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Abstract

Image segmentation techniques are predominately based on parameter-laden
optimization processes. The segmentation objective function traditionally involves
parameters (i.e. weights) that need to be tuned in order to balance the underlying
competing cost terms of image data fidelity and contour regularization. Conventionally,
the associated parameters are set through tedious trial and error procedures and kept
constant over the image. However, spatially varying structural characteristics, such as
object curvature, combined with varying noise and imaging artifacts, significantly

complicate the selection process of segmentation parameters.

This thesis contributes to the field of image segmentation by proposing methods
for spatially adapting the balance between regularization and data fidelity in energy
minimization frameworks in an autonomous manner. We first proposed a method for
determining the globally-optimum spatially adaptive regularization weight based on
dynamic programming. We investigated this weight with a basic minimum-path
segmentation framework. Our findings indicated that the globally-optimum weight is not
necessarily the best weight as perceived by users, and resulted in poorer segmentation
accuracy, particularly for high noise images. We then investigated a more intuitive
approach that adapts the regularization weight based on the underlying local image
characteristics to more properly address noisy and structurally important regions. This
method, which we termed contextual (data-driven) weighting, involved the use of a
robust structural cue to prevent excessive regularization of trusted (i.e. low noise) high

curvature image regions and an edge evidence measure, where both measures are gated
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by a measure of image quality based on the concept of spectral flatness. We incorporated
our proposed regularization weighting into four major segmentation frameworks that
range from discrete to continuous methods: a minimum-path approach [9], Graph Cuts
[14], Active Contours Without Edges [24], and a contextual Mumford-Shah based
approach [38]. Our methods were validated on a variety of natural and medical image
databases and compared against the globally-optimum weight approach and to two
alternate approaches: the best possible (least-error) spatially-fixed regularization weight,
and the most closely related data-driven spatially adaptive regularization method. In
addition, we incorporated existing texture-based contextual cues to demonstrate the

applicability of the data-driven weights.
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Chapter 1

Introduction and
Background

Image segmentation plays a key component in many fields, ranging from medical image
analysis to popular image editing programs. Medical research studies often rely on
accurate and robust segmentation techniques to provide key information about anatomical
shapes. Alternately, image editing software such as the Adobe Photoshop Suite rely on
segmentation methods that accurately capture object boundaries for accurate modification
by users. In all these cases, the images encountered may often be corrupted by noise or
imaging artefacts that often present difficulties to many image segmentation methods. For
these reasons, robust automated image segmentation is a highly sought after goal that

continues to defy solution.



1.1 Motivation and Problem Statement

In medical images, natural and pathological variability as well as noise often
result in unpredictable image and shape features that significantly complicate
segmentation tasks. For example, MR images often contain measurement noise, partial
volume effects, and image nonuniformity due to magnetic field inhomogeneities and
magnetic susceptibility variations in the subject [88]. Furthermore, spatially nonuniform
noise can result from numerous reconstruction and postprocessing techniques on MR
images to correct for intensity inhomogeneity effects [90, 84], and from images obtained
with partially parallel imaging (PPI) techniques [82, 18, 19]. Spatially varying noise
levels can also result from images obtained with decreased acquisition times and high
speedup factors [84]. In addition, regions with missing data or occlusions are commonly
encountered in medical data, such as echo dropouts in ultrasound images that leads to
irregularities along the feature boundary [99]. Other such degradations in medical images
are due to tissue heterogeneity (“graded decomposition” [96]) and patient motion. In
general photography applications, objects containing weak boundaries are quite common
from poorly focused photos or from objects where sections in the image exceed the depth

of field of the camera lens. Figure 1 shows some of these examples.



() (d)

Figure 1: Examples of degradations in medical and natural images. (a) Patient movement during
magnetic resonance (MR) scan [1]. (b) Intensity inhomogeneity in MR volumes from lack of bias field
correction [89]. (c) Occlusions in natural images [75]. (d) Focus issues in natural images [75].

For all these cases, regularization, or smoothing, plays a crucial role in improving
the robustness and accuracy of the resultant segmentations. Through the use of weighted
regularization terms in conjunction with data fidelity terms, images plagued by high
levels of deterioration, i.e. noise or poor edge contrast, are prevented from causing
excessive irregularities and inaccuracies in the resultant segmentation. In order to
increase segmentation robustness and accuracy, more regularization is needed in less
reliable image regions which suffer from greater deterioration. One such example is

shown for the noisy MR scan of a knee in Figure 2(a). A segmentation contour produced



with no regularization is erratic and inaccurate (Figure 2(b)). By including some
smoothing (regularization) term, irregularities caused by the noise are reduced and a more

accurate estimate of the original boundary is formed (Figure 2(c)).

(b)

Figure 2: Example of role of regularization in degraded images. (a) Noisy MR scan of knee. (b)
Contour produced with no smoothing (regularization) term (red). (b) Contour produced with some
level of regularization (green). Regularization removes segmentation irregularities to form a better
estimate of the true object boundary.

However, excessive regularization in regions of the image not plagued by
deterioration can result in less detail and loss of key structures in the final segmentation.
For example, magnetic resonance (MR) images of the brain typically feature highly
detailed structures such as the cortical surface which contain many regions of high
curvature, as shown in Figure 3. Excessive regularization of these high curvature regions

results in segmentations which fail to capture key characteristics of the original object



Figure 3: Example of structurally-important regions with high curvature. Cortical folds in mid-
coronal MR brain scan (BrainWeb T1 image [26]) produce a highly varying object boundary.

Most reported approaches to segmentation keep a uniform level of regularization
across an object contour, i.e. one that does not vary spatially and is determined
empirically. This fixed approach can result in both excessive regularization and
inadequate regularization for a single object depending on the object boundary
variability. Spatially adapting the regularization weights across a segmentation provides
greater control over the segmentation result, allowing it to adapt not only to images with
spatially varying noise levels and edge strength, but also to objects with spatially-varying
shape characteristics, e.g. smooth in some parts and jagged in others. In this thesis, we
advocate the strong need for spatially-adaptive balancing of cost terms in an automated,
robust, data-driven manner to relax the requirement on the user to painstakingly tweak
these parameters. We also demonstrate how the globally optimized approach and fixed

weight approaches are often inadequate for achieving accurate segmentation.



1.2 Energy Minimization Segmentation Methods

Our work focuses on modulating the regularization of energy-minimization
segmentation methods. In this section, we will examine in detail several modern and
popular segmentation approaches ranging from discrete to continuous, and we will

discuss the tradeoff between data fidelity and regularization terms in these methods.

1.2.1 General Framework

The vast majority of existing segmentation methods are predominantly based on
parameter-laden optimization procedures designed to produce "optimal' segmentations at
their minimum. These techniques represent the energy of segmentation as a combination
of smoothing terms and data fidelity terms. The ‘optimum’ segmentation is the
segmentation which represents the minimum energy of all possible segmentations.
Regularization terms are called the internal energy, and data fidelity terms are referred to
as the external energy. A simplified but general form of the cost or energy, E, of a

segmentation, S, of an image, I, is

ESILa,B) = aEin (S) + B Eexe (S (1)

E;,+ 1s the internal energy term contributing to the regularization of the segmentation, and
E,,. is the external energy term contributing to the contour's conformity to desired image

features, e.g. edges. These terms will be discussed in more detail in Section 1.3.

The weights a (referred to as the regularization weight) and f§ in (1) control the

highly sensitive tradeoff between the regularization terms and data fidelity terms. The



resultant segmentations can vary drastically based on how this balance is set. For
example, setting the weight 8 to zero results in the external energy playing no role in the
optimization procedure. Instead, the segmentation which minimizes the internal energy
will be optimal. Similarly, setting a to zero will result in the segmentation that produces
the minimum external energy to be optimal, regardless of whether the external energy
reflects boundary regions or not. A demonstrative example of segmentations from

different settings of the weights is shown in Figure 4.

(a) (b) (©)

Figure 4: Importance of the regularization weight in the segmentation process. (a) Original image of
an obscured-boundary leaf [75]. Segmentations (by a seeded minimum-path approach with seeds
shown in green) produced by (b) a low regularization weight (red) and (c) a high regularization
weight (black). The low regularization weight produces a segmentation with insufficient smoothing in
the obscured boundary region. The high regularization weight fails to capture key regions of the
object boundary.

a and f in (1) are typically set empirically by the users based on their judgment of
how to best balance the requirements for regularization and adherence to image content.
In most cases, this is a very difficult task and the parameters may be unintuitive for a
typical non-technical end user, e.g. a clinician, who lacks knowledge of the underlying
algorithm's inner working. Avoiding the practice of ad-hoc setting of such weights is the

driving motivation for our work here. Addressing the issue of how to best balance



competing cost terms is of great importance to many related algorithmic formulations in
computer vision. More generally, this tradeoff is seen in likelihood versus prior in
Bayesian methods [2] and loss versus penalty in machine learning [106, 105]. The role of

regularization is discussed in more detail in Section 1.4.

A wide variety of energy minimization segmentation methods exist, with each
method differing in the type of energy functional used and in the technique used for
optimizing the functional. In general, these methods can be classified into two groups

based on the type of space the functional is defined on [79, 15]:

1) Functionals defined on a discrete space (discrete set of variables)

2) Functionals defined on a continuous space (continuous contour or surface)

Depending on the type of segmentation method, the segmentation S in (1) can differ in
representation. In addition, segmentation techniques differ in the choice of external and

internal energy terms, as will be discussed in Section 1.3

1.2.2 Discrete Methods

Discrete segmentation methods formulate the problem as a combinatorial
optimization in a finite space Z™ (a finite set of integer-valued variables) [79]. These
methods predominately use a graph-based representation of an image where graph
vertices (nodes) correspond to image pixels. These methods can be further divided into
explicit methods, such as path-based methods [9, 4, 43, 41, 55], where the object

boundary is represented by a path in a graph, and implicit methods, such as graph-cuts



approaches [13, 15, 14] where the segmentation is represented functionally. These

methods can guarantee finding the globally optimal segmentation.

1.2.2.1 Minimum Path

Minimum-path approaches formulate segmentation through modelling the image
as a graph that consists of nodes and edges that link to neighbouring nodes. Image pixels
represent vertices and the links from each pixel to its eight neighbours represent edges. In
these approaches, the segmentation is modelled as a path along the graph consisting of a
set of nodes where each node is connected by an edge to a single ‘forward’ node and a
single ‘backward’ node. The subgraph formed by a closed path along the graph represents
the object or region of interest. Each edge in the graph is given a cost such that the
cumulative cost of the path from a start vertex to a goal vertex is the sum of the
individual cost of each edge along the path. The problem of finding the optimum
segmentation is modelled as a graph-searching problem where the goal is to find the
optimum, or least-cost, path between two vertices. Many segmentation methods, such as
[15, 17, 108, 47], use a graph-based approach to modelling the segmentation problem.
Common examples of minimum path approaches are Amir et al [4], Geiger et al [4],

Falcao et al [41], and Jerymyn and Ishikawa [55].

In particular, one popular minimum-path segmentation approach is Livewire [41,
9] where dynamic programming in conjunction with user supplied seedpoints are used to
find the optimum path on a graph-based representation of the image. Livewire uses the
edges costs of the graph to ensure that the optimum path represents characteristics desired

in the segmentation. Each edge cost, or local cost, is a weighted sum of data fidelity and



regularization terms. The local cost, E;,:q:(p, @), for the directed edge from pixel p to

neighbouring pixel ¢ is as follows:

Erocat(0,9) = wg Eg(q) + wp Ep(p,q) (2)

where a gradient magnitude measure E;(q) acts as a data fidelity term and Ej, (p, q) is the
regularization term that penalizes longer paths (see Section 1.3 for further discussion of
energy terms). The balance between data fidelity and regularization is controlled by the

weights w; and wp which are typically set empirically.

In order to determine the optimum contour, Livewire uses dynamic programming,
which solves optimization tasks by recursively breaking down the tasks into similar but
smaller subtasks which can be solved more easily. In the context of graph-based
segmentation, the globally optimum path between vertices p and g is found by
recursively finding the optimum path for smaller subgraphs. This process is accomplished
by first initializing the vertices with the local cost at that pixel location as determined by
equation (2). The target vertex q is then expanded by summing the cumulative cost of g
into all adjacent vertices, and then summing the cost of those vertices into their
corresponding neighbours. This expansion continuous in order of minimum cumulative
cost and produces a ‘wavefront’ that extends over the graph, as illustrated in Figure 5 . At
the end of this process, the graph is transformed into what is known as a value function
that represents the cost of the globally optimum path from each vertex to the target vertex
q, as illustrated in Figure 6. The optimum path from any vertex, including p, to the goal
vertex can then be determined by a gradient descent. The benefit is that the globally

optimum path from all vertices to the target vertex is now known. This optimization
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procedure has been expanded in recent work to a 3D graph where the optimum path
consists of pixel coordinates and a third ‘scale’ variable [81, 64]. For more information,

refer to Chapter 2 where 3D graph searches are discussed in more detail.
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Figure 5: Diagram of wave-front expansion process in Djikstra’s method. Cumulative cost from
starting node is summed into unvisited neighbours, which are in turn expanded. (Reproduced with
permission from [81])
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Figure 6: Value function in dynamic programming. (a) Original image with target node in red. (b)
Value map formed by Djikstra’s method where intensity values represent cost of optimal path from
any node (pixel) to target node. Costs are lowest along pixels containing strong edge evidence. (c) 3D
value function where z-axis represents cost of the optimal path from any (x, y) location to the target
node. The optimal path is then determined by a gradient descent procedure.

1.2.2.2  Graph Cuts

Another popular graph-based segmentation approach are s-t graph cuts, first

proposed for image segmentation in [17], further expanded in [13, 16, 15, 14], and
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proposed outside the field of image segmentation in [48, 13, 83, 53, 60] . Our work will

incorporate the implementation of graph cuts in [15].

Unlike minimum-path approaches which define the segmentation as a contour
along the object boundary, graph-cuts approaches define the segmentation as a region
where each pixel is represented as a binary variable, either inside or outside the object of

interest. Graph-cuts defines the energy functional for a segmentation as follows:

EG) = ) Mg (huf)) +22 ) Dy(fy) ®

{r.q}en pEP

f € L is the labeling for all pixels p € P where L is the label space and P is the set of
pixels in image I. V, 4 is the pairwise interaction penalty between pixel pairs (i.e. the
penalty of assigning labels f, and f, to pixels p and q), N is the set of interacting pairs of
pixels, and D, measures how well label f, fits pixel p given the observed data. D,, and

|4

bq are discussed in more detail in Section 1.3. From the cost functional, we see that

graph-cuts also involves a tradeoff between regularization and data fidelity through the

weights A4; and A4, in (3).

The optimization procedure consists of generating a labeling through two types of
moves: expansions and swaps, which changes the labels of large numbers of pixels
simultaneously. The method divides the image into nodes, which are the pixels or voxels,
terminal nodes, which consist of a source node and a sink node that represent the
background and object labels, n-links, which are edges connecting neighboring nodes,
and t-links connecting nodes to terminal nodes, where links are assigned a cost based on

the edge. The resulting contour is defined as a ‘cut’ through a subset of n-links,
12



separating the sink node (background) from the source node (object). The cut cost is

defined as the sum of costs from the edges that were cut.

1.2.3 Continuous Methods

Continuous segmentation methods formulate the problem in the continuous space
R® and use a representation of the segmentation that deforms according to external and
internal forces. Additionally, these methods tend to rely on a gradient descent procedure
for optimization. These types of methods are divided into explicit models and implicit
models. Explicit models are based on an explicitly defined parametric curve that is
evolved and deformed, and consist of active contour and snake methods [56, 28, 29, 71,
65]. Implicit models are where the contour is represented as the level-set of a higher-
dimensional scalar function, as seen in [21, 86, 76, 85, 77]. Unlike discrete methods,
continuous methods can only guarantee finding the local minima of the energy functional.
However, continuous methods do have the advantage that pixel connectivity in the final
segmentation is guaranteed. Our work will focus on two such continuous methods that

are both different approximations of the Mumford-Shah segmentation framework

1.2.3.1 Mumford-Shah Model

Mumford and Shah [74] proposed a solution to the problem of image denoising by
dividing an image into a smooth cartoon-like component and a noise component such that
the image is smoothened but object edges are retained. This concept that has been further
analyzed by [12, 44, 78]. To accomplish this, the Mumford-Shah (MS) model was

proposed, where a segmentation consists of a piecewise-smooth approximation, u, of the
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original image, u,, and an edge set, I'. In this formulation, a segmentation has the

following energy:

Eys(w,T) = B fﬂ(u(x, Y) = 1(6,y)) dxdy +a fQ\FIVu(x, V)[2dx

+ length(T) “4)

where 0 € R? is a connected, bounded and open subset that represents the image
domain, I is the original image defined on R, ' c (1 is the edge set segmenting (), u is
the piecewise smooth approximation of I, and @ and f are the scale space parameters of
the model. The first term corresponds to the external energy and penalizes large
differences between u and the original image. The regularization terms include

fQ\FIVulzdx which penalizes large edge sets which would result from more erratic

segmentations, and length(I') which penalizes an excessively large edge set (and a low
smoothened image). The weights a and f§ control the balance of regularization versus

data fidelity.

The original MS model is difficult to minimize due to the unknown representation
of the edge set I'. We will present two different approximations of the MS problem:
contextual Ambrosio and Tortorelli (AT) approximation, and the Active Contours

without Edges (ACWE) approximation.

1.2.3.2  Contextual Ambrosio-Tortorelli MS Approximation

The AT approximation of the MS model simplifies the minimization process by

introducing a smooth edge indicator function v [3], and has been utilized by many other
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segmentation methods [8, 5, 37, 39, 87, 92, 94]. The original model incorporated a
characteristic function yr as the edge indicator. In the AT approximation, the cardinality

of I' is approximated by:

1 , (1-v)? (5)

where p is a parameter set such that as p — 0, v(x) = 0 if x € I'and v(x) = 1 otherwise.

