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Abstract 

Image segmentation techniques are predominately based on parameter-laden 

optimization processes. The segmentation objective function traditionally involves 

parameters (i.e. weights) that need to be tuned in order to balance the underlying 

competing cost terms of image data fidelity and contour regularization. Conventionally, 

the associated parameters are set through tedious trial and error procedures and kept 

constant over the image. However, spatially varying structural characteristics, such as 

object curvature, combined with varying noise and imaging artifacts, significantly 

complicate the selection process of segmentation parameters. 

This thesis contributes to the field of image segmentation by proposing methods 

for spatially adapting the balance between regularization and data fidelity in energy 

minimization frameworks in an autonomous manner. We first proposed a method for 

determining the globally-optimum spatially adaptive regularization weight based on 

dynamic programming. We investigated this weight with a basic minimum-path 

segmentation framework. Our findings indicated that the globally-optimum weight is not 

necessarily the best weight as perceived by users, and resulted in poorer segmentation 

accuracy, particularly for high noise images. We then investigated a more intuitive 

approach that adapts the regularization weight based on the underlying local image 

characteristics to more properly address noisy and structurally important regions. This 

method, which we termed contextual (data-driven) weighting, involved the use of a 

robust structural cue to prevent excessive regularization of trusted (i.e. low noise) high 

curvature image regions and an edge evidence measure, where both measures are gated 
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by a measure of image quality based on the concept of spectral flatness. We incorporated 

our proposed regularization weighting into four major segmentation frameworks that 

range from discrete to continuous methods: a minimum-path approach [9], Graph Cuts 

[14], Active Contours Without Edges [24], and a contextual Mumford-Shah based 

approach [38]. Our methods were validated on a variety of natural and medical image 

databases and compared against the globally-optimum weight approach and to two 

alternate approaches: the best possible (least-error) spatially-fixed regularization weight, 

and the most closely related data-driven spatially adaptive regularization method. In 

addition, we incorporated existing texture-based contextual cues to demonstrate the 

applicability of the data-driven weights. 
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Chapter 1 
 
1 Introduction and 

Background 
 

 

Image segmentation plays a key component in many fields, ranging from medical image 

analysis to popular image editing programs. Medical research studies often rely on 

accurate and robust segmentation techniques to provide key information about anatomical 

shapes. Alternately, image editing software such as the Adobe Photoshop Suite rely on 

segmentation methods that accurately capture object boundaries for accurate modification 

by users. In all these cases, the images encountered may often be corrupted by noise or 

imaging artefacts that often present difficulties to many image segmentation methods. For 

these reasons, robust automated image segmentation is a highly sought after goal that 

continues to defy solution. 
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1.1 Motivation and Problem Statement 

 In medical images, natural and pathological variability as well as noise often 

result in unpredictable image and shape features that significantly complicate 

segmentation tasks. For example, MR images often contain measurement noise, partial 

volume effects, and image nonuniformity due to magnetic field inhomogeneities and 

magnetic susceptibility variations in the subject [88]. Furthermore, spatially nonuniform 

noise can result from numerous reconstruction and postprocessing techniques on MR 

images to correct for intensity inhomogeneity effects [90, 84], and from images obtained 

with partially parallel imaging (PPI) techniques [82, 18, 19]. Spatially varying noise 

levels can also result from images obtained with decreased acquisition times and high 

speedup factors [84]. In addition, regions with missing data or occlusions are commonly 

encountered in medical data, such as echo dropouts in ultrasound images that leads to 

irregularities along the feature boundary [99]. Other such degradations in medical images 

are due to tissue heterogeneity (“graded decomposition” [96]) and patient motion. In 

general photography applications, objects containing weak boundaries are quite common 

from poorly focused photos or from objects where sections in the image exceed the depth 

of field of the camera lens. Figure 1 shows some of these examples. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 1: Examples of degradations in medical and natural images. (a) Patient movement during 
magnetic resonance (MR) scan [1]. (b) Intensity inhomogeneity in MR volumes from lack of bias field 
correction [89]. (c) Occlusions in natural images [75]. (d) Focus issues in natural images [75]. 

 For all these cases, regularization, or smoothing, plays a crucial role in improving 

the robustness and accuracy of the resultant segmentations. Through the use of weighted 

regularization terms in conjunction with data fidelity terms, images plagued by high 

levels of deterioration, i.e. noise or poor edge contrast, are prevented from causing 

excessive irregularities and inaccuracies in the resultant segmentation. In order to 

increase segmentation robustness and accuracy, more regularization is needed in less 

reliable image regions which suffer from greater deterioration. One such example is 

shown for the noisy MR scan of a knee in Figure 2(a). A segmentation contour produced 
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with no regularization is erratic and inaccurate (Figure 2(b)). By including some 

smoothing (regularization) term, irregularities caused by the noise are reduced and a more 

accurate estimate of the original boundary is formed (Figure 2(c)). 

 
(a) 

 
(b) 

 
(c) 

Figure 2: Example of role of regularization in degraded images. (a) Noisy MR scan of knee. (b) 
Contour produced with no smoothing (regularization) term (red). (b) Contour produced with some 
level of regularization (green). Regularization removes segmentation irregularities to form a better 
estimate of the true object boundary. 

 However, excessive regularization in regions of the image not plagued by 

deterioration can result in less detail and loss of key structures in the final segmentation. 

For example, magnetic resonance (MR) images of the brain typically feature highly 

detailed structures such as the cortical surface which contain many regions of high 

curvature, as shown in Figure 3. Excessive regularization of these high curvature regions 

results in segmentations which fail to capture key characteristics of the original object  
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1.2 Energy Minimization Segmentation Methods 

 Our work focuses on modulating the regularization of energy-minimization 

segmentation methods. In this section, we will examine in detail several modern and 

popular segmentation approaches ranging from discrete to continuous, and we will 

discuss the tradeoff between data fidelity and regularization terms in these methods. 

1.2.1 General Framework  

  The vast majority of existing segmentation methods are predominantly based on 

parameter-laden optimization procedures designed to produce `optimal' segmentations at 

their minimum. These techniques represent the energy of segmentation as a combination 

of smoothing terms and data fidelity terms.  The ‘optimum’ segmentation is the 

segmentation which represents the minimum energy of all possible segmentations. 

Regularization terms are called the internal energy, and data fidelity terms are referred to 

as the external energy. A simplified but general form of the cost or energy, ܧ , of a 

segmentation, ܵ, of an image, ܫ, is 

,ܫ|ܵ)ܧ  ,ߙ (ߚ = ߙ ௜௡௧ܧ (ܵ) + ߚ ௘௫௧ܧ  (1) (ܫ|ܵ)

 ௘௫௧ is the external energy term contributing to the contour's conformity to desired imageܧ ௜௡௧ is the internal energy term contributing to the regularization of the segmentation, andܧ

features, e.g. edges. These terms will be discussed in more detail in Section 1.3. 

  The weights ߙ (referred to as the regularization weight) and ߚ in (1) control the 

highly sensitive tradeoff between the regularization terms and data fidelity terms. The 
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competing cost terms is of great importance to many related algorithmic formulations in 

computer vision. More generally, this tradeoff is seen in likelihood versus prior in 

Bayesian methods [2] and loss versus penalty in machine learning [106, 105]. The role of 

regularization is discussed in more detail in Section 1.4. 

 A wide variety of energy minimization segmentation methods exist, with each 

method differing in the type of energy functional used and in the technique used for 

optimizing the functional. In general, these methods can be classified into two groups 

based on the type of space the functional is defined on [79, 15]: 

1) Functionals defined on a discrete space (discrete set of variables) 

2) Functionals defined on a continuous space (continuous contour or surface) 

Depending on the type of segmentation method, the segmentation ܵ in (1) can differ in 

representation. In addition, segmentation techniques differ in the choice of external and 

internal energy terms, as will be discussed in Section 1.3  

1.2.2 Discrete Methods  

  Discrete segmentation methods formulate the problem as a combinatorial 

optimization in a finite space ܼ௡  (a finite set of integer-valued variables) [79]. These 

methods predominately use a graph-based representation of an image where graph 

vertices (nodes) correspond to image pixels. These methods can be further divided into 

explicit methods, such as path-based methods [9, 4, 43, 41, 55], where the object 

boundary is represented by a path in a graph, and implicit methods, such as graph-cuts 
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approaches [13, 15, 14] where the segmentation is represented functionally. These 

methods can guarantee finding the globally optimal segmentation. 

1.2.2.1 Minimum Path 

  Minimum-path approaches formulate segmentation through modelling the image 

as a graph that consists of nodes and edges that link to neighbouring nodes. Image pixels 

represent vertices and the links from each pixel to its eight neighbours represent edges. In 

these approaches, the segmentation is modelled as a path along the graph consisting of a 

set of nodes where each node is connected by an edge to a single ‘forward’ node and a 

single ‘backward’ node. The subgraph formed by a closed path along the graph represents 

the object or region of interest. Each edge in the graph is given a cost such that the 

cumulative cost of the path from a start vertex to a goal vertex is the sum of the 

individual cost of each edge along the path. The problem of finding the optimum 

segmentation is modelled as a graph-searching problem where the goal is to find the 

optimum, or least-cost, path between two vertices. Many segmentation methods, such as 

[15, 17, 108, 47], use a graph-based approach to modelling the segmentation problem. 

Common examples of minimum path approaches are Amir et al [4], Geiger et al [4], 

Falcao et al [41], and Jerymyn and Ishikawa [55]. 

  In particular, one popular minimum-path segmentation approach is Livewire [41, 

9] where dynamic programming in conjunction with user supplied seedpoints are used to 

find the optimum path on a graph-based representation of the image. Livewire uses the 

edges costs of the graph to ensure that the optimum path represents characteristics desired 

in the segmentation. Each edge cost, or local cost, is a weighted sum of data fidelity and 
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regularization terms. The local cost, ܧ௧௢௧௔௟(݌,  for the directed edge from pixel p to ,(ݍ

neighbouring pixel q is as follows: 

,݌)௟௢௖௔௟ܧ  (ݍ = ீݓ (ݍ)ீܧ + ஽ݓ ,݌)஽ܧ  (2) (ݍ

where a gradient magnitude measure (ݍ)ீܧ acts as a data fidelity term and ܧ஽(݌,  is the (ݍ

regularization term that penalizes longer paths (see Section 1.3 for further discussion of 

energy terms). The balance between data fidelity and regularization is controlled by the 

weights ீݓ and ݓ஽ which are typically set empirically. 

  In order to determine the optimum contour, Livewire uses dynamic programming, 

which solves optimization tasks by recursively breaking down the tasks into similar but 

smaller subtasks which can be solved more easily. In the context of graph-based 

segmentation, the globally optimum path between vertices ݌   and ݍ  is found by 

recursively finding the optimum path for smaller subgraphs. This process is accomplished 

by first initializing the vertices with the local cost at that pixel location as determined by 

equation (2). The target vertex ݍ is then expanded by summing the cumulative cost of  ݍ 

into all adjacent vertices, and then summing the cost of those vertices into their 

corresponding neighbours. This expansion continuous in order of minimum cumulative 

cost and produces a ‘wavefront’ that extends over the graph, as illustrated in Figure 5 . At 

the end of this process, the graph is transformed into what is known as a value function 

that represents the cost of the globally optimum path from each vertex to the target vertex ݍ, as illustrated in Figure 6. The optimum path from any vertex, including ݌, to the goal 

vertex can then be determined by a gradient descent. The benefit is that the globally 

optimum path from all vertices to the target vertex is now known. This optimization 
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proposed outside the field of image segmentation in [48, 13, 83, 53, 60] . Our work will 

incorporate the implementation of graph cuts in [15].  

 Unlike minimum-path approaches which define the segmentation as a contour 

along the object boundary, graph-cuts approaches define the segmentation as a region 

where each pixel is represented as a binary variable, either inside or outside the object of 

interest.  Graph-cuts defines the energy functional for a segmentation as follows: 

(݂)ܧ   = ෍ ଵߣ ௣ܸ,௤ ൫ ௣݂, ௤݂൯ሼ௣,௤ሽ∈ே + ଶߣ ෍ )௣ܦ ௣݂)௣∈ ௉  (3) 

݂ ∈  L  is the labeling for all pixels ݌ ∈  ܲ where L is the label space and ܲ is the set of 

pixels in image ܫ. ௣ܸ,௤  is the pairwise interaction penalty between pixel pairs (i.e. the 

penalty of assigning labels ௣݂ and ௤݂ to pixels ݌ and ݍ), ܰ is the set of interacting pairs of 

pixels, and ܦ௣ measures how well label ௣݂ fits pixel ݌ given the observed data. ܦ௣ and 

௣ܸ,௤  are discussed in more detail in Section 1.3. From the cost functional, we see that 

graph-cuts also involves a tradeoff between regularization and data fidelity through the 

weights ߣଵ and ߣଶ in (3). 

 The optimization procedure consists of generating a labeling through two types of 

moves: expansions and swaps, which changes the labels of large numbers of pixels 

simultaneously. The method divides the image into nodes, which are the pixels or voxels, 

terminal nodes, which consist of a source node and a sink node that represent the 

background and object labels, ݊-links, which are edges connecting neighboring nodes, 

and ݐ-links connecting nodes to terminal nodes, where links are assigned a cost based on 

the edge. The resulting contour is defined as a ‘cut’ through a subset of ݊ -links, 
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separating the sink node (background) from the source node (object). The cut cost is 

defined as the sum of costs from the edges that were cut. 

1.2.3 Continuous Methods 

  Continuous segmentation methods formulate the problem in the continuous space ܴஶ and use a representation of the segmentation that deforms according to external and 

internal forces. Additionally, these methods tend to rely on a gradient descent procedure 

for optimization. These types of methods are divided into explicit models and implicit 

models. Explicit models are based on an explicitly defined parametric curve that is 

evolved and deformed, and consist of active contour and snake methods [56, 28, 29, 71, 

65]. Implicit models are where the contour is represented as the level-set of a higher-

dimensional scalar function, as seen in [21, 86, 76, 85, 77]. Unlike discrete methods, 

continuous methods can only guarantee finding the local minima of the energy functional. 

However, continuous methods do have the advantage that pixel connectivity in the final 

segmentation is guaranteed. Our work will focus on two such continuous methods that 

are both different approximations of the Mumford-Shah segmentation framework 

1.2.3.1 Mumford-Shah Model 

  Mumford and Shah [74] proposed a solution to the problem of image denoising by 

dividing an image into a smooth cartoon-like component and a noise component such that 

the image is smoothened but object edges are retained. This concept that has been further 

analyzed by [12, 44, 78]. To accomplish this, the Mumford-Shah (MS) model was 

proposed, where a segmentation consists of a piecewise-smooth approximation, ݑ, of the 
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original image, ݑ଴ , and an edge set, Γ . In this formulation, a segmentation has the 

following energy: 

,ݑ)ெௌܧ  Γ) = ߚ න ൫ݔ)ݑ, (ݕ − ,ݔ)ܫ ஐݕ݀ݔ൯ଶ݀(ݕ + ߙ න ,ݔ)ݑ∇| +ஐ\୻ݔଶ݀|(ݕ  ℎ(Γ)ݐ݈݃݊݁

 

(4) 

where Ω ⊂ ℜଶ   is a connected, bounded and open subset that represents the image 

domain, ܫ is the original image defined on ℜ ,  Γ ⊂ Ω is the edge set segmenting Ω, ݑ is 

the piecewise smooth approximation of ܫ, and ߙ and  ߚ are the scale space parameters of 

the model. The first term corresponds to the external energy and penalizes large 

differences between ݑ  and the original image. The regularization terms include  ׬ ஐ\୻ݔଶ݀|ݑ∇|   which penalizes large edge sets which would result from more erratic 

segmentations, and ݈݁݊݃ݐℎ(Γ)  which penalizes an excessively large edge set (and a low 

smoothened image). The weights ߙ and ߚ  control the balance of regularization versus 

data fidelity. 

  The original MS model is difficult to minimize due to the unknown representation 

of the edge set Γ. We will present two different approximations of the MS problem: 

contextual Ambrosio and Tortorelli (AT) approximation, and the Active Contours 

without Edges (ACWE) approximation. 

1.2.3.2 Contextual Ambrosio-Tortorelli MS Approximation 

 The AT approximation of the MS model simplifies the minimization process by 

introducing a smooth edge indicator function [3] ݒ, and has been utilized by many other 
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segmentation methods [8, 5, 37, 39, 87, 92, 94]. The original model incorporated a 

characteristic function ߯୻ as the edge indicator. In the AT approximation, the cardinality 

of Γ is approximated by: 

 12 න ቆݒ∇|ߩ|ଶ + (1 − ߩଶ(ݒ ቇ ஐݔ݀  
(5) 

where ߩ is a parameter set such that as ݌ → (ݔ)ݒ ,0 ≈ 0 if ݔ ∈ Γ and (ݔ)ݒ ≈ 1 otherwise. 

This approximation modifies the MS functional to the following: 

,ݑ)஺்ܧ  (ݒ = න ൭ݑ)ߚ − ଶ(ܫ + (ଶ|ݑ∇|ଶݒ)ߙ + 12 ቆݒ∇|ߩ|ଶ + (1 − ߩଶ(ݒ ቇ൱ ஐݔ݀  
(6) 

The AT approximation allows for the partial differential equations (PDEs) that dictate the 

segmentation evolution to be decoupled into separate evolution equations for the image 

process and edge set function as follows: 

ݐݑ߲߲  = ∇ ∙ (ݑ∇ଶݒ) − ߙߚ ݑ) − ;(ܫ ฬడஐ߲݊ݑ߲ = 0 
(7) 

ݐ߲ݒ߲  = ∇ଶݒ − ߩݒଶ|ݑ∇|ߙ2 − ݒ) − ଶߩ(1 ; ฬడஐ߲݊ݒ߲ = 0  
(8) 

where ߲Ω  is the boundary of Ω  and ݊  is the unit normal vector to ߲Ω . The AT 

approximation adds the additional regularization term ݒ∇|ߩ|ଶ  that forces edges to be 

smooth. Although the parameters ߚ and ߙ control the data fidelity term and one of the 

regularization terms, respectively, ݒ∇|ߩ|ଶ is not modulated by a regularization weight. 

From the energy functional, it also difficult to separate regularization of the image 
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process and regularization of the edge process. Additionally, it is important to note that 

the edge term ݒ itself acts as a weight for the regularization of the image process. From 

the term ݒଶ∇ݑ, if an edge exists (ݒ ≈ 0), no regularization occurs. Thus, we follow the 

Erdem and Tari [38] modification of the AT MS model that allows for proper control of 

regularization of both the image process and edge process through modifying the 

evolution equation for the image process as follows: 

ݐݑ߲߲  = ∇ ∙ (ݑ∇ଶ(ݒܿ)) − ߙߚ ݑ) − ;(ܫ ฬడஐ߲݊ݑ߲ = 0 
(9) 

where the constant ܿ  controls how strongly the edge term ݒ  weights the level of 

smoothening in the image process. This segmentation approach is termed the contextual 

MS method. 

