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Abstract

Since the introduction in 1996 of highly active antiretroviral therapy (HAART) for treating

individuals infected with HIV, morbidity and mortality among individuals who access care in a

timely fashion have dramatically decreased. As a result, patterns of health services utilization

have shifted from hospitalizations and acute care services to outpatient services and medications.

An additional implication of increased HAART coverage has been a reduction in HIV-1 viral

load amongst treated individuals. Tiidividuals with lower viral load are less likely to transmit

HIV infection to uninfected individuals. A resulting hypothesis is that increasing treatment with

HAART—either by treating individuals earlier in their infection or by expanding treatment

coverage rate to a greater proportion of infected individuals—could potentially lead to reduced

rates of HIV transmission. To date, the results of ecological studies and mathematical modelling

studies have been consistent with this hypothesis. The objectives in this dissertation were: to

build a computational tool that could be used to answer complex questions regarding the

economics of HIV during the HAART era in British Columbia (BC), Canada; and to address

specific economic questions relevant to the current treatment of HIV in BC. The particular

questions of interest included: the monthly costs associated with various categories of health

services utilization and the correlation between categories (Chapter 3); the expected long-term

incidence and costs associated with hospitalizations after initiation of HAART (Chapter 4); the

lifetime direct medical costs associated with an individual infected with HIV during the HAART

era (Chapter 5); and the cost-effectiveness of a strategy to increase HAART coverage from 50%

to 75% of clinically eligible individuals, accounting for individual-level and population-level

effects of HAART (Chapter 6). These questions were addressed using a variety of statistical and
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mathematical techniques, based on a BC-specific population-based data source. A key finding

with important public health relevance was that use of HAART was associated with decreases in

other categories of direct medical costs. These cost offsets were due to both an improvement in

morbidity resulting in a reduced need for acute health care services and, more importantly, a

reduction in HIV incidence.
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1. INTRODUCTION

1.1. Context

Widely acknowledged as “Canada’s poorest postal code”, Vancouver’s downtown eastside

(DTES) has been described as being “torn between the forces of gentrification and

ghettoisation”.(l) In 1997, the neighbourhood was home to the highest reported rates of human

immunodeficiency virus (HIV) infection in the developed world,(2) which have regrettably

remained similarly high since then.(3) The HIV prevalence in the DTES is currently estimated to

be approximately 17% amongst active drug users in the community.(4) While British Columbia

(BC) is not home to a generalized epidemic, in which high rates of HIV are endemic throughout

the general population, particular geographic regions have experienced concentrated epidemics

of similar magnitude to the generalized epidemics of Sub-Saharan Africa and other developing

regions.(5, 6) Within BC, the particular subpopulations most affected by HIV include some of

the most marginalized segments of society, including injection drug users, Aboriginals, and sex

trade workers.(7-9) Following HIV infection, it is these marginalized subgroups who are also

least likely to seek and receive optimal treatment for their disease.( 10) This dissertation

addresses the economic implications of expanding access to HIV treatment to those in medical

need in BC. Due to the socioeconomic distribution amongst individuals currently in need of

HIV treatment in BC, expanding HIV treatment to those who have a clinical indication but are

not currently receiving it could potentially help to address the spread of disease within the

province.
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1.2. Burden of HIV in British Columbia

HIV and Acquired Immune Deficiency Syndrome (AIDS) present a major burden to healthcare

systems throughout the world, including BC and Canada. At the end of 2005, it was estimated

that 58,000 Canadians were living with REV, a 16% increase since 2002.(l1) Over 95% of HIV

and AIDS diagnoses in Canada occur in the provinces of BC, Ontario, Quebec, and Alberta.(ll)

In 2003, the number of HIV cases in BC was estimated to be 13,000, or 22.4% of 58,000.(12)

Only 13% of Canada’s population resides in BC, meaning that HIV is disproportionately

represented in this province. A rough estimate of the magnitude of direct costs associated with

treating HIV in Canada in 1997, updated to adjust for increases in prevalence between 1997 and

2005, is over $800 million per year.(13)

1.3. Treatment for Individuals Infected with HIV

Beginning in 1987, standard antiretroviral treatment for individuals infected with HTV comprised

zidovudine (“AZT”) monotherapy;(14) as other antiretroviral agents were developed, the

benefits of dual-therapy were documented.(1 5) Prior to 1995, all FDA-approved antiretroviral

medications belonged to the non-nucleoside reverse transcriptase inhibitor (NRTI) class.(14) In

1995, the first protease inhibitor (P1), saquinavir, was approved by the FDA, followed by

nevirapine, a non-nucleoside reverse transcriptase inhibitor (NNRTI), which was approved in

1996.(14)

Antiretroviral therapy was revolutionized in 1996 when highly active antiretroviral therapy

(HAART) was first described at the Vancouver International AIDS Society conference with the
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unveiling of the first International AIDS Society antiretroviral therapy guidelines.(16) This was

due to the recognition of the key role of plasma HIV-1 RNA viral load as a prognostic

marker( 17) and the results of two randomized clinical trials: Merck 035(18) and INCAS( 19).

Mellors et al.(17) showed that low plasma HIV-1 RNA viral load was associated with reduced

disease progression for at least three years. Gulick et al.( 18) and Montaner et al.( 19) showed

that a consistently low plasma HIV-1 RNA viral load could be achieved using triple-drug

therapy, also referred to as HAART, in treatment-naïve individuals using two NRTIs and either a

P1(18) or a NNRTI.(19)

Widespread uptake of HAART in developed countries has materially altered the epidemiology of

HIV, with a dramatic decrease in morbidity and mortality from HIV,(20) a prolonged period of

undetectable viral load in treated individuals,(2 1) and a shift in health resource utilization from

inpatient services to outpatient services.(22, 23) In addition to the individual-level health

benefits provided by HAART, the potential for HAART to curb the spread of HIV infection has

been suggested.(24) The mechanism for this benefit relates to the ability of HAART to reduce

viral load amongst treated individuals,(25) which leads to a reduced likelihood of transmitting

HIV to uninfected individuals.(26, 27)

For a number of reasons, the shifting epidemiology of HIV during the HAART era necessitates

an in-depth analysis of the direct medical costs associated with HIV and the economic

implications of expanding treatment coverage rates. Firstly, with stable incidence of HIV and

increasing life expectancy amongst infected individuals, the prevalence of HIV is expected to

increase. With a growing group of individuals requiring life-long treatment and medical care, it
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is becoming increasingly meaningful for health planners and policy makers to use accurate

estimates of the costs required to provide such care. Secondly, it has been suggested that access

to HAART be expanded in BC, through providing treatment earlier in the disease history as well

as by providing outreach to individuals currently in need of treatment who for social, cultural, or

co-morbid reasons fail to access therapy.(24, 28) The upfront costs of this strategy mean that

downstream economic consequences need to be well characterized in advance, including the

acquisition costs of therapy, the long-term costs of providing medical care, and the offsets over

time brought about by improved health and a potentially reduced number of infections.

1.4. Objective

The objective of this dissertation is to develop a comprehensive framework for evaluating

economic scenarios describing the treatment and transmission of HIV during the HAART era.

The framework is designed to address questions specific to BC, and is also potentially

generalizable to other settings with similar treatment patterns.

In addition to developing the framework, four particular economic questions are addressed:

1. What are the monthly costs associated with various categories of health services expenditure,

stratified by current health status and demographics?

2. What is the expected long-term utilization and expenditure associated with hospitalizations.

during the HAART era?

3. What is the lifetime cost associated with medical care for an individual infected with HIV?
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4. What are the comprehensive economic implications of expanding access to HAART,

accounting for individual-level health benefits and population-level benefits associated with

reduced transmission?

1.5. Literature Review

1.5.1. Direct medical costs associated with HIV

The direct costs of treating an individual infected with HIV have been estimated by a number of

investigators in several different countries. A systematic review of studies reporting monthly

treatment costs during the HAART era(23) identified studies conducted in Canada,(29)

England,(30) the United States,(3 1-33) Italy,(34, 35) and France.(22) Studies published since

then include two from the United States(36, 37) and one from Canada.(38) One consistent trend

observed in all studies was an inverse relationship between monthly direct medical costs and

CD4 cell count, with individuals in the lowest CD4 cell count strata (typically defined as 0-50

cells/mm3)incurring the greatest expenditure. However, beyond the comparison of broad trends,

between-study comparisons are challenging for a number of reasons, including: international

variation in treatment costs and funding structures; different costing methodologies used by

different investigators; differences in study populations with respect to disease stage distribution;

and different levels of aggregation in reporting results.(23) For these reasons, comparisons of

absolute monthly cost figures across studies are not meaningful. In particular, the observed

international variation highlights the need for costing studies to be repeated across different

jurisdictions, so that any inference made based on assumed monthly costs is relevant to the

jurisdiction of interest.
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Investigators in Alberta recently published estimates of direct medical costs in this province

between 1997/1998 and 2005/2006.(38) As expected, they found that costs were inversely

related to CD4 cell counts. It was also observed that, within particular CD4 cell count strata,

HIV-related costs per person per month tended to either increase or remain stable between

1997/1998 and 2005/2006. However, the distribution of CD4 cell counts shifted over time, with

an increasing proportion of individuals in the highest CD4 strata. Thus, the observed net result

was a 1.8% decrease in HIV-related monthly costs over time, from $953 in 1997/1998 to $936 in

2005/2006.

Although comprehensive health services utilization databases are maintained for the province of

BC,(39) BC-specific HIV monthly cost estimates are not currently available.

1.5.2. Lifetime direct medical costs ofHIV

Compared to studies describing monthly costs, relatively few studies have been published

describing the lifetime costs associated with treating an individual infected with HJV during the

HAART era. One reason for this is that the life expectancies conferred by HAART exceed its

period of widespread availability,(40) meaning that any lifetime-based inference regarding HIV

treated with HAART requires the use of extrapolation, and cannot be done directly using

empirical data. Any systematic variability in monthly cost estimates will be compounded when

extrapolating those costs over the course of a lifetime, highlighting the importance of taking the

specific setting of interest into account when estimating lifetime costs.
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To date, two studies have been published describing the lifetime costs associated with treating an

individual infected with HIV during the HAART era: one in France(22) and one in the United

States.(41) Both studies combined a simulation model of HIV disease with country-specific

costs, stratified by CD4 cell count and other clinical indicators (e.g. final month of life, history of

opportunistic infections, currently experiencing an opportunistic infection). Substantial

between-study variability was observed: converting all costs to Canadian $2005, the estimated

lifetime cost, discounted at 3%, was $311,831 in France and $486,321 in the United States.

Again, the between-country differences suggest the importance of producing country-specific

estimates; when estimating lifetime treatment costs in Canada, results from other countries may

not be directly relevant. The small number of lifetime cost studies and the degree of inter-study

variability implies a need for similar studies to be repeated in different settings.

In order to fill the research gap related to monthly and lifetime direct medical costs for

individuals infected with HIV in BC, producing BC-specific estimates of these quantities

represents a key objective of this dissertation.

1.5.3. Impact ofHAART on HIV transmission

Ideally, the impact of expanding treatment with HAART on HIV transmission would be

evaluated using a randomized controlled trial (RCT), as this study design is considered the “gold

standard” when evaluating a medical intervention.(42) However, an experimental study design

is not plausible for evaluating the impact of a population-level policy decision. In the absence of

an RCT, observational ecological data are one source of information that can be used to estimate

the effects of increasing treatment with HAART. Ecological comparisons can be made across
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time periods or geographic locations. For example, it was observed that after implementing a

policy of free access to HAART in Taiwan, HIV infection rates fell by 53%, despite a stable

incidence of syphilis which suggested that there was no decrease in sexual risk behaviour that

could have explained the reduced HTV transmission.(43) This is consistent with observed

patterns in new HIV infections observed in BC after the widespread use of HAART in 1 996.(24)

Further, an international gradient has been observed between access to treatment and likelihood

of transmission from prevalent individuals, with regions that have the greatest access to

treatment showing the lowest rates of transmission relative to the size of the infected

population. (24)

While ecological evidence motivates the potential for increased HAART use to lead to reduced

HIV transmission, results are highly context specific, and it is possible that important

confounders are unknown or unmeasured. Further, the practice of assuming that aggregate-level

factors observed in a population apply to individual population members can lead to flawed

inference, a phenomenon known as the ecological fallacy.(44) An alternative method that has

been widely applied in this setting is mathematical modelling. The advantages of a

mathematical model include: it can be designed to incorporate all factors that are known or

suspected to affect results; and parameters and assumptions can be varied in order to assess the

impact of uncertainty and to generalize results.

Previous studies based on mathematical models have reported the impact of increased HAART

use on HIV transmission.(28, 45-48) While all studies have found some relationship between

the intervention and outcome, the specific results have varied widely. A model based on
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observed population data in BC(28) and another model of Sub-Saharan Africa developed by the

AIDS program of the World Health Organization(45) both predicted dramatic reductions in new

transmission when treatment with HAART was increased. A model based on the San Francisco

population further predicted that full eradication of the epidemic may be possible.(46)

Conversely, two models based on hypothetical populations consistent with observed resource-

poor settings both predicted relatively modest effects of increased HAART use on

transmission.(47, 48) Two of these studies reported simplified economic results,(28, 45) with all

studies focussed on new infections as the outcome of interest, and none reported a full economic

evaluation of expanded HAART use.

There are several broad reasons why the above-described discrepancies in mathematical model

results may occur. The first is the influence of population-specific epidemic properties, such as

the level of risk behaviour or the relative size of the infected population, on the potential impact

of prevention efforts.(49) As such, a single model might predict a dramatic reduction in

transmission in one population, but a more modest effect in an alternative population with

distinct transmission dynamics. A second reason is that “expansion of HAART” does not have a

uniform definition, and different models are likely to be evaluating the impact of slightly

different expansion strategies. A third reason is that different models may be based on different

assumptions leading to alternative conclusions. In light of these potential sources of variability,

it is advisable that results obtained for one population not be directly applied to another

population unless the specific epidemics are thought to be highly similar. It is further desirable

for investigators to be explicit and comprehensive regarding the scenarios compared and

assumptions made within a mathematical model, so that results can be critically evaluated.
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1.6. Dissertation Overview

In quantitative health research, the term “modelling” is used in several distinct contexts.(50)

Three such contexts will be addressed here: (1) Statistical modelling, in which individual-level

data are analyzed under the assumption that they follow specified probability distributions, and

parameters of interest are extracted; (2) Mathematical modelling, in which differential or

difference equations are used to describe the transmission of an infectious disease, and

mathematical theory is used to derive long-term summary parameters; and (3) Decision

modelling, in which various forms of information and data are synthesized into a single

framework, such as a Markov process(5 1) or a discrete-event simulation,(52) in order to describe

the course of a disease in terms of costs and outcomes.

The topics addressed within this dissertation require the use of all three forms of quantitative

modelling. An overarching framework for addressing economic issues in HIV treatment must

account for the impact of HAART at both the individual level and the population transmission

level, and, as such, both decision modelling and mathematical modelling techniques are applied.

Statistical models are used to translate individual-level data sources into the parameters needed

to populate the integrated mathematical and decision models.

This dissertation is divided into seven chapters, which focus on the different statistical

techniques, their integration into a single comprehensive framework, and the resulting health

policy implications.
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Chapter 2 discusses the development of non-linear statistical models for describing longitudinal

trajectories of CD4 cell count and HIV- 1 plasma viral load (pVL), two important prognostic

markers in HIV infection, during the HAART era. CD4 cell count is a predictor of HJV-related

morbidity and mortality,(17, 53, 54) while pVL is a predictor of infectivity.(26, 27) Based on

these relationships, the results of the corresponding statistical models are important inputs into

both the decision model describing lifetime medical costs and the mathematical model

describing disease transmission.

Chapter 3 provides a detailed description of the overlapping cohorts that form the basis of the

data analyses underlying the decision and mathematical models, and presents the results of

longitudinal statistical models which describe monthly direct medical costs for individuals

infected with HIV during the HAART era. These statistical models are adjusted for relevant

demographics and time-varying CD4 cell count in order to quantify the impact of these variables

on direct medical costs. Specific methodological approaches are employed in order to account

for common characteristics of cost data that violate standard regression assumptions. Within

Chapter 3, the empirical correlations between different categories of health services utilization

(e.g. inpatient, outpatient, pharmaceutical) are also derived. These quantities can be used within

decision and mathematical models to account for the fact that an individual’s use of a particular

health services category may be informative of their use of other health services categories,

based on an underlying level of health-seeking behaviour.

Chapter 4 describes a novel statistical method for predicting the long-term incidence and costs of

hospitalizations during the HAART era. The statistical model integrates a linear regression
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model for estimating the cost of a single hospitalization, a recurrent events model for estimating

the incidence of hospitalizations for a given CD4 cell count, and a non-linear model for

estimating CD4 cell count trajectories over time. These three models are formally combined to

yield a global estimator of long-term expected hospitalization costs. In the decision and

mathematical models described in other chapters, the methods of Chapter 3 are used to

incorporate the costs of hospitalizations. The methods described in Chapter 4 represent an

alternative method for incorporating the cost of hospitalizations, which could be applied in order

to incorporate the specific timing of individual hospitalizations.

Chapter 5 describes the integration of the statistical models described in Chapters 2 and 3 into a

microsimulation decision model which can be used to describe the lifetime direct medical costs

accrued by individuals infected with HIV in BC during the HAART era. Briefly, the non-linear

statistical models are used to generate individualized trajectories for CD4 cell count and pVL,

accounting for individual-level variability. Each month, based on an individual’s demographics

and their current CD4 cell count, direct medical costs are randomly generated and added to a

cumulative total. A Cox proportional hazards survival model is used to generate mortality

probabilities. This procedure is repeated for a large number of individuals under several sets of

assumptions, in order to estimate the average lifetime medical costs as well as the level of

variability observed between individuals and the potential impact of uncertainty in key model

assumptions. Within this chapter, the need for employing a computationally-intensive

microsimulation—which simulates heterogeneous individuals—as opposed to a simpler

approach is also explored.
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Chapter 6 extends the microsimulation model of Chapter 5 to incorporate a mathematical model

of disease transmission. Individual disease histories are generated as described above, with a set

of difference equations used to estimate new infections each month, accounting for the

relationship between pVL and infectivity. This integrated framework between the decision and

mathematical models is then used to estimate the economic impact of expanding access to

HAART.

Chapter 7 provides a discussion of all the studies undertaken within the dissertation, and

describes the individual and collective implications of the findings described in Chapters 2 to 6.

1.7. Ethical Considerations

This study has been recognized as ethically sound by the University of British Columbia

Providence Health Care Research Institute Office of Research Services. A copy of the ethics

approval certificate is included as Appendix D.

1.8. Original Contributions

This dissertation provides several contributions to original knowledge, which can be classified as

either methodological or policy-related contributions.

1.8.1. Methodological contributions

The research described in Chapters 2 and 3 is based on existing statistical methodologies, and

they are applied in novel contexts here. The specific non-linear statistical modelling method
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used in Chapter 2, generalized additive modelling, has not been used previously to describe

prognostic markers in HIV, and, as described, is found to be an effective method for accurately

describing short- and long-term dynamics in the absence of explicit theoretical knowledge about

functional forms. In Chapter 3, random effects modelling of longitudinal data is used in

conjunction with two-stage modelling techniques for health care cost data, in order to make full

use of a longitudinal data source with a time dependent covariate. To our knowledge, these

forms of statistical modelling have not been combined previously in the published literature.

The methodology described in Chapter 4 is statistically novel, and provides a method for

estimating the cumulative value of a marked point process that is not independently and

identically distributed in the presence of a time-dependent covariate.

The framework described in Chapter 6 is a novel integration of decision modelling and

mathematical modelling techniques. This method is directly applicable to other infectious

disease areas.

1.8.2. Health policy contributions

The lifetime direct medical costs estimated within Chapter 5 provide the first such estimates in a

Canadian setting during the HAART era. This information can be used to make economic

projections regarding the health resources required to provide care for individuals infected with

HIV over the course of their lifetime. The model can also be adapted to similar jurisdictions by

updating the relevant input parameters.
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The results of the integrated decision and mathematical models described in Chapter 6 provide

evidence of the economic benefits associated with expanding treatment with HAART.

Previously, the empirical associations between HAART and viral load(25) and viral load and

infectivity,(26) respectively, have been derived, and mathematical models have been used to

estimate the expected impact of increasing treatment with HAART on the rate of new

infections.(28, 45-48) The study described here is the first to further incorporate economic

quantities and provide an economic evaluation of HAART expansion that accounts for

expenditure and benefit at both the individual and population level.
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2. CHARACTERIZING TRAJECTORIES OF PLASMA HIV-1 RNA VIRAL

LOAD AND CD4 COUNT IN INDIVIDUALS TREATED WITH HIGHLY

ACTIVE ANTIRETROVIRAL THERAPY*

2.1. Introduction

Progression of the human immunodeficiency virus (HIV) can be characterized using both plasma

HIV-l RNA viral load (pVL) and CD4 cell count. These prognostic variables are strong

predictors of morbidity and mortality,(l, 2, 3, 4) and are used to initiate and monitor treatment

with antiretroviral therapy.(5)

The trajectories of these variables have relevance for individuals and for populations. For

individuals infected with HIV, CD4 cell counts can be used to estimate the time elapsed between

seroconversion and diagnosis and to estimate when antiretroviral therapy should be initiated

based on threshold guidelines,(6) while pVL measurements are used to estimate the efficacy of

antiretroviral therapy.(3) Both CD4 and pVL are used to predict short-term risk of progression to

acquired immunodeficiency syndrome (AIDS) and death.( 1, 2, 7, 8) Greater insight into the

trajectories of these variables over time and their relationships with individual-level

characteristics could allow clinicians to extrapolate longer-term predictions.

*

A version of this chapter will be submitted for publication. Johnston KM, Levy AR, Tyndall M, Hogg RS,

Gustafson P, Montaner JS. Characterizing trajectories of plasma HJV- I RNA viral load and CD4 count in

individuals treated with highly active antiretroviral therapy.
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At the population level, better understanding of the average trajectories of pVL and CD4 cell

count under current treatment practices could allow for improved ability to predict long-term

population distributions of these variables, which has implications for health services

utilization.(9) Simulation models used to make economic projections require estimates of pVL

and CD4 over time, e.g.(lO, 11) To date, the incorporation of pVL and CD4 into economic

models has been through stratification of the variables into broad categories. The ability to

estimate individual-level trajectories of CD4 and pVL on a continuous scale has the potential to

lead to more flexible simulation methods.

