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Abstract

Accurate and efficient measurement of network-internal characteristics is critical for man-

agement and maintenance of large-scale networks. In this thesis, we propose a linear

algebraic network tomography (LANT) framework for active inference of link loss rates

on mesh topologies via network coding. Probe packets are transmitted from the sources

to the destinations along a set of paths. Intermediate nodes linearly combine the re-

ceived probes and transmit the coded probes using pre-determined coding coefficients.

Although a smaller probe size can reduce the bandwidth usage of the network, the infer-

ence framework is not valid if the probe size falls below a certain threshold. To this end,

we establish a tight lower bound on probe size which is necessary for establishing the

mappings between the contents of the received probes and the losses on the different sets

of paths. Then, we develop algorithms to find the coding coefficients such that the lower

bound on probe size is achieved. Furthermore, we propose a linear algebraic approach

to developing consistent estimators of link loss rates, which converge to the actual loss

rates as the number of probes increases. We show that using the LANT framework, the

identifiability of a link, which only depends on the network topology, is a necessary and

sufficient condition for the consistent estimation of its loss rate. Simulation results show
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that the LANT framework achieves better estimation accuracy than the belief propaga-

tion (BP) algorithm for large number of probe packets.
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Chapter 1

Introduction

Accurate and efficient measurement of network-internal characteristics is critical for man-

agement and maintenance of large-scale networks. With accurate and timely performance

estimates, more efficient traffic control protocols and dynamic routing algorithms can be

designed. Quality-of-service (QoS) guarantees can be achieved if the available band-

width can be gauged; the resulting service level agreements can be verified. Detecting

anomalous or malicious behavior becomes a more achievable task [1].

Although network administrators can monitor local traffic conditions and detect con-

gestion points in small-scale networks, most networks are not completely isolated. The

user-perceived performance of a network thus depends heavily on the performance of the

internetwork. The traditional approach for characterizing network performance is based

on detailed queueing models at the individual router level, which requires access to a wide

range of routers to obtain link-level statistics. However, the routers are operated by differ-

ent companies or service providers, which makes it difficult to collect detailed information

at individual devices. Alternatively, we can make useful end-to-end measurements that

do not require widely cooperation from internal network devices. Subsequently, based on

the end-to-end measurements, we can apply inference techniques to extract the hidden



Chapter 1. Introduction 2

information of interest.

Broadly speaking, large-scale network inference involves estimating network perfor-

mance parameters based on traffic measurements at a limited subset of the nodes. Vardi

was one of the first researchers to rigorously study this type of problem and he coined

the term network tomography [2] due to the similarity between the inference of network

characteristics and medical tomography. Three forms of network tomography have been

addressed in the recent literature: (1) link-level parameter estimation based on end-to-

end, path-level traffic measurements [3, 4], (2) sender-receiver path-level traffic intensity

estimation based on link-level traffic measurements, and (3) the inference of network

topology [5, 6]. Characterizing these parameters is critical for detecting congestion,

faults and other anomalous behavior, ensuring compliance of service-level agreements

with users, and management of overlay networks.

In link-level parameter estimation, the end-to-end measurements usually consist of the

number of probe or data packets transmitted and received between the source and the

receiver nodes or the delay between packet transmissions and receptions. The objective is

to estimate the loss rate or the queuing delay of each link. Dropped packets on a link are

usually due to overload of the finite output buffer of one of the routers encountered when

traversing the link, but may also be caused by equipment downtime due to maintenance

or power failures. The end-to-end delay is due to both propagation delay processing delay,

queuing delay, and transmission delay. As assumed by most literature, occurrences of

dropped packets and queuing delay is inherently random.
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In path-level traffic intensity estimation, the measurements consist of the number of

probe or data packets that transmitted through nodes in the network. In privately owned

networks, the collection of such measurements is relatively straightforward. Based on

these measurements, the goal is to estimate how much traffic originated from a specified

node and was transmitted to a specified destination. The combination of the traffic

intensities of all the origin-destination pairs forms the origin-destination traffic matrix.

Both the node-level measurements and the parameter to be estimated are inherently

random.

In the inference of network topology, the measurements usually consist of the number

of probe or data packets transmitted and received between the source and the receiver

nodes or the delay between packet transmissions and receptions. Some proposals require

clock synchronization while other more practical ones do not. The physical network

topology can be represented as a directed graph, where each vertex represents a physical

device such as a router or a switch and the edges correspond to the communication links

between those devices. Based on the end-to-end measurements, the logical topology can

be determined.

Network tomography can be performed either in an active or passive manner. Active

network tomography refers to the case where probe packets are sent from the sources to

the receivers located on the periphery of the network [7–9]. Using the end-to-end mea-

surements generated by probe packets transmitted and received between the source and

the receiver nodes, more informative and reliable path-level measurements are provided
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at the cost of utilizing additional network resources such as bandwidth and energy.

On the contrary, passive network tomography reveals information from the existing

data traffic, so that it is more attractive for networks (e.g., wireless sensor networks) with

limited power supply and bandwidth constraints [10–13]. There is also an accelerating

trend toward network security that will create a highly uncooperative environment for

active tomography. For example, firewalls designed to protect information may not allow

requests for routing information, special packet handling and other network transport

protocols required by many active tomography techniques. This has prompted investi-

gations into passive-based traffic monitoring techniques.

1.1 Network Coding Basics

Networked systems arise in various communication contexts such as telephone networks,

the public Internet, peer-to-peer networks, ad-hoc wireless networks, and wireless sensor

networks. An inherent premise behind the operation of all communication networks lies

in the way information is treated. Recently, with the advent of network coding, the sim-

ple but important observation was made that in communication networks, intermediate

nodes are allowed not only forward but also process the incoming independent informa-

tion flows [14–16]. At the network layer, for example, intermediate nodes can perform

binary addition of independent bitstreams, whereas, at the physical layer of optical net-

works, intermediate nodes can superimpose incoming optical signals. In other words,

data streams that are independently produced and consumed do not necessarily need to
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(a) Routing to r1 (b) Routing to r2 (c) Network Coding

Figure 1.1: The Butterfly network. Sources s1 and s2 multicast information x1 and x2

to receivers r1 and r2.

be kept separate when they are transported throughout the network. Combining inde-

pendent data streams can better tailor the information flow to the network environment

and accommodate the demands of specific traffic patterns. This shift in paradigm is

expected to revolutionize the way we manage, operate, and understand the organization

in networks, as well as to have a deep impact on a wide range of areas such as reliable

delivery, resource sharing, efficient flow control, network monitoring, and security [17].

One essential benefit of network coding is in terms of throughput when multicasting.

The following simple example from [14] illustrates the basic concepts in network coding

and gives a preliminary idea of the expected benefits and challenges.

Example 1: Fig. 1.1 depicts a communication network represented as a directed

graph where vertices correspond to terminals and edges correspond to channels. This
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example is commonly known in the network coding literature as the butterfly network.

Assume we can send one bit per time slot through each channel. We have two sources

s1 and s2, and two receivers r1 and r2. Each source produces one bit per time slot which

we denote by x1 and x2, respectively. If receiver r1 uses all the network resources by

itself, it could receive information from both sources. Indeed, we could route the bit

x1 from source s1 along the path {AD} and the bit x2 from source s2 along the path

{BC,CE,ED}, as depicted in Fig. 1.1(a). Similarly, if the second receiver r2 uses all the

network resources by itself, it could also receive information from both sources. Indeed,

we could route the bit x1 from source s1 along the path {AC,CE,EF}, and the bit x2

from source s2 along the path {BF} as depicted in Fig. 1.1(b).

Now assume that both receivers want to simultaneously receive the information from

both sources. We then have a contention for the use of edge CE, since we assume that

each channel can only transmit one bit per time slot. Traditionally, information flow was

treated like fluid through pipes, and independent information flows were kept separate.