 The evolution equations (8) and (9) are simultaneously solved for ݑ and ݒ by the 

Finite Differences numerical discretization technique iteratively where ݑ is updated by 

the evolution equation while ݒ is kept fixed, and vice versa, and where the iterations are 

stopped when the solution is stationary. It is important to note that the contextual MS 

approach is automated in that no initial contour or seeds are used to determine ݑ and ݒ at 

the initial iterations. Instead, ݒ  is initialized as the inverse of the gradient such that 

regions with high edge evidence result in ݒ ≈ 0 . Additionally, the contextual MS 

approach is primarily used for denoising as it produces a cartoon-like version of the 

original image. For use as a segmentation method, a binary mask can be formed from 

closed contours in the edge set. 
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1.2.3.3 Active Contours Without Edges 

 The active contours without edges (ACWE) segmentation approach, proposed by 

Chan and Vese [24, 23, 22, 97], represents a subset of the original MS model. Here, the 

original MS segmentation problem is restricted to piecewise constant functions, forming 

what is known as the minimal partition problem. The original MS formulation had a data 

fidelity term of ׬ ,ݔ)ݑ| (ݕ − ,ݔ)ܫ ஐݕ݀ݔଶ݀|(ݕ . In the ACWE formulation, the image 

process is simplified to a binary piecewise constant function as follows: 

ݑ  = ൜average(ܫ)     inside Γaverage(ܫ)  outside Γ (10) 

is thus represented by two constants, ܿଵ ݑ  and ܿଶ , which represent the average of the 

original image inside and outside, respectively, of the object boundary Γ. Essentially, 

ACWE is a simplification of the original MS model to only segment for an object and 

background and producing a binary image ݑ with the edge set simplified to an active 

contour representing the object boundary. As a binary mask is produced, ACWE is 

geared more towards the application of segmentation rather than denoising. The ACWE 

energy functional is: 

,ଵܿ)ܧ  ܿଶ, Γ) = ߤ Length(Γ) + ߭ Area൫݅݊݁݀݅ݏ(Γ)൯
+ ߣ  න ,ݔ)ܫ| (ݕ − ܿଵ|ଶ݀ݕ݀ݔ௜௡௦௜ௗ௘(୻)
+ ߣ  න ,ݔ)ܫ| (ݕ − ܿଶ|ଶ݀ݕ݀ݔ௢௨௧௦௜ௗ௘(୻)  

(11) 
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where the different external energy weights have been replaced with a single weight ߣ 

and the regularization weights are ߤ and ߭ (in practice, ߭ = 0 typically). The weights ߤ 

and ߣ form the same tradeoff between data fidelity and regularization that is present in 

the other segmentation methods discussed. 

 To optimize for the energy, the functional is first transferred to a level sets 

formulation as follows. The segmentation contour Γ ⊂ Ω is represented by the zero level 

set of a Lipschitz function ߶; Ω → ℜ where pixels ݌ interior to the zero-level set of ߶ are 

labelled as objects and exterior pixels as background. The length and area of the zero 

level set of ߶ is determined through the use of the Heaviside function ܪ and the one 

dimensional Dirac function ߜ଴ as follows: 

߶)ℎݐ݃݊݁ܮ  = 0) = න ,ݔ)߶଴൫ߜ ,ݔ)߶∇|൯(ݕ ஐݕ݀ݔ݀|(ݕ  (12) 

߶)ܽ݁ݎܣ  ≥ 0) = න ,ݔ)߶൫ܪ ஐݕ݀ݔ൯݀(ݕ  (13) 

Through the use of ܪ and ߜ଴, the energy function is written in level-sets form as follows: 

,ଵܿ)ܧ  ܿଶ, ߶) = ߤ න ,ݔ)߶଴൫ߜ ,ݔ)߶∇|൯(ݕ ஐݕ݀ݔ݀|(ݕ + ߭ න ,ݔ)߶൫ܪ ஐݕ݀ݔ൯݀(ݕ  
+ ߣ   න ,ݔ)ܫ| (ݕ − ܿଵ|ଶܪ൫߶(ݔ, +ஐݕ݀ݔ൯݀(ݕ ߣ  න ,ݔ)ܫ| (ݕ − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ ൯ቁ(ݕ ஐݕ݀ݔ݀  

(14) 
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The corresponding Euler-Lagrange equation is derived by minimizing ܧ with respect to ߶ . The optimum contour is then determined by gradient descent where the descent 

direction parameterized by an artificial time ݐ ≥ 0 is: 

ݐ߲߶߲  = (߶)ߜ ൤ݒ݅݀ ߤ ൬ ∇߶|∇߶|൰ − ߭ − ܫ)ߣ − ܿଵ)ଶ + ܫ)ߣ − ܿଶ)ଶ൨ = 0 
(15) 

The finite differences implicit scheme is first used to discretize ߶. The initial ߶଴ is then 

set by the user as an initial contour. The optimum contour is then determined by 

iteratively updating ߶  to determine ߶௡ାଵ  by adding the evolution equation scaled to a 

step size. The process continues until the solution is stationary. Unlike the contextual MS 

approach, the ACWE approach is not automated and allows user control through the 

initial contour to segment specific objects in an image. 

1.3 Energy Terms 

 We will next discuss the individual external and internal energy terms used in the 

segmentation methods of Section 1.2 and how these terms respectively enforce data 

fidelity and regularization of the segmentation and capture properties of the object of 

interest which is desired in the segmentation. 

1.3.1 External Terms 

  The external energy terms of a segmentation method contribute to data fidelity 

and ensuring that the final segmentation does not greatly differ from the original image, 

or in some cases, ensuring that the contour is aligned with high edge characteristics of the 
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original image. In general, external terms can be divided into two categories: boundary 

terms and region terms. 

1.3.1.1 Boundary terms 

 Methods such as Livewire and other minimum-path approaches, where the 

segmentation produces a path representing the object boundary, tend to use boundary 

terms that penalize paths, or contours, that do not consist of pixels containing high edge 

evidence. In the case of the simplified Livewire framework used in this thesis, the key 

edge evidence term is: 

ீܧ  = 1 −  (|ܫߘ|)max|ܫ∇|
(16) 

where the gradient magnitude of the original image ܫ is scaled and inverted using an 

inverse linear ramp function such that high image gradient regions correspond to a low 

edge energy or cost. This also acts as a first order positioning of the contour. The original 

Livewire framework uses additional edge evidence terms such as the Canny edge 

evidence measure [20] and the Laplacian of Gaussian second order term [9], but these 

were omitted in the simplified representation used here for the purpose of focussing on 

the regularization weight balance rather than the segmentation framework itself. 

1.3.1.2 Regional terms 

  The graph cuts segmentation method uses a region based term to reflect how well 

the intensity of a pixel ݌ fits into given intensity models that are known a priori. These 

intensity models (or histograms) are created from seeds provided from the user 

representing the object labels and the background labels. The graph cuts method makes 



21 

use of a negative log likelihood function to determine the data fidelity region energy ܧோ 

as follows: 

(݆ܾ݋)ோܧ  = − ln Pr൫ܫ௣ห  ൯′݆ܾ݋′

(ܾ݃݇)ோܧ = − ln Pr൫ܫ௣ห ′ܾ݇݃′൯ 

(17) 

where the prior probability of a pixel ݌ with intensity ܫ௣ belonging to the object label is 

determined by an intensity model (histogram) created from the intensities of the object 

seed pixels, and similarly for the background label [15, 48]. 

  The contextual MS model uses the least square error between the segmentation 

(image process ݑ) and the original image as the data fidelity term as follows: 

஺ܧ  ೐்ೣ೟ = න ,ݔ)ݑ൫ߚ (ݕ − ,ݔ)ܫ ஐݕ݀ݔ൯ଶ݀(ݕ  (18) 

where high differences between the smoothened piecewise-constant segmentation and the 

original image are assigned a high energy to minimize.  

  The ACWE simplification of the MS model uses a similar least square error term 

as the external energy, but unlike the contextual MS method, the ACWE model simplifies 

the segmentation ݑ to a binary image consisting of two constants, ܿଵ and ܿଶ, as follows 

(using the level sets formulation):  
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஺஼ௐா೐ೣ೟ܧ  = ߣ න ,ݔ)ܫ) (ݕ − ܿଵ)ଶܪ൫߶(ݔ, ൯(ݕ +ஐݕ݀ݔ݀ ߣ  න ,ݔ)ܫ) (ݕ − ܿଶ)ଶ ቀ1 − ,ݔ)߶൫ܪ ൯ቁ(ݕ ஐݕ݀ݔ݀  

(19) 

where  

 ൜ܿଵ(߶) = (ܫ)݁݃ܽݎ݁ݒܽ ݅݊ ሼ߶ ≥ 0ሽܿଶ(߶) = (ܫ)݁݃ܽݎ݁ݒܽ ݅݊ ሼ߶ < 0ሽ (20) 

Large differences between the segmented image and the piecewise constant original 

image will be assigned large external energies. 

1.3.2 Internal Terms 

 Internal energy terms, or smoothening/regularization terms, range from simple 

penalizations of long contour lengths to terms that enforce shapes or prior knowledge 

[10]. Here, we will focus on the terms employed by the segmentation methods introduced 

in Section 1.2. 

 The Livewire framework and the majority of minimum-path segmentation 

approaches use a regularization term that penalizes longer and jagged contours through 

estimating the contour length. In the Livewire framework, the local regularization cost of 

a vertex (pixel) ݌’s link to neighbouring vertex ݍ is an estimate of the Euclidean distance 

to that neighbour: ܧ஽ = ට (݌௫ − ௫)ଶݍ + ൫݌௬ − ௬൯ଶݍ
 such that diagonal neighbours incur 

a higher regularization cost [81].  
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 In more general minimum-path frameworks, the internal energy is calculated as 

the piecewise length of the contour: 

൯(ݍ)ܥ௜௡௧൫ܧ  = ቤ߲ݍ߲(ݍ)ܥ ቤ (21) 

where ܥ  is the contour parameterized by some variable ݍ  (i.e., (ݍ)ܥ = ,(ݍ)ݔ൫ܥ :൯(ݍ)ݕ [0,1] → Ω ⊂ ℜଶ in image ܫ: Ω → ℜଶ ). In addition, active contour 

methods, such as the classical snakes method [56], use a second order regularization term 

as follows: 

௜௡௧ܧ  = ߙ ቤ߲ݍ߲(ݍ)ܥ ቤଶ + ߚ ቤ߲ଶݍ߲(ݍ)ܥଶ ቤଶ
 

(22) 

 In the graph cuts formulation, the internal energy uses a penalty term between 

neighbouring pixels where a certain penalty is assigned if the pixels are assigned to 

different labels, thereby favouring similar groupings between neighbouring pixels. This 

term is as follows: 

௜௡௧ܧ  = ൜1 ݂݅ ௣݂ ≠ ௤݂0 ݂݅ ௣݂ = ௤݂  
(23) 

where pixels ݌ and ݍ are assigned labels ݂௣ and ௤݂, respectively. Typically, the penalty 

term is then weighted by a term that has a high penalty when neighbouring pixels with 

highly dissimilar intensities are assigned the same label.  

 In the contextual MS approach, the internal energy consists of two regularization 

terms: 
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௜௡௧ܧ  = (ଶ|ݑ∇|ଶݒ)ߙ + 12  (24) (ଶ|ݒ∇|ߩ)

where the first term smoothes the image with a filter radius proportional to the values of  ݒଶ and ఈఉ,  which preserves edges during regularization [38, 94, 8, 44]. The second term, 

which comes from the AT approximation of the cardinality of the edge set Γ, enforces 

more smooth edges by assigning a high energy to large edge sets.  

 The ACWE segmentation method uses the length of the level set contour and the 

total area within the contour as regularization terms as follows: 

௜௡௧ܧ  = ߶Lengthሼ ߤ = 0ሽ + ߭ Areaሼ߶ ≥ 0ሽ
= ߤ න ,ݔ)߶଴൫ߜ ,ݔ)߶∇|൯(ݕ ஐݕ݀ݔ݀|(ݕ +  ߭ න ,ݔ)߶൫ܪ ஐݕ݀ݔ൯݀(ݕ  

(25) 

which assigns a high energy if the zero level set of ߶ is erratic and long in length, and an 

additional high energy if the interior of the contour is excessively large (in practice, the 

area regularization term is not used however). 

  In additional, segmentation methods may have more specific terms designed to 

enforce data fidelity. For example, in addition to the standard contour length term, the 

classical snakes segmentation method [56] uses a curvature term for regularization, which 

will be further discussed in Section 1.5.2. 

1.4 Regularization of Image Segmentation Methods 

 In all the segmentation methods that have been discussed in Section 1.2, a tradeoff 

exists between the external and internal energy terms. In this section, we will discuss the 
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role the regularization weight plays in this balance and the consequences of inadequate or 

excessive regularization. Additionally, we will discuss the traditional methods for setting 

this regularization weight. 

1.4.1 Role of Regularization 

 Regularization plays a key role in reducing segmentation inaccuracies that arise from 

image degradations and from object boundary behaviour. Noise, ranging from simple 

impulse salt-and-pepper noise to complex average white Gaussian noise (AWGN), often 

arises in digital images during image acquisition. Often, environmental conditions such as 

low light contribute to noise, as well as image sensors, and corruption during image 

transfer [46]. The process of removing noise from images can often cause the object of 

interest to be degraded. For example, applying a low pass filter to remove the noise will 

often weaken the gradient of object edges. For these reasons, segmentation methods often 

encounter images that have not had any major noise removal preprocessing performed on 

them. The segmentation method must therefore by robust to noise levels. Complicating 

matters is the fact that noise is enhanced more than the image signal during edge 

detection processes [46, 42]. The end result is that noisy regions contribute high external 

energies and skew optimization processes to favour contours that contain these noisy 

regions [70]. By either penalizing longer erratic contours, or penalizing segmentations 

that differ in intensity or area from the original image object, a sufficient level of 

regularization is able to produce more robust segmentations. Unlike noise, weak gradients 

contribute to low external energy, causing optimization processes to favour contours or 

segmentations that contain pixels from stronger gradients in the image, even if these 
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strong gradients are located farther from the object of interest. Regularization by either 

penalizing the contour length or segmentation area, or the difference in the intensity from 

original object to segmentation, produces more accurate results. However, excessive 

regularization can remove detailed regions in the object if these are mistaken as noise or 

image deteriorations. We will next discuss the consequences of improper setting of the 

regularization weight. 

1.4.2 Conventional Methods for Setting Regularization 

  Determining the optimum balance between regularization and adherence to image 

content has predominantly been done empirically and in an ad-hoc manner. Most reported 

approaches to segmentation keep a uniform level of regularization across an object 

contour, i.e. one that does not vary spatially and is determined empirically. All possible 

weights are tested, and the weight which produces the least error segmentation is selected 

as the best fixed weight. However, compensating for image deteriorations by uniformly 

increasing the level of regularization until the most degraded region of the image is 

properly regularized may result in excessive smoothing in those regions that do not 

require that much regularization. Subsequently, this results in a loss in segmentation 

accuracy, particularly for objects with highly curved boundaries. For example, consider 

the synthetic example in Figure 7 of an object with highly varying boundary 

characteristics, and where the image has been corrupted by AWGN with spatially varying 

levels.  When the example object is segmented by a simple minimum-path approach 

(simplified Livewire) with a low level of regularization, the highly detailed sections of 

the object are accurately segmented. However, the sections deteriorated by noise are not 
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regularized and thus produce an inaccurate segmentation. Alternately, if the level of 

regularization is set high, the structurally important region of the object are excessively 

regularized. The result is that neither segmentation weight is suitable for the entire image. 

 

Figure 7: Segmentations on a synthetic image using spatially fixed regularization weights of 0 (green), 
0.3 (red), 0.7 (blue), and 0.9 (purple). Lower regularization weights result in erratic contour behavior 

in the high noise left region of the image, and higher regularization weights result in poor 
segmentation of the high curvature right region of the image. 

1.5 Related Work 

1.5.1 Spatially Adaptive Regularization 

 As addressed in McIntosh and Hamarneh [72], adapting the regularization weights 

across a set of images is necessary for addressing the variability present in real image 

data. However, although an optimal weight can be found for a single image in a set, that 

weight may not be optimal for all regions of that image. In [91], a max-margin approach 

is used to learn the optimal parameter setting, but required the use of prior knowledge. In 

[60], Kolmogorov et al. characterized the types of energy functional that can be 

minimized via graph cuts and solved the optimization problem for a range of parameters 

rather than a single regularization weight. In Pluempitiwiriyawej et al. [80], the 

weights are changed as the optimization progresses, but in an ad-hoc predetermined 

manner. Some form of spatially adaptive regularization over a single image appeared in 

Dong et al. [35]. For segmenting an aneurysm, they varied the amount of regularization 
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based on the known surface curvature of a pre-segmented vessel. The results 

demonstrated improvements due to adaptive regularization. However, the regularization 

weights did not rely on the properties of the image itself, which limited the generality of 

the method.  

  The closest related work to ours is by Erdem and Tari [38] who proposed a 

regularizer for the MS segmentation framework with feature preserving capabilities 

through the use of a contextual feedback. The segmentation method itself was discussed 

in Section 1.2.3.2. The framework features a term that modulates the level of 

regularization that the edge process ݒ has on the image process ݑ. This term, ܿݒ in (9), 

depends on contextual cues through two types of feedback: negative feedback for feature 

smoothening, where the regularization shifts towards the maximum value of 1 when a cue 

measure, ߢ  , is large, and positive feedback for feature preservation, where the 

regularization shifts to the minimum value of 0 when ߢ  is large. The two forms of 

feedback are achieved by 

ݒܿ  = ݒߢ + (1 −  (26) ܸ(ߢ

where ܸ = 1 for negative feedback, and ܸ = 0 for positive feedback. The purpose of the 

two forms of feedback is to adjust the regularization for the edge process and the image 

process separately such that certain features, like texture, can be preserved (not 

regularized) in the image process, and other features, such as texture edges, can be 

eliminated (regularized) in the edge process.  

