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Abstract

In this thesis, we mainly investigate the parameter estimation problem for fading and atmo-

spheric turbulence channel models for wireless communications. A generalized method of

moments (GMM) estimation scheme is introduced to the estimation of Nakagami fading pa-

rameter. Our simulation results and asymptotic performance analysis reveal that this GMM

framework achieves the best performance among all method ofmoments estimators based on

the same moment conditions. Further improved performance can be achieved using additional

moment conditions in the GMM. In the study of the maximum-likelihood (ML) based Nak-

agamim parameter estimators, we observe that a parameter∆, which is defined as the logarith-

mic ratio of the arithmetic mean to the geometric mean of the Nakagami-m fading power, can

be used to assess the estimation performance of ML-based estimators analytically. For small

sample size, the probability density function (PDF) of∆ is derived by the moment generating

function (MGF) method. For large sample size scenarios, we use a moment matching method

to approximate the PDF of∆ by a two-parameter Gamma PDF. This approximation is vali-

dated by the Kolmogorov-Smirnov (K-S) test as well as simulation results. When studying the

Gamma-Gamma turbulence model for free-space optical (FSO)communication, an estimation

scheme for the shape parameters of the Gamma-Gamma distribution is introduced based on

the concept of fractional moments and convex optimization.A modified estimation scheme,

which exploits the relationship between the Gamma-Gamma shape parameters in FSO com-

munication, is also proposed. Simulation results show thatthis modified scheme can achieve

satisfactory estimation performance over a wide range of turbulence conditions.
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Chapter 1

Introduction

1.1 Background and Motivation

With the capability of providing globally interconnected voice and data communication sys-

tems, as well as establishing local communication architecture for the interconnection of elec-

tronic devices, wireless communication is undoubtedly oneof the most vibrant areas in com-

munication theory research today. Modern wireless communication dates back to the invention

of wireless telegraph system by Guglielmo Marconi over one hundred years ago. However,

even though it emerged only 20 years after the invention of the telephone by Alexander Gra-

ham Bell, wireless communication was not widely used in the consumer communication mar-

ket until the early 1980s. For nearly one century’s time in the modern telecommunication

history, most of the market was dominated by wireline communication.

Technologically, what impeded wireless communication from extensive application were

the undesirable features of the wireless transmission environment. Being an open transmission

medium, wireless channels can bring much more attenuation and uncertainty to the transmit-

ted signal than wireline does, thus more sophisticated technologies have to be implemented in

wireless systems to combat this disadvantage. Generally speaking, there are two fundamental

challenges that have to be addressed for wireless communication. The first challenge is the

random fluctuation of the transmitted signal. In radio frequency (RF) wireless communication

systems, this is known as fading which is mainly due to the multipath effect and shadowing;

whereas for a more recent line-of-sight (LOS) wireless communication technology, the free-

space optical (FSO) communication, much smaller wavelength and directionality determine
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1.2. Fading and Turbulence Models for Wireless Communication

that signal fluctuation in FSO is dominated by the effect of atmospheric turbulence but not

fading. The second challenge for wireless communication isthe interference from other users

or other communication systems. Unlike wireline communication which uses a bounded trans-

mission medium, communication through a wireless channel is more subject to interference

because different users and different systems are sharing the same transmission medium. In

this thesis, we address the first challenge and focus our study to the problem of parameter

estimation for wireless fading and turbulence channel models. Knowledge of these parameter

values can be used, for example, to design a better transmission scheme adaptive to the wireless

links and to better characterize wireless channels for linkbudget analysis.

1.2 Fading and Turbulence Models for Wireless

Communication

To address the first challenge for wireless communication, the random fluctuations of the trans-

mitted signal, fading and atmospheric turbulence models are proposed for different application

scenarios and channel conditions based on statistical study of received signals. However, mod-

elling the pattern of the signal fluctuations is just the firststep. In order to employ a fading or

turbulence model in system design and performance analysis, it is also critical to determine or

estimate the parameters of the model, which will fit the modelto the specific channel condi-

tions. This estimation process is what we will mainly discuss in this thesis. Before discussing

the parameter estimation problem further, we will first review some well-known fading and

turbulence models for wireless communications.

1.2.1 Multipath Fading Models

As a result of the random propagation (reflection, diffraction and scattering etc.) of radio

waves in the wireless transmission environment, several replicas of the transmitted signal, with

2



1.2. Fading and Turbulence Models for Wireless Communication

different amplitudes and phases, arrive at the receiver end. When these signal replicas are not

resolvable, they are added up constructively or destructively at the receiver, causing multipath

fading or fading in short.

The delay spread, denoted byTd , is one of the most important channel properties; it char-

acterizes the time domain dispersive nature of the fading channel. In brief,Td describes the

arrival time span of all the available signal replicas. The reciprocal ofTd is known as the coher-

ent bandwidth, which is denoted byWc. When the signal bandwidthW is much smaller than

Wc, the channel is considered as frequency-nonselective or flat, which means that all the fre-

quency components of the transmitted signal experience thesame attenuation and phase shift.

Otherwise, the channel is considered as frequency-selective fading.

Another important parameter which characterizes the frequency dispersive nature of the

fading channel is the Doppler spreadDs; the reciprocal ofDs is the coherent timeTc. WhenTc

is much larger than the delay requirement of the system, which is usually set to be the symbol

durationT , the channel is considered to be a fast fading channel; otherwise the channel is said

to be slow.

Therefore, based on the relative relation between properties of the transmitted signal (sym-

bol durationT in time domain and signal bandwidthW in frequency domain) and properties

of the wireless fading channel (coherent timeTc in time domain and coherent bandwidthWc

in frequency domain), we can classify fading channels into four basic types: fast frequency-

selective fading, fast frequency-nonselective fading, slow frequency-selective fading, and slow

frequency-nonselective fading. In this thesis, we focus onestimation of slow frequency-

nonselective fading models.

Regardless of noise and interference, the slow frequency-nonselective fading channel can

be described by the following expression

sr(t) = α · st(t) (1.1)

3



1.2. Fading and Turbulence Models for Wireless Communication

wherest(t) andsr(t) are transmitted and received complex signals respectively, and the com-

plex random variableα represents the fading channel characteristics.

The first-order statistics of the fading channel, which characterizes the fading envelope

or amplitude of the parameterα, is the most widely used approach to study fading effect.

Among all the statistical models proposed for the fading envelope, the most well-known ones

are Rayleigh, Rician, and Nakagami-m models.

The Rayleigh and Rician fading models are derived from Clasrke’s one-ring model [1]

for the electromagnetic field of the received multipath signal. The Clarke’s model assumes

that between the transmitter and the receiver, there areN unresolvable paths with random

amplitudes and phases. If no LOS path exists, for sufficiently large N, by the central limit

theorem (CLT), all independent paths will have Gaussian distributed amplitudes and uniform

phases. Therefore the real and imaginary parts of the sum will be independent and identically-

distributed (i.i.d.) zero mean Gaussian RVs, and the corresponding fading envelopeR will have

a Rayleigh distribution with probability density function(PDF)

fR(r) =
2r
Ω

e−
r2
Ω , r ≥ 0 (1.2)

where the parameterΩ is the fading powerΩ = E
[
R2
]
. When an LOS or specular path with

known amplitude exists between the transmitter and the receiver, the real part and the imaginary

part of the combined signal will be correlated, and the fading envelope will have a Rician

distribution. The PDF of the Rician distribution is given by

fR(r) =
2r(K +1)

Ω
exp

{

−K − (K +1)r2

Ω

}

I0

(

2r

√

K (K +1)
Ω

)

, r ≥ 0 (1.3)

whereI0(·) is the zeroth order modified Bessel function of the first kind,and the parameterK

is known as RicianK-factor which is defined as the ratio of the power in the specular path to

the power in the scattered paths. According to the definition, the RicianK-factor indicates the

4



1.2. Fading and Turbulence Models for Wireless Communication

relative strength of the LOS component: whenK = 0, the LOS component disappears, anf the

Rician distribution specializes to Rayleigh distribution; whenK approaches infinity, the scat-

tering components in the signal are negligible, and the channel becomes static or deterministic.

Different from the Rayleigh and Rician distributions, the Nakagami-m distribution was not

derived from any theoretical model. It was originally deduced from experimental data [2].

Thus for a variety of fading conditions, the Nakagami-m model can fit the practical multipath

fading measurements better than the other models. The PDF ofthe Nakagami-m distributed

fading envelope is given by

fR(r) =
2

Γ(m)

(m
Ω

)m
r2m−1exp

(

−m
Ω

r2
)

, r ≥ 0, m ≥ 1
2

(1.4)

wherem is known as the fading parameter whose reciprocal quantifiesthe degree of fading,

andΓ(·) is the Gamma function defined by

Γ(z) =
∫ +∞

0
tz−1e−tdt. (1.5)

The Nakagami-m distribution covers a wide range of fading conditions. It can be shown that

whenm = 1
2, which corresponds to the most severe fading condition, theNakagami-m distribu-

tion becomes the one-sided Gaussian distribution. The Rayleigh distribution can also be found

as a special case of the Nakagami-m distribution by lettingm = 1. Being capable of modelling

a wide range of fading conditions as well as having a tractable PDF, the Nakagami-m fading

model is a popular and widely used fading model in wireless communication research. Esti-

mation of the Nakagami-m fading model is thus of great interest in wireless communications

research.

5



1.2. Fading and Turbulence Models for Wireless Communication

1.2.2 Atmospheric Turbulence Models

As a typical LOS communication technology, FSO differs frommost RF systems which suffer

from fading due to multipath propagation. In FSO communication, the main impairment is

caused by atmospheric turbulence-induced fluctuations [3]. Therefore, multipath fading mod-

els are no longer applicable to system design and performance analysis for FSO systems. In-

stead we focus on the study of atmospheric turbulence models.

