nash equilibria of simultaneous, single-period games. We start with a few basic definitions.

A simultaneous, single-period game consists of a set of players I = {1, . . . , n}, each with

an associated action (or pure strategy) set A1, . . . , An. We refer to the set A =
∏n

i=1 Ai as

the action profiles of the game and for each profile a = (a1, . . . , an) and player i we associate

a utility ui(a). A pure-strategy Nash equilibrium (PSNE for short) is an action profile a

which is stable; that is, no one player would strictly benefit from deviating in their action

given the actions of the remaining players are unchanged. Formally, a = (a1, . . . , an) ∈ A

is a PSNE if for each i ∈ {1, . . . , n} : ui(a) ≥ ui(a−i, a
′
i) for all a′i ∈ Ai, where a−i =

(a1, . . . ai−1, ai+1, . . . , an). A related concept called mixed-strategy Nash equilibria allows for

players to choose a probability distribution over their action set Ai as a strategy and the

equilibrium condition is stated in terms of expected utilities.

In the last decade there has been much interest in analyzing the complexity of computing

mixed-strategy Nash equilibria [15, 21] as well as a slightly more general concept called

correlated equilibria [68]. The next two chapters of this thesis focus on the question of

computing PSNE, which on the one hand is more simple to understand than mixed and

correlated equilibria, and on the other hand, can be more challenging to compute. Indeed,

unlike mixed-strategy Nash equilibria, which are guaranteed to exist for finite games [63],

their pure-strategy counterparts may not exist. Despite this difficulty, in many important

classes of games finding PSNE is of great interest. One reason is that the concept of PSNE

fits better our intuition that to play a game we must choose once and for all our action.
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The appeal to some random process to decide one’s action and then building a notion of

equilibrium or stability around these random processes has been questioned by some authors

[13, 14].

There are several important questions regarding the computation of PSNEs, notably the

question of existence, but also in finding a sample equilibrium, counting and enumerating

all equilibria, or optimizing functions over the set of pure equilibria. Some of the latter

problems are more useful in understanding the structure of the game but come at higher

computational costs. Most interest in the literature has centered around the computational

complexity of arguably the simplest of these problems: deciding if a PSNE exists.

The complexity of deciding if a PSNE exists largely depends on how the game is repre-

sented. Normal form is the most familiar method of representing games. Normal form games

take as input an explicit representation of each utility value ui(a) specifying the game, lead-

ing to an input size of n|A1| · · · |An| numbers. The existence of PSNE can be decided in

polynomial time in this input size, by checking every pure strategy profile. However, the size

of the normal form representation grows exponentially in the number of players. Indeed, if

each player has m actions this would mean specifying nmn parameters, a representation size

that is exponential in the number of players and actions. This is problematic in practice,

especially since many games of interest involve a large numbers of players. On the other

hand, sometimes games have an exponential number of actions in the natural input size of

a game. A well-studied example is network congestion games, where the action sets of each

player correspond to sets of paths on a network [39]. A normal form representation would

be exponential in size in this case.

The normal form is generally considered an unacceptable way of representing a game from

a computational perspective, and fortunately most games of practical interest have structured

utility functions that can be represented more compactly. Indeed, few games of interest

are best played by an exhaustive search over all possibilities, and often in these settings
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players understand their payoffs in a more condensed way. This intuition has lead to the

development of a major thrust in the literature – searching for compact game representations

that succinctly describe games of interest and yet still yield efficient algorithms for computing

equilibria on smaller input sizes.

In the following two chapters we explore compactness in three directions. The first is in

compactly representing utility functions as opposed to “look-up” tables as in normal form.

This is the most commonly explored direction of compactness in the literature. The second

is in compactly representing the set of actions of each player. Lastly, we explore ways in

which the set of players themselves can be compactly represented. The latter two types of

compactness have further implications in terms of yielding smaller representations of utilities,

which are ultimately the objects we need to represent in order to specify a game.

The task of compactly representing utilities has largely proceeded in three major direc-

tions. The first seeks to exploit independence structure in utility functions, meaning that

each player’s utility function may not depend explicitly on the entire action profile but in-

stead on actions of some small subset of the player. The second direction is in representing

utilities in functional form, where each utility value ui(a) is polynomial-time computable

given a specified action profile a instead of being represented explicitly in the input of the

game. The third direction is symmetry, where we make assumptions about the similarity

of players in terms of their actions and payoffs which can drastically reduce the size of the

representation required. We summarize the general approach of the first two directions here

and discuss symmetry in Section 1.3.1 and Chapter 3.

Regarding the first direction, perhaps the most influential compact representation that

exploits independence is graphical games [50], which encode independencies in a graphical

structure. In other models this independence depends on actions taken by each player, called

context-specific independence. One example is congestion games [70] where the payoffs of a

given player depends on how many other players are playing the same or related action and
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is independent of those players whose actions are unrelated. Congestion games have been

shown to always possess a PSNE [70]. Similar reasoning led to the exploration of a more

general class of games which are also guaranteed to have PSNE called potential games [60].

A mature example of this framework are action-graph games, which are fully-expressive game

representations that compactly represent context-specific independence. The representation

is based on the action graph, a directed graph with actions as nodes [10]. In these settings

numerous questions surrounding the computation of PSNE has been explored often with

favorable results when certain parameters are fixed. For instance, in graphical games ex-

hibiting bounded treewidth, polynomial time dynamic programming algorithms can be used

to compute PSNE [41].

For the compact representations above, exploiting the structure in utility functions of-

ten results in utility functions with a smaller domain. These smaller utility functions are

then assumed to be explicitly represented. However, in practice these utility functions often

have even shorter descriptions; for instance, as combinations of well-known mathematical

functions. Functional representation of utilities are likely the most common form of utility

in models where actions spaces are continuous and thus is prevalent in game theory models

in the economics literature such as Cournot competition and Hotelling location games. In

the computer science literature, functional forms of utility have also been considered. For

instance, in the case of local effect games, a particular type of linear utility functions yields

existence of potential functions and PSNE [59]. Devanur and Kannan [34] compute market

equilibria when utilities are represented as piecewise linear concave functions. Overall, how-

ever, few positive results are known regarding efficient computation when utility is expressed

in functional form.

As for negative results on the complexity of computing equilibria with utilities in compact

form, there are some very general hardness results for the cases where utilities are presented

by Boolean circuits or Turing Machines. This has been explored in the following general
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class of games defined in [73]:

Definition 1.1.1 (Circuit game). A circuit game is a game with set of action profiles A

and utility functions {ui, i = 1, . . . , n} which are specified by integers k1, . . . , kn and boolean

circuits C1, . . . , Cn such that Ai ⊆ {0, 1}ki and ui(a) = Ci(a) when a ∈ A1 × · · · × An and

undefined otherwise.

Note that a circuit game can encode games where each player has exponentially many

pure-strategies in a polynomial amount of space since here the input for each player is ki

and the action set Ai has size O(2ki). It can be shown (Theorem 6.1 in [73]) that deciding

if a circuit game has a PSNE is ΣP
2 -complete, even when the number of players is fixed.2

Moreover, when the number of actions is fixed it is still NP-complete to decide (Theorem 6.2

in [73]). Similar results were discovered by Àlvarez et. al. [2], for the case where utilities

are represented as deterministic Turing machines. Considering complexity alternatively for

a fixed number of players or a fixed number of actions (but not both, otherwise the game

is trivial) is a common tactic in the literature on computing PSNE and the two studies in

Chapters 2 and 3 follow this pattern.

A game representation is of polynomial type if the number of players and numbers of

actions per player are bounded by a polynomial in the size of the representation [68]. Game

representations of exponential type are those with exponentially many players or actions.

Efficient computation in this setting presents important challenges. In this thesis we explore

two classes of games that are of exponential type: integer programming games and symmetric

games with piecewise linear utilities. The contributions contained in this thesis to this area

of research are summarized in Section 1.3.1 below.

2The complexity class ΣP
2 is reviewed in Section 1.4.1 below
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1.2 Bilevel optimization

The second half of this thesis concentrates on another game setup, a simple sequential game

where there are two players – a leader and a follower. The leader acts first, and the fol-

lower responds accordingly upon observing the leader’s action. Early analysis of this model

originates with the German economist Heinrich von Stackelberg in 1934 [84]. The problem

domain we consider is a generalization of this early work into the now established field of

bilevel optimization, which is essentially the study of sequential decision making from the

perspective of theoretical optimization. The focus of bilevel optimization is on algorithms

and efficient computation of solutions to these games (see [18] for a survey and introduction

to the problem domain and the numerous references therein). Bilevel optimization models

have been used to model a large variety of applied problems, including toll setting on trans-

portation networks [56], revenue management [20] and competitive location planning [40],

among many others.

The following is a formulation of a general bilevel optimization problem:

inf F (x,y) (1.1)

s. t. y ∈ Y (1.2)

G(x,y) ≤ 0 (1.3)

x ∈ argmin{ f(x,y) : x ∈ X, g(x,y) ≤ 0 } (1.4)

The leader controls the y variable and the follower decides x. The leader seeks to optimize

F (x,y) which is a function of both variables. The leader seeks to influence the follower’s
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choice of x through adjusting the constraints and objectives of the lower level problem:

min f(x,y) (1.5)

s. t. x ∈ X (1.6)

g(x,y) ≤ 0 (1.7)

which is a parametric optimization problem in y. For a pair of decisions (x,y) to be feasible

they must satisfy the “upper-level” constraints (1.3)-(1.4), the “lower-level” constraints (1.7)-

(1.7), and the argmin condition (1.4). Such a pair is then known as “bilevel feasible”.

The fundamental object of study in bilevel optimization is precisely the set of bilevel

feasible solutions :

F = {(x,y) : G(x,y) ≤ 0,x ∈ argmin{ f(x,y) : x ∈ X, g(x,y) ≤ 0 }} . (1.8)

Much of the complication associated with bilevel optimization is captured in the prop-

erties of this set. First, F is nonconvex in general, and difficult to describe efficiently [18].

Second, under certain scenarios it may not even be closed, in which case an optimal solution

may not even exist [83]. The question of how one can identify when the infimum exists,

either algorithmically or structurally, is explored in special cases in Chapters 4 and 5.

There is an even more important philosophical difficulty to solving bilevel integer pro-

grams. Note that the formulation (1.2)-(1.4) has an ambiguity built into it. As written,

the formulation makes the implicit assertion of what is known in the bilevel literature as the

optimistic assumption [18]. It is possible for the lower level problem to have multiple optimal

solutions for a given y. The follower is indifferent amongst these alternate optima, but the

leader may prefer certain optima over others, and yet can exert no more direct influence

over the follower’s choice. How should the follower decide which of the alternate optima to
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choose? To eliminate this difficulty the optimistic assumption is made whereby we assume

that whenever the follower has a choice of optimal x for a given y, the follower chooses the

x that best suits the leader. This is reflected in the formulation (1.9) itself: the leader is

modeled as choosing x subject to the argmin set of the lower level problem. The optimistic

assumption represents the most common “solution concept” in bilevel optimization and is

the focus of the work in this thesis.

An alternate “solution concept” is known as the pessimistic assumption whereby we

assume the follower chooses x from amongst his alternative optima so as to punish the

leader as much as possible. Although also prevalent in the literature, it is much less common

than the optimistic approach and is often more difficult to analyze [28].

The vast majority of the work in bilevel optimization concerns the setting where both x

and y are continuous. The main tools in the analysis of such problems is parametric linear

and nonlinear optimization which often relies on differentiability and continuity assumptions

[28]. A significant stream of research has focused on the linear case, where all objectives

and constraints are linear. This special case is called bilevel linear programming (BLP).

Although arguably one of the simplest general cases one might consider, it turns out that

solving BLP is considered to be extremely difficult. Indeed, BLP is NP-hard to approximate

to within a constant multiplicative factor [33].

The work in this thesis concerns an emerging trend in the bilevel optimization literature

concerning the case where some or all of the decision variables are integer. We call this

area bilevel integer programming (BILP). This direction has been heralded as an important

direction in the maturation of the field [18] but also presents numerous challenges to the

standard tools of analysis. Firstly, tools which involve differentiation do not apply directly

to this setting and there are significant challenges even assuring that bilevel optimal solutions

exist [83].

Much of the interest in this area lies in the fact that many applied settings involve
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binary and integer decisions. Some applications considered to date include gas shipping [29],

network interdiction [32], removal of hazardous materials [38] and product introduction [76].

Due to potential for applications, bilevel integer programming has been a topic of interest in

the literature over the past two decades [5, 27, 32, 43, 46, 61, 72, 83, 85]. The contributions

contained in this thesis to this area of research are summarized in Section 1.3.1 below.

1.3 Overview and summary of contributions

We can summarize the major contributions of this work into three areas. The first two

concern results that are of interest in the respective fields of computing PSNE and solving

bilevel optimization problems. The third area of contribution is the methodology whereby

these results were derived, which we feel is of independent interest. Indeed, to our knowledge,

these techniques are being used for the first time in their respective fields.

1.3.1 Contributions in the study of pure Nash equilibria

In this thesis we present efficient algorithms for computing PSNE for two classes of games

of exponential type: integer programming games and symmetric games with piecewise linear

utilities. We demonstrate how an explicit structure of utility, combined with novel methods

used to encode equilibria, allow for polynomial-time algorithms for computing PSNE.

Integer programming games are simultaneous games where the players’ actions are lattice

points inside of polytopes described by systems of linear inequalities. Since the sets of actions

are given implicitly by the description of polytopes, they may be of exponential size with

respect to the input size. Thus, integer programming games are games of exponential type.

It is straightforward to see that for an integer programming game with general polynomial-

time computable utility functions the problem of deciding if a PSNE exists is ΣP
2 -hard

(Proposition 2.2.2). In our setting, each player’s payoffs are given a particular functional
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form called difference of piecewise linear convex (DPLC) which can model a wide variety

of utilities in functional form.

In our second setting we consider symmetric games. A game is symmetric when all players

are identical and interchangeable. In a symmetric game, a player’s utility depends only on

his chosen action and the prevailing configuration; that is, the integer vector specifying the

numbers of players choosing each of the actions. As a result, symmetric games can be

represented more compactly than the normal form: we only need to specify a utility value

for each action and each configuration. For a symmetric game with n players and m actions

per player, the number of configurations is
(

n+m−1
m−1

)
. Thus we need only m

(
n+m−1

m−1

)
numbers

to specify the game.

Our point of departure in this chapter is in achieving further compactness of the represen-

tation of a symmetric game. We consider symmetric games with a functional representation

of utilities that is much more compact than the standard explicit representation of utilities

for each configuration. The compact form of utility we consider is again a natural one –

piecewise linear functions of the configuration vector. Such piecewise linear functions can

be represented by specifying a polytopal division of the space of configurations and an affine

function for each polytope in the division. Our methods also allow for there to be an ex-

ponential number of players in the size of the input. We show that even when the number

of actions is fixed, deciding the existence of equilibria in these games is NP-complete when

utilities are represented as boolean circuits (Theorem 3.2.4).

In both cases the main results presented here are algorithms to count the number of

pure Nash equilibria (thus deciding if such an equilibrium exists) and to find a sample

pure Nash equilibria, when one exists. When certain parameters are fixed, these algorithms

scale polynomially with size of representation, which in both cases includes the encoding of

piecewise linear functions which define the utilities.

In the case of integer programming games, our algorithms run in polynomial time when
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the number of players, dimensions of the polytopes that define the action sets, and the

number of “convex” linear pieces in the payoffs are all fixed. In the case of symmetric games,

our algorithms run in polynomial time when the number of actions is fixed and scale with

the representation of the piecewise linear utilities. When this representation scales with log n

we get exponential savings over existing algorithms [13].

One major difference between these two models is that one considers games with a fixed

number of players and an exponential number of actions the other vice versa. As mentioned

above, analyzing games in these two alternate cases – that of having a fixed number of players

or a fixed number of actions – is a common approach in the literature and it is encouraging

that our methods can say something significant in both cases. Indeed, all these results derive

from our ability to express the set of pure equilibria, which is typically exponential in size,

in a compact representation that has appealing computational properties – that of a rational

generating function. This approach is the subject of Section 1.3.3 below. There are also

important differences between the way the analysis unfolds in the two settings – integer

programming games and symmetric games – which are discussed in Section 3.7.

We also further demonstrate, through a variety of applications, the computational advan-

tages of encoding equilibria compactly as a generating function. For instance, we are able to

efficiently compute equilibria that are Pareto optimal or maximize social welfare in the case

of integer programming games. In the symmetric setting we are able to compute information

about the distribution of social welfare over the set of equilibria, among other computations

of interest.

One further application that demonstrates the power of our methods is in combining

simultaneous and sequential decision-making. In the case of integer programming games we

provide algorithms to compute Stackelberg–Nash equilibria for a sequential setting; that is,

where there is a leader followed by multiple competing followers (see Section 2.5). In the

case of symmetric games, we explore a setting where there is a mechanism designer who can
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choose the number of players and the structure of their utility functions in order to achieve

certain outcomes, such as maximizing the worst case payoff to a player.

1.3.2 Contributions to the study of bilevel optimization

The work in Chapters 4 and 5 concerns the search for efficient algorithms and useful structure

in the study of bilevel integer programming. To be precise, we consider bilevel integer

programs which fit into the general framework:

inf f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d

x ∈ argmin{ψ(y) · x′ : Ax′ ≤ π(z), x′ ∈ Zn }

(1.9)

where A ∈ Zm×n, f is a real-valued function on domain P which is assumed to be bounded,

and the functions ψ : Rp → Rn and π : Rd → Rm are vector-valued. As we explore different

special cases of this model, further conditions and assumptions will be stated.

The special case of (1.9) considered most in the literature is that of fixed-unit-cost bilevel

integer programs (i.e., (1.9) when y is fixed) and where f is linear, P is assumed to be a

bounded polyhedron and the functions ψ : Rp → Rn and π : Rd → Rm are affine. We

call this setting bilevel mixed integer linear programming or BMILP for short, reflecting the

possibility that either y or z are continuous. Existing approaches to solving this problem

use standard ideas from integer optimization, such as branch-and-bound enumeration [5]

and cutting planes [32]. But, as is well documented, there are numerous pitfalls when

applying standard ideas of branch-and-bound or cutting plane methods to a bilevel setting

(see [32] for a discussion). For instance, one pitfall is that linear relaxations may have integer

solutions that are not feasible to the original problem. To date, no algorithms have been

proposed that deal with the discrete nature of the problem directly rather than recourse to
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linear relaxations. Moreover, all known algorithms are based on enumeration and branching

and have exponential running times in the worst case. Despite some promise for practical

implementation of these algorithms (see [32]) no algorithms with a provably better running

time have been proposed. This is remedied in Chapter 4 of this thesis, where we describe

polynomial time algorithms in fixed dimension for solving BMILPs.

We apply recent results from the study of parametric integer programming, based on

the work of [37] and [49] to yield algorithms to solve BMILPs that run in polynomial time

when x is integer, z is continuous and the dimension n is fixed. Implicit in our approach

is an algorithm to decide if a BMILP has any optimal solutions at all, acknowledging the

possibility of an open bilevel feasible set F , something lacking in the literature.

Using generating function methods we also derive results for counting and enumerating

alternate optima when z is discrete. Lastly, we explore two extensions of this basic model.

The first is to a special case of nonlinear discrete bilevel optimization where the objective f

is polynomial. The second generalization is to a multi-objective bilevel integer programming

problem where the follower has r linear objectives representing competing interests. In both

cases we are able to derive polynomial time algorithms when appropriate dimensions are

fixed.

Chapter 5 concerns (1.9) in its generality. The current literature has almost exclusively

explored special cases of (1.9) where either the leader’s decision affects the follower’s unit

cost or right-hand side but not both (that is, one of either y or z is fixed, see [27] for

the latter case). To our knowledge, simultaneous changes in the unit cost and right-hand

side of the lower level problem have not been studied systematically. The only known

algorithm which applies to this more general setting is an algorithm for nonlinear discrete

bilevel optimization problems which uses a transformation to complicated continuous global

optimization problems [43] and only provides algorithms to find approximate solutions.

Chapter 5 explores structural and existence results for this variety of bilevel integer
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programs. The main result is a decomposition of the original problem into a finite set of

subproblems with fixed-unit cost linear lower level objectives. This is achieved by identify-

ing a finite number of equivalence classes for the leader’s choice of y; which turn out to be

the relative interiors of cells in a polyhedral fan. We explore various aspects of this decom-

position including the number of subproblems generated by the decomposition and how to

characterize each equivalence class. Using the decomposition we also present algorithms to

a special case where all variables are integer, the constraints are linear and leader’s objective

functions is either linear or a nonnegative polynomial; in which case each subproblem can

be solved in polynomial time in fixed dimension. In addition, we explore the existence of

optimal solutions when the leader’s decision variables are continuous and provide sufficient

conditions for existence in special settings.

1.3.3 Analytical approach

An important aspect of the novelty of the results presented in this thesis are the analytical

tools used to derive them. In particular, this work draws upon two developments in the

theory of discrete optimization that occurred during the 1990’s and applies them to game

theoretic settings. The first development is the efficient encoding of lattice point sets by

generating functions discovered in [6] and significantly extended in [8]. This development

provides the main tool of analysis in Chapters 2 and 3 and also play an important role in the

remaining chapters. The second development is the application of Gröbner basis methods to

the study of integer programming initiated by [19]. It plays a significant role in Chapter 5,

providing interesting geometric structure to an otherwise challenging setting.

These developments initiated streams of research in exploring the theoretical and practi-

cal implications of these methods to discrete optimization as well as other areas of applied

mathematics. The literature surrounding Gröbner basis methods focused mainly on con-

nections between Gröbner bases and other geometric and algebraic structures (see [78] and

16



[81] for example), and less on applying these methods to practical optimization problems.

One of the major reasons for this historical evolution is the fact that general Gröbner basis

computations have inefficient running times, both in theory and practice.

In contrast, the literature developed around Barvinok’s generating functions found more

success in assuring good theoretical running times when used to solve integer programs, and

initiated computer implementations [26, 51, 82] and numerical studies [22].

Nonetheless, to this point, except for some special cases, neither method has been able

to compete with the computational strength of standard algorithms for solving integer lin-

ear programs, such as branch-and-bound and cutting planes, and their numerous powerful

implementations. Of the many reasons for why this is the case, we focus on two that are

most relevant in terms of motivating the work in this thesis.

Firstly, Gröbner basis methods provide algebraic structures that in some sense contain

“too much” information when one is only interested in solving a single integer program.

Indeed, if Gröbner basis methods are used to solve the program min{c · x : Ax = b, x ∈
Nn}, then the majority of work has also been done for solving the related integer programs

min{c·x : Ax = b′, x ∈ Nn} for any b′. That is, Gröbner basis methods provide “parametric”

information about an integer program is superfluous for basic calculation.

Secondly, generating functions also contain, in some sense, more information than is

needed to solve a single integer program. Indeed, using them we can encode all lattice

points inside a polytope, which is a significant amount of information and can be used to

answer numerous other questions besides integer linear optimization; including approximate

integer polynomial optimization [24] and enumeration of lattice points [23]. This thesis

further demonstrates that generating functions of lattice point sets can be combined to

characterize optimality or equilibrium conditions in more complicated settings than integer

linear programming.

So, despite a lack of computational efficiency when solving general integer linear programs,
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what is clear is that the algebraic constructs used in both methods contain information that

gives insight into the structure of solutions. Some attention has been given to exploring

situations where this structural information can be used to good advantage and where tra-

ditional methods often fail to provide “enough” information or structure to yield convincing

algorithms. One direction is in exploring special cases, such as “N -fold integer programs”

[25]. Another is in considering more elaborate settings, such as the recent application of

generating function methods to multicriteria discrete optimization [23].

This thesis continues these explorations in the area of game theory and bilevel optimiza-

tion. It is hoped that researchers in the fields of game theory and bilevel optimization can

gain an appreciation of these “nonstandard” tools, and those studying generating functions

and Gröbner basis methods find other avenues wherein to apply their techniques.

The key idea behind our analysis is that we view each problem as having embedded para-

metric integer programming problems and lattice point enumeration problems and then we

take advantage of the structure and algorithms afforded by Gröbner bases and generating

functions. In the case of generating functions our perspective is to view sets of equilibria as

lattice point sets inside unions, set differences and intersections of polyhedra. Finding equi-

libria thus reduces to understanding the structure of these lattice point sets. The complexity

results explored throughout the thesis derive directly from results for generating function

algorithms in fixed dimension. By these novel tools of analysis we are able to provide new

results not readily accessible to existing methods in the respective literatures on game theory

and bilevel optimization.

1.4 Some background topics

The last section of this introductory chapter contains a brief introduction to two background

topics that are used in the work that follows. The first is a brief review of the complexity
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class ΣP
2 , which has already been referred to above. The second is a brief introduction to

the theory of generating functions, which we will have occasion to refer to in each of the

remaining chapters of the thesis. Gröbner basis methods only appear in the final chapter

and are thus introduced there.

1.4.1 The complexity class ΣP
2

The major goal of this section is to establish some intuition for the complexity class ΣP
2 ,

which is the natural complexity class for the problem of finding pure Nash equilibria in

games of exponential type. A more detailed description of this complexity class and its

generalization to the so-called “polynomial hierarchy” can be found in the article which first

introduced the concept [77]. This presentation is based on Chapter 5 of the introductory text

on complexity theory by Arora and Barak [4] and assumes familiarity with some basic theory

of computation including deterministic Turing machines and describing decision problems as

languages on a finite alphabet (see Chapter 1 of [4] for an introduction to these concepts).

The class ΣP
2 is a generalization of P, NP and co−NP defined as follows:

Definition 1.4.1. The class ΣP
2 is the set of languages L for which there exists a polynomial

time deterministic Turing machine T and a polynomial p such that

I ∈ L ⇐⇒ ∃u ∈ {0, 1}p(|I|), ∀v ∈ {0, 1}p(|I|), T (I, u, v) = 1 (1.10)

where |I| is the binary encoding size of instance I.

There are three alternate definitions of ΣP
2 , see Chapters 5 and 6 of [4] for details. To

help solidify the given definition we show the following decision problem is in ΣP
2 .

Example 1.4.2. Consider the language:

MaxClique = {〈G, k〉 : the largest clique in graph G has size exactly k}.
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We first observe that there seems to be no short certificate for an instance 〈G, k〉 to belong to

MaxClique, since even if you demonstrate that there is a clique in G is size k it is difficult

to show that every other clique is smaller than this size.

However, it is straightforward to see that MaxClique is in ΣP
2 , since it is apparent that

instance 〈G, k〉 is in MaxClique if and only if

∃S ∀S ′ S is a clique of size k and S ′ is not a clique of size ≥ k + 1 (1.11)

Testing whether a pairs of subsets of (S, S ′) satisfy this condition in the graph G can be done

in polynomial time (thus defining the polynomial-time Turing machine in Definition 1.4.1)

and clearly the S and S ′ are polynomial in encoding size.

1.4.2 Rational generating functions

We here provide a brief and selective overview of the theory of rational generating functions.

We have two aims: to introduce some machinery that is used in proving our main theorems

in subsequent chapters, and to invite other researchers to use these methods in future work.

Generating functions offer the key benefit of compactly representing exponential-cardinality

sets of integer points while efficiently supporting the computational operations of counting

and enumerating points in the set. We demonstrate the essence of the approach in the fol-

lowing simple example. Consider the set of integers on the line between 0 and n. We can

represent these points by associating an exponent of a complex variable ξ with every integer

x ∈ [0, n]. The choice of variable ξ plays an important role in later analysis, where residue

calculus can be used to extract important information.

Using this encoding we can represent the integers in the interval [0, n] as the exponents

in the polynomial expression
n∑

x=0

ξx, (1.12)
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called a generating function representation. So far we have not gained much: there are

exponentially many terms in (1.12) (in terms of the binary encoding size of n), just as there

are in an explicit listing of the numbers 0, 1, . . . , n. However, we can also write the expression

as
n∑

x=0

ξx =
1

1− ξ
− ξn+1

1− ξ
. (1.13)

Thus, we have written the long sum (1.12) as a short sum of two rational functions, called a

rational generating function representation. The encoding length of this new representation

is now polynomial in the encoding length of n. Not only does this representation appeal

because of its compact size, but it also offers computational benefits. Observe that we can

compute the cardinality of our set by setting ξ = 1 and then evaluating the sum. Working

with Equation (1.12), this requires an exponential number of arithmetic operations. However,

we can obtain the same result by working with (1.13) (letting ξ → 1 and using L’Hôpital’s

rule), thereby performing exponentially-fewer arithmetic operations.

We are often interested in sets arising from unions, intersections and differences of sim-

pler sets of integers. A basic illustration is as follows: suppose we have the set {0, . . . , n}
represented by the rational generating function 1−ξn+1

1−ξ
, as well as the set {n + 1, . . . , 2n}

represented by the rational generating function ξn+1−ξ2n+1

1−ξ
. A rational generating function

representing the union of these two disjoint sets can by found by summing the representa-

tions of {0, . . . , n} and {n + 1, . . . , 2n}:

1− ξn+1

1− ξ
+

ξn+1 − ξ2n+1

1− ξ
=

1− ξ2n+1

1− ξ
.

It is straightforward to verify that 1−ξ2n+1

1−ξ
is a rational generating function encoding of the

union {0, . . . , 2n}. A more general result obtains when combining sets that are not disjoint

(Lemma 1.4.4 below). Observe that the complication in this case is that we cannot simply

sum the two generating function representations, as this will yield non-unitary weights on
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the terms in the new generating function that correspond to points lying in the intersection

of the two sets.

Working with rational generating functions is of course unnecessary in the simple setting

we have discussed so far, but it becomes useful when extended to deal with more general

sets of integer points in higher dimensions. A key milestone was the work of Barvinok

[6], who introduced a polynomial-time algorithm for representing as a rational generating

function the integer points inside of a rational polytope P ⊆ Rm given by an inequality

system {x ∈ Rm : Mx ≤ b}, provided the dimension m is fixed. Note that representing the

integer set P ∩ Zm by the inequality description of P gives little hint as to its cardinality.

However, as in our simple example, we shall see that a generating function representation

allows us to count the number of integer points in P exactly in polynomial time.

Now we briefly describe Barvinok’s algorithm and its useful extensions and applications.

Consider the generating function of the lattice point set P ∩ Zm, which is defined as

g(P ∩ Zm; ξ) =
∑

x∈P∩Zm

ξx

=
∑

x∈P∩Zm

ξx1
1 · · · ξxm

m . (1.14)

Note that each lattice point x in P is mapped to the exponent of a monomial ξx in

g(P ∩ Zm; ξ).

Lemma 1.4.3 (Barvinok’s Theorem [6]). Let P be a polytope in Rm and S = P ∩ Zm

with generating function g(S, ξ) given by (1.14) which encodes the lattice points inside P .

Then, there exists an algorithm which computes an equivalent representation of the form

g(S; ξ) =
∑
i∈I

γi
ξci

∏m
k=1(1− ξdik)

, (1.15)

where I is a polynomial-size index set, ci,dik ∈ Zm for all i and k. A formula of this type
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is called a short rational generating function. The algorithm runs in polynomial time when

the dimension m is fixed.

Note that the number of binomial terms in the denominator of each rational term is m

and thus fixed when the dimension is fixed. When a lattice point set S is expressed in the

form of (1.15) we refer to g(S; ξ) as its Barvinok encoding. In the algorithms that follow,

when a set S is given as input or output by its Barvinok encoding g(S, ξ), the encoding size

is the binary encoding of the integer vectors γ, ci,di1, . . . ,dim for i ∈ I.

It is important to note that Lemma 1.4.3 only describes how to encode sets of integer

points inside of polytopes. The key result that makes this theory useful in our setting is

that more general lattice point sets arising from simple operations on polytopal lattice point

sets also admit Barvinok encodings. Barvinok and Woods [8] developed powerful algorithms

that apply to these more general settings. For our purposes the most important algorithm

concerns constant-length Boolean combinations of polytopes. A Boolean combination of the

sets S1, . . . , Sk is any combination of unions, intersections and set differences of those sets.

For instance, (S1 ∩ S2) \ S3 is a Boolean combination of the sets S1, S2 and S3.

Lemma 1.4.4 (Boolean Operations Lemma [8, Cor. 3.7]). Given fixed integers k and `

there exists a constant s and a polynomial-time algorithm for the following problem. Given

as input, in binary encoding,

(I1) the dimension m and

(I2) Barvinok encodings of k finite sets Sp ⊆ Zm, g(Sp; ξ) such that for each rational term

the number of binomials in the denominator is at most `,

output, in binary encoding,

(O1) rational numbers γi, integer vectors ci, dij for i ∈ I, j = 1, . . . , si, where si ≤ s,
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such that

g(S; ξ) =
∑
i∈I

γi
ξci

∏m
k=1(1− ξdik)

is a rational generating function of the finite set S that is the Boolean combination

of the sets S1, . . . , Sk, and where each rational term in the expression has at most s

terms in its denominator and where I is a polynomial-sized index set.

We remark that if k were allowed to vary, the number of binomials in the denominators

(which essentially double at with each operation) would become exponential; thus, we must

require that k be fixed in order to achieve a polynomial run time. We also note that if the

input sets Sp ⊆ Zm are integer points inside of polyhedra whose Barvinok encodings g(S; ξ)

arise from applying Lemma 1.4.3 then the condition that the number of binomials ` in the

denominators are fixed follows under the assumption that the dimension m is fixed.

The essential part of the construction of Lemma 1.4.4 is the implementation of set inter-

sections, which are based on the Hadamard product [8, Definition 3.2], a bilinear extension

of the operation defined on monomials as

αxξ ∗ α′xξ′ =





αα′xξ if ξ = ξ′,

0 otherwise.

With this definition, clearly

g(S1 ∩ S2) = g(S1; ξ) ∗ g(S2; ξ).