The simple but important observation made in the work by Ahlswede et al. is that we

can allow intermediate nodes in the network to process their incoming information flows,

and not just forward them. In Fig. 1.1(c), node C can take bits x1 and x2 and XOR them

to create a third bit x3 = x1 + x2 which it can then send through edge CE (the XOR

operation corresponds to addition over the binary field). r1 receives {x1, x1 + x2}, and

can solve this system of equations to retrieve x2 by XORing x1 and x1+x2. Similarly, r2

receives {x2, x1 + x2}, and can solve this system of equations to retrieve x1 by XORing
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x2 and x1 + x2. �

The previous example shows that if we allow intermediate node in the network to

combine information streams and extract the information at the receivers, we can increase

the throughput when multicasting.

Network coding can also be used to infer the loss rates of links in an overlay network.

For conventional active tomography, packets are usually multicast to several receivers.

After a sufficiently large number of probe packets, shared links and their loss rates can

be inferred with reasonable accuracy. In such a setting, network coding can provide

additional flexibility since probe packets are not only duplicated at branching points of

the multicast tree, but may also be merged. If multiple senders transmit packets to a

single receiver, and these packets are combined within the network, it allows to infer

network parameters in much the same way as multicasting from one sender to multiple

receivers [18]. Furthermore, if the network coding coefficients (i.e., the specific way in

which packets are combined at the nodes) are known in advance, the received coded

probe packets can provide additional information about which packets were lost in which

part of the tree. By exploiting these features, it is possible to significantly reduce the

number of active probes and the bandwidth usage generated by these probes, and thus

increase bandwidth efficiency.
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1.2 Related Work

In the area of loss tomography, extensive studies have been given to multicast tree topolo-

gies. In [7], Caceres et al. developed a maximum-likelihood estimator for loss rates on

internal links based on losses observed by multicast receivers. It exploits the inherent

correlation between such observations to infer the performance of paths between branch

points in the tree spanning a multicast source and its receivers. The proposed method

relies on the iterative approximation to identify the parameters that requires a long exe-

cution time. In addition, the parameters identified by this method may not be the true

values of those parameters since the iterative procedure may trap into a local maximum.

In [19], Zhu et al. proposed an estimate that is based on the correlation between a

link and its sibling links to identify the loss rate of the link. The proposed method, in-

stead of using an iterative approach to approximate the maximum, employs a bottom-up

approach to identify the loss rates of the links of a network.

In contrast to multicast techniques, unicast inference based on multicast tree topolo-

gies can easily be performed on most networks. In [20], Duffield et al. designed exper-

iments based on the notion of transmitting stripes of packets (with no delay between

transmission of successive packets within a stripe) to two or more receivers. The pur-

pose of these stripes is to ensure that the correlation in receiver observations matches

as closely as possible what would have been observed if the stripe had been replaced by

a multicast probe that followed the same paths to the receivers. In [10], Tsang et al.

designed a measurement procedure for network loss inference based on end-to-end packet
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pair measurements. Back-to-back packet pairs are the two packets that are sent one after

the other by the source, possible destined for different receivers, but sharing a common

set of links in their paths.

In [21], Padmanabhan et al. investigated the problem of identifying lossy links in

the interior of the Internet by passively observing the end-to-end performance of existing

traffic between a server and its clients. The key advantage of a passive approach is that it

does not introduce additional traffic which might perturb the object of inference, i.e., the

link loss rates. The techniques depend only on knowing the number of lost and successful

packets sent to each client. While the accuracy of link loss rate inference may conse-

quently suffer, the techniques can still pinpoint the trouble spots in the network (e.g.,

highly lossy links). They developed and evaluated three techniques for passive network

tomography: random sampling, linear optimization, and Bayesian inference using Gibbs

sampling.

To extend the existing multicast and unicast tomography approaches to general

topologies, in [22], Bu et al. proposed an approach using multiple trees to cover a mesh

topology and combine the inferred loss rates. They further proposed two algorithms to

perform the link-level inferences. One, the minimum variance weighted average (MVWA)

algorithm treats the trees separately and then average the results. The second, based on

expectation-maximization (EM) merges all of the measurements into one computation.

However, this approach may have low bandwidth efficiency, since those links that are part

of multiple trees would be traversed by multiple probe packets in each time slot, and thus
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create additional traffic. In addition, it may incur high monitoring cost, since it requires

a large number of receivers to be deployed in each multicast tree.

The pioneering work in [14] showed that for multicast networks, if intermediate nodes

can perform network coding, that is to perform simple local XOR-operations on incoming

packets, one can achieve the min-cut throughput of the network to each receiver. Recent

studies show that applying network coding in loss tomography can increase bandwidth

efficiency [17, 23]. In a network which is capable of performing network coding in addi-

tion to multicast, the intermediate nodes linearly combine incoming probe packets and

forward the coded probe packets to the outgoing links according to pre-determined cod-

ing coefficients. Results in [18] show that for active monitoring using network coding,

appropriate selection of the number and location of sources and receivers can affect the

accuracy of estimation in general tree topologies. The work in [24] established a frame-

work for loss tomography on mesh topologies. An orientation algorithm is proposed to

find a directed acyclic graph from an undirected graph with selected sources. An example

is illustrated in [18] such that each link in a mesh topology can be traversed in each time

slot by exactly one probe.

In contrast to network coding with pre-determined coding coefficients, randomized

network coding changes the fundamental connection between path and link loss prob-

abilities such that new inference algorithms need to be developed. In [13], Lin et al.

studied the loss inference problem in sensor networks with randomized network coding.

As end-to-end data are not sufficient to compute link loss rates precisely, they proposed
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inference algorithms based on Bayesian principles to discover the set of highly lossy links

in sensor networks. The algorithms achieve high detection and low false-positive rates

in extensive simulations. In [25], Yao et al. studied passive network tomography in the

presence of network failures, under the setting of random linear network coding. Sev-

eral sets of algorithms for topology estimation and failure detection are proposed under

various setting of adversarial random failures.

To reduce monitoring cost, a set of end-to-end paths on mesh topologies only requires a

limited number of sources and receivers. In [26], Mao et al. proposed a brief propagation

(BP) algorithm, which is combined with the use of network coding in [24]. The BP

algorithm is a low complexity algorithmic framework for link loss monitoring based on

the recent modeling and computational methodology of factor graphs [27]. It iteratively

updates the estimates of link losses upon receiving (or detecting the loss of) recently

sent packets. The algorithm exhibits good performance and scalability, and can be easily

adapted to different statistical models of networking scenarios. In particular, due to its

low complexity, the algorithm is particularly suitable as a long-term monitoring facility.

In [28], Zhao et al. proposed a least-biased end-to-end network diagnosis (LEND)

system for inferring link-level properties like loss rate. They defined a minimal identifiable

link sequence (MILS) as a link sequence of minimal length whose properties can be

uniquely identified from end-to-end measurements. They designed efficient algorithms to

find all the MILSs and infer their loss rates for diagnosis. The LEND system works for

any network topology and for both directed and undirected topologies. It gives highly
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accurate estimates of the loss rates of MILSs and such diagnosis can be achieved with

fine granularity and in near real-time even for reasonably large overlay networks. The

LEND system can also supplement existing statistical inference approaches and provide

smooth tradeoff between diagnosis accuracy and granularity.

In [29], Sun et al. focused on the problem of finding the link pass ratios (LPRs) when

the path pass ratios (PPRs) of a set of paths are given. They proved the problem of

finding the maximum-likelihood estimation of LPRs given PPRs is NP-hard, and then

proposed a simple algorithm based on divide-and-conquer. It first estimates the number

of faulty links on a path, then uses the global information to estimate assign LPRs to

the links. It requires a priori probability distribution function on link loss rates and an

assumption that the majority of links being lossless.

In [30], Chen et al. focused on overlay network monitoring, which enables distributed

Internet applications to detect and recover from path outages and periods of degraded

performance within seconds. For an overlay network with n hosts, existing systems either

require O(n2) measurements, and thus lack scalability, or can only estimate the latency

but not congestion or failures. They proposed an algebraic approach that selectively

monitors k linearly independent paths that can fully describe all the O(n2) paths. The

loss rates and latency of these k paths can be used to estimate the loss rates and latency

of all other paths.
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1.3 Motivations and Objective

In this thesis, we consider the problem of link loss tomography on mesh topologies.

