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ABSTRACT 

 

National parks in western Canada experience wildland fire events at differing 

frequencies, intensities, and burn severities. These episodic disturbances have varying 

implications for various biotic and abiotic processes and patterns. To predict burn 

severity, the differenced Normalized Burn Ratio (dNBR) algorithm, derived from 

Landsat imagery, has been used extensively throughout the wildland fire community. 

Researchers have often employed this approach to study the effects of fire across multiple 

contrasting landscapes. Many remote sensing scientists have concluded that incorporating 

pre-fire information into the current remote sensing dNBR methodology may make such 

models more transferable.  

 

In the first study the main purpose was to investigate the accuracies of the absolute dNBR 

versus its relative form (RdNBR) to estimate burn severity, in which was hypothesized 

that RdNBR would outperform dNBR based on former research by Miller and Thode 

(2007). The secondary purpose was to examine and compare the accuracies of RdNBR 

and dNBR algorithms in pre-fire landscapes with low canopy closure and high 

heterogeneity. Results indicate that the RdNBR-derived model did not estimate burn 

severity more accurately than dNBR (65.2% versus 70.2% classification accuracy, 

respectively) nor indicate improved estimates in the more heterogeneous and low canopy 

cover landscapes. In addition, we concluded that RdNBR is no more effective than dNBR 

at the regional, individual, and fine-scale vegetation levels. The results herein support the 

continued use of both the dNBR and RdNBR methods and the pursuit of developing 

regional models. 
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In the second study, we compare the transferability of an overall model and those 

stratified by land cover and ecozone. Our second objective was to test the statistical 

benefit of incorporating pre- and post-fire information into standard dNBR approaches. 

We determined that an overall dNBR derived model successfully estimated burn severity 

for the majority of our study fires, which supports its transferability across multiple 

western Canadian landscapes. Results indicate that both pre- and post-fire remote sensing 

information provides a means of further understanding the different post-fire responses as 

well as showing minimal statistical burn severity estimates across the majority of fires, 

however, significant improvement was evident for three of the ten study fires.  
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1 INTRODUCTION
1
 

1.1 Background 

 

Fire is an important ecosystem process, particularly in boreal forests where burning 

represents a dominant form of disturbance (Wein & MacLean 1983; Goldammer & 

Furyaev, 1996; Kasischke & Stocks, 2000). Since the last Ice Age, Canada’s foremost 

forest disturbance agent has been fire (Stocks et al., 2003). Fire can stimulate soil 

microbial processes (Wells et al., 1979; Borchers & Perry, 1990), promote seed 

germination, seed production, and sprouting (Lyon & Stickney, 1976; Hungerford & 

Babbitt, 1987; Anderson & Romme, 1991; Lamont et al., 1993), and combust vegetation, 

ultimately altering the structure and composition of both soils and vegetation (Ryan & 

Noste, 1985; Wyant et al., 1986).  

 

Since its inception, the personnel across the Canadian national park system have had 

varying perspectives on wildland fire management. For instance, in the late 1800’s the 

agency attempted to simply protect lands from human encroachment and natural 

disturbance (Government of Canada, 2000), which meant that fire was considered 

undesirable and destructive.  

 

 

________________________ 
1 

A version of this chapter has been published. Soverel, N.O., Coops, N.C., White, J.C., & Wulder, M.A. 

(2009). Characterizing the forest fragmentation of Canada’s national parks. Environmental Monitoring and 

Assessment. DOI: 10.1007/s10661-009-0908-7 
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As a result, fires were actively suppressed until the 1960’s when a paradigm shift 

occurred and fire was accepted as a natural process in forest renewal in national parks 

(Government of Canada, 2000). Managing fire is now mandated under the National Parks 

Act’s ecological integrity mandate, which states that “an ecosystem has integrity when it 

is deemed characteristic for its natural region, including the composition and abundance 

of native species and biological communities, rates of change and supporting processes” 

(Government of Canada, 2000). 

 

Currently, Parks Canada actively inventories and monitors the impacts of fire to better 

understand and improve ecosystem management. Western Canada is frequently divided 

into two major regions unique for their fire regimes, which including the Rocky 

Mountain and the western boreal regions (Van Wagner et al., 2006; Weber & Stocks, 

1998). In the Rocky Mountain region, wildland fires can occur on steep and inaccessible 

slopes while in the western boreal these fires frequently occur in remote areas without 

road access. Until recently, Parks Canada fire managers and scientists monitored the 

effects of fire using aerial photography, Global Positioning System (GPS) devices, and in 

some cases, conventional field methods. Although aerial photography is available 

throughout Canada, interpretation of these photographs can be time consuming and 

involves subjective human interpretation over limited spatial and temporal extents. 

Similarly, approaches that utilize field data are even more limited in their spatial extent 

and are expensive and time consuming, as well as potentially lack consistency. Advanced 

digital remote sensing methods allow scientists to perform timely and accurate 

assessments of wildland fire impacts while simultaneously minimizing and/or eliminating 
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the aforementioned limitations. These methods have also been shown to provide 

important information pertaining to the processes of vegetation re-growth, plant 

succession, and ecological processes. 

1.2 Burn severity and fire severity 

 

Fire severity is defined as the direct effects of the combustion process including tree 

mortality and the loss of vegetation and organic biomass (Jain et al., 2004; Lentile et al., 

2006). Burn severity is defined as “the degree of ecological change to a landscape caused 

by fire” (Key & Benson, 2006). The difference between these two terms is temporal: fire 

severity refers to the immediate post-fire effects whereas burn severity relates to the 

environment one or more growing seasons following fire. Figure 1.1 depicts two types of 

severity assessments herein, the initial assessment (IA), or an analysis of the fire severity  

taken from the same year as fire ignition and the extended assessment (EA), or burn 

severity data from one year post-fire. 
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Figure 1.1. Outline of temporal resolution of burn severity (adapted from Landscape 

Assessment, Key & Benson, 2006). 

 

At the landscape scale, burn severity represents fire-induced vegetation mortality that in 

combination with unburned islands creates a mosaic landscape consisting of distinct 

forest type and age class patches (Miller & Urban, 1999; Fule et al., 2003). Burned area 

maps impart critical information about the patterns of heterogeneity within a burned area 

(van Wagtendonk et al., 2004), which relate directly to patch size and fragmentation 

(Soverel, 2009), factors which ultimately control the number of surviving individuals and 

distance to viable seed sources (Pickett & White, 1985; Turner et al., 1998). Accurate 

burn severity maps provide input data for studies that predict ecosystem recovery and 

succession (Epting & Verbyla, 2005), biomass burning and emission (Michalek et al., 
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2000), wildlife population dynamics (Kotliar et al., 2008), and forest fragmentation 

(Soverel et al., 2009). 

 

There is debate in the remote sensing community over the measuring and classifying of 

burn severity data. This is because characterisation of burn severity is dependent on the 

natural resource objective being studied. In addition, the physical and ecological effects 

of fire differ depending on ecosystem ecology, composition, and physical structure. For 

example, burn severity may be more related to canopy mortality in the Canadian Rocky 

Mountain region versus the western boreal where ground organic deposits hold the 

majority of organic-based carbon (Gorham, 1991; Harden et al., 2000). In order to 

develop and apply a consistent field methodology, the well known Composite Burn Index 

(hereafter as CBI) was employed. CBI is a field validation rating that takes into account 

the overall visible effects of fire as they relate to the pre-fire environment (Key & 

Benson, 2006). CBI has been cited as somewhat subjective since the CBI rating is 

determined by a researcher most often without available pre-fire data. In order to measure 

burn severity, the CBI form in “Landscape Assessment: Sampling and Analysis 

Methods” (Key & Benson, 2006) was used. CBI is divided into five strata: substrates, 

herbaceous vegetation, large shrubs and small trees, intermediate, and canopy trees. This 

method includes fire effects that include duff consumption/scorch, herbaceous vegetation 

mortality, shrub mortality, char height, and overstory mortality (Table 1.1). CBI scores 

are ranked from 0 to 3.0, zero representing a site that was unchanged from fire and 3.0 

having the highest possible burn severity. The values for each of the strata are combined 

to an overall CBI rating which provides an average of all five strata within a plot. CBI 
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ratings are important in the interpretation process of remote sensing values because they 

can lay the groundwork for calibrating satellite observations and also set thresholds for 

severity class maps (Key & Benson, 2006). CBI was well suited to this study because of 

the large geographic range of fires and the diversity of landscapes studied.  

 

Table 1.1. Simplified version of the FIREMON Landscape Assessment CBI form (Key 

& Benson, 2006). 

 

Litter/Light fuel consumption

Duff

Medium Fuel, 3-8 in.

Heavy Fuel, > 8 in.

Soil & Rock Cover/Color

% Foliage altered (blk-brn)

Frequency % Living

% Change in Cover

Spp. Composition/Relative 

Abundance

% Foliage Altered (blk-brn)

Frequency % Living

% Change in Cover

Spp. Comp. -Rel. Abund.

% Green (Unaltered)

% Black (Torch)

% Brown (Scorch/Girdle)

% Canopy Mortality

Char Height

% Green (Unaltered)

% Black (Torch)

% Brown (Scorch/Girdle)

% Canopy Mortality

Char Height

Rating factor criteria- each 

between 0.0 - 3.0
Five Strata

E. Big Trees 

(Dominant/Codominant)

A. Substrates

B. Herbs, Low Shrubs & 

Trees (< 1 meter)

C. Tall Shrubs & Trees (1 

to 5 m)

D. Intermediate Trees 

(Subcanopy)
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1.3 Remote sensing application 

 

The Landsat remote sensing program has been in operation since 1972 and its utility has 

been demonstrated in many related research fields including forestry, geography, and 

land resource analysis (Lillesand & Kiefer, 2008). One of the notable advantages of the 

Landsat program is the relatively large and complete historical archive which is freely 

available in North America (USGS, 2010). The two operational Landsat sensors include 

the Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+), onboard the 

Landsat 5 and 7 satellites, respectively.  The TM and ETM+ sensors detect reflected 

radiation in the visible, near infrared (NIR), middle infrared (MIR), and thermal 

wavelengths of the electromagnetic spectrum. Due to its scan line error malfunction in 

2003, the Landsat-7 ETM+ sensor has limited utility and therefore Landsat-5 TM 

imagery forms the majority of data used for spectral analysis for this research (Table 1.2). 

 

Table 1.2. Landsat TM and ETM+ specifications. 

 
Specifications Landsat 5 TM Lansat 7 ETM+

15 x15 m panchromatic

30 x 30 m 30 x 30 m

120 x 120 m thermal 60 x 60 m thermal

Band Number 1 0.45- 0.52  µm 0.45- 0.52   µm

2 0.52 - 0.60 µm 0.53 - 0.60  µm

3 0.63 - 0.69 µm 0.63 - 0.69  µm

4 0.76 - 0.90 µm 0.75-0.9      µm

5 1.55 - 1.75 µm 1.55-1.75    µm

6 10.4 - 12.6 µm 10.4-12.5    µm

7 2.08 - 2.35 µm 2.09-2.35    µm

8 NA 0.52-0.9      µm

183 x 170 km swath

16 days

1999-present

185 x 172 km swath

Mission length  1984 - present

Ground 

Resolution

Coverage

Orbital repeat 16 days
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The combination of Landsat bands 4 and 7 has been found to be most sensitive to the 

effects of fire. Band 4 (B4) measures near-infrared reflectance between 0.76 µm and 0.90 

µm wavelengths and is primarily sensitive to the chlorophyll content of live vegetation 

(Miller & Thode, 2007). Band 7 (B7) records middle infrared 2.08 µm - 2.35 µm 

wavelengths, which are sensitive to water content of both soils and vegetation, the lignin 

content of non-photosynthetic vegetation, and hydrous minerals such as clay, mica, and 

some oxides and sulfates (Avery & Berlin, 1992; Elvidge, 1990). A Normalized Burn 

Ratio (NBR) image is calculated by normalizing bands 4 and 7 in the equation: 

NBR = (B4-B7) / (B4+B7) 

NBR is particularly sensitive to changes in the amount of live green vegetation, moisture 

content, and some soil conditions that may occur after fire (Miller & Thode, 2007). Fire 

affected vegetation has decreased reflectance in Band 4 and increased reflectance in Band 

7 as depicted in the spectroscopic graphs below (Figures 1.2).  
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Figure 1.2. The left scatterplot represents the digital numbers (DN) of Landsat TM bands 

4 (x-axis) and 7 (y-axis) of pre-fire conditions from the Split Peak fire in Kootenay 

National Park. The right scatterplot depicts the same bands taken from the same burned 

area one year post-fire. 
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The differenced Normalized Burn Ratio (dNBR) algorithm is a remote sensing change 

detection approach that has been shown to be correlative in magnitude to the 

environmental change caused by fire. To derive the differenced Normalized Burn Ratio 

(dNBR) image, the pre and post-fire images are subtracted from each other. The equation 

is as follows:  

dNBR = (NBRpre-fire) – (NBRpost-fire) 

To derive burn severity models for multiple fires that have a large range of differing 

vegetation types and conditions, it has been proposed that the use of the absolute change 

dNBR algorithm may not be the most appropriate (Miller & Thode, 2007; Miller et al., 

2009). This is because the degree of severity should be dependent upon the amount of 

pre-fire vegetation before the fire (Miller & Thode, 2007). To address this issue, remote 

sensing researchers have proposed the RdNBR algorithm:  

1000/prefire

postfireprefire

NBR

NBRNBR
RdNBR

−

=  

Table 1.3 provides a summary of selected research that has utilized the NBR, dNBR, and 

RdNBR remote sensing methods to estimate burn severity within the last twenty years. 
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Table 1.3. A short history of remote sensing burn severity research. 

Author(s) Year Remote Sensing Platform Field Observations Vegetation Type

Lopez-Garcia and 

Caselles
1991 Landsat TM (in-scene dNBR) % Vegetated Cover Mediterranean forest and scrubland

Key and Benson 1999 Landsat TM dNBR Composite Burn Index (CBI) Conifer forests, western USA

Bobbe et al. 2003 Landsat TM dNBR
Fire severity class (four levels), surface 

measures of fire severity
Conifer forests, western USA

Hidak et al 2004 NBR and dNBR using Landsat TM and SPOT data
Field measures of aboveground and 

surface severity
Conifer forests, western USA

van Wagtendonk et al. 2004 dNBR derived from Landsat TM and AVIRIS data Composite Burn Index (CBI) Pine forests, western USA

Cocke et al. 2005 dNBR derived from Landsat ETM+ data
CBI and fire severity classes (4 levels) 

based on pre and post-fire measurements
Pine forests, western USA

Epting et al. 2005 dNBR and other indices derived from Landsat imagery Composite Burn Index (CBI)
Conifer, deciduous, mixed forests and 

shrublands in Alaska

Lewis et al. 2007
SMA (Spectral mixture analysis), NBR, dNBR, RdNBR 

from airborne hyperspectral (Probe-1) and Landsat TM
Fractional cover of seven components Shrublands and grasslands of California

Miller and Thode 2007 dNBR and RdNBR derived from Landsat TM data Composite Burn Index (CBI)
Conifer forest, shrublands, Sierra Nevada 

Mountains of California and Nevada

Allen and Sorbel 2008 dNBR generated from Landsat TM data Composite Burn Index (CBI)
Conifer, deciduous, mixed forests, tundra, 

Alaska

Hall et al. 2008 dNBR generated from Landsat TM data Composite Burn Index (CBI)
Conifer, deciduous, mixed forests, 

western Canada

Hoy et al. 2008

dNBR generated from Landsat TM data, TC (tasseled 

cap transformation), PC (principal-component 

transformation), and other spectral indices

CBI (modified for Alaskan forests), 

additional field measures of burn severity
Black Spruce forests, Alaska

Murphy et al. 2008 dNBR generated from Landsat TM data CBI (modified for Alaskan forests)
conifer, deciduous, mixed forests, 

shrublands, Alaska

Miller et al. 2009 RdNBR from Landsat TM and ETM+ Composite Burn Index (CBI)
Conifer forest, shrublands, Sierra Nevada 

Mountains of California and Nevada

Wulder et al. 2009 NBR, dNBR, RdNBR from Landsat TM and ETM+ LIDAR Boreal plains region of Alberta, Canada
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1.4 Research objectives 

 

Parks Canada fire managers and scientists are interested in utilizing the most accurate 

Landsat derived index as a tool to predict burn severity across large geographic areas and 

varying landscapes. Previous studies have mainly occurred in the forests of the western 

United States and Alaska, with many of the field observations using CBI (Table 1.3). 

Within Canada, however, research on this topic has been undertaken by Hall et al. (2008) 

and Wulder et al. (2009). Hall et al. (2008) highlighted the need for continued work in 

three areas of burn severity research. They recommended analysis of dNBR models with 

additional burn severity data, an accuracy comparison of the dNBR and RdNBR indices, 

and the incorporation of pre-fire vegetation data into burn severity modelling. Wulder et 

al. (2009) found that RdNBR was no more superior than dNBR at predicting post-fire 

effects, and they acknowledged that burn severity modelling is a subject of ongoing 

research in differing ecological regions, cover types, and conditions. 

 

Based on previous research and the operational needs of Parks Canada, a key question 

was proposed: How well does a commonly used remote sensing algorithm estimate field-

assessed burn severity in Canadian western parks?  