This approximation modifies the MS functional to the following:

(6)
EAT(u' U) = f

Q

(ﬁ(u —D? + a@?|Vul?) + %(prvIz + (1%)2» dx

The AT approximation allows for the partial differential equations (PDEs) that dictate the
segmentation evolution to be decoupled into separate evolution equations for the image

process and edge set function as follows:

ou p ou (7)
- = . 2 _ - _ —
dat vy a (w=10; an|an 0
ov ,  2alVul*v (v—-1) Ov (8)
— =V — - ;= =
ot p p? dnlag

where 0Q) is the boundary of  and n is the unit normal vector to d{1. The AT
approximation adds the additional regularization term p|Vv|? that forces edges to be
smooth. Although the parameters § and a control the data fidelity term and one of the
regularization terms, respectively, p|Vv|%is not modulated by a regularization weight.

From the energy functional, it also difficult to separate regularization of the image
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process and regularization of the edge process. Additionally, it is important to note that
the edge term v itself acts as a weight for the regularization of the image process. From
the term v2Vu, if an edge exists (v =~ 0), no regularization occurs. Thus, we follow the
Erdem and Tari [38] modification of the AT MS model that allows for proper control of
regularization of both the image process and edge process through modifying the

evolution equation for the image process as follows:

S B I ®
E—V ((cv)?Vu) a(u D); anaQ—O

where the constant ¢ controls how strongly the edge term v weights the level of
smoothening in the image process. This segmentation approach is termed the contextual

MS method.

The evolution equations (8) and (9) are simultaneously solved for u and v by the
Finite Differences numerical discretization technique iteratively where u is updated by
the evolution equation while v is kept fixed, and vice versa, and where the iterations are
stopped when the solution is stationary. It is important to note that the contextual MS
approach is automated in that no initial contour or seeds are used to determine u and v at
the initial iterations. Instead, v is initialized as the inverse of the gradient such that
regions with high edge evidence result in v = 0. Additionally, the contextual MS
approach is primarily used for denoising as it produces a cartoon-like version of the
original image. For use as a segmentation method, a binary mask can be formed from

closed contours in the edge set.
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1.2.3.3 Active Contours Without Edges

The active contours without edges (ACWE) segmentation approach, proposed by
Chan and Vese [24, 23, 22, 97], represents a subset of the original MS model. Here, the
original MS segmentation problem is restricted to piecewise constant functions, forming
what is known as the minimal partition problem. The original MS formulation had a data

fidelity term of [,|u(x,y) —I(x,y)|?dxdy. In the ACWE formulation, the image

process is simplified to a binary piecewise constant function as follows:

_ {average([) inside I’ (10)
average(I) outsideT
u is thus represented by two constants, ¢; and c,, which represent the average of the
original image inside and outside, respectively, of the object boundary I'. Essentially,
ACWE is a simplification of the original MS model to only segment for an object and
background and producing a binary image u with the edge set simplified to an active
contour representing the object boundary. As a binary mask is produced, ACWE is
geared more towards the application of segmentation rather than denoising. The ACWE

energy functional is:

E(cy, 3, T) = p Length(T) + v Area(inside(I) (11)

+ A [I(x,y) — c;|?dxdy
inside(T")

+ 2 [I1(x,y) — c;|2dxdy

outside(T)
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where the different external energy weights have been replaced with a single weight A
and the regularization weights are u and v (in practice, v = 0 typically). The weights u
and A form the same tradeoff between data fidelity and regularization that is present in

the other segmentation methods discussed.

To optimize for the energy, the functional is first transferred to a level sets
formulation as follows. The segmentation contour I' C () is represented by the zero level
set of a Lipschitz function ¢; (0 = R where pixels p interior to the zero-level set of ¢ are
labelled as objects and exterior pixels as background. The length and area of the zero
level set of ¢ is determined through the use of the Heaviside function H and the one

dimensional Dirac function §, as follows:

Length(¢ = 0) = fﬂao(qb(x, )V (x, )l dxdy (12)

Area(¢p = 0) = jH((ﬁ(x, y))dxdy (13)
Q
Through the use of H and §,, the energy function is written in level-sets form as follows:

E(cy, ¢ $) = 1 f960(¢(x,y))|v¢>(x.y>|dxdy +v fQH(qb(x,y))dxdy (14
+ 2 16ey) = e PH($Cx,))dxdy

# 2] 16ey) - e (1= H(Ge)) dxdy
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The corresponding Euler-Lagrange equation is derived by minimizing E with respect to
¢. The optimum contour is then determined by gradient descent where the descent
direction parameterized by an artificial time t > 0 is:

oy
ot

A3 as)

IV¢|) =20 = ) + 20 — )| = 0

5 | div (

The finite differences implicit scheme is first used to discretize ¢p. The initial ¢ is then
set by the user as an initial contour. The optimum contour is then determined by
iteratively updating ¢ to determine ¢™*! by adding the evolution equation scaled to a
step size. The process continues until the solution is stationary. Unlike the contextual MS
approach, the ACWE approach is not automated and allows user control through the

initial contour to segment specific objects in an image.
1.3 Energy Terms

We will next discuss the individual external and internal energy terms used in the
segmentation methods of Section 1.2 and how these terms respectively enforce data
fidelity and regularization of the segmentation and capture properties of the object of

interest which is desired in the segmentation.
1.3.1 External Terms

The external energy terms of a segmentation method contribute to data fidelity
and ensuring that the final segmentation does not greatly differ from the original image,

or in some cases, ensuring that the contour is aligned with high edge characteristics of the
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original image. In general, external terms can be divided into two categories: boundary

terms and region terms.

1.3.1.1 Boundary terms

Methods such as Livewire and other minimum-path approaches, where the
segmentation produces a path representing the object boundary, tend to use boundary
terms that penalize paths, or contours, that do not consist of pixels containing high edge
evidence. In the case of the simplified Livewire framework used in this thesis, the key
edge evidence term is:

V1| (16)

Ec=1—————
G max(|VI|)

where the gradient magnitude of the original image I is scaled and inverted using an
inverse linear ramp function such that high image gradient regions correspond to a low
edge energy or cost. This also acts as a first order positioning of the contour. The original
Livewire framework uses additional edge evidence terms such as the Canny edge
evidence measure [20] and the Laplacian of Gaussian second order term [9], but these
were omitted in the simplified representation used here for the purpose of focussing on

the regularization weight balance rather than the segmentation framework itself.

1.3.1.2 Regional terms

The graph cuts segmentation method uses a region based term to reflect how well
the intensity of a pixel p fits into given intensity models that are known a priori. These
intensity models (or histograms) are created from seeds provided from the user

representing the object labels and the background labels. The graph cuts method makes
20



use of a negative log likelihood function to determine the data fidelity region energy Ex

as follows:
Er(obj) = —InPr(l,| 'obj") (17)
Er(bkg) = —InPr(I,| 'bkg")

where the prior probability of a pixel p with intensity I,, belonging to the object label is
determined by an intensity model (histogram) created from the intensities of the object

seed pixels, and similarly for the background label [15, 48].

The contextual MS model uses the least square error between the segmentation

(image process u) and the original image as the data fidelity term as follows:

Ear,,., = jﬂﬁ(u(x,y) —I(x, )’))dedy (18)

where high differences between the smoothened piecewise-constant segmentation and the

original image are assigned a high energy to minimize.

The ACWE simplification of the MS model uses a similar least square error term
as the external energy, but unlike the contextual MS method, the ACWE model simplifies
the segmentation u to a binary image consisting of two constants, ¢; and c,, as follows

(using the level sets formulation):
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EgcwE,y = 4 jQ(I(X; y) — C1)2H(¢(xn y)) dxdy (15)

+ 2 UCey) = e)? (1~ H(g(x))) drdy

where

{cl(qb) = average(I) in {¢p = 0} (20)
c, (@) = average(l) in {¢p < 0}
Large differences between the segmented image and the piecewise constant original

image will be assigned large external energies.
1.3.2 Internal Terms

Internal energy terms, or smoothening/regularization terms, range from simple
penalizations of long contour lengths to terms that enforce shapes or prior knowledge
[10]. Here, we will focus on the terms employed by the segmentation methods introduced

in Section 1.2.

The Livewire framework and the majority of minimum-path segmentation
approaches use a regularization term that penalizes longer and jagged contours through
estimating the contour length. In the Livewire framework, the local regularization cost of

a vertex (pixel) p’s link to neighbouring vertex q is an estimate of the Euclidean distance

to that neighbour: Ep = \/ (P —qx)% + (py - qy)z such that diagonal neighbours incur

a higher regularization cost [81].
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In more general minimum-path frameworks, the internal energy is calculated as
the piecewise length of the contour:

9C(q) 1)

Eint(C(CI)) = | aq

where C is the contour parameterized by some variable g¢q (i.e.,
C(q) = C(x(q),y(q)):[0,1] » Q@ < R? in image I: @ - R?). In addition, active contour
methods, such as the classical snakes method [56], use a second order regularization term

as follows:

a2¢c()|* (22)

2q*

aC(q)
dq

2
[

Eine = a

In the graph cuts formulation, the internal energy uses a penalty term between
neighbouring pixels where a certain penalty is assigned if the pixels are assigned to
different labels, thereby favouring similar groupings between neighbouring pixels. This
term is as follows:

£ = {1 if fr+#fq (23)
nt 0 if fp = fq
where pixels p and q are assigned labels f, and f;, respectively. Typically, the penalty

term is then weighted by a term that has a high penalty when neighbouring pixels with

highly dissimilar intensities are assigned the same label.

In the contextual MS approach, the internal energy consists of two regularization
terms:
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1 24
Eune = a(v?|Vul?) + 2 (ol V0]?) 4

where the first term smoothes the image with a filter radius proportional to the values of

v? and %, which preserves edges during regularization [38, 94, 8, 44]. The second term,

which comes from the AT approximation of the cardinality of the edge set ', enforces

more smooth edges by assigning a high energy to large edge sets.

The ACWE segmentation method uses the length of the level set contour and the

total area within the contour as regularization terms as follows:
Ein: = pu Length{¢p = 0} + v Area{¢p > 0} (25)

— 1 [ (@G )G ldrdy + v [ H(pCx))dxdy
Q Q

which assigns a high energy if the zero level set of ¢ is erratic and long in length, and an
additional high energy if the interior of the contour is excessively large (in practice, the

area regularization term is not used however).

In additional, segmentation methods may have more specific terms designed to
enforce data fidelity. For example, in addition to the standard contour length term, the
classical snakes segmentation method [56] uses a curvature term for regularization, which

will be further discussed in Section 1.5.2.
1.4 Regularization of Image Segmentation Methods

In all the segmentation methods that have been discussed in Section 1.2, a tradeoff

exists between the external and internal energy terms. In this section, we will discuss the
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role the regularization weight plays in this balance and the consequences of inadequate or
excessive regularization. Additionally, we will discuss the traditional methods for setting

this regularization weight.

1.4.1 Role of Regularization

Regularization plays a key role in reducing segmentation inaccuracies that arise from
image degradations and from object boundary behaviour. Noise, ranging from simple
impulse salt-and-pepper noise to complex average white Gaussian noise (AWGN), often
arises in digital images during image acquisition. Often, environmental conditions such as
low light contribute to noise, as well as image sensors, and corruption during image
transfer [46]. The process of removing noise from images can often cause the object of
interest to be degraded. For example, applying a low pass filter to remove the noise will
often weaken the gradient of object edges. For these reasons, segmentation methods often
encounter images that have not had any major noise removal preprocessing performed on
them. The segmentation method must therefore by robust to noise levels. Complicating
matters is the fact that noise is enhanced more than the image signal during edge
detection processes [46, 42]. The end result is that noisy regions contribute high external
energies and skew optimization processes to favour contours that contain these noisy
regions [70]. By either penalizing longer erratic contours, or penalizing segmentations
that differ in intensity or area from the original image object, a sufficient level of
regularization is able to produce more robust segmentations. Unlike noise, weak gradients
contribute to /ow external energy, causing optimization processes to favour contours or

segmentations that contain pixels from stronger gradients in the image, even if these
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strong gradients are located farther from the object of interest. Regularization by either
penalizing the contour length or segmentation area, or the difference in the intensity from
original object to segmentation, produces more accurate results. However, excessive
regularization can remove detailed regions in the object if these are mistaken as noise or
image deteriorations. We will next discuss the consequences of improper setting of the

regularization weight.

1.4.2 Conventional Methods for Setting Regularization

Determining the optimum balance between regularization and adherence to image
content has predominantly been done empirically and in an ad-hoc manner. Most reported
approaches to segmentation keep a uniform level of regularization across an object
contour, i.e. one that does not vary spatially and is determined empirically. All possible
weights are tested, and the weight which produces the least error segmentation is selected
as the best fixed weight. However, compensating for image deteriorations by uniformly
increasing the level of regularization until the most degraded region of the image is
properly regularized may result in excessive smoothing in those regions that do not
require that much regularization. Subsequently, this results in a loss in segmentation
accuracy, particularly for objects with highly curved boundaries. For example, consider
the synthetic example in Figure 7 of an object with highly varying boundary
characteristics, and where the image has been corrupted by AWGN with spatially varying
levels. When the example object is segmented by a simple minimum-path approach
(simplified Livewire) with a low level of regularization, the highly detailed sections of

the object are accurately segmented. However, the sections deteriorated by noise are not
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regularized and thus produce an inaccurate segmentation. Alternately, if the level of
regularization is set high, the structurally important region of the object are excessively

regularized. The result is that neither segmentation weight is suitable for the entire image.

DL

Figure 7: Segmentations on a synthetic image using spatially fixed regularization weights of 0 (green),
0.3 (red), 0.7 (blue), and 0.9 (purple). Lower regularization weights result in erratic contour behavior
in the high noise left region of the image, and higher regularization weights result in poor
segmentation of the high curvature right region of the image.

1.5 Related Work

1.5.1 Spatially Adaptive Regularization

As addressed in Mclntosh and Hamarneh [72], adapting the regularization weights
across a set of images is necessary for addressing the variability present in real image
data. However, although an optimal weight can be found for a single image in a set, that
weight may not be optimal for all regions of that image. In [91], a max-margin approach
is used to learn the optimal parameter setting, but required the use of prior knowledge. In
[60], Kolmogorov et al. characterized the types of energy functional that can be
minimized via graph cuts and solved the optimization problem for a range of parameters
rather than a single regularization weight. In Pluempitiwiriyawej et al. [80], the
weights are changed as the optimization progresses, but in an ad-hoc predetermined
manner. Some form of spatially adaptive regularization over a single image appeared in

Dong et al. [35]. For segmenting an aneurysm, they varied the amount of regularization
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based on the known surface curvature of a pre-segmented vessel. The results
demonstrated improvements due to adaptive regularization. However, the regularization
weights did not rely on the properties of the image itself, which limited the generality of

the method.

The closest related work to ours is by Erdem and Tari [38] who proposed a
regularizer for the MS segmentation framework with feature preserving capabilities
through the use of a contextual feedback. The segmentation method itself was discussed
in Section 1.2.3.2. The framework features a term that modulates the level of
regularization that the edge process v has on the image process u. This term, cv in (9),
depends on contextual cues through two types of feedback: negative feedback for feature
smoothening, where the regularization shifts towards the maximum value of 1 when a cue
measure, kK, is large, and positive feedback for feature preservation, where the
regularization shifts to the minimum value of 0 when k is large. The two forms of

feedback are achieved by

cv=xkv+ (1 -xr)V (26)

where V = 1 for negative feedback, and V = 0 for positive feedback. The purpose of the
two forms of feedback is to adjust the regularization for the edge process and the image
process separately such that certain features, like texture, can be preserved (not
regularized) in the image process, and other features, such as texture edges, can be

eliminated (regularized) in the edge process.

Erdem and Tari focused on four data cues to modulate the regularization: (1) edge

continuity, (2) edge (gradient) consistency, (3) a texture edge measure, and (4) a texture
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region measure. The first cue was designed to create an edge set with linked edges by
regularizing any edges that were not sufficiently linked to neighbouring edges, thus
forming a coherent edge set and providing some level of weak noise detection, primarily
against impulse noise. The level of directional consistency was measured through
determining the angle between gradient direction vectors. The second cue estimated edge
continuity to handle noise and weak edges that may cause breaking up of an edge
contour. Through a support term that measures how many neighbouring pixels have an
edge indicator, a measure of edge formation was calculated. As the edge is determined to
be non-accidental in a region, positive feedback is used so that the diffusivity approaches
0 (feature preservation). The third cue estimated texture edges to prevent texture
gradients from being included as part of the object boundary gradient set. The texture in a
local window is estimated by comparing the similarity between the central patch, p¢, and
patches shifted to the left, right, above, and below, as shown in Figure 8(a). The
similarity metric is the Euclidean distance transform between each shifted patch and the
central patch (which acts as the template), producing the similarity distributions
D;L P, Djown, Déef t and D;ig " If a pixel (x,y) lies in a textured region, the central patch

left
p

will differ from the shifted patches, and thus D;f P will differ from Dgown and D, will
differ from D;ig " as illustrated in Figure 8(b). To verify this difference, the Wilcoxon
Mann-Whitney test [101] (a rank-sum test) is used to produce a p-value where p-values
<« 0.05 indicate a significant difference. Thus the estimate of texture is determined as

follows:

29



T(x,y) =1—exp( -yt (min(p, (x,9), p2(x,7)))) (27)

where yt is a decay rate parameter and p;(x,y) and p,(x,y) represent the p-values
returned from the Wilcoxon Mann-Whitney test between D;f P and Dg"w" and between

Dleft

»  and D;ig " If texture exists around the pixel at (x,y), p;(x,¥) and p,(x, y) will

left
p

be low, indicating a significant difference between D; P and Dg"w" and between D
and D;ight, thus producing a low T(x,y). If the pixel at (x,y) lies in a piecewise
constant region, the shifted patches will not differ from the central patch, and thus the
distributions will not differ from one another, producing high p-values and therefore a
high T'(x, y). We note that this method suffers from mistaking some non-texture edges as

texture since non-texture edges will cause the shifted distributions to slightly differ from

one another.
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Figure 8: Texture cue devised in Erdem and Tari [38]. (a) In a piecewise-constant region of the
image, the similarity distributions between the central patch, p¢, and each of the patches shifted in 4
directions are similar to one another. Thus the p-value produced by the Wilcoxon Mann-Whitney test
on D'®/t and D9t (similarity distributions to patches on the left and right) is high and on D*? and
D% is high. (b) In a textured region of the image, the similarity distributions between p° and each
of the shifted patches differ from one another. Thus the p-value produced by D'/t and D"9"¢ is low,
and by D*? and D°"" is low.

left c right
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The fourth cue, local scale, preserved texture by preventing excessive smoothening in
these regions. Using a patch around a pixel p, the median of the differences between the
gradient magnitude at pixels in the patch and the median of the gradient magnitudes is
determined. Texture regions will have large median gradient difference values (due to
variation in the gradient magnitude in texture regions). This value is then used in an
exponential decay function with a decay rate such that high values of the median
difference results in the diffusivity warping towards 0 so that texture regions have feature
preservation (no smoothening in these regions). After each cue is calculated, the cues are

then combined by simply taking the product of the measures.

