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Abstract 

There is a general consensus that management decisions concerning forest resources are made in 

an intrinsically uncertain environment. However, decision-making tools used in forest 

management assume perfect information, leaving decision-makers to explore the most likely 

scenarios of uncertainty and determine the most reasonable management alternative. Although 

techniques that explicitly consider uncertainty exist, they increase the complexity of the models 

hence precluding their application to large-size problems. This dissertation describes the 

application of robust optimization concepts that explicitly consider uncertainty in forest 

management problems while keeping the models computationally tractable. By introducing some 

simplifying assumptions about uncertainty distributions, i.e. independency and uniformity, this 

approach allows for including uncertainty in many coefficients of the model. The methodology 

modifies the constraints for which feasibility is desirable and incorporates uncertainty in the 

technical coefficients by introducing an additional term. This term is an optimization problem in 

itself that introduces new constraints into the original model and acts as a buffer that guarantees 

constraint satisfaction for different uncertainty realizations. By changing the value of a 

robustness parameter, the trade-off between cost and robustness can be analyzed. The 

performance of this approach is explored through three structurally different problems: (a) a non-

spatial harvest scheduling problem with uncertain volume yields and demands, (b) a multi-

objective problem with uncertain preferences, and (c) a spatial harvest scheduling and road 

building problem with uncertain volume yields. Deterministic and robust formulations of these 

problems are provided and the performance of their solutions is evaluated under simulated 

scenarios of uncertain data. In all cases, robust decisions are less sensitive to uncertain data and 

hence protected from the occurrence of infeasibilities, with a modest reduction in the objective 

function value. Moreover, deterministic and robust decisions greatly differ, suggesting that 

traditional solutions may require major corrections to adapt to changing future conditions with a 

consequent decrease in the quality of the decisions. The effect of the methodology assumptions 

are discussed and future work is suggested. 
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1 Introduction 

1.1 Forest resources decision making and uncertainty 

The forest management planning process consists of providing decision makers with the 

information needed to select an appropriate course of action. Key decisions to be made have 

traditionally included land allocation to different uses, silvicultural practices, timber harvest 

scheduling, road building and environment protection, among others. Most recently, forest 

management has gradually incorporated non-timber products and ecosystem services reflecting 

the society’s increasing demand for a more sustainable and diverse use of forest ecosystems. The 

complex structure of forests, the long-term effect of the decisions, the diverse nature of 

objectives, and legal constraints regarding land use and management practices make this a 

complicated problem in which decision-making tools play an important role (Davis et al. 2001). 

Due to this complexity, forest decision-making is divided into a hierarchical structure 

(Weintraub and Cholaky 1991, Gunn 1991) in which each of the three levels in this hierarchy 

focuses on specific questions that usually concern different decision-makers. Consequently, 

decision-making tools and data requirements are different for each hierarchical level (Nelson 

2001). At the highest level in this hierarchy, strategic planning looks for general strategies to be 

applied to the landbase and explores which outputs should be produced over a long-term 

planning horizon. For instance, allowable cut and conservation targets are usually set at this 

level. At a tactical level, strategic goals need to be translated to specific, spatially located 

management units in a shorter time frame. Although there exist an increasing trend to include 

spatial detail in strategic decisions (Nelson 2003), it is in the tactical level in which spatial detail 

supports conservation goals and forest management decisions like harvesting, thinning, fuel 

treatment (Church 2007), road management decisions, and adjacency issues (Davis et al. 2001). 

Finally, the operational level deals with real-world operative actions like a detailed schedule of 

stand harvests, wood supply to specific facilities, transportation/routing decisions, and 

production planning at mills (D`Amours et al 2008). A variety of decision-making tools are used 

to assist decision-makers with these complex decisions. For a good overview of the main models 
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used in forest planning the reader is referred to the forestry section of Weintraub et al. (2007). 

Mathematical programming models, including linear, mixed-integer and dynamic programming 

are among the most widely used techniques. Large problems, especially those considering spatial 

issues, usually become hard to solve by traditional solution techniques. In this case heuristics 

(e.g., simulated annealing and tabu search) that quickly find good rather than optimal solutions 

can be used (Bettinger et al. 2002). 

Part of the complexity of the forest decision-making process comes from the inherent uncertainty 

of the information needed to make a decision. Forest management decisions often concern large 

areas, long time horizons and multiple stakeholders, and the sources of uncertainty include 

social, economic, biological, technological and catastrophic factors (Mowrer 2000, Regan et al. 

2002, Kangas and Kangas 2004, Marshall 1987). In most of the cases, decision models assume 

all information to be deterministic (Kangas and Kangas 1999, Lohmander 2000). This means that 

any plan or decision implemented now will probably be sub-optimal in the ex-post analysis 

(Marshall 1987), since all assumptions and initial parameters will not necessarily be observed. In 

addition, perturbations of supposedly ‘certain’ data can make an optimal solution infeasible 

(Thompson and Haynes 1971, Hof et al. 1988, Pickens and Dress 1988). 

It is important to recognize that mathematical models in a decision-making context are abstract 

representations of the real, complex systems of decisions. The most relevant aspects of the 

system are described by using a set of (in)equalities for which the best solution is found based on 

certain criteria. Thus the solution to these models should only serve as a guide when a decision is 

made and implemented. Moreover, model infeasibilities do not necessarily mean that the system 

may become infeasible, but that the consequences of applying the model solution to the system 

may be awkward and expensive. This is particularly true in the forest management context where 

the decision structure allows the possibility of recourse. In a sequential decision-making 

framework, the first-period solution of the model is the basis for the decisions to be 

implemented. Once the outcomes of these decisions and some of the uncertainties are realized 

the model is run again and the decisions modified accordingly. This rolling planning horizon 

approach allows decision-makers to deal with uncertainty in a practical way. However, the more 

the changes in the decisions, the higher the cost of adapting to uncertainty. Less sensitive 

solutions to uncertain model inputs will therefore translate into a lower cost of adaptation. 
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A traditional approach to study the stability of optimal solutions to data perturbations is the post-

optimal or sensitivity analysis, which explores the manner in which changes in individual data 

modify the optimal solution. This can be very useful to address efforts towards better estimation 

of key parameters, but its application in real world problems is limited (Pickens and Dress 1988). 

Another way to consider uncertainty in the planning process has been the use of scenario 

analysis or simulation. Since we know that different conditions (e.g., changing timber prices, 

uncertain yield) or events (e.g., fires occurrences or insect attacks) can occur, alternative 

scenarios of these conditions and events are evaluated. This allows managers to determine the 

most reasonable management option (Mowrer 2000) and to answer ‘what if’ questions relating to 

a particular path of a given resource (von Gadow 2000). This approach has been extensively used 

in forestry (von Gadow 2000, Peter and Nelson 2005, Smith and Zollner 2005, Klenner et al. 

2000), although its application usually requires a large number of runs, and its usefulness is 

limited to relatively stable environments (Courtney et al. 1997). However, these approaches are 

not methodologies to explicitly deal with uncertainty, but ways to manually explore it. In this 

sense, they do not directly provide decision makers with good enough decisions for a range of 

uncertain values. 

Current methodologies that explicitly consider uncertainty are discussed in the next section. As 

new approaches to consider uncertainty remain a challenge (Martell et al. 1998, Nelson 2003), it 

is relevant for researchers to know the general framework, advantages and drawbacks of these 

methodologies in order to conduct research on this topic. Although the term ‘uncertainty’ is 

traditionally associated with a total ignorance about the future and ‘risk’ is referred to a 

quantified uncertainty (Knight 1921), I use ‘uncertainty’ here simply as a lack of certainty, 

measurable or not, and ‘risk’ as a state of uncertainty associated with outcomes that have an 

undesired effect. 

In the following sections, the main approaches used to explicitly consider uncertainty in decision 

models are presented, and the robust optimization approach (Bertsimas and Sim 2004) used in 

this research is described. This methodology is applied in the following chapters to some of the 

decision problems described above. 

 3



1.2 Incorporating uncertainty in forest management decision models 

In this section 1 describe current methodologies that consider uncertainty in the modeling 

process and that have been used in forest resources management (e.g., stochastic programming, 

chance-constrained programming, fuzzy sets, and information gap theories). Description, general 

formulation, and applications in forest resources management problems are provided for each 

methodology.  

1.2.1 Stochastic programming 

Stochastic programming (SP) is a modeling technique to explicitly consider uncertainty in 

optimization models. It was introduced in the 1950s by Dantzig (1955) and Beale (1955). The 

basic concept in SP is the opportunity to adjust decisions to the information that is received after 

a random event or scenario has occurred, which is referred as ‘recourse’. In other words, a set of 

decisions (known as first stage decisions) are made before the realization of the uncertain 

parameters, and another set of decisions (second stage decisions) are made after that, in order to 

make corrections of previous decisions in the light of the realization of uncertainty (Sahinidis 

2004). When uncertainty is revealed sequentially over time, a multi-stage approach is more 

appropriate; however, this approach has scarcely been used in forestry (see Gassmann (1989) for 

an application). 

1.2.1.1 General formulation 

The general formulation of a discrete two-stage SP is as follows (Birge and Louveaux 1997):  

[ ]T

bAx ≥]2.1[

0]3.1[ ≥x

T

),(]1.1[ sxhExcMin +   

subject to 

 

 

where the recourse function E[.] represents the expected value and h(x,s) equals 

ss yqMin]4.1[  
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subject to 

xThyW −≥]5.1[  

0]6.1[ ≥y

+

bAx ≥]8.1[  

ssss

s  

Each possible course of action is represented by a scenario s in this formulation, and x and y 

represent the decision vectors of the first and second stage, respectively. Note that only variable 

y responds to scenario s and to the decision in the first stage, x. Matrices c, b, and A correspond 

to the fixed data of the first-stage decision. In the second-stage, a number of random events may 

occur, and for a given realization of s, the second-stage data qs, hs , Ts and Ws become known 

(Birge and Louveaux 1997). 

The objective function of SP minimizes the cost of the first stage decision (deterministic term) 

plus the expected cost of the second-stage, while satisfying the first stage constraints [1.2]. The 

expected cost depends on the random event or scenario s that will happen in the future and on the 

first stage decision x. In other words, h(x,s) looks for the optimal solution y for each scenario s 

(for each scenario, y is actually the solution of a linear programming model), subject to a set of 

recourse constraints that make ‘corrective actions’ for each scenario given the first stage decision 

x (Birge and Louveaux 1997).  

The greatest difficulty with SP is to evaluate the recourse function, for which a probabilistic 

description of future events is required. Random events may constitute a very large set of 

scenarios in the case of discrete random variables, or a continuum in the case of continuous 

random variables (Sen and Higle 1999). However, when a small set of scenarios can be defined 

SP can be solved by formulating the Deterministic Equivalent Problem (DEP, Walkup and Wets 

1967), a deterministic model in which a problem is formulated for each possible scenario. In 

other words, assuming that scenario s will occur with probability ps, the stochastic problem is 

explicitly expressed in its full form: 

∑
∈Ss

ssss yqcxpMin )(]7.1[  

subject to 

s
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SsxThyW ∈∀−≥]9.1[  

Ssxx ∈∀=− 0]10.1[  

Ssyx ∈∀≥

sssss

s

ss 0,]11.1[  

The first-stage decision xs is defined for each scenario s, which may produce s different decisions 

for the first stage. However, one first-stage decision, independent of the second-stage scenario 

that actually occurs, must be found, which is forced through the constraint xs – x = 0, ∀s. A more 

compact formulation by defining a single variable x for the first stage (instead of xs) is 

recommended, but I used xs here for clarity. 

The above formulation ensures feasibility for all second-stage constraints, even for the unlikely 

scenarios. This produces what has been called ‘fat solutions’ (Madansky 1962), very 

conservative and expensive solutions. To avoid these worst-scenario solutions, penalty methods 

can be used in which violations of some constraints are allowed and penalized in the objective 

function (Birge and Louveaux 1997, Kall and Wallace 1994). 

In real problems, the number of scenarios may be extremely large and, as a result, models 

become computationally difficult to solve. In this case, efficient solution methods must exploit 

the special structure of stochastic programs. These methods mainly include decomposition, 

where second-stage problems become sub-problems, and statistical methods where the recourse 

function, E[h(x,s)], is approximated by statistical estimations (Birge and Louveaux 1997, Kall 

and Wallace 1994). 

For a more detailed description of SP the reader is referred to Kall and Wallace (1994), Birge 

and Louveaux (1997), Sen and Higle (1999) and the many resources available in the Stochastic 

Programming Community webpage (2007). 

1.2.1.2 Applications 

Although the title of many publications suggests the opposite, SP has not been widely used in 

forestry. A two-stage stochastic model applied to the harvest scheduling problem with uncertain 

forest outputs was presented in Hoganson and Rose (1987). A Model I formulation (Johnson and 
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Scheurman 1977) was used to represent short-run (first-stage decisions) and long-run (second-

stage decisions) prescriptions, and a decomposition-based approach was used to solve the model. 

The harvest scheduling problem was also formulated as a multi-stage stochastic model in 

Gassmann (1989). In this case, the author used different proportions of timber burned by fires as 

scenarios, and formulated a small version of the model presented in Reed and Errico (1986). To 

avoid the infeasibility produced in worst case scenarios, a penalty term that allowed violations of 

the flow constraints was included. 

A similar model was formulated by Boychuk and Martell (1996). In their model, the first few 

periods of the planning horizon had stochastic fire losses (two scenarios with high and low 

proportion burned), and for the remaining periods the expected fire loss was considered. The 

volume flow constraint was also encouraged by penalizing deviations from the desired volume. 

They solved the model using a traditional linear programming solver by formulating it as a 

Deterministic Equivalent Problem. 

Uncertainty in forest growth was considered as a multi-stage model in Eriksson (2006) by 

modifying a Model I formulation. Four scenarios were considered and a small sample problem 

was solved using the DEP formulation. 

Road upgrade decisions have also been examined using a two-stage stochastic model (Olsson 

2007). The uncertain length of the period with poor road conditions was represented by three 

equiprobable scenarios and the DEP was solved using a commercial linear programming solver. 

1.2.2 Probabilistic programming 

Although probabilistic or chance constrained programming (CCP) is sometimes referred as a 

kind of stochastic programming, here it is treated as a separate methodology. Different 

assumptions, mathematical structure of the resulting models, and solution techniques used to 

solve them support this distinction. 

In CCP, first proposed by Charnes and Cooper (1959), constraints with at least one random 

coefficient are modeled as probabilistic statements and are required to hold with a minimum 

probability. As in SP, probability distributions of uncertain coefficients are assumed to be 

known. Unlike SP, in this approach no recourse or ‘corrective actions’ are explicitly assumed. 
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1.2.2.1 General formulation 

In CCP, the set of constraints  that contains random coefficients can take the 

form of individual or joint chance constraints. In the first case, constraints are of the form  

ibxa ij ijij ∀≥∑

( ) ibxa iij ijij ∀≥≥∑ αPr]12.1[  

where Pr(.) denotes a probability function and αi∈(0,1] is the minimum requirement, 

exogenously determined, on the probability of satisfying constraint i. Each constraint is 

transformed into a chance constraint individually and required to hold with a probability αi.  

In the second case, constraints are transformed in the single joint chance constraint 

( ) α≥∀≥∑ ibxa ij ijijPr]13.1[  

where 0 < α ≤ 1 is the minimum requirement on the probability of satisfying all constraints. 

Individual chance formulation [1.12] guarantees that the probability of violation of each 

constrain remains small, but the probability of violation of several constraints may remain high. 

The latter point is addressed using the joint formulation [1.13]. Although this formulation 

produces a single constraint, it is harder to solve since it is required to deal with multivariate 

distributions (Birge and Louveaux 1997). 

When only b is random in the individual chance constraint formulation, the deterministic 

equivalent can be obtained easily by replacing b with a new value based on its cumulative 

distribution, let us say F, given by F-1(α). In this case, the single constraint turns out to be a 

linear constraint. However, in most cases when A-matrix coefficients are uncertain or the joint 

chance constraint approach is used, deterministic equivalents become nonlinear models and 

nonlinear programming algorithms are required to solve them (Birge and Louveaux 1997, Kall 

and Wallace 1994). 

For a deeper description of CCP the reader may consult Kall and Wallace (1994), Birge and 

Louveaux (1997) and the Stochastic Programming Community webpage (2007).  
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1.2.2.2 Applications 

The first applications of CCP in forestry dealt with randomness in future timber growth. In 

Weintraub and Vera (1991) and Weintraub and Abramovich (1995) an individual chance 

constrained formulation was proposed and a cutting plane algorithm was used to solve the 

resulting nonlinear problem. Also an individual chance constrained approach was used in 

Pickens et al. (1991), and a simulation approach was applied to solve the resulting model. In Hof 

et al. (1992) individual and joint chance constrained models were formulated, and a reduced 

gradient algorithm was applied. 

In Hof and Pickens (1991) the chance of meeting random right-hand sides (output targets) is 

maximized by comparing three different objectives (i.e., maximize the minimum probability of 

meeting a target, maximize the joint probability that some targets are met, and maximize the total 

probability of meeting some targets). Models were solved using a nonlinear algorithm as well as 

linear piecewise approximations. 

1.2.3 Fuzzy set theory 

Fuzzy set theory is an extension of the classical notion of crisp membership of set theory to a 

more vague and fuzzy one. Rather than a dichotomic membership of an element, a membership 

function that takes values in the interval [0,1] represents a ‘grade of membership’ of the element. 

It was first proposed by Zadeh (1965) and applied in the decision-making context by Bellman 

and Zadeh (1970). It has been extensively applied in operations research methodologies, for 

instance, linear, non-linear and dynamic programming, graph theory, etc. (Zimmermann 1996). 

1.2.3.1 General formulation 

In the context of decision-making, many variations of the fuzzy set concepts are possible 

(Zimmermann 1996), so only the most common approach is described next. 

The membership function of an object x, µ(x) ∈ [0,1], in a fuzzy set represents the grade of 

membership, from the lowest (0) to the highest (1), of x in a given set. As in traditional set 

theory, operations like intersection (logical ‘AND’ operator) and union (logical ‘OR’ operator) 

of fuzzy sets are defined and become relevant to the decision-making context. Interception is 

therefore defined as the MIN operator in a way that the membership function of the intersection 
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of two fuzzy sets A and B is µA∩B(x) = Min(µA(x), µB(x)). Union, on the other hand, is defined as 

the MAX operator. Other operators have also been defined (Bellman and Zadeh 1970, 

Zimmermann 1996). 