The typical trajectory of pVL and CD4 for an untreated individual has been characterized

previously, and is shown in Figure 2.l.(12) Both trajectories are non-linear in time, making

them difficult to describe via standard parametric statistical models. The introduction of

effective antiretroviral medications—specifically, highly active antiretroviral therapy

(HAART)—has dramatically altered these trajectories, with individuals experiencing extended

periods of suppressed pVL and increased CD4 cell count following treatment initiation.(13) The

form of trajectories has become more difficult to describe via statistical models following the

introduction of HAART. Firstly, treatment failure may result in decreases in CD4 and increases

in pVL, followed by subsequent improvement as the individual is placed on a successful new

treatment regimen; this process may be repeated several times over the course of treatment,( 14)

potentially resulting in several localized maxima and minima to be incorporated into a model.

Secondly, during periods of suppressed pVL, individuals may experience unpredictable transient

periods (“blips”) of detectable pVL levels.(15) These blips are more difficult than rounds of
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treatment failure to incorporate into the functional form of a statistical model, since the causes

and timing are not well understood theoretically.

Several statistical models have been proposed to describe pVL and CD4 trajectories for

individuals treated with HAART. These models have either included an assumption of

linearity(16) or allowed for non-linearity, but pre-specifed a functional form apriori,(17, 18)

which may not capture all dynamics of actual trajectories.

The objective of this study was to characterize the trajectories over time of pVL and CD4 for

individuals infected with HIV and treated with HAART. In particular, the goal was to describe

average trajectories over time at the population level, as well as to develop the ability to generate

individual-level projections that would capture both short-term dynamics and long-term trends of

pVL and CD4 over the course of an individual infection. The latter individualized trajectories

can then be used within a simulation model of the clinical and economic course of HIV in order

to quantify health services implications during the modem HAART era.

2.2. Methods

2.2.1. Study population

The study population comprised a prospective population-based cohort of individuals infected

with HIV in British Columbia (BC), Canada. In BC, all antiretroviral medications are centrally

distributed through the BC Centre for Excellence in HIV/AIDS Research Drug Treatment

Program. The HAART Observational Medical Evaluation and Research cohort consists of all

antiretroviral-naYve individuals who initiated treatment with HAART between August, 1996 and
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September, 2003 (n2,217).(19) For these individuals, all pVL and CD4 measurements

collected through the Drug Treatment Program were available, including those taken prior to

initiation of I-IAART. This resulted in 44,332 pVL measurements collected between April 1996

and March 2005 and 49,466 CD4 count measurements collected between May 1986 and March

2005.

2.2.2. Variable measurement

pVL and CD4 cell count were monitored according to a frequency set out in clinical guidelines,

approximately every three months.(20) pVL was measured using the Roche Amplicator Monitor

Assay (Roche Molecular Systems, Mississauga, Canada).The sensitivity of pVL testing varied

over time, with lower detection limits ranging from 50-500 copies/mL and upper detection limits

ranging from 100,000-1,000,000 copies/mL. Observations falling outside the limits of detection

were imputed assuming a normal distribution.(21) A sensitivity analysis was performed in

which censored viral load observations were truncated to the limits of detection rather than

imputed, and results (not shown) were similar. Adherence was defined by the percentage of

months in which antiretroviral medications were dispensed during the first year of HAART.(22,

23)

Genotypic medication resistance testing was performed approximately every three months for a

subset of 1,617 individuals, with resistance separated into four categories: lamivudine (3TC),

other nucleoside reverse-transcriptase inhibitors (NRTI), non-nucleoside reverse-transcriptase

inhibitors (NNRTI), and protease inhibitors (P1). Resistance was defined longitudinally as a
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factor with levels determined by cumulative number of resistance categories detected, plus a

separate level for individuals never tested.

2.2.3. Statistical methodology

Statistical models for CD4 cell count and log-transformed pVL were fit using the generalized

additive modelling framework to account for non-linear trajectories over time.(24, 25) A

generalized additive model can be thought of as analogous to a linear regression model, but with

some or all linear coefficients replaced by non-parametric, non-linear functions relating an

outcome to a set of covariates. For a normally-distributed outcome variable y, a matrix X of

covariates for which a linear relationship is assumed, and covariates x for which non-

parametric relationships are assumed, a generalized additive model is written:

y1 (1)

for parameters 0 and functions sj(xP). Under the generalized additive modelling framework, no

functional restrictions are placed on these relationships, although the functions are fit using

penalized splines to avoid over-fitting the data and are restricted to be centered around zero so

that the model intercept is well-defined. Penalized splines are a methodology for fitting a

function to data that is a middle-ground between the two extremes of either letting the data

determine the function exactly and assuming a linear relationship. The amount of smoothing was

optimized using the generalized cross-validation score, which is a goodness-of-fit criteria that

accounts for the additional error associated with generalizing a model to a new population.(25) A
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constant multiplier was used to inflate the model effective degrees of freedom to check for

overfitting.(25, 26, 27)

After fitting several models with various covariate combinations including interaction terms,

final models for pVL and CD4 cell count were chosen based on a combination of statistical

significance and clinical interest. Both models contained linear terms for age at cohort entry,

sex, use of injection drugs (binary), year of first antiretroviral use, first HAART combination

(NNRTI, P1, or ritonavir-boosted P1), and cumulative number of resistance mutations detected

(time-varying). These variables were included via linear terms, as opposed to smooth functions,

either because they were categorical in nature, or because exploratory analyses suggested a linear

relationship with the outcome variables.

The pVL model included smooth terms for adherence, time relative to first antiretroviral

treatment, and most recent previous pVL. The CD4 model included smooth terms for adherence,

most recent pVL measurement, time relative to first antiretroviral treatment, and most recent

previous CD4 cell count. The motivation for including recent pVL in the CD4 model and not

including recent CD4 in the pVL model was the fact that there are several biological

mechanisms by which pVL directly affects CD4 cells,(28) while the converse is less important

following the initial stages of primary infection. In addition to the multivariable models,

unadjusted models were fit for each smoothed term individually to estimate the crude

relationships with pVL and CD4, respectively.
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Because both multivariable models included terms for most recent measurement, the correlation

between multiple observations from the same individual was implicitly taken into account.

However, when fitting crude models for variables other than most recent measurement, auto-

correlated error terms were used to account for within-subject correlation of measurements. All

analyses were performed using version 2.3.1 of the R package,(27) including the mgcv 1.3-17

library.(25)

2.3. Results

The cohort of 2,217 individuals provided a median of 19 pVL measurements and 21 CD4

measurements per patient over a median follow-up of 64 months (interquartile range (IQR): 38-

90). Median pVL at start of antiretroviral therapy was 5.09 log copies/mL (IQR: 4.65-5.5 1),

while median CD4 count was 210 cells/mm3(IQR: 90-360). The median interval of time

between consecutive pVL measurements was 2.7 months (IQR: 1.6-3.7 months); for CD4 it was

2.3 months (IQR: 1.1-3.6 months). Table 2.1 reports further descriptive characteristics for the

study sample.

Results from the generalized additive models are summarized in Table 2.2 and Figures 2.2 and

2.3. As described by equation (1), each covariate in the model is related to the outcome via a

linear parameter U or a smooth function sQ. Coefficients associated with covariates for which a

linear relationship was assumed are given in Table 2.2. Interpretation of these coefficients is

analogous to the interpretation of coefficients from a standard linear model. For the remaining

variables, smooth functions were used to describe their relationships with pVL and CD4,

respectively. In this case, the relationship between a variable and outcome cannot be described
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by a single parameter, and is best described graphically. Note that the functions shown in

Figures 2.2 and 2.3 do not represent predicted trajectories, but, rather, show the estimated non

linear relationship between explanatory and outcome variables. Predicted trajectories of pVL

and CD4 can be produced by summing all linear covariates and non-linear functional values for

a particular combination of covariates.

The smooth functions estimated within the crude and multivariable pVL models are shown in

Figures 2.2(a)-(f). The left-hand column displays crude, unadjusted curves resulting from a

model with only the single smooth function, while the right-hand column displays smooth

functions resulting from the full multivariable model. A monotonic decreasing relationship was

observed between adherence and pVL (Figure 2.2(a)-(b)), although this relationship was

dampened in the adjusted model (Figure 2.2(b)). Average pVL trajectory over time was

characterized by a steady increase until treatment initiation, followed by a large drop

immediately after treatment initiation. In the first five to eight years of treatment, the trajectory

displayed several brief rebounds (Figure 2.2(d)), potentially representing treatment failures and

subsequent switching to a successful regimen. Overall, pVL appeared to remain at relatively

constant levels for more than eight years of antiretroviral treatment, the longest follow-up

available for study subjects (Figure 2.2(c)-(d)). For pVL between about 2-6 log copies/mE, most

recent pVL measurement was predictive of current pVL in a positive, approximately linear

fashion. For a most recent pVL greater than 6 log copies/mL, there was a slightly negative

relationship, suggesting that extremely high levels of pVL tended to be transient phenomena.

For pVL less than 2 log copies/mE, most recent pVL was observed to have a constant effect on

current pVL (Figure 2.2(e)-(f)).
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The smooth functions estimated within the crude and multivariable CD4 models are shown in

Figure 2.3(a)-(h). The crude relationship between CD4 count and adherence to antiretroviral

medication was monotonic increasing (Figure 2.3(a)), and, similarly to pVL, when adjusted for

other variables, the relationship became roughly constant(Figure 2.3(b)). Recent pVL levels less

than about 4 log copies/mL had a constant, positive, effect on CD4, with a steep decreasing trend

for pVL between 4 and 6 log copies/mL. Above 6 copies/mL, the relationship was positive, and

characterized by greater uncertainty (Figure 2.3(c)-(d)). CD4 cell count decreased over time

until the initiation of antiretroviral therapy; following initiation, the crude trajectory of CD4 over

time displayed an increase (Figure 2.3(e)), while the adjusted relationship was roughly constant

over time (Figure 2.3(f)). The most recent CD4 count was related to current CD4 count in a

positive, approximately linear manner for all but extremely high values of most recent CD4

(Figure 2.3 (g)-(h)).

Figure 2.4 displays hypothetical trajectories of(a) pVL and (b) CD4 for an individual with

typical covariate values. The estimated trajectories are based on a male, non-injection drug user,

initiating a P1-based HAART regimen. Age and adherence were assumed to be the mean values

observed within the cohort (Table 2.1). Different curves are shown for different numbers of

resistance mutations over the course of infection. For trajectories based on one or two resistance

mutations, the time of mutation development was assumed to be the average time observed

within the HOMERcohort (1.5 years for first mutation, 2.1 years for second mutation).The

initiation of HAART was associated with dramatic decreases in pVL and increases in CD4,

respectively. Over the duration of follow-up, CD4 cell count remained relatively stable, while
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pVL displayed localized maxima at approximately three years and five years following HAART

initiation, as well as a small increasing trend over time. During the first seven years following

HAART initiation, CD4 cell count was estimated to reach a minimum of approximately 500

cells/mm3,while pVL was estimated to reach a maximum of approximately 3.0 log copies/mL.

The pVL and CD4 multivariable models were assessed based on the percentage of null deviance

described by the full models. In the context of a generalized additive model, this statistic is

analogous to the R2 statistic resulting from a linear model. The deviance explained by the pVL

model was 63%; for the CD4 model it was 77%, suggesting that the models were able to

describe the majority of variability displayed by both prognostic variables. Examples of

predictive ability of the models are given in Figures 2.5 and 2.6, which display actual and

predicted pVL and CD4 trajectories for 15 randomly-selected individuals. Both models were

successful at predicting short- and long-term trends for individuals who provided more

measurements; there were greater discrepancies between the curves for individuals providing

only two or three measurements or with long intervals between measurements.

2.4. Discussion

2.4.1. Interpretation

In this study, we used generalized additive models to describe population-average and

individual-level trajectories of pVL and CD4 trajectories, and to elucidate dynamic relationships

between these prognostic laboratory variables and other relevant covariates. In the

multivariable pVL model, the smooth functions associated with medication adherence and time

on HAART were both dampened after adjusting for most recent pVL measurement; smooth
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functions associated with these variables were also dampened in the multivariable CD4 model

after adjusting for most recent pVL and CD4 measurements. This does not imply that

medication adherence and time on HAART do not influence pVL and/or CD4; at any given time

point, recent pVL and CD4 measurements are themselves likely to be influenced by multiple

factors such as medication adherence or time on HAART, so that these variables are already

implicitly accounted for. The multivariable models suggest that, given recent pVL and CD4

measurements, explicitly adjusting for adherence and time on HAART offers limited additional

information in predicting future pVL and CD4. For this reason, the primary utility of the

multivariable models is with respect to predictive ability. The crude models, as displayed in

Figure 2.2(a)/(c)/(e) and Figure 2.3(a)/(c)/(e)/(g), are better tools for exploring the relationship

between a particular variable and CD4 and/or pVL.

2.4.2. Strengths and limitations

With respect to predictive ability, the multivariable generalized additive models appear to

adequately describe pVL and CD4 trajectories at the individual level, both long-term trends and

short-term dynamics. The latter are not always well understood theoretically, particularly

temporary and dramatic changes in measurements, suggesting advantages to using non-

parametric statistical models in this context. Generalized additive models have been suggested

as a method for reducing bias in estimates when the exact functional form of a relationship is not

known.(29) However, a potential drawback to data-driven methods is the risk of over-fitting a

model to the data at hand such that model results are not generalizable. To address this, we re-fit

the models inflating the contribution of each effective degree of freedom by a factor of 1.4, as

suggested to correct for potential over-fitting,(25, 26) and found no difference in the
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interpretation. In addition, we fit the same models using only randomly-selected subsets of

individuals, and compared results to those obtained using the entire dataset. Results (not shown

here) were not found to be appreciably different, and fitted vs. actual trajectory plots (analogous

to those shown in Figures 2.5 and 2.6) showed similar accuracy for individuals who were

included in the model fit compared to those who were not. Thus, given that data were

population-based for BC, it seems likely that these results are generalizable to other populations

following similar treatment guidelines.(20)

There were several limitations to this study. Longitudinal data may produce overly optimistic

estimates of pVL and CD4, because individuals who do not respond to treatment would be

expected to experience higher pVL and lower CD4 than those whose disease is successfully

suppressed.(3 1) Such individuals would also be expected to live shorter lives and thus

contribute fewer measurements and have less of an impact on model fit. This is empirically

supported here because the models were less predictive of actual trajectories for individuals

providing fewer measurements. However, the success rate of HAART was high as shown by the

91% of individuals who provided at least one year of follow-up after initiating HAART, and

79% providing at least two years. We therefore expect that the models are reliable for the

majority of individuals accessing HAART. Future refinements could be to adapt methods of

accounting for this bias that have been developed for alternative modelling techniques e.g.(16,

32, 33, 34) to a generalized additive modelling framework.

The measure of antiretroviral adherence used here was a cross-sectional measure taken one year

following initiation of antiretroviral medication. While this measure has been validated and used
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previously,(22, 23) greater insight might be gained by including a dynamic measure of

adherence.

2.4.3. Potential applications

Trajectories generated from the multivariable models can be applied in health services

applications. Average trajectories for specific covariate combinations can be used to make

population-level projections regarding disease-stage distribution or expected morbidity and

mortality over time, based on the relationship between these outcomes and pVL and CD4.

Individual trajectories can be used within microsimulation models designed to estimate

economic parameters such as cost-effectiveness of a particular therapy or economic burden of

illness. In addition to health services applications, the ability to accurately predict future pVL

and CD4 trajectories at the individual level has potential implications for clinical practice. For

example, when deciding when to initiate treatment with HAART in an asymptomatic individual,

a clinician must estimate when the individual’s CD4 count is expected to drop to levels such that

they are eligible for treatment based on current guidelines, without allowing it to reach a point

where they are at an increased risk for clinical events.(35) Predictive models of CD4 and pVL

that account for individual-level characteristics would allow for more precise estimation of this

time point. A potential future extension of this work is to estimate positive and negative

predictive values of the model-based estimated time until particular critical CD4 thresholds are

reached and to develop risk equations analogous to those created for other disease areas.(36)
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2.5. Conclusion

We used population-based observational data to describe longitudinal trajectories of pVL and

CD4 cell count in individuals infected with HIV. We found that the method was successful for

describing both long- and short-term trends, at both the population-average and individual levels.

Improved ability to predict short-term pVL and CD4 measures has the potential to lead to better

informed treatment decisions, while knowledge of individual trajectories and population trends

of prognostic disease markers can help in predicting future demand for HIV-related health

services.
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Figure 2.1: Untreated history of CD4 cell count and plasma viral load.
(Copyright © 2003 International Medical Press. All rights reserved. Reprinted with permission.)
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Figure 2.2: Non-parametric results of generalized additive models of plasma viral load.
Smooth terms (with 95% confidence intervals) included in viral load models, both crude and multivariable: (a/b)
adherence to antiretroviral medications, (c/d) time relative to first antiretroviral treatment, (elf) most recent viral
load. Smooth terms represent non-linear contributions of covariates to viral load. Note that the scale is meaningful,
but the zero is arbitrary, so absolute values should not be interpreted. Multivariable models also adjusted for linear
relationships with age, year of HAART initiation, initial HAART regimen, injection drug use, sex, and age.
HAART = highly active antiretroviral therapy.
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Figure 2.3: Non-parametric results of generalized additive models of CD4 cell count.
Smooth terms (with 95% confidence intervals) included in CD4 cell count models, both crude and multivariable:

(a/b) adherence to antiretroviral medications, (cld) most recent viral load measurement, (elf) time relative to first

antiretroviral treatment, (g/h) most recent CD4 cell count. Smooth terms represent non-linear contributions of

covariates to CD4 cell count. Note that the scale is meaningful, but the zero is arbitrary, so absolute values should

not be interpreted. Multivariable models also adjusted for linear relationships with age, year of HAART initiation,

initial HAART regimen, injection drug use, sex, and age. HAART = highly active antiretroviral therapy.
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Figure 2.4: Hypothetical “typical” trajectories for (a) log viral load, and (b) CD4 cell count.
Separate trajectories for individuals with no resistance mutations, individuals who develop one resistance mutation,

and individuals who develop two resistance mutations. Resistance mutations assumed to occur at average times

observed in HOMER cohort.

(a)

No resistance
I resistance mutation
2 resistance mutations

1)

0
a)
0

>
a)
0)

>

U)

U
C)
a)
0)

ci)
>

L()

CN

L

0

u•)

0
U,

0
U,
c)

-I 1 3 5 7

Time (years) relative to first antiretroviral treatment

(b)

/
/ .

/ No resistance
1 resistance mutation] 2 resistance mutations

I I I

-1 1 3 5 7

Time (years) relative to first antiretroviral treatment

40



Figure 2.5: Observed and predicted trajectories of viral load.
15 randomly selected HIV-positive individuals being treated with antiretroviral medication in British Columbia,

Canada.
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Figure 2.6: Observed and predicted trajectories of CD4 cell count.

15 randomly selected HIV-positive individuals being treated with antiretroviral medication in British Columbia,

Canada.
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Table 2.1: Description of the HOMER cohort (1996-2005).

Antiretroviral-naYve individuals initiating treatment with highly active antiretroviral therapy. (n=2,2 17)

Mean age (y) (standard deviation [s.d.]) 37.7 (9.8)

Sex (% male) 82.0

Mean % adherence to antiretroviral therapy (s.d.) 78.5 (29.8)

Injection drug user (%) 24.7

Year of first antiretroviral therapy (%)
1996-1998 41.6

1999-2001 39.6

2002-2003 18.8

First antiretroviral regimen* (%)
NNRTI 38.2

P1 47.2

Ritonavir-boosted P1 14.6

Maximum number of resistance categories detected (%)
0 47.1

1 10.5

2 8.7

3 4.5

4 1.0

Not Tested 28.1

NNRTI= non-nucleoside reverse transcriptase inhibitor, Plprotease inhibitor
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Table 2.2 Estimated linear coefficients for multivariable generalized additive models.

Variable Viral load model (log CD4 cell count model

copies/mL) (Standard error) (cells/mm3)(Standard error)

Year of first antiretroviral use 0.019* (0.004) 4.16* (0.48)

(relative to 1996)

Sex

Female 0.000 (---) 0.000 (---)

Male 0.009* (0.015) 1.75 (1.86)

Injection drug user

No 0.000 (---) 0.000 (---)

Yes 0.034* (0.013) 2.97* (1.47)

First antiretroviral regimen

NNRTI 0.000 (---) 0.000 (--)

P1 0.022*(0.014) 0.17(1.67)

Ritonavir-boosted P1 -0.002 (0.0 18) -8.77 (2.11)

Age at cohort entry (per 10 y) 0.033* (0.006) -1.03 (0.67)

Cumulative number of resistance

categories**

0 0.000 (---) 0.000 (---)

1 0.155*(0.018) -1.63 (2.13)

2 0.169*(0.021) 8.92*(2.49)

3 0.190*(0.030)

4 0.146(0.053) 20.57*(6.58)

Statistically significant at a =0.05 level

**Resistance categories comprised of all NRTIs, all NNRTIs, all PIs, and lamivudine alone
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3. THE IMPACT OF HIGHLY ACTIVE ANTIRETROVIRAL THERAPY ON

HOSPITALIZATION AND OTHER MEDICAL COSTS FOR COMMUNITY-

DWELLING INDIVIDUALS INFECTED WITH HIV*

3.1. Introduction

The introduction of highly active antiretroviral therapy (HAART) for treating individuals

infected with HIV has brought about dramatic decreases in morbidity and mortality.(l, 2)

Treatment with HAART is lifelong and, given the increased survival and stable rates of new

infections,(3) the net effect is an increase in prevalence of HIV in western counties. In Canada,

approximately 58,000 individuals were estimated to be infected with HIV at the end of 2005, a

16% increase from 2002.(3) As such, the costs of treating persons infected with HIV present a

growing burden to the Canadian health care system.

Major sources of direct medical costs include: medication costs, hospitalization costs, and

outpatient costs (including physician visits, emergency room visits, and laboratory and

diagnostic tests).(4) Hospitalizations accounted for approximately 90% of HIV-related medical

costs during the early years of the epidemic,(5) and continue to comprise a substantial proportion

of overall medical costs.(6) However, the use of HAART has resulted in a decrease in the

frequency and cost of hospitalizations,(7) and an overall decrease in non-antiretroviral sources of

medical costs.(8) It has been suggested that use of HAART(9) and routine outpatient care(10)

*

A version of this chapter will be submitted for publication. Johnston KM, Levy AR, Briggs AH, Tyndall M, Lima

VD, Gustafson P, Hogg RS, Montaner JSM. The impact of highly active antiretroviral therapy on hospitalization

and other medical costs for community-dwelling individuals infected with HIV
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are both inversely related to risk of an HIV-related hospitalization. It is important to understand

and quantify the impact of HAART on other categories of expenditures because of the

implications when allocating relative budgets for HIV-related services.