Kokkinos et al [59] proposed a spatially adaptive texture estimation measure
through an amplitude/frequency modulation model of images that allows for a
probabilistic discrimination between edges, textured and smooth regions. In [59], a
texture cue, a loosely defined context-based classifier cue, and an intensity cue were used
to distinguish between texture edges and edges between different objects. Only the latter
edges were then used to dampen the curve evolution and define the segmentation
boundary. Gilboa et al [45] presented a graph-cut based segmentation framework with
spatially varying regularization through edge weights in the graph using a gradient
magnitude-based cue. Malik et al [69] proposed the Normalized Cuts segmentation
framework to regularize segmentation in textured regions through the use of local texture
and gradient cues. Their work was also significant for the use of ‘cue gating’, where

gradient information is suppressed in high texture regions through the following:
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0s(x,y) = (1 =T(x,3))0(x,y) (28)

where O(x, y) is the orientation cue (estimate of gradient strength), T (x, y) is the texture
cue, and Og; (x, y) is the gated orientation cue. In addition, we note that the methods of
[80, 35, 69, 38] that use continuous segmentation frameworks only modulate the

regularization term and leave the data fidelity term as is.

1.5.1.1 Deficiencies in Existing Methods

The key problem with the methods described in Section 1.5.1 is that none
consider object structure when controlling the regularization, particularly object
curvature. As demonstrated in Section 1.1, curvature can often play a key role in
distinguishing objects. For example, white matter in MR images has a highly undulating
surface that requires low regularization in regions of high curvature. In addition, no
method has a strong method for estimation of image noise. The method for handling
noise in Erdem and Tari is a weak measure since a noise model is not considered, and
instead a measure is formulated based on the connectivity of edges, which can be easily
disrupted by texture edges and by stronger forms of noise (such as AWGN). One last
problem with the methods of Section 1.5.1 is that each method is tied to a particular
segmentation approach and often requires prior knowledge. Our goal in this thesis is to
seek a more unified approach to adaptive regularization that can be generalized to many
energy minimization segmentation methods with minor modifications to the energy

formulation.

In addition, in Chapter 3, we will show improvements obtained from combining

the texture cue of Erdem and Tari with our proposed data-driven regularization weight.
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1.5.2 Estimation of Curvature

A key section of this thesis (Chapter 3) focuses on a structural measure of object
curvature. Existing curvature methods focus on estimating either the curvature of
segmentation contours, or estimating the curvature of iso-intensity contours in the image
in an attempt to estimate object curvature. Kitchen and Rosenfeld [57] introduced a basic
2D curvature measure for iso-intensity contours in an image (posing the problem as that
of corner detection) which has been used by many others [36, 56, 52]. In [57], the
curvature of a 2D contour C(x,y) was determined by measuring the rate of change

between the gradient angle at a point in the image, 6 = tan_l(Cy, C,) , and the unit

vector perpendicular to the gradient direction, n; = (—sinf,cos8) , to form the

curvature estimate K as follows

08 CyyCZ = 205y CiCy + CorC (29)
- 3/2
on, (cz +c2)

as shown in Figure 9.

Isointensity curve

Tangential circle

Figure 9: Curvature of an isointensity curve measured by the rate of change between the gradient
angle and unit normal vector n, .
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Segmentation methods such as the classical snakes active contour model [56] use this
curvature term as an external energy to attract the segmentation towards high curvature
regions of the image. The method calculates the curvature of the level contours and
assigns a high energy for contours with high curvature. It is important to differentiate this
from weighting the regularization by using the curvature. Instead of adapting how the
regularization changes based on how the curvature changes, these methods instead use a
curvature term in the energy functional such that the optimum contour will have low
curvature if the level of regularization is high (reducing high curvature erratic regions).
The methods do not verify if the high curvature regions are in fact due to noise or due to

structure however.

Cohen et al [27] presented a method to incorporate curvature information into the
motion of deformable objects, and track high curvature points through a time series of
images. The motivation was that high curvature points in an image are anatomically
important and should be matched correctly to the deformable curve. Hermann and Klette
[52] presented a survey of various common 2D curvature estimators using differential
geometry. However, these methods involve knowledge of the entire curve and were not
explicitly based on image intensity information. All methods involved a preprocessing
step where the longest straight line segment at each pixel that is tangent to the curve is

mapped such that the curve is discretized into a series of straight line segments.

Many corner detection methods have been proposed through the use of the
Curvature Scale Space (CSS), first described in [73] and expanded in [49, 103, 107].

These methods used the same basic corner detector as [57, 36, 56, 52], but also
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determined the optimum scale that the curvature should be determined in. Depending on
scale, the resulting curvature can change dramatically. If the goal is to highlight any sharp
point of curvature in the image, the curvature must be determined in all scales. The CSS
methods approached this problem by computing the curvature at the highest scale ap;gp,
thresholding the values to get possible corner candidates, and then tracking the corners to
the lowest scale for localization. These methods suffer from the issue that the detection of
the corner candidates is done in a single scale, g4, and involve the use of a global

threshold to determine candidate corner regions.

Other methods, such as Zhang et al [104] and Awrangjeb et al [6], focus on
detecting corner points, which are defined as point of extreme curvature. However, these
methods do not provide an accurate measure of curvature for non-extreme regions of the
image (i.e., no continuous measure of curvature is provided, only a binary measure)

which is not useful for the purposes in this thesis.

The curvature estimation method most closely aligned to the method proposed in
this paper is that of Lindeberg [68, 67] where a multi-scale approach is used for curvature
detection and where a continuous estimate of curvature is provided for iso-intensity

contours in the image. This method will be outlined in detail in Chapter 3.

1.6 Thesis Contributions

In this thesis, we present two methods for spatially adaptive regularization for
general energy-minimization segmentation frameworks and present validation results on

a variety of current segmentation techniques. We focus on methods that determine the
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regularization in an automated manner without the need for prior information.
Additionally, we focus on using a single regularization weight as opposed to multiple
weights which we leave to future work (see Section 4.2). In particular, we present the

following:

Contribution 1

In Chapter 2, we present a novel method for deriving globally optimal
regularization weights for minimum-path segmentation methods. Through extensive
validation with synthetic, medical, and natural scene datasets, we investigated the
correlation of the corresponding results to human perception. Our results suggested that
global optimums do not always result in ‘correct’ segmentations as determined by
experts. We found the segmentations from globally optimal weights to suffer from
bimodal behaviour of the weights, poor robustness to noise, and poor reflection of
underlying image characteristics, which resulted in large inaccuracies. This contribution

was published in the following work:

Rao, J., Hamarneh, G., Abugharbieh, R.: Adaptive contextual energy parameterization for
automated image segmentation. In: ISVC. Volume 5875-1. (2009) 1089-1100.

Contribution 2

To address the shortcomings of our first contribution, in Chapter 3 we proposed
the novel concept of locally adaptive regularization weights that incorporate both
structure and noise reliability. These contextual weights are the first to adapt
regularization in a manner that seeks to preserve structurally important high curvature

features in images, and to estimate the reliability of image evidence through a novel and
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robust signal-to-noise ratio (SNR) measure. Our work is also the first to propose general
regularization weights that can be incorporated into any energy minimization
segmentation method with minor changes, unlike other methods that tie regularization
weights to a specific segmentation method. In addition, rather than using curvature
measures as internal or external energy, we use these measures to adapt the importance of
any general internal or external energy term in the optimization process. Through
validation using synthetic, medical, and natural scene datasets, we demonstrate how the
contextual weights produce significantly more accurate results than the traditional
approach of least-error spatially-fixed weight, the previously discussed approach of
globally optimal weights, and the existing adaptive regularization weights of Erdem and
Tari [38]. We demonstrate the generality and applicability of the contextual weights by
incorporation into discrete and continuous segmentation frameworks. In addition, we
show how our method can easily incorporate contextual cues proposed in other works,

such as texture cues. This contribution was published in the following works:

Rao, J., Hamarneh, G., Abugharbieh, R.: Adaptive contextual energy parameterization for
automated image segmentation. In: ISVC. Volume 5875-1. (2009) 1089-1100.

Rao, J., Abugharbieh, R., Hamarneh, G.: Adaptive Regularization for Image
Segmentation Using Local Image Curvature Cues. Submitted to: ECCV (2010).

In the concluding Chapter 4, we will discuss limitations and areas of future work

in this thesis.
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Chapter 2

Globally Optimal
Regularization Weights

This chapter first discusses the motivation for determining the globally optimal
regularization weight, and then discusses the implementation of a graph search in 3D
space with references to existing techniques. This is followed by validation on standard
synthetic and real databases, and concludes with an analysis of the performance of the

method and an explanation of the limitations of this method.
2.1 General Framework

A theoretically appealing and intuitive approach for setting the regularization
weight is to determine the globally optimal weight by incorporating the weight into an
optimization process that determines the globally optimal segmentation. One such way to

achieve this is to focus on graph-based minimum-path approaches that allow for
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modification of the graph such that additional dimensions (to optimize along) can be
added. In our work, we will in particular focus on a simple minimum path approach
where we will insert our regularization weight in a convex manner. The problem of
optimizing minimum-path approaches for the path spatial coordinates and a third variable
has been significantly researched in the field of segmentation of tubular structures, and in
particular, anatomical vessel segmentation. One such approach is Li and Yezzi [64] who
optimized for the spatial path and vessel radius variable simultaneously. Additionally,
Wink et al [100] used Djikstra’s algorithm [34] to solve for the globally optimum medial
(centerline of the vessel) path and vessel radius. Most recently, Poon ef al [81] solved for
the optimum vessel radius in conjunction with the median path using a modified version
of Livewire, titled LiveVessel. LiveVessel focused on modifying the local cost term for
vessel segmentation by adding the vessel radius as variable that played a large role in

vessel cost terms.

As discussed in Section 1.2, 2D minimum-path segmentation methods optimize a
path or contour C which consist of nodes p with spatial coordinates (x,y). From each
node p, the path choices are to a neighbouring node q(x’,y"). In [81], the 3D expansion
of the graph search shifts the optimization space to (x,y, scale) by expanding the path
choices from each node p(x,y, scale) to a neighbouring node q(x’,y’, scale") with the
restriction that x # x" and y # y' in order to form a contour with consecutively linked
nodes. Through this method, the globally optimum vessel radius (scale) at each node is

guaranteed along with the globally optimum path.
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In our implementation, we will differ from these methods by using a convex form
of the local cost functional. Our formulation employs energy-minimizing boundary-based
segmentation, where the objective is to find a contour that correctly separates an object
from background. We embed a parametric contour C(q) = C(x(q),y(q)): [0,1] - QcC
R? in image I: O > R. We use a single adaptive weight w(q) € [0,1] that varies over the

length of the contour and re-write (2) as:

E(C(q).w(q)) = ] WDEmC(@) + (1~ w@)Eue(C@)dg )
where
Eexe(C(@)) = 1= [VI(C(q))|/ max|VI(C ()] G1)
penalizes weak boundaries and
@ (32)

Eint(C(Q)) = ‘ aq

penalizes longer and jagged contours.

Our approach for determining the globally optimum regularization weight is to optimize
E in equation (30) for the weight w(q) itself in addition to optimizing the contour. In our
discrete setting, this involves optimizing for C(q) = (x(q),y(q),w(q)). The external
energy term of equation (31) remains the same, but the internal energy term of equation

(32) now represents the length of the contour in the 3D space (x,y,w) where large
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changes in the regularization weight are penalized with a higher internal energy. We will

explain the optimization process next.
2.2 Optimization Process

2.2.1 Djikstra’s Method in 3D

To minimize E with respect to C(q) in (30), we model a 3D graph of dimension
M X N X n,, where the image is of dimension M X N and we discretize the weight into
n,, levels. Each vertex v; represents pixel coordinates and a weight (x,y,w). Graph
edges e;; = (v;,v;) represent vertex connectedness (e.g. 24-connectedness in 3D

graphs). A local cost
cij = Wy Eine (v v)) + (1=w)) Eexe @) (33)

is assigned to each edge e;;, where E;,; (vi, vj) is the Euclidean distances between v; and

js

v;. The contour that minimizes the total energy

4
Etotar = Z Cij (34)

ejjeC

represents the optimal solution for the segmentation. Note that the optimal path C(gq) =
( x(q),y(q), W(q)) cannot pass through the same (x(q), y(q)) for different w, i.e. only a
single weight can be assigned per pixel. Our graph search abides by this simple and
logical constraint. The optimal C(q) and w(q) that globally minimize (30) are calculated

using dynamic programming on this (x, y, w) graph.
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2.2.2 Implementation Details

The 3D graph search is implemented in a similar manner as the 2D graph search

described in Section 1.2.2.1 with the additional dimension contributing to an O(N?)

search process. The key difference is the expansion of a node’s set of neighbouring nodes

from 8 to 8n, where n, is the number of discretized weight levels. In our

implementation, we selected n,, = 11 in the range [0,1] with the distance between

weight levels as [, = 0.1.

1.

Initialize a list of node costs to infinity. Initialize a list of visited nodes to
empty. Initialize a queue of nodes to empty.

Set the initial node (start point) as visited, place it in the node queue, and
assign it a cumulative cost of zero.

Retrieve the node in the queue with the smallest cumulative cost and term this
the current node. Calculate the cumulative cost to each of the current node’s
unvisited neighbours by adding the cost of the edge e;; from current node i to
the neighbour node j to the cumulative cost of the current node i. If this new
cost ¢’; = e;; + ¢; is less than the previously recorded cost, i.e. ¢'; < ¢;, than
the old cost is overwritten with the new cost. Each neighbour is added to the
node queue if it is not already there. Once all neighbours of the current node
has been visited, mark the current node as visited.

Re-sort the node queue such that the node with the lowest cumulative cost is

first out of the queue.
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5. If the node queue is empty (all nodes has been visited), the algorithm is

finished. Otherwise, repeat steps 3 and 4.

The process is illustrated in the flowchart in Figure 10.

Node costs = «
Visited nodes list — empty
Node queue list — empty
Start node —visited
Start node cost — 0

v

Current node — arg ming.sts {node queue}

Expand current node cost to unvisited neighbours if
> cumulative cost less than previous cost
Add neighbours to node queue

Current node — visited

Re-sort node queue based
on costs

Y.

.y

Node costs
represent cost of
optimum path to

start node

Node queue empty

Figure 10: Graph search algorithm using Djikstra’s method.

The minimum-path segmentation method described in Section 1.2.2.1 is an
interactive method since it requires user-entered seedpoints around the boundary of the
object of interest. Since our focus in this thesis is not on user interactivity, we selected
equally spaced seedpoints around the object boundary that were automatically determined
from the ground truth segmentation. The seedpoints consisted of the spatial coordinates
and the regularization weight at that node. The spatial coordinates were determined from
the ground truth contour, and the regularization weight was simply set to 0.5. For each

pair of seedpoints, the minimum-path contour was determined from the 3D graph search.
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We used the same seedpoint set for the globally optimum weight segmentation and for

the least-error fixed weight segmentation for proper comparison of the results.
2.3 Validation and Results

We demonstrate the performance of the globally optimum regularization weights
on a wide range of datasets, including synthetic images, medical datasets, and natural
images. In addition, we validate the method quantitatively using analysis of variance
(ANOVA). All our validation is performed against ground truth segmentation determined

either functionally (for synthetic images) or by manual segmentation by experts.
2.3.1 Performance Criteria

Our measure of error for our synthetic dataset is to compare the vertical (along the
y-axis) distance between the contour and the sinusoidal functional that is used to make
the synthetic image (See Section 2.3.2 for details about how the synthetic dataset is

devised), as follows:
Hp = max |y — Fs(x)| (35)
q(x.y)

where (x, y) are the spatial coordinates of each node q in the contour C(q), and Fg(x) is

the sinusoidal function representing the synthetic image.

Our measure of error for the medical and natural datasets was to form a closed
segmentation mask from the contour produced by the method, and to compare this mask

to the ground truth segmentation by computing the Dice Similarity Coefficient (DSC)
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measure that estimates the agreement in pixel labels between two segmentations as

follows:

(areay N areag) (36)

diceyp =
AB (areay + areag)

where area, represents the binary segmentation mask produced from method A and
areap represents the binary segmentation mask produced from method B. For the
medical and natural datasets, the ground truth segmentation was that produced by manual

tracing.