In the context of fuzziness, a fuzzy goal is identified as a fuzzy set from which a good enough 

solution is to be found. Borrowing from Bellman and Zadeh (1970), if x is a solution from the set 

of all possible solutions X, a fuzzy goal might be expressed in words as ‘x should be substantially 

larger than Z’, where Z is an aspiration level of the objective function. The membership function 

of the fuzzy goal, µG(x), can be defined, for instance, in a way that obtaining less than Z 

represents no grade of membership and values over Z represent increasing memberships, as 

follows: 

⎩
⎨
⎧

>−+
= −− ZxZx

xG ,))(1(
)(]14.1[ 12µ

≤ Zx,0
 

Similarly, a membership function of a fuzzy constraint, µ(x), must be defined as an increasing 

monotonously function from 0 to 1, in a way that should be 0 if it is strongly violated and 1 if it 

is very well satisfied. Although different mathematical expressions can be used, the simplest type 

of function is linearly increasing in a tolerance interval p, as follows (Zimmermann 1996): 

pbAxif
pbAxbif

bAxif

p
bAxx

+>
+≤<

≤

⎪
⎪
⎩

⎪⎪
⎨

⎧
−

−=

0

1
1

)(]15.1[ µ  

Under this approach, objectives and constraints are treated similarly in the formulation of a 

decision, as they are of the same importance, unlike the conventional approach in which the 

objective is explicitly more important than constraints. Nevertheless, when some objectives or 

constraints are more important than others, a weighting coefficient can represent their relative 

importance (Bellman and Zadeh 1970). To make a decision, fuzzy goals and fuzzy constraints 

need to be aggregated in order to rank the decision alternatives, and operators like those 

mentioned above are used. Let µi(x) be the membership function of row i, including the objective 

function and constraints. The membership function of the fuzzy decision set can be described, for 

example, by the intersection of all the membership functions. This means that 

{ })(min)( xx iiD , and the solution of the decision problem can be seen as maximizing the µµ =
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{ })(xdegree of membership of this decision set, or max
0 Dx
µ

>
. This is the traditional maxmin 

problem, in which the minimum degree of membership of the all the rows is maximized: 

λMax]16.1[

ix ∀≤ )(]17.1[

 

subject to 

 iµλ

 0]18.1[ ≥x

The interception operator is the most widely used, although it does not allow for compensation 

(Zimmermann 1996). That is, a low membership degree of an element cannot be compensated by 

a high degree of membership of another. The operator is not able to discriminate among 

solutions that differ with respect to the fulfillment of membership to the various constraints, 

except for the smallest membership degrees (Dubois et al. 1996). Different operators, criteria for 

selecting an appropriate operator as well as different membership functions are discussed in 

Zimmermann (1996). 

1.2.3.2 Applications 

Harvest scheduling with fuzzy timber yields is among the first applications of fuzzy sets in 

forestry. In Hof et al. (1986) and Pickens and Hof (1991) a MAXMIN formulation of the harvest 

scheduling problem was formulated to produce non-declining timber flow assuming fuzzy yield. 

Similarly, Bare and Mendoza (1992) compared a crispy and a fuzzy formulation considering 

fuzziness in the non-declining flow constraints. By relaxing these constraints, as expected, 

increases in objective values were obtained. Fuzzy theory was also used in Mendoza and Sprouse 

(1989) as a methodology to generate more robust management alternatives to a multiple-use 

forest planning problem. In addition, Boyland et al. (2006) compared the effect of using crispy 

and fuzzy seral-class definitions in harvest scheduling models, dealing with the vagueness of the 

traditional age class boundaries. 

In the context of multi-objective models, a fuzzy approach was used in Ells et al. (1997), where 

the land use allocation problem with vagueness in the objectives definition and in the effect of 

management options on these objectives was addressed, and in Maness and Farrell (2004) where 
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the minimum target levels of different goals or indicators were not known with certainty. 

Similarly, the vagueness of the acceptance thresholds of different criteria to evaluate 

management alternatives was addressed in Kangas et al. (2006). Uncertainty and fuzziness of the 

objective function coefficients were also considered in Mendoza et al. (1993) and Stirn (2006). 

1.2.4 Final remarks 

Uncertainty has reappeared as a relevant topic in decision making modeling. The most traditional 

methodologies to explicitly include uncertainty into mathematical modeling in forestry 

applications were broadly summarized here, and some of their applications were provided. 

The aim of any methodology that explicitly incorporates uncertainty should be to provide 

decision makers with more robust or stable decisions than ‘deterministic’ methodologies. A more 

robust or stable decision should be one that guarantees a desired level of output regardless of the 

value of the parameters that define the performance of the system. Since robust decisions are 

required to be good (not optimal) for multiple possible future values of uncertain parameters, 

their objective values will certainly be negatively affected. However, decision makers should be 

willing to assume this cost in exchange for a reduction in the risk associated with their decisions. 

The approaches discussed have advantages and drawbacks, essentially based on their 

assumptions and the effort needed to find solutions, which defines the appropriateness of their 

use in different decision problems. Stochastic programming, for example, provides an intuitive 

and very elegant representation of an uncertain future through the use of scenarios, for which a 

quantitative description of their probability of occurrence is needed. Unlike other approaches, it 

represents the dynamic nature of the decisions by allowing the possibility of recourse. However, 

as the number of scenarios increases this representation produces large models very quickly, 

forcing the use of specially designed solution algorithms that require additional implementation 

efforts. The degree of risk aversion (tradeoff between a more certain output with a lower 

objective value and a more uncertain one with a better objective value) is not explicitly 

considered in stochastic programming. 

Although chance-constrained models are also quite intuitive, they usually imply the use of 

nonlinear solution techniques except for specific problems that can be easily solved. As in 

stochastic programming, the probability distribution of uncertainties must be known, but in this 

approach risk aversion levels can be explicitly defined. 
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Fuzzy set theory, on the other hand, is designed to deal with vagueness and fuzziness rather than 

uncertainty. It is more appropriate when there is vagueness, for example, in the meaning of 

certain events, phenomena or statements, but not when representing the lack of information 

about the value of the parameters. When used improperly, this methodology actually results in a 

relaxed version of traditional decision problems, in which constraint violations are allowed and, 

consequently, better objective functions are obtained. The way in which uncertainty is modeled 

in decision problems with fuzzy set theory does not actually produce stable solutions. 

It should be noted here that a large group of other probabilistic modeling approaches has also 

been used to model uncertainty. For instance, Markov based decision models have been used to 

evaluate harvest decisions when the forest growth (Zhou and Buongiorno 2006), the timber price 

(Teeter and Caulfield 1991, Insley and Rollins 2005), or both (Lembersky and Johnson 1975, 

Kaya and Buongiorno 1987) are uncertainty. In these cases, Markov chains are used to represent 

the transition among uncertain future states, and other techniques are used to solve the resulting 

models (Hillier and Lieberman 2005). 

Research on new methodologies to include uncertainty in planning models is highly relevant. 

With more computer power available today, better forecast techniques to estimate some 

parameters, and new recognized sources of uncertainty (e.g., climate change, demand for new 

environmental services, technology, etc.), the decision process can benefit from research on this 

topic. These methodologies should consider the tradeoff between the risk reduction and the cost 

of this reduction (in other words, risk-aversion level), and different approaches should be applied 

to different kinds of uncertainties (i.e., catastrophic versus non-catastrophic events). As some 

kinds of uncertainty can be well described by distribution functions, and others not, approaches 

that can deal with both these issues are important. 

1.3 Robust optimization 

The first efforts to deal with decisions with limited information were probably made by Wald in 

the late 1930’s (Wald 1939) and middle 1940’s (Wald 1945a, 1945b) in the field of statistical 

decision-making. In his work, Wald defined loss functions, risk functions and introduced the 

minmax principle, in which the course of action that minimizes the maximum loss should be 

preferred. In the context of hypothesis testing, he created the concept of sequential analysis, 

where the sample size is not fixed in advance but defined as the collected data are evaluated 
 13



(Wald 1945c). In its basics this concept involves the reduction of uncertainty by knowledge of 

past events when choosing an action. His principles were later applied to the optimal control of 

stochastic systems (Sworder 1965, Witsenhausen 1968, Bar-Shalom and Sivan 1969), therefore 

extending the already existing theory of optimal control (Sussmann and Willems 1997), in which 

control and state trajectories for dynamic systems are to be determined over a period of time. 

In the middle of the 1970’s the idea of including unknown parameters appeared in optimization 

problems in a more static framework. Soyster (1973) and Falk (1976) assumed that uncertain 

data in linear optimization models belonged to a given interval and solved linear models with a 

modified feasible region. Solutions to these models were guaranteed to be feasible for all 

possible scenarios of uncertain data. After a period of apparent inactivity, Mulvey et al. (1995) 

used goal programming and a scenario-based description of the problem data to generate less 

sensitive solutions to the realization of the model data. Since then, the concept of robust 

optimization (RO) has been used to represent a wide modeling framework applied to explicitly 

include uncertainty in optimization models in cases where uncertain data are assumed to belong 

to a given set. Although the re-emergence of RO in recent decades has been principally due to 

applications in the engineering design field (Park et al 2006), its application has been extended to 

a wide range of fields, including dynamic decision problems. For instance, it has been applied to 

multi-period portfolio management (Bertsimas and Pachamanova 2008), inventory theory 

(Bertsimas and Thiele 2006) and water resources planning (Chung et al. 2009). 

The first RO approaches (Soyster 1973, Falk 1976) suffered from providing extremely 

conservative solutions; new approaches have focused on identifying conditions and uncertainty 

sets resulting in less conservative solutions and models that can be solved efficiently (Beyer and 

Sendhoff 2007). In a general constraint Ax ≤ b, x ∈ X, we might assume that uncertainty affects 

the coefficients A (without loss of generality), and that the feasibility of the constraint needs to 

be guaranteed for any possible value of A within an uncertain set U. In other words, the robust 

counterpart of the original constraint becomes Ax ≤ b, ∀ A ∈ U, x ∈ X. The degree of 

conservatism and the class of the robust counterpart that needs to be solved depends on how set 

U is specified. For instance, Soyster’s formulation (1973) assumed the worst possible value of 

each uncertain data, therefore considering the simplest uncertainty representation (box 

uncertainty), i.e. },,ˆˆ:{ jiaaaaaAaU ijijijijijij ∀+≤≤−∈= where ija â

a

and are the nominal 

value and the deviation from the nominal value of , respectively. The original constraint is 

ij

ij
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then reformulated as },;,ˆ{ jyxyibyaxa jjjij jijj jij ∀≤≤−∀≤+∑∑  in its robust version, where 

yj≥0 is an additional variable. Although the resulting optimization model is linear, solutions are 

protected for all data scenarios (including the most unlikely ones) and the objective function 

value is seriously affected (Bertsimas and Sim 2004). Ben-Tal and Nemirovski (1997, 1998, 

1999), or similarly El Ghaoui and Lebret (1997), proposed less conservative formulations 

assuming that the uncertainty set U is ellipsoidal, therefore removing the less likely outcomes 

from consideration. In this case, },)()(:{ iaaVaaAaU ijijiijijij ∀≤−−∈= θ 21T −  where V is a 

positive definite matrix and 0 ≤ θ ≤ 1 is a “safety parameter” that controls the degree of 

conservatism. Note that the variability of individual coefficients is combined within a constraint i 

to obatain a constraint-wise variability. The robust counterpart of the original constrain is then 

},,;,ˆˆ{ 22 jiyzxyibzayaxa ijijjijiijj ijij jijj jij ∀≤−≤−∀≤Ω++ ∑∑∑ , where the probability that 

constraint i is violated is at most exp(-Ωi
2/2) (Ben-Tal and Nemirovski 1999). The drawback of 

using ellipsoidal uncertainty sets is that it increases the complexity of the problems (e.g., linear 

programming problems transform into second-order cone problems1). Bertsimas and Sim (2004), 

on the other hand, control the level of conservatism of the solutions based on polyhedral 

uncertainty sets, i.e. ;,,ˆˆ:{ jiaaaaaAaU ijijijijijij ∀+≤≤−∈= },ˆ|| iaaa
j ijijij ∀Γ≤−∑ , where 

Γ is the parameter that controls the conservatism of the solutions. This definition of uncertainty 

sets is in fact a case of ellipsoidal uncertainty (Ben-Tal and Nemirovski 1999) that has the 

advantage that it preserves the complexity of the original problem (e.g., linear programming 

problems remain linear). This approach will be applied to different types of forest management 

problems in this thesis, and it is explained in more detail in the next section. 

1.3.1 Bertsimas and Sim robust optimization approach 

This description closely follows Bertsimas and Sim (2004). Consider the nominal linear 

optimization problem {Max c’x | Ax ≤ b, l ≤ x ≤ u } where data in matrix A are assumed 

uncertain. Without loss of generality the objective function coefficients c are not subject to 

uncertainty since we can use the objective maximize z, add the constraint z - c’x ≤ 0 and thus 

include this constraint into Ax ≤ b. For each row i of the matrix A, Ji represents the set of 
                                                 

1 A second-order cone problem is a class of convex optimization problems that requires a greater computational 
effort to be solved than a linear programming problem (Alizadeh and Goldfarb 2003) 
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coefficients in i subject to uncertainty. Each coefficient , j ∈ Jija i, is modeled as a symmetric 

random variable that takes values in ]ˆ,ˆ aaaa[ ijijijij +− . Associated with each uncertain  is a 

random variable 

ija

ijijijij )( aaa ˆ−=η which takes values in [-1, 1]. For each row, the aggregation 

of this random variables could, in theory, take values between –card(Ji) and card(Ji), where card 

represents the number of elements in a set. A new parameter [ ])(,0 Jcard ii ∈Γ , not necessarily 

integer, can be used to control the robustness of the solution against the level of conservatism in 

a way that iJj ij
i

Γ≤∑ ∈
η . 

The authors consider the following (non-linear) robust formulation of the original problem: 

[1.19]    Max c’x 

subject to 

⎣ ⎦
⎣ ⎦( ) ibyayaxa

n

j
i

Sj
jitiijijScardSJtJStSjij

i

i
iiiiiiiii

∀≤
⎭
⎬
⎫

⎩
⎨
⎧

Γ−Γ++∑ ∑
= ∈Γ=∈⊆1 )(,\,|}{

ˆˆmax]20.1[
U

 

jyxy ∀≤≤−]21.1[

juxl ∀≤≤

jy ∀≥ 0]23.1[

),x(

jjj  

jjj]22.1[  

j  

where the second term in [1.20] is the so called protection function of constrain i, ii Γβ . If 

is integer then the ith constraint is protected by iΓ { }∑ ∈Γ=⊆=Γ
iiiiii Sj jijScardJSSii xâmax),x( })(,|{β . 

In the general case, a constraint will be protected against all cases that up to  of the 

uncertain coefficients are allowed to change and one extra coefficient  changes by (

⎣ ⎦iΓ

ita iΓ -

) . Note that if  the method provides the most conservative solution and if 

 then 

⎣ ⎦iΓ â )(Jcard=Γ

0=Γ 0),x( =Γ

it ii

i iiβ  and the constraints are equivalent to that the nominal problem. For 

the tradeoff between robustness and conservatism of the solution can be 

explored. 

)(0 Jcard<Γ< ii
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In order to reformulate model [1.19]-[1.23] as a linear model, the authors proved (see Bertsimas 

and Sim 2004) that given a vector x*, the protection function of the ith constraint 

⎣ ⎦
⎣ ⎦( )

⎭
⎬
⎫

⎩
⎨
⎧

Γ−Γ+=Γ ∑
∈Γ=∈⊆

i

i
iiiiiiiii Sj

jitiijijScardSJtJStSii xaxa **

)(,\,|}{
ˆˆmax),x(]24.1[

U
β  

equals the objective function of the following linear optimization problem: 

ij
Jj

jij wxaMax
i

∑
∈

ˆ]25.1[  *

Jjw ∈∀≤≤ 10]27.1[

[ ])(,0 Jcard∈Γ

subject to 

i
Jj

ij
i

w Γ≤∑
∈

]26.1[  

iij  

By strong duality, since problem [1.25]-[1.27] is feasible and bounded for all  

then its dual, showed below, is also feasible and bounded and their objective functions coincide: 

ii

∑
∈

+Γ
iJj

ijii pzMin]28.1[  

subject to 

ijijiji Jjxapz ∈∀≥+ ˆ]29.1[  

iij Jjp ∈∀≥ 0]30.1[

0]31.1[ ≥z

 

i  

where zi and pij are the dual variables associated with constraints [1.26] and [1.27], respectively.  

This dual of the protection function defined by [1.25]-[1.27] is finally substituted to the robust 

non-linear formulation in [1.19]-[1.23] to produce the following linear robust counterpart of the 

nominal problem: 
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[1.32]    Max c’x 

subject to 

ibpzxa
j

i
Jj

ijiijij
i

∀≤+Γ+∑ ∑
= ∈1

]33.1[  
n

Jjiyapz ∈∀≥+ ,ˆ]34.1[

jyxy ∀≤≤−]35.1[

juxl ∀≤≤]36.1[

Jjip ∈∀≥ ,0]37.1[

jy ∀≥ 0]38.1[

iz ∀≥

ijijiji  

jjj  

jjj  

iij  

j  

i 0]39.1[  

The new terms added in [1.33] define the appropriate buffer to guarantee that the left-hand side 

of the constraint is feasible for different uncertainty realizations. At the same time, the robust 

counterpart introduces new bounds to decision variables that prevent them from being large in 

directions that have considerable uncertainty in the parameters. The approach proposed by 

Bertsimas and Sim (2004) considers the variability of individual coefficients in the same way as 

other RO approaches (Soyster 1973, Ben-Tal and Nemirovski 1997, El Ghaoui and Lebret 1997) 

(i.e., ]ˆ,ˆ[ aaaaa +−∈ ijijijijij ), but controls the degree of conservatism by defining the uncertainty 

set U differently. In opposition to the more general formulation of Ben-Tal and Nemirovski 

(1997) and El Ghaoui and Lebret (1997) that allows interactions among uncertain data 

(ellipsoidal sets), the Bertsimas and Sim (2004) approach represents a particular case in which 

uncertainty is not correlated. By doing so, a computationally tractable robust counterpart is 

obtained. This approach proceeds by bounding the number of coefficients in the data subject to 

variability, that is, a fraction of the uncertain coefficients are allowed to change. As one of the 

principles behind the approach is that the errors in the estimate will compensate for each other, a 

large number of parameters must be uncertain in each constraint for the resulting formulation to 

achieve a solution that is not too conservative. Probability bounds on the constraint violations 
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can also be obtained as in other approaches (Bertsimas and Sim 2004), but, as pointed out in 

Chapter 2, they are loose and might produce conservative solutions. 

1.4 Thesis objective 

As mentioned in the previous sections, current approaches to explicitly consider uncertainty in 

decisions models impose some difficulties (e.g., probability distribution assumptions and 

complexity of the resulting models) and new methodologies should be explored. The objective of 

the work described in this thesis is to apply a recently developed technique of robust 

optimization (Bertsimas and Sim 2004) to different types of forest management decision 

problems. This technique considerably reduces the computational complexity of the resulting 

models, but relies on some simplifying assumptions about the structure of the uncertainties, 

which appropriateness to the forest management context should be explored. In this context, this 

dissertation has the following specific objectives: 

(1) to determine how  the robust optimization approach that explicitly considers uncertainty in 

strategic and tactical forest decision problems performs relative to their deterministic 

counterparts. This includes solution times, objective function values and the ability of the model 

to stay feasible under various assumptions of uncertainty and protection levels; and 

(2) to determine the potential benefits and limitations of considering uncertainty in strategic and 

tactical forest decision problems by analyzing how robust solutions differ from their 

deterministic counterparts and what implications this has for management decisions. 

1.5 Thesis structure 

To achieve the thesis objectives three different decision problems are considered: (a) a strategic 

non-spatial harvest scheduling problem, (b) a strategic, bi-objective problem, and (c) a tactical 

spatial harvest scheduling and road building problem. These problems differ in the type of 

decisions, coefficients affected by uncertainty and modeling technique required for their 

formulation (i.e., linear and mixed-integer programming). Each problem becomes an 

independent manuscript in this thesis. 
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Chapter 2 describes a non-spatial harvest scheduling problem with uncertain volume yield and 

demand. In this problem, the feasibility of the constraints on timber production levels is highly 

desirable despite the uncertainty observed in volumes and demands of two products over the 

entire 20-period planning horizon. Deterministic and robust models were applied to a 245,090 ha 

forest in British Columbia and the performance of these decisions was compared through the 

simulation of the uncertain data. I conducted two main analyses. The first demonstrates the 

advantage of using this methodology over the strategy of manually imposing a buffer to the 

original demand levels. For simplicity, I focused only on protecting minimum demand 

constraints when volume was uncertain. I used the buffer determined by the robust model for 

each constraint to correct the minimum demand level of the same constraint in the deterministic 

model. I then showed the difference in decision stability between using a (more complex) robust 

model and a traditional model with a corrected demand level that acts as a security buffer. In the 

second analysis I used a complete model with protection for minimum demand and volume 

fluctuation constraints. I explored infeasibility rates and the change in the objective function and 

harvest decisions when volume and demand were uncertain under two discount rates. 