Two additional questions were formed:   

 

1) Of the two algorithms, the dNBR and RdNBR, which one is most appropriate to 

estimate burn severity across the study fires in western Canadian? 

2) How accurately can a developed burn severity model be transferred across all 

study fires in western Canada?  
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Chapter 2 investigates the estimated accuracies of burn severity derived from both dNBR 

and RdNBR for six study fires. In addition, we assessed the accuracy of derived models 

stratified by pre-fire vegetation data and an analysis of the effects of pre-fire vegetation 

heterogeneity and sparseness.  

 

As a critical step towards application and model development, the objective of chapter 3 

was to test the ability of an overall derived dNBR model across all fires and to test the 

strengths and weaknesses of this method. An assessment of the accuracy and 

transferability of various models across the study fires was followed by an assessment of 

the benefit of incorporating pre- and post-fire data into standard dNBR approaches. 

 

Finally, chapter 4 is a discussion of the overall results, conclusions, and recommendations 

for future work.
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2 ESTIMATING BURN SEVERITY FROM dNBR AND RdNBR INDICES 

ACROSS WESTERN CANADA
2
 

 

2.1 Introduction 

 

Since the last ice age, wildland fire is considered to be the dominant disturbance agent 

across much of western Canada (Stocks et al., 2003). Consequently, a multitude of fire 

regimes can be found in western Canada, each possessing their own characteristics and 

spatial patterns. Wildland fire can drive biotic changes that are observed in landscape 

structure, composition, and species biodiversity, as well as change the function, rate, and 

pathways of ecological succession and encroachment (Lentile et al., 2006). In addition, 

fire can impact abiotic processes including soil and atmospheric nutrient cycling, as well 

as have direct implications for air quality from smoke emissions (Hardy et al., 2001). 

Under changing climate, Canadian wildland fire management agencies are becoming 

increasingly concerned with changes in fire season length, size and intensity, and 

financial cost (Tymstra et al., 2007). Fire projection models coupled with climate change 

forecasts predict increases in area burned, fire season length, fire intensity and burn 

severity (Wotton & Flannigan, 1993; Flannigan et al., 1998, 2005). In response, scientists 

and fire managers require the most accurate data available regarding landscape burn 

severity and estimates of total burned area so that they can calculate total carbon 

emissions and fluctuations in burned area over time. 

________________________ 
2 

A version of this chapter has been submitted for publication. Soverel, N.O., Perrakis, D.B., Coops, N.C. 

(2010) Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada.  
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In addition, burn severity spatial data and the fire’s perimeter can characterize fire-

induced vegetation mortality along with associated unburned islands to create a mosaic 

landscape consisting of distinct forest type and age class patches (Miller & Urban, 1999; 

Fule et al., 2003). 

 

Canadian land managers, including provincial natural resource agencies and Parks 

Canada, are often limited in their ability to acquire wildland fire data because many 

burned areas are located in roadless and remote areas. Remote sensing techniques can be 

inexpensive, reduce safety hazards, and provide greater accuracy when compared to 

traditional fire monitoring methods. This information can then be used by land managers 

and stakeholders for the purpose of monitoring vegetation, wildlife, soil and hydrologic 

changes, as well as various ecological processes. 

 

Fire severity can be defined as the direct effects of the combustion process on vegetation 

such as tree mortality and the losses of biomass in the forms of vegetation and soil 

organic material (Jain et al., 2004; Lentile et al., 2006). Alternatively, burn severity can 

be defined as “the degree of ecological change to a landscape caused by fire” (Key & 

Benson, 2005). Inherently, field measured burn severity is not a direct measure but a 

subjective judgement that can change based on the context or resource being addressed 

(Lentile et al., 2006). Burn severity represents the majority of the research focus herein 

and is assessed in the field by classifying sites of similar visible burn characteristics. 
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The direct impacts of fire on vegetation include changes in the composition, density, and 

vigour of plant species as well as the overall moisture content of the vegetation, litter, and 

the soil of the burned area. For this reason, changes in the near and short-wave infrared 

regions of the electromagnetic spectrum following fire can be detected by multispectral 

remote sensing devices.  Landsat’s Thematic Mapper (TM) and Enhanced Thematic 

Mapper Plus (ETM+) sensors are appropriate for burn severity analysis because they 

record near infrared (NIR) and short-wave infrared (SWIR) reflectance in Bands 4 (B4) 

and 7 (B7), respectively. Band 4 is recorded in the wavelengths between 0.76µm –

0.90µm while Band 7 between 2.08µm–2.35µm. Landsat TM/ETM+ Band 4 is primarily 

sensitive to the chlorophyll content of live vegetation (Miller & Thode, 2007) while 

Landsat’s TM/ETM+ Band 7 is sensitive to water content in both soils and vegetation, 

the lignose content of non-photosynthetic vegetation, and hydrous minerals such as clay, 

mica, and some oxides and sulphates (Avery & Berlin, 1992; Elvidge, 1990). In addition 

to the appropriate spectral bands, Landsat TM and ETM+ imagery provides moderate 

spatial resolution, is freely available in North America, and has an archive ranging from 

1984 onwards, containing an extensive dataset covering most of Canada.  

 

French et al. (2008), in a detailed review, documented 41 studies worldwide which 

utilized moderate and coarse resolution satellite data to extract the Normalized Burn 

Ratio (NBR) and differenced Normalized Burn Ratio (dNBR) data to detect burn 

severity. Of these studies, 26 of them utilized Landsat imagery to derive the 

normalization of near infrared and shortwave infrared wavelengths to measure burn 

severity. NBR and dNBR are calculated as follows: 



 25 

 

NBR = (B4-B7) / (B4+B7)         (1) 

dNBR = (NBRprefire – NBRpostfire)       (2) 

 

To derive either the initial assessment (IA) or extended assessment (EA) dNBR images, 

suitable pre- and post-fire NBR grids are acquired and the images subtracted to yield the 

differenced Normalized Burn Ratio (dNBR). The extended assessment (EA) is the 

difference between the pre-fire NBR image and an image acquired one year post-fire, and 

this image is most commonly used in burn severity ecological assessments. In contrast, 

fire perimeter delineation and immediate burn severity mapping normally utilizes the 

initial assessment (IA) which is the difference between the pre-fire image and an image 

acquired in the same year as the fire event. A recent variation of the dNBR approach is 

the relative differenced Normalized Burn Ratio (RdNBR). While the dNBR algorithm 

measures absolute change between the pre and post fire images, the RdNBR algorithm 

determines burn severity based on pre-fire reflectance and calculates the relative change 

caused by fire (Miller & Thode, 2007) as defined in equation 3:  

 
1000/prefire

postfireprefire

NBR

NBRNBR
RdNBR

−

=       (3) 

The evaluation of the sensitivity of the dNBR algorithm to measure field measured burn 

severity has been tested on a large number of fires in the USA (Zhu et al., 2006). From 

the studies discussed in French et al. (2008), an overall dNBR classification accuracy of 

73% (range 50-90%) was determined across a range of fires. Miller and Thode (2007) 

compiled burn severity data from 14 fires in the Sierra Nevada region, USA, and found a 
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coefficient of determination (R
2
) of 0.49 for dNBR while the RdNBR reported an R² of 

0.61. Zhu et al. (2006) also found overall that the RdNBR was a better estimator than 

dNBR within the more sparsely vegetated Southwest region and over a pooled dataset of 

all fires. They also concluded that RdNBR was a better estimate in landscapes that had 

either sparse or non-productive pre-fire vegetation, and therefore may provide a more 

consistent broad scale relationship to burn severity. Miller and Thode (2007) proposed 

two advantages of the RdNBR algorithm over the dNBR: 1) it provided a consistent 

definition for comparison across space and time and 2) classification accuracies should be 

higher in high severity categories, especially in heterogeneous pre-fire vegetation. 

 

Only a limited amount of published literature regarding remote sensing of burn severity 

exists for Canadian landscapes. A pilot study conducted by Perrakis and Zell (2008) 

found promising results using Landsat to estimate burn severity across three fires in 

national parks of western Canada. Hall et al. (2008) investigated the relationship between 

dNBR and ground based burn severity measurements for four fires in Canada’s boreal 

region reporting R² values as high as 0.84. They also discussed the need for future 

research in the Canadian boreal using RdNBR to better understand the effects of pre-fire 

vegetation on burn severity modelling from remote sensing data. 

 

Based on this existing research we hypothesized that the RdNBR algorithm would 

perform better in heterogeneous or sparsely vegetated landscapes, as well as provide a 

more accurate index across our total study area. The goal of this research, therefore, is to 

assess and compare the capacity of both the dNBR and RdNBR algorithms to estimate 
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burn severity. To fulfill this objective, dNBR and RdNBR data were derived from a 

number of Landsat scenes and compared with field estimates of burn severity across a 

range of fires. The difference in the capacity of the two datasets to estimate burn severity 

was first assessed on an individual fire basis. Fires were then stratified by both broad 

vegetation type (coniferous, broadleaf, and ‘other vegetation’) and region (Rocky 

Mountain, western boreal), and lastly all fires were pooled to assess the capacity of a 

generalised model to estimate burn severity across all fires. Finally, we assessed the 

capacity of a previously-developed model from Hall et al. (2008) to estimate burn 

severity over the western boreal region and the fires within that region. With this 

comprehensive examination of Canadian burn severity monitoring we anticipate a clearer 

picture of the strengths and weaknesses of these two algorithms will be realized, which in 

turn should provide additional insight for model applications in routine burn severity 

research. 

2.2 Data and methods 

 

2.2.1 Study area and characteristics 

 

Six fires were analyzed in this study, all of which occurred in four Canadian national 

parks (Figure 2.1, Figure 2). Three of the fires occurred in the Canadian Rockies and the 

remaining three in the western boreal forest (Table 2.1). The four national parks and their 

associated ecoregions (Ecological Stratification Working Group, 1996) are as follows: 

Yoho and Kootenay National Parks within the Western Continental Ranges ecoregion, 

Jasper National Park in the Eastern Continental Ranges, and Wood Buffalo National Park 

in the Slave River Lowlands and Hay River Lowlands ecoregions. Elevations of these fire 
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affected landscapes ranged from 250 m on the Peace River in Wood Buffalo National 

Park, Alberta to 2,100 m in Yoho National Park, British Columbia. Of the six fires, four 

were lightning-ignited wildfires (Boyer 01, Boyer 02, Peace Point, Southesk). The 

Hoodoo and Split Peak fires were prescribed fires (Hoodoo, Split Peak) planned to meet 

various ecological objectives which included reducing canopy cover and canopy fuel 

continuity. The fires ranged in size from 560 to 106,772 ha and covered various 

vegetation types within each respective ecoregion. 

 

Table 2.1. Fire name, ignition and out date, fire size (ha), elevation (m), and dominant 

vegetation types for study fires. 

 

Fire Name Ignition Date Out Date
Fire Size 

(ha)

Elevation 

(m)
Vegetation Type

Hoodoo Creek 2005-05-28 2005-05-30 1,525 1400-2100
Lodgepole pine, Douglas fir, Engelmann spruce, and 

Trembling aspen

Southesk 2006-07-21 2006-07-26 1,168 1500 -2100 Lodgepole pine, Engelmann spruce

Split Peak 2007-09-15 2007-09-20 560 1350-2000 Lodgepole pine, Douglas fir, Englemann-White spruce

Peace Point 2005-06-07 2005-07-26 12,432 250-300
White spruce, Black spruce, Jack pine, Trembling 

aspen

Boyer 01 2007-05-27 2007-08-20 75,963 250-350
Black spruce, Tamarack, Jack pine, Trembling aspen, 

White spruce, and shrub/grass cover matrix 

Boyer 02 2007-05-27 2007-08-20 106,772 250-350
Black spruce, Tamarack, Jack pine, Trembling aspen, 

White spruce, and shrub/grass cover matrix  

 



 29 

 

Figure 2.1. Total study area map representing the (1) Canadian Rocky Mountain and (2) 

western boreal study regions. Within the western boreal study region, the wildland fires 

include: (A) Boyer 02, (B) Peace Point, and (C) Boyer 01. 
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Figure 2.2. The Canadian Rocky Mountain study region which includes the (A) 

Southesk, (B) Hoodoo, and (C) Split Peak fires. 

 

The historic fire regimes and dominant species composition for the Rocky Mountain and 

western boreal forests are described in more detail below. For the Rocky Mountain region 

of Canada, two major ecosystem types can be delineated with respect to fire regimes: 

montane and subalpine forests. Subalpine forest ecosystems in this region are composed 

of subalpine fir (Abies lasiocarpa), lodgepole pine (Pinus contorta), and Engelmann 

spruce (Picea engelmannii). In contrast, montane forests are dominated by fire-adapted 
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species such as Douglas-fir (Pseudotsuga menziesii), lodgepole pine (Pinus contorta), 

and trembling aspen (Populus tremuloides). The controlling factor for these ecosystem 

types is elevation, with higher elevation areas being historically characterized by 

subalpine forests and the lower by montane forests. Due to topographic variation and 

local micro-climates, the boundaries between these two ecosystem types can be 

intertwined. The subalpine region was historically affected by infrequent, intense, and 

higher severity fires (Agee, 1993). In contrast, the montane ecosystem has been 

characterized by more frequent fires with a broad range of fire intensities and severities 

(Klenner et al., 2008), but likely dominated by low severity fire effects (Fischer & 

Clayton, 1983; Tande, 1979). 

 

Alternatively, the western boreal forest of Canada is composed of the following dominant 

tree species: jack pine (Pinus banksiana), black spruce (Picea mariana), trembling aspen 

(Populus tremuloides), tamarack (Larix laricina), and white spruce (Picea glauca). Fires 

are typified by large, infrequent, and stand-replacing events, with a range of fire cycles 

depending on local climate and tree species (Johnson, 1992; Turner et al., 2003). 

However, patches of grasslands, shrublands, wet meadows, and other non-forested 

vegetation are also frequent and sometimes extensive in this part of the boreal plains 

(Schwarz & Wein, 1997); the addition of non-forested communities within the mosaic of 

surrounding forests makes burn severity assessment more complex in these areas. 
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2.2.2 Imagery and pre-processing 

 

Landsat TM/ETM+ imagery were the sole sources of remote sensing imagery utilized in 

this analysis. Images were selected based on minimal cloud, fire ignition site, season, and 

anniversary dates (Table 2.2). Pre-fire imagery was chosen in the year of fire ignition if 

suitable, or else an image was obtained in the years previous to the fire. Two post fire 

images were selected in the growing seasons following the wildland fire, one for the IA 

and one for the EA. The IA burn severity map was utilized only for fire perimeter 

extraction and for burn severity ground plot sampling, while the EA dNBR and RdNBR 

indices were the primary source of data for the analysis. 

 

Table 2.2. Landsat imagery used in this study for both the IA (initial assessment) or EA 

(extended assessment). Fire name, Landsat path and row, and pre-fire and post-fire 

Landsat TM/ETM+ imagery acquisition dates, are listed. 

 

Fire Name IA/EA Path/Row
Pre-fire image date 

(TM/ETM+)

Post-fire image date 

(TM/ETM+)

Hoodoo Creek IA 44/24 24/08/1999 (ETM+) 30/07/200 (TM)

Hoodoo Creek EA 44/24 24/08/1999 (ETM+) 09/04/2006 (TM)

Southesk IA 44/23 23/08/2002 (ETM+) 26/08/2006 (TM)

Southesk EA 44/23 07/10/2003 (TM) 07/05/2007 (TM)

Split Peak IA 43/24 15/08/2007 (TM) 16/09/2007 (TM)

Split Peak EA 43/24 15/08/2007 (TM) 17/08/2008 (TM)

Peace Point IA 44/19 14/09/2001 (ETM+) 28/08/2005 (TM)

Peace Point EA 44/19 14/09/2001 (ETM+) 09/04/2006 (TM)

Boyer 01 & 02 IA 44/18/19 29/06/2005 (TM) 21/07/2007 (TM)

Boyer 01 & 02 EA 44/18/19 29/06/2005 (TM) 08/08/2008 (TM)  

 

Each image was orthorectified to Universal Transverse Mercator (UTM) Zone 11 or 12 

North, Datum WGS-84 with a root mean squared error less than 15 meters. Four of the 

sixteen images utilized in this research were downloaded from the GLOVIS website 

(USGS, 2009) and were orthorectified using Level 1 Terrain correction procedures 

(USGS, 2009). The remaining twelve images were orthorectified on an image by image 
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basis using a minimum of 12 control points and publicly available 30 m resolution digital 

elevation models (DEMs). After orthorectification, Landsat TM and ETM+ digital 

numbers were converted to at sensor reflectance using standard procedures (detailed in 

NASA, 1998; Chander & Markham, 2003) with additional information on current 

coefficients for these sensors available at Chandler et al. (2009). Atmospheric correction 

was undertaken by using the dark body subtraction technique where for each band the 

darkest pixel value within a Landsat scene is subtracted, providing a simple and effective 

haze correction in multispectral data (Chavez, 1989). This method has been found to have 

consistent and improving effects in multi-date radiometric correction analyses (Song et 

al., 2001; Schroeder et al., 2006). Finally, the NBR, dNBR, and RdNBR were calculated 

using Equations (1-3). For the IA images only, a density slice classification was 

undertaken with dNBR values > 100 classified as “burned” (Key & Benson, 2006), thus 

delineating the fire perimeters used throughout this analysis. To minimize any 

phenological or inter-annual differences between the pre and post fire images, methods of 

Zhu et al. (2006) were used to calibrate both the dNBR and RdNBR images. This was 

achieved by extracting a sample of unchanged pixels from outside the dNBR and RdNBR 

fire perimeters, followed by the calculation of the sample’s mean, and then the 

subtraction of the mean from the dNBR and RdNBR images. 