We benchmarked the globally optimum weights against the conventional method
of determining the least-error (or maximum dice similarity) spatially-fixed regularization

weight. This is accomplished by determining:

Wfixeq = arg Wrg[%ﬁ] dices, s, (37)

where S, is the segmentation produced by the weight w and S; is the ground truth
segmentation. The weight is discretized into 11 levels with a step size of 0.1 between

each level.

We determined the segmentations for 25 trials for each image. This is of
importance for synthetic images where noise was added and thus the noise profile is
determined randomly for each image. We thus generated 25 noise profiles for each image
and determined the segmentation for each image. The error is determined by averaging
the resulting 25 segmentation accuracies. To determine if the globally optimum weights

differ significantly from the least-error fixed weight, we then performed ANOVA over
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the set of 25 segmentation accuracies for each image and analyzed the resulting p-value.
Computationally, the 3D graph search method required less than 7 minutes for a 768 X

576 image when run on a Pentium 4 (3.6GHz) machine using MATLAB code.

2.3.2 Synthetic Data Validation

We first tested the method on a dataset of synthetically produced images. Through
the synthetic images, we tested extreme cases of object boundary variability, noise
variation, edge strength variation, and object curvature variation. We first modelled an
object boundary as a sinusoidal function with spatially-varying frequency to simulate
varying contour smoothness conditions. The images were produced by the functional:

e [(F (38)
F5(t) = Asin (E)

where the sinusoidal is parameterized by t = [C2 7t f,, C27f;] and will vary in frequency
from f, at the start and f; at the end of the contour. A represents the amplitude (set to 2)
and C represents the frequency width (set to 10). We also added spatially-varying (non-
stationary) AWGN patterns of increasing variance. We also spatially varied the gradient
magnitude of the object boundary across each image by applying Gaussian blurring
kernels at different scales in different locations. We created 16 of these synthetic images
carefully designed to cover extreme shape and appearance variations. Two synthetic
images with the resulting segmentations are shown in Figure 11. The contour obtained
using the globally-optimal weights method is shown in green, along with the contour

obtained using the spatially-fixed regularization weight from (37) shown in red.
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Figure 11: Segmentation of synthetic images with decreasing noise variance and decreasing Gaussian
blurring from left to right. (a) Low curvature case, and (b) higher curvature case. Contours
produced by globally optimal weights (green), least-error fixed weight (red), and ground truth
contour (black). Globally optimal weights are 0 over the whole contour, resulting in little difference
between the contours and poor regularization to noise.

In addition, Table 1 presents the modified Hausdorff error measure of (35) for
segmentations produced by both regularization weights for all images. The error values
represent the mean H, for 25 noise realizations for each synthetic image. The least-error
fixed-weight method had a mean error of 12.05 £ 1.6 while the globally optimal weight

method had a mean error of 33.06 + 3.66.
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Table 1: Average error over 25 noise realizations per image produced by least-error fixed weights
and globally optimal weights for synthetic set of data. Segmentations from the globally-optimal
weights have significantly /ess accuracy than segmentations from the least-error fixed weight.
Average p-value < 0.05.

Mean H error over 25 segmentations
Image # | Fixed weights G.0. weights

1 13.02 17.68
2 15.04 45.24
3 8.92 17.4
4 13.8 38.6
5 6.8 7.16
6 12.96 42.2
7 14.4 42.4
8 13.28 40.92
9 11.8 35.72
10 13.04 47.68
11 14.84 40.04
12 6.64 7.92
13 10.62 27.24
14 12.74 41
15 11.92 44.2
16 13.02 33.64

From Figure 11, it is clear that the globally optimal (GO) weights produce a more
erratic segmentation when compared to the least-error fixed weight segmentation.
Although the GO weight is accurate for the noise-free regions of the image, the regions
with high noise have insufficient regularization. The quantitative results in Table 1
confirm that the GO method produced significantly poorer results when compared to do
the least-error fixed weight. We can further analyze the behaviour of the GO weight by

plotting the weights over the contour as shown in Figure 12.
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Figure 12: Profile of globally optimal weights along contour of Figure 11(a). Weights are either 0 or 1
indicating bimodal behaviour.

The weight is significantly bimodal, oscillating between 0 and 1. We will discuss the
difficulties the globally optimum weight has with noise, and the cause of the bimodal

weight behaviour, in Section 2.4.
2.3.3 Medical Data Validation

We also tested the globally optimal weights on various medical datasets validated
with expert ground truth segmentations. We first used a dataset of sagittal slices from MR
scans of the brain taken for 52 subjects. The focus of these images are on the corpus
callosum (CC) structure. Segmentation of the boundary of the CC is difficult due to the

weak edge separating the CC from the fornix, as labelled in Figure 13(a).
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Figure 13: Segmentation of corpus callosum (CC) structure from sagittal MR slice. (a) Original
image showing the weak delineation of the CC and fornix structures as labeled. (b) Resulting
segmentation from globally-optimal weights with contour colour indicating weight level according to
the labeled colormap, and with ground truth shown as dashed black contour. The bimodal behavior
of the weights leads poor segmentation of the weak edge boundary.

The fornix section requires a high regularization weight to allow the contour to cut
through the weak gradient rather than following the strong gradient of the fornix itself.
However, the regularization weight must be low in order to accurately segment the sharp
corners on both sides of the CC structure. Figure 13(b) demonstrates the performance of
the globally optimum weight segmentation on one such CC image from this dataset using
the colour mapping as shown where blue corresponds to a weight of 0 and red
corresponds to a weight of 1. The globally optimal weights produced a poor
segmentation, particularly due to the bimodal behaviour of the weights. Note how the
contour obtained using globally optimal weights exhibits an optimal, yet undesirable,
bimodal behaviour (either blue or red in Figure 13(b)) completely favouring only one of

the terms at a time.

In addition, we tested the method on a synthetic dataset of MR brain scans taken
with various modalities from the BrainWeb database [26, 63, 62, 31]. In particular,

spatially varying noise can be created with this dataset by adjusting the noise level and
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intensity inhomogeneity level. The segmentation of the white matter using the T1
modality is shown in Figure 14. These cases present a difficult scenario since the images
contain weak edge strengths, highly varying object boundaries, and varying noise and
intensity levels. The contour from the globally optimal weights, shown in cyan, is
attracted to the strong edge boundary between the grey matter and cerebral fluid region
rather than the weak edge boundary between the white matter and grey matter. The
spatially-fixed weight produces a contour with excessive regularization that fails to

capture cortical folds.

(b)

Figure 14: Segmentation of cortical boundary. (a) BrainWeb T1 mid-volume coronal slice with 9%
noise. (b) Contours from globally optimal weights (cyan), least-error fixed weight (red), and ground
truth (black). Globally optimal weights result in contour attraction to the strong edge between grey
matter and cerebral fluid region rather than edge between white matter and grey matter. Fixed
weight contour has excessive regularization in high curvature regions.

In Figure 15, we present the DSC of segmentations from the globally optimal
weight and the spatially-fixed weight on images from the BrainWeb dataset using T1, T2,

and proton density (PD) modalities with increasing noise levels (where segmentations
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were determined for 25 noise realizations per noise level). As with the synthetic images,
we averaged the DS over 25 segmentations for each image in each dataset. In the low
noise cases, the globally optimum weight and the spatially-fixed weight produce accurate
segmentations. However, as the level of noise increases, the segmentation accuracy

degrades due excessive or inadequate regularization by both methods.
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Figure 15: Dice similarity coefficient (DSC) of segmentations from globally-optimal weights (GO)
and least-error fixed weights for segmentation of white matter in coronal BrainWeb slices using the
(a) T1 modality, (2) T2 modality, and (3) PD modality. As the level of noise in the slices increases, the
globally optimal weights perform poorer that the least-error fixed weights due to low regularization
(from noise mistaken as high external energy). DSC values are averaged from segmentations of 25
noise realizations per noise level.

Our findings indicated poor performance by the globally optimal weights. Further
qualitative and quantitative performance evaluation of the GO weights, in comparison

with the data-driven weights (discussed in Chapter 3), are provided in Section 3.8.
2.3.4 Natural Scene Data Validation

We also tested the globally optimal weights on images of natural scenes from the
following datasets: the McGill Calibrated Colour Image Database [75], the PASCAL
object recognition database [40], and through the ImageNet database [32, 33] and

validated through manual segmentations.
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We first present the segmentation results on natural flower and leaf images taken
from [75]. These images present a segmentation challenge because of the highly varying
curvature properties of the object, and from the varying edge strength and occlusions
from the background. Figure 16 presents segmentation results from a leaf obscured by
water, and Figure 17 presents results from a flower with a highly varying object
boundary. In both cases, the globally optimum method performs poorly due to inadequate
regularization in regions of weak edge boundaries. The bimodal behaviour of the weights
results in predominately zero levels of regularization, unlike the least-error spatially fixed

weight which formed a more accurate segmentation using Wy;yeq = 0.4 for Figure 16 and

Wrixeqa = 0.3 for Figure 17.

(b)

Figure 16: Segmentation of leaf image from McGill database [75]. (a) Original image, and (b)
contours produced by globally optimal weights (cyan) and least-error fixed weights (red). Globally
optimal weight is predominately 0 and produces segmentation with low regularization in regions of
leaf submerged by water. Fixed weight cannot accurately segment the top tip of the leaf.
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(b)

Figure 17: Segmentation of flower image from McGill database. (a) Original image, and (b) contours
produced by globally optimal weights (cyan) and least-error fixed weights (red). Inadequate
regularization by both methods results in oversegmentation and leakage into the background.

Figure 18 presents the quantitative results from images taken from the McGill,
PASCAL, and ImageNet databases. As with the previous examples, the DSC represents
the average over 25 segmentations for each image where each segmentation is produced
from different seed placements (all equally spaced over the object boundary). Additional
qualitative and quantitative results produced by the globally-optimal weights are
presented in Section 3.8 and compared to the data-driven weights proposed in the next

chapter.
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Figure 18: DSC of segmentations from least-error fixed weights (F) and globally-optimal weights
(GO) on (a) 8 images from ImageNet database, (b) 11 images from PASCAL database, and (c) 24
images from McGill database. Average error over dataset (and over 25 segmentations for each
image) was F = 0.9188, GO = 0.8629 for (a), F = 0.9241, GO =0.8782 for (b), and F = 0.9402, GO =
0.9024 for (c). All p-values < 0.05. Globally optimal weights produce segmentations significantly less
accurate than the least-error fixed weight method.

2.4 Deficiencies in Globally Optimum Weight Model

From the performance of the globally optimum method on the wide variety of
datasets, we can conclude that the globally optimum weight segmentation produces

poorer results than the spatially-fixed weight segmentation.

The results highlight the three main drawbacks to this globally optimum (in
(x,y,w)) method: (i) it encourages a bimodal behavior of the regularization weight; (ii) it
does not explicitly encode image characteristics; and (iii) it combines the weight and

segmentation optimization into one process, thus reducing the generality of the method.

The first drawback, that the weights are bimodal, means that the weights either
take on the extreme values of wg;y = 0 or w;p = 1 but no value in between. This
bimodal behavior stems from optimizing (30) when E;,;(q) > E,,:(q) and vise versa. In

particular, we observe that the following occurs:
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0 Eint(q) > Eext(Q) (39)

W@ ={] B

A simple proof of the bimodal behavior of the optimal weight is as follows: If the total
energy is represented as in (30) with the adaptive weight w(q) € [0,1], we can rewrite

the total energy as

where we assume energies E; € [0,1]and E, € [0,1]. Determining the optimum energy
by gradient descent/ascent is done by first determining the rate of change of (40) with
respect to the adaptive weight, and determining maximum/minimum regions of zero rate

of change as follows:

S—VEV=E1—E2=0 (41)

If E; > E,, the slope is positive and the minimum will occur when w = 0. Alternately, if
E; < E,, the slope is negative and the minimum will occur when w = 1. Thus, regardless
of the difference between E; and E,, the optimal weight will always be bimodal, either 0
or 1. Although large changes in the weight are penalized with a higher internal energy,
the resulting behavior is still predominately bimodal since the weight shifts from 0 to 1 in

a few steps rather than in a single step (i.e., from 0 to 0.5 to 1) which results in a lower

internal energy per step.

Bimodal weights cannot address the levels of regularization required in images.
From the results in Section 2.3, the least-error spatially fixed weight was always a value

between, but not including, 0 and 1. Extreme values of regularization weights mean that
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the resulting segmentation will either have the full level of regularization, which is a
straight line in the case of minimum-path boundary based methods, or have no
regularization, which means that the optimal contour will contain any edge evidence in
the vicinity of the seedpoints. This lack of regularization results in extremely poor results
for images containing regions of high external energy that do not correspond to the object
boundary; in particular, for noisy images and for images containing occlusions and weak

object edges.

The bimodality of the weights leads to the second drawback of this method: the
weights have no relationship to the underlying image characteristics. Even though
regularization is essential in regions of high image deterioration, the globally optimal
weights method has no way of differentiating between non-noisy, or ‘reliable’/trusted,
external energy, and unreliably external energy. The result is that high noise is confused
as strong edge evidence through the external energy measure, resulting in Eqy¢ < Ejpe,
which forces the globally optimal weight to 0. Essentially, the globally optimal weight is
not necessary the ‘correct’ weight as determined by the user and as determined by the
ground truth segmentation. In addition, the globally optimal weight does not encode
structural information about the object of interest and does not adapt the regularization
weight in accordance to regions of higher curvature or texture. This problem is likely due
to deficiencies in the optimization function where the energy functional does not
accurately represent the problem to be solved. The inclusion of additional energy terms
specifically designed for each image segmentation problem could provide globally
optimal weights that reflect correct segmentations. However, this reduces the generality

of the segmentation method, and may require energy functionals with multiple
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regularization weights, which is outside the scope of this thesis and is left to future work,

as discussed in Section 4.2.

The final drawback of the globally optimal weight is that the minimum-path 3D
graph search process used to determine the weight is intrinsically combined with the
segmentation process. This combination of the weight and segmentation optimization into
one process reduces the generality of the method since finding the globally optimal
weights for other segmentation frameworks would require significant changes to the

energy minimization process.

In conclusion, even though optimal with respect to E in (30), the solution proposed in
this chapter is incorrect and, as we later demonstrate, inferior to the spatially adaptive
balancing of energy cost terms based on deriving a relationship between the weights and

image characteristics, as discussed next in Chapter 3.
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Chapter 3

Data-driven
Regularization Weights

In this chapter, we discuss our approach for spatially adapting the regularization
weights based on underlying image characteristics that are measured through a series of
contextual cues, which we term ‘data-driven’ regularization. We will first discuss the
general framework of the method and how each of the data cues are determined. We will
then analyze the limits and performance of each data cue before presenting the validation
results on a wide variety of synthetic, natural, and medical datasets. We will demonstrate
the generality of the method by incorporating the weights into four popular segmentation

methods.
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3.1 Overview of method

Our results from Chapter 2 motivated us to devise a relationship between the
regularization weights and the underlying image characteristics. We found that the
regularization weights need to vary in a manner that respects trusted edge and structurally
important regions but disregards regions of high image deterioration. In particular, we
will focus on three such measures: estimating the level of noise in the image, the level of
trusted edge evidence, and the level of trusted curvature. We will incorporate concepts
from cue gating, and we will later present results from incorporating existing data cues to

show how our method is able to fit into existing techniques.

We first discuss how regularization should behave under different image
characteristic conditions. For noise conditions, regularization should be increased to
prevent erratic segmentation behaviour. However, regions of high curvature that
correspond to object boundaries should have low regularization to allow the segmentation
to capture important structural details. In addition, regions with low edge strength that
belong to the object boundary should have high regularization again. Boundary regions
with high texture should have high regularization to prevent these texture edges from
being included as the contour itself. In each case, we must make sure that the edge,
curvature, and texture measure that we devise is a ‘trusted’ measure; i.c. these measures
should be noise-free, which we can accomplish by using the noise measure to gate these

measures.
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3.2 Noise Evidence Cue

In audio signal processing and compression applications, spectral flatness (SF) is
a well known Fourier domain measure used to estimate noise [54, 93]. SF exploits the
property that white noise exhibits similar power levels in all spectral bands and thus
results in a flat power spectrum, whereas uncorrupted signals have power concentrated in
certain spectral bands and thus result in a more impulse-like power spectrum [46]. This

is shown in Figure 19 for two 1D signals, one clean (Figure 19(a)) and one noisy (Figure

19(c)).
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Figure 19: Spectral behavior of 1D signals. (a) Clean signal in spatial domain and (b) corresponding
impulse-like behavior in spectral domain. (c) Noisy signal in spatial domain and (d) corresponding
flatness in spectral domain. Noisy signals can be identified by examining flatness in the spectral
domain.
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The original SF measure in audio processing is as follows:

exp (% f_nn InS;p (a))da)) (42)

1
2 ffn Sip(w)dw

Nip(x) =

where S;p(w) = |F;p(w)|? is the power spectrum of the signal (where F;p(w) are the
Fourier coordinates of the signal), and w is the frequency. The measure N;p essentially
compares the ratio between the geometric mean (numerator of (42)) and the arithmetic
mean (denominator of (42)), and is a general measure of flatness. If the Fourier spectrum
contains an impulse, meaning that the spatial-domain signal is clean, the arithmetic mean
will be much larger than the geometric mean, and N;p — 0. If the original signal is
noisy, the Fourier spectrum will be flat, and the arithmetic mean will be very similar to

the geometric mean, resulting in N;p — 1.

