Functional characterization of human variants of $NFKBIA$: a key regulator of immune responsiveness implicated in susceptibility to infectious and inflammatory disease

by

Salman Ali

B.Sc., Simon Fraser University, 2007

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Pathology and Laboratory Medicine)

THE UNIVERSITY OF BRITISH COLUMBIA
(Vancouver)

April 2010

© Salman Ali, 2010
Abstract

IκBα is an important regulator of inflammation. Single nucleotide polymorphisms (SNPs) rs3138053, rs2233406 and rs2233409 in the promoter of the gene NFKBIA, which encodes for IκBα, have been shown to be associated with a variety of infectious and inflammatory conditions. In this study, we investigated the functional impact of the promoter variants of NFKBIA on human immune responsiveness. Using a coding SNP that was in strong linkage disequilibrium (LD) with NFKBIA SNPs rs3138053/rs2233406/rs2233409, we designed and validated an allele-specific PCR assay that could detect subtle differences in allele ratios between the major (ACC) and minor (GTT) promoter variants of SNPs rs3138053/rs2233406/rs2233409. Peripheral blood mononuclear cells (PBMCs) of homozygous (ACC/ACC) and heterozygous (ACC/GTT) individuals were stimulated with 100ng/ml LPS and live cultures of Streptococcus pneumoniae (moi 7.8-30) serotype 14 for 3 and 4 hours. PBMCs of neonatal NFKBIA homozygotes and heterozygotes were stimulated with various Toll-like-receptor (TLR) ligands of the innate immunity cascade to assay for differences in the innate immune response.

NFKBIA heterozygotes of European descent displayed 1.21 (1.14-1.27 95% CI)-1.26 (1.18-1.34 95% CI) fold higher expression of the major allele transcript (ACC) relative to the minor allele transcript (GTT). For the same ethnicity, at 3 hours stimulation, NFKBIA homozygotes (ACC/ACC) produced higher levels of NFKBIA mRNA than heterozygotes following stimulation with LPS (1.4 fold, p=0.0095) and S. pneumoniae (1.51 fold, p=0.024). Higher TNFα secretion was seen from PBMCs of heterozygotes as compared to homozygotes (of European descent) in the presence of LPS (1.57 fold, p<0.05 at a dose of 100ng/ml), Pam3CSK4 (2.29 fold, p<0.01 at a dose of 100ng/ml and 1.91 fold, p<0.05 at a dose of 1000 ng/ml), 3M003 (1.79 fold, p<0.001 at a dose 10μM) and 3M002 (3.30 fold, p<0.001 at a dose of 10μM). The results presented here provide preliminary functional evidence behind the observed associations of these SNPs with infectious and inflammatory conditions. A global understanding of the functional consequences of regulatory polymorphisms of NFKBIA will be provided with subsequent experiments that examine differences between all NFKBIA genotypes (including minor allele homozygotes) for IκBα protein expression and NF-κB translocation in all major ethnic groups.
Table of Contents

Abstract... ii
Table of Contents.. iii
List of Tables... vi
List of Figures.. vii
List of Abbreviations and Symbols.. ix
Acknowledgements.. xiii

Chapter 1: Introduction..1
1.1 From genotype to phenotype: Understanding functional consequences of genetic variation1
1.2 The NF-κB pathway: Overview ...2
 1.2.1 Classical pathway of NF-κB signaling ...2
 1.2.2 Alternative pathway of NF-κB signaling ..3
 1.2.3 The importance of regulating NF-κB signaling: Examining consequences of altered NF-κB signaling: ..3
1.3 The role of IκB proteins in regulating NF-κB activity ..4
 1.3.1 Importance of IκBα in regulation of NF-κB ...4
 1.3.2 Functional consequences of altered IκBα function in mammals5
1.4 Understanding linkage disequilibrium (LD) ..5
 1.4.1 Linkage disequilibrium (LD) ...6
 1.4.2 Using LD for association mapping ..6
 1.4.3 Using LD for genome wide association studies ...6
 1.4.4 Patterns of LD in different populations ...7
 1.4.5 Tag SNP coverage and transferability in different populations7
1.5 Association of observed variation in the gene (NFKBIA) encoding IκBα with infection, autoimmunity/inflammation, and cancer ...8
 1.5.1 Association of NFKBIA polymorphisms with infections8
 1.5.2 Association of NFKBIA polymorphisms with autoimmune/inflammatory conditions.9
 1.5.3 Association of NFKBIA polymorphisms with cancer11
1.6 Opposing associations of NFKBIA promoter polymorphisms with infection and autoimmunity: A genetic link to the hygiene hypothesis? ...12
1.7 Validating regulatory variants and the genetics of gene expression12
 1.7.1 Cis and trans-variation ...13
1.8 Approaches for validating cis-acting variants ...13
 1.8.1 Direct methods: Functional assays ..13
 1.8.2 Indirect methods: Differential allelic expression (DAE) or allelic imbalance (AI)14
1.9 Hypothesis ..15

Chapter 2: Material and methods..22
2.1 Analysis of linkage disequilibrium (LD) ...22
2.1.1 Source populations ... 22
2.1.2 Software .. 22

2.2 Analysis of \textit{NFKBIA} mRNA expression, and allelic imbalance 23
 2.2.1 Subject recruitment ... 23
 2.2.2 Genomic DNA extraction .. 23
 2.2.3 Optimization of bacterial growth .. 23
 2.2.4 PBMC isolation ... 25
 2.2.5 PBMC stimulation ... 25
 2.2.6 RNA isolation and cDNA reverse transcription 25
 2.2.7 Genotyping .. 25
 2.2.8 \textit{NFKBIA} gene expression ... 26
 2.2.9 Genotyping for allelic imbalance ... 27

2.3 Neonatal innate immune response .. 27

2.4 Statistics .. 28
 2.4.1 Statistical analysis for allelic imbalance 28
 2.4.2 Statistical analysis for gene expression 28
 2.4.3 Statistical analysis for innate immune response 28

2.5 Order of operations ... 28

Chapter 3: Results ... 33

3.1 Emerging picture of the \textit{NFKBIA} promoter haplotype 33
 3.1.1 Analysis of variants ... 33
 3.1.2 Linkage disequilibrium (LD) analysis 33
 3.1.3 Promoter haplotype analysis ... 33

3.2 Functional analysis of \textit{NFKBIA} promoter variants 34
 3.2.1 Putative transcription factor binding sites 34
 3.2.2 Risk haplotype prediction .. 34

3.3 Allelic imbalance ... 35
 3.3.1 Validation of allele specific PCR assay 35
 3.3.2 Generation of allele ratios .. 35
 3.3.3 Determining allelic imbalance in \textit{NFKBIA} rs1050851 heterozygotes 35

3.4 Determining impact of allelic imbalance on \textit{NFKBIA} mRNA expression 36
 3.4.1 Impact of allelic imbalance on \textit{NFKBIA} mRNA expression in \textit{NFKBIA} homozygotes and heterozygotes 36
 3.4.2 Impact of allelic imbalance on \textit{NFKBIA} mRNA expression in \textit{NFKBIA} homozygotes and heterozygotes of European descent 37

3.5 Determining impact of allelic imbalance on the innate immune response 37
 3.5.1 Impact of allelic imbalance on the innate immune response in \textit{NFKBIA} homozygotes and heterozygotes .. 37
 3.5.2 Impact of allelic imbalance on the innate immune response in \textit{NFKBIA} homozygotes and heterozygotes of European descent 38
 3.5.3 Impact of allelic imbalance on pathways that do not involve I\kappa B\alpha degradation 38
Chapter 4: Discussion .. 51

4.1 Overview .. 51

4.2 Allele specific PCR .. 51
 4.2.1 Choice of tagging SNP ... 51
 4.2.2 Precision of assay ... 52

4.3 Choice of cell types .. 52

4.4 Analysis of variation in gene expression ... 53
 4.4.1 Ligand and pathogen specific differences .. 53
 4.4.2 Inter-individual differences ... 53
 4.4.3 Ethnic differences ... 54
 4.4.4 Artefactual differences .. 55

4.5 Choice of ligand and time course selection ... 55

4.6 Choice of CpGA mediated TLR9 secretion of IFNα as a non-IκBα requiring pathway 56

4.7 Follow up experiments: Need and feasibility ... 57

4.8 Clinical implication of dysregulated TNFα production in inflammatory/autoimmune disease 58

4.9 From bench to bedside: Diagnostic value of NFKBIA expression and NFKBIA polymorphisms in determining response to anti TNFα therapy .. 59

4.10 Conclusion ... 59

References ... 62

Appendix: Haplotypes and LD measure for the entire NFKBIA gene in 4 major ethnic groups .. 70
List of Tables

Table 1.1 Genetic association of studies of variants of *NFKBIA* ...18

Table 1.2 The GT haplotype is associated with protection against infections and risk for Inflammatory conditions ..19

Table 2.1 Data on the number of individuals and variants in different population ethnic groups examined for LD analysis of *NFKBIA* variants..29

Table 3.1 Region specific location of variants in *NFKBIA*..39

Table 3.2 Putative transcription factor binding sites occupied by *NFKBIA* variants...41
List of Figures

Figure 1.1 Steps needed to verify if variation in a candidate gene influences susceptibility to a complex disease..17

Figure 1.2 Validating impact of cis acting promoter variants on gene expression...20

Figure 1.3 Hypothesis: Impact of minor variants in the NFKBIA promoter on NF-κB signaling...21

Figure 2.1 Streptococcus pneumoniae serotype 14 shows a reduced lag time for exponential growth when grown in media BHI media supplemented with 5% FCS... 30

Figure 2.2 Determining the optimal growth range for Streptococcus pneumonia serotype 14 ...31

Figure 2.3 Overview of experimental protocol..32

Figure 3.1 Linkage disequilibrium (LD) plot of the NFKBIA promoter for the 4 HapMap populations ...40

Figure 3.2 Visual representation of functional binding sites for transcription factors of NFKBIA...42

Figure 3.3 Validating NFKBIA allele specific PCR assay ..43

Figure 3.4 Standard curve for detecting allelic imbalance in NFKBIA heterozygotes...44

Figure 3.5 NFKBIA heterozygotes (ACC/GTT) display allelic imbalance...45

Figure 3.6 NFKBIA heterozygotes display a trend of reduced NFKBIA mRNA expression than NFKBIA homozygotes...46

Figure 3.7 NFKBIA mRNA expression is significantly reduced in NFKBIA heterozygotes of European descent ...47

Figure 3.8 NFBIA heterozygotes display a higher TNFα response ...48

Figure 3.9 NFBIA heterozygotes of European origin also display a higher TNFα response ...49

Figure 3.10 Pathways that do not require IkBα signaling are not affected by SNPs in the NFKBIA promoter...50

Figure 4.1 Possible future areas of research in mapping functional role of NFKBIA promoter variants...60

Figure 4.2 Overall summary of research..61
Figure A.1 Haplotype for the *NFKBIA* gene in individuals of European descent ..70
Figure A.2 Haplotype for the *NFKBIA* gene in individuals of African descent71
Figure A.3 Haplotype for the *NFKBIA* gene in individuals of Chinese (Han) descent ..72
Figure A.4 Haplotype for the *NFKBIA* gene in individuals of Japanese descent72
Figure A.5 Strong LD is seen in non-coding regions of *NFKBIA* ..73
List of Abbreviations and Symbols

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOE</td>
<td>Apolipoprotein E type 4</td>
</tr>
<tr>
<td>ARDS</td>
<td>Acute respiratory distress syndrome</td>
</tr>
<tr>
<td>AS</td>
<td>Ankylosing spondylitis</td>
</tr>
<tr>
<td>BAFFR</td>
<td>B cell –activating factor receptor</td>
</tr>
<tr>
<td>Bcl-3</td>
<td>B-cell CLL/lymphoma 3</td>
</tr>
<tr>
<td>βTRCP</td>
<td>SCFkBE3 ubiquitin ligase complex</td>
</tr>
<tr>
<td>BHI</td>
<td>Brain heart infusion</td>
</tr>
<tr>
<td>CEU</td>
<td>Utah residents of Northern and Western European descent</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony forming units</td>
</tr>
<tr>
<td>ChIP</td>
<td>Chromation immunoprecipitation</td>
</tr>
<tr>
<td>dbSNP</td>
<td>Single nucleotide polymorphism database</td>
</tr>
<tr>
<td>EDA-ID</td>
<td>Ectodermal dysplasia with immunodeficiency</td>
</tr>
<tr>
<td>EMSA</td>
<td>Electrophoretic mobility shift assay</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>5'UTR</td>
<td>5 prime untranslated region</td>
</tr>
<tr>
<td>GVA</td>
<td>Genome variation server</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B virus</td>
</tr>
<tr>
<td>HBVC</td>
<td>HBV genotype C</td>
</tr>
<tr>
<td>HCB</td>
<td>Han Chinese of Beijing</td>
</tr>
<tr>
<td>HCC</td>
<td>HBV induced carcinoma</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>IFNα</td>
<td>Interferon alpha</td>
</tr>
<tr>
<td>IKBL</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1</td>
</tr>
<tr>
<td>IKKα</td>
<td>I kappa-B kinase, alpha</td>
</tr>
<tr>
<td>IKKβ</td>
<td>I kappa-B kinase, beta</td>
</tr>
<tr>
<td>IKKγ</td>
<td>I kappa-B kinase, gamma</td>
</tr>
<tr>
<td>IkBα</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha</td>
</tr>
<tr>
<td>IkBβ:</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta</td>
</tr>
<tr>
<td>IkBε</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon</td>
</tr>
<tr>
<td>IkBζ</td>
<td>Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, zeta</td>
</tr>
<tr>
<td>IRAK4</td>
<td>Interleukin-1 receptor-associated kinase 4</td>
</tr>
</tbody>
</table>
LTβR | lymphotoxin-β receptor
NIK | NF-κB inducing kinase
MEF | Mouse embryonic fibroblasts
NKC | Natural killer cells
MOI | Multiplicity of infection
NLS | Nuclear localization signal
MS | Multiple sclerosis
OD | Optical density
MYD88 | myeloid differentiation primary response protein
OR | Odds ratio
NES | Nuclear export signal
PBMC | Peripheral blood mononuclear cells
NFκBIA | Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
PBS | Phosphate buffered saline
NFκBIB | Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, beta
PGA | Programs for Genomic Applications
NFκBIE | Nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, epsilon
PID | Primary immune diseases
NF-κB | Nuclear factor of kappa light polypeptide gene enhancer in B-cell
RA | Rheumatoid arthritis
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANK</td>
<td>Receptor activator of nuclear factor-kappa B</td>
</tr>
<tr>
<td>THP1</td>
<td>Human acute monocytic leukemia cell line</td>
</tr>
<tr>
<td>RHD</td>
<td>Rel homology domain</td>
</tr>
<tr>
<td>3'UTR</td>
<td>3 prime untranslated region</td>
</tr>
<tr>
<td>RIP1</td>
<td>Ral-interacting protein 1</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll like receptor</td>
</tr>
<tr>
<td>ROR</td>
<td>Retinoid related orphan receptor</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumour necrosis factor, alpha</td>
</tr>
<tr>
<td>RSV</td>
<td>Respiratory syncytial virus</td>
</tr>
<tr>
<td>TNFR</td>
<td>Tumour necrosis factor receptor</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>TRADD</td>
<td>TNFRSF1A-associated death domain</td>
</tr>
<tr>
<td>SNPs</td>
<td>Single nucleotide polymorphisms</td>
</tr>
<tr>
<td>TRAF2</td>
<td>TNF receptor-associated factor 2</td>
</tr>
<tr>
<td>TCR</td>
<td>T cell receptor</td>
</tr>
<tr>
<td>YRI</td>
<td>Yoruba of Ibadan, Nigeria</td>
</tr>
</tbody>
</table>
Acknowledgements

First and foremost I would like to thank God for blessing me with the means, ability and the will to pursue this project. Secondly, I would like to thank Dr. Stuart Turvey for providing me the ideal training desired by most graduate students. This included but is not limited to giving constant input and feedback on my experiments and the status of my project, providing valuable advice on how to write persuasively and how to do high impact presentations and lastly for injecting some enthusiasm in me during the most challenging parts of this project. I would also like to sincerely thank the members of my supervisory committee that includes Dr. Richard Stokes, Dr. Scott Tebbutt and Dr. Rusung Tan who have provided me invaluable advice and support over the last two years. A vote of thanks also goes to Aaron Hirschfeld for his well written standard operating protocols (SOPs) and general friendliness in guiding me through the most trivial of calculations. A thanks also goes to Dr. Tobias Kollmann and his lab for their collaborative support in this project and to the Speert lab for providing me lab space for conducting bacterial experiments. A general thanks goes to the current and former personnel of my lab that includes Chris, Nico, Anthony, Julia and Rachel for their support. The experiments in this project were made possible by the gracious financial support of the National Training Program in Allergy and Asthma Research. Lastly, I want to thank my mother, father and everyone else in my family for their continued support.
Chapter 1: Introduction

1.1 From genotype to phenotype: Understanding functional consequences of genetic variation

Candidate gene studies and genome wide association studies have allowed us to identify variants in genes that associate with complex diseases. The knowledge of such variants could be used to: 1) predict an individual’s genetic risk for acquiring a complex disease, 2) design therapeutics to reduce disease and 3) design drugs that specifically target symptoms in an individual based on their genetic makeup, while minimizing adverse drug reactions.