Hadamard products can be computed in polynomial time on short rational generating func-

tions [8].

Disjoint unions are a special case of combining sets. Thus, we could address them as well

using the Boolean Operations Lemma. However, in this case there is an obvious stronger
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result, analogous to our method in the simple example above. This allows the number of

sets k in the union to be polynomial in the input size instead of fixed.

Lemma 1.4.5 (Disjoint Unions). If two lattice point sets S and T are disjoint then the

generating function for S∪T is the sum of generating functions for S and T . More generally,

for disjoint lattice point sets S1, . . . , Sk:

g

(
k⊎

i=1

Si, ξ

)
=

k∑
i=1

g(Si, ξ),

where
⊎

denotes disjoint union.

Another powerful method to define lattice point sets is by integer projections. Let S ⊆ Zm

be a finite lattice point set, given by its rational generating function g(S; ξ). Let ψ : Zm → Zd

be a linear function and denote by T = ψ(S) the image (projection) of S.

Remark 1.4.6. If the map ψ is one-to-one (injective) from S, then the generating func-

tion g(T ; η) of the projection T can be computed by making a monomial substitution in

g(S; ξ); see [8, Theorem 2.6]. This fact is used in the proof of Corollary 2.3.8.

When S is the set of lattice points in a polytope P , the following integer projection

method of [8] can be employed to construct a rational generating function of the projection T ,

even when the mapping ψ is not one-to-one.

Lemma 1.4.7 (Projection Lemma [8, Theorem 1.7]). Let the dimension m be a fixed

constant. Then there exists a constant s = s(m) and a polynomial-time algorithm for the

following problem. Given as input, in binary encoding,

(I1) an inequality description of a rational polytope P ⊂ Rm;

(I2) a positive integer d; and

(I3) a linear map ψ : Zm → Zd given by an integral matrix;
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output, in binary encoding,

(O1) rational numbers γi, integer vectors ci, dij for i ∈ I, j = 1, . . . , si, where si ≤ s,

such that

g(T ; ξ) =
∑
i∈I

γi
ξci

∏m
k=1(1− ξdik)

is a rational generating function of the set T = ψ(P ∩ Zm).

Once a rational generating function of a set S has been computed, various pieces of

information can be extracted from it. First, we consider computing the cardinality of S.

Lemma 1.4.8 (Counting Lemma [6]). Let the dimension m be a fixed constant. Given a

lattice point set S ∈ Zm input as its Barvinok encoding g(S, ξ), there exists a polynomial-time

algorithm for computing |S|.

The idea behind the proof of this result is analogous to the basic example at the beginning

of this section. Given a Barvinok encoding of a lattice point set S as in (1.15), each of the

basic rational functions has poles (the point ξ = 1 in particular is a pole of all the basic

rational functions), but after summing up only removable singularities remain. Obtaining the

exact number of lattice points of lattice point set S is easy in (1.14), since clearly |S| = g(S;1).

Since (1.15) is a formula for the same function (except for removable singularities), we also

have |S| = limξ→1 g(S; ξ), which can be evaluated in polynomial time by performing a residue

calculation with each basic rational function in the sum (1.15).

We can also explicitly enumerate all elements of S. We note that the cardinality of S

can be exponential in the encoding length. Nevertheless there exists a polynomial-space,

polynomial-delay enumeration algorithm. Such an algorithm only uses space that is polyno-

mial in the encoding length of the input data. In addition, the time spent between outputting

two items, and before outputting the first item and after outputting the last item, is bounded

by a polynomial in the encoding length of the input data.
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Lemma 1.4.9 (Enumeration Lemma [23, Theorem 7]). Let the dimension m and the

maximum number ` of binomials in the denominators be fixed. Then there exists a polynomial-

space, polynomial-delay enumeration algorithm for the following enumeration problem. Given

as input, in binary encoding, an integer bound M ∈ Z and the Barvinok encoding g(S, ξ)

of a lattice point set S ∈ [−M,M ]m ∩ Zm, output, in binary encoding, all points in S in

lexicographic order.

The algorithm relies on a binary search procedure that uses cardinality counts to test for

emptiness of each search region. Binary search can also give useful results for optimizing. By

applying Lemma 1.4.4 and a binary search argument, we can optimize in polynomial time

any linear objective over a set of lattice points in Barvinok encoding:

Lemma 1.4.10 (Linear Optimization Lemma [6]). Let the dimension m and the maxi-

mum number ` of binomials in the denominator be fixed. Then there exists a polynomial-time

algorithm for the following problem. Given as input, in binary encoding, an integer bound

M ∈ Z, integer vector c ∈ Zm and the Barvinok encoding g(S, ξ) of a lattice point set

S ∈ [−M,M ]m ∩ Zm, output, in binary encoding, an optimal solution x∗ ∈ Zm of the

optimization problem max{ c · x : x ∈ S }.

When the objective function is an arbitrary polynomial function (without any assump-

tions on convexity) that is nonnegative on a set with a Barvinok encoding, then it is still

possible to use a fully polynomial time approximation scheme (FPTAS):

Lemma 1.4.11 (FPTAS for maximizing non-negative polynomials [23, Theorem 14]).

Let the dimension m and the maximum number ` of binomials in the denominator be fixed.

There exists a polynomial-time algorithm for the following problem. Given as input

(I1) two vectors xL, xU ∈ Zm,

(I2) a Barvinok encoding of a finite set S ⊆ Zm of lattice points that is contained in the

box {x : xL ≤ x ≤ xU },
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(I3) a list of coefficients fi ∈ Q, encoded in binary encoding, and exponent vectors αi ∈ Z+,

encoded in unary encoding, representing a polynomial

f =
∑

i

fix
αi

that is non-negative on S,

(I4) a positive rational number 1/ε encoded in unary encoding,

output, in binary encoding,

(O1) a point xε ∈ S that satisfies

f(xε) ≥ (1− ε)f ∗ where f ∗ = max
x∈S

f(x).

An ingredient in the proof of the FPTAS which will be used in other contexts is the

following result due to Barvinok [7].

Lemma 1.4.12. Let the dimension m be fixed. There exists a polynomial-time algorithm

for the following problem. Given as input

(I1) a Barvinok encoding of a finite set S ⊆ Zm of lattice points

(I2) a list of coefficients fi ∈ Q, encoded in binary encoding, and exponent vectors αi ∈ Z+,

encoded in unary encoding, representing a polynomial

f =
∑

i

fix
αi

that is non-negative on S,

output, in binary encoding,
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(O1) the sum
∑

x∈S f(x)

Here we have offered only some highlights from the theory of rational generating functions,

focusing on results needed for the analysis in this paper. A more complete picture of this

theory can be obtained from the excellent textbook by Beck and Robbins [9].

Remark 1.4.13. We end this chapter with a few remarks on the need for caution when

considering the practical implications of complexity results using the above-stated theorems.

Although the algorithms presented have nice theoretical run-times, in practice the situation in

less promising. Many of these algorithms have been implemented in two software packages:

LattE machiatto [51] and barvinok [82]. The algorithm of Theorem 1.4.3 for encoding

polyhedra is quite sensitive to dimension and problems with up to dimension 30 are the

largest instances that have been computed in practice [52]. The algorithms for boolean

operations also requires costly operations and can deal with instances with dimension only

up to 15. Potentially more disconcerting is that the only working implementation of the

Projection Lemma has performed well on problems with only very few variables (up to four)

[53]. Appeal to the Projection Lemma is considered most troubling from a practical point

of view, and algorithms which avoid it entirely are preferred, although this is not always

possible. This is an active area of research and it is hoped that future gains can be made

in the practical implementations of these algorithms. Indeed, part of the motivation for

improved implementations is the potential for application to some of the problems contained

in this thesis [53].
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Chapter 2

Rational generating functions and

integer programming games

2.1 Introduction

In this chapter we introduce a new representation of strategic games called integer program-

ming games, which are simultaneous games where the players’ actions (pure strategies) are

lattice points (i.e., integer points) inside polytopes described by systems of linear inequal-

ities. Integer programming games are games of exponential type: the number of actions

for each player is exponential in the input size. The number of actions corresponds to the

number of lattice points inside a compactly-described polytope, which can be exponential

in number even when the dimension of the polytope is fixed. One motivation for studying

integer programming games is to explore the extent to which we can leverage the tools of

integer programming, which have shown their undoubted value in modeling situations where

there is a single decision-maker, to the multiple decision-maker setting. This paper describes

one methodology – Barvinok’s theory of short rational generating functions – that has been

used for standard integer programming and how it can fruitfully extend to game scenarios.

It is straightforward to see that for an integer programming game with general polynomial-

time computable utility functions, the problem of deciding if a PSNE exists is ΣP
2 -hard via

a reduction from circuit games (Proposition 2.2.2). Our contribution is to explore a specific

type of functional form of utility where each player’s utility is given as a piecewise linear
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function expressed in difference of piecewise linear convex (DPLC) form. Integer program-

ming games with DPLC payoffs can express general normal form games (Proposition 2.2.4),

but complexity gains from this representation are had only when the number of players and

the polytopes defining the actions lie in a fixed-dimensional space. An example of a game

that takes advantage of these complexity gains is given in Example 2.2.5.

The main result of the chapter is that the set of PSNE of integer programming games

with DPLC payoffs can be encoded in a polynomial-sized data structure – a rational gener-

ating function – which admits efficient computation (Theorem 2.3.7). This encoding yields

as corollaries polynomial time algorithms for counting and finding PSNE when the num-

ber of players is fixed and the number of pieces in the piecewise linear payoffs is restricted

(Corollaries 2.3.9 and 2.3.10). The input is an inequality description of the polytopes defining

the action sets and the integer vectors which define the affine pieces of the DPLC utility

functions.

The theoretical gain here is in the fact that even although the number of actions is

exponential in the input size, we can avoid explicit description of payoffs using Barvinok’s

theory of rational generating functions to “check” exponentially many possible deviations

in polynomial time. A short rational generating function encoding is a convenient data

structure for answering other questions regarding the structure of PSNE and other related

concepts.

The main contributions of the chapter are:

• Introducing the use of Barvinok’s theory of short rational generating functions to the

study of strategic games and demonstrating the power of encoding sets of PSNE as

generating functions.

• Presenting a tractable class of games, integer programming games with DPLC payoffs,

for which PSNE and related quantities can be computed in polynomial time when
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certain dimensions are fixed.

Also of note are two ideas used in several places in this chapter:

• In order to represent sets of equilibria, or other sets of interest, as rational generating

functions we express the set as an overall feasible set in which unwanted elements,

expressed as the union of projections of lattice point sets in polytopes, are removed.

See for instance the proof of Theorem 2.3.7 where the set of PSNE is defined in this way.

This is a general technique that is adapted to various settings in Sections 2.3 to 2.5.

• Some results are easier to show when the actions for each player in the game are

extended to include a component that captures the payoff of that player. This ex-

tension allows for descriptions of extended strategy profiles and equilibria that are

more amenable to generating function techniques and can readily be converted back

to normal strategy profiles and equilibria. See for instance Definition 2.3.3.

Both of these ideas appear again in Chapter 3, but in a different context.

This chapter is organized into the following sections. Section 2.2 introduces integer

programming games and discusses an application of this framework to a model of competing

firms producing identical indivisible goods. Section 2.3 contains the main result of the chapter

– demonstrating how generating functions can be used to encode sets of PSNE. Section 2.4

details several other applications of generating function constructions to the computation of

Pareto optima, the price of anarchy, and pure minmax values. Lastly, Section 2.5 describes

a sequential (Stackelberg–Nash) version of an integer programming game where a leader’s

actions affects the description of the polytopes defining the actions sets of a group of followers,

who then play a simultaneous game.
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2.2 Integer programming games

We begin by introducing the following class of strategic games:

Definition 2.2.1 (Integer Programming Game). An integer programming game with n

players is a noncooperative game where the set Si of actions for each player i ∈ I = {1, . . . , n}
is a set of lattice points inside a polytope; that is,

Si = Pi ∩ Zdi (2.1)

where Pi = {x ∈ Rdi : Mix ≤ bi} is a rational polytope.

The set S of action profiles s = (s1, . . . , sn) is the Cartesian product of the Si’s: S =
∏n

i=1 Si ⊆ Zd where d = d1 + · · · + dn. The payoff functions are integer-valued of the form

ui : S → Z for i ∈ I.3

As noted in the introduction, a distinguishing feature of this class of games is that the

action sets Si are defined succinctly by linear systems Mix ≤ bi, even though |Si| may be

exponential in size with respect to the input size of Mi and bi. We use rational generating

functions to avoid explicitly enumerating each player’s action set.

Now to the definition of payoffs. We first note that deciding the existence of PSNE

in integer programming games with general polynomial-time computable payoffs is difficult

even when the number of players and dimension of the polytopes are fixed:

Proposition 2.2.2. Consider an instance 〈n, P1, . . . , Pn, u1, . . . , un〉 of an integer program-

ming game with general polynomial-time-computable payoff given by the following input, in

binary encoding,

(I1) for each i ∈ I = {1, . . . , n}, the dimension di and a binary encoding of the inequality

description (Mi,bi) of a rational polytope Pi = {x ∈ Rdi : Mix ≤ bi};
3Note that ui could also be defined a rational-valued over some largest denominator L which would then

become part of the input.

33



(I2) for each i ∈ I a polynomial-time computable utility function ui expressed as a Boolean

circuit.

Then, the problem of deciding if such a game possesses a PSNE is ΣP
2 -complete. The same

result holds if n = 2 and di = 1 for all i ∈ I.

Proof. We show that the language

L = {I : integer programming game instance I = 〈n, P1, . . . , Pn, u1, . . . , un〉 has a PSNE}

is in ΣP
2 by showing it satisfies Definition 1.4.1. Given an instance I, proof that I possesses

a PSNE consists of an action profile s ∈ S and evidence that every possible unilateral

deviation by a player does not lead to gains in utility for that player. That is,

I ∈ L ⇐⇒ ∃s ∈ S, ∀i ∀s′i ∈ Si : ui(s) ≥ ui(s−i, s
′
i).

Since our utilities are polynomial-time computable given strategy profile s and each alterna-

tive (s−i, s
′
i), this condition can be checked in polynomial time. Noting that the encoding

of each action profile is polynomially bounded in the input size, this establishes that L is in

ΣP
2 .

It remains to show that L is ΣP
2 -hard. We proceed by a reduction from circuit games

(see Definition 1.1.1). Consider an instance of a 2-player circuit game specified by integers

k1, k2 and circuits C1, C2 such that the action set Ai ⊆ {0, 1}ki and utility πi(a) = Ci(a)

for a = (a1, a2) ∈ A1 × A2. We transform this into an integer programming game instance

〈2, P1, P2, u1, un〉 where Pi ⊆ R for i = 1, 2.

An action profile a = (a1, a2) in the circuit game instance with ai = (ail . . . , aiki
) ∈

{0, 1}ki can be represented as action si ∈ Si with si = ail · · · aiki
in binary expansion. Thus

the polytope defining the action set of player i can be defined as Pi = {si ∈ R : 0 ≤ si ≤ 2ki}.
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Note that the binary encoding size of the polytope is log2 2ki = ki. Let utility function

πi(a) = ui(s) when a ∈ A1 × A2 for i = 1, 2 and s its corresponding binary expansion. Let

ui(s) = −∞ if the binary encoding of s is not in A1×A2. It is clear that this transformation

can be performed in polynomial time. It is also clear that the circuit game possesses a PSNE

if and only if its transformation as an integer programming game does as well.

Due to the difficulty of the case where utilities are general polynomial-time-computable

functions, we explore the following special case:

Definition 2.2.3 (DPLC payoffs). An integer-valued payoff function u : S → Z of a game

is a difference of piecewise-linear convex functions or DPLC function if it can be expressed

as:

u(s) = max
k∈K

fk(s)−max
l∈L

gl(s)

where the fk and gl are affine functions with integer coefficients and where K and L are

finite index sets. We refer to the fk as the “convex” pieces of u and the gl as the “concave”

pieces of u.

We consider integer programming games where each player i has a DPLC payoff function

ui(s) = max
k∈Ki

fiki
(s)−max

l∈Li

gili(s). (2.2)

A first comment regarding this class of games is that they can express any finite game

given in normal form. A normal form game is defined by action sets A1, . . . , An and payoffs

πi(a) for a ∈ A1 × · · · × An and i ∈ I. We refer to the set A =
∏n

i=1 Ai as the set of action

profiles. A normal form game is finite if A is finite. We use the alternate notation Ai and πi

– as opposed to Si and ui – for normal form games to draw a contrast between the fact that

in normal form game the actions sets and payoffs for each action profile are given explicitly

as part of the input, whereas in integer programming games the action sets Si and payoffs
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ui are given implicitly.

The following result shows that integer programming games with DPLC payoffs are fully

expressive of normal form games:

Proposition 2.2.4. Every finite normal form game is equivalent to an integer programming

game with DPLC payoffs.

Proof. Let finite normal form game G be defined by action sets A1, . . . , An and payoffs

πi(a) for a ∈ A. Let di equal the number of elements in the action set Ai. Let vector

xi = (xi,1, . . . , xi,di
) denote a mixed strategy profile for player i. Mixed strategy profiles x

lie in the unit simplex:

Pi = {xi = (xi,1, . . . , xi,di
) ∈ Rdi : xi ≥ 0,

di∑
j=1

xi,j = 1}.

This is a polytope, and the lattice points inside Pi are exactly its vertices, which correspond

to pure strategies (actions) for player i. An action ai in Ai is represented by its characteristic

vector χi(ai) = (0, . . . , 0, 1, 0, . . . , 0) where the 1 is the in the ith position. Thus, we represent

the set of pure strategies for player i as Si = Pi ∩Zdi . As above, let S = S1× · · · × Sn. This

conforms to the framework of integer programming games.

As for the payoffs, our goal is to convert the explicitly given payoffs πi over the set A of

action profiles into equivalent DPLC payoff functions ui over S. Let A+
i = {a ∈ A : πi(a) >

0} and A−
i = {a ∈ A : πi(a) < 0}. For every x = (χ1(a1), . . . , χn(an)) ∈ S, define the DPLC

payoff

ui(x) = max
ai∈A+

i

πi(a)

(
n∑

i=1

xi,ai
− n + 1

)
− max

ai∈A−i
πi(a)

(
n−

n∑
i=1

xi,ai
− 1

)
.

Note that for every a ∈ A we have ui(χ1(a1), . . . , χn(an)) = πi(a). Thus the normal form

game G is equivalent to the integer programming game with pure strategy sets Si and DPLC
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payoffs ui.

Note that this representation has the same input size as the normal form game itself.

Note that every normal form game can be expressed as an integer programming game with

DPLC payoffs, which expresses the universality of the integer programming game framework.

Indeed, every game can be expressed as a normal form, and in turn in integer programming

game, the catch being that not every game has a compact representation as an integer

programming game. Indeed, some functional forms of utility may require an exponential

number of pieces to represent exactly. Further computational complexity consequences of

this proposition are discussed in Remark 2.3.12.

Another useful result demonstrates the power of modeling payoffs as DPLC functions.

It can be shown that every continuous piecewise linear function can be represented as the

difference of two piecewise linear convex functions [86, Theorem 4.2]. Thus, a DPLC function

can be used to describe any continuous piecewise linear payoff function, which in turn can be

used to approximate an arbitrary continuous payoff function. The caveat here is that many

pieces may be required even for approximations, and as our algorithms will be sensitive to

the number of pieces in the DPLC representation, this may diminish efficiency gains.

Example 2.2.5 (Cournot game with indivisible goods and fixed production costs).

A set of n manufacturers (the players) produce indivisible goods which are then sold in a

market. Player i chooses an integer production level sij for each of its indivisible products

j ∈ {1, . . . , di} subject to resource constraints Misi ≤ bi where si = (si1, . . . , sidi
). Thus,

player i’s action set Si is the set of integer points in a polytope in Rdi . The payoff to each

player consists of revenues and production costs. Under usual assumptions, the revenue

to each player i is a concave function of the action profile s, which can be expressed as

a piecewise linear concave function mink∈Ri
rik(s). For each player i and product j there
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may be a fixed production cost Fij. The variable production cost is a convex function of

the production levels si expressed as a piecewise linear convex function maxl∈Ci
cil(si). The

payoff to player i is thus

ui(s) =

di∑
j=1

max{−Fij,−Fijsij} −
(

max
k∈Ri

(−rik(s)) + max
l∈Ci

cil(si)

)

which can be expressed as a DPLC function, by distributing the max operator over the

sums. For instance we can rewrite maxl∈Ri
(−ril(s)) + maxl∈Ci

cil(si) as

max
{(l,k)∈Ri×Ci}

{(−ril(s) + cil(si)}

which is a piecewise linear convex function. As will be discussed further in Remark 2.3.13,

this is precisely the structure that is analyzed in this chapter.

2.3 Computing pure Nash equilibria in integer

programming games

Consider an integer programming game with DPLC payoffs as defined in Section 2.2. Our

goal is to encode the PSNE of such a game as a short rational generating function. The most

general setting we provide an efficient algorithm for such an encoding is when the number

of players and the dimension of their action sets are fixed and each player’s DPLC payoff

function has the form:

ui(s) = max
k∈Ki

fik(s)−max
l∈Li

gil(s) (2.3)

where we now assume that the size of Ki is a fixed. Since S is bounded we assume without

loss of generality that ui(s) ≥ 0 for all i ∈ I and s ∈ S. The analysis proceeds with

two fundamental insights. First, when there are a fixed number of “convex” pieces, i.e.,
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when |Ki| is fixed, each player’s payoff is piecewise linear concave within the region where

a particular fik remains maximal. The second insight is that when payoffs are piecewise

linear concave the hypograph of the payoff function is a polyhedral set, encodable as a short

rational generating function.

We begin with a simple result towards partitioning the action profile space into regions

according to the values of the linear pieces of the payoffs. We assume that Ki is a totally

ordered set.

Lemma 2.3.1. For each player i, the set of all action profiles can be expressed as a disjoint

union

S =
⊎

k∈Ki

Sik

where

Sik =





s ∈ S :
fik(s) ≥ fij(s), j > k

fik(s) > fij(s), j < k





.

Proof. We first show that S =
⋃

k∈Ki
Sik and later establish it is a disjoint union. Clearly

⋃
k∈Ki

Sik ⊆ S. It remains to show the reverse inclusion. Let s ∈ S and define J(s) = {j ∈
Ki : fik(s) = maxk∈Ki

fik(s)} and j(s) = min J(s), then s ∈ Sij(s).

To show that the union is in fact disjoint suppose by contradiction that there exists an s

in Sik ∩ Sik′ where k > k′. If k > k′ then since s ∈ Sik this implies fik(s) ≥ fik′(s). However,

since s ∈ Sik′ this yields that fik′(s) > fik(s), a contradiction. The result follows.

Note that we could equivalently write Sik as follows,

Sik =





s ∈ S :
fik(s) ≥ fij(s), j > k

fik(s) ≥ fij(s) + 1, j < k





. (2.4)

We can do this because the action profiles in S are integer vectors and the data defining the

functions fij are integral. The same holds true for all the strict inequalities in this chapter,
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and thus the alternative descriptions using a strict inequality or a weak inequality with one

unit added to the larger side of the inequality are used interchangeably throughout.

The next step is to refine the partition of S to account for all players simultaneously. To

do so we introduce the following convenient notation. Let K =
∏n

i=1 Ki be the set of all

vectors k = (k1, . . . , kn) of indices where ki ∈ Ki for i ∈ I. Using this notation, denote by

Sk the intersection S1k1 ∩ · · · ∩ Snkn . Employing this notation we state the following simple

corollary of the previous lemma:

Corollary 2.3.2. The set of action profiles can be partitioned as follows:

S =
⊎

k∈K

Sk

Thus each action profile s lies in a unique subset Sk of S where it is known that the

payoff for each player i is

ui(s) = fiki
(s)−max

l∈Li

gil(s)

and hence a piecewise linear concave function of s. To take advantage of this concave

structure in the payoff we propose an extension of the game.

Definition 2.3.3 (Extended Game). Given an integer programming game with DPLC

payoffs let ŝ = (s;y) = (s1, . . . , sn; y1, . . . , yn) denote an extended action profile which in-

cludes variables yi ∈ Z which keep track of payoff values. The set Ŝ of extended action

profiles is the set

Ŝ =
⊎

k∈K

Ŝk (2.5)

where

Ŝk = {ŝ = (s,y) : s ∈ Sk and 0 ≤ yi ≤ fik(s)− gil(s) for all l ∈ Li and i ∈ I}. (2.6)
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By Corollary 2.3.2 it is easy to see that (2.5) is a disjoint union.

We define the extended utility function ûi for each player i as

ûi(ŝi) = yi

which is a linear function on Ŝ. We call the tuple Ĝ = (Ŝ, û1, . . . , ûn) the extended game of

the original game G = (S, u1, . . . , un).

At this point there are three important observations regarding the definition of extended

games. Note that since S is a bounded by a polytope and the constraints 0 ≤ yi ≤ fik(s)−
gil(s) for all l ∈ Li and i ∈ I bound the values of yi, it follows that each Ŝk, and thus Ŝ, is

bounded. This fact will be important when encoding Ŝ by a rational generating function

and applying the Linear Optimization Lemma (Lemma 1.4.10), which we have occasion to

do in what follows. Note also that ûi(ŝi) is a linear function over Ŝ and thus more amenable

to encoding by generating functions than the piecewise linear payoffs of the original game.

We also remark that the extended game Ĝ is not a simultaneous-move game since the

players’ choices are not independent and some choices of ŝ may lead to infeasibility. Similar

issues are explored in [11]; however, we do not treat the extended game Ĝ as a game unto

itself, but simply as a mathematical construct to study the equilibria of the original game

G, and we thus ignore these considerations.

A key step is to establish a correspondence between the equilibria of the extended game

to those of the original game. As will be seen, this correspondence relies on the fact that the

descriptions of the action profile sets involve disjoint unions.

In our analysis we often consider deviations from the vector k = (k1, . . . , kn) in which

the i-th component ki is replaced with k′i ∈ Ki. For convenience, let k−i denote the vector
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of the remaining (unchanged) indexes; therefore,

(k−i, k
′
i) = (k1, . . . , ki−1, k

′
i, ki+1, . . . , kn).

We follow a similar convention in terms of action profiles. Namely, given an action profile

s = (s1, . . . , sn), if player i deviates to action s′i then we let s−i denote the (unchanged)

actions of the remaining players, so

(s−i, s
′
i) = (s1, . . . , si−1, s

′
i, si+1, . . . , sn).

The equilibrium concept used in the extended game is defined as follows:

Definition 2.3.4 (Extended pure Nash equilibrium). Let Ĝ = (Ŝ, û1, . . . , ûn) be an

extended game. An extended pure Nash equilibrium (extended PSNE) ŝ = (s;y) is an

extended action profile where if ŝ ∈ Ŝk then there does not exist ŝ′i = (s′i, y
′
i) such that

(ŝ−i, ŝi
′) ∈ Ŝ(k−i,k′i) and ûi(ŝ−i, ŝi

′) > ûi(s).

Lemma 2.3.5. Consider the game G = (S, u1, . . . , un) and its extended game Ĝ = (Ŝ, û1, . . . , ûn)

as defined above.

(i) An extended PSNE of Ĝ must be of the form

ŝ = (s;u(s)) = (s1, . . . , sn; u1(s), . . . , un(s)). (2.7)

(ii) There is a bijection between the set N of PSNE of the original game and the set N̂ of

extended PSNE of the extended game.

Proof. (i) Let ŝ = (s;y) ∈ Ŝ. By the disjoint union (2.5) there exists a unique k such that ŝ ∈
Ŝk. It follows that s ∈ Sk. For all i ∈ N we have s ∈ Siki

and yi ≤ fiki
(s)−maxl∈Li

gil(s) =

ui(s). Thus, ûi(ŝ) = yi ≤ ui(s) = ûi(s1, u1(s); . . . ; sn, un(s)). Hence, whenever yi < ui(s) it is
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profitable for player i to deviate to the extended action (si; ui(s)). Therefore, an extended

PSNE must have the form (2.7). (ii) Consider the mapping ϕ : N −→ N̂ defined by

s 7−→ (s; u(s)). We claim ϕ is a well-defined bijection. First we show that ϕ is well-defined,

that is ϕ(s) ∈ N̂ for all s ∈ N . Clearly ϕ(s) is in Ŝ. Let s ∈ Sk for some k. Now consider a

feasible deviating action for player i, ŝ′i = (s′i, y
′
i), where (ŝ−i, ŝ

′
i) ∈ Ŝ(k−i,k′i) for some k′i ∈ Ki.

In other words, player i deviates from choosing si ∈ Siki
to choosing s′i ∈ Sik′i and changing

yi to y′i. We have

ûi(ŝ−i, ŝ
′
i) = y′i ≤ ui(s−i, s

′
i) ≤ ui(s) = ûi(ŝ)

where the second inequality holds since s is a PSNE for the game G and the final equality

follows from (i). It follows that ŝ is an extended PSNE for the game Ĝ and mapping ϕ is

well-defined.

It is clear that ϕ is injective. As for surjectivity, by part (i) it follows that every PSNE in

N̂ has the form (s; u(s)) for some s ∈ S. It just remains to show that all such equilibria arise

with s ∈ N . Suppose the contrary, that is ŝ = (s; u(s)) ∈ N̂ but s 6∈ N . Then there must

be a profitable deviation s′i ∈ Si for some player i in the original game G; ui(s−i, s
′
i) > ui(s).

This implies that there is a profitable deviation ŝ′i = (s′i; ui(s−i, s
′
i)) in the extended game

since: ûi(ŝ) = ui(s) < ui(s−i, s
′
i) = ûi(ŝ−i, ŝ

′
i).

Example 2.3.6. To clarify the above concepts we consider a very simple example of an

integer programming game and its extension. In fact, all the concepts can be exemplified

with an example of a game with a single player. Consider the following payoff function which

a single player attempts to optimize:

u(s) = f(s)− g(s)
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f(s) = max{−s + 7, 2s− 2}
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g(s) = max{−2s + 5, s− 1}

s

u(s)

1
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4
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6

7

8

0 1 2 3 4 5

u(s) = f(s)− g(s)

s

Figure 2.1: Payoff function for Example 2.3.6

over the set S = {0, 1, 2, 3, 4, 5} where

f(s) = max{f1(s), f2(s)} = max{−s + 7, 2s− 2}

and

g(s) = max{g1(s), g2(s)} = max{−2s + 5, s− 1}.

From Figure 2.3.6 we see that

u(s) =





2s + 2, 0 ≤ s ≤ 2

−2s + 8, 2 ≤ s ≤ 3

s− 1, 3 ≤ s ≤ 5

It is then straightforward to describe our sets of interest:
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u(s)

1

2

3

4

5

0 1 2 3 4 5 s

Figure 2.2: Graphical representation of the extended game for Example 2.3.6

S1 = {s ∈ S : f1(s) ≥ f2(s)} = 0, 1, 2, 3

S2 = {s ∈ S : f2(s) > f1(s)} = {4, 5}

Ŝ1 = {ŝ = (s, y) : s ∈ S1, 0 ≤ y ≤ f1(s)− g1(s), 0 ≤ y ≤ f1(s)− g2(s)}

= ({0, 1, 2, 3} × 0, 1, 2) ∪ {(1, 3), (2, 3), (2, 4)}

Ŝ2 = {ŝ = (s, y) : s ∈ S1, 0 ≤ y ≤ f2(s)− g1(s), 0 ≤ y ≤ f2(s)− g2(s)}

= ({4, 5} × 0, 1, 2) ∪ {(4, 3), (5, 3), (5, 4)}

Ŝ = Ŝ1 ∪ Ŝ2

Figure 2.3.6 gives a graphical representation. The lattice points above the interval [0, 3] are

the elements of the set Ŝ1 (in blue). Likewise, the lattice points above the interval [4, 5] are

the set Ŝ2 (in red). In this simple setting it is straightforward to illustrate Lemma 2.3.5. An

equilibrium in the original game is an optimal solution to max{u(s) : s ∈ S}. By inspection

we see that the set of equilibria of the game is N = {2, 5}. An equilibrium in the extended

game solves max{y : (s, y) ∈ Ŝ}. Again by inspection we see that N̂ = {(2, 4), (5, 4)} is
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the set of equilibria in the extended game. It is straightforward to see that N and N̂ are in

bijection under the mapping ϕ(s, y) = s.

We can now state the main result of the chapter:

Theorem 2.3.7. Consider an integer programming game with DPLC payoffs given by the

following input in binary encoding:

(I1) a bound B ∈ N;

(I2) for each i ∈ I = {1, . . . , n}, the dimension di and an inequality description (Mi,bi)

of a rational polytope Pi = {x ∈ Rdi : Mix ≤ bi} ⊆ [−B, B]di;

(I3) for each i ∈ I, nonnegative integers |Ki| and |Li|, and for all integers k, l such

that 1 ≤ k ≤ |Ki| and 1 ≤ l ≤ |Li|, integer vectors αik ∈ Zd, γil ∈ Zd (where

d = d1 + · · · + dn) and integers βik, δik defining the affine functions fik : S → Z and

gil : S → Z by fik(s) = αik ·s+βik and gil(s) = γil ·s+δil for all s ∈ S =
∏n

i=1(Pi∩Zdi).

The set N̂ of extended PSNE of the extended game Ĝ = (Ŝ, û1, . . . , ûn) has a short rational

generating function encoding, which can be computed in polynomial time when the total

dimension d and the sizes |Ki| are fixed for all i ∈ I.