Chapter 3 explores a robust formulation of a bi-objective, multi-period planning problem with 

uncertain weights, providing an example of a formulation with uncertainty and protection 

requirements in the objective function. Since weights are hard to estimate and play a major role 

in determining the model solutions, in this chapter I explored a way of formulating a model that 

explicitly considers the sensitivity of the solutions to the weights when looking for “optimal” 

decisions. I present a robust formulation to a bi-objective multi-period harvest scheduling 

problem where weights were not accurately known and were allowed to change within a pre-

defined range throughout the planning horizon. The model was applied to a 245,090 ha forest in 

British Columbia, where the amount of employment and the proportion of old forest through the 

planning horizon are the two management objectives. Evaluated under simulated scenarios of 

weights, robust solutions produced a more stable weighted sum of the objectives through the 

planning periods than traditional deterministic solutions. I demonstrated that robust decisions 

perform almost as well as the traditional fixed-value weight approach in terms of the objective 

function value, however, they are more consistent in a scenario of uncertain future weights. 

Chapter 4 presents a robust formulation of a tactical harvest scheduling and road building 

problem where volume yield is uncertain and minimum demand constraints need to be 

guaranteed. Unlike the previous chapters, in this chapter I extended the application of the robust 

 20



approach to a mixed-integer model and discussed its consequences. Deterministic and robust 

models were applied to a 7,552 ha area in British Columbia, and their solutions were compared 

under simulated scenarios of volume yields. Although no exact comparison is possible as mixed-

integer models are unlikely to be solved to optimality, I showed that robust solutions 

outperformed deterministic solutions both in terms of infeasibility rates and objective function 

value. However, I noted that the spatial independency of the volume assumed in the robust 

approach becomes a critical limitation of the methodology when addressing spatial problems, 

and further research in this regard is needed. 

In the concluding chapter I summarize the main findings of the thesis and discuss the strengths 

and weakness of the robust optimization approach proposed. Potential applications of the 

methodology and future research are also addressed. 
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2 A Robust Optimization Approach to Protect Harvest Scheduling 

Decisions against Uncertainty2 

2.1 Introduction 

Uncertainty is an important issue in natural resources management since decisions often concern 

long time horizons and biological processes not totally understood. Although large areas may 

reduce risk by offering diversification, the decision making process must be carried out in an 

stochastic environment, where the sources of uncertainty include social, economic, biological, 

technological and catastrophic factors (Kangas and Kangas 2004, Marshall 1987, Mowrer 2000). 

‘Uncertainty’ is traditionally associated with a lack of quantitative information to numerically 

describe the future and this distinguishes it from ‘risk’, which is referred to a quantified 

uncertainty (Kangas and Kangas 2004). We use ‘uncertainty’ here simply as a lack of certainty, 

measurable or not. 

Decision models have been widely used in forest management planning, but in most of the cases 

these models assume all information to be deterministic (Kangas and Kangas 1999). This means 

that decisions implemented now will probably be sub-optimal in the ex-post analysis (Marshall 

1987), since all assumptions and initial parameters will not necessarily be observed. In addition, 

perturbations of supposedly ‘certain’ data can make an optimal solution infeasible (Pickens and 

Dress 1988). 

A traditional approach to study the stability of optimal solutions under data perturbations is the 

post-optimal or sensitivity analysis, which explores the manner in which changes in individual 

data modify the optimal solution. This can be very useful to address efforts towards a better 

estimation of key parameters, but its application in real world problems is limited (Pickens and 

Dress 1988). Another way to consider uncertainty in the planning process has been the use of 

                                                 

2 A version of this chapter has been published. Palma, C.D., and Nelson, J.D. 2009. A robust optimization approach 
protected harvest scheduling decisions against uncertainty. Canadian Journal of Forest Research 39: 342-355 
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scenario analysis or simulation. Since we know that different conditions (changing market 

conditions, uncertain yield) or events (fires occurrences or insect attacks) can occur, alternative 

scenarios of these conditions and events are evaluated. This approach has been extensively used 

in forestry (Klenner et al. 2000, Peter and Nelson 2005, von Gadow 2000), although its 

application usually requires a large number of runs, and its usefulness is limited to relatively 

stable environments (Courtney et al. 1997). This approach has also been used in combination 

with deterministic optimization techniques (Boyland et al. 2005, Hoganson and Rose 1984, 

Pukkala 1998), where uncertain coefficients are randomly generated and optimal solutions for a 

set of scenarios are found. Solutions can be progressively improved and probability distributions 

of optimal outputs can be obtained. 

A different group of techniques that explicitly consider uncertainty in the modeling process has 

also been applied to the harvest scheduling problem. In stochastic programming (Dantzig 1955) 

uncertainty is considered by scenarios of random events with a given probability of occurrence 

and a good solution for all of them is found. Some applications of this methodology have dealt 

with uncertain timber yield (Eriksson 2006, Hoganson and Rose 1987) and stochastic fire losses 

(Boychuk and Martell 1996, Gassmann 1989). Although this approach provides an intuitive 

representation of uncertainty, as the number of scenarios increases larger models are produced 

very quickly and the solution process becomes difficult. Moreover, no explicit representation of 

the risk-aversion level is considered. In probabilistic or chance constrained programming 

(Charnes and Cooper 1959) constraints with at least one random coefficient are modeled as 

probabilistic statements and are required to hold with a minimum probability. This technique has 

been used to deal with randomness in timber growth (Hof et al. 1996, Pickens et al. 1991, 

Weintraub and Abramovich 1995, Weintraub and Vera 1991) and uncertain production 

requirements (Hof and Pickens 1991). As in stochastic programming, probability distributions of 

uncertain data are assumed to be known which is rarely the case, and finding exact solutions to 

chance-constrained problems is typically intractable (Chen et al. 2007), although approximation 

approaches have been provided (see Birge and Louveaux 1997, Chapter 9.4). Finally, fuzzy set 

theory (Bellman and Zadeh 1970) allows the inclusion of some kind of uncertainties (i.e. 

vagueness) by defining a grade of membership of a parameter to a certain set of possible values. 

It has been applied to consider fuzziness in timber yields (Hof et al. 1986, Pickens and Hof 

1991), vagueness in age classes boundaries (Boyland et al. 2006) and unclearness of objectives 

definition in the context of multi-objective problems (Ells et al. 1997, Maness and Farrell 2004). 
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In our view, this approach seems to be more appropriate when there is vagueness, for example, 

in the meaning of certain events or statements, but not to represent lack of information about the 

value of the parameters in a model. In this case, the methodology results in a relaxed version of 

traditional decision problems in which moderate constraint violations are allowed. This will only 

produce optimal solutions to a new deterministic problem with new ‘relaxed parameters’, and 

there is no guarantee that these solutions will perform well in different uncertainty scenarios. 

A different approach to consider uncertainty in optimization models is robust optimization, 

which is used in this paper and it is described in detail in the next section. As in chance 

constrained programming, the same idea of increasing the probability of constraint feasibility is 

used in robust optimization. Based on some assumptions about uncertainty distributions, robust 

models are able to handle many uncertain parameters and still be computationally tractable. 

Application of this technique can be found in engineering (Ben-Tal and Nemirovski 2002), 

network design (Bertsimas and Sim 2003), portfolio management (Bertsimas and Sim 2004) and 

inventory theory (Bertsimas and Thiele 2006). To our knowledge, this technique has not been 

applied to natural resources management. 

In this paper we describe and apply a robust optimization approach to a real size harvest 

scheduling problem when volume and demand are randomly uncertain. We show in detail how 

new variables and constraints are added to traditional linear models to produce robust models, 

and analyze the effect of robust solutions on both harvest decisions and the value of the objective 

function. The paper is structured as follows. In the second section we describe the robust 

optimization approach, and the detailed methodology is presented in the third section. Results are 

presented in the fourth section and then discussed, as well as the limitations of the approach, in 

the fifth section. Conclusions and future research opportunities are included in the sixth section. 

2.2 Robust optimization 

Robust optimization (RO) is a wide modeling framework used to include uncertainty in 

optimization models in cases where uncertain data are assumed to belong to an uncertainty set. 

The term seems to be first used by Mulvey et al. (1995), who used goal programming and a 

scenario-based description of the problem data to generate less sensitive solutions to the 

realization of the model data. Previous works by Soyster (1973) and Falk (1976), however, also 

attempted to find immunized solutions against uncertainty using RO concepts. In these papers 
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uncertain data are assumed to belong to a uniform symmetric range, and linear problems with a 

modified feasible region are solved. The approach proposed by these authors produces solutions 

to the worst case scenario that are, as one of the author states, ‘ultraconservative strategies’ 

(Soyster 1973). Less conservative approaches have been suggested (Ben-Tal and Nemirovski 

2000, El Ghaoui et al. 1998), but the resulting robust models become harder to solve (nonlinear) 

than traditional formulations. For a recent review of RO the reader is referred to Beyer and 

Sendhoff (2007) and Ben-Tal and Nemirovski (2008). 

A less conservative approach is also proposed in Bertsimas and Sim (2004), and is used in this 

paper. A remarkable feature of this approach is that it transforms the original linear model into 

another robust linear, and therefore computationally tractable, model. We next describe this 

approach in general and then apply it to a harvesting scheduling problem.  

2.2.1 Basic concepts 

We first define basic concepts used throughout the paper. The protection function of a constraint 

is a function that determines the size of the buffer required to immunize a constraint against 

uncertainty. It is defined for each constraint where uncertain coefficients are present and for 

which feasibility is desired. As we will see later, this function is an optimization problem in itself 

that through a dual transformation results in additional variables and constraints to the original 

problem. The magnitude of the buffer for each constraint will depend on the degree of 

uncertainty of the parameters involved in the constraint and the degree of protection desired, 

which we will refer as protection level. By changing this protection level, we obtain different 

degrees of conservatism of the solutions, that is, different expected rates of constraints violation. 

However, the protection level is not equivalent to the desired probability of constraints violation. 

Although these two concepts are directly related (the higher the protection level, the lower the 

probability of constraints violation), the protection level is just a parameter with no direct 

meaning about the resulting probability of constraints violation.  

For each set of constraints for which protection is desired, the general steps required to formulate 

a robust model are: 

(S1) Formulate the protection function, 

(S2) Transform the protection function into an optimization model, 
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(S3) Obtain the dual model of the linear version of the protection function, and 

(S4) Embed the dual model in the original model. 

The resulting model is called the robust counterpart of the deterministic model and despite 

having more variables and constraints (as result of the transformations needed), it is linear and 

can be solved using commercial linear optimization packages. New parameters like the degree of 

uncertainty of the data and user-defined protection levels are also required. The above steps are 

described in more details below and then applied to a harvest scheduling model.  

The methodology is based on the following assumptions. Uncertain coefficients are to be 

uniform and independently distributed within a symmetrical range of values. These assumptions 

allow the methodology to rely on the fact that only some of the uncertain coefficients will change 

(from the coefficient estimate) to adversely affect the solution. We will come back on the 

implication of these assumptions in the Discussion section. 

2.2.2 Robust formulation 

The following description of the RO approach is mainly based on Bertsimas and Sim (2004), 

with slight changes introduced. As decision variables in forest planning models are almost 

always positive (usually the area to be harvested) we will consider only non-negative variables in 

our explanation. Although the original formulation produces equivalent models, the following 

formulation leads to both less variables and constraints. 

Let us consider the general linear problem: 

∑
=j

jj xcMax
1

]1.2[
n

n

jx ∀≥ 0]3.2[

 

subject to 

ibxa
j

ijij ∀≤∑
=1
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We will consider that only aij are uncertain, but the case in which cj and bi are also uncertain can 

be derived by expressing the objective function as a constraint and moving bi to the left-hand 

side of [2.2]. Let us assume that belongs to the symmetric range ija ]ˆ,ˆ aaaa +−[ , with ijijijij

ija âthe coefficient estimate (usually used in deterministic formulations) and the precision of 

the estimate. Associated with the uncertain data a , a random variable of scaled deviation that 

takes values in [-1,1] can be defined as 

ij

ij

ijijijij aaa ˆ)( −=η . If all coefficients in constraint i are 

uncertain, then can theoretically take values between -n and n. If only a set J∑ =j ij1
ηn

[ ]

i of 

coefficients are uncertain in constraint i, this interval will be between –card(Ji) and card(Ji), 

where card represents the cardinality or number of elements in a set. Having this in mind, a new 

parameter  can be used in the mathematical expression )(,0 ii Jcard∈Γ iJj ij
i

Γ≤∑ ∈
η  to control 

the protection level of constraint i against uncertainty as follows: (i) if Γ , the 0=i ijη for all j in 

constraint i are forced to 0, so that ijij aa = for all j, and constraint i has no protection against 

uncertainty, (ii) if Γ  constraint i is totally protected against uncertainty since all )( ii Jcard= ijη  

in constraint i are allowed to take a non-zero value, and (iii) if )(0 Jcard ii <Γ<  constraint i is 

partially protected against uncertainty, in which case some of the ijη can be different from zero. 

2.2.2.1 Formulating the protection function (S1) 

To obtain the robust counterpart of model [2.1]-[2.3], we first split the left-hand side of the 

constraints [2.2] into the contribution of the coefficient estimate ija  and the noise produced by 

the precision of the estimate, . The constraint set is then reformulated as: ijâ

ibxa
j

iiijij ∀≤Γ+∑
=1

* ),x(]4.2[ β
n
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is the protection function of constraint i. This function is specific for a given solution vector x* 

and depends on the user-defined protection level iΓ . Note that when no protection is required 

, and the protection function β0=Γi i equals 0 and the constraint is the same as in the 

deterministic case. 

The protection function [2.5] looks for the appropriate buffer to keep the left-hand side of [2.2] 

lower than bi for different values of aij. As we will see later in our example, if the inequality is ≥ 

then the protection function has to be subtracted in the original constraint to keep the left-hand 

side term greater than bi. Since some uncertain parameters will finally take values above and 

below the estimate ija

Γ

, it is unlikely that the scenario with worst-case values occurs. Based on 

this intuitive idea, the protection function considers only a subset Si ⊆ Ji of uncertain 

coefficients, with the number of elements in Si given by the integer part of the user-defined level 

of protection, , that is, the higher the protection level, the more coefficients are considered in 

the protection function. The constraint i is then protected against all cases in which up to 

⎣ ⎦i

⎣ ⎦iΓ  of 

the coefficients change and one extra coefficient (ti in the protection function iβ ) changes by 

( - ) a . Even if more than iΓ Γ ˆ⎣ ⎦i it ⎣ ⎦iΓ  coefficients change, this approach provides a solution that 

will be feasible with high probability (Bertsimas and Sim 2004). 

2.2.2.2 Transforming the protection function into an optimization model (S2) 

To find the value of the protection function of each constraint i, the value of [2.5] can be 

replaced by the objective function of the following linear optimization problem. Note that x*
j is 

not a variable in this problem.  

ij
Jj

jij wxaMax
i
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∈
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where wij are new variables that represent the random variable ijη described above. As proof of 

the equivalence of these problems, notice that the optimal solution value of problem [2.6]-[2.8] 

clearly consists of  variables at 1 and one more variable at ⎣ ⎦iΓ iΓ - ⎣ ⎦iΓ . This is equivalent to 

select a subset {Si U {ti} | Si ⊆ Ji, |Si| = ⎣Гi⎦, ti ∈ Ji\Si} with the corresponding objective value 

(Bertsimas and Sim 2004).  ⎣ ⎦∑ ∈
Γ−Γ+

i iSj jitiijij xaxa ˆˆ ( ) **

*

Jjp ∈∀≥ 0]11.2[

0]12.2[ ≥z

n

2.2.2.3 Obtaining the dual model of the linear version of the protection function (S3) 

Although model [2.6]-[2.8] is linear for the given solution vector x*, it is not in the general case 

where x is variable. However, by using its dual, equation [2.4] can be linearly expressed. Since 

problem [2.6]-[2.8] is feasible and bounded for all Гi, then its dual, shown below, is also feasible 

and bounded. 

∑
∈

+Γ
iJj

ijii pzMin]9.2[  

subject to 

ijijiji Jjixapz ∈∀≥+ ,ˆ]10.2[  

iij  

i  

where zi and pij are the dual variables associated with constraints [2.7] and [2.8], respectively. 

2.2.2.4 Embedding the dual model in the original model (S4) 

We finally replace the protection function of [2.4] with the objective function of the dual model. 

The robust counterpart of [2.1]-[2.3] is then the following linear model: 
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Model [2.13]-[2.18] is larger than the original deterministic formulation, but it is of the same 

type (linear) and is computationally tractable. In the ‘Controlling the protection level’ section we 

explain how the protection level can be determined. 

2.3 Methods 

We applied the above approach to the well known harvest scheduling problem to allow readers 

to focus on the application of RO. The same steps described above can be applied to other 

problems to produce robust models. We considered uncertainty in volumes and demands of two 

products over the entire planning horizon. We applied deterministic and robust models to a 

timber-oriented forest area, and compared the performance of these decisions through the 

simulation of the uncertain data. We conducted two main analyses. The first (A1) demonstrates 

the advantage of using this methodology over the strategy of manually imposing a buffer to the 

original demand levels. For simplicity, we focused only in protecting minimum demand 

constraints when volume was uncertain. We used the buffer determined by the robust model for 

each constraint to correct the minimum demand level of the same constraint in the deterministic 

model. We then showed the difference in the decisions’ stability between using a (more 

complex) robust model and a traditional model with a corrected demand level that acts as a 

security buffer. In the second analysis (A2) we considered a complete model with protection for 

minimum demand and fluctuation constraints. We explored infeasibility rates and the change in 

the objective function and harvest decisions when volume and demand were uncertain under two 

discount rates. 
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All the optimization models described below were implemented in ILOG OPL Development 

Studio 5.2 (using CPLEX 10.2.0 as optimizer) while simulation experiments were conducted 

using Visual Studio 2005. All models were run in a 3.2 Ghz Pentium D with 1GB of RAM. 

Details of the different components of our methodology are presented next. 

2.3.1 Study area 

The models were applied to 245,090 ha of harvestable forest corresponding to the Tree Farm 

License 48, located in the north-east area of British Columbia, Canada. The forest is mainly 

mature (Fig. 2.1), and the predominant species are white spruce (Picea glauca), lodgepole pine 

(Pinus contorta), subalpine fir (Abies lasiocarpa), trembling aspen (Populus tremuloides) and 

cottonwood (Populus sp.) (Schuetz 2002). 

 

Fig. 2.1. Initial age class distribution shows a mature forest with almost 80% of the area in 
stands at least 40 years-old. 

 

The area was divided into 800 strata with an average area of 306.4 ha and ranging from 92.1 to 

4,255.5 ha. Strata were defined as those stands with similar age class, species composition and 

harvest system, regardless of their spatial location. For each stratum the following information 

was available: (1) volume of two products [m3] over the planning horizon for different 

management options, (2) management cost [$/ha] and (3) harvesting cost [$/m3]. Since not much 
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detail is required for long-term decisions, we considered conifers and deciduous species as two 

different products.  

