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Abstract

Bit-interleaved coded modulation (BICM) is a pragmatic yet powerful ap

proach for spectrally efficient coded transmission. BICM was originally de

signed as a superior alternative to the conventional trellis coded modulation

in fading channels. However, its flexibility and ease of implementation also

make BICM an attractive scheme for transmission over unfaded channels.

In fact, a noticeable advantage of BICM is its simplicity and flexibility.

Notably, most of today’s communication systems that achieve high spectral

efficiency such as ADSL, Wireless LANs, and WiMax feature BICM. Percep

tibly, the design of efficient BICM-based transmission strategies relies on the

existence of a general analytical framework for evaluating its performance.

Therefore, alongside its vast popularity and deployment, performance eval

uation of BICM has attracted considerable attention. Developing such a

performance evaluation framework is one of the main contributions of this

thesis. In addition to conventional additive white Gaussian noise model, the

practically important case of transmission over fading channels impaired by

Gaussian mixture noise has also been studied. Different from previously pro

posed methods, our scheme results in closed-form expressions and is valid

for arbitrary mapping rules and fading distributions. Furthermore, making

use of the newly developed framework, we propose two novel transmission
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Abstract

strategies. First, we consider the problem of optimal power allocation for

a BICM system employing orthogonal frequency division multiplexing. In

particular, we show that this problem translates into a linear program in

the high signal-to-noise ratio regime. This reformulation extends the ap

plicability and delivers considerable complexity reduction in comparison to

existing algorithms. Finally, we propose novel detector architectures for a

BICM system employing iterative decoding using hard-decision feedback at

the receiver. We show that, taking the feedback error into account results in

considerable performance improvement while retains decoding complexity.
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Chapter 1

Introduction

1.1 Background

The early designs of communication systems focused separately on modu

lation and channel coding. The correct perspective of signal space coding,

also known as coded modulation, was brought into the focus of communica

tion engineers by Ungerboeck’s pioneering work on trellis coded modulation

(TCM) [1, 2]. TCM combines trellis codes with (non-binary) modulations

through the concept of set partitioning labeling aiming to maximize the

minimum Euclidean distance of the code [1]. An alternative coded modula

tion scheme which has been proposed by Imai and Hirakawa, is multi-level

coding (MLC) [3]. MLC uses several binary codes, each protecting a single

coded bit in the binary label of the transmitted constellation. At the re

ceiver, instead of optimal joint decoding of all the component binary codes,

a suboptimal multi-stage decoding is used. It is known that this decoding

scheme achieves good performance with limited complexity [2,3].

The increasing interest for wireless communications has led to the con

sideration of coded modulation for fading channels. First, it seemed quite

natural to apply the Ungerboeck’s paradigm of “keeping coding combined

with modulation” even in a situation where the code performance depends

1



1.1. Background

strongly, rather than the minimum Euclidian distance of the code, on its

minimum Hamming distance (i.e. diversity order of the code) 121. A no

table departure from Ungerboek’s paradigm was the core idea of [4]. In [4],

Zehavi recognized that code diversity and hence the reliability of coded mod

ulation over fading channels’ could be further improved via decoupling of

channel encoder and modulator. Zehavi’s idea was to make the code di

versity equal to the smallest number of distinct bits along any error event.

This is achieved by bit-wise interleaving at the encoder output. This coded

modulation scheme is known as bit-interleaved coded modulation (BICM).

Although first introduced by Zehavi’s landmark paper, BICM subsequently

has been widely generalized by Caire et. al. in [5].

BICM is known as a pragmatic yet powerful approach for coded mod

ulation. Notably, most of today’s communication systems that achieve

high spectral efficiency such as ADSL, Wireless LANs, and WiMax feature

the combination of BICM with orthogonal frequency division multiplexing

(OFDM), also known as bit-interleaved coded OFDM (BIC-OFDM) [2,6].

The most noticeable advantage of BICM is its simplicity and flexibility,

as the only provision it takes to combat the multi-path fading is a ran

dom bit-wise interleaver. Therefore, a single binary code can be used along

with several modulations without the need for further adaptations and vice

versa. In particular, BICM separates (binary) channel encoder from the

(non-binary) modulator using a bit-wise interleaver. At the receiving side,

in order to alleviate the loss of information imposed by this sub-optimal ap

proach, soft information about the coded bits is fed from the demodulator

‘In his paper, [4], Zehavi considered Rayleigh fading channels.
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1.2. Objectives and Related Previous Work

to the decoder in the form of bit-wise reliability metrics or log-likelihood

ratios (LLRs) [2, 5]. [5] illustrated the performance advantages of BICM.

It also has provided a comprehensive analysis of BICM in terms of achiev

able capacity and error probability, showing that in fact the loss incurred

by the BICM may be very small. Furthermore, this loss can be recovered

by using iterative decoding [2, 7, 8]. Building upon this principle, Li and

Ritcey [7,8] proposed iterative demodulation and decoding for BICM, also

known as BICM-ID, and illustrated significant performance gains with re

spect to classical non-iterative BICM decoding. However, BICM designs

based on iterative decoding cannot approach the capacity, unless the num

ber of transmitted bits grows large [2,7,8].

1.2 Objectives and Related Previous Work

The first goal of this thesis is to develop a general analytical framework

for performance evaluation of BICM transmission over additive white Gaus

sian noise (AWGN) fading channels. Furthermore, we note that the study

of communication systems in non-Gaussian environments has become very

popular due to its practical relevance. In many practical cases such as in

door radio communication, partial-time jamming, ultra-wideband communi

cation, and power line communication, this interference is well modeled as a

Gaussian mixture noise (GMN) [9—15]. Therefore, we also study the BICM

transmission over fading channels impaired by GMN. Finally, we focus on

a few applications of the developed analysis in improving the performance

of BICM-based transmission systems. In particular, first we focus on the
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problem of optimal power allocation for a BIC-OFDM transmission system,

when the channel information is available at the transmitter. Then, we turn

our attention to improving the performance of BICM-ID with hard-decision

feedback.

In the following, a brief review of previous work related to each of the

objectives is given. The detailed review of previous research on each topic

can be found in the “Introduction” section of corresponding chapter(s).

1.2.1 Performance Evaluation of BICM Transmission

Different bounds for the bit error-rate (BER) of BICM have been derived

in previous works. A popular technique, which was developed in [5] and re

ferred to as BICM Expurgated bound (BICM-EB), provides tight results but

is complex to compute and limited to the Gray labeling. Also, [16] pointed

out that the BICM-EB is not an upper bound but rather an error-rate ap

proximation. A generalized version of the BICM-EB has been proposed

in [17] which considers finite-length interleaving, but again is limited to the

Gray labeling and numerically more complex to compute than the bounds

given in [5]. The authors of [18] presented two new approximations, namely,

the Gaussian and saddlepoint approximations. Both approximations are

applicable to arbitrary labeling rules but rely on numerical integration. Re

cently, [19] devised an algorithmic approach to compute the probability den

sity function (PDF) of LLRs for the unfaded AWGN channel applicable to

arbitrary labeling rules. However, this method results in PDF expressions

which are not simple and thus, evaluation of performance expressions, as

for example BER, based on these PDF expressions again invokes numerical
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techniques. These problems have been overcome in the follow-up work [20],

where a closed-form expression for the PDF for square quadrature ampli

tude modulation (QAM) with Gray labeling is obtained, and then further

simplified using a Gaussian approximation. In [21] (cf. also [22]), closed-

form PDF expressions are derived for BICM transmission over Nakagami-m

fading channels with integer m, which are applied for BER approximation

using the saddlepoint technique. Again, the approach is restricted to QAM

with Gray labeling.

Finally, we note that while performance evaluation of BICM transmission

over AWGN channels has been of interest since its invention, the analysis

of BICM transmission impaired by non-Gaussian noise has received rela

tively little attention, cf. e.g. [23,24]. The authors of [24] has presented a

framework that modifies the BICM-EB to encompass non-Gaussian noise.

Since the analysis relies on the expurgated bound, it is limited to the case

of Gray labeling and does not result in closed-form expressions for BER.

Furthermore, the asymptotic performance analysis in [24] is valid only when

the diversity order of the system is an integer.

1.2.2 Power Allocation for BIC-OFDM

OFDM enables transmitter side adaptation according to the present channel

conditions, assuming that the channel remains unchanged over a sufficiently

long interval. In particular, numerous algorithms for bit-loading and power

allocation per OFDM sub-carrier have been developed, cf. e.g. [25—27]. Re

cently, [28] has studied the problem of power allocation for BIC-OFDM

aiming at the minimization of BER under a power budget constraint. Using
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the BER union bound approach to approximate the bit-error probability, it

was shown [281 that the problem is a convex optimization problem. However,

the solution presented in [28] is limited to (complex) binary transmission,

i.e., binary and quadrature phase-shift keying, since linearity of coding and

modulation was required. Notably, to the best of our knowledge [28] is the

only work which takes the interplay of interleaving, coding and modulation

into account for defining the optimization problem.

1.2.3 BICM-ID with Hard Decision Feedback

BICM structure can also be looked at as a concatenated coding system, with

the forward error correction (FEC) encoder and the multilevel modulator

as outer and inner encoder, respectively. BICM considered as concatenated

code is commonly decoded in an iterative fashion, in which the demapper

and a SISO channel decoder for the outer FEC code exchange extrinsic

information. This decoding scheme is known as BICM with sof-feedback it

erative decoding (BICM-SID). An alternative decoder proposed in [29] uses

a soft-input hard-output (SIHO) outer decoder, like the Viterbi decoder for

convolutional codes. This decoding method is known as BICM with hard-

feedback iterative decoding (BICM-HID). BICM-HID has two complexity

advantages over BICM-SID. First, the outer SIHO decoder is less complex

than its SISO counterpart, and second, the demapper using hard-decision

feedback needs to consider only two instead of all constellation points for

each labeling bit [7]. On the downside, BICM-HID is considerably outper

formed by BICM-SID due to the effect of erroneous feedback. Recently, [23]

proposed an alternative detector architecture for BICM-HID which improves
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1.3. Summary of Thesis and Contributions

its performance. The key idea is that the demapper makes use of the error

rate of the hard-decision feedback after each iteration. Notably, [23] requires

a SISO decoder for extracting the error-rate estimation and furthermore the

detector needs to consider all the signal points in order to recompute the

LLRs. The main difference in terms of computational complexity is that,

different from BICM-SID, [23] does not require any multiplication operation.

1.3 Summary of Thesis and Contributions

This thesis addresses several topics in performance evaluation and design

of BICM-based transmission systems. The main results are divided into

four chapters2. Furthermore, in Chapter 6, the summary of contributions,

concluding remarks, and proposals for further research are offered. In what

follows, a brief introduction to the topic covered in each chapter and a

summary of contributions made in is given.

In chapter 2, we present an analytical approach to evaluate the perfor

mance of BICM transmission over frequency-flat fading AWGN channels.

The statistic of the fading envelope is modeled as Nakagami-m distributed,

which spans a wide range of practical multi-path fading scenarios through

adjustment of the rn-parameter. For this setup, we derive approximations

for the BER and cutoff rate of BICM. Different from previously proposed

methods, our analysis is valid for general QAM and phase shift keying signal

constellations and arbitrary bit-to-symbol mapping rules, and it results in

2Eh of the four chapters in this thesis is self-contained and included in a separate
journal article. The notations are also separately defined for each chapter, but has been
tried to be consistent throughout the thesis for the ease of understanding.
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1.3. Summary of Thesis and Contributions

simple closed-form expressions. The key idea is to use well-chosen subsets

of signal points to approximate the PDF of reliability metrics used for de

coding. This approximation is accurate for signal-to-noise (SNR) regions of

interest for BICM systems with moderate coding complexity such as, e.g.,

convolutional coded BICM systems. Based on this approximation we also

derive an asymptotic BER expression, which reveals the diversity order and

coding gain of BICM. The usefulness of the proposed analytical approach is

validated through numerical and simulation results for a number of BICM

transmission examples.

Furthermore, in chapter 3, we derive BER approximations for BICM

transmission over general fading channels impaired by GMN. To this end, we

build upon the saddlepoint approximation of the pairwise error probability

(PEP) and the approximation developed in chapter 2 for the PDF of bit-wise

reliability metrics for AWGN channels. We extend this PDF approximation

to the case of GMN, and obtain closed-form expressions for its Laplace

transform for fading GMN channels. The latter allows us to express the PEP

and thus BER via the saddlepoint approximation. For the special case of

fading AWGN channels the presented approximations are closed form, since

the saddlepoint is known to be 1/2. Furthermore, we derive closed-form PEP

expressions also for GMN channels in the high SNR regime and establish the

diversity and coding gain for BICM transmission over fading GMN channels.

Selected numerical results for BER of convolutional coded BICM highlight

the usefulness of the proposed approximations and the differences between

AWGN and GMN channels.

Then, making use of the performance approximations developed in Chap

8
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ter 2 and Chapter 3, in the next two chapters we focus of designing trans

mission strategies for BICM-based communication systems. In particular,

Chapter 4 considers the problem of power allocation for a system utilizing

the combination of BICM with OFDM. The combination of BICM with

OFDM forms a powerful coded modulation scheme for transmission over

wideband channels. Recently, Moon and Cox [28] presented a new power al

location method to minimize the BER of BIC-OFDM. Different from many

previous related works, the method proposed in [28] considers the interplay

of interleaving, coding, and modulation but is limited to (complex) binary

modulation as the linearity of coding and modulation was required. Further

more, it translates into a fairy computationally intense convex optimization

problem [28] . Motivated by their work, in this chapter we present an alter

native power allocation method, which has the advantages of being a linear

program and applicable to arbitrary signal constellations. Our approach

relies on using the PDF approximation presented in Chapter 2 and a fur

ther simplification of it for asymptotically large SNRs. Simulative evidence

shows that the proposed power allocation method achieves a performance

very close to that from [28] for the case of binary modulation.

Finally, Chapter 5 considers the iterative decoding of BICM transmis

sion. In particular, if relatively simple FEC codes such as convolutional

codes are employed, iterative decoding between demapper and FEC de

coder can provide significant performance improvements over non-iterative

decoding. In practice, to keep the complexity of iterative decoding low, the

use of hard-decision feedback from FEC decoder to demapper is appealing.

However, the price to be paid is a performance degradation due to feedback

9
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errors. In this chapter, two new demapper designs are developed which are

able to strongly mitigate the effect of erroneous feedback. The key ideas

are (a) the use of the error rate estimation developed in Chapter 2 for the

average error rate in the hard-decision feedback and (b) the interpretation

of feedback errors as additive impulsive noise. Simulation results show that

the proposed designs achieve error rates close to those for iterative decoding

with soft feedback, while they maintain the complexity advantage of using

hard-decision feedback.
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Chapter 2

An Analytical Approach for

Performance Evaluation of

BICM Transmission over

Nakagami-m Fading

Channels3

2.1 Introduction

Bit-interleaved coded modulation (BICM) introduced in [1] and further gen

eralized in [2] has established itself as the most popular scheme for spectrally

efficient coded transmission. BICM connects a binary encoder to a non-

binary modulator and achieves nearly optimal performance in terms of, e.g.,

constellation-constrained channel capacity [2]. The most noticeable advan

3A version of this chapter has been accepted for publication with minor revisions. A.
Kenarsari Anhari and L. Lampe, “An Analytical Approach for Performance Evaluation of
BICM Transmission over Nakagami-m Fading Channels,” accepted for publication (with
minor revisions) in IEEE Transactions on Communications, August 2009.
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tage of BICM is its simplicity and flexibility, as a single binary code can

be used along with several modulations without further adaptations. BICM

was originally designed as a superior alternative to trellis coded modulation

(TCM) [3] in fading channels [1]. However, its flexibility and ease of im

plementation also make BICM an attractive scheme for transmission over

nonfading channels [2].