  Erdem and Tari focused on four data cues to modulate the regularization: (1) edge 

continuity, (2) edge (gradient) consistency, (3) a texture edge measure, and (4) a texture 
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region measure. The first cue was designed to create an edge set with linked edges by 

regularizing any edges that were not sufficiently linked to neighbouring edges, thus 

forming a coherent edge set and providing some level of weak noise detection, primarily 

against impulse noise. The level of directional consistency was measured through 

determining the angle between gradient direction vectors. The second cue estimated edge 

continuity to handle noise and weak edges that may cause breaking up of an edge 

contour. Through a support term that measures how many neighbouring pixels have an 

edge indicator, a measure of edge formation was calculated. As the edge is determined to 

be non-accidental in a region, positive feedback is used so that the diffusivity approaches 

0 (feature preservation). The third cue estimated texture edges to prevent texture 

gradients from being included as part of the object boundary gradient set. The texture in a 

local window is estimated by comparing the similarity between the central patch, ݌௖, and 

patches shifted to the left, right, above, and below, as shown in Figure 8(a). The 

similarity metric is the Euclidean distance transform between each shifted patch and the 

central patch (which acts as the template), producing the similarity distributions ܦ௣௨௣, ,௣ௗ௢௪௡ܦ ,ݔ) ௣௥௜௚௛௧. If a pixelܦ ௣௟௘௙௧, andܦ  lies in a textured region, the central patch (ݕ

will differ from the shifted patches, and thus ܦ௣௨௣ will differ from ܦ௣ௗ௢௪௡ and ܦ௣௟௘௙௧ will 

differ from ܦ௣௥௜௚௛௧, as illustrated in Figure 8(b). To verify this difference, the Wilcoxon 

Mann-Whitney test [101] (a rank-sum test) is used to produce a p-value where p-values ≪ 0.05 indicate a significant difference.  Thus the estimate of texture is determined as 

follows: 
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,ݔ)ܶ  (ݕ  = 1 − exp ቀ – ௧ߛ ൫min൫ߩଵ ,ݔ) ,(ݕ ,ݔ)ଶߩ ൯൯ቁ(ݕ  (27) 

where ߛ௧  is a decay rate parameter and ߩଵ(ݔ, (ݕ  and ߩଶ(ݔ, (ݕ  represent the p-values 

returned from the Wilcoxon Mann-Whitney test between ܦ௣௨௣  and ܦ௣ௗ௢௪௡  and between ܦ௣௟௘௙௧  and ܦ௣௥௜௚௛௧. If texture exists around the pixel at (ݔ, ,ݔ)ଵߩ ,(ݕ ,ݔ)ଶߩ and (ݕ  will (ݕ

be low, indicating a significant difference between ܦ௣௨௣  and ܦ௣ௗ௢௪௡  and between ܦ௣௟௘௙௧  

and ܦ௣௥௜௚௛௧ , thus producing a low ܶ(ݔ, (ݕ . If the pixel at (ݔ, (ݕ  lies in a piecewise 

constant region, the shifted patches will not differ from the central patch, and thus the 

distributions will not differ from one another, producing high p-values and therefore a 

high ܶ(ݔ,  We note that this method suffers from mistaking some non-texture edges as .(ݕ

texture since non-texture edges will cause the shifted distributions to slightly differ from 

one another. 

 
(a) 

 
(b) 

Figure 8: Texture cue devised in Erdem and Tari [38]. (a) In a piecewise-constant region of the 
image, the similarity distributions between the central patch, ࢉ࢖, and each of the patches shifted in 4 
directions are similar to one another. Thus the p-value produced by the Wilcoxon Mann-Whitney test 
on ࢚ࢌࢋ࢒ࡰ and ࢚ࢎࢍ࢏࢘ࡰ (similarity distributions to patches on the left and right) is high and on ࢖࢛ࡰ and ࢔࢝࢕ࢊࡰ is high. (b) In a textured region of the image, the similarity distributions between ࢉ࢖ and each 
of the shifted patches differ from one another. Thus the p-value produced by ࢚ࢌࢋ࢒ࡰ and ࢚ࢎࢍ࢏࢘ࡰ is low, 
and by ࢖࢛ࡰ and ࢔࢝࢕ࢊࡰ is low.  
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The fourth cue, local scale, preserved texture by preventing excessive smoothening in 

these regions. Using a patch around a pixel ݌, the median of the differences between the 

gradient magnitude at pixels in the patch and the median of the gradient magnitudes is 

determined. Texture regions will have large median gradient difference values (due to 

variation in the gradient magnitude in texture regions). This value is then used in an 

exponential decay function with a decay rate such that high values of the median 

difference results in the diffusivity warping towards 0 so that texture regions have feature 

preservation (no smoothening in these regions). After each cue is calculated, the cues are 

then combined by simply taking the product of the measures. 

 Kokkinos et al [59] proposed a spatially adaptive texture estimation measure 

through an amplitude/frequency modulation model of images that allows for a 

probabilistic discrimination between edges, textured and smooth regions. In [59], a 

texture cue, a loosely defined context-based classifier cue, and an intensity cue were used 

to distinguish between texture edges and edges between different objects.  Only the latter 

edges were then used to dampen the curve evolution and define the segmentation 

boundary. Gilboa et al [45] presented a graph-cut based segmentation framework with 

spatially varying regularization through edge weights in the graph using a gradient 

magnitude-based cue. Malik et al [69] proposed the Normalized Cuts segmentation 

framework to regularize segmentation in textured regions through the use of local texture 

and gradient cues. Their work was also significant for the use of ‘cue gating’, where 

gradient information is suppressed in high texture regions through the following: 
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,ݔ)ீܱ  (ݕ = ൫1 − ,ݔ)ܶ ,ݔ)൯ܱ(ݕ  (28) (ݕ

where ܱ(ݔ, ,ݔ)ܶ ,is the orientation cue (estimate of gradient strength) (ݕ  is the texture (ݕ

cue, and ܱீ(ݔ,  is the gated orientation cue. In addition, we note that the methods of (ݕ

[80, 35, 69, 38] that use continuous segmentation frameworks only modulate the 

regularization term and leave the data fidelity term as is. 

1.5.1.1 Deficiencies in Existing Methods 

 The key problem with the methods described in Section 1.5.1 is that none 

consider object structure when controlling the regularization, particularly object 

curvature. As demonstrated in Section 1.1, curvature can often play a key role in 

distinguishing objects. For example, white matter in MR images has a highly undulating 

surface that requires low regularization in regions of high curvature. In addition, no 

method has a strong method for estimation of image noise. The method for handling 

noise in Erdem and Tari is a weak measure since a noise model is not considered, and 

instead a measure is formulated based on the connectivity of edges, which can be easily 

disrupted by texture edges and by stronger forms of noise (such as AWGN). One last 

problem with the methods of Section 1.5.1 is that each method is tied to a particular 

segmentation approach and often requires prior knowledge. Our goal in this thesis is to 

seek a more unified approach to adaptive regularization that can be generalized to many 

energy minimization segmentation methods with minor modifications to the energy 

formulation. 

 In addition, in Chapter 3, we will show improvements obtained from combining 

the texture cue of Erdem and Tari with our proposed data-driven regularization weight. 
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1.5.2 Estimation of Curvature 

 A key section of this thesis (Chapter 3) focuses on a structural measure of object 

curvature. Existing curvature methods focus on estimating either the curvature of 

segmentation contours, or estimating the curvature of iso-intensity contours in the image 

in an attempt to estimate object curvature. Kitchen and Rosenfeld  [57] introduced a basic 

2D curvature measure for iso-intensity contours in an image (posing the problem as that 

of corner detection) which has been used by many others [36, 56, 52]. In [57], the 

curvature of a 2D contour ݔ)ܥ, (ݕ  was determined by measuring the rate of change 

between the gradient angle at a point in the image,  ߠ = tanିଵ(ܥ௬,  ௫) , and the unitܥ

vector perpendicular to the gradient direction, nୄ =  (− sin ߠ , cos  to form the , (ߠ

curvature estimate Κ as follows 

 Κ = nୄ߲ߠ߲ = ௫ଶܥ௬௬ܥ − ௬ܥ௫ܥ௫௬ܥ2 + ௫ଶܥ௬ଶ൫ܥ௫௫ܥ + ௬ଶ൯ଷ/ଶܥ  
(29) 

as shown in Figure 9. 

 
Figure 9: Curvature of an isointensity curve measured by the rate of change between the gradient 
angle and unit normal vector ୄܖ.  

t

n�

Tangential circle

Isointensity curve
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Segmentation methods such as the classical snakes active contour model [56] use this 

curvature term as an external energy to attract the segmentation towards high curvature 

regions of the image. The method calculates the curvature of the level contours and 

assigns a high energy for contours with high curvature. It is important to differentiate this 

from weighting the regularization by using the curvature. Instead of adapting how the 

regularization changes based on how the curvature changes, these methods instead use a 

curvature term in the energy functional such that the optimum contour will have low 

curvature if the level of regularization is high (reducing high curvature erratic regions). 

The methods do not verify if the high curvature regions are in fact due to noise or due to 

structure however. 

  Cohen et al [27] presented a method to incorporate curvature information into the 

motion of deformable objects, and track high curvature points through a time series of 

images. The motivation was that high curvature points in an image are anatomically 

important and should be matched correctly to the deformable curve. Hermann and Klette 

[52] presented a survey of various common 2D curvature estimators using differential 

geometry. However, these methods involve knowledge of the entire curve and were not 

explicitly based on image intensity information. All methods involved a preprocessing 

step where the longest straight line segment at each pixel that is tangent to the curve is 

mapped such that the curve is discretized into a series of straight line segments. 

  Many corner detection methods have been proposed through the use of the 

Curvature Scale Space (CSS), first described in [73] and expanded in [49, 103, 107]. 

These methods used the same basic corner detector as [57, 36, 56, 52], but also 
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determined the optimum scale that the curvature should be determined in. Depending on 

scale, the resulting curvature can change dramatically. If the goal is to highlight any sharp 

point of curvature in the image, the curvature must be determined in all scales. The CSS 

methods approached this problem by computing the curvature at the highest scale ߪ௛௜௚௛, 

thresholding the values to get possible corner candidates, and then tracking the corners to 

the lowest scale for localization. These methods suffer from the issue that the detection of 

the corner candidates is done in a single scale, ߪ௛௜௚௛, and involve the use of a global 

threshold to determine candidate corner regions. 

  Other methods, such as Zhang et al [104] and Awrangjeb et al [6], focus on 

detecting corner points, which are defined as point of extreme curvature. However, these 

methods do not provide an accurate measure of curvature for non-extreme regions of the 

image (i.e., no continuous measure of curvature is provided, only a binary measure) 

which is not useful for the purposes in this thesis. 

  The  curvature estimation method most closely aligned to the method proposed in 

this paper is that of Lindeberg [68, 67] where a multi-scale approach is used for curvature 

detection and where a continuous estimate of curvature is provided for iso-intensity 

contours in the image. This method will be outlined in detail in Chapter 3.  

1.6 Thesis Contributions 

 In this thesis, we present two methods for spatially adaptive regularization for 

general energy-minimization segmentation frameworks and present validation results on 

a variety of current segmentation techniques. We focus on methods that determine the 
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regularization in an automated manner without the need for prior information. 

Additionally, we focus on using a single regularization weight as opposed to multiple 

weights which we leave to future work (see Section 4.2). In particular, we present the 

following: 

Contribution 1 

 In Chapter 2, we present a novel method for deriving globally optimal 

regularization weights for minimum-path segmentation methods. Through extensive 

validation with synthetic, medical, and natural scene datasets, we investigated the 

correlation of the corresponding results to human perception. Our results suggested that 

global optimums do not always result in ‘correct’ segmentations as determined by 

experts. We found the segmentations from globally optimal weights to suffer from 

bimodal behaviour of the weights, poor robustness to noise, and poor reflection of 

underlying image characteristics, which resulted in large inaccuracies. This contribution 

was published in the following work: 

Rao, J., Hamarneh, G., Abugharbieh, R.: Adaptive contextual energy parameterization for 
automated image segmentation. In: ISVC. Volume 5875-I. (2009) 1089-1100. 

Contribution 2 

 To address the shortcomings of our first contribution, in Chapter 3 we proposed 

the novel concept of locally adaptive regularization weights that incorporate both 

structure and noise reliability. These contextual weights are the first to adapt 

regularization in a manner that seeks to preserve structurally important high curvature 

features in images, and to estimate the reliability of image evidence through a novel and 
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robust signal-to-noise ratio (SNR) measure. Our work is also the first to propose general 

regularization weights that can be incorporated into any energy minimization 

segmentation method with minor changes, unlike other methods that tie regularization 

weights to a specific segmentation method. In addition, rather than using curvature 

measures as internal or external energy, we use these measures to adapt the importance of 

any general internal or external energy term in the optimization process. Through 

validation using synthetic, medical, and natural scene datasets, we demonstrate how the 

contextual weights produce significantly more accurate results than the traditional 

approach of least-error spatially-fixed weight, the previously discussed approach of 

globally optimal weights, and the existing adaptive regularization weights of Erdem and 

Tari [38]. We demonstrate the generality and applicability of the contextual weights by 

incorporation into discrete and continuous segmentation frameworks. In addition, we 

show how our method can easily incorporate contextual cues proposed in other works, 

such as texture cues. This contribution was published in the following works:  

Rao, J., Hamarneh, G., Abugharbieh, R.: Adaptive contextual energy parameterization for 
automated image segmentation. In: ISVC. Volume 5875-I. (2009) 1089-1100. 

Rao, J., Abugharbieh, R., Hamarneh, G.: Adaptive Regularization for Image 
Segmentation Using Local Image Curvature Cues. Submitted to: ECCV (2010). 

  In the concluding Chapter 4, we will discuss limitations and areas of future work 

in this thesis.  
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 Chapter 2 
 

2 Globally Optimal 
Regularization Weights 

 

 

 This chapter first discusses the motivation for determining the globally optimal 

regularization weight, and then discusses the implementation of a graph search in 3D 

space with references to existing techniques. This is followed by validation on standard 

synthetic and real databases, and concludes with an analysis of the performance of the 

method and an explanation of the limitations of this method. 

2.1 General Framework 

 A theoretically appealing and intuitive approach for setting the regularization 

weight is to determine the globally optimal weight by incorporating the weight into an 

optimization process that determines the globally optimal segmentation. One such way to 

achieve this is to focus on graph-based minimum-path approaches that allow for 
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modification of the graph such that additional dimensions (to optimize along) can be 

added. In our work, we will in particular focus on a simple minimum path approach 

where we will insert our regularization weight in a convex manner. The problem of 

optimizing minimum-path approaches for the path spatial coordinates and a third variable 

has been significantly researched in the field of segmentation of tubular structures, and in 

particular, anatomical vessel segmentation. One such approach is Li and Yezzi [64] who 

optimized for the spatial path and vessel radius variable simultaneously. Additionally, 

Wink et al [100] used Djikstra’s algorithm [34] to solve for the globally optimum medial 

(centerline of the vessel) path and vessel radius. Most recently, Poon et al [81] solved for 

the optimum vessel radius in conjunction with the median path using a modified version 

of Livewire, titled LiveVessel. LiveVessel focused on modifying the local cost term for 

vessel segmentation by adding the vessel radius as variable that played a large role in 

vessel cost terms.  

 As discussed in Section 1.2, 2D minimum-path segmentation methods optimize a 

path or contour ܥ which consist of nodes ݌ with spatial coordinates (ݔ,  From each .(ݕ

node ݌, the path choices are to a neighbouring node ݔ)ݍᇱ,  ᇱ). In [81], the 3D expansionݕ

of the graph search shifts the optimization space to (ݔ, ,ݕ  by expanding the path (݈݁ܽܿݏ

choices from each node ݔ)݌, ,ݕ ,ᇱݔ)ݍ to a neighbouring node (݈݁ܽܿݏ ,ᇱݕ  ᇱ) with the݈݁ܽܿݏ

restriction that ݔ ≠ ݕ ᇱ andݔ ≠  ᇱ in order to form a contour with consecutively linkedݕ

nodes. Through this method, the globally optimum vessel radius (scale) at each node is 

guaranteed along with the globally optimum path. 
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 In our implementation, we will differ from these methods by using a convex form 

of the local cost functional. Our formulation employs energy-minimizing boundary-based 

segmentation, where the objective is to find a contour that correctly separates an object 

from background. We embed a parametric contour (ݍ)ܥ = ,(ݍ)ݔ൫ܥ  :൯(ݍ)ݕ [0,1] → Ω ⊂ℜଶ in image ܫ: Ω → ℜ. We use a single adaptive weight (ݍ)ݓ ∈ [0,1] that varies over the 

length of the contour and re-write (2) as: 

,(ݍ)ܥ൫ܧ  ൯(ݍ)ݓ  = න (ݍ)ܥ௜௡௧ܧ(ݍ)ݓ + ൫1 − ଵ ݍ൯݀(ݍ)ܥ௘௫௧൫ܧ൯(ݍ)ݓ
଴  

(30) 

where 

൯(ݍ)ܥ௘௫௧൫ܧ   = 1 − ห∇ /൯ห(ݍ)ܥ൫ܫ maxஐ ห∇ܫ൫(ݍ)ܥ൯ห  (31) 

penalizes weak boundaries and  

൯(ݍ)ܥ௜௡௧൫ܧ  = ቤ߲ݍ߲(ݍ)ܥ ቤ (32) 

penalizes longer and jagged contours. 

Our approach for determining the globally optimum regularization weight is to optimize ܧ in equation (30) for the weight (ݍ)ݓ itself in addition to optimizing the contour. In our 

discrete setting, this involves optimizing for ܥሚ(ݍ) = ൫ (ݍ)ݔ, ,(ݍ)ݕ  ൯. The external(ݍ)ݓ

energy term of equation (31) remains the same, but the internal energy term of equation 

(32) now represents the length of the contour in the 3D space (ݔ, ,ݕ  where large (ݓ
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changes in the regularization weight are penalized with a higher internal energy. We will 

explain the optimization process next. 

2.2 Optimization Process 

2.2.1 Djikstra’s Method in 3D 

  To minimize ܧ with respect to (ݍ)ܥ in (30), we model a 3D graph of dimension  ܯ × ܰ × ݊௪ where the image is of dimension ܯ × ܰ and we discretize the weight into ݊௪  levels.  Each vertex ݒ௜  represents pixel coordinates and a weight (ݔ, ,ݕ  Graph .(ݓ

edges ݁௜௝  = ,௜ݒ 〉 〈 ௝ݒ  represent vertex connectedness (e.g. 24-connectedness in 3D 

graphs). A local cost 

 ܿ௜௝   = ௜௡௧ܧ ௝ݓ  ൫ݒ௜, ௝൯ݒ + ൫1 − ௝൯ݓ ௘௫௧ܧ (௜ݒ) (33) 

is assigned to each edge ݁௜௝, where ܧ௜௡௧ ൫ݒ௜,   ௝. The contour that minimizes the total energyݒ ௜ andݒ ௝൯ is the Euclidean distances betweenݒ

௧௢௧௔௟ܧ  = ෍ ܿ௜௝௘೔ೕ∈஼  (34) 

represents the optimal solution for the segmentation. Note that the optimal path ܥሚ(ݍ) =൫ (ݍ)ݔ, ,(ݍ)ݕ ,(ݍ)ݔ൯ cannot pass through the same ൫(ݍ)ݓ  i.e. only a ,ݓ ൯ for different(ݍ)ݕ

single weight can be assigned per pixel. Our graph search abides by this simple and 

logical constraint. The optimal (ݍ)ܥ and (ݍ)ݓ that globally minimize (30) are calculated 

using dynamic programming on this (ݔ, ,ݕ  .graph (ݓ
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2.2.2 Implementation Details 

  The 3D graph search is implemented in a similar manner as the 2D graph search 

described in Section 1.2.2.1 with the additional dimension contributing to an  ܱ(ܰଶ) 

search process. The key difference is the expansion of a node’s set of neighbouring nodes 

from 8  to 8݊௪  where ݊௪  is the number of discretized weight levels. In our 

implementation, we selected ݊௪ = 11  in the range [0,1]  with the distance between 

weight levels as ݈௪ = 0.1. 

1. Initialize a list of node costs to infinity. Initialize a list of visited nodes to 

empty. Initialize a queue of nodes to empty.  

2. Set the initial node (start point) as visited, place it in the node queue, and 

assign it a cumulative cost of zero. 

3. Retrieve the node in the queue with the smallest cumulative cost and term this 

the current node. Calculate the cumulative cost to each of the current node’s 

unvisited neighbours by adding the cost of the edge ݁௜௝ from current node ݅ to 

the neighbour node ݆ to the cumulative cost of the current node ݅. If this new 

cost ܿ′௝ = ݁௜௝ + ܿ௜ is less than the previously recorded cost, i.e. ܿ′௝ < ௝ܿ, than 

the old cost is overwritten with the new cost. Each neighbour is added to the 

node queue if it is not already there. Once all neighbours of the current node 

has been visited, mark the current node as visited. 