Both before and after the introduction n of HAART, the direct medical costs associated with

HIV were characterized as a “moving target”, based on observed variability over time.(5, 11)

The impact of HAART on medical costs has previously been estimated by comparing mean costs

in the pre- and post-HAART eras.(7, 12) These comparisons may conflate changes brought

about directly by the use of HAART with other, unrelated, temporal changes in medical costs. In

Vancouver, British Columbia (BC), despite the free-of-charge availability of HAART, 40% of

individuals who died of HIV-related causes between 1997 and 2005 were never dispensed

HAART.(13) This suggests the existence of a group of individuals experiencing “modem day

pre-HAART” conditions, and comparing the direct medical costs incurred by such individuals

with those incurred by individuals receiving HAART could potentially account for the impact of

HAART availability on other direct medical costs without the need for historical controls.

The aim of this study was to characterize the interplay between different categories of direct

medical expenditure in individuals infected with HIV in BC. This expenditure included all

sources of medical care, and was not restricted to HIV-related care only. The specific objective

was to quantify pairwise associations between categories of utilization and expenditure—

particularly the relationships between use of HAART and hospitalization frequency and cost—

after adjusting for clinical and sociodemographic covariates.

50



3.2. Methods

12.1. Data sources

Data were obtained from two observational cohorts based in Vancouver, BC: the HAART

Observational Medical Evaluation and Research (HOMER) cohort and the Community Health

and Safety Evaluation (CHASE) cohort. Each of these cohorts has been linked to the British

Columbia Linked Health Database (BCLHD), which contains administrative records of

hospitalizations and outpatient physician visits.(14)

In BC, HAART is provided free of charge through a centralized program based out of the Drug

Treatment Program (DTP) of the BC Centre for Excellence in HIV/AIDS. The HOMER cohort

is comprised of all antiretroviral-naYve individuals in BC who initiated treatment with HAART

between 1996 and 2005 (n2,583). For this cohort, data are available describing baseline

sociodemographic characteristics, longitudinal CD4 cell count and plasma viral load,

longitudinal antiretroviral prescription records, and longitudinal laboratory test records. A

subset of 1,979 individuals in the HOMER cohort were receiving HAART prior to 2002 and

were linked to the BCLHD such that administrative health records were available between April

1995 and March 2001.

The CHASE cohort consists of a representative sample of low-income individuals residing in

Vancouver’s downtown east side (n=3,484). Individuals participating in CHASE completed a

baseline questionnaire describing sociodemographic and health services utilization information

and provided informed consent to linkages with various health services database, including

BCLHD and the St. Paul’s Emergency Room database, which captures approximately 75% of
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emergency room visits amongst individuals infected with HIV.(15) The CHASE cohort has

been linked to the BC Centre for Disease Control’s HIV testing database, allowing for the

identification of individuals with confirmed HIV infection (n=304), and to the BCLHD between

January 1998 and December 2005.

For this study, the HOMER and CHASE cohorts were linked in order to identify individuals

included in both. Study inclusion criteria and cohort overlap are shown in Figure 1 and the

periods of follow-up and CD4 monitoring based on cohort inclusion are shown in Figure 3.2.

All individuals in the HOMER cohort (n=2,583) were included in the analysis of antiretroviral

costs. For the analyses of other health services categories, individuals must have been included

in the linkage to BCLHD and had at least one laboratory measurement on record during the

period of the linkage. This resulted in 1,831 individuals from HOMER being included in all

analyses.

Individuals in the CHASE cohort were considered for inclusion if they had at least one positive

HIV test on record with the BC Centre for Disease Control. Individuals were excluded if they

had ever accessed antiretroviral treatment but did not meet the inclusion criteria for HOMER,

because the majority of such individuals were treatment-experienced with mono- or dual-therapy

prior to initiating HAART. In total, 183 individuals from the CHASE cohort were included:

119 were in both CHASE and HOMER, while 64 had never presented for treatment and were

thus considered to be treatment-naïve in all analyses. Individuals in CHASE characterized as

“HIV- or unknown” either had a recorded negative HIV test or had never been tested by the BC
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Centre for Disease Control. Thus, it is likely that some undiagnosed individuals infected with

HIV were excluded from this study because their HIV status could not be verified.

This resulted in 2,583 individuals included in the antiretroviral cost analysis, and 1,895

individuals included in all other health services analysis (1,712 in HOMER only, 119 in both

HOMER and CHASE, and 64 in CHASE only).

3.2.2. Economic variables

The perspective taken in this analysis was that of the BC Ministry of Health, the third party

payer for a large majority of health care services and antiretroviral therapy in BC. Costs were

estimated using a combination of charges paid and unit costs. Hospitalization costs were

estimated by multiplying the length of each hospital stay in days by a daily unit cost of $610.33,

which was estimated using a fully-allocated costing model developed for the province of

BC.(16) For physician visits, charges paid by the Ministry of Health were available for each visit

recorded in the BCLHD, and these charges were applied directly. The unit costs associated with

laboratory tests were obtained directly from a centralized testing facility, and were to be $60 for

a plasma viral load assay, $65 for a CD4 cell count test, and $230 for a genotype based HIV drug

resistance assay. The cost of an emergency room visit was estimated to be $430, based on the

charges applied to non-residents of Canada.(Reference: Personal Communication) For HAART

medications, records describing medication name and number ofdays dispensed were available.

Actual doses were not recorded, so days dispensed were combined with unit costs( 17) and

standard dosing guidelines.(18) All costs were converted to 2005 Canadian dollars.(19)
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3.2.3. Demographic and clinical variables

Treatment status was included as a binary variable that did not change once an individual

initiated treatment with HAART. For individuals with low adherence or treatment interruptions

this may include extended periods during which treatment was not accessed. In the

observational setting considered here, the treatment status indicator is comparable to the

treatment status indicator in an intent-to-treat analysis of a randomized controlled trial, as it

reflects the actual experiences of individuals who have initiated HAART.

CD4 cell count was included as a time-dependent categorical variable, and, for each monthly

interval, the CD4 cell count measured closest to the interval start date was attributed to the

interval. Categories of CD4 cell count (cells/mm3)were: 0-49, 50-99, 100-199, 200-349, 350-

499, and ?500. A separate level was included to indicate a time interval during which there was

no CD4 cell count available within one year of the interval start date. This was done because

failure to present for routine laboratory visits may be informative with respect to other categories

of health services utilization and may affect other categories of direct medical costs as a result.

For the 64 individuals not included in the HOMER cohort, CD4 counts were not available.

Similarly, for individuals who contributed person-time through the CHASE cohort prior to

enrolling in HOMER, CD4 cell counts were not available prior to enrollment in HOMER (Figure

2). However, based on study inclusion criteria, these individuals were known to be

antiretroviral-nalve, and the date of first positive HIV test was used in conjunction with the

average untreated history of HIV(20) to extrapolate expected CD4 cell counts for each time

period.
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Other variables considered in all models were sex, self-reported history of injection drug use,

and adherence to antiretroviral therapy as measured by number of months during the first year of

HAART in which HAART medications were dispensed. In the model describing HAART costs,

other variables considered were: year of HAART initiation, inclusion of a protease inhibitor (PT)

in current HAART regimen, and number of distinct medications included in current HAART

regimen (excluding Ritonavir for boosted-PI regimens).

3.2.4. Statistical methods

Each individual’s follow-up time was divided into monthly intervals, and the costs associated

with each category of expenditure were recorded for each interval.

Statistical modelling of health services cost data is often complicated by a high proportion of

person-time during which no costs are incurred, and a small number of person-time units

associated with very high costs.(2 1) The former results in “zero-inflation” of data, while the

latter can result in positively skewed data; both phenomena violate the assumptions of standard

linear regression models. The issue of zero-inflation can be addressed by modelling costs in two

stages: in the first stage, a logistic regression model is used to estimate the probability of non

zero use, while in the second stage, only non-zero costs are modelled.(21) The issue of positive

skew can often be addressed through a log transformation.

For all categories of costs besides HAART medications, a two-stage modelling approach was

used.(21) For the outpatient, hospitalization, laboratory, and emergency categories, costs were

log-transformed in the second-stage model due to right-skewed data. For HAART, costs were
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left untransformed, as the data were consistent with a normal distribution. In each stage, random

intercepts were included to account for the correlation between multiple observations from a

single individual.

Results were expressed as monthly costs. For categories in which the two-stage approach was

used, expected monthly costs were derived using the formula:

E[C° U, =P(C°’>O[X E[CIC>OX VJ (Eq. 3.1)

where C refers to monthly costs associated with cost categoryj, Xis a vector of covariates, U is

a random intercept in the utilization model, and V is a random intercept in the conditional cost

model.

An interaction between CD4 cell count category and treatment status was included to

differentiate between individuals not receiving HAART because their CD4 cell count was

sufficiently high that HAART initiation was not clinically indicated(22) and individuals not

receiving HAART despite having CD4 cell counts low enough that HAART was likely to be

clinically indicated.

For log-transformed data, E[C(’j was estimated from E[log(C)] using the Duan smearing

factor.(23) The Duan smearing factor is the average of the exponentiated residual error terms,

and is used to correct for bias induced by retransfonning results from the log scale back to the

original scale. Predictive ability of the combined two-stage models was assessed using the root
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mean-square error and mean absolute error, which were estimated by fitting models to 50% of

the data, selected at random, and comparing model-predicted values to actual observations for

the 50% of observations not used in fitting the models.(21) These diagnostic statistics confirmed

predictive advantages to the above described modelling technique, relative to alternative

methods such as single-stage approximation or use of a generalized linear model with a log-link

rather than log-transforming the data.

For HAART medications, a two-stage approach was not used, because treatment with FIAART

continues for life, suggesting that HAART costs should be incurred during all months following

treatment initiation. Because, by definition, HAART costs are only incurred by people receiving

treatment, they were only modelled following initiation of treatment with HAART, and the

treatment status variable was not included in the model. CD4 cell count was not included as a

covariate in this model. Although the initial decision to begin HAART treatment is guided by

CD4 cell count, it is not recommended that subsequent treatment decisions be based on CD4 cell

count,(24, 25) so it was not felt that CD4 cell count would be a meaningful predictor in this

context.

Within each model, the random intercept can be interpreted as an individual’s tendency to utilize

a particular category of health services, after adjusting for their CD4 cell count, sex, and

injection drug use status. We used pairwise correlations between the random intercepts from the

eleven utilization and cost models to assess relationships between categories of health services

utilization and costs, beyond what would be expected based on covariate values. The

relationships between random effects associated with HAART cost and those associated with
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inpatient use and cost, respectively were explored in greater detail using formulae given in

Appendix A.

33. Results

Descriptive characteristics of the study population are given in Tables 3.1(a) and 3.1(b). The

quantities reported in Table 3.1(a) are stratified by HAART treatment status, and refer to the

inpatient, outpatient, laboratory, and emergency room models, which all used a common study

sample. Sex and injection drug use status are expressed as percent person-time because

individuals were eligible to contribute person-time to both the treatment-experienced and

treatment-naïve arms at different points in their disease and treatment history. The majority of

person-time was contributed at higher CD4 cell count strata, although the distribution differed by

treatment status, with the treatment-experienced group contributing a greater proportion of

person-time to the highest strata than the treatment-naive group. Women and injection drug

users contributed relatively more time to the treatment-naïve group.

Quantities reported in Table 3.1(b) refer to the study sample utilized in the HAART cost model.

There was a small decreasing trend in number of individuals initiating HAART over time. The

majority of individuals initiated HAART with a non-nucleoside reverse transcriptase inhibitor

(NNRTI)-based regimen and maintained a three-drug regimen. The number of drugs included in

a HAART regimen was estimated using dispensing records, so regimens including less than

three drugs likely reflect refill patterns resulting from sub-optimal adherence, rather than

prescription of mono- or dual-therapy.
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Coefficients and associated standard errors for all models are reported in Tables 3.2-3.4. All

first-stage model coefficients are reported on the logit scale. For second-stage models, costs

associated with HAART were left untransformed, so coefficients are reported on the original

cost scale. Costs associated with other categories of health services (i.e. inpatient, outpatient,

laboratory, and emergency room visits) were log-transformed in the second stage of analysis, so

second-stage coefficients associated with these categories are reported on the log scale. Several

model diagnostic statistics are reported for each model in Table 3.4. Root mean-square error and

mean absolute error were calculated on the scale of predicted costs, and can be interpreted on

this scale for all categories of health services. For all use models, the variance of random

intercepts is reported on the logit scale. For cost models, the scale of the residual standard error

and the variance of random intercepts, respectively, are dependent on the nature of the dependent

variable. For HAART, costs were left untransformed, and these diagnostics are reported on the

original cost scale, while for all other categories they are reported on the log cost scale.

The model results were converted to the more interpretable quantity of predicted monthly costs

via equation (3.1). Predicted costs for HAART, stratified by regimen type and demographic

group, are given in Table 3.5. Estimated monthly HAART costs ranged from $922-$ 1,130. The

majority of variability was observed between HAART regimen types (P1- vs. NNRTI-based); for

each regimen type, costs were similar between demographic groups. Predicted costs associated

with all cost categories besides HAART, stratified by demographic group, treatment status, and

CD4 cell count, are displayed graphically in Figure 3.3. The costs displayed in Figure 3.3 are

based on a medication adherence rate of 79%, which was the mean level of adherence observed

in HOMER, estimated using refill compliance.(26) In all demographic groups, a dramatic
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increase in monthly costs—comprised largely of hospitalization costs—was observed in

individuals having a CD4 cell count below 50 cells/mm3.Within this CD4 strata, estimated

monthly costs ranged from $945 in HAART-experienced male non-users of injection drugs to

$3,659 in HAART-naYve women who used injection drugs.

In Figure 3.4, the inverse relationship between direct medical costs (excluding HAART) and

adherence is shown for a male non-injection drug user, stratified by levels of CD4 cell count.

Each line covers the interquartile range of adherence observed within the corresponding CD4

cell count stratum. Similar inverse relationships between adherence and costs were observed for

all other demographic groups (i.e. women, injection drug users).

The majority ofpredicted monthly costs were lower in individuals who had received treatment

with HAART, and this difference was most pronouncedin the lower CD4 cell count stratum.

However, overall predicted monthly costs were still higher in the treatment-experienced group,

after including the costs associated with HAART. Predicted costs were consistently higher for

women and injection drug users.

Table 3.6 reports pairwise correlation coefficients between the random effects associated with

the eleven utilization and cost models considered here. Correlations greater than 0.20 in absolute

value are bolded. There was a consistent pattern of positive correlations for all categories of

utilization and cost with outpatient utilization. The majority of correlations—including all

correlations that were relatively large in absolute value—were positive, suggesting that

individuals who tended to utilize one type of service were also likely to utilize other services.
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The majority of negative correlations were associated with laboratory utilization, laboratory cost,

and HAART cost, respectively. This provides evidence that regular laboratory monitoring and

treatment with HAART were associated with reduced need for other health care services.

Figure 3.5 displays the relationship between HAART random effects and expected inpatient cost

for hypothetical individuals (male, non-user of injection drugs, non-aboriginal, with CD4 cell

counts of 49, 199, and 499 cells/mm3,respectively). Both inpatient use and inpatient cost were

inversely related to HAART cost, as characterized by the correlation between random effects

given in Table 3.6. As expected, the scale of expected inpatient costs differed dramatically

across CD4 cell counts, but within each CD4 stratum, there was an inverse relationship with

HAART random effects, indicating that individuals who incurred greater HAART costs tended

to have lower inpatient costs. Because HAART costs were left untransformed, a random effect of

-200 indicates that an individual tended to incur $200 less in monthly HAART costs relative to

the population average, while a random effect of 200 indicates that an individual tended to incur

$200 more than average in monthly HAART costs. Within each of the three CD4 strata shown

in Figure 5, expected inpatient costs were more than two-fold greater for an individual with a

HAART random effect of -200 relative to a HAART random effect of 200.

3.4. Discussion

In this study we used random-effects models to estimate the direct medical costs associated with

various categories of health services utilization in individuals infected with HIV, accounting for

HAART treatment status and CD4 cell count. We observed that regular laboratory monitoring

and treatment with HAART were associated with reduced need for other health care services.
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For all cost categories other than HAART, we observed an inverse relationship between costs

and CD4 cell count. We also observed a general trend of higher costs in untreated individuals,

although overall costs were estimated to be higher in the treated group after if aggregated to

include costs associated with HAART. Compared to studies based on historical comparisons in

the United States, the cost reductions associated with HAART estimated here were less than

those reported by Bozzette et al.(12), and greater than those reported by Crane et al.(7).

Common practice in estimating current costs associated with HIV has been to define a study

population based on access to specialized HIV treatment clinics, e.g.(7, 12, 27, 28) which a

priori excludes individuals who have not accessed treatment. Through linkages of two cohorts,

we were able to access health services records for individuals who were infected with HIV but

had never accessed treatment. The wider population included here allowed for further

examination of the economic impact of accessing HAART. The results are consistent with the

hypothesis that increased use of HAART is associated with a decrease in other direct medical

costs: after adjusting for CD4 cell count, individuals who had accessed HAART incurred lower

overall medical costs across all expenditure categories and demographic goups (Figure 3.3);

increased adherence to HAART—as defined by first-year refill percentage—was inversely

related to overall direct medical costs (Figure 3.4); and increased monthly expenditure on

HAART—as defined by individual random intercepts in the HAART cost model—was inversely

related to both hospitalization frequency and hospitalization cost (Figure 3.5).

The predicted costs shown in Figures 3.3(a) — 3.3(d) suggest that the costs of all non-HAART

health services are higher in women and injection drug users, after adjusting for treatment status
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and CD4 cell count. This may be connected to the observation that both women and injection

drug users are relatively over-represented in the group not treated with HAART (Table 3.1). The

descriptive results reported in Table 3.1 do not account for treatment eligibility, so it is possible

that in this population, women and injection drug users were less likely to be eligible for

treatment with HAART based on current clinical status. However, as can be seen in Figure 3.3,

cost differences between treated and untreated individuals were more pronounced in women and

injection drug users, and particularly the intersection of women who were injection drug users

(Figure 3.3(d)). This may be due to non-HIV-related care, and is also consistent with the

hypothesis that, for these demographic groups, there is a greater proportion of individuals who

remain untreated despite being clinically eligible for treatment. These results are consistent

with evidence that women and injection drug users may be less likely to receive optimal

treatment for HIV.(29) This may lead to to greater use of other health services, in order to deal

with acute care needs that could have potentially been prevented through optimal prescription of

HAART.

All models adjusted for CD4 cell count, suggesting that the higher costs incurred by women and

injection drug users were not explained entirely by disease status. For injection drug users, this

is plausible due to increased risk of comorbidities and health complications directly related to

use of injection drugs, as well as a decreased use of preventive services and early interventions,

leading to more intensive use of hospitalizations and emergency room services.(16) Women

have also been consistently observed to utilize health care services at a higher rate than men,

independent of HIV status.(30, 31, 32, 33) It is further possible that the factors that place

women at increased risk of HIV infection, such as poverty, marginalization, gender power
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inequities, sex work, and vulnerability to violence,(34, 35) may also result in a greater need for

acute health care services following infection.

The majority of correlation coefficients between random effects estimated within the utilization

and cost models were positive, suggesting that individuals who tended to utilize a particular

category of health services were likely to utilize other categories as well. This is not inconsistent

with the hypothesis that use of regular outpatient care may reduce the need for other acute care

health services such as inpatient stays or emergency room visits.(1O) An individual’s random

effect associated with a particular category of health services utilization or cost is not just

reflective of their health status. In addition to health status, increased use of health care services

may reflect an individual’s underlying level of health-seeking behavior which defines the

threshold of ill health at which they present for that particular category of medical care. Thus,

the effects associated with different categories would be expected to exhibit positive

relationships with one another. However, while, for example, there was a positive correlation

observed between inpatient utilization and outpatient utilization, it is plausible that for a given

individual, their inpatient utilization would have been even higher had they not received routine

outpatient care.

A limitation to this study was that not all data sources were available for all study participants.

The emergency room linkage was only available through the CHASE cohort, so no emergency

room information was available for subjects who were included in the HOMER cohort but not

the CHASE cohort. The impact of this was likely small and would not be likely to change the

interpretations. In addition, the costs of non-HAART medications were not included because
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utilization data were only available for individuals eligible for public assistance and this status

was not known. We performed a sensitivity analysis in which these costs were included and the

effect on overall costs was negligible. The costs of hospitalizations were based on a common

per-diem cost. This cost was based on IDUs infected with HIV in Vancouver, and likely reflects

an overall average relevant to the population of interest. Ideally, however, more detailed costing

information could be used to stratif’ hospitalization costs by demographic characteristics and

length of hospital stay.

The categories ofhealth services utilization reported in the BCLHD were available for all study

participants, but the available follow-up period varied. For individuals in the HOMER cohort,

the linkage to the BCLHD was only available to March 2001, meaning that monthly cost

estimates were based on utilization patterns observed prior to this time. All unit costs were

updated to 2005 Canadian dollars, however, so that final estimates reflect an updated cost of

these utilization patterns.

An additional limitation was the fact that CD4 cell counts were not available for some

individuals prior to initiation of HAART. Based on study inclusion criteria, all individuals who

were missing CD4 counts were participants of the CHASE cohort, meaning that date of first

positive HIV test was known (Figure 3.2). This date was used as a proxy for seroconversion

date, and CD4 cell counts over time were extrapolated based on a typical natural history.(20)

Due to individual-level variability in CD4 trajectories, some person-time intervals may have

been associated with misclassified CD4 strata. Despite this limitation, we felt that any potential

misclassification introduced by including these person-time intervals was outweighed by the
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information that was added by including follow-up across the entire spectrum of actual

monitoring and treatment practices occurring in the community. The CHASE cohort utilized a•

community-based sampling scheme, allowing for the inclusion of some individuals infected with

HIV who had never accessed treatment. This is in contrast to the practice of selecting study

participants from the population accessing an HIV clinic, which by definition excludes all

individuals who are infected with HIV but not seeking treatment. The CHASE cohort therefore

provides a unique opportunity to observe health services utilization amongst individuals infected

with HIV and not receiving optimal care.

With respect to individuals included in the HOMER cohort, the data were population-based, so

that all individuals in BC who were being treated for HIV infection and who met the inclusion

criteria for HOMER were considered for inclusion here. Thus, the results for treated individuals

are generalizable to individuals initiating treatment with HAART in BC, and potentially to other

settings with publically-funded health care in which similar HIV treatment guidelines are

followed.

