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Abstract

In this thesis, we mainly investigate the parameter estongiroblem for fading and atmo-
spheric turbulence channel models for wireless commupitsit A generalized method of
moments (GMM) estimation scheme is introduced to the esiomaf Nakagami fading pa-
rameter. Our simulation results and asymptotic perforraaalysis reveal that this GMM
framework achieves the best performance among all methatbaients estimators based on
the same moment conditions. Further improved performaande achieved using additional
moment conditions in the GMM. In the study of the maximunelikood (ML) based Nak-
agamim parameter estimators, we observe that a parametehich is defined as the logarith-
mic ratio of the arithmetic mean to the geometric mean of thkadgamim fading power, can
be used to assess the estimation performance of ML-basethé&sts analytically. For small
sample size, the probability density function (PDFYok derived by the moment generating
function (MGF) method. For large sample size scenarios, seeaumoment matching method
to approximate the PDF &k by a two-parameter Gamma PDF. This approximation is vali-
dated by the Kolmogorov-Smirnov (K-S) test as well as sirmareresults. When studying the
Gamma-Gamma turbulence model for free-space optical (EB@)nunication, an estimation
scheme for the shape parameters of the Gamma-Gamma distmilgiintroduced based on
the concept of fractional moments and convex optimizatidrmodified estimation scheme,
which exploits the relationship between the Gamma-Gammpesparameters in FSO com-
munication, is also proposed. Simulation results showtthiatmodified scheme can achieve

satisfactory estimation performance over a wide rangerbitence conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

With the capability of providing globally interconnectedize and data communication sys-
tems, as well as establishing local communication architedor the interconnection of elec-
tronic devices, wireless communication is undoubtedly @inthe most vibrant areas in com-
munication theory research today. Modern wireless comoatioin dates back to the invention
of wireless telegraph system by Guglielmo Marconi over onedned years ago. However,
even though it emerged only 20 years after the invention @téfephone by Alexander Gra-
ham Bell, wireless communication was not widely used in thesamer communication mar-
ket until the early 1980s. For nearly one century’s time ia thodern telecommunication
history, most of the market was dominated by wireline comication.

Technologically, what impeded wireless communicatiomfrextensive application were
the undesirable features of the wireless transmissiom@mwient. Being an open transmission
medium, wireless channels can bring much more attenuatidruacertainty to the transmit-
ted signal than wireline does, thus more sophisticatechtdolgies have to be implemented in
wireless systems to combat this disadvantage. Generadbkspg, there are two fundamental
challenges that have to be addressed for wireless comntiamical he first challenge is the
random fluctuation of the transmitted signal. In radio freaey (RF) wireless communication
systems, this is known as fading which is mainly due to thetipath effect and shadowing;
whereas for a more recent line-of-sight (LOS) wireless camigation technology, the free-

space optical (FSO) communication, much smaller waveleagt directionality determine
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that signal fluctuation in FSO is dominated by the effect of@pheric turbulence but not
fading. The second challenge for wireless communicatidhasnterference from other users
or other communication systems. Unlike wireline commutmcawhich uses a bounded trans-
mission medium, communication through a wireless charmeiare subject to interference
because different users and different systems are shdmingame transmission medium. In
this thesis, we address the first challenge and focus ouy s$tuthe problem of parameter
estimation for wireless fading and turbulence channel Hsodénowledge of these parameter
values can be used, for example, to design a better trariemgheme adaptive to the wireless

links and to better characterize wireless channels forbinkget analysis.

1.2 Fading and Turbulence Models for Wireless
Communication

To address the first challenge for wireless communicati@tandom fluctuations of the trans-
mitted signal, fading and atmospheric turbulence modelperyposed for different application
scenarios and channel conditions based on statisticgt efudceived signals. However, mod-
elling the pattern of the signal fluctuations is just the fat&p. In order to employ a fading or
turbulence model in system design and performance anallys®lso critical to determine or

estimate the parameters of the model, which will fit the madehe specific channel condi-
tions. This estimation process is what we will mainly discirsthis thesis. Before discussing
the parameter estimation problem further, we will first eewisome well-known fading and

turbulence models for wireless communications.

1.2.1 Multipath Fading Models

As a result of the random propagation (reflection, diffractand scattering etc.) of radio

waves in the wireless transmission environment, sevepétes of the transmitted signal, with
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different amplitudes and phases, arrive at the receiver fiten these signal replicas are not
resolvable, they are added up constructively or destrelgtat the receiver, causing multipath
fading or fading in short.

The delay spread, denoted Ty, is one of the most important channel properties; it char-
acterizes the time domain dispersive nature of the fadirzgicll. In brief, Ty describes the
arrival time span of all the available signal replicas. Téaprocal ofTy is known as the coher-
ent bandwidth, which is denoted by.. When the signal bandwidW is much smaller than
W, the channel is considered as frequency-nonselectivetpmftach means that all the fre-
guency components of the transmitted signal experiencsaime attenuation and phase shift.
Otherwise, the channel is considered as frequency-setdetiling.

Another important parameter which characterizes the #aquy dispersive nature of the
fading channel is the Doppler sprelg the reciprocal oDs is the coherent timé&;. WhenT,
is much larger than the delay requirement of the system,wikiasually set to be the symbol
durationT, the channel is considered to be a fast fading channel;wtbethe channel is said
to be slow.

Therefore, based on the relative relation between pregsesfithe transmitted signal (sym-
bol durationT in time domain and signal bandwid# in frequency domain) and properties
of the wireless fading channel (coherent tifiein time domain and coherent bandwidif
in frequency domain), we can classify fading channels ioto basic types: fast frequency-
selective fading, fast frequency-nonselective fadingygtequency-selective fading, and slow
frequency-nonselective fading. In this thesis, we focusestimation of slow frequency-
nonselective fading models.

Regardless of noise and interference, the slow frequenogeiective fading channel can

be described by the following expression

s(t) =a-s(t) 1.1
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wheres (t) ands (t) are transmitted and received complex signals respectiaaty the com-
plex random variabler represents the fading channel characteristics.

The first-order statistics of the fading channel, which ebtarizes the fading envelope
or amplitude of the parameter, is the most widely used approach to study fading effect.
Among all the statistical models proposed for the fadinge¢ope, the most well-known ones
are Rayleigh, Rician, and Nakagamimodels.

The Rayleigh and Rician fading models are derived from ®ksrone-ring model [1]
for the electromagnetic field of the received multipath algnThe Clarke’s model assumes
that between the transmitter and the receiver, theréNatmresolvable paths with random
amplitudes and phases. If no LOS path exists, for suffigrdatige N, by the central limit
theorem (CLT), all independent paths will have Gaussiatridiged amplitudes and uniform
phases. Therefore the real and imaginary parts of the surbavihdependent and identically-
distributed (i.i.d.) zero mean Gaussian RVs, and the cporeding fading envelopie will have

a Rayleigh distribution with probability density functi¢gRDF)

_2r
T Q

(OINS

fr(r) ea, r>0 (1.2)

where the paramet&? is the fading powef) = E [RZ] When an LOS or specular path with
known amplitude exists between the transmitter and théevecehe real part and the imaginary
part of the combined signal will be correlated, and the fgdimvelope will have a Rician
distribution. The PDF of the Rician distribution is given by

fr(r) = wexp{—%— (,%/#Ql)rz} lo <2r w> , r>0 (1.3)

wherelp(-) is the zeroth order modified Bessel function of the first kantj the parameter”
is known as RiciarK-factor which is defined as the ratio of the power in the spaqoth to

the power in the scattered paths. According to the definitiom RicianK-factor indicates the
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relative strength of the LOS component: wh#h= 0, the LOS component disappears, anf the
Rician distribution specializes to Rayleigh distributisrhen.’z” approaches infinity, the scat-
tering components in the signal are negligible, and the mbldmecomes static or deterministic.
Different from the Rayleigh and Rician distributions, thekdgamim distribution was not
derived from any theoretical model. It was originally deeddrom experimental data [2].
Thus for a variety of fading conditions, the Nakagamimodel can fit the practical multipath
fading measurements better than the other models. The PBie dakagamm distributed

fading envelope is given by

fr(r) = 2 (g)mrz’“‘lexp<—gr2> ., r>0,m> % (1.4)

wherem is known as the fading parameter whose reciprocal quanttieslegree of fading,

andr (-) is the Gamma function defined by

M(2)= /0 e lg gt (1.5)

The Nakagamm distribution covers a wide range of fading conditions. It &g shown that
whenm= % which corresponds to the most severe fading conditiori#dle@gamim distribu-
tion becomes the one-sided Gaussian distribution. TheeRgydistribution can also be found
as a special case of the Nakagamdistribution by lettingn= 1. Being capable of modelling
a wide range of fading conditions as well as having a traet®®F, the Nakagamm fading
model is a popular and widely used fading model in wirelesarmaonication research. Esti-

mation of the Nakaganta fading model is thus of great interest in wireless commuioos

research.
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1.2.2 Atmospheric Turbulence Models

As a typical LOS communication technology, FSO differs frorast RF systems which suffer
from fading due to multipath propagation. In FSO commumicgtthe main impairment is
caused by atmospheric turbulence-induced fluctuationsT[i3¢refore, multipath fading mod-
els are no longer applicable to system design and perforenamalysis for FSO systems. In-
stead we focus on the study of atmospheric turbulence models

For weak turbulence conditions, Parry [4] and Phillips amdidews [5] independently sug-
gested a log-normal PDF to model the irradiance, which ispthweer density of the optical
beam. With unit mean irradiance and scintillation inag the log-normal PDF of the irradi-

ancel is given by [3]

1 in +107)?

fll)= ——expd ——— 2711 L | 1.6
L() I\/;O_lzexp{ 20'2 } > ( )

When turbulence becomes stronger, the negative expohdistiabution was introduced as a
limit distribution for the irradiance. This limit distriltion can only provide sufficient accuracy
when the system goes far into the saturation regime [6]. Rdkstribution, which is based
on an assumed modulation process, was later introduced telntloe irradiance in strong
turbulence scenarios [7]. The-distribution with unit mean irradiance is characterizguliie
PDF [3]

2a

fe (1) = m(ul)("*l)/zKa_l (2va), 1>0 (1.7)

whereq is a positive shape parameter related to the effective nuoflukscrete scatterers and
Ky(+) is thevth order modified Bessel function of the second kind.