4. Re-sort the node queue such that the node with the lowest cumulative cost is 

first out of the queue. 
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5. If the node queue is empty (all nodes has been visited), the algorithm is 

finished. Otherwise, repeat steps 3 and 4. 

The process is illustrated in the flowchart in Figure 10. 

 
Figure 10: Graph search algorithm using Djikstra’s method. 

  The minimum-path segmentation method described in Section 1.2.2.1 is an 

interactive method since it requires user-entered seedpoints around the boundary of the 

object of interest. Since our focus in this thesis is not on user interactivity, we selected 

equally spaced seedpoints around the object boundary that were automatically determined 

from the ground truth segmentation. The seedpoints consisted of the spatial coordinates 

and the regularization weight at that node. The spatial coordinates were determined from 

the ground truth contour, and the regularization weight was simply set to 0.5. For each 

pair of seedpoints, the minimum-path contour was determined from the 3D graph search. 
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We used the same seedpoint set for the globally optimum weight segmentation and for 

the least-error fixed weight segmentation for proper comparison of the results.  

2.3 Validation and Results 

 We demonstrate the performance of the globally optimum regularization weights 

on a wide range of datasets, including synthetic images, medical datasets, and natural 

images. In addition, we validate the method quantitatively using analysis of variance 

(ANOVA). All our validation is performed against ground truth segmentation determined 

either functionally (for synthetic images) or by manual segmentation by experts. 

2.3.1 Performance Criteria 

 Our measure of error for our synthetic dataset is to compare the vertical (along the 

y-axis) distance between the contour and the sinusoidal functional that is used to make 

the synthetic image (See Section 2.3.2 for details about how the synthetic dataset is 

devised), as follows: 

ாܪ  = max௤(௫,௬)|ݕ −  (35) |(ݔ)ௌܨ

where (ݔ,  is (ݔ)ௌܨ and ,(ݍ)ܥ in the contour ݍ are the spatial coordinates of each node (ݕ

the sinusoidal function representing the synthetic image.  

 Our measure of error for the medical and natural datasets was to form a closed 

segmentation mask from the contour produced by the method, and to compare this mask 

to the ground truth segmentation by computing the Dice Similarity Coefficient (DSC) 
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measure that estimates the agreement in pixel labels between two segmentations as 

follows: 

 ݀݅ܿ ஺݁,஻ = 2 ஺ܽ݁ݎܽ) ∩ ஺ܽ݁ݎܽ)(஻ܽ݁ݎܽ + (஻ܽ݁ݎܽ  
(36) 

where ܽܽ݁ݎ஺  represents the binary segmentation mask produced from method ܣ  and ܽܽ݁ݎ஻  represents the binary segmentation mask produced from method ܤ . For the 

medical and natural datasets, the ground truth segmentation was that produced by manual 

tracing. 

 We benchmarked the globally optimum weights against the conventional method 

of determining the least-error (or maximum dice similarity) spatially-fixed regularization 

weight. This is accomplished by determining: 

௙௜௫௘ௗݓ  = arg max୵∈[଴,ଵ] ݀݅ܿ ௌ݁ೢ,ௌಸ (37) 

where ܵ௪  is the segmentation produced by the weight ݓ  and ܵீ  is the ground truth 

segmentation. The weight is discretized into 11 levels with a step size of 0.1 between 

each level. 

 We determined the segmentations for 25 trials for each image. This is of 

importance for synthetic images where noise was added and thus the noise profile is 

determined randomly for each image. We thus generated 25 noise profiles for each image 

and determined the segmentation for each image. The error is determined by averaging 

the resulting 25 segmentation accuracies. To determine if the globally optimum weights 

differ significantly from the least-error fixed weight, we then performed ANOVA over 
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the set of 25 segmentation accuracies for each image and analyzed the resulting ݌-value. 

Computationally, the 3D graph search method required less than 7 minutes for a 768 × 576  image when run on a Pentium 4 (3.6GHz) machine using MATLAB code.  

2.3.2 Synthetic Data Validation 

 We first tested the method on a dataset of synthetically produced images. Through 

the synthetic images, we tested extreme cases of object boundary variability, noise 

variation, edge strength variation, and object curvature variation. We first modelled an 

object boundary as a sinusoidal function with spatially-varying frequency to simulate 

varying contour smoothness conditions. The images were produced by the functional: 

(ݐ)ௌܨ  = ܣ sin ቆݐଶ10ቇ 
(38) 

where the sinusoidal is parameterized by ݐ = ߨ 2ܥ] ଴݂, ߨ2ܥ ଵ݂] and will vary in frequency 

from ଴݂ at the start and ଵ݂ at the end of the contour. ܣ represents the amplitude (set to 2) 

and ܥ represents the frequency width (set to 10). We also added spatially-varying (non-

stationary) AWGN patterns of increasing variance. We also spatially varied the gradient 

magnitude of the object boundary across each image by applying Gaussian blurring 

kernels at different scales in different locations. We created 16 of these synthetic images 

carefully designed to cover extreme shape and appearance variations. Two synthetic 

images with the resulting segmentations are shown in Figure 11. The contour obtained 

using the globally-optimal weights method is shown in green, along with the contour 

obtained using the spatially-fixed regularization weight from (37)  shown in red.  
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(a) 

(b) 
Figure 11: Segmentation of synthetic images with decreasing noise variance and decreasing Gaussian 
blurring from left to right. (a) Low curvature case, and (b) higher curvature case. Contours 
produced by globally optimal weights (green), least-error fixed weight (red), and ground truth 
contour (black). Globally optimal weights are 0 over the whole contour, resulting in little difference 
between the contours and poor regularization to noise. 

  In addition, Table 1 presents the modified Hausdorff error measure of (35) for 

segmentations produced by both regularization weights for all images. The error values 

represent the mean ܪ௘ for 25 noise realizations for each synthetic image. The least-error 

fixed-weight method had a mean error of 12.05 ± 1.6 while the globally optimal weight 

method had a mean error of 33.06 ± 3.66. 

 

 

 

Ground truth contour
Fixed weight 0
GO contour

Ground truth contour
Fixed weight 0.1
GO contour
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Table 1: Average error over 25 noise realizations per image produced by least-error fixed weights 
and globally optimal weights for synthetic set of data. Segmentations from the globally-optimal 
weights have significantly less accuracy than segmentations from the least-error fixed weight. 

Average p-value ≪ ૙. ૙૞. 

Image # 
Mean ࡱࡴ error over 25 segmentations
Fixed weights G.O. weights 

1 13.02 17.68
2 15.04 45.24
3 8.92 17.4
4 13.8 38.6
5 6.8 7.16
6 12.96 42.2
7 14.4 42.4
8 13.28 40.92
9 11.8 35.72

10 13.04 47.68
11 14.84 40.04
12 6.64 7.92
13 10.62 27.24
14 12.74 41
15 11.92 44.2
16 13.02 33.64

 

 From Figure 11, it is clear that the globally optimal (GO) weights produce a more 

erratic segmentation when compared to the least-error fixed weight segmentation. 

Although the GO weight is accurate for the noise-free regions of the image, the regions 

with high noise have insufficient regularization. The quantitative results in Table 1 

confirm that the GO method produced significantly poorer results when compared to do 

the least-error fixed weight. We can further analyze the behaviour of the GO weight by 

plotting the weights over the contour as shown in Figure 12. 
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Figure 12: Profile of globally optimal weights along contour of Figure 11(a). Weights are either 0 or 1 

indicating bimodal behaviour. 

The weight is significantly bimodal, oscillating between 0 and 1. We will discuss the 

difficulties the globally optimum weight has with noise, and the cause of the bimodal 

weight behaviour, in Section 2.4. 

2.3.3 Medical Data Validation 

 We also tested the globally optimal weights on various medical datasets validated 

with expert ground truth segmentations. We first used a dataset of sagittal slices from MR 

scans of the brain taken for 52 subjects. The focus of these images are on the corpus 

callosum (CC) structure. Segmentation of the boundary of the CC is difficult due to the 

weak edge separating the CC from the fornix, as labelled in Figure 13(a). 
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were determined for 25 noise realizations per noise level). As with the synthetic images, 

we averaged the DS over 25 segmentations for each image in each dataset. In the low 

noise cases, the globally optimum weight and the spatially-fixed weight produce accurate 

segmentations. However, as the level of noise increases, the segmentation accuracy 

degrades due excessive or inadequate regularization by both methods. 

(a) (b) (c) 
Figure 15: Dice similarity coefficient (DSC) of segmentations from globally-optimal weights (GO) 
and least-error fixed weights for segmentation of white matter in coronal BrainWeb slices using the 
(a) T1 modality, (2) T2 modality, and (3) PD modality. As the level of noise in the slices increases, the 
globally optimal weights perform poorer that the least-error fixed weights due to low regularization 
(from noise mistaken as high external energy). DSC values are averaged from segmentations of 25 
noise realizations per noise level. 

Our findings indicated poor performance by the globally optimal weights. Further 

qualitative and quantitative performance evaluation of the GO weights, in comparison 

with the data-driven weights (discussed in Chapter 3), are provided in Section 3.8. 

2.3.4 Natural Scene Data Validation 

 We also tested the globally optimal weights on images of natural scenes from the 

following datasets: the McGill Calibrated Colour Image Database [75], the PASCAL 

object recognition database [40], and through the ImageNet database [32, 33] and 

validated through manual segmentations. 
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(a) 

 
(b) 

Figure 17: Segmentation of flower image from McGill database. (a) Original image, and (b) contours 
produced by globally optimal weights (cyan) and least-error fixed weights (red). Inadequate 
regularization by both methods results in oversegmentation and leakage into the background.  

  Figure 18 presents the quantitative results from images taken from the McGill, 

PASCAL, and ImageNet databases. As with the previous examples, the DSC represents 

the average over 25 segmentations for each image where each segmentation is produced 

from different seed placements (all equally spaced over the object boundary). Additional 

qualitative and quantitative results produced by the globally-optimal weights are 

presented in Section 3.8 and compared to the data-driven weights proposed in the next 

chapter. 
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(a) (b) (c) 
Figure 18: DSC of segmentations from least-error fixed weights (F) and globally-optimal weights 
(GO) on (a) 8 images from ImageNet database, (b) 11 images from PASCAL database, and (c) 24 
images from McGill database. Average error over dataset (and over 25 segmentations for each 
image) was F = 0.9188, GO = 0.8629 for (a), F = 0.9241, GO =0.8782 for (b), and F = 0.9402, GO = 
0.9024 for (c). All p-values ≪ ૙. ૙૞. Globally optimal weights produce segmentations significantly less 
accurate than the least-error fixed weight method. 

2.4 Deficiencies in Globally Optimum Weight Model 

 From the performance of the globally optimum method on the wide variety of 

datasets, we can conclude that the globally optimum weight segmentation produces 

poorer results than the spatially-fixed weight segmentation.  

 The results highlight the three main drawbacks to this globally optimum (in (ݔ, ,ݕ  method: (i) it encourages a bimodal behavior of the regularization weight; (ii) it ((ݓ

does not explicitly encode image characteristics; and (iii) it combines the weight and 

segmentation optimization into one process, thus reducing the generality of the method. 

 The first drawback, that the weights are bimodal, means that the weights either 

take on the extreme values of ீݓை = 0  or ீݓை = 1  but no value in between. This 

bimodal behavior stems from optimizing (30) when ܧ௜௡௧(ݍ) >  and vise versa. In (ݍ)௘௫௧ܧ

particular, we observe that the following occurs: 
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(ݍ)ݓ  = ൜0 (ݍ)௜௡௧ܧ > 1(ݍ)௘௫௧ܧ (ݍ)௜௡௧ܧ <  (39) (ݍ)௘௫௧ܧ

A simple proof of the bimodal behavior of the optimal weight is as follows: If the total 

energy is represented as in (30) with the adaptive weight (ݍ)ݓ ∈ [0,1], we can rewrite 

the total energy as 

ܧ  = ଵܧݓ + (1 − ଶܧ(ݓ = ଵܧ)ݓ − (ଶܧ + 1 (40) 

where we assume energies ܧଵ ∈ [0,1]and ܧଶ ∈ [0,1]. Determining the optimum energy 

by gradient descent/ascent is done by first determining the rate of change of (40) with 

respect to the adaptive weight, and determining maximum/minimum regions of zero rate 

of change as follows: 

ݓ݀ܧ݀  = ଵܧ − ଶܧ = 0 
(41) 

If ܧଵ > ݓ ଶ, the slope is positive and the minimum will occur whenܧ = 0. Alternately, if ܧଵ < ݓ ଶ, the slope is negative and the minimum will occur whenܧ = 1. Thus, regardless 

of the difference between ܧଵ and ܧଶ, the optimal weight will always be bimodal, either 0 

or 1.  Although large changes in the weight are penalized with a higher internal energy, 

the resulting behavior is still predominately bimodal since the weight shifts from 0 to 1 in 

a few steps rather than in a single step (i.e., from 0 to 0.5 to 1) which results in a lower 

internal energy per step. 

  Bimodal weights cannot address the levels of regularization required in images. 

From the results in Section 2.3, the least-error spatially fixed weight was always a value 

between, but not including, 0 and 1. Extreme values of regularization weights mean that 
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the resulting segmentation will either have the full level of regularization, which is a 

straight line in the case of minimum-path boundary based methods, or have no 

regularization, which means that the optimal contour will contain any edge evidence in 

the vicinity of the seedpoints. This lack of regularization results in extremely poor results 

for images containing regions of high external energy that do not correspond to the object 

boundary; in particular, for noisy images and for images containing occlusions and weak 

object edges. 

  The bimodality of the weights leads to the second drawback of this method: the 

weights have no relationship to the underlying image characteristics. Even though 

regularization is essential in regions of high image deterioration, the globally optimal 

weights method has no way of differentiating between non-noisy, or ‘reliable’/trusted, 

external energy, and unreliably external energy. The result is that high noise is confused 

as strong edge evidence through the external energy measure, resulting in ܧ௘௫௧ <  ,௜௡௧ܧ

which forces the globally optimal weight to 0. Essentially, the globally optimal weight is 

not necessary the ‘correct’ weight as determined by the user and as determined by the 

ground truth segmentation. In addition, the globally optimal weight does not encode 

structural information about the object of interest and does not adapt the regularization 

weight in accordance to regions of higher curvature or texture. This problem is likely due 

to deficiencies in the optimization function where the energy functional does not 

accurately represent the problem to be solved. The inclusion of additional energy terms 

specifically designed for each image segmentation problem could provide globally 

optimal weights that reflect correct segmentations. However, this reduces the generality 

of the segmentation method, and may require energy functionals with multiple 
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regularization weights, which is outside the scope of this thesis and is left to future work, 

as discussed in Section 4.2. 

  The final drawback of the globally optimal weight is that the minimum-path 3D 

graph search process used to determine the weight is intrinsically combined with the 

segmentation process. This combination of the weight and segmentation optimization into 

one process reduces the generality of the method since finding the globally optimal 

weights for other segmentation frameworks would require significant changes to the 

energy minimization process.  

 In conclusion, even though optimal with respect to ܧ in  (30), the solution proposed in 

this chapter is incorrect and, as we later demonstrate, inferior to the spatially adaptive 

balancing of energy cost terms based on deriving a relationship between the weights and 

image characteristics, as discussed next in Chapter 3. 
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 Chapter 3 
 
3 Data-driven 

Regularization Weights 
 

 

 In this chapter, we discuss our approach for spatially adapting the regularization 

weights based on underlying image characteristics that are measured through a series of 

contextual cues, which we term ‘data-driven’ regularization. We will first discuss the 

general framework of the method and how each of the data cues are determined. We will 

then analyze the limits and performance of each data cue before presenting the validation 

results on a wide variety of synthetic, natural, and medical datasets. We will demonstrate 

the generality of the method by incorporating the weights into four popular segmentation 

methods. 
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3.1 Overview of method 

 Our results from Chapter 2 motivated us to devise a relationship between the 

regularization weights and the underlying image characteristics. We found that the 

regularization weights need to vary in a manner that respects trusted edge and structurally 

important regions but disregards regions of high image deterioration. In particular, we 

will focus on three such measures: estimating the level of noise in the image, the level of 

trusted edge evidence, and the level of trusted curvature. We will incorporate concepts 

from cue gating, and we will later present results from incorporating existing data cues to 

show how our method is able to fit into existing techniques. 

 We first discuss how regularization should behave under different image 

characteristic conditions. For noise conditions, regularization should be increased to 

prevent erratic segmentation behaviour. However, regions of high curvature that 

correspond to object boundaries should have low regularization to allow the segmentation 

to capture important structural details. In addition, regions with low edge strength that 

belong to the object boundary should have high regularization again. Boundary regions 

with high texture should have high regularization to prevent these texture edges from 

being included as the contour itself. In each case, we must make sure that the edge, 

curvature, and texture measure that we devise is a ‘trusted’ measure; i.e. these measures 

should be noise-free, which we can accomplish by using the noise measure to gate these 

measures.  
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3.2 Noise Evidence Cue 

 In audio signal processing and compression applications, spectral flatness (SF) is 

a well known Fourier domain measure used to estimate noise [54, 93]. SF exploits the 

property that white noise exhibits similar power levels in all spectral bands and thus 

results in a flat power spectrum, whereas uncorrupted signals have power concentrated in 

certain spectral bands and thus result in a more impulse-like power spectrum [46].  This 

is shown in Figure 19 for two 1D signals, one clean (Figure 19(a)) and one noisy (Figure 

19(c)). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 19: Spectral behavior of 1D signals. (a) Clean signal in spatial domain and (b) corresponding 
impulse-like behavior in spectral domain. (c) Noisy signal in spatial domain and (d) corresponding 
flatness in spectral domain. Noisy signals can be identified by examining flatness in the spectral 
domain. 
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The original SF measure in audio processing is as follows: 

 ଵܰ஽(ݔ)  = exp ቀ ߨ12 ׬ ln ଵܵ஽(߱)݀߱గିగ ቁ12ߨ ׬ ଵܵ஽(߱)݀߱గିగ
(42) 

where ଵܵ஽(߱) =  ଵ஽(߱) are theܨ ଵ஽(߱)|ଶ is the power spectrum of the signal (whereܨ|

Fourier coordinates of the signal), and ߱ is the frequency. The measure ଵܰ஽ essentially 

compares the ratio between the geometric mean (numerator of (42)) and the arithmetic 

mean (denominator of (42)), and is a general measure of flatness. If the Fourier spectrum 

contains an impulse, meaning that the spatial-domain signal is clean, the arithmetic mean 

will be much larger than the geometric mean, and  ଵܰ஽ → 0 . If the original signal is 

noisy, the Fourier spectrum will be flat, and the arithmetic mean will be very similar to 

the geometric mean, resulting in ଵܰ஽ → 1. 