Proof. We express the set of extended PSNE as follows:

N̂ = Ŝ \
n⋃

i=1

Di

where

Di =
⊎

k∈K

⋃

k′i∈Ki

projŝ

{
(ŝ, ŝ′i) : ŝ ∈ Ŝk, (ŝ−i, ŝ

′
i) ∈ Ŝ(k−i,k′i), ûi(ŝ−i, ŝ

′
i) ≥ ûi(ŝ) + 1

}
(2.8)

Note that some of the projected sets may be empty.
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The set Di consists of those action profiles where player i has a profitable deviation. The

description of Di in (2.8) is a union over profitable deviations from one set in the partition of

Ŝ to another. This description of N̂ is easy to verify using the definition of extended PSNE.

We now establish that N̂ can be encoded as a short rational generating function. First

we claim Ŝ admits such an encoding. Consider the description of Ŝ given in (2.5). The sets

Sik are sets of lattice points inside rational polytopes (as can be readily seen from (2.4)) and

thus encodable as short rational generating functions. This implies that Sk = S1k1∩· · ·∩Snkn

is a polytopal lattice point set, and thus Ŝk is a set of lattice points inside a polytope (see

(2.6) noting that all the fik and gil are affine). By Lemma 1.4.3 this implies that Ŝk admits

a short rational generating function encoding. By Lemma 1.4.5, it follows that Ŝ can be

encoded as a short rational generating functions in polynomial time.

Note in addition that the sets to be projected in (2.8) are again sets of lattice points

inside of rational polytopes, by observing that the extended payoffs functions are linear.

By the Projection Lemma it follows that each set in the union can be encoded as a short

rational generating function. Using again the Boolean Operations Lemma (Lemma 1.4.4)

we conclude that each Di, and thus N̂ , admit short rational generating function encodings

which can be computed in polynomial time when the sizes of the sets Ki are fixed for

all i ∈ I. We remark that the outer union in (2.8) (indexed by k ∈ K) is a disjoint

union; thus by Lemma 1.4.5 its rational generating function can be computed by adding the

rational generating functions of the parts, rather than using the construction in the Boolean

Operations Lemma (Lemma 1.4.4).

Corollary 2.3.8. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. The set N of PSNE has a short rational generating

function encoding which can be computed in polynomial time when the total dimension d and

the sizes |Ki| are fixed for all i ∈ I.

Proof. By the previous theorem, we can encode the set of extended PSNE, N̂ , in polynomial
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time. Using the bijective map ϕ given in the proof of Lemma 2.3.5 and noting Remark 1.4.6

we can use an appropriate monomial substitution in the rational generating function descrip-

tion of N̂ to yield a short rational generating function encoding for N .

The true power of the previous lemma lies in the fact that having a short rational encoding

of a set allows for efficient counting, optimizing and enumerating procedures as discussed in

Section 1.4.2. Using these techniques we can answer numerous questions of interest on the

existence, uniqueness and structure of equilibria.

Corollary 2.3.9. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. There is a polynomial time algorithm to compute the

number of PSNE, when the total dimension d and the sizes |Ki| are fixed for all i ∈ I. In

addition, under the same assumptions there is a polynomial time algorithm to find a sample

PSNE, when at least one exists.

Proof. Given the short rational generating function encoding of N we calculate |N | in poly-

nomial time by the Counting Lemma (Lemma 1.4.8. If an PSNE exists, we can output one

by running the polynomial-delay enumeration algorithm on N described in the Enumeration

Lemma (Lemma 1.4.9) and terminating just after one PSNE has been generated. This can

also be done in polynomial time.

This corollary can be used to answer the question of whether there is a unique PSNE –

simply check whether |N | = 1. The following result is also immediate by the Enumeration

Lemma (Lemma 1.4.9).

Corollary 2.3.10. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. There is a polynomial-space polynomial-delay algorithm to

enumerate all the PSNE of the game when the total dimension d and the sizes |Ki| are fixed

for all i ∈ I.
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Remark 2.3.11. Considering the number of elements of the game we need to fix in Corol-

lary 2.3.9 – fixed number of players, fixed dimension of the polytopes, fixed sizes of the Ki

– one might ask if there is an alternate method to generating functions that might yield

similar results. The key observation is that the action sets are described implicitly as lattice

points in polytopes given by linear inequalities, and thus the number of actions for each

player may be exponential in the input size. Thus, brute-force enumeration of all the action

profiles in S is a computationally intractable approach to the problem. Note that although

brute-force enumeration is intractable, we obtain information that may appear to require an

enumerative approach; for instance, we can count all equilibria.

Remark 2.3.12. It was shown in Proposition 2.2.4 that every normal form game can be

expressed as an integer programming game with DPLC payoffs. Note, however, that the

dimensions of the action spaces are equal to number of corresponding actions in the normal

form game. Indeed, using the notation of the proof of Proposition 2.2.4, we have Si ∈ ZAi .

From a complexity point of view this representation is unsatisfactory. In Corollary 2.3.9 we

require the dimension of the action spaces to be fixed, and thus we can only handle a fixed

number of actions in the underlying normal form game. Normal form games with a fixed

number of players and fixed number of actions are computationally uninteresting.

Remark 2.3.13. The Cournot game in Example 2.2.5 fits the assumptions of Corollary 2.3.9.

We assume that the number n of players (manufacturers) is “small”, i.e., fixed, in order

for each manufacturer to have appreciable market power. We also assume that the total

number d of products is small. The sets Ki have cardinality O(2di), which is fixed, and

thus the decomposition of S in Corollary 2.3.2 is comprised of a constant number of subsets.

Since the algorithm in Corollary 2.3.9 scales polynomially with the sizes of the sets Li, we

can afford a variable number of “concave” pieces in the description of the payoff functions.

These “concave” pieces are used to represent general concave revenue functions and the

convex parts of the cost functions, when restricted to integer points.
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2.4 Related computations

In addition to counting and enumerating PSNE, generating function techniques can be

used to derive efficient algorithms for related computations for integer programming games.

Several of these are discussed in the following subsections.

First, note that the encoding of the set of PSNE as a short rational generating function,

being a compact representation, is useful for learning about the specific structure of a game’s

equilibria. For instance, a simple calculation suffices for deciding the existence of a PSNE

where player i plays a given action s̄i. Indeed, simply find the short rational generating

function encoding of

N (s̄i) = N ∩ {s ∈ S : si = s̄i}.

in polynomial time under the same assumptions in the previous section.

Now some more sophisticated calculations.

2.4.1 Pareto optimality

Consider the question of finding Pareto optimal PSNE, if any exist, in an integer program-

ming game with DPLC payoffs. To tackle this, we start by encoding the set of Pareto

optimal action profiles of the game.

Theorem 2.4.1. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. The set PO of Pareto optimal action profiles has a short

rational generating function encoding, which can be computed in polynomial time when the

total dimension d and the sizes |Ki| are fixed for all i ∈ I.

Proof. The proof proceeds as follows:

(i) Define P̂O as the set of Pareto optimal points in the extended game and find a gener-

ating function encoding for P̂O.
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(ii) Derive a bijection between PO and P̂O.

(iii) Use the generating function of P̂O and the bijection to obtain the generating function

of PO.

For part (i) consider the following decomposition of P̂O:

P̂O = {ŝ ∈ Ŝ : @ ŝ′ ∈ Ŝ s. t.(ûj(ŝ
′) ≥ ûj(ŝ) ∀j ∈ I) and (ûi(ŝ

′) > ûi(ŝ) ∃i ∈ I)}

= Ŝ \
n⋃

i=1

PDi

where

PDi =
⋃

k,k′∈K

projŝ

{
(ŝ, ŝ′) : ŝ ∈ Ŝk, ŝ′ ∈ Ŝk′ , ûj(ŝ

′) ≥ ûj(ŝ) for all j 6= i, ûi(ŝ
′) ≥ ûi(ŝ) + 1

}

is the set of Pareto dominated points due to a better alternative for player i. By analogous

arguments as in the proof of Theorem 2.3.7 we can encode P̂O as a short rational generating

function in polynomial time. This establishes (i).

As for (ii) the argument is nearly identical to that in the proof of Lemma 2.3.5 and is

therefore omitted. Finally, (iii) uses the same idea as found in the proof Corollary 2.3.8.

Using the Boolean Operations Lemma (Lemma 1.4.4) we obtain a short rational gen-

erating function encoding of the set N ∩ PO of all Pareto optimal PSNE of the original

game:

Corollary 2.4.2. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. The set of Pareto optimal PSNE has a short rational

generating function encoding, which can be computed in polynomial time when the total

dimension d and the sizes |Ki| are fixed for all i ∈ I.
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As in Section 2.3 we can use this generating function encoding to count and enumerate

Pareto optimal equilibria.

2.4.2 Pure prices of anarchy and stability

The pure price of anarchy of a game measures the negative effects of competition on social

welfare. The social welfare of an action profile is the corresponding total payoff of all players.

Let w∗ denote the maximum social welfare attainable under cooperation of the players; that

is,

w∗ = max

{
n∑

i=1

ui(s) : s ∈ S

}
. (2.9)

and w̃ denote the worst social welfare attained by a PSNE; that is,

w̃ = min

{
n∑

i=1

ui(s) : s ∈ N

}
.

The pure price of anarchy is the ratio w̃/w∗. A related concept is the pure price of stability

which is the ratio of the best social welfare attained by a PSNE to the maximum social

welfare attainable under cooperation. The pure price of anarchy has been studied in various

network games, see [35] and the references therein for recent results on weighted congestion

games. Using rational generating function techniques we can calculate the pure price of

anarchy and stability efficiently in our setting.

Theorem 2.4.3. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. There exist algorithms to compute the pure price of anarchy

and the pure price of stability that run in polynomial time when the total dimension d and

the sizes |Ki| are fixed for all i ∈ I.

Proof. Again we work with the extended game. The first step in calculating w∗ is to note
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that

w∗ = max

{
n∑

i=1

yi : (s;y) ∈ Ŝ

}
. (2.10)

The equivalence of (2.9) and (2.10) is verified by first noting that for all (s;y) ∈ Ŝ, yi ≤
ui(s) =

∑
i ûi(s; u(s)). Therefore, if (s∗,y∗) is an optimal solution to the right-hand side of

(2.10) then we must have y∗i = ui(s) for all i ∈ N . This implies s is an optimal solution the

right-hand side of (2.9).

To find w∗ we optimize the linear function
∑

i yi over Ŝ. Every (s,y) ∈ Ŝ satisfies

s ∈ [−B,B]d and

yi ≤ ui(s) ≤ B

(
max
k∈Ki

(||αik||1 + |βik|) + max
l∈Li

(||γil||1 + |δil|)
)

.

That is, (s;y) ∈ [−M, M ]d+n for polynomially sized integer M (the right hand side of

the above expression). Since in Section 2.3 we found a short rational generating function

encoding of Ŝ, we apply the Linear Optimization Lemma (Lemma 1.4.10) to calculate w∗ in

polynomial time.

To calculate w̃ we note

w̃ = min

{
n∑

i=1

yi : (s;y) ∈ N̂

}
,

which follows from Lemma 2.3.5(i). Using the short generating function encoding of N̂ ⊆ Ŝ

found in Section 2.3 we again apply the Linear Optimization Lemma (Lemma 1.4.10) to

calculate w̃ in polynomial time. Thus, we obtain the price of anarchy w∗/w̃ in polynomial

time.

The method for calculating the pure price of stability is similar.
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2.4.3 Pure threat point

The pure minmax value to player i in a game is defined as:

min
s−i∈S−i

max
si∈Si

ui(si, s−i). (2.11)

Although mixed strategies are usually considered in calculating (mixed) minmax values, an

important quantity in classical game theory, here we restrict attention to pure strategies. The

vector of mixed minmax values is known as the (mixed) threat point, which has drawn recent

attention in the study of repeated games and explorations of computational implications of

the Folk Theorem (see [12]). Analogously, we consider the pure threat point as the vector

of pure minmax values. The concept of pure threat point was previously discussed in the

context of bounded rationality in [69].

It was recently shown that, in various restrictive settings, the problem of calculating the

(mixed) threat point is NP-hard. For instance, it can be shown that computing the (mixed)

threat point of a three player game with binary payoffs ({0,1}) is NP-hard to approximate

(see [12] Theorem 1 for a precise statement and proof.) Despite this negative result, we show

that pure threat points can be computed efficiently in our setting.

Theorem 2.4.4. Consider an integer programming game with DPLC payoffs given by the

same input as in Theorem 2.3.7. There exists a polynomial time algorithm to compute the

pure threat point when the total dimension d and the sizes |Ki| are fixed for all i ∈ I.

Proof. We begin by demonstrating how to calculate the pure minmax value for player i in

polynomial time for each player i. Observe that an optimal value to the following bilevel

optimization problem is the pure minmax value of player i:

min
si,s−i

{
ui(si, s−i) : s−i ∈ S−i, si ∈ arg max

s′i∈Si

ui(s
′
i, s−i)

}
. (2.12)
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This bilevel optimization problem (see [18]) has essentially two players: a lower level player,

or follower, who is player i, and an upper level player, or leader, who represents all the other

players cooperating to “punish” i. Let

Gi =
{
s ∈ S : si ∈ arg max

si∈Si

{ui(si, s−i)}
}

denote the set of bilevel feasible solutions to (2.12). Note that (2.12) is equivalent to

min{ui(s) : s ∈ Gi}.
As before we turn our attention to the extended game. We define the analogous set Ĥi:

Ĥi =

{
ŝ ∈ Ŝ : ŝi ∈ arg max

ŝ′i
{ûi(ŝ−i, ŝi) : (ŝ−i, ŝ

′
i) ∈ Ŝ}

}
.

Observe that if ŝ = (s,y) ∈ Ĥi then yi = ui(s). The set Ĥi can be expressed as Ĥi = Ŝ \Di,

where Di is defined as in (2.8). This follows since the optimization problem facing player i

is the same problem as when determining extended PSNE is a single player game.

Thus by a direct application of Theorem 2.3.7 we can encode Ĥi as a short rational

generating function. Note that Ĥi ⊆ Ŝ ⊆ [−M, M ]d+n where M is as defined in the proof

of Theorem 2.4.3. By applying the Linear Optimization Lemma (Lemma 1.4.10) find the

optimal value of min{yi : (s,y) ∈ Ĥi} = min{{ui(s) : s ∈ Hi}, in polynomial time under

the stated assumptions. The pure threat point can thus be calculated in polynomial time by

finding the minmax value for each player.

2.5 Stackelberg–Nash equilibria

We now turn to applying these techniques to a sequential setting. In a Stackelberg–Nash

game, Player 0 (the leader) chooses an action, described by a vector s0 ∈ S0. The remaining

players i ∈ I = {1, . . . , n} (the followers) then simultaneously choose their actions si ∈ Si(s0).
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Each player i ∈ I0 = {0, 1, . . . , n} then collects a payoff ui(s0, s) where s = (s1, . . . , sn).

We assume S0 = P0 ∩Zd0 where P0 is a rational polytope. For each s0 ∈ S0 the followers

play an integer programming game with DPLC payoffs. The action of each follower i ∈ I

is described by a vector si ∈ Zdi from the set Si(s0) = Pi(s0) ∩ Zdi . We assume Pi(s0) is the

rational polytope

Pi(s0) = {x ∈ Rdi : Mix ≤ πi(s0)} for i ∈ I

where πi(s0) is an integer valued affine function. Let d = d1 + · · ·+ dn and d+ = d0 + d.

Regarding payoffs, we assume each follower has a DPLC payoff ui(s) – independent of

the leader’s choice s0 – and given by

ui(s) = max
k∈Ki

fik(s)−max
l∈Li

gil(s). (2.13)

The leader’s payoffs are defined as the DPLC function

u0(s0, s) = max
k∈K0

f0k(s0, s)−max
l∈L0

g0l(s0, s). (2.14)

We assume all Ki and Li are finite index sets and all fik and gil are integer valued affine

functions.

Observe that given s0 ∈ S0 we have a setup identical to that of Section 2.3, where the

set of action profiles for the followers is S(s0) =
∏n

i=1 Si(s0) ⊆ Zd.

We are interested in computing an optimal action for the leader while guaranteeing there

exists a PSNE between the followers. Let N(s0) denote the set of PSNE between the

followers when the leader has chosen action s0 ∈ S0. As in Section 2.3, a PSNE in N(s0)

is an action profile s ∈ S(s0) such that for every i ∈ I there does not exist a deviation

s′i ∈ Si(s0) such that ui(s−i, s
′
i) > ui(s).
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The leader faces the following optimization problem:

max
s0,s

{u0(s0, s) : s0 ∈ S0 and s ∈ N(s0)}. (2.15)

Let N+ denote the set of all optimistic Stackelberg–Nash equilibria, i.e., optimal solutions (s0; s)

to the optimization problem (2.15).

Note that this formulation implicitly assumes that the leader, after choosing s0, can

choose a PSNE s ∈ N(s0) in order to maximize her payoff. This is a generalization to

the case of competing followers of the “optimistic assumption” common in the multilevel

optimization literature. The simplest illustration of the assumption is in the bilevel setting

where the leader has the ability to choose among alternate optima to the follower’s problem

(see [18]). Here we assume more generally that the leader can choose among the alternate

PSNE between the followers. We thus refer to N+ as the set of optimistic Stackelberg–Nash

equilibria.

The focus solely on pure strategies may need some motivation. Some choice of s0 ∈ S0

may give rise to no PSNE in the followers’ game, leaving only mixed Nash equilibria. We

assume that the leader will avoid such an s0, even if it gave rise to higher expected payoffs.

One may consider this as an extreme form of risk aversion, where any PSNE is preferred by

the leader so as to avoid any uncertainty in payoffs.

Dealing with the possibility that N(s0) may contain more than one PSNE (for a given

s0) is an important issue in many applied game theory contexts. Cachon and Netessine [14]

discuss the issue in the context of applied game theory in operations management (OM).

In many applications in OM the focus is on finding settings where there is a single PSNE,

in which case there are no mixed equilibria. Isolating attention to where there is a unique

PSNE has the added benefit that in such cases it is easier to predict the outcomes of a

game. Indeed, when there are multiple equilibria, the leader is unsure which will prevail,
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and whether in fact the players will all coordinate their actions on the same PSNE. We

return to this issue later in the section.

We now show how to encode the set of optimistic Stackelberg–Nash equilibria as a short

rational generating function:

Theorem 2.5.1. Consider a Stackelberg–Nash game with DPLC payoffs defined by the

following input, given in binary encoding:

(I1) the number n of followers, and a bound B ∈ N;

(I2) the dimension d0 and an inequality description (M0,b0) of a rational polytope P0 =

{x ∈ Rd0 : M0x ≤ b0} ⊆ [−B, B]d0 defining the leader’s feasible set S0 = P0 ∩ Zd0;

(I3) for each i ∈ I = {1, . . . , n}, the dimension di, number mi of constraints, integer

mi × di matrix Mi, integer d0 × mi matrix Φi and integer vector ψi ∈ Zmi defining

the affine function πi : S0 → Zmi by πi(s0) = Φis0 + ψi, and defining the follower i’s

parameterized polytope Pi(s0) = {x ∈ Rdi : Mix ≤ πi(s0)};

(I4) for each i ∈ I, nonnegative integers |Ki| and |Li|, and for all integers k, l such

that 1 ≤ k ≤ |Ki| and 1 ≤ j ≤ |Li|, integer vectors αik ∈ Zd, γil ∈ Zd (where

d = d1 + · · ·+ dn) and integers βik, δik defining the affine functions fik : Zd → Z and

gil : Zd → Z by fik(s) = αik · s + βik and gil(s) = γil · s + δil for all s ∈ Zd;

(I5) nonnegative integers |K0| and |L0|, and for all integers k, l such that 1 ≤ k ≤ |K0|
and 1 ≤ j ≤ |L0|, integer vectors α0k ∈ Zd+

, γ0l ∈ Zd+
(where d+ = d0 + d) and

integers β0k, δ0k defining the affine functions f0k : Zd+ → Z and g0l : Zd+ → Z by

f0k(s0, s) = αik · (s0, s) + β0k and g0l(s0, s) = γ0l · (s0, s) + δ0l for all (s0, s) ∈ Zd+
.

Then there exists a polynomial-time algorithm to compute the leader’s optimum payoff and a

short rational generating function encoding of the set N+ of all optimistic Stackelberg–Nash

equilibria when the total dimension d+ and the sizes |K0|, |K1|, . . . , |Kn| are fixed.
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Proof. We mimic the development leading up to Theorem 2.3.7 in Section 2.3 by defining

an extended game with extended strategy profiles (s0, s,y) where yi ≤ ui(s) for all i ∈ I. As

before denote ŝ = (s,y). Let

Sik = {(s0, s) : s0 ∈ S0, s ∈ S(s0), fik(s) ≥ fij(s) for j > k, fik(s) > fij(s) for j < k}

and thus construct the disjoint union Ŝ =
⊎

k∈K Ŝk where

Ŝk = {(s0, s,y) : s0 ∈ S0, s ∈ Sk and 0 ≤ yi ≤ fik(s)− gil(s) for all l ∈ Li and i ∈ I}.

denoting Sk = S1k1 ∩ · · · ∩ Snkn . Note that Ŝk is a lattice point set in a polytope, and thus

we can encode Ŝ by a short rational generating function.

Let N̂ denote the set of extended action profiles (s0; ŝ) such that s0 ∈ S0 is any feasible

leader action and ŝ is a PSNE in the followers extended game when the leader has chosen

s0. Now express N̂ as

N̂ = Ŝ \
n⋃

i=1

Di

where

Di =
⊎

k∈K

⋃

k′i∈Ki

projs0,ŝ





(s0, ŝ, ŝ
′
i) :

(s0, ŝ) ∈ Ŝk,

(s0, ŝ−i, ŝ
′
i) ∈ Ŝ(k−i,k′i),

ûi(ŝ−i, ŝ
′
i) ≥ ûi(ŝ) + 1





.

Since all sets to be projected are lattice point sets inside polytopes, we can apply reasoning

as in the proof of Theorem 2.3.7 and encode N̂ by a short rational generating functions under

the stated assumptions. We establish a bijection between N̂ and the set N = {(s0, s) : s0 ∈
S0, s ∈ N(s0)} of feasible solutions to (2.15). We claim the function ϕ : N −→ N̂ defined

by (s0, s) 7−→ (s0, s; u(s)) is a well-defined bijection. The details are similar to that in the
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proof of Lemma 2.3.5 and are thus omitted. Via this bijection we derive a short rational

generating function encoding of N by monomial substitution.

Now, let N (v) denote the set of feasible solutions to (2.15) that guarantee the leader a

payoff of at least v:

N (v) = N ∩ ({(s0, s) : u0(s0, s) ≥ v})

= N ∩
( ⋃

k∈K0

{(s0, s) : f0k(s0, s)− g0l(s0, s) ≥ v ∀l ∈ L0}
)

.

Note this is an intersection and union of polytopal lattice point sets. Since the size of K0 is

fixed we can apply the Boolean Operations Lemma (Lemma 1.4.4) to encode N (v) by a short

rational generating function. Now, using binary search for v between −B+ and B+ where

B+ = B

(
max
k∈K0

(||α0k||1 + |β0k|) + max
l∈L0

(||γ0l||1 + |δ0l|)
)

,

and the counting algorithm to test for non-emptiness of N (v), we can find an optimal payoff

v+ to the leader. The set N+ is therefore equal to N (v+).

As in the previous section, a short rational generating function encoding of the set N+ of

Stackelberg–Nash equilibria leads to results analogous to Corollary 2.3.9 and Corollary 2.3.10.

Thus, we can derive efficient procedures to decide on the existence of and to enumerate

Stackelberg–Nash equilibria.

From our discussion above, we know that N+ may contain some undesirable equilibria,

in particular those (s0, s) where there are multiple equilibria in N(s0). We now demonstrate

a procedure (Algorithm 1 below) to find those optimistic equilibria (s0, s) ∈ N+ where there

is a unique PSNE in the follower’s game; that is, |N(s0)| = 1. The input for Algorithm 1 is

the same as in Theorem 2.5.1. The output is a set M containing all the equilibria of interest.

If we are interested in finding only a single element of M we could terminate the algorithm
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Algorithm 1 Compute (s0, s) ∈ N+ with N(s0) = 1

M ← ∅
while N+ 6= ∅ do

Find (s0, s) ∈ N+

if |N(s0)| = 1 then
M ← M ∪ {(s0, s)}

end if
N+ ← N+ \ {(s0, s)}

end whilereturn M

once one is found. The following result demonstrates how each iteration of the algorithm can

be performed in polynomial time using our generating function approach. This represents

a significant speed-up over any näıve method, for instance, brute-force enumeration, since

finding an element (s0, s) ∈ N+ and computing |N(s0)| both appear to require exponential

work. For instance, in general the size of N(s0) may be exponential for each choice of s0 and

thus brute-force enumeration yields a count only after exponential work. As the following

result demonstrates, generating functions allow us to tackle both computations efficiently

using essentially the same ideas as in previous results of this chapter.

Proposition 2.5.2. Each iteration of the “while” loop in the above algorithm can be per-

formed in polynomial time given the same input and conditions and fixed parameters as in

Theorem 2.5.1.

Proof. We extend the enumeration algorithm from the Enumeration Lemma (Lemma 1.4.9)

applied to the Barvinok encoding of N+ by including three additional steps between the

output of each element (s0, s) of N+. The first additional step is to apply Theorem 2.3.8

to find a Barvinok encoding of N(s0). The second step is to apply the Counting Lemma

(Lemma 1.4.8) to N(s0) to calculate its cardinality. The third step is to add (s0, s) into

M if it is the unique element of N(s0). Clearly each of these three additional steps can

be executed in polynomial time. Since the enumeration algorithm is polynomial delay, this

implies that each iteration of the “while” loop runs in polynomial time.
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2.6 Conclusions and directions for further research

In this chapter we introduced a class of games and proposed algorithms for studying their

PSNE using rational generating functions. Integer programming games are games of expo-

nential type with exponentially many actions in the input size, and thus difficult to solve

in general. It turns out that a piecewise-linear structure can be expressive of general utili-

ties and yet has appealing computational properties where the complexity of our algorithms

grows in the input size of these utilities and not the number of actions.

The simplicity by which we used generating functions to compute important information

on the structure of these games, demonstrates the power of generating functions as an an-

alytical and computational tool for game theory. Indeed, this idea was the motivation for

the next chapter of the thesis where our analysis will again underscore the usefulness of the

generating function approach.

There is considerable scope to explore applications of integer programming games to

other situations. In addition, the use of generating function techniques is a novel approach

to game theory which we feel may be applied to various types of games; e.g., threat point

computations for repeated integer programming games; games with other payoff functions;

and computations related to other solution concepts.

Another direction one might consider is to search for special structure on the polyhedral

action sets; for instance, knapsack constraints which might yield structure on the set of

equilibria. For example, Hemmeke, Onn and Weismantel consider a special class in integer

programming games where it can be shown that generalized Nash equilibria can be computed

in polynomial time even in varying dimension [44]. Some other directions for exploration can

be found in several papers that have explored continuous analogues of integer programming

games: polytope games [11], games on polyhedra [75] and games with polyhedral domain [65].

These authors use the theory of linear programming to characterize and identify properties
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of equilibria and in some cases reduce to the problem of computing equilibria to the solving

of linear programs. We feel that by using the theory of integer programming even more can

be said about games whose data includes integer points inside of polyhedra.
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Chapter 3

Symmetric games with piecewise

linear utilities

3.1 Introduction

We continue our pursuit of understanding the structure of pure strategy Nash equilibria

(PSNE) in a special class of games that admit compact representations: symmetric games.

As mentioned in Chapter 1 the problem of computing PSNE of compactly-represented games

is hard in the most general case, when utility functions are arbitrary efficiently-computable

functions represented as Turing Machines [2] or circuits [73]. Researchers have studied

compact game representations that exploit various types of structure in utility functions.

One important type of structure is symmetry and is the focus of this chapter.

A game is symmetric when all players are identical and interchangeable. Symmetric

games have been studied since the beginning of noncooperative game theory. For example,

Nash proved that symmetric games always have a symmetric mixed Nash equilibrium [63].

In a symmetric game, a player’s utility depends only on the player’s chosen action and

the configuration, which is the vector of integers specifying the number of players choosing

each of the actions. As a result, symmetric games can be represented more compactly than

games in normal form: we only need to specify a utility value for each action and each

configuration. For a symmetric game with n players and m actions per player, the number

of configurations is
(

n+m−1
m−1

)
. With fixed m, this grows like nm−1, and Θ(nm) numbers are
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required to specify the game. Questions about PSNE can be answered straightforwardly by

checking all configurations, which requires polynomial time in the size of the representation,

and polynomial time in n when m is fixed [13].

Existing work on symmetry in games focuses on utility functions that explicitly enumerate

utility values for each configuration. However, more concise representations are possible

when utility functions have additional structure. In symmetric games, the set of players

can be specified implicitly by the integer n, requiring only log n bits to represent. If utility

functions can be represented in size polynomial in the number of bits needed to represent the

configuration vector, the game can be represented in size polynomial in log n. Thus, such a

“compact” representation is able to specify games with a number of players exponential in

the input size.

In this chapter, we consider the complexity of computing PSNE for symmetric games

with compactly-represented utility functions. We first look at the most general setting, where

the utility functions are represented as circuits whose inputs are binary representations of

the configuration vector. We show that even with a fixed number of actions, the problem

of deciding the existence of PSNE is NP-complete. The only exception is the case of two

actions, for which we show that there always exists a PSNE and present an algorithm that

identifies such an equilibrium in polynomial time.

Our main positive result is the identification of a compact representation of utility with

nice computational properties —piecewise linear functions of the configuration vector. Piece-

wise linear functions are a natural and convenient way of representing utilities. For this set-

ting, we present novel algorithms for finding a sample PSNE and for counting the number of

PSNEs. When the number of actions is fixed, these algorithms run in polynomial time. In

particular, if the total number of pieces is bounded by a polynomial of log n, then we achieve

an exponential improvement over the algorithm of Brandt et al. [13], which scales polynomi-

ally with n. Our techniques also yield a polynomial-space, polynomial-delay output-sensitive
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algorithm for enumerating the set of PSNE, and an FPTAS for finding social-welfare max-

imizing equilibria. In addition, we provide a novel methodology for computing the average

and variance of social welfare over all equilibria in a game in polynomial time, as well as

a procedure for determining an empirical distribution (histogram) of the payoffs of play-

ers playing a given action a in polynomial time for a polynomial number of cells in the

histogram. These latter results give insights into the distribution of utilities in a game at

equilibrium, something not commonly accessible to standard methods, since in general these

games possess an exponential number of equilibria in the input size.

Furthermore, we are able to extend this piecewise-linear representation to model parame-

terized families of symmetric games. While existing literature on equilibrium computation fo-

cused on finding equilibria in a single game, in many practical applications of game-theoretic

analysis we are interested in questions about Nash equilibria of a family of games. For ex-

ample, in mechanism design, the designer may want to choose from a family of games so

that an equilibrium of the chosen game maximizes a given objective. As another example,

an econometrician may be given data about agents’ observed behavior and wants to esti-

mate parameters of the underlying game. To address such problems, existing equilibrium

computation approaches would be forced to solve many individual games from the family,

which can be very costly. Our parameterized symmetric games are to our knowledge the first

compact representation of parameterized families of games. Leveraging this representation,

we provide a methodology for solving optimization problems over PSNE of a family of sym-

metric games, without having to solve each individual game in the family. These include

the problem of finding parameters that ensure equilibria that are close to some observed

configuration, and the problem of finding parameters that maximize the equilibrium payoff

for the worst-off player.

The main challenge in constructing such polynomial-time algorithms is that the set of

configurations (and, indeed, the set of PSNEs) can be exponential in the input size. Thus,
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approaches based on enumerating all configurations require exponential time. Furthermore,

the constraints defining PSNE are not generally convex, so the problem cannot be formulated

as an integer linear program in fixed dimension. Instead, our approach encodes the set of

PSNEs in a compact form that has appealing computational properties. Specifically, we

make use of the rational generating function method for representing and computing with

sets of lattice points, due to Barvinok and Woods [8]. We model configurations as integer

lattice points, and formulate the set of equilibrium configurations via operations on sets of

lattice points in polyhedra; the resulting set of points can be encoded as a rational generating

function of polynomial size.

The results in this chapter are of similar spirit to that in Chapter 2. In that chapter we

introduced rational generating function methods to the algorithmic study of games, showing

that they can be used to compute pure-strategy Nash equilibria of games in which the actions

are lattice points in fixed-dimensional polyhedra and the utilities are given by piecewise linear

functions. These results assumed a fixed number of players and made strong restrictions

on the piecewise linear functions used to represent utilities – the utilities are difference of

piecewise linear convex (DPLC) functions with a “small” (fixed) number of convex pieces.

In contrast, in this chapter we allow for a much more general family of piecewise utilities,

including DPLC utilities with no restrictions on the number of pieces, and a non-fixed

number of players. Instead we fix the number of actions. In some respects, the application

of generating functions here is more natural than that of the previous chapter, since here sets

of integer lattice points arise naturally as sets of configurations in the setting of symmetric

games and are not artifacts of the special class of games considered.

Despite similarities, our analysis here proceeds differently than in Chapter 2. We employ

different proof techniques based on disjoint set decompositions rather than relying on integer

projections. A key technical insight is that when we fix the number of actions there is a fixed

number of ways to deviate from a given configuration. This is the essence of how we obtain
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stronger results. A more detailed description is given at the end of the current chapter,

where we will also discuss implications for practical implementation of these algorithms.

Here is an overview of the content found in this chapter. Section 3.2 introduces our

notation and description of the symmetric games we consider. The first are symmetric games

with utilities expressed as boolean circuits. We give hardness results for deciding if pure Nash

equilibria exist in games with three or more actions, and a polynomial time algorithm to find

equilibria in games with two actions. The second type of symmetric game we consider are

those with piecewise linear utilities. Notation and motivation are provided in this section.

Section 3.3 contains the main result, that the set of pure equilibrium configurations in

symmetric games can be encoded as a short rational generating function. An immediate

corollary is that there are efficient algorithms to count and enumerate equilibria, when the

number of actions m is fixed. We present two alternate methods to derive such a generating

function encoding, both of which yield fresh insights into the general method.

