
         

Functional characterization of human variants of NFKBIA: a key regulator of immune 
responsiveness implicated in susceptibility to infectious and inflammatory disease 

 
 
 

by 
 
 
 

Salman Ali 
 
 

B.Sc., Simon Fraser University, 2007 
 
 
 
 
 
 

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF  
THE REQUIREMENTS FOR THE DEGREE OF 

 
 
 

MASTER OF SCIENCE 
 

in 
 
 

THE FACULTY OF GRADUATE STUDIES 
 
 

(Pathology and Laboratory Medicine) 
 
 

THE UNIVERSITY OF BRITISH COLUMBIA 
(Vancouver) 

 
 
 

April 2010 
 
 

© Salman Ali, 2010



 

 
ii  

 
Abstract 

 
 
 
 

IkBα is an important regulator of inflammation. Single nucleotide polymorphisms (SNPs) 

rs3138053, rs2233406 and rs2233409 in the promoter of the gene NFKBIA, which encodes for 

IkBα, have been shown to be associated with a variety of infectious and inflammatory 

conditions. In this study, we investigated the functional impact of the promoter variants of 

NFKBIA on human immune responsiveness. Using a coding SNP that was in strong linkage 

disequilibrium (LD) with NFKBIA SNPs rs3138053/rs2233406/rs2233409, we designed and 

validated an allele-specific PCR assay that could detect subtle differences in allele ratios 

between the major (ACC) and minor (GTT) promoter variants of SNPs 

rs3138053/rs2233406/rs2233409. Peripheral blood mononuclear cells (PBMCs) of homozygous 

(ACC/ACC) and heterozygous (ACC/GTT) individuals were stimulated with 100ng/ml LPS and 

live cultures of Streptococcus pneumoniae   (moi 7.8-30) serotype 14 for 3 and 4 hours. PBMCs 

of neonatal NFKBIA homozygotes and heterozygotes were stimulated with various Toll-like-

receptor (TLR) ligands of the innate immunity cascade to assay for differences in the innate 

immune response. 

 

NFKBIA heterozygotes of European descent displayed 1.21 (1.14-1.27 95% CI)-1.26 (1.18-1.34 

95% CI) fold higher expression of the major allele transcript (ACC) relative to the minor allele 

transcript (GTT). For the same ethnicity, at 3 hours stimulation, NFKBIA homozygotes 

(ACC/ACC) produced higher levels of NFKBIA mRNA than heterozygotes following stimulation 

with LPS (1.4 fold. p=0.0095) and S. pneumoniae (1.51 fold, p=0.024). Higher TNFα secretion 

was seen from PBMCs of heterozygotes as compared to homozygotes (of European descent) in 

the presence of LPS (1.57 fold , p<0.05 at a dose of 100ng/ml), Pam3CSK4 (2.29 fold, p<0.01 

at a dose of 100ng/ml and 1.91 fold, p<0.05 at a dose of 1000 ng/ml), 3M003 (1.79 fold, 

p<0.001 at a dose 10μM) and 3M002 (3.30 fold, p<0.001 at a dose of 10μM). The results 

presented here provide preliminary functional evidence behind the observed associations of 

these SNPs with infectious and inflammatory conditions. A global understanding of the 

functional consequences of regulatory polymorphisms of NFKBIA will be provided with 

subsequent experiments that examine differences between all NFKBIA genotypes (including 

minor allele homozygotes) for IκBα protein expression and NF-κB translocation in all major 

ethnic groups. 
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Chapter 1: Introduction 

 

1.1 From genotype to phenotype: Understanding functional consequences of genetic 
variation 

Candidate gene studies and genome wide association studies have allowed us to identify 

variants in genes that associate with complex diseases. The knowledge of such variants could 

be used to: 1) predict an individual’s genetic risk for acquiring a complex disease, 2) design 

therapeutics to reduce disease and 3) design drugs that specifically target symptoms in an 

individual based on their genetic makeup, while minimizing adverse drug reactions.  

 

To date only limited progress has been made in translating the results of genetic association 

studies into clinical predictors of disease onset. A notable exception is that of the well replicated 

association of the apolipoprotein E type 4 (APOE4) allele as a risk factor for developing 

Alzheimer’s disease (1). However, the precise functional effect of the APOE4 allele at the 

biological level is yet to be determined (2).  

 

In order to use genetic variation data in assessing risk and designing therapeutics,  functional 

validation is required to prove that: 1) the presence of such variations leads to biological effects 

in the human host and 2) such biological effects are of clinical importance. Figure 1.1 illustrates 

the steps of this process. 

 

Genetic variation in the promoter regions of the gene nuclear factor of kappa light polypeptide 

gene enhancer in B-cells inhibitor, alpha (NFKBIA) has been shown to be associated with 

infectious, inflammatory and cancerous conditions. The overexpression of the protein encoded 

by NFKBIA-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha-

(IκBα) has also been recommended as a therapeutic choice for treating chronic inflammatory 

conditions (3, 4). However, to date, no functional studies have been undertaken to verify the 

biological consequences of genetic variation in the promoter of NFKBIA. The central goal of 
this project was to functionally validate these observations i.e., whether specific variants or 

haplotypes in the promoter of NFKBIA can contribute towards the susceptibility to or 

exacerbation of infectious or autoimmune/inflammatory conditions.  
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Our goals were to determine: 

1) Whether promoter polymorphisms of NFKBIA lie in functionally important regions? 

2) Whether alleles of such polymorphisms display altered expression levels (allele specific 

differences)? 

3) Whether humans of different genotypes for these polymorphisms show altered 

expression levels for the gene? 