Different bounds for the bit error-rate (BER) of BICM have been derived

in literature, all of which require numerical integration or computer simula

tion [2,4—6]. The Bhattacharyya union bound was found to be quite loose

but a true upper bound for arbitrary mapping rules [2]. A refined technique,

which was also developed in [2] and referred to as BICM Expurgated bound

(BICM-EB), provides tighter results but is more complex to compute and

limited to the Gray labeling. Also, [5] pointed out that the BICM-EB is not

an upper bound but rather an error-rate approximation. A generalized ver

sion of the BICM-EB has been proposed in [4] which considers finite-length

interleaving, but again is limited to the Gray labeling and numerically more

complex to compute than the bounds given in [2]. Recently, [6] presented

two new approximations, namely, the Gaussian and saddlepoint approxi

mations. The former is based on the Gaussian approximation of the tail

of the probability density function (PDF) of the bitwise log-likelihood ratio

(LLR) while the latter is an application of the saddlepoint approximation

technique known from statistics [7]. Both approximations are applicable

to arbitrary mapping rules but rely on numerical integration using various

Gauss quadrature rules for computing the cumulant generating function of

the LLRs [6].
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The need for numerical integration renders the aforementioned approx

imations complex to compute and rather hard to use as a design tool. Re

cently, [8] devised an algorithmic approach to compute the PDF of LLRs for

the nonfading additive white Gaussian noise (AWGN) channel applicable to

arbitrary mapping rules. However, this method results in PDF expressions

which are not simple and thus, evaluation of performance expressions, as

for example BER, based on these PDF expressions again invokes numerical

techniques. Also the intricacy of the algorithm itself affects its suitability for

evaluation and design of BICM-based systems. Furthermore, as stated in [8],

the closed-form expressions are achievable only for the case of transmission

over nonfading channels.

In this chapter we present a novel approach for performance evaluation

of BICM transmission over frequency-fiat fading AWGN channels. More

specifically, we consider fading according to the Nakagami-m distribution,

which often provides the best fit to land-mobile and indoor-mobile multipath

propagation channels. Through adjustment of the m parameter, it spans

the widest range of “fading figure” among the well-known fading distribu

tions [9], and includes the popular Rayleigh fading and nonfading channels

as special cases. The main contributions of this work can be summarized

as follows. (i) A closed-form approximation for the PDF of bitwise relia

bility metrics when transmitting over the nonfading AWGN channel is de

rived. The resulting PDF expression is valid for arbitrary modulation and

mapping rules. Different from [8], the simplicity of our novel PDF approx

imation enables the expression of pertinent BICM performance parameters

in closed form. (ii) Towards this end, we derive the Laplace transform of
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the newly found PDF expression for general Nakagami-m fading AWGN

channels. Using this result together with the saddlepoint approximation,

closed-form expressions for the pairwise error probability (PEP) between

codewords are obtained. The BER for BICM with linear codes is then eas

ily upper bounded in terms of these PEP expressions. (iii) In addition to

BER, also the generalized cutoff for BICM is written in terms of the men

tioned Laplace transform and thus can be expressed in closed form. We note

that the cutoff rate has widely been used as a parameter to predict the per

formance of BICM with moderate-complexity coding schemes [2]. (iv) Based

on the new PDF approximation we also derive asymptotic BER expressions

as the signal-to-noise power ratio (SNR) goes to infinity. It is shown that

for the nonfading channel the BER is closely approximated by the BER ex

pression for an equivalent binary transmission scaled by a constant which

is a function of the minimum Hamming distance of the code and the

mapping rule. For the case of Nakagami-m fading it is shown that the di

versity order is the product of m and dfree. Furthermore, the asymptotic

coding gain is shown to depend on a parameter which is a generalization

of the harmonic mean presented in [2] for Rayleigh fading (i.e., m = 1).

(v) A set of numerical and simulation results for BICM with convolutional

codes is presented, which provides evidence of the tightness of the proposed

approximations, including the asymptotic BER expressions.

The remainder of this chapter is organized as follows. In Section 2.2

the BICM transmission model is introduced. Then, the formulation of BER

union bound, saddlepoint approximation for PEP, and cutoff rate for BICM

is briefly reviewed, which shows that evaluation of these performance param
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BICM hanne1

ENC ) ‘U 1j ADEC

Physical Channel— h z
I

Figure 2.1: Block diagram of BICM transmission over a fading AWGN chan
nel. Also indicated is the binary-input continuous-output equivalent BICM
channel.

eters requires knowledge of the Laplace transform of the PDF of LLRs. The

novel closed-form approximation for this PDF and its Laplace transform are

derived in Section 2.3. The detailed solutions of a number of integrals en

countered during the derivations are relegated to the appendix. The asymp

totic BER analysis for large SNR is provided in Section 2.4. Comparisons

between the proposed analytical approximations and simulation results are

given in Section 2.5. Finally, conclusions are offered in Section 2.6.

2.2 Preliminaries

In this section, we first introduce the BICM transmission model. Then, we

briefly review error-rate approximations for such systems using union bound

ing and saddlepoint approximation techniques. Furthermore, we present an

expression for the BICM cutoff rate.

2.2.1 System Model

Figure 2.1 shows the block diagram of the equivalent baseb and BICM trans

mission system.
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Transmitter

The BICM codeword x = {xi,x2,...,XL] E C comprises L complex valued

symbols and is obtained by first interleaving (ir) the output of a binary

encoder c = [ci, c2, ..., cNl E 1F into c = [cr, c, ..., c E lF” and a sub

sequent mapping i : {O, 1}’ —* X of each r log2 (M) bits such that

= ([CZ_1,.1,C(i_1)r+2 ..., c]). X is an M-ary quadrature amplitude

modulation (QAM) or phase-shift keying (PSK) constellation with unit sym

bol energy and we assume that coding and mapping results in a uniform

distribution of signal points.

Channel

We consider BICM transmission over AWGN channels. Making the usual

assumptions about synchronization, filtering, sampling, and channel-phase

compensation in a coherent receiver, the equivalent baseband discrete-time

transmission model can be written as

(2.1)

where y, E C is the received sample, h E R denotes the fading gain, zj e C is

the additive noise sample at discrete-time i. The noise samples are assumed

to be independent and identically distributed (i.i.d.) according to a zero

mean complex Gaussian distribution. We further assume that interleaving

effectively renders the fading coefficients h i.i.d. random variables. Applying

normalization such that h and z have average power one, represents the
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average SNR. The instantaneous SNR is given by

71=h. (2.2)

To make matters concrete we consider the widely used Nakagami-m dis

tribution to model multipath fading. Adjustment of the fading parameter

m ? 1/2 renders this distribution very flexible. It includes Rayleigh fad

ing (m = 1) and nonfading AWGN (m —> oo) channels as special cases

and closely approximates Nakagami-n (Rice) and Nakagami-q (Hoyt) dis

tributions [9, Ch. 2.2.141. The corresponding distribution of the SNR (2.2)

reads [9] (F(.) denotes the Gamma function)

mm rn—i my
fy1,m (7) = m1(m)

exp (—--s—) . (2.3)

Receiver

At the receiver, the demapper (1r’ in Figure 2.1) produces r bitwise relia

bility metrics per symbol in the form of

=

— aEX3,1 (IIYi —
h a112)

+ (IiYi — /3 h a112) (2.4)

where Xj,b is the set of symbols with jth bit in the binary label fixed to

b. The metrics A are deinterleaved into A, which are then input to the

decoder for the binary code. We note that A is the so-called max-log

simplification of the LLR, which is known to provide practically maximum

likelihood (ML) decoding performance [1,21. Therefore we adopt this simple
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metric expression (cf. also [8, 10]). In slight abuse of terminology, we will

refer to A from of (2.4) as LLR in the following.

2.2.2 Error-Rate Approximation Using Union Bounding

and Saddlepoint Approximation

The transmission channel between encoder output c and decoder input A

can be considered as an equivalent binary-input output-symmetric (BIOS)

channel [6], which is known as equivalent BICM channel.4 Assuming ML

decoding, the error-rate of linear codes transmitted over BIOS channels

is well approximated by the union bound in the region above the cutoff

rate [11]. For example, the BER union bound for a convolutional code of

rate k/n is given by

Pb wdHPEP(dHIy,m), (2.5)
C dHdfree

where Wd denotes total input weight of error events at Hamming dis

tance dH, d&ee denotes the free distance of the convolutional code, and

PEP(dH
,

m) is the PEP corresponding to an error event with Hamming

weight dH. For clarity, we made the dependency of PEP(dH ‘,
m) on average

SNR ‘ and fading parameter m explicit.

For BIOS channels, the PEP can be considered as the tail probability of

a random variable generated by summing dH i.i.d. LLRs. More specifically,

41n [2], it has been shown that for BICM systems with signal constellation X and/or
labeling t which do not preserve the symmetry of the output an equivalent BIOS channel
could be considered by switching between the labeling p and its complement j with
probability of 1/2. This equivalence is valid due to the common hypothesis of uniform
encoder outputs.
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choosing the all-one codeword as reference codeword,

PEP(dHI,m) = Pr (d <Om) . (2.6)

A common approach for computing such a probability is through the use of

the Laplace transform1’AIm (s) of the PDF of A. That is [12]

cr+joo

Pr(z2dH <Oj,m) = j J [i,m(s)] , (2.7)

a—joo

where j PT and a e R, 0 < a < am, is chosen in the region of

convergence of the integral. The computation of (2.7) itself is often not

straightforward and invokes the use of numerical methods [12]. For this

reason [12] has proposed a few bounds and estimations, among which the

saddlepoint approximation has recently attracted considerable interest due

to its simple form and accuracy [6]. Approximation of (2.7) using the sad

dlepoint technique results in [12] [6]

Pr (dH <0! , m)
1

(AI,m (a)) (dH+O.5)
(2.8)

a 2 ir dH ‘AI,m
(a)

where Im (a) denotes the second-order derivative of TAI,m (a) and a is

the saddlepoint defined as

dAI,m (a)
— 2 9

da a=

While & = 1/2 for BIOS channels with ML decoding, a slightly different
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saddlepoint may be found for the max-log approximated LLR in (2.4) [101.

2.2.3 Cutoff Rate

From (2.7) we can write the Chernoff bound for the PEP between two code

words c and c’ as ( denotes addition in 1F2)

Pr(c c’)
O<max

(())CC)

, (2.10)

and thus express the cutoff rate as [13]

= —m log2
[<max

(cE1}

Pr(c) Pr(c’) (AI,m(a))’)]

(2.11)

The factor m in (2.11) renders the unit of R0 bit per transmission symbol.

With the assumption of uniformly distributed coded bits, (2.11) can be

rewritten as

R0 = m (i — log2 [i + AI,m(a)j) , (2.12)

with & from (2.9).

We observe that the evaluation of the error-rate approximation via (2.8)

and the cutoff rate (2.12) hinge on expressions for the Laplace transform

AI,m (s) for s e R+. The derivation of these expressions in closed form is

considered in the next section.
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2.3 Approximation for the PDF of LLRs and its

Laplace Transform

In this section, we first derive an approximation for the PDF of the LLRs de

fined in (2.4) assuming transmission over the nonfading AWGN channel (i.e.,

m — oo). Using this approximation, we then derive closed-form expressions

for AI,m (s) for s E and arbitrary m.

2.3.1 Approximation for the PDF of LLRs

We denote the PDF of LLRs (2.4) for the nonfading channel with c = b

being transmitted by fAICb,(A) and the complement of b by b = b 1.

Since the channel is BIOS, the symmetry property

fAI=o,P) = fAIC=,7(—A) , (2.13)

holds, and thus we consider the transmission of c = 1 without loss of gener

ality.

The PDF of LLRs can be considered as a weighted sum of PDFs fAIj,x,(A)

conditioned on the bit position 1 j r and the transmitted symbol

x E

fAI=l,(A) Pr(xlc= 1,i)fA1(A),
j=1xEX3,i

(2.14)

j=1 zEX3,i

where the second step follows from the assumption of equiprobable modu
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lator inputs. Hence, the task is to find expressions for fA1,,7(A) for every

1 j r and x e Xj,i. This requires consideration of all signal points in

the constellation and, depending on the type of modulation and labeling,

may not lead to a closed-form result.

To motivate our approach, consider a transmitted codeword c and a

given competitive codeword c’ with Hamming distance of dH from c. As

suming that the dH distinct bits of c are transmitted using dH symbols and

label positions c = [jl,j2, ••,JdHl, the corresponding bits of c’ could be

transmitted using any sequence of the signal points in

X
dH,C }

Using the union upper bound over X’ results in the BICM Union Bound

(BICM-UB) [2, Section IV.Bj. In this case, fAj..(A) is approximated by

considering all signal points in for x E Xj,b. Replacing Xj,’ with a single,

nearest-neighbor signal point leads to the BICM-EB [2, Section IV.C]. That

is, the BICM-EB estimates fAI,,(A) by considering only one member of

which is not a valid simplification for non-Gray labeling rules due to the

presence of multiple nearest neighbors [2,4,6]. Instead of these two extreme

approaches, we propose to use the set of all nearest signal points in for

a given z E Xj,b. That is, we define the set of nearest competitive signal

points of x,

{a a E X, Ja
-

xli
=

liz - xli }, (2.15)
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Figure 2.2: Illustration for possible sets of nearest competitive signal points
for general QAM and PSK constellations. The “1” represents the trans

mitted signal point x, and the “0” show the elements of A3,. The shaded
areas indicates D(AIj, x, -y) for A = 0. For A > 0 the boundaries move to

wards x, for A < 0 the boundaries move towards the competitive signal
points.

to approximate fAIJ,,7(A). We note that this corresponds to the approxi

mation

— (ii —
h xII2) + (ii — v’ h a112) , (2.16)

for the LLR in (2.4), which is expected to be tight in the SNR range in

which the BER union bound converges to the true error rate.

There are six non-equivalent formations for the sets of nearest compet

itive signal points for QAM and PSK constellations. These are illus

Case I Case II Case III

Case IV Case V Case VI
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trated in Figure 2.2. For each formation we determine the PDF fAIj,,7 (A)

from the corresponding cumulative density function

FA1,,7(A) = Pr (z E D (Au, x, , (2.17)

where ID (Aj, X, y) is the part of complex plane in which the LLR according

to (2.16) is less than A (see Figure 2.2 for A = 0). Thus, the PDF is expressed

by

fAIj,x,y (A) = J exp (— liz 112) dz, (2.18)

DQiIj,x,y)

whose closed-form solution for the kth configuration from Figure 2.2 is spec

ified as fA,kI.,.(A) in Table 2.1. For the expressions in Table 2.1 we used the

notations

1 / (x— )2\

(x)
=

exp
2o-2 )

erf(x) Ip(_t2)dt,
fi, x>0u(x) =

0, x<0

Substituting fAj7 (A) in (2.14) with the corresponding fA,kI., (A) from

Table 2.1 gives us the desired closed-form expression for fA =
(A). For a

general M-ary QAM constellation we obtain

5 q
(A) = k,1 fA,kd1,7(A) , d1 = I dmjj , (2.19)

k=1 1=1
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2.3. Approximation for the PDF of LLRs and its Laplace Transform

where k,j denotes the number of nearest competitive signal sets of type k

with Euclidean distance d1, dmin is the minimum Euclidean distance of the

constellation, and

I I IIIa—a’II
= max < max < max

1jr 1aEvj,l a’EAj,a I.. dmjn

Similarly, for an M-ary PSK constellation we find

M

[ni,tf,i1,7P’) + 6,1fA,6jd,O,- 0’)]

d1 = ::dmin,
(2.20)

I_ -

—

Numerical values for k,j are summarized for some popular signal constel

lations and labelings in Table 2.2. It should be noted that the expressions

in (2.19) and (2.20) are much easier to evaluate than the PDF approxima

tions in [8]. In particular, their computation does not require any numerical

integration.