For weak turbulence conditions, Parry [4] and Phillips and Andrews [5] independently sug-

gested a log-normal PDF to model the irradiance, which is thepower density of the optical

beam. With unit mean irradiance and scintillation indexσ2
I , the log-normal PDF of the irradi-

anceI is given by [3]

fL(I) =
1

I
√

2πσ2
I

exp

{

−
[
ln I + 1

2σ2
I

]2

2σ2
I

}

, I > 0. (1.6)

When turbulence becomes stronger, the negative exponential distribution was introduced as a

limit distribution for the irradiance. This limit distribution can only provide sufficient accuracy

when the system goes far into the saturation regime [6]. TheK-distribution, which is based

on an assumed modulation process, was later introduced to model the irradiance in strong

turbulence scenarios [7]. TheK-distribution with unit mean irradiance is characterized by the

PDF [3]

fK(I) =
2α

Γ(α)
(αI)(α−1)/2Kα−1

(

2
√

αI
)

, I > 0 (1.7)

whereα is a positive shape parameter related to the effective number of discrete scatterers and

Kv(·) is thevth order modified Bessel function of the second kind.

Being a widely accepted turbulence model for FSO communication under strong turbu-

lence conditions, theK-distribution is, however, incapable of modeling the irradiance when

turbulence is weak. This is because the scintillation indexgiven by theK distributed irradi-

ance is always greater than unity, which is not valid for weakturbulence scenarios. Another

6



1.3. Moment-Based Estimation Techniques

modulation-based model, the Gamma-Gamma distribution, was later proposed by Al-Habash

et al. [8] to model the irradiance in FSO systems. The PDF of the Gamma-Gamma distribution

is given by

fG(I) =
2(αβ )(α+β )/2

Γ(α)Γ(β )
I

α+β
2 −1Kα−β

(

2
√

αβ I
)

, α > 0,β > 0 (1.8)

whereα andβ are the shape parameters. Note that by setting the shape parameterβ = 1, the

Gamma-Gamma distribution will degenerate to theK-distribution. The Gamma-Gamma turbu-

lence model is desirable because for both weak and strong turbulence scenarios, this model can

provide a good fit to the experimental measurements of irradiance [8]. Thus, the key advan-

tage of using the Gamma-Gamma turbulence model is that it covers a wide-range of turbulence

conditions.

1.3 Moment-Based Estimation Techniques

A number of statistical signal processing approaches have been introduced to parameter esti-

mation in wireless communication research, among which themost popular ones in practical

applications are the ML estimation and the method of moments(MoM) or the moment-based

approach. Because of its asymptotic efficiency, the maximumlikelihood estimator (MLE) is

approximately the minimum variance unbiased estimator (MVUE) and the ML approach can

also give us the Cramér-Rao lower bound (CRLB) for the MVUE which describes the best

achievable estimation performance for unbiased estimators [9]. Therefore the ML approach

is usually the more preferable one for theoretical studies.However, when the model, or more

specifically the PDF of the fading or atmospheric turbulencethat will be intensively discussed

in this thesis, involves transcendental functions, the ML approach will likely involve solving

an nonlinear transcendental equation or equation set, which can be undesirable in practice.

As an alternative approach, the method of moments can usually lead to estimators which are

7



1.4. Thesis Outline and Contributions

easy to determine and implement [9]. Even though there exists no optimality properties for the

moment-based approach, it can usually give satisfactory estimates when the sample size is large

enough. The basic principle of the method of moments is to equate the population moments of

the model to their sample counterparts. Several estimationtechniques under the basic frame-

work of MoM have been proposed by researchers. The most widely used one is the classical

method of moments, which solves for unknown parameters in anequation or equation set de-

rived from the moment conditions of the model. The generalized method of moments (GMM)

approach [10] proposed a regression estimation scheme for determined and over-determined

problems. Using linear combinations of order statistics, the L-moment method, a more robust

method that suffers less from sampling variability, was introduced for estimation of distri-

butions [11]. In addition, combinations of the moment-based approach and other estimation

approaches are also reported [12] [13] [14]. Multiple moment-based estimation methods as

well as combinations of estimation methods will be used in this thesis.

1.4 Thesis Outline and Contributions

This thesis have been divided into five chapters. Chapter 1 reviews some background knowl-

edge about fundamental challenges for wireless communication: random fluctuation of the

transmitted signal and the interference problem. To address the signal fluctuation problem,

we first need to model the fluctuation pattern and then estimate corresponding characteristic

parameters when applying the model in system design and performance analysis for specific

application scenarios. This motivates researchers to find better estimators for popular fading

and atmospheric turbulence models. It is pointed out that the method of moments is sometimes

a preferable approach to ML when the model takes an intractable form.

In Chapter 2, we provide a detailed discussion on moment-based estimation for the Nakagami-

m fading model. Firstly a family of classical moment-basedm parameter estimators is re-

viewed, both integer moments scenario and fractional moments scenario are discussed. Then

8



1.4. Thesis Outline and Contributions

the GMM method which exploits information resides in all moment conditions in a determined

or over-determined estimation problem is introduced to fading parameter estimation for the first

time. At last, a systematic performance comparison for moment-basedm parameter estimators

is conducted by both the simulated mean square error approach and the analytical asymptotic

variance approach.

In Chapter 3, we use moment-based method to study performance of ML-based Nakagami

m parameter estimators. By examining the derivation of the ML-basedm parameter estimation

problem, it is found that a parameter∆, which is defined as the logarithmic ratio of arith-

metic mean to geometric mean for Nakagami-m fading power, is critical to the ML-basedm

parameter estimation. Closed-form expressions are derived for the moment generating func-

tion (MGF) and the PDF of∆. For large sample size, we use a moment matching method to

approximate the PDF of∆ by a two-parameter Gamma PDF. This approximation is validated

by the Kolmogorov-Smirnov (K-S) test. As an application, the approximate PDF is used to

study the performance of three well known ML-based Nakagamim parameter estimators, the

Greenwood-Durand estimator [15] and the first and second order Cheng-Beaulieu estimators

[16].

Chapter 4 studies the parameter estimation of the Gamma-Gamma turbulence model for

FSO communication. A novel estimation scheme for the shape parameters of the Gamma-

Gamma distribution is proposed based on a combination of fractional MoM estimation and

convex optimization. Then a modified estimation scheme, which turns out to be an improved

one, is proposed by considering relationship between the Gamma-Gamma shape parameters for

FSO applications. Revealed by computer simulation results, the modified scheme can achieve

improved performance over a wide range of turbulence conditions.

Chapter 5 summarizes contents and contributions of this thesis, and suggests some possible

future works in related topics.

9



Chapter 2

Moment-Based Estimation for the

Nakagami-m Fading Parameter

2.1 Background and Motivation

The Nakagami-m fading model is important in wireless communications research because it

fits the empirical multipath fading measurements better than the other fading models for a

variety of fading conditions [2]. The Nakagami-m model is also desirable because error rate

performance analysis with Nakagami fading often leads to closed-form analytical results.

The PDF of the Nakagami-m fading envelopeR has a two-parameter form, which is given

by [2]

fR(r) =
2

Γ(m)

(m
Ω

)m
r2m−1exp

(

−m
Ω

r2
)

, r ≥ 0, m ≥ 1
2

(2.1)

whereΩ=E[R2], and the fading parameterm is defined as [2]

m =
Ω2

E [(R2−Ω)2]
, m ≥ 1

2
. (2.2)

GivenN independent realizations of the Nakagami-m random variableR1, R2, . . . , RN, since

the parameterΩ is defined as the second-order moment of the Nakagami-m fading envelope, it

is straightforward to use the second order sample moment of the fading envelope to estimate

Ω,which isΩ̂ = µ̂2 =
1
N ∑N

i=1R2
i . Thus in order to characterize wireless communication chan-

nels using the Nakagami model, it is critical to determine orestimate the value ofm, which is

10



2.2. Moment-Basedm Parameter Estimation with Integer and Fractional Moments

also known as reciprocal of the amount of fading (AF), fromN independent observations. No-

tice that the squared value of a Nakagami-m distributed random variable is a Gamma random

variable, Nakagamim parameter estimation is sometimes related to estimation for the Gamma

distribution.

Greenwood and Durand demonstrated that the ML-basedm parameter estimation problem

leads to solving a non-linear transcendental equation involving a natural logarithmic function

and a digamma function [15]. The most well-known ML-basedm parameter estimators, the

Greenwood-Durand estimator [15] and the Cheng-Beaulieu estimators [16] are actually ap-

proximate solutions to the ML Nakagamim parameter estimation problem. This undesirable

feature of the ML approach has, in part, motivated researchers to use a moment-based approach

to find alternative Nakagamim parameter estimators.

2.2 Moment-Basedm Parameter Estimation with Integer

and Fractional Moments

In this section, we review some moment-based Nakagamim fading parameter estimators de-

rived from analytical moment expressions of the Nakagami-m distribution.

2.2.1 Integer-Moment-Basedm parameter Estimators

Thekth moment expression for the Nakagami-m distribution is given by

µk = E

[

Rk
]

=
Γ(m+ k/2)

Γ(m)

(
Ω
m

)k/2

. (2.3)

To avoid transcendental functions in deriving moment-based m parameter estimators, first we

need to find a way to cancel the Gamma functions in (2.3).

Recall the iterative property of the Gamma functionΓ(z+1) = z ·Γ(z), it is straightforward

11



2.2. Moment-Basedm Parameter Estimation with Integer and Fractional Moments

to show that for evenk values,Γ(m+ k/2) can be written as product ofΓ(m) and a polyno-

mial function ofm. Gamma functions in the moment expression can then be canceled, and a

generally preferred algebraic equation is obtained. This is the basic idea of the moment-based

Nakagamim parameter estimator proposed by Abdi and Kaveh [17]. For finite sample size,

higher order sample moments may deviate from the value of thetrue moments significantly

[18] (which is known as the outlier problem), smallerk values are preferred in this moment-

basedm parameter estimation scheme. However, the second order moment of the Nakagami-m

distribution is simply the parameterΩ, which does not have parameterm in it. Therefore Abdi

and Kaveh derived a moment-basedm parameter estimator based on the fourth order moment

expression of the Nakagami-m distribution. SubstitutingΩ in the fourth order moment expres-

sion by the second order sample moment, and then solve form, a moment-based Nakagamim

parameter estimator was found as [17]

m̂INV =
µ̂2

2

µ̂4− µ̂2
2

(2.4)

whereµ̂k =
1
N ∑N

i=1 Rk
i is thekth order sample moment. This estimator was named the inverse

normalized variance (INV) estimator, because it can be obtained by replacing the moments in

the definition ofm in (2.2) with the sample moments.