To date only limited progress has been made in translating the results of genetic association studies into clinical predictors of disease onset. A notable exception is that of the well replicated association of the apolipoprotein E type 4 (APOE4) allele as a risk factor for developing Alzheimer’s disease (1). However, the precise functional effect of the APOE4 allele at the biological level is yet to be determined (2).

In order to use genetic variation data in assessing risk and designing therapeutics, functional validation is required to prove that: 1) the presence of such variations leads to biological effects in the human host and 2) such biological effects are of clinical importance. Figure 1.1 illustrates the steps of this process.

Genetic variation in the promoter regions of the gene nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (NFKBIA) has been shown to be associated with infectious, inflammatory and cancerous conditions. The overexpression of the protein encoded by NFKBIA-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha- (IκBα) has also been recommended as a therapeutic choice for treating chronic inflammatory conditions (3, 4). However, to date, no functional studies have been undertaken to verify the biological consequences of genetic variation in the promoter of NFKBIA. The central goal of this project was to functionally validate these observations i.e., whether specific variants or haplotypes in the promoter of NFKBIA can contribute towards the susceptibility to or exacerbation of infectious or autoimmune/inflammatory conditions.
Our goals were to determine:

1) Whether promoter polymorphisms of NFKBIA lie in functionally important regions?
2) Whether alleles of such polymorphisms display altered expression levels (allele specific differences)?
3) Whether humans of different genotypes for these polymorphisms show altered expression levels for the gene?
4) Whether humans of different genotypes show differential and clinically relevant innate immune responses?

This chapter has three major sections. The first section describes the pathways utilized by IκBα in regulation of inflammation, the consequences of altered signaling of these pathways along with the altered functioning of IκBα. The second section briefly describes the concept of linkage disequilibrium (LD), followed by an overview of the association studies done with the promoter variants of the IκBα gene-NFKBIA. The third section discusses the techniques frequently utilized in functionally validating promoter variants. Finally we provide a hypothesis to explain the observed associations of NFKBIA promoter variants with infectious and inflammatory/autoimmune conditions.

1.2 The NF-κB pathway: Overview

The nuclear factor of kappa light polypeptide gene enhancer in B-cell (NF-κB) pathway plays an important role in immune response, inflammatory disease and cell death (4). The NF-κB family consists of 5 distinct proteins p50, p52, p65(ReIA), C-Rel and RelB that either exist as homo or heterodimers (5). The p50-p65 heterodimers are transcriptionally active whereas the p50-p50 homodimers are transcriptionally repressive (6). All NF-κB proteins share a conserved region known as the Rel homology domain (RHD) which has a nuclear localization signal, as well as dimerization and DNA-binding functions (7). Although NF-κB can be activated by a variety of receptor systems responding to a variety of stimuli, they can be grouped into 2 major pathways.

1.2.1 Classical pathway of NF-κB signaling

The classical or canonical pathway is critical for the initiation of the inflammatory response as well as the inhibition of apoptosis (4). It regulates the expression of the vast majority of proinflammatory cytokines, chemokines, leukocyte adhesion molecules and prosurvival and antiapoptosis genes (8). It is initiated by the stimulation of tumour necrosis factor receptor (TNFR), Toll-like receptor (TLR), Interleukin-1 receptor (IL-1R) and T cell receptor (TCR) pathways. Although the intermediate proteins involved in each of these cascades differ, all
pathways converge in the activation of the I kappa-B kinase (IKK) complex. The IKK complex of kinases consists of the catalytic subunits IKKα, IKKβ and the regulatory subunit IKKγ that phosphorylate downstream IκB inhibitory proteins (9, 10). The IκB proteins in an unstimulated state inhibit NF-κB (p50-p65) activity and sequester it into the cytoplasm. Upon stimulation the IκB proteins are phosphorylated, ubiquitinylated, and targeted for degradation in the proteasome. This frees the p50-p65 heterodimer allowing it to translocate to the nucleus where it initiates the transcription of proinflammatory genes (11).

1.2.2 Alternative pathway of NF-κB signaling

The major function of the non-canonical pathway is in mediating the adaptive immune response, the regulation of lymphoid organogenesis and B cell survival and maturation. It is initiated by a subset of receptors from the TNF receptor family that includes lymphotoxin-beta receptor (LTβR), CD40, receptor activator of nuclear factor-kappa B (RANK), and B cell–activating factor receptor (BAFFR) (6). The non-canonical pathway involves the recruitment of an upstream NF-κB inducing kinase (NIK) that phosphorylates and activates IKKα dimers (12). The IKKα dimers ubiquitinate p100 proteins (instead of the IκB proteins) that in a resting state bind and inhibit the translocation of the p52-Rel B NF-κB (instead of p50-p65) dimers in the cytoplasm. From a disease perspective, the classical pathway of NF-κB signaling is more relevant as it has been implicated in a variety of infectious, autoimmune and cancerous syndromes.

1.2.3 The importance of regulating NF-κB signaling: Examining consequences of altered NF-κB signaling:

Loss of NF-κB signaling is prominent in infectious conditions caused by Mendelian defects in genes encoding proteins of the innate immunity cascade. These primary immune disease (PID) studies have provided valuable insight in the role of the members of the TLR signaling cascade. Patients who have autosomal recessive mutations in genes that encode for key adaptor proteins in the TLR cascade such as myeloid differentiation primary response protein (MYD88), or signaling intermediates such as interleukin-1 receptor-associated kinase 4 (IRAK4) display undue susceptibility to pyogenic bacterial functions (13, 14). Similarly, patients with autosomal dominant mutations in the genes that encode for regulatory proteins such as IκBα and IKKγ also display loss of NF-κB signaling (15, 16). Other members of the TLR cascade have also been implicated with loss of NF-κB signaling. For more details refer to review papers referenced at the end of the chapter (17, 18).

Autoimmune conditions are complex syndromes that can be triggered both by genetic predisposition and by environmental factors. A gain or increase in NF-κB signaling has been
observed in certain autoimmune conditions (19). Patients with rheumatoid arthritis (RA) display constitutively high levels of proinflammatory cytokines such as TNFα, IL-1 and IL-6 (3). Activated forms of p50 and p65 subunits of NF-κB are also seen in nuclei of synovial lining cells in patients with RA (20). Multiple sclerosis (MS) patients also display elevated levels of the p65 subunits of macrophages and oligodendrocytes from active MS lesions (21).

1.3 The role of IκB proteins in regulating NF-κB activity

The IκB family of proteins are the most important NF-κB interacting proteins (11). They comprise a family of 3 classical members (IκBα, IκBβ, IκBε) and 2 novel IκB-like members (IκBζ and B-cell CLL/lymphoma 3 (Bcl-3)). All members have a characteristic ankyrin rich repeats that interact with nuclear localization signals (NLS) present on the Rel homology domains of NF-κB dimers, and an N-terminal regulatory domain that has a role in their inducible degradation (22). All members display unique binding preferences to NF-κB dimers and undergo signal induced proteasomal degradation with different kinetics (23).

1.3.1 Importance of IκBα in regulation of NF-κB

IκBα is the best studied member of the IκB family that displays a strong negative feedback control of NF-κB (5, 23). In an unstimulated state, IκBα masks the NLS of p50, but not the NLS on the p65 subunit of the p50-p65 NF-κB heterodimer and thus sequesters it in the cytoplasm. In response to an upstream stimulus, the activated IKK complex phosphorylates IκBα on Ser32 and Ser36 residues. This leads to the polyubiquitination of the Lys19 residue by the SCF IκBα ubiquitin ligase complex (βTRCP) which catalyzes the formation of degradative Lys48-linked polyubiquitin chains (24). Ubiquitination of IκBα leads to its degradation by the 26s proteasome. The now unhindered NLS on the p50 subunit of the p50-p65 heterodimer allows this complex to migrate to the nucleus and bind to NF-κB response elements on proinflammatory genes and begin their subsequent transcription. The NFKBIA gene that encodes IκBα is also a target gene that is expressed early in response to the P50-P65 heterodimer. This results in a strong induction of IκBα mRNA synthesis, followed by a restoration of IκBα protein levels in the cell (25). IκBα then translocates to the nucleus and binds to NF-κB, and the complex is exported back to the cytoplasm (26). This feedback regulation of NF-κB ensures that activation of NF-κB is limited and transient. The apparent simplicity of such an autoregulatory loop has been questioned (26). Studies have revealed that under unstimulated conditions, the unbound NLS of the p65 subunit of the p50p65 heterodimer and the nuclear export signal (NES) work in opposing directions, resulting in a constant shuttling of the complex between the nucleus and the cytoplasm (27). Degradation of IκBα tips this dynamic balance in favor of nuclear localization of NF-κB (5). Although the precise transport mechanism behind the transport of IκBα to the
nucleus, and subsequent return to the cytoplasm with the p50p65 dimer is not clear, recent experiments have shown IκBα is remarkably efficient at increasing the dissociation rate (kd) of NF-κB from DNA (28).

1.3.2 Functional consequences of altered IκBα function in mammals

Mice

Mice that lack NFKBIA, the gene encoding IκBα, though normal at birth, display severe runting, skin defects and extensive granulopoiesis, leading to death by 8 days (29). Other IκBα knockout experiments in mice reveal increased percentages of monocytes/macrophages in spleen cells of 5, 7 and 9 day old pups. Death is accompanied by severe dermatitis and increased levels of TNFα mRNA in the skin (30).

Humans

In humans, to date, individuals with mutations leading to dramatically decreased IκBα levels have not been found. Consequently, hypermorphic mutations, i.e., mutations that enhance the inhibitory capacity of IκBα by preventing its phosphorylation and subsequent degradation have been observed. Such individuals display impaired NF-κB signaling and impaired T-cell function, coupled with ectodermal dysplasia with immunodeficiency (EDA-ID) (15, 31-33). Thus, although direct consequences of the loss or gain of IκBα activity has not been observed, functional experiments in mice and primary immunodeficiency cases in humans suggests that the under expression of IκBα can lead to inflammation whereas sustained expression can lead to immunodeficiency.

1.4 Understanding linkage disequilibrium (LD)

Genetic association studies have been pivotal in providing clues for the genetic nature of complex syndromes. Such studies have become the method of choice for clinicians and researchers alike for determining susceptibility to disease. It is a method which utilizes families, cases and controls, or cohort data to statistically relate genetic factors to the phenotype of interest (34). The dominant theory behind conducting a genetic association study is the ‘common disease-common variant hypothesis.’ The hypothesis states that many common variants in the population with a frequency of 1% or greater have a modest effect on an individual’s phenotype (35). It is the joint effect of these variants that determines disease susceptibility in the population. These variants are called polymorphisms. They can be tandem repeats, insertions, deletions or single nucleotide polymorphisms (SNPs). SNPs, by far, are the most abundant polymorphisms with more than 10 million present in the human genome (36). Currently, owing to technological limitations, it is not possible to account for the identity of all
SNPs. However, as it will be shown in the sections below, by relying on the concept of linkage disequilibrium (LD), it is possible to identify the majority of these SNPs in cases and controls (37). This section briefly describes the use of linkage disequilibrium (LD) in mapping genetic variation. From a research perspective, it is pivotal that the reader be acquainted with the concept of LD as this concept was used in this project to functionally validate promoter variants of NFKBIA.

1.4.1 Linkage disequilibrium (LD)

Mutation occurs at a slow rate in the human genome, at 10^{-8} per site per generation (38). Initially a variant such as a SNP is jointly inherited by the offspring along with all the accompanying sequences on the same chromosome from the parent. However, during meiosis homologous recombination occurs, allowing genetic material to be exchanged from the paternal and maternal chromatids (39). Thus, the chromosome that is passed on to the next offspring contains sequences that are not identical to the chromosome in the parent. Over time, owing to several generations of recombination events occurring during meiosis, the chromosome housing the SNP gradually loses its ancestral sequence homogeneity. Since the frequency of recombination is proportional to the frequency of genetic distance between two nucleotides, sequences in the vicinity of the original mutation tend to be retained. This leads to the formation of islands of nucleotide sequences that still retain the ancestral sequence on a chromosome (referred to as the Haplotype), interspersed by ‘hot spots’ of recombination (40). Nucleotides or variants in a haplotypes are said to be linked and this association is defined as linkage disequilibrium (LD) i.e., non-random association of two alleles at one or many loci.

1.4.2 Using LD for association mapping

Initially, investigators relied on ‘linkage analysis’ which served as a prelude to the use of LD, to identify candidate loci implicated in disease. This approach relies on the fact that genetic markers closely linked to the locus of interest tend to remain associated with the candidate locus through several rounds of recombination. In an affected family, as a causative gene segregates through a kindred, other nearby markers on the same chromosome tend to segregate together (34). Linkage analysis in combination with positional cloning showed remarkable success in identifying genes responsible for single gene Mendelian disorders such as Cystic fibrosis and Duchenne muscular dystrophy (41, 42).

1.4.3 Using LD for genome wide association studies

In the case of complex diseases the traditional method of linkage analysis had initially proven to be difficult because previously used markers of linkage analysis such as microsatellites did not
provide sufficient coverage of the genome to map multiple variants that were presumed to be associated with the various phenotypes of such diseases (43). Furthermore, it was believed based on simulations by Kruglyak that patterns of LD would be low in the human genome and would be limited to a maximum of 3 kB segments of chromosomes (44). The poor genomic coverage of previous markers was resolved by SNPs that were more abundantly present in the genome. Secondly, with the availability of larger sequence data sets, it was proven that the extent of LD was greater than what was assumed initially, with results indicating that as much as 65% to 85% of the human genome was comprised of haplotype blocks 10 kb in length or greater (45). The discovery of the relative abundance of haplotype blocks in the human genome led to the postulation that a single variant in a haplotype block-owing to strong LD could be predictive of the identity of other variants in the block and could be used as a ‘tag’ to distinguish one haplotype block from the other (46). Therefore, one would only need to catalogue a sufficient number of ‘tagging’ SNPs to scan the entire human genome for any common risk variants that would associate with disease. However, in order to choose the appropriate tag SNPs for conducting genome wide studies of association, genome wide ‘LD-maps’ were needed for different human ancestral populations. This became the impetus for the international Hap Map project which was undertaken with the purpose of cataloguing such variation in various ethnic groups (47).