2.2.3 Field data 

 

Field data were collected utilizing the Composite Burn Index (hereafter as CBI) field 

protocol, which takes into account the visible and averaged burn severity condition found 

in a plot (Key & Benson, 2005). The CBI assessment is a somewhat subjective 

assessment of the entire averaged burn severity across multiple layers at a plot and is 
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heavily weighted to measuring fire effects on vegetation. This method assesses burn 

severity in relation to its effects on five forest strata: substrates, herbaceous vegetation, 

large shrubs and small trees, intermediate trees, and dominant and co-dominant canopy 

trees. Fire effects on these strata can include but are not limited to site characteristics 

such as duff and litter consumption, soil exposure, herbaceous mortality and percent 

cover, shrub mortality, char and scorch heights, overstory mortality, and overall site 

biodiversity. 

 

CBI plot locations were positioned using the following methodology. Using the initial 

assessment (IA), we first stratified suitable points using homogenous patches of similar 

burn severity in a 3 x 3 pixel window with an initial dNBR value difference < 150 as 

recommended by Key and Benson (2005). Those points were then stratified into burn 

severity classes derived from Key and Benson (2006) and were then randomly sampled to 

select potential plot locations. Ideally, locally developed class breaks would have been 

used to help plot selection as recommended by Lentile et al. (2006), however, previously 

defined class breaks were not available for this region. Plot locations that were close to 

the fire edge < 45 m or within 90 m of a class boundary were removed from contention. 

All CBI plots were field validated approximately one year after the fire occurred at that 

location. Field protocol closely followed the directions outlined in Landscape Assessment 

(Key & Benson, 2005). A 30 m circular plot was laid out, an averaged GPS location 

acquired for the plot center, plot photographs taken, and the CBI field data form was 

completed. Additional information to the CBI indicators was also recorded including 

dominant plant species per strata, pre-fire percent cover per strata, and other notable 
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characteristics of the stand. A percent cover-weighted CBI value per plot was calculated, 

with additional weighting provided to the overstory layer. This involved weighting each 

stratum according to its estimated coverage within the plot, and providing a double 

weight for overstory trees due to the dominant role of larger trees in forest biomass and 

habitat attributes of forest ecosystems. To reduce any assessor bias, CBI assessments 

were conducted by the same two individuals. 

2.2.4 Vegetation groupings and analysis technique 

 

To provide consistent information on pre-fire vegetation type and canopy closure 

(hereafter referred to as CC), the Earth Observation for Sustainable Development of 

Forests Land Cover 2000 (hereafter referred to as EOSD) data was utilized. This Canada-

wide, forest cover classification was derived from circa 2000 Landsat imagery and 

provides a 23 class classification at a spatial resolution of 25 m (Wulder et al., 2008a). 

The accuracy of the EOSD LC 2000 is estimated to be approximately 80% over all 

classes, with greater accuracy found for the more dominant forest classes (Wulder et al., 

2007; Wulder et al., 2008b). Furthermore, class accuracy can also be expected to increase 

as class generalization or simplification is applied (Remmel et al., 2005). 

 

The EOSD classification was applied at two scales of analysis. First, at the broad fire 

scale, the EOSD classes within each fire perimeter were utilized to determine an overall 

ranking of each fire’s combined heterogeneity and sparseness. At the fine scale, the 

EOSD classification was used to class each weighted CBI plot as either coniferous, 

broadleaf, or ‘other vegetation’, allowing individual weighted CBI-NBR models to be 

developed for each vegetation type irrespective of its fire location. 
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In more detail at the broad fire scale, an EOSD land cover vegetation and CC weighting 

calculation was applied which assigned higher weights to the increased canopy closure 

EOSD classes. For example, forest classes were weighted higher than non-forest classes, 

and canopy weightings increased from “sparse” to “open” to “dense” canopy classes. To 

assess landscape heterogeneity we utilized FRAGSTATS (McGarigal & Marks, 1995) 

software to determine two landscape metrics: percentage of like adjacencies (PLADJ) and 

the Contagion Index (CONT). PLADJ is computed as the sum of the diagonal elements of 

the adjacency matrix divided by the total number of adjacencies (McGarigal & Marks, 

1995). This landscape metric only measures dispersion, not interspersion, at the patch 

scale. Unlike PLADJ, CONT measures both dispersion and interspersion at the landscape 

level, and the output is based on the probability of finding a cell of type (i) next to a cell 

of type (j) (McGarigal & Marks, 1995). The two landscape metrics have similar 

interpretations: as the metric values increase, the aggregation or “clumpiness” of the 

vegetated pixels in the landscape increases. Table 2.3 and Figure 2.3 both indicate, for 

each fire, the PLADJ, CONT, and CC values. Included in Table 2.3 is the overall ranking 

of all three metrics: CC, PLADJ, and CONT. All three of the metric rankings were 

summed in order to provide an overall ranking that could be used to compare pre-fire 

vegetation across fires. The overall ranking (1-6) compares the highest overall CC and 

homogeneous pre-fire vegetation with the lowest rankings, or those that had less CC and 

more spatial heterogeneity. In order of ranking, these fires were: Peace Point, Southesk, 

Hoodoo, Boyer 01, Split Peak, and Boyer 02 (Table 2.3, Figure 2.3). 
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For the fine scale analysis, the EOSD classes were collapsed into three broad vegetation 

groups (Table 2.4). The conifer group consisted of the three main EOSD conifer classes 

of: “Coniferous – Dense (> 60% CC)”, “Coniferous – Open (26-60% CC)”, and 

“Coniferous – Sparse (10-25% CC)”. The broadleaf group in the study consisted of: 

“Broadleaf – Dense (> 60% CC)”, “Broadleaf – Open (26-60% CC)”, and “Broadleaf – 

Sparse (10-25% CC)”. The ‘other vegetation’ group consisted of all other possible non-

forest EOSD groups: shrub (tall, short), herb, and wetland (treed, shrub, herb). The EOSD 

water class pixels found in the two Wood Buffalo fires were extracted and disregarded 

from the analysis. 

 

Table 2.3. Fire name, overall ranking, canopy closure (CC) weight value, PLADJ 

(percentage of like adjacencies) metric, and CONT (contagion) metric. 

 

Fire Name
Overall 

Ranking

CC 

Weight
PLADJ CONT

Peace Point 1 56.1 86.9 76.8

Southesk 2 51.7 83.2 68.5

Hoodoo 3 48.1 69.3 65.2

Boyer 01 4 46.9 75.0 51.8

Split Peak 5 44.7 67.2 55.7

Boyer 02 6 40.7 72.4 45.5  

 

 

Table 2.4. The three EOSD LC 2000 vegetation groups and associated canopy  

closure (CC) percentage for conifer, broadleaf, and ‘other vegetation’.  

 

Conifer Broadleaf Other

Dense (>60% CC) Dense (>60% CC)

Wetland (treed, shrub, 

herb)

Open (26-60% CC) Open (26-60% CC) Shrub (tall, low)

Sparse (10-25% CC) Sparse (10-25% CC) Herbaceous  
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Figure 2.3. 3-D scatter plot depicting each fire’s pre-fire canopy closure (CC) and 

landscape spatial heterogeneity. The Y-axis represents the percentage of like adjacencies 

(PLADJ) index value, the X-axis vegetation canopy closure (CC), and the Z axis the 

contagion (CONT) index value.  

 

2.2.5 Data analysis 

 

The field plot GPS locations were differentially corrected to improve accuracy. Extended 

assessment dNBR/RdNBR values were calculated for each location using a weighted 

average of the surrounding pixels as described by previous authors (Cocke et al., 2005; 

Key & Benson, 2005). The weighted CBI locations that fell in areas of high local burn 

heterogeneity, defined as a difference in the surrounding pixels of 250 for dNBR or 350 

for RdNBR, were removed. Weighted CBI classes were chosen with the same threshold 

values as Miller et al. (2009) and as outlined in Table 2 of Miller and Thode (2007), who 
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divided their fires into three main classes: unchanged/low (0-1.25), moderate (1.26-2.25), 

and high (2.26-3.0). We chose to use these generalized CBI thresholds because they 

allowed us to compare the two indices across multiple fires with more consistency than 

developing CBI thresholds on a fire by fire basis.  

 

Prior to regression analysis, we verified that each dataset could pass the assumptions of 

serial correlation, homoscedasticity, and normality. It was unnecessary to test for linearity 

between the dependent (weighted CBI) and independent (remote sensing) variables as 

this has already been proven (Wagtendonk, 2004; Miller et al., 2009; Zhu et al., 2006; 

and many others). Serial correlation was tested using the Durbin Watson statistic and 

homoscedasticity was tested using the White test; in both tests each dataset passed. The 

normality of the residuals was tested using the Kolmogorov-Smirnov test in which each 

dataset was significant for normal distribution. Landsat derived dNBR or RdNBR values 

were fitted to weighted CBI values using linear and quadratic regression models. Models 

were then evaluated and chosen by comparing the coefficient of determination, standard 

error, model significance and Akaike Information Criterion (AIC; Hilborn & Mangel, 

1997) values. AIC is founded on the principles of parsimony and attempts to utilize “the 

smallest possible number of parameters for adequate representation of the data” (Box & 

Jenkins, 1970). In addition, confusion matrices and their subsequent producer’s, user’s, 

and overall accuracies were extracted for each model. The confusion matrix consisted of 

the three classes: unchanged/low, moderate, and high, with the weighted CBI data 

(ground truth) in the columns versus the remote sensing (classified data) in the rows. The 

overall kappa and 95% CI intervals along with the conditional kappa (ki) statistics were 
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computed as a means of determining the percentage correct values due to true agreement 

versus chance agreement. For comparison, Hall et al.’s (2008) non-linear model was 

used: CBI= dNBR*(0.22*[dNBR] + .09)
-1 

to compute regional and western boreal 

individual fire results. The Hall et al. (2008) non-linear model was chosen because it is 

not asymptotic, it was shown to be accurate (R²=0.82), and it was derived from CBI data 

within the same region. To test the performance of the model, we calculated the regressed 

non-linear CBI values using our western boreal dNBR values. Secondly, these CBI 

values were compared to our total unweighted CBI values using linear regression. 

Finally, we created confusion matrices with the columns representing the field measured 

total CBI and the rows representing the Hall et al. (2008) derived CBI values.  

 

2.3 Results 

2.3.1 Results for individual fires 

2.3.1.1 Peace Point fire 

 

The overall ranking of CC and heterogeneity indicates that of all fires, the Peace Point 

fire ranked number one (Table 2.3, Figure 2.3). The broad scale analysis of EOSD land 

cover for the Peace Point fire designates that pre-fire vegetation was approximately 88% 

coniferous, 2% broadleaf and 10% ‘other vegetation’. Of the 88% pre-fire coniferous 

vegetation, more than 83% was dense coniferous, and the PLADJ and CONT metrics 

measure a comparatively low level of heterogeneity. As compared to the other study fire 

histograms (Figure 2.4A), the Peace Point fire indicates a distribution that is moderate to 

high severity. The three severity classes depict consistent results for both the dNBR and 

RdNBR indices, with both estimating high severity effects over 29.0% and 30.3% of the 
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fire area, respectively. The moderate and unchanged/low severity proportions for these 

fires were also consistent with the dNBR estimating 27.3% and 43.7% and the RdNBR 

estimating 27.7% moderate and 42.0%, respectively. Linear models were chosen for both 

indices because neither showed statistical significance using a quadratic function and the 

AIC value was lower for the linear dNBR model and very similar for the RdNBR (Table 

2.5, Figure 2.5A). The linear dNBR model estimated weighted CBI well (R²=0.70, 

SE=0.42, p<0.05) as did RdNBR (R²=0.72, SE=0.40, p<0.05) (Table 2.5). An accuracy 

assessment of the Peace Point fire (Table 2.6) indicates similar results for the two indices. 

The overall accuracies were similar with 70.3% dNBR and 70.7% RdNBR, with the 

producer’s and user’s accuracies, kappa statistics, and conditional kappa values all highly 

related.  

 

2.3.1.2 Southesk fire 

 

The Southesk fire was ranked second among the other study fires (Table 2.3, Figure 2.3). 

The EOSD classification defined the two largest vegetation classes as dense conifer 

(76.5%), and tall shrub (11.7%). The large proportion of dense coniferous canopies and 

high PLADJ and CONT values indicate a closed canopy and aggregated pre-fire forest 

landscape.  A large shift in the index values occurred between the dNBR and the RdNBR 

models (Figure 2.4B). Additionally, the Southesk fire had the greatest area proportion in 

the high severity class. The RdNBR class delineated an estimated 47.4% high severity 

burn while the dNBR calculated 47.6% (Figure 2.4B). The quadratic model was 

significant for both dNBR and RdNBR (Figure 2.5B) and indicated the lowest AIC 

values when compared to the linear model. Field data correlated more closely with dNBR 



 42 

values, (R²=0.81, SE=0.44, p<0.05) (Table 2.5) than did RdNBR, (R²=0.79, SE=0.42, 

p<0.05) (Table 2.6). Confusion matrix results indicate a higher dNBR overall accuracy 

(82.4%) than RdNBR (74.2%) (Table 2.6). Lowest accuracies occurred in the moderate 

classes for both dNBR and RdNBR; dNBR user’s and producer’s at 62.5%, and RdNBR 

user’s and producer’s at 0.0%. 

 

2.3.1.3 Hoodoo fire 

 

According to the EOSD data, the majority of pre-fire vegetation consisted of open 

coniferous (63.5%), and dense coniferous (26.5%) forests. The overall ranking of the pre-

fire vegetation was third overall, with a moderately closed coniferous canopy with 

moderate landscape heterogeneity according to the PLADJ and CONT spatial metrics 

(Table 2.3, Figure 2.3). As compared to the other study fire histograms, Figure 2.4C 

indicates that this fire was fairly moderate for both the dNBR and RdNBR. The RdNBR 

index represents the following burn severity class distributions: 29.4% high, 19.2% 

moderate, and 51.4% unchanged/low. The dNBR index indicates 34.2% high, 16.0% 

moderate, and 49.8% unchanged/low class values. Of all the fires in this research study, 

the Hoodoo fire had the lowest correlations with weighted CBI field data (Table 2.5) for 

both dNBR and RdNBR, but also the smallest weighted CBI sample size. Based on 

statistical significance and AIC values (Table 2.5), a linear regression was the most 

significant model for both dNBR and RdNBR (Figure 2.5C). Regressions were weak for 

both dNBR and RdNBR, but higher for the latter index: (R²=0.40, SE=0.63, p<0.05) 

(RdNBR: R²=0.55, SE=0.54, p<0.05) (Table 2.5). The overall confusion matrix accuracy 
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for dNBR and RdNBR is 65.2%, with lower high severity user’s (33.3%) and conversely 

high producer’s accuracies (100.0%) (Table 2.6). 

 

2.3.1.4 Boyer 01 fire 

 

Pre-fire vegetation type and heterogeneity indicate that this fire was ranked fourth (Table 

2.3, Figure 2.3). According to the EOSD data, the majority of pre-fire vegetation was 

within two main classes: non-forest wetland shrub (39.3%) and dense coniferous forest 

(39.8%). Figure 2.4D indicates that as compared to the other study fires, this was lower in 

severity, with the RdNBR index estimating 4.3% high, 10.9% moderate, and 84.7% 

unchanged/low, and the dNBR estimating 1.1% high 12.9% moderate, and 86.1% 

unchanged/low. Both indices were statistically significant for quadratic models with 

lower AIC values than linear (Table 2.5), results showing both the dNBR and weighted 

CBI field data (R²=0.76 SE=0.35 p<0.05), and the RdNBR index (R²=0.77, SE=0.35, 

p<0.05) (Table 2.5, Figure 2.5D). Equal accuracies were found for dNBR and RdNBR 

(69.4%) and very poor accuracies in the high severity class (0.0%) (Table 2.6).  

 

2.3.1.5 Split Peak fire 

 

The Split Peak pre-fire EOSD vegetation indicates a majority open coniferous (73.5%) 

with the remaining dense coniferous (4.5%), broadleaf (5%), and non-forest (17%). This 

fire was fifth overall with low CC and heterogeneous pre-fire vegetation (Table 2.3, 

Figure 2.3). Compared to the other study fires, the Split Peak burn severity histogram 

(Figure 2.4E), indicates moderately severity fire effects, and the dNBR showing a bell-

shaped curve and the RdNBR a bimodal distribution. These class proportions were highly 
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related, the RdNBR containing 25.5% high severity, 31.5% moderate, and 43.0% 

unchanged/low; while dNBR had 24.9% high, 36.8% moderate, and 38.3% 

unchanged/low (Figure 2.4E). Quadratic models were statistically significant and showed 

lower AIC values than the linear models, with the dNBR (R² =0.70, SE=0.50, p<0.05) 

and RdNBR (R² =0.69, SE=0.52, p<0.05) (Table 2.5, Figure 2.5E). Overall accuracy for 

dNBR was 60.4% and RdNBR 59.6%, both indices was 58.5%, the lowest overall 

accuracy compared to all study fires (Table 2.6).  