Section 3.4 highlights how generating functions can be used to answer interesting ques-

tions about the structure of equilibria in our games. An approximation algorithm is devel-

oped for finding social welfare maximizing equilibria in the game, as well as exact algorithms

to find the mean and variance of social welfare across all equilibria.

Section 3.5 details a direct generalization of our methods to the case of M -symmetric

games with a fixed number of player classes M . Finally, Section 3.6 explores the situation

where the number of players and utilities of each player in a symmetric game are influenced

by parametric choices of a leader or designer. We are able to answer questions regarding how

the designer might choose these parameters to optimize some polynomial objective, minimize

error in having an equilibrium close to some target equilibrium x̃, or maximize the worst-case

payoff to the player. These results on parametric games are an appealing consequence of our

method for analyzing symmetric games.
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3.2 Symmetric games

A strategic game is defined by the tuple (n, {Ai}1≤i≤n, {Ui}1≤i≤n) where n is the number of

players, and for each player i, Ai is her set of actions and Ui :
∏

j Aj → Z is her utility

function. Throughout the chapter we assume that utilities are integer-valued.

Symmetric games are a class of strategic games in which each player has an identical set

of actions A and for all permutation of players π : {1, . . . , n} → {1, . . . , n}, Ui(a1, . . . , an) =

Uπ(i)(aπ(1), . . . , aπ(n)). We consider n-player symmetric games in which the number of actions

m is a fixed constant.

The outcomes of the game are sufficiently described by configurations of players; that is,

a count of how many players take each action. A configuration is an m-dimensional vector

x = (xa : a ∈ A), where xa is the number of players taking action a. Let D denote the set

of configurations:

D =

{
x ∈ Zm :

∑
a∈A

xa = n, xa ≥ 0 for all a ∈ A

}
. (3.1)

The utility of a given player in a symmetric game depends only on the action played

and the overall configuration. For each action a ∈ A, we have a function ua defined over

configurations in which at least one player takes action a. In particular, ua(x) is the utility

of playing action a in configuration x (provided xa ≥ 1). The set of functions ua for all

a ∈ A is sufficient for specifying the utilities of the game. For the rest of the chapter we call

these ua the utility functions and will not refer to the functions Ui.

A configuration x ∈ D is a pure strategy Nash equilibrium configuration (or simply a

PSNE) if for all actions a and a′ either no player takes action a or the utility of a player

playing action a is no less than the utility he would receive from unilaterally deviating to

action a′. Symbolically, let N denote the set of PSNE in a symmetric game. Then x is

an element of N if for all a ∈ A either xa = 0 or for all a′ ∈ A, ua(x) ≥ ua′(x + ea′ − ea),
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(a) Circuit representing ua(·) (b) Circuit representing ub(·) (c) Circuit representing uc(·)

Figure 3.1: Circuits defining a circuit symmetric game with three players and three actions.

where ea is the ath unit vector with components eaa = 1 and eaa′ = 0 for a′ 6= a. Note that

x + ea′ − ea is the same configuration as x except that one player has deviated from playing

action a to action a′.

3.2.1 Symmetric games with utilities as circuits

We want the utility functions to be compactly represented and efficiently computable. One

approach is to model utility functions as circuits, as was done in previous work for general

games [73]. In this subsection, we consider circuit symmetric games, a representation in

which each utility function ua is represented as a circuit whose input is a binary representation

of the configuration vector x and output is a binary representation of the corresponding

integer utility value. Since circuits can represent arbitrary integer functions of the inputs,

this can represent all symmetric games with integer utilities. When utility functions can be

specified as simple circuits, the representation size can be as small as O(log n).

Example 3.2.1. We describe a simple example of a circuit symmetric game for readers

possibly unfamiliar with boolean circuits. Suppose there are three players {1, 2, 3} and three

actions {a, b, c}. The utility functions ua, ub and uc are represented by the Boolean circuits

in Figure 3.2.1. The way to interpret these circuits is as follows. The nodes to the left

of each diagram are six “input” nodes and encode configurations. For example, for the

configuration (2, 1, 0) the input would be the triple of 2 digit binary numbers (01, 10, 00) and
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Figure 3.2: Circuit diagram representing the computation of ua(2, 1, 0) = 7.

thus the input nodes would receive a labelling of 011000 . The nodes to the right are “output”

nodes and encode in binary the utility of an input configuration. In our example, it can be

seen that ua(2, 1, 0) = 7 which has binary encoding 1110. The other nodes in the circuit

diagrams are called “gates” represent logical operators. An AND gate (large arrow with a

rounded head) has two incoming edges and one outgoing edge which implements the AND

logical operator. An OR gate (large arrow with pointed head) has two incoming edges and

one outgoing edge which implements the OR logical operator. Finally, a NOT gate (small

arrow with a small circle at its head) has a single incoming edge and two outgoing edge

and implements the NOT logical operator. Figure 3.2.1 demonstrates how a circuit works in

computing the above-mentioned utility value ua(2, 1, 0) = 7. By computing utilities in this

manner we produce (Table 3.2.1) the explicit utilities for each configuration and action.

Configuration, x ua(x) ub(x) uc(x)
(1, 1, 1) 2 15 13
(2, 1, 0) 7 8 1
(1, 2, 0) 6 15 10
(2, 0, 1) 1 8 12
(1, 0, 2) 12 3 0
(0, 2, 1) 2 14 14
(0, 1, 2) 14 2 0
(3, 0, 0) 4 11 8
(0, 3, 0) 6 14 10
(0, 0, 3) 8 6 4

Table 3.1: Utilities of each configuration and action for Example 3.2.1.
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By inspection we see there are two equilibria in this game: (0, 2, 1) and (0, 3, 0). Note

that an equilibrium in a symmetric game need not be symmetric.

For our analysis of circuit symmetric games we first consider the case with two actions,

A = {1, 2}. In this case the game always has a PSNE. This follows from the fact that such

a game can be formulated as a congestion game, which implies the existence of a PSNE

[70]. (To see this, observe that u1(x) = u1(x1, n − x1) is a function of only x1; similarly

u2(x) = u2(n − x2, x2) is a function of only x2.) The claim was also proven from first

principles by [16].

However, even when a PSNE provably exists (or when a game is a congestion game),

PSNEs can still be difficult to find. We give an alternative proof of the existence of PSNE

for these games that illustrates the structure of the strategy space, and then show how this

structure can be exploited for efficient computation.

Lemma 3.2.2. Any symmetric game with two actions has a PSNE.

Proof. Given such a symmetric game, we construct the deviation graph, whose vertices are

the configurations x ∈ D. There is a directed edge from x to x′ if and only if a deviation

by a single player from x results in x′. Since each x = (x1, n− x1), where x1 is the number

of agents playing action 1, we can identify each configuration by its first component. Under

this mapping, the set of configurations corresponds to the set of integers {0, . . . , n}. It

is straightforward to see that the only edges in the deviation graph are between adjacent

integers: i, j ∈ {0, . . . , n} such that |i− j| = 1.

We then consider the profitable deviation graph (PDG), whose vertices are the same

configurations and directed edges represent strictly profitable deviations. For example, if a

deviation by one player in configuration x from action a to action 3−a results in configuration

x′, and furthermore if u3−a(x
′) > ua(x), then the PDG has an edge from x to x′. Observe

that the PDG is a subgraph of the deviation graph, and that if there is an edge from x to
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x′ in the PDG, then there cannot be an edge from x′ to x.

A sink of the PDG has no profitable deviations, which means that it is a PSNE. We

claim that the PDG must have a sink. To see this, we can start at vertex 0 and follow

the directed edges. Because the PDG is a subgraph of the deviation graph, each edge on

this path must increase the vertex’s index (in fact, by exactly one). Thus, the path must

eventually stop at a sink.

This proof suggests a straightforward algorithm for finding a PSNE: start at config-

uration 0 and follow the edges in the PDG. In fact by a similar argument any starting

configuration would lead to a sink. Unfortunately this approach can take Ω(n) steps be-

fore reaching a sink, which is exponential in the representation size. Instead, we present a

divide-and-conquer approach that exploits the structure of the PDG.

Theorem 3.2.3. For circuit symmetric games with two actions, a PSNE can be found in

polynomial time.

Proof. Given such a game with n players, consider the configurations bn
2
c and bn

2
c+1. There

are three cases:

1. If there is an edge from bn
2
c to bn

2
c+ 1 in the PDG, then there must exist a PSNE in

the subset {bn
2
c + 1, . . . , n}. This is because a path from bn

2
c + 1 must be increasing

and eventually stop at a sink.

2. Likewise, if there is an edge from bn
2
c + 1 to bn

2
c, there must exist a PSNE in the

subset {0, . . . , bn
2
c}, since a path from bn

2
c must be decreasing and stop at a sink.

3. If there is no edge between the two configurations, then there must exist a PSNE in

each of the subsets {0, . . . , bn
2
c} and {bn

2
c+ 1, . . . , n}).

Our algorithm picks a subset that contains a PSNE, and then recursively bisects that subset.

This process terminates at a PSNE after O(log n) iterations. For each iteration, checking
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the existence of edges between two configurations requires evaluation of utility at the two

configurations, which can be done in linear time for utility functions represented as circuits.

Therefore the running time of this algorithm is O(|Γ| log n), where |Γ| is the size of the

circuits.

Our next result shows that the problem of finding a PSNE in a circuit symmetric game

becomes intractable once we go beyond two actions.

Theorem 3.2.4. For circuit symmetric games in which the number of actions m is a fixed

constant of at least three, the problem of determining the existence of PSNE is NP-complete.

Proof. The problem is in NP because to determine whether a configuration x is a PSNE,

there are only O(m2) possible deviations to check.

We show NP hardness by reduction from CircuitSAT. CircuitSAT is the standard

NP-complete problem which asks whether there exists a binary input x to a circuit C which

yields C(x) = 1. Given a CircuitSAT problem instance C(y1, . . . , ym), we construct a

circuit symmetric game with n = 2m − 1 players and 3 actions {1, 2, 3} such that the game

has a PSNE if and only if there exists an satisfying assignment of y1, . . . , ym.

Given a configuration x = (x1, x2, x3), the utility functions u1(x),u2(x) and u3(x) are

defined as follows:

1. If the binary representation of x1 corresponds to a satisfying assignment for C, i.e.,

C(x0
1, . . . , x

m
1 ) = 1 where xi

1 is the ith bit of x1, then u1(x) = u2(x) = u3(x) = 2.

2. Otherwise:

(a) if x1 > 0, x2 > 0, x3 > 0, then u1(x) = u2(x) = 1, u3(x) = −2;

(b) if x1 > 0, x2 > 0, x3 = 0, then u1(x) = −1, u2(x) = 1;

(c) if x1 = 0, x2 > 0, x3 > 0, then u2(x) = −1, u3(x) = 1;
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(d) if x1 > 0, x2 = 0, x3 > 0, then u1(x) = 1, u3(x) = −1;

(e) if xa = n for some action a, i.e., all players are playing a, then ua(x) = 0.

If there exists a satisfying assignment for C, then any configuration with the correspond-

ing x1 is a PSNE because each player receives the maximum utility of the game. If there

does not exist a satisfying assignment, then the game’s utilities are defined by condition 2.

We claim that this subgame under condition 2 does not have a PSNE. Intuitively, the game

can be thought of as a generalization of the 2-player Rock-Paper-Scissors game. Formally,

given a configuration of case 2a, a deviation from action 3 (with utility −2) to 1 or 2 is

profitable. Given a configuration of case 2b, a profitable deviation is from action 1 (utility

−1) to 2 (utility 1 if the resulting configuration is of case 2b, utility 0 if the resulting con-

figuration is of case 2e). Similarly, given a configuration of case 2c, a profitable deviation

is from action 2 to 3; and given a configuration of case 2d, a profitable deviation is from

action 3 to 1. Given a configuration of case 2e with e.g. x1 = n, a profitable deviation is to

action 2, resulting in a configuration of case 2b. Therefore all configurations have profitable

deviations, thus the subgame does not have a PSNE.

Finally, we observe that the utility functions described above can be formulated as circuits

of the binary representation of x. The size of the circuit symmetric game is linear in the size

of the given CircuitSAT problem instance, and these utility functions can be constructed

in polynomial time. This concludes the reduction proof.

3.2.2 Symmetric games with piecewise linear utilities

The hardness result of Theorem 3.2.4 suggests that the circuit symmetric game representation

is too general to be computationally useful in the worst case: it is powerful enough to encode

NP-hard problems. Thus, computation of PSNE is intractable even if the representation is

compact.
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In this subsection and the rest of the chapter, we consider utility functions represented

as piecewise-linear functions. Piecewise-linear functions have been widely used as an approx-

imation of arbitrary continuous functions. A recent example of their use in an economic

context is [34], which considered piecewise-linear utilities in the computation of market equi-

libria in the Arrow-Debreu model, and presented a polynomial-time algorithm when utilities

are piecewise-linear concave functions and the number of goods is constant.

Also, given an arbitrary utility function, it can be described exactly by a piecewise linear

function, although the number of pieces required may be Θ(nm) in general, in which case it

is no longer compact in the sense we defined at the beginning of the chapter.

Even if the utility functions cannot be exactly represented as piecewise-linear functions

with a small number of pieces, piecewise-linear functions can still be useful as approximations

of such utility functions. If for all configurations x and all actions a the difference between

ua(x) and its approximation ûa(x) is at most ε, then by a standard argument any Nash

equilibrium of the approximate game is a 2ε-Nash equilibrium of the original game. An

ε-Nash equilibrium is an action profile in which each player can gain at most ε by deviating

from her current strategy. More precisely, a configuration x ∈ D is an ε-pure strategy

Nash equilibrium configuration (ε-PSNE) for all a ∈ A either xa = 0 or for all a′ ∈ A,

ua(x) ≥ ua′(x + ea′ − ea)− ε.

We consider two approaches to defining piecewise linear utilities. The first is maybe more

standard, where the utilities are described by explicitly specifying a polytopal subdivision of

the domain and an affine function for each cell. The domain for our utility functions is the

set of configurations D. Thus we define a utility function by specifying a set of polytopes

that induces a partition of the integer points D, and an affine function for each cell. We call

utility functions specified in this way PWL utilities (short for piecewise linear).

Formally, for each action a ∈ A, the piecewise linear (PWL) utility function ua(x) is

given as follows. There is a finite set of polytopes {Paj}j∈Ja with index set Ja where the set
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of configurations D is partitioned by the integer points in these polytopes. In other words,

D =
⊎

j∈Ja

(Paj ∩ Zm) ,

where the notation
⊎

signifies disjoint union. Each polytope Paj = {x ∈ Rm : Majx ≤ baj}
is given by an integer matrix Maj and integer right-hand side vector baj. Over each cell

Paj ∩ Zm there is an affine function faj(x) = αaj · x + βaj with αaj ∈ Zm and βaj ∈ Z, such

that

ua(x) = faj(x) for x ∈ Paj ∩ Zm. (3.2)

Thus, the piecewise linear utility function ua(x) is input as the binary encoding of Maj, baj,

αaj and βaj for each j ∈ Ja.

Example 3.2.5. To illustrate this definition we consider a simple example of a symmetric

game with piecewise linear utilities. We consider a game with 10 players and 3 actions a,

b and c. The set D is the integer points in the tenth dilate of the unit simplex; that is,

the nonnegative integer vectors in Z3 whose components sum to 10. We now describe the

piecewise linear utility functions.

The utility ua(x1, x2, x3) associated with action a is defined on the partition of D =

Pa1 ∩ Z3 ] Pa2 ∩ Z3 given by the two polytopes

Pa1 = {x ∈ R3 :
3∑

i=1

xi = 1, x1 ≤ 8, xi ≥ 0, for i = 1, 2, 3}

and

Pa2 = {x ∈ R3 :
3∑

i=1

xi = 1, x1 ≥ 9, xi ≥ 0, for i = 1, 2, 3}.

The affine piece above Pa1 is fa1(x1, x2, x3) = x1 + x2 + x3, and the affine piece above Pa2 is
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fa2(x1, x2, x3) = 2x1 − x2 − x3. That is,

ua(x1, x2, x3) =





x1 + x2 + x3, (x1, x2, x3) ∈ Pa1 ∩ Z3

2x1 − x2 − x3, (x1, x2, x3) ∈ Pa2 ∩ Z3

We similarly define ub as follows:

ub(x1, x2, x3) =




−2x1 − x2 + x3, (x1, x2, x3) ∈ Pb1 ∩ Z3

−x1 + x2 + 2x3, (x1, x2, x3) ∈ Pb2 ∩ Z3

where

Pb1 = {x ∈ R3 :
3∑

i=1

xi = 1, x2 ≤ 4, xi ≥ 0, for i = 1, 2, 3}

and

Pb2 = {x ∈ R3 :
3∑

i=1

xi = 1, x2 ≥ 5, xi ≥ 0, for i = 1, 2, 3}.

Finally, uc is defined by

uc(x1, x2, x3) =





x1 − x2 + x3, (x1, x2, x3) ∈ Pc1 ∩ Z3

−x1 + 2x2 − x3, (x1, x2, x3) ∈ Pc2 ∩ Z3

where

Pc1 = {x ∈ R3 :
3∑

i=1

xi = 1, x3 ≤ 6, xi ≥ 0, for i = 1, 2, 3}

and

Pc2 = {x ∈ R3 :
3∑

i=1

xi = 1, x3 ≥ 7, xi ≥ 0, for i = 1, 2, 3}.

Note that the input size of this symmetric game is roughly the econding size of 24 integers;

that is, the integral data defining the affine pieces and polytopes. However, the encoding size

of explicitly representing the utility for each pair of action and configuration is the encoding
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size of 3
(
10+3−1

3−1

)
= 3

(
12
2

)
= 198 integers. This illustrates the potential compactness inherent

in a piecewise linear structure.

Secondly, we consider an implicit form of piecewise linear representation called difference

of piecewise linear convex (DPLC) utilities. The input here is a pair of sets of affine functions

with integer coefficients {uak}k∈Ka and {val}l∈La such that

ua(x) = max
k∈Ka

uak(x)−max
l∈La

val(x). (3.3)

Where convenient we label the elements of Ka by {1, . . . , |Ka|}, and similarly for La. Without

loss of generality we assume that the utility functions are all positive over the domain D.

Theoretically our two representations of piecewise linear objectives are equivalent, as

stated in the following proposition:

Proposition 3.2.6. A utility function over D can be represented as an explicit piecewise

linear utility function of the form (3.2) if and only if it can be represented as a DPLC utility

function of the form (3.3).

Proof. We first prove the if-direction. Given a DPLC function of the form (3.3) we consider

partitioning the set of configurations D into regions where the objectives are linear. For each

action a ∈ A partition D as follows

D =


 ⊎

(k,l)∈Ka×La

Da
k,l




where

Da
k,l =





x ∈ D : xa ≥ 1,
uak(x) ≥ uaj(x), j > k, uak(x) ≥ uaj(x) + 1, j < k

val(x) ≥ vaj(x), j > l, val(x) ≥ vaj(x) + 1, j < l





.
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is the set of elements in D where maxj∈Ka uaj(x) = uak(x) and maxj∈La vaj(x) = val(x)

breaking ties to make the sets disjoint (see Lemma 2.3.1 for a similar discussion). Now

if we let Ja = Ka × La then our explicit representation of u will have Paj = Da
k,l and

faj(x) = uak(x)− val(x) for j = (k, l) ∈ Ja.

Conversely, given an explicitly represented piecewise linear function, a result by Zalgaller

(Theorem 4.2 in [86]) shows that it can be represented by a DPLC function. In his proof

Zalgaller shows that our explicitly represented piecewise-linear function ua can be expressed

as the difference ua = g−h where h =
∑M

i=1 hi with each hi a piecewise linear function with

two pieces and g = ua + h, which is also shown to be a piecewise linear convex function.

The number M of functions hi in the sum defining h depends on the nature of the polytopal

division {Paj}j∈Ja of D and is bounded above by the total number of facets in the polytopes

Paj. The proof in [86] is not explicit enough for us to easily show how to convert g and h

into “maximum of affine functions” form. Indeed, there is some flexibility in how to choose

the hi. It is clear, however, that such a representation exists as every piecewise linear convex

function has a “maximum of affine functions” representation.

In practice, the conversion from an explicitly represented piecewise linear function into a

DPLC function seems of little value, but the opposite conversion, which is given explicitly

in the above proposition may be of interest depending on the context. Although in theory

these two representations of utilities are equivalent, from the point of view of representation

sizes they can be quite different. The benefit of the DPLC representation is that there is no

need to explicitly represent the polytopal subdivision of D, which may yield savings in terms

of input size. Although the explicit representation of a piecewise linear utility is typical,

there are settings where a DPLC formulation is more natural. For instance, it is common in

economic applications for cost functions to be expressed as piecewise linear concave functions

in “minimum of affine functions” form. The affine functions represent production processes

with different start-up fixed costs (intercepts) and per-unit costs of production (slopes). A
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manufacturer then produces using the production process with minimum total cost. Finally,

we observe that a piecewise linear utility function in PWL or DPLC form can be represented

as a circuit.4

3.3 Main result

This chapter’s main positive result follows.

Theorem 3.3.1 (intuitive version). Consider a symmetric game with PWL or DPLC

utilities given by a binary encoding of the number of players and of the utility functions.

Then, when the number of actions m is fixed, there exists

(i) a polynomial-time algorithm to compute the number of pure Nash equilibrium configu-

rations;

(ii) a polynomial-time algorithm to find a sample pure strategy Nash equilibrium, when at

least one exists; and

(iii) a polynomial-space, polynomial-delay enumeration algorithm to enumerate all the pure

Nash equilibrium configurations of the game.

The proof of this theorem draws on the theory of rational generating functions for en-

coding lattice points sets in polyhedra. The methodology is similar to Chapter 2 with some

important differences which are discussed in Section 3.7. The proof is derived in our two

cases in Theorems 3.3.2 and 3.3.5.

4Addition and multiplication can be carried out by circuits. To determine which piece a configuration is
in, we can go through each piece and test the inequalities. The size of the resulting circuit is polynomial in
the number of bits needed to describe the piecewise linear function.
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3.3.1 PWL case: A decomposition-based encoding

To start we will consider PWL utilities of the form (3.2). To establish the result we take

advantage of the polyhedral subdivisions of D which define the utility functions and view

this in terms of boolean operations involving lattice points of polyhedra.

We now state and prove our main theorem formally for the PWL case:

Theorem 3.3.2 (PWL version). Consider a symmetric game with PWL utilities given by

the following input:

(I1) the binary encoding of the number n of players;

(I2) for each a ∈ A, the utility function ua(x) represented as the binary encoding of Maj,

baj, αaj and βaj for each j ∈ Ja.

Then, when the number of actions m is fixed, there exists

(i) a polynomial-time algorithm to compute the number of pure Nash equilibrium configu-

rations;

(ii) a polynomial-time algorithm to find a sample pure strategy Nash equilibrium, when at

least one exists; and

(iii) a polynomial-space, polynomial-delay enumeration algorithm to enumerate all the pure

Nash equilibrium configurations of the game.

Proof. We first show that N , the set of PSNE, can be encoded as a short rational generat-

ing function. Let N denote the set of PSNE. A difficulty in applying generating functions

to encoding N is the nonlinearity of the objectives ua. However, since these objectives are

piecewise linear, we simply consider the partitions of D into regions in which the objectives

are linear. We use these partitions of D (and hence of N) to express N as a Boolean combi-

nation of polytopal lattice point sets, and thus will ultimately be able to apply Lemma 1.4.4.
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The overall idea is to define subsets of configurations that have strictly profitable deviations,

then remove these subsets from D, leaving only the set of PSNE.

Define the deviation set Dev(a, a′, j, j′) as the set of configurations x in which a player

currently playing action a lying in region Paj has a strictly profitable deviation to playing

action a′, thereby yielding a new configuration x′ ∈ Pa′j′ . Such a profitable deviation will

exist whenever faj(x) < fa′j′(x
′). Since the affine functions have integer coefficients, we can

rewrite this condition as faj(x) ≤ fa′j′(x
′)− 1 and thereby avoid strict inequalities. Putting

this together, we define the deviation set as

Dev(a, a′, j, j′) =





x ∈ D : xa ≥ 1,x ∈ Paj,

x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− 1





. (3.4)

Now we can use (3.4) to describe N . We obtain

N = D \
⋃

a,a′

⊎
j

⊎

j′
Dev(a, a′, j, j′), (3.5)

where the first union is over all a, a′ ∈ A, the second union is over j ∈ Ja, and the third

union is over j′ ∈ Ja′ . This identity (ignoring for now our claim that the second two unions

are disjoint) can be verified as follows. Suppose configuration x ∈ D does not lie in the

right-hand side of (3.5). This implies that x lies in some deviation set D(a, a′, j, j′) for some

a, a′ ∈ A and (j, j′) ∈ Ja × Ja′ and hence there is a profitable unilateral deviation away

from x, implying that x is not in N . Conversely, suppose x ∈ D is not in N . This implies

that there exists a profitable unilateral deviation, say from playing action a to a′. This

implies ua(x) < ua′(x + ea′ − ea). Now, x and x + ea′ − ea lie in cells Paj for some j ∈ Ja

and Pa′j′ for some j′ ∈ Ja′ respectively. The condition on the utilities then implies that

faj(x) ≤ fa′j′(x
′) − 1. It follows that x is in the deviation set Dev(a, a′, j, j′) and thus not
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contained in the righthand side of (3.5).

Now we substantiate our claims that the second two unions are disjoint. The union

indexed by j is disjoint because the sets {Paj}j∈Ja form a partition of D, and Dev(a, a′, j, j′) ⊆
Paj. To see that the union indexed by j′ is disjoint, consider an arbitrary element x of

Dev(a, a′, j, j′). This implies that x′ = x + ea′ − ea ∈ Pa′j′ . Because {Pa′j′}j′∈Ja′ are disjoint

sets, for all j′′ ∈ Ja′ \ {j′} we have x′ 6∈ Pa′j′′ and thus x 6∈ Dev(a, a′, j, j′′). Therefore

Dev(a, a′, j, j′) is disjoint from Dev(a, a′, j, j′′) for any j′, j′′ ∈ Ja′ , j
′ 6= j′′.

We took particular care in describing which unions in our expression for N are disjoint

and which are not. This is because the second and third unions are not of fixed length

as would be required for the application of the Boolean Operations Lemma (Lemma 1.4.4).

However, since the unions are disjoint we can use simple addition of generating functions

to handle this part of the overall expression of N . To make this precise, note that each of

the Dev(a, a′, j, j′) terms are polytopal lattice point sets and thus admit Barvinok encodings

g(Dev(a, a′, j, j′), ξ) that can be computed in polynomial time by Lemma 1.4.3.

For each a, a′ ∈ A define

Dev(a, a′) =
⊎
j

⊎

j′
Dev(a, a′, j, j′). (3.6)

Dev(a, a′) is a disjoint union, and so by Lemma 1.4.5 also admits a Barvinok encoding

g(Dev(a, a′), ξ) =
∑

j

∑

j′
g(Dev(a, a′, j, j′), ξ).

We can use (3.6) to rewrite (3.5) as N = D \⋃
a,a′∈A Dev(a, a′). Since D and each of the sets

Dev(a, a′) have Barvinok encodings, Lemma 1.4.4 tells us that we can also derive such an

encoding for N . This Boolean combination of sets describing N is of constant length since

the number of actions m is fixed.
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Now that we have shown that N can be encoded as a short rational generating function,

(i)-(iii) follow by applying Lemmas 1.4.8 and 1.4.9. Given that we can compute g(N, ξ) in

polynomial time, we can compute its cardinality in polynomial time by applying Lemma 1.4.8.

This establishes (i). Applying Lemma 1.4.9 (noting the bound N ⊆ [0, n]m) we need only

wait polynomial time to output the first element of N , establishing (ii). The enumeration

scheme (iii) derives from Lemma 1.4.9 directly.

Of course this result trivially answers the problem of deciding if pure Nash equilibria

exist in symmetric games with PWL utilities, simply count the number of equilibria by the

above algorithm and observe if the number is nonzero. This can be done in polynomial time

when the number of actions m is fixed. When we contrast this result with that of Brandt et

al. [13] we see that the input of a utility value for each action and configuration has been

replaced with an input of the binary encoding of each piece of the PWL function which

describes the utilities. In particular, since the input is the number n and its encoding size is

log n the number of players is exponential in the input size if the other input data, including

the number of pieces, scales with log n. By contrast the algorithm of Brandt et al. [13] scales

with n.

3.3.2 DPLC case: Encoding extended equilibria

In the case of DPLC utilities we could apply Proposition 3.2.6 to convert DPLC utility

functions into PWL utility functions and then apply Theorem 3.3.2 to the to yield an

encoding of N . Despite this, we present an alternate approach to encoding N , which follows

a different argument and takes as input the DPLC description of utilities given in (3.3),

which is more compact than its PWL equivalent – it has fewer pieces to encode and no need

for describing a polytopal subdivision of D directly. In addition, we believe the following

approach to encoding N is of interest in its own and is thus included. The idea of the encoding
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is to introduce auxiliary variables y ∈ ZA×A and z ∈ ZA×A which capture information about

the utilities. In particular, we let yaa′ represent the contribution to the “convex” pieces ua′k

to the utility function ua′ when there is a deviation from the current configuration x to one

where one player switches from playing a to a′. The variable zaa′ is similar but corresponds

to the “concave” pieces va′l. This idea is similar to the extended game approach found in

the previous chapter, so we will be somewhat more terse in the presentation here. The

relationship we want to establish between these new variables, the configurations x and the

utilities are defined by the following set of extended equilibrium configurations N̂ :

N̂ =





(x,y, z) ∈ D × ZA×A × ZA×A : ∀a, a′ ∈ A :

yaa′ = maxk∈Ka′ ua′k(x + e′a − ea),

zaa′ = maxl∈La′ va′l(x + e′a − ea),

yaa − zaa ≥ yaa′ − zaa′ when xa ≥ 1





.

(3.7)

Our goal is to encode N̂ as a rational generating function and leverage this to understand

N . The following propositions reveals an important relationship between N̂ and N .

Proposition 3.3.3. The exists a bijection between the sets N and N̂ , where N is the set of

pure Nash equilibrium configurations and N̂ is the set of extended equilibrium configurations

defined in (3.7).

Proof. Consider the mapping ϕ : N −→ N̂ defined by x 7−→ (x,y, z) where for all a, a′ ∈ A,

yaa′ = maxk∈Ka′ ua′k(x + e′a − ea) and zaa′ = maxl∈La′ va′k(x + e′a − ea). In particular the

mapping yields: ua(x) = yaa − zaa and more generally, ua′(x + ea′ − ea) = yaa′ − zaa′ .

We first claim that ϕ is well-defined. If x ∈ N then for all a ∈ A either xa = 0 or for all

a′ ∈ A, ua(x) ≥ ua′(x+ea′−ea). Thus, this implies that if xa ≥ 1 then yaa−zaa ≥ yaa′−zaa′

and hence (x,y, z) ∈ N̂ . The fact that ϕ can be verified by similar reasoning to that found

in Lemma 2.3.5.
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Theorem 3.3.4. Consider a symmetric game with DPLC utilities given by (3.3) with input,

in binary encoding:

(I1) the number n of players;

(I2) for each a ∈ A, nonnegative integers |Ka| and |La|, and for all integers k ∈ Ka and

l ∈ La, integer vectors αik ∈ Zm, γil ∈ Zm and integers βak, δak defining the affine

functions uak and val by uak(x) = αik ·x + βik and val(x) = γal ·x + δil for all x ∈ D.

Then there exists a polynomial time algorithm which computes a short rational generating

function encoding of N̂ when the number of actions m is fixed.

Proof. Let

D̂ =





(x,y, z) ∈ D × ZA×A × ZA×A :
∀a, a′ ∈ A : ∀k ∈ Ka′ , ua′k(x + ea′ − ea) ≤ yaa′ ≤ U ′

a,

∀l ∈ La′ , va′k(x + ea′ − ea) ≤ zaa′ ≤ V ′
a,





.

where U ′
a and V ′

a are upper bounds on the value of the utilities, as defined below. The reason

for including these bounds is in anticipation of applying Barvinok’s algorithm for encoding

the set D̂ as a short rational generating function, which applies only to polytopes.

We define the bound Ua′ for yaa′ as follows, Va′ is defined analogously. Let Ua′k denote

the optimal value of the following linear program:

max{ua′k(x) : x ∈ conv(D)}.

The feasible set conv(D) is the convex hull of the set of feasible configurations D. Thus,

the value Ua′k can be found in polynomial time (say by the ellipsoid method) and is of size

polynomial in the binary encoding of the input. Note that Ua′k is an upper bound on the

corresponding integer program: max{ua′k(x) : x ∈ D}.
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Let Ua′ = maxk Ua′k. Again, this can be computed in polynomial time, since Ka is part

of the input. This bound does not overly restrict the choice of yaa′ since we have the relation:

yaa′ ≤ max
k

ua′k(x + ea′ − ea) ≤ max
k

max
x

ua′k(x) = max
k

Ua′k = Ua′ .

Having described D̂, the next step is to express N̂ as a Boolean combination of polytopal

lattice point sets. Here is one possible way of expressing N̂ in this form:

N̂ = D̂ \
( ⋃

a,a′∈A

Y >
a,a′

)
\

( ⋃

a,a′∈A

Z>
a,a′

)
\

( ⋃

a,a′∈A

W>
a,a′

)

where

Ya,a′ = {(x,y, z) ∈ D̂ : ∀k ∈ Ka′ : yaa′ ≥ ua′k(x + ea′ − ea) + 1},

Za,a′ = {(x,y, z) ∈ D̂ : ∀l ∈ La′ : zaa′ ≥ va′k(x + ea′ − ea) + 1},

and

Wa,a′ = {(x,y, z) ∈ D̂ : xa ≥ 1, yaa − zaa ≤ yaa′ − zaa′ − 1}.