1.4.4 Patterns of LD in different populations
The first phase of the HapMap project involved the studying of 1 million SNPs in the 4 different population groups that included the Yoruba of Ibadan (YRI), Nigeria, Utah residents of Northern and Western European descent (CEU), Han Chinese of Beijing (HCB), China, and Japanese individuals of Tokyo (JPT), Japan (47). This was followed by the second phase that involved the identification of an additional 3.1 million SNPs. Results indicated that the degree of LD was lower in YRI population but similar across regions with higher LD in the 4 population panels (48).

1.4.5 Tag SNP coverage and transferability in different populations
An important statistic of LD is r^2 which measures how well a SNP acts as a proxy for a nearby SNP (An r^2 value of 100 implies 100% concordance of a selected SNP with a nearby SNP). Preliminary results of the HapMap study showed that selecting as few as 447,579 SNPs for CEU, 434,476 SNPs for CHB+JPT and 604,886 SNPs for YRI as tags was sufficient to account for 100% of all the common SNPs in the HapMap panel. The second phase, however, reduced the coverage to at least 80% while increasing the minimum number of tag SNPs to 579,978, 670,407 and 780,336 (for CEU, CHB+JPT and YRI respectively). Owing to a larger number of
SNPs needed for adequately covering SNPs in YRI population, most existing genotyping platforms provide poor coverage for SNPs in this panel when compared to SNPs in CEU or CEU+JPT panels. The highest coverage provided is by the Illumina HumanHap 550k platform, which is 68% coverage for the YRI panel versus 95% for CEU and CHB+JPT (49). Another debated issue is how useful are selected tag SNPs for providing coverage in the genomes of other major population groups. The emerging understanding is that transferability of selected tag SNPs is high when selected from a HapMap panel that is geographically adjacent to the target population (50).

1.5 Association of observed variation in the gene (NFKBIA) encoding IκBα with infection, autoimmunity/inflammation, and cancer
A brief description of the major association studies done with variants in the NFKBIA gene is described below. A summary table (table 1.1) is also included at the end of the chapter with relevant information, such as sample size, ethnicity, P values, etc.

1.5.1 Association of NFKBIA polymorphisms with infections

Trachoma
The first known association of NFKBIA polymorphisms was reported by Chamay et al. in Gambian patients with trachoma (51). Trachoma is an infectious disease caused by repeated infections of the ocular surface by Chlamydia trachomatis. Subsequent inflammation leads to scarring followed by inturning of the eyelashes and blinding corneal opacification (52). Three promoter SNPs of NFKBIA, rs3138053, rs2233406, and rs2233409 were analyzed. The SNPs rs3138053 and rs2233406 were in complete linkage disequilibrium, and the minor allele haplotype (GT) was shown to be protective against infection (p=0.046).

Invasive pneumococcal disease (IPD)
Chapman et al. examined associations of 62 SNPs in NFKBIA, NFKBIB, and NFKBIE for susceptibility to invasive pneumococcal disease (IPD) in individuals of European descent (53). The minor alleles of NFKBIA promoter SNPs rs3138053 and rs2233406 were shown to be protective against IPD in an initial study group (odds ratio (OR) 0.64(0.48-0.87), 0.57(0.43-0.76)) and against pneumococcal empyema in a subgroup (OR 0.42 (0.21-0.83), 0.47(0.24-0.93). However, the association for rs3138053 was lost after applying the Bonferroni correction for multiple testing.
Respiratory syncytial virus (RSV)
Siezen et al. analyzed variants in the innate immunity cascade for associations with susceptibility to RSV in premature infants (54). The minor allele of the *NFKBIA* promoter SNP rs2233409 was shown to be more protective against RSV in premature infants, born with underdeveloped lungs, than in term children (\(p=0.0261\)).

1.5.2 Association of *NFKBIA* polymorphisms with autoimmune/inflammatory conditions

Sarcoidosis
Abdallah et al. analyzed Dutch patients with sarcoidosis for associations with *NFKBIA* promoter SNPs rs3138053, rs2233406, and rs2233409 (55). The minor allele of the rs2233409 SNP was more prevalent in patients with sarcoidosis (\(p=0.008\)). The minor allele haplotype (GTT) was associated with risk of sarcoidosis (\(p=0.01\)).

Multiple sclerosis (MS)
Miterski et al. found that the minor allele of an 8 base pair insertion/deletion variant (708ins8) in the promoter of *NFKBIA* was protective against multiple sclerosis (\(P<0.01\)) (56). The variant seems to be rare as neither follow up studies have been performed with this SNP nor has a reference SNP accession id (rs number) been submitted to the single nucleotide polymorphism database (dbSNP).

Acute respiratory distress syndrome (ARDS)
Zhai et al. examined US patients with acute respiratory distress syndrome for associations with *NFKBIA* promoter SNPs rs3138053, rs2233406 and rs2233409 (57). The GTT haplotype, consisting of minor alleles rs3138053/rs2233406 and the major allele for rs2233409, was associated with the risk of ARDS (OR 1.66 (1.09-2.53), \(p=0.02\)).

Graves’ disease
Kurlowicz et al. examined Polish patients with Graves’ disease for associations with SNPs in nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 (*IKBL*) (rs2071592 (promoter), rs2071592 (intron1), rs3130062 (exon4) and *NFKBIA* (rs2233409 and rs2233406 (promoter), rs696 (3’ untranslated region (UTR))) (58). Although SNPs for the *NFKBIA* gene were not associated with the risk of Graves’ disease, the minor alleles for the promoter SNPs rs2233406 and rs2233409 were associated with clinically evident ophthalmopathy (OR 1.67 (1.20-2.36), \(p=0.036\) and OR 1.65 (1.18-2.38), \(p=0.07\) respectively). The minor allele haplotype (TT) was also significantly associated with the presence of clinically evident ophthalmopathy (\(p=0.003\)).
Note: The next four studies (Primary Sjögren’s syndrome, Systemic lupus erythematosus, Rheumatoid arthritis and Ankylosing spondylitis) were performed by one research group based in Taiwan. A great deal of overlap is seen for associations of SNPs in the \textit{NFKBIA} promoter with each of the four diseases examined. Also, the two promoter SNPs rs3138053 and rs2233406 do not display strong linkage disequilibrium, which is contrary to what is seen in major HapMap populations. An email inquiry was made about the ethnicity of the population. The authors indicated that the Taiwanese nationality assigned for the patients did not imply ethnic homogeneity, but on the other hand included a heterogenous population of Han Chinese, Hakka, Taiwan Aborignals, and other populations [personal communication July 4th, 2009]. Therefore results from these 4 studies may not be generally applicable at the population level owing to the inclusion of rare ethnicities in the study.

\textbf{Primary Sjögren’s syndrome}

Patients had a lower frequency for the minor allele of SNP rs3138053 (G) (OR 0.5 (0.2-0.9), \(p=0.02\)) and the major allele of SNP rs2233406 (C) (OR 16.2 (10.0-26.2)) than controls. The haplotype (ATACC) was associated with the risk of Sjögren’s syndrome (OR 34.14 (17.77-65.59), \(p<0.007\)) while the haplotype (ACACC) was associated with protection (OR 0.05(0.03-0.08), \(p<0.007\)) \(59\).

\textbf{Systemic lupus erythematosus (SLE)}

The minor allele for \textit{NFKBIA} promoter SNP rs2233406 and the haplotype ATACC were associated with the risk of SLE (OR 2.0 (1.2-3.4), \(p=0.01\) and OR 3.2 (1.6-6.2), \(P<0.002\)) \(60\).

\textbf{Rheumatoid arthritis (RA)}

The minor allele of rs2233406 (T) and the major allele of rs2233407(A) were associated with the risk of RA (OR 1.6 (1.1-2.4), \(P=0.027\)) and (5.1 (1.4-18.2), \(P=0.007\)). The TAC haplotype was also associated with the risk of RA (OR 1.8 (1.1-2.8), \(P=0.01\)) \(61\).

\textbf{Ankylosing spondylitis (AS)}

The minor allele of the SNP rs2233406 was associated with the increased risk of AS (4.1(2.7-6.0), \(P<0.001\)). The haplotypes ATACC and ACATC were associated with the risk of AS (OR 8.0 (4.26-15.02), \(P<0.007\) and OR 8.54 (1.99-36.69), \(P=0.007\) respectively) \(62\).
Ulcerative colitis
Szamosi et al. found that the minor allele genotype (GG) for the 3'UTR variant rs696 of *NFKBIA* was associated with the risk of ulcerative colitis in Hungarian individuals with inflammatory bowel disease. (OR 0.003 2.97 (1.45-6.08) (63).

Crohn’s disease
Klein et al. found that the major allele genotype and (AA) and the major allele (A) of the 3’UTR variant rs696 were more prevalent in patients with Crohn’s disease than controls (P<0.003, relative risk 1.77 and P<0.02, relative risk 1.22) (64).

Type 2 diabetes
Romzova et al. found that the AA genotype for the 3’UTR (A to G) variant was associated with the risk of diabetic nephropathy (OR 3.59, P=0.0015) (65). The relative position of this variant and the rs number was not mentioned. However, based on a search of SNPs in dbSNP, the only A to G common variant is rs696. The only other 3’ UTR variant A to G variant is rs1131420, but there is no population frequency data for this variant in dbSNP.

Latent autoimmune diabetes in adults (LADA)
Latent autoimmune diabetes in adults occurs in subset of individuals with type 2 diabetes and is characterized by autoimmune and immune mediated β-cell dysfunction (66). Katarina et al. found that the AA genotype of a 3’UTR SNP rs696 was associated with the risk of LADA (OR 2.68, P<0.0001) in a Czech population (67).

1.5.3 Association of NFKBIA polymorphisms with cancer

Myeloma
Spink et al. found that risk haplotype (GCCTATCA) corresponding to SNPs rs3138053 (A/G), rs22233409 (C/T), rs3138054 (G/A), rs2233419 (C/T), rs1957106 (C/T), rs10782383 (C/T), rs8904 (C/T) and +2921 (A/G) (not validated) was associated with the increased risk of multiple myeloma (OR 2.29 (2.10-2.49), P= 0.006) (68).

Colorectal cancer
Gao et al. found that the AG genotype for rs696 in the 3’UTR was associated with the risk of colorectal cancer in Chinese patients ≥50 (OR 3.06 (1.55-6.02, P=0.001)). The GG genotype of the same SNP was associated with poor survival rate in Swedish patients (OR 3.10 (1.28-7.60), P=0.01) (69).
Hepatocellular induced carcinoma

Yongchao et al. examined patients with hepatitis B virus (HBV) infections for genetic susceptibility to HBV induced carcinoma (HCC) (70). Two HBV genotypes were examined: patients with HBV genotype B (HBVB) and patients with HBV genotype C (HBVC) infections. The CT genotype for the rs2233406 and the AG genotype for rs3138053 SNPs were more prevalent in patients with HBVC infections and HCC as compared to patients with HBVC infections and no HCC (1.71 (1.07-2.73), \(P=0.024\) and 4.02 (2.14-7.59), \(P=0.000\)). The haplotype GTC (3138053(A/G), 2233406 (C/T), 2233408 (C/T)) was associated with the risk of HCC in patients with HBVC infections (3.142 (1.443-6.838, \(P=0.002\)).

1.6 Opposing associations of NFKBIA promoter polymorphisms with infection and autoimmunity: A genetic link to the hygiene hypothesis?

The vast majority of promoter polymorphisms examined to date for NFKBIA associate with either infectious or autoimmune/inflammatory conditions. After excluding studies that analyzed rare ethnic groups such as the ones present in the Taiwanese study group, a general pattern emerges—the minor variants for SNPs rs3138053(G) and rs2233406(T) that associate with protection from infectious conditions are associated with the risk of acquiring autoimmune/inflammatory conditions (see table 1.2). Epidemiological studies in Europe have shown that the decline of certain infections such as rheumatic fever, hepatitis A, tuberculosis have met with a concomitant rise of autoimmune diseases such as multiple sclerosis, type 1 diabetes, and Crohn’s disease in these regions (71). The hygiene hypothesis states that the decline of infections in the West is the causal link for the increase of immune disorders (72). Therefore, the next logical step would be to validate these associations to see if there is a functional explanation for these observations. In subsequent sections an overview is provided on the various approaches used in validating regulatory SNPs and specifically SNPs that lie in the promoter.

1.7 Validating regulatory variants and the genetics of gene expression

Even though SNPs that occur in coding regions of genes are predicted to be more deleterious because they affect protein function (73), the vast majority of variants that associate with complex syndromes lie in regulatory regions of the human genome (74). Therefore, there is a need to validate such variants for functional relevance to disease. In the absence of known functional effects of such variants at the biochemical level, the analysis of gene expression can serve as a intermediate phenotype for evaluating the functional effects of such variants (75). The measure of gene expression has been recommended as a surrogate for linking clinical features of a patient to a variant associated with the syndrome (76). Genetics of gene
expression studies therefore typically involve measuring steady state mRNA levels of many genes using microarray analysis or RNA sequencing, followed by genotyping of individuals for polymorphic markers (SNPs) and a statistical analysis to identify regulatory variants that associate with expression levels for genes of interest (77).

1.7.1 Cis and trans-variation
mRNA expression from the alleles of a given gene is under the control of cis or trans acting variants. Cis variants lie on the same chromosome (allele) of the gene that they regulate and they reside on the regulatory regions of the genes such as promoters, enhancers and splice sites (78). Thus, the impact of cis acting variants on gene expression is allele specific. Trans-acting factors such as transcription factors may reside on different chromosomes and thus variants of such factors affect the expression of both alleles equally (79). In comparison to cis acting variants, trans-acting variants are difficult to detect as they can be present anywhere in the genome relative to the locus and their effects on gene expression tend to be of a smaller magnitude than cis variants (80). Cis-activating variants have been validated by in vitro studies involving the use of functional assays in cell lines and by in vivo approaches by the measure of differential allelic expression (DAE) in human tissues. The mapping of polymorphisms in trans-acting factors has been difficult and has relied on traditional linkage analysis methods.

1.8 Approaches for validating cis-acting variants
1.8.1 Direct methods: Functional assays
In vitro promoter assays
A direct way to functionally validate the effects of a cis-acting polymorphism is to clone the promoter of the gene in an expression vector with a reporter that lacks endogenous promoter activity. The construct is transiently transfected into a cell line and the activity of a reporter gene is measured (73). When examining multiple variants, several constructs with individual variants, can be generated and transfected into cell lines. A control construct without the gene promoter is also transfected to measure any baseline activity of the reporter gene. A difference in reporter activity relative to control (baseline activity) between the variants of a polymorphism would indicate the functional importance of such a variant (73). However, a reporter gene assay is more suitable for measuring large differences in promoter activity, such as might be observed in the context of a mutation or deletion of functionally important transcription elements. The variation in promoter activity owing to the presence of regulatory variants can be of a small magnitude (81). Such low level differences are hard to distinguish from differences seen from a variety of non-genetic sources. Differences in promoter activity can result from variation in
transfection efficiencies of the promoter constructs. Such studies do not take into the account the effect of trans-acting variants that can impact promoter activity (82, 83).

Electrophoretic mobility shift assays (EMSA)
An EMSA is used to assess the strength of binding of a protein to a target DNA sequence that is known or predicted to be of functional importance. In its most basic form the assay involves generating fluorescently or radioactively labeled oligonucleotides corresponding to individual alleles of a SNP (84). The oligonucleotides are incubated with nuclear or cell extracts from tissues, cells or organelles. The lysate-oligonucleotide mix and oligonucleotides are run in parallel on a non-denaturing gel. If there is a binding interaction between the target site and proteins in the lysate, this leads to the retardation of the mixture on the gel relative to the lane that contains pure lysates or probe. This ‘band shift’ then corresponds or represents a functional interaction of the target site with the protein (73). This approach is limited by the size of the oligonucleotides (approximately 20-30 nucleotides), and is unable to provide full resolution for oligonucleotides that bind multiple target sites (85, 86).