 

2.3.1.6 Boyer 02 fire 

 

The EOSD imagery indicated that pre-fire vegetation was similar to the Boyer 01 fire, 

except with lower CC overall and higher spatial heterogeneity. In terms of overall 

ranking, the Boyer 02 fire was lowest overall compared to all fires (Table 2.3, Figure 

2.3). As compared to the other study fires, Figure 2.4F indicates similar burn severity 

histogram as the Boyer 01 fire, although with a larger proportion in the higher severity 

category. The RdNBR index classified 14.4% of the fire as high, 23.6% as moderate, and 

62.0% as unchanged/low. The dNBR index classified 10.2% high, 23.6% moderate, and 

62.2% unchanged/low. Neither models were statistically significant for quadratic models 

and were therefore fitted using linear regression only. The linear dNBR model showed 

strong results (R²=0.72, SE=0.41, p<0.05) while the RdNBR was weaker (R²=0.67, 

SE=0.48, p<0.05) (Table 2.5, Figure 2.5F). The confusion matrix outputs give an overall 

accuracy of 77.1% for both indices and weaker accuracies were found in the user’s high 

severity class for both indices, RdNBR at 50.0% and 48.6% accuracy for dNBR.  
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Table 2.5. dNBR and RdNBR results for individual fires from Figure 2.5 (A-F). 

Coefficient of determination, model relationship chosen, standard error of estimate, (p
L
) 

p-value, (p
Q
) predictor p-value for quadratic if significant, AIC values for both linear and 

quadratic models, and total (N) for each study fire. 

Fire Name R² model 

stnd. 

error of 

est.
p

L
p
Q linear 

AIC

quad      

AIC
CBI (N)

Peace Point 0.70 linear 0.42 0.000 n.s. 43.82 44.31 37

Southesk 0.81 quadratic 0.44 0.000 0.010 62.11 39.59 34

Hoodoo 0.40 linear 0.63 0.004 n.s. 46.61 46.86 23

Boyer 01 0.76 quadratic 0.35 0.000 0.044 44.49 34.27 49

Split Peak 0.70 quadratic 0.50 0.000 0.011 95.57 87.69 53

Boyer 02 0.72 linear 0.41 0.000 n.s. 57.41 43.42 38

Peace Point 0.72 linear 0.40 0.000 n.s. 44.42 43.45 41

Southesk 0.79 quadratic 0.42 0.000 0.042 46.14 42.54 31

Hoodoo 0.55 linear 0.54 0.000 n.s. 38.12 38.72 23

Boyer 01 0.77 quadratic 0.35 0.000 0.005 57.85 42.28 50

Split Peak 0.69 quadratic 0.52 0.000 0.012 96.24 88.64 53

Boyer 02 0.67 linear 0.48 0.000 n.s. 57.76 38.28 36

d
N

B
R

R
d

N
B

R
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Table 2.6. Classification accuracies of the producer’s, user’s, and overall values along with the conditional kappa (ki), overall kappa, and the lower and upper 95% confidence 

intervals (CI) for the overall kappa. The results are listed from top to bottom and include the dNBR, RdNBR, EOSD vegetation type, and Hall et al. (2008) non-linear models. 

 

Dataset

Unchanged

/Low
ki Moderate ki High ki

Unchanged

/Low
ki Moderate ki High ki Overall

Overall 

Kappa

CI 95% 

lower

CI 95% 

upper

dNBR

Overall 89.0 0.82 39.2 0.30 80.4 69.69 77.4 0.64 63.3 0.58 63.4 0.55 70.2 0.54 0.45 0.63

Rocky Mountains 75.0 0.67 51.3 0.40 88.2 0.84 69.2 0.59 60.6 0.52 81.1 0.74 70.6 0.56 0.43 0.69

western boreal 89.1 0.80 30.0 0.23 42.9 0.38 82.6 0.68 44.4 0.39 31.0 0.26 62.4 0.38 0.24 0.52

Peace 80.0 0.74 12.5 0.10 89.5 0.81 72.7 0.65 25.0 0.23 77.3 0.58 70.3 0.50 0.25 0.75

Southesk 80.0 0.77 62.5 0.56 90.5 0.78 57.1 0.51 62.5 0.56 100.0 1.00 82.4 0.69 0.46 0.92

Hoodoo 76.9 0.59 37.5 0.28 100.0 1.00 83.3 0.71 60.0 0.54 33.3 0.27 65.2 0.43 0.11 0.75

Boyer 01 77.8 0.62 59.1 0.71 0.0 0.00 84.0 0.79 72.2 0.60 0.0 0.00 69.4 0.60 0.38 0.82

Split Peak 77.8 0.70 30.4 0.20 91.7 0.89 58.3 0.43 58.3 0.52 64.7 0.55 60.4 0.41 0.22 0.61

Boyer 02 92.0 0.80 40.0 0.33 100.0 1.00 85.2 0.62 67.1 0.63 48.6 0.57 77.1 0.56 0.29 0.83

RdNBR

Overall 90.9 0.85 28.9 0.22 69.0 0.63 76.3 0.61 47.8 0.42 58.0 0.49 65.2 0.46 0.37 0.56

Rocky Mountains 83.8 0.77 34.3 0.26 85.7 0.80 70.5 0.58 52.2 0.46 75.0 0.65 68.2 0.52 0.39 0.65

western boreal 88.7 0.80 17.1 0.12 60.9 0.56 79.7 0.64 36.8 0.33 36.8 0.29 60.3 0.37 0.23 0.50

Peace 80.0 0.75 11.1 0.09 90.9 0.82 72.7 0.66 20.0 0.18 80.0 0.61 70.7 0.50 0.26 0.74

Southesk 100.0 1.00 0.0 0.00 85.7 0.66 71.4 0.66 0.0 0.00 85.7 0.66 74.2 0.47 0.16 0.79

Hoodoo 84.6 0.71 25.0 0.18 100.0 1.00 84.6 0.83 50.0 0.45 33.3 0.27 65.2 0.42 0.09 0.74

Boyer 01 77.8 0.61 59.1 0.44 0.0 0.00 84.0 0.72 72.2 0.62 0.0 0.00 69.4 0.45 0.21 0.68

Split Peak 84.2 0.77 22.7 0.15 91.7 0.89 61.5 0.45 55.6 0.51 61.1 0.51 59.6 0.41 0.22 0.61

Boyer 02 88.0 0.69 33.3 0.27 100.0 1.00 84.6 0.83 50.0 0.45 50.0 0.47 77.1 0.45 0.13 0.76

EOSD vegetation model (dNBR)

coniferous 89.3 0.83 36.2 0.28 70.6 0.63 77.0 0.64 52.5 0.46 63.2 0.54 67.4 0.50 0.40 0.60

broadleaf 75.0 0.69 60.0 0.36 100.0 1.00 50.0 0.38 85.7 0.77 66.7 0.62 68.8 0.49 0.11 0.86

other 90.9 0.80 72.7 0.65 33.3 0.31 100.0 1.00 66.7 0.57 25.0 0.23 80.6 0.65 0.41 0.88

EOSD vegetation model (RdNBR)

coniferous 88.7 0.83 32.8 0.25 62.3 0.54 76.8 0.65 44.4 0.38 56.9 0.48 63.3 0.43 0.33 0.54

broadleaf 75.0 0.69 50.0 0.27 100.0 1.00 42.9 0.30 83.3 0.76 66.7 0.62 62.5 0.41 0.03 0.78

other 100.0 1.00 20.0 0.17 33.3 0.31 92.3 0.69 33.3 0.31 33.3 0.31 81.3 0.49 0.12 0.86

Hall et al. (2008) non-linear model

western boreal 76.6 0.67 26.0 0.17 92.6 0.91 78.3 0.69 54.2 0.49 46.3 0.33 59.7 0.41 0.29 0.54

Peace 14.3 0.12 45.5 0.37 94.4 0.89 100.0 0.49 45.5 0.37 73.9 0.51 63.9 0.37 0.10 0.65

Boyer 01 83.3 0.76 11.5 0.06 83.3 0.81 71.4 0.59 60.0 0.57 20.8 0.12 46.0 0.27 0.08 0.46

Boyer 02 90.5 0.80 38.5 0.29 100.0 1.00 82.6 0.64 71.4 0.67 42.9 0.38 73.0 0.52 0.27 0.78

User's Accuracy (%)Producer's Accuracy (%)
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dNBR RdNBR

% %

unchanged/low 43.7 42.0

moderate 27.3 27.7

high 29.0 30.3  
 

Figure 2.4A. 

 
dNBR RdNBR

% %

unchanged/low 32.3 23.3

moderate 20.1 29.1

high 47.7 47.6  
 

Figure 2.4B. 
 

 
dNBR RdNBR

% %

unchanged/low 49.8 51.4

moderate 16.0 19.2

high 34.2 29.4  
 

Figure 2.4C. 
 

 

 
dNBR RdNBR 

% %

unchanged/low 86.1 84.7

moderate 12.9 10.9

high 1.1 4.3   
Figure 2.4D. 

 



 48 

 

Figure 2.4. (A-F) Figures represent: (A) Peace Point, (B) Southesk, (C) Hoodoo, (D) 

Boyer 01, (E) Split Peak, and (F) Boyer 02 fires. Histograms depict the percent pixel 

variability for the associated remote sensing values within the initial perimeter of each 

fire. The gray bars represent total dNBR data and the dotted black line the normal 

distribution fitted function. The black histogram bars and solid black line represent the 

former information for the RdNBR data. The table below each graph refers to that fire’s 

total dNBR and RdNBR burn severity class proportions extracted using each fire’s 

regression model.  

 

 

 

 

 

 

 

 

 

 

 
dNBR RdNBR

% %

unchanged/low 38.3 43.0

moderate 36.8 31.5

high 24.9 25.5  
 

Figure 2.4E. 

 

 

 

 

 
dNBR RdNBR

% %

unchanged/low 62.2 62.0

moderate 23.6 23.6

high 10.2 14.4   
 

Figure 2.4F. 
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Figure 2.5A. 

 

 

 
Figure 2.5B 

 
Figure 2.5C. 

 

 
Figure 2.5D. 

 

 

 

 
Figure 2.5E. 

 
Figure 2.5F. 
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Figure 2.5. (A-F, above). X-axis of the scatterplot represents dNBR and RdNBR index 

derived values while the y-axis represents weighted CBI values. (A-F) figures represent: 

(A) Peace Point, (B) Southesk, (C) Hoodoo, (D) Boyer 01, (E) Split Peak, and (F) Boyer 

02 fires. The gray circles represent dNBR while the black squares represent RdNBR 

weighted CBI correlations. The dotted black line represents the dNBR fitted regression 

model to weighted CBI values while the solid black line represents the RdNBR fitted 

regression model. 

 

2.3.2 Results for fine scale vegetation stratification 

 

The relationships between weighted CBI, dNBR, and the RdNBR data grouped by EOSD 

pre-fire vegetation are shown in Table 2.7. Weighted CBI plots occurred most often in 

coniferous EOSD classes, followed by ‘other vegetation’, and lastly in broadleaf. The 

AIC values for the RdNBR and dNBR coniferous models were lowest using quadratic 

models and statistically significant, the dNBR model (R²=0.69, SE=0.53, p<0.05) and 

RdNBR (R²=0.71, SE=0.51, p<0.05). The broadleaf vegetation group was well-

represented by linear regression models for both dNBR (R²=0.69, SE=0.33, p<0.05) and 

RdNBR (R²=0.62, SE=0.37, p<0.05) (Table 2.7). For the ‘other vegetation’ group, the 

linear model was chosen for dNBR (R²=0.69, SE=0.49, p<0.05) and quadratic for the 

RdNBR (R²=0.75, SE=0.44, p<0.05) (Table 2.7). Confusion matrix results show the 

dNBR index having higher overall accuracies for the conifer and broadleaf groups and 

higher kappa values for all three groups (Table 2.6). 
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Table 2.7. dNBR and RdNBR EOSD vegetation type regression including coefficient of 

determination, model relationship chosen, standard error of estimate, (p
L
) p-value, (p

Q
)  

predictor p-value for quadratic if significant, AIC values for both linear and quadratic 

models, and total (N). 

 

Vegetation R² model 

stnd. 

error of 

est.
p

L
p
Q linear 

AIC

quad    

AIC
CBI (N)

d
N

B
R Coniferous 0.69 quadratic 0.53 0.000 0.000 341.63 296.19 183

Broadleaf 0.69 linear 0.33 0.004 n.s. 14.64 14.45 16

Other 0.69 linear 0.49 0.000 n.s. 61.47 47.96 36

Coniferous 0.71 quadratic 0.51 0.000 0.000 337.41 295.95 185

Broadleaf 0.62 linear 0.37 0.000 n.s. 17.26 16.79 16

Other 0.75 quadratic 0.44 0.000 0.028 56.11 32.02 32

d
N

B
R

R
d

N
B

R

 

 

2.3.3 Results for regions 

 

When the data was stratified by geographic region (Rocky Mountain, western boreal) 

both indices appear to estimate burn severity equally well. AIC values suggest that a 

quadratic relationship was most appropriate for all four models (Figure 2.6B, 2.6C). 

Approximately 70.0% of the model variability was explained by using either the dNBR 

or RdNBR in the Rocky Mountains and in the western boreal region. The Rocky 

Mountain region data was estimated with similar results for dNBR (R²=0.69, SE=0.53, 

p<0.05) and the RdNBR (R²=0.71, SE=0.51, p<0.05) (Table 2.8, Figure 2.6A). Estimates 

were also similar for the western boreal region for dNBR (R²=0.70, SE=0.49, p<0.05) 

and RdNBR (R²=0.70, SE=0.50, p<0.05) (Table 2.8, Figure 2.6B). Confusion matrices 

indicate that overall dNBR model accuracies were higher than RdNBR in both regions 

(Table 2.6). The Rocky Mountain results denote dNBR (70.6%) and RdNBR (68.2%) 

accuracies while the western boreal overall accuracy was dNBR (62.4%) and RdNBR 

(60.3%). 
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2.3.4 Results for overall dataset 

 

The best AIC relationships between the weighted CBI data and dNBR and RdNBR across 

all fires were quadratic models (Figure 2.6C). The RdNBR model had a slightly better fit 

(R²=0.71, SE=0.51, p<0.05) than the dNBR (R²=0.69, SE=0.52, p<0.05) (Table 2.8), 

with the confusion matrix indicating a better overall dataset accuracy result using dNBR 

(70.2%) than RdNBR (65.2%). Of the three classes, the moderate severity class produced 

most often the lowest user’s and producer’s accuracies, as indicated by the conditional 

kappa (ki) values (Table 2.6).  

 

Table 2.8. dNBR and RdNBR results for regions and overall datasets from Figure 2.6 (A-

C) including the coefficient of determination, model relationship chosen, standard error 

of estimate, (p
L
) p-value, (p

Q
) predictor p-value for quadratic if significant, AIC values 

for both linear and quadratic models, and total (N). 

 

Fire Area R² model 

stnd. 

error of 

est.
p

L
p
Q linear 

AIC

quad     

AIC
CBI (N)

R. Mountains 0.69 quadratic 0.53 0.000 0.005 204.87 180.75 110

western boreal 0.70 quadratic 0.49 0.000 0.000 221.29 167.44 125

Overall 0.69 quadratic 0.52 0.000 0.000 428.13 375.06 235

R. Mountains 0.71 quadratic 0.51 0.000 0.003 186.28 168.81 107

western boreal 0.70 quadratic 0.50 0.000 0.000 226.48 167.55 126

Overall 0.71 quadratic 0.51 0.000 0.000 418.36 364.07 233

d
N

B
R

R
d

N
B

R
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Figure 2.6 (A-C). X-axis of the scatterplot represents dNBR and RdNBR index derived 

values while the y-axis represents weighted CBI values. (A-C) figures represent: (A) 

Rocky Mountains (B) western boreal region, and (C) overall pooled dataset. The gray 

circles represent dNBR while the black squares represent RdNBR weighted CBI 

correlations. The dotted black line represents the dNBR fitted regression model to 

weighted CBI values while the solid black line represents the RdNBR fitted regression 

model. 

 

 

 

 

 
Figure 2.6A. 

 
Figure 2.6B. 

 

 
Figure 2.6C. 
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2.3.5 Results for model comparison 

 

To assess the comparability of previously developed models to our own data, the Hall et 

al. (2008) non-linear model was fit using linear regression and total CBI for the western 

boreal regional dataset and the Peace, Boyer 01, and Boyer 02 fires. The regional dataset 

showed moderate regression (R²=0.66, SE=0.51, p<0.05), while the Peace fire the 

strongest (R²=0.68, SE=0.41, p<0.05), and the Boyer 01 fire (R²=0.44, SE=0.51, 

p<0.05), and the Boyer 02 fires the weakest (R²=0.58, SE=0.54, p<0.05) (Table 2.9). 