Figure 2.3 shows a comparison of PDF histograms, obtained through

Monte Carlo simulation, and the approximations (2.19) and (2.20) for dif

ferent constellations, labelings, and SNRs. In addition to popular Gray

labeling (GL) [14], two non-Gray labeling, namely modified set partitioning

labeling (MSPL) and semi set partitioning labeling (SSPL) (cf. [2,15,16]) are

also included. These non-Gray labeling bear significance for BICM transmis

sion with iterative decoding (BICM-ID) [15,16]. From Figure 2.3 we observe

that the proposed approximation is very accurate regardless of the type of
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2.3. Approximation for the PDF of LLRs and its Laplace Transform

Table 2.1: Probability density function of LLRs fA,kI.,7 (A) for transmission
over nonfading AWGN channel for the six different sets of competitive signal
points shown in Figure 2.2.

fA,11d,7(A) .N27,2d27(A)

fA,21d,7 (A) .A42,2d2(A) (i — erf (l’\’\
2d})

fA,31d,7(A) 2J’fd2,2d27(A)u(d2y — A)

fA,41d,(A) J\1d27,2d27(A) (i — 2erf (?)) u (d2y — A)

fA,sId,7 (A) —4.Afd27,2d2(A)erf (r) u (d2-y — A)

fA,6jd,e,y(A) J\Id27,2d2(A) (i — erf (tan “°‘ x”
k1 2d,J7,)

Table 2.2: Numbers rik,l, 1 < 1 {Qm, M/2}, of nearest competitive signal
sets of type k, 1 k 6 (Cases shown in Figure 2.2) for different constella
tions and labelings used for numerical results in Section 2.5. Only non-zero
coefficients k,1 are shown. Gray labeling (GL), set partitioning labeling
(SPL), modified set partitioning labeling (MSPL), semi set partitioning la
beling (SSPL), and mixed labeling (ML).

GL ni,i=4
4QAM

SPL n1,1 = 2,n2,1 = 2

GL ri1,1 = 24,fl1,2 = 8

SPL n1,1 = 8, n1,2 = 4, n2,i = 10, n3,1 = 4, ni,i = 4, n5,1 = 2
16QAM

MSPL fli,i = 16, fl2,1 = 4, fl2,2 = 2, fl3,1 = 4, fl4,1 = 4, n5,1 = 2

ML n1,1 = 24,fl3,1 = 8

64QAM GL fli,i = 112, 731,2 = 48,n1,3 = 16,fll,4 = 16

GL i,i = 8, fll,2 = 4

8PSK SPL i,i = 6, fll,2 = 2, fl2,1 = 4

SSPL fli,i = 6,fl2,1 = 6
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1 I I

0 SSPL, 8PSK, 12 dB
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. V GL,16QAM,9dB
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A

Figure 2.3: Probability density functions of reliability metrics for BICM
transmission over the nonfading AWGN channel for different constellations
and labeling. Lines represent the PDF approximation given in (2.19) and
(2.20) while markers represent the estimated histograms through simulative
measurement.

labeling. Especially the negative tail of the PDF is represented faithfully,

which is important when evaluating performance parameters.

2.3.2 Laplace Transform of the PDF Approximation

We now apply (2.19) and (2.20) to obtain expressions for the Laplace trans

form Al,m (s) which become closed form for s e R+.
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2.3. Approximation for the PDF of LLRs and its Laplace Transform

Table 2.3: Laplace transform of the probability density function of LLRs for
transmission over nonfading AWGN channel (s) for the six different
sets of competitive signal points shown in Figure 2.2.

A,1d,7(s) exp (d27 (2
— s))

A,2Id,7(s) exp (d2-y (s2 — s)) (i + erf (d/ s))

A,3Id, (s) exp (d27 (s2 — s)) (1 + erf (d,j5 s))

A,4d,(s) exp (d27 (2
— s)) (i + erf (d s) + (i + erf (d

))2)

A,5Id,7(s) exp (d27 (s2 — s)) (i + erf (d/
))2

A,6d,O,y(5) exp (d2-y (2
— s)) (i + erf (sin () d/5 s))

Nonfading Channel

First we consider the nonfading case, i.e., m —* oo, for which y = ‘. We

denote the Laplace transform for this case by 4AI (s). Starting from (2.19)

and (2.20), 4A17 (s) is obtained as

2
AI (s)

=
A,kIdj,y (s) , d1 I dmin , (2.21)

k=1 1=1

for a general M-ary QAM constellation and as

M

At (s)

=—

[ni,i A,1Idi,7 (s) + n6,j A,6Idi,ei,-y (s)]

d — sin(f)d (2.22)
I I — f\ mm,

SIflM)

I Oj =

for PSK constellations, respectively. is the Laplace transform of

fA,kI.,7P0, 1 k 6. Using the expressions for fA,kI.,7P) from Table 2.1,
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2.3. Approximation for the PDF of LLRs and its Laplace Transform

Table 2.4: Laplace transform of the probability density function of LLRs
when transmitting over Nakagami-m fading channels (s) for the
six different sets of competitive signal points shown in Figure 2.2.

m

A,1jd,,m (s) (m_d4s2_s))

A,2Id,,m() ( m—d(s2—s))
m

+

A,3jd,,m (s) (m_d4s2_s))m + I31d2d(S)

A,4Id,,m() (m_d4s2_s))m+ I3Id2d(S) +I3Id2d/,,/(S) + I4Id2d/.J(S)

A,5Id,,m(8) (m_d4s2_s) )
m

+2d2,d/(S) + I4Id2d//(S)

A,6d,O,,m(8) (m_d4s2_s))m + ‘3&,(o/2)d()

the can be written as weighted sum of the following integrals:

I (s)
= f,2(x)erf () u ( — x) exp (—sx) dx , (2.23)

I2I (s)
= f (x) erf ( x_j

exp (—sx) dx, (2.24)

where = d27 and ii = tan(8/2). Closed-form expressions for these integrals

assuming s e R+ are derived in the appendix, and the resulting expressions

for FA,kl.,7(s) are summarized in Table 2.3.

Nakagami-m Fading Channel

We now consider the faded AWGN channel. Due to the linearity property

of Laplace transform, we have

= f f,m(7)Al()d7. (2.25)
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2.3. Approximation for the PDF of LLRs and its Laplace Transform

Substituting (2.21) and (2.22) for AI7(S) in (2.25), we can write I>AIm()

as linear superposition of

= ff ,m(7)A,kI.,(S) d7, (2.26)

for which expressions are given in Table 2.4 in terms of the integrals

I31(s) = exp (_(s — s2)7) erf (vs) d7, (2.27)

I41(s) = 7f7,m(7) exp (_(s — s2)7) (erf (u ))2 d7 . (2.28)

Here, ‘ = d2, and v E {d/’/,d,dsin(O/2)}. In the appendix, we provide

closed-form expressions for these integrals for s E R+ and general m in

terms of Appell’s double Hypergeometric function and Gauss’ Hypergeo

metric function [17] [18] together with simplified approximations in terms

of elementary functions. Furthermore, for integer values of m exact closed-

form expressions are given using only elementary functions. For example,

for the important case of Rayleigh fading (m = 1) the integrals in (2.27)

and (2.28) are obtained as

I3(S)
[1 +(s —

s2)] (vs)2 +i(s — s2) +

14I,v(8)
— [1 +(s — s2)]

tan
(VS2 +i(s — s2) +
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2.4. Asymptotic Analysis for High SNRs

Table 2.5: Asymptotic values of Probability Density Function of LLRs

fkjd7(’) for transmission over nonfading AWON channel, its Laplace trans
form FkId7(s), and the Laplace transform of the PDF of LLRs when trans
mitting over Nakagami-m fading channels kIdm(S) for the six different
sets of competitive signal points shown in Figure 2.2.

fa
‘ A,1d,y (A) AId27,2d2(A)

Case 1 a
A,ljd,1(S) exp (d27 (s2 — s))

a
A,1Id,,m(S)

(m_d2s2_s))m

a
JA,2d,y (A) 2.N27,2d27(A)

Case 2 a
A,2Id,y(S) 2exp (d27 (s2 — s))

a
A,2Id,,m() 2 (m_d2s2_s))m

ja
J A,31d,7Q’) 21’fd27,2d2.7(A)

Case 3 aA,3d,y(S) 2exp (d27 (s2 — s))

a
A,3Id,,m(S) 2 (m_d2s2s))m

a
JA,4d,yP’) 3.N27,2d2(A)

Case 4 a
A,4Id,() 3exp (d27(s2 — s))

a
A,4Id,,m()

(m_dz82_s))m

ta
JA,5Id, (A; d, y) 4.N27,2d27(A)

Case 5 a
A,5Id,7() 4exp (d27 (s2 — s))

a
A,5Id,,m()

(m_d2s2_s))m

fa
.‘ A,6Jd,y() 2/27,2d27(A)

Case 6 a
A,6Id,() 2exp (d27 (s2 — s))

A,6Id,,m() 2 (md4s2_s))m

2.4 Asymptotic Analysis for High SNRs

In this section, we consider the case of asymptotically high SNR to further

simplify the expressions for the PDF of LLRs and its Laplace transform. We
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2.4. Asymptotic Analysis for High SNRs

then provide the saddlepoint approximation (2.8) and the direct derivation of

the PEP without saddlepoint approximation for the asymptotic case. From

this analysis we immediately obtain important performance indicators for

BICM transmission over Nakagami-m fading channels.

2.4.1 PDF of LLRs and Its Laplace Transform

The expressions for the PDF of LLRs and its Laplace transform for transmis

sion over the nonfading AWGN channel shown in Table 2.1 and Table 2.3 can

be simplified for high SNRs by replacing the error function with its asymp

totic values, i.e., erf(x) 1 (—1) for x >> 0 (x << 0), which corresponds

to high SNRs -y. The Laplace transform expressions for transmission over

fading channels are then obtained from averaging using (2.26). Table 2.5

summarizes the closed-form asymptotic results fkId7(A), A,kId,7()’ and

for 1 k 6. Using the expressions from Table 2.5 in (2.19)-

(2.22), the following simplified expressions are obtained:

Imax

f=1,(A) = N1 ?,2d?(A) , (2.29)

=
N1 exp (d7 (s2 _s)) , (2.30)

Imax m

= N1
(m_d?(s2_s))

, (2.31)
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2.4. Asymptotic Analysis for High SNRs

where

A f q, for QAM,
lma,c

—

c (2.32)
M/2 , for PSK,

N1 ? (fli,i + 2n2,j + 2n3,j + 374,1 + 4n5,j) , for QAM,

( (ni,j + 2n6,1) , for PSK.

2.4.2 Saddlepoint Approximation

We now apply the saddlepoint approximation (2.8) and the asymptotic

Laplace transform expressions from (2.30) and (2.31) to obtain asymptotic

BER expressions. We note from the expressions for (s) in Table 2.5 that

the saddlepoint & = 1/2 (cf. (2.9)).

Nonfading Channel

In the nonfading channel case (m —* 00, y = ‘), substituting the Laplace

transform expression given in (2.30) into (2.8) and considering only the

asymptotically dominant term, we arrive at

PEP (dHIy)
d1 /7rdH

exp (—dH d 7) . (2.34)

Finally, substituting (2.34) into (2.5) and only considering the PEP with

minimum Hamming distance gives asymptotic BER for transmission over

the nonfading channel.
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2.4. Asymptotic Analysis for High SNRs

Nakagami-m Fading Channel

The substitution of (2.31) into (2.8) results in

1 lmax N
dH

?fldH
PEP(dHIj,in)

= 2./lrdHm [ (i)] (—) (2.35)

Substituting (2.35) into (2.5) we can identify the diversity order as

Gd = mdfr, (2.36)

i.e., the product of the free distance of the convolutional code and the

Nakagami-m fading parameter. The horizontal offset of the log-error-rate

curve, and thus the coding gain, depends on modulation, labeling, and fad

ing parameter m. In particular, the coefficient

-1/rn
I max

d?m [ ()] . (2.37)

can be considered as a direct generalization of the harmonic mean d ob

tained in [2, Eq. (63)] for Gray labeling and transmission over Rayleigh

fading channels (m = 1) to arbitrary labeling rules and fading factors m.

2.4.3 Direct Analysis

The simplified expression (2.30) also allows direct evaluation of the PEP

without saddlepoint approximation.
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2.4. Asymptotic Analysis for High SNRs

Nonfading Channel

For transmission over the nonfading AWGN channel we use (2.30) to define

dH

[1(s)]
=

N1 exp (d7 (s2
— s))] . (2.38)

Using the multinomial-series representation (cf. [17, P. 823]), this can be

written as

I d!
dHI7() rrtmax 1

imax \i.L11 l

Z12++1LmlH (2.39)
lmax itflax

(fiNt) exP[(izd?) (S2_s)7]

Since (2.39) is the Laplace transform of a linear superposition of Gaussian

PDFs, the PEP is obtained in closed form as

/ \ umax \ I /lmax

PEP(dHI-y)= (\ tmi) ( flNiL) 1 ( Zitd
ji,2 1=1 it. \11 / N \11

Ii+12+•••+ttmax_dH

(2.40)

Considering only the asymptotically dominant term gives the approximation

PEP(dHIy) = NQ (/dHd) . (2.41)

Hence, the asymptotic PEP is expressed as the PEP for binary (i.e., BPSK)

transmission with an equivalent SNR of dH 7, scaled by a constant which

is a function of the minimum Hamming distance of the code and the mapping
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2.4. Asymptotic Analysis for High SNRs

rule. From the convergence of lower and upper bounds for the Q-function

for large arguments [19j, we obtain for —+ cc

PEP(dHI7)
= dl/7rdH7

exp (—dHd7) (2.42)

which coincides with the result (2.34) from the saddlepoint approximation.

Nakagami-m Fading Channel

Instead of directly using (2.31) we found it easier (i) first to determine

the PEP conditioned on the vector y .. , 7dJ of instantaneous SNRs

experienced by the dH bits involved in an error event and 9ii) then to average

with respect to the PDFf7i,m(7) of the SNR vector. Hence, starting again

from (2.30) we write the Laplace transform conditioned on

dH /dH \ fdH

dHI7() [J7(s) = ( [J N13 ) exp (d?7(s2— s) )
i=1 {ti dH} \j=1 J \j=1 J

E{i

(2.43)

from which we obtain the conditioned PEP as

lr1dH

PEFdHy) = (fl N ) Q ( j > d?7j . (2.44)
{t1 tdH} \j=1 / \N j=1 J

E{1 ,...,tmax}’1H
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2.4. Asymptotic Analysis for High SNRs

Applying the alternative representation of the Q-function (cf. [9, p. 85]) and

averaging with respect to the SNR vector leads to

1
dH d2

—m

PEFdH,m)
=

(nN1) / fl (1
+ 4msin2())

dq5.

E{1 ,...,max}dH

(2.45)
d2

Making the high SNR assumption 1 << 4msin2() we obtain

dH Tr/2
Imax N 4 md 1

PEP(dHI,m)
=

(> i) / ()2TfldH d (2.46)

which finally can be solved to [20, Eq. 3.6211

PEP(dHI,m)
- 2/F(rndH+1) ( N1)H ()mdH.

(2.47)

We note that the PEP in (2.47) has the same form as the PEP (2.35) ob

tained with the saddlepoint approximation. In particular, the diversity order

Gd (2.36) and the generalized harmonic mean dim (2.37) are confirmed as

important parameters for code and channel diversity and coding gain. Fur

thermore, recalling the asymptotic series

P(x±1/2)
= x1’2 [1 + O(x1)], x , (2.48)

we note that (2.47) and (2.35) become identical for mdH >> 1. The discrep

ancy for small values of mdH indicates the insufficiency of the second-order

approximation of the cumulant transform log (AI,m(_s)) used in (2.8) for
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extreme cases of fading (i.e., m << 1).

2.5 Numerical Results and Discussions

In this section, we present a number of exemplary numerical results to illus

trate the accuracy of cutoff rate and BER approximations based on the new

closed-form expressions. For the BER results we assume BICM with the

popular, quasi-standard 64-state rate-1/2 convolutional code with generator

polynomials (171,133)8.

Cutoff-Rate Results

First, we consider the cutoff rate (2.12) using the closed-form approximations

for the Laplace transform derived in Section 2.3.2. We found that c = 1/2

yields practically the same results as when using the exact saddlepoint a

(cf. Eq. (2.9)), which is consistent with the results reported in [10] and the

fact that & — 1/2 with increasing SNR (cf. Section 2.4.2). We therefore

adopted c = 1/2 in all cases.