An alternative way to cancel the Gamma functions in (2.3) is to take the ratio of two dif-

ferent moments of the Nakagami-m distribution. Again by the iterative property of the Gamma

function, we observe that the ratio of thek′th andkth moments, wherek′− k = a is a non-zero

even integer, also formulates an algebraic equation which can be easily solved. The simplest

case of this approach is to usek′ = 3 andk = 1

µ3

µ1
=

Γ(m+3/2)
Γ(m+1/2)

(
Ω
m

)

=

(

m+
1
2

)(
Ω
m

)

. (2.5)

Solving (2.5) form with Ω substituted by its estimator, Cheng and Beaulieu derived anotherm

12



2.2. Moment-Basedm Parameter Estimation with Integer and Fractional Moments

parameter estimator based on integer moments [19]

m̂t =
µ̂1µ̂2

2(µ̂3− µ̂1µ̂2)
. (2.6)

Notice that the highest order of sample moments used in estimator m̂t is 3, which is smaller

than that of ˆmINV , therefore ˆmt is expected to suffer from the outlier problem less than the

INV estimator, which suggests a better estimation performance. This intuitive result will be

confirmed by the asymptotic variance analysis in Section 2.2.3.

2.2.2 A Family of Fractional Moment-Basedm Parameter Estimators

Cheng and Beaulieu observed that the INV estimator can also be derived by taking the ratio

of the fourth and second moments of the Nakagami-m distribution and solving for parameter

m [19]. This suggests that both estimators discussed in Section 2.2.1 belong to a family of

moment-based Nakagamim parameter estimators derived by the ratio-of-moments approach.

Notice that the order indexk in the Nakagami-m moment expression (2.3) is not restricted

to positive integers. This estimator family can thus be expanded into a family of fractional

moment-basedm parameter estimators. As briefly discussed in Section 2.2.1, because of the

outlier problem, smaller moment order indices are preferred in this estimator family. There-

fore admitting the use of fractional moments can actually result in betterm parameter estima-

tors. This novel idea was first introduced to Nakagamim parameter estimation by Cheng and

Beaulieu in [19].

Based on the framework of the ratio-of-moments approach discussed in Section 2.2.1, and

assuming thatk = 1/p andk′= 2+1/p, wherep is a positive real number, the ratio of moments

can then be expressed as

µ2+1/p

µ1/p
=

Γ(m+1+1/2p)
Γ(m+1/2p)

(
Ω
m

)

=

(

m+
1

2p

)(
Ω
m

)

. (2.7)
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2.2. Moment-Basedm Parameter Estimation with Integer and Fractional Moments

Solving (2.7) and replacing the population moments with their sample counterparts, a general

expression of this estimator family was found as [19]

m̂1/p =
µ̂1/pµ̂2

2p
(
µ̂2+1/p − µ̂1/pµ̂2

) . (2.8)

It is straightforward to show that whenp = 1, m̂1/p is actuallym̂t , andm̂INV corresponds to a

p value of 0.5.

However, whenp approaches+∞, (2.8) is found to have a00 indeterminate form after some

algebraic manipulations. Therefore we need to go back to thepopulation moment expression

of (2.8) to find the expression for the limiting case.

Assumingk = 1/p and recognizing that the limiting value ofk is 0, we denote the limiting

estimator as ˆm0. Then apply L’Hôpital’s rule to the population moment expression of the

estimator family, we have

lim
k→0

kµkµ2

2(µ2+k −µkµ2)
= lim

k→0

kE[Rk]µ2

2(E[R2+k]−E[Rk]µ2)

= lim
k→0

µ2
(
E[Rk]+ kE

[
Rk lnR

])

2
(
E
[
R2+k lnR

]
−µ2E

[
Rk lnR

])

=
µ2

2(E [R2 lnR]−µ2E [lnR])

=
µ2

E [R2 lnR2]−µ2E [lnR2]
.

(2.9)

Replacing the population moments and expected value expressions in (2.9) by their sample

counterparts, the limiting estimator was found to be [20]

m̂0 =
µ̂2

1
N ∑N

i=1 R2
i lnR2

i − µ̂2
1
N ∑N

i=1 lnR2
i

. (2.10)

Combining (2.8) and (2.10) together and using the order index k consistently, we can rewrite
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2.2. Moment-Basedm Parameter Estimation with Integer and Fractional Moments

the fractional moment-based Nakagamim parameter estimator family as [19]

m̂k =







kµ̂kµ̂2

2(µ̂2+k − µ̂k µ̂2)
, k > 0

µ̂2
1
N ∑N

i=1 R2
i lnR2

i − µ̂2
1
N ∑N

i=1 lnR2
i

, k = 0.
(2.11)

We observe for the estimator family (2.11), the smallerk is, the smaller the order sample

moments that are used, and therefore better estimation performance is expected. In the limiting

case, ˆm0 should intuitively achieve the best performance among thisfractional moment-based

m parameter estimator family. Theoretical estimation performance analysis of thism parameter

estimator family using the idea of asymptotic variance willbe discussed in Section 2.2.3.

2.2.3 Large Sample Properties: Asymptotic Variance Analysis

For finite sample size, moment-based estimators are usuallybiased, do not have optimality

properties, and their analytical performance are difficultto obtain. However, because of the

consistency of moment-based estimators, we can derive their asymptotic variance analytically,

which can be of great importance to performance analysis andcomparison for large sample

size scenarios.

The idea of asymptotic variance analysis of moment-based estimators is based on the cen-

tral limit theorem and the weak law of large numbers (WLLN). The moment-basedm parameter

estimators discussed in this section are
√

N-consistent and asymptotically unbiased, thus the

random variable
√

N (m̂−m), with m̂ a moment-basedm parameter estimator, converges in law

to a zero mean Gaussian random variable with varianceσ2

√
N (m̂−m)

L→ N
(
0,σ2) as N →+∞. (2.12)

The variance termσ2 is the asymptotic variance of the corresponding moment-basedm param-

eter estimator.
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2.3. Generalized Method of Moments Estimation

In the derivation of the asymptotic variance, we use an approach known as the multivariate

delta method [21]. Take the moment-based estimator family with k > 0 as an example. For

large sample sizeN, by the CLT, the vector
√

N (µ̂ −µ) follows a trivariate Gaussian distribu-

tion N (0,Σk). Hereµ = (µ2,µk,µk+2) is the population moment vector,µ̂ = (µ̂2, µ̂k, µ̂k+2)

is the corresponding sample moment vector, andΣk is the covariance matrix of̂µ . Since the

estimator ˆmk in (2.11) is a function of the sample moments, the multivariate delta method says

the asymptotic variance of ˆmk can be derived fromΣk using theJacobian method [21].

The asymptotic varianceσ2
k of the fractional moment-basedm parameter estimator family

(2.11) has been derived by Cheng [20] as

σ2
k =







m2




v2k

v2
k

+
v2k+2−

v2
k+2
v2

(k/2)2v2
k



 , k > 0

m2[1+mψ ′(m+1)
]
, k = 0

(2.13)

wherevk =Γ(m+k/2)/Γ(m), andψ(z)= d [lnΓ(z)]/dz=Γ′(z)/Γ(z) is the digamma function.

2.3 Generalized Method of Moments Estimation

2.3.1 GMM Estimation for the Nakagami m Parameter

The basic idea used in the moment-basedm parameter estimators reviewed in Section 2.2 is

considered the classical method of moments, which aims to find a closed-form solution to a

theoretical equation or equation set involving the momentsof a distribution. The keystone

of classical method of moments is to find a tractable equationset with moment conditions.

However, desirable equations of moments like the algebraicequations derived in Section 2.2

for the Nakagami-m distribution are not always easy to find, even though closed-form analytical

moment expressions are available.

The generalized method of moments estimation was first introduced by Hansen [10] in

16



2.3. Generalized Method of Moments Estimation

econometrics literature and it is already a widely used method in this research area. However,

to the author’s best knowledge, this powerful method has notbeen applied to communications

research. The GMM gives an alternative way to exploit momentconditions in estimation prob-

lems. It performs parameter estimation by minimizing weighted distances between population

moments and their sample counterparts. Usually, more moment conditions than the number

of unknown parameters are available in GMM estimation. The GMM provides a framework

which combines all available moment conditions optimally for over-determined problems.

The most widely used implementation of the GMM method is an iterative regression pro-

cess proposed by Hansen in his original GMM paper [10], namely Hansen’s two-step GMM

procedure. In this section, we follow Hansen’s recipe to perform the Nakagamim parameter

estimation with GMM.

With N i.i.d. realizations of a Nakagami-m random variableR1, R2, . . . ,RN ands > 1 pop-

ulation moment conditionsµk1, µk2, . . . , µks, the GMM estimation for Nakagamim parameter

is formulated as minimizing the orthogonal criterion function

Q(m; r) = gT
N(m)WgN(m) (2.14)

wherer = (R1,R2, . . . ,RN)
T is the observation vector,W is a weighting matrix, andgN(m) is

the distance vector defined as

gN(m) =







µ̂k1−µk1(m)

µ̂k2−µk2(m)

...

µ̂ks −µks(m)







. (2.15)

In (2.15), µ̂ki’s (i = 1, 2, . . . ,s) are the (ki)th-order sample moments, andµki(m)’s denote

the (ki)th-order population moment conditions as functions of theunknown parameterm. As

discussed in Section 2.2, higher order sample moments may deviate from the population mo-
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2.3. Generalized Method of Moments Estimation

ments significantly, or we can say they are less accurate thanlower order moment conditions.

Therefore it is intuitively necessary to give higher order moment conditions less weight in the

GMM framework. This is the purpose of introducing the weighting matrixW. The accuracy of

moment conditions can be measured by the variance covariance matrix of the sample moment

statistics.

The first step of Hansen’s recipe is to setW = I , the identity matrix. It means we first give

the same weights to all moment conditions and solve for an initial estimate ˆm(0), which can be

expressed as

m̂(0) = argmin
m

gT
N(m)gN(m). (2.16)

The solution to the least squares (LS) problem in (2.16) can easily be found with software tools

like MATLAB. Then we can use this initial estimate of them parameter to obtain more precise

estimates by an iterative regression process.