Table 2.6 incorporates data from the Hall et al. (2008) confusion matrix, with overall 

accuracies lower than those found within this study. Listed respectively 59.7%, 63.9%, 

46.0%, and 73.0%, they were for the western boreal region, Peace, Boyer 01, and Boyer 

02 datasets. The high severity class accuracy for the user’s and producer’s values were 

higher for the western boreal region than both the dNBR and RdNBR models, 

respectively at 46.3% and 92.6%. 

 

Table 2.9. Hall et al. (2008) non-linear model correlation results including coefficient of 

determination, model relationship chosen, standard error of estimate, (p
L
) p-value, and 

total (N). 

 
Hall et al. (2008) 

non-linear 

model

R² model 

stnd. 

error of 

est.
p

L CBI (N)

d
N

B
R

western boreal 0.66 linear 0.51 0.000 125

Peace 0.68 linear 0.41 0.000 49

Boyer 01 0.70 linear 0.44 0.000 50

Boyer 02 0.58 linear 0.54 0.000 36

d
N

B
R

 
 

 

2.4 Discussion 

 

The main objective of this study was to establish whether the RdNBR or the dNBR would 

be able to more accurately estimate burn severity across a range of fires in western 
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Canada. The dNBR method, or the absolute change of Landsat’s band 4 and 7, contrasts 

with the RdNBR index which measures the proportional change occurring in the same 

bands. As an initial step, model development and statistical comparison of these two 

indices were applied to each fire’s burn severity data. These results show similar 

accuracies being obtained using either the dNBR or RdNBR, with the AIC and confusion 

matrices indicating slightly higher accuracy for the dNBR across all study fires. The 

severity class with the highest accuracy across all fire, and indices, was in the 

unchanged/low severity class. Lower and inconsistent results occurred in the moderate 

and high severity categories, with the lowest accuracies in the moderate class. We can 

therefore infer that both indices measure similar effects of fire in our study areas. 

 

We hypothesized that RdNBR would be a better estimator of burn severity in landscapes 

that consisted of lower CC and those that also had higher spatial heterogeneity.  Our 

results indicate that this was not the case, with no significant improvement in model 

accuracy using the RdNBR in the Split Peak, Boyer 02, and Boyer 01 fires. The results 

show that the dNBR is capable of estimating more accurately weighted CBI points in our 

vegetation groupings as indicated by the overall accuracy and kappa statistic results 

(Table 2.6). Miller and Thode (2007) stated that in homogeneous vegetation, the dNBR 

and RdNBR indices would produce similar estimated accuracies. This may indicate that, 

in this study, the landscapes are relatively homogeneous with moderate to dense canopy 

vegetation. Moreover, the study areas of both Miller and Thode (2007) and Miller et al. 

(2009) were located in conifer dominated vegetation types in California, whose pre-fire 

vegetation and fire severity may not correspond well to our sites. Since previous research 
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has established the higher accuracy of RdNBR in the high severity class, our study’s 

negative results may be due to the smaller number of high severity burns examined. 

However, we did not see an improvement in the classification of high severity classes 

using RdNBR nor in our sparsely vegetated and heterogeneous burned areas.  

 

Overall, the regional models developed in this study were as accurate and showed similar 

results to other researchers in the western boreal and the Northern Rocky Mountains 

regions. In the western boreal region of Canada, Wulder et al. (2009) found that RdNBR 

was unable to estimate changes in forest structure or post-fire effects any better than 

dNBR or NBR. They concluded that their results supported key findings by Hudak et al. 

(2007), that RdNBR is not more appropriate than dNBR or NBR for broad-scale burn 

severity assessment. Hall et al. (2008) found higher overall correlations between dNBR 

and CBI data than our own. When classification accuracy was conducted on the Hall et 

al.’s (2008) dNBR non-linear model, results showed a higher overall kappa statistic and 

smaller confidence intervals than our dNBR and RdNBR derived models (Table 2.6). 

Within the Rocky Mountain region, Zhu et al.’s (2006) Northern Rocky Mountain study 

found burn severity correlations of  R²=0.72 for dNBR while the RdNBR had a lower 

correlation value of R²=0.69. These results correspond well to our regional results with 

the Rocky Mountain regional dataset having an R²=0.69 for dNBR and an R²=0.71 for 

RdNBR. These results largely indicate the value in formulating regional models for burn 

severity monitoring within western Canada. 
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Numerous researchers have determined that the highest correlations for dNBR and 

RdNBR exhibit nonlinear relationships to CBI data (van Wagtendonk et al., 2004; Zhu et 

al., 2006; Miller & Thode, 2007; Miller et al., 2009). These studies have attributed this 

non-linearity to Landsat’s SWIR reflectance saturation at CBI values above ~2.0-2.5, and 

the simultaneous NIR decrease consistent with increasing burn severity (Chuvieco et al., 

2006). In respect to this finding, a majority of our derived dNBR and RdNBR models 

were non-linear across the fire, vegetation type, regional, and overall dataset scales. Both 

index models at the regional and overall levels had a majority of the lowest user’s, 

producer’s, and conditional kappa values for the moderate severity class. Miller et al. 

(2009) found that in the majority of cases, the moderate class also had the lowest 

classification accuracies. These increased errors in the moderate class are most likely due 

to the difficulty of a passive sensor to observe the more complex fire effects that can be 

recorded during a CBI assessment (De Santis & Chuvieco, 2007). For the high severity 

classes at the regional and overall model scales, the lowest confusion matrix accuracies 

existed in the western boreal region. The western boreal models for dNBR and RdNBR 

had conditional kappa values for the user’s accuracies at 0.26 and 0.29 respectively. 

Difficulty in correctly classifying moderate and high severity classes in the boreal was 

also recorded by Murphy et al. (2008) who found dNBR had limited ability to discern 

moderate and high severity classes. There are three likely compounding reasons for this 

in the western boreal. The first is the aforementioned SWIR saturation effect which has 

been cited by numerous authors in boreal burn severity mapping. The second factor, as 

discussed by Hoy et al. (2008), is that in Alaskan boreal sites the highest correlations with 

remote sensing dNBR were with canopy vegetation consumption and much lower in the 
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organic layer. This underlying evidence poses greater significance in the boreal region 

where the role of high severity fire and its effects to the substrate layer is of high 

ecological importance (Kasischke et al., 2008). Lastly, error in the high severity classes 

for the western boreal models is likely related to solar elevation influences which make 

temporal comparisons of fires across multiple years more difficult (Verbyla et al., 2008). 

Although image acquisition was chosen with these factors in mind, ideal imagery is 

limited in this region due to cloud cover and phenology. Therefore, developing burn 

severity models across multiple years and months can inherently have lower accuracies 

than southern latitudes. 

 

Our original hypothesis stated that the RdNBR algorithm may provide a higher level of 

accuracy in a pooled dataset of all fires that occurred in those landscapes of lower CC and 

higher heterogeneity. Nevertheless, our results indicate that this hypothesis cannot be 

accepted for our western Canadian fire study for the following reasons. The overall 

dataset accuracy indicated a higher overall classification accuracy for dNBR than RdNBR 

and those fires with the lowest CC and heterogeneity ranking showed no improvement 

with RdNBR or differences in burn severity class proportions when using RdNBR. 

Moreover, the RdNBR did not appear to outperform the dNBR index at the individual, 

vegetative, and regional dataset levels. In the case of the individual and vegetation dataset 

levels, we acknowledge the limitation of our smaller sample sizes which cannot be 

interpreted with as high a degree of certainty as the regional or overall models. 

  

In addition to these findings the Canadian fires studied offered some additional insights. 

First, the ecological process of blow down after fire was a considerable factor in both 
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regions of our western Canadian sites, especially in the western boreal region. For this 

region, blow down is common in high burn severity black spruce stands (Kasischke et al., 

2008), where there has been a very large consumption of the organic layer causing 

serious root damage and making trees more prone to blow down. This impacts overall 

correlations with remote sensing values as Landsat can over or under estimate higher 

burn severities than weighted CBI estimates at these sites. The second issue in CBI 

assessment was the issue of pre-fire stress or mortality caused by mountain pine beetle 

and its detection by the CBI assessor. This effect was seen in the Rocky Mountain region 

most notably at the Split Peak fire where there was a high degree of pre-fire mortality due 

to mountain pine beetle. At this fire it was much easier to detect those trees that were 

dead approximately two years or more pre-fire (gray attack), as these lodgepole pine 

snags had visible and deep charring characteristics. Those that had died during the two 

years immediately before the fire (red attack) were very difficult to detect as living or 

dead pre-fire. CBI assessments in these types of stands can then likely overestimate burn 

severity as the assessor cannot measure the level of mountain pine beetle disturbance 

without a pre-fire evaluation. It is important then for remote sensing researchers to be 

aware of pre-fire disturbances such as insect attack so that they can be able to choose 

appropriate imagery. The third issue was the interpretation of RdNBR values when pre-

fire vegetation was extremely low or nearly lacking. These areas were located in the 

subalpine zone where little shrub and virtually no vegetation could survive, or in areas 

with large proportions of soil and rock. This observation was seen especially in the high 

elevation plots of the Southesk and Split Peak fires, where CBI plots were in areas 

without trees and were primarily composed of small shrub, grass, and exposed soil or 
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rock cover. These areas indicate good correlations when using dNBR, however, CBI 

tended to be overestimated when employing the RdNBR index. Miller and Thode (2007) 

observed a similar but accurate measurement of burn severity in sagebrush vegetation 

with RdNBR values greater than 2000.  

2.5 Conclusions 

 

Parks Canada is mandated to monitor fire disturbance across large expanses of land and 

time. Such an agency would be best served to use the most comprehensive and applicable 

remote sensing methods available. Reducing the number of models to a broad regional 

level is a desirable goal for agencies tasked to manage large geographic areas. The results 

presented within this paper indicate this goal of future regional model development may 

be possible. However, it is the discretion of the regional park managers to determine the 

level of accuracy required to utilize such models as routine monitoring tools. Research 

projects, and application development needs to occur to resolve the influences of pre-fire 

vegetation type and heterogeneity on remote sensing accuracy measurements and 

ecological processes within these ecosystems. This research, along with field data from a 

greater number of field plots within Canada, will help to improve the local, regional, and 

national-scale monitoring and its interpretation. 

 

 

 

 

 

 

 

 

 



 61 

2.6 References 

 

Agee, J.K. (1993). Fire Ecology of Pacific Northwest Forests. Island Press, Covelo, CA. 

 

Avery, T.E., & Berlin, G.L. (1992). Fundamentals of remote sensing and airphoto 

interpretation.: Prentice e. 472 pp. (Upper Saddle River, N.J) 

 

Box, G.E.P., & Jenkins, G.M. (1970). Time series analysis: forecasting and control. 

Holden-Day (London, UK) 

 

Chander, G., & Markham, B. (2003). Revised Landsat-5 TM Radiometric Calibration 

Procedures and Postcalibration Dynamic Ranges. IEEE Transactions on 

Geoscience and Remote Sensing, 41, 11. 
 

Chavez, P.S. Jr. (1989). Radiometric calibration of Landsat Thematic Mapper 

multispectral images. Photogrammetric Engineering and Remote Sensing, 9, 

1285-1294. 

 

Chuvieco, E., Riano, D., Danson, F.M., & Martin, M.P. (2006). Use of radiative transfer 

model to simulate the post-fire spectral response to burn severity. Journal of 

Geophysical Research, 111, G04S09.  

 

Cocke, E.A., Fulé, P.Z., & Crouse, J.E. (2005). Comparison of burn severity assessments 

using the Differenced Normalized Burn Ratio and ground data. International 

Journal of Wildland Fire, 14, 189-198.  

 

De Santis, A., & Chuvieco, E. (2007). Burn severity estimation from remotely sensed 

data: Performance of simulation versus empirical models. Remote Sensing of 

Environment, 108, 422-435. 

 

Ecological Stratification Working Group (1996). A national ecological framework for 

Canada (125 pp). Ottawa/ Hull: Agriculture and Agri-Food Canada, Research 

Branch, Centre for Land and Biological Resources Research and Environment 

Canada, State of Environment Directorate. Available online: 

http://sis.agr.gc.ca/cansis/publications/ecostrat/intro.html. 

 

Elvidge, C.D. (1990). Visible and near infrared reflectance characteristics of dry plant 

materials. International journal of Remote Sensing, 11(10), 1775-1795. 

 

Fischer, W. C., & B. D. Clayton. (1983). Fire ecology of Montana forest habitat types 

east of the continental divide. General Technical Report INT-GTR-141, USDA 

Forest Service Intermountain Forest and Range Experiment Station, Ogden, UT. 

 

Flannigan, M.D., Bergeron, Y., Engelmark, O., & Wotton, B.M. (1998). Future wildfire 

in circumboreal forests in relation to global warming. Journal of Vegetation 

Science, 9, 469-475. 



 62 

 

Flannigan, M.D., Logan, K.A., Amiro, B.D., Skinner, W.R., & Stocks B.J. (2005). Future 

area burned in Canada. Climatic Change, 72, 1-16. 

 

French, N.H.F., Kasischke, E.S., Hall, R.J., Murphy, K.A., Verbyla, D.L., Hoy, E.E., & 

Allen, J.L. (2008). Using Landsat data to assess fire and burn severity in North 

American boreal forest region: an overview and summary of results. International 

Journal of Wildand Fire, 17, 443-462.  

 

Fule, P.Z., Crouse, J.E., Heinlein, T.A., Moore, M.M., Covington, W.W., & Verkamp, G. 

(2003). Mixed-severity fire regime in a high-elevation forest of Grand Canyon, 

Arizona, USA. Landscape Ecology, 18, 465-485. 

 

Hall, R.J., Freeburn, J.T., Groot, W.J.dG., Pritchard, J.M., Lynham, T.J., & Landry, R. 

(2008). Remote sensing of burn severity: experience from western Canada boreal 

fires. International Journal of Wildland Fire, 17, 476-489.  

 

Hardy, CC, Ottmar, R.D., Peterson, J.L., Core, J.E., & Seamon, P. (2001). ‘Smoke 

management guide for prescribed and wildland fire.’ USDA National Wildfire 

Coordination Group Publication PMS 420-2. (Ogden, UT) 

 

Hilborn, R., & Mangel, M. (1997). The ecological detective: confronting models with 

data. Princeton University Press. (Princeton, New Jersey) 

 

Hoy, E.E., French, N.H.F., Turetsky, M.R., Trigg, S.N., & Kasischke, E.S. (2008). 

Evaluating the potential of Landsat TM/ETM+ imagery for assessing fire severity 

in Alaskan black spruce forests. International Journal of Wildland Fire, 17, 500-

514.  

 

Hudak, A.T., Morgan, P., Bobbitt, M.J., Smith, A.M.S., Lewis, S.A., Lentile, L.B. et al. 

(2007). The relationship of multispectral satellite imagery to immediate fire 

effects. Fire Ecology, 3, 64-90. 

 

Jain, T., Pilliod, D., & Graham, R. (2004). Tongue-tied. Wildfire, 4, 22-26. 

 

Johnson, E.A. (1992). Fire and Vegetation Dynamics: Studies from the North American 

Boreal Forest. (New York, Cambridge University Press) 

 

Kasischke, E.S., Turetsky, M.R., Ottmar, R.D., French, N.H.F., Hoy, E.H., & Kane E.S. 

(2008). Evaluation of the composite burn index for assessing fire severity in 

Alaskan black spruce forests. International Journal of Wildland Fire, 17, 515-

526. 

 

Key, C.H., & Benson, N.C. (2005). Landscape assessment – sampling and analysis 

methods. Pp. LA1-LA51 in D. Lutes (ed.), FIREMON: Fire effects and Inventory 



 63 

Monitoring System. Gen Tech Rep. RMRS-GTR-164-CD, USDA Forest Service, 

Rocky Mountain Research Station, Ogden, UT. 

 

Key, C.H., & Benson, N.C. (2006). Landscape Assessment: ground measure of severity, 

 the Composite burn index, and remote sensing of severity, the Normalized Burn 

Index. In ‘FIREMON: Fire Effects Monitoring and Inventory System’. (Eds DC 

Lutes, RE Keane, JF Caratti, CH Key, NC Benson, S Sutherland, LJ Gangi) 

USDA Forest Service, Rocky Mountain Research Station, General Technical 

Report RMRS-GTR-164-CD: LA1-51. (Ogden, UT). 

 

Klenner, W., Walton, R., Arsenault, A., & Kremsater, L. (2008). Dry forests in the 

Southern Interior of British Columbia: Historic disturbances and implications for 

restoration and management. Forest Ecology and Management, 256, 1711-1722. 

 

Lentile, L.B., Holden, Z.A., Smith, A.M.S., Falkowski, M.J., Hudak, A.T., Morgan, P., 

Lewis, S.A., Gessler, P.E., & Benson, N.C. (2006). Remote sensing techniques to 

assess active fire characteristics and post-fire effects. International Journal of 

Wildland Fire, 15, 319-345. 

 

McGarigal, K., & Marks, B. J. (1995). FRAGSTATS: Spatial pattern analysis program 

for quantifying landscape structure. Corvallis, OR: USDA Forest Service General 

Technical Report PNW-GTR-351. 

 

Miller, C., & Urban, D.L. (1999). Interactions between forest heterogeneity and surface 

fire regimes in the southern Sierra Nevada. Canadian Journal of Forest Research, 

29, 202-212. 