Figure 2.4 showsR0-curves for QAM and PSK constellations with differ

ent mapping rules and channel types. In addition to popular Gray labeling

(GL), two non-Gray labeling, namely, mixed labeling (ML) and set parti

tioning labeling (SPL) (cf. [2,15]) are also included. The markers represent

R0-values obtained with Monte Carlo simulation, and the lines represent

results from the evaluation of the closed form expression. We observe that

there is an excellent agreement between analytical and simulation results for

a wide range of SNR, and in particular for all R0 values of practical inter
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5
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0

—20

Figure 2.4: Cutoff Rate R0 for BICM channel with different constellations,
labeling rules, and channels. Lines are obtained from evaluation of (2.12)
using the approximation for the Laplace transform derived in Section 2.3.2,
while markers are obtained from Monte Carlo simulation.

est. The discrepancies between analytical and simulated cutoff-rate curves

for non-GL and low SNRs in Figure 2.4 are expected, since the underlying

approximation of the PDF of LLRs (cf. Section 2.3) is not accurate in this

SNR range.

Bit-Error Rate Results

Next, we compare simulated and analytical BER results. In case of the BER

union bound (2.5), only the 15 first terms of the distance spectrum of the

convolutional code were taken into account, and thus, strictly speaking, the

o GL, 64QAM, m=3
D ML,16QAM,AWGN

SPL,8PSKm=1
V GL,8PSK,m=0.5

C

—10 0
[dB]

10 20 30 40 50
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Figure 2.5: BER of BICM transmission over nonfading AWGN channel for
a 64-state convolutional code of rate 1/2. Solid lines: BER union bound.
Dashed lines: Asymptotic analysis with (2.41). Markers: Simulation results

BER union bound is a BER approximation.

Figure 2.5 shows the analytical (lines) and simulated (markers) BER

results for different constellations and labeling for transmission over the

nonfading AWGN channel. Solid lines represent the BER union bound,

while dashed lines represent the asymptotic approximation (2.41) for dH =

dfree, i.e., only the asymptotically dominating error event is considered. We

observe that the BER union bound is fairly tight for all modulation schemes

and BERs below about iO. Likewise, the proposed simple expression

(2.41) accurately predicts the asymptotic error-rate performance at high

SNR. Similar results are obtained with the expression (2.34) derived from

45



Figure 2.6: BER of BICM transmission over Nakagami-m fading channel
for a 64-state convolutional code of rate 1/2. Solid lines: BER union bound
using the exact closed-form solutions for integrals (2.27), (2.28). Dashed
lines: BER union bound using the approximations (2.61), (2.66). Markers:
Simulation results

the saddlepoint approximation, which is apparent from the equivalence of

(2.41) and (2.34) for high SNR (cf. Section 2.4.3).

We now compare analytical and simulated BER results for BICM trans

mission over fading channels with different constellations and labeling rules.

To this end, Figure 2.6 shows BER curves obtained from the BER union

bound and the exact closed-form solutions for integrals (2.27), (2.28) (solid

lines) and their approximations (2.61), (2.66) (dashed lines) derived in the

appendix. Again, we observe an excellent match between results from analy

2.5. Numerical Results and Discussions
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40

Figure 2.7: BER of BICM transmission over Nakagami-m fading channel for
a 64-state convolutional code of rate 1/2. Solid lines: Asymptotic analysis
with (2.47). Markers: BER union hound.

sis and simulations, which confirms the validity of the approximations made

for the derivation of the closed-form BER expressions. Since this is also true

for the expressions using the exponential approximations of the error func

tion, i.e., (2.61) and (2.66), we have provided tight BER approximations in

terms of elementary functions.

Finally, in Figure 2.7 the asymptotic BER results from (2.47) and dH =

dfree (solid lines) are plotted together with the BER union hound (markers)

for the same transmission scenarios as in Figure 2.6. It can be seen that

the asymptotic results correctly predict coding and fading gain of the BICM

scheme. Similar results are obtained when evaluating (2.35), since the term

106
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2.6. Conclusion

on the left-hand side of (2.48) is well approximated by (mdH)’/2for mdH =

mdfr = lOm > 5 for m e {O.5, 1} in Figure 2.7. Hence, we conclude

that the simple expressions (2.35) and (2.47) are very valuable to quickly

determine the asymptotic performance of BICM transmission over fading

channels.

2.6 Conclusion

In this chapter we have presented a new method for analyzing the perfor

mance of BICM transmission. Its key element is a new approximation of the

PDF of the bitwise reliability metrics, which is a valuable contribution in

its own right. This approximation has led us to closed-form expressions for

the Laplace transform of the PDF, in terms of which BER and cutoff rate

of BICM can be expressed. Notably, our results are valid for BICM with ar

bitrary QAM and PSK constellations and mapping rules, and transmission

over Nakagami-m fading channels for arbitrary m. Furthermore, we have

developed an asymptotic analysis which provides valuable insights into the

performance of BICM over fading channels, namely expressions for diversity

order and asymptotic coding gain. We have presented selected numerical

results, which confirmed the accuracy of the proposed analytical results for

SNR regions of interest for moderately complex coding schemes, such as

convolutional coded BICM.

48



• --
- S -

• S
• S
• - -- - S
* S
• S

- --- _4.
55 /

S
S

S

S
S

S
S

S
S
I
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Figure 2.8: The graphical representation of integrals (2.50) (left) and (2.53)
(right). Shaded areas are integration supports, and dashed lines indicate
decomposition into support areas for which the integrals can be solved.

2.7 Appendix

In this appendix we present the solutions for the four integrals IkI.(s) that

appear in Section 2.3.2.

2.7.1 Closed-form Expression for Iii(s) in (2.23) for s e R

Using the integral form of the error function,I11(s) from (2.23) is written

as

i 2/7

Ii1(s) = f exp (
2)

exp (_x) exp (—sx) dx2 dx.

(2.49)
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Applying the change of variables x1 leads to

/S-X1

Iii,i(s)=_exp(ii(s2_s))f / exp(_(x?+x))d.x2dxi.

(2.50)

The support of this integral is illustrated in Figure 2.8 (shaded area in the

left sub-figure), from which we can express it as

I11,(s) = — exp (t
(2

— s)) (si + s2 + , (2.51)

where S, S, and S3 denote the corresponding areas indicated in the Fig

ure 2.8 (left sub-figure). Using the rotational invariance of the integrarid in

(2.50), the areas are easily determined and from (2.51) the integral is finally

obtained as

I1j(s) = — (i +erf
())2

. (2.52)

2.7.2 Closed-form Expression forI21,(s) in (2.24) for s e R

Starting from (2.24) and performing the same transformations as above, we

obtain

00 2v(/is_xi)

I21(s) = — exp (i
(s2

— s))f / exp (_ (x + x)) dx2dx1.

(2.53)

The support of this integral is illustrated in Figure 2.8 (shaded area in

the right sub-figure). Exploiting again the fact that integrand in (2.50) is
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rotational invariant, we can write

2 S4’\
I21,(s) = —— exp ( (s — s))

(j-)
(2.54)

where S4 is illustrated in Figure 2.8 (right sub-figure). Finally, we arrive at

the closed-form expression

/ 2v
I2I,j(S) = —exp ( (s — erf ( + (2v)2

(2.55)

2.7.3 Computation ofI31,(s) in (2.27) for .s e R

Exact Solution

Applying the alternative representation of the Q-function (cf. [9, p. 85j), the

integral (2.27) can be written as

I31(s)
= (m + — 2)) [1 — 2P1] , (2.56)

where

2 m
(vs)2) (2.57)

ir ()
C =

+ i(s — s2)

The integral P1 has been solved in [9, p. 127] as

1 F(m+)
1 2(1+C)(m+O5)F(m+1)

2Fi(1m+;m+1;)

(2.58)
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for general values of m in terms of the Gauss Hypergeometric function

2F1(.,;.;.), which simplifies to

Pi = -p(c)>
(2k)

(1_

(c)12)k]
, p(c)

1---,
(2.59)

for positive integer m. Substituting (2.58) or (2.59) into (2.56) gives the

desired closed form.

Approximation

For non-integer m an approximation of I31,,(s) in terms of elementary func

tions may be desirable. This is possible through the use of the exponential

approximations of erf (x). For example, using the tight approximation [211

erf (x) 1 — exp (_x2) — exp (—) , (2.60)

the integral (2.27) can be approximated as

3

I31(s) a
(m + [p(s — s2) + b(vs)2] (2.61)

where [ai,a2,a3j= [i,_,_] and [b1,b2,b3]= [o,i,].
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2.7.4 Computation of I4I,,v(s) in (2.28) for s e R

Exact Solution

Using again the alternative representation of the Q-function (cf. [9, p. 85]),

we can rewrite the integral (2.28) as

I4I,v(s) = (+“2))[1 —4P1+4P2], (2.62)

where F1 and c are defined in (2.57), and

It
4 —m

P2 1(1+ .
d. (2.63)

sin ()J

The integral P2 has been computed in [22, p.538] for general m in terms of

Appell’s double Hypergeometric function F1(.; .,.;.;.,.):

1 / 1 ‘ / 3 1+c 1’\
P2

= 2 (2m + 1) 1 + 2c)
F1 1; m, 1; m +

1 + 2c’
(2.64)

In case of positive integer m, a closed-form expression in terms of elementary

functions can be obtained [9, p. 130]:

1 1 I/ir 1
\m1 /2k’\ 1

P2=--p(c) -tan ((c)))

—sin (tan_i (p(c))) [ T
k [cos (tan-i (p (c)))

12(kz) +1] }k=1i=1 ( +c)

(2.65)

where T,k
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Approximation

Exponential approximations of erf (x) allow us to express I4j, (s) in terms

of elementary functions also for non-integer rn. For example, applying again

approximation (2.60), we obtain

6 m

I411(s) ( m

.

m + [(s — s2) + b(vs)2j
(2.66)

where [ai,a2,a3,a4,a5,a6]= [i — —1 and[b1,b2,b3,b4,b5,b6]=3’ ‘36’6’4

10 1 “ 2 ‘
1

L ‘ ‘ ‘ ‘ ‘
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Chapter 3

Performance Analysis for

BICM Transmission over

Gaussian Mixture Noise

Fading Channels5

3.1 Introduction

While bit-interleaved coded modulation (BICM) has been thoroughly inves

tigated for the additive white Gaussian noise (AWGN) case, the analysis of

BICM transmission impaired by non-Gaussian noise has received relatively

little attention, cf. e.g. [1, 2]. In general, the study of communication in

non-Gaussian environments has become very popular due to its practical

relevance. In many practical cases such as indoor radio communication,

partial-time jamming, ultrawideband communication, and power line com

munication, this interference is well modeled as a Gaussian mixture noise

(GMN) [3—9]. It is therefore of immediate interest to extend BICM per

formance analysis as those mentioned above to the case of GMN. To this

5A version of this chapter has been submitted for publication. A. Kenarsari Anhari and
L. Lampe, “Performance Analysis for BICM Transmission over Gaussian Mixture Noise
Fading Channels,” submitted for publication, June 2009
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end, the authors of [2] present a framework that modifies the BICM ex

purgated bound (BICM-EB) from [10) to encompass non-Gaussian noise.

Since the analysis relies on the expurgated bound, it is limited to the case

of Gray labeling and does not result in closed-form expressions for bit-error

rate (BER). Furthermore, the asymptotic performance analysis in [2] is valid

only when the diversity order of the system is an integer.

In this chapter, we present a novel approach for performance evaluation

of BICM transmission over general frequency-flat fading channels impaired

by GMN. As in [2] it is assumed that the system employs the standard

Euclidean-distance decoder. Our analysis mainly builds upon (i) the sad

dlepoint approximation proposed for BICM in [11) and (ii) the approxima

tion of the PDF of bitwise reliability metrics from Chapter 2. The main

contributions of this chapter can be summarized as follows.

• A closed-form approximation for the PDF of bit-wise reliability metrics

when transmitting over nonfading GMN channels and using Euclidean

distance based decoding is derived. The resulting PDF expression is

valid for arbitrary signal constellations and labeling rules.

• Based on this new expression, we derive the Laplace transform of the

PDF of reliability metrics for general fading GMN channels. Using

this result together with the saddlepoint approximation [11], the PEP

between codewords can be obtained. For the general GMN case, the

saddlepoint needs to be found numerically, which however can be done

very efficiently due to the convexity of the Laplace transform [12]. The

BER for BICM with linear codes is then readily approximated in terms

of these PEP expressions.

• For the special case of fading AWGN channels, for which the Eucidean

distance based metric is maximum likelihood, the PEP is given in

closed form. This is a valuable result in its own right, as previous
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studies have been limited to Nakagami-m fading channels [13—15].

We simplify the saddlepoint-based approximation for the high signal-

to-noise ratio (SNR) regime, which results in closed-form expressions

for asymptotically high SNR. It is shown that the diversity order of

the system is the product of the fading diversity order and the min

imum Hamming distance of the BICM code. The asymptotic coding

gain consists of two terms, one of which is a function of the GMN

parameters and the other is a generalization of the harmonic distance

obtained in [10,14].

• In the case of nonfading GMN, where the noise component with the

largest power dominates the asymptotic BER, the convergence of the

asymptotic BER approximation occurs only at very low BERs for typ

ical GMN scenarios. We therefore also derive a novel closed-form ex

pression for the PEP in nonfading GMN, which takes all mixture-noise

components into account and is confirmed to be tight in BER ranges

typically of interest.

We present a number of selected numerical results for convolutional coded

BICM and different constellations, labeling rules, and fading and noise sce

narios, which clearly illustrate the usefulness of the proposed approximations

and asymptotic results to predict the BER performance.

The remainder of this chapter is organized as follows. In Section 3.2, the

BICM transmission model is introduced. The new expressions to analyze

the BICM error rate are derived in Section 3.3. In Section 3.4 we provide

the simplifications applicable in the high SNR regime. Numerical results

obtained from the proposed analytical approximations and simulations are

compared and discussed in Section 3.5. Section 3.6 concludes this chapter.
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3.2 System Model

The block diagram of the equivalent baseband discrete-time BICM trans

mission system is shown in Figure 3.1. At the transmitter, the output of a

binary encoder c = [c1,c2, ..., CB] is first interleaved into clr = [cr, c, ..., cj

and then input to a mapper : {O, 1}’ —* X to obtain the transmitted sym

bol x = [C_l)r+l, C(i_l)r+2..., at symbol time i. The transmitted

symbols x are taken from a general complex-valued constellation X of size

2.

The channel considered in this work is fiat fading with additive non-

Gaussian noise. Assuming coherent reception, the equivalent discrete-time

transmission model can be written as

(3.1)

where y E C, h e R+, and z E C are the ith received sample, channel gain,

and noise sample, respectively. Taking into account the effect of interleaving,

the fading gains h are modeled as i.i.d. random variables with unit power

IE {h} = 1. Similarly, the noise samples are also i.i.d. and distributed

according to the zero-mean Gaussian mixture distribution

fz (z)
=

exp (_iii)
, (3.2)

where

N

= 1, (3.3)
n= 1

= , (3.4)
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and thus IE {IIzII2} = 1. Also, without loss of generality, we assume that

V(i,j)i>j. (3.5)

The finite-order GMN PDF (3.2) can well approximate many continuous

probability density functions (PDFs) and is often used to represent the

combined effect of Gaussian background noise and man-made or impulsive

noise [2—9]. We will repeatedly consider the special case of AWGN, for which

N = 1 in (3.2).