Although there are extensive studies of link loss inference on multicast tree topologies

[7, 19, 31, 32], loss tomography on mesh topologies is still a challenging problem. Existing

approaches have not exploited the inherent information in the end-to-end observations.

As a result, the linear system of link loss rates and path loss rates usually has a coefficient

matrix with deficient column rank1, which makes it difficult to accurately infer the link

loss rates [30].

In general, most of the previously proposed loss tomography approaches on mesh

topologies in the literature have one or more of the following performance bottlenecks:

(1) low bandwidth efficiency, (2) high monitoring cost, (3) estimation not being always

accurate, and (4) requiring additional assumptions. In this thesis, we propose a linear

algebraic network tomography (LANT) framework for active inference of link loss rates

on mesh topologies. To increase bandwidth efficiency and reduce monitoring cost, we

send probe packets along a set of end-to-end paths rather than multicast trees and apply

network coding. To increase the estimation accuracy, we exploit the inherent correlation

between the losses on the links and those on the different sets of paths, which is captured

through network coding. We refer to probe packets and network coding schemes jointly

1The column rank of an m × n matrix is the maximum number of linearly independent columns of

the matrix. If the matrix has rank n, then it has full column rank; otherwise, the matrix has deficient

column rank.
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as probe coding schemes. In our LANT framework, a valid probe coding scheme enables

us to establish the mappings between the contents of received probe packets and the

losses on the different sets of paths. Using valid probe coding schemes, we obtain valid

end-to-end observations, based on which we can distinguish which paths have successfully

transmitted a probe and which paths have not. We also define link identifiability, a link

property that only depends on the network topology. For identifiable links, we develop

consistent estimators that converge to the actual loss rates as the number of probes

increases. Since the number of all path sets can grow exponentially as the number of

total paths increases, we selectively monitor a subset of all path sets (the method of row

selection), which are sufficient to infer the loss rates of all identifiable links.

1.4 Contributions

The main contributions of this thesis are as follows [33, 34]:

• We establish a tight lower bound on probe size, which is necessary for valid probe

coding schemes when network coding is applied. Then, we develop algorithms

to find a valid probe coding scheme such that the lower bound on probe size is

achieved.

• We propose a linear algebraic (LA) approach to developing consistent estimators

of link loss rates, which converge to the actual loss rates as the number of probes

increases. We combine the methods of normal equations and row selection with the
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LA approach, and analyze the computational complexity.

• We prove that the identifiability of a link, which only depends on the network

topology, is a necessary and sufficient condition for the consistent estimation of its

loss rate, using the LANT framework.

• Simulation results show that the LA approach using the method of row selection

can effectively decrease computational complexity without reducing estimation ac-

curacy. Besides, the LA approach achieves better estimation accuracy than the

BP algorithm, when the estimators converge. Although the effect of the number

and location of sources on the accuracy can be negligible with relatively large suc-

cess rates or sufficient probe batches, different number and location of sources may

result in different number of identifiable links.

The framework we present in this thesis is unique when compared to the prior work

done in the area of loss tomography using network coding. In terms of bandwidth effi-

ciency, the work in [24] establishes a loose lower bound on probe size for valid probe coding

schemes, while the problem of finding coding coefficients remains unexplored. Without

efficient algorithms to find coding coefficients, the inference framework is incomplete and

cannot be applied. We establish a tight lower bound and also develop algorithms to find

a valid probe coding scheme such that the lower bound on probe size is achieved. In

terms of inference approaches, the BP algorithm [26] only uses the information of the

losses on different paths such that the estimation may not be accurate for networks with
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relatively high link loss rates. The work in [29] requires additional assumptions such as

a priori probability distribution function and the majority of links being lossless. The

work in [28] only find the loss rate of a minimal identifiable link sequence. In contrast,

our LA approach does not need extra assumptions while it can still obtain additional

useful information, the losses on the different sets of paths. This information can only be

obtained via probe coding schemes and cannot be achieved by routing probes in general.

As a result, we obtain better estimation accuracy and obtain more identifiable links.

1.5 Structure of the Thesis

The rest of this thesis is organized as follows. In Chapter 2, we present the LANT

framework, including system model, probe coding schemes, and an LA approach for

the consistent estimation of link loss rates. Chapter 3 presents performance evaluation.

Conclusions are given in Chapter 4.
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Chapter 2

The LANT Framework

In this chapter, we present we present the LANT framework, including system model,

probe coding schemes, and an LA approach for the consistent estimation of link loss

rates.

2.1 System Model

We model the network as a directed acyclic graph G = (V , E), consisting of a set of nodes

V and a set of links E . The node set V includes routers and periphery devices where probe

packets are sent and received. A link e = (v, v′) ∈ E denotes a directed communication

link from node v to node v′. Let S and R denote the set of source nodes and the set of

receiver nodes, respectively. The set of monitored end-to-end paths is denoted by P . A

path P ∈ P is a set of directed links from a source to a receiver. Let P(e) denote the

set of paths that include link e. We define a path-link matrix M = (mi,j)|P|×|E|, whose

|P| rows correspond to the |P| paths and the |E| columns correspond to the |E| links, as

follows: The element mi,j is equal to 1 if the ith path in set P includes the jth link in set

E , and is equal to 0 otherwise. As an example, the directed acyclic graph in Fig. 2.1 has
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Figure 2.1: A directed acyclic graph with V = {s, r, 1, 2, 3, 4} and E = {e1, e2, . . . , e7}.

The set of monitored end-to-end paths P = {P1, P2, P3}, where P1 =

{e1, e2, e5, e7}, P2 = {e1, e2, e4, e6, e7}, and P3 = {e1, e3, e6, e7}. For link

e2 = (1, 2), we have P(e2) = {P1, P2}.

three paths from source s to receiver r. Its path-link matrix is a 3 by 7 binary matrix as

shown below:

M =



e1 e2 e3 e4 e5 e6 e7

P1 1 1 0 0 1 0 1

P2 1 1 0 1 0 1 1

P3 1 0 1 0 0 1 1

. (2.1)

Given a directed acyclic graph G = (V , E) and a set of monitored end-to-end paths P ,

a link e ∈ E is called identifiable, if for each link pair (e, e′) where e′ ∈ E \{e}, there exists

at least one path in P that includes only one of the two links, i.e., P(e) ̸= P(e′). As in

Fig. 2.1, links e2, e3, . . . , e6 are identifiable links, while links e1 and e7 are non-identifiable

links since P(e1) = P(e7). We notice that the identifiability of a link depends only on

the network topology.

The following proposition shows that the identifiability of a link is a necessary condi-
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tion for the estimation of its loss rate.

Proposition 1 The loss rate of a link can be estimated only if the link is an identifiable

link.

Proof : We prove it by contradiction. Suppose there exists a link pair (e, e′), where

e, e′ ∈ E , such that all paths in P include either both or none of them, i.e., P(e) = P(e′).

If a probe packet is being dropped on either link e or e′, the same end-to-end observation

(probe packets with the same contents) will be obtained in either case. Therefore, we

cannot diagnose on which link the loss of probe packet occurs, and it is not possible to

estimate the loss rate of these links. �

We divide the set of non-identifiable links into several groups, where each group

contains a set of links that are included in the same set of paths. We refer to each group

as a virtual link. As in Fig. 2.1, since P(e1) = P(e7), we refer to e1 and e7 as one virtual

link ev1 . Let EI and EV denote the set of identifiable links and the set of virtual links,

respectively. We have EI = {ev1} and EV = {e2, e3, . . . , e6}. Note that EI ∩ EV = ∅.