 

Miller, J.D., & Thode, A.E. (2007). Quantifying burn severity in a heterogeneous 

landscape a relative version of the delta Normalized Burn Ration (dNBR). Remote 

Sensing of Environment, 109, 66-80. 

 

Miller, J.D., Knapp, E.E., Key, C.H., Skinner, C.N., Isbell, C.J., Creasy, R.M., & 

Sherlock, J.W. (2009). Calibration and validation of the relative differenced 

Normalized Burn Ratio (RdNBR) to three measures of fire severity in the Sierra 

Nevada and Klamath Mountains, California, USA. Remote Sensing of the 

Environment, 113, 645-656. 

 

Murphy, K. A., Reynolds, J.H., & Koltun, J.M. (2008). Evaluating the ability of the 

differenced Normalized Burn Ratrion (dNBR) to predict ecologically significant 

burn severity in Alaskan boreal forests. International Journal of Wildland Fire, 

17, 490-499. 

 

NASA, (1998). Landsat 7 Science Data Users Handbook. Greenbelt, Maryland: Landsat 

Project Science Office, NASA’s Goddard Space Flight Center. 

http://landsathandbook.gsfc.nasa.gov/handbook.html 

 



 64 

Perrakis, D. & Zell, D. (2008). Remote assessment of burn severity: A pilot study in 

landscape monitoring. Western and Northern Service Centre and National Fire 

Centre, Parks Canada Agency.  

 

Remmel, T.K., Csillag, F., Mitchell, S., & Wulder, M.A. (2005). Integration of forest 

inventory and satellite imagery: a Canadian status assessment and research issues. 

Forest Ecology and Management, 207, 405-428. 

 

Schwarz, A. G., & Wein, R. W. (1997). Threatened dry grasslands in the continental 

boreal forests of Wood Buffalo National Park. Canadian Journal of Botany, 75, 

1363-1370. 

 

Schroeder, T.A., Cohen, W.B., Song, C., Canty, M.J., & Yang, Z. (2006). Radiometric 

correction of multi-temporal Landsat data for characterization of early 

successional forest patterns in western Oregon. Remote Sensing of Environment, 

103, 16-26. 

 

Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., & Macomber, S.A. (2001). 

Classification and Change Detection Using Landsat TM data: When and How to 

Correct Atmospheric Effects? Remote Sensing of Environment, 75, 230-244. 

 

Stocks, B.J., Mason, J.A., Todd, J.B., Bosch, E.M., Wotton, B.M., Amiro, B.D., 

Flannigan, M.D., Hirsch, K.G., Logan, K.A., Martell, D.L. & Skinner, W.R. 

(2003). Large forest fires in Canada, 1959-1997. Journal of Geophysical 

Research, 108, (5-1) to (5-12). 

 

Tande, G. F. (1979). Fire history and vegetation pattern of coniferous forest in Jasper 

national park, Alberta. Canadian Journal of Botany, 57, 1912-1930. 

 

Turner, M.G., Romme, W.H., & Tinker, D.B. (2003). Surprises and Lessons from the 

1988 Yellowstone Fires. Frontiers in Ecology and the Environment, Vol 1, No 7, 

pp. 351-358, 

 

Tymstra, C., Flannigan, M.D., Armitage, O.B., & Logan, K. (2007). Impact of climate 

change on area burned in Alberta’s boreal forest. International Journal of 

Wildland Fire, 16, 153-160. 

 

USGS (United States Geologic Survery). GLOVIS website: http://glovis.usgs.gov/ 

Accessed between October, 2008 and February, 2009 

 

Van Wagtendonk, J.W., Root, R.R., & Key, C.H. (2004). Comparison of AVIRIS and 

Landsat ETM+ detection capabilities for burn severity. Remote Sensing of 

Environment, 92, 397-408. 

 



 65 

Verbyla, D.L., Kasischke, E.S., & Hoy, E.E. (2008). Seasonal and topographic effects on 

estimating fire severity from Landsat TM/ETM+ data. International Journal of 

Wildland Fire, 17, 527-534. 

 

Wotton, B.M., & Flannigan, M.D. (1993). Length of fire season in a changing climate. 

The Forestry Chronicle, 69, 187-192. 

 

Wulder, M. A., White, J. C., Magnussen, S., & McDonald, S. (2007). Validation of a 

large area land cover product using purpose-acquired airborne video. Remote 

Sensing of Environment, 106, 480-491. 

 

Wulder, M.A., White, J.C., Cranny, M., Hall, R.J., Luther, J.E., Beaudoin, A., 

Goodenough, D.G., & Dechka J.A. (2008a). Monitoring Canada’s forests. Part 1: 

Completion of the EOSD land cover project. Canadian Journal of Remote 

Sensing, 34, 549-548. 

 

Wulder, M.A., White, J.C., Han, T., Coops, N.C., Cardille, J.A., Holland, T., & Grills, D. 

(2008b).  Monitoring Canada's forests. Part 2: National forest fragmentation and 

pattern. Canadian Journal of Remote Sensing, 34, 563-584. 

 

Wulder, M.A., White, J.C., Alvarez, F., Han, T., Rogan, J., & Hawkes, B. (2009) 

Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR 

data. Remote Sensing of Environment, 113, 1540-1555. 

 

Zhu, Z., Key, C. H., Ohlen, D., & Benson, N.C. (2006). Evaluate Sensitivities of Burn-

Severity Mapping Algorithms for Different Ecosystems and Fire Histories in the 

United States. Available at http://jfsp.nifc.gov/projects/01-1-4-12/01-1-4-

12_Final_Report.pdf [Accessed October 2008] 

 

 

 

 

 

 

 

 

 

 

 



 66 

 

3 THE TRANSFERABILITY OF A dNBR DERIVED MODEL TO 

PREDICT BURN SEVERITY ACROSS TEN WILDLAND FIRES IN 

WESTERN CANADA
3
 

 

3.1 Introduction 

 

The historical and ecological importance of wildland fire as a disturbance agent to 

Canadian ecosystems is well established (Larsen, 1997; Stocks et al., 2003; Van Wagner 

et al., 2006). Wildland fire is a dynamic process that impacts ecosystems in various ways, 

by its injury and mortality of vegetative plant species, its rate of re-establishment of re-

sprouting species (Lyon & Stickney, 1976; Ryan & Noste, 1985; Morgan & 

Neuenschwander, 1988; DeBano et al., 1998) and can alter ecosystem composition, 

functioning, and plant encroachment (Lentile et al., 2006). The Boreal Plains ecozone of 

Canada (Ecological Stratification Working Group, 1996), is a geographic area that has 

been shaped and influenced dramatically by the effects of wildland fire (Weir et al., 2000; 

Burton et al., 2008). Similarly, the Montane Cordillera ecozone of Canada has a long 

history of fire occurrence with forests in a constant state of renewal by random periodic 

fire (Van Wagner et al., 2006). Over the past four decades there has been an increase in 

the area burned in Canada compared to historical times (Podur et al., 2002; Gillett et al., 

2004). This increase is projected to continue as climate change models forecast an 

increase in length of fire seasons coupled with larger and more intense fires (Balshi et al., 

2009; Flannigan et al., 2009). Canadian land management agencies, therefore, have  

________________________ 
3 

A similar version of this chapter has been submitted for publication. Soverel, N.O., Coops, N.C., Perrakis, 

D.B., Daniels, L., & Gergel, S. In review. The transferability of a dNBR derived model to predict burn 

severity across ten wildland fires in Western Canada.  
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become increasingly interested in studying the effects of fire. Parks Canada is a land 

management agency that is responsible for the accurate monitoring, inventory, and 

management of federal parks in Canada. Particularly in western Canada, where both 

wildland and prescribed fires burn an average of 75,000-80,000 hectares per year (Parks 

Canada, unpublished files), the study and monitoring of fire disturbance has become a 

major objective.  

 

Fire scientists define three important variables that can be used to measure wildland fire: 

fire intensity, fire severity, and burn severity; however, the main focus here is burn 

severity. Lentile et al. (2006) define burn severity as the degree to which an ecosystem 

has changed owing to fire. In our field studies, burn severity was characterized using the 

Composite Burn Index (Key & Benson, 2006), which incorporates a range of post-fire 

physical aspects that are measured using the visual evidence remaining a year after fire 

occurrence. The method provides little information regarding pre-fire condition; however, 

it provides a consistent, repeatable, and interpretable method that is ideal for broad scale 

comparisons. 

 

In contrast, remote sensing has two major advantages over traditional methods of field 

assessment for determining burn severity: cost effectiveness and seamless global 

coverage in extremely remote areas. Landsat imagery, in particular is well suited to study 

burn severity due to its ability to acquire data in the spectral bands sensitive to map fire 

disturbance, its global coverage, and availability as it is freely downloadable in Canada 

(USGS, 2009). The extensive history of Landsat burn severity mapping includes applying 
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the normalized ratio of this sensor’s near infrared and shortwave infrared bands. 

Originally, Lopez-Garcia and Caselles (1991) developed a method to detect burn severity 

using a Normalized Burn Ratio (hereafter as NBR). A more recent adaptation of the NBR 

is the differenced NBR (dNBR), a post-fire NBR subtracted from a pre-fire NBR (Key & 

Benson, 2006), which is useful for ecological research and for land management projects 

across various ecosystems (Key & Benson, 2006; van Wagtendonk, 2004; Cocke et al., 

2005; Zhu et al., 2006). In a literature review, French et al. (2008) compiled results from 

41 worldwide NBR approach-based studies and calculated an overall 73% classification 

accuracy with an overall range between 50% to 90%. Investigations using remote sensing 

to predict burn severity across Canada are more limited. Hall et al. (2008) used Landsat 

derived dNBR to predict Composite Burn Index data for four western boreal fires and 

found strong correlations using a single non-linear model (R²=0.82). Using Light 

Detection and Ranging (LIDAR) data and Landsat TM imagery, Wulder et al. (2009) 

correlated dNBR to the LIDAR calculated absolute change canopy closure with an R² of 

0.71. Hall et al. (2008) found that burn severity was influenced by pre-fire land cover 

type while Wulder et al. (2009) found that denser pre-fire stands had stronger 

relationships to both post-fire NBR and dNBR.  

 

One criticism of the Landsat derived dNBR approach is that linear models developed for 

individual fires cannot be easily extrapolated to different ecosystems due to their 

individual specific land cover types and conditions (De Santis & Chuvieco, 2007). 

However, based on the results from Hall et al. (2008), the potential to create broad scale 

models that have the potential to cover large geographic areas appears to be feasible. 
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Therefore, our first objective was to assess the relative transferability and accuracy of an 

overall dNBR model, as well as make a comparison of the overall model to one stratified 

by land cover groups and the two ecozones across a range of fires in western Canada.   

Based on their findings, Wulder et al. (2009) and Hall et al. (2008) concluded that pre-

fire specific land cover and vegetation condition data may have the capacity to improve 

burn severity predictions. Therefore, developing models that incorporate alternative 

sources of pre- and post-fire remote sensing data appears to be a promising endeavour. 

The second objective of this paper was to assess the benefit of incorporating pre- and 

post-fire data into the standard Composite Burn Index and dNBR approaches. To 

accomplish this objective we chose to employ the tasselled cap index transformation 

(Crist & Cicone, 1984) as a means of extracting additional Landsat pre- and post-fire 

data. The tasselled cap index (hereafter referred to as TCI) was chosen because it has 

been found previously by other authors to be responsive to the impacts of fire (Kushla & 

Ripple, 1998; Rogan & Yool, 2001).  

3.2 Methods 

3.2.1 Study area 

 

This research focuses on a total of ten fire events that occurred between 2005 and 2008 in 

the Montane Cordillera and Boreal Plains ecozones.  These fires occurred in the 

following five national parks in western Canada: Glacier, Jasper, Kootenay, Wood 

Buffalo, and Yoho (Figure 3.1). The Montane Cordillera ecozone encompassed six fires, 

two of which took place in Kootenay National Park (Split Peak and Mitchell Ridge), the 

Hoodoo Creek fire occurred in Yoho National Park, the Southesk and Henry House II 

fires both occurred in Jasper National Park, and the Grizzly Ridge fire in Glacier National 
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Park. Six of these total ten fires were classified as wildfire events and four were 

prescribed fires, these include: the Hoodoo Creek, Mitchell Ridge, Split Peak and Henry 

House II. The Boreal Plains ecozone contained Wood Buffalo National Park and its 

environs where four fires occurred: the Boyer 01, Boyer 02, Peace Point, and Sandy. 

Burned areas ranged from 203 to 106,772 hectares, with the largest events taking place in 

this ecozone (Table 3.1). 

 

Table 3.1. Includes the date of ignition, study ecozones: Boreal Plains (BP) or Montane 

Cordillera (MC). Park name, fire size (ha), elevation (m), type of wildland fire: wildfire 

(W) or prescribed fire (P), and dominant tree species present within the associated park. 

 
Date of 

Ignition

Study 

Region
Province Fire Name Park Name

Fire Size 

(ha)

Elevation 

(m)
W/P Dominant Tree Species

05/27/07 BP AB Boyer 01
Wood 

Buffalo
75,963 250-350 W

Black spruce, Tamarack, Jack pine, trembling 

aspen, White spruce, and shrub/grass cover matrix

05/27/07 BP AB Boyer 02
Wood 

Buffalo
106,772 250-350 W

Black spruce, Tamarack, Jack pine, trembling 

aspen, White spruce, and shrub/grass cover matrix

08/03/08 MC BC Grizzly Ridge Glacier 203 1,500-2,150 W
Subalpine fir, Engelmann spruce, Western white 

pine, Lodgepole pine, Douglas fir

05/19/08 MC AB Henry House II Jasper 330 1,020 P Lodgepole pine, Douglas fir, Englemann spruce

05/28/05 MC BC Hoodoo Creek Yoho 1,525 1,400-2,100 P
Lodepole pine, Douglas fir, Engelmann spruce, and 

Trembling aspen

05/30/08 MC BC Mitchell Ridge Kootenay 1,574 1,100-1,500 P
Lodgepole pine, Trembling aspen, Englemann 

spruce, Douglas fir

06/07/05 BP AB Peace Point
Wood 

Buffalo
12,432 250-300 W

White spruce, Black spruce, Jack pine, Trembling 

aspen

07/19/08 BP NT Sandy
near Wood 

Buffalo
41,194 250-300 W

Jack pine, Trembling aspen, Black Spruce, White 

spruce, shrub/grass cover matrix

07/21/06 MC AB Southesk Jasper 1,168 1,500-2,100 W Lodgepole pine, Engelmann spruce

09/15/07 MC BC Split Peak Kootenay 560 1,350-2,000 P Lodgepole pine, Douglas fir, Englemann spruce
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Figure 3.1. (1) Montane Cordillera and (2) Boreal Plains ecozones with the national 

parks of Canada in darkest gray.  

 

3.2.1.1 Montane Cordillera  

 

One of the most defining features of the Montane Cordillera (hereafter referred to as MC) 

ecozone is its rugged and highly variable topography. The six MC fires had elevations 

that ranged between 1020 to 2000 m and encompassed two forest ecosystem types. The 

first type, the montane forest, generally ranges between 1,000 and 1,650 m, and the 
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second, or subalpine forest, ranges between 1,500 and 2,300 m. The dominant tree 

species in the montane forests of our study area consist of lodgepole pine (Pinus 

contorta), Engelmann spruce (Picea engelmannii), Douglas-fir (Pseudotsuga manziesii), 

and trembling aspen (Populus tremuloides). The fire regime of the montane ecosystem is 

characterized by more frequent, less severe, and more heterogeneous fire effects than the 

subalpine zone (Klenner et al. 2008; Fischer & Clayton 1983; Tande 1979). The 

subalpine zone consists mainly of lodgepole pine, Engelmann spruce, subalpine fir (Abies 

lasiocarpa), which is typified by infrequent fire events that are generally intense and 

result in stand-replacing disturbances (Agee, 1993). The Hoodoo Creek, Southesk, Split 

Peak, Mitchell Ridge, and Henry House II occurred in the area situated on the eastern and 

western slopes of the Rocky Mountains. In contrast, the Grizzly Ridge fire took place in 

the Columbia Mountains range; a Biogeoclimatic Ecosystem Classification (BEC) zone 

(Meidinger & Pojar, 1991) that is west of the Rocky Mountains called the Interior Cedar-

Hemlock forest, known for its higher annual rainfall than the parks to the east. 

3.2.1.2 Boreal Plains  

 

The Boreal Plains ecozone (hereafter referred to as BP) has less relief than the MC 

ecozone with fires that ranged between 200 to 300 m in elevation. Forests are typically 

complex, dominated by the following tree species: Jack pine (Pinus banksiana), black 

spruce (Picea mariana), trembling aspen (Populus tremuloides), white spruce (Picea 

glauca), and tamarack (Larix laricina). These forests are also intermixed with grassland, 

shrubland, and wetland vegetation types. Fire regimes in this ecozone tend to be 

dominated by very large, infrequent, and stand-replacing events with a range of fire 
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cycles depending on local climate and tree species (Johnson 1992; Turner et al. 2003). 

Wood Buffalo National park alone recorded 1011 fires between 1950 and 1989, with 8% 

of fires exceeding 10 km² in size, accounting for 99% of the total burned area (Larsen, 

1997).  