2.3.2 Deterministic model formulation 

We opted for a model I formulation (Johnson and Scheurman 1977) of the harvest scheduling 

problem as the base for our robust model. Since the robust formulation significantly increases the 

number of constraints of the original model we preferred model I as it produces fewer constraints 

than model II.  

Thus, our decision variable xij represents the number of ha of strata i to which management j is 

applied, where each management defines a sequence of harvests throughout the planning 

horizon. Based on their initial age and growing rates, we defined fifteen management options for 

each of the 800 strata in order to represent a range of potential rotation ages. A twenty 10-year 

period planning horizon was used and harvests were assumed to occur in the middle of the 

period. Only clearcuting was considered as management option. 

The objective is to maximize the net present value of the harvest plus the value of the ending 

inventory: 

∑∑ +
ji

ijijT
t

tt xlzMax
,

]19.2[ αα  

where α represents the discount factor, lij the value of the ending inventory if management j is 

applied to stratum i, and zt the net income in period t, computed as follows: 
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where bpt is the price ($/m3) of the product p in t, vijpt is the volume (m3) in period t of product p 

in stratum i if managed with j, and chi and cmijt are the harvesting ($/m3) and management costs 

($/ha), respectively. The following sets of constraints – area, minimum demand and flow 

constraints – were considered: 
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j
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where  is the area of stratum i (ha), dia pt is the minimum requirement of product p in period t 

(m3), and δ is the allowable reduction in harvest volume as a proportion of  the production in the 

previous period. We allowed 10% reduction, that is, δ = 0.1. 

The minimum demand was assumed the same for all periods and determined on the basis of the 

production of the non-restricted model, as explained in the Results section. We considered two 

discount rates. A low 2% discount rate that includes more information about the future into the 

analysis (Gassmann 1989) and the more commonly used 4%. The discount factor was therefore 

defined by αt = (1+r)-(t-0.5) where (t-0.5) represents the midpoint of the period. In addition, we 

used local timber prices for these products (B.C. Ministry of Forests and Range 2007). Although 

some of these constraints may not be relevant for all decisions makers (e.g. private forest owners 

may not be interested in satisfying minimum demand requirements), they are important to many 

other forest managers and allow us to show how RO can be applied to different kind of 

constraints. 

2.3.3 Uncertain data 

As mentioned previously, we assumed that volume and demands in the above model were 

uncertain. Since independency is one of the assumptions for uncertain coefficients, we addressed 

the uncertainty coming from unbiased errors existing in yield forecast models. As strata are made 

up of stands from different locations in the forest, we also rely on the assumption that volume is 

not spatially correlated. Although demand can be correlated, we assumed it is independently 

distributed. The consequences of these assumptions are discussed in the Discussion section. 

In regard to the accuracy of volume estimates over long-term, studies are scarce (Yaussy 2000) 

and have suggested dissimilar values. Estimate accuracy of total volume can range from less than 

0.5% in plantations (Trincado et al. 2003) to 38% in natural forests (Pretzsch et al. 2002) for 5-

year forecasts. For 30-year periods, Yaussy (2000) reports forecast errors in total volume ranging 

from 3% to 98% depending on the model and the site. Moreover, it is reasonable to think that 

estimate errors increase for longer periods of estimation (Trincado et al. 2003). Hence, we used 
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an increasing volume estimate error, starting with a 10% accuracy for the first planning period, 

and an additional 2% for each future period. This implies that the estimate error was age-

independent and it was only related to how far the estimation was done from the first period. For 

the last planning period, for instance, the volume estimates had a 48% error. 

Estimate error of demands followed the same shape, with 1% accuracy for the first period. In all 

cases, uncertain coefficients were assumed independent and uniformly distributed within the 

range defined for their estimate precision. 

2.3.4 Robust model formulation 

New variables and constraints need to be defined to build the robust counterpart of the previous 

model. We applied the robust optimization approach previously described in order to get 

protection against infeasibility in constraints [2.22] and [2.23]. Detailed steps of how this 

formulation was obtained are presented in the Appendix A. Following the notation 

used, v and d represent the coefficient estimate of volume and demand, and  and  the 

respective precision ranges.  

v̂ d̂

2.3.4.1 Protection against minimum demand infeasibility 

We have to consider two cases when protection for demand constraints is formulated: (a) when 

only volume is uncertain, and (b) when both volume and demands are uncertain. Since an extra 

coefficient (demand) which is not associated with harvest decisions is uncertain in (b), the new 

equations differ slightly for each case. 

For case (a), constraint [2.22] was replaced with the following set of constraints: 
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where upt and wijpt are new variables that originated in the dual problem, and JD
pt is the set of 

uncertain coefficients of the demand constraint pt.  

For case (b) constraints [2.25]-[2.27] are still valid, but constraint [2.24] was replaced with the 

following constraint: 
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See Appendix A for more details. 

2.3.4.2 Protection against infeasibility for fluctuation constraints 

To get protection for timber flow between consecutive periods, constraint [2.23] was replaced 

with the following set of constraints: 
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where ypt and zijpt come from the dual problem, and JF
pt is the set of uncertain coefficients of the 

fluctuation constraint pt. 

2.3.4.3 Controlling the protection level 

The degree of conservatism in satisfying a constraint is controlled by the level of protection Гi. 

This value refers to the number of uncertain coefficients allowed to change while the constraint 

remains feasible. The good news is that this number can be associated with probability bounds 

(Bertsimas and Sim 2004) to determine the value of Гi to meet the constraint i with a given 

probability. The bad news is that even the best of these bounds is quite conservative and 

represents a weak estimate of the probability of meeting the constraint. We tested (results are not 

presented) bounds proposed by Bertsimas and Sim (2004) and determined Гi for different 
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probabilities of constraint violation. However, when we allowed 40% of constraint violation, 

100% of solutions were feasible when uncertain coefficients were simulated. Only when 45% of 

constraint violations were allowed, less than 0.5% of simulations were infeasible. In other words, 

the use of current probability bounds overestimates the level of protection Гi required to hold a 

constraint within a given probability. As a result, objective values are excessively affected and 

the real tradeoff between conservatism and solution quality is hidden. 

We therefore opted to gradually increase the protection levels, Γi, without using any probability 

bounds to determine constraints violation. Instead we tested infeasibility rates by simulating the 

uncertain coefficients as described later. Since for a constraint violation of at most εi we need a 

protection level at least equal to )()1(1 ii Jcardε−Φ+ 1− , where Φ is the cumulative 

distribution function of a standard normal (Bertsimas and Sim 2004), we estimated a maximum 

protection level (MPLi) by considering εi = 0.01. That is, for each constraint i, it is sufficient to 

select Γi at least equal to MPLi to get a 99% protection. We then simply determined different 

protection levels for constraint i as a percentage, e.g. 0%, 10%, 20% and 30%, of the MPLi 

value. Disadvantages of this approach are discussed in the Discussion section. 

2.3.5 Simulation experiments 

Both deterministic and robust solutions were tested by simulating the uncertain coefficients of 

the model within the uncertainty sets previously described. That is, we evaluated the optimal 

decisions from the deterministic and robust models using randomly generated timber yields and 

demands. For A1 we performed 1,000 simulations of the volume coefficients and infeasibility 

rates and changes in the objective function were examined for different protection levels. For A2 

two scenarios were considered; the first one dealt with uncertainty in timber volume and the 

second one with uncertainty in both volume and demand. For each scenario we ran 1,000 

simulations and evaluated the performance of deterministic and robust decisions with different 

protection levels. The resulting objective function, change in harvest decisions and occurrence of 

infeasibility were examined. 
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2.4 Results 

For all analyses we determined the minimum demand requirement for our two base cases, with 

2% and 4% discount rate (Fig. 2.2b), to be around 85% of the average production per period by 

running the non-restricted deterministic models (Fig. 2.2a). That is, demands were defined as 

3,600,000 and 750,000 m3 per period for product 1 and 2, respectively. For product 2, however, 

this constraint was considered from period 2 onward, as the problem became infeasible otherwise 

because of the initial forest conditions. The same demand levels were used in all scenarios 

evaluated. Minimum demand as well as fluctuation constraints became active in many of the 

planning periods in our base cases (Fig. 2.2b). As expected, 4% discount rate moved production 

forward in time both for the unrestricted and the restricted models.  

 43



 

Fig. 2.2. The non-restricted timber flow (a) was constrained by minimum demand and maximum 
negative fluctuation between period constraints (b) to define the base case for the analysis. 

 

In analysis A1 protection for demand constraints and uncertain volume with a 2% discount rate 

were considered. Recall that the buffer (value of the protection function) determined by the 

robust model for each product and period was recorded and then used to modify the minimum 

demand of the deterministic model. Thus, robust and deterministic models only differed in the 

additional constraints and variables of the robust model. With the same buffer levels in both 

models, robust decisions (ROB) reported less infeasibility rates (a solution was considered 

infeasible if at least one period was infeasible for the corresponding constraint) than 

deterministic decisions with the buffer added to the original demand (BUF) (Fig. 2.3). Although 

 44



ROB reported a higher reduction in the objective function than BUF as protection level 

increased, this reduction was proportionally lower for the same infeasibility rate. For example, at 

20% protection level, the same buffer size produced less than 10% of infeasibilities in ROB and 

more than 30% in BUF. On the other hand, for a 20% infeasibility rate, ROB reduced the 

objective value in about 0.37% (protection level 17%) while the reduction with BUF was around 

0.43% (protection level 27%). 

 

Fig. 2.3. Lower average infeasibility rates were obtained with the robust model (ROB) when the 
same buffer was used to modify the demand of the deterministic model (BUF). Although the 
objective value reduction is greater in the robust model for different protection levels, this 
reduction is lower when the same level of infeasibility rates is considered. 

 

In A2 we applied the full robust model with protection against infeasibility in both demand and 

fluctuation constraints. For both discount rates, the robust model increased production levels in 

critical periods – where demand constraints were active in the base case – as more protection 

against uncertainty was required (Fig. 2.4). When only volume was uncertain (Fig. 2.4a and b) 

this increase was slight, but including uncertain demands imposed higher levels of production in 

order to ensure constraint feasibility (Fig. 2.4c and d). Smoother production was also obtained to 

avoid large fluctuations between consecutive periods. 
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Fig. 2.4. Increasing timber production in periods with active minimum demand constraints were 
obtained when more protection was required. This increase was clearly larger when volume and 
demands were uncertain (c and d) than when only volume was uncertain (a and b). 

 

The occurrence of infeasibilities was reduced with robust solutions, both in the amount of 

simulations with at least one infeasible period (Fig. 2.5) and in the average number of infeasible 

periods in each simulation (Fig. 2.6). The constraints in the deterministic solution (protection 

level 0%) were almost always infeasible in at least one period, both in the scenario with 

uncertain volume (Fig. 2.5a and b) and in the scenario with uncertain volume and demand (Fig. 

2.5c and d). Demand of product 2 showed infeasibility rates between 70 and 80% only for 

scenarios with a 4% discount rate. In all cases, the rate of infeasibility was significantly reduced 

as higher protection levels were considered. For the highest protection level we tested (30%), 

infeasibilities were virtually nill for demand constraints and a bit higher for volume fluctuation 

constraints. The objective function was clearly affected when higher protection levels were 

imposed. This reduction was higher when a higher discount rate was used (Fig. 2.5b and d), both 
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when volume (Fig. 2.5b) and volume and demand were uncertain (Fig. 2.5d). The reduction in 

the average number of infeasible periods was even more important. Results were similar for both 

discount rates, so for the sake of space we only showed results for 4% discount rate (Fig. 2.6). 

For example, an average of around 7 infeasible periods observed by simulating the deterministic 

solution was reduced to less than 0.19 and 0.11 periods for the scenarios with uncertain volume 

(Fig. 2.6a) and volume and demands (Fig. 2.6b), respectively.  

 

 

Fig. 2.5. Reductions in the average percentage of infeasible simulations were observed as higher 
protection levels were used when volume (a and b) and volume and demands (c and d) were 
assumed uncertain. The impact in the objective function was higher for higher discount rates (b 
and d). 
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Fig. 2.6. Reductions in the average number of infeasible periods were also observed as higher 
protection levels were used when volume (a) and volume and demands (b) were uncertain. 
Similar results were obtained for a 2% discount rate (not shown). 

 

Harvest decisions were increasingly different as more protection level was considered (Table 

2.1). At 30% protection level, more than 155,000 ha were harvested in a different planning 

period during the planning horizon when volume was assumed uncertain and more than 225,000 

ha when both volume and demands were. Also at 30% protection and 4% discount rate, first-

period harvest decisions, which are most likely to be implemented, changed in about 2,200 and 

3,400 ha when volume and volume and demands were uncertain, respectively. These changes 

nearly doubled in the 2% discount rate scenario. 

Table 2.1. Differences in harvest decisions for robust models with different protection levels 

Change in harvest decisions [ha] (r = 2% / r = 4%) 

Uncertain volume Uncertain volume & demand Protection 
level [%]* First Period Total First Period Total 

10 2,226 / 1,645 87,494 / 95,008 2,736 / 965 160,818 / 200,080 

20 3,813 / 1,666 128,138 / 123,447 4,547 / 2,172 197,341 / 235,308 

30 4,030 / 2,207 158,939 / 155,897 6,099 / 3,417 225,397 / 258,426 

* Percentage of the Maximum Protection Level in a constraint 

As expected, the dimension and solution time of the models increased when uncertain 

coefficients were introduced (Table 2.2). The size of the robust models with uncertainty in 
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volume and in both volume and demands is the same since neither new variables nor constraints 

are required when demand becomes uncertain.  

Table 2.2. Size and solution time for the problems (reported by the software) 

Model Variables Constraints Solution time* [sec] 

Deterministic 12,001 879 1-2 

Uncert. volume 95,355 84,154 103-404 

Uncert. vol/dem 95,355 84,154 239-492 

* A range of solution time is provided since models were run for two discount rates and with different 
protection levels. In general, the higher the protection level the more difficult to solve the problem (higher 
solution time) 

2.5 Discussion 

Our results suggest that the robust optimization approach produces harvest decisions that are less 

sensitive to uncertain data and therefore protected from the occurrence of infeasibilities, with a 

moderate reduction in the objective function. In other words, for different degrees of 

conservatism, robust decisions performed almost as well as deterministic optimal ones, but for a 

range of possible volume and demand values. 

As expected, in order to get protection against infeasibility, production levels increased in critical 

periods in which demand constraints were tightly met. In periods with high negative fluctuation, 

production was smoothed by moving it from periods with a volume surplus to periods where 

only the necessary volume to meet constraints was produced. Although this ‘buffer’ strategy to 

protect decisions from an uncertain future is known (Boychuk and Martell 1996), the robust 

approach contributes a way to estimate this buffer in conjunction with the decision variables and 

based on the degree of uncertainty of the data. We showed that even in the case that the optimal 

buffer obtained by robust models is used to modify the constraint level of a deterministic model, 

solutions are not necessarily robust and higher infeasibility rates are obtained. Unlike 

deterministic models that look for optimal solutions, robust models look for optimal ‘stable’ 

solutions. 

When demand was uncertain, the need for markedly higher production levels was evident. Since 

demand coefficients are always present regardless of the value of the decision variables, the 

model needs to consider the worst case scenario of demand in order to get protection. This is also 
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clear from constraint [2.28], where deterministic demand requirements are corrected by their 

corresponding error estimates. Because of this, the reduction in the number of infeasible periods 

became more important when demand uncertainty was added to the problem (Fig. 2.6). 

As it has been shown in other studies (Pickens and Dress 1988), deterministic solutions were 

highly infeasible when tested by simulating the uncertain data. Robust decisions, however, 

proved to be more resistant to random changes in data and thus reduced infeasibility rates to 

almost zero for both discount rates. Since these decisions are required to be good (not optimal) 

for multiple possible future values of uncertain parameters, their objective values will certainly 

be negatively affected, and this represents the cost that decision makers should be willing to 

assume if a reduction in the risk associated with their decisions is desired. This reduction was 

greater for the higher discount rate (4%) because robust decisions moved harvests from initial 

(more valuable) to later (less valuable) periods to satisfy the increasing buffer requirements. The 

impact on the objective function is likely specific to the initial age class distribution, and we 

expect it would differ in different forests. We note here that a number of environmental 

requirements (i.e. spatial constraints) are being imposed on forest plans and these also reduce 

value as our approach does. We cannot say, however, that the reduction in the objective function 

produced by robust models should be added to the reduction produced by environmental 

requirements. In this case, an ‘optimal’ solution would probably exploit the interaction in 

decisions and therefore produce a value reduction lower than the simple addition of the 

independent reductions. 

Although we used the same protection levels for all constraints in each of our analyses, they can 

be different if we want to express different importance to each constraint. For instance, if the 

occurrence of infeasibility of fluctuation constraints is not a critical issue or the feasibility of one 

of the products does not need to be guaranteed, then lower protection levels can be used for these 

constraints. This will certainly produce better solutions in terms of the value of the objective 

function. 

Whether or not to take uncertainty into account in the decision process is irrelevant for 

management purposes if decisions remain the same in both cases. Future harvest levels are 

considered as reference for the current decision making process in the context of a rolling 

planning horizon, so they have less effect on immediate management decisions. Changes in the 

first-period harvest decisions, however, are relevant as they are most likely to be implemented. 
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Depending on the scenario, between 2,200 and 6,100 ha were harvested differently in the first 

period, that is, the harvest of some stands was moved forward or backward to meet the protection 

requirements. As expected, for the most uncertain scenario (uncertain volume and demand), 

these changes in decisions were highest. For the 2% discount rate, changes were also more 

important as the future and the degree of the uncertainty becomes more relevant when low 

discount rates are used. We gained no clear insight about what kind of stands either shortened or 

lengthened their rotation ages, so no general harvest policy insight could be obtained. We suspect 

that the magnitude of the decision changes is scenario-specific and largely influenced by the 

interaction between the forest state and the constraints imposed on timber production. Only a 

slight increase in the average rotation age (about half a planning period) was observed in 

different scenarios, maybe due to the need for more volume all along the planning horizon and 

the maturity of the initial forest (Fig. 2.1). This produced a timber shortage in the second part of 

the planning horizon that forced longer rotation ages in order to keep the harvest levels. 

Robust models are larger than traditional models. If a set of i constraints with j variables each (all 

multiplied for an uncertain coefficient) are to be protected, the robust model will have i+i*j 

constraints (not considering non-negativity) and variables. Although this can significantly 

enlarge the size of the models, like in our case, they remain linear. This is in our view an 

important advantage of this approach. Other methodologies (e.g. stochastic) would produce 

enormous linear problems with only a fraction (discrete scenarios) of the uncertain data we 

considered, or non-linear models much harder to solve (e.g. chance constrained programming). 

The methodology basically works as a buffering strategy. An additional term, the protection 

function, is added to critical constraints for which feasibility is highly desirable and uncertainty 

is present in the technical coefficients. This term is an optimization problem in itself. It relates 

decision variables to the buffer needed to meet the constraint for a given protection level defined 

by the modeler. Embedded in the original optimization problem, the protection function 

identifies decisions that provide the appropriate buffer, but at the same time, contribute to the 

general objective function. We believe this approach would allow decision makers interested in 

reducing the risk of their decisions to objectively determine the amount of buffer required to 

guarantee critical requirements. Without the need of solving complex problems and using 

sophisticated solution techniques, modified versions of traditional deterministic problems 

(following the steps described here) can be built and solved by a commercial linear optimization 

software, and then solutions tested by simulating uncertain coefficients. 
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However, our approach includes a number of simplifying assumptions that should be addressed 

in future research. The most important one refers to the assumption of independency of the 

uncertain coefficients, which limits its application to random, unbiased and uncorrelated errors in 

the coefficients estimates. Although this kind of error is very important when forecast models are 

used, catastrophic events and uncertain trends in data cannot be properly modeled. If this 

assumption is not met, optimistic results will be obtained. Another drawback of this 

methodology is the lack of a clear relationship between protection levels and the resulting 

infeasibility rates. Although probability bounds exist that relate constraints violation rates to 

protection levels, they are loose and produce more conservative solutions than desired. As 

explained in the Methods section, we did not use probability bounds but selected protection 

levels as different percentages of the square root of the number of uncertain coefficients in a 

constraint. Although the concept has a clear meaning, the amount of protection level to be used is 

not intuitive, and makes difficult for the decision maker to a priori control the conservatism of 

the solutions. This leads to the need for simulation experiments to test the solution performance. 