Chromation immunoprecipitation (ChIP) assays
A ChIP assay is useful for studying interactions between transcription factors and their target DNA sites in vivo. It involves the cross-linking of transcription factors to target sites by the use of cross-linking agents such as formaldehyde followed by sonication to fragment the DNA and immunoprecipitation by a transcription-factor specific antibody. The amount of DNA that is present in the immunoprecipitated protein-DNA complex is determined by PCR for each allele. A difference in the amount of DNA bound to the complex illustrates the strength of binding of a transcription factor to its target. This elucidates the functional impact of any variant that lies in the binding site (84).

1.8.2 Indirect methods: Differential allelic expression (DAE) or allelic imbalance (AI)
The problem of quantitating promoter variants:
When it comes to quantitating the impact of a promoter variant on the transcription efficiency of the transcript encoded, it is difficult to discriminate between the two allelic transcripts. Figure 1.2a illustrates this conundrum. Since the mRNA transcript lacks the promoter, it is difficult to discriminate between the transcript that arises from the major allele versus the transcript that arises from the minor allele. The solution is to quantify a coding SNP in the mRNA that is linked with the promoter variant. By pre-screening an individual for the linkage of both variants i.e., the major variant in the promoter co-segregates with a major variant in the coding region while the minor variant of the promoter co-segregates with the minor variant in the coding region, it is
possible to discriminate between the major and minor alleles of the region (Fig. 1.2b). The amount of each transcript can be quantified and expressed as a ratio of major transcript to minor transcript or vice versa. This ratio is compared to the ratio of both alleles in (base line condition) genomic DNA to determine if there is allelic imbalance in the gene.

There are several advantages for utilizing differential allelic expression assays as opposed to other methods of validation. Both alleles are expressed in their natural environment. They are exposed to the same trans-acting factors. Comparisons of alleles are made within an individual as opposed to between individuals. This minimizes inter-individual variation (87).

Methods for detecting allelic imbalance
Most indirect methods of quantitating cis allelic variation work on the basic principle of quantitating the ratio of the alleles of the coding SNP that are in strong linkage with the promoter. The difference arises in what is used as the indicator or a 'surrogate' for determining allelic ratio. Methods such as SNaPshot, sequencing, pyrosequencing, rely on the ‘endpoint’ readings of PCR. Probe based assays such as TaqMan real-time PCR allow greater precision, as they rely on measuring differences in the threshold of amplification, referred to as ΔCt of each allele (87). This method relies on comparing differences of allelic amplification cycles for each allele in a heterozygous individual for a SNP in the coding region. Under genomic condition i.e., in the genomic DNA of an individual, the allelic ratio in a gene is 1:1. In a probe based assay such as the TaqMan assay, a 1:1 expression in theory should correspond to no net difference between the thresholds of amplification for either alleles of a gene. In practical terms there is always a background difference in the genomic DNA resulting from differing probe binding efficiencies for each allele. This difference is unique for each individual and is accounted for when determining allele ratios. Any difference in ΔCt in heterozygous individual cDNA versus the difference seen in the genomic DNA indicates allelic imbalance (88).

1.9 Hypothesis
Based on the role of NFKBIA that has been inferred from examining: 1) targeted NFKBIA gene knockouts in mice, 2) humans who display abnormalities in IkBα function, and 3) the association of SNPs in the NFKBIA regulatory regions with disease, we hypothesize that the presence of minor variants of SNPs rs3138053, rs2233406 and rs2233409 in the promoter of NFKBIA will have functional consequences. Specifically, this will lead to a reduced expression of this NFKBIA allelic transcript, resulting in allele specific differences in expression, which will translate to a lower overall NFKBIA mRNA expression in individuals who have the minor allele,
ultimately resulting in an increase in proinflammatory cytokine secretion. Figures 1.4a and 1.4b illustrate this hypothesis.
Fig. 1.1. Steps needed to verify if variation in a candidate gene influences susceptibility to a complex disease. Genetic association studies provide hints for the association of variants in a gene with diseases. Further validation at the biological level is needed along with clinical validation to show that variants within the candidate gene of interest have causal roles in the onset of complex disease. The next step would involve developing therapeutic measures to optimize the activity of the gene in order to treat the disease.
Table 1.1. Genetic association of studies of variants of *NFKBIA*

<table>
<thead>
<tr>
<th>Position</th>
<th>Promoter</th>
<th>Intronic</th>
<th>Exonic</th>
<th>3'UTR</th>
<th>rs id</th>
<th>Allelic variant</th>
<th>rt Association</th>
<th>Odds Ratio</th>
<th>P value</th>
<th>Cases</th>
<th>Controls</th>
<th>Ethnically Matched*</th>
<th>Ethnicity</th>
<th>Functional Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs id</td>
<td></td>
</tr>
<tr>
<td>rs138503</td>
<td>(A/G)</td>
<td>(C/T)</td>
<td>(C/T)</td>
<td>(A/G)</td>
<td>(G/A)</td>
<td>(C/T)</td>
<td>(C/T)</td>
<td>(C/T)</td>
<td>(G/A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>risk</td>
<td><0.025</td>
<td>1.36</td>
<td>1.06-1.75</td>
<td>Yes</td>
<td>Caucasian</td>
<td>Yes</td>
</tr>
<tr>
<td>Trachoma</td>
<td>(51)</td>
<td></td>
</tr>
<tr>
<td>Invasive</td>
<td>pneumococcal disease</td>
<td>(53)</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>protection</td>
<td>0.046</td>
<td>0.031</td>
<td>0.58-0.82</td>
<td>Yes</td>
<td>Gambian</td>
<td>No</td>
</tr>
<tr>
<td>Respiratory syncytial virus</td>
<td>(54)</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>protection</td>
<td>0.0261</td>
<td>0.61</td>
<td>0.47-0.90</td>
<td>Yes</td>
<td>Caucasian</td>
<td>No</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>(55)</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>risk</td>
<td>0.01</td>
<td>205</td>
<td>109</td>
<td>No</td>
<td>Undecided</td>
<td>No</td>
</tr>
<tr>
<td>Multiple Sclerosis</td>
<td>(56)</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>risk</td>
<td><0.003</td>
<td>1.77</td>
<td>1.48-2.13</td>
<td>Yes</td>
<td>Caucasian</td>
<td>Yes</td>
</tr>
<tr>
<td>Acute respiratory distress syndrome</td>
<td>(57)</td>
<td></td>
</tr>
<tr>
<td>Graves' disease</td>
<td>(58)</td>
<td>G</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>G</td>
<td>risk</td>
<td><0.003</td>
<td>1.77</td>
<td>1.48-2.13</td>
<td>Yes</td>
<td>Caucasian</td>
<td>No</td>
</tr>
<tr>
<td>Systemic lupus erythematosus</td>
<td>(59)</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>risk</td>
<td><0.001</td>
<td>3.2</td>
<td>1.8-5.6</td>
<td>No</td>
<td>Taiwanese</td>
<td>No</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>(60)</td>
<td>T</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>risk</td>
<td>0.01</td>
<td>1.4</td>
<td>1.1-1.8</td>
<td>No</td>
<td>Taiwanese</td>
<td>No</td>
</tr>
<tr>
<td>Ankylosing spondylitis</td>
<td>(61)</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>risk</td>
<td><0.003</td>
<td>1.22</td>
<td>1.1-1.37</td>
<td>No</td>
<td>Taiwanese</td>
<td>No</td>
</tr>
<tr>
<td>Ulcerative colitis</td>
<td>(62)</td>
<td>A</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>A</td>
<td>A</td>
<td>risk</td>
<td><0.001</td>
<td>1.22</td>
<td>1.1-1.37</td>
<td>No</td>
<td>Taiwanese</td>
<td>No</td>
</tr>
<tr>
<td>Crohn's disease</td>
<td>(63)</td>
<td>AA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>AA</td>
<td>risk</td>
<td><0.002</td>
<td>1.36</td>
<td>1.2-1.55</td>
<td>No</td>
<td>Undecided</td>
<td>No</td>
</tr>
<tr>
<td>Type 2 diabetes</td>
<td>(64)</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>risk</td>
<td><0.002</td>
<td>1.36</td>
<td>1.2-1.55</td>
<td>No</td>
<td>Undecided</td>
<td>No</td>
</tr>
<tr>
<td>Latent autoimmune diabetes in adults</td>
<td>(65)</td>
<td>AA</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>A</td>
<td>risk</td>
<td><0.001</td>
<td>2.68</td>
<td>1.7-4.18</td>
<td>Yes</td>
<td>Caucasian</td>
<td>No</td>
</tr>
<tr>
<td>Myeloma</td>
<td>(66)</td>
<td>G</td>
<td>C</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>risk</td>
<td>0.006</td>
<td>2.22</td>
<td>1.2-4.19</td>
<td>Yes</td>
<td>Caucasian</td>
<td>No</td>
</tr>
<tr>
<td>Colorectal cancer</td>
<td>(67)</td>
<td>AG</td>
<td>A</td>
<td>T</td>
<td>A</td>
<td>T</td>
<td>T</td>
<td>risk</td>
<td>0.001</td>
<td>3.20</td>
<td>1.8-6.35</td>
<td>Yes</td>
<td>Chinese</td>
<td>No</td>
</tr>
<tr>
<td>Hepatocellular carcinoma</td>
<td>(68)</td>
<td>G</td>
<td>T</td>
<td>C</td>
<td>C</td>
<td>C</td>
<td>G</td>
<td>risk</td>
<td>0.002</td>
<td>3.14</td>
<td>1.44-6.836</td>
<td>Yes</td>
<td>Swedish</td>
<td>Yes</td>
</tr>
</tbody>
</table>

The table summarizes all the genetic association studies involving variants of *NFKBIA* done to date. For the variants located at position +2921, no rs number is available. For multiple sclerosis and type 2 diabetes, the identity (relative location from the start site or the rs number) of the variant was not mentioned in the publication nor could it be traced on dbSNP.
Table 1.2. The GT haplotype is associated with protection against infections and risk for inflammatory conditions

<table>
<thead>
<tr>
<th>Position of promoter SNP</th>
<th>-881</th>
<th>-826</th>
<th>-297</th>
<th>Association</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs id</td>
<td>3138053</td>
<td>2233406</td>
<td>2233409</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Change</td>
<td>(A/G)</td>
<td>(C/T)</td>
<td>(C/T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Infectious disorders
- Trachoma: G T Protection (51)
- Respiratory syncytial virus: T Protection (53)
- Invasive pneumococcal disease: G T Protection (54)

Inflammatory/Autoimmune disorders
- Sarcoidosis: G T T Risk (55)
- Acute respiratory distress syndrome: G T C Risk (57)
- Graves' disease: T T Risk (58)

SNPs rs3138053 and rs2233406 show complete (100%) linkage in individuals of European, African, Chinese (Han) descent and 91% linkage in individuals of Japanese descent. The 223409 SNP shows strong linkage with rs3138053 in individuals of European, Chinese (Han), and Japanese descent (83%, 83%, 89% respectively), but display only 56% linkage in individuals of African descent.
Figure 1.2. Validating impact of \textit{cis} acting promoter variants on gene expression. As the promoter is not transcribed during gene expression, one loses the ability to discriminate between transcripts that arose from the allele housing the major variant or the minor variant (A). A solution to this problem is to amplify a synonymous coding variant that is in high linkage with the promoter variant (B). The major and minor variants of the coding SNP thus act as surrogates for discriminating between the major and minor allele transcripts, respectively.
Figure 1.3. Hypothesis: Impact of minor variants in the NFKBIA promoter on NF-κB signaling. Individuals who are homozygous (ACC/ACC) for the NFKBIA promoter SNPs rs3138053, rs2233406, and rs2233409, are expected to display normal negative regulation of NF-κB where IκBα, upon phosphorylation by the IKK complex, would be ubiquitinated and subsequently proteasomically degraded. This would allow the p50p65 NF-κB heterodimer to bind response elements of proinflammatory genes and begin their transcription. NF-κB (p50p65) would also bind response elements on NFKBIA, the gene that encodes for IκBα, and initiate its expression. Newly synthesized IκBα would bind NF-κB (p50p65) and translocate it back to the cytoplasm (A). In individuals who are heterozygous (ACC/GTT) for these SNPs, there would be a reduction (dotted arrow) in the amount of mRNA transcript that is produced. This would lead to a reduction (dotted arrow) in the amount of IκBα that is available to bind NF-κB (p50p65). A reduced inhibition on NF-κB (p50p65) translocation to the nucleus would in turn lead to an increase in the expression of proinflammatory genes which would subsequently lead to an increase in inflammation (large text) (B).
Chapter 2: Material and methods

2.1 Analysis of linkage disequilibrium (LD)

2.1.1 Source populations
LD was examined in 4 ethnic groups which included individuals of European, African, Chinese (Han) and Japanese descent. To incorporate the maximum amount of variants for each ethnic group, genotype data was taken from 2 source populations- one genotyped by the HapMap consortium (www.hapmap.org) and the second genotyped by Programs for Genomic Applications (PGA) (http://pga.jgi-psf.org/). Even though there was considerable overlap between individuals used by HapMap and PGA, yet PGA assayed for more variants of NFKBIA. (as shown in table 2.1). The only ethnicity for which there was no overlap between individuals genotyped by PGA or HapMap was for individuals of African descent. PGA genotyped African Americans of South-Western USA whereas HapMap genotyped Yoruba of Ibadan, Nigeria. To eliminate any redundant genotypes, parameters in the Genome Variation Server (GVA) were set to ‘merge’ duplicate genotypes from the same individual found in two source populations. More detail is provided on the use of GVA in the next section. The location assigned to a NFKBIA SNP i.e. whether it was an intronic, exonic, 3’ UTR, 5’UTR or promoter SNP was based on the designation given by the dbSNP (http://www.ncbi.nlm.nih.gov/SNP).

2.1.2 Software

Haplotype analyses
The Genome Variation Server (GVA) (http://gvs.gs.washington.edu/GVS/) was used to download genotype information for each ethnic group. In the search engine, the entire NFKBIA gene sequence plus 1000 bp of upstream sequence, was initially screened for variants. The 'genotype' and 'marker haplotype' files, obtained from GVA, were uploaded in Haploview 3.1. Common variants i.e., variants with a minor allele frequency ≥1% were only included in the analysis. In our case we chose to define LD between two SNPs as ‘strong’ if the r^2 values were greater than or exceeded 80%, as this has been used traditionally by the HapMap consortium as an accepted level of tag SNP coverage (48).

Functional site analyses
The “SNP@Promoter” search engine (http://variome.kobic.re.kr/SNPatPromoter/) was used to analyze the NFKBIA promoter for any variants that were present in putative transcription factor binding sites.

2.2 Analysis of NFkBIA mRNA expression, and allelic imbalance

2.2.1 Subject recruitment

Recruitment for NFkBIA allele specific and total mRNA expression measure

Ninety seven healthy individuals were recruited from the research department at the BC Children’s Hospital. Initially saliva samples were obtained for genotyping and determining NFkBIA haplotype for SNPs rs3138053/2233406/2233409/1050851(A/G, C/T, C/T, C/T). Each individual had consented for the extraction and use of their DNA for this study which was approved by the board of ethics at the University of British Columbia. Individuals with HIV infection, spleen abnormalities, significant heart and lung disease, some kidney and liver diseases, diabetes, cancer, cerebrospinal fluid leaks, sickle disease and other primary immunodeficiencies were excluded from the study. 32 individuals who had consented for the use of their blood in this study were approached for blood samples.

2.2.2 Genomic DNA extraction

Genomic DNA was extracted from controls and case blood samples using QIAamp ® DNA Blood Mini Kit (Qiagen, MD, USA). Genomic DNA was extracted from case saliva samples using ORAgene® DNA extraction kit (DNA genotek, ON, Canada). DNA was eluted in 25μl of T.E. buffer and was quantified by a NANODROP 1000™ UV/VIS spectrophotometer (Thermo Scientific, USA). Between 224.75 to 2538.75 nanograms of DNA was eluted in 25μl of Tris-EDTA (T.E.) buffer.