Considering the fading and noise power normalization, ‘ in (3.1) repre

sents the average SNR at the receiver. We define the instantaneous SNR

as

(3.6)

At the receiver, the demapper outputs r bitwise reliability metrics per sym

bol according to

—1)r+j (IIYi — %/hi a112)
aEX,,o

(iYi — ‘./hi al12) (3.7)

where Xj,b is the set of symbols in the constellation with the jth bit in the

binary label fixed to b. Even though (3.7) is not the true log-likelihood ra

tio (LLR) in the presence of GMN, optimum maximum-likelihood decoding

would require the knowledge of noise PDF or the active mixture component

(i.e., the noise state n) and its variance. Since this knowledge is usually not

available at the receiver, the use of the conventional Euclidean distance met

ric (3.7) is often considered, e.g. [2]. The “max-log” approximation applied

in (3.7) is appealing from an implementation point of view and has been

shown to be effective in Gaussian noise environments [10, 16]. The metrics

are deinterleaved into )j, which are then input to the decoder for the

binary code in order to retrieve the binary transmitted data.
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BICM channel
Physical channel

/h z

Figure 3.1: Block diagram of BICM transmission over a fading channel
impaired by Gaussian mixture noise. Also indicated is the binary-input
continuous-output equivalent BICM channel. ir and 7r1 denote interleaving
and deinterleaving, respectively. and r’ denote bit-to-symbol mapping
and demapping (i.e., bit-metric computation), respectively.

We make the common approximation of perfect (i.e., infinite-depth) in

terleaving, so that the transmission channel between encoder output c3 and

decoder input A3 can be modeled as an equivalent binary-input output-

symmetric (BIOS) channel, which is known as equivalent BICM channel [17]

(refer to Figure 3.1).

3.3 Error Rate Analysis

In this section, we derive expressions to approximate the BICM BER for

fading GMN channels. To this end, we first briefly review the saddlepoint

approximation for the PEP [11] (Section 3.3.1) and the approximation of the

PDF of reliability metrics developed in Chapter 2 (Section 2.3). The latter

is then extended to the case of GMN (Section 3.3.3), and its Laplace trans

form for fading GMN channels, which is required for the PEP saddlepoint

approximation, is derived (Section 3.3.4).
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3.3.1 BER Estimation

We consider the popular union bound BER estimation [18], which relies

on the code’s distance spectrum and expressions for the PEP between two

codewords. Assuming a linear code and the BIOS channel with perfect

interleaving, the PEP only depends on the Hamming weight dH of the cor

responding error event and can be expressed as the tail probability of the

random variable
dH

A3 , (3.8)
j=1

generated by adding dH i.i.d. random variables A3 which have the same

distribution as the reliability metrics (3.7) when transmitting c = 1,6 That

is,

PEP(dH) = Pr (dH <0) . (3.9)

For a closed-form estimation of (3.9), the saddlepoint approximation

Pr (dH <0)
1

(A
())dH+1/2

, (3.10)
s 21rdH AIf- (s)

has become very popular, e.g. [11, 13, 17]. In (3.10), FAlf. (s) denotes the

Laplace transform of the PDF of reliability metrics when transmitting c = 1

over a fading channel with PDF f.7 (y) for the instantaneous SNR7 y defined

in (3.6), 4Af (s) is the second derivative of AIf (s), and . E (0, Smax) 5

known as the saddlepoint, where 8max e R denotes the leftmost pole of

AIf (s). The saddlepoint . is defined as

dA (s)
=0. (3.11)

6The choice of c = 1 is without loss of generality.
“We drop the time index since variables are i.i.d.
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Table 3.1: Probability density function of reliability metrics, fAkI,d(A) and
fA,kI,d,o(A), for transmission over nonfading AWGN channel, used in (3.12)
and (3.13).

______

k = 1 J\Id27,2d27(A)

k = 2 jV27,2d27)[i — erf (!1\1
2d)j

k = 3 2A/27,2d27(A)u(d27 — A)

k =4 27,2d2(A) {i — 2erf ()) u (d2-y — A]

k = 5 —4.N27,2d27(A)erf u (d2’y — A)

k = 6 .N27,2d27(A) [i — erf (tan (O”l
2) 2d.J )j

For BIOS channels with maximum likelihood demapping it is known that

= 1/2, which is also a close approximation for the max-log metric (3.7) in

the case of AWGN [13]. However, for general GMN the saddlepoint deviates

significantly from 1/2. In this case, since 4AIf. (s) is a convex function [12],

can be determined by fast search methods [19, Ch. 9, 10].

3.3.2 Previous Result

The following derivations build on the fundamental result from Chapter 2

that the PDF of reliability metrics for transmission of c = 1 over the non-

fading AWGN channel are well approximated by8

5 2’—1
fAM (A)

= r k,1 fA,k17,d1 (A) , dt = Idmin, (3.12)
k=1 1=1

8The notation “17” means that the expression is conditioned on the instantaneous SNR

, while “If7” denotes an expression for given SNR distribution f7. In the nonfading case,
we have -y = and thus the expression conditioned on ‘y is the final result.
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for regular quadrature amplitude modulation (QAM) constellations and

21

r 2r—1 [ni,1 fA,1j,d P’) + fl6,i fA,6I7,d1,o (A)]

(3.13)

f d1 = [sin()/sin()]

l 0 = ir—.

for phase-shift keying (PSK) constellations with minimum Euclidean dis

tance dmjn. In (3.12) and (3.13), fA,kj7,d,(e1)(A) is the PDF of the reliability

metric given c = 1 was transmitted considering a subset of “competitive”

signal points representing c = 0 at distance d1. There are six non-equivalent

types of subsets for QAM and PSI< constellations and, for convenience, the

closed-form expressions for fAkI7d(A) are given in Table 3.1, where Af (x)

denotes the real-valued Gaussian PDF with mean t and variance a2, erf(x)

is the Gauss error function, and u(x) is the unit step function. The coef

ficient k,j denotes the number of subsets of type k at Euclidean distance

d1. Table 2.2 provides numerical values for k,j for a number of popular

constellations and labeling rules.

3.3.3 Extension of PDF Result to Nonfading GMN

We note that the PDF approximation developed in Chapter 2 is applicable

to arbitrary signal constellations, including, for example, PSK with non

uniformly spaced signal points and amplitude phase-shift keying (APSK)

[20] constellations. The resulting PDF expressions have the same form as

those in (3.12) and (3.13), with appropriately modified numerical values for

k,1, d1, and Sj. In the following, we therefore use the general expression

fA17(A)
= 2’ nk,zfA,kj (A), (3.14)

kEFC 1=1
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Table 3.2: Expressions for the PDF of reliability metrics, fA,k17,,,(A), for
transmission over nonfading GMN channel, used in (3.17). i = d for k =

1,...,5, arid = [d,Oj fork = 6.

PDF fA,kIy,n,’)

k = 1

A—d2y ‘\lk = 2 [i — erf

k = 3 2740&1,(A)u (d2y — A)

A—d2k =4 N 4d2(A) — 2erf
(2d)]

u (d2-y — A)

A- u (d2 — A)k = 5 —427,4(A)erf
(2)

.X—d2y 1k = 6 Nd2,4d2(A) [i — erf (tan () 2V’nd)j

where K is the set of non-equivalent types, M is the maximal number of

non-zero coefficients rik,j, and ij denotes the constellation parameters. For

example, IC = {1,.. . , 5}, M = 2 — 1, and ij = d1 for QAM, and IC =

{1,6}, M = 2T_1, and j [dj,Ojj for PSK.

In order to extend (3.14) to the case of GMN, we introduce the auxiliary

random variable which identifies to which component n of the PDF (3.2)

zj belongs. The “noise-state” variable is i.i.d. with distribution Pr{ =

n} =

Instead of directly using the PDF of GMN for performance analysis, we

use to define the component-noise random variable with

pzn(z) = --exp (_i)
. (3.15)

Then, the PDF of reliability metrics can be considered as a weighted sum
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of PDFs fAI, (A) conditioned on the state of GMN tj = n,

N

fAI7 (A) = fj7,(A) , (3.16)

where fAl7,(A) is expressed analogous to (3.14) as

fAI, (A)
= r2 flk,1fA,k,,n, (A). (3.17)

keIC 1=1

Since fA,kI7,,,1(A) is conditioned on = n, one may be inclined to obtain

its PDF by replacing the instantaneous SNR ‘y with ‘y/(2o) in the expres
N

sions for fA k17 , (A) in Table 3.1 (recall the normalization = 1/2).
n=1

This would indeed be correct, if the receiver had knowledge about the in

stantaneous noise state j, which however is not the case for the conventional

demapper (3.7) considered here. A proper derivation of fA,kI7,,,71 (A) follow

ing the steps in Chapter 2 leads to the closed-form expressions presented in

Table 3.2.

We observe that the resulting PDF expression (3.16) using (3.17) and

the results in Table 3.2 is very easy to evaluate, and its computation does

not require any numerical integration.

3.3.4 Laplace Transform of the PDF of Reliability Metrics

for Fading GMN

Using the PDF expression (3.16), we now proceed to derive expressions for

the Laplace transform AIf (s), which is required for the PEP saddlepoint

approximation (3.10). We will assume s e R+, which is sufficient for evalu

ation of (3.10).

Using the fact that PDF of reliability metrics for fading channels can be
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Table 3.3: Expressions for the Laplace transform of the PDF of LLRs for
transmission over unfaded channel A,kI.y,fl,l?(S) used in (3.23). $ E R+,

= d fork = 1,... ,5, and = [d,O1 fork = 6.

Laplace transform AkI7n(s)

k = 1 exp (d2-y (2os2 — s))

k = 2 exp (d2y (2os2 — s)) (1 + erf (ud,/7s))

k = 3 exp (d2-y (2os2 — s)) (i + erf (vo-d,ñs))

k=4 exp(d27(2as2—s))x

(1 + erf (‘fld\,’s) + (1 + erf (andvs))2)

k = 5 exp (d2-y (2os2 — s)) (1 + erf (ad/s))2

k = 6 exp (d27 (2as2 — s)) (i + erf (sin () vod1j7s))

expressed as

fAf () = ff(7) fAI (A) d7, (3.18)

we write the Laplace transform

(s) = f fA (A) exp (—sA) dA (3.19)

= L () exp (-sA) dA] d7 (3.20)

/ fyQ) (s) d-y, (3.21)

where we changed the order of integration (assuming s is such that AIf (s)

exists) and defined 1AI’ (s) as the Laplace transform of fAI7 (A). From (3.16),

69



3.3. Error Rate Analysis

(3.17), and the linearity property of the Laplace transform we have

N

AI7 (s) = nAI,n (s) , (3.22)

where

AI7,n (s)
= r21 k,l (s) (3.23)

keIC 1=1

and (s) is the Laplace transform of (A). Considering the

expressions for (A) in Table 3.2 and using the integration tech

nique presented in Chapter 2 (Section 2.7.1 and Section 2.7.2), closed-form

expressions for A,kI,n,,ii (s) are obtained, which are summarized in Ta

ble 3.3. These results together with (3.23) and (3.22) give us closed-form

expressions for Aj7 (s), which allows us to evaluate the saddlepoint approx

imation (3.10) for nonfading GMN channels.

For fading GMN channels we define

(s) ff(7) A,kI7,n,m (s) d7, (3.24)

and it follows from (3.21), (3.22), and (3.23) that

N M

AIf (s)
2’ k,1 A,kIf,n,t (s). (3.25)

r
fl= keICt=1

Applying the methods from Chapter 2 (Section 2.7.3 and Section 2.7.4),

the integral in (3.24) can be solved in closed form with elementary function

for Nakagami-m fading channels with integer parameter m, and in terms

of hypergeometric functions for non-integer m. However, no closed-form

solution exists for other popular fading distributions like Nakagami-n or

70



3.3. Error Rate Analysis

Nakagami-q. Therefore, we propose the use of the approximations

erf (x) P(x) a exp (b x2) , (3.26)

(erf (x))2 P(x) > a exp x2), (3.27)

with coefficients a, b, a, b and number of terms K, 1? chosen accord

ing to the particular approximation method and required accuracy. Such

approximations for the error function can be obtained using the alternative

representation of the Gaussian Q-function and approximation of the integral

using a Riemann sum, cf. [21]. Equipped with (3.26), (3.27), and defining

the moment generating function (MOF) of the instantaneous SNR y

Mf (s) ff (t) exp (s t) dt, (3.28)

as well as the finite series

Si(s;,v,p) Mf (—vs+ (w+bp2)s2) , (3.29)

S2(s; , v, p) a Mf (—vs + (w + bp2) s2)
, (3.30)

the resulting expressions for A,klfy,n,t (s) are presented in Table 3.4.

Hence a simple closed-form approximation of AIf (s) for fading GMN

channels is obtained as long as the MGF of the SNR is available in closed

form, which is the case for almost all the practical fading distributions [22].

Table 3.5 (second column) summarizes the formulas for Mf7(s) for the most

popular fading models.
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3.4. Analysis in the High-SNR Regime

Table 3.4: Expressions for the Laplace transform for fading
GMN channels as function of MGF Mf(s) (3.28) and the finite-series ex
pressions Si(s;w,v,p) (3.29) andS2(s;w,u,p) (3.30). s E R, 7) = d for
k = 1,... ,5, and ij = 4,0] fork = 6.

Laplace transform

k = 1 Mf (d2 (2os2 — s))

k = 2 Mf, (d2 (2as2 — s)) + S1 (s; 2d2,d2, and)

k = 3 Mf (d2 (2cis2 — s)) + Si (s; 2od2,&, ‘./ond)

k = 4 Mf.7 (d2 (2us2 — s)) + Si (s; 2od2,d2, /ad) +

S1 (s;2od2,&,od) + S2 (s;2od2,d2,ord)

k = 5 Mf (d2 (2os2
— s)) + 2S1 (s; 2od2,d2,d) +

S2 (s;2o&,&,od)

k = 6 Mf (d2 (2os2
— s)) + Si (s;2od2,d2,vsin () ciid)

Table 3.5: The MGF of SNR Mf7(S) and its asymptotic form M7(s) for a
number of Dopular fading distributions.

Fading model Mf(s) M7(s)

Rayleigh (1 — s)1
;,

Nakagami-m (i
— mm/(—s)m

m

Nakagami-n
(1 + n2) — (1 + n) exp (—n2)Is

(1+n2)_s

( n2s )exp__(1+n2)—s

2q S
Nakagami-q (1_2s+

(2s)2q2\05

(1+q2)21 —____

3.4 Analysis in the High-SNR Regime

In this section, we consider the high-SNR regime to obtain further simpli

fied expressions for the PEP. We first consider the nonfading GMN channel
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3.4. Analysis in the High-SNR Regime

(where ‘ = -y) and derive the PEP saddlepoint approximation for high SNR.

Since the saddlepoint analysis does not result in a fully analytical solution

(the numerical search for the saddlepoint remains), we also derive an alterna

tive BER expression, which does not rely on the saddlepoint approximation.

For general fading channels, we consider the PEP saddlepoint approxima

tion for the case of asymptotically high SNR, which leads us to expressions

for the coding and diversity gain for BICM transmission.

3.4.1 Simplified Expression for PDF of Reliability Metric

and Its Laplace Transform

In the case of high SNR, the PDF expressions in Tables 3.2, 3.3, and 3.4 can

be well approximated by

f,kI7,n,d1(A) = Ck.4,40.d(A) , (3.31)

where [ci,c2,c3,c4,c5,c6]= [1,2,2,3,4,2], and thus the PDF expression

given in (3.16) simplifies to

N M

f(A) = [NijV7,4ct.y(A)] , (3.32)

where N1 = can be interpreted as the average number of
kEIC

competitive signal points at distance d1. The Laplace transform of f77 (A)

is given by

N M
= n N1 exp (d?7 (2s2

—

, (3.33)
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3.4. Analysis in the High-SNR Regime

and its average with respect to the instantaneous SNR for fading channels

is obtained as

N M

Af7 (s) = [N1Mf (d? (2crs2
— . (3.34)

3.4.2 Nonfading GMN Channel

Saddlepoint Analysis

From the Laplace transform expression in (3.33) we find the saddlepoint

as the (unique) solution of (see (3.11))

N M

(s) = € N1 (d7 (4o-s _i)) exp (d?7 (2crs2 - =

(3.35)

from which we infer that i/o-? <4â < 1/o. Hence, a numerical search for

in (1/(4u?), 1/(4a)) is required.