We can view Ya,a′ as the set of (x,y, z) where for a, a′ ∈ A the values of yaa′ is too large for

the set N̂ . We can similarly interpret the sets Za,a′ and Wa,a′ . It is straightforward to verify

that this is indeed a valid description of N̂ .

Each of Ya,a′ , Za,a′ and Wa,a′ are polytopal lattice points sets and therefore can be encoded

by short rational generating functions in polynomial time. The Boolean expression for N̂

thus consists of a fixed number of set operations over sets with short rational generating

function encodings and thus N̂ itself can be encoded by a short rational generating function

in polynomial time, by the Boolean Operations Lemma (Lemma 1.4.4).

Corollary 3.3.5. Consider an symmetric integer programming game with DPLC payoffs of

the form 3.3 with input as in the previous theorem. Then, the set N of pure Nash equilibrium
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configurations has a short rational generating function encoding, which can be computed in

polynomial time when the number of actions m is fixed.

Proof. With an encoding of N̂ we get an encoding of N by simply noting the bijection in

Proposition 3.3.3 and applying Remark 1.4.6.

As in the PWL case we can use this encoding to count and enumerate equilibria. In

the remainder of this chapter we explore extensions and applications of the encoding results

found in this section for both the PWL and DPLC utility function setting. A proof in

one setting leads naturally to an analogous ideas for a proof in the other. The first of these

results (Theorem 3.4.3), however, has complete proofs for both settings to give the reader

the taste for the arguments. Later on we only establish results carefully for the PWL case,

where we hope the parallel result to the DPLC case is clear.

3.4 Exploring the structure and distribution of

equilibrium configurations

This section examines how, once a generating function encoding of the set of pure Nash

equilibria has been attained, this encoding can be used to further analyze the structure of

equilibria. In so doing, we demonstrate the power of the rational generating functions in

allowing for efficient computation.

First we derive algorithms to compute approximate social welfare maximizing equilibria.

Next we demonstrate how generating functions can be used to learn about the distributions

of welfare amongst the set of equilibria, in terms of calculating the mean and variance of

social welfare over the set N . Lastly, we explore the distributions of equilibrium payoffs by

deriving histograms, in addition to mean and variance, for the distribution of payoffs earned

from playing a particular action a in equilibrium. All of this gives us further insight into the
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structure and characteristics of alternate equilibria in symmetric games.

We first give basic extensions of Lemma 1.4.10 and Lemma 1.4.11 to the case of optimizing

piecewise-linear and piecewise-polynomial functions over a lattice point set described by its

Barvinok encoding. They will be used here and in Section 3.6.

Lemma 3.4.1 (Piecewise-Linear Optimization). Let S ∈ Zm be a lattice point set

with Barvinok encoding g(S, ξ) and fix m (the dimension) and ` (the maximum number

of binomials in the denominators of the rational terms in g(S, ξ)). Then there exists a

polynomial-time algorithm for the following problem. Given as input, in binary encoding,

(I1) a number M ∈ Z+;

(I2) the Barvinok encoding of a finite set S ⊆ [−M,M ]m;

(I3) for each j ∈ J an inequality description (Mj,bj) of rational polytope Pj = {x ∈ Rdj :

Mjx ≤ bj} ⊂ [−M,M ]k such that S =
⊎

j∈J S ∩ Pj;

(I4) For each j ∈ J vector αj ∈ Zm and scalar βj ∈ Z defining affine functions aj(x) =

αj · x + βj which compose the piecewise linear function

a(x) = {aj(x) : x ∈ Pj};

output, in binary encoding,

(O1) an optimal solution x∗ of the optimization problem max{a(x) : x ∈ S}.

Proof. First for each j ∈ J compute a Barvinok encoding of each S ∩ Pj using the Boolean

Operations Lemma (Lemma 1.4.4). Then observe that

max{a(x) : x ∈ S} = max
j∈J

max{αjx + βj : x ∈ S ∩ Pj}
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Each of the inner optimization problems can be solved in polynomial time using the Linear

Optimization Lemma (Lemma 1.4.10).

We can also optimize over piecewise-polynomial functions, provided each polynomial is

nonnegative over its domain.

Lemma 3.4.2 (FPTAS for maximizing piecewise polynomials). Let S ∈ Zm be a lattice

point set with Barvinok encoding g(S, ξ) and fix m (the dimension) and ` (the maximum

number of binomials in the denominators of the rational terms in g(S, ξ)). Then there exists

a polynomial-time algorithm for the following problem. Given as input an

(I1) two vectors xL, xU ∈ Zm,

(I2) the Barvinok encoding of a finite set S ⊆ Zm of lattice points that is contained in the

box B = {x : xL ≤ x ≤ xU },

(I3) for each j ∈ J an inequality description (Mj,bj) of rational polytope Pj = {x ∈ Rdj :

Mjx ≤ bj} ⊂ B such that S =
⊎

j∈J S ∩ Pj;

(I4) for each j ∈ J a list of coefficients fij ∈ Q, encoded in binary encoding, and expo-

nent vectors αij ∈ Zm
+ , encoded in unary encoding, representing piecewise polynomial

f(x) = {fj(x) : x ∈ Pj}, where

fj =
∑

i

fijx
αij

and each fj is non-negative on S;

(I5) a positive rational number 1/ε encoded in unary encoding,

output, in binary encoding,
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(O1) a point xε ∈ S that satisfies

f(xε) ≥ (1− ε)f ∗ where f ∗ = max
x∈S

f(x).

Proof. Let ε > 0 be given. First for each j ∈ J compute a Barvinok encoding of each S ∩Pj

using the Boolean Operations Lemma (Lemma 1.4.4). For all j ∈ J apply the algorithm

for polynomial optimization from Lemma 1.4.11 to find an ε-optimal solution xj
ε for each

optimization problem: max{fj(x) : x ∈ N ∩ Pj}. Then set xε to be an xj
ε that satisfies

fj(x
j
ε) ≥ fk(x

k
ε ) ∀k ∈ J.

We claim xε satisfies the required condition f(xε) ≥ (1− ε)f ∗. An optimal solution x∗ ∈ S

(i.e., f(x∗) = f ∗) must lie in a set S ∩ Pj for some j ∈ J . Hence f ∗ = fj(x
∗). Now, by the

definition of xj
ε,

fj(x
j
ε) ≥ (1− ε)fj(x) ∀x ∈ N ∩ Pj

which implies fj(x
j
ε) ≥ (1− ε)fj(x

∗) = f ∗. Now, f(xε) ≥ fj(x
j
ε) and thus f(xε) ≥ (1− ε)f ∗.

The result then follows.

3.4.1 Social-welfare maximizing equilibria

When there are many equilibrium configurations in a symmetric game, one may ask which

configuration is “best” from a social-welfare point of view. That is, we are interested in

finding an optimal solution to the optimization problem:

w(x) = max{
∑
a∈A

xaua(x) : x ∈ N}; (3.8)
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that is, find an equilibrium which maximizes the sum of utilities. Let w∗ denote its optimal

value. The next result describes an FPTAS for this optimization problem.

Theorem 3.4.3. Consider a symmetric game with either PWL or DPLC utilities given

by the same input as in Theorems 3.3.2 and 3.3.4 respectively and in addition a positive

rational number 1
ε

encoded in unary encoding. Then, for a fixed number of actions m there

exists a polynomial time algorithm to output, in binary encoding, a configuration xε ∈ D that

satisfies

w(xε) ≥ (1− ε)w∗ where w(x) =
∑
a∈A

xaua(x) and w∗ = max
x∈N

w(x)

Proof. We establish the result in both the PWL and DPLC settings. We begin with con-

sidering PWL utility functions. Partition the feasible region N into subregions where ua(x)

is linear simultaneously for all a ∈ A. This is achieved by considering the problem sep-

arately within each cell of the common refinement of each partition {Paj}j∈Ja of D. Let

J =
∏

a∈A Ja. This yields the following fine partition of: D =
⋃

j∈J Pj where j = (ja)a∈A ∈ J

and Pj =
⋂

a∈A Paja . Note that this is also a partition of N . It is then clear that for x ∈ Pj

each action’s utility is ua(x) = faja(x) and thus,

w∗ = max

{∑
a∈A

xaua(x) : x ∈ N

}

= max
j∈J

max

{∑
a∈A

xafaja(x) : x ∈ N ∩ Pj

}
.

We immediately see that this is an optimization of a piecewise-polynomial function over our

set N . The result then follows by applying Lemma 3.4.2.

For the DPLC case, by noting the bijection in Proposition 3.3.3 we can view the opti-
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mization problem (3.8) as an optimization problem over N̂ since:

w∗ = max

{∑
a∈A

xaua(x) : x ∈ N

}

= max

{∑
a∈A

xaua(x) : ϕ(x) = (x,y, z) ∈ N̂

}

= max

{∑
a∈A

xa(yaa − zaa) : (x,y, z) ∈ N̂

}
.

The latter optimization problem is to maximize the polynomial ŵ(x,y, z) =
∑

a∈A xa(yaa −
zaa) over the lattice point set N̂ . Since we assumed that utility are always positive, this is

clearly a positive polynomial over the set N̂ .

Now, apply Lemma 1.4.11 with the following input:

1. Two vectors (xL,yL, zL) = 0 and (xU,yU, zU) where for all a, a′ ∈ A, xU
a = n,

yU
aa′ = maxa Ua and zU

a = maxa Va (where Ua and Va are defined as in the proof of

Theorem 3.3.5).

2. The data describing the short rational generation function encoding of N̂ given by

Theorem 3.3.4, where clearly N̂ ∈ {(x,y, z) : (xL,yL, zL) ≤ (x,y, z) ≤ (xU,yU, zU).

3. The polynomial objective
∑

a∈A xa(yaa − zaa), where the coefficients are all 1 and the

exponent vectors are binary.

4. Positive rational number 1
ε

The output is a point (xε,yε, zε) ∈ N̂ that satisfies ŵ(xε,yε, zε) ≥ (1 − ε)w∗. By the

bijection we have ϕ−1(xε,yε, zε) = xε and it follows that w(xε) ≥ (1− ε)w∗, as required.

One might again ask why we developed a separate argument for the DPLC case, when

by Proposition 3.2.6 we could simply convert a DPLC instance into a PWL instance and

then use the algorithm in that setting. Note that in showing the result in the two settings,

94



PWL and DPLC utilities, have two very different approaches. In the PWL case we have to

find many ε-optimal solutions to subproblems via our partitioning, and in the DPLC case

we need to expand the dimension of sets under consideration using an extended formulation.

As our methods are sensitive to dimension the latter seems unfavorable, but a single FPTAS

is required in this setting and so computational advantage of one method overall another is

somewhat ambiguous. Further considerations of this nature are a potential avenue for future

investigations.

3.4.2 Mean and variance of social welfare

A related question to social welfare maximization is that of calculating the mean and variance

of social welfare over all equilibrium configurations. Much attention has been given the case

of minimum and maximum welfare associated with equilibria, in the context of price and

anarchy and stability, respectively (see for example [3, 71]). The pure price of anarchy is the

ratio of the worst social welfare that arises from a PSNE to the maximum social welfare

where the agents act together to maximize their total payoff. The pure price of stability is

the ratio of the best social welfare that arises from a PSNE to the maximum social welfare.

We are in search of an average welfare over all equilibria, which we could use, for instance,

to compute another notion: the average price of anarchy. Also, being able to compute the

variance of utilities may be useful. A mechanism designer, for instance, may prefer games

with smaller variance in welfare in order to ensure some regularity in the welfare conditions

of a game.

At first glance the ability to compute the mean and variance of social welfare would

appear to be computationally expensive since in the worst case there may be an exponential

number of equilibrium configurations. Nonetheless, we show that our polynomial-sized short

rational generating function encoding of the set of equilibrium configurations can be used to

answer this question efficiently. We isolate discussion to the PWL case.
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Given a symmetric game we let µw and σ2
w denote the mean and variance of social welfare

over all its equilibrium configurations N which can be expressed as:

µw =

∑
x∈N w(x)

|N | (3.9)

and

σ2
w =

∑
x∈N(w(x)− µw)2

|N | .

We claim that µw and σ2
w can be computed in polynomial time when the number is

actions is fixed.

Theorem 3.4.4. Consider a symmetric game with either PWL or DPLC utilities given

by the same input as in Theorems 3.3.2 and 3.3.4 respectively. Then, when the number of

actions is fixed, there exists a polynomial time algorithms to find the mean social welfare µw

and variance of social welfare σ2
w over all equilibrium configurations.

Proof. We show how to compute µw in polynomial time by establishing algorithms to com-

pute the numerator and denominator of the right-hand side of (3.9). The denominator |N |
can be computed using the Counting Lemma (Lemma 1.4.8) applied to the Barvinok encod-

ing of N . We calculate the numerator by partitioning D as in the proof of Theorem 3.4.3

and breaking up the sum into smaller whole sums over the cells in the partition; that is, by

computing
∑
x∈N

ŵ(x) =
∑

j∈J

wj (3.10)

where

wj =
∑

x∈N∩Pj

∑
a∈A

xafaja(x) (3.11)

is the partial sum of utilities in cell N ∩ Pj using the same notation as in the proof of

Theorem 3.4.3.
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To compute this sum we compute each wj separately. Note that
∑

a∈A xafaja(x) is a

polynomial function over the set N ∩Pj (which as have shown in the proof of Theorem 3.3.2

has a short rational generating functioning encoding) and thus by Lemma 1.4.12 we can

evaluate the sum. This in turn yields an overall polynomial time algorithm to compute µw.

A similar argument holds for finding σ2
w by noting that the function f(x) = (w(x)−µw)2

is a polynomial function over each cell N ∩ Pj of the partition of N and then appealing to

Lemma 1.4.12.

Note that we can evaluate the mean and standard deviation of social welfare without

recourse to enumeration of any equilibrium configurations, which again underscores the power

of encoding our sets of interest as rational generating functions.

3.4.3 Distribution of payoffs in equilibrium

It should be noted that Theorem 3.4.4 can be generalized to hold for finding the mean and

variance of evaluating an arbitrary polynomial function f(x) on the elements of N .

One such function of interest is simply the payoff ua(x) for players playing action a in

configuration x. In this subsection we explore the distribution of payoffs ua(x) for playing

action a amongst all equilibrium configurations where actions a is played, i.e. for x ∈ N with

xa ≥ 1. We let Na denote this set of equilibria. We immediately get the following result.

Proposition 3.4.5. Consider a symmetric game with either PWL or DPLC utilities given

by the same input as in Theorems 3.3.2 and 3.3.4 respectively. Then, when the number of

actions is fixed, for each specified action a there exists a polynomial time algorithm to compute

the mean µa and variance σ2
a of payoffs for playing action a, taken over all equilibrium

configurations x ∈ Na.

The proof is analogous to the proof of Theorem 3.4.4, with the only significant difference

being that the we exchange Na for N . Details are omitted.
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However, since ua(x) corresponds to an affine functions over the cells Na ∩ Paj there is

still more that we can say about how its values are distributed. As will be seen in our next

result, we can construct a frequency histogram to describe the distribution of payoffs ua(x)

over Na.

The key step is to count equilibria in Na where the payoffs to players playing action a falls

in some range ui ≤ ua(x) < ui+1 where ui < ui+1 are integers. The histogram Hu0,u1,...,uT
a

will consist of counts of equilibria lying in consecutive intervals [ui, ui +1) for i = 0, . . . T −2

and [uT−1, uT ] with

umin = u0 < u1 < · · · < uT−1 < uT = umax

where

umin = min{ua(x) : x ∈ Na},

umax = max{ua(x) : x ∈ Na}

Let ci,i+1 denote the number of equilibria in Na where ua(x) lies in the interval [ui, ui+1) for

i = 0, . . . T − 2 and the interval [uT−1, uT ] for i = T − 1.

The next result shows such a histogram can be produced in polynomial time when the

number of intervals T is polynomial in the input size.

Theorem 3.4.6. Consider a symmetric game with either PWL or DPLC utilities given

by the same input as in Theorems 3.3.2 and 3.3.4 respectively. Fix the number of actions

m. There exists a polynomial time algorithm to construct histogram Hu0,u1,...,uT
a provided the

number of consecutive intervals T for payoffs is of size polynomial in the binary encoding of

the input.

Proof. As in the previous theorem our approach is to compute counts for the cells Na ∩ Paj
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then to sum the results over all j ∈ Ja. Thus, for i 6= 0, T − 1 we have

ci,i+1 =
∑
j∈Ja

|{x ∈ N ∩ Paj : ui ≤ faj(x) ≤ ui+1}|.

To compute the cardinalities of the sets in the sum we apply the Counting Lemma (Lemma 1.4.8)

to the rational generating function of {x ∈ N ∩Paj : ui ≤ faj(x) ≤ ui+1} which itself can be

found in polynomial time using the Boolean Operations Lemma (Lemma 1.4.4).

It remains to show how to compute c0,1 and cT−1,T , and this is achieved as above once we

know umin and umax. We only give details for finding umax. Again using our partition of Na

it suffices to compute max{faj(x) : x ∈ N ∩ Paj} for each j ∈ Ja. Given our short rational

generating function encoding of N ∩ Paj this can be found in polynomial time by an appeal

to the Linear Optimization Lemma (Lemma 1.4.10) with the appropriate input.

3.5 M-symmetric games

A game is M -symmetric, when the set of players can be partitioned into M classes, labeled

{1, . . . , M}, such that within each class, players are interchangeable. This means that players

in each class have the same number of actions and the same utility functions. Formally, each

class i has ni players and Ai actions with A =
⋃M

i=1 Ai.

Define an M -configuration to be a vector x ∈ ZA such that for each i ∈ {1, . . . , M},
for each a ∈ Ai, xia is the number of players in class i that choose action a. The set of

M -configurations is D =
∏M

i=1 Di where

Di = {xi ∈ Z |Ai| : xi ≥ 0,
∑
a∈Ai

xia = ni}.

For a player from class i, her utility of playing action a ∈ Ai is a function of the configuration

x, denoted uia(x).
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We are interested in M -symmetric games with piecewise linear utility functions. The

input is as follows: for each class i there is a polyhedral subdivision Di =
⋃

j∈Jia
Piaj where

Jia is a finite index set, over affine functions fiaj for j ∈ Jia defining utility functions

uia(x) = fiaj(x) for x ∈ Piaj.

An M -configuration x is a pure Nash equilibrium M -configuration if and only if for

all i ∈ {1, . . . , M} and for all a, a′ ∈ Aj, xia = 0 or uia(x) ≥ uia′(x + ea′ − ea). Using

similar arguments as before, we can encode the set of pure equilibria as a short rational

generating function. This procedure works in polynomial time in the input size (that is, the

binary encoding of n and the description of the objective functions) as long as m and M are

bounded constants.

3.6 Parameterized symmetric games

In this section we extend our approach to model families of symmetric games parameterized

by integer parameters, and answer interesting questions about a family of games without

having to solve each individual game in the family. Many problems in mechanism design

have such a flavor; e.g. designing a game (i.e., setting the parameters) such that the resulting

equilibria satisfy certain properties or optimize a certain objective.

We allow a fixed number of integer parameters that additively influence each piece of

the utility functions, and furthermore allow the number of players to be considered as a

parameter. The set of actions remains fixed in each member of the parametric family.

Our overall approach is to use rational generating functions as before, except that we

augment the configuration vector with the vector of integer parameters. The resulting set we

encode as a generating function is the graph of the parameters–equilibria correspondence.
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3.6.1 Parametric families of symmetric games

Since we are considering parametric families of games in which the number of players is a

changing parameter, we define our piecewise linear utilities over configurations of different

numbers of players. That is, we define the utilities over the set of feasible configurations

F = {x ∈ Zm : 1 ≤
∑
a∈A

xa ≤ B, xa ≥ 0, ∀a ∈ A},

where B is a bound on the total number of players. In other words, the number of players

in the game can be between 1 and B.

The utilities are specified by a polyhedral subdivision {Paj}j∈Ja of F for each action a,

and affine functions faj defined over the cells Paj as in Section 3.2 except that now the

division is over F . We also introduce a fixed number of parameters that control the additive

constants in the affine functions faj. We constrain these parameters to be the lattice points

inside a polytope of fixed dimension R ∈ Rd. Formally, let p be a d-dimensional integer

vector inside of Q = R ∩ Zd and for each a ∈ A and j ∈ Ja, define

faj(x,p) = αaj · x + βaj · p, (3.12)

where now

ua(x,p) = faj(x,p) for p ∈ Q and x ∈ Paj. (3.13)

In other words, the parameter allows for an additive change in each piece of the piecewise

linear utility function ua.

We are interested in encoding the set of parameterized PSNE defined as

N = {(x, n,p) : p ∈ Q,n ∈ {1, . . . , B},x ∈ N(n,p)} , (3.14)
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where N(n,p) is the set of PSNE in the symmetric game with n players, feasible configura-

tions Dn = {x ∈ F :
∑

a∈A xa = n} and utilities defined as in (3.13) for the given parameter

p.

The approach we use to encode N is similar to that of Section 3.3 in that we describe N

as a Boolean combination of sets of lattice points contained in polyhedra that in part derive

from a partitioning of N into cells of the form N ∩Pj using the same notation as in the proof

of Theorem 3.4.3. The expression of N as a Boolean combination of sets is

N = H \
⋃

a,a′

⊎
j

⊎

j′
Dev(a, a′, j, j′), (3.15)

where

H = {(x, n,p) : x ∈ Dn, n ∈ {1, . . . , B}, p ∈ Q}

is the overall feasible set, and the first union is over all a, a′ ∈ A, the second union is disjoint

over j ∈ Ja, the third union is disjoint over j′ ∈ Ja′ and Dev(a, a′, j, j′) is the set

Dev(a, a′, j, j′) =





(x, n,p) :

p ∈ Q, 1 ≤ n ≤ B, n ∈ Z
x ∈ Dn ∩ Paj

x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− 1}





. (3.16)

It is clear that H and each Dev(a, a′, j, j′) is a polytopal lattice point set in (x, n,p) and

thus a Barvinok encoding of N obtains by applying similar reasoning to that found in

Theorem 3.3.1.

We have thus established the following.

Theorem 3.6.1. Consider a parametric family of symmetric games with m actions and

n players with utility functions parameterized by p ∈ Q as found in (3.13) given by the
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following input in binary encoding:

(I1) an integer bound B on the number of players;

(I2) an inequality description of a rational polytope R contained in Rd;

(I3) for each a ∈ A, a nonnegative integer |Ja| and each j ∈ Ja = {1, . . . , |Ja|} an inequal-

ity description of the polytope Paj and integer vectors αaj ∈ Zm, and integers βaj

defining the affine functions faj(x) = αaj · x + βaj · p.

Then, the set N of parameterized PSNE defined in (3.14) has a Barvinok encoding, which

can be computed in polynomial time when the number of actions m and the dimension of the

parameter space d is fixed.

3.6.2 Optimization over parameters

Once we have a Barvinok encoding of the set N of parameterized PSNE, we can use it

to answer questions about game-theoretic properties of the parameterized family. To give

a basic illustration, suppose we are interested in finding a value for the parameters (n,p)

such that a PSNE exists. This is resolved by enumerating from the set N and terminating

after the first element (x, n,p) is output. A more sophisticated question is to optimize linear

and nonnegative polynomial objective functions of the parameters, subject to the constraint

that a PSNE exists. Formally, for minimizing objective function f we solve: min{f(n,p) :

(x, n,p) ∈ N}. We can solve problems of this type by appeal to Lemma 3.4.1 (for piecewise

linear objectives) or Lemma 3.4.2 (for nonnegative piecewise polynomial objectives).

A more interesting case is when we want to find optimal parameters under some objective

function that depends on the PSNE configuration as well as on the parameters themselves.

Since each game in the family can have multiple PSNEs, the problem is not well defined until

we specify how PSNEs are selected. Depending on the application domain, we might consider
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selecting the best-case PSNE for each game, or selecting the worst-case PSNE. By “best-

case” PSNE we mean that for a given parameter instantiation (n,p) the mechanism designer

considers the most favorable PSNE in N(n,p) when attempting to optimize its objective.

For example, in mechanism design problems, best-case analysis (e.g. recent work on the

price of stability [3]) is useful for getting bounds on what we could achieve under equilibrium

behavior. By “worst-case” PSNE we mean that for a given parameter instantiation (n,p) the

mechanism designer the least favorable PSNE in N(n,p). Worst-case analysis (e.g. recent

work on the price of anarchy [54, 71]) is useful for designing mechanisms with guaranteed

performance.

Depending on whether we want to select best-case PSNE or worst-case PSNE, different

types of optimization problems arise. For example, if we want to minimize the function

f(x, n,p), selecting the best-case PSNE yields the problem

min{f(x, n,p) : (x, n,p) ∈ N}. (3.17)

When f is piecewise linear or piecewise polynomial, this can be solved in polynomial time

or approximated in polynomial time5, respectively, using Lemma 3.4.1 and Lemma 3.4.2.

We now turn to the more delicate situation of selecting the worst-case PSNE. This yields

the problem

min
n,p

max
x:(x,n,p)∈N

f(x, n,p). (3.18)

The decision version of the problem is the following: decide whether there exists a parameter

instantiation (n,p) such that N(n,p) 6= ∅ and for all x ∈ N(n,p), f(x, n,p) ≥ v. This

problem has a similar form to the parameterized integer programming problem studied by

[37]. However, applied to our domain, the approach in [37] requires that the feasible set of x

5Throughout Section 3.6 the phrase ”polynomial time” is always understood to be under the caveat that
the number of actions m is fixed.
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be the set of integer points in a convex polytope. This is not the case for our problem since

the set N(n,p) depends on the parameters and is not described by a convex polytope.

We propose a branch-and-bound approach for solving the min-max optimization (3.18).

Branch and bound is a general optimization method for nonconvex optimization problems,

applicable to discrete domains as well as continuous domains [57, 62]. At a high level, the

algorithm partitions the space of candidate solutions into regions and iteratively refines the

partitioning by bisecting a region along one of its dimensions. The algorithm can prune

off regions using bounds on the objective value for each of the regions. There is a wide

choice on the order in which the regions are explored. For discrete domains, a simple and

memory-efficient approach is to explore the regions in a depth-first order. The steps of a

simple branch-and-bound algorithm for (3.18) is outlined as follows:

1. Set of regions L is initialized with one region {(n,p) : 0 ≤ n ≤ B,p ∈ R} ∩ Zd+1.

2. Global upper bound UB is initialized to ∞.

3. Repeat until L is empty:

(a) Take the next region L from L in depth-first order.

(b) If L contains only one integer point (n̂, p̂), solve f̂ = maxx:(x,n̂,p̂)∈N f(x, n̂, p̂).

Update UB if f̂ > UB.

(c) Otherwise (i.e., L contains more than one integer point), compute the lower bound

LB for L as discussed above. If LB ≥ UB discard L. Otherwise bisect L along

its longest dimension, and replace L in L by the resulting two regions.

4. Return UB as the optimal value.

For our problem, each “region” corresponds to the set of integer points in a polytope.

The space of candidate solutions (n,p) is {(n,p) : 0 ≤ n ≤ B,p ∈ R} ∩ Zd+1. This can be
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bisected into two regions; for example, by adding constraints n ≤ bB/2c and n ≥ bB/2c+ 1

respectively.

For the branch-and-bound approach to be effective it requires that each iteration of Step 3

can be performed efficiently; that is, the bounds on the objective value can be efficiently

computed for each region. This is indeed the case in our setting:

Proposition 3.6.2. Each iteration of Step 3 executes in polynomial time when f is a piece-

wise linear function as defined in (3.12).

Proof. For each region L, we compute a lower bound on the value of any candidate solution

(n,p) from the region by solving

min{f(x, n,p) : (x, n,p) ∈ N, (n,p) ∈ L}. (3.19)

Since L is a polytope at each iteration, we derive a Barvinok encoding of the feasible set of

(3.19) and apply Lemma 3.4.1.

We compute an upper bound by picking some (n̂, p̂) in L and solving the optimization

maxx:(x,n̂,p̂)∈N f(x, n̂, p̂). Similar to above, these bounds can be computed in polynomial

time if f is piecewise linear.

Thus, for piecewise-linear f , this algorithm is guaranteed to find the optimum in finite

time, although the worse-case running time is exponential. Nevertheless, when the algorithm

can prune off large regions, it can be much faster than the brute-force approach of trying

every parameter instantiation.

3.6.3 Fitting a “closest game” to an observed equilibrium

We now consider a problem from econometrics: determining parameters of a utility model

that would give rise to observed equilibrium behavior. Suppose we are analyzing a system
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modeled as an n-player symmetric game where certain aspects of the game’s utility functions

are unknown, and furthermore the set of candidate utility functions belongs to the set of

parametric (in p) piecewise-linear utilities of the form of (3.13).

We are given the players’ observed behavior in the game as some configuration x̃. As-

suming the players are behaving rationally, we would like to know the game’s true utility

functions, i.e., to estimate the parameter p. Note that we are not parameterizing the num-

ber of players n, since given any observed configuration x̃ we automatically determine the

number of players n as
∑

a∈A x̃a. Thus, for simplicity we use the notation N(p) instead of

N(n,p) to denote the set of PSNEs with parameter p.

Assuming the players play a PSNE if one exists, we would like to find a p ∈ Q such that

x̃ is a PSNE of the game with parameter p. Formally, the set of such p is

Nx̃ = {p : p ∈ Q, (x̃,p) ∈ N}.

A Barvinok encoding of Nx̃ can be computed efficiently using a similar construction as in

Section 3.6.1 with the additional constraint x = x̃.

However, there might not be such a p, i.e., the set Nx̃ might be empty. In this case we

would like to find p such that x̃ is close to being an equilibrium. One measure of approximate

equilibrium is an ε-equilibrium. Note that in the symmetric games we are considering, the

utility functions are integer-valued at integer points in their domain, and thus we may restrict

ε to be integer for our purposes. Note that we can impose an upper bound on the ε’s of

interest, a simple bound being the largest utility value possible amongst all actions over the

set D. That is,

umax = max
a∈A

max{ua(x) : x ∈ D} (3.20)

which can be solved in polynomial time (integer programming using Lenstra’s algorithm [58])

when the number of actions m is fixed.
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Define Ñ to be the set of (x,p, ε) such that x is an ε-PSNE of the game with parameter

p. We can compute a Barvinok encoding of Ñ by adapting the proof of Theorem 3.6.1 as

follows: make ε an additional integer variable and redefine the deviation set Dev(a, a′, j, j′)

in (3.16) to be:

Dev(a, a′, j, j′) =





(x,p, ε) :

p ∈ Q, 0 ≤ ε ≤ umax, ε ∈ Z
x ∈ Dn ∩ Paj

x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− ε− 1}





.

Then finding the best parameter p amounts to solving the optimization

min ε

s. t. (x,p, ε) ∈ Ñ , x = x̃.

This can be solved in polynomial time using the Linear Optimization Lemma (Lemma 1.4.10)

for linear objective ε over the set

Ñ ∩ {(x,p, ε) : p ∈ Q, ε ∈ Z,x = x̃, 0 ≤ ε ≤ umax, }

which admits a Barvinok encoding by appeal to the Boolean Operations Lemma (Lemma 1.4.4).

Instead of using ε-equilibria, we could try to minimize the distance between x̃ and the set

N(p) of PSNE given p, which is defined as the infimum of distances between x̃ and points

in the set N(p). This yields the optimization problem

min d(x, x̃) (3.21)

s. t. (x,p) ∈ N, (3.22)
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where d is the distance metric. Section 4 of De Loera et al. [23] describes an analogous

scenario. Their results, with minor adjustments, apply to our setting. De Loera et al.

consider the problem of finding the closest Pareto optimum of a multicriteria integer program

to some specified point v̂. The set of Pareto optima V can be expressed in Barvinok encoding

when certain parameters are fixed, and when considering certain metrics d they find closest

points in V to v̂ efficiently. For `1- and `∞-norm induced metrics, problem (3.21) can be

solved in polynomial time [23, Theorem 10]. For `p-norm induced metrics (p ≥ 1) there

exists an FPTAS [23, Theorem 13 and Remark 15].

Another scenario is when the set Nx̃ has multiple points and we would like to find the

parameter p with the “best fit”. The distance between x̃ and N(p) is 0 for p ∈ Nx̃, and is

thus not useful here. By “best fit” we mean the p ∈ Nx̃ such that x̃ is closest to all points

in N(p). In other words, we choose the p that minimizes the largest distance from x̃ to any

equilibrium in x ∈ N(p). Formally, we solve

min
p∈Nx̃

max
x s.t.(x,p)∈N

d(x, x̃). (3.23)

This is an instance of the min-max optimization problem (3.18). When d is the `1 or `∞

distance, d(x, x̃) is piecewise linear in x, in which case the problem (3.23) can be solved using

the branch-and-bound algorithm as discussed in Section 3.6.2. To avoid having to partition

the set Nx̃, we can instead let p range from Q, and modify Step 3c of the algorithm so that

whenever we have a region L ⊂ Q such that L∩Nx̃ = ∅, we set the lower bound for L to be

∞.

3.6.4 Finding parameters with good equilibrium payoffs

A common goal in mechanism design is to set the parameters of the game so as to achieve

some desired properties in the resulting equilibria. Here we consider a mechanism designer
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choosing the parameters n and p such that the resulting symmetric game has equilibria with

good payoffs. There are several ways to measure the “goodness” of an equilibrium. Suppose

the objective we are interested in is the payoff of the worst-off player given an equilibrium

x, i.e., mina:xa>0 ua(x,p). As discussed in Section 3.6.2, we need to specify how PSNE are

selected for each game. If we pick the best-case PSNE, this yields the optimization problem

max
(x,n,p)∈N

min
a:xa>0

ua(x,p). (3.24)

The next result shows that this can be solved in polynomial time.