2.2.3 Optimization of bacterial growth

Optimizing growth medium

In spite of its pathogenicity in blood, Streptococcus pneumoniae grows relatively poorly on media. Many isolates require prolonged preincubation prior to entering the exponential phase of growth. In a recent publication, 47 clinical isolates of S. pneumoniae representing 15 serotypes were grown in brain heart infusion (BHI) media with and without 5% fetal calf serum (FCS). Supplementation with 5% FCS led to a significant shortening of the lag phase in serotypes associated with invasive disease (89)(91). The clinical isolate used in this project, serotype 14, is one of the 7 commonly invasive serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) known to cause the majority of pediatric invasive pneumococcal disease cases in Canada (90). We monitored growth of serotype 14 for 10 hours using a spectrophotometer adjusted at 600nm wavelength in BHI medium supplemented with and without 5% FCS. Comparisons were made for cultures started from overnight cultures (which were colony inoculations grown in BHI medium to an optical density (OD) of 0.1) or single colonies. All cultures were grown under anaerobic conditions at 37°C with 5% CO₂. With the inclusion of 5% FCS, cultures inoculated from over
night cultures (Fig. 2.1a) or single colonies (Fig. 2.1b) had a shorter lag time to exponential growth compared to cultures that were grown in BHI medium only. In the case of cultures inoculated from overnight cultures the lag time for growth in BHI medium supplemented with 5% FCS, was shorter by 90 minutes when compared to cultures that were grown in media lacking 5% FCS (Fig. 2.1a). For cultures started from single colonies, quantitative comparisons for time required to reach exponential phase could not be made as cultures grown in the (control) BHI medium failed to reach exponential phase after 10 hours of incubation (Fig. 2.1b). However, single colony cultures took a longer time to reach the exponential phase than cultures that were started from overnight cultures (440 minutes versus 380 minutes).

Determining the mid-log phase of exponential growth

In order to determine the optical density at which *S. pneumoniae* had reached the mid-log stage of exponential growth, 2 additional growth curve experiments were conducted. A clinical isolate of *S. pneumoniae*, serotype 14, was sub-cultured twice on Columbia agar plates with 5% sheep blood. A single colony was inoculated overnight in 50mL BHI medium. The next day (after 12 hours), once the culture had reached an O.D. of 0.5, 300μl of the culture was inoculated in media consisting of 50mL BHI + 5% FCS to an O.D. of 0.1. Growth was monitored for 10 hours. Plate counts were taken periodically, throughout the growth curve, whenever an O.D increase of 0.1 was observed. The next day, colonies were counted and colony count per ml for each O.D. was determined. Results from two growth curves indicated that the mid-log phase occurred at an approximate O.D. of 0.5 (Fig. 2.2a). Colony counts were plotted against colony forming units (CFU)/mL for each O.D. to yield a standard curve for predicting colony counts for a given O.D. of *S. pneumoniae* in culture (Fig. 2.2b).

Bacterial growth on the day of the experiment

A clinical isolate of *Streptococcus pneumoniae*, serotype 14, was sub-cultured twice on Columbia agar plates with 5% sheep blood. On the day of the experiment, a single colony from the second subculture was inoculated in 25 mL of BHI medium supplemented with 5% FCS. The culture was grown under anaerobic conditions at 37°C with 5% CO2 for 6 hours. At an optical density reading of 0.5, the bacteria were pelleted by centrifugation at 5000X g for 10 minutes. The bacterial pellet was serially diluted in appropriate volumes of PBS to generate multiplicity of infections (MOI) of 20 and 10. Prior to stimulation of cells, the MOIs were plated on Columbia blood agar plates, with 5% V/W sheep blood, in order to determine the number of live bacteria present in each dilution.
2.2.4 PBMC isolation

Heparinized whole blood was mixed in a 1:1 ratio with R10 medium consisting of RPMI 1640 medium with 10% (v/v) fetal calf serum and 2 mM l-glutamine and 1 mM sodium pyruvate (Gibco). Human peripheral blood mononuclear cells (PBMCs) were isolated by density gradient centrifugation (Ficoll-Paque™ Plus, Amersham Pharmacia Biotech). PBMCs were washed twice with R10 and viable cells were quantified by trypan blue exclusion.

2.2.5 PBMC stimulation

PBMCs were suspended in R10 and were dispensed into a flat-bottom 24-well plate (6.6 x 10^5 cells in 666μl R10). 66.7μl of LPS (1000ng/mL) (Escherichia coli 0111:B4) and 66.7μl S. pneumoniae (serotype 14), at MOIs of 20 and 10, were added separately to duplicate wells. The cells were incubated at 37°C in a 5% CO₂ atmosphere for 3 and 4 hours post stimulus. Supernatants were harvested and stored at -20°C. 333.33 μl of buffer RLT (Qiagen) was added to the cells and samples were stored at -80°C.

2.2.6 RNA isolation and cDNA reverse transcription

RNA was isolated from lysates stored at -80°C using the RNeasy® Plus Mini Kit (Qiagen, Hilden, USA). An additional DNAse treatment step was performed prior to adding of buffer RW1. RNA samples were eluted in 17μl of DNAse/RNAse free H₂O. 10μl of sample (with a minimum concentration of 10ng/μl RNA) was used as template for reverse transcription into cDNA using the SuperScript®VILO™ cDNA synthesis kit (Invitrogen). In order to increase the yield of cDNA, the incubation time at 42°C was increased to 120 minutes. Following reverse transcription, each sample was quantified and diluted to a concentration of 800ng/μl, which was determined to be the optimal cDNA template concentration for quantitative PCR.

2.2.7 Genotyping

The NFKBIA SNPs rs2233406, rs3138053 and rs2233409 were ordered from Applied Biosystems as part of the TaqMan® Pre-Designed SNP Genotyping Assay. The context sequences of the SNPs are as follows:

<table>
<thead>
<tr>
<th>SNP</th>
<th>Context Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rs3138053</td>
<td>5’-ATTCGTTTATGCTATCTGACCTACA[C/T]TGTGCTCCCGCAGAAAAAGGATCGT-3’</td>
</tr>
<tr>
<td>Rs2233406</td>
<td>5’-TGGTGGTTGTGGATACCTTGCAATA[G/A]CAGAGTAGCTATTGTGTTCATAAGT-3’</td>
</tr>
<tr>
<td>Rs2233409</td>
<td>5’-TGTAATCCTGTCCCTCTGCAAGTG[A/G]CAGATTCCCTTTCCCTGGGT'TTCCACG-3’</td>
</tr>
</tbody>
</table>
The primers for the coding SNP rs1050851 were custom designed. The primer sequences are as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X PerfeCta master mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>Nuclease-free H₂O</td>
<td>9 µl</td>
</tr>
<tr>
<td>40X SNP assay mix</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>gDNA (1-25 ng)</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 µl</td>
</tr>
</tbody>
</table>

Allele calling

The automated allele calling feature was used in accompanying sequence detection software, included with the Applied Biosystems 7300 Real Time PCR Machine.

2.2.8 *NFKBIA* gene expression

The forward and reverse primer sequences for *NFKBIA* were as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X PerfeCta master mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>Nuclease-free H₂O</td>
<td>9 µl</td>
</tr>
<tr>
<td>40X SNP assay mix</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>gDNA (1-25 ng)</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 µl</td>
</tr>
</tbody>
</table>

Allele calling

The automated allele calling feature was used in accompanying sequence detection software, included with the Applied Biosystems 7300 Real Time PCR Machine.

2.2.8 *NFKBIA* gene expression

The forward and reverse primer sequences for *ACTB* (β-actin) were as follows:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X PerfeCta master mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>Nuclease-free H₂O</td>
<td>9 µl</td>
</tr>
<tr>
<td>40X SNP assay mix</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>gDNA (1-25 ng)</td>
<td>0.5 µl</td>
</tr>
<tr>
<td>Total volume</td>
<td>20 µl</td>
</tr>
</tbody>
</table>
Quantitative PCR was performed on cDNA using SYBR green reagent. The PCR reagents were added in the following format:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2X SYBR green</td>
<td>12.5 µl</td>
</tr>
<tr>
<td>RNase and DNase free H2O</td>
<td>10.5 µl</td>
</tr>
<tr>
<td>Forward and reverse primers</td>
<td>0.5 µl (5µM concentration) for each primer</td>
</tr>
<tr>
<td>Template (cDNA) concentration</td>
<td>1µl (800ng/mL)</td>
</tr>
<tr>
<td>Total volume</td>
<td>25 µl</td>
</tr>
</tbody>
</table>

The reaction setup for *NFKBIA* genotyping and gene expression in the Applied Biosystems 7300 Real Time PCR Machine was as follows:

<table>
<thead>
<tr>
<th>Cycle 1</th>
<th>Cycle 2</th>
<th>Cycle 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOLD</td>
<td>HOLD</td>
<td>CYCLE (40 cycles)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denature Anneal/Extend</td>
</tr>
<tr>
<td>Temperature</td>
<td>50°C</td>
<td>95°C</td>
</tr>
<tr>
<td>Time</td>
<td>2 min</td>
<td>10 min</td>
</tr>
</tbody>
</table>

The fluorescence was measured at cycle 3, step 2 of the reaction.

2.2.9 Genotyping for allelic imbalance

cDNA from PBMCs of individuals heterozygous or homozygous (major allele) for the promoter SNPs rs3138053/rs2233406/rs2233409 and the coding SNP rs1050851 was genotyped for all conditions (unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, stimulated with *S. pneumoniae* for 3 hours, and stimulated with *S. pneumoniae* for 4 hours). Genotyping for each condition was performed in triplicate. Genomic DNA for each donor was also genotyped in triplicate. Detailed descriptions of assay design, validation as well as calculation of allelic imbalance is described in chapter 3.

2.3 Neonatal innate immune response

The neonatal immune response analysis was done on neonatal cord blood by the Kollmann lab. For information regarding subject recruitment, blood isolation, processing, and cytokine analysis refer to the publication by Kollmann *et al* (91). Briefly, cord blood from healthy, full-term elective Caesarian sections without labour was collected directly into sodium heparin-containing vacutainers (BD Biosciences). PBMCs were isolated by density gradient centrifugation. 96 well
plates containing 1.3 μl of TLR ligands (PAM3CSK4 (TLR2/1); poly(I:C) (TLR3); 0111:B4 LPS (TLR4), 3M-002 (TLR8), 3M-003 (TLR7/8); 3M-013 (TLR7); CpG (A type); RFSL (TLR 2/6)) were prepared. 180 μl of cell suspension (monocyte mixed with 1:1 RPMI 1640) was added to each TLR plate and the plates were incubated for 6 hours at 37°C. Supernatants were thawed at room temperature, and filtered into a clean 96 well plate. The Luminex assay was performed using the Upstate/Millipore “Flex Kit.” Genomic DNA was extracted from cord samples of 20 neonates using the QIAamp ® DNA Blood Mini Kit.

2.4 Statistics

2.4.1 Statistical analysis for allelic imbalance
A 95% confidence interval of the mean allelic ratio was taken for each of the 5 conditions (unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, stimulated with S. pneumoniae for 3 hours and S. pneumoniae for 4 hours).

2.4.2 Statistical analysis for gene expression
A non-parametric Mann-Whitney-test was used to compare the mean gene expression values of NFKBIA relative to the ACTB for 3 and 4 hour stimulations with LPS and S. pneumoniae.

2.4.3 Statistical analysis for innate immune response
A two-way ANOVA was used to analyze mean cytokine response for each ligand concentration with a Bonferroni post-test to account for multiple testing.

2.5 Order of operations
The order in which all the major steps in the experimental protocol were performed is outlined in Fig. 2.3.
Table 2.1. Data on the number of individuals and variants in different population ethnic groups examined for LD analysis of *NFKBIA* variants

<table>
<thead>
<tr>
<th>Population source</th>
<th>Geographical origin</th>
<th>No of individuals</th>
<th>No. of variants</th>
<th>Genotyped by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern and Western European</td>
<td>Utah (USA)</td>
<td>30</td>
<td>6</td>
<td>HapMap</td>
</tr>
<tr>
<td>Northern and Western European</td>
<td>Utah (USA) & France</td>
<td>23</td>
<td>29</td>
<td>PGA</td>
</tr>
<tr>
<td>African</td>
<td>Ibadan, Nigeria</td>
<td>30</td>
<td>7</td>
<td>HapMap</td>
</tr>
<tr>
<td>African</td>
<td>South-Western USA</td>
<td>24</td>
<td>29</td>
<td>PGA</td>
</tr>
<tr>
<td>Asian (Japanese)</td>
<td>Tokyo, Japan</td>
<td>45</td>
<td>6</td>
<td>HapMap</td>
</tr>
<tr>
<td>Asian (Japanese)</td>
<td>Tokyo, Japan</td>
<td>45</td>
<td>3</td>
<td>PGA</td>
</tr>
<tr>
<td>Asian (Han chinese)</td>
<td>Beijing, China</td>
<td>45</td>
<td>6</td>
<td>HapMap</td>
</tr>
<tr>
<td>Asian (Han chinese)</td>
<td>Beijing, China</td>
<td>45</td>
<td>3</td>
<td>PGA</td>
</tr>
</tbody>
</table>

These data were downloaded on January 2nd, 2010 and were downloaded again on March 21st, 2010 to record any new SNP genotypes for the above populations. No new SNP genotypes were observed in the second download relative to the first download.
Figure 2.1. *Streptococcus pneumoniae* serotype 14 shows a reduced lag time for exponential growth when grown in media BHI media supplemented with 5% FCS. Growth of *S. pneumoniae* was monitored in cultures started from overnight cultures (A) and single colonies (B) for 10 hours under anaerobic conditions at 37°C with 5% CO₂.
Figure 2.2 Determining the optimal growth range for *Streptococcus pneumonia* serotype 14. A single colony of *S. pneumoniae* serotype 14, was subcultured twice and grown in BHI medium supplemented with 5% FCS for 10 hours. Plate counts were taken for an OD increase of 0.1. Data from two growth curves is shown (A). CFU/ml were plotted against OD readings to yield a standard curve for determining colony counts for a given OD (B).
Figure 2.3. Overview of experimental protocol. Experimental procedures were performed as outlined in the Figure. All assays were done in healthy adults, with the exception of the innate immune response assay which was done in healthy neonates.
Chapter 3: Results

3.1 Emerging picture of the NFKBIA promoter haplotype

3.1.1 Analysis of variants

As both the type of variation and the location of the variant in a gene determine the subsequent impact on gene function, it was important to get an understanding of the nature and location of variants in the NFKBIA gene. Table 3.1 shows the location of variants of NFKBIA in different ethnic groups. In the European panel, of the 28 variants genotyped by HapMap and PGA, there were only 2 synonymous-coding variants (rs 1050851 and rs1957106). The remainder of the variants consisted of 13 variants in the intron, 2 in the 5' UTR, 5 in the 3' UTR and 6 variants in the promoter region. The African panel consisted of 30 variants (3 exonic, 15 intronic, 0 in the 5' UTR, 5 in the 3' UTR, and 7 promoter variants). Both the CHB and JPT panels consisted of 9 variants (2 exonic, 1 intronic, 0 in the 5' UTR, 3 in the 3' UTR, and 3 promoter variants).

3.1.2 Linkage disequilibrium (LD) analysis

As LD has been critical for mapping complex disease variants in the human genome, it was important to study the NFKBIA LD pattern in different ethnic groups. In our analysis of the entire NFKBIA gene, we discovered LD was not continuous but limited to mostly non-coding variants in the gene (appendix: fig. A1-4). We categorized variants that showed strong LD and discovered that 75-95% of variants that displayed strong LD resided in non-coding regions of NFKBIA which included the promoter, introns, and the 3' UTR (appendix: fig. A5a). Next, we determined the percentage of variants-within these three sites- that showed strong local-linkage i.e., we excluded variants in these sites that didn’t show strong LD with a variant within the same region but showed strong LD with a variant outside the region. In the 4 populations examined, 52-100% of the variants in the promoter showed strong local LD whereas 28-65% of the variants in the 3' UTR showed strong LD (appendix: fig. A5b).