In the second step, we first compute the residueût =
[

Rk1
t −µk1

(

m̂(0)
)

,Rk2
t −µk2

(

m̂(0)
)

,

. . . , Rks
t −µks

(

m̂(0)
)]T

(t = 1,2, . . . ,N) for all N observations. Then the autocovariance matri-

cesSj for lag lengthj is estimated by

Sj =
1
N

N

∑
n= j+1

ût ûT
t− j, j = 0,1, . . . , l (2.17)

wherel is the selected maximum lag length. With alll autocovariance matrices, we can esti-

mate the long-run covariance matrix by

Ŝ= Ŝ0+
l

∑
j=1

w j
(
Ŝj + ŜT

j

)
(2.18)

wherew j ’s are weights for autocovariance matrices with different lag values. Generally speak-

ing, giving more distant lags less weight can improve estimation accuracy. A widely used

weighting scheme is that of Bartlett [22], which is given byw j = 1− j/(l+1). Then selecting
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2.3. Generalized Method of Moments Estimation

W = Ŝ−1, the second step estimate of them parameter can be obtained as

m̂(1) = argmin
m

gT
N(m)Ŝ−1gN(m). (2.19)

Step 2 is then iterated until the absolute difference between two consecutive estimates is less

than a predetermined threshold (estimation accuracy requirement)ε.

2.3.2 Derivation for Asymptotic Variance of the GMM Estimator

In Section 2.2.3 we have introduced the basic concept of asymptotic variance analysis and

showed that the asymptotic variance of the fractional moment-basedm parameter estimator

family has been derived by Cheng [20]. However, for the GMMm parameter estimator, the

asymptotic variance has not been derived in the engineeringliterature; besides, it is also un-

clear what is the best achievable performance among all possible m parameter estimators based

on certain available moment conditions. Because the GMM provides a framework to opti-

mally exploit all available moment conditions in its iteration process, it is natural to ask if the

GMM attains the best asymptotic performance among all moment-based estimators using the

same moment conditions. In this section, we derive the asymptotic variance of the GMMm

parameter estimator introduced in Section 2.3.1.

Using the assumptions made in Section 2.3.1, we haveN i.i.d. realizations of a Nakagami-

m RV ands > 1 population moment conditionsµk1, µk2, . . . , µks. For large sample sizeN,

the joint distribution of the elements ofd = (µ̂k1−µk1, µ̂k2−µk2, . . . , µ̂ks −µks)
T approaches

a multi-variate Gaussian distributionN (0,Σ), whereΣ is the covariance matrix of elements

of random vectord, the difference vector between available population conditions and their

sample counterparts. The element ofΣ at theith row and thejth column isΣi j = µki+k j −
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2.3. Generalized Method of Moments Estimation

µkiµk j. Thus, the joint PDF of the observed sample moment vectorµ̂ = (µ̂k1, µ̂k2, . . . , µ̂ks)
T is

f (µ̂k1, . . . , µ̂ks)=
1

(2π)
s
2
[
det
( Σ

N

)]1
2

exp









−(µ̂k1−µk1, . . . , µ̂ks −µks)

(
Σ
N

)−1









µ̂k1−µk1

...

µ̂ks −µks

















(2.20)

whereµi’s are functions ofm andΩ, anddet(·) denotes the determinant of a square matrix.

The estimate ˆmGMM in a maximum-likelihood sense can be expressed as

m̂GMM = argmax
m

ln f (µ̂k1, . . . , µ̂ks)

= argmax
m









−1
2

ln[det(Σ)]−N (µ̂k1−µk1, . . . , µ̂ks −µks)Σ−1









µ̂k1−µk1

...

µ̂ks −µks









+C









(2.21)

whereC is a constant which does not depend onm.

For large sample sizeN, the quadratic term in (2.21) will be the dominant term. Thus,

(2.21) can be well approximated by

m̂GMM = argmin
m

(µ̂k1−µk1, . . . , µ̂ks −µks)Σ−1









µ̂k1−µk1

...

µ̂ks −µks









= argmin
m

gT
N(m)Σ−1gN(m)

= argmin
m

Q(m; µ̂k1, . . . , µ̂ks)

(2.22)

whereQ(m; µ̂k1, . . . , µ̂ks) is the orthogonal criterion function (2.14). In the ML sense, the
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2.3. Generalized Method of Moments Estimation

estimate ˆmGMM is the zero of the following function

h(m; µ̂k1, . . . , µ̂ks)

=
∂Q(m; µ̂k1, . . . , µ̂ks)

∂m

=−2

(
∂ µk1

∂m
, . . . ,

∂ µks

∂m

)

Σ−1









µ̂k1−µk1

...

µ̂ks −µks









− (µ̂k1−µk1, . . . , µ̂ks −µks)Σ−1
(

∂Σ
∂m

)

Σ−1









µ̂k1−µk1

...

µ̂ks −µks









(2.23)

in which we used the derivative identity of matrix inverse

∂Σ−1

∂m
=−Σ−1

(
∂Σ
∂m

)

Σ−1. (2.24)

By the multivariate delta method [21], the asymptotic varianceσ2
GMM = Var

[√
N m̂GMM

]
can

be obtained as

σ2
GMM =

(
∂ m̂GMM

∂ µ̂k1
, . . . ,

∂ m̂GMM

∂ µ̂ks

)

Σ









∂ m̂GMM
∂ µ̂k1

...

∂ m̂GMM
∂ µ̂ks









∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
µ̂k1=µk1,...,µ̂ks=µks

. (2.25)

Considerh(m̂GMM; µ̂k1, . . . , µ̂ks) = 0 as an implicit function of ˆmGMM in terms of(µ̂k1, . . . , µ̂ks).
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We write the derivative of the implicit function as







∂h(m̂GMM; µ̂k1, . . . , µ̂ks)

∂ m̂GMM

∂ m̂GMM

∂ µ̂k1
+

∂h(m̂GMM; µ̂k1, . . . , µ̂ks)

∂ µ̂k1
= 0

...

∂h(m̂GMM; µ̂k1, . . . , µ̂ks)

∂ m̂GMM

∂ m̂GMM

∂ µ̂ks
+

∂h(m̂GMM; µ̂k1, . . . , µ̂ks)

∂ µ̂ks
= 0

(2.26)

and have 







∂ m̂GMM
∂ µ̂k1

...

∂ m̂GMM
∂ µ̂ks









=− 1
∂h(m̂GMM ;µ̂k1,...,µ̂ks)

∂ m̂GMM









∂h(m̂GMM;µ̂k1,...,µ̂ks)
∂ µ̂k1

...

∂h(m̂GMM;µ̂k1,...,µ̂ks)
∂ µ̂ks









. (2.27)

Calculating the partial derivatives ofh(m̂GMM; µ̂k1, . . . , µ̂ks) in (2.27) and substitute (2.27)

into (2.25), the asymptotic variance of the GMMm parameter estimator can be written as

σ2
GMM =

1
η

(2.28)

whereη is defined as

η =

(

∂ µk1

∂m

∣
∣
∣
∣
m=m̂GMM

, . . . ,
∂ µks

∂m

∣
∣
∣
∣
m=m̂GMM

)

Σ−1










∂ µk1
∂m

∣
∣
∣
m=m̂GMM
...

∂ µks
∂m

∣
∣
∣
m=m̂GMM










. (2.29)

A detailed derivation of (2.28) is given in Appendix A. Because of the consistency of the

GMM estimation scheme, for large sample sizeN, the asymptotic variance of ˆmGMM can be

further simplified as

σ2
GMM =









(
∂ µk1

∂m
, . . . ,

∂ µks

∂m

)

Σ−1









∂ µk1
∂m
...

∂ µks
∂m

















−1

. (2.30)
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2.4 Numerical Results and Discussion

In this section, we present performance comparisons of several moment-basedm parameter es-

timators. Both mean square error (MSE) analysis via Monte Carlo simulation and the asymp-

totic variance analysis are conducted for the classical moment-based estimators reviewed in

Section 2.2 and the GMM estimator introduced in Section 2.3.

Since estimators discussed in this chapter are considered asymptotically unbiased, we use

performance of the ML approach as a benchmark in the comparison. The MSE performance

of the moment-based estimators are compared with the Cramér-Rao lower bound. For asymp-

totic variance analysis, we compute the asymptotic relative efficiency (ARE) [21] of different

moment-basedm parameter estimators with respect to the ML-based estimator. The relative

efficiencyeZ1Z0 of estimatorẐ1 to Ẑ0 is defined as

eZ1Z0 =
Var(Ẑ0)

Var(Ẑ1)
. (2.31)

The ARE of the ML-based estimator with respect to itself is thus 1. The ARE of the moment-

based estimators with respect to ML should be less than 1 because moment statistics are not

the sufficient statistics.

Fig. 2.1 and Fig. 2.2 show the simulated MSE performance and the asymptotic relative

efficiency of the moment-based Nakagamim parameter estimators respectively. We observe

that for all values ofm, the limiting estimator of the fractional moment-based estimator family

(2.11) and the GMM estimator with first, second and third order moment conditions are more

efficient than the other moment-basedm parameter estimators. Specifically, whenm < 1, the

limiting fractional moment-based estimator achieves the best estimation performance; whereas

whenm > 1, the GMM estimator based on the first three integer moments outperforms the

limiting estimator. The performance difference between the GMM estimator based on the

first two integer moments and the GMM estimator based on the first three integer moments
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2.4. Numerical Results and Discussion

suggests that the GMM approach can achieve better estimation performance by adding more

moment conditions. It is interesting to notice that the INV estimator which uses the second and

fourth order moments achieves the same MSE and asymptotic variance as the GMM estimator

based on the same moment conditions. This implies that the INV estimator has achieved the

best asymptotic performance among all MoM estimators basedon the second and fourth order

moment conditions. However, we can observe that there is a huge performance gap between

the GMM estimator with the first three integer moment conditions and the classical moment-

based estimator ˆmt . This observation suggests that based on the same moment conditions, it is

still possible to design a moment-based estimator with better performance than that of ˆmt .
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mators with sample sizeN = 10,000.
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parameter estimators with respect to ML.

26



2.5. Summary

2.5 Summary

In this chapter, we have provided a detailed discussion on moment-based estimation for the

Nakagami-m fading model. A family of classical moment-basedm parameter estimators based

on both integer and fractional moments has been reviewed. Ithas been shown that some com-

monly used moment-basedm parameter estimators are special cases of this estimator family.

The GMM estimation approach which exploits all available moment conditions in a determined

or over-determined estimation problem has been introducedto fading parameter estimation for

the first time. Systematic performance comparison for moment-basedm parameter estimators

has been conducted by both Monte Carlo simulation and asymptotic variance analysis.
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Chapter 3

On Statistics of Logarithmic Ratio of

Arithmetic Mean to Geometric Mean for

Nakagami-m Fading Power

Chaper 2 discusses several moment-based Nakagamim parameter estimators. In this chapter,

we focus on performance analysis of maximum-likelihood basedm parameter estimators.