Thus, for each link e ∈ EI ∪ EV , we have P(e) ̸= P(e′) for all e′ ∈ EI ∪ EV \ {e}. We

fix the order of elements in EI ∪ EV . Accordingly, we define a modified path-link matrix

M = (mi,j)|P|×|EI∪EV | as follows: The element mi,j is equal to 1 if the ith path in set P

includes the jth link in set EI ∪ EV , and is equal to 0 otherwise. We refer to M as type

1 modified path-link matrix. The type 1 modified path-link matrix for the graph in Fig.
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2.1 is shown below:

M =



ev1 e2 e3 e4 e5 e6

P1 1 1 0 0 1 0

P2 1 1 0 1 0 1

P3 1 0 1 0 0 1

. (2.2)

We model the loss of packets on different links by a set of mutually independent

Bernoulli processes. Losses are therefore spatial and temporal independent. This model

is commonly used in the literature [7–9, 19, 31, 32] for network tomography. We define

αj ∈ (0, 1] as the link success rate of the jth link in set EI ∪ EV , which is the probability

that a packet can be successfully transmitted on the jth link. Thus, 1 − αj denotes

the loss rate of the jth link in set EI ∪ EV . Moreover, we define βi ∈ (0, 1] as the path

success rate of the ith path in set P , which is the probability that a probe packet can be

successfully transmitted on the ith path in set P .

Unlike data packets, probe packets would not be retransmitted if being dropped.

Thus, we have
|EI∪EV |∏
j=1

(αj)
mi,j = βi, i = 1, . . . , |P|. (2.3)

Taking logarithm on both sides of (2.3), we can reformulate it as linear equations:

|EI∪EV |∑
j=1

mi,j logαj = log βi, i = 1, . . . , |P|, (2.4)

where logαj and log βi are the variables of linear equations. Setting aj = logαj and

bi = log βi, we have
|EI∪EV |∑
j=1

mi,jaj = bi, i = 1, . . . , |P|. (2.5)
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We define two column vectors a = (aj)|EI∪EV |×1, and b = (bi)|P|×1. The system can

be represented in the matrix form as

Ma = b. (2.6)

Equation (2.6) shows the relation between the path and link success rates. The objective

of loss tomography is to infer the link loss rates using end-to-end observations (i.e., the

number and the contents of the received probe packets). Let â and b̂ denote the estimator

of a and b, respectively. By measuring the path success rates, we can estimate b̂ while â

remains unknown. Thus, equation (2.6) becomes a system of |P| equations with |EI ∪EV |

unknowns as:

Mâ = b̂. (2.7)

In most cases, the number of identifiable and virtual links is greater than the number of

paths. That is, |EI ∪EV | > |P|. Thus, (2.7) is under-determined. We propose the LANT

framework to obtain additional useful information and determine â.

The LANT framework is composed of two phases. In the first phase, we apply network

coding and perform end-to-end measurements on the set of paths P . n batches of probe

packets are sent from the sources in a synchronized manner. In each time slot, the

intermediate nodes linearly combine the incoming probes according to specific coding

coefficients. The key objective in this phase is to find the minimum probe packet size

that can establish the mappings between the contents of the received probe packets and

the losses on the different sets of paths. In the second phase, we inspect the contents of

the received probe packets. We show that it can provide us with more information than
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path success rates. We establish a linear system whose coefficient matrix has full column

rank, and use computational efficient algorithms to develop consistent estimators of link

loss rates. In the next two sections, we describe these two phases in details.

2.2 Probe Coding Schemes

In Subsection 2.2.1, we establish a tight lower bound on probe size (i.e., number of bits

in each probe packet), which is necessary for valid probe coding schemes. Then, we

propose algorithms to find a valid probe coding scheme with the minimum probe size in

Subsection 2.2.2.

2.2.1 Lower Bound on Probe Size

We refer to probe packets and network coding schemes jointly as probe coding schemes.

A probe coding scheme is valid if we can determine which paths have successfully trans-

mitted a probe and which paths have not from the end-to-end observations. We adopt

linear network coding schemes [15] that are sufficient for our task.

A probe packet is a binary vector (·)2 of length ℓ, which can be interpreted as an

element in a finite field Fq with an alphabet of size q (q = 2ℓ). A coding coefficient

can also be interpreted as an element in the finite field Fq. Within valid probe coding

schemes, the probe size ℓ is desired to be as small as possible, since it is directly related

to bandwidth efficiency. Although a smaller probe size can reduce the bandwidth usage

of the network, the inference framework is not valid if the probe size falls below a certain
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threshold. For example, in Fig. 2.1, receiver r receives coded packets that are combined

from packets on three different paths. Using one-bit probe packets, we are not able to

distinguish which of these three paths have successfully transmitted a probe packet. In

this case, we need probe packets with at least three bits for valid probe coding schemes

while smaller probe sizes cannot constitute valid probe coding schemes.

Before we find a lower bound on probe size, which is necessary for valid probe coding

schemes, we present the notations used in our approach. In a directed acyclic graph

G = (V , E), a link is an end link if it is adjacent to a receiver r ∈ R. The set of all

end links is denoted by ER. For an end link e ∈ ER, let Ge denote a subgraph of G

consisting of the links and nodes involved in set P(e). We notice that if receiver r has

multiple end links, it would know from which link a packet is received. Let qe and ℓe

denote the alphabet size and the length of the probe packets transmitted on subgraph

Ge, respectively. The following theorem presents a loose lower bound on probe packet

size for valid probe coding schemes.

Theorem 1 For the probes transmitted on subgraph Ge, where e ∈ ER, the probe size

should satisfy ℓe ≥ |P(e)| (i.e., qe ≥ 2|P(e)|), in order to obtain valid end-to-end observa-

tions.

Proof : For each end link e ∈ ER, let P(e) = {P1, P2, . . . , P|P(e)|}. As for valid probe

coding schemes, based on the content of the received probe, a receiver should distinguish

which paths have successfully transmitted a probe and which paths have not. Without

loss of generality, we start from path P1. Since a zero binary vector will introduce
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ambiguity, (1)2 is the smallest binary vector we can use to denote the case where only

path P1 has successfully transmitted a probe. (10)2 is the smallest binary vector we can

use to denote the case where only path P2 has successfully transmitted a probe. Since

(11)2 denotes the case where both paths P1 and P2 have successfully transmitted a probe,

(100)2 is the smallest binary vector we can use to denote the case where only path P3 has

successfully transmitted a probe. By induction, we can show that (10 · · · 0)2 of length

|P(e)| is the smallest binary vector we can use to denote the case where only path P|P(e)|

has successfully transmitted a probe. We modify the above binary vectors to vectors of

length |P(e)| with zeros added to the left-hand side. Thus, for the probes transmitted in

subgraph Ge, we have ℓe ≥ |P(e)|, and qe ≥ 2|P(e)|. �

Although Theorem 1 provides lower bounds on probe size for the probes transmitted

on different subgraphs separately, some lower bounds may not be achieved. For example,

in Fig. 2.2, we have ℓe6 ≥ 2 and ℓe7 ≥ 4 for subgraphs Ge6 and Ge7 , respectively. However,

there are overlapping links in Ge6 and Ge7 such as links e1, e2 and e3. In this case, a valid

probe size should be 4. Let G denote a set of subgraphs with overlapping links. The

probes transmitted on these subgraphs should have the same size. Let ℓG denote the size

of such probes. Correspondingly, the set of end links in the subgraph set G is denoted

by ER(G ). The following proposition presents an improved lower bound on probe size for

valid probe coding schemes.

Proposition 2 For the probes transmitted on subgraph set G , the probe size should satisfy

ℓG ≥ maxe∈ER(G ) |P(e)|, in order to obtain valid end-to-end observations.
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Figure 2.2: A directed acyclic graph with two end links e6 and e7.