Being a widely accepted turbulence model for FSO commuigicainder strong turbu-
lence conditions, th&-distribution is, however, incapable of modeling the ireate when
turbulence is weak. This is because the scintillation ingigen by theK distributed irradi-

ance is always greater than unity, which is not valid for waakulence scenarios. Another
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modulation-based model, the Gamma-Gamma distribution,latar proposed by Al-Habash
et al. [8] to model the irradiance in FSO systems. The PDF of the Gar@amma distribution

is given by

(@+B)/2 4,
fe(l)=%lf—lKaB (2\/a[3|), a>0,8>0 (1.8)

wherea andf are the shape parameters. Note that by setting the shapeqiarg = 1, the

Gamma-Gamma distribution will degenerate tokhdistribution. The Gamma-Gamma turbu-
lence model is desirable because for both weak and strobglémce scenarios, this model can
provide a good fit to the experimental measurements of mrad [8]. Thus, the key advan-
tage of using the Gamma-Gamma turbulence model is that&rs@wide-range of turbulence

conditions.

1.3 Moment-Based Estimation Techniques

A number of statistical signal processing approaches haea mtroduced to parameter esti-
mation in wireless communication research, among whichrtbst popular ones in practical
applications are the ML estimation and the method of mom@i&M) or the moment-based
approach. Because of its asymptotic efficiency, the maxirikeiihood estimator (MLE) is
approximately the minimum variance unbiased estimator (MY and the ML approach can
also give us the Cramér-Rao lower bound (CRLB) for the MVUEick describes the best
achievable estimation performance for unbiased estimd®jr Therefore the ML approach
is usually the more preferable one for theoretical studitsvever, when the model, or more
specifically the PDF of the fading or atmospheric turbuletheg will be intensively discussed
in this thesis, involves transcendental functions, the Mpraach will likely involve solving
an nonlinear transcendental equation or equation setjwvdaic be undesirable in practice.

As an alternative approach, the method of moments can ydead to estimators which are



1.4. Thesis Outline and Contributions

easy to determine and implement [9]. Even though theresem@sbptimality properties for the
moment-based approach, it can usually give satisfactdimates when the sample size is large
enough. The basic principle of the method of moments is takxine population moments of
the model to their sample counterparts. Several estimé&ichmiques under the basic frame-
work of MoM have been proposed by researchers. The mostyvigad one is the classical
method of moments, which solves for unknown parameters iegaiation or equation set de-
rived from the moment conditions of the model. The geneedlimethod of moments (GMM)
approach [10] proposed a regression estimation schemeeferndined and over-determined
problems. Using linear combinations of order statistios, lt-moment method, a more robust
method that suffers less from sampling variability, wasadticed for estimation of distri-
butions [11]. In addition, combinations of the moment-lshapproach and other estimation
approaches are also reported [12] [13] [14]. Multiple motrmased estimation methods as

well as combinations of estimation methods will be used is tihesis.

1.4 Thesis Outline and Contributions

This thesis have been divided into five chapters. Chapteviéws some background knowl-
edge about fundamental challenges for wireless commumicatandom fluctuation of the
transmitted signal and the interference problem. To addites signal fluctuation problem,
we first need to model the fluctuation pattern and then estimatresponding characteristic
parameters when applying the model in system design andrpahce analysis for specific
application scenarios. This motivates researchers to ftigbestimators for popular fading
and atmospheric turbulence models. It is pointed out tleatrtbthod of moments is sometimes
a preferable approach to ML when the model takes an intrkctaim.
In Chapter 2, we provide a detailed discussion on momerdgebastimation for the Nakagami-

m fading model. Firstly a family of classical moment-basagarameter estimators is re-

viewed, both integer moments scenario and fractional mésresenario are discussed. Then
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the GMM method which exploits information resides in all mawhconditions in a determined
or over-determined estimation problem is introduced tanfigg@arameter estimation for the first
time. At last, a systematic performance comparison for nmarbasedn parameter estimators
is conducted by both the simulated mean square error agpesatthe analytical asymptotic
variance approach.

In Chapter 3, we use moment-based method to study perfoeadidL-based Nakagami
m parameter estimators. By examining the derivation of theddksedn parameter estimation
problem, it is found that a paramet&r which is defined as the logarithmic ratio of arith-
metic mean to geometric mean for Nakagamiading power, is critical to the ML-basead
parameter estimation. Closed-form expressions are dkeforethe moment generating func-
tion (MGF) and the PDF of. For large sample size, we use a moment matching method to
approximate the PDF df by a two-parameter Gamma PDF. This approximation is vaditlat
by the Kolmogorov-Smirnov (K-S) test. As an applicatiorg tpproximate PDF is used to
study the performance of three well known ML-based Nakagamparameter estimators, the
Greenwood-Durand estimator [15] and the first and seconerdZtieng-Beaulieu estimators
[16].

Chapter 4 studies the parameter estimation of the Gamma¥@anrbulence model for
FSO communication. A novel estimation scheme for the shapanpeters of the Gamma-
Gamma distribution is proposed based on a combination ofifreal MoM estimation and
convex optimization. Then a modified estimation schemeckwhirns out to be an improved
one, is proposed by considering relationship between tinef@&aGamma shape parameters for
FSO applications. Revealed by computer simulation resiiésmodified scheme can achieve
improved performance over a wide range of turbulence cmmdit

Chapter 5 summarizes contents and contributions of thgsshend suggests some possible

future works in related topics.



Chapter 2

Moment-Based Estimation for the

Nakagami-m Fading Parameter

2.1 Background and Motivation

The Nakagamimn fading model is important in wireless communications resedecause it
fits the empirical multipath fading measurements betten tiiie@ other fading models for a
variety of fading conditions [2]. The Nakagamm-nodel is also desirable because error rate
performance analysis with Nakagami fading often leadsdsex-form analytical results.

The PDF of the Nakaganmitfading envelopéR has a two-parameter form, which is given

by [2]
2 m

fr(r) = ) <§)mr2mlexp<—gr2> ., r>0,m> % (2.1)

whereQ=E[R?], and the fading parametaris defined as [2]

Q? 1
= > = 2.2
" Er—07 M2 (2:2)
GivenN independent realizations of the Nakagamrandom variabldR;, Ry, ..., Ry, since

the parameteR is defined as the second-order moment of the Nakagafading envelope, it
is straightforward to use the second order sample momethedfading envelope to estimate
Q,whichisQ = [l = & N, R?. Thus in order to characterize wireless communication chan

nels using the Nakagami model, it is critical to determinestimate the value af, which is

10
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also known as reciprocal of the amount of fading (AF), friMmdependent observations. No-
tice that the squared value of a Nakagamdhistributed random variable is a Gamma random
variable, Nakagamn parameter estimation is sometimes related to estimatioth@oGamma
distribution.

Greenwood and Durand demonstrated that the ML-baspdrameter estimation problem
leads to solving a non-linear transcendental equationiving a natural logarithmic function
and a digamma function [15]. The most well-known ML-basegarameter estimators, the
Greenwood-Durand estimator [15] and the Cheng-Beauliimators [16] are actually ap-
proximate solutions to the ML Nakagamm parameter estimation problem. This undesirable
feature of the ML approach has, in part, motivated reseasdbaise a moment-based approach

to find alternative Nakaganm parameter estimators.

2.2 Moment-Basedn Parameter Estimation with Integer
and Fractional Moments

In this section, we review some moment-based Nakagamfading parameter estimators de-

rived from analytical moment expressions of the Nakagamdistribution.

2.2.1 Integer-Moment-Basedn parameter Estimators

Thekth moment expression for the Nakagamdistribution is given by

M(m+k/2) (Q)k/z. (2.3)

uk:E[Rk}: r(m) m

To avoid transcendental functions in deriving moment-tas@arameter estimators, first we
need to find a way to cancel the Gamma functions in (2.3).