3.1 ML-Based Nakagami-m Parameter Estimators

Recall that the PDF of the Nakagami-m fading envelopeR is given by

fR(r) =
2

Γ(m)

(m
Ω

)m
r2m−1exp

(

−m
Ω

r2
)

, r ≥ 0, m ≥ 1
2

(3.1)

whereΩ = E[R2] is the scale parameter, and the shape parameterm is defined as

m =
Ω2

E[(R2−Ω)2]
, m ≥ 1

2
. (3.2)

As briefly discussed in Chapter 1, in order to characterize wireless channels using the

Nakagami-m distribution, it is crucial to determine or estimate the value ofm from N random

samplesR1,R2, . . . ,RN drawn independently according to (3.1). Several methods for estimat-

ing them parameter have been reported in literature. The Greenwood-Durand estimator (GDE)
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3.1. ML-Based Nakagami-m Parameter Estimators

[15], a ML-based Gamma-shape parameter estimator, is givenby

m̂GDE =







f1(∆) ∆ < 0.5772

f2(∆) 0.5772≤ ∆ ≤ 17
(3.3)

where

f1(∆) =
0.5000876+0.1648852∆−0.0544274∆2

∆
(3.4a)

f2(∆) =
8.898919+9.059950∆−0.9775373∆2

(17.79728+11.968477∆+∆2)∆
(3.4b)

and

∆ = ln

[

1
N

N

∑
i=1

R2
i

]

− 1
N

N

∑
i=1

lnR2
i =−ψ(m̂)+ ln(m̂) (3.5)

in which ψ(·) is the digamma function defined asψ(x) = Γ′(x)/Γ(x). More recently, Cheng

and Beaulieu [16] proposed to use the first-order and second-order approximations toψ(·) in

ML-basedm parameter estimation and derived two approximate ML estimators form as

m̂1 =
1

2∆
(3.6)

and

m̂2 =
6+

√
36+48∆
24∆

. (3.7)

It was pointed out by Zhang [23] that estimators similar to (3.6) and (3.7) were reported earlier

by Thom [24] in the estimation problem for the Gamma distribution in another discipline.

The ML-based estimators presented in (3.3), (3.6), and (3.7) are all functions of the param-

eter∆. This immediately implies that if we know the PDF of the parameter∆, we can assess

the performance of ML-based estimators for the Nakagamim parameter without performing

intensive computer simulations.
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3.2 Statistical Properties of∆

3.2.1 Alternative Expression of∆

The expression of parameter∆ in (3.5) can be written as

∆ = ln

(

1
N

N

∑
i=1

R2
i

)

− ln





(
N

∏
i=1

R2
i

) 1
N



= ln

[
1
N ∑N

i=1R2
i

(∏N
i=1R2

i )
1
N

]

. (3.8)

We observe from (3.8) that the parameter∆ is just the logarithmic ratio of the arithmetic mean

to the geometric mean ofN samples of the Nakagami-m fading power.

It can also be shown that the Nakagami-m distribution is a member of a two-parameter

exponential family, and the parameter∆ is a function of the joint complete sufficient statistics.

The detailed proof is given in Appendix B. In addition, by properties of sufficient statistics

[25], the ML-based estimator of the unknown parameter is a function of the sufficient statistic.

3.2.2 Nonnegative Property of∆

According to the well-known Arithmetic-Geometric inequality [26], we have

1
N

N

∑
i=1

R2
i ≥

(
N

∏
i=1

R2
i

) 1
N

(3.9)

and therefore we must have∆ > 0. By recognizing the fact that whenm approaches+∞ the

Nakagami PDF becomes an impulse function located at
√

Ω, we arrive at

lim
m→+∞

∆ = lim
m→+∞

ln

[
1
N ∑N

i=1R2
i

(∏N
i=1R2

i )
1
N

]

= ln

[
1
N ∑N

i=1Ω

(∏N
i=1 Ω)

1
N

]

= 0. (3.10)
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3.2. Statistical Properties of∆

3.2.3 Moment Generating Function of∆

To derive the MGF of∆, denoted byΦ∆(s), we start with the definition and have

Φ∆(s) = E

[

es∆
]

=

∫ +∞

0
· · ·
∫ +∞

0
︸ ︷︷ ︸

N

[ (

∑N
i=1R2

i

)s

Ns
(

∏N
i=1R2

i

) s
N

]

×
[

2
Γ(m)

(m
Ω

)m
R2m−1

1 e−
m
Ω R2

1

]

×·· ·×
[

2
Γ(m)

(m
Ω

)m
R2m−1

N e−
m
Ω R2

N

]

dR1 · · ·dRN

=

[
2

Γ(m)

(
m
Ω
)m
]N

Ns

∫ +∞

0
· · ·
∫ +∞

0
︸ ︷︷ ︸

N

N

∏
i=1

R
2m− 2s

N −1
i ·

(
N

∑
i=1

R2
i

)s

exp

(

−m
Ω

N

∑
i=1

R2
i

)

dR1 · · ·dRN.

(3.11)

If we let d = m− s/N, after a change of variable (R2
i = xi), we obtain

Φ∆(s) =

[
1

Γ(m)

(m
Ω
)m
]N

Ns

∫ +∞

0
· · ·
∫ +∞

0
︸ ︷︷ ︸

N

N

∏
i=1

xd−1
i ·

(
N

∑
i=1

xi

)s

·exp

(

−m
Ω

N

∑
i=1

xi

)

dx1 · · ·dxN .

(3.12)

The multipleN integrals in (3.12) can be reduced to a single integral by invoking the following

useful integral identity [27]

∫ +∞

0
· · ·
∫ +∞

0
︸ ︷︷ ︸

n

xα1−1
1 xα2−1

2 · · ·xαn−1
n f (

n

∑
i=1

xi)dx1 · · ·dxn

=
Γ(α1)Γ(α2) · · ·Γ(αn)

Γ(α1+α2+ · · ·+αn)

∫ +∞

0
uα1+α2+···+αn−1 f (u)du.

(3.13)
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3.2. Statistical Properties of∆

Letting α1 = α2 = . . . = αN = d and f (x) = xs exp
(
−m

Ωx
)
, we obtain a compact form for the

MGF of ∆ as

Φ∆(s) =

[
1

Γ(m)

(m
Ω
)m
]N

Ns · [Γ(d)]
N

Γ(Nd)
·
∫ +∞

0
uNd−1us exp

(

−m
Ω

u
)

du

=
Γ(mN)[Γ(m− s/N)]N

Ns[Γ(m)]NΓ(mN − s)

(3.14)

where in obtaining the last step we have used the definition ofthe Gamma function.

3.2.4 Probability Density Function of∆

The PDF of∆ can be obtained from its MGF by applying an inverse Laplace transform as

f∆(δ ) =
1

2π j

∫ c+ j∞

c− j∞
Φ∆(−s)esδ ds

=
Γ(mN)

[Γ(m)]N
· 1
2π j

∫ c+ j∞

c− j∞

Ns[Γ(m+ s/N)]N

Γ(mN + s)
esδ ds

(3.15)

where j2 =−1 andc is a suitably chosen positive constant which ensures that the contour path

is in the region of convergence. The integration is taken along the vertical lineℜ{s}= c in the

complex plane such thatc is greater than the real part of any singularity ofΦ∆(−s).

If we now lety = s/N, the PDF becomes

f∆(δ ) =
Γ(mN)

[Γ(m)]N
· N
2π j

∫ c′+ j∞

c′− j∞

NNy[Γ(m+ y)]N

Γ[N(m+ y))]
eNyδ dy (3.16)

wherec′ = c/N is another positive constant. With the aid of the Gauss multiplication theorem

[28]

Γ(nx) = (2π)
1−n

2 nnx− 1
2

n−1

∏
k=0

Γ
(

x+
k
n

)

(3.17)
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3.2. Statistical Properties of∆

we arrive at

f∆(δ ) =
N ·Γ(mN)

[Γ(m)]N
· 1
2π j

·
∫ c′+∞

c′− j∞

NNy[Γ(m+ y)]N

(2π)
1−N

2 NN(m+y)− 1
2 ∏N−1

k=1 Γ
[
m+ y+ k

N

](eNδ )ydy

= N · Γ(mN)

(2π)
1−N

2 NNm− 1
2 [Γ(m)]N

· 1
2π j

·
∫ c′+ j∞

c′− j∞

∏N
k=1 Γ[1− (1−m)+ y]

∏N−1
k=0 Γ

[
1− (1−m− k

N )+ y
](eNδ )ydy

(3.18)

Now applying the definition of Meijer’sG-function [29]

Gm,n
p,q




z

∣
∣
∣
∣

a1 · · · ap

b1 · · · bq




=

1
2π j

∫ ∏m
j=1Γ(b j − s)∏ j=1 nΓ(1−a j + s)

∏q
j=m+1 Γ(1−b j + s)∏ j=n+1 pΓ(a j − s)

· zsds (3.19)

to (3.18), we can simply write the PDF of∆ as

f∆(δ ) = Nξ ·G0,N
N,N




eNδ

∣
∣
∣
∣
∣

1−m · · · 1−m

1−m · · · 1−m− N−1
N




 (3.20)

where

ξ =
Γ(mN)

(2π)
1−N

2 NNm− 1
2 [Γ(m)]N

. (3.21)

Computer simulations were carried out to generate empirical PDFs of ∆ for different m

andN values, and to compare them with the analytical PDFs obtained from (3.20). Fig. 3.1

shows the analytical and empirical PDFs of∆ for m = 0.5, 1, 2 whenN = 5. Fig. 3.2 shows

the analytical and empirical PDFs of∆ for m = 0.5, 1, 2 whenN = 10. It is shown that the

analytical PDFs of∆ have excellent agreement with the empirical ones.

When the sample sizeN becomes large, the latest version of commercial software such as

MAPLE and MATHEMATICA are incapable of evaluating our analytical PDF expression in

(3.20).
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sample sizeN = 10.

35



3.3. Gamma Approximation

3.3 Gamma Approximation

To avoid the high computational complexity associated withthe Meijer’sG-function for large

N, we are motivated to approximate the PDF of∆ using another PDF which can be easily

evaluated and is analytically tractable.