In asymptotically high SNR y —* oo, all terms (2os2 — s) need to be

negative and thus the term for n = 1 and 1 = 1 dominates the sum in

(3.35), since d?(2u?s2— s) = maxi,{d?(2os2— s)}. Hence, the saddlepoint

approaches the solution

lim a = —- (3.36)
7 4a1

and the PEP asymptotic approximation

pEpa(dH)
dlo-i/21rdH

exp (_4i 7) (3.37)

is obtained from (3.10). We observe that the asymptotic PEP is the same as

the PEP for binary transmission with an equivalent SNR of (dH d? 7) / (2u?),

scaled by a constant which is a function of the Hamming distance, mapping

rule, and GMN parameter associated with the component with the largest
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3.4. Analysis in the High-SNR Regime

variance. Due to the multiplicative term we expect (3.37) to be relevant

only for very low BERs in most practical cases, since the probability of the

impulsive components is typically relatively low, cf. e.g. [2—9]. Therefore,

next we present a different expression for the PEP in high SNRs which

includes all mixture noise components.

Direct Analysis

We again start from the expression for Laplace transform of reliability met

rics given in (3.32), and compute the Laplace transform of the PDF of dH

defined in (3.8). Due to the perfect interleaving assumption we obtain

dHI7
(s)

dH
= [i (s)] (3.38)

NrM

N
dH. II N1 exp (dy(2crs2

- s))] (3.39)
“1 “N

fll+.+flNdH I fl (n!/e)] j=1 1=1

Li=1
dH!

“N
flj+...+flNdH I II

L=’

NI n! IM

II r M 1 exp ld7(2us2— s)) (3.40)
i=1 11 tJpf

[hl++tMfh I fl (l!/N) I
Li=’ J

dH!

“N

=

[N

s...]
fll+...+flNdH fl (n!/’)

t1,1+...+tl,Mfl1 iN,1++IN,MflN
i=1

Ill fJ ‘‘ 1 exp l,d7(2s2— s)) , (3.41)
‘N MrN M

i=lj=1 j \i=lj=1
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3.4. Analysis in the High-SNR Regime

where we applied the multinomial series expansion in (a) and (b). From

(3.41) we observe that the PDF of ‘dH is a superposition of Gaussian PDFs

and thus we can directly evaluate (3.9) as

PEP (dH) =
N

dH!

“N [1 / ‘i l,l‘11,M
n1+...+nN=dH t./ e j i1,1++i1,M=fll IN,1++IN,M=”N

N M

fiLl ‘ Q . (3.42)

2 / ljjctjo
i=lj=1

This is a closed-form result for the PEP for transmission over nonfading

GMN channels with high SNR. We note that for the asymptotic case 7 —

where the term with the largest argument of the Q-function dominates the

sum, it can be shown that (3.42) converges to (3.37). However, as noted

above, this asymptotic result is of interest only for very low BERs.

3.4.3 Fading GMN Channels

In the case of fading channels, we consider the case of asymptotically high

SNR j and assume that the MGF of the instantaneous SNR Mf(s) can be

expressed as

M7(s)
= (_s)99

(3.43)

where c> 0 and the diversity order g > 0 depend on the fading distribution,

cf. [23, AS3)]. For integer g, (3.43) can be considered as the first term of

the Maclaurin series expansion of Mf (s) in 1 /. Table 3.5 (third column)

presents the respective expressions for M7 (s) for a number of popular fading
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3.4. Analysis in the High-SNR Regime

distributions. Substituting (3.43) into (3.34) we have

N M

f(5)
= (d?(s-2cs2))9

(3.44)

M N

= [ [ s —2s2)9j . (3.45)

Therefore, the asymptotic saddlepoint is the (unique) solution of

e(4os—1)
=0, (3.46)

i=1 (1 — 2os)’

which cannot be given in closed form. However, we note that the saddlepoint

only depends on the GMN parameters and diversity order g of the fading

process. We can further limit the numerical search interval considering that

ma3c = 1/(2u?) is the leftmost pole of the Laplace transform (3.45) and that

(3.46) is negative for s 1/(4cr?). Hence, we get the lower and upper limit

1 1
<5 < . (3.47)

4o 2u1

In order to arrive at a closed-form approximation, we may consider the

midpoint of the above interval,

= , (3.48)

as an estimate for the asymptotic saddlepoint.

Given the saddlepoint , defining

((s)
(4 [s _2gs2])9 (3.49)

and substituting (3.45) into (3.10), we obtain after some simplifications the
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3.5. Numerical Results and Discussion

asymptotic PEP expression

dH
d+1/2 M N 1

PEP(dH) =

. i/27r dH “(.) (&)9
—a—. (3.50)

We observe that the diversity gain for BICM transmission over fading GMN

channels is given by the product dHg. The coding gain consists of two terms,

where the first one depends on the GMN parameters through ct(s) (3.49).

The second term

cNj
351

1=1
(2)9

depends on the signal constellation and labeling, and can be considered

as a generalization of the harmonic distance for BICM with Gray labeling

obtained in [10] and [14] for Rayleigh and Nakagami-m fading, respectively.

In the special case of fading AWGN channels, for which . = 1/2, (3.50)

simplifies to

PEP (dH)
= 2 dH [ ]

dH

dHg’
(3.52)

which is a generalization of the asymptotic result in Chapter 2 for Nakagami

m fading channels.

3.5 Numerical Results and Discussion

In this section, we present and discuss a number of exemplary numerical

results to illustrate the accuracy of the proposed PDF and PEP approxi

mations (cf. Sections 3.3.3, 3.3.4, and 3.4). For this purpose, we use the
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3.5. Numerical Results and Discussion

PEP expressions in the BER union bound for a convolutional code of rate

R = kc/nc, which is given by [18]

1
Pb W,j PEP(d), (3.53)

where dfree denotes the free distance of the convolutional code and WdH

denotes the total input weight of error events at Hamming distance dH.

3.5.1 Parameters

For the BER results we assume BICM with the popular 64-state rate-1/2

convolutional code with generator polynomials (171, 133)8 and dfr = 10.

The union bound (3.53) is truncated to dH < 25. To evaluate the series

terms Sj(s;.) (3.29) and S2(s;.) (3.30) needed in Table 3.4, we use the

error-function approximation (cf. (3.26) and (3.27)) [21]

P(x) = 1— exp (_x2)
— exp (—v) , P(x) =P2(x). (3.54)

Furthermore, we consider the following labeling rules: Gray labeling (GL),

set partitioning labeling (SPL), modified set partitioning labeling (MSPL),

semi set partitioning labeling (SSPL), and mixed labeling (ML). While GL

is of importance when used with non-iterative decoders [10], the other label

ings are of practical and theoretical importance for the case of, e.g., BICM

transmission with iterative decoding [24,25], for which our analytical results

would provide an approximation of BER after the first decoding iteration

and facilitate the selection of the labeling rule.

The BER results for different constellations are presented as function of

the bit-wise SNR --
= 7/(Rr) , 78 = 7/(Rr). (3.55)
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3.5. Numerical Results and Discussion

Finally, we consider f-mixture noise, which is an important instance of

general GMN with two terms, e.g., 51 The first term represents impulsive

noise due to some ambient phenomenon, while the second term accounts

for Gaussian background noise. The e-mixture noise parameters can be

expressed as

=

= 1—f,

=

= 1/(2(1+kE_f))

where tc = cr/o is a measure for the strength of the impulsive component

compared to the thermal noise. In the following, we specify the parameters

of f-mixture noise by (E, ic).

3.5.2 Results

PDF Approximation Results

Figure 3.2 shows a comparison of PDF histograms, obtained through Monte

Carlo simulation, and the approximation (3.16) for different constellations,

labeling, and noise parameters. The SNR 7 = = 20 dB is adjusted for

these results. We observe that the proposed approximation is very accurate

in all cases. In particular, the negative tail of the PDF (i.e., A < 0) is

faithfully matched, which is critical for performance evaluation.

BER Results for Nonfading GMN Channels

Figure 3.3 shows the analytical (lines) and simulated (markers) BER results

for two different constellations and labeling rules assuming transmission over
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Figure 3.2: PDF of reliability metrics for BICM transmission over nonfad
ing channel impaired by f-mixture noise with parameters (€, ic) for different
constellations, labeling, and noise parameters. Solid lines represent the PDF
approximation given in (3.16), while markers represent the simulated his
tograms.

the nonfading channel impaired by f-mixture noise. The figure includes (i)

the BER union bound (3.53) with the saddlepoint approximation (3.10)

using the saddlepoint found numerically for each SNR (solid lines), (ii) the

the BER union bound (3.53) using the PEP expression for high SNR in

(3.42) (dashed lines), and (iii) the PEP expression in (3.42) for d- dfree

(dash-dotted lines). It can be seen that the BER union bound is fairly

tight for both BICM examples. Likewise, the closed-form expression (3.42)

provides very good BER approximations and the curves converge to those
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Figure 3.3: BER of BICM transmission over a nonfading channel impaired
by €-mixture noise with parameters (f, i) for a 64-state convolutional code of
rate 1/2. Solid lines: BER union bound using the saddlepoint approximation
(3.10). The saddlepoint is found numerically for each SNR. Dashed lines:
BER union bound using the PEP expression for high SNR in (3.42). Dash-
dotted lines: BER using only the PEP expression in (3.42) for dH = dfr.
Markers are simulation results.

from the non-asymptotic saddlepoint analysis. Considering only the PEP

from (3.42) for the minimum Hamming distance term enables a quick and

fairly accurate BER estimation. We note that the asymptotic saddlepoint

approximation (3.37) (not shown in this figure) becomes tight only for BERs

below and thus it is more useful for codes with lower dfr and f-mixture

noise with high probability of impulses.

3.5. Numerical Results and Discussion
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Figure 3.4: BER of BICM transmission over fading AWGN channels for a 64-
state convolutional code of rate 1/2. Nakagami-m and Nakagami-n fading
with different parameters m and n. Solid lines: BER union bound using
the saddlepoint approximation, 1/2 is assumed. Dashed lines: BER
union bound using saddlepoint approximation, saddlepoint has been found
numerically. (Note that solid and dashed lines overlap almost perfectly.)
Markers are simulation results.

BER Results for Fading AWGN Channels

Next we consider BER results for BICM transmission over fading AWGN

channels (i.e., = 1) with different constellations and labeling rules. Specif

ically, Nakagami-m and Nakagami-n fading distributions are applied. Fig

ure 3.4 shows BER curves obtained from the BER union bound using the

saddlepoint approximation (lines) together with simulation results (mark

ers). For the former, both the actual saddlepoint, which has been deter

mined numerically (dashed lines), and the approximation . = 1/2 (solid

3.5. Numerical Results and Discussion

100

2 4 12 14 16
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lines) has been used. We observe a very good match between results from

analysis and simulations. In particular, since for AWGN the applied decod

ing metric is almost the maximum-likelihood metric (note that the max-log

approximation is used in (3.7)), the difference between the results using the

true saddlepoint and = 1/2 is negligible (the dashed and solid lines

overlap almost completely). We note that, considering the expressions for

A,kIf,n,() in Table 3.4 with Si(s;.) andS2(s;.) given in (3.29) and (3.30)

using the exponential approximations of the error function (3.54), we have

provided tight BER approximations in terms of elementary functions.

BER Results for Fading GMN Channels

We now consider the case of both fading and GMN, and present selected

BER results for different fading parameters, e-mixture noise parameters,

and BICM constellations and labeling rules. Figure 3.5 compares the BER

curves obtained from the BER union bound using the saddlepoint approx

imation (lines) and simulations (markers). For the saddlepoint approxima

tion three cases are included: (i) the exact saddlepoint is determined for

each SNR (solid lines), (ii) the asymptotic saddlepoint is determined from

(3.46) and used for all SNRs (dashed lines), and (iii) the asymptotic saddle-

point approximation given in (3.48) is used (dash-dotted lines). Therefore

the dash-dotted lines are obtained from a truly closed-form expression for

approximating the BER. Also, solving (3.46) only once and over the small

interval (3.47) requires little computational effort. The BER results con

firm the usefulness of the proposed BER approximations for fading GMN.

Clearly, the convergence of the union bound depends on the fading rate and

mixture noise parameters. As can be seen from Figure 3.5, using asymptotic

saddlepoint approximations gives relatively close union-bound approxima

tions, with more noticeable gaps for the cases where the asymptotic analysis
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16QAM, ML, m=1, (0.05,100)
u 8PSK, GL, m=0.5, (0.01,200)
0 16QAM, GL, n=2, (0.15,50)

8PSK, SPL, n=0.75, (0.1,75)
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Figure 3.5: BER of BICM transmission over fading channels impaired by
€-mixture noise with parameters (e, i) for a 64-state convolutional code of
rate 1/2. Nakagami-m and Nakagami-n fading with different parameters m
and n. Solid lines: BER union bound using saddlepoint approximation, sad
dlepoint has been found numerically. Dashed lines: BER union bound using
saddlepoint approximation, the asymptotic saddlepoint from (3.46) is used.
Dash-dotted lines: BER union bound using saddlepoint approximation, the
asymptotic saddlepoint approximation given in (3.48) is used. Markers are
simulation results.

converges at lower BERs.

In Figure 3.6 the asymptotic BER results (lines) using the PEP ex

pression (3.50) and only dH = dfree are plotted together with the BER union

bound (markers). In this figure, Nakagami-m, Nakagami-n, and Nakagami-q

fading distributions are used. For the evaluation of the asymptotic expres

sions the numerically found saddlepoint (solid lines) and the saddlepoint ap

proximation e from (3.48) (dashed lines) is applied. It can be seen that the

100

0 10 15
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Figure 3.6: BER of BICM transmission over fading channels impaired by
c-mixture noise with parameters (c, i) for a 64-state convolutional code of
rate 1/2. Nakagami-m, Nakagami-n, and Nakagami-q fading with different
parameters m, n, and q. Solid lines: Asymptotic BER from PEP (3.50) for
dH = dfree and numerically found saddlepoint. Dashed lines: Asymptotic
BER from PEP (3.50) for dH d&ee and the saddiepoint approximation ‘e

from (3.48). Markers: BER union bound.

asymptotic results correctly predict the diversity gain and the asymptotic

coding gain of the BICM scheme. Furthermore, the closed-form saddlepoint

approximation (3.48) leads to negligible shifts in the asymptotic BER re

sults. Hence, using (3.50) with ‘e from (3.48) allows us to approximate the

asymptotic performance of BICM from a closed-form expression.
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Figure 3.7: Evolution of saddlepoint as a function of for different constel
lations, labeling, and noise parameters. The circles indicate the asymptotic
values of saddlepoint given in (3.36) for nonfading channels and in (3.48) for
fading channels. The squares denote the exact asymptotic saddlepoint for
fading channels given in (3.46)

Saddlepoint

Finally, in Figure 3.7 we take a look at the evolution of the saddlepoint as

function of the SNR ‘ for the GMN cases studied in Figures 3.3 and 3.5. Also

included are the asymptotic values for the saddlepoint (3.36) for nonfading

and (3.46) for fading channels, and the asymptotic saddlepoint approxima

tion (3.48) for fading channels, respectively. We observe that the saddlepoint

strongly deviates from 1/2, the solution for the AWGN case, and eventually

converges to the value obtained through the asymptotic analysis developed

in Section 3.4. The simple estimation given in (3.48) is shown to be reason-

; [dB]
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ably accurate for these exemplarily cases. The range for . strongly depends

on the mapping rule, while its value at high SNR solely depends on the

channel parameters as seen from (3.36) and (3.46).