 Assuming additive white noise, uncorrelated between pixels, we extend the SF 

measure to 2D and estimate the spatially-varying noise levels ܰ(ݔ,  as (ݕ

,ݔ)ܰ  (ݕ  = exp ቀ ଶߨ14 ׬ ׬ ln ܵௐ൫߱௫, ߱௬൯݀߱௫݀߱௬గିగగିగ ቁ14ߨଶ ׬ ׬ ܵௐ൫߱௫, ߱௬൯݀߱௫݀߱௬గିగగିగ   (43) 

where ܵௐ൫߱௫, ߱௬൯  =  หܨ൫߱௫, ߱௬൯หଶ
 is the 2D power spectrum of a local window in the 

image, ܨௐ൫߱௫, ߱௬൯ is the Fourier spectrum of the image window and ൫߱௫, ߱௬൯ are  the 

two spatial radian frequencies. As with the 1D SF measure, ܰ(ݔ, (ݕ ∈ [0,1]  where ܰ(ݔ, (ݕ = 0 corresponds to low noise regions and ܰ(ݔ, (ݕ = 1 corresponds to high noise 

regions. This noise measure responds best to white noise-like patterns (i.e. occupying a 
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very wide and flat spectrum) which are typically the most difficult type of noise. 

However we note that this method cannot address speckle noise (multiplicative Gaussian 

noise). We estimate the local noise level by determining ܰ(ݔ,  using local windows (ݕ

around each pixel and using those windows to calculate the Fourier spectrum. Figure 

20(a) shows a synthetic image with added AWGN with increasing variance from right to 

left, and Figure 20(b) shows the resulting measure ܰ(ݔ, (ݕ . As the noise variance 

decreases, the noise measure decreases in accordance. In addition, the noise measure is 

lower for the region representing the object edge.  

 
(a) 

 
(b) 

Figure 20: (a) Synthetic image with AWGN increasing in variance from left to right, and (b) resulting 
noise measure ࢞)ࡺ,  where black intensities correspond to a measure of 0 and white intensities to a (࢟
measure of 1. The noise measure is high for the high noise regions of the image without mistaking 
edges as noise. 

 One of the benefits of the SF measure is its consistency and robustness to changes 

in the image edge strength. To demonstrate this, we use the simple synthetic image of 

Figure 21(a) and determine the mean local spectral flatness over the image versus 

increasing variances of added noise (Figure 21(b)). We compare the profile of SF versus 

noise variance for the image of Figure 21(a) with different levels of Gaussian smoothing. 

As we decrease the edge strength in the image, the profile of the mean estimated noise 

level over the noise variance remains the same. This allows the estimation of the noise to 

remain decoupled from the estimation of edge strength. 
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(a) (b) 

Figure 21: (a) Original synthetic image. (b) Average local spectral flatness versus variance of added 
AWGN for image in (a) with various levels of Gaussian blurring. As the edge strength weakens, the 
spectral flatness remains approximately constant, demonstrating how the noise detection is not 
affected by the edge strength. 

 The Fourier spectrum for each window region is determined through the fast 

Fourier transform (FFT). The size of the window for estimating the local spectral flatness 

plays a role in the quality of the resulting noise estimate. When using a smaller sized 

window, some correlation may exist between noise pixels, resulting in lowered flatness in 

the spectral domain and a resulting inaccurate lower noise estimate. Alternately, using a 

larger window size reduces the local nature of the measure. This dilemma is due to the 

dependence of noise on the scale of the image. As a tradeoff, we selected a window size 

of 15 × 15. In addition, we note that we have targeted AWGN in our measure as it 

represents one of the more difficult noise types to filter for in pre-processing steps and 

thus must be considered in images used for segmentation. Additional noise models will 

be considered in the future, as discussed in Section 4.2. 
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3.3 Edge Evidence Cue 

 We estimate the edge evidence in the image by using the measure: 

,ݔ)ܩ  (ݕ = max൫|∇ܫ௫(ݔ, ,|(ݕ ห∇ܫ௬(ݔ, ห൯(ݕ (44) 

where ∇ܫ௫(ݔ, ,ݔ)௬ܫ∇ and (ݕ  .represent the x and y components of the image gradient (ݕ

We chose this measure rather than the standard gradient magnitude for its rotational 

invariance in the discrete domain. With the typical gradient magnitude measure  |∇ܫ| = ඥ∇ܫ௫ଶ + ௫ܫ∇ ௬ଶ, the result ifܫ∇ = 1 and ∇ܫ௬ = 1 is |∇ܫ| = √2 instead of |∇ܫ| = 1. 

3.4 Reliability Measure Formulation 

 The edge evidence cue of (44) can be highly unreliable if the image is deteriorated 

by noise. Therefore, we use the noise measure ܰ(ݔ,  of Section 3.2 to ‘gate’ the cue (ݕ

such that gradient information is suppressed in high noise regions. This concept of cue 

gating was first proposed in Malik et al [69] for the purposes of suppressing gradient 

information in high texture regions (described in further detail in Section 1.5.1). With this 

noise-gating, our edge evidence cue is as follows, 

,ݔ)ீܧ  (ݕ = ൫1 − ,ݔ)ܰ ,ݔ)ܩ൯(ݕ (ݕ (45) 

where ݔ)ீܧ, (ݕ ∈ [0,1] . We term this noise-gated edge evidence cue as the image 

reliability as it represents how reliable an edge is. 
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3.5 Curvature Cue 

 We will next discuss how we estimate the level of curvature of the object 

boundary through a measure termed the curvature cue. 

3.5.1 Curvature Formulation 

We determine the curvature by a method similar to that of Section 1.5.2 [57, 36]. Let ݔ)ܫ, ;ݕ  be a smoothened image such that (ߪ

,ݔ)ܫ  ;ݕ (ߪ = ,ݔ)ఙܩ (ݕ ∗ ,ݔ)௦ܫ (ݕ (46) 

where ܫ௦(ݔ, (ݕ  is the original image and ߪ  is the Gaussian scale parameter. The unit 

vector tangent to the isointensity contour, ܥூ(ݔ, ;ݕ ,ݔ) passing through a point (ߪ  is (ݕ

given as:  

,ݔ)ܜ  ;ݕ (ߪ = 1ඥܫ௫,ఙଶ ,ݔ) (ݕ + ௬,ఙଶܫ ,ݔ) (ݕ ቈ ,ݔ)௬,ఙܫ ,ݔ)௫,ఙܫ−(ݕ ቉(ݕ (47) 

where ܫ௫,ఙ and ܫ௬,ఙ are the image derivatives along ݔ and ݕ, respectively, at scale ߪ.  

Denoting the Hessian matrix of ݔ)ܫ, ;ݕ ,ݔ)ఙܪ by (ߪ  as follows(ݕ

,ݔ)ఙܪ  (ݕ = ቈܫ௫௫,ఙ(ݔ, (ݕ ,ݔ)௫௬,ఙܫ ,ݔ)௫௬,ఙܫ(ݕ (ݕ ,ݔ)௬௬,ఙܫ ቉(ݕ (48) 

the local image curvature ݔ)ܭ, ;ݕ  :can be calculated as (ߪ
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,ݔ)ܭ  ;ݕ (ߪ = ௫,ఙଶܫඥ|ܜఙܪ்ܜ| ,ݔ) (ݕ + ௬,ఙଶܫ ,ݔ) (ݕ . (49) 

Note that the absolute value of ݔ)ܭ, ;ݕ (ߪ  is used since we are not concerned with 

differentiating between convex and concave curvature. (49) expands to 

,ݔ)ܭ  ;ݕ (ߪ = อܫ௬,ఙଶ ௫௫,ఙܫ − ௫௬,ఙܫ௬,ఙܫ௫,ఙܫ2 + ௫,ఙଶܫ ௫,ఙଶܫ௬௬,ఙ൫ܫ + ௬,ఙଶܫ ൯ଷ/ଶ อ . (50) 

We follow the method in [67] where ݔ)ܭ, ;ݕ  is enhanced to have a stronger response (ߪ

near edges by multiplication with the gradient magnitude raised to some power, which we 

chose as 2. The edge enhanced curvature is then 

,ݔ)෩ܭ  ;ݕ (ߪ = ቤܫ௬,ఙଶ ௫௫,ఙܫ − ௫௬,ఙܫ௬,ఙܫ௫,ఙܫ2 + ௫,ఙଶܫ ௫,ఙଶܫ௬௬,ఙඥܫ + ௬,ఙଶܫ ቤ . (51) 

3.5.2 Normalized Rescaled Curvature 

 The selection of the Gaussian kernel size ߪ, also referred to as the scale of the 

image, when smoothening the image in (46) plays a role in determining what sized 

structures in the image we will obtain meaningful curvature values for. Generally, larger 

structures will have meaningful curvature values when the original image is smoothened 

by a larger Gaussian kernel, and vice versa for smaller structures. However, curvature 

values cannot be compared across scales since the amplitude of the image spatial 

derivatives decreases with increasing scale. Thus, to compare curvature values across 

different scales, the curvature must be scale normalized, which is accomplished through 

the normalized scale coordinates of [67]. Once the normalized rescaled curvature, ܭ෩௡௢௥௠, 
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is determined, Lindeberg approaches automated scale space selection by selecting scales 

at which the normalized rescaled curvature assumes maximum values.  

 where ,ߦ ,෩௡௢௥௠ is determined through scale-normalized coordinatesܭ

ߦ  = ߪݔ (52) 

and where the normalized derivative operators for these coordinates are 

 ߲క =  ,௫߲ߪ
߲కଶ =  .ଶ߲௫ߪ

(53) 

We substitute the scale normalized coordinates into (51) as follows: 

,ݔ)෩௡௢௥௠ܭ  ;ݕ (ߪ
= ተተ൫ܫߪ௬,ఙ൯ଶ൫ߪଶܫ௫௫,ఙ൯ − 2൫ܫߪ௫,ఙ൯൫ܫߪ௬,ఙ൯൫ߪଶܫ௫௬,ఙ൯ + ൫ܫߪ௫,ఙ൯ଶ൫ߪଶܫ௬௬,ఙ൯ට൫ܫߪ௫,ఙ൯ଶ + ൫ܫߪ௬,ఙ൯ଶ ተተ
= ቤߪସ൫ܫ௬,ఙଶ ௫௫,ఙܫ − ௫௬,ఙܫ௬,ఙܫ௫,ఙܫ2 + ௫,ఙଶܫ ௫,ఙଶܫඥߪ௬௬,ఙ൯ܫ + ௬,ఙଶܫ ቤ 

(54) 

which can be simplified as: 

,ݔ)෩௡௢௥௠ܭ  ;ݕ (ߪ = ଷߪ ,ݔ)෩ܭ ;ݕ .(ߪ (55) 

After the curvature values at each scale have been normalized, the final curvature cue at 

every pixel is determined by selecting the scale at which  ܭ෩௡௢௥௠ assumes a maximum 

value as follows: 
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,ݔ)௡ܭ  (ݕ = max஢ ,ݔ)෩௡௢௥௠ܭ ;ݕ (ߪ . (56) 

3.5.3 Noise-Gated Curvature 

 Although robust to signal variations, the curvature measure ܭ௡(ݔ,  is sensitive (ݕ

to noise and might inaccurately give rise to a strong response at non-structure, high-noise 

regions of the image. Following the concept of cue gating, as we have previously used to 

gate the edge evidence cue in Section 3.4, we define a noise-gated curvature cue, ݔ)ீܭ,  :that suppresses our curvature cue in high noise regions as follows ,(ݕ

,ݔ)ீܭ  (ݕ = ൫1 − ,ݔ)ܰ ൯(ݕ ,ݔ)௡ܭ .(ݕ (57) 

We demonstrate the curvature cue on a series of synthetic images shown in Figure 22. 

Figure 22(a) to (c) are synthetic images of objects with high curvature shapes, and Figure 

22(d) to (f) are the resultant ݔ)ீܭ,  measures. The spiral image of Figure 22(b) results (ݕ

in increased detected curvature towards the center region (Figure 22(e)), and the noisy 

regions of Figure 22(c) do not disrupt the curvature measure (Figure 22(f)). 
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(a) (b) (c) 

(d) (e) (f) 
Figure 22: (a), (b), (c) Synthetic images and (d), (e), (f) resulting gated curvature measure ࢞)ࡳࡷ,  (࢟
where black regions correspond to a measure output of 0 and white regions to 1. In the spiral of (b), 
the curvature measure increases towards the center. In the noisy image of (c), the resulting gated-
curvature is high for the extremities of the shape only. 

In addition, we demonstrate the need for noise gating on the synthetic image of Figure 

23(a) which has added AWGN of variance 0.4. Figure 23(b) shows the non-gated 

curvature cue which poorly reflects the actual object curvature and is falsely high for 

noise regions. The noise-gated curvature in Figure 23(c) removes the false positives and 

enforces higher regularization for the non-edge regions. 
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(a) (b) (c) 
Figure 23: (a) Original synthetic image with AWGN of variance 0.4. (b) Curvature cue ࢞)࢔ࡷ,  (࢟
(without noise gating) where intensities of 1 correspond to high curvature and intensities of 0 
correspond to low curvature. High noise regions are incorrectly detected as high curvature levels. (c) 
Noise-gated curvature cue ࢞)ࡳࡷ,  where the sharp corners of the triangle are assigned the highest (࢟
curvature and noisy regions are disregarded. 

3.6 Data-Driven Regularization Weight Formulation 

 We next discuss how the data cues are combined and mapped to the regularization 

weight such that the weight behaves as discussed in Section 3.1. 

3.6.1 Cue Combination and Mapping to Weight 

  To combine our noise-gated local image cues in a meaningful way, we define a 

mapping of those cues into our single adaptive weight, ݔ)ݓ, (ݕ , that satisfies the 

following requirements: (1) In high trusted (noise-gated) edge evidence, little 

regularization is needed, regardless of the curvature strength. (2) In regions with low edge 

evidence, we set the regularization to be inversely proportional to the trusted (noise-

gated) curvature such that high curvature regions are not overly regularized. Note that 

`high' curvature or edge evidence means a value close to 1 as all our cues are normalized. 

Thus we form the adaptive weight as follows: 
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,ݔ)ݓ  (ݕ  = 1 − ,ݔ)ீܧ ఊ೐ቀଵ(ݕ ି ௄ಸಋౙ(௫,௬)ቁ. (58) 

If ݔ)ீܧ,  is large (approaching maximum value of 1), the exponent has little effect on (ݕ

the resulting weight, and requirements (1) is satisfied. If ݔ)ீܧ, ,ݔ)ீܭ is low and (ݕ  is (ݕ

non-zero, the noise-gated edge evidence will be raised to a power ൫1 − ݔ)ீܭ, ൯(ݕ ≈  0, 

resulting in a lower ݔ)ݓ,  satisfying requirement (2). Note that the detrimental effects ,(ݕ

from noise are handled by this model through the noise-gating of the cues. We refer to 

,ݔ)ீܧ  ఊ೐ቀଵ ି ௄ಸಋౙ(௫,௬)ቁ as the curvature-modulated image reliability measure. We include(ݕ

the parameters ߛ௘ and ߛ௖ to allow minor adjustments of how strongly the edge evidence 

and curvature term should affect the regularization weight. We stress that these 

parameters are to allow for user tweaking and are set to a constant value over the image 

(i.e., the weights still vary spatially in an automated manner). 

 Figure 24(a) shows a surface plot of the regularization weight ீܧ)ݓ, (ீܭ  as ݔ)ீܧ, ,ݔ)ீܭ and (ݕ ௘ߛ vary from 0 to1, and where the parameters (ݕ = 1 and ߛ௖ = 1. As 

both of the cues increase, the regularization weight decreases since the local region of the 

image is considered more ‘reliable’ and regularization is not needed. However, as the 

cues decrease, the regularization weight increases since the edge evidence is no longer 

present or is not trusted (i.e. high noise is present). In addition, Figure 24(b) to (d) shows ீܧ)ݓ, (ீܭ  for parameters settings of (ߛ௘, (௖ߛ = (0.8,0.4) ,௘ߛ) , (௖ߛ = (1,0.2) , and (ߛ௘, (௖ߛ = (0.2,1), respectively. The parameters change the level of concavity of the 

function, and the maximum weight produced. 
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(a) (b) 

(c) (d) 
Figure 24: Surface plot of ࡳࡱ)࢝,  and gated curvature cue (ࡳࡱ) based on the gated edge evidence  (ࡳࡷ
ࢋࢽ (a) .ࢉࢽ and ࢋࢽ and on different selections of the parameters ,(ࡳࡷ) = ૚, ࢉࢽ = ૚. (b) Default setting ࢋࢽ = ૙. ૡ, ࢉࢽ = ૙. ૝ . (c) ࢋࢽ = ૚, ࢉࢽ = ૙. ૛ , (d) ࢋࢽ = ૙. ૛, ࢉࢽ = ૚. The parameters change the level of 
concavity of the function and the maximum weight produced 

 We demonstrate the cues and resulting weight measure for two synthetic images 

with a sinusoidal varying boundary (produced by (38) in Section 2.3.2), spatially varying 

AWGN and Gaussian smoothening with spatially varying kernel sizes, as shown in 

Figure 25(a) and (b). The resulting measures (Figure 25(c) to (j)) demonstrate robustness 

to noise and a final weighting that regularizes high noise regions but lower regularization 

in high curvature and strong trusted edge regions. 
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regularization occurs in textured regions. We employ a texture measure from Erdem and 

Tari [38] that estimates the probability of a pixel being near a texture edge, discussed in 

Section 1.5.1 and shown again here for clarity: 

,ݔ)ܶ  (ݕ  = 1 − exp ቀ – ௧ߛ ൫min൫ߩଵ ,ݔ) ,(ݕ ,ݔ)ଶߩ ൯൯ቁ(ݕ  (59) 

We incorporate the texture cue into our framework by modifying ீܧ in (45) to form the 

texture-gated and noise-gated edge evidence term as follows: 

,ݔ)்,ீܧ  (ݕ  = ,ݔ)ܶ ൫(ݕ 1 − ,ݔ)ܰ ൯(ݕ |∇ ,ݔ)ܫ .|(ݕ (60) 

Incorporating ீܧ,்  with our spatially adaptive weight produces the texture-dependent 

regularization weight, ݓ௧(ݔ,  :as follows ,(ݕ

,ݔ)௧ݓ  (ݕ  = 1 − ఊ೐்,ீܧ ,ݔ) ቀଵ(ݕ ି ௄ಸം೎(௫,௬)ቁ. (61) 

In addition to texture, any other data cue can be combined into our regularization 

framework through multiplication into the gated edge evidence term of (60). 

3.7 Incorporation of Regularization Weights into Segmentation 

Frameworks 

 The regularization weight mapping of (58) produces a 2D map of weights over the 

image. This weight map can be input into any energy minimization segmentation 

framework with only minor modifications to allow for convex adaptive weighting. To 

demonstrate this, we will now incorporate the data-driven regularization weight of (58) 

into four existing segmentation frameworks with minor changes to the energy functional. 
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3.7.1 Minimum-path Frameworks 

 We incorporate the data-driven regularization weight into a basic minimum-path 

framework that was described in Section 2.1 and repeated here as: 

,(ݍ)ܥ൫ܧ  ൯(ݍ)ݓ  = න (ݍ)ܥ௜௡௧ܧ(ݍ)ݓ + ൫1 − ଵ ݍ൯݀(ݍ)ܥ௘௫௧൫ܧ൯(ݍ)ݓ
଴  (62) 

The external energy is the same as in Section 2.1, however the internal energy now 

reflects the length of the contour in the 2D space (ݔ,  The optimization process is .(ݕ

through a 2D graph search using Djikstra’s method as described in Section 1.2.2.1. By 

using this framework, we are able to first test the data-driven weight against the globally 

optimal weight for validation. 