Proof : According to Theorem 1, for the probes transmitted in each subgraph Ge

where e ∈ ER(G ), there exists a lower bound ℓe ≥ |P(e)|. Since network coding is

applied, the probes transmitted on one link should have the same size. Similarly, the

probes transmitted on one subgraph should also have the same size. Thus, for the

probes transmitted in the subgraphs with overlapping links, the lower bound on probe

size is the maximum value of the lower bounds obtained from Theorem 1. That is,

ℓG ≥ maxe∈ER(G ) |P(e)|. �

2.2.2 Algorithms for Finding a Valid Probe Coding Scheme

We propose an approach to find a valid probe coding scheme, such that the improved

lower bound obtained from Proposition 2 is achieved. The approach is divided into three

processes, described in this section.
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Constructing Auxiliary Trees

For each end link e = (h, r) ∈ ER, we introduce an auxiliary tree topology Te. There

is a one-to-many mapping from the nodes and the links in the original graph G to the

nodes and the links in the auxiliary tree Te. We use u0(r) to denote the tree node that

corresponds the root node r in graph G. We use ui(v) to denote the ith tree node that

corresponds to the non-receiver node v in graph G. Similarly, we use εi(e) to denote the

ith tree link that corresponds to link e in graph G.

Algorithm 1 shows how to construct the auxiliary trees corresponding to each end

link in set ER. For each end link e = (h, r) ∈ ER, nodes u0(r), u1(h) and link ε1(e) are

first added into Te (Step 2). We define a leaf node as a node only with outgoing links in

Te. Node u0(r) is the destination node. The set of leaf nodes Le initially includes node

u1(h) (Step 3). If there exists tree node uk(v) ∈ Le, where k ∈ {1, 2, . . . , i} and v is not

a source node in G, then along the incoming links of node v while ignoring the outgoing

links, we find a set of nodes. Corresponding to these nodes and the incoming links, new

tree nodes and tree links are defined and added into Te (Step 7). The set of leaf nodes Le

is updated in Steps 8 and 11. The counter i for the number of tree links in Te is updated

in Step 9.

Selecting Coding Coefficients

The coding coefficients are readily obtained based on the auxiliary trees. The non-receiver

nodes with multiple incoming links in G are the nodes that perform network coding. The
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Algorithm 1 Algorithm for constructing auxiliary trees. Assume graph G = (V , E) is

given.

1: for each end link e = (h, r) ∈ ER do

2: Add nodes u0(r), u1(h) and link ε1(e) into auxiliary tree Te

3: Initialize the set of leaf nodes Le ← {u1(h)}

4: i← 2

5: while ∃ node uk(v) ∈ Le, k ∈ {1, 2, . . . , i} and v /∈ S do

6: for each v′ : ∃(v′, v) ∈ E do

7: Add node ui(v
′) and link εi(v

′, v) into Te

8: Update Le ← Le

∪
{ui(v

′)}

9: i← i+ 1

10: end for

11: Update Le ← Le \ {uk(v)}

12: end while

13: end for

corresponding tree nodes would also have multiple incoming tree links. The remaining

nodes in G perform either forwarding or multicasting.

Algorithm 2 shows how to select coding coefficients. For each node uk(v) in Te, suppose

it has a set of t(uk(v)) incoming links {ε1in(e1in), ε2in(e2in), . . ., ε
t(uk(v))
in (e

t(uk(v))
in )} and one

outgoing link εout(eout). Then, node v has coding coefficients [δ(e1in, eout), δ(e
2
in, eout), . . .,

δ(e
t(uk(v))
in , eout)]. Suppose tree links ε1in(e

1
in), ε

2
in(e

2
in), . . ., ε

t(uk(v))
in (e

t(uk(v))
in ) have n1, n2,
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Algorithm 2 Algorithm for selecting coding coefficients. Assume the auxiliary trees are

given.

1: for each auxiliary tree Te do

2: for each node uk(v) in Te with outgoing link εout(eout) do

3: n0 ← 0

4: for each incoming link εiin(e
i
in) of node uk(v), i = 1, 2, . . . , t(uk(v)) do

5: Find its corresponding leaf-node set L(εiin(eiin)) ⊆ Le

6: ni ← |L(εiin(eiin))|

7: δ(eiin, e
i
out)← 2n0+n1+···+ni−1

8: end for

9: end for

10: end for

. . ., nt(uk(v)) corresponding leaf nodes, respectively. Then, we choose the values of coding

coefficients as [20, 2n1 , 2n1+n2 , . . ., 2n1+n2+···+nt(uk(v))−1 ].

Designing Probe Packets

The path-link matrix M can be easily obtained based on the paths from the leaf nodes

to the destination node in each auxiliary tree according to Algorithm 3. Now, we show

how to find the sets of subgraphs with overlapping links. Each subgraph Ge originally

constitutes a subgraph set {Ge}. We check each column of the path-link matrix M. If

a column has multiple 1s and it also represents that different subgraph sets include the

same link, we combine these subgraph sets as one subgraph set. Then, for each subgraph
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set G with its end-link set ER(G ), according to Proposition 2, we calculate the tight lower

bound on probe size ℓG = maxe∈ER(G ) |Le|. Thus, probes as (0 · · · 01)2 of length ℓG are

sent from the sources to the outgoing links in G .

Finally, for each path Pi ∈ P , multiplying (0 · · · 01)2 of its corresponding length by

the coding coefficients along path Pi, we can obtain the content of a received probe that

denotes the case where only path Pi has successfully transmitted a probe. In this way,

we can establish the mappings between the contents of received probes and the losses

on the different combinations of paths for each subgraph, and thus obtain a valid probe

coding scheme.

Example 2: We consider a directed acyclic graph G = (V , E) depicted in Fig. 2.2.

We use Algorithms 1-2 to obtain a valid probe coding scheme with the minimum probe

size. First, we construct two auxiliary trees Te6 and Te7 , as depicted in Fig. 2.3. Second,

we choose nodes 1 and 2 as the nodes that perform network coding, since they are the

non-receiver nodes with multiple incoming links. Based on the auxiliary tree Te6 , we have

|L(ε3(e1))| = 1 (Algorithm 2, Steps 5-6). Thus, some of the coding coefficients of node 1

are obtained as [δ(e1, e3), δ(e2, e3)] = [1, 2] (Algorithm 2, Step 7). Similarly, based on Te7 ,

we obtain the coding coefficients of node 1 as [δ(e1, e4), δ(e2, e4)] = [1, 2]. We also obtain

the coding coefficients of node 2 as [δ(e4, e7), δ(e5, e7)] = [1, 4], since |L(ε2(e4))| = 2.
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Algorithm 3 Algorithm for constructing path-link matrix. Assume the auxiliary trees

are given.

1: Initialize an empty path-link matrix M

2: for each auxiliary tree Te do

3: i← 1

4: for each tree path Pi in Te do

5: for each mi,j, j = 1, 2, . . . , |E| do

6: If ∃εk(ej) ∈ Pi, mi,j = 1; otherwise, mi,j = 0.

7: end for

8: Row vector ω ← (mi,j)1×|E|

9: Update M←

M
ω


10: i← i+ 1

11: end for

12: end for

Third, the path-link matrix M can be obtained as follows:

M =



e1 e2 e3 e4 e5 e6 e7

1 0 1 0 0 1 0

0 1 1 0 0 1 0

1 0 0 1 0 0 1

0 1 0 1 0 0 1

1 0 1 0 1 0 1

0 1 1 0 1 0 1



. (2.8)
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(a) Auxiliary tree Te6 (b) Auxiliary tree Te7

Figure 2.3: Two auxiliary trees Te6 and Te7 , corresponding to end links e6 and e7, re-

spectively.

The top two rows represents the two paths in subgraph Ge6 , and the bottom four rows

represents the four paths in subgraph Ge7 . Since link e1 is involved in both {Ge6} and

{Ge7} (checking the first column of M), we combine the two subgraph sets and obtain

one subgraph set G = {Ge6 ,Ge7}. Counting the number of leaf nodes in each auxiliary

tree, we obtain |P(e6)| = 2 and |P(e7)| = 4. Thus, ℓG = max {2, 4} = 4 and probes as

(0001)2 are sent from sources s1 and s2 to outgoing links e1 and e2, respectively. �
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2.3 Linear Algebraic Approach

As described previously, the system in (2.7) has |P| equations with |EI ∪ EV | unknowns.