3.2.2 Prescribed fire and pre-fire disturbance 

 

Each of the four prescribed fires achieved their general burn objectives. The Hoodoo 

Creek prescribed burn was implemented to create fuelbreaks, to reintroduce mixed 

severity fire, and as a mitigation tool against the mountain pine beetle (Dendroctonus 

ponderosae). The Henry House II prescribed burn was implemented to maintain a thinned 

overstory and herbaceous understory while providing a fuelbreak for the nearby town of 

Jasper. Two objectives of the Split Peak and Mitchell Ridge fires were to return wildfire 

to a fire-suppressed landscape and to mitigate the progress of the mountain pine beetle. In 

order to research the long-term impacts of mountain pine beetle presence on fire 

behaviour at the Mitchell Ridge fire, park managers used a unique fire ignition technique 

which consisted of helitorch ignition from the valley floor left alone to run up to treeline 

(Kubian, 2009). Due to the varying weather and fuel moisture conditions at the time of 

burning, post-fire characteristics were unique among fires. In the case of the Mitchell 

Ridge, Hoodoo Creek, and Split Peak fires, higher intensity fire behaviour resulted in 

greater canopy mortality while the Henry House II achieved relatively lower canopy 

mortality.  
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3.2.3 Imagery and dNBR pre-processing  

 

Landsat imagery was the main source of remote sensing data utilized in this study. 

Images were chosen based on minimal cloud content, ignition site, phenology, and 

anniversary date (Table 3.2). Pre-fire imagery was chosen in the year of fire, if available, 

or else an optimum image selected in previous years. Thirty-two images were analyzed  

which were orthorectified to Universal Transverse Mercator (UTM) Zone 11 or 12 North, 

Datum WGS-84 with a root mean squared error of less than 15 m with at least 30 ground 

control points. After orthorectification, the raw digital numbers of each image were 

converted to reflectance values using standard approaches (detailed in NASA 1998; 

Chander & Markham, 2003). Since multiple images from differing geographic and time 

periods were used, an atmospheric correction was undertaken using the dark body 

subtraction approach (Chavez, 1989).  
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Table 3.2. Landsat imagery used to calculate the initial and extended assessment images 

for use within the study. The table includes the IA/EA assessment, fire name, park name, 

path/row, pre-fire image date acquisition (if either TM or ETM+), and post-fire image 

acquisition date (if either TM or ETM+). 

 

IA/EA Fire name Park Name Path/Row
Pre-fire image date 

(TM/ETM+)

Post-fire image date 

(TM/ETM+)

EA Boyer 01 Wood Buffalo 44_18/19 06/29/2005-TM 08/08/2008-TM

IA 44_18/19 06/29/2005-TM 07/21/2007-TM

EA Boyer 02 Wood Buffalo 44_18/19 06/29/2005-TM 08/08/2008-TM

IA 44_18/19 06/29/2005-TM 07/21/2007-TM

EA Grizzly Ridge Glacier 44_24 08/19/2006-TM 08/27/2009-TM

IA 44_24 09/14/2001-ETM+ 08/24/2008-TM

EA Henry House II Jasper 45_23 07/12/2007-TM 08/02/2009-TM

IA 45_23 09/14/2007-TM 09/16/2008-TM

EA Hoodoo Creek Yoho 44_24 08/24/1999-ETM+ 09/04/2006-TM-

IA 44_24 08/24/1999-ETM+ 07/31/2005-TM-

EA Mitchell Ridge Kootenay 43_25 07/14/2007-TM 07/03/2009-TM

IA 43_24 06/17/2003-TM 06/30/2008-TM

EA Peace Point Wood Buffalo 44_19 09/14/2001-ETM+ 09/04/2006-TM-

IA 44_19 09/14/2001-ETM+ 08/28/2005-TM-

EA Sandy near Wood Buffalo 45_18 06/23/2006-TM 07/17/2009-TM

IA 46_18 09/2/2006-TM 08/22/2008-TM

EA Southesk Jasper 44_23 07/10/2003-TM- 07/05/2007-TM-

IA 44_23 08/23/2002-ETM+ 08/26/2006-TM-

EA Split Peak Kootenay 43_24 08/15/2007-TM- 08/17/2008-TM- 

IA 43_24 08/15/2007-TM- 09/16/2007-TM-  
 

The spectral bands from Landsat TM and ETM+ imagery that were used to create the 

NBR and dNBR images were bands 4 (B4) and 7 (B7). Landsat’s band 4 records spectral 

data in the near infrared (NIR) between the wavelengths 0.76µm – 0.90µm, while band 7 

records in the shortwave infrared (SWIR) between 2.08µm – 2.35 µm. Band 4 provides 

information about living plant cell structure and chlorophyll content (Rogan & Yool, 

2001; Miller & Thode, 2007), while band 7 is sensitive to water content in plants and 

substrate, the content of lignin in non-photosynthetic vegetation, and hydrous minerals 
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such as clay, mica, and some oxide and sulphates (Elvidge, 1990; Avery & Berlin, 1992). 

These bands are used as follows in the equations: 

(1) NBR = (B4-B7) / (B4+B7) 

(2) dNBR = (NBRprefire – NBRpostfire) 

The relative dNBR, or RdNBR (Miller & Thode, 2007), was not calculated because it has 

not been found to better estimate burn severity over dNBR outside the southwestern 

United States and parts of California (Hudak et al., 2007; Wulder et al., 2009). Two 

dNBR analyses are commonly identified, the first being the initial assessment (IA) which 

is a dNBR image consisting of a post-fire image from the same year as the fire ignition 

(Key & Benson, 2006). The second, or the extended assessment (EA), uses a post-fire 

image from the year following the fire (Key & Benson, 2006). For this study, the IA 

image was used for extraction of suitable field plots and for fire perimeter delineation, 

while the EA represented the primary source of burn severity data within the analysis. 

Calibration of the EA dNBR images was undertaken using the methods of Zhu et al. 

(2006), whereby the mean of an unburned area outside the fire perimeter of a dNBR 

image is calculated and subtracted from the dNBR image. To extract the fire perimeter, a 

dNBR IA image was created and a density slice classification was performed; this 

effectively classified all dNBR values greater than 100 as burned pixels (Key & Benson, 

2006). To extract values from the EA dNBR image, a weighted average of the pixels 

surrounding the field plots were calculated (Cocke et al., 2005). Those plots that had one 

or more surrounding pixels exceeding a 250 dNBR value were removed as these were 

considered geo-referenced errors. 



 77 

3.2.4 Field data and collection 

 

Burn severity herein is defined as the combined ecological and physical impacts from fire 

as it relates to its pre-fire environment (Key & Benson, 2006; Lentile et al., 2006; Hall et 

al., 2008). Ground based burn severity data was measured by using the Composite Burn 

Index (hereafter as CBI), following the methods of Key and Benson (2006). The CBI is a 

continuous index between 0.0 and 3.0 that effectively measures the impact of fire one 

year following the event, with 0.0 representing an unchanged condition and 3.0 

representing the maximum impact from fire. To calculate the CBI value for each plot in 

the field, the CBI datasheet was utilized (Key & Benson, 2006) which divides a 30 meter 

circular plot into five vertical strata: substrate, herbaceous, shrub and small tree, 

intermediate tree, and big tree layers. CBI burn severity values are measured by using 

some of the following characteristics: litter and duff consumption, soil and rock percent 

cover change, herbaceous plant mortality and re-colonization, shrub and small tree 

foliage altered, overstory tree mortality, char height, and percentage torched or scorched.  

 

Before conducting the CBI assessments, we produced the IA image, identified 

homogenous patches of 3 x 3 pixels, and then randomly sampled points from the class 

breaks outlined by Key and Benson (2006). We used these pre-determined class breaks 

since no other thresholds had been quantified prior to this analysis. As a means of 

avoiding additional georeferencing errors, plots that arose near the fire edge (<45 m) or 

were within 90 m of a class boundary were removed from further analysis. At each CBI 

plot a GPS location was recorded at plot centre, photographs taken, and the CBI data was 

recorded. Additional information regarding each stratum’s percent pre-fire cover was 
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recorded, along with dominant plant species and other notable characteristics. CBI points 

were differentially corrected to improve their geographic accuracy. To combine all strata 

into one CBI plot value, a weighted CBI value was calculated based on the estimated pre-

fire percent cover of each stratum. The weight of the ‘big tree’ stratum was doubled to 

roughly account for the biomass and additional importance of overstory trees. A 

histogram of total CBI values used within this study is displayed in Figure 3.2, while the 

means for both overstory and understory CBI values per fire are displayed in Figure 3.3. 

To reduce bias error, two primary researchers recorded CBI data throughout the four year 

study. 

 
 

Figure 3.2. A histogram showing the total CBI plots used within this study. 
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Figure 3.3. The graph depicts the mean overstory CBI values in black and the mean 

understory values in gray for each fire. The fires are ranked in order of highest difference 

in mean overstory and understory values to the lowest. 

 

3.2.5 Land cover analysis 

 

In order to classify field plots by pre-fire land cover, the Earth Observation for 

Sustainable Development of Forests Lands Cover 2000 (hereafter referred to as EOSD) 

was utilized. This dataset covers all of the forested land area of Canada and was derived 

from circa 2000 Landsat imagery, providing 23 classes with a spatial resolution of 25 m 

(Wulder et al., 2008a). Studies have shown that EOSD classifies vegetation with about 

80% accuracy overall, with greater accuracy for the more dominant forest classes 

(Wulder et al., 2007; Wulder et al., 2008b). To reduce the number of EOSD classes for 
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model development, we grouped the EOSD classes into five land cover groups: non-

forest, dense-coniferous, open-coniferous, sparse-coniferous, and broadleaf forests (Table 

3.3). Table 3.4 shows the percentage of land cover groups for each of the fire’s CBI plots. 

 

Table 3.3. The five EOSD land cover groups used to build each land cover model 

including: non-forest, coniferous-dense, coniferous-open, coniferous-sparse, and 

broadleaf. 

 

Non-forest Coniferous-dense Coniferous-open Coniferous-sparse Broadleaf

Shrub-Tall Coniferous-dense Coniferous-open Coniferous-sparse Broadleaf-dense

Shrub-Low Broadleaf-open

Wetland-Treed Mixed Wood-dense

Wetland-Shrub Mixed Wood-open

Wetland-Herb Mixed Wood-sparse

HerbE
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S
D

 C
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Table 3.4. Percentage of CBI plots per fire associated with the EOSD land cover classes. 

 

EOSD Class (%) Boyer 01 Boyer 02
Grizzly 

Ridge

Henry 

House II

Hoodoo 

Creek

Mitchell 

Ridge

Peace 

Point
Sandy Southesk

Split 

Peak

Shadow 1.0

Shrub-Tall 4.8 20.5

Shrub-Low 5.0 4.3 13.1

Wetland-Treed 4.0

Wetland-Shrub 30.0 23.7 4.3

Wetland-Herb 14.3

Herb 4.3 6.0

Coniferous-dense 64.0 52.6 81.0 13.0 2.0 100.0 73.5

Coniferous-open 6.0 2.6 75.0 69.6 86.1 31.3 85.0

Coniferous-sparse 20.0 4.3 44.4

Broadleaf-dense 18.4

Broadleaf-open 10.9 15.0

Mixed Wood-dense 2.6

Mixed Wood-open 4.0

Mixed Wood-sparse 3.0

Total (%) 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0  

3.2.6 Tasselled cap index 

  

We used the three TCI indices which have also been utilized in other studies to 

characterize vegetation pre- and post-fire and is a linear combination of Landsat bands 
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and includes three indices: brightness, greenness and wetness. Tasselled cap brightness is 

responsive to the physical processes responsible for total reflectance (Crist & Cicone, 

1984) and has been used in forest disturbance studies to relate spectral reflectance values 

to substrate conditions such as soil exposure, dryness and increased reflectance 

(Chuvieco & Congleton, 1988; Rogan & Yool, 2001; Kuzera et al., 2005). Greenness, on 

the other hand, has been found to be highly correlated to total vegetative cover (Kuzera et 

al., 2005) and has been used as an indicator of photosynthetic processes and plant/leaf 

structure post-fire (Rogan & Yool, 2001). Tasselled cap wetness has been found to be 

responsive to the water content and structure of the forest in closed canopy stands (Cohen 

et al., 1995) and to have strong relationships to forest changes caused by insects, fire, or 

harvesting (Wulder, 2004; Jin & Sader, 2005). To transform Landsat imagery to the TCI 

of brightness, greenness, and wetness, the calculations of Crist and Cicone (1984) were 

used. The TCI transformation was applied to the two EA images per fire and the TCI 

values were extracted at the CBI locations.   

3.2.7 Analysis approach   

 

As part of objective one, we assessed the transferability of the dNBR derived models 

while using a cross validation “leave-one-out” approach. Cross validation approaches are 

appropriate for datasets that cover a range of conditions and multiple years (Snee, 1977). 

Cross validation iterations involved the learning sample, or the dataset that we used to 

build each model, which was each fire’s CBI points subtracted from the total ten-fire 

dataset. The test sample, which in this case was each fire, was used to test the accuracy of 

the learning sample model. The dataset was cross validated in two manners: first, the 

overall dataset was analyzed without stratification and secondly, the dataset was stratified 
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by its pre-fire land cover group and ecozone. The three model cross validation iterations 

were fitted to the CBI data using linear, quadratic, or cubic regression models, and 

evaluated by choosing the best model based on the lowest value of the Akaike 

Information Criterion (AIC) (Box & Jenkins, 1970).  

Objective two was conducted in order to evaluate the relative improvement of using the 

multiple TCI pre- and post-fire predictor variables. Using the same overall model as 

above, we utilized the addition of pre- and post-fire TCI in cross validation and forward 

stepwise multiple regression. In addition to regression, we tested differences between the 

pre- and post-fire TCI values using two statistical analyses. The first was a one-way 

Analysis of variance (ANOVA) followed by a post-hoc Scheffé test. This was conducted 

to determine if significant variation existed among fires in the pre- and post-fire TCI 

means. The second was a Levene’s t-test which was conducted to test for the 

homogeneity of variances between the pre- and post-fire TCI values. Statistical 

significance for the ANOVA and the t-test were determined at the p<0.05 level.  

3.3 Results 

3.3.1 Comparison of overall, land cover, and stratification results 

 

To calculate the cross validation statistics, each fire’s CBI data points were removed so 

that the learning sample model could be built and then assessed for its prediction strength 

(Table 3.5). The overall model analysis used no stratification and showed most accurate 

correlation for the Grizzly Ridge fire (R²=0.89) while the Hoodoo Creek (R²=0.40) and 

Mitchell Ridge fires (R²=0.50) were found to be the poorest (Table 3.6). The land cover 

stratification results indicate that the Grizzly Ridge fire was predicted the most accurately 

(R²=0.89) (Table 3.6) with land cover pre-fire vegetation classified as either open-
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coniferous, sparse-coniferous, or non-forest (Table 3.5). The lowest accuracies were 

found at the Hoodoo Creek (R² =0.33) and Sandy fires (R²=0.40) (Table 3.6). The 

ecozone stratification of the CBI plots resulted in 252 CBI plots being classified as MC 

and the remaining 224 as BP (Table 3.5). Results show a similar trend to the land cover 

stratification, with the Grizzly Ridge fire being predicted the most accurately (R²=0.89) 

and the Hoodoo Creek and Mitchell Ridge fires remained weak (R²=0.39 and R²=0.52, 

respectively) (Table 3.6). Overall, fires occurring in the MC ecozone had greater 

variation in accuracy (R² between 0.39 and 0.89) when compared to the BP ecozone, 

which had more consistent predictions across its fires (R² between 0.69 and 0.74). 

Comparing the overall results to the land cover and ecozone stratifications from Table 

3.6, it is apparent that the analyses compute very similar accuracies. Some exceptions 

were apparent, for example the land cover models for the Sandy fire had very low 

correlation (R² =0.40), and the overall model predicted CBI values for the Southesk fire 

more poorly than the land cover and ecozone stratifications (R²=0.63 versus R²=0.77 and 

R²=0.76, respectively).  
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Table 3.5. Cross validation table that includes the three groups used for analysis within 

the study along and the associated total N.  

 

Overall (N) Land cover (N) Ecozone (N)

Boyer 01 50 non-forest 58 Montane Cordillera 252

Boyer 02 38 coniferous-dense 136 Boreal Plains 224

Grizzly Ridge 20 coniferous-open 198

Henry House II 21 coniferous-sparse 49

Hoodoo Creek 23 broadleaf 34

Mitchell Ridge 101

Peace Point 37

Sandy 99

Southesk 34

Split Peak 53

Total 476 Total 475 Total 476  
 

 

Table 3.6. The first three columns of the table include the overall, land cover, and 

ecozone groups for model analysis. The rows represent the associated cross validation 

derived coefficient of determination (R²) for each fire.  