3.3.1 Gamma Approximation for PDF of∆

From the nonnegative property discussed in Section 3.2, we know that∆ is defined on [0,

+∞). We propose to use a two-parameter Gamma PDF, which is also defined on [0, +∞), to

approximate the PDF of∆. To determine the parametersθ andk in the two-parameter Gamma

PDF

fX(x) =
xk−1e−x/θ

θ kΓ(k)
, x ≥ 0; θ ,k > 0 (3.22)

we can simply match the mean and variance of the two-parameter Gamma distribution to the

mean and variance of∆.

From the MGF of∆ in (3.14), the first two moments of∆ can be obtained by taking the first

and the second derivatives of the MGF with respect tos and evaluating the results ats = 0. It

is straightforward to show that the first two moments of∆ are given by

µ1 =−ψ(m)− ln(N)+ψ(mN) (3.23a)

µ2 = [ψ(m)]2+[ln(N)]2+[ψ(mN)]2+2ψ(m) ln(N)

−2ψ(m)ψ(mN)−2ψ(mN) ln(N)+
1
N

ψ ′(m)−ψ ′(mN).
(3.23b)

Setting the mean and variance of the two-parameter Gamma distribution equal to the mean and
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3.3. Gamma Approximation

variance of∆

µ1 = kθ (3.24a)

µ2− (µ1)
2 = kθ2 (3.24b)

we arrive at

θ =
1
N ψ ′(m)−ψ ′(mN)

−ψ(m)− ln(N)+ψ(mN)
(3.25a)

k =
1
N ψ ′(m)−ψ ′(mN)

[−ψ(m)− ln(N)+ψ(mN)]2
. (3.25b)

The two-parameter Gamma approximation is desirable since this PDF has a simple expo-

nential form, which can be easily evaluated and manipulatedin practice.

3.3.2 Validating the Gamma Approximation

Computer simulations were also carried out to compare the two-parameter Gamma approxi-

mate PDFs with the empirical PDFs of∆.

Fig. 3.3 shows the comparison between the empirical PDFs andthe Gamma approximated

PDFs of∆ for m = 0.5, 1, and 2 withN = 10. Fig. 3.4 presents the comparison between the

empirical PDFs and the corresponding Gamma PDFs form = 0.5, 1, and 2 withN = 100. Both

Figs. 3.3 and 3.4 demonstrate that the two-parameter Gamma PDF is a good candidate for

approximating the PDF of∆.

To numerically validate the feasibility of approximating∆ as a Gamma RV, we use the

Kolmogorov-Smirnov (K-S) test for goodness-of-fit. The basic idea of the K-S test is to com-

pare the empirical cumulative distribution function (CDF)with the CDF of the hypothesized

distribution. The test statisticDn for test sample volumen is defined as the supremum of the
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3.3. Gamma Approximation

Table 3.1: Kolmogorov-Smirnov test for gooodness-of-fit for the Gamma approximation.

n = 100 n = 1,000

Dmax Davg Acpt. % Dmax Davg Acpt. %

N = 10

m = 0.5 0.226 0.085 99.03% 0.067 0.027 99.05%

m = 1 0.218 0.085 98.87% 0.069 0.027 98.83%

m = 2 0.226 0.085 99.01% 0.072 0.027 99.00%

m = 5 0.232 0.085 99.11% 0.078 0.027 99.01%

N = 100

m = 0.5 0.212 0.085 98.95% 0.075 0.027 99.00%

m = 1 0.222 0.085 99.11% 0.066 0.027 98.91%

m = 2 0.211 0.085 99.00% 0.074 0.027 99.03%

m = 5 0.232 0.085 99.01% 0.068 0.027 98.88%

absolute difference between the theoretical CDFF(x) and the empirical CDFFn(x)

Dn ≡ sup
x∈[0,+∞)

|F(x)−Fn(x)|. (3.26)

If the test statisticDn is less than a critical valueDα
n , which is determined by both the test

sample volumen (degree of freedom) and a prescribed significance levelα, the theoretical

distribution is acceptable at a confidence level of 1−α.

Case studies were conducted using test sample volumen = 100 and 1,000 form = 0.5, 1, 2,

and 5 withN = 10 and 100. The significance levelα was chosen to be 0.01, giving a 99.00%

confidence level for the K-S test.

Table 3.1 shows the maximum test statisticsDmax and the average test statisticsDavg ob-

tained from 10,000 experiments conducted in our study. According to [30], the critical values

for test sample volumen = 100 and 1,000 at significance level 0.01 areD0.01
100 = 1.63/

√
100=

0.163 andD0.01
1,000= 1.63/

√
1000= 0.0515 respectively. We observe that in each case of our

case studies, about 99% of the experiments accepted the hypothesis that the random variable

∆ can be modelled as a Gamma random variable at a confidence level of 99.00%. Table 3.1

also shows thatDmax values, under which the hypothesis is rejected, are slightly greater than
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3.4. Applications and Numerical Results

Table 3.2: Numerical MSE performance evaluations for ML-based Nakagamim parameter
estimators.

N = 100

E[·] Var[·] Bias

m̂1

m = 0.5 0.40413731 0.00311112 -0.09586269

m = 1 0.89122741 0.01615511 -0.10877259

m = 2 1.90478583 0.07568833 -0.09521418

m = 5 4.98725469 0.52291930 -0.01274531

m̂2

m = 0.5 0.530691584 0.00348994 0.03069158

m = 1 1.034506216 0.01677922 0.03450622

m = 2 2.058782448 0.07652349 0.05878245

m = 5 5.148600611 0.52392564 0.14860061

m̂GDE

m = 0.5 0.500496858 0.004216106 0.000496858

m = 1 0.980884952 0.018350252 -0.019115048

m = 2 2.032113782 0.078701255 0.032113782

m = 5 5.141084032 0.526581576 0.141084032

the critical values; and the average test statisticDavg values are significantly below the corre-

sponding values. In summary, the K-S test concludes that thetwo-parameter Gamma PDF can

be used to accurately approximate the PDF of∆.

3.4 Applications and Numerical Results

In this section, we use the Gamma approximate PDF to numerically evaluate the performance

of ML-based Nakagamim parameter estimators discussed in Section 3.1 for largeN scenarios.

Table 3.2 shows the mean, variance and bias of three ML-basedNakagamim parameter

estimators ˆm1, m̂2, andm̂GDE for m = 0.5, 1, 2, and 5 with sample sizeN = 100. The numerical

results were calculated by using the Gamma approximate PDF of ∆ derived in Section 3.3.
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By using the relationship

MSE(m̂) = Var[m̂]+bias2(m̂) (3.27)

we can evaluate the MSE performance of ML-basedm parameter estimators numerically with

the data in Table 3.2. Fig. 3.5 shows the simulated MSE of ML-basedm parameter esti-

mators discussed in this chapter and the MSE of thesem estimators calculated by using the

approximate PDF of∆. The plots show that the calculated MSE values give excellent fit to the

simulated MSE curves, which also validates the proposed Gamma approximation. It can be

observed in Fig. 3.5 that the Greenwood-Durand estimator ˆmGDE and the second order Cheng-

Beaulieu estimator ˆm2 achieve very close MSE performance for a variety of fading conditions.

In addition, for small and moderatem values (m< 3), m̂GDE andm̂2 perform better than the first

order Cheng-Beaulieu estimator ˆm1 in terms of MSE; however, form > 3, which corresponds

to less severe fading scenarios, ˆm1 outperforms ˆmGDE andm̂2.
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Figure 3.5: Analytical and simulated MSE performance of ML-based Nakagamim parameter
estimators with sample sizeN = 100.
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3.5 Summary

In this chapter, we have studied statistical properties of aparameter∆, which is defined as the

logarithmic ratio of the arithmetic mean to the geometric mean for the Nakagami-m fading

power. This parameter is useful in studying the ML-based estimators of the Nakagamim

fading parameter. Closed-form expressions have been derived for both the MGF and the PDF

of the parameter∆. For large sample size, it has been found that the PDF of∆ can be well

approximated by a two-parameter Gamma PDF. This approximation has been validated by

the Kolmogorov-Smirnov test. As an application, we have applied our results to study the

performance of three widely used ML-based Nakagamim parameter estimators.
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Chapter 4

Moment-Based Estimation for the

Gamma-Gamma Distribution with FSO

Applications

4.1 Introduction

Being capable of establishing full-duplex high-speed wireless communication links over a dis-

tance of several kilometers using license-free spectrums,free-space optical communication has

attracted much attention in the past decade. Because of easeand low cost of implementation,

FSO system is considered as an alternative to optical fiber for the ’last mile’ problem when

fiber optic links are unavailable or too expensive to implement.

As discussed in Chapter 1, in FSO communications the main impairment is caused by atmo-

spheric turbulence-induced irradiance fluctuations. Therefore, when conducting system design

and performance analysis for FSO systems, we need to study the atmospheric turbulence mod-

els. We reviewed in Chapter 1 that the log-normal distribution [4][5] and theK-distribution [7]

were proposed to model the irradiance for weak and strong turbulence conditions respectively.

Another turbulence model, the Gamma-Gamma distribution, was later found to be capable of

providing good fit to experimental measurements of irradiance for both weak and strong turbu-

lence scenarios [8]. This desirable feature of the Gamma-Gamma distribution enables it to be

used in a wide-range of turbulence conditions. The PDF of theGamma-Gamma distribution is
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given by

fG(I) =
2(αβ )(α+β )/2

λΓ(α)Γ(β )

(
I
λ

)α+β
2 −1

Kα−β

(

2
√

αβ I/λ
)

, α > 0,β > 0,λ > 0 (4.1)

whereλ is a scale parameter,α andβ are the shape parameters, andKv(·) is thevth order

modified Bessel function of the second kind.

To apply turbulence models to the analyses of practical FSO systems, we are often required

to estimate the corresponding unknown parameters. Parameter estimation methods for the

log-normal distribution and theK-distribution have been well studied in [31] [32] [12] [33].