Further research looking for a more accurate way to relate the probability of constraints violation 

and the protection level would certainly improve this methodology. If probability bounds are 

used (as opposed to simulation experiments as used here) it would also be of interest to compare 

this approach to chance constrained programming. We did not address this comparison here 

since current probability bounds for robust optimization are quite weak, which leads us to clearly 

envisage more conservative solutions than a chance constrained approach. We plan, however, to 

do a structured comparative analysis in a future work. On the other hand, the assumption of 

uniform and symmetrically distributed uncertainty can be considered a limitation when the 

nature of the uncertainties is well described by a different distribution, or extra information other 

than extreme points is available. We suggest this can be handled by considering a wide enough 

uniform range for random values that embraces, for instance, 99% of the observations of the 

original distribution. This will certainly produce more conservative solutions than if a true 

distribution is used, but it will retain the modeling simplicity required to produce robust linear 

models. The use of extra information other than extreme points of uncertainty sets (e.g. 

asymmetry) should also be explored. Finally, the possibility to include uncertainty in coefficients 

arisen from the product of two uncertain coefficients would be useful. This would allow 

considering uncertainty in timber price and volume, and therefore get protection against the 

value of the objective function. 
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2.6 Conclusions 

We presented a harvest scheduling robust model that considered uncertainty in volume and 

demands and produced immunized decisions to uncertain data. By increasing protection levels 

against constraint infeasibility, the tradeoff between conservatism and cost of robustness was 

explored, showing that robust decisions had a modest effect on the value of the objective 

function. We also showed that this approach produces stable solutions that are not found when 

constraint levels are modified with a buffer amount to protect constraints from infeasibility. The 

robust optimization approach increased the number of variables and constraints of the traditional 

deterministic harvest scheduling model, but still produced a linear model that could be solved in 

reasonable solution time by using commercial optimization software. Although simulation 

experiments are required to finally estimate the expected rate of constraint infeasibility, we 

consider the methodology is an attractive way to find stable decisions in the face of uncertainty 

while keeping optimization models computationally tractable. 
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3 Bi-objective Multi-Period Planning with Uncertain Weights: A 

Robust Optimization Approach3 

3.1 Introduction 

Forest managers usually face the challenge of conjugating the views, goals and demands of 

different interest groups involved in the decision-making process. This challenge arises when the 

forest outcomes of the different objectives have to be estimated, and when defining the objective 

weights and trade-offs among the planning goals. In this paper, we focus on finding decisions 

that perform well even when these weights are not accurately known. These decisions are 

therefore called robust decisions. 

Multiple criteria decision making (MCDM) techniques provide a formal way to incorporate 

multiple criteria in the planning process (Steuer 1986). In particular, multi-objective 

programming methods (MOP) (Cohon 1978) include techniques applied to optimization 

problems as distinguished from multi-attribute utility theory methods (MAUT) used when a 

discrete set of alternatives are evaluated (Steuer 1986). It is worth noting that MAUT explores 

and ranks decision alternatives previously identified by the decision-maker, that is, no 

optimization of decisions is performed in contrast to MOP that generates a solution that 

optimizes a set of different objectives. A detailed explanation of these techniques can be found in 

Cohon (1978) and Steuer (1986), and for recent reviews of multiple-criteria methodologies in 

forest management the reader is referred to Diaz-Balteiro and Romero (2008) and Ananda and 

Herath (2009). 

One of the simplest MOP techniques is the weighted sum approach in which different objectives 

are combined in a single objective by assigning to each of them a positive weight that represents 

its relative importance or preference relationship. Although this approach looks quite 

straightforward, its successful application relies on the appropriateness of the weights (Steuer 
                                                 

3 A version of this chapter has been submitted for publication. Palma, C.D., and Nelson, J.D. 2009. Bi-objective 
multi-period planning with uncertain weights: A robust optimization approach. 
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1986) as these values affect the solution obtained (Butler et al. 1997, Kangas 1994, Pukkala 

1998). Weights estimation imposes important difficulties (Cohon 1978) and different approaches 

to determine them have been proposed, including rating and ranking methods (Eckenrode 1965), 

pairwise comparison between objectives (Eckenrode 1965), fuzzy set theory (Rao and Roy 1989) 

and mathematical programming (Pekelman and Sen 1974, Ma et al. 1999). In addition to this 

complexity, the long time frame of forest management decisions adds more uncertainty to the 

weights estimation as they may change in the future. This uncertainty in the value of the weights 

has been addressed with sensitivity analysis (Butler et al. 1997, Kangas 1994), a method called 

stochastic multi-criteria acceptability analysis (SMAA) (Lahdelma et al. 1998, Kangas et al. 

2003, Kangas 2006, Kangas et al. 2006), and using a combination of simulation and heuristic 

search (Pukkala and Miina 1997). All these approaches, except the latter, have been applied to 

situations where a set of previously known decision alternatives are evaluated under uncertain 

weights. Apparently, no applications have explored uncertainty in the objective weights in 

optimization problems (Diaz-Balteiro and Romero 2008, Ananda and Herath 2009), those in 

which an optimal decision is generated rather than many decisions evaluated. To our knowledge, 

only uncertain future state of the forest by using multi-objective dynamic programming (Gong 

1992) and vagueness in the objective definitions by using fuzzy set theory (Ells et al. 1997) have 

been explored in multi-objective optimization problems. 

Our interest in this work is to find solutions to bi-objective problems that perform well under 

different values of objectives weights. Since weights play a major role in determining the model 

solutions and extensive sensitivity analysis are suggested when using this approach (Cohon 

1978), we want to explore a way of formulating a model that explicitly considers the sensitivity 

of the solutions to the weights when looking for “optimal” decisions. We present a robust 

optimization approach (Bertsimas and Sim 2004) applied to a bi-objective multi-period harvest 

scheduling problem when weights are not accurately known and may change within a pre-

defined range throughout the planning horizon. We demonstrate that robust decisions perform 

almost as well as the traditional fixed-value weight approach in terms of the objective function 

value, however, they are more consistent in a scenario of uncertain future weights. 
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3.2 Robust optimization approach 

Different robust optimization approaches that seek solutions that are not overly sensitive to the 

realization of uncertainties have been proposed (Mulvey et al. 1995, El Ghaoui et al. 1998, Ben-

Tal and Nemirovski 2000, Bertsimas and Sim 2004). By modifying the structure of the original 

models, robust optimal solutions produce the best objective value that simultaneously tolerates 

changes in the model parameters up to a given bound, known a priori. 

Although the first attempts to immunize solutions against uncertainty were too conservative as 

they considered the worst-case parameters values (Soyster 1973), newer approaches have 

addressed this issue and less conservative solutions can be obtained (Ben-Tal and Nemirovski 

1998, El Ghaoui and Lebret 1997). The disadvantage of these approaches is that they increase 

the complexity of the problem. The approach we use here does not increase complexity, e.g. the 

robust counterpart of linear problems remains linear, allowing us to solve large-scale problems in 

a computationally tractable way (Bertsimas and Sim 2004). This approach has been applied, for 

instance, to network design (Bertsimas and Sim 2003), portfolio management (Bertsimas and 

Sim 2004), inventory theory (Bertsimas and Thiele 2006) and forest harvest scheduling (Palma 

and Nelson 2009). The latter study considered uncertainty in timber yield and demand in the 

context of a single objective model. 

The approach works by adding a new term, called the protection function, to each constraint for 

which protection against the realization of uncertain coefficients is desirable. Note that if 

uncertainty is in the objective function, as in our case, we can still express it as a constraint. To 

do so, we add the constraint c’x ≥ z and maximize z, where c is the vector of uncertain 

coefficients of the objective function and x is the vector of decisions. The robust version of this 

constraint adds a protection function, β(x*,Γ), so the new constraint becomes 

[3.1] c`x - β(x*,Γ) ≥ z 

The protection function acts as a buffer and its magnitude depends on the user-defined parameter 

Γ and the observed value of the decision vector, x*. Since this buffer is required to be as low as 

possible in the optimal robust solution, decision vectors that satisfy all the model constraints at 

the “minimum cost” for the objective are to be selected. 
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We will assume that each coefficient ci is independently distributed in the symmetric interval 

ii cc ˆ± where ic ĉis the coefficient estimate and the error of the estimate. Although 

independency may represent an important assumption as discussed in the Discussion section, it 

allows keeping the models solvable. For each of the n coefficients, we can define a scaled 

deviation 

i

iiii ccc ˆ/)( −=η so that they belong to [-1, 1]. The sum of all ηi could theoretically take 

values between –n and n if all the coefficients are uncertain. However, as uncertainties are 

assumed independently distributed, some coefficients will exceed and others fall below their 

point estimates, tending to cancel each other out, therefore narrowing the observed value of the 

sum of scaled deviations. Using the protection level Γ, we can limit the number of uncertain 

coefficients allowed to change by considering Γ≤∑i iη . If Γ=0, ηi are forced to 0 for all i and 

so there is no protection against uncertainty. If Γ=n, all ηi are allowed to have a non-negative 

value and the constraint is totally protected against uncertainty. Finally, for Γ∈(0, n) partial 

protection against uncertainty is defined as some of the ηi can be non-zero. 

For a given solution x*, the protection function β(x*,Γ) is defined to allow the simultaneous 

change of up to Γ uncertain coefficients, that is, it corresponds to the sum of the Γ largest 

deviations produced by a fixed value of the decision vector. In other words, the protection 

function equals the objective value of the following optimization problem: 

∑i iii wxcMax ˆ]2.3[  *

iw ∀≤≤ 10]4.3[  

Subject to 

Γ≤∑i iw]3.3[  

i

Where wi is a new variable that represents the random scaled deviation described above. Note 

that this model is linear when seen as a sub-problem with a fixed x*, but it turns non-linear when 

x is variable as in the original problem. Its dual, however, can be used to linearly include this 

sub-problem into the original model. If u ≥ 0 and vi ≥ 0 are the dual variables of constraints [3.3] 

and [3.4], respectively, the dual of model [3.2]-[3.4] is: 
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∑+Γ
i ivuMin]5.3[  

Subject to 

ixcvu iii]6.3[ ∀≥+ *ˆ

≥−Γ−

ixcvu ∀≥+ ˆ]8.3[  

iv ∀≥ 0]9.3[  

0]10.3[ ≥u

 

Since the objective value of models [3.2]-[3.4] and [3.5]-[3.6] is the same, the latter can be 

embedded in [3.1] to replace the protection function β(x*,Γ). Thus the robust model constraint 

[3.1] is replaced by the following set of constraints while z is maximized: 

zvuxc
i ii ii ∑∑]7.3[  

iii

i

 

The robust formulation takes into consideration the trade-off between the quality of the decisions 

and the variability of their outcomes. Solutions that maximize the original objective function c’x, 

but simultaneously require small buffers against uncertain values will be preferred. For the range 

of possible values of ci, z represents the minimum value that the objective function c’x might 

reach if up to Γ parameters are allowed to change. 

3.3 Methods 

We considered two representative objectives of the community desires in the study area in a 

multi-period forest planning problem, i.e. the creation of employment and the increase of the 

proportion of old forest in the area. In this section we describe the study area, the data used and 

present both the deterministic and the robust models. 

3.3.1 Study area 

The study area consists of a 245,090 ha forested area within Tree Farm License 48, located in 

northeastern British Columbia, Canada. The area is divided in 800 strata with an average size of 
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306.4 ha (range 92.1-4,255.5 ha). Regardless of the spatial location of the stands, those with 

similar age-class, species composition and harvest system were grouped into strata. For each 

stratum, the inventory and the employment required based on the harvest system were available. 

3.3.2 Bi-objective multi-period planning model 

For simplicity we used a model I formulation (Johnson and Scheurman 1977) in which we have 

to determine the number of hectares of each stratum i to be managed with management option j, 

Xij. We used a twenty period planning horizon (10 year periods) and defined 15 possible 

management options for each of the 800 strata. For each stratum, a management option defines 

the complete sequence of harvests throughout the planning horizon and their corresponding 

outputs in each period (employment in this case). This sequence, for instance, may state that a 

stratum will be harvested in periods p1 and p2. Another sequence or management option may 

consist of harvesting the stratum on period p3 only, or even not harvest it at all. Thus, different 

combinations of valid rotation ages (that is, subject to a minimum harvest age) throughout the 

planning horizon were considered. For the purpose of explaining our methodology we 

considered 15 management options for each stratum, but the effect of using more options is 

discussed in the Discussion section. As will be explained later, the two objectives are technically 

addressed by representing each of them through the 20 periods of the planning horizon, leading 

to 40 individual objectives. 

If eijt and aijt represent the amount of employment produced and the age of the stratum i in period 

t when managed with j, respectively, we can express the objectives level of each period as 

txeze
ji

ijijtt ∀= ∑
,

]11.3[  

and 

( ) txSzo
ijtaji

ijt ∀= ∑
≥80|,

1]12.3[  

where zet and zot are the amount of employment and the proportion of old forest in the area in 

period t, respectively, and S is the total area of the forest. In this case 80 years old strata and 

older were considered old-aged strata. 

 63



In addition, the area assigned to management options must equal the total stratum area, that is, 

isx i
j

ij∑]13.3[ ∀=

19.0]14.3[ >∀⋅≥ tzeze

 

where si is the area of stratum i. We also constrained the reduction in employment rates between 

consecutive periods to avoid abrupt differences. We included the following constraint that 

guarantees that the employment level in a period cannot decrease more than 10% of the level 

observed in the previous period. 

)1( −tt  

For the objective function we used a weighted-sums approach in which each objective is 

multiplied by a positive scalar weight and then the weighted objectives are summed to form a 

composite objective function (Steuer 1986). As we considered that weights may change over 

time, they were defined by objective and period, in other words, one weight for each of the 40 

individual objective levels. To overcome the effect of the relative magnitudes of the different 

objectives function gradients, we normalized the objectives achievement based on their ideal and 

anti-ideal levels (Martinson 1993), and defined our objective function as 

( )∑
t

tttt zozeMax]15.3[ + oe '' λλ  

where λ is the vector of weights and z’ is the vector of normalized objectives, that is 

−+ −
−

=
tt

tt
t zeze

zeze
ze

)(
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−+ −
−

=
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tt
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)(
]17.3[ '
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where the vectors z+ and z- are the ideal and anti-ideal objective levels. These levels are obtained 

by solving the individual single objective problems, in this case, by maximizing each objective 

for each period. The anti-ideal employment and the ideal proportion of old-aged forest levels are 

quite simple to estimate. In the first case, no employment is produced in any of the planning 
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periods if the non-harvest decision is selected in all strata. This would be the worst case from the 

employment creation point of view. In the second case, the ideal proportion of old forest 

corresponds to the projection of the initial proportion based on the strata age, which is also the 

case when the non-harvest decision is implemented. Ideal employment and the anti-ideal 

proportion of old forest levels have to be determined by solving the corresponding linear 

programming models. 

3.3.3 Modeling unclear preferences 

To deal with uncertain weights we formulated the robust version of the objective function as 

described before. We note that although the sum of the weights is usually set to one, what really 

matters is the relative weights of the objectives (Cohon 1978). Two problems made us disregard 

this widely used way to define weights. First, as random changes in the weights are allowed, the 

value of the second weight (or the last one when more than two objectives are considered) will 

be perfectly correlated as they have to sum up 1. This violates the independency assumption 

mentioned before and could be avoided if weights can freely take values within their ranges. 

However, doing this raises a second problem. If we scale the random weights produced, it might 

happen that the new scaled weights fall outside their range of possible values. For instance, let us 

consider without lost of generality two scaled weights 0.6 and 0.4 that can take values in the 

range [0.48-0.72] and [0.32-0.48], respectively. If 0.49 and 0.47 are the random, non-scaled 

values of each weight, respectively, then the new scaled weights would be 0.51 and 0.49, with 

the last weight out of its range. As shown, it becomes unclear the real values and relative 

importance that weights can take when many weights change at a time. We therefore used a 

modified weight vector λ’. We set  for all periods, while allowing only the other 

weight, , to change. In this way the user knows exactly how the relative importance of the two 

weights varies. The extension to this approach to more objectives is commented in the 

Discussion section. By fixing the employment weight for each period, the other weight can be 

obtained as 

1t
' =eλ

'oλt

eoo '' eo
ttt λλλ =  where . Therefore, the robust version of the objective 

function has 20 uncertain coefficients given by the uncertain weights of the proportion of old-

aged forest throughout the planning horizon. The final model then corresponds to equations 

[3.11]-[3.17] in which equation [3.15] was replaced with the following set of equations: 

1=+ tt λλ

 

 65



 

 wMax]18.3[

Subject to 

( ) wpyzoze
t

t
t

tttt ≥−Γ−+ oe ∑∑]19.3[ λλ ''''

o ''ˆ

negativenon,]21.3[ −py

'ˆo 'o

'oλ

'' ôo 'e
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where Γ is the protection level and is the error associated with the weight estimate . In other 

words, the weight is assumed to belong to the symmetrical and uniformly distributed 

range . Recall that is fixed to one and it is not allowed to change. In what follows, w 

will be referred as the objective function, and the weighted sum of objectives using the original 

vector λ will be referred to as the solution score. As the sum of modified weights (λ’) is variable, 

the score is a more appropriate way to compare solutions. For a variable , original weights can 

be obtained, for instance, as  and . 

tλ tλ

t

tt λλ ± tλ

tλ

)1/( ttt tt 1

The new formulation adds t+1 new constraints and variables, plus the auxiliary variable w to the 

original model. Models were implemented in ILOG OPL Development Studio version 5.2 

(CPLEX optimizer 10.2.0) and run in a 3.2 Ghz Pentium D with 1 GB of RAM. 

3.3.4 Uncertain weights and analysis 

Original weights (λ) were set to 0.6 and 0.4 for the employment and proportion of old-aged 

forest objectives, respectively, in all the periods. Consequently, the modified weights (λ’) were 1 

and 0.667 for employment and old forest in each period, respectively. That means that although 

employment is the most important management objective in the area, the existence of an old 

forest is also desirable. The latter objective guarantees good quality wildlife habitat in the area 

and recreation spots for the community. The use of any other weight combination does not affect 

the methodology proposed. 
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We considered two scenarios of weight uncertainty. In both cases we assumed that weights are 

not totally known even in the first planning period, and that this imprecision gradually increases 

over time until period 10. For the first planning period, was defined as 20% (scenario SCE20) 

and 50% (scenario SCE50) of in the first and second scenario, respectively. That is, the value 

of was allowed to change in the range 0.667±0.133 and 0.667±0.333 in the two scenarios, 

respectively. For periods 2 through 10, the percentage of estimate error increased by two units 

per period, reaching an error of 38% and 68% for SCE20 and SCE50, respectively. These values 

were maintained for the rest of the planning horizon, as we considered them wide enough to 

represent long-term uncertainties. For SCE20, the first period estimate error was defined in such 

a way that original weights (λ) showed a relative agreement with the real values of the objectives 

weights (Fig. 3.1a). For SCE50, this error was the minimum required to produce changes in the 

first period harvest decisions as discussed later (Fig. 3.1b).  