3.5. Conclusion

In this study, the direct medical costs associated with treating individuals infected with HIV

were quantified in a Canadian setting. The inclusion of individuals who had never accessed

HAART allowed for a comprehensive analysis of health services utilization across the spectrum

of community-dwelling individuals infected with HIV. As such, the economic impact of

HAART was assessed without the need for historical controls, and was not conflated with other

temporal changes in HIV treatment patterns. The results of this study are consistent with
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previous studies,(7, 12) suggesting that use of HAART is associated with decreases in other

categories of medical costs, including hospitalizations. The implication of this finding is that

increases in pharmaceutical budgets associated with expanded use of HAART may be offset by

decreased need for hospitalizations amongst individuals who are adherent to HAART.
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Figure 3.1: Number of subjects included from the HOMER and CHASE cohorts, Vancouver BC.
Used in all analyses of health services categories other than antiretroviral therapy.
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Figure 3.2: Available data and follow-up information.
Individuals included in the HOMER and/or CHASE cohorts.
fl refers to intersection with period of linkage to the British Columbia Linked Health Database.
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Figure 3.4: Estimated total direct medical costs.
Costs are excluding highly active antiretroviral therapy (HAART) by % medication adherence, stratified by CD4

cell count.
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Figure 3.5: Estimated association between highly active antiretroviral therapy (HAART) cost random effects
and expected hospitalization costs.
Based on a male, non-user of injection drugs, with a CD4 cell count of(a) 49, (b) 199, and (c) 499 cells/mm3.
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Table 3.1: Descriptive characteristics of study sample.
For (a) Inpatient, outpatient, laboratory, emergency room, and non-highly active antiretroviral therapy (I-IAART)
medication models, and (b) HAART cost model.

(a) HAART-experienced HAART-naIve

Person-years contributed 4048.9 2520.1
CD4 cell count (cells/mm3)
(% person-time)

0-49 5.5 5.5
50-99 3.7 3.7
100-199 10.5 10.5
200-349 23.6 23.6
350-500 20.0 21.6
500 31.6 25.7
No recent 4.6 9.4
measurements

Sex (% person-time)
Male 83.5 79.8
Female 16.5 20.2

Injection drug user (%
person-time)

Yes 63.8 60.8
No 36.2 39.2

Adherence (% person-time)
0 -59% 36.1 NA
60-79% 9.0
80-94% 13.2
95-100 41.7
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(b
Person-years contributed 12391
Sex (n(%))

Male 2107(81.6)
Female 476 (18.4)

Injection drug user (n(%))
Yes 715 (27.7)
No 1868 (72.3)

Year of first HAART* use
(n(%))

1996-1998 927 (35.9)
1999-200 1 884 (34.2)
2002-2004 772 (29.9)

Type of HAART regimen
( % person-time)

P1* 36.2
NNRTI* 63.8

Number of drugs in cuffent
HAART regimen (%
person-time)

2 34.8
3 59.9
4 3.8
5 1.5

Mean percent adherence to 79.1 (29.5)
HAART* (standard
deviation)
* P1 = Protease inhibitor
** NNRTI=Non-nucleoside reverse transcriptase inhibitor
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Table 3.3: Estimated regression coefficients and standard errors.

Random effects model describing monthly costs associated with highly active antiretroviral therapy (HAART) use.

Variable Estimated regression coefficient (standard error)

Intercept -23.46 (9.37)

Sex
Male 0.00( ---)
Female -6.28 (4.65)

Injection drug user
No 0.00(---)
Yes -10.13 (3.71)

HAART Regimen
P1* 191.59 (1.73)
NNRTI** 000( ......)

Number ofmedications in current HAART* Regimen*** 290.74 (0.53)

Percent adherence to HAART 0.67 (0.06)

Year of first HAART use
1996 0.00 ( ---)
1997 -22.66 (8.12)
1998 -26.38 (8.33)
1999 -24.03 (8.32)

2000 -29.34 (8.76)
2001 -29.59 (8.90)

2002 -19.40 (9.02)

2003 -43.47 (8.78)
2004 13.60 (9.09)

* P1 Protease inhibitor
** NNRTI=Non-nucleoside reverse transcriptase inhibitor
*** Does not include Ritonavir in boosted-PI regimens as an additional medication
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Table 3.4: Measures of variability for statistical models.
Inpatient, outpatient, laboratory, emergency room, non- highly active antiretroviral therapy (HAART) medication
and HAART models.

Cost category Root mean Mean absolute Residual Standard Standard
square error error standard deviation of deviation of

deviation random effects random effects
(cost model) (use model) (cost model)

Inpatient* 3321.02 3000.31 0.82 2.03 0.49
Outpatient* 281.03 136.28 0.88 1.95 0.42
Laboratory* 121.04 103.39 0.54 0.18 0.19
Emergency room* 423.31 376.56 0.49 1.48 0.17
HAART* 194.68 105.75 183.44 NA 76.63
* Costs log-transformed in second-stage model

Table 3.5: Predicted monthly HAART costs.
For various combinations of regimen type, sex, and injection drug user status. Predictions are further based on
average observed adherence to HAART (79.1%), a 3-medication HAART regimen, and HAART initiation in 2004.

Demographic Category PI*based regimen NNRTI**based regimen
• Male, non-user of injection drugs 1130 938

Female, non-user of injection drugs 1124 932
Male, user of injection drugs 1 121 923

• Female, user of injection drugs 1114 922

* P1 = Protease inhibitor
** NNRTI=Non-nucleoside reverse transcriptase inhibitor
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4. ACCOUNTING FOR TIME-DEPENDENT CD4-CELL COUNT

TRAJECTORIES IN ESTIMATING CUMULATIVE UTILIZATION AND

COST OF HOSPITALIZATIONS IN INDIVIDUALS INFECTED WITH HIV*

4.1. Introduction

With the introduction of highly active antiretroviral therapy (HAART) for treating individuals

infected with HIV, morbidity and mortality have dramatically decreased.(l, 2) A number of

studies have reported an association between the introduction of HAART and a decrease in HIV

related hospitalizations.(3, 4, 5, 6) However, hospitalizations continue to comprise a substantial

proportion of HIV-related direct medical costs, particularly for individuals with a CD4 cell count

below 200 cells/mm3.(7) Costs associated with hospitalizations are relatively high compared to

those associated with other types of health services, meaning that even if hospitalizations occur

less frequently for individuals receiving treatment with HAART, the overall costs may still

present an important economic burden. In addition, following the introduction of HAART,

individuals infected with HIV now experience greater life expectancy, and the distribution of

long-term cumulative hospitalization costs for these individuals has not been quantified.

In Canada, an estimated 58,000 individuals were living with HIV at the end of 2005.(8) Given

this level ofprevalence, an estimate of the resources required for current and future HIV-related

hospitalizations is potentially useful to health planners and policy makers. These resources can

be expressed in terms of expected incidence of hospitalizations over time or the anticipated costs

*

A version of this chapter will be submitted for publication. Johnston KM, Levy AR, Gustafson P, Briggs AH,

Lima VD, Hogg RS, Tyndall M, Montaner JSM. Accounting for time-dependent CD4-cell count trajectories in

estimating cumulative utilization and cost of hospitalizations in individuals infected with HIV
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associated with these hospitalizations. The former can be used to estimate needs for personnel,

space, beds, and other hospital infrastructure, while the latter can be used to project hospital

budgetary requirements.

CD4 cell count is a prognostic clinical marker of HIV severity, with lower CD4 cell counts

indicative of more severe disease. This measure can also be used to estimate short-term risk of

developing an AIDS-defining condition.(9, 10, 11) CD4 cell count has consistently been found

to display an inverse relationship with hospitalization costs.(7) Because CD4 cell count displays

a dynamic trajectory over the course of an HIV infection(12) and its prognostic value is most

relevant in the short term, it is preferable to account for this variable in a time-dependent fashion

when modelling long-term hospitalization incidence and costs.

One method of analyzing hospitalization data is to treat hospitalizations within an individual as

correlated recurrent events. Extensions of standard time-to-event methods have been developed

for this class of data,(13) and these methods can easily be adapted to describe incidence of

hospitalizations. Further, the costs associated with each hospitalization can be incorporated

through a “marked point process,”(l3) in which the cost of a hospitalization is modelled in

addition to the time at which the hospitalization occurred. There is flexibility regarding the

degree of dependence between the cost process and the recurrent events process. At one end of

the spectrum, it can be assumed that all costs are independently and identically distributed, while

at the other end of the spectrum, costs can be modelled conditional on the time of the

hospitalization and other variables describing hospitalization history, e.g. number of previous

hospitalizations or cumulative costs associated with previous hospitalizations.

84



The objective in this study was to develop a method for incorporating a time-dependent covariate

into a recurrent events model in order to make inferences regarding incidence and costs of

hospitalizations. We illustrate the method using data describing an observational cohort of

individuals infected with HIV and receiving treatment with HAART, with CD4 cell count

included as a time-dependent covariate.

4.2. Methods

4.2.1. Data

The study population was comprised of a population-based observational cohort from British

Columbia (BC), Canada. The HAART Observational Medical Evaluation and Research

(HOMER) cohort includes all antiretroviral-naive individuals in BC who initiated treatment with

HAART after 1996. Data are available describing baseline sociodemographic characteristics,

antiretroviral treatment history, and longitudinal CD4 cell count for all members of the HOMER

cohort. CD4 cell count was measured on a schedule based on clinical guidelines, approximately

quarterly for most individuals.(14)

A subset of individuals who enrolled in HOMER prior to 2003 was linked to the BC Linked

Health Database (BCLHD), which contains hospitalization abstracts describing date and length

of stay for hospitalization separations between April 1995 and March 2002. The cohort and

linkage has been described in detail in Chapter 3. In this analysis, we further limited inclusion

to individuals who provided at least six months follow-up on JEIAART (nl,589) in order to

eliminate individuals who were only ever dispensed HAART medications once and were

otherwise untreated. For the subset of 84 individuals who were also included in CHASE, the

more recent linkage provided hospitalization separations until December 31, 2005, and the

85



extended follow-up was included for these individuals. Individuals who died during the course of

follow-up were considered to be right-censored at date of death, including deaths which occurred

in hospital. Data describing longitudinal CD4 cell counts were available for all individuals until

November 30, 2005 or date of death or last contact.

The cost of a hospitalization was estimated using an estimated cost of $610.33 per hospital day.

This quantity was based on a fully-allocated costing model created for British Columbia,(15) and

was updated to 2005 Canadian dollars using health-specific inflation factors.(16) This daily rate

was multiplied by length of hospital stay, so that the model describing hospital costs was based

on a constant multiple of length of hospital stay.

All analyses were performed using R version 2 . 8. 1,(17) including the survival(18) and

nlme(19) libraries.

4.2.2. Statistical models

The method described herein was based on three statistical models. The first was a model

describing the incidence of hospitalizations, using a recurrent events framework, with CD4 cell

count included as a time-dependent covariate. The second was a linear model with random

intercepts describing the log-transformed cost of each hospitalization. The third was a quadratic

random intercept model describing CD4 cell count trajectories over time. These three models

were then combined to generate long-term cumulative incidence and costs of hospitalizations.

For clarity and illustrative purposes, the models fit here did not include any covariates besides

CD4 cell count. However, it is straightforward to extend the models to also incorporate time-

constant covariates.
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4.2.2.1. Incidence model
In our notation, X(t) describes the entire CD4 cell count history up to time t, Z(t) is a CD4 cell

count at time t, and N(t) is the cumulative number of hospitalizations experienced by time t. In

practice, CD4 cell counts were measured on an approximately quarterly basis (Chapter 2), and

we assumed that CD4 count remained constant between measurements. The incidence of

hospitalizations was modelled using a semi-parametric model with shared frailties:

X(t),U)= JUexp(z(s)y)dp0(s) (Eq.4.l)

for conditional mean function pQ I X(t),U)= E[N(t) I X(t)], baseline non-parametric mean

function p0(t), and frailty term U Frailty terms varied across individuals and were assumed to

follow a gamma distribution with mean 1.0. A frailty term of 1.0 is interpreted as having

hospitalization incidence equivalent to the population average, while frailty terms less than 1.0

indicate lower than average hospitalization incidence and frailty terms greater than 1.0 indicate

greater than average hospitalization incidence. The model was fit as using the semiparametric

counting process framework described by Andersen and Gill,(20) extended to include frailty

terms.(13) This model can be fit in R using the survival function coxph by using the

counting-process version of Surv and including the frailty option(21) in the survival

formula (see Appendix C. 1.4 of Cook et al. for model fitting details). This model choice allowed

for the incorporation of multiple events per individual and the inclusion of CD4 cell count as a

time-dependent covariate. Further, time spent in hospital was explicitly excluded from time

considered to be at risk for a future hospitalization. Time was measured relative to first HAART

prescription.
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4.2.2.2. Cost model
The log-transformed cost of a hospitalization was modelled using a linear model with random

intercepts of the form:

iog(c0 I z’)= (a0 +a’))+a1Z+8 (Eq.4.2)

with i indexing over individuals, N(O,o), and 8 N(O,o). Random intercepts were

included to allow for individual-level variability in costs not explained by CD4 cell count. The

log transformation was selected due to the tendency of cost data to display a positive skew.(22)

Diagnostic plots (not shown) confirmed the appropriateness of the log-transformation for these

particular cost data.

The random intercept a is an adjustment to the intercept term made for each individual,

accounting for the fact that, after adjusting for CD4 cell count, individuals can still have a

systematic tendency to experience hospitalizations that are either more or less expensive than the

population average. A positive random intercept indicates that an individual has a tendency to

experience more expensive hospitalizations while a negative random intercept indicates a

tendency to experience less expensive hospitalizations. Because costs were log-transformed,

random intercepts are also on a log scale.

Both the incidence and cost models were also fit including covariates describing number of

previous hospitalizations and cumulative number of previous hospital days, but neither of these

covariates was found to be statistically significant in either model, and the associated coefficients
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were all small in absolute value, suggesting that after adjusting for recent CD4 cell count, both

incidence and cost of hospitalizations could be considered independently of previous

hospitalization history.

4.2.2.3. CD4 cell count model
In the case of no covariates or time-constant covariates only, estimation of cumulative incidence

and costs for a recurrent events process is relatively straightforward.( 13) However, in the case of

time-dependent covariate (e.g. CD4 cell count), estimation of these quantities for a “typical”

individual requires an underlying model describing the average trajectory of the time-dependent

covariate over time. Because CD4 trajectories are non-linear and display variability across

individuals (Chapter 2), we used a random intercept model that was quadratic in time to describe

CD4 cell count trajectories.(23) The model can be expressed as:

Z’ (t) = (p + b” )+ fl1t + /32t2 + 8 (Eq.4.3)

where b’ N(O, and & N(O, o). At a given time t, the expected CD4 cell count for

individual i can be expressed as p(t)
=

(,o + b’)+ /11t+ fit2. The interpretation of random

intercepts in the CD4 model is analogous to those in the cost model, except that CD4 counts

were left untransformed, so random intercepts can be interpreted on the original CD4 scale.

Positive random intercepts indicate an individual tends to have higher-than average CD4 cell

counts over time while negative random intercepts indicate lower-than-average CD4 cell counts

over time.
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4.2.3. Cumulative incidence and costs

Based on the three models described above, and the assumption that CD4 cell count only

changes at discrete time points t1, t2, ... , t,,, , the expected cumulative cost and incidence of

hospitalizations for individual i at time t can be derived as:

E[C°) (t) I u]= USc exp(ao + U + o (a + r)2 /2)x

exp(,u° (t I U)(a1 + y))p (tk) — o0 (tk_1))

(Eq.4.4)

rn’>

E[N°(t) I u]—_ Uexp(oy2 /2)exp(p(t I U)ypO(tk)—pO(tk_1)) (Eq.4.5)

The derivation of equations (4.4) and (4.5) is given in Appendix B. In equation (4.4), Sc refers

to the smearing factor of the cost model, which is defined as the average of exponentiated

residuals. The smearing factor is used to convert expected log-cost back to the untransformed

expected cost scale. Under the assumption that U, a0, and bo follow a multivariate normal

(U—l)cr
distribution, the conditional expectations of a0 U and fik (t I U) are 2 and

o.U

p +
(U

—1bu + fi1t+/32t2,respectively. The covariance terms in these expressions can be
o.U

approximated by the corresponding empirical quantities estimated via model fitting. In practice,

the choice of discrete time points is arbitrary and may be chosen on a fine enough scale to

approximate continuous change.

90



The variance of the estimators was estimated using 1000 non-parametric bootstrap samples.

Sampling was taken at the level of the individual, and the observations associated with a sampled

individual were then included in the fitting of the three statistical models. This sampling scheme

was chosen due to the complex structure and observational nature of the data.(24)

4.3. Results

Descriptive characteristics of the study sample are given in Table 4.1. Individuals provided a

median of 11 CD4 measurements (interquartile range [IQRJ = 6-17) over a median 3.3 years

follow-up (1QR2.09-4.53). In total, 19,552 CD4 cell counts were contributed over 5,244

person-years of follow-up. The majority of follow-up time was contributed at higher CD4 cell

count strata, reflective of successful treatment with HAART. The incidence of hospitalizations

displayed a consistent inverse relationship with CD4 cell count strata, with an estimated

incidence of 1.75 hospitalizations per person-year within the lowest CD4 cell count stratum (0-

50 cells per mm3)compared to just 0.25 hospitalizations per person-year at the highest CD4 cell

count stratum (500 cells per mm3). The contrast between median cost per hospitalization

($3,561) and mean cost per hospitalization ($6,877) is due to the right-skewed nature of the data,

with a small number of very lengthy hospitalizations. Over the course of follow-up, the data on

82 individuals were censored for analysis when they died.

Coefficients for all three statistical models are given in Table 4.2. In both the hospitalization

incidence and hospitalizations cost models, the coefficient associated with CD4 cell count was

negative, suggesting that individuals with lower CD4 cell count were more likely to experience

hospitalizations, and, once hospitalized, they tended to require longer hospital stays.
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The empirical variance and covariance terms observed between frailty terms, random intercepts

from the CD4 model, and random intercepts from the cost model are given in table 4.3(a). The

variance of the CD4 model random intercepts was several orders of magnitude larger than the

other variables, due to the difference in scales—CD4 counts were left on the original scale while

costs were log-transformed. In table 4.3(b) these covariances are translated into conditional

expected values for CD4 and cost model random effects for selected values of frailties. These

expectations are based on the assumption that the three variables follow a multivariate normal

distribution (see Appendix B for further details). The motivation for deriving these conditional

expectations was to incorporate the potential for correlation between the three processes being

modelled. The outcome of primary interest in this study was expected incidence and cost of

hospitalizations over time for individuals with different underlying tendencies to be hospitalized

as measured by their frailty terms. By deriving conditional expectations for CD4 and cost

random intercepts, we were able to incorporate the joint relationship between CD4 cell count,

hospitalization cost, and frailty terms into our overall estimators for cumulative incidence and

costs.

Figure 4.1 displays estimated cumulative incidence and cost of hospitalizations following

initiation of HAART for an individual with a frailty term of 1.0, which corresponded to the

population mean. Mean incidence and cost increased to approximately three hospitalizations and

$15,000 in hospitalization costs incurred after eight years of treatment with HAART.

Figure 4.2 displays the estimated cumulative cost of hospitalizations for selected quantiles (5th1,

25th, 50th 75th 95th) of the empirical frailty distribution. Frailty terms affected the incidence and

cost estimators in two ways: directly, through their multiplicative effect on hospitalization
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incidence, and indirectly, through their correlation with random effects in the CD4 and cost

models which are then included in the models describing hospitalization incidence and

hospitalization cost, respectively. Wide variation was observed across the frailty distribution.

After eight years of treatment with HAART, an individual with a frailty term corresponding to

the 95th percentile of the empirical distribution was estimated to incur approximately nine

hospitalizations, costing over $60,000. Over eight years, the expected cost per hospitalization,

defined as cumulative cost divided by cumulative incidence, increased across frailty percentiles

from approximately $5,300 in the 5th percentile to approximately $6,500 in the 95th percentile.

4.4. Discussion

In this study, we found an inverse relationship between incidence of hospitalizations and CD4

cell count. It was also observed that hospitalizations experienced by individuals with lower CD4

cell counts tended to be longer and therefore more costly. A semi-parametric frailty model was

used to describe hospitalization incidence, accounting for the occurrence of multiple

hospitalizations within individuals. Parametric frailty terms, assumed to follow a gamma

distribution with mean 1.0, were used as a proxy for the combination of underlying health and

health-seeking behaviour that leads to a particular individual’s tendency to be hospitalized. We

also fit a quadratic random intercept model for CD4 trajectories and a linear random intercept

model for log-transformed hospitalization costs, which were used in conjunction with the

hospitalization incidence model to estimate the cumulative incidence and cost of hospitalizations

over time for various categories of individuals.

The results of this study could potentially be used to inform decision-making and health planning

regarding the need for financial and infrastructural resources needed to accommodate HIV
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related hospitalizations over time. In addition, these results could be used as an input to an

economic model, such as that described in Chapters 5 and 6 of this thesis. In those economic

models, we instead used the two-stage random effects models described in Chapter 3 to

incorporate hospitalization utilization and cost. The two-stage random effects model is relatively

simple and averages the cost of hospitalizations over the entire follow-up period, without

explicitly taking timing into account. For the purposes of the economic models described in

Chapters 5 and 6 this simplification was thought to be acceptable. However, if the specific

timing of individual hospitalizations was of interest, the method described in this chapter would

be a more appropriate choice.

Given the correlation between the three processes modelled here (hospitalization incidence,

hospitalization cost, CD4 trajectory), one option would have been to define a fully joint model,

such that correlation between the processes could be explicitly considered in model fit. We

instead fit the three models independently, and then accounted for correlation post hoc via the

empirical correlation between frailties and random intercepts and conditional expectations that

could be incorporated into the cumulative incidence and cost estimators. The advantage to using

this method is that the estimators can be generated using widely-available statistical software,

and do not require the creation of customized software programs to implement model fit, and can

therefore be potentially applied in a wider variety of settings.

The expected trajectories of incidence and cost over time shown in Figure 4.2 suggest that

accounting for the correlation between processes led to more informative results. Individuals

with higher frailty terms were expected to experience more hospitalizations, which would be

expected due to the definition of the frailty term. However, they also tended to incur higher
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costs beyond what would be expected due simply to higher incidence of hospitalizations,

resulting from more expensive individual hospitalizations. This was due to the fact that higher

frailty terms were associated with lower CD4 cell counts (negative covariance of -6.561in Table

4.3(a)), which were in turn associated with more frequent and expensive hospitalizations Further,

higher frailty terms were also associated with more expensive hospitalizations even after

accounting for CD4 cell count (positive covariance of 0.054 in Table 4.3(a)). By accounting for

these covariance terms in the cost and incidence estimators, we were able to fully account for the

impact of a higher frailty term.

One limitation to the method suggested here for incorporating CD4 cell trajectories into the

cumulative incidence and cost estimators is that the additive models described in Chapter 2 could

not be used here because it was computationally infeasible to include random intercepts in an

additive model with a dataset of this size. The inclusion of random intercepts was necessary to

incorporate a correlated structure with the other two statistical models. In place of an additive

model, we fit a quadratic random intercept model, which has been previously shown to have

good predictive ability for modelling CD4 cell counts.(23) In a comparison not shown here, we

found that an additive model with a term for most recent CD4 cell count had slightly better

predictive ability than a quadratic random effects model, but results were comparable, and the

latter model was able to adequately describe the CD4 data considered here.