Assuming additive white noise, uncorrelated between pixels, we extend the SF

measure to 2D and estimate the spatially-varying noise levels N(x, y) as

L 4
NGey) = oF (g S 7 0 S (03, 0y ) deoyd oy ) (43)
xX,y) = 1
A2 f_nn f_nn Sy (wy, wy)dwxdwy
where Sy (wy, @y) = [F(wy, a)y)|2 is the 2D power spectrum of a local window in the

image, Fy, (a)x, a)y) is the Fourier spectrum of the image window and (a)x, a)y) are the
two spatial radian frequencies. As with the 1D SF measure, N(x,y) € [0,1] where
N(x,y) = 0 corresponds to low noise regions and N(x,y) = 1 corresponds to high noise

regions. This noise measure responds best to white noise-like patterns (i.e. occupying a
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very wide and flat spectrum) which are typically the most difficult type of noise.
However we note that this method cannot address speckle noise (multiplicative Gaussian
noise). We estimate the local noise level by determining N(x,y) using local windows
around each pixel and using those windows to calculate the Fourier spectrum. Figure
20(a) shows a synthetic image with added AWGN with increasing variance from right to
left, and Figure 20(b) shows the resulting measure N(x,y). As the noise variance
decreases, the noise measure decreases in accordance. In addition, the noise measure is

lower for the region representing the object edge.

(b)

Figure 20: (a) Synthetic image with AWGN increasing in variance from left to right, and (b) resulting
noise measure N(x,y) where black intensities correspond to a measure of 0 and white intensities to a
measure of 1. The noise measure is high for the high noise regions of the image without mistaking
edges as noise.

One of the benefits of the SF measure is its consistency and robustness to changes
in the image edge strength. To demonstrate this, we use the simple synthetic image of
Figure 21(a) and determine the mean local spectral flatness over the image versus
increasing variances of added noise (Figure 21(b)). We compare the profile of SF versus
noise variance for the image of Figure 21(a) with different levels of Gaussian smoothing.
As we decrease the edge strength in the image, the profile of the mean estimated noise
level over the noise variance remains the same. This allows the estimation of the noise to

remain decoupled from the estimation of edge strength.
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Figure 21: (a) Original synthetic image. (b) Average local spectral flatness versus variance of added
AWGN for image in (a) with various levels of Gaussian blurring. As the edge strength weakens, the
spectral flatness remains approximately constant, demonstrating how the noise detection is not
affected by the edge strength.

The Fourier spectrum for each window region is determined through the fast
Fourier transform (FFT). The size of the window for estimating the local spectral flatness
plays a role in the quality of the resulting noise estimate. When using a smaller sized
window, some correlation may exist between noise pixels, resulting in lowered flatness in
the spectral domain and a resulting inaccurate lower noise estimate. Alternately, using a
larger window size reduces the local nature of the measure. This dilemma is due to the
dependence of noise on the scale of the image. As a tradeoff, we selected a window size
of 15 x 15. In addition, we note that we have targeted AWGN in our measure as it
represents one of the more difficult noise types to filter for in pre-processing steps and
thus must be considered in images used for segmentation. Additional noise models will

be considered in the future, as discussed in Section 4.2.
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3.3 Edge Evidence Cue
We estimate the edge evidence in the image by using the measure:
G (x,y) = max(|VL(x, )|, |V, (x,9)]) (44)

where VI, (x,y) and VI, (x, y) represent the x and y components of the image gradient.
We chose this measure rather than the standard gradient magnitude for its rotational
invariance in the discrete domain. With the typical gradient magnitude measure

|VI| = \/VIZ + VI, the result if VI, = 1 and VI,, = 1is |VI| = V2 instead of |VI| = 1.
3.4 Reliability Measure Formulation

The edge evidence cue of (44) can be highly unreliable if the image is deteriorated
by noise. Therefore, we use the noise measure N(x,y) of Section 3.2 to ‘gate’ the cue
such that gradient information is suppressed in high noise regions. This concept of cue
gating was first proposed in Malik et al [69] for the purposes of suppressing gradient
information in high texture regions (described in further detail in Section 1.5.1). With this

noise-gating, our edge evidence cue is as follows,

Ec(x,y) =(1-N(xy))G(x,y) (45)

where E;(x,y) € [0,1]. We term this noise-gated edge evidence cue as the image

reliability as it represents how reliable an edge is.
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3.5 Curvature Cue

We will next discuss how we estimate the level of curvature of the object

boundary through a measure termed the curvature cue.

3.5.1 Curvature Formulation

We determine the curvature by a method similar to that of Section 1.5.2 [57, 36]. Let

I(x,y; 0) be a smoothened image such that

I(x,y;0) = G;(x,y) * I;(x,y) (46)

where I;(x,y) is the original image and o is the Gaussian scale parameter. The unit
vector tangent to the isointensity contour, C;(x,y; o) passing through a point (x,y) is

given as:

t(x,y;0) =

1 [ L5 (x, ) l (47)
\/Iyg,o(x' y) + 132,'0()6, }I) _Ix,cr(x: y)

where I, ; and I, ; are the image derivatives along x and y, respectively, at scale o.

Denoting the Hessian matrix of I(x, y; o) by H,(x, y)as follows

Ixx,cr (x' Y) Ixy,a(xr y) (48)

H_ (x,y) =
=N Gy 1y Coy)

the local image curvature K (x, y; ) can be calculated as:
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[tTH t| (49)
V2, +12,06,y)

K(x,y;0) =

Note that the absolute value of K(x,y; o) is used since we are not concerned with

differentiating between convex and concave curvature. (49) expands to

Ijzz,cr]xx,cr - le,aly,alxy,a + IJ%,aIyy,a (50)

K(x,y;0) =
(12, + 13,(,)3/ g

We follow the method in [67] where K (x, y; 0) is enhanced to have a stronger response
near edges by multiplication with the gradient magnitude raised to some power, which we

chose as 2. The edge enhanced curvature is then

I;,alxx,o - le,aly,alxy,a + I%,alyy,a (51)

,/1,%,,, + Iyz,(,

K(x,y;0) =

3.5.2 Normalized Rescaled Curvature

The selection of the Gaussian kernel size g, also referred to as the scale of the
image, when smoothening the image in (46) plays a role in determining what sized
structures in the image we will obtain meaningful curvature values for. Generally, larger
structures will have meaningful curvature values when the original image is smoothened
by a larger Gaussian kernel, and vice versa for smaller structures. However, curvature
values cannot be compared across scales since the amplitude of the image spatial
derivatives decreases with increasing scale. Thus, to compare curvature values across
different scales, the curvature must be scale normalized, which is accomplished through

the normalized scale coordinates of [67]. Once the normalized rescaled curvature, K, om,
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is determined, Lindeberg approaches automated scale space selection by selecting scales

at which the normalized rescaled curvature assumes maximum values.

K, orm 18 determined through scale-normalized coordinates, &, where
x
$ 75
and where the normalized derivative operators for these coordinates are
65 = g0,,
0 = 020,.
We substitute the scale normalized coordinates into (51) as follows:

Enorm (x, Y, o)

(Uly,a)z(azlxx.o) - Z(UIx.o)(UIy.o)(azlxy,a) + (le.a)z(azlyy.a)

J(o10) + (01,0’

0-4(13%,0'19696,0' - le,aly,alxy,a + I)%,alyy,a)

o2, + 154

which can be simplified as:

Enorm(x: y;0) =03 ]?(X, y; 0).

(52)

(53)

(54)

(55)

After the curvature values at each scale have been normalized, the final curvature cue at

every pixel is determined by selecting the scale at which K,y assumes a maximum

value as follows:
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Kn(x,y) = max Knorm(x,;0) . (56)

3.5.3 Noise-Gated Curvature

Although robust to signal variations, the curvature measure K, (x,y) is sensitive
to noise and might inaccurately give rise to a strong response at non-structure, high-noise
regions of the image. Following the concept of cue gating, as we have previously used to
gate the edge evidence cue in Section 3.4, we define a noise-gated curvature cue,

K;(x,y), that suppresses our curvature cue in high noise regions as follows:

Ko(x,y) = (1 — N(x,y)) Ko (x, 7). (57)

We demonstrate the curvature cue on a series of synthetic images shown in Figure 22.
Figure 22(a) to (c) are synthetic images of objects with high curvature shapes, and Figure
22(d) to (f) are the resultant K;(x,y) measures. The spiral image of Figure 22(b) results
in increased detected curvature towards the center region (Figure 22(e)), and the noisy

regions of Figure 22(c) do not disrupt the curvature measure (Figure 22(f)).
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(c)

®
Figure 22: (a), (b), (¢) Synthetic images and (d), (e), (f) resulting gated curvature measure K;(x,y)
where black regions correspond to a measure output of 0 and white regions to 1. In the spiral of (b),

the curvature measure increases towards the center. In the noisy image of (c), the resulting gated-
curvature is high for the extremities of the shape only.

(d) (e)

In addition, we demonstrate the need for noise gating on the synthetic image of Figure
23(a) which has added AWGN of variance 0.4. Figure 23(b) shows the non-gated
curvature cue which poorly reflects the actual object curvature and is falsely high for
noise regions. The noise-gated curvature in Figure 23(c) removes the false positives and

enforces higher regularization for the non-edge regions.
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(a) (b)

Figure 23: (a) Original synthetic image with AWGN of variance 0.4. (b) Curvature cue K, (x,y)
(without noise gating) where intensities of 1 correspond to high curvature and intensities of 0
correspond to low curvature. High noise regions are incorrectly detected as high curvature levels. (c)
Noise-gated curvature cue K;(x, y) where the sharp corners of the triangle are assigned the highest
curvature and noisy regions are disregarded.

3.6 Data-Driven Regularization Weight Formulation

We next discuss how the data cues are combined and mapped to the regularization

weight such that the weight behaves as discussed in Section 3.1.

3.6.1 Cue Combination and Mapping to Weight

To combine our noise-gated local image cues in a meaningful way, we define a
mapping of those cues into our single adaptive weight, w(x,y), that satisfies the
following requirements: (1) In high trusted (noise-gated) edge evidence, little
regularization is needed, regardless of the curvature strength. (2) In regions with low edge
evidence, we set the regularization to be inversely proportional to the trusted (noise-
gated) curvature such that high curvature regions are not overly regularized. Note that
“high' curvature or edge evidence means a value close to 1 as all our cues are normalized.

Thus we form the adaptive weight as follows:
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wixy) = 1 — Eg(x,y)rell—K&e») (58)

If E;(x,y) is large (approaching maximum value of 1), the exponent has little effect on
the resulting weight, and requirements (1) is satisfied. If E;(x,y) is low and K;(x,y) is
non-zero, the noise-gated edge evidence will be raised to a power (1 — K (x, y)) ~ 0,
resulting in a lower w(x, y), satisfying requirement (2). Note that the detrimental effects

from noise are handled by this model through the noise-gating of the cues. We refer to

E¢;(x, y)ye(1 - K§*Gxy) as the curvature-modulated image reliability measure. We include
the parameters y, and y, to allow minor adjustments of how strongly the edge evidence
and curvature term should affect the regularization weight. We stress that these
parameters are to allow for user tweaking and are set to a constant value over the image

(i.e., the weights still vary spatially in an automated manner).

Figure 24(a) shows a surface plot of the regularization weight w(E¢, K;) as
E;(x,y) and K;(x,y) vary from 0 tol, and where the parameters y, = 1 and y, = 1. As
both of the cues increase, the regularization weight decreases since the local region of the
image is considered more ‘reliable’ and regularization is not needed. However, as the
cues decrease, the regularization weight increases since the edge evidence is no longer
present or is not trusted (i.e. high noise is present). In addition, Figure 24(b) to (d) shows
w(E;, K;) for parameters settings of (y,,y.) = (0.8,04) , (v.,v.) =(1,0.2), and
(Ye, ¥e) = (0.2,1), respectively. The parameters change the level of concavity of the

function, and the maximum weight produced.
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(c) (d)

Figure 24: Surface plot of w(E;, K;) based on the gated edge evidence (E;) and gated curvature cue
(K¢), and on different selections of the parameters Y, and y.. (a) Y. = 1, ¥, = 1. (b) Default setting
Ye=087v.=04.0)Y.=1,7Y.=0.2, (d) Y. =0.2,y, = 1. The parameters change the level of
concavity of the function and the maximum weight produced

We demonstrate the cues and resulting weight measure for two synthetic images
with a sinusoidal varying boundary (produced by (38) in Section 2.3.2), spatially varying
AWGN and Gaussian smoothening with spatially varying kernel sizes, as shown in
Figure 25(a) and (b). The resulting measures (Figure 25(c) to (j)) demonstrate robustness
to noise and a final weighting that regularizes high noise regions but lower regularization

in high curvature and strong trusted edge regions.
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Figure 25: (a), (b) Synthetic images with varying characteristics. (c), (d) Noise measure N(x,y). (e),
(f) Noise-gated edge cue E;(x,y). (g), (f) Noise-gated curvature cue K;(x,y). (i), (f) Reliability
weight w(x, y). Black intensities correspond to measures of 0 and white intensities to 1. The left
column image has spatially varying noise and blurring (increasing from right to left) and with
changing boundary smoothness (smooth on the left and jagged on the right). The right column image
has higher curvature and noise levels. The results confirms the desired behavior of the reliability
measure.

3.6.2 Incorporation of Texture and Additional Cues

In many natural images, large gradients and large curvature values can arise from
texture edges rather than from edges representing object boundaries. To prevent texture

edges from being included in the final edge set of the image, we must ensure greater
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regularization occurs in textured regions. We employ a texture measure from Erdem and
Tari [38] that estimates the probability of a pixel being near a texture edge, discussed in

Section 1.5.1 and shown again here for clarity:

T(x,y) =1—exp( -yt (min(p; (x,9),p2(x,7)))) (59)

We incorporate the texture cue into our framework by modifying E; in (45) to form the

texture-gated and noise-gated edge evidence term as follows:

Ecr(x,y) = T(x,y)(1 — N(x,) IVI(x,y)l. (60)

Incorporating E; r with our spatially adaptive weight produces the texture-dependent

regularization weight, w,(x, y), as follows:

we(x,y) = 1 — Eg?T (x, y)(l —K};’C(x,y))' (61)

In addition to texture, any other data cue can be combined into our regularization

framework through multiplication into the gated edge evidence term of (60).

3.7 Incorporation of Regularization Weights into Segmentation

Frameworks

The regularization weight mapping of (58) produces a 2D map of weights over the
image. This weight map can be input into any energy minimization segmentation
framework with only minor modifications to allow for convex adaptive weighting. To
demonstrate this, we will now incorporate the data-driven regularization weight of (58)

into four existing segmentation frameworks with minor changes to the energy functional.
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3.7.1 Minimum-path Frameworks

We incorporate the data-driven regularization weight into a basic minimum-path

framework that was described in Section 2.1 and repeated here as:

! (62)
E(C@w@) = | wi@EnC) + (1= w@) Eure(C@)da
The external energy is the same as in Section 2.1, however the internal energy now
reflects the length of the contour in the 2D space (x,y). The optimization process is
through a 2D graph search using Djikstra’s method as described in Section 1.2.2.1. By
using this framework, we are able to first test the data-driven weight against the globally

optimal weight for validation.
3.7.2 Graph Cuts

We incorporated our adaptive weights, w(p), into a graph cuts (GC) based

segmentation process [7, 17]. The segmentation energy in this case becomes:

B = ) wdEm(fyfi) + ) (1= w)Eeue(fy) (©

pP.qEN pPEP

where f € L is the labelling for all pixels p € P, where L is the space of all possible
labellings, and P is the set of pixels in image I. E;;+ is the interaction penalty between
pixel pairs (i.e. the penalty of assigning labels f, and f; to pixels p and q), E¢x
measures how well label f,, fits pixel p given the observed data, and N is the set of

interacting pairs of pixels. Refer to Section 1.3 for more details about E};,; and E,,;.

76



3.7.3 Active Contours without Edges

We next present the ACWE segmentation framework with spatially adaptive
regularization. Although we have used a convex weighting scheme in the discrete
segmentation frameworks, we will only weight the regularization term itself for the
continuous frameworks. This follows the formulation used by the majority of existing
spatially adaptive regularization methods for continuous frameworks [38, 80, 35, 69]. We
found through testing that a convex weighting results in impedance of curve evolution
when the external terms are weighted to zero. However we will leave the analysis of
curve evolution and curve stalling in level sets to future work (Section 4.2). We modified
(14) in Section 1.2.3.3 to incorporate spatially adaptive regularization by replacing u with

an adaptive weight, as follows:

E(¢(x,y)) = fn w18 (600 ) [V (x, ) dx dy 64)

+ [ 1ew - al Hpw )
Q
+11G0y) = cl? (1 H($(x,3))) dxdy

where the segmentation is represented here via a Lipschitz function, ¢(x,y): Q — R,
where pixels p interior to the zero-level set of ¢p(x, y) are labelled as objects and exterior

pixels as background. Also note that we use the notation

(65)
moci= (2] +(28)"
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We determine ¢ (x, y) that minimizes (64) by using the Euler-Lagrange equation to solve

the gradient descent PDE:

o O oL d oL d aL] (66)

a9y |0p dxdg, dyode,

where
L = w(xy)8(p(x, )V (x, y)l (67)

+100y) = e PH($G ) + 160y) - ol (1 - H(p@»))

. a . . .. D
and where we use the notation ¢,, = 9% We first determine the partial derivative 2L a5

ox 9¢
follows:
L 0 (68)
3 = %w(x,y)6(¢(x,3’))|v¢(x'3’)|

0
+ 5511y = aPH(@G») + 11y - e (1= H(g )|

which in expanded form is:
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o 9 (69)
3 = ﬂw(x,y)6(¢(x,J’))|V¢(x»J’)|
+ LGy —c 1H($(x,y)) + 2 16 y) - ol
a¢ Yy 1 Yy ad) Y 2
0 2
= 3¢ 1) = &P H($( ).
We use the property
0
%H(qb(x, ) = 8(o(x,y) 7
and the fact that
P 71
%ll(x»}’)—cﬂzzo -
to simplify (69) as follows:
oL
— = w(x,¥)84(d(x, ) IVP(x, y)| 7

¢
+8(pCe ) y) — e1l? = [1(x,y) = ¢2|?]

)
where we use the notation 3% é (qb (x, y)) =6y (gb(x, y)).