'ô

'o

'oλ

tλ

tλ

1

 

Fig. 3.1. The two scenarios described two levels of uncertainty for the objective preferences over 
time. 

 

The deterministic solution was compared with robust solutions generated with three levels of 

robustness. The protection level parameter Γ, which represents the number of uncertain 

coefficients allowed to change, was set to 10, 20 and 30% of the number of uncertain coefficients 

in the objective function. In other words, the three levels of robustness were defined by setting 

Γ=2, 4 and 6. We refer to these levels of robustness as ROB10, ROB20 and ROB30, 

respectively. These values were sufficient to provide nearly full protection against the value of 

the objective function as detailed later. 

 67



We used 1,000 sets of simulated weights (500 by scenario, each set containing weights for all the 

periods of the planning horizon) to evaluate the performance of deterministic and robust 

solutions in terms of their stability when facing uncertain future objective weights. We also 

compared deterministic and robust solutions in terms of the change in the optimal score, level of 

employment and proportion of old-aged forest, and change in the management decisions. 

3.4 Results 

Robust solutions were less sensitive to changing objective weights than deterministic solutions. 

In Fig. 3.2, the black lines represent the weighted sum of objectives by period, or score, 

produced by the optimization models using the initial fixed-value weights, and the gray area 

represents the scores produced by the same optimal decision but evaluated using the simulated 

weights. In both scenarios of simulated weights, the score obtained in each period by robust 

decisions (Fig. 3.2b and d) was more stable than the one obtained by deterministic decisions 

(Fig. 3.2a and c). The other levels of robustness not shown in the figure (ROB10 and ROB20) 

showed an intermediate behavior between deterministic and robust decisions, that is, the more 

the level of robustness the more stable the score. 
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Fig. 3.2. The score dispersion (gray area) was wider for the deterministic solutions (a and c) than 
for robust solution ROB30 (b and d) when optimal decisions (black line) were evaluated using 
simulated weights. 

 

The value of the objective function (with modified weights λ’) decreased when more protection 

was required (Table 3.1) as it protected different values of the objectives weights. Under 

simulated scenarios, the value of the deterministic objective function (14.08) was not reached 

about 50% of the time, unlike the value of the robust objective functions that were achieved in 

almost all the simulations (ROB30). However, a reduced impact in the optimal score (solution 

evaluated with λ) was observed in robust solutions. In the most extreme case of uncertainty and 

protection level (SCE50, ROB30) this reduction was close to 1%, in all other cases it was less 

than 0.5%. 
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Table 3.1. Value of the objective function and scores produced by deterministic and robust 
solutions 

 Scenario SCE20  Scenario SCE50 

 DET ROB10 ROB20 ROB30  DET ROB10 ROB20 ROB30 

Objective 
Function 
(OF) 

14.08 13.79 13.52 13.27  14.08 13.46 12.90 12.40 

Simulations 
below OF 
(%) 

49.0 17.1 3.3 0.3  51.0 19.6 3.6 0.3 

Score 
(reduction) 

8.45 
(0%) 

8.44 
(0.12%) 

8.43 
(0.24%) 

8.41 
(0.47%) 

 8.45 
(0%) 

8.44 
(0.12%) 

8.41 
(0.47%) 

8.37 
(0.95%) 

 

Deterministic and robust models scheduled harvests in a different way, that is, some of the strata 

were scheduled to be harvested in a different period. The change in harvest decisions relative to 

deterministic decisions (Fig. 3.3) was more important when more uncertainty was assumed (Fig. 

3.3b) and also when more protection was required. In the scenario of more certainty in weights 

(Fig 3a) no different harvest decisions were scheduled in the first period, about 250 ha in the 

second period and 5,800 ha per period on average in the rest of the planning horizon with 

ROB30. In SCE50 (Fig. 3.3b), almost 1,300 ha were harvested differently in period 1 with 

ROB30, and up to 16,000 ha differences were observed in future periods. 

 

Fig. 3.3. Changes in harvest decisions relative to deterministic decisions were larger as more 
robustness was required and more uncertainty was assumed (b). 
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Deterministic solutions produced less employment and a higher proportion of old forest in both 

scenarios (Fig. 3.4). Consistently, as more robustness was required more employment and less 

proportion of old forest were produced. In the most uncertain scenario (SCE50) the change in the 

objective levels was slightly more pronounced. 

 

Fig. 3.4. In both scenarios of uncertainty, more employment (a,c) and lower proportions of old-
aged forest (b,d) were produced as more robustness was required. 

 

Employment levels were closely related to the total area harvested. Peak and bottom points of 

harvests (Fig. 3.5), essentially caused by the forest structure and its dynamics, determined the 

peaks and bottoms of employment levels (Fig. 3.4a and c). The 10% decline constraints 

prevented the employment from drastically dropping in periods 6-15. The proportion of old 

forest increased (Fig. 3.4b and d, periods 1-3 and 11-15) in periods with low harvest levels (Fig. 

3.5, same periods), and the opposite occurred when harvest levels increased. 
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Fig. 3.5. Area harvested through the planning horizon in the two scenarios of uncertainty. 

 

Robust formulations produced a minor increase in the model size. The number of variables 

increased from 12,041 in the deterministic formulation to 12,063 in the robust model. Constraints 

also increased from 859 to 880. The increase in solution time was imperceptible as all models 

solved in 2-2.5 seconds. 

3.5 Discussion 

Our results suggest that the robust formulation of the bi-objective multi-period planning problem 

produces management decisions that are less sensitive to uncertain objective weights. Under the 

premise that social preferences may change in the future, and are even hard to estimate at the 

present time, robust models found decisions that produced more stable scores along the planning 

horizon. This guarantees that decisions will still produce a good and more consistent 

combination of the two objectives considered, independently of the relative importance that 

society gives to the objectives. 

Since robust decisions are meant to perform well in multiple scenarios of weights, the value of 

their score is certainly affected. As expected, the score reduction is greater as more uncertainty is 

assumed and more robustness is desired. However, in our case this reduction was less than 1% in 

the most uncertain scenario, suggesting that robust solutions do not drastically score lower than 

traditional deterministic solutions. This is possible because the protection function introduced in 

the robust formulation is an optimization problem in itself, embedded in the original model, that 
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identifies less sensitive decisions to changing weights and, at the same time contributes to the 

model objective. 

As suggested by Pukkala and Miina (1997), considering uncertainty in the objective weights 

affected the management decisions. Although the solution score was slightly reduced in robust 

models, management decisions showed important differences in both scenarios of uncertainty. 

Thousands of hectares were scheduled to be harvested in a different period, which is also 

evidence that robust models look for different attributes when selecting optimal decisions. In the 

most uncertain scenario, first-period harvest decisions that are to be implemented changed in 

about 1300 ha. That is, some strata scheduled for harvesting in the first period by the 

deterministic model were scheduled for a later period by the robust model, and vice versa. 

However, we note that first-period harvest decisions did not change in the scenario with low 

level of uncertainty. This suggests that uncertain objective weights might be overcome in some 

cases by a continuous planning process that keeps track of preference changes. The magnitude of 

the decision change is expected to be scenario specific in our view and influenced by the forest 

state and the set of management options available for each stratum. We considered 15 

management options for each stratum, but if more options are provided we would expect more 

changes in the management decisions and less impact in the solution score. 

To reduce the negative impact on the score produced by increasing levels of robustness, robust 

decisions increased the amount of the most weighted objective, in this case the level of 

employment. As a trade-off between optimality and stability of the solutions is desirable, the 

increase in the level of employment through the planning periods guarantees that the value of the 

objective function will not be excessively affected. Higher levels of employment therefore 

compensate the natural reduction of the objective function that would be produced if a non-

robust solution is generated. 

The robust version of a constraint guarantees that the constraint will be met for a range of 

realizations of the uncertain coefficients. When dealing with the objective function, robustness 

translates into a guarantee that the value of the objective function will be achieved for a range of 

uncertain coefficients. We think that this guarantee is an important concept in a multi-objective 

framework where usually public areas are managed to satisfy the needs of a variety of social 

actors. Since social preferences may not be accurately determined, decision makers can use this 
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approach to find less risky decisions and therefore reduce negative outcomes if preferences 

change. 

Our methodology finds less sensitive decisions to uncertain objective weights in bi-objective 

optimization problems. Current methodologies that deal with uncertain weights have focused on 

the comparison of previously defined decision alternatives rather than in generating robust 

alternatives. Stochastic multi-criteria acceptability analysis (Lahdelma et al. 1998), for instance, 

assigns to each alternative an acceptability index representing the variety of possible weights that 

support the preference of that alternative. A higher index means that the alternative is preferred 

in more scenarios of uncertain weights. Based on the same concept, other approaches (see for 

example Kangas 2006, Kurttila et al. 2009 and Liesiö et al. 2007) rank the robustness of the 

decision alternatives providing decision-makers with valuable information about their stability. 

However, the quality of the final decision is highly dependent on the set of alternatives available 

for comparison. Moreover, when a decision is required at a landscape level, that is, a plan 

consisting of selecting one alternative for each stratum in the landscape, the number of 

landscape-level alternatives gets large very quickly. This number might easily be much larger 

than the number of alternatives under comparison reported in the literature. We believe that 

when decisions can be represented by continuous variables at stratum level the robust 

formulation proposed here may provide a practical way to find good quality robust decisions 

without the need of enumerating decision alternatives.  

The approach proposed includes some assumptions that should be addressed in future research. 

The assumption that uncertain coefficients have to be independently distributed limits the type of 

uncertainty to be considered to random and unbiased errors, discarding the consideration, for 

instance, of uncertain trends in social preferences. In addition, the assumption that estimate 

errors are to be uniformly distributed denies the use of information about the probability 

distribution of these coefficients. Although this information is rarely available, one can define a 

wide enough range of uncertain values that contains a high proportion of the observations of the 

original distribution (Palma and Nelson, 2009). Another drawback of the approach is the lack of 

a clear relationship between the protection level, Γ, and the resulting level of robustness or 

degree of constraint satisfaction. Probability bounds to estimate the value of Γ needed to obtain a 

certain degree of robustness have been proposed (Bertsimas and Sim 2004), but they are loose 

and produce conservative solutions (Palma and Nelson, 2009). An alternative way to explore this 

relationship is by conducting simulation experiments. Solutions obtained using different 
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protection levels can be tested in simulated scenarios of uncertain coefficients and their 

robustness evaluated. Although conducting simulation experiments is quite simple, a more 

accurate way to determine the protection level required to obtain a desired level of robustness 

would improve this methodology. 

The possible values that a weight can take are intended to reflect what the modeler expects about 

the change of the relative importance of an objective relative to other objectives. Allowing 

weights to change within a certain range of values may produce confusing results in the final 

relative importance of weights as shown in the Method section. We avoided this by allowing 

only one of the two objectives to change while keeping the other weight fixed to one. Although 

this approach works well for two objectives, when considering more objectives the relative 

importance of the weights is still uncontrollable and special care has to be taken if this represents 

a problem for the modeler. We emphasize that the use of non-scaled weights does not affect the 

model solution, but only the value of the objective function. This value is also not expected to 

mean something rather than guiding the solution search process to find non-inferior solutions 

(Cohon 1978). As we did in our case, there always exists the chance to evaluate and compare 

solutions obtained with non-scaled weights by re-calculating the objective value using a set of 

scaled weights. 

Despite the limitations of the methodology, we consider that it has important benefits. Since 

good solutions (not optimal ones) for a range of objective weights are obtained, decision makers 

can reduce the risk of obtaining poor outcomes and will need less adjustment to their decisions if 

future conditions change. This approach would also contribute to reduce the efforts needed in 

conducting sensitive analyses. Decision makers would not need to evaluate different weights 

combinations before selecting a solution. The robust approach explicitly considers different 

weight combinations and based on an objective criterion provides a stable solution. Finally, we 

envision that these benefits can translate into a better acceptance of management decisions from 

stakeholders or other social actors involved in this type of decision problems. 

3.6 Conclusions 

We showed a robust formulation of a bi-objective multi-period problem in which uncertainty in 

the objective weights was considered. Our method produced solutions that are less sensitive to 

future change in the weights than traditional deterministic formulations. Under simulated 
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scenarios of objective weights, the score or weighted sum of the objectives obtained in each 

period by robust decisions was less variable than deterministic decisions at the expenses of a 

minor reduction in the objective function score. The robust formulation presented may 

significantly reduce the efforts of sensitivity analyses as it explicitly considers how decisions 

change when weights change. We consider that decisions that involve a consensus about the 

importance of the planning objectives may be more easily accepted by the different actors 

involved in the decision-making process with this approach. 
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4 A Robust Model to Protect Road Building and Harvest Decisions 

from Timber Estimate Errors4 

4.1 Introduction 

Medium-term decisions typically involve harvest scheduling decisions and road access 

construction. Although these two aspects of the planning problem can be considered separately, 

their integration has proved to be significantly more efficient (Jones et al 1986). Different mixed 

binary models to solve this problem have been proposed and solved using different approaches 

(Weintraub and Navon 1976, Richards and Gunn 2000, Guignard et al. 1998, Andalaft et al. 

2003), but in all cases assuming the model data are perfectly known and ignoring the inherent 

uncertainty in the coefficients of the model. 

Uncertainty in natural resources management comes from a range of sources well described in 

the literature (Mowrer 2000, Regan et al. 2002, Marshall 1987). Biological processes that are not 

totally understood and changing social and economic conditions in combination with long time 

horizons affect the consequences of forest planning decisions made today. In addition, 

uncertainties result from the process of estimation of current and future resource levels. Different 

sampling methods will report different estimate errors of current inventory, and statistical models 

used to project this inventory also contribute to this inexactness. Although extensive areas might 

produce a diversification effect that can reduce the effect of some of these uncertainties, the 

decision making process still has to be carried out in an uncertain environment. As a 

consequence, although decisions implemented now might seem optimal, they will probably be 

sub-optimal once the uncertainties are realized as the information used to make these decisions 

will not necessarily be observed (Marshall 1987). In the context of sequential decision making 

that takes place in the real world, there is potential recourse when forecasted outcomes are not 

realized and the consequences may not necessarily be large. Since many of the real system 

                                                 

4 A version of this chapter will be submitted for publication. Palma, C.D., and Nelson, J.D. 2010. A robust model to 
protect road building and harvest decisions from timber estimate errors. 
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decisions are guided by model forecasts, we can gain understanding of uncertainty in the real 

system by examining feasibility of the models when information changes. Solutions of 

deterministic constrained models are likely to become infeasible (Pickens and Dress 1988) when 

evaluated with observed data (e.g. upper or lower bound constraints may become infeasible). 

This makes the search for good and stable solutions rather than strictly optimal ones highly 

relevant for implementing decisions. 

4.2 Approaches to deal with uncertainty 

Stochastic programming (SP), chance-constraint programming (CCP) and fuzzy set theory (FS) 

are the best known techniques to include uncertainty in optimization models. By considering a 

set (usually discrete) of scenarios of random events or uncertainties, SP allows finding a good 

solution for all or the most likely of them. The great disadvantage of this technique is that as the 

number of scenarios increases, models become computationally difficult to solve and solution 

methods like decomposition and statistical approximation have to be used (Birge and Louveaux 

1997). In addition, the probability distribution of the scenarios needs to be known, which is 

rarely the case. 

In CCP, constraints with at least one random coefficient are modeled as probabilistic statements. 

Probability distributions of uncertain coefficients are assumed to be known and constraints are 

required to hold with a minimum probability, exogenously determined. Although particular cases 

of CCP models are easy to solve (when only the right-hand side of a constraint is uncertain), in 

most cases models become nonlinear (Birge and Louveaux 1997, Kall and Wallace 1994), and 

finding exact solutions is typically intractable (Chen et al. 2007), thus motivating the search for 

approximate solution techniques (Birge and Louveaux 1997). 

FS provides a different approach to deal with some types of uncertainty by defining a degree of 

membership of a parameter to a set of possible values. The more likely the value of a parameter, 

the greater its degree of membership. This concept is used to model objectives and constraints 

for which a combination of their degree of membership can be maximized (Zimmermann 1996). 

This approach may be appropriate when there is vagueness, for example, in the meaning of 

certain events, phenomena or statements, but its appropriateness is not clear when representing 

the lack of information about the value of the parameters. In the latter case, FS actually results in 
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a relaxed version of the traditional deterministic problem in which constraint violations are 

allowed and, consequently, better objective functions are obtained. 

These three techniques have been mainly used in harvesting scheduling problems. For instance, 

SP has been used to deal with uncertainty in timber yield (Hoganson and Rose 1987, Eriksson 

2006) and fire losses (Gassmann 1989, Boychuk and Martell 1996), while uncertainty in timber 

yield has been also considered by using CPP (Weintraub and Vera 1991, Weintraub and 

Abramovich 1995, Pickens et al. 1991, Hof et al. 1992). Most recently, CCP with approximation 

solution techniques was applied to a fire budget allocation problem with uncertain fire 

suppression costs, and to a habitat restoration problem where survival parameters were uncertain 

(Bevers 2007). Using FS, uncertainty in timber yield (Hof et al. 1986, Pickens and Hof 1991, 

Bare and Mendoza 1992) and vagueness in seral-class definitions (Boyland et al. 2006) have 

been considered in harvest scheduling problems. In the context of multi-objective models, 

fuzziness in the objective function coefficients (Mendoza et al. 1993, Stirn 2006) as well as in 

the goal definitions (Ells et al. 1997, Maness and Farrell 2004) has been addressed using FS. 

However, uncertainty in road building decisions has been scarcely addressed, probably because 

of the additional difficulty in solving integer models. Only road upgrade decisions with uncertain 

length of the period of poor road conditions has been examined using SP (Olsson 2007). 

The aim of this paper is twofold. First, we explore the effect of random volume uncertainties on 

harvesting and road building decisions; and second, we do this by using robust optimization 

(RO), a mathematical approach to immunize decisions against parametric uncertainty that has 

not been extensively used in forest resources management. It has been applied in engineering 

(Ben-Tal and Nemirovski 2002), network design (Bertsimas and Sim 2003, Ordonez and Zhao 

2007), inventory theory (Bertsimas and Thiele 2006) and recently to forest harvest scheduling 

(Palma and Nelson 2009). 

4.3 The robust optimization approach 

We base our development in the RO approach proposed by Bertsimas and Sim (2004). Other 

approaches have also been proposed (Mulvey et al. 1995, Ben-Tal and Nemirovski 2000, El 

Ghaoui et al. 1998), but they result in computationally more complex models. The approach used 

here produces models of the same type of the original model (i.e. linearity), without the need of 

specific solution techniques other than the one used to solve the original problem. 
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The RO approach works as a buffering strategy. An additional term, called the protection 

function, is added to each constraint affected by uncertainty and for which feasibility is highly 

desirable. Let us consider the general lower bound constraint: 
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change, that is, the buffer size corresponds to the sum of the iΓ largest deviations produced by a 

fixed value of x. In other words, the protection function of constraint i equals the objective 

function of the following optimization problem: 
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where wij are new variables that represent the random variable of scaled deviation ijη described 

above. Although this model is linear for the given solution vector x*, it is not the case when x is 

variable. Its dual, however, can be used to linearly express this function in [4.2]. If zi and pij are 

the dual variables of the constraints [4.4] and [4.5], respectively, then the dual of [4.3]-[4.5] is: 
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4.4 Methods 

In this section we describe the study area, both deterministic and robust formulations, the data 

used and the simulation experiment performed to test the resulting infeasibility rates. 