3.7.2 Graph Cuts 

  We incorporated our adaptive weights, (݌)ݓ , into a graph cuts (GC) based 

segmentation process [7, 17]. The segmentation energy in this case becomes: 

(݂)ܧ  = ෍ ௜௡௧൫ܧ(݌)ݓ ௣݂, ௤݂൯௣,௤∈୒ + ෍൫1 − ௘௫௧൫ܧ൯(݌)ݓ ௣݂൯௣∈ ௉  (63) 

where ݂ ∈  L is the labelling for all pixels ݌ ∈  ܲ, where L is the space of all possible 

labellings, and ܲ is the set of pixels in image ܧ .ܫ௜௡௧ is the interaction penalty between 

pixel pairs (i.e. the penalty of assigning labels ௣݂   and ௤݂  to pixels ݌  and ݍ  ௘௫௧ܧ ,(

measures how well label ௣݂   fits pixel ݌ given the observed data, and N is the set of 

interacting pairs of pixels. Refer to Section 1.3 for more details about ܧ௜௡௧ and ܧ௘௫௧. 
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3.7.3 Active Contours without Edges 

 We next present the ACWE segmentation framework with spatially adaptive 

regularization. Although we have used a convex weighting scheme in the discrete 

segmentation frameworks, we will only weight the regularization term itself for the 

continuous frameworks. This follows the formulation used by the majority of existing 

spatially adaptive regularization methods for continuous frameworks [38, 80, 35, 69]. We 

found through testing that a convex weighting results in impedance of curve evolution 

when the external terms are weighted to zero. However we will leave the analysis of 

curve evolution and curve stalling in level sets to future work (Section 4.2). We modified 

(14) in Section 1.2.3.3 to incorporate spatially adaptive regularization by replacing ߤ with 

an adaptive weight, as follows: 

,ݔ)߶൫ܧ  ൯(ݕ  = න ,ݔ)ݓ ,ݔ)߶൫ ߜ(ݕ ൯(ݕ ,ݔ)߶∇| ݔ݀|(ݕ ஐݕ݀  

+  න ,ݔ)ܫ| ,ݔ)߶൫ܪ ଵ|ଶܿ – (ݕ ൯ஐ(ݕ + ,ݔ)ܫ| (ݕ  − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ ൯ቁ(ݕ  ݕ݀ݔ݀

(64) 

where the segmentation is represented here via a Lipschitz function, ߶(ݔ, :(ݕ Ω → ℜ, 

where pixels ݌ interior to the zero-level set of ߶(ݔ,  are labelled as objects and exterior (ݕ

pixels as background. Also note that we use the notation 

,ݔ)߶∇|  |(ݕ = ඨ൬߲߶߲ݔ൰ଶ + ൬߲߶߲ݕ൰ଶ . (65) 
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We determine ߶(ݔ,  that minimizes (64) by using the Euler-Lagrange equation to solve (ݕ

the gradient descent PDE: 

ݐ߲߶߲  = − ߶߲ܧ߲ = − ቈ߲߲ܮ߶ − ݔ݀݀ ௫߶߲ܮ߲ − ݕ݀݀ ௬቉߶߲ܮ߲ = 0 (66) 

where 

= ܮ  ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
,ݔ)ܫ| + (ݕ − ܿଵ|ଶܪ൫߶(ݔ, ൯(ݕ ,ݔ)ܫ| + (ݕ − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ  ൯ቁ(ݕ

(67) 

and where we use the notation ߶௫ = డథడ௫ .  We first determine the partial derivative డ௅డథ  as 

follows: 

߶߲ܮ߲   =  ߲߲߶ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
+ ߲߲߶ ቂ|ݔ)ܫ, (ݕ − ܿଵ|ଶܪ൫߶(ݔ, ൯(ݕ + ,ݔ)ܫ| (ݕ − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ  ൯ቁቃ(ݕ

(68) 

which in expanded form is: 
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߶߲ܮ߲   =  ߲߲߶ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
+ ߲߲߶ ,ݔ)ܫ| (ݕ − ܿଵ|ଶܪ൫߶(ݔ, ൯(ݕ +  ߲߲߶ ,ݔ)ܫ| (ݕ − ܿଶ|ଶ 

− ߲߲߶ ,ݔ)ܫ| (ݕ − ܿଶ|ଶܪ൫߶(ݔ,  .൯(ݕ

(69) 

We use the property 

 ߲߲߶ ,ݔ)߶൫ܪ ൯(ݕ = ,ݔ)߶൫ߜ ൯(ݕ (70) 

and the fact that 

 ߲߲߶ ,ݔ)ܫ| (ݕ − ܿଶ|ଶ = 0 (71) 

to simplify (69) as follows: 

߶߲ܮ߲   = ,ݔ)ݓ  ,ݔ)߶థ൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
,ݔ)߶൫ߜ + ,ݔ)ܫ|]൯(ݕ (ݕ − ܿଵ|ଶ − ,ݔ)ܫ| (ݕ − ܿଶ|ଶ] 

(72) 

where we use the notation  డడథ ,ݔ)߶൫ߜ ൯(ݕ = ,ݔ)߶థ൫ߜ   .൯(ݕ

We then determine డ௅డథೣ from (67) as follows: 
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௫߶߲ܮ߲   =  ߲߲߶௫ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
+ ߲߲߶௫ ቂ|ݔ)ܫ, (ݕ − ܿଵ|ଶܪ൫߶(ݔ, ൯(ݕ

,ݔ)ܫ| + (ݕ − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ ൯ቁቃ(ݕ . 

(73) 

We note that 

 ߲߲߶௫ ቂ|ݔ)ܫ, (ݕ − ܿଵ|ଶܪ൫߶(ݔ, ൯(ݕ + ,ݔ)ܫ| (ݕ − ܿଶ|ଶ ቀ1 − ,ݔ)߶൫ܪ ൯ቁቃ(ݕ = 0. (74) 

and that 

 ߲߲߶௫ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ |(ݕ = ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߲߲߶௫ ,ݔ)߶∇| |(ݕ
= ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ 2߶௫2ඨ൬߲߶߲ݔ൰ଶ +  ൬߲߶߲ݕ൰ଶ

= ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௫|∇߶(ݔ,  |(ݕ

(75) 

Thus we can simplify (73) as follows: 

௫߶߲ܮ߲  = ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௫|∇߶(ݔ, |(ݕ . (76) 

Similarly we obtain the following for డ௅డథ೤: 
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௬߶߲ܮ߲  = ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௬|∇߶(ݔ, |(ݕ . (77) 

We then take the derivative of (76) with respect to ݔ as follows: 

ݔ݀݀  ൬ ௫൰߶߲ܮ߲ = ݔ݀݀  ൬ݔ)ݓ, ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௫|∇߶(ݔ, ൰|(ݕ . (78) 

Using the product rule 

ݔ݀(ܤܣ)݀  = ܣ ݔ݀ܤ݀ + ܤ ݔ݀ܣ݀ , (79) 

and noting that due to the chain rule, we can make the expansion 

ݔ݀݀  ,ݔ)߶൫ߜ ൯(ݕ = ,ݔ)߶థ൫ߜ ,൯߶௫(ݕ (80) 

we expand (78) as follows: 

ݔ݀݀  ൬ ௫൰߶߲ܮ߲ = ݔ݀݀  ,ݔ)ݓൣ ,ݔ)߶൫ߜ(ݕ ൯൧(ݕ ߶௫|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ (ݕ ݔ݀݀ ,ݔ)߶൫ߜൣ ൯൧(ݕ ߶௫|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ݔ݀݀ ൤ ߶௫|∇߶(ݔ,  ൨|(ݕ

= ,ݔ)௫ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௫|∇߶(ݔ, |(ݕ + ,ݔ)ݓ  ,ݔ)߶థ൫ߜ(ݕ ൯߶௫(ݕ ߶௫|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯(ݕ ݔ݀݀ ൤ ߶௫|∇߶(ݔ,   ൨|(ݕ

(81) 
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= ,ݔ)௫ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௫|∇߶(ݔ, |(ݕ + ,ݔ)ݓ ,ݔ)߶థ൫ߜ(ݕ ൯(ݕ ߶௫ଶ|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯(ݕ ݔ݀݀ ൤ ߶௫|∇߶(ݔ,  . ൨|(ݕ

Similarly, we take the derivative of (77) with respect to ݕ as follows: 

ݕ݀݀  ቆ ௬ቇ߶߲ܮ߲  = ,ݔ)௬ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ߶௬|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ  ,ݔ)߶థ൫ߜ(ݕ ൯(ݕ ߶௬ଶ|∇߶(ݔ, |(ݕ
+ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯(ݕ ݕ݀݀ ൤ ߶௬|∇߶(ݔ,  . ൨|(ݕ

(82) 

We then combine (81) and (82). We first note that 

 ߶௫ଶ + ߶௬ଶ|∇߶(ݔ, |(ݕ = ,ݔ)߶∇| |(ݕ (83) 

and thus that 

,ݔ)ݓ  ,ݔ)߶థ൫ߜ(ݕ ൯(ݕ ቆ ߶௫ଶ|∇߶(ݔ, |(ݕ + ߶௬ଶ|∇߶(ݔ, =ቇ|(ݕ ,ݔ)ݓ ,ݔ)߶థ൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  .|(ݕ
(84) 

We also note that 

,ݔ)௫ݓ  (ݕ ߶௫|∇߶(ݔ, |(ݕ + ,ݔ)௬ݓ (ݕ ߶௬|∇߶(ݔ, |(ݕ = ,ݔ)ݓ∇ (ݕ ∙ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ |(ݕ .  (85) 

Additionally, using the product rule (79), we note that: 
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ݔ݀݀  ൤ ߶௫|∇߶(ݔ, ൨|(ݕ + ݕ݀݀ ൤ ߶௬|∇߶(ݔ,  ൨|(ݕ

= ߶௫ ݔ݀݀ ൬ ,ݔ)߶∇|1 ൰|(ݕ + ,ݔ)߶∇|1 ݔ݀݀ |(ݕ ߶௫
+  ߶௬ ݕ݀݀ ൬ ,ݔ)߶∇|1 ൰|(ݕ + ,ݔ)߶∇|1 ݕ݀݀ |(ݕ ߶௬ 

= ൤߶௫ ݔ݀݀ ൬ ,ݔ)߶∇|1 ൰|(ݕ + ߶௬ ݕ݀݀ ൬ ,ݔ)߶∇|1 ൰൨|(ݕ
+ ,ݔ)߶∇|1 |(ݕ ቈ߲ଶ߶߲ݔଶ + ߲ଶ߶߲ݕଶ ቉  

= ∇߶ ∙ ∇ ,ݔ)߶∇|1 |(ݕ + ,ݔ)߶∇|1 |(ݕ div (∇߶). 

 (86) 

Since the divergence of a scalar function ߫ and a vector ۴ is as follows: 

 div(߫۴) = (∇߫) ∙ ۴ + ߫ div (۴) ,  (87) 

we can simplify (86)  by using the substitution ߫ = ଵ|∇థ(௫,௬)|  and ۴ = ∇߶ as follows: 

 ൤߶௫ ݔ݀݀ ൬ ,ݔ)߶∇|1 ൰|(ݕ + ߶௬ ݕ݀݀ ൬ ,ݔ)߶∇|1 ൰൨|(ݕ
= ൤ ݔ݀݀ ൬ ߶௫|∇߶(ݔ, ൰|(ݕ + ݕ݀݀ ൬ ߶௬|∇߶(ݔ, ൰൨|(ݕ
= div ቆ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ ቇ|(ݕ . 

 (88) 

We use (88) to derive: 
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,ݔ)ݓ  ,ݔ)߶൫ߜ(ݕ ൯(ݕ ൬ ݔ݀݀ ൤ ߶௫|∇߶(ݔ, ൨|(ݕ + ݕ݀݀ ൤ ߶௬|∇߶(ݔ, ൨൰|(ݕ
= ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯div(ݕ ቆ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ  ቇ|(ݕ

 (89) 

From (84), (85), and (89), we combine (81) and (82) as follows: 

ݔ݀݀  ൬ ௫൰߶߲ܮ߲ + ݕ݀݀ ቆ ௬ቇ߶߲ܮ߲ = ,ݔ)ݓ  ,ݔ)߶థ൫ߜ(ݕ ,ݔ)߶∇|൯(ݕ  |(ݕ
,ݔ)߶൫ߜ+ ,ݔ)ݓ∇൯(ݕ (ݕ ∙ ,ݔ)߶∇  ,ݔ)߶∇|(ݕ |(ݕ + ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯div(ݕ ቆ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ  ቇ|(ݕ

 (90) 

We substitute (72) and (90) into the Euler-Lagrange (66) to obtain the final evolution 

equation that corresponds to the spatially adaptive ACWE function (64)  as follows: 

ݐ߲߶߲  = ,ݔ)߶൫ߜ  ,ݔ)ݓ∇൯(ݕ (ݕ ∙ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ |(ݕ
+ ,ݔ)ݓ ,ݔ)߶൫ߜ(ݕ ൯div(ݕ ቆ ,ݔ)߶∇ ,ݔ)߶∇|(ݕ −ቇ|(ݕ ,ݔ)߶൫ߜ ,ݔ)ܫ|]൯(ݕ (ݕ − ܿଵ|ଶ + ,ݔ)ܫ| (ݕ − ܿଶ|ଶ] 

 (91) 

When we compare this new form of the evolution equation to the original form in (15) 

from Section 1.2.3.3, we see that we obtain the new term ߜ൫߶(ݔ, ,ݔ)ݓ∇൯(ݕ (ݕ ∙  ∇థ(௫,௬)|∇థ(௫,௬)|.  
 We optimize the spatially adaptive ACWE energy functional by first using finite 

differences to discretize the system, then initializing ߶(ݔ,  to a user-entered contour in (ݕ

the vicinity of the object to segment, and then iteratively adding the image evolution term 

of  (91) to ߶(ݔ, ,ݔ)߶ until (ݕ  .is stationary (ݕ
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3.7.4 Contextual Mumford-Shah Framework 

 In order to compare our method against the closest existing adaptive 

regularization technique, we incorporated our weights into the Mumford-Shah based 

segmentation framework of Erdem and Tari [38] as described in Section 1.5.1 where 

contextual regularization is used. We note that the regularization weights of the Erdem 

and Tari (ET) method is not general and can only be used and compared against within 

this framework. We incorporated our data cues into the ET method by using the negative 

feedback method (described in Section 1.5.1 and reprinted here for clarity) 

ݒܿ  = ݒߢ + (1 − (ߢ  (92) 

where ߢ represents the combined cues used in the ET method. We replace ߢ with our 

curvature-modulated reliability term (see Section 3.6.1) as follows: 

ݒܿ  = ,ݔ)ఊீ೐ܧ ቀଵ – ௄ಸം೎(௫,௬)ቁ(ݕ ݒ + ቀ1 − ,ݔ)ఊீ೐ܧ ቀଵ(ݕ ି ௄ಸം೎(௫,௬)ቁ ቁ  (93) 

which simplifies to 

ݒܿ  = ,ݔ)ఊீ೐ܧ ቀଵ(ݕ – ௄ಸം೎(௫,௬)ቁ ݒ) − 1).  (94) 

In addition, we also tested incorporating the texture edges term of [38] such that 

ݒܿ  = ఊ೐்,ீܧ ,ݔ) ቀଵ(ݕ ି ௄ಸം೎(௫,௬)ቁ(ݒ − 1).  (95) 

where ݔ)்,ீܧ, (ݕ  is described in Section 3.6.2. The ܿݒ  term modifies the evolution 

equations of the functional (as described in Section 1.5.1) which are then used to 
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iteratively update the image process and edge process to form the segmentation (as 

described in Section 1.2.3.2). 

3.8 Validation and Results 

  We demonstrate the performance of the data-driven regularization weights on the 

synthetic, medical, and natural datasets that we first introduced in Section 2.3 with the 

globally optimal weight. In addition to the least-error spatially fixed weight, which we 

will compare our results against for all methods, we will compare our method to the 

globally optimal weight for the minimum-path segmentation framework, and to the ET 

method for the contextual Mumford-Shah segmentation framework.  

3.8.1 Performance Criteria 

  We tested each segmentation method of Section 3.7 with databases suitable for 

the method. For example, natural images with object comprising of a wide intensity range 

cannot be used for segmentation methods with regions-based external terms since these 

methods assume that the object of interest is approximately piecewise constant. However, 

these non-piecewise constant objects can be segmented by methods with boundary 

external terms, such as the minimum-path framework of Section 3.7.1.  

  In our tests using the minimum-path segmentation framework, we first analyze 

results on the sinusoidal synthetic dataset described in Section 2.3.2 that was used for the 

globally optimal weight validation. We measure our error for this dataset using the same ܪா error as we did for the globally-optimal weight validation (see (35) in Section 2.3.1). 

We also tested the minimum-path segmentation framework on medical and natural 
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datasets where we used the DSC error metric from (36) in Section 2.3.1.  For the graph 

cuts framework, we first analyze results on a synthetic dataset testing detection of objects 

with decreasing signal-to-noise ratio (SNR). Since the process involves matching ݇ labels 

between the ground truth (original noise-free shape) and the segmentation, we determine 

the error by using the multi-labelling Hungarian method [61] to solve the label 

assignment problem, and then using the DSC measure of (36) in Section 2.3.1. The 

remainder of the testing on the medical and natural datasets using all four of the 

aforementioned method used the DSC measure.  

  We compared our method against existing techniques suitable for each 

segmentation framework. For all frameworks, we compared our data-driven weight 

against the least-error spatially fixed weight ݓ௙௜௫௘ௗ as described in Section 2.3.1. For the 

minimum-path framework, we additionally compared our method against the globally 

optimal weight as discussed in Chapter 2. For the contextual Mumford-Shah framework, 

we additionally compared our method against the ET regularization cues. Within our 

method, we also compared the weights produced by only the noise-gated edge cue to the 

weights produced by the curvature-and-noise modulated edge cue, and by addition of the 

texture cue into our framework. 

  For each set of results, we determined 25 segmentations for each image and 

averaged to produce the quantitative results. In addition, we performed ANOVA to 

determine if the data-driven weights produced significantly more accurate results than ݓ௙௜௫௘ௗ, ீݓை, and the ET method. 
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3.8.2 Parameter Selection and Implementation Details 

 For the segmentation approaches, we used a graph cuts wrapper from [7], an 

implementation of ACWE from [102], and an implementation of the contextual MS 

method from [38], all of which were modified as proposed in Section 3.7.  

 The minimum-path segmentation framework determines the optimal contour 

between seedpoints, which we entered as equidistant points determined automatically 

around the object boundary as determined by the ground truth segmentation, and where 

each seedpoint consists of the pixel coordinates (ݔ,  For the graph cuts framework, we .(ݕ

selected a low number of random seeds (0.3% of image pixels for each label) 

automatically by using the ground truth. For the ACWE and contextual MS frameworks, 

we used an initial contour of a 4/ܯ × ܰ/4 square placed in the center of the object of 

interest, where ܯ × ܰ  is the image size.  For all frameworks, we used the same 

initializations/seedpoints for the comparison methods. For our data-driven weights, we 

set the parameters ߛ௘ = 0.8 and ߛ௖ = 0.4. 