A further limitation to this particular analysis was that, besides CD4 cell count, other potential

sociodemographic and clinical covariates were not included in the models fit here. Results

presented here can thus be interpreted as most relevant to the specific combination of

sociodemographic and clinical variables observed in BC, and may not be widely generalizable.
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The motivation for this exclusion was the aim to present an illustrative example, with clarity in

deriving the estimators and presenting results. There is also evidence that CD4 cell count is a key

predictor of hospitalization costs; several other studies have focused exclusively on CD4 cell

count in analyses of health services costs.(7) A potential future application would be to

incorporate additional covariates, (e.g. medication adherence and resistance, plasma viral load,

age, sex, injection drug use) in order to elucidate more subtle relationships with hospitalization

utilization and costs.

The method presented here is not limited to the context of using CD4 cell count trajectories to

estimate incidence and cost of hospitalizations in individuals infected with HIV. In a recent

study of diabetes outcomes, Clarke and co-authors predicted risk over time of seven conmion

health outcomes in diabetes, with several time-dependent covariates.(25) However, in this study,

the various outcomes were treated as independent processes and an analytical estimating

function for predicted outcomes was not derived; models describing risk factor progression and

outcome incidence were not integrated into a single mode!, and predictions were generated

numerically through simulation. The estimating functions described here could potentially be

applied in such a setting and can be generalized to describe cumulative incidence of a recurrent

event or multi-type related events andlor the cumulative value of a marker process in the

presence of a time-dependent covariate in other contexts.
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Figure 4.1: Estimated (a) cost and (b) incidence functions.
With associated pointwise 95% confidence intervals for hospitalizations, accounting for dynamic CD4 cell count
trajectories and assuming a frailty term of 1.0.
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Figure 4.2: Cumulative (a) cost and (b) incidence functions for selected quantiles of the empirical frailty

distribution.
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Table 4.1: Descriptive characteristics of study sample.

N=l 589; IQR = Interquartile Range

Variable
Cost per hospitalization (2005$ Median (IQR) 3561 (1424-7122)
Canadian) Mean (95% Confidence Interval) 6877 (6387-7366)
Follow-up time (years) per Median (IQR) 3.32 (2.09-4.53)
individual
Number of CD4 measurements per Median (IQR) 11 (6-17)
individual
Time between CD4 measurements Median (IQR) 3.02 (2.43-3.70)
(months)
Follow-up time contributed (years) 0-49 229.7
by CD4 strata (cells/mm3) 50-99 244.2

100-199 647.2
200-349 1210.3
350-499 1104.2
500 1808.5

Hospitalization incidence per 0-49 1.75
person-year by CD4 strata 50-99 0.72
(celLs/mm3) 100-199 0.60

200-349 0.43
350-499 0.32
500 0.25
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Table 4.2: Regression coefficients and 95% confidence intervals
Fixed effects for hospitalization incidence model, hospitalization cost model, and CD4 trajectory model.

Incidence Model Cost Model CD4 model

Intercept 8.35 352.05
(8.26— 8.44) (340.45 - 363.64)

CD4 coefficient (per 100 -0.20 -0.086
cells/mm3) (-0.23 - -0.17) (-0.107 — 0.065)

Time (months) 1.96
(1.92— 1.99)

Time2(months2) -0.00040
(-0.00039 - -0.00041)

Residual standard error 0.94 169.15
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Table 4.3: Covariance, correlation and conditional expectation of random effects.

(a) Empirical covariance (correlation) matrix for random effects estimated within hospitalization cost model, CD4

trajectory model, and frailty terms from hospitalization incidence model; (b) Conditional expectations of random

effects from CD4 and cost models for selected frailty terms based on multivariate normal distribution.

(a)

Hospitalization cost model CD4 trajectory model Hospitalization incidence
random effects random effects model frailties

Hospitalization cost model 0.131 (1.000) -6.561 (-0.088) 0.054 (0.210)

random effects
CD4 trajectory model 44,841.30 (1.000) -4.90 (-0.024)

random effects
Hospitalization incidence 0.91 (1.000)

model frailties

(b)

Frailty term Expected CD4 trajectory model Expected cost model random
random intercept intercept

0.16 (5th percentile) 4.52 -0.05

0.28 (25th percentile) 3.87 -0.04

0.51 (50th percentile) 2.66 -0.03

1.17(75th percentile) -0.91 0.01

3.36(95th percentile) -12.71 0.14
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5. ESTIMATING THE LIFETIME DIRECT MEDICAL COSTS ASSOCIATED

WITH HIV/AIDS IN BRITISH COLUMBIA, CANADA*

5.1. Introduction

Understanding the distribution of lifetime direct medical costs associated with treating an

individual infected with HIV is important for health policy makers who allocate resources for

HIV-related health services. The advent of highly active antiretroviral therapy (HAART) in the

mid-1990s brought about dramatic increases in life expectancy(1) and shifted patterns of

resource utilization(2) in individuals infected with HIV. Both of these changes have resulted in

changes to expected costs. The survival benefits of HAART have yet to be fully realized, as life

expectancy after initiating treatment with HAART exceeds its period of widespread

availability.(3) Therefore, lifetime direct medical costs cannot be estimated directly, and must

be extrapolated beyond the follow-up data that are currently available.(4, 5, 6)

Methods for modelling disease histories can be broadly characterized into approaches which

describe a homogeneous group of individuals at the aggregate level, or approaches which

incorporate heterogeneity, for example by including multiple distinct cohorts or unique disease

histories at the individual level. Empirical results have shown that failure to incorporate

heterogeneity into model design can lead to biased results.(7) We hypothesized a priori that the

incorporation of individual-level heterogeneity would potentially be required to accurately model

the costs associated with treating HIV. This was based on the non-linear inverse relationship

* A version of this chapter will be submitted for publication. Johnston KM, Levy AR, Briggs AH, Lima VD,

Tyndall M, Hogg RS, Gustafson P, Montaner JSM. Estimating the lifetime direct medical costs associated with

HIV/AIDS in British Columbia, Canada
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that has been empirically observed between medical costs and CD4 cell count (a marker for HIV

severity)(Chapter 3) combined with individual-level variability in CD4 cell count

trajectories,(Chapter 2) as well as the potential for individual-level variability in direct medical

costs that is not fully described by measured variables.(Chapter 3) Thus, by assuming

homogeneous individuals, as would be necessary when using a standard cohort approach, it

would not be possible to account for individuals who tend to incur greater healthcare costs than

their health status would suggest or who spend longer periods of time with low CD4 cell counts

and who have increased expenditure during those periods.

In British Columbia (BC), Canada, sociodemographic information, vital statistics, and

longitudinal data describing clinical disease markers and laboratory tests are available for all

individuals who are infected with HIV and accessing HAART. Further, health care is financed

by through single payer (the BC Ministry of Health), and records for various health care services

such as hospitalizations, physician visits, and pharmaceuticals can be linked at the individual

level. All individuals have a unique health identifier, which allows for HIV-specific data to be

linked to general health services data, creating a comprehensive data source for estimating the

cost implications of HIV disease.

The objective in this study was to estimate the lifetime direct medical costs associated with

treating an individual infected with HIV in BC. We estimated this quantity using a

microsimulation approach in order to accommodate the inclusion of individual-level

heterogeneity.
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5.2. Methods

5.2.1. Data

The study sample was characterized by a linkage between the HAART Observational Medical

Evaluation and Research (HOMER) cohort and the Community Health and Safety Evaluation

(CHASE) cohort. The HOMER cohort is comprised of all antiretroviral-naive individuals in BC

who initiated treatment with HAART between 1996 and 2004 (n=2,583). Individuals included

in the cohort contributed longitudinal data describing HIV clinical course and resource

utilization following initiation of treatment with HAART.

The CHASE cohort is a representative sample of low-income individuals living in Vancouver,

BC’s “Downtown East Side”. The CHASE cohort was linked to the BC Centre for Disease

Control HIV testing database, which provided information on HIV incident sero-status. Those

individuals with confirmed HIV status were linked to centralized antiretroviral treatment records

and categorized into three groups: (1) individuals who had received antiretroviral therapy and

were included in both the HOMER and CHASE cohorts; (2) individuals who had received

antiretroviral therapy but did not meet the inclusion criteria for HOMER; and (3) individuals

who had never received antiretroviral therapy. Individuals who had received some antiretroviral

therapy and who initiated antiretroviral therapy with mono- or dual-therapy prior to 1996 were

excluded from all analyses. Of 3,484 individuals in the CHASE cohort, 304 had confirmed HIV

positive status, of which 183 contributed data describing HIV clinical course and resource

utilization prior to the initiation of treatment and were included in this study.
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5.2.2. Costs

The perspective taken in this analysis was that of the BC Ministry of Health, the third party

payer responsible for a large majority of health care services and antiretroviral therapy in the

province. Costs were estimated using a combination of charges paid and unit costs.

Hospitalization costs were estimated by multiplying the length of each hospital stay in days by a

daily unit cost of $610.33, which was estimated using a fully-allocated costing model developed

for the province of BC.(8) For outpatient physician visits, charges paid by the Ministry of Health

were available for each recorded visit, and these charges were applied directly. The unit costs

associated with laboratory tests were obtained directly from a centralized testing facility, and

were $60 for a plasma viral load assay, $65 for a CD4 cell count test, and $230 for a genotype

based HIV drug resistance assay. The cost of an emergency room visit was estimated to be $430,

based on the charges applied to non-residents of Canada.(Reference: Personal communication)

For HAART medications, records describing medication name and duration dispensed were

applied to unit costs(9) and standard dosing guidelines.(10) All costs were converted to 2005

Canadian dollars.(l1) Costs and outcomes were discounted at rates of 0%, 3%, and 5%.

5.2.3. Statistical models

The majority of processes within the microsimulation were described by statistical models,

described in further detail below.

Costs were estimated via two-stage random effects models, in which the first stage was a logistic

regression model describing non-zero utilization in a particular time period and the second stage

was a linear model of log-costs, conditional on non-zero utilization.(12) (Chapter 3) Separate

models were fit for different categories of utilization, including hospitalizations, outpatient visits,
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laboratory tests, emergency room visits and medications (HAART and non-HAART). All

models adjusted for HAART treatment status, adherence to HAART, CD4 cell count, injection

drug use status and an interaction between CD4 cell count and HAART treatment status. For

individuals who died during follow-up, an indicator variable was included for the final month of

life in order to account for the increased costs typically associated with late-stage palliative care.

Because late-stage costs may be incurred prior to the final month of life, we also performed a

sensitivity analysis in which we fit random effects models with an end-of-life indicator during

the entire final year of life. Results were comparable to the model with a final month indicator

only, suggesting that the final-month variable was sufficient to capture the majority of end-of-

life costs.

Following treatment initiation, trajectories of CD4 and viral load were estimated using

generalized additive models,( 13) which were able to describe non-linear trajectories in

time.(Chapter 2) For both CD4 and viral load, previous measurements were used to predict

future measurements; in the case of CD4 cell count, previous viral load was also included as a

predictive variable due to biological mechanisms by which viral load affects CD4 cell cout.(14)

Other predictive variables included sex, injection drug use status, adherence to HAART, and the

cumulative number of medication categories for which an individual had conferred resistance

mutation(s).

Times until developing various resistance mutations were estimated using a Weibull survival

model with gamma-distributed frailty terms.(15) A single individual could potentially develop

resistance to up to four categories of antiretroviral medications, inducing an individual

correlation structure in the time-to-resistance process. Within a survival model, frailty terms are
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analogous to random effects, and were used here to account for that correlation. The resistance

model is described in further detail in Appendix C.

Survival after treatment initiation was estimated via a Cox proportional hazards model,(15)

which was chosen over a parametric form as it allows for straightforward inclusion of CD4 cell

count as a time-dependent covariate via a counting process methodology.(1 5) The outcome in

this model was all-cause mortality, including deaths due to HIV as well as those due to other

causes.

The remaining processes were not described by statistical models, including: CD4 cell count and

viral load trajectories during the time period between HIV infection and HAART initiation;

background age-related mortality; and utility values associated with health states. Pre-treatment

trajectories of CD4 and viral load could not be accurately assessed with the available data

because a substantial proportion of individuals did not present for routine monitoring of these

variables until they were nearing clinical indication for treatment with HAART. Further, for the

majority of individuals, time of infection was not known, making treatment initiation date the

most reliable choice for baseline time. Standard estimates for the untreated history of these

variables were assumed to hold prior to this date.(16) Background mortality was assumed to

follow the age-specific rates reported for BC for 2004.(17, 18) Although this assumption

resulted in HIV-related deaths being double-counted, the proportion of population-wide deaths

due to HIV were sufficiently small that removing them would not have altered rates at the

number of significant figures considered. Health state utilities were stratified by CD4 cell count,

based on Schackman et al.’s study of patient preferences using the SF-6D instrument.(19) This
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empirical study found little variability between health states, with utility values ranging between

0.83 and 0.87, and, as such, further variability in utilities was not incorporated into the model.

5.2.4. Microsimulation structure

The integration of these statistical models and process assumptions into a comprehensive

microsimulation is shown in Figure 5.1. The inicrosimulation began by generating baseline

characteristics for all individuals, with distributions based on data observed in the HOMER and

CHASE cohorts. These characteristics included demographics as well as random effects for

each of the cost models and frailty terms for the resistance model. The random effects for the

cost models represented an individual’s tendency to utilize particular health services, above and

beyond what would be described by the covariates included in the cost models (i.e. CD4 cell

count, adherence, treatment status, demographics). Similarly, the frailty terms for the resistance

model described an individual’s tendency to develop medication resistance beyond what would

be expected based on their adherence to HAART and other variables included in the resistance

model. An additional variable that was generated at the outset of the microsimulation was the

expected time following infection at which an individual was expected to present for CD4

monitoring. This was assumed to follow a uniform distribution over ten years, which was

chosen based on the observed initial CD4 cell counts in the HOMER cohort. It was further

assumed that after an individual presented for CD4 monitoring, they would initiate treatment

with HAART once they were considered clinically eligible, with eligibility based on a CD4 cell

count below 350 cells/mm3.

The microsimulation then proceeded by moving forward in one-month time cycles. At each time

step, CD4 cell count and viral load were updated. Treatment uptake in the upcoming month for
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individuals not yet receiving HAART was determined based on their CD4 cell count and

whether or not they had presented for monitoring.

Resistance mutation development was randomly determined assuming probabilities based on the

Weibull frailty model. It was assumed that if an individual initiating an non-nucleoside reverse

transcriptase inhibitor (NNRTI)-based regimen developed an NNRTI resistance mutation, they

would switch to a protease inhibitor (P1)-based regimen, and remain on P1-based regimens for

the remainder of their life, due to the increased likelihood of cross-class resistance to

NNRTIs.(20) Similarly, individuals who started on a P1-based regimen were assumed to switch

to an NNRTI-based regimen if they developed P1 resistance, and to switch back to a P1-based

regimen if they subsequently became resistant to NNRTIs. The distribution of times associated

with these regimen switches were estimated based on empirical data and were accounted for in

the frailty model.

Monthly costs associated with the various health services categories (hospitalizations, outpatient

visits, laboratory tests, emergency room visits and medications) were then generated. The first

stage random effects models were used to determine the probability of non-zero utilization for

each of the categories, and random numbers were generated to determine which individuals

would utilize each of the categories during the upcoming month. Conditional on non-zero

utilization to a particular health services category, the second stage random effects model was

used to estimate the expected log-cost associated with that category for the upcoming month.(12)

The expected log-costs calculated using the second stage models were treated as point estimates

associated with normally-distributed random variables. Actual log-costs were then randomly

sampled from normal distributions with mean and standard deviation equal to the point estimate
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and the residual standard error of the second stage model, respectively. Finally, these log-costs

were transformed back to the original cost scale using the Duan smearing factor.(2 1)

Survival throughout the upcoming interval was randomly determined based on the Cox

proportional hazards model. For individuals who died during the upcoming one-month interval,

the amount of time they contributed to the interval prior to death was sampled from a uniform

distribution, and the final month-of-life indicator was included in the cost models to reflect the

increase in expected costs associated with this interval.

5.2.5. Justflcationfor microsimulation approach

The primary reason for using a microsimulation to estimate lifetime costs instead of a less

computationally-intensive cohort-based method was the fact that with the former method it is

straightforward to incorporate heterogeneity between individual-level CD4 trajectories and

individual tendencies towards health-seeking behavior leading to variations in health services

utilization and costs. It was hypothesized a priori that failure to incorporate these sources of

heterogeneity could potentially lead to biased results. If the model had instead been structured as

a homogeneous cohort, it would not have been possible to include this heterogeneity at the

individual level. To empirically justif’ the use of the microsimulation approach, we removed key

sources of heterogeneity from the microsimulation and re-estimated costs, in order to

approximate results from a cohort-based model. In particular, we assumed a common CD4

trajectory for all individuals based on the population average and we removed the random effects

from the cost models, i.e. by assuming that all individuals had a random effect of zero for all

categories of health services utilization and cost. We still allowed the parameters of the cost

models to vary across iterations of the probabilistic sensitivity analysis, as this source of

uncertainty could also be captured within a cohort model.
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5.2.6. Assumptions

Valid data describing CD4 cell count and survival were only available for individuals who

accessed HAART, and baseline time in the Cox proportional hazards model was defined to be

time of treatment initiation. Thus, the Cox proportional hazards model was only relevant for

individuals following the initiation of HAART. We therefore made the assumption that

individuals were not at risk for mortality until initiating treatment, meaning that model results

are only applicable to individuals who accessed treatment at some point in their disease history.

Because survival was described using a Cox proportional hazards model, we did not estimate a

parametric form for the baseline hazard, and survival probabilities were based on a non-

parametric function which only described the period for which survival data were available

(approximately ten years following treatment initiation). Beyond this follow-up period, it was

assumed in the base-case analysis that the monthly probability of HTV mortality remained

constant. The observed mortality probability at the end of follow-up was used to estimate this

quantity; this assumption was supported by the fact that mortality remained relatively constant

during the latter period of observation. The microsimulation was run for a maximum of 30

years; it was assumed that there was no survival beyond this point.

5.2.7. Uncertainty and sensitivity analysis

Because this was a micro-level simulation, first-order uncertainty (i.e. individual-level variability

within a population) was implicitly accounted for by simulating different individuals with

different characteristics and different disease processes. Second-order uncertainty reflects the

potential for systematic bias in results due to uncertainty in model input parameters.(22) We a

priori identified the cost model parameters as potentially important sources of second-order
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uncertainty. To quantify the impact of this uncertainty, we performed a probabilistic sensitivity

analysis, in which the coefficients associated with all two-stage cost models were sampled from

multivariate normal distributions. In addition, CD4 and viral load trajectories were sampled

from normal distributions with the mean determined by the corresponding generalized additive

model and standard deviation based on the residual variance of the generalized additive model.

This incorporated variability into the trajectories that was not described by the assumed

statistical model.

In addition, several one-way sensitivity analyses were performed. We examined the impact of

changing the discount rate to 0% and 5%, respectively. We also examined several scenarios

regarding survival probabilities extrapolated beyond the observed follow-up of the data source:

(1) that the monthly mortality probability decreased by 50% after the follow-up period; (2) that

the monthly mortality period increased by 50% after the follow-up period; and (3) that the

maximum lifetime was 40 years following infection, compared to the base-case assumption of 30

years.

Another one-way sensitivity analysis was performed to estimate an upper bound on antiretroviral

costs. In the base-case analysis, antiretroviral costs were estimated by a statistical model fit

using observed dispensing data, which implicitly accounted for actual medication adherence, i.e.

medications that were prescribed but not dispensed were not included in cost estimates. While

this is accurate from the perspective of a third-party payer, we also wished to estimate a

hypothetical lifetime cost based on the assumption of 100% medication adherence. This

sensitivity analysis was based on a regimen of boosted atazanavir and tenofovir with lamivudine,

115



which costs $1 ,43 8/month in BC. This particular regimen was chosen because it is a relatively

high-cost combination that is currently widely used in treatment-naive individuals in BC.

5.2.8. Internal validation

As a measure of internal validation, the process used to generate costs within the

microsimulation was also used to generate estimated costs for the individuals who contributed

data to the health services utilization and cost models. For these individuals, we randomly

generated costs for each person-time interval they contributed, based on observed values of the

variables considered within the microsimulation. We then summed and log-transformed both

observed costs and randomly-generated costs across person-time intervals for each individual,

and compared the aggregate measures. These measures were compared both graphically and

using a linear regression model.

5.2.9. Computational details

All programming and statistical analyses were performed in R version 2. 8. 1.(23) The

microsimulation was designed as a series of matrix manipulations, which allowed for all

individuals and all iterations of the probabilistic sensitivity analysis to be computed

simultaneously. As a result, the only “loop” required was that associated with the 1-month time

cycles. All microsimulation runs included 500 simulated individuals and 500 probabilistic

sensitivity analysis iterations, for a total of 250,000 simulated life histories per run. A common

random number stream was used across iterations of the probabilistic sensitivity analysis and

across scenario and one-way sensitivity analyses. This increased efficiency by reducing

individual-level variability across comparisons.(24)
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5.3. Results

Model input parameters for demography and treatment-related variables are given in Table 5.1.

Individuals generated within the microsimulation were assigned characteristics randomly from

these distributions, which were based on distributions observed in the HOMER cohort. Sex and

injection drug use history were included as covariates in the statistical models describing

monthly direct medical costs, CD4 cell count and plasma viral load models. Medication

adherence was also included in all these statistical models, as well as the medication resistance

time-to-event model. P1- vs. NNRTI-based HAART was an indicator variable in the medication

cost and resistance models, and choice of initial regimen was assumed to have implications for

an individual’s future resistance and treatment profile. Age was not found to be an important

predictor in any of the statistical models fit, so it was only incorporated into the lifetime

simulation through background (non-HIV-related) mortality. The distributions for all parameters

were chosen based on empirical examination of the HOMER cohort.

The non-linear relationships between CD4 cell count and the monthly direct medical costs

associated with hospitalizations, physician visits, laboratory tests, and emergency room

utilization, estimated using two-stage random-effects models,( 12) are shown in Figure 5.2.

Factors associated with increased costs included HAART treatment status, female sex, and

injection drug user status. The shaded area indicates the increased costs associated with CD4 cell

counts below 200 cells/mm3. In all plots, the initial stepwise decline describes the time between

seroconversion and HAART initiation, assumed to be homogeneous across individuals, while the

subsequent “random walk” represents post-HAART trajectories characterized by individual

variability.
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In the base-case analysis, monthly antiretroviral costs (not included in Figure 5.2) were

estimated to range between $1,114 and $1,130 across demographic categories for a PT-based

regimen and $922 and $938 for a NNRTI-based regimen.(Chapter 3) The estimated costs

associated with the fmal month of life ranged from $15,164 and $24,559 across demographic

categories.