3.6 Conclusions

BICM is a very popular spectrally and power efficient coded modulation

scheme, whose BER analysis has received a lot of attention in the recent

past. In this chapter, we have extended and generalized previous approaches

considering BICM transmission over general fading channels and additive

GMN. We have derived closed-form approximations for the PDF of relia

bility metrics for the nonfading GMN channel, and its Laplace transform

for fading GMN channels. Using the latter together with the saddlepoint

approximation for PEP, we have provided a method for quick BER perfor

mance approximation. Since in the GMN case the saddlepoint needs to be

computed numerically, we have also derived approximations for the (asymp

totically) high SNR regime, which involve a single saddlepoint computation

(for all SNR values) or are given in closed form. This analysis has also

established expressions for the diversity and coding gain of BICM trans

mission over fading GMN channels. The presented numerical results have

confirmed the relative accuracy of the analytical BER approximations for

convolutionally coded BICM.
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Chapter 4

Power Allocation for Coded

OFDM via Linear

.9Programming

4.1 Introduction

Bit-interleaved coded modulation (BICM) [1] has gained immense popu

larity for coded multilevel transmission. In combination with orthogonal

frequency-division multiplexing (OFDM), i.e., BIC-OFDM, it is a powerful

technique for transmission over frequency selective channels [2], which has

been adopted in a number of recent standards.

OFDM enables transmitter side adaptation according to the present

channel conditions, assuming that the channel remains unchanged over a suf

ficiently long interval. In particular, numerous algorithms for bit-loading and

power allocation per OFDM sub-carrier have been developed, cf. e.g. [3—5].

Recently, [6] has studied the problem of power allocation for BIC-OFDM

9A version of this chapter has been submitted for publication. A. Kenarsari Anhari
and L. Lampe, “Power Allocation for Coded OFDM via Linear Programming,” submitted
for publication, July 2009.
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aiming at the minimization of bit-error rate (BER) under a power budget

constraint, i.e.,

mm PBER
p

s.t.
L

(4.1)

PiO ViE{1,...,L},

where p [pi,... , p] denotes the vector of powers allocated to each OFDM

sub-carrier, PBER denotes the BER, P is the maximal transmit power, and

L is the number of OFDM sub-carriers. Using the union bound approach

to approximate PBER, it was shown [6] that (4.1) is a convex optimization

problem. However, the solution presented in [6] is limited to (complex)

binary transmission, i.e., binary and quadrature phase-shift keying (BPSK

and QPSK), since linearity of coding and modulation was required.

Motivated by the approach in [6], we revisit the problem of power alloca

tion for BIC-OFDM in this chapter. We stipulate an approximative binary

channel model for BIC-OFDM and make use of the derived expression for

BICM error event probability from Chapter 2 to arrive at a simplified ob

jective function. This allows us to translate the optimization problem into a

linear program (LP). Solving this LP using standard numerical methods is

much faster than solving the general convex optimization problem obtained

in [6] (cf. e.g. [7]). Numerical results show that the LP-based power allo

cation achieves a performance very close to that from convex programming

of [6] for QPSK. Furthermore, the proposed method is applicable to arbi

trary signal constellations and thus overcomes the restriction of BPSK and

QPSK signaling needed in [6].

94



4.2. System Model

The rest of this chapter is organized as follows. Section 4.2 introduces

the system model for BIC-OFDM transmission. In Section 4.3, a method

for performance evaluation of BIC-OFDM is presented, based on which the

power allocation optimization problem is formulated as an LP. Selected sim

ulation results are shown in Section 4.4 to illustrate the performance of the

proposed method. Section 4.5 concludes the chapter.

4.2 System Model

We consider a BIC-OFDM system with L sub-carriers. At the transmitter,

the codeword = [ci, , crJ generated from a linear binary encoder is

bit-wise interleaved into = [4,4,... , cj. The interleaved codeword is

partitioned into blocks of r binary symbols, which are input to a subsequent

mapper i {O, 1} —‘ X such that x = (C_l)r+l,••• , c;) is the signal

point transmitted over the ith sub-carrier. The signal constellation X can

be arbitrary, but most commonly PSK or quadrature amplitude modulation

(QAM) constellations are considered. Furthermore, binary-reflected Gray

mapping is applied.

Assuming a sufficiently long cyclic prefix and coherent reception, the

equivalent baseband channel model is given by

(4.2)

where y, h, p, and z are the received symbol, the frequency-domain

channel gain, the allocated power, and the additive white Gaussian noise
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4.3. Power Allocation Method

(AWGN) sample for the ith sub-carrier, respectively. For (4.2) we assumed

that L = N/r is an integer. Without loss of generality, we apply the nor

malizations

(4.3)

and E{IzjI2} = 1. Since the power constrain in (4.1) is always met with

equality, i.e., = PT, these normalizations ensure that ‘ in (4.2) is

the average signal-to-noise ratio (SNR) at the receiver.

At the receiver, the demapper outputs bit-wise reliability metrics

=
— mm yj — \/hIaI2+ mm yj

— i/hjaI2, (4.4)
aEX,j aEXj,o

j = 1,.. . , r, for the r coded bits transmitted over the ith sub-carrier. Xj,b

denotes the set of symbols in X with the jth bit in the binary label fixed to b.

Finally, the metrics are deinterleaved and input to the maximum-likelihood

decoder of the binary code in order to retrieve the information bits.

4.3 Power Allocation Method

In this section, we present the new power allocation method. To this end,

we first derive an expression for the probability of decoding errors, which

relies on a simplified BIC-OFDM channel model and the result from Chap

ter 2. We then show that this expression allows us to formulate the power

allocation problem for BIC-OFDM with arbitrary constellations as an LP.
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4.3. Power Allocation Method

4.3.1 Error Event Probability

For a given vector of frequency-domain channel gains h [h1,. .. , hj,] we

model the effective channel between encoder output at the transmitter and

decoder input at the receiver as a memoryless binary-input output syrnmet

nc (MBIOS) channel. This model is only an approximation for BIC-OFDM,

as it neglects the dependencies between binary symbols ck mapped to the

same transmitted symbol x. However, their effect on the overall error prob

ability of BIC-OFDM is negligible as long as interleaving distributes these

Ck across dominant error events.

Let us identify an error event by the tuple (dH,j), where dH denotes its

Hamming weight and j its index within the group of events with distance

dH. Under the MBIOS channel model, the probability for this error event

can be written as

Pe(dH,j,) = Pr( 0), (4.5)

where
dH

‘‘SJbk , (4.6)

is the accumulated metric difference, and 8k and bk denote the sub-carrier

index and label position of the kth non-zero bit for the event, i.e., 8k and bk

are functions of (dH, j). The bit metrics in (4.6) are mutually independent

for the MBIOS model, and thus we can apply the PDF approximation for
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4.3. Power Allocation Method

A,j developed in Chapter 2 (Section 2.3.1) to arrive at

Pe(dH,j,h) = [fl I3bktk] Q ( [Pskhk Qkdmin)2]

ii=1 1d=1 k=1 k=1 J
(4.7)

where dmin is the minimum Euclidean distance between signal points of X,

and ii and 13j,l are parameters solely defined by X (cf. Section 2.3.1 for

details).

4.3.2 Linear Program Power Allocation

The error event probability can be used as a lower bound for the BIC.-OFDM

BER:

PBER > max [C(dH,j)Pe(dH,j,bJl , (4.8)
dH,3

where the factor c(dH, j) accounts for the number of errors caused by an

error event. Considering the expression (4.7), the lower bound (4.8) will

be asymptotically dominated by the component with the minimum effective

squared Euclidean distance

dH

4(dH,j) Pskt13k11rflifl. (4.9)

Thus, we suggest to apply power allocation such that the minimum of

4 (dH, j) is maximized. That is, the power allocation problem (4.1) can
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be reformulated as

max min4(dH,j)

L

s.t. P1., (4.10)
j=1

pO Vie{1,...,L}.

Considering (4.9), this problem can be re-written as (recall that the index

8k is a function of (dH, .2))

maxt
p

dH

s.t. t PSkhSk V(dH,j)

L
k=1 (4.11)

Pi PT,
i=1

p0 ViE{1,...,L},

which is an LP. The number of inequality constraints in (4.11) needs to

be limited by considering only significant error events with dH dH,m,

as has been done in [6j. Different from the convex program in [6], the LP

is independent of the SNR. Using CVX, a package for specifying and solving

convex programs [8], we have observed that the LP is solved ten times faster

than the convex program from [61 (for a given SNR).

4.4 Numerical Results

In this section, we present selected simulation results for the proposed power

allocation method. We have used the WLAN IEEE 802.lla OFDM system
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with 48 active sub-carriers and the quasi-standard memory-6 convolutional

code with generator polynomials [133, 17118 and rate R = 1/2. All error

events with Hamming weight 10 dH 14 have been considered in (4.11).

The channel realization is randomly generated according to an exponen

tially decaying power delay profile.

Figure 4.1 compares the BER performances for (i) uniform power allo

cation (UPA), (ii) minimum BER allocation for uncoded transmission ac

cording to [51, (iii) power allocation (PA) for BIC-OFDM according to [61,

and (iv) the proposed PA from (4.11) as function of the bit-wise SNR

= /(rR). QPSK and 16QAM are considered for all methods but the

method from [61, which is only applicable to QPSK. We observe that the

proposed method clearly outperforms UPA and PA designed for uncoded

transmission. More importantly, its performance closely approaches that

achieved with the considerably more complex method from [61 for the case

of QPSK.

The difference between the PA solutions obtained from [61 and from the

LP (4.11) is plotted in Figure 4.2. It can be seen that the LP solution

converges to the PA from convex programming as SNR grows. This is due

to the increasing dominance of the minimum distance error event for the

overall error rate with increasing SNR.

Finally, Figure 4.3 illustrates the effect of LP-based PA on the distance

profile of BIC-OFDM. For this purpose, the empirical cumulative density

function (CDF) of 4 defined in (4.9) is shown for UPA and the proposed PA.

We observe that by maximizing the minimum distance, the LP effectively

shifts the profile towards larger distances. This in turn reduces the overall
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Figure 4.1: BER of BIC-OFDM transmission systems with QPSK and
16QAM. Uniform power allocation (UPA), optimal power allocation (PA)
for uncoded transmission, PA according to convex optimization, and PA
using the proposed LP (4.11) are compared.

error rate as has been seen in Figure 4.1.

4.5 Conclusions

We have developed a new power allocation policy for BIC-OFDM transmis

sion. It is based on maximizing the minimum effective Euclidean distance

of error events, which is equivalent to BER minimization in the high SNR

regime. Different from the BER union-bound based method developed in [6},
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4.5. Conclusions

I

Figure 4.3: CDF of 4 from (4.9) for uniform power allocation (UPA) and
PA with the proposed LP (4.11).
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Chapter 5

New Designs for

Bit-Interleaved Coded

Modulation with

Hard-Decision Feedback

Iterative Decoding10

5.1 Introduction

The bit-interleaved coded modulation (BICM) structure can also be looked

at as a concatenated coding system, with the forward error correction (FEC)

encoder and the multilevel modulator as outer and inner encoder, respec

tively. The inner encoder is made “stronger”, if non-Gray labeling is applied,

cf. e.g. [1—3j. Interestingly, this BICM with non-Gray labeling can achieve

excellent error-rate performance with relatively simple outer binary codes,

‘°A version of this chapter has been submitted for publication. A. Kenarsari Anhari
and L. Lampe, “New Designs for Bit-Interleaved Coded Modulation with Hard-Decision
Feedback Iterative Decoding,” submitted for publication, July 2009.
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5.1. Introduction

such as for example convolutional codes. 81CM considered as concatenated

code is commonly decoded in an iterative fashion, in which the demapper

and a soft-input soft-output (SISO) channel decoder for the outer FEC code

exchange extrinsic information. We will refer to this structure as BICM

with soft-feedback terative decoding (BICM-SID). An alternative decoder

proposed in [4] uses a soft-input hard-output (SIHO) outer decoder, like

the Viterbi decoder for convolutional codes. This BICM with hard-decision

feedback jterative decoding (BICM-HID) has two complexity advantages

over BICM-SID. First, the outer SIHO decoder is less complex than its

SISO counterpart, and second, the demapper using hard-decision feedback

needs to consider only two instead of all constellation points for each label

ing bit [1]. On the downside, BICM-HID is considerably outperformed by

BICM-SID due to the effect of erroneous feedback.

In this chapter, we propose two novel demapper designs for BICM-HID

which mitigate the effect of feedback errors and thus improve the overall

error-rate performance of BICM-HID. We focus on convolutionally coded

transmission, for which SIHO FEC decoding, i.e., Viterbi decoding is com

monly applied. The first key idea is that the demapper makes use of the

error rate of the hard-decision feedback after iteration i, which we denote

by P,. As we will show, this essentially provides the demapper with reli

ability information and penalizes unreliable feedback. The corresponding

demapper is similar to that proposed in [5]. However, different from the

scheme in [5], which relies on a SISO outer decoder, our approach retains

the outer Viterbi decoder and makes use of the analytical result, developed

in Chapter 2, for the error rate performance of coded BICM to estimate P.
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5.1. Introduction

Figure 5.1: Block diagram of BICM transmission over a fading channel and
iterative decoding. ir and ir4 denote interleaving and deinterleaving, respec
tively. r coded binary symbols [Cl,... , c,.] are mapped to one transmitted
symbol x. The feedback from the FEC decoder (FEC DEC) to the demapper
is shown the form of decoded code symbols [e1,... ,Cr], i.e., hard-decision
feedback.

Furthermore, parameter tuning as in [5, Eq.(1O)j is unnecessary. The sec

ond key idea is the interpretation of the effect of feedback errors as additive

impulsive noise, and its statistical approximation through a two-term Gaus

sian mixture probability density function (PDF). This leads us to the second

proposed demapper, whose complexity is practically the same as that of the

demapper used in conventional BICM-HJD. We provide simulative evidence

that BICM-HID with the proposed designs effectively bridges the error-rate

gap between conventional BICM-HID and BICM-SID.

The remainder of this chapter is organized as follows. In Section 5.2,

BICM with iterative decoding and demappers for conventional BICM-HID

and BICM-SID are briefly reviewed. In Section 5.3, we derive the two new

demapper designs. Numerical results are presented in Section 5.4. In Sec

tion 5.5, concluding remarks are offered.

h z
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5.2 Preliminaries

We consider a convolutionally coded BICM system, whose block diagram is

shown in Figure 5.1. The bit-interleaved output of the FEC encoder is input

to a subsequent mapper/i: {O, 1}T —+ X assigning r coded bits [c1,... ,Cr] to

a signal point x e X. The signal x is transmitted over a fiat fading AWGN

channel, and assuming a coherent receiver the corresponding received sample

y e C is given by

y=hx+z, (5.1)

where h e R+ denotes the channel gain and z e C is the AWGN sam

ple. Without loss of generality, we assume E{Ix2} = 1, E{h2} = 7, and

E{1z12}= 1, and thus y is the average SNR.

The receiver applies a concatenated demapper-decoder structure (see

Figure 5.1), where the demapper generates r bit-wise decoding metrics

A,=log exp(f(a,j)_Iy_haI2)
aEX3 1

(5.2)

— log exp (f(a,j)
—

— haI2)
aEX3,o

1 < r, for each transmitted symbol x. In the above expression, j,b

denotes the set of symbols in the constellation with the jth binary label

fixed to b, and f(a, j) represents a-priori information or a bias provided by

the FEC decoder. Of course, f(a,j) = 0 for the first iteration, in which no

feedback from the decoder is available.

In the case of a BICM-SID with soft feedback Pr(c3 = b), 1 j r, we
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can write the bias-term as

f(a,j) = log(Pr(ce be)) , (5.3)

where [b1, . . . , br.] Ir’(a). For BICM-HID with hard-decision feedback

ee{O,l}, 1jr,wehave

f(a,j) =

0, if be êe,V {1,...,r},j,

—oo, otherwise

We observe that BICM-HID has two complexity advantages over BICM-SID.

First, a SIHO decoder, typically the Viterbi decoder, can be used instead

of a more complex SISO decoder. Second, the summation in (5.2) and thus

the 2’S-times evaluation of the Eucidean distance can be omitted and the

computation of the bias term f(a, j) is greatly simplified.