We then determine % from (67) as follows:
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oL (73)
T 0¢x w(x,¥)8(p(x, )1V (x, )|

s % [116ey) — eaPH(9 )
+ 1Gy) = eol? (1= H(p(x, )|

We note that

T 01166,y - e PH($G ) + 11600 — e (1 - H(e@ )| =0. T
and that

(75)

0¢> w(x, )8(d(x, 1)) IV (x, )| = wlx, y)8(¢(x, y)) [V (x, )l

0y
20

zj@—sz e

IV¢(x 2]

= W(x, y)6(¢(x' y))

w(x,y)8(¢p(x,7))

Thus we can simplify (73) as follows:

o (76)
36, = (o) |v¢< 51k

Similarly we obtain the following for aa—L:
y
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(77)

dL
— = w(x,»)8(P(x,y)) |v¢>(; 218

¢,
We then take the derivative of (76) with respect to x as follows
d (0L (78)
— = w(x,y)6(d(x, )
% (aqu) dx ( (6 9)5(9 () |v¢>(x 9]
Using the product rule
d(AB dB dA 79
(4B) _ dB dA (79)
dx dx dx’
and noting that due to the chain rule, we can make the expansion
(80)

d
200G y) = 65(9 06

we expand (78) as follows:
(81)

d oL\ d Px
_x<6¢x) = T W@8(et )] Vo (x, Yl

e y)—[6(¢>< )] |V¢(x 5]

+ w(x,»)8(¢(xy) - dx |V¢(é); Y)I]

+ w(x, )84 (0 (x, 1)) s |v¢(f; 321

= wy (6, )8(¢(x, ) |v¢( 2
b
+w(x,y)6(¢p(x, 3’)) dx L[V (x, Y)l]
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2

= wy(x,9)8(d(x,y)) |V¢(é);, N w(x, Y84 (d(x,Y)) e |V¢>(x ™

¢x]

+w(x,)8(p(x, 3’)) dx L|Ve(x,y)|

Similarly, we take the derivative of (77) with respect to y as follows:

d (aL> = Wy (0 )8(B(x,y)) =
dy\ag,) = " 966yl
¢2
+ w(x, y)6¢,(¢( y)) Vo (x,y)]
+w(x, y)8((x y)) Py ]
dy LIV (x, y)|
We then combine (81) and (82). We first note that
¢ +¢5
oty )
and thus that
3 ¢y )
w(x,7)84(¢(x,7)) <|v¢(x, 2] " Vo (x, y)|
= w(x, y)6¢,(¢(x' y))lvd)(xr :V)l
We also note that
b ¢y _ _ Vo (x,y)
G561 T I 61— O WeGnl

Additionally, using the product rule (79), we note that:
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d[ bx d by ] (86)

dx VoGl T ay [V G )]
o dy1 1 d
= "5%<|v¢<x,y>|> VoGl dx

PN S P N
Yy \|[Veo(x, I/~ Vo (x,y)| dy ™

= [¢xj_x<|v¢(§c,y>|> ¥ "’yj_y(wmi,yn)]

L1
Ve (x, y)I

0%¢ N 0%¢
dx? = 0y?

1
Vvl T Vel

= V¢ div (Vo).

Since the divergence of a scalar function ¢ and a vector F is as follows:

div(¢F) = (V¢) - F + ¢ div (F), (87)

1
[V (x,y)]

we can simplify (86) by using the substitution ¢ = and F = V¢ as follows:

[“’x;_x(|v¢<1c,y)|) ¥ ¢y;_y<|v¢>gc.y>|>] o

B [%<|v¢q(b;,y)|> " j_y<|v¢(g,y)|>]

_ diV<V¢(x,y))
Vo (x,»)1)

We use (88) to derive:
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d bx d d)y (89)
w986 ) (5 [m +@[WD
_ w(JP00y)
= W(x' y)6(¢(x' y))le <|V¢(X, y)l)
From (84), (85), and (89), we combine (81) and (82) as follows:
d /0L d (0L G0
V¢(X, y) . V¢(xr y)
30 )PCr ) - T w08 ) (S

We substitute (72) and (90) into the Euler-Lagrange (66) to obtain the final evolution

equation that corresponds to the spatially adaptive ACWE function (64) as follows:

0 L VoY) .
= = S(¢Gy)vwix,y) Ve (x, ¥
NALICAY)
+w(x,y)8(¢(x,y))div (M)

= 8(pGe M), y) = e1]* + 11(x,¥) = 2]

When we compare this new form of the evolution equation to the original form in (15)

Vo (x,y)

from Section 1.2.3.3, we see that we obtain the new term 5(¢)(x, y))Vw(x, y) - Tre

We optimize the spatially adaptive ACWE energy functional by first using finite
differences to discretize the system, then initializing ¢(x, y) to a user-entered contour in
the vicinity of the object to segment, and then iteratively adding the image evolution term

of (91)to ¢(x,y) until ¢p(x, y) is stationary.
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3.7.4 Contextual Mumford-Shah Framework

In order to compare our method against the closest existing adaptive
regularization technique, we incorporated our weights into the Mumford-Shah based
segmentation framework of Erdem and Tari [38] as described in Section 1.5.1 where
contextual regularization is used. We note that the regularization weights of the Erdem
and Tari (ET) method is not general and can only be used and compared against within
this framework. We incorporated our data cues into the ET method by using the negative

feedback method (described in Section 1.5.1 and reprinted here for clarity)
cv=kv+(1—k) (92)

where k represents the combined cues used in the ET method. We replace k with our

curvature-modulated reliability term (see Section 3.6.1) as follows:
ev = B2 (e, y) (160 4 (1= Bl e, y) () ) (93)
which simplifies to
cv = Ve (x, )17 KE@D) oy _ 1), (94)
In addition, we also tested incorporating the texture edges term of [38] such that
v = Ef5 (x, y)(l ‘Kgc(xry))(v ~1). (95)

where E; r(x,y) is described in Section 3.6.2. The cv term modifies the evolution

equations of the functional (as described in Section 1.5.1) which are then used to
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iteratively update the image process and edge process to form the segmentation (as

described in Section 1.2.3.2).

3.8 Validation and Results

We demonstrate the performance of the data-driven regularization weights on the
synthetic, medical, and natural datasets that we first introduced in Section 2.3 with the
globally optimal weight. In addition to the least-error spatially fixed weight, which we
will compare our results against for all methods, we will compare our method to the
globally optimal weight for the minimum-path segmentation framework, and to the ET

method for the contextual Mumford-Shah segmentation framework.

3.8.1 Performance Criteria

We tested each segmentation method of Section 3.7 with databases suitable for
the method. For example, natural images with object comprising of a wide intensity range
cannot be used for segmentation methods with regions-based external terms since these
methods assume that the object of interest is approximately piecewise constant. However,
these non-piecewise constant objects can be segmented by methods with boundary

external terms, such as the minimum-path framework of Section 3.7.1.

In our tests using the minimum-path segmentation framework, we first analyze
results on the sinusoidal synthetic dataset described in Section 2.3.2 that was used for the
globally optimal weight validation. We measure our error for this dataset using the same
Hpg error as we did for the globally-optimal weight validation (see (35) in Section 2.3.1).

We also tested the minimum-path segmentation framework on medical and natural
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datasets where we used the DSC error metric from (36) in Section 2.3.1. For the graph
cuts framework, we first analyze results on a synthetic dataset testing detection of objects
with decreasing signal-to-noise ratio (SNR). Since the process involves matching k labels
between the ground truth (original noise-free shape) and the segmentation, we determine
the error by using the multi-labelling Hungarian method [61] to solve the label
assignment problem, and then using the DSC measure of (36) in Section 2.3.1. The
remainder of the testing on the medical and natural datasets using all four of the

aforementioned method used the DSC measure.

We compared our method against existing techniques suitable for each
segmentation framework. For all frameworks, we compared our data-driven weight
against the least-error spatially fixed weight wy;yeq as described in Section 2.3.1. For the
minimum-path framework, we additionally compared our method against the globally
optimal weight as discussed in Chapter 2. For the contextual Mumford-Shah framework,
we additionally compared our method against the ET regularization cues. Within our
method, we also compared the weights produced by only the noise-gated edge cue to the
weights produced by the curvature-and-noise modulated edge cue, and by addition of the

texture cue into our framework.

For each set of results, we determined 25 segmentations for each image and
averaged to produce the quantitative results. In addition, we performed ANOVA to
determine if the data-driven weights produced significantly more accurate results than

Wrixed> Weo» and the ET method.
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3.8.2 Parameter Selection and Implementation Details

For the segmentation approaches, we used a graph cuts wrapper from [7], an
implementation of ACWE from [102], and an implementation of the contextual MS

method from [38], all of which were modified as proposed in Section 3.7.

The minimum-path segmentation framework determines the optimal contour
between seedpoints, which we entered as equidistant points determined automatically
around the object boundary as determined by the ground truth segmentation, and where
each seedpoint consists of the pixel coordinates (x, y). For the graph cuts framework, we
selected a low number of random seeds (0.3% of image pixels for each label)
automatically by using the ground truth. For the ACWE and contextual MS frameworks,
we used an initial contour of a M /4 X N /4 square placed in the center of the object of
interest, where M X N is the image size. For all frameworks, we used the same
initializations/seedpoints for the comparison methods. For our data-driven weights, we

set the parameters y, = 0.8 and y, = 0.4.

3.8.3 Computational Performance

In our tests, we used un-optimized MATLAB code on a PC with 3.6 GHz Intel
Core Duo processor and 2GB of RAM. Computationally, the proposed method required
less than 3 minutes to calculate the regularization weights for a 768 X 576 image. The
most computationally intensive aspect of our work in the noise measure as determined
through spectral flatness (see Section 3.2) because the fast Fourier transform (FFT) must

be determined for each local window region in the image.
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3.8.4 Synthetic Data Validation

3.8.4.1 Noise limitation tests

We first analyzed the robustness of our data-driven weights against increasing
levels of noise (AWGN) to determine the limit at which the weights are no longer
meaningful. Figure 26(a), (b), and (c) show synthetic images corrupted by increasing
levels of AWGN. The graph cuts adaptive weight segmentation for the images corrupted
by noise levels of 0.05 and 1.05 std. dev. (Figure 26(d) and (e), respectively) adheres to
the corners of the object and does not leak outside of the object, unlike the fixed weight
segmentation in red. At an extremely high noise level of 1.90 std. dev. shown in Figure
26(c), the resulting adaptive weight segmentation Figure 26(f) begins to show holes and
degradation. Analysis of the DSC of adaptive weight graph cuts segmentations for the
synthetic image of Figure 27 over various noise levels (25 noise realizations for each
noise level) found that segmentation accuracy begins to drop at noise levels greater than

1.75 std. dev.
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(a) (b) (©)

(d) 6]

Figure 26: Segmentation of grey object in synthetic image corrupted by AWGN with increasing
standard deviation. (a), (b), (¢) Original images with std. dev. of 0.05, 1.05, and 1.90, respectively. (d),
(e), (f) Corresponding segmentations from the proposed adaptive weight green and the least-error
fixed weight red where yellow regions are where the segmentations overlap. At the high noise level of
(¢), the segmentation (f) begins to form holes and inaccuracies.
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Figure 27: Segmentation accuracy (DSC) as increasing levels of noise are added to the synthetic
image of Figure 26(a). Accuracy begins to drop at noise levels greater than 1.75 std. deviation.
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3.8.4.2 Minimum-Path Synthetic Tests

We tested the performance of the minimum-path segmentation framework for the
same sinusoidal synthetic dataset of Section 2.3.2 that is designed to cover extreme shape
and appearance variations with AWGN of spatially varying variance and Gaussian
blurring with spatially varying kernel sizes. We compared our results against the
globally-optimal weight segmentation and the least-error fixed weight segmentation, as
shown in Figure 28(a) and (b) for the two synthetic images of Figure 25(a) and (b) (see

Section 3.6.1):

S

T

(b)

Figure 28: Synthetic dataset testing with minimum-path approach. (a) Image with spatially varying
noise and blurring (increasing from right to left) and with changing boundary smoothness (smooth
on the left and jagged on the right). (b) Image with higher curvature and noise levels. Contours
obtained from: (blue) data-driven weights, (red) best fixed weight, and (cyanr) globally optimum
weight. The data-driven weights produce the only segmentation that accurately regularization in
high noise regions and accurately captures high curvature regions of the boundary.
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In Figure 28(a), the least-error fixed weight is low (0.2) in order to segment the high
curvature region of the image, and thus is not able to accurately segment the high noise
region of the object. The data-driven weight produces an accurate segmentation by
lowering regularization in the high curvature and reliable edge region of the image, and
increasing regularization is the unreliable high noise regions. The curvature-modulated

reliability measure (see Figure 25(g) and (h) in Section 3.6.1) confirms this behaviour.

We quantitatively examined our method's performance using ANOVA testing on
25 noise realizations of each image in the dataset, where the error was determined by Hy.
Our method resulted in a mean error (in pixels) of 6.33 + 1.36, whereas the best fixed-
weight method had a mean error of 12.05 + 1.61, and the globally-optimum weight
method had a mean error of 33.06 + 3.66. Furthermore, for each image, we found our
method to be significantly more accurate with all p-values << 0.05. Our error results are

presented in Table 2.
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Table 2: Average error over 25 noise realizations per image produced by data-driven weights, least-
error fixed weights, and globally optimal weights for synthetic set of data. Segmentations from the
data-driven weights have errors less than alternate methods with p-values from ANOVA testing

« 0.05.
Mean H error over 25 segmentations
Image Data-driven G.O.
# Fixed weights | weights weights
1 13.02 7.2 17.68
2 15.04 7.08 45.24
3 8.92 6.04 17.4
4 13.8 8.64 38.6
5 6.8 3.64 7.16
6 12.96 5.92 42.2
7 14.4 7.4 42.4
8 13.28 7.56 40.92
9 11.8 3.12 35.72
10 13.04 4.76 47.68
11 14.84 8.16 40.04
12 6.64 3.32 7.92
13 10.62 5.4 27.24
14 12.74 7.48 41
15 11.92 6.32 44.2
16 13.02 9.28 33.64

3.8.4.3 Graph Cuts Synthetic Tests

We validated graph cuts with our proposed method on simulated noisy images of
variably-sized ellipses with complicated background patterns, e.g. with image contrast
decreasing from right to left, as in Figure 29(a). The leftmost ellipses with lower contrast
have a lower SNR than the rightmost ellipses and thus require greater regularization.
Note how our resulting reliability measure Figure 29(b) indicates lower image reliability
for low contrast ellipses. When comparing our segmentation results to those from the
spatially-fixed weight, as shown in Figure 29(c), 6 ellipses out of 14 were mislabelled,
whereas GC with adaptive regularization correctly labelled 12 ellipses (Figure 29(d)). To
quantify the advantage of our approach, we tested a synthetic dataset of images

containing 2 to 40 ellipses at various noise levels. We calculated the DSC of the
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segmentation to the ground truth for each ellipse and averaged over all the ellipses in the
image. Figure 30 plots the difference in average DSC between adaptive regularization GC
and standard GC for images of increasing ellipse numbers. The same images were also
tested at various noise levels. Note that a positive difference in the DSC indicates that our
proposed regularization method with GC had greater success detecting low contrast

ellipses.

(a) (b)
TN TN
(c) (d)

Figure 29: Segmentation of a synthetic image using GC with adaptive regularization. (a) Synthetic
image of 14 ellipses with image contrast increasing from left to right. (b) Reliability calculated by our
data-driven weights. (c¢) Segmentation from fixed weights, where each color represents a separate
label. (d) Segmentation from data-driven weights, which result in greater numbers of low-contrast
ellipses successfully segmented.
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Figure 30: Difference in average DSC between adaptive regularization GC and fixed regularization
GC for images with increasing numbers of ellipses. Different curves represent different noise
standard deviations as shown in legend. Positive DSC difference indicates segmentations from data-
driven weights are more successful than fixed weights at labelling ellipses with low image quality.

3.8.5 Medical Data Validation

We performed tests on the following medical datasets: set of 52 sagittal slices
centered around the CC structure, 8 mammography images from the Digital Database for
Screening Mammography (DDSM) [51, 50], 15 images from the BrainWeb database [63,
62, 31] using the T1, T2, and PD modalities with varying amounts of noise and intensity
inhomogeneity, and coronal and transverse slices from the 18-subject Internet Brain
Segmentation Repository (IBSR) database (provided by the Center for Morphometric
Analysis at Massachusetts General Hospital and available at

http://www.cma.mgh.harvard.edu/ibsr/).

3.8.5.1 Minimum-Path

Sagittal MR images of the CC exhibit the known problem of a weak boundary
where the CC meets the fornix (as discussed and labelled in Figure 13(a) of Section

2.3.3). Unlike the globally optimal weights which produced bimodal behaviour (either
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blue or red in Figure 13(b)), our method automatically boosts up the regularization
(stronger red in Figure 31(a)) at the CC-fornix boundary producing a better delineation,

as seen in the segmentation results (Figure 31(b)).

L

L

O 01 02 03 04 05 06 07 08 09 1

(a) ®)

Figure 31: Segmentation from (a) proposed data-driven weight method for a corpus callosum MR
image. The coloring of the contours reflects the value of the spatially-adaptive weight with pure blue
corresponding to w =0 and pure red to w=1. The data-driven weights results in greater
regularization in the difficult fornix region and has a smooth transition between weights. (b)
Contours produced by using the proposed adaptive weight (blue), best fixed-weight (red), and the
globally-optimum weight (cyan).