However, to our best knowledge, estimator for the parameters of the Gamma-Gamma PDF

has not been reported in literature. The parameter estimation problem for the Gamma-Gamma

distribution is challenging because a maximum-likelihoodapproach will involve derivatives

of Kv(·), with respect to both its argument and the order index. For the same reason, the

Cramér-Rao lower bound of the estimators can not be easily derived. Current method for

determining the shape parameters of the Gamma-Gamma turbulence model has focused on

calculating the Rytov variance, which requires the knowledge of link distance and refractive-

index structure parameter [31]. However, this requirementis not always desirable for practical

FSO systems, especially when terminals have some degrees ofportability which can change the

link parameters frequently. For FSO systems with slant propagation path, the refractive-index

structure parameter can not even be measured accurately because it is a function of altitude,

which will change along the slant path.

The remainder of this chapter is organized as follows. Section 4.2 reviews some important

statistical properties of the Gamma-Gamma distribution which are useful for our estimation

problem. In Section 4.3 we propose an estimation scheme for the Gamma-Gamma turbulence

model based on the concept of fractional moments and convex optimization. Then a modified

estimator which makes use of the relationship between the Gamma-Gamma shape parameters

in FSO applications is proposed in Section 4.4. Simulation results show that significant perfor-
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4.2. Statistical Properties of the Gamma-Gamma TurbulenceModel

mance improvement in terms of MSE can be achieved by the modified estimation scheme.

4.2 Statistical Properties of the Gamma-Gamma

Turbulence Model

4.2.1 Parameterization of the Gamma-Gamma Turbulence Model

Similar to theK-distribution, the Gamma-Gamma turbulence model is developed based on a

modulation process, in which small scale irradiance fluctuation is modulated by large scale

irradiance fluctuation. In the Gamma-Gamma PDF specified in (4.1), the parameterα repre-

sents the effective number of large-scale cells of the scattering process, and the parameterβ

represents the effective number of small-scale cells [3]. We also emphasize that parametersα

andβ can not be arbitrarily chosen in FSO applications, they are related through a parameter

called Rytov variance, which is a measure of optical turbulence strength. Under an assumption

of plane wave and negligible inner scale, which correspondsto long propagation distance and

small detector area, the shape parameters of the Gamma-Gamma model satisfy the following

relationships [3]

α = g(σR) =




exp






0.49σ2
R

(

1+1.11σ12/5
R

)7/6




−1






−1

(4.2a)

β = h(σR) =




exp






0.51σ2
R

(

1+0.69σ12/5
R

)5/6




−1






−1

(4.2b)

whereσ2
R is the Rytov variance. Though the relationships described in (4.2a) and (4.2b) can

change when spherical wave and a finite inner scale are taken into account [8], our estimation

approach can be similarly applied to the other scenarios considered in [8]. It can be shown
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Figure 4.1: Gamma-Gamma shape parametersα andβ as functions ofσR.

that α = g(σR) in (4.2a) is a convex function ofσR on (0, ∞), andβ = h(σR) in (4.2b) is a

monotonically decreasing function on (0,∞). In addition, the relationshipα > β always holds,

and the smaller shape parameterβ is lower bounded above 0.91398 asσR approaches infinity.

Fig. 4.1 plotsα andβ as functions ofσR.

As a measure of optical turbulence strength, the Rytov variance can also be used to char-

acterize different turbulence levels [34]: the weak-turbulence regime refers toσ2
R ≤ 0.3; the

moderate-turbulence regime has 0.3< σ2
R ≤ 5; and the strong-turbulence regime corresponds

to σ2
R > 5. However, the definition for fluctuation regimes by the Rytov variance is not strict as
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4.2. Statistical Properties of the Gamma-Gamma TurbulenceModel

other classification schemes have also been used in literature. For example, in [35] Voelz and

Xiao used Rytov variance values between[1,10) to define the moderate turbulence regime for

plane wave scenario. Gamma-Gamma PDFs for weak, moderate, and strong turbulence scenar-

ios are plotted in Fig. 4.2, where the corresponding Rytov variance values areσ2
R = 0.25, 2, and

11, and the scale parameterλ is set to unity. When the Rytov varianceσ2
R approaches infin-

ity, which corresponds to very severe turbulence conditionor the saturation regime, the shape

parameterα approaches infinity, the shape parameterβ approaches a finite constant 0.91398,

and the Gamma-Gamma PDF (4.1) will approach a negative exponential PDF. We can observe

this trend in Fig. 4.2.

4.2.2 Moments of The Gamma-Gamma Turbulence Model

Thekth order moment of the Gamma-Gamma PDF is given by [36]

µk = E

[

Ik
]

=
Γ(α + k)Γ(β + k)

Γ(α)Γ(β )

(
λ

αβ

)k

. (4.3)

In this work, we normalize the first moment by settingλ = 1.

The closed-form expression in (4.3) can be derived by applying the following integral prop-

erty of the modified Bessel function of the second kind (6.561-16, [37]) in the definition of the

kth order moment of the Gamma-Gamma distribution

∫ ∞

0
xuKv(ax)dx = 2u−1a−u−1Γ

(
1+u+ v

2

)

Γ
(

1+u− v
2

)

, [ℜ{u+1± v}> 0,ℜ{a}> 0] .

(4.4)

Note that from the condition of the integral property (4.4),we require







α + k > 0

β + k > 0
(4.5)
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R = 0.25, 2, and 11.
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which means the closed-form moment expression in (4.3) for the Gamma-Gamma distribution

is valid only for moments of order greater than max{−α,−β}. From Section 4.2.1, we know

that the minimum ofα andβ is the limit of β , which is 0.91398. Therefore we conclude the

closed-form expression for moments of the Gamma-Gamma distribution in (4.3) is valid for

moments of orderk >−0.91398. Note that the order indexk is not restricted to integers, it can

also have non-integer values.

4.3 An MoM/CVX Estimation Scheme for Gamma-Gamma

Shape Parameters

Taking the ratio of the(k+1)th and thekth order moments of the Gamma-Gamma distribution,

we obtain
µk+1

µk
= 1+

k
α
+

k
β
+

k2

αβ
. (4.6)

From (4.3), we also find that the second-order moment of the Gamma-Gamma distribution is

µ2 = 1+
1
α
+

1
β
+

1
αβ

. (4.7)

Using (4.6) and (4.7), a nonlinear equation set involving variablesα andβ is formulated as







1
α
+

1
β
= c

1
α
· 1

β
= d

(4.8)

where

c =
k2µ2− µk+1

µk
− (k2−1)

k2− k
(4.9a)

d =
kµ2− µk+1

µk
− (k−1)

k− k2 . (4.9b)
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After some algebraic manipulations to (4.8),α andβ values can be found as the roots of

the following quadratic equation

x2− c
d

x+
1
d
= 0. (4.10)

For FSO applications, since the shape parameterα is always greater than the shape parameter

β , we designate the larger root of (4.10) to beα, and the smaller one to beβ . A moment-based

shape parameter estimator for the Gamma-Gamma turbulence model can thus be expressed as

α̂ =
ĉ

2d̂
+

1
2

√

ĉ2

d̂2
− 4

d̂
(4.11a)

β̂ =
ĉ

2d̂
− 1

2

√

ĉ2

d̂2
− 4

d̂
(4.11b)

where ˆc andd̂ arec andd values in (4.9) calculated using sample moments.

It is known that moment-based estimators with higher order moments may suffer from out-

lier samples. The outlier problem can be alleviated by choosing smallerk values. To achieve

better performance, we propose to use fractional moments (0< k < 1) instead of positive inte-

ger moments in our moment-based shape parameter estimators. The application of fractional

moments in the study of atmospheric laser scintillation hasbeen discussed by Consortini and

Rigal [38]. It has been shown that using fractional moments of orders less than two can signif-

icantly reduce the fitting error of moments. Even with the presence of noise and background

which can not be removed directly from fractional moments, the fitting accuracy can be guar-

anteed as along as we have small enough width of the noise of the experimental setup.

Although the denominators of the expressions in (4.9a) and (4.9b) become zero whenk = 0,

it can be shown that the equalities hold fork = 0 by applying L’Hôpital’s rule as

lim
k→ 0

c = lim
k→ 0

k2µ2− µk+1
µk

− (k2−1)

k2− k
= lim

k→ 0

2kµ2−
(

1
α + 1

β + 2k
αβ

)

−2k

2k−1
=

1
α
+

1
β

(4.12a)
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lim
k→ 0

d = lim
k→ 0

kµ2− µk+1
µk

− (k−1)

k− k2 = lim
k→ 0

µ2−
(

1
α + 1

β + 2k
αβ

)

−1

1−2k
=

1
α
· 1

β
. (4.12b)

In order to obtain real-valued roots, eqn. (4.10) must have apositive discriminant

∆ =
( c

d

)2
− 4

d
> 0. (4.13)

However, the discriminant∆ may be negative, especially when the Rytov variance becomes

small (σR < 1), which corresponds to weak turbulence scenarios. In thatcase, the moment-

based estimator in (4.11) will not give meaningful real-valued estimates forα andβ .

To address the above shortcoming, we observe that the left-hand side of (4.10) is a convex

function. First, define a functionf (x) = x2 − ĉ
d̂

x + 1
d̂
. Then, a suboptimal solution to the

estimation problem can be formulated as a convex optimization problem

minimize
α, β

[ f (α)−0]2+[ f (β )−0]2

subject to α > 0, β > 0.
(4.14)

The minimizer for the convex optimization problem described by (4.14) can be found as

α̂ = β̂ =
ĉ

2d̂
. (4.15)

From Fig. 4.1, it can be seen that whenσR < 1, α andβ values are close to each other. Thus

it is intuitively correct to have suboptimal estimates withα̂ = β̂ . By combining the fractional

moment-based estimator (4.11) and the convex optimizationestimator (4.15), we arrive at a

robust estimation scheme for the shape parametersα andβ . We name this estimation scheme

the method-of-moments/convex-optimization (MoM/CVX ) approach.

We use MSE as the metric for assessing the estimation performance. Monte Carlo simula-
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Figure 4.3: MSE performance of theMoM/CVX estimator and the modifiedMoM/CVX estima-
tor with k = 0.5 and sample sizeN = 100,000.

tions were carried out for theMoM/CVX estimator withk=0.5 andσR value from 0.5 to 4.5,

the data sample size was chosen to beN=100,000.