3.1.3 Promoter haplotype analysis

Since the promoter variants were in strong LD, we examined this region exclusively within each of the 4 populations (fig 3.1a-d). We determined that 2 promoter variants (rs2233406, and 3138053) comprised a small, strongly-linked 2-variant haplotype in all 4 populations. The European panel (fig. 3.1a) was comprised of a 4-variant haplotype consisting of rs2233409, rs2233406, and rs3138053 in strong LD, and a fourth variant rs11569591-an 8bp insertional/deletion (structural) variant- that displayed 100% LD with rs2233406 and rs3138053.
The African panel (fig. 3.1b) had a second 2-variant haplotype consisting of SNPs rs11569593 and rs11569590 in 100% LD. The CHB panel (fig. 3.1c) had a 3 variant haplotype where the third variant, rs2233409, displayed 83% LD with rs2233406 and rs3138053.

3.2 Functional analysis of NFKBIA promoter variants

3.2.1 Putative transcription factor binding sites

In order to see if any of the NFKBIA promoter variants resided in functional sites for the binding of transcription factors we searched the entire NFKBIA gene sequence in the SNP@Promoter search engine (http://variome.kobic.re.kr/SNPatPromoter/) for any putative transcription factor binding sites. The search revealed that the variant rs3138053 that was found in all of the 4 populations, resided at the binding site for retinoic related orphan receptor 2 (RORα2). Previous have identified it as a binding site for RORα1 and RORα2 (92). Functional experiments using human cell lines have shown that RORα2 binds to this response element and transcriptionally up regulates IκBα expression, and mutagenesis in this region leads to a consequent decline in IκBα expression (93). There is a putative binding site AP-2 at an intronic variant (rs2233411) that was in 100% LD with the variant rs2233409 in the European and African panels. In the European panel the structural variant rs11569591 resides in a functional binding site for 2 transcription factors-KROX and Egr. Table 3.2, shows all the variants of NFKBIA that reside in putative transcription factor binding sites.

3.2.2 Risk haplotype prediction

Based on the strong LD observed in the promoter region of NFKBIA in all 4 populations, and the presence of putative transcription factor binding sites in this region (Table 3.2), we came up with a risk haplotype for the population groups examined (Fig. 3.2). The first risk haplotype was common in all populations and consisted of the risk variant rs3138053 which resided in the RORα1 and RORα2 binding site and was in strong LD with SNP rs2233406. The second haplotype was unique to individuals of European descent and consisted of 2 additional risk variants rs11569591 and rs2233411 in strong LD with SNPs rs3138053, rs2233406 and rs2233409, both of which resided in putative transcriptional factor binding sites. Therefore, we predicted that owing to the presence of the rs3138053 risk variant in all 4 populations, we would see a subsequent impact on allelic and mRNA expression of NFKBIA, but this effect would be more pronounced in individuals of European descent who have 2 additional risk variants in their haplotype. It is to be noted that the actual genotyping and functional validation i.e., analysis of NFKBIA allelic imbalance, NFKBIA gene expression and innate immune response was done for SNPs rs3138053, rs2233406 and rs2233409 as these SNPs had been shown to be associated with disease.
3.3 Allelic imbalance

3.3.1 Validation of allele specific PCR assay

In order to measure allelic imbalance we investigated whether: 1) we could detect differences in allele ratios using TaqMan probes and 2) what range of allele ratios were detectable using this technique. To answer these questions we selected a synonymous coding SNP rs1050851 which was in strong LD with promoter SNPs rs3138053, rs2233406 and rs2233409 and thus acted as a tag for differentiating between the major (ACC) and minor (GTT) allele transcripts of NFKBIA. Genomic DNA was extracted from a healthy individual who is homozygous for the NFKBIA rs1050851 coding SNP wild type allele “C/C” and from an individual who is homozygous for the minor allele “T/T.” The concentration of genomic DNA was quantified and diluted to ensure that both samples had similar starting concentrations (187.82 ±2.03ng/µL for “C/C” and 182.79±3.68ng/µL). The genomic DNA from the samples was mixed in different concentrations to mimic allelic imbalance seen in cDNA samples during gene expression. The allelic ratios were 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:8 CC:TT and 8:1, 4:1, 3.5:1, 3:1, 2.5:1, 2:1, 1.5:1, 0.5:1 TT:CC. Each genomic mixture was genotyped for the rs1050851 SNP using the Applied Biosystems 7300 Real Time PCR Machine. Figure 3.3a illustrates this procedure.

The cycle at which amplification of the DNA template enters the exponential phase is referred to as the threshold of activation or “ct.” We observed that as the ratio of the major allele to the minor allele was decreased from 8:1 (C/C:T/T) to 1:8(C/C:T/T), a corresponding increase in Δct was detected in the real time PCR read out for each ratio (Fig. 3.3b). We also observed a Δct value in a 1:1 ratio, which theoretically should be zero. This difference is a result of different probe binding efficiencies of the Vic and Fam probes for their respective alleles and has been reported in other allele specific PCR assays involving TaqMan probes (94). This background difference was subtracted from the observed “Δct” for all the mixtures of genomic DNA to obtain a corrected “Δct” reading for each sample.

3.3.2 Generation of allele ratios

The corrected “Δct” reading for each mixture was plotted against the logarithm of the known ratio of CC:TT for each sample to obtain a standard curve (Fig. 3.4). This standard curve was used to determine the allelic ratios in cDNA samples for which the allelic ratio was not known.

3.3.3 Determining allelic imbalance in NFKBIA rs1050851 heterozygotes

To determine if NFKBIA heterozygotes (ACC/GTT) for promoter SNPs rs3138053, rs2233406 and rs2233409 displayed allelic imbalance, we stimulated PBMCs from NFKBIA heterozygotes (ACC/GTT) who were also heterozygous for the coding SNP rs1050851 (C/T) with LPS (100ng/ml) and S. pneumoniae (moi 7.8-30) for 3 and 4 hours. The cDNA along with the
genomic DNA for each individual was genotyped in tandem for the rs1050851 SNP which was used as a ‘tag’ for genotyping the 3 promoter SNPs that could not be assayed for in cDNA (for more details on this, refer to section entitled ‘the problem of quantitating promoter variants’ in chapter 1). The ΔCt read out for the genomic samples was subtracted from the ΔCt readout each of the three conditions (unstimulated, stimulated for 3 hours, and stimulated for 4 hours) to obtain a ‘corrected ΔCt’ (ΔCt’) read out. Using the standard curve for calculating unknown allele ratios we determined the allele ratio for each condition.

In the unstimulated condition, the mean allele transcript ratio of the major allele (ACC) to the minor allele (GTT) was 1.21 (1.15-1.27 95% CI). In the presence of LPS (100 ng/ml), the mean allelic ratio for 3 and 4 hour stimulation was 1.22 (1.18-1.25 95% CI) and 1.21 (1.15-1.27 95% CI) respectively (Fig.3.5a). The ratios for each condition were not significantly different from each other, but were significantly higher than the base line 1:1 ratio seen in the genomic sample. Similarly, in the presence of S. pneumoniae the ratios for the 3 hour and 4 hour stimulation were 1.23 (1.16-1.31 95% CI) and 1.25 (1.17-1.33 95% CI) respectively (Fig. 3.5b). Since 11 out of the 12 individuals analyzed were of European descent, we also analyzed the mean allele ratios for these 11 individuals. In the one individual of Chinese (Han) descent, the allele ratios for unstimulated, LPS 3 and 4 hour stimulated, S. pneumoniae 3 and 4 hour stimulated conditions were 1.11, 1.22, 1.26, 1.12, 1.13 respectively. With the exclusion of this sample, the mean allele ratios were 1.22 (1.15-1.29), 1.22 (1.18-1.26), 1.21 (1.14-1.27), 1.24(1.17-1.32), 1.26 (1.18-1.34) respectively. Therefore, by the use of a validated allele specific PCR assay, we were able to detect allele specific differences in individuals who were heterozygous for SNPs rs3138053, rs2233406, rs2233409 and rs1050851.

3.4 Determining impact of allelic imbalance on NFKBIA mRNA expression
3.4.1 Impact of allelic imbalance on NFKBIA mRNA expression in NFKBIA homozygotes and heterozygotes
To investigate whether allelic imbalance had a subsequent downstream impact on NFKBIA expression, we measured NFKBIA expression relative to the housekeeping gene ACTB (β-actin) at 3 and 4 hours post stimulus in the presence of LPS and S.pneumoniae. Initially, we examined NFKBIA expression in all individuals who were heterozygous or homozygous for the promoter SNPs rs3138053/rs2233406/rs2233409. This included individuals of all ethnicities (Fig. 3.6a-d). Although no significant differences were seen in NFKBIA expression, a pattern was seen where NFKBIA homozygotes (ACC/ACC) displayed a higher fold expression of NFKBIA than NFKBIA heterozygotes (ACC/GTT); this pattern was more evident at 3 hours (p=
0.057 and $p=0.073$ for stimulation with LPS and \textit{S.pneumoniae} respectively) (Fig.3.6a and 3.6c) than 4 hours ($p=0.14$ and $p=0.10$ respectively) (Fig.3.6b and 3.6d).

3.4.2 \textit{Impact of allelic imbalance on NFKBIA mRNA expression in NFKBIA homozygotes and heterozygotes of European descent}

We had hypothesized earlier that owing to the presence of an 8 insertion/deletion polymorphism variant (rs11569591), and an intronic variant (2233411) in strong LD with the promoter SNPs rs3138053/rs2233406 in individuals of European descent, we would see more profound differences in mRNA expression of \textit{NFKBIA} in heterozygotes or homozygotes (for the minor allele) of this group than homozygotes for the major allele. We observed that when only examining individuals of European descent at 3 hours a 1.4 fold greater expression of \textit{NFKBIA} was seen in homozygotes (ACC/ACC) than heterozygotes (ACC/GTT) for LPS ($p=0.0095$, Mann Whitney-U-test) and a 1.51 greater expression was seen in samples stimulated with \textit{S.pneumoniae} ($p=0.024$, Mann-Whitney-U-test) (Fig 3.7a and 3.7c). A similar pattern was seen at the 4 hour time point. However the differences were not statistically significant (Fig 3.7b and 3.7d).

3.5 \textit{Determining impact of allelic imbalance on the innate immune response}

\textit{NFKBIA} encodes for IKB\textgreek{a} which negatively regulates NF-kB translocation. NF-kB positively regulates the expression of proinflammatory cytokines genes \textit{TNF\textgreek{a}} and \textit{IL6}. A readout of proinflammatory cytokines is frequently used in a clinical immunology setting to determine the level of inflammation in an individual. However, when trying to specifically understand the genetic contribution to an individual’s phenotype, it is important to minimize any confounding effects to the cytokine readout that could result from environmental effects such as an infection or an autoimmune condition or the interaction of the adaptive immune system with innate immune system, as is the case in adults. To circumvent this problem, the innate immune analysis was conducted on PBMCs from cord blood belonging to healthy infants born at BC Children’s Hospital. Healthy infants were chosen over healthy adults as infants display poor immunological memory and predominantly rely on their innate immune system for protection against pathogens (95).

3.5.1 \textit{Impact of allelic imbalance on the innate immune response in NFKBIA homozygotes and heterozygotes}

To determine if there was a difference in the innate immune response between \textit{NFKBIA} homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) PBMCs of these genotypes were stimulated with a variety of Toll Like Receptor (TLR) ligands for 6 hours and the innate immune
response was measured. A significantly higher response was seen for TNFα in PBMCs of heterozygotes (ACC/GTT) than homozygotes (ACC/ACC) when stimulated with TLR ligands LPS (1.80 fold, \(p<0.05 \) at a dose of 100ng/ml), Pam3CSK4 (3.20 fold, \(p<0.01 \) at a dose of 100 ng/ml, 2.76 fold, \(p<0.01 \) at a dose of 100ng/ml), 3M003 (1.63 fold, \(p<0.01 \) at a dose of 10 \(\mu \)M), 3M002 (2.39 fold, \(p<0.001 \) at a dose of 10.0 \(\mu \)M), and RFSL (3.3 fold, \(p<0.05 \) at a dose of 1000ng/ml, 2.36 fold \(p<0.01 \) at a dose of 10000ng/ml) (Fig. 3.8 (a-e)).

3.5.2 Impact of allelic imbalance on the innate immune response in NFKBIA homozygotes and heterozygotes of European descent

To determine if reduced mRNA expression of NFKBIA in heterozygotes (ACC/GTT) of European descent led to an exacerbation of the innate immune response, we analyzed TNFα production between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) of European origin. Significantly higher fold production of TNFα was seen in PBMCs of heterozygotes (ACC/GTT) than homozygotes (ACC/ACC) in the presence of LPS (1.57 fold, \(p<0.05 \) at a dose of 100ng/ml), Pam3CSK4 (2.29 fold, \(p<0.01 \) at a dose of 100ng/ml and 1.91 fold, \(p<0.05 \) at a dose of 1000 ng/ml), 3M003 (1.79 fold, \(p<0.001 \) at a dose 10\(\mu \)M) and 3M002 (3.30 fold, \(p<0.001 \) at a dose of 10\(\mu \)Ml) (Fig. 3.9 (a-d)). However, these differences did not significantly differ in magnitude from the differences seen between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) of mixed descent. Analysis for stimulation with RFSL could not be done as sufficient samples of European descent were not available (3 homozygotes (ACC/ACC) versus 5 heterozygotes (ACC/GTT)) for stimulation with this ligand in order to make statistically meaningful comparisons.