Recall the iterative property of the Gamma functidiz+ 1) = z-T'(2), it is straightforward

11
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to show that for evelk values,'(m+ k/2) can be written as product &f(m) and a polyno-
mial function ofm. Gamma functions in the moment expression can then be ehaaid a
generally preferred algebraic equation is obtained. Thike basic idea of the moment-based
Nakagamim parameter estimator proposed by Abdi and Kaveh [17]. Forefisample size,
higher order sample moments may deviate from the value ofrttiemoments significantly
[18] (which is known as the outlier problem), smallevalues are preferred in this moment-
basedn parameter estimation scheme. However, the second ordeentafithe Nakagamina
distribution is simply the paramet&, which does not have parametain it. Therefore Abdi
and Kaveh derived a moment-basagharameter estimator based on the fourth order moment
expression of the Nakagamm-distribution. Substituting? in the fourth order moment expres-
sion by the second order sample moment, and then solvg, fairmoment-based Nakagami

parameter estimator was found as [17]

13
Miny = —== (2.4)
H4—H22

wherefy = & $N ; R<is thekth order sample moment. This estimator was named the inverse
normalized variance (INV) estimator, because it can beibthby replacing the moments in
the definition ofmin (2.2) with the sample moments.

An alternative way to cancel the Gamma functions in (2.3pitake the ratio of two dif-
ferent moments of the Nakagammdistribution. Again by the iterative property of the Gamma
function, we observe that the ratio of tkeh andkth moments, wherk/ —k = aiis a non-zero
even integer, also formulates an algebraic equation whachbe easily solved. The simplest

case of this approach is to uke= 3 andk = 1

Hg _ T(M+3/2) QY 1\ /Q
up r(m+1/2)\m) M3 ) m) (2:5)
Solving (2.5) form with Q substituted by its estimator, Cheng and Beaulieu derivethanm

12



2.2. Moment-Baseth Parameter Estimation with Integer and Fractional Moments

parameter estimator based on integer moments [19]

. [l i

2(fz — [y fl2)

Notice that the highest order of sample moments used in agimmy is 3, which is smaller
than that ofmjny, thereforeny is expected to suffer from the outlier problem less than the

INV estimator, which suggests a better estimation perfoigea This intuitive result will be

confirmed by the asymptotic variance analysis in Sectior82.2

2.2.2 A Family of Fractional Moment-Basedm Parameter Estimators

Cheng and Beaulieu observed that the INV estimator can astelbved by taking the ratio
of the fourth and second moments of the Nakagamndistribution and solving for parameter
m [19]. This suggests that both estimators discussed in @eéti2.1 belong to a family of
moment-based Nakagamm parameter estimators derived by the ratio-of-momentscambr.
Notice that the order indek in the Nakagamim moment expression (2.3) is not restricted
to positive integers. This estimator family can thus be exiea into a family of fractional
moment-basedh parameter estimators. As briefly discussed in Section 2u2dause of the
outlier problem, smaller moment order indices are pretemethis estimator family. There-
fore admitting the use of fractional moments can actuakyitan betterm parameter estima-
tors. This novel idea was first introduced to Nakagamparameter estimation by Cheng and
Beaulieu in [19].

Based on the framework of the ratio-of-moments approaatudsed in Section 2.2.1, and
assuming that=1/pandk’ = 2+1/p, wherepis a positive real number, the ratio of moments

can then be expressed as

e AR O () (B e
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2.2. Moment-Baseth Parameter Estimation with Integer and Fractional Moments

Solving (2.7) and replacing the population moments withrtt@mple counterparts, a general
expression of this estimator family was found as [19]

ﬁl/pﬂz

_ S (2.8)
2p (fps1/p — b/ pll2)

ml/P =

It is straightforward to show that whem= 1, iy, is actuallynt, andniny corresponds to a
p value of 05.

However, wherp approaches-, (2.8) is found to have % indeterminate form after some
algebraic manipulations. Therefore we need to go back tpdipellation moment expression
of (2.8) to find the expression for the limiting case.

Assumingk = 1/p and recognizing that the limiting value kis 0, we denote the limiting
estimator asng. Then apply L'Hopital’s rule to the population moment exgsion of the
estimator family, we have

fim M2y KE[RA1,
k=0 2(Hp+k — HiHz) k=0 2(E[REK] — E[RK|pip)
_ t2 (E[R +KE [R¥InR])
~ 1002 (E [REK RKI
k>02 (E [RPH¥InR] — 1LE [RAINRY]) (2.9)
2(E[R?InR] — 1:E[InR))
E[R2INR2] — E[INR?]’

Replacing the population moments and expected value esipresin (2.9) by their sample

counterparts, the limiting estimator was found to be [20]

. 17)
o — ] , (2.10)
S RINR? — o y N INR?

Combining (2.8) and (2.10) together and using the ordendkdeonsistently, we can rewrite

14



2.2. Moment-Baseth Parameter Estimation with Integer and Fractional Moments

the fractional moment-based Nakagamparameter estimator family as [19]

K i
. 2 (o4 — flklflz);
H2
XYL RRINRE — g 5% InRY

k>0

(2.11)

We observe for the estimator family (2.11), the smakeas, the smaller the order sample
moments that are used, and therefore better estimatioorpehce is expected. In the limiting
casemy should intuitively achieve the best performance amongfthigtional moment-based

mparameter estimator family. Theoretical estimation pennce analysis of this parameter

estimator family using the idea of asymptotic variance bdldiscussed in Section 2.2.3.

2.2.3 Large Sample Properties: Asymptotic Variance Analyis

For finite sample size, moment-based estimators are usbiabged, do not have optimality
properties, and their analytical performance are difficulobtain. However, because of the
consistency of moment-based estimators, we can deriveasgnptotic variance analytically,
which can be of great importance to performance analysiscantparison for large sample
size scenarios.

The idea of asymptotic variance analysis of moment-basad&ers is based on the cen-
tral limit theorem and the weak law of large numbers (WLLN)eImoment-basad parameter
estimators discussed in this section gM-consistent and asymptotically unbiased, thus the
random variable/N (fh— m), with ia moment-baseah parameter estimator, converges in law

to a zero mean Gaussian random variable with variarfce

VN(fm-m) 5 #(0,0%) asN— . (2.12)

The variance terno? is the asymptotic variance of the corresponding momenedraparam-

eter estimator.

15



2.3. Generalized Method of Moments Estimation

In the derivation of the asymptotic variance, we use an aggirénown as the multivariate
delta method [21]. Take the moment-based estimator famiilly kv> 0 as an example. For
large sample sizN, by the CLT, the vectos/N (1 — u) follows a trivariate Gaussian distribu-
tion 4 (0,Zy). Hereu = (U2, Uk, Uks2) is the population moment vectqy, = (o, (i, [k 2)
is the corresponding sample moment vector, ik the covariance matrix gii. Since the
estimatonri in (2.11) is a function of the sample moments, the multivargelta method says
the asymptotic variance ofi, can be derived frory using theJacobian method [21].

The asymptotic varianc&k2 of the fractional moment-based parameter estimator family

(2.11) has been derived by Cheng [20] as

2

of = % (k/2)2v2

Vﬁz
e Ve V2T | g
= (2.13)

m [1+my/(m+1)], k=0

wherevx =T (m+k/2)/T'(m),andy(z) =d|[InT (z)] /dz=T"(z) /T (z) is the digamma function.

2.3 Generalized Method of Moments Estimation

2.3.1 GMM Estimation for the Nakagami m Parameter

The basic idea used in the moment-basegdarameter estimators reviewed in Section 2.2 is
considered the classical method of moments, which aims tbainlosed-form solution to a
theoretical equation or equation set involving the momeiita distribution. The keystone
of classical method of moments is to find a tractable equateirwith moment conditions.
However, desirable equations of moments like the algelegimtions derived in Section 2.2
for the Nakagammdistribution are not always easy to find, even though cldeett-analytical
moment expressions are available.

The generalized method of moments estimation was firstdoted by Hansen [10] in
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2.3. Generalized Method of Moments Estimation

econometrics literature and it is already a widely used oekth this research area. However,
to the author’s best knowledge, this powerful method haseeh applied to communications
research. The GMM gives an alternative way to exploit momgentlitions in estimation prob-
lems. It performs parameter estimation by minimizing wégghdistances between population
moments and their sample counterparts. Usually, more mbowgritions than the number
of unknown parameters are available in GMM estimation. Th&\MGprovides a framework
which combines all available moment conditions optimatlydver-determined problems.

The most widely used implementation of the GMM method is arative regression pro-
cess proposed by Hansen in his original GMM paper [10], ngrHainsen’s two-step GMM
procedure. In this section, we follow Hansen'’s recipe tdgrer the Nakagamin parameter
estimation with GMM.