3.8.3 Computational Performance 

 In our tests, we used un-optimized MATLAB code on a PC with 3.6 GHz Intel 

Core Duo processor and 2GB of RAM. Computationally, the proposed method required 

less than 3 minutes to calculate the regularization weights for a 768 × 576 image. The 

most computationally intensive aspect of our work in the noise measure as determined 

through spectral flatness (see Section 3.2) because the fast Fourier transform (FFT) must 

be determined for each local window region in the image. 



89 

3.8.4 Synthetic Data Validation 

3.8.4.1 Noise limitation tests 

 We first analyzed the robustness of our data-driven weights against increasing 

levels of noise (AWGN) to determine the limit at which the weights are no longer 

meaningful. Figure 26(a), (b), and (c) show synthetic images corrupted by increasing 

levels of AWGN. The graph cuts adaptive weight segmentation for the images corrupted 

by noise levels of 0.05 and 1.05 std. dev. (Figure 26(d) and (e), respectively) adheres to 

the corners of the object and does not leak outside of the object, unlike the fixed weight 

segmentation in red. At an extremely high noise level of 1.90 std. dev. shown in Figure 

26(c), the resulting adaptive weight segmentation Figure 26(f) begins to show holes and 

degradation. Analysis of the DSC of adaptive weight graph cuts segmentations for the 

synthetic image of Figure 27 over various noise levels (25 noise realizations for each 

noise level) found that segmentation accuracy begins to drop at noise levels greater than 

1.75 std. dev. 
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In Figure 28(a), the least-error fixed weight is low (0.2) in order to segment the high 

curvature region of the image, and thus is not able to accurately segment the high noise 

region of the object. The data-driven weight produces an accurate segmentation by 

lowering regularization in the high curvature and reliable edge region of the image, and 

increasing regularization is the unreliable high noise regions. The curvature-modulated 

reliability measure (see Figure 25(g) and (h) in Section 3.6.1) confirms this behaviour. 

 We quantitatively examined our method's performance using ANOVA testing on 

25 noise realizations of each image in the dataset, where the error was determined by ܪா. 

Our method resulted in a mean error (in pixels) of 6.33 ± 1.36, whereas the best fixed-

weight method had a mean error of 12.05 ± 1.61, and the globally-optimum weight 

method had a mean error of 33.06 ± 3.66. Furthermore, for each image, we found our 

method to be significantly more accurate with all p-values << 0.05. Our error results are 

presented in Table 2. 
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Table 2: Average error over 25 noise realizations per image produced by data-driven weights, least-
error fixed weights, and globally optimal weights for synthetic set of data. Segmentations from the 

data-driven weights have errors less than alternate methods with p-values from ANOVA testing ≪ ૙. ૙૞. 

Image 
# 

Mean ࡱࡴ error over 25 segmentations 

Fixed weights 
Data-driven 
weights 

G.O. 
weights 

1 13.02 7.2 17.68 
2 15.04 7.08 45.24 
3 8.92 6.04 17.4 
4 13.8 8.64 38.6 
5 6.8 3.64 7.16 
6 12.96 5.92 42.2 
7 14.4 7.4 42.4 
8 13.28 7.56 40.92 
9 11.8 3.12 35.72 

10 13.04 4.76 47.68 
11 14.84 8.16 40.04 
12 6.64 3.32 7.92 
13 10.62 5.4 27.24 
14 12.74 7.48 41 
15 11.92 6.32 44.2 
16 13.02 9.28 33.64 

 

3.8.4.3 Graph Cuts Synthetic Tests 

 We validated graph cuts with our proposed method on simulated noisy images of 

variably-sized ellipses with complicated background patterns, e.g. with image contrast 

decreasing from right to left, as in Figure 29(a). The leftmost ellipses with lower contrast 

have a lower SNR than the rightmost ellipses and thus require greater regularization. 

Note how our resulting reliability measure Figure 29(b) indicates lower image reliability 

for low contrast ellipses. When comparing our segmentation results to those from the 

spatially-fixed weight, as shown in Figure 29(c), 6 ellipses out of 14 were mislabelled, 

whereas GC with adaptive regularization correctly labelled 12 ellipses (Figure 29(d)). To 

quantify the advantage of our approach, we tested a synthetic dataset of images 

containing 2 to 40 ellipses at various noise levels. We calculated the DSC of the 
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segmentation to the ground truth for each ellipse and averaged over all the ellipses in the 

image. Figure 30 plots the difference in average DSC between adaptive regularization GC 

and standard GC for images of increasing ellipse numbers. The same images were also 

tested at various noise levels. Note that a positive difference in the DSC indicates that our 

proposed regularization method with GC had greater success detecting low contrast 

ellipses. 

(a) (b) 

(c) (d) 
Figure 29: Segmentation of a synthetic image using GC with adaptive regularization. (a) Synthetic 
image of 14 ellipses with image contrast increasing from left to right. (b) Reliability calculated by our 
data-driven weights. (c) Segmentation from fixed weights, where each color represents a separate 
label. (d) Segmentation from data-driven weights, which result in greater numbers of low-contrast 
ellipses successfully segmented. 
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Figure 30: Difference in average DSC between adaptive regularization GC and fixed regularization 
GC for images with increasing numbers of ellipses. Different curves represent different noise 
standard deviations as shown in legend. Positive DSC difference indicates segmentations from data-
driven weights are more successful than fixed weights at labelling ellipses with low image quality. 

3.8.5 Medical Data Validation 

 We performed tests on the following medical datasets: set of 52 sagittal slices 

centered around the CC structure, 8 mammography images from the Digital Database for 

Screening Mammography (DDSM) [51, 50], 15 images from the BrainWeb database [63, 

62, 31] using the T1, T2, and PD modalities with varying amounts of noise and intensity 

inhomogeneity, and coronal and transverse slices from the 18-subject Internet Brain 

Segmentation Repository (IBSR) database (provided by the Center for Morphometric 

Analysis at Massachusetts General Hospital and available at 

http://www.cma.mgh.harvard.edu/ibsr/). 

3.8.5.1 Minimum-Path  

 Sagittal MR images of the CC exhibit the known problem of a weak boundary 

where the CC meets the fornix (as discussed and labelled in Figure 13(a) of Section 

2.3.3). Unlike the globally optimal weights which produced bimodal behaviour (either 
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Figure 32: CC 52-image dataset DSC results with minimum-path segmentation method. Graph 
shows average DSC over dataset for segmentations from DD = data-driven weights, F = least-error 
fixed weights, and GO = globally optimal weights. DSC for each image was averaged from 25 
segmentations with different seeds. DD average DSC (over total dataset) was 0.9224, F average DSC 
was 0.8984, GO average DSC was 0.8657. Average p-values for DD vs. F and for DD vs. GO were << 
0.05.  Segmentations from the DD weights were significantly more accurate. 

 
(a) 

 
(b) 

Figure 33: DSC results for IBSR dataset of (a) coronal and (b) transverse MR slices from 18 subjects 
when segmenting for white matter using minimum-path approach. Graph shows mean and variance 
for segmentations produced by data-driven weights (DD), least-error fixed weight (F), and the 
globally optimal weights (GO). The DD average DSC (over 18 image dataset) was 0.9323 for the 
coronal dataset and 0.9278 for the transverse dataset. The F average DSC was 0.9036 and 0.9094 for 
the coronal and transverse datasets, respectively, and the GO average DSC was 0.8806 and 0.8886 for 
the coronal and transverse. All p-values were ≪ ૙. ૙૞ . Although the difference between the 
segmentations from the DD weights and the fixed weights were low, the DD weight segmentations 
were still significantly more accurate. 
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(a) (b) (c) 

Figure 34: DSC results for slices from coronal BrainWeb dataset when segmenting for white matter 
using minimum-path approach. (a) T1 data, (b) T2 data, and (c) PD data. Data-driven weights (DD) 
produce segmentation accuracies that decrease less than fixed weights (F) and globally optimum 
weight (GO) as the level of noise in the image increases from 0% to 9% (averaged over 25 noise 
realizations per noise level). 

 
Figure 35: DSC results for segmentation of cancer tissue in 8 mammography images from DDSM 
database using minimum-path approach. The data-driven weights (DD) resulted in a mean error of 
0.8958, the fixed-weight (F) in a mean error of 0.7961 and the globally-optimal weights (GO) in 
0.7370 with all p-values ≪ ૙. ૙૞. Segmentations from the DD weights show a clear improvement over 
segmentations from F and GO weights. 

3.8.5.2 Graph Cuts 

 We next present qualitative results using graph cuts with our data-driven 

regularization weights on images from BrainWeb. Figure 36(a) shows a T1 image with an 

intensity inhomogeneity of 20%. High curvature-modulated reliability in the cortical 

folds (Figure 36(b)) results in lower regularization in these regions. The overlayed GC 

segmentations (Figure 36(c)) using the adaptive regularization weight versus the least-
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error fixed weight shows greater segmentation accuracy in high curvature regions. 

Additionally, the curvature-modulated regularization weights show improvements over 

the non-curvature weights of Section 3.4 (Figure 36(d)). Figure 37(a) shows the same T1 

image of Figure 36(a) but with a noise level of 7%. The resulting curvature-modulated 

reliability map (Figure 37(b)) is not corrupted by the noise and still enforces greater 

regularization in high curvature cortical folds, as seen in the resultant segmentation 

comparisons of Figure 37(c) and Figure 37(d). At higher noise levels, our data-driven 

weights results in a more accurate segmentation than the standard least-error uniform 

weight, and even more accurate than our non-curvature image reliability system, thus 

verifying the importance of the noise-gated curvature cue. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 36: Segmentation of MR data from BrainWeb using GC with curvature-modulated 
regularization. (a) T1 slice with 20% intensity non-uniformity. (b) Curvature-modulated reliability. 
Black intensities corresponds to 0 (low reliability/high regularization) and white to 1. Note higher 
reliability in cortical folds. (c) Comparison of segmentations from the curvature-modulated weight 
(green) to the least-error fixed weight (red), and (d) to the non-curvature modulated image reliability 
weight (blue). Yellow regions are where the segmentations overlap, and ground truth contour is 
shown in black. Segmentations from the curvature-modulated DD weights result in no leakage into 
the background and accurately capture the high-curvature cortical folds. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 37: Segmentation of noisy MR data from BrainWeb using GC with curvature-modulated 
regularization. (a) T1 slice with 7% noise level. (b) Curvature-modulated reliability. (c) Comparison 
of segmentations from the curvature-modulated adaptive weight (green) to the least-error fixed 
weight (red), and (d) to the non-curvature modulated image reliability weight (blue). 

 We present quantitative results for our graph cuts tests with the BrainWeb, 

DDSM, and IBSR datasets in Figure 38, Figure 39, and Figure 40. On average, these 

results are lower than the results from the minimum-path segmentation approach because 

the lack of seedpoints reduces the ability to target the object of interest for each image. 

For the BrainWeb dataset (Figure 38), as the level of noise increases (where we 

performed the segmentations for 25 noise realizations per noise level), the data-driven 

weights produce more accurate segmentations than the least-error fixed weights. For the 
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DDSM dataset (Figure 39), both methods produce segmentations with low DSC which is 

due the complex background in the mammography images, where the non-cancerous 

tissue has similar intensity values to the cancerous tissue. Unlike minimum-path 

approaches where we can target the tissue object of interest with seedpoints, the seeding 

used for graph cuts is only for intensity profile estimation. The result is that many objects 

in the background (breast tissue) are mistaken as cancerous tissue due to similarities in 

intensity values. For the IBSR segmentations (Figure 40), the data-driven weights 

produced significantly more accurate segmentations for the coronal and transverse slices 

(when segmenting for white matter). When segmenting for the CC structure in the sagittal 

slices (Figure 40(c)), the data-driven weights were not significantly more accurate due to 

similarities in intensity between the CC structure and the fornix. 

(a) (b) (c) 
Figure 38: DSC results for BrainWeb segmentation of white matter using graph cuts approach for 
(a) T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven weights (DD) produce 
less degradation in results at high noise levels when compared to least-error fixed weights (F). DSC 
values are averaged over segmentations for 25 noise realizations per noise level. As the noise level 
increases, the segmentations from the DD weights result in greater DSC than the fixed weight 
segmentations. 
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Figure 39: DSC results for segmentation of cancer tissue in 8 mammography images from DDSM 
database using the graph cuts approach. As these images represent difficult scenarios due to noise, 
weak edges, and non-piecewise constant objects, both methods for regularization weights produce 
poorer results. However, the data-driven weights (DD) produce significantly improved results over 

the fixed weights (F) segmentation. DD average DSC = 0.3576, F average DSC = 0.2909. 

 
(a) (b) (c) 

Figure 40: DSC results for IBSR dataset of (a) coronal, (b) transverse and (c) sagittal MR slices from 
18 subjects when segmenting for white matter (for (a) and (b)) and CC (for (c)) using graph cuts. The 
DD average DSC (over 18 image dataset) was 0.8999 for the coronal dataset, 0.8199 for the 
transverse dataset, and 0.7149 for the sagittal dataset. The F average DSC was 0.8627, 0.7462, and 
0.6611 for the coronal, transverse, and sagittal datasets, respectively. Average p-values were 0.0118, 
9.89E-9, 0.052. For the CC segmentations in the sagittal plane, the proposed method did not produce 
significantly improved results. This is since the fornix and CC have the same intensity and region-
based external terms are not successful in differentiating the structures. 

3.8.5.3 Active Contours Without Edges 

 We next present results using the ACWE segmentation framework on medical 

datasets. Figure 41(a) shows a PD coronal slice with 5% noise from BrainWeb. The 

resulting curvature-modulated reliability (Figure 41(b)) is bright for the high curvature 

tips of the central ventricles and for the cortical folds of the white matter. The resulting 

segmentation (Figure 41(c)) from the data-driven weights (green) for the white matter is 
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able to capture the cortical folds while not oversegmenting into the ventricle region, 

unlike the least-error fixed weight result (red).  

 
(a) (b) (c) 

Figure 41: Segmentation of white matter in PD coronal slice from BrainWeb with 5% noise. (a) 
Original image, (b) curvature-modulated reliability, and (c) comparison of segmentations from data-
driven weight (green), least-error fixed weight (red), where overlapping regions are in yellow and 
ground truth contour shown in black. Data-driven segmentation results in less over-segmentation 
into ventricle region and better segmentation of high curvature tips. 

In addition, we present segmentations of cancer tissue from mammography images 

(DDSM database) such as in Figure 42, where the ACWE contour was initialized as a 

square shown in Figure 42(a) and iterations were run until the contour evolution 

converged (at most 700 iterations). The segmentation from the data-driven weights more 

accurately grows into the left region of the tissue. Neither segmentation accurately 

contains the right region of the tissue which is due to the cancer object containing 

differing intensities. 
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(a) (b) (c) 

Figure 43: DSC results for BrainWeb segmentation of white matter using ACWE approach for (a) 
T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven weights (DD) produce less 
degradation in results at high noise levels when compared to least-error fixed weights (F). DSC 
values averaged over segmentations from 25 noise realizations per noise level. Segmentations from 
the DD weights are more accurate than fixed weight segmentations at high noise levels. 

 
Figure 44: DSC results for segmentation of cancer tissue in 8 mammography images from DDSM 

database using the ACWE approach. The data-driven weights (DD) produce significantly improved 
results over the fixed weights (F) segmentation. DD average DSC = 0.3565, F average DSC = 0.2833. 
Average p-value was 6E-4. Although the DD weight segmentations are more accurate, both methods 
produce low accuracies since neither method could segment regions of the cancer tissue with greatly 

differing intensity values. 
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(a) (b) (c) 
Figure 45: DSC results for IBSR dataset of (a) coronal, (b) transverse and (c) sagittal MR slices from 
18 subjects when segmenting for white matter (for (a) and (b)) and CC (for (c)) using ACWE. The 
DD average DSC (over 18 image dataset) was 0.9019 for the coronal dataset, 0.7895 for the 
transverse dataset, and 0.6345 for the sagittal dataset. The F average DSC was 0.8466, 0.7196, and 
0.6196 for the coronal, transverse, and sagittal datasets, respectively. Average p-values were 3.303E-
7, 3E-4, 0.482.  The segmentation from the DD weights was significantly more accurate for the 
coronal and transverse datasets, but was not significantly more accurate for the sagittal dataset when 
segmenting for the CC structure. This is due to the intensity similarities between the CC and the 
fornix structures which produces problems for region-based external terms. 

3.8.5.4 Contextual Mumford-Shah Method 

 We validated the contextual Mumford-Shah method by comparing results to both 

the least-error fixed weight segmentation and to the segmentation produced the ET 

adaptive regularization method. The contextual MS method is automated and does not 

allow for user input to focus the segmentation on certain objects. As such, we chose to 

demonstrate segmentations of the central ventricle structure using the BrainWeb and 

IBSR databases rather than segmentations of the white matter which is a complex 

structure encompassing the entire image. We targeted the ventricles by cropping the 

image around the structure. Figure 46(a) and Figure 47(a) show the central ventricle 

region taken from coronal slices from the BrainWeb dataset, where Figure 46(a) depicts a 

PD image with a noise level of 5% and Figure 47(a) depicts a T1 image with a noise level 

of 9%. For both cases, the curvature-modulated reliability (Figure 46(b) and Figure 

47(b)) is higher for the tips of the ventricle structure, and the resulting segmentations 
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(a) (b) (c) 
Figure 48: DSC results for BrainWeb segmentation of central ventricle structure using contextual 
MS approach for (a) T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven 
weights (DD) produce less degradation in results at high noise levels when compared to least-error 
fixed weights (F) and Erdem-Tari weights (ET). DSC values are averaged over segmentations from 
25 noise realizations per noise level. 

 
Figure 49: DSC results for segmentation of cancer tissue in 8 mammography images from DDSM 
database using the contextual MS approach. The data-driven weights (DD) produce significantly 

improved results over the fixed weights (F) segmentation. DD average DSC =  0.3092, F average DSC 
= 0.2433, ET average DSC = 0.2863.  All results are poor due to the non-piecewise constant cancer 

object. 
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Figure 50: DSC results for IBSR dataset of  coronal MR slices from 18 subjects when segmenting for 
the central ventricle structure using contextual MS approach. Graph shows mean and variance for 
segmentations produced by data-driven weights (DD), least-error fixed weight (F), and the Erdem-
Tari weights (ET). The DD average DSC (over 18 image dataset) was 0.9783, the F average DSC was 
0.9509, and the ET average DSC was 0.9617.  All averaged p-values were ≪ ૙. ૙૞. Segmentation from 
the DD weights are significantly more accurate than the segmentations from the F and ET weights. 

3.8.6 Natural Scenes Data Validation 

 We next present results from using the following datasets of natural scenes: the 

McGill Calibrated Colour Image Database [75], the PASCAL object recognition database 

[40], and through the ImageNet database [32, 33].  

3.8.6.1 Minimum-Path 

 We first demonstrate results on an image from the McGill database, the tree leaf on a 

complicated background shown in Figure 51(a). The resulting curvature-modulated 

reliability measure (Figure 51(b)) indicates higher regularization at the regions of the leaf 

obscured by snow and lower regularization in the leaf tip regions. The resulting 

segmentation from the data-driven segments the obscured shape of the leaf accurately 

(Figure 51(c)). 
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(a) 

 
(c) 

 
(b) 

Figure 51: (a) Original leaf image (McGill dataset [75]). (b) Reliability calculated by our proposed 
method. Contours produced by using (c) data-driven weights (blue), least-error fixed-weight (red), 
and globally optimal weight (cyan). The GO contour fails to capture the leaf tip region, and the fixed 
weight contour fails to regularize in the obscured edge region, as highlighted. 