4.4.1 Study area 

We determined road and harvest decisions in a 11,675 ha area located on mid-Vancouver Island, 

British Columbia, Canada, of which 7,554 ha were available for harvesting (Fig. 4.1). The area is 

divided into 431 harvestable stands with an average size of 17.5 ha and ranging from 1.6 to 52.3 

ha. We considered 412 potential road segments and two demand nodes for which minimum 

timber supply has to be guaranteed over three planning periods. To cover the planning horizon 

usually considered in tactical decisions while providing more detail in the first periods, the 

periods were defined as two, three and four years, respectively, that correspond to a nine-year 

planning horizon. Since a considerable portion of this area could be harvested in a relatively 

short period, 10% of the volume is to be retained when harvesting a stand. Inventory data and 

harvesting and transportation costs are available for the area. 
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Fig. 4.1. A harvestable area of 7,554 ha was used as study area. It included 431 stands and 412 
potential roads. 

4.4.2 Harvest scheduling and road building models 

The road building problem is a network problem in which arcs represent segments of potential 

roads and nodes represent either timber sources or the intersection of arcs. Roads have to be built 

and harvesting decisions, as well as timber flow, have to be determined in order to transport the 

harvested timber towards exit nodes that connect the forest to demand nodes. In our formulation 

we minimize the discounted harvesting and road building costs subject to a minimum timber 

demand. Adjacency constraints are not included, and only one timber product and one road 

standard are assumed. As integrated harvest scheduling and road building models are hard to 

solve to optimality, different solution approaches have been proposed to find good solutions, e.g. 

mixed-integer solvers (Weintraub and Navon 1976), heuristics and metaheuristics (Richards and 

Gunn 2000, Weintraub et al. 1995, Clark et al. 2000) and Lagrangean relaxation (Andalaft et al. 

2003). In addition, strengthening and lifting techniques are also simple steps to facilitate the 

model solution. By adding logical inequalities (or ‘triggers’) and increasing the dimension of a 

constraint space (or ‘lifting’), the solution space of the LP relaxation is reduced and therefore 

fewer solutions are evaluated and better bounds for the integer solution techniques can be 

obtained (Guignard et al. 1998). We opted for a strengthened formulation of the problem and 

solved it using a commercial optimization software as detailed later. 
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The following nomenclature will be used in both the deterministic and robust formulations. 

Sets: 

i,j supply, intersection and exit nodes. This set does not include demand nodes. 

m demand nodes. 

r potential road. It corresponds to an undirected arc connecting two nodes. That is, each 

road r supports timber flow on directed arcs ij and ji. 

s stand. 

t period. 

s(i) set of stands that supply timber to node i. 

Coefficients and Parameters: 

mtd

v

R

T

H

 minimum demand in node m in period t. [m3] 

st  total volume in stand s in period t. [m3] 

rc  cost of building road r. [$] 

tmijc )(  cost of transportation between nodes i and j (or demand node m) in period t. [$/m3] 

stc  total cost of harvesting stand s in period t. [$] 

tα  discount factor applied to period t. 

Decision Variables: 

rtX

Y

F

 binary variable that represents if road r is built (1) in t or not (0). 

st  binary variable that represents if stand s is harvested (1) in t or not (0). 

ijt  timber flow (directed) between node i and j in period t [m3]. 
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imtF  timber flow (directed) from node i to destination m in period t [m3]. 

4.4.2.1 Deterministic model 

We minimize the sum of road building, harvesting and transportation costs as follows: 
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Constraint [4.15] limits the number of times that each stand can be harvested during the planning 

horizon. Constraint [4.16] imposes the conservation of flow at each node (except demand nodes) 

and in each period. Inflow to a node (left-hand side) may come directly from harvesting stands or 

from other nodes, while the outflow (right-hand side) may go to other nodes in the network or to 

demand nodes. Constraint [4.17] defines the lower bound of timber production in each period 

and demand node. Constraints [4.18] and [4.19] correspond to the road construction trigger 

(lifted with respect to time) and a logical inequality, respectively. They both contribute to make a 

strong formulation of the harvesting and road building problem (Andalaft et al. 2003). In [4.18], 

timber flow in any arc and up to a given period is only possible if the corresponding road has 

been built in the same or in a previous period. Mrt is a big number that allows the flow to be 

greater than 1. Since its value has a major impact on the solution process of the model, the lowest 

possible value that preserves the original integer optimum should be used (Andalaft et al. 2003). 

When maximum demands are present, the sum of all of them can be used as an upper bound for 
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the timber flow in each period. If there are no maximum demand constraints, as in our case, the 

total volume of the forest in each period, ∑s stv , is another option. However, as we require a 

minimum demand in each period, not all the forest can be harvested in the same period because 

some timber has to be saved to meet demands in other periods. Therefore, a better flow upper 

bound for every arc and period t would be ∑∑ ≠
−

tlm mls st dv
,

. Moreover, the tightest upper 

bound can be determined when arcs have a treelike structure (Fig. 4.2). Unlike cycle structures, 

in treelike structures only one flow direction is possible and the potential flow in an arc cannot 

be larger than the maximum cumulative production of the source nodes from the leaves to the 

tree base. 

 

Fig. 4.2. In a tree structure (a) only one flow direction is possible so the maximum flow in an arc 
can be determined as a cumulative flow (Max Flowcb = Fc; Max Flowba = Fc + Fd). If cycles are 
present (b), the maximum flow in an arc is more difficult to determine as complex flow 
interactions might result. (Andalaft et al. 2003) 

 

For each arc and period, the flow upper bound was then determined as follows: 
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where r is the preceding arc of r from the leaves to the tree base and node i is the node in r 

closest to the leaf. 0=M tr  for terminal nodes. These calculations were automatically computed. 
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Constraint [4.19], called a project-to-road trigger (Andalaft et al. 2003), allows harvesting a 

stand in a period only if at least one road connecting the stand to the road network has been built 

in the same or in a previous period. In this equation, r(s) represents the set of roads that connects 

stand s to the road network. 

4.4.2.2 Robust model 

To protect minimum demand constraints from infeasibilities, equation [4.17] was modified and 

new variables and constraints were added as previously described. We assumed that the real 

volume, , belongs to and is symmetrically distributed in the rangestv ]ˆ,ˆ vvvv +−[ , 

where

stststst

stv is the volume estimate and tstst evv ⋅=ˆ

=δ

tsYvpz ,ˆ]21.4[ ∀≥+

tsp ,0]22.4[ ∀≥

 is its estimate error. 

Two special features of this problem deserve some attention. First, the network structure of the 

problem makes it such that uncertain coefficients (v ) are not in the equation to be buffered (eq. 

4.17). Although only flow variables (F

st

imt) are present in this constraint, they are linked to the 

harvest variables Yst, which are associated with uncertain coefficients, through constraint [4.16]. 

The additional timber flow to be sent to each destination (eq. 4.17) forces the additional harvest 

(eq. 4.16) and the required road construction (eq. 4.18). Second, since uncertain coefficients do 

not depend on the demand destination m, the protection function βt will not provide a harvest 

buffer at the demand destination level, but only a total buffer at a period level. However, we can 

assign a portion of this total buffer to each demand by introducing the parameter δmt, with 

. In our case, both demand centers were assumed equally important, so δ1∑m mt mt took the 

value of the proportion that each destination represents from the total demand (i.e., 0.6 for node 1 

and 0.4 for node 2 for all periods). 

Equation [4.17] of the original model was then replaced by the following set of constraints: 
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tz ∀≥ 0]23.4[  t

where zt and pst are new variables. All other equations of the original model remain the same. 

Models were implemented in OPL Development Studio 5.2 (CPLEX 10.2.0 as optimizer) in a 

3.2 Ghz Pentium D with 1 GB of RAM. 

4.4.3 Uncertain coefficients and model parameters 

A stable annual timber supply requirement was determined in such a way that around 70% of the 

total area needs be harvested during the planning horizon. Sixty percent of this supply 

requirement was arbitrarily assigned to demand node 1, and the rest to demand node 2. Demand 

levels for each period therefore resulted in 396,000, 594,000 and 792,000 m3 for demand node 1, 

and 264,000, 396,000 and 528,000 m3 for demand node 2. The annual discount rate was assumed 

4%. 

The timber forecast was based on both the current volume estimate and on a growth and yield 

model that projected this volume to future periods. The error of the initial volume estimate, e1, 

was used to define two scenarios that might represent two sampling intensities. We assumed 

e1=10% in the first scenario (referred to as SCE10) and e1=15% in the second (referred to as 

SCE15), and in both cases we assumed that errors increased 1% annually. Assuming that 

calculations occur at the midpoint of each period, the errors for the second and third periods were 

12% and 16% in SCE10, and 17.5% and 21% in SCE15, respectively. The volume of a stand s in 

period t was therefore assumed random and uniformly distributed in the range tstst evv ⋅±

Γ

 as a 

result of unbiased errors in the forecast model or in the estimation of the stand area or the stand 

volume. As uncertainties have to be non-correlated in the same constraint (i.e. the volume must 

be independent within the same period), we also assumed spatial independence. 

As mentioned before, the degree of conservatism in satisfying a constraint is controlled by the 

user-defined protection level, . The immediate question is how big this parameter should be to 

get a desired feasibility rate. Although there is no exact expression to obtain this parameter, there 

exist bounds that relate a desired probability of constraint violation to the protection level 

required (e.g., Bertsimas et al. (2004) and Bertsimas and Sim (2004)). However, as noted in 

(Palma and Nelson 2009), these bounds represent only a weak estimate of this probability and 

therefore overestimate the protection level and excessively affect the objective function value. 
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We discarded the use of probability bounds in this work and determined protection levels as 

different percentages (e.g. 0.5%, 1.0% and 1.5%) of the number of uncertain coefficients of each 

constraint. These numbers provided a good description of the trade-off between robustness and 

optimality. For these three protection levels, we determined infeasibility rates by simulation as 

described next. 

4.4.4 Simulation experiments 

Since we did not use probability bounds to determine protection levels, we had no idea about the 

infeasibility rates produced by the protection levels used. We therefore estimated these rates by 

simulation experiments. We simulated the volume for each scenario (SCE10 and SCE15) and 

used this volume in the deterministic and robust solutions to evaluate the performance of harvest 

decisions in satisfying demand constraints. That is, road decisions and the selection of stands to 

be harvested were fixed and the harvest levels were recomputed with the simulated volume 

coefficients. Since no maximum capacity on arcs was assumed, flow feasibility did not need to 

be checked. The total simulated timber production was compared with the total minimum 

demand and a simulation was considered infeasible if the production fell under the minimum 

requirement. As specific flow details are not required to determine whether a simulation was 

feasible or not, the flow variable was not recomputed. For each scenario, 1000 simulations were 

performed and the solution of the deterministic model was compared with the solutions of the 

robust models with the three protection levels used (labeled as PL0.5, PL1.0 and PL1.5). In 

addition, we used the buffer estimated by robust models (i.e. the value of the protection function) 

in a deterministic framework, that is, the deterministic model was run with modified demand 

levels (demand plus buffer). By doing this, we compared the effect of using a robust approach 

instead of a deterministic one with manually imposed buffers on the quality of harvest and road 

construction decisions. For each simulated scenario, we evaluated the performance of the 

deterministic decisions (DET), three robust decisions (ROB) and three deterministic solutions 

with manually imposed buffers (BUF). Simulations were performed in MS Excel in a 3.2 Ghz 

Pentium D with 1 GB of RAM.  
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4.5 Results 

Deterministic models were run for 30 min to obtain gaps around 2-3%. Robust models were 

harder to solve as more constraints and variables are included. In this case, models were run for 

12 h to obtain similar gaps (3-4%). The possible effect of this gap difference is discussed in the 

Discussion section. Results of the optimization process are presented in Table 4.1. 

Table 4.1. Numerical results of the optimization process. 

 Number of  Problem 

Constraints Binary 
variables 

Total variables 

CPU time 
[min] 

Residual gap 
[%]* 

DET 4,025 2,532 5,017 30 2.4,2.4 

ROB_PL0.5 5,318 2,532 6,313 720 3.1,3.2 

ROB_PL1.0 5,318 2,532 6,313 720 3.3,3.4 

ROB_PL1.5 5,318 2,532 6,313 720 3.7,4.4 

BUF_PL0.5 4,025 2,532 5,017 30 2.6,2.4 

BUF_PL1.0 4,025 2,532 5,017 30 2.9,2.6 

BUF_PL1.5 4,025 2,532 5,017 30 2.5,2.7 

* Residual gap is shown for the two scenarios of volume estimate precision (SCE10, SCE15) 

Simulation experiments showed that infeasibility rates of deterministic decisions were 

considerably reduced as higher protection levels were used to find robust decisions (Fig. 4.3). 

Infeasibility rates of around 49% observed in deterministic decisions (protection level 0) dropped 

to 1.4% and 1.5% for scenarios SCE10 and SCE15, respectively, when protection level was 

1.5%. Decisions of deterministic models with modified demand levels (BUF) also showed lower 

infeasibility rates, although higher than those from robust models (3% in SCE10 and 2.3% in 

SCE15). The need for higher harvest levels than in the optimal of the deterministic solution 

caused a reduction in the objective function of robust and buffered solutions (Fig. 4.3). This 

reduction is slight and consistently lower for robust decisions than for the buffer solutions. 
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SCE10

 

SCE15

Fig. 4.4. Harvest levels of robust optimization models increased in both scenarios when a higher 
protection level (PL) was used. Lower timber harvest was required when the volume estimate 
error was smaller (SCE10).  

Road and harvest decisions of robust models were different from deterministic decisions (Fig. 

4.5). For the sake of brevity, only decisions of scenario SCE10 are shown in Fig. 4.5. Decisions 

of SCE15 were similar. In the first planning period, 61 (72) stands and 98 (112) segment roads 

were scheduled differently in SCE10 (SCE15), respectively, when the higher protection level 

was used to obtain robust solutions. Decisions of the buffer strategy were also different from the 

traditional deterministic model because modified demand levels were used. Although the buffer 

size is the same as the one determined by the robust model, decisions of the buffer strategy 

tended to follow a similar spatial pattern as the deterministic decisions (Fig. 4.5). 
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Model: DET

 

Model: ROB

 

Model: BUF

Fig. 4.5. Harvest and road building decisions were different among deterministic (DET and 
BUF) and robust models (ROB). Buffer strategy (BUF) tended to produce a similar decision 
pattern as the deterministic model (DET). 
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Because of the higher harvest levels required to get protection against infeasibility, both robust 

and buffer models increased the number of stands and the area harvested throughout the planning 

horizon (Table 4.2). Surprisingly, in both scenarios robust decisions generally required a smaller 

road network than deterministic and buffer strategy models. The buffer model required even 

more roads than deterministic solutions. No major changes in the costs were observed among the 

different models. However, ROB solutions consistently outperformed BUF solutions. Road 

building cost tended to be lower as more robustness was required.  

Table 4.2. Summary of harvest results for the planning models (SCE10 / SCE15) 

Model # Stands Total Area [ha] Roads [km] Average Cost [$/m3] 

    Harvest Transport. Roads 

Det 218 4,804 108.7 2.85 1.77 2.55 

Rob0.5 223 / 223 4,827 / 4,835 110.2 / 108.7 2.89 / 2.87 1.72 / 1.71 2.62 / 2.55 

Rob1.0 224 / 226 4,911 / 4,885 106.7 / 110.0 2.86 / 2.88 1.69 / 1.68 2.50 / 2.62 

Rob1.5 226 / 231 4,923 / 4,995 107.6 / 105.8 2.81 / 3.01 1.75 / 1.77 2.48 / 2.45 

Buf0.5 223 / 219 4,835 / 4,821 112.9 / 110.9 2.88 / 2.85 1.82 / 1.78 2.59 / 2.58 

Buf1.0 223 / 227 4,897 / 4,903 119.5 / 110.1 2.85 / 2.91 1.82 / 1.79 2.74 / 2.57 

Buf1.5 224 / 228 4,868 / 4,976 113.1 / 116.0 2.90 / 2.88 1.76 / 1.77 2.59 / 2.62 

4.6 Discussion 

Our results suggest that the robust optimization approach produces solutions that are less 

sensitive to random errors in the volume estimates at the expense of a slight reduction in the 

objective function. Even in the hypothetical case where the appropriate buffer is used to modify 

the minimum demand levels of deterministic models, the robust approach produced more stable 

solutions and lower losses in the objective function. 

Since meeting the minimum demand constraints is highly desirable in our case, harvest levels of 

robust solutions were higher than those of the deterministic solutions. As expected, the greater 

the need for constraint fulfillment, the higher the timber production. In addition, when volume 

coefficients are more uncertain (i.e. scenario SCE15) more timber harvest is needed to guarantee 

a certain level of constraint satisfaction. This higher harvest happens because the wider range of 

possible values increases the magnitude of eventual negative deviations against which we want 
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protection to satisfy the minimum demand levels. Although buffers can be used to manually 

modify the minimum demand levels, the robust approach estimates this buffer based on the 

decisions actually made as well as the degree of data uncertainty, providing optimal ‘stable’ 

decisions rather than the traditional optimal solutions. We showed this through the comparison 

between the robust approach and what we called the buffer strategy. When the same buffer 

obtained by robust models was used to modify demand levels of the deterministic model, robust 

solutions outperformed deterministic decisions both in terms of infeasibility rates and objective 

function value. Even though one might think that the buffer strategy performed almost as well as 

the robust approach, we note that finding the buffer levels by other means than the approach 

presented here is difficult. The amount of buffer obtained by robust models was “optimal” within 

the range of the solution gap, so the use of any other buffer level would likely produce inferior 

results. As integer models are unlikely to be solved to optimality, the presence of a gap in the 

solutions precludes an exact comparison of their quality. Obtaining the same gap for different 

models to standardize the comparison is also difficult as gaps progress by discrete steps rather 

than continuous moves. However, the greater gap of robust models might represent more room to 

improve their solutions and therefore enhances the benefits of robust formulations.  

The volume estimate error affected management decisions. Robust models scheduled both 

harvest and road construction in a different way than the deterministic model in order to take 

advantage of the uncertain timber yield through the planning horizon in a cost-efficient way. 

Although the robust models and the buffer strategy were set up with the same minimum level of 

production, their decisions largely differed. While the buffer strategy tended to follow a similar 

spatial pattern to the deterministic decisions (with the extra requirement to harvest more timber), 

the robust approach favored the concentration of the harvest operations. Although clustering 

operations may sound counter-intuitive if spatial diversification is desired (we will come back to 

this when discussing our assumptions), in our particular case this reduced the cost of road 

construction (Table 4.2) and therefore balanced the trade-off between optimality and robustness 

of the solutions. What should be clear is that robust models looked for different attributes when 

searching for optimal solutions, preferring decisions that are less sensitive to changing future 

conditions. However, we note that the magnitude of the decision changes should be scenario 

specific and influenced by the spatial distribution of uncertainties and the minimum demand 

levels. In addition, the discount rate will also affect the difference between robust and 

deterministic decisions. Higher discount rates are expected to reduce this difference as less 
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emphasis is put on the future and therefore in the magnitude of the uncertainties (Palma and 

Nelson 2009). 

For each constraint affected by uncertainty and for which feasibility is highly desirable a new 

term is added. This term, called the protection function, is an optimization problem in itself. For 

each solution vector, it looks for the buffer required to hold the constraint for a given user-

defined protection level. Decisions that contribute to both higher objective value and small 

buffers are preferred, thereby providing high-quality solutions. Although the same protection 

levels were used in our analysis for all constraints, they can differ to express different degrees of 

importance. For instance, protection levels can emphasize the importance of the first period over 

the rest of the planning horizon, or the differences among products if a multi-product model is 

used. The importance of demand centers can be handled with the parameter δmt, that represents 

the fraction of the buffer to be sent to each destination point. 