With N i.i.d. realizations of a Nakagamnmrandom variabld®y, Ry, ..., Ry ands > 1 pop-
ulation moment conditiongyq, k2, - . -, ks, the GMM estimation for Nakaganmm parameter

is formulated as minimizing the orthogonal criterion fuoot

Q(m;r) = gl (m)Wgn(m) (2.14)

wherer = (Ry,Ry,...,Ry)" is the observation vectow is a weighting matrix, andy (m) is

the distance vector defined as

( 3

[l — Hia (M)
fio — Lo (M)

gn(m) = _ : (2.15)
L ks — Hks(M)

Vs

In (2.15), fii’s (i = 1, 2, ...,s) are the ki)th-order sample moments, apg;(m)’'s denote
the (i)th-order population moment conditions as functions ofuhknown parametan. As

discussed in Section 2.2, higher order sample moments méagteérom the population mo-
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2.3. Generalized Method of Moments Estimation

ments significantly, or we can say they are less accurateloiaar order moment conditions.
Therefore it is intuitively necessary to give higher ordesment conditions less weight in the
GMM framework. This is the purpose of introducing the weigbtmatrixW. The accuracy of
moment conditions can be measured by the variance covarmatrix of the sample moment
statistics.

The first step of Hansen'’s recipe is to ¥ét= |, the identity matrix. It means we first give
the same weights to all moment conditions and solve for aiaimistimater(®, which can be
expressed as
0)

= argmin gg (m)gn(m). (2.16)

m

m(

The solution to the least squares (LS) problem in (2.16) eailyebe found with software tools
like MATLAB. Then we can use this initial estimate of theparameter to obtain more precise
estimates by an iterative regression process.

In the second step, we first compute the resigjue [Rt"l — Ui (rﬁ(o)) SR — Lo (rﬁ(o)> ,
ey R{G— Hiks (rﬁ(o))] ! (t=1,2,...,N)for all N observations. Then the autocovariance matri-

cesS; for lag lengthj is estimated by
1 N
j:N Z 0y i 1=01,...1 (2.17)
n=J+

wherel is the selected maximum lag length. With bHRutocovariance matrices, we can esti-

mate the long-run covariance matrix by

I
Z (Si+9)) (2.18)

wherew;’s are weights for autocovariance matrices with differagtValues. Generally speak-
ing, giving more distant lags less weight can improve edimnaaccuracy. A widely used

weighting scheme is that of Bartlett [22], which is givenway=1— j/(I +1). Then selecting
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2.3. Generalized Method of Moments Estimation

W = S1, the second step estimate of theparameter can be obtained as

mY) = argmin g (m)Sgn(m). (2.19)

m

Step 2 is then iterated until the absolute difference batvte® consecutive estimates is less

than a predetermined threshold (estimation accuracy negent)c.

2.3.2 Derivation for Asymptotic Variance of the GMM Estimator

In Section 2.2.3 we have introduced the basic concept of pmtia variance analysis and
showed that the asymptotic variance of the fractional mdrbasedm parameter estimator
family has been derived by Cheng [20]. However, for the GMi\parameter estimator, the
asymptotic variance has not been derived in the engineétargture; besides, it is also un-
clear what is the best achievable performance among aliigessparameter estimators based
on certain available moment conditions. Because the GMMiges a framework to opti-
mally exploit all available moment conditions in its itacat process, it is natural to ask if the
GMM attains the best asymptotic performance among all mavbased estimators using the
same moment conditions. In this section, we derive the agytaprariance of the GMMn
parameter estimator introduced in Section 2.3.1.

Using the assumptions made in Section 2.3.1, we haved. realizations of a Nakagami-
m RV ands > 1 population moment conditionga, Mk, -- -, Uks. FOr large sample sizH,
the joint distribution of the elements df= ({1 — L1, ke — Uk2, - - - , Flks — uks)T approaches
a multi-variate Gaussian distributiort” (0,X), whereX is the covariance matrix of elements
of random vectod, the difference vector between available population diors and their

sample counterparts. The elementsoht theith row and thejth column isZjj = L kj —
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2.3. Generalized Method of Moments Estimation

Ml - Thus, the joint PDF of the observed sample moment vecter(fi, fio, . . ., ﬁks)T is
[ — M
- " 1 " " 2\
F(a, - fs) = —— 7 eXP | — (fka — Hids - - -, flks — Hks) (N)
(2m)? [det ()] )
Uks — Hks
(2.20)

wherey;’s are functions oim andQ, anddet(-) denotes the determinant of a square matrix.

The estimatengyy in @ maximume-likelihood sense can be expressed as

Memm = argmaxin f (fig, .. ., fks)
m
Fr — My
1 " A _ .
= argmax —éln[det(Z)] — N (fia — Hias - - - » flks — His) ; +C
m

[ls — His
(2.21)

whereC is a constant which does not dependnan
For large sample sizBl, the quadratic term in (2.21) will be the dominant term. Thus

(2.21) can be well approximated by

i — Hia

Memm = argmmin(/flkl — Uit s Pes — Hiks) =1

Hks — Hks (2.22)

= argmin g, (m)=~gn(m)
m

= argmin Q(m; fl, .. ., flks)

m

where Q(m; i, . . ., lks) is the orthogonal criterion function (2.14). In the ML sentiee
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2.3. Generalized Method of Moments Estimation

estimatarigum Is the zero of the following function

h(m’ I:lkla RS i:lkS>
— 0Q(m’ ﬁkl? sty I:lkS>

om
Fia — Hia
— 2 (a“kl,..., d“"s) 51
aom om (2.23)
flis — Hics
iy — Mt
0
— ([l — o “1( 9%\ s-1
(Fha — M - -+ Hks — Hiks) Z (0m> 2
fis — Hks
in which we used the derivative identity of matrix inverse
031 1 {02\ __
S =2 L (Wn) > 1 (2.24)

By the multivariate delta method [21], the asymptotic viac@ody,,, = Var [v/N ffigum] can

be obtained as

IMGmm
e e OHa
Tum = MM M ) 5 : (2.25)
0 [y 0 s
Ihgvm
O His Bia=p,--, ls=Mks

Considet (Mgmm; Hki, - - -, Hks) = 0 @s an implicit function ofngym in terms of(fika, - - - , fiks)-
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2.3. Generalized Method of Moments Estimation

We write the derivative of the implicit function as

( Oh(Memm; ks - - - 5 Fks) ONemm N oh (Memm; s - - - » flks) 0
ey o[ o[
(2.26)
oh(femm; Pk, - - -, fks) OMamm . dh (Memm; ks - - - flks) 0
amGMM 0ﬁks 0ﬁks
and have
Irgvm oh(emm; flit---: His)
Ol 1 O
| T T o) ' (2.27)
Ifmum IMemm oh(Memm; flit---: His)
0 ils 0 [is

Calculating the partial derivatives of emm; Hkt, - - -, fks) N (

into (2.25), the asymptotic variance of the GMivparameter esti

2.27) and substitute (2.27)

mator can be written as

1
OBy = = (2.28)
n
wheren is defined as
%
M Im=rhgum
n:(% ,...,% )zl (2.29)
M | m=rhgum M | =rhemm o
Itks
IM |t

A detailed derivation of (2.28) is given in Appendix A. Besauwf the consistency of the

GMM estimation scheme, for large sample sitethe asymptotic variance ofigyy can be

further simplified as

O
o o aom
2 k1 ks ) <1 .
0, = 2
GMM ( om’ dm)
OLs
om

-1

(2.30)
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2.4 Numerical Results and Discussion

In this section, we present performance comparisons ofsavw®ment-basenh parameter es-
timators. Both mean square error (MSE) analysis via MontdoGamulation and the asymp-
totic variance analysis are conducted for the classical emtthased estimators reviewed in
Section 2.2 and the GMM estimator introduced in Section 2.3.

Since estimators discussed in this chapter are consideyaapaotically unbiased, we use
performance of the ML approach as a benchmark in the congrariEhe MSE performance
of the moment-based estimators are compared with the CfRaxlower bound. For asymp-
totic variance analysis, we compute the asymptotic redaificiency (ARE) [21] of different
moment-basedh parameter estimators with respect to the ML-based estimatee relative

efficiencyez, z, of estimatoiZ; to Zg is defined as

_ Var(Zo)
“niZo = Var(Z;)’

(2.31)

The ARE of the ML-based estimator with respect to itself issth. The ARE of the moment-
based estimators with respect to ML should be less than lubegaoment statistics are not
the sufficient statistics.