The quantitative results of the segmentations using the minimum-path framework
on images from the CC dataset, IBSR dataset, BrainWeb dataset, and DDSM dataset are
presented Figure 32, Figure 33, Figure 34, and Figure 35, where the DSC for each image
was averaged over 25 segmentations. The segmentations of the IBSR dataset (Figure 33)
were for the boundary of the cortical white matter in transverse and coronal slices. Figure
34 shows how the segmentations from the data-driven weights do not degrade at higher
noise levels for the BrainWeb database using T1, T2, and PD modalities, where we
performed the segmentations for 25 noise realizations per noise level. Figure 35 presents

results for segmenting cancer tissue in mammography images from the DDSM dataset.
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Figure 32: CC 52-image dataset DSC results with minimum-path segmentation method. Graph
shows average DSC over dataset for segmentations from DD = data-driven weights, F = least-error
fixed weights, and GO = globally optimal weights. DSC for each image was averaged from 25
segmentations with different seeds. DD average DSC (over total dataset) was 0.9224, F average DSC
was 0.8984, GO average DSC was 0.8657. Average p-values for DD vs. F and for DD vs. GO were <<
0.05. Segmentations from the DD weights were significantly more accurate.
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Figure 33: DSC results for IBSR dataset of (a) coronal and (b) transverse MR slices from 18 subjects
when segmenting for white matter using minimum-path approach. Graph shows mean and variance
for segmentations produced by data-driven weights (DD), least-error fixed weight (F), and the
globally optimal weights (GO). The DD average DSC (over 18 image dataset) was 0.9323 for the
coronal dataset and 0.9278 for the transverse dataset. The F average DSC was 0.9036 and 0.9094 for
the coronal and transverse datasets, respectively, and the GO average DSC was 0.8806 and 0.8886 for
the coronal and transverse. All p-values were < 0.05. Although the difference between the
segmentations from the DD weights and the fixed weights were low, the DD weight segmentations
were still significantly more accurate.

97



T1 BrainWeb Segmentation Accuracy T2 BrainWeb Segmentation Accuracy PD BrainWeb Segmentation Accuracy
1

1 1
0.9 09f T8 0.9
z z N >
5 08 s 08 £ 08
E E E
17} » To o
g 07 —+— DD 807 —+— DD ] § :
e -—0--F e --0---F
0.6 GO 0.6 GO 0.6
0.5 . . . 0.5 L L L 0.5 . . .
0% 3% 5% 7% 9% 0% 3% 5% % 9% 0% 3% 5% 7% 9
Noise Level Noise Level Noise Level
(a) (b) (c)

Figure 34: DSC results for slices from coronal BrainWeb dataset when segmenting for white matter
using minimum-path approach. (a) T1 data, (b) T2 data, and (c) PD data. Data-driven weights (DD)
produce segmentation accuracies that decrease less than fixed weights (F) and globally optimum
weight (GO) as the level of noise in the image increases from 0% to 9% (averaged over 25 noise
realizations per noise level).

DDSM Segmentation Error

0'97 % |
=
8 0.85¢ ]
E
® 0.8 -
[V
L2
o

0.75! % |

0.7t ‘ ‘ ‘ ]
DD F GO

Figure 35: DSC results for segmentation of cancer tissue in 8 mammography images from DDSM
database using minimum-path approach. The data-driven weights (DD) resulted in a mean error of
0.8958, the fixed-weight (F) in a mean error of 0.7961 and the globally-optimal weights (GO) in
0.7370 with all p-values < 0.05. Segmentations from the DD weights show a clear improvement over
segmentations from F and GO weights.

3.8.5.2 Graph Cuts

We next present qualitative results using graph cuts with our data-driven
regularization weights on images from BrainWeb. Figure 36(a) shows a T1 image with an
intensity inhomogeneity of 20%. High curvature-modulated reliability in the cortical
folds (Figure 36(b)) results in lower regularization in these regions. The overlayed GC

segmentations (Figure 36(c)) using the adaptive regularization weight versus the least-
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error fixed weight shows greater segmentation accuracy in high curvature regions.
Additionally, the curvature-modulated regularization weights show improvements over
the non-curvature weights of Section 3.4 (Figure 36(d)). Figure 37(a) shows the same T1
image of Figure 36(a) but with a noise level of 7%. The resulting curvature-modulated
reliability map (Figure 37(b)) is not corrupted by the noise and still enforces greater
regularization in high curvature cortical folds, as seen in the resultant segmentation
comparisons of Figure 37(c) and Figure 37(d). At higher noise levels, our data-driven
weights results in a more accurate segmentation than the standard least-error uniform
weight, and even more accurate than our non-curvature image reliability system, thus

verifying the importance of the noise-gated curvature cue.
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Figure 36: Segmentation of MR data from BrainWeb using GC with curvature-modulated
regularization. (a) T1 slice with 20% intensity non-uniformity. (b) Curvature-modulated reliability.
Black intensities corresponds to 0 (low reliability/high regularization) and white to 1. Note higher
reliability in cortical folds. (¢) Comparison of segmentations from the curvature-modulated weight
(green) to the least-error fixed weight (red), and (d) to the non-curvature modulated image reliability
weight (blue). Yellow regions are where the segmentations overlap, and ground truth contour is
shown in black. Segmentations from the curvature-modulated DD weights result in no leakage into
the background and accurately capture the high-curvature cortical folds.
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Figure 37: Segmentation of noisy MR data from BrainWeb using GC with curvature-modulated
regularization. (a) T1 slice with 7% noise level. (b) Curvature-modulated reliability. (¢) Comparison
of segmentations from the curvature-modulated adaptive weight (green) to the least-error fixed
weight (red), and (d) to the non-curvature modulated image reliability weight (blue).

We present quantitative results for our graph cuts tests with the BrainWeb,
DDSM, and IBSR datasets in Figure 38, Figure 39, and Figure 40. On average, these
results are lower than the results from the minimum-path segmentation approach because
the lack of seedpoints reduces the ability to target the object of interest for each image.
For the BrainWeb dataset (Figure 38), as the level of noise increases (where we
performed the segmentations for 25 noise realizations per noise level), the data-driven
weights produce more accurate segmentations than the least-error fixed weights. For the
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DDSM dataset (Figure 39), both methods produce segmentations with low DSC which is
due the complex background in the mammography images, where the non-cancerous
tissue has similar intensity values to the cancerous tissue. Unlike minimum-path
approaches where we can target the tissue object of interest with seedpoints, the seeding
used for graph cuts is only for intensity profile estimation. The result is that many objects
in the background (breast tissue) are mistaken as cancerous tissue due to similarities in
intensity values. For the IBSR segmentations (Figure 40), the data-driven weights
produced significantly more accurate segmentations for the coronal and transverse slices
(when segmenting for white matter). When segmenting for the CC structure in the sagittal
slices (Figure 40(c)), the data-driven weights were not significantly more accurate due to

similarities in intensity between the CC structure and the fornix.
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Figure 38: DSC results for BrainWeb segmentation of white matter using graph cuts approach for
(a) T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven weights (DD) produce
less degradation in results at high noise levels when compared to least-error fixed weights (F). DSC
values are averaged over segmentations for 25 noise realizations per noise level. As the noise level
increases, the segmentations from the DD weights result in greater DSC than the fixed weight
segmentations.
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Figure 39: DSC results for segmentation of cancer tissue in 8§ mammography images from DDSM

database using the graph cuts approach. As these images represent difficult scenarios due to noise,

weak edges, and non-piecewise constant objects, both methods for regularization weights produce

poorer results. However, the data-driven weights (DD) produce significantly improved results over
the fixed weights (F) segmentation. DD average DSC = 0.3576, F average DSC = 0.2909.
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Figure 40: DSC results for IBSR dataset of (a) coronal, (b) transverse and (c) sagittal MR slices from
18 subjects when segmenting for white matter (for (a) and (b)) and CC (for (c)) using graph cuts. The
DD average DSC (over 18 image dataset) was 0.8999 for the coronal dataset, 0.8199 for the
transverse dataset, and 0.7149 for the sagittal dataset. The F average DSC was 0.8627, 0.7462, and
0.6611 for the coronal, transverse, and sagittal datasets, respectively. Average p-values were 0.0118,
9.89E-9, 0.052. For the CC segmentations in the sagittal plane, the proposed method did not produce
significantly improved results. This is since the fornix and CC have the same intensity and region-
based external terms are not successful in differentiating the structures.

3.8.5.3 Active Contours Without Edges

We next present results using the ACWE segmentation framework on medical
datasets. Figure 41(a) shows a PD coronal slice with 5% noise from BrainWeb. The
resulting curvature-modulated reliability (Figure 41(b)) is bright for the high curvature
tips of the central ventricles and for the cortical folds of the white matter. The resulting

segmentation (Figure 41(c)) from the data-driven weights (green) for the white matter is
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able to capture the cortical folds while not oversegmenting into the ventricle region,

unlike the least-error fixed weight result (red).

(a) (b)

Figure 41: Segmentation of white matter in PD coronal slice from BrainWeb with 5% noise. (a)
Original image, (b) curvature-modulated reliability, and (c) comparison of segmentations from data-
driven weight (green), least-error fixed weight (red), where overlapping regions are in yellow and
ground truth contour shown in black. Data-driven segmentation results in less over-segmentation
into ventricle region and better segmentation of high curvature tips.

In addition, we present segmentations of cancer tissue from mammography images
(DDSM database) such as in Figure 42, where the ACWE contour was initialized as a
square shown in Figure 42(a) and iterations were run until the contour evolution
converged (at most 700 iterations). The segmentation from the data-driven weights more
accurately grows into the left region of the tissue. Neither segmentation accurately
contains the right region of the tissue which is due to the cancer object containing

differing intensities.
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Figure 42: ACWE segmentation of mammography image from DDSM database [50, 51]. (a) Original
image with initial ACWE contour, (b) curvature-modulated reliability, and (c) comparison of
segmentations from data-driven weights (green) and fixed-weights (red) where yellow represents
overlap and ground truth is shown in black. Segmentation from DD weights more successfully
capture the white-intensity region of the cancer tissue. Neither segmentation correctly captures the
low-intensity region of the tissue which represents a difficult case.

We present quantitative results for the BrainWeb, DDSM, and IBSR datasets in
Figure 43, Figure 44, and Figure 45. As with graph cuts, the ACWE results on the DDSM
database were low for both the fixed weight and data-driven weight due to greatly
different intensity values in the cancer masses as shown in Figure 42(a). The data-driven
weights provide significantly more accurate segmentations for the IBSR coronal and
transverse datasets (Figure 45) when segmenting for white matter, but insignificant
results for the IBSR sagittal dataset when segmenting for the CC structure due to the

similarities in intensity between the CC and fornix.
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Figure 43: DSC results for BrainWeb segmentation of white matter using ACWE approach for (a)
T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven weights (DD) produce less
degradation in results at high noise levels when compared to least-error fixed weights (F). DSC
values averaged over segmentations from 25 noise realizations per noise level. Segmentations from
the DD weights are more accurate than fixed weight segmentations at high noise levels.
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Figure 44: DSC results for segmentation of cancer tissue in 8§ mammography images from DDSM
database using the ACWE approach. The data-driven weights (DD) produce significantly improved
results over the fixed weights (F) segmentation. DD average DSC = 0.3565, F average DSC = 0.2833.
Average p-value was 6E-4. Although the DD weight segmentations are more accurate, both methods

produce low accuracies since neither method could segment regions of the cancer tissue with greatly
differing intensity values.
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Figure 45: DSC results for IBSR dataset of (a) coronal, (b) transverse and (c) sagittal MR slices from
18 subjects when segmenting for white matter (for (a) and (b)) and CC (for (c)) using ACWE. The
DD average DSC (over 18 image dataset) was 0.9019 for the coronal dataset, 0.7895 for the
transverse dataset, and 0.6345 for the sagittal dataset. The F average DSC was 0.8466, 0.7196, and
0.6196 for the coronal, transverse, and sagittal datasets, respectively. Average p-values were 3.303E-
7, 3E-4, 0.482. The segmentation from the DD weights was significantly more accurate for the
coronal and transverse datasets, but was not significantly more accurate for the sagittal dataset when
segmenting for the CC structure. This is due to the intensity similarities between the CC and the
fornix structures which produces problems for region-based external terms.

3.8.5.4 Contextual Mumford-Shah Method

We validated the contextual Mumford-Shah method by comparing results to both
the least-error fixed weight segmentation and to the segmentation produced the ET
adaptive regularization method. The contextual MS method is automated and does not
allow for user input to focus the segmentation on certain objects. As such, we chose to
demonstrate segmentations of the central ventricle structure using the BrainWeb and
IBSR databases rather than segmentations of the white matter which is a complex
structure encompassing the entire image. We targeted the ventricles by cropping the
image around the structure. Figure 46(a) and Figure 47(a) show the central ventricle
region taken from coronal slices from the BrainWeb dataset, where Figure 46(a) depicts a
PD image with a noise level of 5% and Figure 47(a) depicts a T1 image with a noise level
of 9%. For both cases, the curvature-modulated reliability (Figure 46(b) and Figure

47(b)) is higher for the tips of the ventricle structure, and the resulting segmentations
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(Figure 46(c) and (d), and Figure 47(c) and (d)) are more accurate against both alternate

methods due to lower regularization in the tip regions.

Figure 46: Segmentation of central ventricle structure from mid-volume coronal slices (BrainWeb)
(a) PD image with 5% noise, and (b) curvature-modulated reliability. (¢) Comparison of
segmentations between data-driven weights (green) and fixed weights (red), and (d) between data-
driven weights and Erdem-Tari (ET) weights (blue) where yellow regions represent segmentation
overlap and black contour represents the ground truth. The data-driven weights provide lower
regularization in the tips of the central ventricle structure and the weak edge sides.
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Figure 47: (a) T1 image with 9% noise (BrainWeb), and (b) curvature-modulated reliability. (c)
Comparison of segmentations between data-driven weights (green) and fixed weights (red), and (d)
between data-driven weights and the Erdem-Tari weights (blue) where yellow regions represent
segmentation overlap and black contour represents the ground truth. Only the data-driven weights
provide a segmentation that captures the high curvature tips.

We present the quantitative results for the BrainWeb, DDSM, and ISBR (coronal)
datasets in Figure 48, Figure 49, and Figure 50. The data-driven weights provide
significantly more accurate segmentations for the coronal IBSR ventricle application, and

do not degrade over increased levels of noise for the BrainWeb segmentations.
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Figure 48: DSC results for BrainWeb segmentation of central ventricle structure using contextual
MS approach for (a) T1, (b) T2, and (c) PD modalities with increasing noise levels. Data-driven
weights (DD) produce less degradation in results at high noise levels when compared to least-error
fixed weights (F) and Erdem-Tari weights (ET). DSC values are averaged over segmentations from

25 noise realizations per noise level.
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Figure 49: DSC results for segmentation of cancer tissue in 8§ mammography images from DDSM
database using the contextual MS approach. The data-driven weights (DD) produce significantly
improved results over the fixed weights (F) segmentation. DD average DSC = 0.3092, F average DSC

=0.2433, ET average DSC = 0.2863. All results are poor due to the non-piecewise constant cancer
object.
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Figure 50: DSC results for IBSR dataset of coronal MR slices from 18 subjects when segmenting for
the central ventricle structure using contextual MS approach. Graph shows mean and variance for
segmentations produced by data-driven weights (DD), least-error fixed weight (F), and the Erdem-
Tari weights (ET). The DD average DSC (over 18 image dataset) was 0.9783, the F average DSC was
0.9509, and the ET average DSC was 0.9617. All averaged p-values were < 0.05. Segmentation from
the DD weights are significantly more accurate than the segmentations from the F and ET weights.

3.8.6 Natural Scenes Data Validation

We next present results from using the following datasets of natural scenes: the
McGill Calibrated Colour Image Database [75], the PASCAL object recognition database

[40], and through the ImageNet database [32, 33].

3.8.6.1 Minimum-Path

We first demonstrate results on an image from the McGill database, the tree leaf on a
complicated background shown in Figure 51(a). The resulting curvature-modulated
reliability measure (Figure 51(b)) indicates higher regularization at the regions of the leaf
obscured by snow and lower regularization in the leaf tip regions. The resulting
segmentation from the data-driven segments the obscured shape of the leaf accurately

(Figure 51(c)).
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Figure 51: (a) Original leaf image (McGill dataset [75]). (b) Reliability calculated by our proposed
method. Contours produced by using (c) data-driven weights (blue), least-error fixed-weight (red),
and globally optimal weight (cyan). The GO contour fails to capture the leaf tip region, and the fixed
weight contour fails to regularize in the obscured edge region, as highlighted.

Additionally, we segmented the airplane image of Figure 52(a) (from the
PASCAL database) which consists of high curvature structures that require lower
regularization, and weak-edged regions that require high regularization. The curvature-
modulated reliability measure (Figure 52(b)) shows that the plane tips in the image are
assigned low regularization weights (high reliability). The resulting segmentation using
the data-driven weights correctly captures these regions (Figure 52(c)) whereas the least-
error fixed weight, 0.5 in this case, correctly regularizes the weak edge regions but is too

excessive to capture the airplane tips. The globally optimum weight, which was
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predominately zero for this segmentation, correctly segments the tips but inaccurately

includes the weak edge regions.

Figure 52: Airplane image (PASCAL dataset [40]) segmented by minimum-path approach. (a)
Original image, (b) curvature-modulated reliability, and (c) contours from data-driven weight (blue),
least-error fixed weight (red) and globally optimal weight (cyan). Segmentation from the GO weights
inadequately regularizes in the weak edge upper region of the plane. Segmentation from the fixed
weight fails to capture the wing tips.

We also present the contours produced by the data-driven weights for the examples
shown in Section 2.3.4 of Chapter 2. Figure 53 shows segmentations of a complex-
boundary flower and a submerged leaf. In Figure 53(a), only the data-driven weight in
blue prevents oversegmenting of the image and background leakage. In Figure 53(b), the

data-driven weight segmentation accurately captures the weak-edge leaf tip region.
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Figure 53: Segmentations from McGill database images of (a) a flower with a complex background
and (b) a leaf with regions of the boundary obscured by water. The segmentation from the data-
driven weights (blue) provide greater regularization in weak edge regions and lower regularization in
high curvature regions, unlike the segmentations from the globally-optimal weight (cyan) and the
spatially fixed weight (red).