Theorem 3.6.3. Consider a parametric family of symmetric games with m actions and n

players with identical input as in Theorem 3.6.1. Problem (3.24) of finding the best-case

PSNE which maximizes the worst-case payoff to a player, can be solved in polynomial time

when m is fixed.

Proof. The problem can be rewritten as

max w (3.25)

s. t. (x, n,p, w) ∈ S (3.26)

where S is the set





(x, n,p, w) :
(x, n,p) ∈ N, umin ≤ w ≤ umax

∀a ∈ A : w ≤ ua(x,p) OR xa = 0





.

umin and umax are the minimum and maximum utilities possible in the game. They can

be computed in polynomial time in fixed dimension (see (3.20) above). We use a similar

technique as in Section 3.6.1 to construct a Barvinok encoding of S in polynomial time. It
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is straightforward to verify that we can write:

S = G \
(⋃

a,a′

⊎
j

⊎

j′
Dev(a, a′, j, j′)

)
\

(⋃
a

Ua

)

where G is the overall feasible set

G =





(x, n,p, w) :
x ∈ Dn, 0 ≤ n ≤ B, n ∈ Z
p ∈ Q, umin ≤ w ≤ umax, w ∈ Z





,

Dev(a, a′, j, j′) is the set

Dev(a, a′, j, j′) =





(x, n,p, w) :

p ∈ Q, 0 ≤ n ≤ B, n ∈ Z
umin ≤ w ≤ umax

x ∈ Dn ∩ Paj

x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− 1





and Ua = {(x, n,p, w) :
∑

a′∈A x′a = n, xa ≥ 0,p ∈ Q, 0 ≤ n ≤ B, w ≥ ua(x,p) + 1}. The

sets Ua ensure that the points that remain in S have w ≤ ua(x,p).

Based on similar reasoning as above then, we can derive the Barvinok encoding of S in

polynomial time. We solve (3.25) by applying the Linear Optimization Lemma (Lemma 1.4.10).

If we instead pick the worst-case PSNE, we have the optimization problem

max
n,p

min
x:(x,n,p)∈N

min
a:xa>0

ua(x,p). (3.27)

This is an instance of problem (3.18), and we can apply the branch-and-bound algorithm as

discussed in Section 3.6.2. It remains to show that Step 3 of the algorithm can be executed
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in polynomial time. This is the case if we can efficiently solve the subproblems:

max
(x,n,p)∈N :(n,p)∈L

min
a:xa>0

ua(x,p)

for each subregion L of {(n,p) : 0 ≤ n ≤ B, n ∈ Z,p ∈ Q}, and

min
x:(x,ñ,p̃)∈N

min
a:xa>0

ua(x, p̃)

for any given ñ and p̃. The former has a similar form as the best-case problem (3.24) and

can be solved using the same approach as above in polynomial time. Details are omitted.

To solve the latter problem, we break the feasible set into regions: for each subset T of

A, we have one region D(T ) = {x ∈ Dñ : xa > 0 for all a ∈ T, xa = 0 for all a 6∈ T}. There

is a constant number of these regions and we solve the problem separately on each region.

Formally, we rewrite the problem as

min
T⊆A

min
x∈D(T ):(x,ñ,p̃)∈N

min
a∈T

ua(x, p̃).

We can now exchange the latter two min operators to get

min
T⊆A

min
a∈T

min
x∈D(T ):(x,ñ,p̃)∈N

ua(x, p̃).

The innermost minimization can be solved in polynomial time since ua(x, p̃) is piecewise-

linear. Since the other minimizations are over sets of fixed size, this can be solved in poly-

nomial time.
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3.7 Comparison with integer programming games

The method of this chapter shares some important similarities with that of the previous

chapter. In particular both build on the theory of rational generating functions, largely from

the 2003 paper by Barvinok and Woods [8]. There are, however, some important differences.

In the symmetric case, because there are a finite number of actions, it is much easier to

capture deviations in this setting. Indeed, as we saw, unilateral deviations will only affect

a configuration vector by 1 in two entries and thus there are few deviations to consider.

By contrast, in integer programming games, a unilateral deviation can go from the current

action profile to a large, in fact exponential, number of different alternate profiles. This is

the major reason behind the fact that in this chapter we can avoid the use of the Projection

Lemma which seems quite necessary in the integer programming games case.

The fact that we can avoid the Projection Lemma altogether in the symmetric case

makes the algorithms of this chapter more likely to be practical than in the previous chapter.

Recall in Remark 1.4.13 it was mentioned that the current implementations of the Projection

Lemma only run on primitive cases (that is, problems with a small number of variables) and

there seems more promise if we only need to do boolean operations, as is the case here.

3.8 Conclusions and directions for further research

In this chapter we explored a promising form of compactly represented symmetric games

– those with piecewise linear objectives. Given enough pieces such a setting is completely

general, but the methods explored here allow us to PSNE with the complexity scaling in

the number of pieces and not the number of configurations which define the game. This is a

major advantage over previous methods. We believe no existing compact representations of

symmetric games combine both the generality and powerful approach to computation offered

here.
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Also of note is the novel approach for studying pure strategy Nash equilibria – rational

generating functions. The simplicity by which they were used to compute important informa-

tion on the structure of these games, again reinforces the power of generating functions as an

analytical and computational tool for game theory. This confirms the hope of the previous

chapter that these methods can be used to enlighten further investigations in algorithmic

game theory, and only adds weight to the case for future use of the method.

This work also puts more impetus on searching for improved implementations of Barvi-

nok’s Theorem (Lemma 1.4.3) and the Boolean Operations Lemma (Lemma 1.4.4), an im-

portant area for future research. The results on parametric games also hold promise as

a methodology for further investigations on the nature and structure of symmetric games.

Future studies might do well to explore practical computations to glean insights in this

direction.
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Chapter 4

A parametric integer programming

for bilevel mixed integer programs

4.1 Introduction

The main focus of this chapter is the following bilevel mixed integer linear program (BMILP)

introduced in Chapter 1, where the leader’s variables z ∈ Rd are continuous and the follower’s

variables x ∈ Zn are integer:

inf
x,z

c · x + e · z (4.1)

s. t. Cx + Dz ≤ p, z ≥ 0 (4.2)

x ∈ argminx′{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Zn }. (4.3)

All data are also assumed to be integer.

Here, the set of bilevel feasible solutions is given as:

F = {(x, z) ∈ P : x ∈ argmin{ψ · x′ : Ax′ ≤ Bz + u, x ∈ Zn }} . (4.4)

We assume that this bilevel feasible set F is bounded (though possibly empty). As

discussed in the introductory chapter, F is known to be nonconvex in general, and difficult

to describe directly [18]. Moreover, given z is continuous it is possible that F is not closed

115



[83]. This possibility is reflected in our definition of BMILP in (4.1)–(4.3) where the leader’s

optimization is expressed as an infimum and not a minimum. When z is also integer and the

instance is feasible, then an optimal solution always exists and “inf” can be replaced with

“min” [83].

Example 4.1.1. To demonstrate this complication, consider the following simple example.

inf
x,z

−x + z

s. t. 0 ≤ z ≤ 1

x ∈ argminx′{ x′ : x′ ≥ z, 0 ≤ x′ ≤ 1, x′ ∈ Z }

The “argmin” then simply requires that x = dze and thus the problem reduces to:

inf
z
{z − dze : 0 ≤ z ≤ 1}.

Clearly, the infimum is −1 and cannot be attained. Observe that the set of bilevel feasible

solutions

F = {(0, 0)}
⋃

({1} × (0, 1])

is neither convex nor closed.

The approaches to problem (4.1)–(4.3) in the literature use traditional ideas from integer

optimization, such as branch-and-bound enumeration [61] or cutting planes [32], all based on

continuous relaxations. It is well documented that there are numerous pitfalls when applying

standard ideas of branch-and-bound or cutting plane methods to a bilevel setting (see [32]

for a discussion). Moreover, the algorithm introduced by Moore and Bard in [61] applies only

to the case that both x and z are integer, or otherwise where it is known that an optimum

solution exists. Thus, in general, this method cannot solve (4.1)–(4.3), in the sense that

it cannot distinguish when an infimum is attained or not. The algorithm of DeNegre and
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Ralphs [32] deals exclusively with the pure integer setting. In addition, these two papers

give no run-time guarantees.

This chapter makes the following contributions:

(i) We present (Theorem 4.3.1) an algorithm which solves BMILP (4.1)–(4.3) in full gen-

erality (under our boundedness and integral data assumptions) by identifying when

the infimum is attained and finding an optimal solution if one exists. No previously

proposed algorithm is capable of this.

(ii) Our algorithms run in polynomial time when the follower’s dimension n is fixed for the

mixed integer case (i.e., z is continuous), and when the total dimension n+d is fixed in

the pure integer case (i.e., when z is integer). To the authors’ knowledge, these are the

first polynomial run-time guarantees of this type for discrete bilevel optimization. These

results can be seen as a common extension of two important results on optimization

in fixed dimension. The first is due to Lenstra [58], who establishes a polynomial time

algorithm for integer programming with a fixed number of variables. The second is due

to Deng [33], who develops a polynomial time algorithm for bilevel linear programs

when the number of decision variables of the follower is fixed. Our result extends

Lenstra’s result to a bilevel setting and Deng’s result to an integer setting. For further

discussion of complexity issues in bilevel optimization see [17].

(iii) When no optimal solution to BMILP exists, we find, for any given ε > 0 and in time

polynomial in the input size and log(1/ε), a solution with objective value no more than

1 + ε times the infimum.

(iv) We consider a previously unexplored generalization of bilevel integer programs where

the follower has r linear objectives representing competing interests. Understanding

problems with multiple criteria and multiple levels has been identified as an impor-

117



tant problem in the field of bilevel optimization [17]. We provide a polynomial time

algorithm to find optimal solutions when the dimension n + d is fixed (Theorem 4.5.1).

In Section 4.2, we introduce formal definitions and prove our first key result: when an

instance of BMILP is feasible its infimum value is a rational number with polynomially

bounded binary encoding size. In Section 4.3, we apply recent results from the study of

parametric integer programming by Eisenbrand and Shmonin [37], based on the work of

Kannan [49]. These references provide polynomial time algorithms for decision versions

of parametric integer programs. We apply these algorithms in the mixed integer bilevel

setting and, using binary search, derive our main result (Theorem 4.3.1): a polynomial time

algorithm for the mixed integer case where z is continuous and the follower’s dimension n

is fixed. Finally, in Section 4.4 we present an algorithm using similar ideas to find optimal

solutions in the pure integer case; that is, BMILP under the further restriction that z is

integer. The algorithm runs in polynomial time when the total dimension n + d is fixed.

In Section 4.5 we also consider two generalizations of (4.1)–(4.3) when z is assumed to be

integer and analyze them using generating functions. The first generalization is to a special

case of nonlinear discrete bilevel optimization. Such problems have been scarcely studied

in the literature, with only very few references [43, 46, 72]. These references either treat

special cases where the problems have very special structure (such as separable or monotone

objectives) or are solved heuristically. Gümüş and Fluodas [43] provide an ε-approximation

algorithm for a class of nonlinear discrete bilevel optimization problems by converting them

to large global continuous optimization problems which are then solved to ε-optimality. We

describe a fully polynomial time approximation scheme (FPTAS) for the setting where the

leader’s objective f is a nonnegative, not necessarily convex, polynomial, thus establishing

a polynomial run-time guarantee in this special setting.

The second generalization is to a multi-objective bilevel integer programming problem

where the follower has r linear objectives representing competing interests. An optimal
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solution of such a problem is defined to be a feasible solution where the follower’s action x

a Pareto efficient outcome in the resulting lower level problem where the leader chooses z

so as to optimize a linear objective c · x + e · z. This formulation extends the “optimistic

assumption” to a multi-objective setting where we assume the leader can choose any x from

the Pareto efficient set. We provide a polynomial time algorithm to find optimal solutions

when the dimension n + d is fixed (Theorem 4.5.1). This setting has not been explored in

the literature. The case where the leader has multiple objectives was briefly explored in [31],

but our methods do not apply to that setting.

4.2 Definition and preliminary results

An instance of the bilevel mixed integer linear program (BMILP) (4.1)–(4.3) is defined by

the leader’s and follower’s dimensions d and n; the numbers h and m of linear inequality

constraints in (4.2) and in the feasible set of the follower’s subproblem (4.3); integer matrices

A ∈ Zm×n, B ∈ Zm×d, C ∈ Zh×n and D ∈ Zh×d; integer objective coefficient vectors c ∈ Zn,

e ∈ Zd and ψ ∈ Zn; and integer right-hand side vectors u ∈ Zm and p ∈ Zh. The binary

encoding input size of an instance is the total number of bits needed to input all the data

defining the instance.

We assume that the upper level polyhedron

P = {(x, z) ∈ Rn+d : (4.2)} (4.5)

is bounded (but possibly empty). We also assume that for every z ∈ projz P , where

projz P = {z ∈ Rd : (x, z) ∈ P for some x ∈ Rn},

the lower level feasible set {(x, z) ∈ Rn+d : Ax ≤ Bz + u} is also bounded (and possibly
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empty). (For example, by Farkas’s Lemma, if lower bounds x ≥ x and z ≥ z are part of

or implied by the constraints defining P , and also by those defining the lower level feasible

set, then the boundedness assumptions are satisfied if and only if the (n + d)-row vector of

all 1’s is a nonnegative combination of the rows of the constraint matrix (C, D), and also a

nonnegative combination of the rows of the matrix (A,−B).)

Under these boundedness assumptions, an instance of BMILP is either infeasible or

else must have a bounded infimum value. Feasibility can be decided in polynomial time by

applying Lenstra’s (mixed) integer programming algorithm [58] to decide if {(x, z) ∈ P :

Ax ≤ Bz + u, x ∈ Zn} 6= ∅. A key result used in the sequel is that, when the instance

of BMILP is feasible, its infimum value is a rational number with polynomially-bounded

binary encoding size.

Proposition 4.2.1. Assume that a given instance of problem (4.1)–(4.3) is feasible and has a

bounded optimum (infimum) value. Then the infimum is a rational number with denominator

bounded above by the maximum absolute value of a sub-determinant of the matrix (D,B)T .

Proof. Let (x̄, z̄) ∈ F be a bilevel feasible solution to (4.1)–(4.3) and define

Q(x̄, z̄) = {z ∈ Rd : Dz ≤ p− Cx̄; βi(z̄) ≤ Biz + ui < βi(z̄) + 1 ∀i ∈ M},

where M = {1, . . . , m}, Bi is the i-th row of B, and βi(z̄) = bBiz̄+uic. Note that z̄ ∈ Q(x̄, z̄),

so Q(x̄, z̄) is a nonempty, bounded quasi-polyhedral set, i.e., its topological closure is

cl Q(x̄, z̄) = {z ∈ Rd : Dz ≤ p− Cx̄; βi(z̄) ≤ Biz + ui ≤ βi(z̄) + 1 ∀i ∈ M}, (4.6)

a nonempty polytope. Every z ∈ Q(x̄, z̄) satisfies bBiz+uic = bBiz̄+uic for all i = 1, . . . , m
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and, since A is integer,

∀x ∈ Zn : Ax ≤ Bz + u ⇐⇒ Ax ≤ Bz̄ + u,

implying that x̄ ∈ argmin{ψ · x : Ax ≤ Bz + u, x ∈ Zn} for all z ∈ Q(x̄, z̄), that is,

∀z ∈ Q(x̄, z̄) (x̄, z) ∈ F . (4.7)

Now let v∗ denote the infimum value in BMILP (4.1)–(4.3). There is a sequence (x̂k, ẑk)k∈N

of bilevel feasible solutions with objective value c · x̂k + e · ẑk converging to v∗. Since P

is a polytope, its projection projx P = {x ∈ Rn : (x, z) ∈ P for some z ∈ Rd} contains a

finite number of integer points x ∈ P ∩ Zn. Therefore there is a subsequence (x̃k, z̃k)k∈N

with all x̃k = x̃0. For every i ∈ M there is also a finite number of possible integer values

βi(z) = bBiz+uic when z ∈ projz P . Thus there exists a subsequence (x̃0, z̆k)k∈N in F with all

β(z̆k) = β(z̆0), i.e., (x̃0, z̆k) ∈ Q(x̃0, z̆0), and c·x̃0+e·z̆k converging to v∗. From (4.7) it follows

that v∗ = c·x̃0+infz{e·z : z ∈ Q(x̃0, z̆0)}. By continuity of the objective e·z, v∗−c·x̃0 is the

optimum value of the linear programming problem minz{e · z : z ∈ cl Q(x̃0, z̆0)}. By (4.6),

for every i ∈ M at most one of the two constraints βi(z̆
0) ≤ Biz+ui or Biz+ui ≤ βi(z̆

0)+1

is binding at the LP optimum, hence v∗ − c · x̃0 must also be the optimum value of a linear

programming problem

min e · z

s. t. Dz ≤ p− Cx̃0

−Biz ≤ ui − βi(z̆
0), ∀i ∈ I

Bjz ≤ −uj + βj(z̆
0) + 1, ∀j ∈ J

(4.8)

for some disjoint I, J ⊆ M . It is well known that the optimal value of a bounded linear
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program with integer data occurs at a basic feasible solution, the denominators of which are

bounded by the maximum absolute value of a sub-determinant of its constraint matrix. By

simple properties of determinants the stated result then follows.

Note that in the pure integer case, where the leader’s variables are also required to be

integer, the bilevel feasible set is

F ′ =
{
(x, z) ∈ P : z ∈ Zd, x ∈ argmin{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Zn }} . (4.9)

When it is non-empty, F ′ is a finite set, and then the infimum in (4.1) is attained. Since

c and e are integral, this optimum value is integral, providing a trivial strengthening of

Proposition 4.2.1 in the pure integer case.

4.3 An algorithm for bilevel mixed integer linear

programming

In this section we prove the main result of this chapter:

Theorem 4.3.1. There exists an algorithm which solves the BMILP problem (4.1)–(4.3) in

the following sense: the algorithm

(i) decides if the instance is feasible;

(ii) if it is feasible, decides if an optimal solution exists (that is, if the infimum is attained);

and

(iii) if the infimum is attained, finds an optimal solution.

The algorithm runs in polynomial time when the follower’s dimension n is fixed.
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To prove this theorem, we use results on parametric integer programs with parameterized

right-hand sides. Parametric integer programming is well-studied, the particular approach

we discuss builds on geometric and algorithmic number theory and has it roots in the work

of Lenstra [58] on integer linear programming in fixed dimension. We draw mainly on the

recent work of Eisenbrand and Shmonin [37], which itself builds on earlier results by Kannan

[49]. These two related works solve a decision version of parametric integer programming

(defined below) in polynomial time when certain parameters are fixed. As discussed in

Section 4.1, we can view the lower level problem as a parametric integer program. But the

connection between parametric integer programming and bilevel integer programming in fact

goes deeper, as we now discuss.

The integer projection of a polyhedron Q ⊆ Rm+p is the set

Q/Zp = {b ∈ Rm : (b,w) ∈ Q for some w ∈ Zp}. (4.10)

The feasibility version of parametric integer linear programming is the following decision

problem:

PILP: Given a rational matrix R ∈ Qm×n and a rational polyhedron Q ∈
Rm+p decide if the linear system Ry ≤ b has an integer solution for all b ∈ Q/Zp.

Letting

Pb = {y ∈ Rn : Ry ≤ b},

this problem is equivalent, by negation, to deciding the sentence

∃b ∈ Q/Zp, Pb ∩ Zn = ∅. (4.11)

Eisenbrand and Shmonin [37] prove:
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Theorem 4.3.2. (Theorem 4.2 in [37]) There is an algorithm that, given a rational matrix

R ∈ Qm×n and a rational polyhedron Q ⊂ Rm+p, decides the sentence (4.11). The algorithm

runs in polynomial time if p and n are fixed.

Our goal is to establish a connection between PILP and BMILP so this result can be

used in solving BMILP. First we define a decision version of our problem:

BMILPα: Given integer matrices A ∈ Zm×n, B ∈ Zm×d, C ∈ Zh×n and

D ∈ Zh×d; integer vectors c ∈ Zn, e ∈ Zd, ψ ∈ Zn, u ∈ Zm and p ∈ Zh; and

rational scalar α ∈ Q, decide if there exists a vector (x, z) ∈ Rn+d such that (4.2),

(4.3) and c · x + e · z ≤ α.

Proposition 4.3.3. There exists an algorithm that decides BMILPα. The algorithm runs

in polynomial time when the follower’s dimension n is fixed.

Proof. Since ψ is integral, we can express (4.3) as the fact that

{x′ ∈ Rn : ψ · x′ ≤ ψ · x− 1, Ax′ ≤ Bz + u} ∩ Zn = ∅. (4.12)

Let R = (ψ, A, 0d×n)T where 0d×n is a d × n matrix of zeroes; b = (b(1),b(2),b(3))
T with

b(1) = ψ · x− 1, b(2) = Bz + u and b(3) = z. Then (4.3) and z ≥ 0 together are equivalent

to P ′
b ∩ Zn = ∅ where P ′

b = {x′ ∈ Rn : Rx′ ≤ b}. Letting

Qα = {(b,x) : c · x + e · b(3) ≤ α, Cx + Db(3) ≤ p, b(3) ≥ 0,

Ax ≤ b(2), b(1) = ψ · x− 1, b(2) = Bb(3) + u}, (4.13)

deciding BMILPα reduces to deciding an instance of (4.11) with p = n, w = x, Q = Qα and

Pb = P ′
b. The result now follows from Theorem 4.3.2.

Our approach to the proof of Theorem 4.3.1 is to use a binary search procedure for target
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value α in BMILPα and related decision problems, so as to find the infimum value of problem

BMILP and an optimal solution if one exists.

The following result from Kwek and Mehlhorn [55] yields the binary search algorithm

used in proving our results:

Theorem 4.3.4. (Theorem 1 in [55]) There exists a θ(log L)-time algorithm that determines

an unknown rational number r which lies in the set QL =
{

p
q

: p, q ∈ {1, . . . , L}
}

by asking

at most 2 log2 L + O(1) queries of the form “is r ≤ α?”.

We first establish:

Lemma 4.3.5. Consider a feasible instance to BMILP problem (4.1)–(4.3). Its infimum

value can be determined in polynomial time when the dimension n is fixed.

Proof. We first determine polynomial-sized lower and upper bounds v and v̄ on the infimum

value v∗ by solving in polynomial time the linear programs v = min{c ·x+ e · z : (x, z) ∈ P}
and v̄ = max{c · x + e · z : (x, z) ∈ P}. We then perform ordinary binary search for v∗ in

successive intervals [v′, v′′] satisfying v′ < v∗ ≤ v′′, where the search query “is v∗ ≤ α” is

the decision problem BMILPα, and the initial interval [v′, v′′] = [v − 1, v̄]. We stop, after a

polynomial number of queries, as soon as v′′ − v′ < 1. If there exists an integer β such that

v′ < β < v′′ then we perform one more query “is v∗ ≤ β” and set the current interval to

[β − 1, β] if the response was positive (i.e., if v∗ ≤ β), and to [β, v′′] otherwise. If there is no

such integer β then we set the current interval to [bv′c, v′′]. In any case we obtain an interval

[v̄′, v̄′′] such that v̄′ < v∗ ≤ v̄′′, v̄′′− v̄′ ≤ 1 and v̄′ is integer. We now invoke the binary search

algorithm of Theorem 4.3.4 for the rational number r = v∗ − v̄′ ∈ QL where L is the upper

bound on the denominator of v∗ from Proposition 4.2.1.

Example 4.3.6. To illustrate the lemma and visualize some of the concepts we consider the
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Figure 4.1: Bilevel feasible region for Example 4.3.6

following a simple BMILP:

inf
x,z

−3x + z

s. t. 0 ≤ x ≤ 2, 0 ≤ z ≤ 2

x ∈ argmin{−x′ : x ≥ z, x′ ∈ Z }.

The bilevel feasible region F is shown in Figure 4.3.6. To illustrate the lemma first note

that we can bound the denominator of the infimum value v∗ by 1. This follows from Propo-

sition 4.2.1 and the fact (D,B)T = (1,−1)T . Thus v∗ is an integer. To set the lower and

upper bounds for our binary search we note that v = −6 which is attained at the point (2, 0)

and v̄ = 2 which is attained at (0, 2). The binary search starts with a query at the mid-

point of the interval [v, v̄], namely −2. A call to BMILP−2 returns true since, for instance,

(x, y) = (1, 1) ∈ F satisfies −3x + z ≤ −2. We restrict the search for v∗ to the interval

[−6,−2]. Again we test the midpoint, and noting that BMILP−4 returns true, restrict our

search to the interval [−6,−4]. Now the midpoint of the search region is −5 and BMILP−5

returns false. After another iteration the search region becomes [−5,−4.5]. We conclude
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that v∗ = 5, since it is the only integer remaining in search region.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. (i) As indicated in Section 4.2, feasibility can be decided in poly-

nomial time by applying Lenstra’s (mixed) integer programming algorithm [58] to decide if

{(x, z) ∈ P : Ax ≤ Bz + u, x ∈ Zn} 6= ∅.
(ii) Assume the instance is feasible. By Lemma 4.3.5 we can find the infimum value v∗

in polynomial time. This infimum is attained if and only if there exists a bilevel feasible

(x, z) ∈ F such that c ·x+e ·z = v∗. This can be decided in polynomial time as in the proof

of Proposition 4.3.3 by replacing the first constraint in the definition of Qα in equation (4.13)

with c · x + e · b(3) = v∗.

(iii) Finally, assume that the infimum value is attained. We extend to bilevel mixed

integer programming a standard method used in (ordinary) mixed integer programming to

successively determine an optimum solution given an optimum objective value oracle (see for

instance [74], page 260). In this method, we first find the optimum value of related instances

of BMILP to successively determine each component of an optimal solution (x∗, z∗) with

lexicographically smallest integer component x∗. By induction, assume that all components

x∗k for k = 1, . . . , j − 1 have already been determined. Then x∗j is the optimum value of the

BMILP

min
x,z

xj

s. t. Cx + Dz ≤ p; z ≥ 0; c · x + e · z = v∗;

xk = x∗k for k = 1, . . . , j − 1; (4.3).

Since this problem is feasible and its objective is integer valued and bounded, its optimum

value is attained, and is determined in polynomial time by Lemma 4.3.5. (Note that, since
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this optimal value x∗j is integer, we only need to use ordinary binary search and stop when

the width of the current interval is less than one.)

Having determined x∗, we next determine the continuous component z∗. Note that, even

though x∗ has now been fixed, z∗ cannot be directly found by solving a simple linear program,

because we still need to enforce the (nonconvex) incentive compatibility constraint (4.3).

Using ideas from the proof of Proposition 4.2.1, we construct an “integer RHS vector” r =

(bBiz + uic)i=1,...m which is lexicographically minimum among all those defined by optimum

BMILP solutions (x∗, z). Thus by induction assume that for k = 1, . . . , i − 1 we have

determined integers rk such that the set

Ri−1 =





(x, z) ∈ Rn+d :
Cx∗ + Dz ≤ p; z ≥ 0; c · x∗ + e · z = v∗;

rk ≤ Bk z + uk < rk + 1 for all k < i; x = x∗; (4.3)





is nonempty. As in the proof of Proposition 4.2.1, note that the closure cl Ri−1 is determined

by replacing each strict inequality Bkz + uk < rk + 1 with Bkz + uk ≤ rk + 1, and is thus a

nonempty polytope. We then compute the infimum value of the BMILP

ρi = inf
x,z
{Bi z + ui : z ∈ cl Ri−1}, (4.14)

in polynomial time by Lemma 4.3.5. Let ri = bρic. We claim that Ri 6= ∅. To prove this

claim, let
(
(x∗, z̄j) ∈ Ri−1

)
j∈N be a sequence of points in cl Ri−1 with limj→∞(Bi z̄

j +ui) = ρi.

By continuity of the linear function (x∗, z) 7→ Bi z + ui, there exists a sequence
(
(x∗, zj) ∈

Ri−1

)
j∈N of points in Ri−1 with limj→∞(Bi z

j + ui) = ρi < bρic + 1. This implies that

bρic ≤ Bi z
j +ui < bρic+1 for some j ∈ N, and therefore (x∗, zj) ∈ Ri, showing that Ri 6= ∅.

Thus, after determining x∗ and computing the infimum value ρi of m BMILPs (4.14),

we obtain the polynomial-sized, integer vector r =
(bρic

)
i=1,...,m

such that there exists an
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optimal solution (x∗, z) to the original BMILP (4.1)–(4.3) satisfying

z ∈ projz Rm ⊆ Q :=





z ∈ Rd :
Cx∗ + Dz ≤ p, z ≥ 0, c · x∗ + e · z = v∗

r ≤ Bz + u < r + 1





where 1 is the all-ones vector in Zm. As in the proof of Proposition 4.2.1 we note that every

z ∈ Q gives rise to an optimal solution (x∗, z). We now show how to find one such optimal

solution whose binary encoding length is polynomial in the input size. Let k = 1 + dim Q.

Find k affinely independent vertices z1, . . . , zk of cl Q. This can be done in polynomial time

since cl Q is a polytope (see, e.g., [74], page 186). By standard results in linear optimization,

the vertices z1, . . . , zk can be written as rational numbers in 1
∆
Zd where ∆ is the least common

multiple of the determinants of the bases of the constraint submatrix associated with the

basic feasible solutions z1, . . . , zk. Note that ∆ has encoding length polynomial in the input

size. It is possible that none of the zj lie in Q, since Q is not closed, but nonetheless their

barycenter z∗ =
∑k

j=1
1
k

zj is guaranteed to be in Q and also in the set 1
k∆
Zd. Thus it has a

binary encoding length polynomial in the input size.

It follows that (x∗, z∗) is an optimal solution to (4.1)–(4.3) and can be found in polynomial

time.

We note, in particular, that this theorem provides a polynomial-time algorithm to decide

if a BMILP instance has an optimal solution. To the authors’ knowledge, this is the first

algorithm to achieve this in the literature on discrete bilevel optimization. The existence of

solutions in the case where z is continuous has long been known not to be guaranteed (see for

instance [61]) but little is known in terms of necessary and sufficient conditions for existence.

Dempe and Richter [30] explore the setting where the lower level problem is a knapsack

problem, and they provide necessary and sufficient conditions for existence of solutions, but

there have been no studies of this kind in a more general setting. An efficient algorithm
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to decide the existence of solutions, such as the one in Theorem 4.3.1, may be helpful in

investigations of this kind.

A final question remains: what can we say about the BMILP problem (4.1)–(4.3) when

the infimum is not attained? In such a case it may be desirable to find ε-optimal solutions

whose objective values approximate the infimum. The following result demonstrates how we

can adjust our arguments to find ε-optimal solutions.

Corollary 4.3.7. Let ε > 0 be given in binary encoding. Given a feasible instance of

the BMILP problem (4.1)–(4.3) with infimum value v∗, there exists an algorithm to find a

feasible solution (x, z) that satisfies c ·x+e ·z ≤ (1+ ε)v∗. The algorithm runs in polynomial

time when the follower’s dimension n is fixed.

Proof. By Theorem 4.3.1 part (ii) we can decide in polynomial time if the infimum is attained.

If so, by using part (iii) of the same theorem we can find an optimal solution (x∗, z∗) that

satisfies c · x∗ + e · z∗ = v∗ ≤ (1 + ε)v∗.

If we find that the infimum is not attained we apply a similar procedure as in the proof

of Theorem 4.3.1 part (iii). By replacing the condition c · x∗ + e · z = v∗ with the condition

c · x + e · z ≤ (1 + ε)v∗, the result follows immediately.

It should be noted that this algorithm achieves a stronger form of efficiency than a fully

polynomial time approximation scheme (FPTAS). In an FPTAS, the error ε is given in

unary encoding, whereas in our algorithm ε enters as input in binary encoding, since its

value only plays a role in the constraint c · x + e · z ≤ (1 + ε)v∗. In this sense, we have

obtained a “better than fully polynomial time” approximation scheme to yield solutions

with objective value ε-close to the infimum.

A distinguishing feature of our main result, Theorem 4.3.1, is that the dimension d of

the leader’s variable need not be fixed in order to assure a polynomial running time. Note,

however, that this result in no way conflicts with the fact that bilevel linear programming,
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in which both x and z are continuous and the dimension of both x and z are allowed to vary,

is an NP-hard problem. In our setting it is the leader’s variable only which is allowed to

be continuous and have varying dimension, and an important ingredient in our proof is that

there are only finitely many integer right-hand sides βi(z) = bBiz+uc to consider when the

matrix A and decision variables x are integer.

4.4 An algorithm for bilevel integer linear

programming

We can also extend our results to the pure integer setting, where z is further restricted to be

integer. We refer to this problem as the bilevel integer linear programming (BILP) problem,

an instance of which is specified by the same data as BMILP and the same constraints

(4.1)–(4.3) with the additional integrality condition

z ∈ Zd. (4.15)

As above, we assume that the feasible set F ′ defined in (4.9) is bounded.

Theorem 4.4.1. There exists an algorithm that solves the BILP problem (4.1)–(4.3) &

(4.15) in the following sense: the algorithm

(i) decides if a given instance is feasible;

(ii) if it is feasible, finds an optimal solution.

The algorithm runs in polynomial time when the total dimension d + n is fixed.

Proof. (i) Feasibility can be established in polynomial time by applying Lenstra’s integer

programming algorithm [58] to decide if {(x, z) ∈ P : Ax ≤ Bz + u, (x, z) ∈ Zn+d} 6= ∅.
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(ii) Assume the instance is feasible. The idea of how to determine an optimal solution is

similar to, but simpler than, the mixed integer case, as we use binary search to directly find

the lexicographically minimal optimal solution (x∗, z∗). To begin, consider the decision prob-

lem BILPα, which is identical to BMILPα with the additional integrality condition (4.15).