The empirical covariance matrix of random effects estimated in the health services utilization

and cost models is given in Table 5.2. Note that due to data transformations the utilization

random effects are reported on a logit scale, while all non-antiretroviral cost random effects are

reported on a log-cost scale. Antiretroviral costs were left untransformed, so these random

effects are reported on a cost scale. These random effects represent individuals’ tendencies to

utilize health services beyond what would be expected based on their demographics and current

CD4 cell count.

Randomly-generated CD4 cell count trajectories resulting from the microsimulation are shown

in Figure 5.3, with periods with CD4 cell counts below 200 cells/mm3highlighted in the shaded

area. The analogous common trajectory assumed for the cohort approach is shown in Figure

5.4. All individuals displayed here spent at least one month with CD4 cell counts below 200

cells/mm3,in which direct medical costs are increased (Figure 5.2). These individual

trajectories were consistent with the empirical data used to fit the statistical models.

In contrast, the population average CD4 trajectory remained consistently above the 200

cells/mm3threshold throughout a simulated lifetime (Figure 5.4). The discrepancy between

these trajectories results from the fact that, on average, at any given time point, the majority of

individuals have CD4 cell counts well above 200 cells/mm3(Figure 5.4). However, at the
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individual level, the majority of individuals experience at least transient periods with lower CD4

cell counts (Figure 5.3), and this phenomena is only captured by incorporating individual-level

variability into projections. In practice, this was achieved by incorporating the residual standard

error of the CD4 model into the individualized trajectories. Thus, although both the individual

and average trajectories were based on the same underlying statistical models, assuming the

population average trajectory applied to all individuals failed to capture observed months with

low CD4 counts and corresponding high medical costs.

Using the microsimulation approach, the estimated lifetime cost discounted at 3% was $267,822

(95% confidence interval: $257,500 — $278,049) (Table 5.3). Undiscounted lifetime cost was

estimated to be $408,396 (95% confidence interval: $390,859 — $425,274). Estimated

discounted lifetime costs were robust to varying assumptions about long-term survival, with

differences from baseline ranging between 6% ($252,196) and 11% ($299,681). Assuming all

individuals were fully compliant increased estimated discounted lifetime costs by 19% (to

$319,596). Across scenario analyses, estimated life-years ranged between 22.4 years and 28.3

years following infection, while estimated quality-adjusted life years (QALYs) ranged between

11.7 and 20.7 QALYs. The majority of variation in life-years is explained by differing

assumptions regarding long-term survival, while the variation in QALY5 is explained largely by

different choices of discount rates. Note that the variability reported in Table 5.3 refers to

population-level variability observed across iterations of the probabilistic sensitivity analysis. At

the individual level, simulated lifetime costs discounted at 3% ranged between $2,531 and $1.2

million.
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Figure 5.5 compares the base-case distribution of lifetime costs to the corresponding distribution

when key sources of heterogeneity were removed. Consistent with our a priori hypothesis, we

observed that estimated lifetime costs costs were systematically lower when we did not

incorporate individualized CD4 trajectories or random effects.

The comparison between observed and randomly generated log-costs, which was used to

internally validate the method for using the two-stage utilization and cost models within the

microsimulation, is shown in Figure 5.6. The solid line in the figure is the identity line with

intercept 0 and slope 1. The data points show a clear positive relationship and are randomly

distributed about the identity line, suggesting that the method used to generate costs provided an

unbiased estimate of actual costs. Further, a linear regression of randomly generated log-costs

against actual log-costs , constrained to have an intercept of 0, yielded an estimated slope of

1.004 and an R2 coefficient of 0.993.

5.4. Discussion

In this study, we estimated the discounted lifetime direct medical cost of treating a person

initiating HAART for HIV infection to be $267,822 (95% confidence interval: $257,500-

$278,049). This value changed less than 20% when varying assumptions about survival and

adherence. To our knowledge, this is the first study to estimate this parameter in a Canadian

setting during the HAART era. Alternative data-analytic methods to the microsimulation

approach have been suggested for estimating lifetime cost estimation, including an adaptation of

Kaplan-Meier analysis for censored cost data (25) and a phase-of-illness approach.(26) Such

methols were not appropriate in this particular setting because they are best suited to a data

source in which full lifetime estimates are available for a majority ofpatients. In contrast, for
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HIV during the HAART era, a large majority of patients who have initiated HAART since 1996

are still alive, necessitating the use of a simulation-based methodology to extrapolate

assumptions regarding lifetime inference.

A strength of the microsimulation was that the majority of underlying processes were

incorporated using population-based individual-level data, which reduced the need for

assumptions based on expert opinion or drawn from the literature. Based on the quality and

scope of the available data, the model is likely to be applicable other Canadian settings with

similar HIV treatment guidelines and health care systems.

The results were strengthened by the robustness observed across assumptions regarding long-

term survival. Because improvements in life expectancy currently exceed the availability of

HAART,(3) long-term life-expectancy represents a key assumption that must be made when

estimating lifetime medical costs. As more data become available over time describing long-

term survival on HAART, the microsimulation can be updated to include survival models with

longer follow-up. However, extensive sensitivity analyses indicated that the estimates derived

here are likely to be within 20% of the actual mean value.

The study was also subject to several limitations related to both the methodological approach and

the input data. The complexity of the model limited the number of probabilistic sensitivity

analysis iterations that could be reasonably undertaken. While the 500 iterations (resulting in

250,000 simulated individuals) in each scenario analysis were sufficient to quantify the impact of

second order uncertainty, a potential improvement could be to incorporate an optimized

sampling scheme (e.g. latin hypercube sampling) in place of the Monte Carlo approach.(27)
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Another limitation was the fact that only limited data were available for individuals who did not

initiate HAART or who initiated HAART late in the course of disease. Because of this

limitation, we assumed a common untreated course for CD4 cell count and plasma viral load

prior to HAART initiation,(l 6) and individual-level variability was not incorporated into these

pre-HAART trajectories. We anticipate this particular limitation to have had a limited impact

on results; because treatment is initiated at a CD4 cell count of 350 cells/mm3,untreated

trajectories by definition describe CD4 cell counts above this threshold, which are associated

with little cost variability (Figure 5.2).

A limitation due to the observational nature of the input data was the potential for informative

missing data, e.g. if individuals with lower CD4 cell counts were less likely to present for routine

laboratory monitoring. However, health services utilization and cost data were extracted from a

comprehensive administrative source, so the ability of the microsimulation to validate observed

costs (Figure 5.6) suggests that missing CD4 data did not present a major source of bias. Data

on date of death may have been missing for individuals who died outside the province of BC.

We made the assumption that the number of such deaths was likely to be negligible, and, further,

that individuals who died out-of-province would not be systematically different with respect to

disease course or health services utilization.

The comparison between the full microsimulation and the modified microsimulation with key

heterogeneity sources removed provided insight into cost drivers in HIV disease. With cost

model parameters and sociodemographic characteristics following common distributions across

the two approaches, the different assumptions regarding CD4 trajectories and individualized

random effects represented the primary source of different outcomes. We found that the
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inclusion of individualized trajectories and random effects consistently led to systematically

higher cost estimates. There are intuitive explanations for the importance of both sources of

heterogeneity on lifetime cost estimates. With respect to CD4 trajectories, the relationship

between CD4 cell count and mean monthly direct medical costs is non-linear (see Figure 5.2),

with similar costs across the highest CD4 cell count strata and large increases in costs when CD4

cell count falls below 100 cells/mm3. This pattern was observed to hold across all

sociodemographic categories. Therefore, time spent in the lowest CD4 cell count strata has a

large effect on lifetime medical costs. During the modem HAART era, on average, CD4 cell

count is expected to remain in the highest strata, reflecting the success of HAART in improving

immunologic function. However, at the individual level, some individuals do experience periods

of reduced CD4 cell count, resulting from treatment failure, medication resistance, or suboptimal

adherence.(Chapter 2) By incorporating individual-level trajectories based on actual observed

trajectories, such periods could be realistically incorporated. With respect to random effects, it is

important to note that while they are constrained to be centered about 0 (population

average),(28) the majority of cost models were fit to log-transformed data to account for right

skew. Thus, when model estimates were back-transformed to the original scale via

exponentiating and applying the smearing factor, positive random effects tended to have a larger

impact relative to negative random effects. This reflects the fact that while the majority of

individuals are clustered together with relatively low monthly costs, a small proportion of

individuals have very high monthly costs. By incorporating random effects, this right-skewed

cost distribution can be explicitly included in the model.

The motivation for comparing results based on heterogeneous CD4 trajectories and random

effects to those based on homogeneous values was to justify the use of a microsimulation model
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as opposed to a cohort based model. A recent study reported cost-effectiveness results in HIV to

be similar when comparing microsimulation and cohort approaches, with the microsimulation

displaying slightly higher predictive ability. (29) The advantage to a cohort is that it would have

had fewer data requirements and have been less computationally intensive, allowing for easier

implementation and a larger number of probabilistic sensitivity analysis iterations. While the

results based on the homogeneous approach were still generated using a microsimulation model,

the approach represented the “disabling” of key microsimulation features, in order to

approximate the results expected from a cohort model. Because the key difference between the

two approaches was characterized by the inclusion of individual-level heterogeneity, it would

have potentially been possible to design a cohort model that could approximate the

microsimulation results. Here we assumed a single homogeneous CD4 trajectory based on the

observed population average and did not incorporate any variability in random effects.

Alternatively, a model could be designed assuming several distinct cohorts, each characterized

by a different combination of CD4 trajectory and random effects. While such a model may

avoid the systematic underestimation of costs observed when using the population average

approach considered here, there is little to guide the number of cohorts that would be required.

Further, as the number of distinct CD4 trajectories and random effects values increase, the

number of required cohorts increases in a multiplicative fashion, and may become unrealistically

large. In contrast, the full microsimulation approach makes efficient use of all available data.
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Figure 5.2: Estimated monthly costs (2005 CDN$)
Hospitalizations, physician visits, laboratory tests, and emergency room utilization by CD4 cell count strata.
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Figure 5.3: Example CD4 trajectories from microsimulation.
CD4 cell counts below 200 cells/mm3shaded.

I AiJJL

_____ _____

0510 20 30 0 5101520 0246810

Time (years) Time (years) Time (years)

________

J

________

I
0510152025 0246810 05101520

lime (years) lime (years) Tine (years)

7” !
0 5 10 15 0510 20 30 0510 20 30

lime (years) Time (years) Time (years)

127



Figure 5.4: Common CD4 trajectory from cohort approach.
CD4 cell counts below 200 cells/mm3shaded.
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Figure 5.5: Distribution of lifetime costs.
Estimate.d within base-case microsimulation approach and comparison with key sources of heterogeneity removed.
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Figure 5.6: Observed vs. randomly generated log-costs used for internal validation purposes.
Line shown has an intercept of 0 and a slope of 1.
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Table 5.1: Observed demographic and treatment characteristics in the HOMER cohort.
N=2,583; used to populate the microsimulation model of lifetime costs of treating persons infected with HIV in
BC.(HAART=Highly Active Antiretroviral Therapy; PI=Protease Inhibitor; NNRTI=Non-nucleoside reverse
transcriptase inhibitor.)

Variable Distributional assumptions for

________________________________

microsimulation

Sex (%) Binomial
Male 81.6
Female 18.4

Injection drug use (%) Binomial
No 72.3
Yes 27.7

Initial HAART regimen (%) Binomial
P1-based 50.0
NNRTI-based 50.0

Age at treatment initiation (years) Normal

( mean (standard deviation)) 37.2 (3.1)

Adherence to HAART (refill %) Beta with parameters estimated by
( mean (standard deviation)) 79.1 (29.5) method of moments
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Table 5.3: Estimated lifetime costs, life-years, and quality-adjusted life years.

Base-case analysis, scenario analyses, and 1-way sensitivity analyses. Base-case analysis assumes treatment

initiation threshold of 350 cells/mm3,discounting rate of 3%, and 30-year time horizon.

Scenario Lifetime cost (95% Undiscounted Life-years Quality-adjusted life-
confidence interval) (95% confidence years (95% confidence

2005 CDN$ interval) interval)

Base-case (30-year time 267,822 23.9 (23.2 — 24.6) 14.4 (14.0 - 14.7)
horizon; constant (257,500 — 278,049)
mortality after follow-
up).
0% Discount rate 408,396 As for base-case 20.7 (20.1 - 21.3)

(390,859 — 425,274)
5% Discount rate 209,192 As for base-case 1 1.7 (1 1.4 - 1 1.9)

(201,714—216,940)
Reduced mortality rates 276,805 24.8 (24.1-25.5) 14.8 (14.1-15.1)
after end of follow-up (266,001-287618)
Increased mortality rates 252,196 22.4 (21.7-23.0) 13.7 (13.4-14.0)
after end of follow-up (242,103—262,423)
40-year time horizon 299,681 28.3 (27.2-29.3) 15.7 (15.3-16.2)

(286,850—311,344)
100% adherence to 319,596 23.9 (23.2 —24.6) 14.4 (14.0- 14.7)
boosted atazanavir and (309,150— 330,037)
tenofovir with
lamivudine
($1 438/month)
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6. COST-EFFECTWENESS OF INCREASING ACCESS TO HIGHLY ACTIVE

ANTIRETROVIRAL THERAPY FOR TREATING HIV/AIDS*

6.1. Introduction

More than 25 years after the first diagnosed cases of HIV/AIDS, the disease continues to present

a significant global health burden. Currently, an estimated 33.0 million individuals are estimated

to be living with HIV, with 2.7 million new infections and 2 million deaths estimated to have

occurred in 2007.(1) In some countries in sub-Saharan Africa, adult prevalence is greater than

20%.(l) Although treatment with antiretroviral medications has been successful in reducing

morbidity and mortality,(2) it does not eradicate the infection within infected individuals,(3)

making the prevention of new infections a priority in curbing the growth of the epidemic.

It has been suggested that increasing coverage with highly active antiretroviral therapy

(HAART) amongst persons infected with HIV, who have a medical indication for HAART, may

help to prevent new infections.(4) The mechanism is thought to be through a reduction in HIV-1

viral load among treated individuals,(5) which reduces the likelihood of HIV transmission to

uninfected persons.(6, 7) A mathematical model describing transmission of HIV in sub-Saharan

Africa has been used to show that universal screening coupled with immediate HAART for those

testing positive could result in dramatic decreases in HIV incidence and long-term treatment

costs in this setting.(8)

*

A version of the chapter will be submitted for publication. Johnston KM, Levy AR, Montaner iS, Lima VD,

Briggs AH, Hogg RS, Tyndall M, Gustafson P. Cost-Effectiveness of increasing access to highly active

antiretroviral therapy for treating HIV/AIDS.
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Given the relatively high lifetime cost of treating individuals infected with HIV,(9; Chapter 5) an

effective prevention strategy may be a cost-effective measure.(4) Simplified costing analyses,

which included only the costs of HIV testing and HAART have supported this empirically.(8)

However, there are a number of expenses associated with increased use of HAART that must be

accounted for in addition to the cost associated with providing lifelong therapies to more

individuals. Additional expenses include the provision of medical services to individuals

infected with HIV who are now living longer due to the increase in life expectancy conferred by

HAART, and thus requiring medical care for an extended period in time.(lO)

In addition, a potential limitation to using increased treatment with HAART as a complementary

form of prevention is that it does not address infections transmitted during primary infection,

which is the period immediately following seroconversion. Individuals in the primary infection

phase typically experience transient, high levels of viral load.(1 1) Further, they may not be

aware of their HIV status, in which case no modification of risk behaviour would be expected,

making primary infection a plausible period for further transmission.(12) Because individuals

experiencing primary infection are not likely to be captured by a program to increase use of

FIAART within existing clinical guidelines, this source of transmission would not be affected by

such a program.

To fully quantify the strengths, limitations, and cost implications of the proposed strategy to

increase use of HAART, a formal economic evaluation is required. The objective of such an

evaluation is to account for all relevant costs associated with implementing the program, and to
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compare these costs with the cost reductions and health benefits expected to result from

increased use of HAART, in both the short- and long-term.

In British Columbia (BC), Canada, the HIV epidemic can be characterized as being mature and

relatively stable, with comparatively consistent annual incidence of new positive tests over the

past ten years.(13) Using the proposed updated definition of a concentrated epidemic to be one in

which transmission is primarily restricted to particular HIV-vulnerable groups,(14) BC can be

classified as having a concentrated epidemic with the majority of infections occurring within the

subpopulations of men who have sex with men, sex trade workers, and injection drug users.(15)

The objective of this study was to perform a comprehensive economic evaluation of a program

to increase the uptake of HAART in BC. A secondary objective was to track the proportion of

new infections transmitted by individuals in the primary infection phase, and to compare this

proportion across the hypothetical strategies regarding HAART coverage.

6.2. Methods

6.2.1. Model structure

The model utilized in this study was designed as an integration of an existing microsimulation

model of the clinical and economic course of HIV with a series of difference equations

describing HIV transmission in discrete time steps.

The microsimulation is described in detail in Chapter 5. Table 6.1 describes the processes

included in the microsimulation and the statistical methods used to model them. All of these

processes were modelled using statistical analyses of individual-level data that were available for
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all individuals in BC receiving treatment with HAART.(16) In particular, CD4 and viral load

trajectories following the initiation of HAART were described by non-linear statistical

models,(17) and direct medical costs were described by random effects models that incorporated

both utilization and level of use of particular health services.(l 8) The microsimulation described

individual disease trajectories, so that all processes were generated separately to account for

random variability between individuals. Based on BC data, within the microsimulation it was

assumed that 81.6% of individuals were male, 72.3% were injection drug users, and average

medication adherence (defined as the proportion of months receiving HAART) was 79.1%.

One addition to the previously-described microsimulation was the incorporation of untreated life

histories, which were necessary to account for the implications of allowing a proportion of

individuals to remain untreated. Individuals who did not access treatment were assumed to

experience CD4 cell count trajectories associated with the natural untreated history of HIV.(l 1)

Following primary infection, untreated viral load trajectories were characterized by a “set-point”

that was randomly generated with a mean of 4 log-copies,(19) and an assumed increase of 0.5

log-copies per year in the absence of treatment. HIV-related mortality in the untreated group was

based on data collected prior to the introduction of HAART.(20)

The disease transmission model was based on a model created previously,(21) updated to be

integrated with the microsimulation. We considered a population of susceptible individuals at

high risk for acquiring HIV infection, and a population of individuals infected with HIV at

varying disease stages. The baseline infected population was assumed to consist of 8000

individuals, of whom 50% were assumed to have accessed treatment at some point in their
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disease history. The population size was chosen through a process of empirical calibration, as it

resulted in model-predicted numbers of new infections and new treatment initiations that were

consistent with observed data.(21)

Simulated time moved forward in one-month intervals, during which individual disease histories

and resource utilization profiles were updated within the microsimulation, and new infections

were estimated using a series of difference equations. Discrete-time difference equations were

used in place of continuous-time differential equations because the model was structured to

“stop” at each one-month time interval and calculate new infections based on the distribution of

clinical variables determined by the microsimulation. The difference equations described a

process in which susceptible individuals became infected at a rate determined by the respective

numbers of susceptible and infected individuals, the distribution of viral load amongst infected

individuals, the baseline level of risk behaviour observed in the population, and any decrease in

risk behaviour due to increased viral load. Mathematically, the equations are expressed:

S,30 =S1_[S1fi0Iu1)(1_8(J))/N]+2

‘1+30 =

In this notation, t is measured in days, S, refers to the number of susceptible individuals at time t,

I refers to the number of individuals in viral load categoryj at time t, fib is the baseline

population force of infectivity, y is the increase in infectivity associated with viral load

categoryj, c5 is a dampening of the increased infectivity associated viral load categoryj due to a

decrease in risk behaviour, N is the total number of individuals in the population (susceptible and

infected), . is the net migration into the susceptible population accounting for migration in and
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out and mortality (note that 2 could be positive or negative, depending on migration patterns),

and p1 is the mortality rate of infected individuals at time t, which varies according to the disease

stage distribution at time t. The model structure for a given time period is displayed in Figure

6.1.

The viral load categories considered were: primary infection during the 60 days following

seroconversion (fe)); viral load below 3 log copies per mL (/1)), viral load in the interval [3,4)

log copies per mL (p’2)), viral load in the interval [4,5) log copies per mE (!), and viral load

greater than or equal to 5 log copies per mL (P’4)). Category j(’ was taken as the baseline

category, so /1) and 0) were both defined to be 1, meaning that individuals in this viral load

category represent the baseline level of infectivity and risk behaviour. For increasing viral load

categories, it was assumed that an increase of 1 log copy/mE was associated with a 2.45-fold

increase in infectivity(6) and a 10% reduction in risk behaviour, based on the assumption that

viral load could be used as an acceptable proxy for morbidity. This decrease in risk behaviour

was varied in the sensitivity analysis. It was further assumed that during the period of primary

infection, viral load reached a level of 6 log copies/mE with no reduction in risk behaviour.

Newly-infected individuals were randomly assigned to one of two categories: the first category

of individuals would remain untreated throughout the course of their disease, while the second

category would at some point access treatment with HAART. Individuals assigned to the second

category were then randomly assigned a point in their disease history (between zero and ten

years following infection) at which they would present for routine clinical monitoring. These

individuals were assumed to initiate treatment with HAART once they had presented for
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monitoring and their CD4 cell count first dropped below 350 cells/mm3.This procedure allowed

us to account for the fact that some individuals may not present for treatment until their CD4 cell

count has dropped well below the threshold for clinical eligibility.

A 1000-iteration probabilistic sensitivity analysis(22) was performed to assess the impact of

uncertainty in model parameters on cost-effectiveness results. Nested within each iteration of

the sensitivity analysis, individual life histories were generated to account for heterogeneity in

clinical and economic processes. Parameter values used in the difference equations and

associated distributions for the probabilistic sensitivity analysis are given in Table 6.2.

6.2.2. Cost and utility estimates

Costs incurred by infected individuals included costs associated with physician visits,

hospitalizations, HAART, non-HAART medications, laboratory tests, and emergency room

visits. These costs were generated randomly based on statistical models, adjusted for treatment.

status, medication adherence, and CD4 cell count.( 18) In the base-case analysis, HAART costs

were based on actual costs incurred by infected individuals in BC, which includes some

individuals with sub-optimal adherence. We also performed a sensitivity analysis, assuming

100% adherence to an arbitrary regimen of boosted atazanavir and tenofovir with lamivudine,

which is a commonly-used first-line regimen in BC and costs $1,438/month.