5.3 New BICM-HID Scheme

We now present two new demapper designs for BICM-HID. The additional

information that is used by the proposed demappers is an estimate of the

average bit-error rate (BER) for the coded bits c3 after the ith iteration,

P. The first proposed demapper has the same computational complexity

as the demapper proposed in [5J, but does not require outer SISO decoding

and parameter tuning. The second demapper design enjoys a very similar

complexity advantage over BICM—SID as the conventional BICM-HID, but

achieves a greatly improved error-rate performance.
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For the moment, let us assume that P is known perfectly at the demap

per.

5.3.1 Demapper Design I

Given P and j, the best estimate for Pr(c3 be) is given bypd2(1_p)1_dJ,

where d3 = dH (e, b) and dH
(S,.)

returns the Hamming distance between its

arguments. Hence, the bias f(a,j) from (5.3) is replaced by

f(a,j) =

(5.5)

= ,3d1- (êj,&,(a))

where we added the constant term

—(r—1)log(1 —P) (5.6)

for convenience and defined

I Pi ‘

= log j
—

, C2,b = [ci,.. . , cj_1, b, cji,. .. , Cr] . (5.7)

Substituting the bias from (5.5) in the metric (5.2) leads to

= log [ exp (idH (êj,_1(a))
—

— haI2)]
aEX,i (5.8)

—log exp(I3iciH(ej,o,Ir’(a)) _Iy_haI2)
aEXo
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which is our first new demapper design and referred to as “design I”.

In passing, we remark that an efficient implementation of the log-sum

of exponentials or the max-log approximation [61 can equally be applied to

(5.2) and (5.8), if the exp-operation is to be avoided.

5.3.2 Demapper Design II

To derive the second demapper design (“design II”), we first provide an

interpretation of feedback errors c3 as impulsive noise.

Gaussian Mixture Noise Interpretation

The new metric (5.8) allows the interpretation of BICM-HID as transmission

over a channel affected by additive Gaussian mixture noise [71 More specif

ically, the bit-wise metric (5.8) is also obtained when considering detection

for a channel with the effective noise

z=z+z, (5.9)

where z is due to the hard-decision feedback and thus depends on bit posi

tion j, feedback j,b, and fading gain h, which are collected in the parameter

vector v [j, h}. The feedback noise has a probability mass function

Ps (m) with mass

p(a, Cj,b)
dH(b,Ir’(a)) (1 — P) [r—1—dH(ê,b,r1(a))] (5.10)

at location m = h(p(e,) — a).
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Hence, the PDF of z is the Gaussian mixture density

pz(m) = p(a,êj,b)exp (— rn — [h(i(êj,b) — a)112) . (5.11)
aEXb

Simplified Demapper

For the second, simplified demapper, we propose the approximation of (5.11)

by a single two-term Gaussian mixture function for all j, 4j,s, and h. To

this end, we consider the average of the PDF (5.11) with respect to these

variables, which can be shown to have zero mean and variance

= 1 + 7 p(a, cj,b)I/L(cj,b) — aj2 . (5.12)

j E {1, r} aEXJ,b
bE {O,1}

Ej,b E {O, i}(’)

The two-term approximation is then given by

- (1 — P)’ 2 1 — (1 — p)r1 I ImI
Pze(m) = exp (—Imi ) + exp

(5.13)

where u2
=2_(_p)r—l

to maintain the same variance as in (5.11). In

tuitively, in (5.13) the first term indicates the noise when there is no error

in the feedback from the FEC decoder, and the second term represents the

equivalent noise in the presence of feedback errors. We note that a2 only

depends on the signal constellation X, the SNR , and the BER P, and

thus it is computed once per iteration.
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Using the noise PDF given in (5.13), defining

/6j_1o1(1p)r_l} , (5.14)

and applying the max-log approximation [61, we can re-write the bit-metric

(5.2) as

= —mm Q1+Iy—h(êj,i)j2,j+

(5.15)

+min c + I —

We observe that (5.15) requires only two additional comparisons relative to

conventional BICM-HID using (5.4).

5.3.3 Low-Complexity Estimation of P

We now consider the estimation of P, which is required for the new demap

per designs (5.8) and (5.15). It should be noted that the overall error-rate

performance is relatively robust with respect to the estimation accuracy, and

thus we are content with a simple method that provides a coarse estimate

for P.

For the error rate P1 after the first iteration, we consider the dominant

error events of the Viterbi decoder and thus use the estimate

1J1 = —Wd1 PEP(dfree) , (5.16)

where PEFdfree) is the pairwise error probability between two codewords
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with Hamming distance dfree, dfree denotes the free distance of the convolu

tional code of rate R = k/n, and Wdfr is the total weight of output bits

in error events with Hamming weight d&ee. Using the saddlepoint approx

imation 1 8, Eq.(12)], closed-form expressions/approximations for this PEP

have been provided in Chapter 2 and Chapter 3 for arbitrary AWGN fad

ing channels, and thus (5.16) can be easily evaluated. Next, for the BER

P,- after the final iteration i n, we use the perfect-feedback lower bound

from {lj together with the saddlepoint approximation, which again results

in a closed-form PEP expression and thus estimate P. Finally, we estimate

the BER for iteration i using the interpolation

log(F) = log(P)+ log(P). (5.17)

5.4 Simulation Results

In this section, we present selected simulation results to illustrate the per

formance of BICM-HID with the proposed demappers. We use the example

of 16-ary quadrature amplitude modulation (QAM) BICM with modified

set-partitioning labeling over a Rayleigh fading channel, cf. [lj, and employ

the maximum-free distance 4-state rate-1/2 convolutional code (very sim

ilar results have been obtained for codes with larger memory). BER and

frame-error rate (FER) results are shown as function of the average bit-wise

SNR 7b = 7/(Rr) = 7/2. First, we take a look at the goodness of the

proposed PDF approximation (5.13). For this purpose, Figure 5.2 shows

the analytical two-term PDF i3ze (m) and the empirical PDF obtained from
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Figure 5.2: Two-term PDF approximation from (5.13) and empirical PDF
from simulations during the (i+1)st iteration, i = 1, .., 4, at SNR 7o = 10 dB.
The PDF approximation is shown for the cases of known P and using the
estimate P from (5.17). A total of n = 5 iterations is assumed.

Monte Carlo simulation for an SNR of ‘y = 10 dB. The two-term PDF is

plotted for known P and using the estimate F, from (5.17), respectively. A

total of ii = 5 iterations is assumed, so four sets of curves are plotted in Fig

ure 5.2. The interleaver length is set to 10000 binary symbols. It can be seen

that the empirical PDF displays a markedly non-Gaussian shape, which is

a result of erroneous feedback and explains the relatively poor performance

of conventional BICM-HID that is based on the Euclidean distance metric

(see also results below). The two-term approximation seems to mimic the
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Figure 5.3: BER for BICM-HID with conventional and proposed demappers.
As reference, BER for BICM-SID, and BER estimates P1 and P5 are also
included.

non-Gaussian behaviour fairly well, which corroborates the proposed demap

per design approach. The difference between P and its estimate P, reflects

mainly in a vertical shift of the second term of the mixture PDF. This can

be also seen from (5.13) when approximating (1 — P)’ by (1 — rP), which

is valid for small P, for which also o2

Figure 5.3 presents the simulated BER’1 after the first and fifth iteration

“As usual, we plot the BER for binary information symbols. To enable a direct com
parison, the shown analytical results for P, and P, are also determined with respect to
information symbols.
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for BICM-HID with (a) the conventional demapper ((5.2) with bias (5.4)),

(b) demapper design 1(5.8), and (c) demapper design 11(5.15). For design I

we also include the case of perfect BER estimation, i.e., F = P. Further

more, as a reference, the curves for BICM-SID and the estimated BERs P1

and P, = P5 after the first and fifth iteration are shown (see Footnote 11).

The total number of iterations and interleaver length are the same as for

the results in Figure 5.2.

We observe that the proposed demapper designs significantly improve

the BER performance relative to the conventional demapper for BICM

HID. In particular, the considerable gap between conventional BICM-HID

and BICM-SID is largely closed through the modified demappers. Demapper

design II achieves a performance close to that of demapper design I, which

renders it the perhaps preferred choice considering its low computational

complexity. It can also be seen that the feedback-BER approximation F

of P is sufficiently accurate for the purposes of BICM-HID, since the two

BER curves for estimated and known F almost coincide. The quality of the

estimate P is also confirmed by the relatively good approximation of the

actually BER after one and five iteration through P1 and F5, respectively.

Figure 5.4 shows the FER for the same scenario as above, but a relatively

short interleaver of length 2000. This allows a comparison with the results

from [5, Fig. 3]. We observe that the proposed designs achieve a performance

very close to that from [5], despite the use of a SIHO decoder (designs I

and II) and a less complex demapper (design II). The small consistent gap

between design I and the demapper from [5] could likely be removed through

scaling of 13 in (5.8), which however requires a simulation-based tuning of
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Figure 5.4: FER for BICM-HID with conventional and proposed demappers,
and demapper previously proposed for improving the performance of BICM
HID. As reference, FER for BICM-SID.

the scaling parameter that was done in [51 Since design II performs close to

design I also in terms of FER and for this relatively short interleaver length,

it is an attractive choice for low-complexity BICM-HID.

5.5 Conclusion

In this chapter, we have presented two novel demapper designs for BICM

HID. The key ideas are the use of an simple approximation of the feedback

error-rate and the interpretation of feedback errors as additive impulsive
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noise. The first demapper design makes optimal use of error-rate informa

tion, while the second design is suboptimal but enjoys the low complexity

of conventional BICM-HID. Our simulation results have shown that the

proposed schemes significantly outperform conventional BICM-HID and ap

proach the performance of BICM-SID, which is the ultimate performance

limit for BICM with iterative decoding.
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Chapter 6

Summary, Conclusions, and

Future Work

6.1 Summary and Conclusions

This work delivers three major breakthroughs in the analysis and design of

communication systems based on bit-interleaved coded modulation (BICM).

Generally, in Chapter 2 and Chapter 3, we have presented the first main con

tribution which is a novel analytical framework for performance evaluation

of BICM. In addition to additive white Gaussian noise (AWGN) model, the

practically important case of transmission over fading channels impaired

by Gaussian mixture noise (GMN) has also been studied. The proposed

framework is based on the assumptions of perfect interleaving and the use

of max-log simplification at the receiver which are common in almost all

previously proposed methods. Different from previous approaches avail

able in the literature, the proposed framework is applicable to arbitrary

mapping rules and results in closed-form expressions disregarding the prob

ability density function (PDF) of channel’s fading process. The key idea

is to approximate the PDF of reliability metrics using the so-called nearest
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neighbours approximation. It is shown that the error caused by using the

proposed PDF approximation becomes negligible in the signal-to-noise ratio

(SNR) region wherein the bit-error rate (BER) union bound converges to

the real BER the system. Furthermore this approach makes use of the sad

dlepoint approximation [1] and the finite exponential series approximation

of the Gaussian error function [2]. Additionally, Chapter 2 contains other

interesting contributions such as:

• The derivation of exact Laplace transform of the newly found PDF

expression for general Nakagami-m fading AWGN channels.

• A closed-form expression for the cutoff of BICM

• Based on the new PDF approximation, the asymptotic BER expres

sions as SNR goes to infinity, is derived. It is shown that for the

nonfading channel the BER is closely approximated by the BER ex

pression for an equivalent binary transmission scaled by a constant

which is a function of the minimum Hamming distance d&ee of the

code and the mapping rule. For the case of Nakagami-m fading it is

shown that the diversity order is the product of m and Further

more, the asymptotic coding gain is shown to depend on a parameter

which is a generalization of the harmonic mean presented in [31

Furthermore, in Chapter 3 we present the following specific contributions

• Based on this new PDF expression and a finite series approximation of

error function, we derive an approximation for the Laplace transform

of the PDF of reliability metrics for general fading GMN channels.
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We simplify the saddlepoint-based approximation for the high SNR

regime. It is shown that the diversity order of the system is the product

of the fading diversity order and the minimum Hamming distance of

the BICM code. The asymptotic coding gain consists of two terms,

one of which is a function of the GMN parameters and the other is a

generalization of the harmonic distance obtained in [3,4].

• In the case of nonfading GMN, where the noise component with the

largest power dominates the asymptotic BER, the convergence of the

asymptotic BER approximation occurs only at very low BERs for typ

ical GMN scenarios. We therefore also derive a novel closed-form ex

pression for the PEP in nonfading GMN, which takes all mixture-noise

components into account and is confirmed to be tight in BER ranges

typically of interest.

Then, making use of the performance expressions developed in Chapter 2

and Chapter 3, two novel transmission strategies are designed. In particular,

in Chapter 4, the problem of optimal power allocation aiming at BER min

imization for a systems employing BICM along with orthogonal frequency

division multiplexing (OFDM), also known as BIC-OFDM, is considered. A

recent study of the problem, presented in [5], translates the problem into

a convex optimization problem but is only applicable to (complex) binary

transmission. Based on the PDF approximation developed in Chapter 2, a

general algorithm applicable to arbitrary constellations has been proposed.

In particular, we show that the power allocation problem can be transformed

into a linear program in the high SNR regime. The use of linear program
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ming considerably reduces the complexity of the algorithm in comparison

to what has been proposed by [5j. Furthermore, our simulation results re

veals that the performance loss due to employing linear program instead on

convex optimization is negligible.

Finally, Chapter 5 considers the design of a practical iterative decoder

for BICM transmission. The decoder employs hard decision feedback from

the decoder in order to recompute the reliability metrics. It is known that

the bit-errors in the feedback substantially degrades the performance of the

system. It is shown that substantial gains can be achieved if the effect of this

errors is considered. Since the error rate of the system is not available at the

receiver we make use of error rate approximations developed in Chapter 2

and Chapter 3. Based on this, the optimal detector architecture has been

derived and further simplified. We show that computational complexity of

our proposed iterative decoding scheme using the simplified detector is the

same as the original method while it results in considerable performance

gains.

6.2 Future Work

There are quite a few open avenues for future research in the topics related

to BICM transmission. In the following, two potential research topic along

with proposed approaches are discussed briefly.
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6.2.1 Adaptive Bit/Power Allocation and Code Selection

for BIC-OFDM

While the problem of power allocation for BIC-OFDM transmission has

been considered in Chapter 4, adaptive bit and code (rate) selection for BIC

OFDM is an open avenue to be explored. Notably, the fairly recent paper

by Song [6] has considered a similar problem. But, the analysis developed

in [6] could not be used for design purposes as in their expression for pairwise

error probability (PEP) the number of terms exponentially grows with the

Hamming distance of the PEP. Therefore the authors of [6] proposed to use

a heuristic (sub-optimal) optimization criterion which has been previously

used in [7] for uncoded transmission. Therefore, there is an interest to design

optimal bit/power loading and code selection algorithms using the exact

BER expression. We stipulate that the use of novel PDF approximation

proposed in Chapter 2 will alleviate the problem of exponential growth of

number of terms in PEP expression.

6.2.2 BICM Transmission over Block Fading Channels

It is known that the standard BER union bound is not tight for transmission

over block fading channels. An intuitive explanation can be achieved by

noting that this bound, in fact, is the expected value of the BER union

bound over unfaded channel with regard to the PDF of instantaneous SNR.

Since the BER union bound diverges for low SNRs, this average tends to not

be tight in the SNR region of interest. A rather intuitive remedy has been

proposed in [8] which is to limit the BER union bound by 1/2 when averaging
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over instantaneous SNR. While the BER bound achieved using this method

is considerably tighter than the standard union bound, this method does not

result in closed-form expressions and it needs multi-dimensional numerical

integration.

One possible remedy to get rid of the multi-dimensional integration is the

use of newly developed expressions for the PDF of LLRs. For complex bi

nary transmission it is easy to examine that this reveals the equivalent SNR

at the receiver. Furthermore, such a perspective for higher modulations can

be achieved using the Gaussian approximation of the PDF of LLRs [1,9]. Fi

nally, the area of integration for computing the PEP is a multi-dimensional

sphere in the space of fading coefficients. The radius should be found nu

merically by equating the BER union bound for unfaded transmission to

1/2. Even if this integral does not result in closed-form expressions, using

its symmetry property, it can be simplified to one dimensional integration.
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