Problem BILPα can be decided in polynomial time using an algorithm similar to that in

Proposition 4.3.3. Indeed, if we simply redefine

Qα = {(b,x,b) : c · x + e · b(3) ≤ α, Cx + Db(3) ≤ p, b(3) ≥ 0,

Ax ≤ b(2), b(1) = ψ · x− 1, b(2) = Bb(3) + u},

and let p = n + d, the algorithm in the proof of Proposition 4.3.3 decides BILPα.

It is then straightforward to find the optimal value v∗ of the given BILP instance using

binary search as in the proof of Lemma 4.3.5 and stopping when the search interval has

length less than one.

Given the optimal value v∗ we again use binary search to determine the lexicographically

minimal optimal solution (x∗, z∗). The procedure to find x∗ is identical to that described

in the proof of Theorem 4.3.1. The procedure to find z∗ is also similar. We successively

determine each component of z∗ as follows: assume that all components z∗k for k = 1, . . . , j−1

have already been determined. Then z∗j is the optimal value of the BILP

min
z

zj

s. t. Cx∗ + Dz ≤ p; z ≥ 0; z ∈ Zd c · x∗ + e · z = v∗;

zk = z∗k for k = 1, . . . , j − 1;

x∗ ∈ argminx′{ψ · x′ : Ax′ ≤ Bz + u, x′ ∈ Zn }.

Since this problem is feasible and its objective is integer valued and bounded, its optimum
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value is attained, and can be determined as in the previous paragraph.

The result then follows.

4.5 Generating function approach

In the previous sections we were able to solve BMILP’s via parametric integer programming

results when the leader’s decision z is either continuous or discrete using binary search. Here

we again restrict z to be integer and consider an alternate approach to solving BILP using

rational generating functions.

To be precise, we apply generating function methods to problem (4.2)–(4.3) & (4.15)

where we replace the objective (4.1) with maximizing f(x, z) where f is either linear or a

general nonnegative polynomial (not necessarily convex).

We first point that an algorithm for finding optimal solutions in the linear case (i.e.

where f is linear) is very similar to that in the Stackelberg–Nash setting in Section 2.5. We

mention only briefly here the differences: (i) there is only a single follower as opposed to a

group of followers (hence any follower’s optimal decision is trivially a “Nash equilibrium”);

(ii) the payoffs are linear instead of piecewise linear; and (iii) the set constraining the leader’s

actions is more complicated and depends on the action of the follower, see (4.2), whereas

in the Stackelberg–Nash setting in Section 2.5 the leader’s choice set is independent of the

actions of the followers. Nonetheless, these differences are minor and easily handled by the

rational generating function technique described in Chapter 2. Details are thus omitted.

Given this encoding of the optimal solutions we can efficiently count and enumerate opti-

mal solutions. These are straightforward applications of the Counting and the Enumeration

Lemmas using the generating function of F∗. Being able to count the number of bilevel

feasible solutions is interesting because we can identify when there is a unique feasible so-

lution. If this is the case, then we do not need to make the optimistic assumption and our
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results are unambiguous. Note that no existing methods in the literature would be able to

guarantee such information efficiently. To count all solutions by enumerative methods such

as branch and bound would essentially involve an exhaustive search. Here, we can supply

an exact count of the number of equilibria without resort to enumeration.

An FPTAS for the optimal value of f can be derived when using Lemma 1.4.11. Details

are similar to results in previously chapters and thus omitted.

One final application of generating functions that is less straightforward is to multi-

objective bilevel integer programming. We consider a setting where the follower has a fixed

number r of competing linear objectives with cost vectors ψ1, . . . , ψr and the leader has a

single linear objective. As mentioned in the introduction, to the authors’ knowledge this

setting has not been considered in the literature, but is a simple extension of the approaches

explored in this section. We can state the problem formally as:

min c · x + e · z

s. t. (x, z) ∈ P ⊆ Rn+d, z ∈ Zd

x ∈ arg− vmin{[ψ1 · x′, . . . , ψr · x′] : Ax′ ≤ Bz + u, x′ ∈ Nn}

(4.16)

where arg− vmin denotes the set of Pareto efficient vectors to the lower level multi-objective

integer linear program:

vmin [ψ1 · x, . . . , ψr · x]

s. t. (x, z) ∈ P ⊆ Rn+d, z ∈ Zd

Ax ≤ Bz + u,x ∈ Nn

. (4.17)

A feasible solution x to the lower level problem (4.17) is Pareto efficient if and only if there

is no other point x′ such that ψi · x′ ≤ ψi · x′ for all i = 1, . . . , r and ψj · x′ ≤ ψj · x for

some index j. Put in other words, when a feasible x is not Pareto efficient (that is, Pareto

dominated) if there exists an x′ such that ψi ·x′ ≤ ψi ·x for all i and
∑r

i=1 ψi ·x′ <
∑r

i=1 ψi ·x.
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In this multi-objective bilevel integer programming problem the leader chooses z, then

the follower then chooses a feasible and Pareto efficient x. In our formulation we have

extended the “optimistic assumption” to this more general setting; that is, the leader has

the ability to choose x from amongst the set of Pareto efficient responses of the follower as

demonstrated in the fact that the leader can choose x from the arg− vmin set. Under this

“optimistic assumption” we derive the following:

Theorem 4.5.1. Fix the the dimension n+d. Then, there exists a polynomial time algorithm

to solve the multi-objective bilevel integer program of the form (4.16).

Proof. Let E denote the sets of pairs (x, z) ∈ P where x is a Pareto efficient response to z;

that is,

E = {(x, z) ∈ P : x ∈ arg− vmin{[ψ1 · x′, . . . , ψr · x′] : Ax′ ≤ Bz + u,x′ ∈ Nn}

Let Ω = {(x, z) ∈ P : Ax ≤ Bz + u}⋂
Zn+d. It is straightforward to show that E can be

described as follows:

E = Ω \D (4.18)

where

D = proj(x,z){(x, z,x′) : (x, z) ∈ Ω, (x′, z) ∈ Ω, ψi ·x′ ≤ ψi ·x, ∀i;
r∑

i=1

ψi ·x′ ≤
r∑

i=1

ψi ·x−1}

is the set of Pareto dominated solutions.

We use the Projection Lemma and Boolean Operations Lemma to derive a short ra-

tional generating function encoding of E. Now we apply the Linear Optimization Lemma

(Lemma 1.4.10) using the generating function of E and the linear objective c · x + e · z to

find an optimal solution.
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As before we can count and enumerate as in the case of a single objective problem. The

arguments are very similar and so details are omitted. The formulation of the set D is based

on a construction that improves the one from [23] for encoding Pareto optima which was

pointed out by Vı́ctor Blanco (Personal communication, 2007).

4.6 Directions for future work

How do these two algorithms to solve BILP – the one based on parametric integer program-

ming versus the one based on rational generating function techniques – compare in terms of

efficiency? It is accurate to say that the algorithm using parametric integer programming

is more direct and simpler. Indeed, the rational generating function approach relies on the

Projection Lemma which, although it has polynomial running time (in fixed dimension),

was until recently thought to be virtually unimplementable in practice. Only recently has

the Projection Lemma been implemented in the library barvinok developed by Sven Ver-

doolaege [82]. Moreover, the current implementation appeals to the results in [37], some of

the very same results that we use more directly in the development of our first approach (see

[53] for more details). Future work would be required to improve implementations of the

Projection Lemma to yield a practical solution method for bilevel integer programs. There

is also scope in the pure integer setting to compare our algorithms to Moore and Bard [61]

and DeNegre and Ralphs [32]. The algorithm for solving BMILPs based on Eisenbrand and

Shmonin’s approach to parametric integer programming awaits implementation and testing.

A first step, of course, would be in implementing Eisenbrand and Shmonin’s own algorithm.

The authors know of no publicly available implementations.
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Chapter 5

A decomposition theorem for bilevel

integer programs

5.1 Introduction

In this chapter we consider the following bilevel integer program:

inf f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d

x ∈ argmin{ψ(y) · x′ : Ax′ ≤ π(z), x′ ∈ Zn }

(5.1)

where A ∈ Zm×n, f is a real-valued function on P , which is a bounded set, and the functions

ψ : Rp → Rn and π : Rd → Rm are vector-valued functions. We believe this setting to be

an important class of bilevel integer programs, as evidenced in the practical nature of the

examples described in Section 5.2.

Intuitively, the challenge of solving (5.1) arises from the fact that the lower level problem

is a parametric integer programming problem in both the right-hand side and cost. The

challenge can be appreciated by an analogy to parametric linear optimization; that is, prob-

lems of the form min{c · x : Ax ≤ b} where both b and c vary. When only the cost vector

c changes, the polyhedral feasible region remains fixed, giving us some consistent structure

which allows us to develop a clear understanding of how the optimal value changes with the
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cost vector c. Similarly, when only the right-hand side vector b changes the dual polyhedron

remains fixed and a similar understanding arises. However, when both b and c vary a more

subtle analysis is required to understand how the optimal value changes (see Section 1 of [79]

for more discussion). A full understanding of the situation requires reasoning about when a

given column basis of A is both primal and dual feasible as b and c change simultaneously.

Our problem has an added challenge in that we are concerned with the parametric integer

programs, where even characterizing the primal and dual feasibility of the column bases of

A is not enough to solve the problem. We tackle this conceptual challenge in Section 5.3

below.

This chapter makes the following contributions to the study of bilevel integer program-

ming:

1) The current literature has almost exclusively explored special cases of (5.1) where

either the leader’s decision affects the follower’s unit cost or right-hand side but not both

(that is, one of either y or z is fixed). To our knowledge, simultaneous changes in the unit

cost and right-hand side of the lower level problem have not been studied systematically.

The only known algorithms which apply to this more general setting are algorithms for

nonlinear discrete bilevel optimization problems. For a summary of such methods see [43].

It should be noted that these methods either provide approximate or heuristic solutions to

(5.1), something we improve by demonstrating exact algorithms for certain special cases in

this chapter.

2) The main contribution of this chapter, in the authors’ view, is our Decomposition

Theorem (Theorem 5.3.8) which demonstrates how to decompose (5.1) into a finite number

of subproblems involving fixed-unit cost bilevel optimization problems; that is, problems

where the follower’s objective is a function only of x. Details can be found in Section 5.3,

but the following is an informal statement of the result:

Theorem 5.1.1 (Decomposition Theorem (informal version)). Consider a bilevel integer
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programming problem of the form (5.1). There exists a finite number of equivalence classes

Ci, i = 1, . . . , N such that the infimum value of (5.1) is given by the smallest ξi arising from

the following N subproblems:

ξi := inf f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d, ψ(y) ∈ relint Ci

x ∈ argmin{ ci · x′ : Ax′ ≤ π(z), x′ ∈ Zn }.

The optimal value of the bilevel integer program, when it exists, is mini=1,...,N ξi.

The decomposition is useful not only in deriving new algorithms for solving bilevel integer

programs but also analytically for proving existence of optimal solutions, as is demonstrated

in our study of two special cases of (5.1) (described below).

3) We use a novel approach to the study of bilevel integer programs, namely, Gröbner basis

methods. For an introduction to these methods as used in this paper see [79]. Of particular

note is the fact that such methods are well-suited for understanding the parametric nature of

the lower-level problem and provide us with a new concept – reduced Gröbner basis – which

in some sense correspond to column bases in the linear optimization setting. The theory has

both algorithmic and analytical use, which again we demonstrate in our study of two special

cases.

The first special case is where all variables are integer, feasible regions are linear and f

either affine or nonnegative polynomial. We call this the “pure integer case”. In details, we

consider the special case of (5.1):

min f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d, y ∈ Zp, z ∈ Zd

x ∈ argmin{ (Cy + c) · x′ : Ax′ ≤ Bz + u, x′ ∈ Nn }.

(5.2)
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where P is a polytope, B and C are integer matrices of the appropriate dimensions, and c

and u are integral vectors of dimension n and m respectively.

This case is the subject of the first subsection of Sections 5.4 and 5.5. We use rational

generating functions to derive a polynomial time algorithm (an FPTAS if f is polynomial) for

solving each subproblem resulting from the Decomposition Theorem. Although the number

of subproblems may be quite large – exponential even in fixed dimension – we discuss some

special cases where we are guaranteed exponentially fewer subproblems than in the general

case.

The second special case is where we assume some separation in the objectives and con-

straints of the leader’s two decision variables y and z, which are now assumed to be contin-

uous. This restricted setting is as follows:

inf f(x, z) + g(y)

s. t. (x, z) ∈ P ⊆ Rn+d y ∈ Y ⊆ Rp

x ∈ argmin{ψ(y) · x : Ax ≤ π(z), x ∈ Zn }

(5.3)

where f is now assumed to be quasiconcave (for reasons discussed in Section 5.4), P a

bounded set in Rn+d and Y a bounded set in Rp. We refer to this as the “mixed integer case”

since y and z are no longer restricted to be integer.

It should be noted from the start that there is one important element of the formulation

(5.3) that is more restrictive than other formulations in the literature. In particular, the

leader’s objective is separable in y and z and the upper level constraints y ∈ Y and (x, z) ∈ P

do not jointly constrain the choice of y and z. This restriction is central to the results

presented below and it is an open question as to whether the approaches here apply when

this restriction is relaxed. Despite these restrictions, we believe this model to have useful

applicability, such as the model found in Example 5.2.2, which fits this setting.
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The main focus of analysis in this latter case is the existence of solutions to problems of

this type. Existence is a question that has interested several authors. Vicente et. al. [83]

explored the special case of discrete linear bilevel programming problems when y is fixed

and considered the existence of solutions for two cases: one where z is integer and the other

where z continuous. They found that solutions always exist when z is integer, but may

not exist when z is continuous. Our work expands on known existence results by exploring

conditions on the functions and constraints in our model (5.3) which guarantee existence of

solutions when some upper level variables are continuous. To the authors’ knowledge only

one other study explores conditions when such solutions exist, which is in the case of a simple

knapsack constraint in the lower level [30].

We use Gröbner basis methods to derive new sufficient conditions for existence of optimal

solutions for general problems of the form (5.3). These criteria involve assumptions about

the functional forms of f , g, ψ and π and the properties of P and Y . Different results arise

when the lower level constraints are all equalities and all inequalities. The existence results

are contained in Theorem 5.6.3 for equality constrained problems and Theorem 5.6.6 for

inequality constrained problems. The Decomposition Theorem plays an important role in

both cases.

This chapter is organized as follows. We begin with some motivation in Section 5.2 which

describes two examples of bilevel integer programs, one from each of our special cases (5.2)

and (5.3). Section 5.3 contains the Decomposition Theorem, and includes some background

on polyhedral fans and Gröbner bases. The decomposition result demonstrates the existence

of a polyhedral fan which can partition the space of cost vectors y into a finite number of

equivalence classes which correspond to cells.

Up to this point all results are shown for the general case (5.1). From the proof of the

Decomposition Theorem it is not clear how to describe and solve each of the subproblems

created from the decomposition. At this point we get specific in how we apply the result to
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our two special cases. Section 5.4 details how to describe each of the cells in the polyhedral

fan and gives an idea of the number of subproblems generated through decomposition. In the

special case (5.3) we are able to give a more complete decomposition of the problem, entirely

separating the leader’s optimization over y from her choice of z within each subproblem.

Section 5.5 discusses the final computational question associated with the Decomposition

Theorem, that of solving each of the subproblems. In the pure integer case we provide a

solution method based on the rational generating function method of Barvinok and Woods

[8], but in principle, any method for solving bilevel integer programs with fixed unit-cost

could be applied. Finally, in Section 5.6 we take up the question of identifying when optimal

solutions exist in the mixed integer case. We use the Decomposition Theorem and tackle the

question for each subproblem separately. We give checkable sufficient conditions for when

optimal solutions are guaranteed to exist.

5.2 Some examples

We begin with a few motivating examples of problems that can be modeled as bilevel as

discrete bilevel optimizations of the form (5.1).

Example 5.2.1 (Decentralized shipping (c.f. Section 2.2 of [25])). A shipping company must

deliver a shipment of a large stock of items of several types using various vessels. There are

t types of items. The weight of each item of type j is wj and there are nj items of type j

to be shipped. The company has two decentralized divisions: the head office (the leader)

and a logistics division (the follower). The head office can secure space on k vessels for the

shipment, where vessel ` can be outfitted with a maximum weight capacity z`. The unit cost

to the head office of securing capacity z` on vessel is c`.

The operating costs of shipping the items is incurred by the logistics division. The cost

of shipping one item of type j on vessel ` is pj`. Head office chooses compensation rates
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to the logistics division to partially compensate for these costs. The compensation rate for

shipping one item of type j on vessel ` is yj`.

The goal of head office is to minimize total compensation costs and capacity costs by

deciding on what capacities z = (z1, . . . , zk) ∈ Z ⊆ Rk to secure and what compensation

rates y = (yj`) ∈ Y to offer. The goal of the logistics division is to minimize shipping costs

and maximize compensation from head office by choosing the shipment schedule x = (xj`)

where xj` is the number of items of type j to be shipped on vessel `.

We introduce slack variables xq` (q := t+1) to represent unused weight capacity in vessel

`. The formulation is as follows:

min
x,y,z

t∑
j=1

k∑

`=1

yj`xj` +
k∑

l=1

c`z`

s. t. z ∈ Z,

x ∈ argmin

{ t∑
j=1

k∑

l=1

(pj` − yj`)xj` :
k∑

l=1

xj` = nj (j = 1, . . . , t)

t∑
j=1

wjxj` + xq` = zk (k = 1, . . . , n) x ∈ Nqk

}
.

(5.4)

This formulation fits our general model (5.1). In fact this problem has a special structure

that is discussed in Section 5.4.3. If we let w = (w1, . . . , wt, 1) denote the row vector of

weights, then the constraint matrix of the lower level problem has the form A(k) = [w, I](k),

a structure we will define in that section as a k-fold matrix (introduced in [25]).

The next example fits the special setting (5.3):

Example 5.2.2. A city planner wants to control traffic on a network by changing capacities

u and tolls T on arcs. A shipper sends indivisible goods x on this network and responds to

these constraints in order to minimize toll costs T · x, possibly sending flow along different

routes as capacities and tolls change. We assume that the goal of the city planner is to
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maximize social welfare: thus, toll revenues (T · x) are not included in the objective, since

toll revenues are a transfer from one party (the shipper) to the other (the city). Instead, the

city planner is interested in reducing overall congestion and capacity costs f(x,u). This is

a hierarchical decision-making problem where a leader (here the city planner) acts first and

influences the decision of a follower (here the shipper) and can be modeled as the following

bilevel program:

min
x,T

f(x,u)

s.t. T ∈ Θ, u ∈ U

x ∈ argmin{T · x′ : Ax′ ≤ π(u),x′ ∈ Nn}}

where Θ is a bounded set of feasible toll values and U is a bounded set of possible capacities

and f is a linear or polynomial function. The lower level constraints Ax ≤ π(u) represent

flow-balance and capacity constraints on the network. This fits the setting (5.3), assuming

that f is quasiconcave.

5.3 A decomposition theorem

We begin our analysis by considering variable unit cost problems of the general form (5.1)

with the only restriction that the lower level problem’s constraints are equalities and not

inequalities and x is restricted to be nonnegative. That is, we consider the problem:

min f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d

x ∈ argmin{ψ(y) · x′ : Ax′ = π(z), x′ ∈ Nn }.

(5.5)
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The reason for considering equality constrained problems is that the theory used in this

chapter has primarily been developed in this setting. We will return to the question of

inequality constrained problems at the end of this section.

One notation that we use throughout is to let Z denote to be the projection of P onto

its z coordinates (i.e., Z = {z ∈ Rd : (x,y, z) ∈ P}) which defines the overall set of feasible

choices of z for the leader.

Some additional assumptions are required to make the problem well-conditioned for ap-

plying Gröbner basis methods, the main tool of analysis:

Assumption 5.3.1. First regarding feasibility, let π(Z) denote the range of the function π.

Then for (5.5) to be feasible we require coneN(A) ∩ π(Z) to be nonempty where coneN(A)

is the set of all nonnegative integer linear combinations of the columns of A. Regarding

boundedness, we assume A is of full row rank and kerZ(A) ∩ Nn = {0}, where kerZ(A) is

the set of integer vectors in the kernel of A. This implies the set of feasible solutions to the

lower level problem either empty or is nonempty and bounded for a particular choice of z.

This assumption is common in the Gröbner basis literature, see for instance [79].

Section 5.3.1 includes a brief introduction to Gröbner basis methods, focusing on the key

concepts and results used to derive equivalence classes for the leader’s choice of y.

5.3.1 Background: bases and fans

Many of the concepts and results introduced in this section can be found in [79]. We begin

with a few preliminary definitions.

Fix an integer matrix of full row rank A ∈ Zm×n. Consider the following instance of an

integer program:

IPA,c(b) : min{c · x : Ax = b, x ∈ Nn}
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where c ∈ Zn and b ∈ Nm. Let IPA,c denote the family of integer programs with this

fixed A and c but with varying right-hand side b. Similarly, let IPA denote the family of

integer programs with fixed matrix A and varying c and b. Note that IPA,c(b) has a feasible

solution if and only if b ∈ coneN(A).

We call c generic if for each right-hand side b there is a unique optimum solution to

IPA,c(b), otherwise we say that c is non-generic. For c generic let Oc ⊆ Nn be the set

optimal solutions in all programs in the family IPA,c. The complement of this set in Nn is

denoted Nc. It turns out the set Nc has a simple and useful characterization:

Lemma 5.3.2. [80] There exists a unique, minimal, set of vectors α1, . . . , αs ∈ Nn such

that:

Nc =
s⋃

k=1

(αk + Nn)

The αk are called the minimal generators of Nc.

The set Gc = {αk−ωk : k = 1, . . . s} where α1, . . . , αs are the unique minimal generators

of Nc and ωk = argmin{c · x : Ax = Aαk} is called the reduced Gröbner basis of IPA,c. For

each reduced Gröbner basis we associate a closed convex cone

Kc = {x ∈ Rn : αk · x− ωk · x ≥ 0}

called a Gröbner cone.

We now detail some essential properties of reduced Gröbner bases and Gröbner cones. A

polyhedral fan in Rn is a collection of polyhedral cones (called the cells of the fan) with the

property that if cell C is in the fan then so is every face of C, and if C1 and C2 are cells in

the fan their intersection is a common face of each. A polyhedral fan in Rn is complete if the

union over all the cells in the fan is all of Rn. Given two fans F1 and F2 we say F1 refines

F2 if every cell of F1 is contained in a cell F2. The common refinement of two fans F1 and
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F2 in Rn, denoted by F1 ∩ F2, is the fan of all intersections of cones from F1 and F2. See

[87] for a thorough introduction to these concepts. The following theorem is a summary of

results from [79]:

Theorem 5.3.3. 1. The Gröbner cones are fixed by the matrix A, and as such we call

them the Gröbner cones of A. Each matrix A admits a finite number distinct reduced

Gröbner bases and thus there are a finite number of Gröbner cones of A.

2. Gröbner cones are the full-dimensional cells of a polyhedral fan called the Gröbner fan

of A. In particular, the cells of the Gröbner fan are the faces of the Gröbner cones.

3. Let P I
b denote the convex hull of the integer points in the polyhedron Pb = {x ∈ Rn :

Ax = b}. The Gröbner fan is the common refinement of the inner normal fans of

P I
b for b ∈ coneN(A). In particular, the Gröbner fan is complete when each P I

b is a

polytope.

For our purposes, the significance of the Gröbner fan A is its relationship to the optimal

solutions in the family of integer programs IPA. The key result is the following generalization

of Proposition 3.2 in [79].

Theorem 5.3.4. [79] Given two cost vectors c and c′ in Rn the following are equivalent:

1. For every b ∈ coneNA, the programs IPA,c(b) and IPc′(b) have the same set of optimal

solutions. That is,

argmin{c · x : Ax = b,x ∈ Nn} = argmin{c′ · x : Ax = b,x ∈ Nn}

2. For every b ∈ coneN(A), facec(P
I
b) = facec′(P

I
b) , where facec(P

I
b) denotes the optimal

face of P I
b in the direction of c.
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3. Both c and c′ lie in the relative interior of the same cell of the Gröbner fan of A; that

is, some face of a Gröbner cone.

Proof. The equivalence of (5.3.4) and (2) is standard. We complete the proof by showing the

equivalence of (2) and (3). The Gröbner fan is the common refinement of the inner normal

fans of each polytope P I
b . Thus two cost vectors lie in the relative interior of the same cell of

the Gröbner fan (i.e. a face of a Gröbner cone) if and only if they lie in the relative interior

of the same normal cone of each polytope P I
b . Thus the equivalence of (2) and (3).

Intuitively, the theorem states that there exists equivalence classes for cost vectors c, and

these equivalence classes can be represented as the relative interiors of rational polyhedral

cones – the faces of Gröbner cones. These cones are rational since each Gröbner cone has

facet defining inequalities with integer normal vectors, given by some element αk − ωk of

the reduced Gröbner basis. A major contribution from the literature on Gröbner bases is

the existence of algorithms to compute these equivalence classes via computation of reduced

Gröbner bases and implementations of these algorithms (see for instance the program CaTS

[47]). We now make note of the obvious fact that any polyhedral fan which refines the

Gröbner fan yields a “refinement” of equivalence classes for cost vectors c.

Definition 5.3.5 (Consistent). Let A be an m×n integer matrix. We say a polyhedral fan

F in Rn is consistent with respect to IPA if for every cell C in F whenever a pair of vectors

c and c′ both lie in the relative interior of C the integer programs IPA,c(b) and IPA,c′(b)

have the same set of optimal solutions for every feasible right-hand side b. That is, for every

cell C of F , for all c, c′ ∈ relint C and for all b ∈ coneN(A):

argmin{c · x : Ax = b,x ∈ Nn} = argmin{c′ · x : Ax = b,x ∈ Nn} (5.6)

Theorem 5.3.6. Let A be an m × n integer matrix. A polyhedral fan F is consistent with

respect to IPA if and only if it refines the Gröbner fan of A.
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Proof. For the only-if direction, suppose c and c′ lie in the relative interior of the same cell

of F . Since F refines the Gröbner fan of A, this implies c and c′ lie in the relative interior

of a single cell of the Gröbner fan. By Theorem 5.3.4(5.3.4) it follows that F is consistent.

Conversely, suppose F is consistent with respect to IPA. Let C denote a cell of F and

suppose c and c′ lie in the relative interior of C. Since F is consistent it follows that c and

c′ satisfy (5.6) for all b ∈ coneN(A). Thus by Theorem 5.3.4(2), c and c′ lie in the relative

interior of the same cell C ′ of the Gröbner fan of A. This is true for any two elements of C

and thus C is a subset of C ′. It then follows that F is a refinement of the Gröbner fan of

A.

Besides working with reduced Gröbner bases, we also consider another set of integer

vectors related to matrix A. The Graver basis GrA of A is a subset of the integer kernel

kerZ(A) = ker(A) ∩ Zn of the matrix A. It was first introduced in [42]. It can be defined as

follows: for each orthant Oj of Rn consider the pointed polyhedral cone Cj = kerZ(A) ∩ Oj.

Let Hj be the unique Hilbert basis of Cj. The Graver basis is the union of these Hilbert

bases over all orthants; that is, GrA = ∪jHj. The Graver basis is finite and, in general, of

size exponential in the input size of the inequality description of A. There exist software

implementations which can compute the Graver basis of a matrix (see for instance 4ti2 [1]).

From the Graver basis of A we can define a polyhedral fan which refines the Gröbner

fan. To see this, begin by considering the polyhedral fan described by a single hyperplane

H = {w ∈ Rn : a · w = ao} in Rn with cells H+, H− and H, where H+ = {w ∈ Rn :

a ·w ≥ ao} and H− = {w ∈ Rn : a ·w ≤ ao}. The hyperplane arrangement FH of a finite

set of hyperplanes H in Rn is the common refinement of all such fans for the hyperplanes

in H. In particular, FH itself is a polyhedral fan. The Graver arrangement of matrix A

is the hyperplane arrangement consisting of the hyperplanes in Rn which are orthogonal to

the elements in the Graver basis GrA. The key property of Graver arrangements for our

purposes is the following:
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Proposition 5.3.7 (Proposition 3.13 in [79]). The Graver arrangement of A is a refinement

of the Gröbner fan of A and thus consistent with respect to IPA.

Consistent polyhedral fans, and in particular the Gröbner fan and Graver arrangement,

will play a major role in the discussion to follow.

5.3.2 The main result

The main result of this section is the identification of a finite number of classes for the

cost vectors for the lower level problem and thus “decompose” the problem of simultaneous

changes of both right-hand side and cost into a finite number of fixed unit-cost bilevel

optimization problems.

To begin we focus our attention on the influence of changes in unit cost and thus define

F (y) to be the objective value of (5.5) as a function of the leader’s decision variable y. That

is,

F (y) := inf f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d

x ∈ argmin{ψ(y) · x′ : Ax′ ≤ π(z), x′ ∈ Zn }

(5.7)

Note that we have defined F (y) using an infimum rather than a minimum. This is to

acknowledge the fact that an infimum value might not be attained.

Let F denote a polyhedral fan consistent with IPA and let C1, . . . , CN denote the poly-

hedral cones comprising the cells of F . For each i ∈ {1, . . . , N} let

ξi := inf f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d, ψ(y) ∈ relint Ci

x ∈ argmin{ ci · x′ : Ax′ ≤ π(z), x′ ∈ Zn }

(5.8)

where ci is an arbitrary fixed unit cost which lies in the relative of the cone Ci. Notice that
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to solve for ξi we must solve a bilevel optimization with fixed unit cost in the lower level

problem. We acknowledge that an optimal solution to this problem might not be attained,

one possible reason being that the constraint ψ(y) ∈ relint Ci will involve strict inequalities

and thus the feasible region may not be closed.

Now for the main result (that is, a formal statement and proof of Theorem 5.1.1):

Theorem 5.3.8 (Decomposition Theorem (formal version)). Consider a bilevel integer

programming problem of the form (5.5). Let C1, . . . , CN denote the cells of a polyhedral fan

F in Rn which is consistent with IPA. Then

inf
y

F (y) = min
i=1,...,N

ξi.

Thus the optimal value of the bilevel integer program, when it exists, is mini=1,...,N ξi.

Proof. We first claim that F (y) = ξi when ψ(y) ∈ relint Ci. When we restrict the choice

of y in this way we clearly satisfy the upper level constraint ψ(y) ∈ relint Ci found in (5.8).

Now the fact F is consistent implies that given any arbitrary cost vector ci ∈ relint Ci

argmin{ψ(y) · x : Ax = π(z), x ∈ Zn } = argmin{ ci · x : Ax = π(z), x ∈ Zn }

for all y such that ψ(y) ∈ Ci. It is then immediate that F (y) = ξi. Since F is a complete

(recall our restriction to considering complete fans) Rn =
⊎n

i=1 relint Ci (see Chapter 7 of

[87]). Thus every value of y belongs to the relative interior of exactly one cell of F . It then

follows that infy F (y) = mini=1,...,N ξi. When the infima are all attained the optimal value

is thus mini=1,...,N ξi.

It is also now timely to return to the question of applying our results to the more general

inequality constrained problem (5.1). A first idea is to simply apply the common trick to

convert a problem with inequality constraints into a problem with only equality constraints
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by adding slack variables. An attempt to apply this method here will yield the following

difficulty: π(z) may take on non-integral values and thus in general we cannot add integer

slack variables s ∈ Nm to change the lower level constraints into Ax + s = π(z). In general,

we would require s ∈ Rm, in which case the lower level problem is a mixed integer program,

a case not covered by the theory of this chapter. Hence, a remedy is needed to apply the

results from the previous sections to inequality constrained problems.

One solution is to ensure the set of possible right-hand sides {π(z) : z ∈ Z} = π(Z) is

a subset of Zm. One simple way to do this is would be to replace π(z) with π̄(z) = bπ(z)c.
Notice that since Ax is integer, the constraints Ax ≤ π(z) and Ax ≤ π̄(z) are equivalent.

This transformation would then allows us to introduce integer slack variables s ∈ Nm so that

Ax + s = π̄(z). Thus, we can directly apply the Decomposition Theorem to this problem.

Another case when we can ensure it is appropriate to introduce integer slacks is when z is

restricted to be integer and π(z) is integer valued for all z integer. This is a case we will

consider in developing algorithms in the following subsection.

It should be noted that adding slack variables increases the dimension of the problem,

since now the follower’s decision vector x′ = (x, s)>. Since some of our results are sensitive

to dimension, this can be an important consideration.

5.4 Computing decompositions

In the next two sections we discuss some of the practical implications of the Decomposition

Theorem. This section focuses on how to construct the subproblems (5.8) by being more

explicit about the constraint ψ(y) ∈ relint Ci.

The first step is to compute the cells Ci of a consistent fan. Here we only consider the

Gröbner fan or the Graver arrangement, but other methods could be developed for other

consistent polyhedral fans.
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The next issue step is to describe in a meaningful way the equivalence classes for y; that

is, the relative interiors of the Ci. By “meaningful”, we mean in a way that provides some

hope for deciding the existence of optimal solutions to (5.8), and for finding optimal solutions

if they exist. This is a difficult issue, and we tackle it in two special subcases. The first is a

setting where all the variables are integer, and second is a mixed integer setting. They are

explored in detail below.

To close the section we address the question of just how many subproblems may arise by

asking how the number of cells in a consistent fan grows with the input size. The answer is

discouraging, namely that the number of cells can grow exponentially in the input size, even

when the dimension is fixed. We close the section with a special case where the number of

equivalence classes may be exponentially smaller than the general case. The issue of how to

actually compute ξi once we have given an explicit description of relint Ci is the subject of

the next section.