3.5.3 Impact of allelic imbalance on pathways that do not involve IkBα degradation

In order to see if the observed differences in cytokine production between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) were not chance occurrences, we compared differences for pathways that do not require IkBα degradation. TLR9, in addition to activating the classical signaling pathway uses a non IkBα pathway to produce interferon alpha (IFNα) (96). In the presence of the TLR9 ligand CpGA, both homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) did not show any differences in IFNα production (Fig. 3.10a). Similarly, homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) of European descent also did not show any differences in IFNα production (Fig. 3.10b).
Table 3.1. Region specific location of variants in *NFKBIA*

<table>
<thead>
<tr>
<th>Region</th>
<th>Europe</th>
<th>Africa</th>
<th>CHB</th>
<th>JPT</th>
</tr>
</thead>
<tbody>
<tr>
<td>promoter</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5'utr</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>exon</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>intron</td>
<td>13</td>
<td>15</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3'utr</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>total</td>
<td>28</td>
<td>30</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>
Figure 3.1. Linkage disequilibrium (LD) plot of the *NFKBIA* promoter for the 4 major populations. LD plots correspond to European, African, Chinese (Han) of Beijing (CHB), and Japanese individuals of Tokyo (JPT). Variant information was downloaded from the genome variation server database and uploaded into Haploview 3.1. The r^2 are represented by a black to white gradient where black corresponds to 100% and white corresponds to 0-4% linkage between two SNPs.
<table>
<thead>
<tr>
<th>Ethnicity</th>
<th>Variant rs</th>
<th>Type</th>
<th>Position</th>
<th>Transcription Factor Binding Site</th>
<th>Linkage with rs2233409</th>
<th>Linkage with rs2233406</th>
<th>Linkage with rs3138053</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPT</td>
<td>3138053</td>
<td>A/G</td>
<td>-894</td>
<td>ROR alpha2</td>
<td>88</td>
<td>91</td>
<td>n/a</td>
</tr>
<tr>
<td>CHB</td>
<td>3138053</td>
<td>A/G</td>
<td>-804</td>
<td>ROR alpha2</td>
<td>83</td>
<td>100</td>
<td>n/a</td>
</tr>
<tr>
<td>CEU</td>
<td>2233411</td>
<td>A/T</td>
<td>+394</td>
<td>AP-2</td>
<td>100</td>
<td>82</td>
<td>82</td>
</tr>
<tr>
<td>CEU</td>
<td>11569591</td>
<td>-/GGAGGGGG</td>
<td>-599</td>
<td>KROX/Egr</td>
<td>79</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>CEU</td>
<td>3138053</td>
<td>A/G</td>
<td>-894</td>
<td>ROR alpha2</td>
<td>86</td>
<td>100</td>
<td>n/a</td>
</tr>
<tr>
<td>YRI</td>
<td>2233411</td>
<td>A/T</td>
<td>+394</td>
<td>AP-2</td>
<td>100</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>YRI</td>
<td>3138053</td>
<td>A/G</td>
<td>-894</td>
<td>ROR alpha2</td>
<td>36</td>
<td>100</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Figure 3.2. Visual representation of functional binding sites for transcription factors of \textit{NFKBIA}. Variants that show 100% linkage with rs3138053 are shown. GGAGGGGGG corresponds to the major (insertion) allele for the structural variant rs11569591.
Figure 3.3. Validating NFKBIA allele specific PCR assay. Genomic DNA from NFKBIA coding SNP (rs1050851) major (CC) and minor (TT) allele homozygotes was mixed in different proportions of the C allele to the T allele (A). The change in allele ratios corresponded to a change in the ΔCt values when each mixture was genotyped for the rs1050851 SNP (B). The major allele is “CC” is represented by the blue curve and the minor allele “TT” is represented by the red curve.
Figure 3.4. Standard curve for detecting allelic imbalance in NFKBIA heterozygotes. The ΔCt value for 1:1 ratio of a NFKBIA 1050851 heterozygote was subtracted from the ΔCt value for each allelic ratio mixture genotyped to obtain a corrected ΔCt’ value. The log of each allele ratio was plotted against ΔCt to yield a standard curve.
Figure 3.5. *NFKBIA* heterozygotes (ACC/GTT) display allelic imbalance. Peripheral blood mononuclear cells of individuals heterozygous (ACC/GTT) for the *NFKBIA* promoter SNPs (rs3138053/rs2233406/rs2233409) and the synonymous coding SNP (rs1050851) were stimulated with 100ng/ml of LPS (A) and *Streptococcus pneumoniae* (serotype 14) (B) for 3 and 4 hours. cDNA from unstimulated PBMCs and PBMCs stimulated for 3 and 4 hours was genotyped for the *NFKBIA* coding SNP rs1050851. Values represent means with 95% confidence intervals for 12 individuals. 11 out of 12 individuals assay were of European descent. A ratio of 1:1 represents allele ratio observed in genomic DNA.
Figure 3.6. *NFKBIA* heterozygotes display a trend of reduced *NFKBIA* mRNA expression than *NFKBIA* homozygotes. Peripheral blood mononuclear cells of individuals who were either homozygous (ACC/ACC) or heterozygous (ACC/GTT) for *NFKBIA* promoter SNPs rs3138053/2233406/2233409 were stimulated with 100ng/mL of LPS (A and B) or *Streptococcus pneumoniae* serotype 14 (C and D), for 3 and 4 hours. *NFKBIA* expression was determined by quantitative PCR. Relative expression was analyzed by 2^{ΔΔCt} using β-actin as a reference gene. Values represent means ±SEM of 16 homozygotes (dark bars) and 16 heterozygotes (grey bars). Statistical analysis was performed by the non-parametric Mann-Whitney-test.
Figure 3.7. \textit{NFKBIA} mRNA expression is significantly reduced in \textit{NFKBIA} heterozygotes of European descent. Peripheral blood mononuclear cells of individuals of European origin who were either homozygous (ACC/ACC) or heterozygous (ACC/GTT) for \textit{NFKBIA} promoter SNPs rs3138053/2233406/2233409 were stimulated with 100ng/mL of LPS (A and B) or \textit{Streptococcus pneumoniae} serotype 14 (C and D), for 3 and 4 hours. \textit{NFKBIA} expression was determined by quantitative PCR. Relative expression was analyzed by $2^{\Delta \Delta Ct}$ using \textit{\textbeta-actin} as a reference gene. Values represent means ±SEM of 11 homozygotes (dark bars) and 13 heterozygotes (grey bars). Statistical analysis was performed by the non-parametric Mann-Whitney-test.
Figure 3.8. *NFBIA* heterozygotes display a higher TNFα response. Peripheral blood mononuclear cells of healthy neonates were stimulated with various Toll like receptor (TLR) ligands for 6 hours and the TNFα response was measured using the luminex platform. Responses were compared between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) for *NFBIA* promoter SNPs rs3138053/rs2233406/rs2233409. Responses for TLR ligands LPS, Pam3CSK4, 3M003, 3M002 and RFSL (A, B, C, D, E) are shown. Values represent means ±SEM of 5-8 heterozygotes (open circles) and 12 homozygotes (black squares). A two-way ANOVA was performed with a post-test.* p<0.05, **p<0.01, ***p<0.001.
Figure 3.9. *NFBIA* heterozygotes of European origin also display a higher TNFα response. Peripheral blood mononuclear cells of healthy neonates were stimulated with various Toll like receptor (TLR) ligands for 6 hours and the TNFα response was measured using the luminex platform. Responses were compared between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) for *NFKBIA* promoter SNPs rs3138053/rs2233406/rs2233409. Responses for TLR ligands LPS, Pam3CSK4, 3M003, and 3M002 (A, B, C, D) are shown. Values represent means ±SEM of 5-7 heterozygotes (open circles) and 5-10 homozygotes (black squares). A two-way ANOVA was performed with a post-test.*, p<0.05, **,p<0.01, ***p<0.001.
Figure 3.10. Pathways that do not require IkBα signaling are not affected by SNPs in the *NFKBIA* promoter. Homozygotes (black squares, n=12) and heterozygotes (open circles, n=8) of mixed descent (A) as well as homozygotes (black squares, n=10) and heterozygotes (open circles, n=7) of European descent (B) did not show any differences in IFNα production.
Chapter 4: Discussion

4.1 Overview

In this project we analyzed the functional impact of minor variants of SNPs rs2233406, rs2233409 and rs3138053 in the *NFKBIA* promoter. Using LD and functional analysis we identified a 2 variant risk haplotype (consisting of SNPs rs3138053 and rs223406) which was common in the 4 major ethnic groups examined and a 5 variant risk haplotype (consisting of rs3138053, rs2233406, rs2233409, rs11569591 and rs2233411) which was unique in individuals of European descent. Subsequently using a tag SNP (rs1050851) that was in strong LD with SNPs rs2233406, rs2233409 and rs3138053 we were able to detect allelic imbalance in PBMCs of heterozygotes. This was followed by a measure of *NFKBIA* expression wherein heterozygous individuals of European descent showed reduced expression of *NFKBIA* in comparison to homozygotes. Analysis of neonatal innate immune responses revealed that *NFKBIA* heterozygotes displayed greater secretion of TNFα than homozygotes in response to various TLR ligands. In this chapter I will be reviewing the techniques utilized in this study, the feasibility of future follow up experiments and how the results from this project may be applicable to a clinical setting.

4.2 Allele specific PCR

4.2.1 Choice of tagging SNP

We validated and applied an allele specific PCR assay to investigate allelic imbalance in the *NFKBIA* promoter. The advantages of working with a candidate gene such as *NFKBIA* is that it only has 3 synonymous SNPs in the coding region: rs1050851, rs2233411, and rs1957106 that are present at a minor allele frequency of greater than 1 percent. rs2233411 has a minor allele frequency of 4.2% in individuals of African descent and no known minor allele frequency in individuals of other ethnicities (dbSNP). It shows poor linkage (less than 5%) with promoter variants in all the 4 major population groups examined. rs1957106 has minor allele frequencies of 30.4%, 22.5%, 18.2%, and 25.0% in individuals of European, African, Chinese (Han) and Japanese descents respectively. However, rs1957106 shows poor linkage (less than 35%) with promoter SNPs in *NFKBIA* for all the ethnic groups examined. rs1050851 has a minor allele frequency of 24.1% in individuals of European descent and minor allele frequencies of 0.9%, 2.3%, 4.7% for individuals of African, Chinese (Han) and Japanese descent. It shows strong linkage with 5 variants, within the *NFKBIA* gene in individuals of European descent, three of which are promoter SNPs (rs2233406, rs2233409, rs3138053), one is a promoter structural
variant (rs1156951) and one is an intronic variant (rs 2233411). rs1156951 and rs2233411 are in strong LD with the promoter SNPs rs2233406 and rs3138953, and were shown to occupy putative transcription factor binding sites (refer to results). Strong linkage of rs1050851 with promoter variants is not seen in other ethnic groups (African, CHB, JPT) examined in this study. This was also evident from our genotyping results where 11 out of 12 individuals who were heterozygous for SNPs rs3138053, rs2233406, rs2233409 and rs1050851 were of European descent. Since it is possible that rs1050851 might be in strong linkage with variants outside the NFKBIA gene, using the Genome Variation Server, we searched 20,000 base pairs upstream and 20,000 bp down stream of rs1050851 for any variants that were in strong linkage with rs1050851. The greatest linkage (55.8%) was seen for variants rs10148482 and rs3138045. No data on Hap Map is available about the location of these SNPs relative to the NFKBIA gene nor have these SNPs been identified to occupy any putative binding sites. Therefore, rs1050851 is a valid choice for a tag in measuring allelic imbalance of NFKBIA transcripts in NFKBIA promoter heterozygotes.

4.2.2 Precision of assay

Our standard curve gave us the precision to measure allelic imbalance from 1:0.5 (CC:TT or TT:CC) to 1:8 (CC:TT or TT:CC) for rs1050851. Our measured allelic imbalance values ranged between 0.94 to 1.49 (CC:TT) with the median value ranging from 1.21 to 1.24 for each of the 5 conditions (Unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, stimulated with S. pneumoniae for 3 hours and stimulated with S. pneumoniae for 4 hours). Therefore our measured values fall within the known range of the standard curve. The only other measure of allelic imbalance in an innate immunity gene was done by Cambino et al. for an exonic SNP (rs352140) in TLR9 where heterozygous individuals showed allelic imbalance values ranging from 0.5-1.87 of the major allele relative to the minor allele (97). The assay was done using an Allelotype platform, which utilized mass spectrometry based nucleotide acid analysis for genotyping in lymphoblastoid cell lines (LCLs). The next section discusses the potential issues associated with selecting cell types for allelic imbalance studies.

4.3 Choice of cell types

In this study we performed NFKBIA allele specific and gene expression experiments on primary cells. Most allele specific PCR assays have been done using lymphoblastoid cell lines (LCLs) immortalized using Epstein Barr Virus (98, 99). The advantages of working with LCLs is that they provide a fixed environment for investigating differences in gene expression (80). However, such a system is not representative of in vivo biology and does not take into account epigenetic factors that might influence gene expression (100). The allelic imbalance (AI) observed in clonal
cell lines might in part result from a greater preponderance of monoclonal allelic expression resulting from epigenetic imprinting (101). Therefore, in a LCL population of cells the greater prevalence of paternal or maternal allele expressing clones may result in a false positive result of allelic imbalance. A recent study has shown that as much as 20% of an LCL derived population might be affected by monoclonal allelic expression (102). Primary cells offer the advantage of being experimentally unmanipulated and the results obtained from performing experiments are more reflective of in vivo biology.

4.4 Analysis of variation in gene expression

4.4.1 Ligand and pathogen specific differences

NFKBIA allele specific and mRNA expression was examined using LPS and *Streptococcus pneumoniae* (serotype 14). We noted that mean allelic imbalance values and standard deviations for PBMCs that were stimulated with *S. pneumoniae* (1.23±0.11(SD), 1.25±0.12(SD) for 3 and 4 hours respectively) were nominally higher than PBMCs that were stimulated with LPS (1.22±0.055(SD), 1.22±0.093(SD) for 3 and 4 hours respectively). However there were more pronounced differences in mean values and standard deviations when examining *NFKBIA* mRNA expression. Homozygote (ACC/ACC) and heterozygote (ACC/GTT) PBMCs stimulated with LPS for 3 hours had *NFKBIA* expression values of 2.106±0.497 (SD) and 2.954±0.936 (SD), *P* = 0.0094 with LPS while with *S. pneumoniae* the values were 2.402±0.967 (SD) and 3.629±2.182 (SD), *P* = 0.0244 respectively. Similarly for the 4 hour stimulation homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) stimulated with LPS had *NFKBIA* expression values of 2.499±0.882 (SD) and 2.748±0.598 (SD), *P* = 0.115 while stimulation with *S.pneumoniae* yielded values of 2.865±1.095 (SD) and 3.622±1.235 (SD), *P* = 0.0524). Similar differences were seen when examining expression between mixed ethnicities. The greater mean expression of *NFKBIA* and standard deviation for samples stimulated with *S. pneumoniae* can probably be attributed to the varying level of MOIs of *S. pneumoniae* given to PBMCs. Since we were working with a live pathogen, our goal was to limit the range MOI stimulation between MOIs 10-15. But in practice, judging from plate counts, we noted the MOIs varied between 7.8 to 30.

4.4.2 Inter-individual differences

Inter-individual differences in gene expression from peripheral mononuclear cells (PBMCs) resulting from non-genetic factors such as diet, age and gender do exist (103, 104). In our study the mean allelic imbalance readouts with the standard deviations (SD) for all 12 individuals examined were 1.21±0.1 (unstimulated), 1.22±0.055 (LPS stimulated for 3 hours), 1.22±0.093 (LPS stimulated for 4 hours), 1.23±0.11 (*S. pneumoniae* stimulated for 3 hours), and 1.25±0.12 (*S. pneumoniae* stimulated for 4 hours). We were not able to detect any differences in allelic
imbalance between unstimulated and stimulated samples. However, we did show that allelic imbalance is prevalent in all samples. This implies that the AI seen for \textit{NFKBIA} promoter variants exists at base line levels and is not stimulus driven. It is to be noted that our purpose was to \textit{detect} allelic imbalance in the \textit{NFKBIA} promoter. In order to get an absolute quantification of allelic imbalance in stimulated and unstimulated conditions a larger set of individuals might be needed to detect such subtle differences, if they exist.

4.4.3 \textit{Ethnic differences}

We also noted the \textit{NFKBIA} mRNA levels in individuals of European descent were significantly lower in \textit{NFKBIA} heterozygotes than homozygotes at the three hour time point (2.106±0.497 (SD) vs 2.954±0.936 (SD), \(P = 0.0094 \) with LPS and 2.402±0.967 (SD) vs 3.629±2.182 (SD) with \textit{S. pneumoniae}, \(P = 0.0244 \)) than the four hour time point (2.499±0.0882 (SD) vs 2.748±0.598 (SD), \(P = 0.115 \) with LPS and 2.865±1.095 (SD) vs 3.622±1.235 (SD), \(P = 0.0524 \)). We had originally hypothesized this effect based on the presence of an insertional/deletion risk variant rs11569591 and an intronic variant rs2233411 both of which were in strong LD with the rs3138053 risk variant that. No previous association studies of \textit{NFKBIA} involving these variants have been done. However, a 4 base pair insertion/deletion -94(ATTG) polymorphism (rs28362491) that is located between two putative key promoter regulatory elements of the \textit{NFKB1} gene-that encodes for the NF-\(\kappa \)B1 protein-sub unit of the \textit{NFKB1/p50} and \textit{NFKB1/p105} heterodimers has been associated with the risk of increased risk of ulcerative colitis, psoriasis, nasopharyngeal carcinoma, oral squamous cell carcinoma, cervical squamous cell carcinoma, superficial bladder cancer and prostate cancer (105-111). \textit{NFKB1} promoter-luciferase reporter plasmid constructs containing the -94delATTG, which were transfected in Hela or HT-29 cell lines, showed reduced promoter activity when compared to constructs containing the -94insATTG allele (105). The rs11569591 -599(-/GGAGGGGG) polymorphism has a minor allele frequency of 28.7% in individuals of European descent and 16.7% in individuals of African descent where the minor allele is the insertion allele and the major allele is the deletion allele (dbSNP). Based on the results obtained from association and functional studies done with the 4 base -94delATTG polymorphism in \textit{NFKB1}, it is highly plausible that the associated 8 base rs11569591 -599(-/GGAGGGGG) polymorphism in the \textit{NFKBIA} promoter in combination with rs3138053 can potentially further impact promoter activity, leading to a more reduced \textit{NFKBIA} expression level as was seen in populations where this polymorphism was commonly prevalent.