However, |P| may be less than |EI ∪ EV |, such as the topologies in Figs. 2.1 and 2.2,

and thus â in (2.7) cannot be uniquely determined. Even when |P| ≥ |EI ∪ EV |, it does

not ensure that â can be determined. In this section, we propose a linear algebraic

(LA) approach using the observations from coding operations. We show that â can be

determined using the method of least-squares [35]. Then, we combine the methods of

normal equations and row selection with the LA approach and analyze the computational

complexity.

2.3.1 Least-squares Solutions

By inspecting the contents of the received coded probe packets at the destinations, we

can estimate not only the success rate of a single path, but also the success rate of a

set of paths. As the main consequence of valid probe coding schemes, it enables us to

distinguish between the paths that have contributed to a coded probe packet and the

paths that have not. This is unique to the networks which use probe coding schemes and

cannot be achieved by routing probes in general.

We denote the power set1 of P by P. Thus, |P| = 2|P|. Each element of P is a

subset of P , which can be used to represent a unique combination of paths. Let θi denote

1The power set of a set is the set of all subsets of that set. For example, the power set of {a, b} is

{∅, {a}, {b}, {a, b}}.
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the path set success rate of the ith path set in P \ {∅}, which is the probability that a

batch of probes can be successfully transmitted on all the paths in the ith path set. We

define a path set success rate except for ∅ ∈P, because we require the probability that

at least one path can successfully transmit a probe to obtain an equation of link success

rates and a path set success rate.

Accordingly, we define a modified path-link matrix M̃ = (m̃i,j)(|P|−1)×|EI∪EV | as fol-

lows: The element m̃i,j is equal to 1 if there exists a path in the ith path set in set

P \ {∅} which includes the jth link in set EI ∪EV , and is equal to 0 otherwise. We refer

to M̃ as type 2 modified path-link matrix.

The type 2 modified path-link matrix for the graph in Fig. 2.1 is shown below:

M̃ =



1 1 0 0 1 0

1 1 0 1 0 1

1 0 1 0 0 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 0 1

1 1 1 1 1 1



. (2.9)

Each of the top three rows represents the path set that includes only one path.

We define a column vector, c = (ci)(|P|−1)×1, where ci = log θi. The column vector a

is defined as in Section 2.1. Thus, we have a linear system

|EI∪EV |∑
j=1

m̃i,jaj = ci, i = 1, . . . , |P| − 1 (2.10)
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or in the matrix form as

M̃a = c. (2.11)

For each path set in P \ {∅}, the n probe batches sent from the sources can be

considered as a binomial experiment consisting of n trials. The associated binomial

random variable Xi is defined as the number of received coded probes (or probe batches

for more than one incoming links) whose contents represent that all the paths in the ith

path set have successfully transmitted a probe packet.

The sample proportion θ̂i = Xi/n is a maximum likelihood (ML) estimator of θi

[36] (or an ML estimate resulting from end-to-end measurement xi substituted in the

place of Xi). Accordingly, we can obtain ĉ, the estimator of c. The column vector â

remains unknown. Thus, we extend (2.7) to a system of |P|− 1 equations with |EI ∪EV |

unknowns, as follows:

M̃â = ĉ. (2.12)

The linear system in (2.12) has more equations than unknowns, i.e.,

|P| − 1 ≥ |EI ∪ EV |. (2.13)

This is because for every pair of links e, e′ ∈ EI ∪ EV , P(e) is different from P(e′), while

|P| paths can have at most 2|P|−1 different combinations of paths. The inequality (2.13)

is a necessary condition for â to be determined.

To show that â in (2.12) can be determined by the least-squares, we introduce a

(|P| − 1) × (|P| − 1) auxiliary matrix M(|P|) of a type 2 modified path-link matrix
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M̃ with an end-to-end path set P. Compared to M̃, M(|P|) has additional column

vectors and has |P| − 1 column vectors in total. The |P| − 1 column vectors in the top

|P|×(|P|−1) submatrix can represent all non-zero vectors in the vector space F|P|
2 . The

bottom part of the additional columns are obtained according to the relation between

the paths and path sets. An example ofM(3) for M̃ in (2.9) is as follows:

M(3) =



1 1 0 0 1 0 1

1 1 0 1 0 1 0

1 0 1 0 0 1 1

1 1 0 1 1 1 1

1 1 1 0 1 1 1

1 1 1 1 0 1 1

1 1 1 1 1 1 1



. (2.14)

Lemma 1 Let M(|P|) be an auxiliary matrix of a type 2 modified path-link matrix M̃

with an end-to-end path set P. Then, rank(M(|P|)) = 2|P| − 1, i.e., all 2|P| − 1 column

vectors inM(|P|) are linearly independent.

Proof : We prove it by induction. We mention that the matrix M(|P|) has binary

entries and the column vectors are defined in a vector space over a finite field F2. It can

be verified thatM(2) has full rank. Assume that matrixM(k) also has full rank. That

is, all 2k − 1 columns inM(k) are linearly independent. Thus, the modulo 2 summation

of any m columns of this matrix, for m = 2, . . . , 2k − 1, has at least one non-zero entry.

Now, consider matrixM(k+1). This matrix can be represented as follows after row and
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column permutations:

M(k + 1) =



0 · · · 0 1 1 · · · 1

0

M(k)
... M(k)

0

1 1 · · · 1

M(k)
...

...
. . .

...

1 1 · · · 1


Permutations would not change its rank. The top row represents the newly added path,

followed by two submatricesM1 = [M(k) 0M(k)] andM2 = [M(k) 1], where 0 and 1

are columns of 0 and 1, respectively. We note that the path sets of M1 (rows in M1)

do not include the new added path, while those ofM2 all include it. Now, we show that

the matrixM(k+1) has full rank. To do so, we show that the summation of all possible

combinations of these 2k+1−1 columns inM(k+1) is a non-zero vector (i.e., there exists

at least one non-zero entry in the summation vector).

First, the middle column [1 0 1]T is included in the combination of the columns that

we choose. Since the entries of the last row in M(k) are all ones, in the summation of

the chosen vectors, at least one entry would be non-zero. This entry corresponds to the

last row inM1 or inM2. From now on, we exclude the middle column from our choices.

Second, we choose the columns from either the 2k − 1 columns on the left-hand side

or the 2k − 1 columns on the right-hand side (but not both at the same time). In this
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case, at least one entry in the summation vector would be non-zero corresponding to the

rows inM1. It is because of the linear independency of the columns inM(k).

Third, we choose the columns from both the 2k−1 columns on the left-hand side and

on the right-hand side. In this case, if an odd number of columns is chosen from the the

right-hand side, the entry of the summation vector corresponding to the top row would

be non-zero. However, if an even number of columns is chosen from the right-hand side,

at least one entry of the summation vector corresponding to the rows in M2 would be

non-zero, because of the linear independency of the columns in M(k). To this end, we

have considered the modulo 2 summation for all possible combinations of the columns

in matrix M(k + 1), and there is always at least one non-zero entry in the summation

vector. Therefore, all these 2k+1−1 column vectors inM(k+1) are linearly independent.

�

With Lemma 1, the following theorem gives the rank of a type 2 modified path-link

matrix.

Theorem 2 Let a directed acyclic graph G = (V , E) be given with a system of linear

equations in matrix form M̃â = ĉ. Then, rank(M̃) = |EI ∪ EV |.

Proof : LetM(|P|) be an auxiliary matrix of M̃. The |EI ∪ EV | column vectors in M̃

are among the 2|P| − 1 column vectors in M(|P|). From Lemma 1, all 2|P| − 1 column

vectors inM(|P|) are linearly independent. Thus, these |EI ∪ EV | column vectors in M̃

are also linearly independent. As a result, rank(M̃) = |EI ∪ EV |. �

Corollary 1 Let M̃â = ĉ be given. Then, â can be determined by least-squares.
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Proof : When the number of equations is equal to the number of unknowns, i.e.,

|P| − 1 = |EI ∪ EV |, M̃ is a square matrix. Theorem 2 ensures that M̃ is invertible.