Robust models have more variables and constraints than the original models. In our case, since 

the harvested volume in each period t comes from the potential harvest of any of the s stands (all 

stands are available and all have uncertain volume) s x t (431 x 3 = 1,293) new constraints need 

to be added. For each of these constraints, as well as for each period, a new variable has also to 

be created, that is, s x t + t (1293 + 3 = 1,296). Although the increase in the model size does not 

seem to be particularly important, robust models were harder to solve than the deterministic 

model as more protection levels were used. Despite the extended solution time used for robust 

models, residual gaps were greater than for deterministic models. This suggests that robust 

formulations are weaker than deterministic formulations and extra efforts should be done to get 

the same gaps of the deterministic approach (i.e., increased solution times, other strengthening 

and solution techniques). 

Our approach includes some important assumptions. For instance, uncertain coefficients need to 

be non-correlated in the same row, which means that volume coefficients of each constraint 

should be independently distributed. This forced us to assume that the stand volume is spatially 

independent. In our view, this is a critical limitation of the methodology to address spatial 

problems. As a consequence, clustering strategies are preferred and the value of the decisions is 

overestimated. It is important to note, however, that some degree of independency has to be 

assumed if we are looking for stable solutions to deal with uncertainty. If they are highly 

correlated then we cannot take advantage of diversification strategies and only worst-case 
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scenario solutions would become relevant. The assumption of independent coefficients also 

limits the type of uncertainty that we can consider to only random errors. Uncertain trends in 

data and catastrophic events like fires and pest attacks cannot be properly modeled with the 

current assumptions, hence further research is needed to address this limitation. 

Uncertain values are also assumed to be uniformly and symmetrically distributed, which can lead 

to the loss of information if uncertainties are well described by a different probability 

distribution. This could be handled by considering a uniform range that embraces, for instance, 

99% of the observations of the original distribution of uncertain values (Palma and Nelson 

2009). Although more conservative solutions will be obtained than when the true distribution is 

used, this simplification helps keep robust models easier to solve. Another disadvantage of the 

methodology is the impossibility to accurately determine protection levels required to hold 

specific infeasibility rates. Although probability bounds can be used to estimate them (Bertsimas 

and Sim 2004), they are loose and produce more conservative decisions than desired (Palma and 

Nelson 2009). As used here, simulation experiments can be used to evaluate infeasibility rates. 

Further research should address the limitations previously mentioned. Ways to include some 

levels of independency as well as asymmetry of the uncertain coefficients have recently been 

proposed (Chen et al. 2007) and their applicability should be explored. In addition, more 

accurate probability bounds to relate the probability of constraints violation and protection levels 

would improve this methodology by leaving out the need for simulation experiments. Finally, the 

application of other solution techniques (i.e. lagrangean relaxation, heuristics) to solve robust 

road building formulations would also be of interest in order to solve larger problems quickly 

and with reduced gaps. 

4.7 Conclusions 

We presented a robust formulation of a road building and harvest scheduling problem with 

random volume coefficients when feasibility of minimum demand constraints is highly desired. 

Solutions of this model were both less sensitive to volume uncertainties and more efficient in 

terms of the objective value than manually imposed buffering strategies. The appropriate amount 

of buffer to satisfy a constraint is determined in conjunction with the decision variables in such a 

way that the trade-off between cost and robustness is explicitly considered in the formulation. 

Although larger models are obtained, the approach does not require sophisticated solution 
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techniques, and a commercial integer optimization software can be used. However, larger gaps 

were observed suggesting that more strengthening or different solution approaches may be 

needed. Since current probability bounds that relate protection levels and feasibility rates 

represent weak estimates of the probability of constraint satisfaction, simulation experiments 

were used to obtain infeasibility rates. The independency assumption among uncertain 

coefficients resulted in clustered spatial decisions, suggesting that further research is needed in 

this area. 
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5 Conclusions 

5.1 General conclusions 

The robust optimization (RO) approach proposed in this thesis produced solutions that were less 

sensitive to uncertain data and therefore more stable with respect to the changing future 

conditions that forest managers face. Surprisingly, robust decisions produced only minor 

reductions in the objective function suggesting that choosing more stable decisions in some 

situations might not represent a major cost for the decision maker. The methodology proved to 

be a useful way to explicitly consider some types of uncertainty in forest management models as 

discussed later. 

To meet the thesis objectives (i.e., to determine how the RO approach performs relative to the 

deterministic approach, and to determine its potential benefits, limitations and implications), 

three different problems were considered: (a) a strategic, non-spatial harvest scheduling problem 

with uncertain volume yields and demands (chapter 2), (b) a strategic, bi-objective multi-period 

problem with uncertain preferences (chapter 3), and (c) a tactical, spatial harvest scheduling and 

road building problem with uncertain volume yields (chapter 4). Deterministic and robust models 

to solve these problems were formulated and their solutions were compared under simulated 

scenarios of uncertain data. This comparison included changes in the objective function, in the 

rates of constraint satisfaction and in the management decisions for different degrees of 

robustness. 

In (a), minimum demand and timber flow fluctuation constraints were protected against 

infeasibility. The robust formulation increased timber production levels in critical periods in 

which demand constraints were tightly met. In periods with high negative fluctuation, timber 

production was smoothed by moving it from periods with a volume surplus to periods where 

only the necessary volume to meet constraints was produced. Although the use of buffer 

strategies as a response to risk is not new (e.g., Boychuk and Martell 1996), RO allows decision 

makers to estimate this buffer in conjunction with the decision variables and based on the degree 

of uncertainty of the data. It was shown that even when the same optimal buffer obtained by 
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robust models was used to modify the constraint level of a deterministic model, solutions were 

not necessarily robust and higher infeasibility rates were obtained. Higher discount rates 

diminished the effect of uncertainty on management decisions as suggested by Gassmann (1989). 

It is worth noting that although a Model I formulation was used to solve this problem, a Model II 

formulation might be more convenient as the problem becomes bigger in terms of the number of 

strata and management options. In this case, the number of variables of a Model I formulation 

will be probably larger than the number of variables observed in a Model II. This will translate 

into more constraints in its robust counterpart therefore making a Model II formulation more 

attractive as base for a robust model. 

In the context of multiple objectives decision-making, the difficulties in estimating the real value 

of the objective weights (Eckenrode 1965, Cohon 1978, Kangas 1994) together with the 

changing communities’ demand for outputs from the forest (Mowrer 2000, Kangas and Kangas 

2004) have motivated the study of methodologies to incorporate this uncertainty into multi-

objective decision models. In (b), uncertain weights of the two objectives were assumed, and 

unlike most of the research in the area that evaluates the robustness of sets of discrete decisions 

alternatives previously known (Lahdelma et al. 1998, Kangas et al. 2003, Kangas 2006), I 

addressed weight uncertainty in a continuous decision problem where decisions were generated 

rather than evaluated. The weighted sum of objectives produced by robust decisions was more 

stable than deterministic decisions along the planning horizon when evaluated under uncertain 

weights. This means that the robust decisions produced a good and consistent combination of 

objectives independently of the relative importance that society gives to them. It was shown that 

first-period management decisions did not change in scenarios with low levels of uncertainty, 

suggesting that uncertain weights might be overcome in some cases by a continuous planning 

process that keeps track of the change in social preferences. To compensate for the reduction in 

the objective function (weighted sum of objectives), robust decisions produced higher levels of 

the most important objective as more robustness was required. 

In (c), as in (a), the feasibility of minimum demand constraints was desirable and a slight 

increase in the timber production levels was observed with consequent reduction in the 

infeasibility rates. Since volume yield was assumed spatially independent as I discuss later, 

harvest decisions tended to be clustered instead of scattered as one may expect, suggesting that 

the methodology needs revision when spatial decisions are to be made. Unlike the modest 

increase in the solution efforts observed in models (a) and (b), a significant increase in the 
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difficulty to solve model (c) was observed. The strength of integer models is crucial to 

successfully solve integer problems (Guignard et al. 1998), and my results suggest that robust 

formulations of integer problems may be weaker in terms of solvability than deterministic 

formulations. Solving robust formulations of integer problems might therefore require extra 

efforts such as increased solution times and other strengthening and solution techniques if the 

same solution quality as the deterministic version is desired. 

Unlike some studies that have focused on the effect of uncertainty on the objective function and 

harvest levels (Boychuk and Martell 1996, Gassmann 1989, Pickens et al. 1991, Teeter and 

Caulfield 1991, Eriksson 2006), I also explored its effect on the specific harvest scheduling 

decisions as in Hoganson and Rose (1987) and Hof et al. (1995). The need for considering 

uncertainty in the planning process is irrelevant for management purposes if decisions remain the 

same in both cases. I demonstrated that explicitly considering uncertainty affected forest 

management decisions right at the beginning of the planning horizon, that is, even decisions to 

be implemented in the current period are different if uncertainty is taken into account. This 

suggests that not considering uncertainty may require major corrections to future management 

decisions through time in order to adapt to changing future conditions. The more corrections 

needed, the greater the reduction in the value of the management plan. By providing decisions 

that are less sensitive to uncertain data, robust solutions reduce the need of future modifications 

to these decisions and therefore reduce the cost of adapting management to realized outcomes. 

Solutions to robust models represent diversification strategies to reduce the effect of uncertainty 

as described in the 1950’s (Heady 1957, Anoff 1959). In all the evaluated cases these solutions 

increased the number of variables taking a non-zero value, thereby increasing the original set of 

selected actions. In Chapter 2 and 3 (especially Chapter 2) this translated into more management 

prescriptions applied to each stratum. For instance, in the harvest scheduling problem of Chapter 

2 the average number of prescription applied to a single stratum increased from 1.03 to 1.9 in the 

most severe scenario of uncertainty with a 4% discount rate. In some cases a stratum was 

prescribed up to 14 management prescriptions. The increase in the number of prescriptions 

observed in the bi-objective problem (Chapter 3) was less significant and only visible at the most 

severe scenarios of uncertainty, probably because this problem was less constrained and did not 

include any specific output level requirement. In Chapter 4, the diversification effect led the 

robust model to schedule more, but slightly smaller, stands for harvesting. This effect is expected 

to be more evident as spatially correlated uncertainties are considered. Environmental and 
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practical implications of the change in the nature of the decisions will depend on the problem 

under consideration. No major implications should be observed in strategic decision problems as 

they basically deal with long-term trends and non-spatial aggregated information (Nelson 2003). 

However, environmental and practical implications might be observed in medium and short term 

decisions that are spatially located as access to more stands needs to be available. In this case, 

environmental issues should be explicitly incorporated into the mathematical formulation of the 

problem.  

5.2 Strengths and weaknesses of the research 

The RO approach has important assumptions that determine its strengths and weaknesses and the 

appropriateness of its application in the forest management context. Uncertainties have to be 

independent, uniform and symmetrically distributed around the parameter estimate. The 

assumptions of uniformity and symmetry may represent a limitation of the methodology when 

the nature of the uncertainties is well described by a different distribution or when extra 

information other than the extreme points is available. In this case, one can use a wide enough 

uniform range of uncertain values that contains a high proportion of observations of the original 

distribution. These assumptions could also be seen as an advantage of this methodology over the 

most traditional methodologies used to account for uncertainty. For instance, stochastic and 

chance-constrained programming (Birge and Louveaux 1997) require the probability of 

occurrence of each scenario and the full description of the probability distributions of 

uncertainties, respectively. However, this information is not usually available (Regan et al. 

2005). 

The independency assumption is an important weakness of the methodology as decisions in the 

forest management context are usually spatial and temporally correlated. This assumption 

requires that uncertain coefficients in the same constraint are independent, which implies that the 

outcomes from different stands in a given constraint (usually a fixed period) are non-correlated. 

If a stand appears in a constraint more than once (e.g. if thinning is also considered then one 

management alternative can harvest part of the stand and another alternative can thin the other 

part in the same period), then a certain degree of dependency should be expected, and optimistic 

results will be obtained. The independency assumption may be overcome when dealing with 

non-spatial decisions where stands from different locations are usually grouped into non-spatial 
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entities like in Chapters 2 and 3. In this case, these new entities tend to cancel the local 

correlation among stands. However, when dealing with spatial decisions such as in Chapter 4 the 

independency assumption becomes critical. Instead of promoting spatial diversification to offset 

uncertainty realizations, harvest decisions tend to be spatially clustered to reduce the cost of the 

higher level of timber production required by robust solutions. This suggests that the RO 

approach as presented here should be revised if spatial decisions need to be addressed. This is 

clearly a drawback of the methodology as uncertainty correlation can be more easily included in 

stochastic or chance-constrained programming. 

Another weakness of the approach presented is the lack of a clear relationship between the 

protection level used to represent different degrees of robustness and the resulting infeasibility 

rates. Current probability bounds (see for example Ben-Tal and Nemirovski 2000, Bertsimas and 

Sim 2004) are loose and therefore produce more conservative solutions than expected. Although 

these bounds can still be used to determine the protection level required to guarantee an a priori 

probability of constraint violation, simulation experiments might be needed to avoid the 

excessive impact on the objective function produced by over conservative solutions. More 

precise infeasibility rates may be obtained using chance-constrained programming. 

The simplifying assumptions described above lead to what is in my view the most important 

strength of this methodology over the existing ones. While considering a continuous set of 

scenarios, the RO approach presented in this thesis keeps the models computationally tractable, 

therefore only requiring common solutions techniques used for solving deterministic models. 

Other methodologies that account for uncertainty (i.e., stochastic and chance-constrained 

programming), impose serious difficulties when solving the resulting models (Birge and 

Louveaux 1997). In the first case, the number of scenarios may quickly become extremely large 

requiring specific solution methods. In the second case, models usually become non-linear also 

requiring specific non-linear solution algorithms. With RO, modified versions of traditional 

deterministic problems can be built and solved by commercial linear optimization software, and 

then solutions can be tested by simulating uncertain coefficients without the need to solve 

complex problems with sophisticated solution techniques. I believe this approach might allow 

decision makers interested in reducing the risk of their decisions to objectively determine the 

amount of buffer required to guarantee critical requirements. As good solutions for a set of 

model parameters are obtained, this methodology may significantly reduce the efforts invested in 

conducting the sensitivity analyses required by deterministic models. 
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5.3 Future research and potential applications of this research 

Future research should address the impacts of violating the assumptions previously described. 

The most important one is the assumption of independency of the uncertain coefficients, which 

limits the application of this approach to random, unbiased and uncorrelated errors in the 

coefficients estimates. Although this kind of error is important, especially when forecast models 

are used, catastrophic events (e.g., fire occurrence, pest attacks) and uncertain trends in data 

(e.g., price, systematic errors) will only be properly modeled if temporal dependence is allowed. 

In tactical and operational decision-making spatial correlation plays a key role, so ways to 

include it in a way that does not affect the computational tractability of the approach is highly 

relevant. It may also be important to explore approaches to consider other distributions (e.g., 

triangular) and asymmetry of uncertain ranges. Although a full description of the uncertainty 

probability distributions is unlikely to be available, an approach that considers information other 

than the point estimate while retaining the modeling simplicity would be an important 

contribution. Another disadvantage of the methodology that should be addressed in future 

research is the need to perform simulation experiments to determine the feasibility rates of robust 

models. Current probability bounds that determine feasibility rates a priori have been proposed 

(Bertsimas and Sim 2004) but they are loose and produce conservative solutions (Palma and 

Nelson 2009). Tighter probability bounds might reduce the need for simulation to estimate the 

resulting feasibility rates and therefore make this approach more appealing. 

The approach proposed here considers a static decision structure as opposed to a dynamic 

structure observed in most multi-period decision problems. In other words, real decisions are 

made sequentially as part of the uncertainty is observed, just like the stochastic programming 

approach is implemented (see section 1.2.1). Although the RO approach as presented here has 

been applied to dynamic multi-period decision problems (Bertsimas and Thiele 2006, Bertsimas 

and Pachamanova 2008, Chung et al. 2009), a way to formally represent the recourse structure of 

the decision-making process would contribute to a better conceptual justification of the 

approach. 

The application of this methodology to other important forest resources management problems 

would also be of interest. In particular, decisions that involve a higher degree of irreversibility, 

like protection of endangered species or habitat conservation, would be benefit from using this 

approach as they are currently made in the presence of many uncertain parameters (Moilanen et 
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al. 2006, Nicholson and Possingham 2007). In these cases, irreversible decisions might be 

infinitely costly to reverse (e.g. extinction of a species) and represent the loss of future 

management options (Arrow and Fisher 1974). Less sensitive solutions to uncertainty, like the 

ones produced by RO, may reduce the chance of undesirable outcomes. Another possible 

application of this method is to explore the effect of data quality on management decisions (e.g., 

the quality of current and projected volume yields or other forest outcomes). The trade-off 

between the cost of producing more accurate data (more intense sample methods, more complex 

forecast models) and the improvement in the value of the decisions can be determined by 

modifying the range of data uncertainty used in RO. Finally, the implementation of RO in 

optimization-based forest planning software currently used by forest managers, e.g. Spectrum 

(USDA Forest Service, 1999), MELA (Siitonen et al. 1996), FOLPI (García 1984), Woodstock 

(Remsoft 2006) and others, would make it easier to extend the application of this methodology to 

real management decision making. 
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Appendices 

Appendix A 

This appendix describes in detail the way the robust formulation of the model constraints were 

obtained. 

Protection against minimum demand infeasibility 

Uncertain volume: a protection function was included in the minimum demand constraint as 

follows: 
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ji

ijijpt ,),x(]1[
,

∀≥Γ−∑ β D *  

where v represents the coefficient estimate of the volume. Note that  (superscript comes from 

demand) is subtracted from the volume as this is a ‘≥’ inequality. For all p and t,  is 
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where rijpt is the decision variables, is the precision range of the volume and JD
pt is the set of 

uncertain coefficients for the demand constraint pt. The dual of model [A2]-[A4] is then: 
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where upt and wijpt are the dual variables of equations [A3] and [A4], respectively. The value 

of  can be then replaced with the objective value of the model [A5]-[A8] to obtain the final 

robust formulation of [A1]: 
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Uncertain volume and demand: the following is the demand constraint with the protection 

function included: 
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where v and d represent the coefficient estimate of volume and demand. Considering that the 
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where rijpt and spt are the decision variables, and and are the precision ranges of volume and 

demand. Because of equality [A17] the model [A14]-[A17] can be reformulated as follows:  
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The dual of [A18]-[A20], which substitutes in [A13], is then: ptβ
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where upt and wijpt are the dual variables of equations [A19] and [A20], respectively. The value 

of  can be then replaced with the objective value of the model [A21]-[A24] to obtain the final 

robust formulation of [A13]: 
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Protection against infeasibility of production fluctuation 

A protection function was included in the fluctuation of production constraint as follows: 

1,)1(),x(]29[
,

1
,

>∀−≥Γ− * ∑∑ − tpxvxvA ij
ji

ijptptptij
ji

ijpt δβ FF

F

 

Considering JF
pt as the set of uncertain coefficients of the fluctuation constraint pt, for all p and 

t>1, the equivalent linear problem of  is: ptβ
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where qijpt is the decision variable. If ypt and zijpt are the dual variables of equations [A31] and 

[A32], respectively, the dual problem of [A30]-[A32] for all p and t>1 is: 
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Replacing the protection function in [A29] with the objective function of [A33]-[A36], the robust 

counterpart of [A29] is: 
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