Costs incurred by susceptible individuals were assumed to be $4,133/year, the average Canadian

health care cost reported for 2005 .(23) To account for health-related quality of life, life years

were converted to quality-adjusted life years by applying utilities to time spent in various health
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states. The utility associated with a health state is a number between zero and one which is used

to weight time spent in the state, with one representing perfect health and zero representing

death.(24) Health state utilities for infected individuals were assumed to follow published

estimates,(25) while a utility of 0.87 was assumed for the susceptible state. All costs were

converted to 2005 Canadian dollars, using health care-specific cost inflators.(26)

6.2.3. Scenario analyses

We considered two scenarios regarding treatment with HAART. In both scenarios, it was

assumed that the infected population at baseline was based on a historical treatment rate of 50%.

In the first scenario it was assumed that this treatment rate would remain at 50% for the entire

simulated time period. In the second scenario it was assumed that treatment uptake would

immediately increase to 75% and that 75% of newly infected individuals would continue to seek

treatment throughout the simulated time period.

6.2.4. Model outcomes

The primary outcome compared between the two scenarios was incremental cost-effectiveness,

defined as the ratio between incremental costs and incremental quality-adjusted life years across

scenarios. Cost-effectiveness was assessed using the incremental net benefit approach,(27)

based on the commonly used willingness-to-pay threshold of $50,000 per quality-adjusted life

year.(28) The net benefit is a synthetic economic quantity, equal to the product of the

willingness-to-pay threshold and the difference in effectiveness, less the difference in costs,

simultaneously incorporating costs, survival, and quality of life. For a given willingness-to-pay

threshold, a positive incremental net benefit based on that threshold indicates that the alternative
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intervention is cost-effective. Net benefit was considered at both the overall population level, in

which costs and quality-adjusted life years were aggregated across all infected and susceptible

individuals over time, and the patient-centred level, in which the only costs and quality-adjusted

life years considered were those accrued by the subgroup of individuals who were infected at

baseline. Patient-centred net benefit reflects the direct health benefits due to expanding HAART

use, while overall population net benefit further incorporates the benefits due to reducing new

infections. Uncertainty in the model was expressed using empirical 95% confidence bounds for

the incremental net benefit(29) and a cost-effectiveness acceptability curve.(30)

A second outcome used to evaluate the two scenarios was the number of new HJV infections

expected to occur under each scenario. New infections were separated into those resulting from

individuals during the primary infection stage of their disease versus those resulting from

individuals who were past the primary infection stage.

6.3. Results

Figure 6.2 displays the estimated cumulative incremental net benefit over time for the HAART

expansion scenario relative to a continuing coverage rate of 50%. The incremental net benefit

reported here is based on a willingness-to-pay threshold of $50,000 per quality-adjusted life

year; an incremental net benefit greater than zero indicates that the intervention is considered

cost-effective at this threshold.(27) Using the $50,000 threshold, the HAART expansion

scenario was estimated to reach cost-effectiveness—indicated by a positive incremental net

benefit—within four years. The cumulative net benefit was further estimated to increase steadily

over time, reaching approximately $900 million (95% Confidence Interval [CI]: $493 million -
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$1.45 billion) after 30 years. Uncertainty in results due to uncertainty in input parameters was

assessed through the probabilistic sensitivity analysis, with 95% confidence bounds included in

Figure 6.2. Within four years of implementation of the HAART expansion program, the lower

95% confidence bound for the net benefit became positive. As an alternative to the net benefit

approach, the results of the probabilistic sensitivity analysis are also shown in a cost-

effectiveness acceptability curve in Figure 6.3. For a willingness-to-pay threshold of $20,000,

over 80% of iterations indicated cost-effectiveness of the HAART expansion scenario, while

over 90% of iterations indicated cost-effectiveness for a willingness-to-pay threshold of $50,000.

When we assumed increased costs of $1,438 for monthly HAART costs, the scale of cumulative

net benefit was reduced, reaching a plateau of approximately $760 million over thirty years.

However, a similar pattern of cost-effectiveness was observed, with the HAART expansion

scenario reaching cost-effectiveness within seven years and remaining cost-effective throughout

the 30-year duration of simulated time (results not shown).

The overall population and patient-centered incremental net benefits are shown in Figure 6.4

(note that the overall population curve is equivalent to the point estimate shown in Figure 6.2).

For the first five years of expanded HAART, it is estimated that overall population net benefit is

comprised almost entirely of net benefits accrued by the initial group of individuals infected at

baseline. The general trend continues for approximately ten years, with the overall population

net benefits gradually increasing beyond the patient-centered net benefits. However, beyond ten

years, there is an increasing divergence, with the overall population net benefits being

146



increasingly explained by averted infections. At the end of the 30 year simulated period, patient-

centered net benefits account for approximately half of overall population net benefits.

Cumulative new infections predicted under each scenario are shown in Figure 6.5. The HAART

expansion scenario was consistently associated with fewer new infections. During the 30-year

simulated time period, the HAART expansion scenario was predicted to yield 26% fewer new

infections. In the mature epidemic simulated here, a relatively small proportion of new infections

was estimated to result from the period of primary infection.

6.4. Discussion

In this study, we demonstrated the potential cost-effectiveness of expanding the use of

HAART—as defined by increasing the proportion of HIV-infected individuals with CD4 cell

counts below 350 cells/mm3receiving HAART from 50% to 75%—in BC. Increased treatment

was found to reduce the incidence of new infections, and, despite the up-front acquesition costs

associated with an increase in HAART use, it was estimated that the strategy became cost-

effective within four years. Although HAART expansion would not reduce the probability of

transmission during the primary infection phase, this limitation was not predicted to substantially

decrease the overall effectiveness of the strategy.

Several other mathematical models have been used to assess the impact of HAART on HIV

transmission. Relative to the results presented here, some models have resulted in similar or

more dramatic effects on HIV incidence(8, 21, 31), while others have resulted in more

conservative estimates.(32, 33) All investigators have reported some reduction in the incidence
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of new infections when treatment rates are increased. When evaluating infectious disease

prevention strategies, the current phase of the particular epidemic being modelled is an important

factor,(34) so some discordance between studies undertaken in different settings is to be

expected. To our knowledge, ours is the first study to incorporate a comprehensive economic

evaluation in this context.

The microsimulation component of the model, which described the clinical course and economic

implications of HIV disease, was based on high-quality population-based data for BC, and is

thus expected to be accurate for BC and other areas with similar health care systems. Because

this component of the model was based on observational data, it describes actual clinical and

virological outcomes observed in practice, rather than idealized outcomes based on the

assumption of optimal medication adherence.

Another strength of the model was that it addressed multiple sources of complexity of HIV

disease through the integration of the microsimulation with the transmission model. Because

HIV is an infectious disease, a dynamic modelling method, such as the transmission model used

here, is required to quantify the impact of a prevention program. In addition, due to the

relatively long clinical course of HIV, it also displays properties of a chronic disease, and

lifetime direct medical costs may vary substantially across individuals.(Chapter 5)

Microsimulation methods based on statistical models have been well developed within the health

economics literature for describing the costs associated with a chronic disease.(35) These

methods provide a framework for quantifying the impact of HAART use at the individual level.

By combining the two modelling techniques, we were able to exploit the strengths of two
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complementary methods: one for addressing the infectious nature of HIV transmission, and one

for addressing the chronic nature and individual-level variability associated with HIV clinical

processes and medical costs.

A limitation of the study was the paucity of data available for assigning parameters to the disease

transmission component of the model. Parameters for which no empirical data were available

were chosen using a combination of expert opinion and calibration to historical incidence and

treatment rates.(2 1) In order to reduce model complexity, we assumed a single baseline

infectivity parameter (8o), and did not differentiate between different routes of transmission (e.g.

men who have sex with men, injection drug use, sex trade work). Thus, /Jo can be viewed as a

implicitly incorporating the relative sizes of different risk groups, and the level of risk behaviour

and risk of transmission associated with each risk group. It is unlikely that /3o is actually static,

as the relative size of risk groups and the behaviour of individuals change over time. However,

we made the simplifying assumption that the /Jo parameter would remain constant over the

simulated time period. We do not expect that this parameter uncertainty in /3o had a major impact

on model results. Within this study, it was not our objective to exactly replicate transmission

patterns observed in BC or predict the specific number of infections to be expected in upcoming

years. Rather, we wished to evaluate the difference in outcome between two treatment strategies

in the context of a mature, concentrated epidemic consistent with that observed in BC. Because

our primary outcomes were incremental in nature and all comparisons used the same parameter

estimates, it was unlikely that any incorrect assumptions regarding specific parameter values

would have biased overall results in either direction. Further, we allowed parameters to vary

across a relatively wide range of plausible values in the probabilistic sensitivity analysis (see
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Table 2). The results of this sensitivity analysis were consistent with the base-case analysis

regarding cost-effectiveness over time, using a willingness-to-pay threshold of $50,000 per

quality-adjusted life year.

In order to not overestimate the net benefit associated with the HAART expansion scenario,

wherever possible, we made conservative assumptions to make increased uptake of HAART

appear less effective. Firstly, we made the conservative choice of 0.87 as the utility value

associated with individuals susceptible for HIV infection. It has been suggested that assigning a

utility of 1.0 (“perfect health”) to the absence of a particular health condition ignores the likely

presence of other chronic and acute health conditions, and can result in overly optimistic cost-

effectiveness results.(36, 37) In the absence of empirical data describing the utility associated

with individuals susceptible to HIV infection, we selected the highest utility reported for

individuals infected with HIV as a lower bound for this utility.(25) Choosing the lowest

plausible utility value for susceptible individuals biases results against a prevention program. If

a utility of 1.0 is used instead, the cumulative net benefit after 30 years increases to 1.1 billion

dollars. A second conservative assumption was the choice of $4,133/year as the direct medical

cost associated with individuals susceptible for HIV infection. This figure was reported by the

Canadian Institute of Health Information as the Canadian average for 2005 .(23) However, it was

higher than the annual costs associated with HIV infection observed in the highest CD4 cell

stratum.(Chapter 3) This discrepancy may be due to younger age or lower health seeking

behaviour in the population of interest relative to the Canadian average. Regardless of the

reason, the result within the model was that medical costs tended to decrease immediately

following HIV infection. This tendency will also bias results against a prevention program.
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Finally, for all parameters related to primary infection, we assumed values on the upper end of

the plausible range. We assumed that the phase would last 60 days, that viral load would remain

at 6 log-copies/mL throughout the phase, and that there would be no decrease in risk behaviour.

Transmission during the primary phase was assumed to be unaffected by the program to increase

uptake of HAART.

6.5. Conclusion

In this study, an intervention to increase the HAART treatment rate from 50% to 75% of HIV

infected individuals with CD4 count below 350 cells/mm3in BC was demonstrated to be a cost

effective strategy. This result was obtained under a number of conservative assumptions which

were chosen to bias results against the intervention. Due to these assumptions, it is plausible that

the actual net benefit associated with the intervention is even higher than that reported here.

These cost-effectiveness results are consistent with public health objectives: all individuals who

are eligible for an established life-saving treatment should receive it.
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Figure 6,1: Schematic of model structure.
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Figure 6.2: Incremental net benefit.
Increasing uptake of highly active antiretroviral therapy (HAART) from 50% to 75% over a simulated time period
of 30 years, based on a willingness-to-pay thresholds of $50,000 per quality-adjusted life year. Solid line represents
mean of empirical distribution of probabilistic sensitivity analysis results, while dashed lines represent a 95%
confidence interval.
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Figure 6.3: Cost-effectiveness acceptability curve.
Increasing uptake of highly active antiretroviral therapy (HAART) from 50% to 75% over a simulated time period
of 30 years showing proportion of probabilistic sensitivity analysis iterations that were cost-effective for
willingness-to-pay thresholds between 0 and $80,000.
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Figure 6.4: Overall population and patient-centered incremental net benefit.
Increasing uptake of highly active antiretroviral therapy (HAART) from 50% to 75% over a simulated time period
of 30 years, based on a willingness-to-pay threshold of $50,000 per quality-adjusted life year.
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Figure 6.5: Estimated cumulative number of new infections over time.
Scenario 1: increasing uptake of highly active antiretroviral therapy (HAART) from 50% to 75%; and Scenario 2:
uptake of HAART consistent at 50% over a simulated time period of3O years. Infections transmitted during primary
infection phase identified.
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Table 6.1: Statistical methods used to describe processes included in microsimulation.
All models fit using individual-level data from British Columbia.

Process Statistical methods used
CD4 cell count trajectories • Non-linear statistical model(17)

Plasma viral load trajectories • Non-linear statistical model(l 7)
Medication resistance* • Weibull time-to-event model with frailty terms

due to correlation between resistance to
different_classes_ofmedication(38)

Accumulation of direct medical costs • Series of two-stage random effects models(1 8)
HIV-Related mortality following highly active • Cox proportional hazards model incorporating
antiretroviral therapy (HAART) initiation CD4 cell count as a time-dependent

covariate(3 8)
*fined as developing a first resistance mutation to each of four categories of antiretrovirals: protease inhibitors,
non-nucleoside reverse transcriptase inhibitors, lamivudine, and nucleoside reverse transcriptase inhibitors
(excluding lamivudine).
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7. DISCUSSION V

7.1. Study Results and Implications

7.1.]. Summary offIndings

The studies included as Chapters 2-6 in this dissertation describe a number of clinical, economic,

and policy-related findings:

• The use of generalized additive models to quantify non-linear trajectories for plasma viral

load and CD4 cell count during the highly active antiretroviral therapy (HAART) era

(Chapter 2). The non-linear statistical technique was shown to be an effective method for

incorporating individual-level variability in trajectories as well as describing broad

population trends.

• The development of alternative methods for statistical modelling of health services

utilization and costs associated with HIV during the HAART era (Chapters 3 and 4).

Key findings from these chapters include: a consistent inverse trend observed between

CD4 cell count and direct medical costs; an inverse relationship between expenditure on

HAART and expenditure on hospitalizations; and pairwise correlations between CD4 cell

count trajectories, hospitalization incidence, and hospitalization costs. In addition,

Chapter 3 describes statistical models that were used to generate estimates of monthly

costs and associated variability for incorporation into a microsimulation model of HIV.

• The incorporation of the statistical models from Chapters 2 and 3, respectively, into a

microsimulation model for generating stochastic estimates of the lifetime direct medical

costs associated with HIV in British Columbia (BC) during the HAART era (Chapter 5).

The base-case estimate of lifetime direct medical costs was approximately $268,000

(95% Confidence Interval [CI]: $258,000-$278,000) (2005 CDN$). The inclusion of

individual-level heterogeneity was found to be important; when individualized CD4 cell.
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counts and random effects were removed, lifetime costs were estimated to be

systematically lower.

• The integration of the microsimulation model with a disease transmission model, in order

to evaluate the economic implications of expanding access to HAART in BC from 50%

to 75% coverage of individuals with CD4 cell counts below 350 cells/mm3,accounting

for both the individual-level therapeutic effects and the population-level transmission

effects of HAART (Chapter 6). Under a number of conservative assumptions, the

HAART expansion strategy was found to be cost-effective at a standard willingness-to-

pay-threshold of $50,000 per quality-adjusted-life-year. For a conservative threshold of

$20,000 per quality-adjusted-life-year, the cost-effectiveness acceptability curve

indicated a probability of cost-effectiveness greater than 80%.

7.1.2. Cost effectiveness ofexpanded access to HAJ4RT

The results of Chapter 6, which illustrate the cost-effectiveness of expanding access to HAART

in BC, represent a culmination of the models described in Chapters 2, 3, and 5, combined with a

set of calibrated difference equations introduced to incorporate disease transmission. The

existing models incorporated into the cost-effectiveness analysis included population-based

statistical models describing CD4 and viral load trajectories, health services utilization and

expenditure, medication resistance, and survival, as well as a microsimulation model which

combined all these elements to generate estimates of lifetime costs. Thus, the cost-effectiveness

of a strategy to expand access to FIAART in BC from 50% to 75% of individuals with CD4 cell

count below 350 cells/mm3represents the key finding of the dissertation. The results of the cost

effectiveness analysis were based on all available clinical and economic data, and should

therefore provide reliable accuracy within the province of BC.

165



A key element in determining cost-effectiveness of HAART expansion is the assumed impact of

treatment on transmission of new infections, as disease prevention represents a key area of cost.

savings. The transmission component of the model described here generated results that were

similar to a published transmission model for BC.( 1) This is to be expected, since the two

transmission models were based on similar assumptions and input data, with minimal differences

in methodology. Both BC models were consistent with a recently published model describing

the effects of early testing and immediate treatment with HAART on HIV transmission in sub

Saharan Africa.(2) While the model of sub-Saharan Africa predicted more dramatic decreases in

transmission of new infections, it was also based on stronger assumptions regarding treatment

coverage and CD4 count threshold for initiating therapy.

7.1.3. International variability in HIV direct medical costs

A motivating reason for generating BC-specific estimates of lifetime direct medical costs given

the availability of existing estimates(3, 4) was the potential for international variability in this

parameter. International variability across unit costs for elements of direct medical expenditure

has been demonstrated,(5) and this variability will be compounded when accruing costs over the

course of a lifetime. Consistent with this hypothesis, the estimate of lifetime direct medical costs

in BC was lower than corresponding estimates for the United States (US)(3) and France.(4)

When the three cost estimates were converted to a common currency and year (2005 $Canadian),

the BC estimate of $268,000 is 14% (95% CI: I l%-17%) lower than the French estimate and

45% (95% CI: 43%-47%) lower than the US estimate.
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There are at least two potential explanations for these cost discrepancies. The first is the

difference in monthly antiretroviral costs. The costs for the same medications can vary across

countries, with the US typically paying the highest prices.(6) An international comparison of

monthly direct medical costs in HIV found that France and the US reported the highest monthly

antiretroviral costs (relative to Canada, Italy, and England).(5) Schackman et al. reported the

monthly antiretroviral costs assumed within the US lifetime cost model; when converted to 2005

$CDN, they ranged between $1,440 and $4,760. This is substantially higher than the range

assumed within the BC model described here ($922-$1,130). This difference does not

necessarily indicate a bias in either model—the US costs were based on reported wholesale

prices paid by Medicaid while the BC costs were based on analysis of population-based

dispensing data—but rather is indicative of actual cost differences between the US and BC,

highlighting the need for jurisdiction-specific estimates. The second potential reason for the

discrepancy between lifetime cost estimates for France and BC is the fact that the estimate for

France was based on survival estimates from the post-HAART era, but health services utilization

and cost estimates calculated between 1994 and 1998. This includes several years during which

HAART was not readily available, and, as a result, cost estimates for hospitalizations may have’

been biased upwards due to increased hospitalization rates prior to HAART availability.

7.1.4. Importance ofindividual-level variability

A recurring theme throughout the studies described in this dissertation was the importance of

capturing individual-level heterogeneity in clinical and economic variables. This heterogeneity

was incorporated in multiple ways, targeted to the method of analysis within the individual

studies. In Chapter 2, substantial individual-level variability in CD4 and viral load was

demonstrated. This variability was captured within the statistical models by using a transition
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structure(7) in which previous measurements were used as a covariate for predicting future

measurements. The effectiveness of this approach was demonstrated by comparing actual CD4

and viral load trajectories to predicted trajectories (see Figures 2.5 and 2.6). Of particular note

was the fact that predicted trajectories were able to empirically capture short-term fluctuations

that could not be predicted given current understanding of the biology of HIV.

In Chapter 3, random effects were used to capture individual-level variability in tendency to

utilize various categories of health services, after adjusting for demographics and CD4 cell

count. These random effects described individual tendencies in health and health-seeking

behaviour that could not be explained by measured clinical or demographic variables, and were

used to quantifr the pairwise correlations between categories of health services utilization and

cost. In particular, the random effects associated with HAART and hospitalizations,

respectively, were used to estimate the relationship between expenditure on HAART and

expected expenditure on hospitalizations. In Chapter 4, which focussed on trajectories of

hospitalization incidence and costs given time-varying CD4 cell count, random effects were used

similarly. The empirical correlations between hospitalization incidence, hospitalization cost, and

CD4 cell count trajectories were incorporated into cumulative incidence and cost estimators.

This allowed the cumulative estimators to account for the tendency of individuals who

experienced lower-than-average CD4 cell counts to also have high hospitalization incidence and

cost, even after adjusting for CD4 counts, and overall incidence and cost could be estimated

accordingly.

The microsimulation in Chapter 5 was based on the statistical models of Chapters 2 and 3, and,

as such, made use of the methods described therein for incorporating individual-level variability.
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The CD4 and viral load models were used to generate individualized trajectories of these

variables, with most recent measurements used to predict current measurements. The residual

standard deviation of the models was used to further incorporate random error that was not

described by the models. The random effects estimated in Chapter 3 were also incorporated into

the microsimulation. Each simulated individual was assigned a separate random effect for each

category of health services utilization and cost. These values were randomly drawn from the

empirical distributions observed when fitting the models, accounting for correlations between

random effects. The inclusion of these random effects in the microsimulation enabled us to

allow individuals to accrue costs that were systematically above or below the population average

after adjusting for measured covariates, and for costs to cluster together across categories of

health services. It was found that if the above-described sources of heterogeneity were not

included in the microsimulation, lifetime cost estimates were biased towards lower values.

7.2. Study Strengths

An important strength of the studies described in this dissertation was the high-quality

population-level data that were available for producing estimates. The three main data sources

utilized were the HAART Observational Medical Evaluation and Research (HOMER) cohort,

the Community Health and Safety Evaluation (CHASE) cohort, and the BC Linked Health

Database (BCLHD), each of which brought specific strengths to individual studies. The data

sources are described briefly below and in detail in Chapter 3.

The HOMER cohort is comprised of all antiretroviral-naive individuals in BC who initiated

treatment with HAART after 1996. Available data included baseline cross-sectional variables

describing age, sex, and injection drug use status; longitudinal results of laboratory tests (CD4
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cell count, plasma viral load, medication resistance); and longitudinal antiretroviral dispensing

records. Access to the HOMER cohort provided a rich source of CD4 cell count and viral load

data which allowed for fitting the non-linear models in Chapter 2. Another highlight of the

HOMER data was the fact that antiretroviral dispensing data allowed for monthly HAART costs

to be observed on actual observed medication adherence, as opposed to hypothetical pricing of

specific regimens, which requires explicit assumptions regarding medication adherence. A

subset of individuals from HOMER was linked to the BCLHD (described in further detail

below), which contains comprehensive health services utilization records.