We present the quantitative results on the McGill, PASCAL, and ImageNet
databases in Figure 54. The ANOVA results indicate the significant improvement the
data-driven weights provide when compared to existing methods. We note that these
databases do not contain texture images, which we will address in our graph cuts and

contextual MS tests.
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Figure 54: DSC of segmentations from data-driven weights (DD), least-error fixed weights (F) and
globally-optimal weights (GO) on (a) 8 images from ImageNet database, (b) 11 images from PASCAL
database, and (c) 24 images from McGill database. Average error over dataset (and over 25
segmentations for each image) was DD = 0.9489, F = 0.9188, GO = 0.8629 for (a), DD = 0.9455, F =
0.9241, GO =0.8783 for (b), and DD = 0.9619, F = 0.9402, GO = 0.9025 for (c). All p-values < 0.05.
For all datasets, the segmentations from the DD weights produce significantly higher DSC than the
segmentations from the GO weights and fixed weights.

3.8.6.2 Graph Cuts

We present results of the graph cuts segmentation method with our proposed
regularization framework on a flower image from the McGill database, as shown in
(Figure 55(a)) where this image has been corrupted by AWGN with a standard deviation
of 0.3. From this image, we produced the curvature-modulated reliability mapping in
(Figure 55(b)). The higher curvature-modulated reliability in the petal tip regions allows
for a more accurate segmentation when compared to the least-error fixed weight
segmentation (Figure 55(c)). In addition, we investigate the key role of the curvature cue
by comparing the curvature-modulated segmentation to the non-curvature reliability
weight segmentation (Figure 55(d)) which, as expected, required higher regularization in

the detailed petal tip regions, resulting in leakage into the background.
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Figure 55: Graph cuts segmentation of flower image from ImageNet dataset [32]. (a) Original image
with AWGN of standard deviation 0.3. (b) Curvature-modulated reliability (higher in petal tip and
crevice regions) (¢) Comparison of segmentations from the curvature-modulated reliability weight
(green) to the least-error fixed weight (red), and (d) to the non-curvature reliability weight (blue) with
overlapping regions in yellow. The curvature-modulated DD weights provided the best segmentation
of the petal tips and had the least amount of leakage.

We segmented another flower image from the McGill database with corruption by
AWGN of standard deviation 0.3 (image values normalized to range between 0 and 1), as
shown in Figure 56(a). The curvature-modulated reliability (Figure 56(b)) produces lower
regularization weights in the petal tips and petal crevices. In Figure 56(c), the fixed-
weight segmentation excessively regularizes in the petal region, resulting in leakage
(shown in red). Our method does not leak into the background and is able to capture the

petal tips (shown in green).
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Figure 56: Graph cuts segmentation of natural image (a) Original image corrupted by AWGN with
standard deviation of 0.3. (b) Curvature-modulated reliability. (c¢) Comparison of segmentations
from the data-driven weight (green) to the least-error fixed weight (red) and to non-curvature
reliability weight (blue) with overlapping regions in yellow. In (c), high regularization in the
background prevents the segmentation from the curvature-modulated DD weights from leaking,
unlike the fixed-weight method in red. In (d), the non-curvature modulated weights (see overlapped
region in yellow) fail to capture all petals.

We demonstrate the ability of the texture-modulated weight w,(x,y) from (61)
(see Section 3.6.2) to segment the textured image of Figure 57(a) (from ImageNet) where
we set the parameter y; in (59) to 0.1. The curvature modulated reliability shown in
Figure 57(b) is erroneously large for regions with texture. The curvature-and-texture
modulated reliability shown in Figure 57(c) is lower for the texture edges. The resulting
GC segmentation from using w;(x,y) is shown in Figure 57(d). Incorporation of a

texture cue reduces leakage into the background, and the curvature cue reduces
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regularization in the protrusion region of the plant. However, this example does highlight
how the curvature measure can mistake texture regions for structurally important edges
when in fact these regions should be regularized to prevent inclusion into the segmented
contour. We are able to solve the issues by incorporating existing texture cues into our

method.

(d)

Figure 57: Graph cuts segmentation of textured natural image (from ImageNet dataset [32]) using
the curvature-and-texture modulated weight. (a) Original image. (b) Curvature-modulated reliability
calculated by our method with no texture gating. (c) Curvature-and-texture modulated reliability. (d)
Comparison of segmentations from the proposed adaptive weight (green) to the least-error fixed
weight (red) with overlapping regions in yellow. Reduced reliability in high-texture regions prevents
these regions from inclusion into the segmentation result. Only the segmentation from the DD
weights in green captures plant tips.

We present quantitative results on non-textured images from the ImageNet and
McGill databases in Figure 58(a) and (b) where the error is the DSC averaged over 25
trials. In addition, we included results from a set of textured images in Figure 58(c). From

the results, the data-driven approach is significantly more accurate when compared to the
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fixed-weight approach for all datasets except for the textured dataset (see DD result in
Figure 58(c)). However, the inclusion of the texture cue (DD-Text in Figure 58(c)) leads

to significantly improved results.
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Figure 58: Segmentation DSC from using data-driven weights (DD), least-error fixed weights (F),
and data-driven weights with the texture cue (DD-Text) on natural images from (a) the ImageNet
database (8 images), (b) McGill dataset (24 images), and (c) selected textured images taken from
ImageNet database (10 images). Average DSC over dataset (and over 25 segmentations per image)
are as follows: DD = 0.9651, F = 0.9066 for (a), DD = 0.9727, F = 0.9236 for (b), and DD = 0.8916, F =
0.8922, DD-Text = 0.9421 for (c). All p-values < 0.05. Addition of texture cue in (c¢) resulted in
improved performance over standard DD weights and fixed weights.

3.8.6.3 Active Contours Without Edges

We demonstrate the ACWE segmentation method with our regularization
framework on the octopus image of Figure 59(a) (from the ImageNet database). Iterations
were run until the contour evolution converged (1000 iterations). The low curvature-
modulated reliability (Figure 59(b)) in regions outside the octopus prevents the resulting
segmentation from including shadows in the background, unlike the fixed weight
segmentation (Figure 59(c)) which leaked into the background of the image (see red

region).
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Figure 59: Active Contours segmentation of a natural image. (a) Original image. (b) Curvature-
modulated reliability calculated by our method. (c) Comparison of segmentations from the data-
driven weight (green) to the least-error fixed weight (red) where yellow regions are where

segmentations overlap. Segmentation from fixed weight (red) leaks into the background, unlike
segmentation from DD weights (see overlapped region in yellow).

Another such example from the McGill database is an image of a flower
containing shadow regions as shown in Figure 60(a). The shadow inner folds of the
flower have a low reliability measure as shown in Figure 60(b) due to the weak edge and
low curvature. The resulting fixed-weight segmentation in Figure 60(c) has inadequate
regularization in the weak edge shadow regions, whereas the data-driven weights produce
a more accurate segmentation that regularizes in the shadows but reduces regularization

in the high curvature region where the flower is obscured.
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Figure 60: ACWE segmentation of flower. (a) Original image, (b) curvature-modulated reliability
measure, and (c) comparison of segmentation from data-driven weights (blue) to the least-error fixed
weight (red) where (yellow) regions represent segmentation overlap and the ground truth is shown as
the black contour. Segmentation from fixed weight fails to capture shadow regions of flower, unlike
segmentation from DD weights (see green region).

We present the quantitative results for the ImageNet and McGill databases in
Figure 61. As seen in Figure 61(b), the ACWE method with data-driven weights did not
produce significantly more accurate segmentations than the fixed weights on the McGill
database (p-value was 0.0514). This is likely because for certain images in the dataset,
both methods performed poorly due to non-optimal placement of the initial contour. The
ACWE segmentation method is sensitive to initial contour placement which is not related

to our proposed work.
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Figure 61: Segmentation DSC from using data-driven weights (DD) and least-error fixed weights (F)
on natural images from (a) the ImageNet database (8 images) and (b) McGill dataset (24 images).
Average DSC over dataset (and over 25 segmentations per image) are as follows: DD = 0. 9563, F = 0.
9144 for (a) and DD = 0. 9435, F = 0. 9044 for (b). Average p-value for (a) is 2E-4, but average p-value
for (b) is 0.0514. Segmentations on the McGill database using the DD weights were not significantly
more accurate due to non-optimal placement of the initial contour.

3.8.6.4 Mumford-Shah Method

For the contextual Mumford-Shah method, we tested textured natural images,
such as the image of an amoeba shown in Figure 62 (from the ImageNet database). The
curvature-modulated reliability is falsely high for the inner textured region of the
amoebas, resulting in a disconnected segmentation as shown in Figure 62(b) in green.
However, by addition of the texture term from the ET framework, the texture-and-
curvature modulated reliability is smooth for these sections of the image, and the
resulting segmentation is more accurate than the fixed weight and ET weights (Figure
62(c) and (d)). Although the segmentation produced by the ET method correctly
regularizes the textured region, it is unable to segment the protrusions of the amoeba

which is due to the framework lacking a structural curvature cue.
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Figure 62: Segmentation of amoeba image from ImageNet. (a) Original image. (b) Comparison of
segmentation from non-texture data-driven weight (green) to segmentation from fixed weight (red).
(c) Comparisons of segmentation from texture data-driven weight (green) to fixed weight (red), and
(d) to segmentation from ET cues (blue). Segmentation from the DD weights without texture
mistakes textured regions as separate objects, resulting in a fragmented segmentation (see green
segmentation in (b)). Segmentation from the DD weights with texture correctly captured the full
objects, including protrusions, unlike the fixed weights (see overlapped yellow in (c)) and the ET
weights (see overlapped yellow in (d)).

In addition, we segmented the texture image of a cheetah shown in Figure 63(a). The
non-texture reliability in Figure 63(b) is falsely high in the spotted region of the cheetah.
However, by incorporating the ET texture cue, the resulting texture-and-curvature
modulated reliability is lower in the spotted region (Figure 63(c)). The resulting
segmentation from the texture data-driven weight in green is more accurate than the
segmentations from the fixed weight in red (Figure 63(d)) and the ET weight in blue

(Figure 63(e)).
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Figure 63: Segmentation of cheetah image presented in [38]. (a) Original image. (b) Curvature-
modulated reliability. (¢) Texture-and-curvature modulated reliability from incorporating texture
cue into our framework. (d) Comparison of segmentations results from data-driven weight (green),
fixed weight (red), and (e) ET weight (blue) where yellow regions represent overlap. Reliability
without texture in (b) inaccurately detects textured regions as high curvature regions. This
undesirable behavior is removed in (c) with the addition of the texture cue. The resulting
segmentation (green) more accurately captures the cheetah than the fixed weights (red) and the ET
weights (blue) which result in leakage.

The quantitative results are presented in Figure 64 where we measure the error as
the DSC between the binary mask created from the edge-process produced by the MS
method and the ground truth segmentation. We find that the data-driven weights produce
more accurate segmentations for the non-textured dataset (Figure 64(a)) but produce less

accurate segmentations for the textured set (DD in Figure 64(b)). However, the addition
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of the textured cue from the ET framework results in more accurate segmentation than

the non-curvature-modulated ET framework (DD-Text in Figure 64(b)).
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Figure 64: Segmentation DSC from using data-driven weights (DD), least-error fixed weights (F),
data-driven weights with the texture cue (DD-Text), and Erdem-Tari weights (ET) on natural images
from (a) the ImageNet database (8 non-textured images), and (b) selected textured images taken from
ImageNet database (10 images). Average DSC over dataset (and over 25 segmentations per image)
are as follows: DD = 0.8311, F = 0.6482, and ET = 0.7719 for (a), and DD = 0.6107, DD-Text = 0.8681,
F =0.6004, and ET = 0.8323 for (b). Addition of texture cue in (b) resulted in improved performance
over standard DD weights, fixed weights, and ET weights. All p-values of DD versus fixed and ET
methods in (a) and DD-text versus fixed method and ET method in (b) were < 0.05. Segmentations
from the DD weights on the non-textured ImageNet dataset were significantly more accurate than the
fixed weight and ET weights. Addition of the texture cue resulted in significantly more accurate
performance for the textured set in (b).
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Chapter 4

Conclusions

In this chapter, we discuss conclusions for this thesis and how our work fits into
the general field of image segmentation. We discuss the limitation of this method and

present an overview of the areas for future research in this work.
4.1 Discussion

In this thesis, we presented novel approaches for addressing a ubiquitous problem
that plagues most energy minimization-based segmentation techniques; how to properly
balance the weights of competing data fidelity and regularization energy terms. We
focused on automated methods to determine a single regularization weight for convex
energy functionals. We first presented a method for determining the globally optimized
values of the object function parameters. During validation, we found this method to
suffer from bimodal weights, poor response to image characteristics, and decreased
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generality to other segmentation methods. We then proposed spatially adaptive weights
that depended on contextual cues that gauge image reliability and structural evidence.
This method employed a novel and robust local measure of signal reliability through
estimating the spectral flatness of the image. In addition, our method used a local scale-
invariant curvature cue for modulating regularization in conjunction with edge evidence,
where both cues were made robust to noise through gating by the local signal reliability.
We demonstrated the applicability of our contextual weights by incorporating the weights
into a variety of continuous and discrete segmentation frameworks, including minimum-
path, graph cuts, and two forms of the Mumford-Shah model: active contours without
edges, and the AT approximation of the Mumford-Shah model with feedback
regularization. We validated the contextual weights on a wide variety of datasets, the
majority of which are publically available: functionally-derived images, DDSM
mammography dataset, 52-subject sagittal slices of CC structure, 3-modality BrainWeb
data with varying noise and intensity inhomogeneity, 18-subject IBSR dataset, images
from the McGill Colour Calibration database, PASCAL object recognition database, and
the ImageNet database. We compared the contextual weights against the least-error
spatially fixed weight, the globally optimal weights, and the spatially adaptive weights
proposed by Erdem and Tari [38]. In addition, we incorporated existing texture-based
contextual cues into our method to show how it can be incorporated with current

techniques in the field.
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4.2 Limitations and Future Directions

Although we have demonstrated the significant improvements in segmentation
accuracy our contextual weights provide, there are limitations to our methods and areas

for future research, which we list here:

Energy Functionals with Multiple Weights

In our work, we have focused on using a single regularization weight and adapting
this weight accordingly. However, many energy minimization segmentation techniques

use multiple weights, i.e. as follows:

Etotar = @1 E1 + azE; + azEs + - (96)

Our work is limited to single weight energy formulations, which we form by grouping the
terms into either E;,; or E,,; and using a single weight in a convex combination for graph
cuts and minimum-path approaches, and non-convex for ACWE and MS. However,
single weights are limited since many segmentation techniques give greater importance to
certain energy terms E; through assigning that term a higher ;. Determining how to best
set multiple regularization weights will greatly increase the generality and usability of

this method.

Additional Cues for Non-Spectrally Flat Noise Models

Our method for noise estimation is limited to types of noise that are spectrally flat,
i.e. white noise. However, many images may be corrupted by other noise models,

particularly in medical imaging. For example, ultrasound images are often corrupted by
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multiplicative noise (speckle noise) which our method is not able to estimate. A future
area of research would be to devise new noise cues to handle various noise models and

combine them with the existing noise cue.

Expansion to 3D

Our current method is limited to 2D images. However, in medical imaging, 3D
data is far more common and is segmented by various 3D energy minimization
techniques, predominately deformable model methods. Thus our contextual
regularization method must be modified by (a) expanding the spectral flatness, edge
evidence, and curvature cues to the 3D space, and (b) incorporating these cues into 3D

segmentation frameworks.

Convex Functionals for Continuous Segmentation Methods

In our tests with continuous segmentation frameworks, such as ACWE and the
MS model, we had difficulties using a convex energy functional with respect to the
adaptive weight as we had done for the discrete frameworks; instead, we only weighted
the regularization term. We found that weighting the external terms resulted in the
stalling of the curve evolution. However, we were unable to determine exactly why that
occurred. Further research would be beneficial in this area so that our method could be

incorporated into segmentation frameworks in a more unified manner.

Investigating Globally Optimal Weights for Additional Segmentation Methods

We presented a method for determining the globally-optimal weight for the

minimum-path segmentation framework, and showed that it did not provide accurate
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results. However, we did not determine the globally-optimal weights for additional
segmentation frameworks, such as continuous methods. A key area of future research is
to determine if the globally optimum weight for other segmentation frameworks are also
insufficient in addressing regularization needs. This would be important in proving that

the globally optimal weights do not necessarily reflect correct segmentations.

Further Validation with Additional Segmentation Frameworks and Comparison

Methods

We presented results from validation with four segmentation techniques, and
comparisons against two existing methods (spatially-fixed, and the ET weights). Future
work should focus on exploring the use of our weights with additional segmentation
frameworks, such as the robust higher order potentials method by Kohli and Ladicky
[58], normalized cuts [69], and shape priors and discrete MRFs by Besbes et a/ [10]. In
addition, future work should focus on expanding the number of methods we compared
our work against. The contextual texture-based regularization method of Malik et al [69]
using Normalized Cuts should be validated, along with the texture-based regularization of
Kokkinos et al [59] using segmentation by weighted curve evolution. In addition, a key
family of segmentation approaches which our existing validation work does not cover are
clustering techniques, such as K-means clustering [30, 95, 98], fuzzy c-means clustering
[11, 25], spectral clustering (i.e., Normalized Cuts [69]), and expectation-maximization

(EM) clustering [66].
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Additional Contextual Cues

Incorporation of additional contextual cues would benefit our work, particularly in
the area of texture estimation, additional noise estimation methods, and shape
information. These additional cues can be incorporated into our method through
multiplication with the noise-gated edge evidence as we have done with the Erdem and
Tari texture cue in Section 3.6.2. In particular, the structural curvature cue would benefit
from use of a structure tensor matrix where the eigen-decomposition of this matrix may

capture more precise gradient features.
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