Thus, â can be determined as

â = M̃−1ĉ. (2.15)

When the number of equations is greater than the number of unknowns, i.e., |P|−1 >

|EI ∪ EV |, the system is over-determined. We can apply least-squares [35] to obtain an

approximate solution which minimizes the residual error ∥ĉ− M̃â∥. Theorem 2 ensures

that M̃TM̃ is invertible. Thus, â can be determined as

â = (M̃TM̃)−1M̃Tĉ. (2.16)

We note that (2.15) is a special case of (2.16). �

Corollary 1 gives an analytical solution of â using least-squares. The following theorem

demonstrates the consistency of the corresponding estimators.

Theorem 3 1− α̂j is a consistent estimator of 1− αj.

Proof : For each ej ∈ EI ∪ EV , 1 − α̂j is a function of α̂j, while α̂j is a function of

θ̂1, θ̂2, . . . , θ̂|P|−1. Since θ̂i
p−→ θi, the continuous mapping theorem and Slutsky’s theorem

[36] yield that 1− α̂j
p−→ 1− αj, where

p−→ denotes convergence in probability. �

Proposition 3 The loss rate of a link can be consistently estimated if and only if the

link is an identifiable link.

Proof : Theorem 3 shows that the loss rates of all identifiable links can be consistently

estimated by the estimators. In addition, Proposition 1 shows that if the loss rate of a
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link can be estimated, then the link is identifiable. These together prove this proposition.

�

Although the loss rate of the links which are not identifiable cannot be consistently

estimated, we at least can obtain an upper bound on the loss rate of them, which is the

loss rate of the corresponding virtual link.

2.3.2 Method of Normal Equations

Algorithm 4 Method of Normal Equations [37]

1: Calculate the symmetric matrix M̃TM̃

2: Calculate Cholesky decomposition M̃TM̃ = LLT

3: Calculate d← M̃Tĉ

4: Use forward substitution to solve Ly = d for y

5: Use back substitution to solve LTâ = y for â

The most common technique to solve a full rank least-squares problem is the method

of normal equations [37]. We define µ = |P| − 1 and ν = |EI ∪ EV |, so that M̃ is

a µ × ν matrix. The first step in the method of normal equations is to calculate the

symmetric matrix (i.e., M̃TM̃). This requires µν2 flops2. The second step is to calculate

the Cholesky decomposition M̃TM̃ = LLT requiring ν3/3 flops. The third step is to

calculate M̃Tĉ requiring 2µν flops. The fourth and fifth steps are to solve Ly = M̃Tĉ for

2A flop is a floating point operation. Flop count is useful as a rough estimate of complexity and

predictor of computational time on modern computers.
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y using forward substitution and to solve LTâ = M̃Tĉ for â using back substitution, each

of which requires ν2 flops. Considering µ ≥ ν by (2.13), the complexity of this method

is O(µν2).

Although the first step in the method of normal equations includes the dominant

term of the complexity, it only needs to be executed once for initial setup as long as the

network topology remains unchanged. We need to obtain ĉ before we can calculate M̃Tĉ

and perform forward/back substitutions (Steps 3-5). The complexity in calculating ĉ is

O(µn), where n is the number of probe batches. This step and Steps 3-5 can be repeated

κ times in a monitoring period. Thus, the LA approach using the method of normal

equations has a complexity of O(µν2 + µnκ+ µνκ) in practice.

2.3.3 Method of Row Selection

Since µ = 2|P| − 1, the number of path sets µ grows exponentially as |P| increases. As a

result, the method of least-squares would lack scalability and thus have high complexity.

Nonetheless, according to Theorem 2, rank(M̃) = ν. This means there exist ν linearly

independent path sets out of µ path sets which are sufficient to determine â.

To select ν linearly independent path sets, we modify the row selection algorithm

proposed in [30], and obtain a reduced linear system as below:

M̃1â = ĉ1, (2.17)

where M̃1 ∈ {0, 1}ν×ν and ĉ1 ∈ Rν consists of ν rows of M̃ and ĉ, respectively. Algorithm

5 shows the modified row (path set) selection algorithm. This algorithm incrementally



Chapter 2. The LANT Framework 41

Algorithm 5 Modified Row (Path Set) Selection Algorithm

1: Initialize M̃1 ← the first row in M̃

2: Initialize R by calculating the thin QR factorization of M̃T
1

3: while M̃1 is not a square matrix do

4: ω ← next row in M̃

5: R̂12 ← R−TM̃1ω
T

6: R̂22 ← ∥ω∥2 − ∥R̂12∥
2

7: if R̂22 ̸= 0 then

8: Update R←

R R̂12

0 R̂22


9: Update M̃1 ←

M̃1

ω


10: end if

11: end while

builds a QR factorization M̃T
1 = QR, where Q ∈ Rν×ν is an orthogonal matrix and

R ∈ Rν×ν is an upper triangular matrix. It only needs to be executed once for initial

setup with a complexity of O(µν2).

The complexity of calculating ĉ1 is reduced to O(νn). Then, we calculate â = M̃T
1 z,

where z = R−1(R−1)Tĉ1, whose complexity is O(ν2). We repeat the above steps for κ

times in a monitoring period. Thus, the LA approach using the method of row selection

has a lower complexity of O(µν2 + νnκ+ ν2κ) in practice.
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Chapter 3

Performance Evaluation

In this chapter, we access the performance of the LANT framework by simulations.

3.1 Simulation Setup

For the network topology, we first consider the Internet2 network map [38], which is a

high-performance backbone network created by the Internet2 community. The topology

is modified as the one used in [24], consisting of 10 nodes and 15 links. We apply the

orientation algorithm [24] that converts the modified topology with selected sources to

three directed acyclic graphs with different number of sources in Fig. 3.1, where all links

are identifiable. Destinations are determined by the orientation algorithm.

To consider larger networks, we use BRITE [39] to generate three router-level undi-

rected network topologies with Waxman model. BRITE is a universal topology generater

which improves the state of the art and is based on design principles which include repre-

sentativeness, inclusiveness, and inter-operability. Representativeness leads to synthetic

topologies that accurately reflect many aspects of the actual Internet topology (e.g. hier-

archical structure, degree distribution, etc.). Inclusiveness combines the strengths of as
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(a) One source.

(b) Two sources.

(c) Three sources.

Figure 3.1: Directed acyclic graphs with different number of sources. (a) One source

(node 1) and one receiver (node 9); (b) two sources (nodes 1 and 9) and

one receiver (node 7); (c) three sources (nodes 1, 4 and 10) and one receiver

(node 9).
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many generation models as possible in a single generation tool. Inter-operability provides

interfaces to widely-used simulation applications such as ns, SSF and OmNet++ as well

as visualization applications. In the three large network topologies generated by BRITE,

the number of nodes are chosen as 20, 100, and 500. The number of links is twice the

number of nodes in each topology.

A random link loss rate 1 − αj is assigned to the jth link ej ∈ EI ∪ EV , where the

link success rate αj is uniformly distributed within [αave − 0.05, αave + 0.05]. The value

of αave is chosen as 0.7, 0.75, 0.8, 0.85, 0.9, and 0.95, to adjust the average success rate

across all links. After assigning each link a loss rate, we send n batches of probe packets.

Each probe traversing a link is dropped at a fixed probability as the link loss rate.