Fig. 2.1 and Fig. 2.2 show the simulated MSE performance hadsymptotic relative
efficiency of the moment-based Nakagamparameter estimators respectively. We observe
that for all values ofm, the limiting estimator of the fractional moment-basedneator family
(2.11) and the GMM estimator with first, second and third ordement conditions are more
efficient than the other moment-basegarameter estimators. Specifically, when< 1, the
limiting fractional moment-based estimator achieves & bstimation performance; whereas
whenm > 1, the GMM estimator based on the first three integer momauisedforms the
limiting estimator. The performance difference betwees @MM estimator based on the

first two integer moments and the GMM estimator based on tketfiree integer moments
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2.4. Numerical Results and Discussion

suggests that the GMM approach can achieve better estimagidormance by adding more
moment conditions. Itis interesting to notice that the INS#imator which uses the second and
fourth order moments achieves the same MSE and asymptoi@nea as the GMM estimator
based on the same moment conditions. This implies that theelimator has achieved the
best asymptotic performance among all MoM estimators basdte second and fourth order
moment conditions. However, we can observe that there igga parformance gap between
the GMM estimator with the first three integer moment cowdisi and the classical moment-
based estimatan.. This observation suggests that based on the same mometliticos, it is

still possible to design a moment-based estimator witrebetrformance than that ot.”
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10

MSE
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—— GMM1,2

0.5 1 15 2 2.5 3 3.5 4 4.5 5

Figure 2.1: Simulated MSE performance of moment-based ¢Nakafading parameter esti-
mators with sample sizd = 10,000.
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Figure 2.2: Asymptotic relative estimation efficienciesmobment-based Nakagami fading
parameter estimators with respect to ML.
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2.5. Summary

2.5 Summary

In this chapter, we have provided a detailed discussion omamd-based estimation for the
Nakagamimfading model. A family of classical moment-basagharameter estimators based
on both integer and fractional moments has been reviewddslbeen shown that some com-
monly used moment-based parameter estimators are special cases of this estimandlyfa
The GMM estimation approach which exploits all availablenemt conditions in a determined
or over-determined estimation problem has been introdtacdling parameter estimation for
the first time. Systematic performance comparison for mdarbhasedn parameter estimators

has been conducted by both Monte Carlo simulation and agjopariance analysis.
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Chapter 3

On Statistics of Logarithmic Ratio of
Arithmetic Mean to Geometric Mean for

Nakagami+n Fading Power

Chaper 2 discusses several moment-based Nakagaarameter estimators. In this chapter,

we focus on performance analysis of maximume-likelihoodeblas parameter estimators.

3.1 ML-Based Nakagamim Parameter Estimators

Recall that the PDF of the Nakagamifading envelopd& is given by

2 (M\M om g m > 1
— — —— > > = .
fr(r) F(m)<Q> r exp( Qr ), r_O,m_2 (3.1)
whereQ = E[R?] is the scale parameter, and the shape parameiedefined as
Q? 1
= > . .
"ER-a7 "2 &2

As briefly discussed in Chapter 1, in order to characterizeeless channels using the
Nakagamim distribution, it is crucial to determine or estimate theuneabfm from N random
samplesR{, Ry, ..., Ry drawn independently according to (3.1). Several methodegtimat-

ing them parameter have been reported in literature. The GreenWawdnd estimator (GDE)
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3.1. ML-Based Nakaganm Parameter Estimators

[15], a ML-based Gamma-shape parameter estimator, is giyen

A f1(A) A<0.5772
MGDE = (3.3)
fo(A) 0.5772<A <17

where
() = 0.5000876+ 0.1648A85A —0.0544274? (3.42)
R
and
1N 1N . .
A=In [N;R,?] —Ni;InRzz—w(m)+ln(m) (3.5)

in which ¢(-) is the digamma function defined ggx) = I''(x) /' (x). More recently, Cheng
and Beaulieu [16] proposed to use the first-order and seocthel-approximations tg(-) in

ML-basedm parameter estimation and derived two approximate ML estirmdorm as

. 1
and
X 6+ +/36+48A
M = SaA . (3.7)

It was pointed out by Zhang [23] that estimators similar t&Y&nd (3.7) were reported earlier
by Thom [24] in the estimation problem for the Gamma distiidouin another discipline.

The ML-based estimators presented in (3.3), (3.6), and &e7all functions of the param-
eterA. This immediately implies that if we know the PDF of the paedenA, we can assess
the performance of ML-based estimators for the Nakagarparameter without performing

intensive computer simulations.
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3.2 Statistical Properties ofA

3.2.1 Alternative Expression ofA

The expression of paramet&iin (3.5) can be written as

R (o=

We observe from (3.8) that the paramehes just the logarithmic ratio of the arithmetic mean
to the geometric mean &f samples of the Nakagamifading power.

It can also be shown that the Nakagamidistribution is a member of a two-parameter
exponential family, and the parameters a function of the joint complete sufficient statistics.
The detailed proof is given in Appendix B. In addition, by pesties of sufficient statistics

[25], the ML-based estimator of the unknown parameter ishatian of the sufficient statistic.

3.2.2 Nonnegative Property ofA

According to the well-known Arithmetic-Geometric ineqina[26], we have

%iﬁz = (]j Ri2> : (3.9)

and therefore we must have> 0. By recognizing the fact that when approaches-« the

Nakagami PDF becomes an impulse function located@f we arrive at

1N 1 <N
lim A= lim In [NNZ.;ﬁzl] _In [%ﬂ%
M—+-oc0 M—+-o00 (Hi:lRiz)N (Hi:lQ)N

—0. (3.10)
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3.2.3 Moment Generating Function ofA

To derive the MGF of\, denoted byP,(s), we start with the definition and have

ch(s)—E[eSA]
_ /+°° /*“[ (1R ]
o o [Ns(,R)F
N
Lo ()R e 85 o 5 () "R 5 oo
m N S
_ [%ﬁs) ] /0+°° 0+°°|iR|2m -1 (:‘ Rz) exp(—— iR'z> dR;---dRy

If we letd = m—s/N, after a change of variabIRI% =X;), we obtain

(1 m Yoo Yoo . S m N
Da(S) = / / rlxd < x.) ~exp<—5i;xi> dxy - - - dxy.
(3.12)
The multipleN integrals in (3.12) can be reduced to a single integral bgking the following
useful integral identity [27]

400 +o0 n
/ / Xglflxngl...xgnflf(
0 0 i
————

lei)de -~ dXn
- - (3.13)

_ M(ay)l (az)---T(an) /+mua1+a2+'“+a"1f(u)du.
F(ai+az+---+an) Jo
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Lettingas =ax=...=ay=dandf(x) = xsexp(—rﬁnx), we obtain a compact form for the

MGF of A as

N
Pa(s) = [Tlm) Islf) ] . [;((g)(;]];\l ~/0+0° uNdfluseXp<_gu> du

M (mN) [ (m—s/N)N

(3.14)

NS[T(m)|]NF (MmN —s)

where in obtaining the last step we have used the definitidheoGamma function.

3.2.4 Probability Density Function ofA

The PDF ofA can be obtained from its MGF by applying an inverse Laplamesfiorm as

fa(8) = — / I oa(—s)eds

2 e . \ (3.15)
L TN) 1 e N s NN
~ [F(m)N - 2m;j /cjoo (MmN +5)

wherej2 = —1 andc s a suitably chosen positive constant which ensures teatdhtour path
is in the region of convergence. The integration is takengtbe vertical linéJ{s} = cin the
complex plane such thatis greater than the real part of any singularityd®f(—s).

If we now lety = s/N, the PDF becomes

F(mN) N /d+inNV[r(m+y>]N

PR 2 oo PGy (5:49)

fa(0) =

wherec’ = ¢/N is another positive constant. With the aid of the Gauss piidétion theorem
[28]
[ (nx) = (2m) 2" N2 ar (x+ k) (3.17)
N kEL n .
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we arrive at
. '+ Ny N
fa(8) = ) [T M) (&
MmN 21 Jo—jw (2m)Z N (m+y)*z|-|k;1r[m+y+m]
B I (mN) 1ot ML MA—A-m+y | Ny
=N LN I o N—1 K (€7°) dy
(2m) "2 NN A [E (N 271 Jeje REGT [T (1-m ) +y]
(3.18)
Now applying the definition of Meijer'&-function [29]
ap -+ a M T(bj—9s)[liegnF(1—aj+s
o | 1 P _ 1. ql_lj—l (bj =) [Mj=1nr( j +9) Fds (3.19)
S\l by [ 20 Miemia T = b+ Mj=nsa PM(8) =)
to (3.18), we can simply write the PDF Afas
I-m .- 1-m
fa(8) = NE-Gy\, | €V (3.20)
1-m - 1-m-NZt
where
F(m) (3.21)

e TN (m) N

Computer simulations were carried out to generate empiABds of A for differentm
andN values, and to compare them with the analytical PDFs olddirmen (3.20). Fig. 3.1
shows the analytical and empirical PDFsfofor m= 0.5, 1, 2 whenN = 5. Fig. 3.2 shows
the analytical and empirical PDFs aAffor m= 0.5, 1, 2 whenN = 10. It is shown that the
analytical PDFs of\ have excellent agreement with the empirical ones.

When the sample siZ¢ becomes large, the latest version of commercial softwask as
MAPLE and MATHEMATICA are incapable of evaluating our aniadyal PDF expression in
(3.20).
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3.3 Gamma Approximation

To avoid the high computational complexity associated withMeijer'sG-function for large
N, we are motivated to approximate the PDFofising another PDF which can be easily

evaluated and is analytically tractable.

3.3.1 Gamma Approximation for PDF of A

From the nonnegative property discussed in Section 3.2, weevkhatA is defined on [0,
+00). We propose to use a two-parameter Gamma PDF, which is afswed on [0, +0), to
approximate the PDF df. To determine the parameté#sandk in the two-parameter Gamma

PDF
Xl

fX(X)—eT(k), XZO, 9,k>0 (322)

we can simply match the mean and variance of the two-parar@etema distribution to the
mean and variance &.