 

Fire Name
Overall 

model R ²

Land            

cover 

model R ²

Ecozone 

model R ²

Boyer 01 0.74 0.70 0.72

Boyer 02 0.74 0.76 0.74

Grizzly Ridge 0.89 0.89 0.89

Henry House II 0.80 0.79 0.80

Hoodoo Creek 0.40 0.33 0.39

Mitchell Ridge 0.50 0.51 0.52

Peace Point 0.69 0.70 0.69

Sandy 0.77 0.40 0.74

Southesk 0.63 0.77 0.76

Split Peak 0.68 0.71 0.69  
 

3.3.2 TCI results  

 

The TCI provides detailed information on pre- and post-fire conditions and were 

interpreted as such: brightness the degree of soil and substrate exposure, greenness the 

overall vegetation biomass content or density, and wetness the moisture content of both 

vegetation and soil attributes. There was no significant difference across fires in pre-fire 
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brightness (Figure 3.4). The analysis of pre-fire greenness showed significant differences 

between fires, however an ANOVA for pre-fire greenness mean values showed 

significant differences, with the Boyer 02 and Mitchell Ridge fires having higher means 

overall and the Southesk the lowest (Figure 3.5). Overall, pre-fire wetness was highest for 

the Peace and Hoodoo Creek fires and lowest for the Southesk and Sandy fires (Figure 

3.6). It was apparent that the pre-fire TCI data taken from the Split Peak fire was 

unreasonably high based on a comparison to all other fire events; this was believed to be 

due to atmospheric scattering, a factor well known to affect vegetation indices (Kaufman 

& Sendra, 1988; Qi et al., 1991). To mitigate errors from this fire, we decided to remove 

it from only the TCI analysis portion of the study. 

Post-fire mean brightness was significantly higher for the Hoodoo Creek and Southesk 

fires, and lowest for the Peace Point and Boyer fires (Figure 3.4). Post-fire greenness was 

highest overall for the Boyer 02 fire with the Grizzly Ridge and Southesk the lowest 

(Figure 3.5). The moisture index results showed that the highest mean values were from 

the Henry House II fire while the lowest were respectively the Southesk and Grizzly 

Ridge fires (Figure 3.6).  
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Figure 3.4. Box and whisker plots for TCI brightness values for the pre-fire (black), post-

fire (dark gray), and the differenced (light gray and connected line). The whisker 

represents the mean plus and minus the standard deviation and the box represents the 

mean plus or minus the standard error. 
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Figure 3.5. Box and whisker plots for TCI greenness values for the pre-fire (black), post-

fire (dark gray), and the differenced (light gray and connected line). The whisker 

represents the mean plus and minus the standard deviation and the box represents the 

mean plus or minus the standard error. 
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Figure 3.6. Box and whisker plots for TCI wetness values for the pre-fire (black), post-

fire(dark gray), and the differenced (light gray and connected line). The whisker 

represents the mean plus and minus the standard deviation and the box represents the 

mean plus or minus the standard error. 

 

To assess differences in the variability of pre- and post-fire TCI values, the Levene’s test 

showed that all fires, excluding the Boyer 02 and Grizzly Ridge fires, had increased post-

fire spectral variability for at least one of the three indices, with the greenness and 

wetness TCI having the greatest increases in variability.  

3.3.3 TCI multiple regression results 

 

Overall, the Grizzly fire had the highest correlation in multiple regression between pre- 

and post-fire TCI, (pre-R²=0.92, post-R²=0.94) while the Hoodoo Creek (pre-R²=0.61, 

post-R²=0.57) and Mitchell Ridge fires (pre-R²=0.62, post-R²=0.66) were the least well 
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predicted (Table 3.7). Of the pre-fire variables, TCI wetness showed the most commonly 

significant variable with five of the ten fires indicating statistical significance. The results 

for the post-fire TCI wetness were not as consistent, with each fire indicating its own 

unique significance. It appears that both the pre- and post-fire TCI achieved similar 

multiple regression results. In order to test the improvement of using the pre- and post-

fire TCI, we calculated the pre- and post-fire TCI percent difference in explained 

variability (%∆) for each fire (Table 3.7). This was a simple subtraction of the overall 

cross validation R² results per fire (Table 3.6) from the R² TCI results in Table 3.7. 

Excluding results from the Hoodoo Creek, Mitchell Ridge, and Southesk fires, the TCI 

percent difference in explained variability (%∆) across the fires was in the general range 

of a few percent points (Table 3.7). More significant improvements were seen for the 

Hoodoo Creek, Mitchell Ridge, and Southesk fires using either pre- or post-fire TCI 

values, and always when using pre-fire wetness. Of the various TCI covariates for these 

three fires, pre- and post-fire wetness were the most consistently significant. 
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Table 3.7. Results for pre- and post-fire TCI coefficient of determination values (R²) 

derived from cross validation and forward stepwise multiple regression. The brightness 

(B), greenness (G), and wetness (W) are included if significant (p<0.05). The fifth and 

sixth columns represent the % change (%∆) from the overall model variance when using 

pre- and post-fire TCI in multiple regression. 

 

Fire Name
pre-fire 

R ²
TCI

post-

fire R ²
TCI

pre-fire 

%∆

post-fire 

%∆

Boyer 01 0.74 B, G 0.75 B,G,W 0.01 0.01

Boyer 02 0.81 G 0.80 G 0.06 0.06

Grizzly Ridge 0.92 W 0.94 B 0.03 0.05

Henry House II 0.80 none 0.80 none 0.00 0.00

Hoodoo Creek 0.61 W 0.57 W 0.21 0.17

Mitchell Ridge 0.62 W 0.66 G, W 0.12 0.16

Peace Point 0.71 none 0.70 none 0.01 0.01

Sandy 0.81 W 0.77 none 0.04 0.00

Southesk 0.85 W 0.90 B 0.23 0.27  

 

3.4 Discussion  

3.4.1 Ecological insights into pre- and post- fire condition 

 

The pre- and post-fire conditions measured using TCI highlight three key findings: the 

contrast in post-fire ecozone brightness values, the effect of season of burn on TCI 

greenness values, and the overall increase in heterogeneity across all fires’ TCI. All MC 

fires showed an increase in brightness regardless of season of burn, whereas three of the 

four BP fires exhibited significant post-fire brightness decreases. This post-fire variation 

in soil reflectance is likely due to the generally deeper levels of organic content found in 

the BP which insulates the substrate layer from soil exposure (Ryan, 2002). The 

greenness results suggest a strong relationship to season of burn, with higher post-fire 

reflectance for those events occurring earlier in the season (Figure 3.5). For example, the 

spring season timing of the Hoodoo Creek and Mitchell Ridge fires had higher duff 

moisture conditions  than the mid-summer Grizzly Ridge and Southesk wildfires, 

subsequently causing higher post-fire green up. In general, we found that the TCI 
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greenness and wetness reflectance values closely resemble those taken from CBI 

measurements (Figure 3.3) a result that is not surprising as the CBI is heavily weighted to 

vegetation (Miller & Thode, 2007). The third finding of the TCI analysis indicated that an 

increase in spectral heterogeneity occurred across all fires, with a statistically significant 

increase across 60% of all TCI that was independent of land cover or ecozone. The 

significance of this finding supports earlier research that fire imparts heterogeneity across 

a majority of landscapes regardless of the pre-fire environment (Turner et al., 2003).  

3.4.2 Decoupled burn severity characteristics 

 

Across the overall, land cover, and ecozone analyses, the Hoodoo Creek and Mitchell 

Ridge fires were the most often poorly estimated. The likely reason for this weak result is 

the high incidence of these fires’ CBI plots in a decoupled moderate severity class 

(Figure 3.7). This decoupling effect was likely caused by high soil moisture levels during 

their springtime burning (Halofsky & Hibbs, 2009) in addition to the high intensity fire in 

the canopy that caused increased canopy mortality. This decoupling is not truly captured 

in a weighted averaged CBI assessment, and more importantly, correlating dNBR with 

these CBI values becomes much more difficult due to the competing responses of the 

forest strata (Figure 3.8). These more complex interactions were also reported to be the 

cause of low accuracies in the moderate severity class by Miller et al. (2009).  
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Figure 3.7. Photos of two CBI plots taken from the Mitchell Ridge (left) and the Hoodoo 

Creek (right) fires. These photos depict the decoupled burn severity characteristics with 

high canopy mortality in the canopy and the lower severity in the understory.  

 

 

 
 

 

Figure 3.8. Scatter plot of x-axis dNBR and y-axis weighted CBI values for the Mitchell 

Ridge (black circles) and the Hoodoo Creek (hollow triangles) fires. 
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3.4.3 Discussion on overall model and TCI improvement 

 

Building models that are applicable and transferable over large expanses of land is clearly 

a desirable goal for land management agencies such as Parks Canada. As part of objective 

one, we tested various dNBR derived models and confirmed that eight of the ten fires 

cross validated well, and there wasn’t large improvement in accuracy when stratifying the 

fires by land cover or ecozone. Therefore, our overall dNBR derived model for western 

Canada appears broadly transferable across the study area (Figure 3.9 & Table 3.8).  

 

 

Figure 3.9. Polynomial model fitted to the overall dNBR dataset, with the x-axis 

representing the weighted CBI values and the y-axis the dNBR values so that thresholds 

could be determined. CBI thresholds were taken from Miller et al. (2009)’s study. 
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Table 3.8. Results of overall dNBR model including the model equation, R², P value, and 

root mean square error (RSE). 

 
Model R² P RSE

dNBR = 49.8323+178.9546*CBI+22.4924*CBI^2 0.69 <.0001 136.91  
 

 

Our research results for objective two support the use of pre- and post-fire TCI data in 

order to improve the modelling accuracy of dNBR. Pre-fire TCI wetness appears to be the 

most consistently improving variable in multiple regression with dNBR. Post-fire TCI 

variables also indicate an additive but lesser capacity to the model accuracies. 

Importantly, the correlations of the Hoodoo Creek and Mitchell Ridge fires (the least well 

predicted using cross validation) had increased accuracy after pre- or post-fire TCI 

wetness is used. We acknowledge, however, due to the complex nature of wildland fire, 

broad geographic based models that use dNBR may require additional data to improve 

their accuracy. In particular, fires of the moderate/mixed severity class are poorly 

represented by this type of monitoring, and may require further investigation. To this end, 

many researchers have attempted to analyze, incorporate, or study the effects of the pre-

fire environment and its relationship to burn severity (Hall et al., 2008; Miller et al., 

2009; Wulder, 2009).  

3.5 Conclusion 

 

Although new imagery is becoming available, the cost-effective and heavily researched 

Landsat TM/ETM+ archive will have a significant ongoing role in burn severity 

mapping.  The modelling accuracies of both dNBR and the TCI hold promising results 

for Parks Canada and other agencies that manage large areas of fire affected landscapes. 

It appears that the dNBR remains to be a robust predictor of burn severity across multiple 
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western Canadian landscapes. However, the evidence provided herein indicates that this 

model does not predict all fire events with equal accuracy. We recommend that future 

fires that resemble the Hoodoo Creek and Mitchell Ridge fires, i.e. those ignited in 

springtime and exhibit moderate severity effects, may need further investigation. It will 

be up to the discretion of fire managers and scientists alike to determine the acceptability 

of error for their various project needs.  
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4 CONCLUSION 

 

The overall objective of the research was to answer two key questions, the first related to 

a comparison of the accuracy of dNBR versus RdNBR, and the second an assessment of 

the transferability of a dNBR derived model.  In addition to these two key questions, 

insights were gained about the ecological patterns of burn severity, the unique nature of 

each fire event, the strengths and weaknesses of burn severity modelling, while at the 

same time calibrating and validating the derived dNBR and RdNBR models. These 

models provide information about the efficacy of a future Parks Canada burn severity 

management project that is relevant to both fire scientists and managers alike working on 

a wide range of projects. For example, fire managers may be able to assess the success of 

their prescribed burn objectives, more easily compare the effects of fire on vegetation 

dynamics and wildlife populations, and detect burn severity trends due to changes in 

climate. Information derived from these burn severity approaches may also be useful to 

help measure broad scale impacts of fire and for predictive modelling of future fires.  

 

4.1 Key findings 

The results from Chapter 2 indicate that both dNBR and RdNBR indices were well suited 

to estimate burn severity across the study areas. It was determined that dNBR and 

RdNBR measured burned severity similarly, however, it was found that the dNBR index 

was a slightly better estimator (70.2% versus 65.2% overall classification accuracy). This 

last finding was also determined by both Wulder et al. (2009) and Hudak et al. (2008) 

who reported that the use of RdNBR did not improve estimates of post-fire effects. It was 

hypothesized that the fires ranked with high pre-fire vegetation heterogeneity and 
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sparseness would be better estimated by RdNBR than dNBR, however, this was not the 

case. The fire rankings by pre-fire vegetation appeared to have no relation to post-fire 

effects, another similarity to Wulder et al. (2009). It was postulated that this lack of 

relationship was due to the relatively more homogenous and higher canopy closures 

across these sites as compared to the California conifer study region of Miller and Thode 

(2007). As has been found by other researchers (Miller et al., 2009), this study’s overall 

model had the lowest class accuracy for the moderate severity class when compared to 

the other classes. When the data were stratified by region, the western boreal model for 

both indices indicated that the high severity class had the lowest classification accuracies, 

also confirmed in other studies (Murphy et al., 2008). The implementation of the Hall et 

al. (2008) non-linear model resulted in similar accuracies for the western boreal 

classification (59.7%) as compared to the dNBR (62.4%) and RdNBR (60.3%). This 

model had higher conditional kappa values for the high severity class (user’s k1= 0.91, 

producer’s k1= 0.33) as compared to the dNBR (user’s k1= 0.38, producer’s k1= 0.26) and 

RdNBR (user’s k1=0.56, producer’s k1= 0.29). Based on the results of Hall et al.’s (2008) 

non-linear model, it can be inferred that the development of regional models for western 

Canada is a feasible goal. 

 

Results for Chapter 3 showed differing responses in tasselled cap index (TCI) soil 

brightness after fire for the two regions. Fires in the Rocky Mountain region indicated 

increases in soil brightness post-fire while the western boreal showed a reduction in 

brightness for a majority of the fires. The time of year of the burn was also found to have 

a strong effect on TCI greenness, with early season fires showing either increases or a 
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reduction in greenness reflectance. After comparing changes in spectral variability using 

pre- to post-fire TCI, statistically significant results were found in 60% of the cases which 

implies that fire increased the heterogeneity across the CBI plots. The most pertinent 

finding within this chapter was that an overall dNBR model is transferable across eight of 

the ten fires. Two of the study fires that did not cross validate well, the Hoodoo Creek 

and Mitchell Ridge fires, had decoupled burn severity in their overstory and understory. 

This decoupling, paired with the associated confusion of the moderate severity class, 

were some of the reasons behind this weak result. As a way to test the improvement of 

additional pre- and post-fire data, the three TCI were included in multiple regression with 

the overall dNBR model. The results indicated that of the three indices, either pre- or 

post-fire TCI wetness resulted in the highest improvement, especially evident in the large 

improvements for the Hoodoo Creek and Mitchell Ridge fires. As was concluded from 

Chapter 2, dNBR appears to be transferable across western Canada but may require the 

addition of multiple datasets to improve its predictive accuracies. 

4.2 Future work and recommendations 

 

 

Landsat derived indices of burn severity have become critical operational tools for 

assessment. Landsat provides imagery that is publicly accessible, free, and offers data 

that is moderate in spatial resolution which is well suited for landscape studies. Currently, 

there are two Landsat satellites in operation. Landsat 5 has been in operation since 1984 

and is well passed its lifespan while Landsat 7’s scan line error has made most of its 

available imagery unsuitable for burn severity studies. The Landsat Data Continuity 

Mission (LDCM), planned for launch in December 2012, will produce data consistent 
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with the Landsat 5 and 7 specifications. This means that a gap in image availability for up 

to a year may be likely. It will be up to agencies such as Parks Canada to decide their 

plan of action should this occur. 

 

The conclusions of this research raise two additional issues that should be addressed by 

operational users before implementation. First, the overall dNBR model in Chapter 3 

shows high transferability using cross validation, with an overall range of R² values 

between 0.40-0.89. These results are significant, however; it demonstrates to users the 

need to be aware of the variability in accuracies among fires. In situations where a fire 

event appears to exhibit a majority of moderate severity characteristics, whether through 

CBI sampling or the distribution of remote sensing indices, one should expect lower 

classification accuracies. Secondly, it is important that CBI thresholds between the 

classes be set in a way that reflects the specific nature of local burn severity. Generalized 

class breaks used in chapter 2 and taken Miller et al. (2009), were used as a means of 

comparing the dNBR and RdNBR indices. However, it was recommended by Lentile et 

al. (2006) that the users of burn severity models develop their own locally meaningful 

dNBR ranges based on field measured CBI. It is therefore recommended that CBI 

thresholds or class breaks be developed at a finer geographic scale than those of Miller et 

al. (2009). A summarization of these two recommendations follows: 

 

1) An assessment of the project accuracy requirements should be considered before using 

these or other derived burn severity models. 
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2) CBI thresholds should be set that exhibit locally meaningful burn severity 

characteristics.  

 

The modelling accuracies determined from this research have the potential to be 

improved with the development of future sensor technologies. As Lentile et al. (2006) 

points out, fire research needs a better understanding of the role of pre-fire vegetation and 

topography, climate and active fire weather, vegetation structure and composition, and 

land use on the prediction of burn severity. The incorporation of additional datasets such 

as pre-fire condition, vegetation type, topography, and others should increase the 

accuracies of burn severity prediction while simultaneously linking these remote sensing 

measurements to the ecological processes of fire. 
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