5.4.1 Describing cells

We take up the first issue in detail for constructing the Graver arrangement of A. The key

result is a general algorithm for computing hyperplane arrangements of a set of vectors.

Theorem 5.4.1 (Theorem 3.3, [36]). Consider a finite set of M hyperplanes H in Rn spec-

ified by their normal vectors. Then there exists an algorithm that constructs the following

combinatorial representation of the hyperplane arrangement FH of H :

(i) an incidence lattice of the cells in FH and

(ii) for each cell C in FH:

(a) a vector in the interior of C,

(b) a list of supporting hyperplanes of C given by a subset of vectors in H.
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This algorithm runs in O(Mn) time.

We can apply Theorem 5.4.1 directly to the set of integer vectors in the Graver basis of

A to represent the cells of the Graver arrangement. The question of how to construct the

Gröbner fan has been explored in detail in [45] and implemented in [47], which uses facts

from toric algebra that will not be explored in detail here.

5.4.2 Describing equivalence classes

Pure integer case

In the pure integer case subproblems are of the form:

ξi := min f(x,y, z)

s. t. (x,y, z) ∈ P ⊆ Rn+p+d, (Cy + c) ∈ relint Ci, y ∈ Zp, z ∈ Zd

x ∈ argmin{ ci · x′ : Ax′ ≤ Bz + u, x′ ∈ Nn }

(5.9)

To solve this problem we will use a generating approach similar to that found in Chapter 4.

The goal here is to convert the constraint (Cy + c) ∈ relint Ci into something amenable

to generating functions; that is, a closed polyhedral description. Via Theorem 5.4.1 each

cell Ci is given by a set of supporting hyperplanes, which in the case of both the Graver

arrangements and the Gröbner fan have integral supporting vectors. Thus, Ci is a rational

polyhedral cone expressible as Ci = {w ∈ Rn : Miw ≥ 0} where Mi is an integer matrix

and relint Ci = {w ∈ Rn : Miw > 0}. Since ψ(y) = Cy + c is an integral vector inside the

relative interior of Ci it follows that

ψ(y) ∈ relint Ci ∩ Zn = {w ∈ Rn : Miw ≥ 1}.
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Hence the constraint (Cy + c) ∈ relint Ci can be translated directly into a constraint on the

leader’s choice of y; namely that y lie in the set

Yi = Y ∩ {w ∈ Rn : MiCy ≥ −Mic + 1}. (5.10)

Note that Yi is a closed polyhedron, and thus we now have a closed description of the feasible

region of (5.9). See for Section 5.5 for a method to compute ξi given this description of Yi.

Mixed integer case

Now consider a special setting where y and z are continuous. The main idea here is use the

continuity of y to avoid consideration of lower dimensional equivalence classes and overcome

the difficulties of having open equivalence classes. We analyze the problem with equality

lower level constraints. We may assume equality constraints without loss of generality by

similar reasoning used in the previous section.

min f(x, z) + g(y)

s. t. (x, z) ∈ P ⊆ Rn+d, y ∈ Y ⊆ Rp

x ∈ argmin{ψ(y) · x : Ax = π(z), x ∈ Nn }

(5.11)

where A ∈ Zm×n, the functions f and g are real-valued functions on P and Y respectively.

The sets P and Y are bounded and the functions ψ : Rp → Rn and π : Rd → Rn are vector-

valued real functions. As before we let Z denote the projection of P onto its z coordinates

(i.e., Z = {z ∈ Rd : (x, z) ∈ P}). Lastly, when working with (5.11) we assume that f is

quasiconcave. The reason for this assumption is apparent in the proofs that follow.

We show that the separation of y and z in the leader’s objective translates to a complete

separation from the perspective of the leader for optimizing her choices. Note, that in (5.11)

the only connection between y and z is implicit through the follower’s objective function.
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Via a modification of the Decomposition Theorem (discussed below) this implicit connection

can be severed. An alternate argument is developed to achieve this result, wherein we also

show how we need only consider full dimensional equivalence classes. The details of this

section refer specifically to equivalence classes deriving from the Gröbner fan. A similar

argument would follow for any consistent fan.

Let K1, . . .Kt denote the full-dimensional Gröbner cones (or simply the Gröbner cones)

of A. These are finite in number by Theorem 5.3.3. In addition, let xi(b) denote the unique

optimal solution to IPc(b) when c is a generic cost vector in the interior of Ki. That is, let

xi(b) = argmin{c · x : Ax = b,x ∈ Nn} when c ∈ relint Ci (5.12)

We denote the set of Gröbner cones which contain c by I(c) = {i : c ∈ Ki} ⊆ {1, . . . , t}.
This set is a singleton when c is generic. Our approach to handling the case of non-generic

cost vectors is to employ the following lemma which applies to both generic and non-generic

cost vectors:

Lemma 5.4.2 (Convex Hull Lemma). Given a cost vector c and right-hand side b ∈
coneN(A) it follows that the set of optimal solutions to IPc(b) has the following description:

argmin{c · x : Ax = b,x ∈ Nn} = conv{xi(b) : i ∈ I(c)} ∩ Nn.

In particular, if two cost vectors c and c′ have I(c) = I(c′) then IPc(b) and IP ′
c(b) have

the same set of optimal solutions for each b ∈ coneN(A).

Proof. Recall the notation that P I
b denotes the convex hull of the integer points in the

polytope {x ∈ Rn : Ax = b}. Then argmin{c · x : Ax = b,x ∈ Nn} is the set of integer

points in the optimal face of P I
b in the direction of c. Since the Gröbner fan is a refinement

of the inner normal fan of P I
b , the set {xi(b) : i ∈ I(c)} contains the vertices of this face.
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The result then follows.

For this subsection redefine the function F (y) as follows:

F (y) = inf
x,z

f(x, z) + g(y) (5.13)

s.t. (x, z) ∈ P ⊆ Rn+d

x ∈ argmin{ψ(y) · x : Ax = π(z), x ∈ Nn}

We make use of the Convex Hull Lemma to yield the following:

Lemma 5.4.3. For all y ∈ Y

F (y) = min{ξi : i ∈ I(ψ(y))}+ g(y).

where

ξi := inf f(x, z)

s. t. (x, z) ∈ P, ψ(y) ∈ Ki

x ∈ argmin{ ci · x′ : Ax′ = π(z), x′ ∈ Nn }

with ci a generic cost vector in Gröbner cone Ki.

Proof. We begin by expressing F (y) = θ(y) + g(y) where

θ(y) := inf
x,z

{
f(x, z) : z ∈ Z,x ∈ argminx̃{ψ(y) · x̃ : Ax̃ = π(z), x̃ ∈ Nn}}
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This function can be manipulated as follows:

θ(y) = inf
x,z
{f(x, z) : x ∈ argminx̃{ψ(y) · x : Ax = π(z)}, z ∈ Z} (5.14)

= inf
z∈Z

{
inf
x

{
f(x, z) : x ∈ conv{xi(z) : i ∈ I(ψ(y)) ∩ Nn}}

}
(5.15)

= inf
z∈Z

{
min

i∈I(ψ(y))
f(xi(z), z)

}
(5.16)

From (5.14) to (5.15) we apply the Convex Hull Lemma. From (5.15) to (5.16) we use the

fact that f is a quasiconcave function and so its minimum occurs at the extreme points of

its feasible region. We now change the order of optimization over i and z and reintroduce

the optimization in x. Let ci be any cost vector in the interior of Ki, then continuing from

(5.16):

θ(y) = min
i∈I(ψ(y))

inf
x,z
{f(x, z) : z ∈ Z,x ∈ argminx∈Nn{ci · x : Ax = π(z)}} (5.17)

= min
i∈I(ψ(y))

ξi (5.18)

From (5.16) to (5.17) we expand the definition of xi(z) and combine the optimization in x

and z. From (5.17) to (5.18) we note the definition of ξi. The result follows.

In contrast to the analysis in Section 5.3, we need only consider full dimensional Gröbner

cones, which follows from the Convex Hull Lemma and the fact that we assume f is quasi-

concave.

This analysis yields the following alternate decomposition result:

Theorem 5.4.4. A bilevel integer program of the form (5.11) satisfying Assumption 5.3.1

can be decomposed into a finite number of paired subproblems, one pair of subproblems for

each Gröbner cone Ki. Each pair includes:
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1. A fixed-cost bilevel optimization problem to find the optimal choice of z and x:

inf f(x, z)

s. t. (x, z) ∈ P ⊆ Rn+d

x ∈ argmin{ ci · x′ : Ax′ ≤ π(z), x′ ∈ Zn }

2. An optimization problem for y to optimize g(y) when y is constrained so that ψ(y) lies

in Ki; that is,

inf g(y)

s. t. y ∈ Y (i)

where

Y (i) = {y ∈ Y : i ∈ I(ψ(y))}

= {y ∈ Y : ψ(y) ∈ Ki}.

These optimization problems are called the “cone optimization” subproblems.

Proof. Using the notation of the previous results it suffices to show:

inf
y∈Y

F (y) = min
i∈I
{ξi + inf

y∈Y (i)
g(y)} (5.19)

where Y (i) = {y ∈ Y : ψ(y) ∈ Ki}. This in turn follows from the previous proposition and

a simple exchange of minimizations:

inf
y∈Y

F (y) = inf
y∈Y

{
min

i∈I(ψ(y))
ξi + g(y)

}

= min
i∈I

{
inf

y∈Y (i)

{
ξi + g(y)

}}

= min
i∈I

{
ξi + inf

y∈Y (i)
g(y)

}
(5.20)
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The significance of this result is that we can separate the leader’s choice of y from her

choice of z in the sense that they can be optimized independently in these two subproblems,

provided we isolate the choice of y so that ψ(y) stays within some Gröbner cone Ki. Note

that the problems now do not involve reasoning about the relative interiors of cones, but

instead the full dimensional Gröbner cones Ki.

5.4.3 The number of subproblems

As discussed above, the decomposition is sensitive to the number of cells, since each cell

gives rise to a fixed-unit cost subproblem. An example from Jensen [48] (Example 1.0.2)

shows that even with n = 3 there can be an exponential number of cells in the Gröbner fan

of A, and thus at least this many for any refinement. Thus, we are motivated to search for

cases where the number of cells in the arrangement is relatively small, leading ideally to a

more computationally tractable number of fixed unit-cost subproblems. We now describe a

special case where there is fewer, albeit still exponentially many, subproblems.

The special case is when the lower level constraint matrix arises with the following special

structure:

Definition 5.4.5 (k-fold bilevel integer program). Fix any pair of integer matrices R and

S with the same number of columns, of dimensions r × q and s× q respectively. The k-fold
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matrix of the ordered pair (R, S) is the following (s + qr)× kq matrix,

[R,S](k) =




R R R · · · R

S 0 0 · · · 0

0 S 0 · · · 0

...
...

. . .
...

...

0 0 0 · · · S




A k-fold bilevel integer program is a bilevel integer program of the form (5.5) where the lower

level problem can be expressed as:

min{ψ(y) · x : Ax = π(z), x ∈ Nn} (5.21)

where A = [R, S](k) is a k-fold matrix for fixed matrices R and S.

These bilevel integer programs put into a bilevel setting a special class of integer programs

introduced by De Loera et. al. [25] called k-fold integer programs. Besides having attractive

computational properties, k-fold bilevel integer programs can be used to model a wide range

of applications, such as Example 5.2.1. An important characteristic of k-fold bilevel integer

programs is the following:

Theorem 5.4.6 (Theorem 4.2 in [25]). Fix a pair of integer matrices R and S of dimensions

r×q and s×q respectively. Then there is a polynomial time algorithm that, given k computes

the Graver basis GrA of the k-fold matrix A = [R, S](k). In particular, the cardinality and

the bit size of GrA are bounded by a polynomial in k.

In general, the number of Graver basis elements M of an arbitrary matrix is exponential

in size, and thus according to Theorem 5.4.1 we expect a doubly exponential number of cells,

O(Mn). However, in the k-fold setting our Graver bases are manageable in size even when
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the dimension varies and as a result the number of cells is exponential only in the dimension.

This represents a potential for exponentially fewer subproblems as compared to the general

case.

5.5 Solving the subproblems

We now turn to the next computational hurdle, that of actually solving each subproblem for

ξi in (5.8). We discuss the issue in our two special settings.

5.5.1 Pure integer setting

Letting Pi = {(x,y, z) ∈ Rn+p+d : (x,y, z) ∈ P,y ∈ Yi} where Yi is defined as in (5.10), we

can restate (5.2) as:

ξi := min f(x,y, z)

s. t. (x,y, z) ∈ Pi ⊆ Rn+p+d, y ∈ Zp, z ∈ Zd

x ∈ argmin{ ci · x′ : Ax′ ≤ Bz + u, x′ ∈ Nn }

(5.22)

The upper level constraint can be seen to be polytopal, since Pi is a polytope. We may now

apply any method given in the literature that solves bilevel integer programs, for instance

[32, 61]. We adapt here the method of Chapter 4. Let Si = Pi ∩ Zn+p+d and denote by B
the set of bilevel integer feasible solutions of (5.22); that is,

B = {(x,y, z) ∈ Si : x ∈ argmin{ ci · x′ : Ax′ ≤ Bz + u, x ∈ Zn }} (5.23)

Theorem 5.5.1. The set B has a short rational generating function encoding, and it can be

found in polynomial time when the dimension n + p + d is fixed.
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Proof. Let Ω = {(x,y, z) ∈ Si : Ax ≤ Bz + u} and

D = proj(x,y,z)





(x,y, z,x′) :

(x,y, z) ∈ Si, (x′,y, z) ∈ Si,

Ax = Bz + u, Ax′ = Bz + u,

ci · x′ ≤ ci · x− 1





The set of bilevel integer feasible solutions is B = Ω \D can be encoded as a short rational

generating function by similar reasoning found in the proof of Theorem 2.3.8.

It is now a simple task to work with the generating function encoding of B in order to

find ξi. The following is a summary of some key results.

Corollary 5.5.2. Consider a bilevel integer program of the form (5.2) and with subproblems

of the form (5.22) for i = 1, . . . , N . Then

(i) There exists a polynomial time algorithm to find ξi for each i ∈ {1, . . . , N} when leader’s

objective f is linear and the dimension n + p + d is fixed.

(ii) There exists a polynomial time algorithm to find an optimal solution to each subproblem

when the leader’s objective f is linear.

(iii) There exists an FPTAS to calculate ξi for each i = 1, . . . , N when the leader’s objective

f is a non-negative polynomial on P , and the dimension n + p + d is fixed.

Thus, overall, although there may be exponentially many subproblems in this case, each

one is solvable in polynomial time. This result could potentially be used as the basis of an

branch-and-bound method to solve the overall problem (5.2), where we can prune certain

subproblems using upper and lower bounds similar to that proposed in Section 3.6.2. This

is an area for future explorations.
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5.5.2 Mixed integer case

In this case, we get pairs of subproblems, those only involving x and z in a fixed-unit

cost bilevel integer programs and those involving y is a general optimization problem. Any

method used to solve such bilevel integer programs can be applied here provided the other

special conditions of the method of met. Depending on the properties of Y and g, different

optimization methods could be used to solve the cone optimization subproblems.

As mentioned in the introduction, the primary focus for this case is not algorithms to

solve the problem so much as the structure and existence of optimal solutions. This is the

topic we explore next.

5.6 Some existence results

This section explores conditions on our input data – f ,g, ψ, π, P and Y – whereby optimal

solutions to (5.3) are guaranteed to exist. Existence is a separate issue from the decompo-

sition, which holds even when infima are not obtained. Throughout this section we assume

that x lies in some overall bounded discrete set X ∈ Zd which does not depend on the

leader’s choice of z.

5.6.1 Equality constrained case

We begin by first exploring the existence of solutions to the equality constrained problem

(5.11) which will be a base for the more general case (5.3).

The approach is to first show existence of solutions to the fixed-cost bilevel subproblems.

Fix a cone Ki and let ci be fixed and lie in the interior of Ki. Recall that the ith fixed-cost
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bilevel subproblem has the form:

inf f(x, z)

s. t. (x, z) ∈ P,

x ∈ argmin{ ci · x′ : Ax′ = π(z), x′ ∈ X }

(5.24)

We assume without loss of generality throughout this subsection that x is nonnegative. Recall

we can take ci to be generic, and thus each value of π(z) ∈ coneN(A) defines a unique optimal

solution to the lower level problem: min{ci · x : Ax = π(z),x ∈ X,x ≥ 0}. As before we

denote this unique optimal solution by xi(π(z)). Let Oci
denotes the set of optimal solutions

as the right hand side π(z) varies. For simplicity denote this set by Oi.

Observe Oi ∩ X contains all of those x ∈ X that are optimal for some right-hand side

π(z). Using this notation, problem (5.24) can be restated as:

ξi := inf f(x, z)

s. t. (x, z) ∈ P,

x ∈ Oi ∩X,

Ax = π(z)

(5.25)

Lemma 5.6.1. Optimal solutions to the ith bilevel subproblem (5.24) exist if P is compact

and π is a continuous function.

Proof. We have already assumed that f is quasiconcave, and thus lower semicontinuous and

so showing the compactness of the feasible region suffices for showing existence of optimal

solutions. We see that Oi ∩ X is a bounded discrete set. If π is continuous then its level

sets are closed and hence the set {(x, z) ∈ X × Rd : Ax = π(z)} is closed. Lastly, since

P is assumed to be closed, the feasible region to (5.25) is a closed set and the result then

follows.
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We now turn to the question of existence for the cone optimization subproblems.

Lemma 5.6.2. Fix a Gröbner cone Ki and consider the optimization problem infy∈Y (i) g(y).

Optimal solutions to this problem exist if Y is compact, ψ is continuous and g is lower

semicontinuous.

Proof. We first determine the properties of the feasible set Y (i).

If Y is compact and ψ is continuous, the set Y (i) is closed. Thus, Y (i) is a closed subset

of Y and therefore compact. It follows that the cone optimization subproblem attains its

infimum when g is lower semicontinuous.

We are now ready to provide conditions under which the bilevel problem (5.11) has

optimal solutions. Simply combining the results of the last two lemmas yields the following:

Theorem 5.6.3 (Existence Theorem). An optimal solution to (5.11) exists if both Y

and Z are compact, ψ and π are both continuous and g is lower semicontinuous. Recall,

throughout we have assumed that f is quasiconcave.

5.6.2 Inequality constrained case

Now we attempt to apply the Existence Theorem to the more general setting where inequality

constraints are permitted in the lower level problem; i.e., bilevel integer programs of the form

(5.3).

Recall at the end of Section 5.3 our initial approach to handle inequalities was to replace

π(z) with π̄(z) = bπ(z)c and this allowed us to introduce integer slack variables s ∈ Nm

so that Ax + s = π̄(z). However, in this case the following difficulty arises when applying

the Existence Theorem (Theorem 5.6.3) after introducing slack variables: even if π is a

continuous function, bπ(z)c may not be. More directly we see that we can only introduce

integer slack variables if the set of possible right-hand sides π(Z) is a subset of Zm in which
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case π is not a continuous function and thus violating a key condition of the Existence

Theorem. An alternate approach must be taken establish the existence of optimal solutions.

The following example demonstrates the need for stronger conditions in the inequality case.

Example 5.6.4. Consider the following instance of (5.3):

f(x, z) = −2x + z, g(y) = 0, h(z) = z, Y = ∅ Z = [0, 4]

A =



−3

−1


 , π(z) =




0

−1


 +



−1

0


 z, ψ(y) = 1

With some calculation we find that:

argminx∈Nn

{
x : Ax ≤ π(z)} =





1, 0 ≤ z ≤ 3

2, 3 < z ≤ 4

In order to minimize her objective the leader’s goal is to the choose z of minimal cost so

that the follower chooses x = 2. This is where the complication arises since

inf
x,z∈[0,4]

{−2x + z : x ∈ argmin{x : Ax ≤ π(z)}}

has an infimum value of −1, but this infimum cannot be obtained.

This example demonstrates that even if the functions f , g, h, ψ and π are all continuous

and the sets Y and Z are both compact an optimal solution may not exist.

More refined assumptions on the structure of these functions and sets are required to

ensure existence of optimal solutions. As in the equality case we assume there is an overall

bounding set X for the choice of x, whereas now we no longer assume that x ≥ 0. The

following is a list of sufficient conditions for the existence of solutions to (5.3):

(A1) π is upper semicontinuous and P is compact.
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(A2) The set of points in coneN(A) that lead to feasible solutions

π≤ = {Ax : x ∈ X,Ax ≤ π(z) for some z where (x, z) ∈ P}

is a subset of π(Z). That is, for every x ∈ X such that Ax ≤ π(z) for some z ∈ Z

there exists a z̃ ∈ Z such that Ax = π(z̃).

(A3) (Comonotonicity) For all z, z′ ∈ Z and x ∈ X:

π(z) ≤ π(z′) =⇒ f(x, z) ≤ f(x, z′)

.

(A4) For all y ∈ Y , ψ(y) is in the cone generated by the columns of −A; that is, there exists

a vector uy ≥ 0 in Rm such that ψ(y) = −uyA.

(A5) g is lower semicontinuous and Y is compact.

Later in this section we will discuss when these assumptions might be reasonable. For

now we focus on establishing the existence of optimal solutions to the inequality constrained

problem under these assumptions.

One difficulty when thinking about the inequality case is that the theory in Section 5.3.1

has been developed exclusively in the equality setting. For our purposes this challenge can

be overcome by the following useful lemma:

Lemma 5.6.5. Let y ∈ Y such that ψ(y) is in the interior of Gröbner cone Ki. Then

argmin{ψ(y) · x : Ax ≤ π(z),x ∈ X} = {xi(z
′)} (5.26)

from some z′ ∈ Z. Recall, that xi(z
′) is the unique optimal solution to the equality-form

integer program IPψ(y)(π(z′)). In particular, the set of optimal solutions to the family of
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inequality constrained in integer programs is Oi, the set of solutions to the corresponding

family of equality constrained integer programs IPci
where ci ∈ relintKi.

Proof. Suppose x∗ is in the argmin{ψ(y) · x : Ax ≤ π(z),x ∈ X}. Then x∗ is also in the set

argmin{ψ(y) · x : Ax = Ax∗,x ∈ X}

and thus x∗ ∈ Oi. Since when ψ(y) is generic it follows immediately that

argmin{ψ(y) · x : Ax ≤ π(z′),x ∈ X} = {xi(Ax∗)}.

By assumption (A2), we define z′ = Ax∗ ∈ Z.

This lemma and assumption (A2) taken together establish a link between the equality

and inequality cases, a link that will be exploited in following key result of this section:

Theorem 5.6.6 (Existence Theorem for Inequality Constraints). Consider an inequality

constrained bilevel optimization problem (5.3). Given assumptions (A1)-(A5) an optimal

solution exists.

As the proof is rather involved we have provided the following brief synopsis, which has

several important steps.

Step 1. First we fix a Gröbner cone Ki and consider finding an optimal choice of x,

which we denote by xi. We move to finding an optimal choice of z, which we denote by zi,

that will ensure the follower chooses xi.

Step 2. Show that when y ∈ Y is fixed such that ψ(y) is in the interior of Ki an optimal

choice for the pair (x, z) is indeed (xi, zi).

Step 3. We consider arbitrary y and use the Convex Hull Theorem 5.4.2 to show that

an optimal choice for the pair (x, z) for a fixed arbitrary y is (xi, zi) for some i ∈ I(ψ(y)).

Step 4. Show the existence of an optimal choice for y.

169



Proof. Step 1. Fix a Gröbner cone Ki and let Pi denote the set of feasible x’s in Oi. That

is,

Pi = {x ∈ Oi : Ax ∈ π≤} ∩X.

Now, for every x ∈ Pi choose a vector

ζ(x) ∈ argminz{f(x, z) : (x, z) ∈ P, Ax ≤ π(z)}.

Assumption (A1) implies that this infimum is indeed attained. Next choose

xi ∈ argminx{f(x, ζ(x)) : x ∈ Pi} (5.27)

which is possible for the same reasoning as in the equality case (x can be chosen from a

bounded discrete set: see the proof of the Existence Theorem 5.6.3).

By assumption (A2) there exists zi ∈ Z such that π(zi) = Axi. We now claim that xi and

zi are compatible; that is, if the leader chooses zi then she can ensure the follower chooses

xi. The reasoning is as follows: for every y ∈ Y and for every x ∈ X such that Ax ≤ π(zi)

assumption (A4) implies

ψ(y) · x = −uyAx ≥ −uyπ(zi)

= −uyAxi

= ψ(y) · xi.

That is, xi is an optimum solution to the inequality constrained follower’s problem

min
x
{ψ(y) · x : Ax ≤ π(zi),x ∈ X}

and so by the optimistic assumption (that is, the leader can choose any x from among the
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alternate of the follower) xi and zi are compatible.

Step 2. Next show (xi, zi) is indeed an optimal choice of (x, z) when ψ(y) is in the

interior of Ki. Since π(zi) = Axi it follows π(zi) ≤ π(ζ(xi)) and by assumption (A3)

f(x, zi) ≤ f(x, ζ(xi)). (5.28)

Thus, for every x ∈ Pi and every z ∈ Z such that Ax ≤ π(z):

f(x, z) ≥ f(x, ζ(x)) (5.29)

≥ f(xi, ζ(xi)) (5.30)

≥ f(xi, zi) (5.31)

From (5.29) we use the definition of ζ(x). From (5.30) to (5.31) we use the definition of xi.

The final step follows by (5.28).

We can therefore conclude that for y ∈ Y such that ψ(y) is in the interior of Ki:

θ(y)
.
= inf

x,z

{
f(x, z) : (x, z) ∈ P,x ∈ argmin{ψ(y) · x : Ax ≤ π(z),x ∈ X}

}
(5.32)

= inf
x,z

{
f(x, z) : Ax ≤ π(z),x ∈ Pi, (x, z) ∈ P

}
(5.33)

= f(xi, zi) (5.34)

In words, for any y such that ψ(y) is in the interior of Ki an optimal choice of x and z exists

and can be taken as xi and zi respectively.

Step 3. Now, consider an arbitrary choice of y ∈ Y . We will show

θ(y) = min
i∈I(ψ(y))

{
f(xi, zi)} (5.35)
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Suppose there exists a z ∈ Z such that x ∈ argmin{ψ(y) · x : Ax ≤ π(z),x ∈ X}. By

assumption (A2) there exists z′ ∈ {z ∈ Z such that Ax = π(z′)}, and it follows

x ∈ argmin{ψ(y) · x : Ax = π(z′),x ∈ X}.

By the Convex Hull Theorem:

x ∈ conv{xi(π(z′)) : i ∈ I(ψ(y))} ∩X.

Now, since f is quasiconcave the optimal value of

min
x

{
f(x, z′) : x ∈ conv{xi(z

′) : i ∈ I(ψ(y))} ∩X
}

occurs at an extreme point of the feasible region. Hence, for any y ∈ Y and for any x and

z such that x ∈ argmin{ψ(y) · x : Ax ≤ π(z),x ∈ X}:

f(x, z) ≥
(

min
i∈I(ψ(y))

f(xi(z
′), z),

)
(5.36)

≥ min
i∈I(ψ(y))

{
f(xi(z

′), z′) (5.37)

≥ min
i

f(xi, zi) (5.38)

From (5.36) to (5.37) we use the fact that π(z′) = Ax ≤ π(z) and assumption (A3). The

last step follows f (5.31). This in turn will imply (5.35).

Step 4. By the previous steps we have shown that the objective value of the inequality

constrained problem as a function of y can be expressed as:

F (y) = θ(y) + g(y)

= min
i∈I(ψ(y))

{
f(xi, zi) + g(y)}
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and thus the optimal value is

inf
y∈Y

F (y) = min
i∈I(ψ(y))

{
f(xi, zi) + inf

y∈Y (i)
g(y)

}
(5.39)

by the same reasoning found in the proof of the Existence Theorem 5.6.3. Assumption (A5)

implies that the ith cone subproblem infy∈Y (i) g(y) has an attainable infimum, call it yi.

We can conclude that if

j ∈ argmini∈I(ψ(y))

{
f(xi, zi) + g(y)}

an optimal solution to the inequality constrained problem (5.3) exists and is equal to

(xj,yj, zj).

In fact more can be said about the nature of these optimal solutions. Assumption (A2) in

some sense turns the problem into an equality constrained problem, at least as far as finding

optimal solutions is concerned. The following corollary makes this precise.

Corollary 5.6.7. Let (x∗,y∗, z∗) be an optimal solution to an instance of the equality con-

strained problem (5.11). Then (x∗,y∗, z∗) is an optimal solution to the instance of the in-

equality constrained problem (5.3) with the same data.

Proof. By the Decomposition Theorem there exists a j ∈ argmini∈I{ξi+miny∈Y (i) g(y)} such

that the optimal solution, (x∗,y∗, z∗), has the following properties:

• (x∗, z∗) solves the jth fixed-cost bilevel subproblem:

ξj = min
x,z
{f(x, z) : (x, z) ∈ P,x ∈ argminx∈X{c · x : Ax = π(z)}} (5.40)

for some fixed unit cost c ∈ relintKj.

• y∗ is an optimal solution to the jth cone optimization subproblem: miny∈Y (j) g(y)
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We claim that (x∗,y∗, z∗) is an optimal solution to the inequality constrained problem with

the same data. In fact, we will show (x∗,y∗, z∗) = (xj,yj, zj) where (xj,yj, zj) is a solution

to inequality constrained problem in notation of the previous proof.

To begin, note that x∗ ∈ Pj. Thus by (5.31):

f(x∗, z∗) ≥ f(xj, zj)

Thus (xj, zj) is an optimal solution to (5.40). Hence we can take (x∗, z∗) = (xj, zj) since we

are assuming the optimistic approach.

The jth cone optimization subproblems are exactly the same in both the inequality

and equality constrained cases. It follows that we can take y∗ = yj. Thus, (x∗,y∗, z∗) =

(xj,yj, zj) is an optimal solution to the inequality constrained problem.

To conclude this section we give some brief justification for the assumptions (A1)-(A5).

Assumption (A1) is in fact weaker than the required assumptions for the equality constrained

problem, since π is required only to be upper semicontinuous and not continuous as in the

statement of the Existence Theorem 5.6.3.

Assumption (A3) is reasonable when we consider a possible application of our discrete

bilevel optimization problem. Suppose the leader is a principal who can choose y and z to

influence the payment (ψ(y)) and available resources (π(z)) that face her agent, the follower,

who takes some action x that is of benefit to both the principal and the agent. Viewed in

this way, the comonotonicity described in (A3) is reasonable since providing more resources

(an increase π(z)) should cost the principal more (an increase in f(x, z) for a fixed x). Note

that the problem in Example 5.6.4 violates assumption (A3).

As was mentioned above, (A2) is the key assumption that creates a strong connection

between the equality and inequality cases and it can be seen to drive the result of Corollary

5.6.7. Again taking the principal-agent interpretation above, one could assume that if some
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amount of resource π(z) could be provided by the principal, then any amount less than π(z)

and greater than or equal zero could also be provided. In addition if A has positive entries,

which it most likely would in the case of resource utilization problems we have described,

then Ax ≥ 0 and hence (A2) seems a reasonable assumption.

Lastly, assumption (A4) is the most difficult to justify. There seems no easy interpretation

as to why the cost vector ought to be from the row space of the matrix −A. In fact, finding

alternate assumptions that achieve the function of (A4) in the proofs of the theorems in this

section is an area for further exploration.

5.7 Summary and directions for further research

In this chapter we explored how the structure of consistent fans can decompose bilevel

optimization problems into a finite set of subproblems with fixed-unit cost linear lower level

objectives. Using this decomposition we also present algorithms for solving special cases and

sufficient conditions for the existence of optimal solutions when some of the variables are

continuous.

There are some major weaknesses of this analysis, each of which we hope can motivate fur-

ther investigation. The most glaring weakness is that in general the number of subproblems

created through decomposition can be exponential in the input size, even in fixed dimension.

This gives a strong indication these methods are impractical in a general setting. Thus, an

important area for further research is to is to search for special cases where we might limit

the number of subproblems. As we saw, k-fold bilevel integer programming is one such case,

and we believe there is potential in finding other cases.

In addition, there are some potential ways we can avoid solving each subproblem. De-

veloping branching algorithms may give exact or approximate solutions by only exploring a

subset of the subproblems. The existing algorithms for computing the Gröbner cones of a
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matrix A have the attractive feature that they start with a single cone and compute adja-

cent cones through local computations (see for instance [45]). This means that the all of the

Gröbner cones need not be computed as once, and thus there is the potential, using bounds,

that some cones need not be explored.

A second computational challenge is in actually solving each of the fixed unit-cost sub-

problems. Although there are different methodologies for solving bilevel integer programs

([32, 61]) to date there are no publicly available implementations of these algorithms. Clearly,

the effectiveness of the overall algorithm depends on our ability to solve each subproblem

effectively.

Lastly, we presented some sufficient conditions for the existence of solutions to bilevel

mixed-integer programs and we feel that these conditions could possibly be tightened and

improved with further investigation.
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[53] M. Köppe, S. Verdoolaege, and K. M. Woods. An implementation of the Barvinok-

Woods integer projection algorithm. In International Conference on Information Theory

and Statistical Learning, pages 53–59, 2008.

[54] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria. Computer Science Review,

3(2):65–69, 2009.

182

http://www.soopadoopa.dk/anders/cats/cats.html�
http://www.soopadoopa.dk/anders/cats/cats.html�
http://www.math.ucdavis.edu/~mkoeppe/latte/�
http://www.math.ucdavis.edu/~mkoeppe/latte/�
http://www.math.ucdavis.edu/~mkoeppe/latte/latte-benchmark-2007-11-01.html�
http://www.math.ucdavis.edu/~mkoeppe/latte/latte-benchmark-2007-11-01.html�


[55] S. Kwek and K. Melhorn. Optimal search for rationals. Information Processing Letters,

86(1):23–26, 2003.
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