 Additionally, we segmented the airplane image of Figure 52(a) (from the 

PASCAL database) which consists of high curvature structures that require lower 

regularization, and weak-edged regions that require high regularization. The curvature-

modulated reliability measure (Figure 52(b)) shows that the plane tips in the image are 

assigned low regularization weights (high reliability). The resulting segmentation using 

the data-driven weights correctly captures these regions (Figure 52(c)) whereas the least-

error fixed weight, 0.5 in this case, correctly regularizes the weak edge regions but is too 

excessive to capture the airplane tips. The globally optimum weight, which was 
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predominately zero for this segmentation, correctly segments the tips but inaccurately 

includes the weak edge regions. 

 
(a) 

 
(b) 

 
(c) 

Figure 52: Airplane image (PASCAL dataset [40]) segmented by minimum-path approach. (a) 
Original image, (b) curvature-modulated reliability, and (c) contours from data-driven weight (blue), 
least-error fixed weight (red) and globally optimal weight (cyan). Segmentation from the GO weights 
inadequately regularizes in the weak edge upper region of the plane. Segmentation from the fixed 
weight fails to capture the wing tips. 

We also present the contours produced by the data-driven weights for the examples 

shown in Section 2.3.4 of Chapter 2. Figure 53 shows segmentations of a complex-

boundary flower and a submerged leaf. In Figure 53(a), only the data-driven weight in 

blue prevents oversegmenting of the image and background leakage. In Figure 53(b), the 

data-driven weight segmentation accurately captures the weak-edge leaf tip region. 
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(a) (b) 

Figure 53: Segmentations from McGill database images of (a) a flower with a complex background 
and (b) a leaf with regions of the boundary obscured by water. The segmentation from the data-
driven weights (blue) provide greater regularization in weak edge regions and lower regularization in 
high curvature regions, unlike the segmentations from the globally-optimal weight (cyan) and the 
spatially fixed weight (red). 

 We present the quantitative results on the McGill, PASCAL, and ImageNet 

databases in Figure 54. The ANOVA results indicate the significant improvement the 

data-driven weights provide when compared to existing methods. We note that these 

databases do not contain texture images, which we will address in our graph cuts and 

contextual MS tests. 
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(a) (b) (c) 

Figure 54: DSC of segmentations from data-driven weights (DD), least-error fixed weights (F) and 
globally-optimal weights (GO) on (a) 8 images from ImageNet database, (b) 11 images from PASCAL 
database, and (c) 24 images from McGill database. Average error over dataset (and over 25 
segmentations for each image) was DD = 0.9489, F = 0.9188, GO = 0.8629 for (a), DD = 0.9455, F = 
0.9241, GO =0.8783 for (b), and DD = 0.9619, F = 0.9402, GO = 0.9025 for (c). All p-values ≪ ૙. ૙૞. 
For all datasets, the segmentations from the DD weights produce significantly higher DSC than the 
segmentations from the GO weights and fixed weights. 

3.8.6.2 Graph Cuts 

 We present results of the graph cuts segmentation method with our proposed 

regularization framework on a flower image from the McGill database, as shown in 

(Figure 55(a)) where this image has been corrupted by AWGN with a standard deviation 

of 0.3. From this image, we produced the curvature-modulated reliability mapping in 

(Figure 55(b)). The higher curvature-modulated reliability in the petal tip regions allows 

for a more accurate segmentation when compared to the least-error fixed weight 

segmentation (Figure 55(c)). In addition, we investigate the key role of the curvature cue 

by comparing the curvature-modulated segmentation to the non-curvature reliability 

weight segmentation (Figure 55(d)) which, as expected, required higher regularization in 

the detailed petal tip regions, resulting in leakage into the background. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 55: Graph cuts segmentation of flower image from ImageNet dataset [32]. (a) Original image 
with AWGN of standard deviation 0.3. (b) Curvature-modulated reliability (higher in petal tip and 
crevice regions) (c) Comparison of segmentations from the curvature-modulated reliability weight 
(green) to the least-error fixed weight (red), and (d) to the non-curvature reliability weight (blue) with 
overlapping regions in yellow.  The curvature-modulated DD weights provided the best segmentation 
of the petal tips and had the least amount of leakage. 

 We segmented another flower image from the McGill database with corruption by 

AWGN of standard deviation 0.3 (image values normalized to range between 0 and 1), as 

shown in Figure 56(a). The curvature-modulated reliability (Figure 56(b)) produces lower 

regularization weights in the petal tips and petal crevices. In Figure 56(c), the fixed-

weight segmentation excessively regularizes in the petal region, resulting in leakage 

(shown in red). Our method does not leak into the background and is able to capture the 

petal tips (shown in green).  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 56: Graph cuts segmentation of natural image  (a) Original image corrupted by AWGN with 
standard deviation of 0.3. (b) Curvature-modulated reliability. (c) Comparison of segmentations 
from the data-driven weight (green) to the least-error fixed weight (red) and to non-curvature 
reliability weight (blue)  with overlapping regions in yellow. In (c), high regularization in the 
background prevents the segmentation from the curvature-modulated DD weights from leaking, 
unlike the fixed-weight method in red. In (d), the non-curvature modulated weights (see overlapped 
region in yellow) fail to capture all petals. 

 We demonstrate the ability of the texture-modulated weight ݓ௧(ݔ,  from (61) (ݕ

(see Section 3.6.2) to segment the textured image of Figure 57(a) (from ImageNet) where 

we set the parameter ߛ௧  in (59) to 0.1. The curvature modulated reliability shown in 

Figure 57(b) is erroneously large for regions with texture. The curvature-and-texture 

modulated reliability shown in Figure 57(c) is lower for the texture edges. The resulting 

GC segmentation from using ݓ௧(ݔ, (ݕ  is shown in Figure 57(d). Incorporation of a 

texture cue reduces leakage into the background, and the curvature cue reduces 
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fixed-weight approach for all datasets except for the textured dataset (see DD result in 

Figure 58(c)). However, the inclusion of the texture cue (DD-Text in Figure 58(c)) leads 

to significantly improved results. 

 
(a) (b) (c) 

Figure 58: Segmentation DSC from using data-driven weights (DD), least-error fixed weights (F), 
and data-driven weights with the texture cue (DD-Text) on natural images from (a) the ImageNet 
database (8 images), (b) McGill dataset (24 images), and (c) selected textured images taken from 
ImageNet database (10 images). Average DSC over dataset (and over 25 segmentations per image) 
are as follows: DD = 0.9651, F = 0.9066 for (a), DD = 0.9727, F = 0.9236 for (b), and DD = 0.8916, F = 
0.8922, DD-Text = 0.9421 for (c). All p-values ≪ ૙. ૙૞. Addition of texture cue in (c) resulted in 
improved performance over standard DD weights and fixed weights.  

3.8.6.3 Active Contours Without Edges 

 We demonstrate the ACWE segmentation method with our regularization 

framework on the octopus image of Figure 59(a) (from the ImageNet database). Iterations 

were run until the contour evolution converged (1000 iterations). The low curvature-

modulated reliability (Figure 59(b)) in regions outside the octopus prevents the resulting 

segmentation from including shadows in the background, unlike the fixed weight 

segmentation (Figure 59(c)) which leaked into the background of the image (see red 

region).  

DD F
0.7

0.8

0.9

1

D
ic

e 
S

im
ila

rit
y

ImageNet Database

DD F
0.7

0.8

0.9

1

D
ic

e 
S

im
ila

rit
y

McGill Database

DD-Text DD F
0.7

0.8

0.9

1

D
ic

e 
S

im
ila

rit
y

Texture Database



120 

(a) 
 

(b) 

 
(c) 

Figure 59: Active Contours segmentation of a natural image. (a) Original image. (b) Curvature-
modulated reliability calculated by our method. (c) Comparison of segmentations from the data-
driven weight (green) to the least-error fixed weight (red) where yellow regions are where 
segmentations overlap. Segmentation from fixed weight (red) leaks into the background, unlike 
segmentation from DD weights (see overlapped region in yellow).  

 Another such example from the McGill database is an image of a flower 

containing shadow regions as shown in Figure 60(a). The shadow inner folds of the 

flower have a low reliability measure as shown in Figure 60(b) due to the weak edge and 

low curvature. The resulting fixed-weight segmentation in Figure 60(c) has inadequate 

regularization in the weak edge shadow regions, whereas the data-driven weights produce 

a more accurate segmentation that regularizes in the shadows but reduces regularization 

in the high curvature region where the flower is obscured.  
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(a) (b) (c) 
Figure 60: ACWE segmentation of flower. (a) Original image, (b) curvature-modulated reliability 
measure, and (c) comparison of segmentation from data-driven weights (blue) to the least-error fixed 
weight (red) where (yellow) regions represent segmentation overlap and the ground truth is shown as 
the black  contour. Segmentation from fixed weight fails to capture shadow regions of flower, unlike 
segmentation from DD weights (see green region). 

  We present the quantitative results for the ImageNet and McGill databases in 

Figure 61. As seen in Figure 61(b), the ACWE method with data-driven weights did not 

produce significantly more accurate segmentations than the fixed weights on the McGill 

database (p-value was 0.0514). This is likely because for certain images in the dataset, 

both methods performed poorly due to non-optimal placement of the initial contour. The 

ACWE segmentation method is sensitive to initial contour placement which is not related 

to our proposed work. 
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(a) 

 
(b) 

Figure 61: Segmentation DSC from using data-driven weights (DD) and least-error fixed weights (F) 
on natural images from (a) the ImageNet database (8 images) and (b) McGill dataset (24 images). 
Average DSC over dataset (and over 25 segmentations per image) are as follows: DD = 0. 9563, F = 0. 
9144 for (a) and DD = 0. 9435, F = 0. 9044 for (b). Average p-value for (a) is 2E-4, but average p-value 
for (b) is 0.0514.  Segmentations on the McGill database using the DD weights were not significantly 
more accurate due to non-optimal placement of the initial contour. 

3.8.6.4 Mumford-Shah Method 

 For the contextual Mumford-Shah method, we tested textured natural images, 

such as the image of an amoeba shown in Figure 62 (from the ImageNet database). The 

curvature-modulated reliability is falsely high for the inner textured region of the 

amoebas, resulting in a disconnected segmentation as shown in Figure 62(b) in green. 

However, by addition of the texture term from the ET framework, the texture-and-

curvature modulated reliability is smooth for these sections of the image, and the 

resulting segmentation is more accurate than the fixed weight and ET weights (Figure 

62(c) and (d)). Although the segmentation produced by the ET method correctly 

regularizes the textured region, it is unable to segment the protrusions of the amoeba 

which is due to the framework lacking a structural curvature cue. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 62: Segmentation of amoeba image from ImageNet. (a) Original image. (b) Comparison of 
segmentation from non-texture data-driven weight (green) to segmentation from fixed weight (red). 
(c) Comparisons of segmentation from texture data-driven weight (green) to fixed weight (red), and 
(d) to segmentation from ET cues  (blue). Segmentation from the DD weights without texture 
mistakes textured regions as separate objects, resulting in a fragmented segmentation (see green 
segmentation in (b)). Segmentation from the DD weights with texture correctly captured the full 
objects, including protrusions, unlike the fixed weights (see overlapped yellow in (c)) and the ET 
weights (see overlapped yellow in (d)). 

In addition, we segmented the texture image of a cheetah shown in Figure 63(a). The 

non-texture reliability in Figure 63(b) is falsely high in the spotted region of the cheetah. 

However, by incorporating the ET texture cue, the resulting texture-and-curvature 

modulated reliability is lower in the spotted region (Figure 63(c)). The resulting 

segmentation from the texture data-driven weight in green is more accurate than the 

segmentations from the fixed weight in red (Figure 63(d)) and the ET weight in blue 

(Figure 63(e)). 
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of the textured cue from the ET framework results in more accurate segmentation than 

the non-curvature-modulated ET framework (DD-Text in Figure 64(b)). 

 
(a) 

 
(b) 

Figure 64: Segmentation DSC from using data-driven weights (DD), least-error fixed weights (F), 
data-driven weights with the texture cue (DD-Text), and Erdem-Tari weights (ET) on natural images 
from (a) the ImageNet database (8 non-textured images), and (b) selected textured images taken from 
ImageNet database (10 images). Average DSC over dataset (and over 25 segmentations per image) 
are as follows: DD = 0.8311, F = 0.6482, and ET = 0.7719 for (a), and DD = 0.6107, DD-Text = 0.8681, 
F = 0.6004, and ET = 0.8323 for (b). Addition of texture cue in (b) resulted in improved performance 
over standard DD weights, fixed weights, and ET weights. All p-values of DD versus fixed and ET 
methods in (a) and DD-text versus fixed method and ET method in (b) were ≪ ૙. ૙૞. Segmentations 
from the DD weights on the non-textured ImageNet dataset were significantly more accurate than the 
fixed weight and ET weights. Addition of the texture cue resulted in significantly more accurate 
performance for the textured set in (b). 
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 Chapter 4 
 
4 Conclusions 
 

 

 In this chapter, we discuss conclusions for this thesis and how our work fits into 

the general field of image segmentation. We discuss the limitation of this method and 

present an overview of the areas for future research in this work. 

4.1 Discussion 

 In this thesis, we presented novel approaches for addressing a ubiquitous problem 

that plagues most energy minimization-based segmentation techniques; how to properly 

balance the weights of competing data fidelity and regularization energy terms. We 

focused on automated methods to determine a single regularization weight for convex 

energy functionals. We first presented a method for determining the globally optimized 

values of the object function parameters. During validation, we found this method to 

suffer from bimodal weights, poor response to image characteristics, and decreased 
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generality to other segmentation methods.  We then proposed spatially adaptive weights 

that depended on contextual cues that gauge image reliability and structural evidence.  

This method employed a novel and robust local measure of signal reliability through 

estimating the spectral flatness of the image. In addition, our method used a local scale-

invariant curvature cue for modulating regularization in conjunction with edge evidence, 

where both cues were made robust to noise through gating by the local signal reliability. 

We demonstrated the applicability of our contextual weights by incorporating the weights 

into a variety of continuous and discrete segmentation frameworks, including minimum-

path, graph cuts, and two forms of the Mumford-Shah model: active contours without 

edges, and the AT approximation of the Mumford-Shah model with feedback 

regularization. We validated the contextual weights on a wide variety of datasets, the 

majority of which are publically available: functionally-derived images, DDSM 

mammography dataset, 52-subject sagittal slices of CC structure, 3-modality BrainWeb 

data with varying noise and intensity inhomogeneity, 18-subject IBSR dataset, images 

from the McGill Colour Calibration database, PASCAL object recognition database, and 

the ImageNet database. We compared the contextual weights against the least-error 

spatially fixed weight, the globally optimal weights, and the spatially adaptive weights 

proposed by Erdem and Tari [38]. In addition, we incorporated existing texture-based 

contextual cues into our method to show how it can be incorporated with current 

techniques in the field.  
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4.2 Limitations and Future Directions 

 Although we have demonstrated the significant improvements in segmentation 

accuracy our contextual weights provide, there are limitations to our methods and areas 

for future research, which we list here: 

Energy Functionals with Multiple Weights 

 In our work, we have focused on using a single regularization weight and adapting 

this weight accordingly. However, many energy minimization segmentation techniques 

use multiple weights, i.e. as follows: 

௧௢௧௔௟ܧ  = ଵܧଵߙ + ଶܧଶߙ + ଷܧଷߙ + ⋯  (96) 

Our work is limited to single weight energy formulations, which we form by grouping the 

terms into either ܧ௜௡௧ or ܧ௘௫௧ and using a single weight in a convex combination for graph 

cuts and minimum-path approaches, and non-convex for ACWE and MS. However, 

single weights are limited since many segmentation techniques give greater importance to 

certain energy terms ܧ௜ through assigning that term a higher ߙ௜. Determining how to best 

set multiple regularization weights will greatly increase the generality and usability of 

this method. 

Additional Cues for Non-Spectrally Flat Noise Models 

 Our method for noise estimation is limited to types of noise that are spectrally flat, 

i.e. white noise. However, many images may be corrupted by other noise models, 

particularly in medical imaging. For example, ultrasound images are often corrupted by 
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multiplicative noise (speckle noise) which our method is not able to estimate. A future 

area of research would be to devise new noise cues to handle various noise models and 

combine them with the existing noise cue. 

Expansion to 3D  

 Our current method is limited to 2D images.  However, in medical imaging, 3D 

data is far more common and is segmented by various 3D energy minimization 

techniques, predominately deformable model methods. Thus our contextual 

regularization method must be modified by (a) expanding the spectral flatness, edge 

evidence, and curvature cues to the 3D space, and (b) incorporating these cues into 3D 

segmentation frameworks. 

Convex Functionals for Continuous Segmentation Methods 

 In our tests with continuous segmentation frameworks, such as ACWE and the 

MS model, we had difficulties using a convex energy functional with respect to the 

adaptive weight as we had done for the discrete frameworks; instead, we only weighted 

the regularization term. We found that weighting the external terms resulted in the 

stalling of the curve evolution. However, we were unable to determine exactly why that 

occurred. Further research would be beneficial in this area so that our method could be 

incorporated into segmentation frameworks in a more unified manner. 

Investigating Globally Optimal Weights for Additional Segmentation Methods 

 We presented a method for determining the globally-optimal weight for the 

minimum-path segmentation framework, and showed that it did not provide accurate 
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results. However, we did not determine the globally-optimal weights for additional 

segmentation frameworks, such as continuous methods. A key area of future research is 

to determine if the globally optimum weight for other segmentation frameworks are also 

insufficient in addressing regularization needs. This would be important in proving that 

the globally optimal weights do not necessarily reflect correct segmentations. 

Further Validation with Additional Segmentation Frameworks and Comparison 

Methods 

 We presented results from validation with four segmentation techniques, and 

comparisons against two existing methods (spatially-fixed, and the ET weights). Future 

work should focus on exploring the use of our weights with additional segmentation 

frameworks, such as the robust higher order potentials method by Kohli and Ladicky 

[58], normalized cuts [69], and shape priors and discrete MRFs by Besbes et al [10]. In 

addition, future work should focus on expanding the number of methods we compared 

our work against. The contextual texture-based regularization method of Malik et al [69] 

using Normalized Cuts should be validated, along with the texture-based regularization of 

Kokkinos et al [59] using segmentation by weighted curve evolution. In addition, a key 

family of segmentation approaches which our existing validation work does not cover are 

clustering techniques, such as ܭ-means clustering [30, 95, 98], fuzzy c-means clustering 

[11, 25], spectral clustering (i.e., Normalized Cuts [69]), and expectation-maximization 

(EM) clustering [66].  
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Additional Contextual Cues 

 Incorporation of additional contextual cues would benefit our work, particularly in 

the area of texture estimation, additional noise estimation methods, and shape 

information. These additional cues can be incorporated into our method through 

multiplication with the noise-gated edge evidence as we have done with the Erdem and 

Tari texture cue in Section 3.6.2. In particular, the structural curvature cue would benefit 

from use of a structure tensor matrix where the eigen-decomposition of this matrix may 

capture more precise gradient features. 
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