The CHASE cohort is a representative sample of low-income individuals residing in

Vancouver’s downtown east side. A linkage to the BC Centre for Disease Control HJV testing

database allowed for the identification of individuals with a confirmed HIV diagnosis. This

HIV-positive cohort subset was then linked to all BC antiretroviral treatment records, such that

individuals with positive HIV serostatus who had never accessed treatment with HAART could

be identified. Such individuals would not likely be recorded in routinely collected administrative

health databases whose records require contact with a specialized treatment centre. While the

CHASE data source did not provide access to clinical information such as CD4 cell count or

viral load, it did provide a linkage to the BCLHD for all cohort members. As such, we were able

to capture the utilization patterns that were reflective of the actual community of individuals

living with HIV, rather than the specialized subset of individuals who are receiving optimal

treatment for their disease.

In BC, the universal health insurance scheme requires individuals to have a unique identifier,

allowing individual-level linkages between hospitalizations, physician visits, and
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pharmaceuticals. The BCLHD contains comprehensive health services utilization records,(8)

and provides information on utilization patterns for all individuals in BC. The linkages between

HOMER, CHASE, and the BCLHD resulted in a rich data source describing sociodemographics,

clinical progression, and health resource utilization for a wide cross-section of individuals

infected with HIV.

A further strength of the dissertation was the range of analytical methods that were applied

across studies. As a result of the high-quality individual-level data that were available for these

studies, specialized statistical methods could be specifically tailored to the objectives of interest

within each study.

The decision and mathematical models were built and validated based on suggested best

practices for modelling studies.(9) In particular: results of the lifetime cost model were

internally validated against observed costing data; results of the mathematical model were

calibrated against observed incidence and treatment data to aid in parameter assignment; and a

cross-validation exercise was performed to explain differences in results between the lifetime

cost model and similar models created for other countries. The incorporation of statistical

models was also performed in compliance with suggested guidelines, with models based on

defensible biostatistical and epidemiological techniques and described in detail.(9)

7.3. Study Limitations

7.3.1. Data limitations

There were also limitations associated with the data sources utilized here. One such limitation

was the observational nature of the CD4 cell count and plasma viral load data. These

171



measurements were not collected as part of a trial protocol, but rather were recorded as

individuals presented for routine clinical monitoring and management. While the interquartile

ranges of intermeasurement times, given in Chapter 2, suggested relatively little variablility, with

the majority of intermeasurement times between one and four months, there was still potential

for some individuals to provide measurements either more or less often than this standard

frequency. This may have resulted in a phenomenon similar to selection bias:(l 0) although all

individuals who initiated treatment with HAART were included in the sample, those individuals

who contributed the most measurements were most influential on model fit, as they contributed a

relatively large proportion of the data.( 11) If individuals who were sickest—and therefore

expected to have low CD4 cell counts and high viral loads—tended to provide more

measurements due to more frequent monitoring of severe disease, then model-based estimates

would be biased towards low CD4 cell counts and high viral loads. Conversely, if frequent

monitoring were associated with high levels of health-seeking behaviour, it would be expected

that individuals who provided the most measurements were also maintaining their health in other

ways, and would therefore tend to have high CD4 cell counts and low viral load, and model-

based estimates would be biased in this direction. In practice, it is possible that both phenomena

were occurring simultaneously, and it is difficult to ascertain the net impact on model results.

However, the predictive ability of the models, as displayed in Figures 2.5 and 2.6 suggested that

whatever biases were present did not have a material impact on model fit.

A second data-related limitation was the fact that all longitudinal data sources were specific to

BC, and did not contain information describing migration out-of-province, creating the potential

for information bias with respect to misspecification of outcome measures.(lO) If an individual

moved outside of BC, their health services utilization would be incorrectly recorded as zero from
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that point forward, biasing monthly cost estimates downwards. This bias would not continue

throughout the entire follow-up period, as such individuals would not be contributing CD4

counts if they were living out-of-province, and the monthly cost models adjusted for time

periods during which a CD4 measurement had not been recorded for one year. We made the

assumption that a relatively small proportion of individuals moved out of province,(12) and,

further, that such individuals did not have a systematic tendency to incur higher-than-average

direct medical costs. If that had been the case, the bias to overall cost estimates would have been

more substantial, as the most “expensive” individuals would be incorrectly assigned to incur zero

medical costs.

A third limitation to the data source was the fact that the linkage between HOMER and the

BCLHD was only current to March 2001. While this provided approximately five years follow-

up during the post-HAART era, it is possible that health services utilization patterns have

changed since this time due to advances in HAART regimens.(13) The CHASE-BCLHD

linkage extended to December 2005, but of the 1,895 individuals included in the health services

utilization analyses described in Chapter 3, just 11% were included in the CHASE cohort. The

remaining 89% were only members of the HOMER cohort and provided BCLHD follow-up until

2001 only.

A fourth potential limitation was that, as with any analysis of observational data, there is the

potential for statistical models to be misspecified and for confounding variables to have been left

out of the analysis. If this were the case, some of the exposure/outcome variable relationships

estimated within the statistical models may be spurious, due to the presence of one or more

unmeasured variable(s) related to both exposure and outcome that induced an observed
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relationship between the two.(1O) However, in this dissertation, the primary function of the

statistical models was to serve as predictive tools to provide input parameters to the decision and

mathematical models, which lessened the potential impact of confounding. For example, in

Chapter 3, positive relationships between female sex and health care utilization and cost were

consistently found. While there are some plausible biological reasons for these relationships

(notably, pregnancy and childbirth), they are not likely to explain the entire observed

relationship.(14) An alternative hypothesis is that health-seeking behaviour was a confounding

variable, such that women were more likely to exhibit greater health-seeking behaviour and

individuals with greater health-seeking behaviour were more likely to utilize more health care

services. If the objective of a study were to discern the causal relationship between sex and

health care utilization, this would represent a major potential limitation. However, from the

perspective of predicting long-term costs, it is acceptable to assume that the observed

relationship is correct. When projecting lifetime costs, it was not necessary to understand the

nuances of why sex is related to utilization, only to be confident that a consistent relationship

was observed in the data.

7.4. Future Research

One potential area for future research would be to simply repeat the analyses and models

described in this dissertation with updated data. In particular, an updated linkage to the BCLHD

would provide a more accurate description of health resource utilization during the modern

HAART era. Further, as more time accrues following the introduction of HAART, analysis of

survival time will be more accurate, allowing for greater confidence in long-term predictions.
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A second area for future research would be to revisit the statistical models described in Chapters

2 and 3 from the perspective of generating stand-alone epidemiologic studies. The current

versions of these studies were designed with the primary objective of providing required inputs

to the microsimulation and transmission models. Specific extensions that can be made would be

to perform a more rigorous evaluation of the generalized additive modelling technique described

in Chapter 2, specifically in comparison to other predictive models that have been applied to

CD4 cell count data, such as quadratic random effects models.(15) In Chapter 3, the correlations

between different categories of health services utilization were primarily derived for use as

inputs into the microsimulation model. The underlying reasons for particular correlations and

resulting implications were not explored in detail. A follow-up study could use the same data

and analytical methods to evaluate potential theoretical models of health and health-seeking

behaviour that could explain the observed relationships.

In addition, further data collection could inform refinements to model design and parameter

estimation. The majority of BC-specific parameters within the transmission model were

estimated via a process of empirical calibration, in which parameters were adjusted until model-

predicted estimates of new infections and number of individuals initiating treatment matched

observed numbers. Alternatively, a data collection study could be performed to empirically

confirm assumptions regarding average level of risk behaviour and its relationship with disease

severity, the size of the population at high risk for contracting HIV, and annual migration in and

out of the HIV-infected and high risk populations.

An additional study requiring the collection of primary data would be to more accurately

estimate dynamic treatment patterns following initiation of HAART, and assess the implications
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of treatment interruption on morbidity, independent of CD4 cell count. The observational

administrative data sources were not sufficiently detailed to address this issue. Medication

dispensing records could not accurately describe time-dependent medication adherence. For

example, if an individual was only dispensed 75% of a yearly supply of medication, it was not

possible to discern whether they routinely took 75% of their medications throughout the year, or

if they maintained 100% adherence for 75% of the year and experienced a treatment interruption

for the remainder. If treatment interruption is to be evaluated, more detailed records are

required. A study designed to address this question could sample a subset of individuals infected

with HIV who could fill out detailed daily treatment logs. This time-dependent treatment

information could be either linked to the BCLHD as before, or to self-reported data describing

health services utilization and morbidity.

7.5. Contributions to Original Knowledge

7.5.1. Methodological contributions and implications

A novel methodology was presented for incorporating a time-dependent covariate into a

recurrent events model with a marked point process (Chapter 4). In this particular example, CD4

was the time-dependent covariate, hospitalizations represented the recurrent event, and the

marked point process associated with each event was the cost of the hospitalization. However,

the methodology could also be applied in alternative contexts. One such extension would be to

estimate cumulative hospitalization costs in a different disease area with an analogous clinical

marker that varies over time.

The primary methodological contribution of this dissertation was the integration of a detailed

microsimulation model with a population disease transmission model, resulting in a single
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comprehensive model that could be used to evaluate both individual-level and population-level

policies (Chapter 6). The microsimulation model described in Chapter 5 is an efficient method

for describing the therapeutic effects of HAART at the individual level, while the compartmental

model described in Chapter 6 represents an established method for describing disease

transmission at the population level. It would have been possible to incorporate disease

transmission directly into the microsimulation, but this would have required describing

individual-level behaviour in greater detail than that required to satisfy the objectives of the

study. Conversely, the disease progression and economic processes considered within the

microsimulation could have potentially been incorporated directly into a mathematical model of

disease transmission, but it is not clear how the statistical models which populated model

parameters could have been seamlessly incorporated into a mathematical model as they were

into the microsimulation. By instead combining the two forms of modelling into an integrated

model, the cost-effectiveness of HAART expansion could be addressed in a more efficient

manner, with each element of the process described by the most appropriate modelling

technique.

Previous economic models incorporating HIV transmission have tended to primarily focus on

either the chronic nature or the infectious nature of HIV, with the remaining processes addressed

in a simplified manner. To date, when mathematical models have been used to describe HIV

transmission, simplifying assumptions have been made regarding direct medical costs, with

homogeneous costs based on population averages assumed to apply uniformly to all infected

individuals.(2, 16) Conversely, models which have utilized a more complex decision model

structure to describe the clinical course of HIV and related economic implications have been

based on simplifying assumptions regarding the dynamic nature of HIV transmission.(17, 18)
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To our knowledge, the integrated model described here is the first economic model of HIV

transmission to incorporate the complexity of both processes.

7.5.2. Policy contributions and implications

The results of this dissertation provide two contributions to health policy decisions in BC.

Firstly, the lifetime direct medical cost estimates represent a formal combination of all available

clinical and health services utilization data, and can be used to plan for current and future

allocation of health resources in BC (Chapter 5). Secondly, increased treatment with HAART

was shown to be associated with reduced expenditure for other health services (Chapters 3 and

6). This reduced expenditure is due to a reduced need for acute care services such as

hospitalizations in individuals being optimally treated with HAART (Chapter 3) as well as a

decrease in new infections due to reduced infectivity in individuals experiencing viral load

suppression after HAART initiation (Chapter 6). These findings provide both empirical and

theoretical support for the proposition(19) that, in addition to providing public health benefits,

expanding treatment with HAART for individuals infected with HIV in BC is attractive for

pragmatic economic reasons as well.
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APPENDIX A: DERIVATION OF CONDITIONAL DISTRIBUTION OF HAART

COSTS

Let /1) be an indicator variable denoting non-zero inpatient utilization in a particular month, f2)

be a random variable describing inpatient costs during a month with non-zero utilization, H be a

random variable describing monthly RAART costs, and x, be a vector of covariates for

individual i at time point].

For individual i at time point], the two-stage random effects model for hospitalization utilization

and log-transformed costs can be written:

logit[P(I.1) =ix, =x,,,u1=u1)J=xflm+u1

E[log(I X, = x,,J’ = v,)j= x’/32+v

where U, N(O, o5), and V N(O, o). The model for monthly HAART costs can be written:

E[H X, = x,W, = w1]= x’/33 + w,

where W N(O, o,). The pairwise correlations between U, V, and W can be estimated

empirically using the values observed in Table 3.6. If we assume further that the variables

follow a multivariate normal distribution, then, for a given value W=w, the conditional

distribution of Uand Vis bivariate normal with the following moments:(36)
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— Puw
— r — Pw) uv (Puv — Puw Pvw)

vw [c7uJ(puv - PuwPvw) (i- Pw)

Equation (3.1) implies a non-linear relationship between U, V, and CW, such that a theoretical

joint distribution for U, V Wcannot be used to derive a theoretical distribution for C”I W. We

therefore simulated 10,000 realizations of U, V1 W from their known bivariate distribution, and

used these values to obtain an approximate empirical confidence interval for C’ I W.
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APPENDIX B: DERIVATION OF THE CUMULATIVE COST FUNCTION

Let X” (t) denote the history of covariate X” for individual i at time t. Assume that X changes

at discrete time points, with X’(t) = . .,z,) over time intervals

=

where Zk is the covariate value during interval [tkI, tk). Let C,J) denote the cost associated with

thejth event for individual i during time interval [tkI, tk), and C(t) the cumulative cost at time t.

Let N(t) denote the cumulative number of events at time t, with n’ events occurring during

interval [tk,, tk), so that C’ (t) can be written

m’

k=I j=I

Assume that Z’ It N(u(t),o) with p(t) = (,o +b))+,8t+fl2t2and b N(O,o).

Assume that the cost of an event is described by the linear random intercept model

1og(c’ z’)) = (cr0 + a’)+a1Z’ + e1’

with a’ N(O, and e’ N(O, of). Let Sc refer to the smearing factor, defined to be the

mean of exponentiated residuals, which can be used to transform expectations from the log-scale

back to the original cost scale,(26) i.e.:

I Z J = S x ElogC1) I z’)j
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Assume that, for a frailty term U, N(t) is described by a semi-parametric recurrent-events model

with mean function:

p(t I X(t),U) = jUexp(Z(s)y)dp0(s)

Consider the covariance matrix of random intercepts a0 , b0, and frailty terms U:

Under the assumption that a0,b0, and U are distributed multivariate normally, for a given frailty

term U, the conditional expectation of a0 and b0 is:(27)

(Pal) I U”
— (U —1) (o•ati

I U,)
— ti

The cumulative cost function for individual i with frailty term U can be derived as follows:
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>[s expa0 + a0 )+ a1Zp0(tk) — 0 (tk1)expZy) I U]

= U(p0(t)
— po(tkI))EZ(I) [exp(a0 + ag’> + (a1 + y)Z)I u}

u exp(a0 + a U + (a + )2 /2exp(p (t I U)(a1 + r)po (tk) — 0 (tkI))

The final expectation is derived from the fact that exp((a1 + y)Z) is a moment generating

function and Z is assumed to be normally distributed. Based on the conditional expectations

Ob2 bU
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derived above, the conditional random effects associated with the CD4 and cost models can be

approximated as follows:

E[a i u] (U
— l)O•aU

o-U

= (U —l)corr(ao,U)Ja

o-U

and

4’(tj U)= +(t’°bu +/t+fi2t2
o.U

= +
(U—l)corr(k,U)ob +fi1t+,82t2

at’

The baseline rate function p0(t) can be estimated non-parametrically via the generalized

Nelson-Aalen estimator. The cumulative incidence function can be derived analogously, which

results in:

rn

E[N° (t) U] = U exp(a2 /2)exp(i4’ (t I U)y)p0(tk)
— o0 (tk_1 )).
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APPENDIX C: TIME UNTIL GAINING AND LOSING RESISTANCE
MUTATIONS FOR INDIVIDUALS RECEIVING HAART

Summary

The objective of this analysis was to estimate time until gaining a resistance mutation to each of

four medication categories (3TC, other nucleoside reverse transciptase inhibitors (NRTIs), non

nucleoside reverse transciptase inhibitors (NNRTIs), and protease inhibitors (PIs)). Of particular

interest was the relationship between medication adherence and gaining resistance mutations,

and the interactions between adherence levels and medication categories.

Methods

Data

Data were obtained from the HAART Observational Medical Research cohort (n=2583), which

consists of all antiretroviral-nalve individuals in British Columbia who initiated treatment with

HAART between 1996 and 2004. Information is available describing baseline

sociodemographic and clinical measurements. This dataset was linked to longitudinal resistance

testing results.

Medications were separated into four categories: 3TC, other NRTIs, NNRTIs, and PIs. 3TC was

categorized separately to other NRTIs because of the high likelihood of developing a resistance

mutation to this particular medication and the lack of cross-resistance to other NRTIs.(l) For

each medication category, time was measured relative to first exposure to the category.

Individuals who had never received a medication of that category, or who had resistance

detected to the category prior to first exposure were excluded from the analysis for that particular

medication category, but were eligible to contribute to analyses for other categories.
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Estimating time at risk

Time at risk for a particular resistance mutation was defined to be cumulative number of days

spent taking the medication prior to developing resistance, which was approximated by number

of days during which medication was dispensed. Gaps in exposure were not counted towards

time spent at risk for gaining a resistance mutation. It was assumed that no new mutations

developed during times when viral load was consistently suppressed below 1000 copies/mL.(l)

Exact time of developing a resistance mutation was not known, and could be considered interval-

censored, bounded below by the date of the last negative test and above by the date of the first

positive test. This interval could be further narrowed due to periods of time with consistently

suppressed viral load following a negative resistance test.

Explanatory variables

Explanatory variables considered were sex, calendar year of first antiretroviral use, self-reported

injection drug user status, baseline CD4 cell count, baseline plasma viral load, medication

category, medication adherence, and interactions between medication and adherence categories.

Medication adherence was defined as the percentage of months in which antiretroviral

medications were dispensed during the first year of therapy.

Statistical methods

A parametric survival model was fit to describe time until gaining resistance mutations. Based

on diagnostics and model flexibility, a Weibull distribution was assumed for the hazard rate.

The interval-censored nature of the data was explicitly accounted for. Frailty terms were
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included to account for multiple observations from a single individual. These frailties were

assumed to follow a gamma distribution with mean 1.

Results

Descriptive characteristics of the study sample are given in Table C. 1.

Figure C.1 displays Kaplan-Meier curves describing time until developing a resistance mutation,

stratified by medication adherence and medication category, respectively. The probability of

resistance decreased with increasing adherence, particularly the 95-100% adherence category (p

value for trend <0.000 1). Resistance occurred most frequently to 3TC and non-nucleoside

reverse transcriptase inhibitors (p-value for trend <0.0001). Both these trends are consistent with

previously published results.(l, 2)

The Kaplan-Meier results are intended for describing broad trends only, because the interval-

censored nature of the data and the potential for correlation within an individual were not

accounted for. The parametric frailty model was fit to incorporate these elements into the

analysis.

Estimated coefficients estimated using the parametric frailty model are given in Table C.2, while

corresponding hazard ratios are given in Table C.3. Note that for a Weibull model with scale

term a, the relationship between the coefficient ‘ and the hazard ratio associated with a particular

variable is expressed as:(3)

a = exp(—y/)
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The frailty terms were constrained to have a mean of 1.0. The estimated variance associated

with the gamma distribution was 0.38.

The interaction terms estimated using the Weibull model are consistent with the hypothesis that

the relationship between medication adherence and risk of resistance differs according to drug

category.(2) For example, while the estimated risk of resistance was lowest at 95-100%

adherence for all drug categories, this reduction was less pronounced for NNRTIs. Thus, at this

level of adherence, risk of resistance to NNRTIs was estimated to be more than seven times

greater than risk of resistance to 3TC, the medication category with the next greatest risk.
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Figure C.1: Kaplan-Meier curves describing time until gaining resistance mutation, stratified by (a)
medication adherence, and (b) medication category.
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Table C.1: Descriptive characteristics of study sample
Variable
Sex (%)

Male 81.6
Female 18.4

Injection drug user (%)
No 72.3
Yes 27.7

Year of first antiretroviral use (%)
1996-1998 35.9
1999-2001 34.2
2002-2004 32.9

Mean baseline CD4 cell count (cells/mm3) 237.9 (198.7)
(standard deviation (SD))
Mean baseline plasma viral load ( log 5.00 (0.85)
copies/mL) (SD)
Medication Adherence (%)

<60% 23.7
60-79% 9.7
80-94% 12.9
95% 53.8

Medication Category
(number of individuals exposed)

3TC 2514
NRTI 2583
NNRTI 1642
P1 1891

Medication Category
(total person-years follow-up)

3TC 4474
NRTI 5173
NNRTI 2550
P1 2837

191



_Table C.2: Regression coefficients estimated using Weibull survival model.
Variable Estimate (standard error)
Intercept 8.57 (0.54)
Sex

Male --

Female -0.02 (0.17)
Injection drug user

No --

Yes -0.39 (0.14)
Year of first antiretroviral use (continuous) 0.08 (0.03)
Baseline CD4 cell count (cells/mm3) 0.001 (0.0003)
Baseline plasma viral load (log copies/mL) -0.35 (0.09)
Medication category

3TC --

NRTI 1.1 8(0.12)
NNRTI -0.87(0.11)
P1 1.58 (0.16)

Medication category
<60% --

60-79% 0.29 (0.23)
80-94% 0.76 (0.22)
95% 1.80 (0.18)

Medication/Adherence interactions
NRTI*6079% adherence 0.24 (0.19)
NRTI*8094% adherence 0.50 (0.19)
NRTI*?95% adherence -0.32 (0.14)
NNRTI*6079% adherence -0.11 (0.18)
NNRTI*8094% adherence 0.60 (0.18)
NNRTI*95% adherence 0.64 (0.14)
p1*60.79% adherence 0.04 (0.26)
P1*8094% adherence -0.39 (0.22)
pJ*>95% adherence -0.55 (0.19)

Log (scale) -0.51 (0.03)
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Table C.3: Estimated hazard ratios estimated using Weibull survival model.
Variable Estimate
Sex

Male 1.00
Female 1.04

Injection drug user
No 1.00
Yes 1.93

Year of first antiretroviral use (continuous) 0.87
Baseline CD4 cell count (per 100 cells/mm3) 0.84
Baseline plasma viral load (log copies/mL) 1.80
Medication category

3TC
<60% adherence 1.00
60-79% adherence 1.00
80-94% adherence 1.00
>95% adherence 1.00

NRTI
<60% adherence 0.14
60-79% adherence 0.09
80-94% adherence 0.06
95% adherence 0.24

NNRTI
<60% adherence 4.28
60-79% adherence 2.87
80-94% adherence 1.85
95% adherence 7.41

P1
<60% adherence 0.07
60-79% adherence 0.05
80-94% adherence 0.03
95% adherence 0.12

Medication adherence
<60%

3TC 1.00
NRTI 1.00
NNRTI 1.00
P1 1.00

60-79%
3TC 0.62
NRTI 0.41
NNRTI 0.75
P1 0.58

80-94%
3TC 0.28
NRTI 0.12
NNRTI 0.10
P1 0.54

95%
3TC 0.05
NRTI 0.09
NNRTI 0.17
P1 0.12
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