From the MGF ofA in (3.14), the first two moments & can be obtained by taking the first
and the second derivatives of the MGF with respecd@od evaluating the results si= 0. It

is straightforward to show that the first two momentdare given by

H1 = —@(m) — In(N) + g(mN) (3.23a)

Ho = [Y(m)]? + [IN(N)]? + [(mN)]? + 24 (m) In(N)

— 20(m)(mN) — 20(mN) In(N) + = 7 () — /().

(3.23b)

Setting the mean and variance of the two-parameter Gamrmédigon equal to the mean and
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3.3. Gamma Approximation

variance ofA

U1 = k6 (3.24a)

Hz — (p1)* = k6? (3.24b)

we arrive at
o RY(m)—y/(mN)
—p(m) —In(N) + ¢(mN)

(3.25a)

AW (m) — ' (mN)
[—(m) —In(N) + @(mN)]>*

The two-parameter Gamma approximation is desirable shiise®DF has a simple expo-

k= (3.25b)

nential form, which can be easily evaluated and manipuliat@dactice.

3.3.2 \Validating the Gamma Approximation

Computer simulations were also carried out to compare tloep@vameter Gamma approxi-
mate PDFs with the empirical PDFs &f

Fig. 3.3 shows the comparison between the empirical PDFsren@amma approximated
PDFs ofA for m= 0.5, 1, and 2 witiN = 10. Fig. 3.4 presents the comparison between the
empirical PDFs and the corresponding Gamma PDFsfer0.5, 1, and 2 witiN = 100. Both
Figs. 3.3 and 3.4 demonstrate that the two-parameter GanRaid?a good candidate for
approximating the PDF dA.

To numerically validate the feasibility of approximatidgas a Gamma RV, we use the
Kolmogorov-Smirnov (K-S) test for goodness-of-fit. Theibadea of the K-S test is to com-
pare the empirical cumulative distribution function (CD#th the CDF of the hypothesized

distribution. The test statistid,, for test sample voluma is defined as the supremum of the
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3.3. Gamma Approximation

Table 3.1: Kolmogorov-Smirnov test for gooodness-of-fittfee Gamma approximation.

n=100 n=1,000
Drex | Davg | ACpt. % | Dy | Davg | Acpt. %
N =10
m=05 | 0.226] 0.085| 99.03% | 0.067 | 0.027] 99.05%
m=1 |0.218] 0.085| 98.87% | 0.069| 0.027| 98.83%
m=2 |0.226] 0.085| 99.01% | 0.072| 0.027| 99.00%
m=5 |0.232] 0.085| 99.11% | 0.078| 0.027| 99.01%
N =100
m=05 | 0.212] 0.085| 98.95% | 0.075| 0.027] 99.00%
m=1 |0.222]0.085] 99.11% | 0.066| 0.027| 98.91%
m=2 |0.211] 0.085| 99.00% | 0.074| 0.027| 99.03%
m=5 |0.232] 0.085| 99.01% | 0.068| 0.027| 98.88%

absolute difference between the theoretical Gk) and the empirical CDIF,(x)

Dh= sup [F(X)—Fa(X)|. (3.26)

X€[0,4-00)

If the test statistidy, is less than a critical valuBg, which is determined by both the test
sample volumen (degree of freedom) and a prescribed significance levehe theoretical
distribution is acceptable at a confidence level efd.

Case studies were conducted using test sample vam&00 and 1,000 fom= 0.5, 1, 2,
and 5 withN = 10 and 100. The significance lewelwas chosen to be 0.01, giving a 99.00%
confidence level for the K-S test.

Table 3.1 shows the maximum test statisflsgx and the average test statistidg,y ob-
tained from 10,000 experiments conducted in our study. Ating to [30], the critical values
for test sample volume = 100 and 1,000 at significance level 0.01 B! = 1.63/1/100=
0.163 andD g, = 1.63/1/1000= 0.0515 respectively. We observe that in each case of our
case studies, about 99% of the experiments accepted théhegmothat the random variable
A can be modelled as a Gamma random variable at a confidende19@00%. Table 3.1

also shows thabDgx values, under which the hypothesis is rejected, are sfigihtater than
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Table 3.2: Numerical MSE performance evaluations for Misdzth Nakagamim parameter
estimators.

N =100
E[] ‘ Var|] ‘ Bias
my
5| 0.40413731| 0.00311112| -0.09586269
0.89122741| 0.01615511| -0.10877259
1.90478583| 0.07568833| -0.09521418
4.98725469| 0.52291930| -0.01274531

nmy
5| 0.530691584 0.00348994| 0.03069158
1.034506216| 0.01677922| 0.03450622
2.058782448 0.07652349| 0.05878245
5.148600611] 0.52392564| 0.14860061

MGDE
5 | 0.500496858 0.004216106/ 0.000496858
0.980884952 0.018350252 -0.019115048
2.032113782 0.078701255 0.032113782
5.141084032 0.526581576 0.141084032

3|13|3|3
a|lN| k| o

313|133
a|N| k| o

3|3|3|3
I
a|N| k| o

the critical values; and the average test statiStig values are significantly below the corre-
sponding values. In summary, the K-S test concludes thawhrgparameter Gamma PDF can

be used to accurately approximate the PDB.of

3.4 Applications and Numerical Results

In this section, we use the Gamma approximate PDF to nuntigraaaluate the performance

of ML-based Nakaganm parameter estimators discussed in Section 3.1 for Idrgeenarios.
Table 3.2 shows the mean, variance and bias of three ML-Hdakdgamim parameter

estimatorsny, My, andmgpe form= 0.5, 1, 2, and 5 with sample sidé= 100. The numerical

results were calculated by using the Gamma approximate PRFlerived in Section 3.3.
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By using the relationship

MSE(rh) = Var|f + biag (M) (3.27)

we can evaluate the MSE performance of ML-basgohrameter estimators numerically with
the data in Table 3.2. Fig. 3.5 shows the simulated MSE of M&edlm parameter esti-
mators discussed in this chapter and the MSE of tihesstimators calculated by using the
approximate PDF oA. The plots show that the calculated MSE values give exddileto the
simulated MSE curves, which also validates the proposedn@aapproximation. It can be
observed in Fig. 3.5 that the Greenwood-Durand estinmaggiz and the second order Cheng-
Beaulieu estimatamy, achieve very close MSE performance for a variety of fadinggitions.

In addition, for small and moderatevalues (< 3), Migpe andny, perform better than the first
order Cheng-Beaulieu estimatmg inh terms of MSE; however, fom > 3, which corresponds

to less severe fading scenariag, cutperformargpe andn,.
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Figure 3.5: Analytical and simulated MSE performance of bhsed Nakaganm parameter
estimators with sample si2¢= 100.

43



3.5. Summary

3.5 Summary

In this chapter, we have studied statistical propertiespdramete, which is defined as the
logarithmic ratio of the arithmetic mean to the geometricaméor the Nakagamin fading
power. This parameter is useful in studying the ML-basednedors of the Nakagamn
fading parameter. Closed-form expressions have beenediiav both the MGF and the PDF
of the parametef. For large sample size, it has been found that the PD& cdin be well
approximated by a two-parameter Gamma PDF. This approxaméaias been validated by
the Kolmogorov-Smirnov test. As an application, we haveliadpour results to study the

performance of three widely used ML-based Nakagarparameter estimators.
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Chapter 4

Moment-Based Estimation for the
Gamma-Gamma Distribution with FSO

Applications

4.1 Introduction

Being capable of establishing full-duplex high-speed l@ge communication links over a dis-
tance of several kilometers using license-free spectrirees.;space optical communication has
attracted much attention in the past decade. Because otaddew cost of implementation,
FSO system is considered as an alternative to optical fibeth&®’last mile’ problem when
fiber optic links are unavailable or too expensive to impletne

As discussed in Chapter 1, in FSO communications the maiainmegnt is caused by atmo-
spheric turbulence-induced irradiance fluctuations. @toee, when conducting system design
and performance analysis for FSO systems, we need to sta@rtiospheric turbulence mod-
els. We reviewed in Chapter 1 that the log-normal distrdoufé][5] and theK-distribution [7]
were proposed to model the irradiance for weak and stromgiemce conditions respectively.
Another turbulence model, the Gamma-Gamma distributi@s later found to be capable of
providing good fit to experimental measurements of irrackdior both weak and strong turbu-
lence scenarios [8]. This desirable feature of the Gammar@adistribution enables it to be

used in a wide-range of turbulence conditions. The PDF o@amma-Gamma distribution is
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given by

G+B71

G)T Kap (2/aBI/A), a>0B>0A>0 (41)

B 2(ap)la+p)/2
= @rer

whereA is a scale parametest and 3 are the shape parameters, dtd-) is thevth order
modified Bessel function of the second kind.