From the simulation results shown in Fig. 4.3, we observe that theMoM/CVX estimator

for β can provide good estimates over a wide range ofσR values. However, the estimation

performance of theMoM/CVX estimator forα is poorer. ForσR = 0.5, the MSE ofα̂ can be

as large as 2.97, which corresponds to an average relative error of 17.8%. Therefore, we are

motivated to further improve the estimation performance for parameterα.
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4.4 A Modified MoM/CVX Estimation Scheme for the

Shape Parameterα

An alternative method for estimating the shape parameterα, which turns out to be an improved

scheme, is to usêβ to estimateσR via

σ̂R = h−1
(

β̂
)

(4.16)

whereh−1(·) denotes the inverse function ofh(·) in (4.2b). ReplacingσR in (4.2a) with its

estimates in (4.16), a new estimator forα can be obtained as

α̂impv = g
(

h−1(β̂ )
)

. (4.17)

The analytical expression ofh−1(·) is cumbersome; however, the built-in functionsolve in

MATLAB can be used to find numerical results forh−1(·).

We observe in Fig. 4.3 that the MSE performance of the estimates ofα is significantly im-

proved by the modified method (dashed line). For our sample points, the largest improvement

is achieved atσR = 1.5, where the MSE is reduced by 99.85%.

The change in improvement achieved by the modified scheme canactually be predicted.

For example, from a plot of|g′(σR)| versusσR shown in Fig. 4.4, one obtains|g′(σR)| = 0

whenσR = 1.402567471. This suggests that the modified estimatorα̂impv is least sensitive to

the estimation error of̂β in the neighborhood of this point and the largest improvement for

estimates ofα can be achieved.

Fig. 4.5 summarizes the estimation process of the modifiedMoM/CVX estimator. In the

modified estimation scheme, we first calculate sample momentsµ̂k, µ̂k+1 andµ̂2 of the Gamma-

Gamma turbulence model from the observed optical irradiance sample values. Parameters ˆc

andd̂ in (4.9) can then be determined by using the sample moments. If the discriminant∆ of
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the quadratic equation in (4.10) is greater than zero, we usethe quadratic solution in (4.11) to

obtain the estimate of parameterβ ; otherwise, an estimate ofβ will be given by the convex

optimization solution (4.15). With an estimate ofβ , we can finally find an improved estimator

α̂impv via (4.17).

4.5 Summary

In this chapter, we have studied the parameter estimation problem for the Gamma-Gamma

turbulence model for free-space optical communications. An estimation scheme for the shape

parameters of the Gamma-Gamma distribution has been proposed based on the concept of frac-

tional moments and convex optimization. With the proposed method, estimates of the shape

parameters can be directly obtained from observed samples,which is more straightforward

than the current method which depends on measurements of some physical quantities. To im-

prove the estimation performance, we have also proposed a modified scheme which exploits

the relationship between the Gamma-Gamma shape parametersin FSO communications. Sim-

ulation results have revealed that the modified estimation scheme can achieve MSE below 0.5

and average relative estimation error below 15% for a wide range of turbulence conditions and

system setups.
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Figure 4.5: Flow chart of the modifiedMoM/CVX estimator for the Gamma-Gamma shape
parameters.
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Chapter 5

Conclusions

This chapter concludes the thesis with some general comments on applications of the method of

moments on parameter estimation for fading and atmosphericmodels in wireless communica-

tion, followed by a discussion of possible future work for investigation of alternative applicable

estimation methods and applications.

5.1 Summary of Contributions

In this thesis, we have investigated applications of several moment-based methods in parameter

estimation of fading and atmospheric turbulence models. The contributions of this thesis can

be summarized as follows.

1. A detailed discussion on moment-based estimation for theNakagami-m fading model

has been given. A family of classical moment-basedm parameter estimators has been

reviewed. Both the integer moments scenario and the fractional moments scenario are

discussed. The generalized method of moment estimation which exploits information

that resides in all available moment conditions in a determined or over-determined es-

timation problem, has been introduced to fading parameter estimation for the first time.

Systematic performance comparison for moment-basedm parameter estimators has been

conducted by both simulation and an analytical asymptotic variance analysis.

2. By investigating the statistical properties of the parameter ∆, which is defined as the

logarithmic ratio of the arithmetic mean to geometric mean for the Nakagami-m fading

59



5.2. Future work

power, the MGF and the exact PDF of∆ have been derived. A Gamma approximation of

the PDF of∆, which avoids computational complexity of the exact PDF forlarge sample

size, has also been proposed by using a moment matching method. The validity of using

the two-parameter Gamma PDF to approximate the PDF of∆ has been established using

the Kolmogorov-Smirnov test. With the assistance of our results, numerical evaluation

of the performance of ML-based Nakagamim parameter estimators is feasible without

performing intensive Monte Carlo simulations.

3. Based on the concepts of fractional moments and convex optimization, we have pro-

posed a composite estimation scheme for the shape parameters of the Gamma-Gamma

atmospheric turbulence model. Our estimation technique can be used to characterize

this atmospheric turbulence model over a wide range of turbulence conditions in FSO

applications.

5.2 Future work

The GMM approach introduced in Section 2.3 provides a general framework for an iterative

estimation scheme based on moment conditions. It has been shown that the GMM approach

can achieve very good estimation performance for Nakagamim parameter estimation, and

under this framework, using more moment conditions can further improve the estimation per-

formance. Therefore, when the computation load is affordable and the delay requirement is not

strict, it is preferable to use the GMM in any estimation problem in wireless communication

research like the Gamma-Gamma estimation problem discussed in Chapter 4 and channel esti-

mation etc. to improve moment-based estimation accuracy. Particularly, this GMM approach

has large potential application in wireless communicationproblems where the traditional ML-

based estimation approach does not work.

Another possible future research topic is the application of the L-moment method men-
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tioned in Section 1.3. Most moment-based estimation schemes require the sample size to be

very large to guarantee the convergence of the sample moments. However, for many real-time

applications, this requirement can not be satisfied. The L-moments, being linear combinations

of data, are less influenced by outliers and suffer less from sampling variability. Therefore, the

L-moment method may be preferred in such real-time scenarios to the ML approach when ML

has high computational complexity.

61



Bibliography

[1] D. Tse and P. Viswanath,Fundamentals of Wireless Communication. Cambridge: Cam-

bridge University Press, 2005.

[2] M. Nakagami, “Them-distributionca general formula of intensity distribution of rapid

fading,” Statistical Methods in Radio Wave Propagation, vol. 40, pp. 757–768, Nov.

1962.

[3] L. C. Andrews, R. L. Phillips, and C. Y. Hopen,Laser Beam Scintillation with Applica-

tions. Bellingham, WA: SPIE Press, 2001.

[4] G. Parry, “Measurements of atmospheric turbulence-induced intensity fluctuations in a

laser beam,”Optica Acta, vol. 28, no. 5, pp. 715–728, May 1981.

[5] R. L. Phillips and L. C. Andrews, “Measured statistics oflaser-light scattering in at-

mospheric turbulence,”Journal of the Optical Society of America, vol. 71, no. 12, pp.

1440–1445, Dec. 1981.

[6] J. H. Churnside and R. G. Frehlich, “Experimental evaluation of lognormally modulated

Rician andIK models of optical scintillation in the atmosphere,”Journal of the Optical

Society of America. Series A, vol. 6, no. 11, pp. 1760–1766, Nov. 1989.

[7] E. Jakeman and P. N. Pusey, “The significance ofK-distributions in scattering experi-

ments,”Physics Review Letters, vol. 40, no. 9, pp. 546–550, Sept. 1978.

62



Chapter 5. Bibliography

[8] M. A. Al-Habash, L. C. Andrews, and R. L. Phillips, “Mathematical model for the irradi-

ance probability density function of a laser beam propagating through turbulent media,”

Optical Engineering, vol. 40, no. 8, pp. 1554–1562, Aug. 2001.

[9] S. M. Kay, Funcdamentals of Statistical Signal Processing: Estimation Theory. Upper

Saddle River, NJ: Prentice Hall, 1993.

[10] L. P. Hansen, “Large sample properties of generalized method of moments estimators,”

Econometrica, vol. 50, no. 4, pp. 1029–1054, July 1982.

[11] J. R. M. Hosking, “L-moments: Analysis and estimation of distributions using linear

combinations of order statistics,”Journal of the Royal Statistical Society. Series B, vol.

52, no. 1, pp. 105–124, Jan. 1990.

[12] D. R. Iskander, A. M. Zoubir, and B. Boashash, “A method for estimating the parameters

of theK-distribution,” IEEE Transactions on Signal Processing, vol. 47, no. 4, pp. 1147–

1151, Apr. 1999.
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Appendix A

Derivation of (2.28)

By taking partial derivatives ofh(m̂GMM; µ̂k1, . . . , µ̂ks) in (2.27) and settinĝµk1 = µk1, . . . , µ̂ks =

µks, we have

∂h(m̂GMM; µ̂k1, . . . , µ̂ks)
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and substituting (A.1) and (2.27) into (2.25), we arrive at
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Appendix B

Exponential Family Property of the

Nakagami-m Distribution

An s-parameter exponential family is defined as a family of distributions parameterized by an

s-dimensional vectorθ = [θ1,θ2, . . . ,θs]
T with PDF in the form of

fX(x;θ) = C(θ)exp

{
s

∑
i=1

ηi(θ)T i(x)

}

h(x) (B.1)

whereC, ηi’s are real-valued functions ofθ , and Tis andh are real-valued functions ofx

[39]. If N i.i.d. random samplesX1,X2, . . . ,XN are drawn according to an exponential family

distribution with PDF in the form of (B.1), then
(

∑N
i=1Tj(Xi), j = 1,2, . . . ,s

)
is a joint complete

sufficient statistic.

We rewrite the PDF of the Nakagami-m distribution (3.1) as
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(B.2)

If we denoteC(m,Ω) = 2
Γ(m)

(m
Ω
)m, η1(m,Ω) = −m/Ω, η2(m,Ω) = m, T1(r) = r2, T2(r) =

lnr2, andh(r) = 1/r, then the Nakagami-m PDF can fit in the form of (B.1), which suggests

that the Nakagami-m distribution is a member of a two-parameter exponential family.

Thus
(
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i=1 R2

i ,∑
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i=1 lnR2

i

)
=
(
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i=1T1(Ri),∑N

i=1T2(Ri)
)

is a joint complete sufficient statis-
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tics of the Nakagami-m distribution. Therefore, the parameter∆, which can be written as

∆ = ln

(
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(B.3)

is a function of the joint complete sufficient statistics of the Nakagami-m distribution.
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