In each simulation, we obtain an estimate 1− α̂j of the actual link loss rate 1−αj for

the jth link in set EI ∪EV . The root mean square error (RMSE) is used to determine the

estimation accuracy across all identifiable links and virtual links. The RMSE is computed

as

RMSE =

|EI∪EV |∑
j=1

|αj − α̂j|2

|EI ∪ EV |

1/2

. (3.1)

We briefly summarize the belief propagation (BP) algorithm [26] and compare our

LANT framework with the BP algorithm for loss rate inference through simulations in

Section 3.2. Following the approach in [26], the first step is to create the factor graph

from the original graph. The factor graph is a bipartite graph: on one side there are the

links (variable nodes), whose loss rates we aim to estimate; on the other side there are

the paths (function nodes) that are observed by each received probe. An edge exists in
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the factor graph between a link and a path if the link belongs to this path in the original

graph. We note that, unlike tree topologies considered in [26], in general topologies there

might exist multiple paths for every source-receiver pair. The second step is to perform

belief propagation. Each received probe triggers message passing in the factor graph and

results in an estimate of link loss probabilities. Then, the estimates from different probes

are combined, using standard methods [26], to obtain an estimate 1 − α̂j of the actual

link loss rate 1− αj for the jth link ej ∈ EI ∪ EV .

The results are averaged over 100 simulations to eliminate possible random effects,

where each simulation has new loss rate assignments and new loss processes.

3.2 Simulation Results

First, we investigate the influence of different methods adopted by LA approach on

the estimation accuracy, based on the graph with one source in Fig. 3.1(a). The type 2

modified path-link matrix M̃ has 127 rows, and we apply the method of normal equations.

This case is denoted by LA-NE. Alternatively, we use Algorithm 5 to build a square

matrix M̃1, where each row (path set) includes 1 or 2 paths. This case is denoted by

LA-RS. Fig. 3.2 shows the RMSE of LA approach using the two methods, as a function

of the number of probe batches. We observe that the RMSE of the LA-NE algorithm

is lower than that of the LA-RS algorithm when n = 50. Such behavior is reasonable

since the LA-NE algorithm uses more equations to obtain link loss rates than the LA-RS

algorithm. However, the difference of the RMSE is less than 2% and it vanishes as the
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Figure 3.2: The RMSE of LA using the methods of normal equations (LA-NE) and row

selection (LA-RS), versus the number of probe batches n.

number of probes increases. Therefore, for large number of probes, the performance of

the LA-RS algorithm and the LA-NE algorithm is similar while the LA-RS algorithm

outperforms the LA-NE algorithm in terms of the computational complexity.

Second, we compare the estimation accuracy of the BP algorithm and the LA-RS

algorithm, based on the graph with one source in Fig. 3.1(a). Fig. 3.3 shows the RMSE

as a function of the number of probe batches, for different average link success rates.

We observe that the BP algorithm has better accuracy when n < 400, and the LA-

RS algorithm achieves better accuracy, after sending reasonably sufficient probe batches

(n > 400). This is because the LA-RS algorithm exploits the losses on the different

combinations of paths, while the BP algorithm only utilizes the losses on paths. Fig. 3.4
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Figure 3.3: The RMSE of the BP algorithm and the LA-RS algorithm, versus the num-

ber of probe batches n, for different average success rate αave.
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Figure 3.4: The RMSE of the BP algorithm and the LA-RS algorithm, versus the av-

erage success rate αave (n = 500).
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Figure 3.5: The RMSE of the LA-RS algorithm, versus the number of probe batches n,

for different number of sources (αave = 0.8).

shows the RMSE as a function of the average link success rate with 500 probe batches.

The RMSE decreases as the average link success rate increases, which is consistent with

the relative position of the curves in Fig. 3.3. Based on these two graphs, we can predict

that when average loss rates are lower than 0.8, the BP algorithm would perform worse

(RMSE > 6%, n = 20, 000), while the LA-RS algorithm would still achieve satisfactory

accuracy (RMSE < 1%, n = 20, 000).

Third, for the networks with different number of sources in Fig. 3.1, Fig. 3.5 shows

the RMSE as a function of the number of probe batches, and Fig. 3.6 shows the RMSE

as a function of the average success rate. We compare the relative position of the three

curves in Figs. 3.5 and 3.6, and obtain the following observation: The graph with more
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Figure 3.6: The RMSE of the LA-RS algorithm, versus the average success rate αave,

for different number of sources (n = 500).

sources achieves better estimation accuracy. However, the improvement of estimation

accuracy is negligible with relatively large success rates or sufficient probe batches. In

this case, we can use a small number of sources and flexibly choose their locations.

Finally, we investigate the performance of the LA-RS algorithm in three larger net-

works generated by BRITE. We randomly pick a part of nodes as source nodes in each

network for 10 times. We pick 4 source nodes for the 20-node network, and 20 source

nodes for the 100-node and the 500-node network. The orientation algorithm is applied

to obtain directed acyclic graphs. There are 68.25% identifiable links on average in the

directed graph for the 20-node network (40 links), 63.7% identifiable links on average in

the the directed graph for 100-node network (200 links), and 26.17% identifiable links
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Figure 3.7: The RMSE of the LA-RS algorithm, versus the number of probe batches n,

for networks of different sizes (αave = 0.9).

on average in the directed graph for the 500-node network (1, 000 links). Although the

effect of the number and location of sources on the accuracy can be negligible with rel-

atively large success rates or sufficient probe batches, different number and location of

sources may result in different number of identifiable and virtual links. Fig. 3.7 shows the

RMSE as a function of the number of probe batches for the networks of different sizes.

As expected, the LA-RS algorithm still achieves satisfactory accuracy (RMSE < 1%,

n = 20, 000), while more probe batches are needed to achieve the same accuracy in larger

networks.
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Chapter 4

Conclusions and Future Work

4.1 Conclusions

In this thesis, we studied the problem of link loss tomography on mesh topologies using

network coding. We first provided an overview of the area of network tomography in

communication networks. Accurate and efficient measurement of network-internal char-

acteristics is critical for management and maintenance of large-scale networks. Recently

there have been attempts to apply network coding in loss tomography in order to increase

bandwidth efficiency. We introduced different inference techniques in the related works

and explained the various performance bottlenecks such as (1) low bandwidth efficiency,

(2) high monitoring cost, (3) estimation not being always accurate, and (4) requiring

additional assumptions.

Then, we proposed a linear algebraic network tomography (LANT) framework for ac-

tive inference of link loss rates. We first established a tight lower bound on the probe size

for valid end-to-end observations when network coding is applied. Then, we developed

algorithms to find a valid probe coding scheme, such that the lower bound on probe size is

always achieved. Furthermore, we proposed a linear algebraic (LA) approach and devel-
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oped consistent estimators of link loss rates. We also demonstrated that the complexity

of LA using the method of row selection is lower than that using the method of normal

equations. Using our LANT framework, the identifiability of a link is the necessary and

sufficient condition for its consistent loss estimation.

We investigated the performance of the LANT framework under different simulation

scenarios. Results showed that, for large number of probes, the performance of the LA-RS

algorithm and the LA-NE algorithm is similar while the LA-RS algorithm outperforms

the LA-NE algorithm in terms of the computational complexity. Moreover, the LA-RS

algorithm achieves better estimation accuracy than the belief propagation (BP) algo-

rithm when the estimators converge. Although the effect of the number and location of

sources on the accuracy can be negligible with relatively large success rates or sufficient

probe batches, different number and location of sources may result in different number

of identifiable and virtual links.

4.2 Future Work

One possible extension of this work is to minimize the number of nodes performing

network coding. In the current work, we choose all non-receiver nodes with multiple

incoming links as the nodes that perform network coding. In this way, we can easily

obtain a valid coding scheme. One possible solution is to choose the nodes next to the

source nodes, since these nodes performing network coding can sufficiently distinguish

different information flows, such that the intermediate nodes do not need to perform
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network coding.

Another extension is design an algorithm to choose the number and location of the

source and receiver nodes, such that all the links in the given network are identifiable.

In the current work, we use the orientation algorithm [24] with selected sources to find a

directed acyclic graph. Using this algorithm, we cannot control the number and location

of the receiver nodes. To solve this problem, a new algorithm to find a directed acyclic

graph with selected sources and receivers is necessary.
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