To apply turbulence models to the analyses of practical B&@s1s, we are often required
to estimate the corresponding unknown parameters. Pagamstimation methods for the
log-normal distribution and thK-distribution have been well studied in [31] [32] [12] [33].
However, to our best knowledge, estimator for the parammaieéthe Gamma-Gamma PDF
has not been reported in literature. The parameter estmptbblem for the Gamma-Gamma
distribution is challenging because a maximume-likelih@gmpbroach will involve derivatives
of Ky(+), with respect to both its argument and the order index. Ferstime reason, the
Cramér-Rao lower bound of the estimators can not be easiliyetl. Current method for
determining the shape parameters of the Gamma-Gammaeédundaumodel has focused on
calculating the Rytov variance, which requires the knogéedf link distance and refractive-
index structure parameter [31]. However, this requirensenot always desirable for practical
FSO systems, especially when terminals have some degrpesalbility which can change the
link parameters frequently. For FSO systems with slant@gagion path, the refractive-index
structure parameter can not even be measured accuratelydegeit is a function of altitude,
which will change along the slant path.

The remainder of this chapter is organized as follows. Beati2 reviews some important
statistical properties of the Gamma-Gamma distributionctviare useful for our estimation
problem. In Section 4.3 we propose an estimation schemééoGamma-Gamma turbulence
model based on the concept of fractional moments and comaxiaation. Then a modified
estimator which makes use of the relationship between tmen@GaGamma shape parameters

in FSO applications is proposed in Section 4.4. Simulatsults show that significant perfor-
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4.2. Statistical Properties of the Gamma-Gamma Turbulbfadel

mance improvement in terms of MSE can be achieved by the raddétimation scheme.

4.2 Statistical Properties of the Gamma-Gamma

Turbulence Model

4.2.1 Parameterization of the Gamma-Gamma Turbulence Mode

Similar to theK-distribution, the Gamma-Gamma turbulence model is dpegldased on a
modulation process, in which small scale irradiance fluanais modulated by large scale
irradiance fluctuation. In the Gamma-Gamma PDF specified.ih) (the parametex repre-
sents the effective number of large-scale cells of the esgagf process, and the parameger
represents the effective number of small-scale cells [3.&/80 emphasize that parameters
and can not be arbitrarily chosen in FSO applications, they alated through a parameter
called Rytov variance, which is a measure of optical tunbcgestrength. Under an assumption
of plane wave and negligible inner scale, which correspoodisng propagation distance and
small detector area, the shape parameters of the Gamma-&amadel satisfy the following

relationships [3]

0.4903
a =g(or) = |exp 1'; 776 (4.2a)
(1+12103%)
- 1-1
0.510%
B =h(or) = |exp 12 575 (4.2b)
(1+069037°)

Wherea,% is the Rytov variance. Though the relationships describgd .2a) and (4.2b) can
change when spherical wave and a finite inner scale are tak@adécount [8], our estimation

approach can be similarly applied to the other scenariosidered in [8]. It can be shown
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Figure 4.1: Gamma-Gamma shape parametesadf as functions obg.

thata = g(or) in (4.2a) is a convex function afir on (0, «), andf3 = h(or) in (4.2b) is a
monotonically decreasing function on ). In addition, the relationshig > 3 always holds,
and the smaller shape paramggeis lower bounded above 0.91398 @3 approaches infinity.
Fig. 4.1 plotsa andf3 as functions obr.

As a measure of optical turbulence strength, the Rytov meeaan also be used to char-
acterize different turbulence levels [34]: the weak-tlebge regime refers toZ < 0.3; the
moderate-turbulence regime ha8 & a,% < 5; and the strong-turbulence regime corresponds

0 05 > 5. However, the definition for fluctuation regimes e ariance is not strict as
to o2 >5. H the definition for fluctuat g by th t strict
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other classification schemes have also been used in literdfor example, in [35] Voelz and
Xiao used Rytov variance values betwé#si0) to define the moderate turbulence regime for
plane wave scenario. Gamma-Gamma PDFs for weak, modemndtstrang turbulence scenar-
ios are plotted in Fig. 4.2, where the corresponding Rytsianae values argg = 0.25, 2, and
11, and the scale parametklis set to unity. When the Rytov variancx% approaches infin-
ity, which corresponds to very severe turbulence condiiothe saturation regime, the shape
parameten approaches infinity, the shape param@epproaches a finite constant 0.91398,
and the Gamma-Gamma PDF (4.1) will approach a negative exp@hPDF. We can observe
this trend in Fig. 4.2.

4.2.2 Moments of The Gamma-Gamma Turbulence Model

Thekth order moment of the Gamma-Gamma PDF is given by [36]

uk:E[lk}:F(a-i—k)r(B-l—k)()\ )k. 43)

ra)rp) \aB

In this work, we normalize the first moment by settihg= 1.
The closed-form expression in (4.3) can be derived by apglthe following integral prop-

erty of the modified Bessel function of the second kind (6-261[37]) in the definition of the

kth order moment of the Gamma-Gamma distribution

/ XKy (ax)dx = 24~ ta~u=1r <1+u+v) r (1+u—v
0

), [O{u+1+v}>0,0{a} >0].

2 2
(4.4)
Note that from the condition of the integral property (4w require
a+k>0
(4.5)
B+k>0
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4.3. AnMoM/CVX Estimation Scheme for Gamma-Gamma Shape Parameters

which means the closed-form moment expression in (4.3h®Qamma-Gamma distribution
is valid only for moments of order greater than axx, —3}. From Section 4.2.1, we know
that the minimum ofr andf3 is the limit of 3, which is 0.91398. Therefore we conclude the
closed-form expression for moments of the Gamma-Gammahison in (4.3) is valid for
moments of ordek > —0.91398. Note that the order ind&xs not restricted to integers, it can

also have non-integer values.

4.3 AnMoM/CVX Estimation Scheme for Gamma-Gamma
Shape Parameters

Taking the ratio of thék+ 1)th and thekth order moments of the Gamma-Gamma distribution,

we obtain

Hici1 k kK

=1t — 4.6
w et pTap (4.6)

From (4.3), we also find that the second-order moment of thmarGaGamma distribution is

1 1 1
=1+ o+ 5+ 05 (4.7)

Using (4.6) and (4.7), a nonlinear equation set involvingaldesa andp is formulated as

1,1,
a B (4.8)
11 4
a B
where , J ,
K2pp — Hex (2 - 1)
c= 2K (4.93)
kpip — B2 — (k— 1)
d= H . (4.9b)

k— k2
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After some algebraic manipulations to (4.8)and 3 values can be found as the roots of
the following quadratic equation
>, c 1

= x5 =0, (4.10)

For FSO applications, since the shape paranwetisralways greater than the shape parameter
B, we designate the larger root of (4.10) todoeand the smaller one to 2 A moment-based

shape parameter estimator for the Gamma-Gamma turbulevdel kan thus be expressed as

. ¢ 1 /¢ 4
0d=—+=4/—=—= 4.11a
2d 2\ d* d ( )

¢ 1 /& 4

>

wherec’andd arec andd values in (4.9) calculated using sample moments.

It is known that moment-based estimators with higher ordements may suffer from out-
lier samples. The outlier problem can be alleviated by cimgpsmallerk values. To achieve
better performance, we propose to use fractional momentsk(& 1) instead of positive inte-
ger moments in our moment-based shape parameter estimat@sapplication of fractional
moments in the study of atmospheric laser scintillationlieen discussed by Consortini and
Rigal [38]. It has been shown that using fractional momehtsders less than two can signif-
icantly reduce the fitting error of moments. Even with thesprece of noise and background
which can not be removed directly from fractional momertis, fitting accuracy can be guar-
anteed as along as we have small enough width of the noise ekiterimental setup.

Although the denominators of the expressions in (4.9a) 4r8bj become zero whdn=0,

it can be shown that the equalities hold ko& 0 by applying L'Hopital’s rule as

K2pp — Hed (2 — 1 2kpp — (2 4+ 214+ 2) — 2k
lim c= lim D (6+5+ %) 11 aa2a)
k-0 k=0 k2 —k k— 0 2k—1 a p
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i ke ke - (4 E) -1
lim d= lim k _im
k— 0 k— 0 K_ K2 BEUS -

1
== (4.12b)

|~

In order to obtain real-valued roots, eqn. (4.10) must hgvesitive discriminant
2 4
A— (E) 5o (4.13)

However, the discriminamk may be negative, especially when the Rytov variance becomes
small (0r < 1), which corresponds to weak turbulence scenarios. Indése, the moment-
based estimator in (4.11) will not give meaningful realenal estimates far andf.

To address the above shortcoming, we observe that thedatt-bide of (4.10) is a convex
function. First, define a functiorii(x) = x> — OIQx-l- % Then, a suboptimal solution to the
estimation problem can be formulated as a convex optinoagtioblem

minimize [f(a)—0]*+[f(B)—0]?
a, p (4.14)

subjectto a >0, 3 > 0.

The minimizer for the convex optimization problem descadily (4.14) can be found as
~ = C
a = = —=. 415
B % (4.15)

From Fig. 4.1, it can be seen that whea < 1, a and 3 values are close to each other. Thus
it is intuitively correct to have suboptimal estimates waith= [3 By combining the fractional
moment-based estimator (4.11) and the convex optimizastimator (4.15), we arrive at a
robust estimation scheme for the shape parametensd 3. We name this estimation scheme
the method-of-moments/convex-optimizatidmdM /CV X) approach.