No studies to date have compared expression levels between individuals homozygous and heterozygous for either of the 4 SNPs (rs3138053, rs2233406, rs2233409, and rs1050851) examined in this study. However, it has been previously shown that the minor allele (GTT)
haplotype has been associated with the risk of sarcoidosis; in a separate study, untreated and treated patients with sarcoidosis show levels of NF-κB protein, in the nuclear extract of PBMCs, that are twice as high than healthy controls (55, 112).

4.4.4 Artefactual differences
Artefactual differences in mRNA expression can occur if a cis acting polymorphism is present on the primer target sequence of the gene (113). The primer pair used for measuring NFKBIA mRNA expression amplifies a 173bp sequence in exon 3 of the gene. All exonic polymorphisms map to exons 1,2, and 6 but not exon 3 in NFKBIA (http://www.ncbi.nlm.nih.gov/SNP). Similarly, for the house keeping gene ACTB (beta actin), the primer sets used amplify a 147 bp sequence in exon 6. There is a synonymous polymorphism in this region, rs13447409, but it occurs at a low minor allele frequency (0.6% in a mixed population).

4.5 Choice of ligand and time course selection
LPS was chosen as a prototypical proinflammatory stimuli for studying NFKBIA expression. Even though from the perspective of NF-κB signaling, any ligand for a receptor system that culminates in the activation of the classical NF-κB pathway would be suitable for stimulation, differences exist between the specific downstream effects of ligands on the NF-κB/IκBα autoregulatory loop. Studies using mice embryonic fibroblasts (MEFs) have shown that TNFα mediated activation of NF-κB involves a negative feedback loop mediated by IκBα, whereas LPS and pathogenic mediated activation does not involve a negative feedback loop (114). In a study done by Covert et al., when MEFs were stimulated with LPS over a 3 hour time course, the IκBα protein level decreased and remained consistently low, while IκBα mRNA transcript levels increased and remained consistently high (115). This finding is partially consistent with our trial experiments with LPS stimulation of human PBMCs, where cells were stimulated with 100ng/ml of LPS for 1,2,3 and 4 hours. We noticed that the NFKBIA expression peaked at the 3 hour time point and remained consistent at the 4 hour time point. In the presence of TNFα, NF-κB shows damped oscillations in activity which has been shown to be a consequence of the negative feedback inhibition by IκBα. In contrast NF-κB activation is stable in the presence of LPS (116). Taken together this implies that in response to an LPS stimulation, there is proteasomal degradation of IκBα that allows subsequent binding of NF-κB to its response elements on NFKBIA leading to an up-regulation of NFKBIA transcription. However, this stimulus does not lead to the restoration of the inhibiton of IκBα on NF-κB. From the viewpoint of examining the functional differences of promoter variants in the promoter of NFKBIA, a LPS stimulus is more useful, as it has allowed us to see differences in NFKBIA mRNA expression at time points were NFKBIA expression is consistent as opposed to a TNFα induction model where
NFκBIA expression shows an oscillatory behaviour (116). Therefore when studying the immediate impact of regulatory variation on NFκBIA expression the LPS stimulus is more useful, whereas for studying the impact of regulatory variation on the NF-κB/IκBα autoregulatory loop a TNFα stimulus would be more relevant.

4.6 Choice of CpGA mediated TLR9 secretion of IFNα as a non-IκBα requiring pathway

Type 1 interferons have key roles in anti viral and anti proliferative responses. Specifically, IFNα and IFN β bind to the interferon receptor and initiate the Janus kinase/signal transducer of transcription (JAK-STAT) signaling cascade. This leads to the transcription of host genes involved in the inhibition of viral replication (117). Activation of TLRS 3, 4, 7, 8, and 9 results in the production of type 1 interferons. TLRs 3 and 4 activate the gene encoding IFNβ via the TIR-domain-containing adapter-inducing interferon-β-Interferon regulatory factor 3 (TRIF-IRF3) complex while TLRs 7, 8, 9 activate the gene encoding IFNα via the Myd88-IRF7 complex (118). The expression of the IFNβ gene occurs upon the binding of the 1) jun oncogene/activating transcription factor (c-jun/ATF-2) heterodimer, 2) IRFs 1, 7 and 9, and 3) NF-κB to their respective binding sites in the IFNβ promoter. However, the binding of c-jun/ATF-2 and NF-κB to the IFNβ promoter is not required for the induction of IFNβ mRNA expression (119). Owing to the fact that IFNβ expression can occur in the presence of NF-κB, we chose not to use IFNβ as a readout cytokine for pathways that do not require IκBα degradation.

The IFNα promoter lacks NF-κB binding sites but has binding sites for IRF transcription factors (119). Kawai et al, showed that in response to the TLR9 ligand CpG, Myd88 formed a complex with IRF7 and not IRF3, followed by recruitment of TRAF6 which lead to the activation of IFNα promoters (118). In its inactive form, IRF-7 resides in the cytoplasm. However unlike the activation of NF-κB which requires the phosphorylation of IκBα by the IKK complex, activation of IRF-7 requires its direct phosphorylation by IKKα (120). Our preference for studying the CpGA mediated activation of TLR9 (as opposed to the activation of TLRs 7 and 8) was primarily owing to the fact that CpGA stimulation of plasmocytoid dendritic cells has been shown to lead to a greater upregulation of IFNα mRNA expression over IFNβ mRNA expression and a substantial increase in IFNα cytokine secretion (121, 122). Thus, as IFNα expression is not induced by NF-κB, and the primary transcription factor (IRF-7) involved in its induction is not regulated by IκBα, we selected IFNα as a cytokine whose production would not require IκBα degradation. However, to rule out any possible secretion of IFNα by an uncharacterized receptor system or pathway that might be regulated by IκBα, confirmatory experiments would be
required. This would include analyzing IFNα mRNA and protein expression in the context of selective knockdown of NFKBIA mRNA expression and IκBα inhibition.

4.7 Follow up experiments: Need and feasibility

Our hypothesis was that the presence of minor variants in the promoter of NFKBIA would lead to a reduced expression of its minor allele transcripts, leading to an overall reduction of NFKBIA mRNA levels. This would result in a reduction of IκBα molecules (which are needed to bind and sequester NF-κB in the cytosol) allowing more NF-κB molecules to bind and initiate proinflammatory cytokine expression. Our results have provided supporting evidence for reduced expression of minor allele containing transcripts and reduced mRNA levels of NFKBIA in individuals with the minor allele as well as increased inflammatory cytokine production. However, reduced IκBα production and increased NF-κB translocation are yet to be validated. Figure 4.1 outlines the key aspects of this study. An NF-κB EMSA and an IκBα western blot would be suitable for examining variations in IκBα expression and NF-κB translocation between homozygotes and heterozygotes. These approaches have been used in validating promoter variants in other genes (87, 105). The differences observed in this project at the gene level are subtle; a 20-25% difference was seen in the expression of the major and minor allele transcripts, 28.5-33.8% differences in NFKBIA mRNA expression. Western blots and EMSAs are good qualitative measures of differences and their feasibility for measuring quantitative differences would be better served when examining larger differences such as those seen in the context of mutations or non-synonymous polymorphisms as opposed to regulatory polymorphisms. We were not able to recruit sufficient numbers of individuals who were homozygous for the minor alleles of rs3138053, rs2233406, and rs2233409 (GTT/GTT). Of the 97 individuals screened we only came across one individual who was homozygous for the minor allele of all 3 SNPs. Similarly, we came across a single neonate that was homozygous for all 3 SNPs. It would be informative to screen a larger subset of individuals to recruit minor allele homozygotes to see if the impact of the minor variants leads to more dramatic differences in NFKBIA gene expression and innate immune response in such individuals. A larger recruitment would also be needed to see if the magnitude of differences seen in TNFα output between homozygotes and heterozygotes of European descent differs in comparison to the magnitude of differences of TNFα output seen in other ethnicities. Another informative future experiment would be to analyze NFKBIA allelic imbalance and expression in homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) using commonly invasive and rarely invasive serotypes of S. pneumoniae. Studies done in our lab have shown that human acute monocytic leukemia cell line (THP1) cells stimulated with commonly invasive serotypes of S. pneumoniae display a reduced TNFα secretion, and thus a reduced immune response, than rarely invasive ones.
It would be interesting to see if these differences are less pronounced or more pronounced in different \textit{NFKBIA} genotypes of the host PBMCs when stimulated with different \textit{S. pneumonia} serotypes.

4.8 Clinical implication of dysregulated TNF\(\alpha\) production in inflammatory/autoimmune disease

The minor allele haplotype GTT has been shown to be associated with the risk of autoimmune/inflammatory conditions. In this study it was shown that individuals heterozygous for these promoter SNPs displayed higher TNF\(\alpha\) secretion than homozygotes in response to ligands for TLRs 1,2,4,7, and 8 which are involved in recognition of pathogen associated molecular patterns. TNF\(\alpha\) was originally identified as an endotoxin induced glycoprotein, which caused haemorrhagic necrosis of sarcomas (124). Subsequent studies have revealed that TNF\(\alpha\) is a key mediator of the inflammatory response to infection (125). TNF\(\alpha\) is produced mainly by activated macrophages but is also produced by other immune cells such as mast cells, T and B lymphocytes, natural killer (NK) cells and neutrophils as well as smooth muscle cells, adipocytes and fibroblasts (124, 126). TNF\(\alpha\) binds to its target receptors TNFR1 and TNFR2 which are expressed on most cell types with the exception of erythrocytes (126). TNFR1 mediates signaling through proinflammatory and programmed cell death pathway via the activation of NF-\(\kappa\)B and TNFR2, which has roles in signaling proliferation of thymocytes, cytotoxic T cells, and human mononuclear cells (127). Upon binding of TNF\(\alpha\) to TNFR1 at the plasma membrane, the TNFR1 death domain binds the TNFRSF1A-associated death domain (TRADD) adapter protein. TRADD recruits TNF receptor-associated factor 2 (TRAF2) protein and Ral-interacting protein 1 (RIP1) protein which, through a series of signaling intermediates, signal the activation of NF-\(\kappa\)B via the classical NF-\(\kappa\)B signaling pathway (128). NF-\(\kappa\)B in turn binds to consensus sites in the promoter of the TNF\(\alpha\) gene and thereby initiates TNF\(\alpha\) transcription. Subsequent synthesis of the TNF\(\alpha\) protein results in a positive feedback that leads to further production of TNF\(\alpha\) (129, 130). Elevated TNF\(\alpha\) levels are not observed in healthy individuals but are prominent in response to pathogenic stimuli. Elevated serum and tissue levels of TNF\(\alpha\) routinely associate with inflammatory and infectious conditions, and serum levels of TNF\(\alpha\) correlate with the severity of infections (131, 132). Whereas elevated TNF\(\alpha\) levels are needed in responding to infections, excessively high TNF\(\alpha\) levels are associated with chronic inflammatory and autoimmune conditions which include rheumatoid arthritis, inflammatory bowel disease, psoriatic arthritis, vasculitis, and ankylosing spondilitis (133). Consequently, therapies that target TNF\(\alpha\) production have shown promising results in reducing the severity of such conditions (134).
4.9 From bench to bedside: Diagnostic value of \textit{NFKBIA} expression and \textit{NFKBIA} polymorphisms in determining response to anti TNFα therapy

Anti-TNFα therapy is not applicable to all patients of chronic inflammatory conditions. One third of rheumatoid arthritis patients that are prescribed anti-TNFα therapy are non-responders (135). A subset of patients also display adverse side effects. Specifically, association and functional studies have shown that anti-TNFα therapy increases the risk of bacterial infections. For a recent review, refer to review articles cited at the end of this chapter (136, 137). Our results can potentially add more depth in the prognosis of non-response and adverse response to anti-TNFα therapy. Expression levels of soluble TNFR2 which acts a surrogate for TNFα levels in blood was shown to be elevated 12 years prior to the development of rheumatoid arthritis and were positively associated with the incidence of rheumatoid arthritis in women (138). Consequently, \textit{NFKBIA} expression has been shown to positively associate with non-respondence to anti TNFα therapy in rheumatoid arthritis patients and has been recommended as a prognostic marker for anti-TNFα therapy (139). The importance of knowing an individual’s genetic response to anti-TNFα therapy will become more relevant once we enter the age of personalized medicine.

4.10 Conclusion

Genetic association studies have been critical in identifying genetic variants that associate with disease. Yet, the information obtained from such studies has functioned as the proverbial “tip of the iceberg” when it comes to understanding the precise disease pathology resulting from such variants and in determining therapeutic approaches applicable for reducing such pathologies. Our journey began with the observation that minor variants of SNPs rs3138053, rs2233406 and rs2233409 in the promoter of \textit{NFKBIA} were associated with the risk of autoimmune and inflammatory conditions while at the same time they were protective against infections (Fig. 4.2). Our study has shown individuals heterozygous for \textit{NFKBIA} promoter variants rs3138053, rs2233406, rs2233409 display allelic imbalance, reduced expression of \textit{NFKBIA} mRNA than homozygotes while showing elevated levels of TNFα. The results presented here provide further evidence for the importance of the IκB family of proteins, specifically for IκBα in regulating the inflammatory response. A global understanding of the functional consequences of regulatory polymorphisms of \textit{NFKBIA} will be provided with subsequent experiments that examine differences between all \textit{NFKBIA} promoter genotypes (including minor allele homozygotes) for IκBα protein expression and NF-κB translocation in all major ethnic groups.
Figure 4.1. Possible future areas of research in mapping functional role of \textit{NFKBIA} promoter variants. Solid arrows link experiments that were performed in this project, and dotted arrows represent potential future experiments that may be required for a better functional understanding of the functional impact of the promoter variants of \textit{NFKBIA}.
Figure 4.2. Overall summary of research. Our goal was to gain a functional understanding of the opposing associations of the minor allele haplotype GTT (corresponding to SNPs rs3138053, rs2233406, rs2233409) with infectious and autoimmune conditions. Through a series of functional experiments, we were able to demonstrate the impact of the minor allele variants on *NFKBIA* allele specific expression, *NFKBIA* gene expression and the innate immune response.
References

74. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007; 447 (7145): 661.

Appendix: Haplotypes and LD measure for the entire \textit{NFKBIA} gene in 4 major ethnic groups

Figure A.1. Haplotyope for the \textit{NFKBIA} gene in individuals of European descent. Variants in the promoter region are shown in a black triangular grid.
Figure A.2. Haplotype for the *NFKBIA* gene in individuals of African descent. Variants in the promoter region are shown in a black triangular grid.
Figure A.3. Haplotype for the *NFkBIA* gene in individuals of Chinese (Han) descent. Variants in the promoter region are shown in a black triangular grid.

Figure A.4. Haplotype for the *NFkBIA* gene in individuals of Japanese descent. Variants in the promoter region are shown in a black triangular grid.
Figure A.5. Strong LD is seen in non-coding regions of *NFKBIA*. The total number of variants that displayed strong LD (LD≥80%) for each gene region were divided by the absolute number of variants in each of the 4 populations examined to yield a percentage of LD (A). Region-specific LD was also determined by dividing the number of variants that displayed strong LD within the region by the total number of variants (B).