We use MSE as the metric for assessing the estimation peafaren Monte Carlo simula-
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Figure 4.3: MSE performance of tihoM/CVX estimator and the modifieddoM/CVX estima-
tor with k = 0.5 and sample sizd = 100, 000.

tions were carried out for thigloM /CV X estimator withk=0.5 andor value from 0.5 to 4.5,

the data sample size was chosen tdNd.00,000.

From the simulation results shown in Fig. 4.3, we observettiMoM /CVX estimator

for B can provide good estimates over a wide rang@wialues. However, the estimation

performance of th&oM /CV X estimator fora is poorer. Foior = 0.5, the MSE ofa can be

as large as 2.97, which corresponds to an average relatweadrl7.8%. Therefore, we are

motivated to further improve the estimation performanggframeten.
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4.4 A Modified MoM/CVX Estimation Scheme for the
Shape Parametera

An alternative method for estimating the shape paraneeterhich turns out to be an improved

scheme, is to usé to estimateor via
6r=h"t (B) (4.16)

whereh=1(.) denotes the inverse function bf-) in (4.2b). Replacingir in (4.2a) with its

estimates in (4.16), a new estimator tocan be obtained as
Gimp = 9 (1(B) ). (4.17)

The analytical expression &f 1(-) is cumbersome; however, the built-in functisol ve in
MATLAB can be used to find numerical results fort(-).

We observe in Fig. 4.3 that the MSE performance of the estisnafta is significantly im-
proved by the modified method (dashed line). For our samplggqdhe largest improvement
is achieved atr = 1.5, where the MSE is reduced by .89%.

The change in improvement achieved by the modified schemadaally be predicted.
For example, from a plot ofy'(or)| versusor shown in Fig. 4.4, one obtaing' (or)| = 0
whenor = 1.402567471. This suggests that the modified estimatayy is least sensitive to
the estimation error oB in the neighborhood of this point and the largest improvenfien
estimates obr can be achieved.

Fig. 4.5 summarizes the estimation process of the modifie /CV X estimator. In the
modified estimation scheme, we first calculate sample maspgnfi . 1 andi, of the Gamma-
Gamma turbulence model from the observed optical irradiaanple values. Parameters ~

andd in (4.9) can then be determined by using the sample momdritse tiscriminantA of
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4.5. Summary

the quadratic equation in (4.10) is greater than zero, wehesgquadratic solution in (4.11) to
obtain the estimate of paramei@y otherwise, an estimate @ will be given by the convex
optimization solution (4.15). With an estimate®fwe can finally find an improved estimator

4.5 Summary

In this chapter, we have studied the parameter estimatioblgm for the Gamma-Gamma
turbulence model for free-space optical communicationsegtimation scheme for the shape
parameters of the Gamma-Gamma distribution has been @dpased on the concept of frac-
tional moments and convex optimization. With the proposethmd, estimates of the shape
parameters can be directly obtained from observed samptesh is more straightforward
than the current method which depends on measurements ef @oysical quantities. To im-
prove the estimation performance, we have also proposedd#iatbscheme which exploits
the relationship between the Gamma-Gamma shape paranmef&S® communications. Sim-
ulation results have revealed that the modified estimatbese can achieve MSE below 0.5
and average relative estimation error below 15% for a widgeaof turbulence conditions and

system setups.
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4.5. Summary
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Chapter 5

Conclusions

This chapter concludes the thesis with some general consroarapplications of the method of
moments on parameter estimation for fading and atmosphmeritels in wireless communica-
tion, followed by a discussion of possible future work forestigation of alternative applicable

estimation methods and applications.

5.1 Summary of Contributions

In this thesis, we have investigated applications of séveoanent-based methods in parameter
estimation of fading and atmospheric turbulence model® ddntributions of this thesis can

be summarized as follows.

1. A detailed discussion on moment-based estimation folN#eagamim fading model
has been given. A family of classical moment-basedarameter estimators has been
reviewed. Both the integer moments scenario and the fraaitimoments scenario are
discussed. The generalized method of moment estimatioohwdxploits information
that resides in all available moment conditions in a deteeahior over-determined es-
timation problem, has been introduced to fading paramet&nation for the first time.
Systematic performance comparison for moment-baspdrameter estimators has been

conducted by both simulation and an analytical asympt@i@ance analysis.

2. By investigating the statistical properties of the pagtenA, which is defined as the

logarithmic ratio of the arithmetic mean to geometric meamttie Nakagamim fading
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5.2. Future work

power, the MGF and the exact PDFfhave been derived. A Gamma approximation of
the PDF ofA, which avoids computational complexity of the exact PDHé&oge sample
size, has also been proposed by using a moment matching andthe validity of using
the two-parameter Gamma PDF to approximate the PO¥tafs been established using
the Kolmogorov-Smirnov test. With the assistance of ouultssnumerical evaluation
of the performance of ML-based Nakagamiparameter estimators is feasible without

performing intensive Monte Carlo simulations.

3. Based on the concepts of fractional moments and convemiagtion, we have pro-
posed a composite estimation scheme for the shape paramétiie Gamma-Gamma
atmospheric turbulence model. Our estimation techniquebsaused to characterize
this atmospheric turbulence model over a wide range of tarfme conditions in FSO

applications.

5.2 Future work

The GMM approach introduced in Section 2.3 provides a gémenaework for an iterative
estimation scheme based on moment conditions. It has besynghat the GMM approach
can achieve very good estimation performance for Nakagarparameter estimation, and
under this framework, using more moment conditions carh@&rrimprove the estimation per-
formance. Therefore, when the computation load is affdedabd the delay requirement is not
strict, it is preferable to use the GMM in any estimation peoiv in wireless communication
research like the Gamma-Gamma estimation problem disgus€hapter 4 and channel esti-
mation etc. to improve moment-based estimation accuraaicBlarly, this GMM approach
has large potential application in wireless communicapimblems where the traditional ML-
based estimation approach does not work.

Another possible future research topic is the applicatibthe L-moment method men-
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5.2. Future work

tioned in Section 1.3. Most moment-based estimation schegtpiire the sample size to be
very large to guarantee the convergence of the sample mentémivever, for many real-time
applications, this requirement can not be satisfied. Theoments, being linear combinations
of data, are less influenced by outliers and suffer less flampding variability. Therefore, the
L-moment method may be preferred in such real-time scem#oithe ML approach when ML

has high computational complexity.
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Appendix A

Derivation of (2.28)

By taking partial derivatives df (fgmm; ki, - - - , tks) IN (2.27) and settingiyy = Hka, - -

ks, We have

oh(fmemm; fks - - -, Plks)

aevy Bha=L,-, Pls=Hks
OLha
am -
M=MGMmm
_ 5 0l 0 ks s-1
—_ —— ,...,—
om m=Mamm om m=Mamm
9 Us
om mM=Mgmm

<5h(ﬁme;ﬁk1,-~-,flks) ‘9h(ﬁ‘GMM;ﬂkl,~-~,ﬂks))

0 0 s Bia=Hxd,-., fls=His
1 0 - 0
_ o[ 9Ha 0 Hys s-1 010
om m:rh(;,v”w7 L am mM=Mgmm
00 ksx ks
Denoting
%
m rn:ﬁb
n= <0uk1 0 Hys ) s-1 MM
om m=Mgmm om m=Mgmm ou
Y Hks
oM | m=rhigum

'7[’“(5:

(A.1a)

(A.1b)

(A.2)
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Appendix A. Derivation of (2.28)

and substituting (A.1) and (2.27) into (2.25), we arrive at

‘7;‘k1
m A
M=mMgmm
2 1 0 L1 0 s s—1ys—1
GGMM__Z am [ am
n m=Mgmm mM=Mgmm o
ks
IM | m=rigum
(7duk1
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| OM | merigpm i
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(A.3)
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Appendix B

Exponential Family Property of the

Nakagami-m Distribution

An s-parameter exponential family is defined as a family of hstions parameterized by an

s-dimensional vectof = [6;,6;,...,6¢" with PDF in the form of

fu(x 6) = C(6) exp{im(em(x)} () ®1)

whereC, nj’s are real-valued functions d, and T;s andh are real-valued functions of
[39]. If N i.i.d. random sampleX;, Xs,..., Xy are drawn according to an exponential family
distribution with PDF in the form of (B.1), thefs . ; T;(X), j = 1,2,...,s) is a joint complete
sufficient statistic.
We rewrite the PDF of the Nakagammdistribution (3.1) as
fr(r;m Q) = % <g)mr2mlexp{—gr2}

- I'(im <g)mexp{lnr2m} %exp{—grz} (B.2)

LT

=

If we denoteC(m.Q) = £ (W™ Ni(m Q) = —m/Q, N2(m,Q) = m, Ty(r) =2, Tp(r) =
Inr?, andh(r) = 1/r, then the Nakagami PDF can fit in the form of (B.1), which suggests
that the Nakagamin distribution is a member of a two-parameter exponentiallfam

Thus(3N, R, SN, InR?) = (3, Ti(R), IV, T2(R)) is a joint complete sufficient statis-
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Appendix B. Exponential Family Property of the Nakagambistribution

tics of the Nakagamim distribution. Therefore, the parametgrwhich can be written as

oo (i) o[ (%)

is a function of the joint complete sufficient statistics loé tNakagamm distribution.
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