4) Whether humans of different genotypes show differential and clinically relevant innate 

immune responses? 

 

This chapter has three major sections. The first section describes the pathways utilized by IκBα 

in regulation of inflammation, the consequences of altered signaling of these pathways along 

with the altered functioning of IκBα. The second section briefly describes the concept of linkage 

disequilibrium (LD), followed by an overview of the association studies done with the promoter 

variants of the IκBα gene-NFKBIA. The third section discusses the techniques frequently utilized 

in functionally validating promoter variants. Finally we provide a hypothesis to explain the 

observed associations of NFKBIA promoter variants with infectious and 

inflammatory/autoimmune conditions. 

 

1.2 The NF-κB pathway: Overview 
The nuclear factor of kappa light polypeptide gene enhancer in B-cell (NF-κB) pathway plays an 

important role in immune response, inflammatory disease and cell death (4). The NF-κB family 

consists of 5 distinct proteins p50, p52, p65(RelA), C-Rel and RelB that either exist as homo or 

heterodimers (5). The p50-p65 heterodimers are transcriptionally active whereas the p50-p50 

homodimers are transcriptionally repressive (6). All NF-κB proteins share a conserved region 

known as the Rel homology domain (RHD) which has a nuclear localization signal, as well as 

dimerization and DNA-binding functions (7). Although NF-κB can be activated by a variety of 

receptor systems responding to a variety of stimuli, they can be grouped into 2 major pathways.  

 

1.2.1 Classical pathway of NF-κB signaling 

The classical or canonical pathway is critical for the initiation of the inflammatory response as 

well as the inhibition of apoptosis (4). It regulates the expression of the vast majority of 

proinflammatory cytokines, chemokines, leukocyte adhesion molecules and prosurvival and 

antiapoptosis genes (8). It is initiated by the stimulation of tumour necrosis factor receptor 

(TNFR), Toll-like receptor (TLR), Interleukin-1 receptor (IL-1R) and T cell receptor (TCR) 

pathways. Although the intermediate proteins involved in each of these cascades differ, all 
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pathways converge in the activation of the I kappa-B kinase (IKK) complex. The IKK complex of 

kinases consists of the catalytic subunits IKKα, IKKβ and the regulatory subunit IKKγ that 

phosphorylate downstream IκB inhibitory proteins (9, 10). The IκB proteins in an unstimulated 

state inhibit NF-κB (p50-p65) activity and sequester it into the cytoplasm. Upon stimulation the 

IκB proteins are phosphorylated, ubiquitinylated, and targeted for degradation in the 

proteasome. This frees the p50-p65 heterodimer allowing it to translocate to the nucleus where 

it initiates the transcription of proinflammatory genes (11). 

 

1.2.2 Alternative pathway of NF-κB signaling 

The major function of the non-canonical pathway is in mediating the adaptive immune response, 

the regulation of lymphoid organogenesis and B cell survival and maturation. It is initiated by a 

subset of receptors from the TNF receptor family that includes lymphotoxin-beta receptor 

(LTβR), CD40, receptor activator of nuclear factor-kappa B (RANK), and B cell–activating factor 

receptor (BAFFR) (6). The non-canonical pathway involves the recruitment of an upstream NF-

κB inducing kinase (NIK) that phosphorylates and activates IKKα dimers (12). The IKKα dimers 

ubiquitinate  p100 proteins (instead of the IκB proteins) that in a resting state bind and inhibit the 

translocation of  the p52-Rel B NF-κB (instead of p50-p65) dimers in the cytoplasm. From a 

disease perspective, the classical pathway of NF-κB signaling is more relevant as it has been 

implicated in a variety of infectious, autoimmune and cancerous syndromes.  

 

1.2.3 The importance of regulating NF-κB signaling: Examining consequences of altered NF-κB 

signaling: 

Loss of NF-κB signaling is prominent in infectious conditions caused by Mendelian defects in 

genes encoding proteins of the innate immunity cascade. These primary immune disease (PID) 

studies have provided valuable insight in the role of the members of the TLR signaling cascade. 

Patients who have autosomal recessive mutations in genes that encode for key adaptor proteins 

in the TLR cascade such as  myeloid differentiation primary response protein (MYD88), or 

signaling intermediates such as interleukin-1 receptor-associated kinase 4 (IRAK4) display 

undue susceptibility to pyogenic bacterial functions (13, 14). Similarly, patients with autosomal 

dominant mutations in the genes that encode for regulatory proteins such as IκBα and IKKγ also 

display loss of NF-κB signaling (15, 16). Other members of the TLR cascade have also been 

implicated with loss of NF-κB signaling. For more details refer to review papers referenced at 

the end of the chapter (17, 18). 

 

Autoimmune conditions are complex syndromes that can be triggered both by genetic 

predisposition and by environmental factors. A gain or increase in NF-κB signaling has been 
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observed in certain autoimmune conditions (19). Patients with rheumatoid arthritis (RA) display 

constitutively high levels of proinflammatory cytokines such as TNFα, IL-1 and IL-6 (3). 

Activated forms of p50 and p65 subunits of NF-κB are also seen in nuclei of synovial lining cells 

in patients with RA (20). Multiple sclerosis (MS) patients also display elevated levels of the p65 

subunits of macrophages and oligodendrocytes from active MS lesions (21). 

 

1.3 The role of IκB proteins in regulating NF-κB activity 
The IκB  family of proteins are the most important NF-κB interacting proteins (11).They 

comprise a family of 3 classical members (IκBα, IκBβ, IκBε) and 2 novel IκB-like members (IκBζ 

and B-cell CLL/lymphoma 3 (Bcl-3)). All members have a characteristic ankyrin rich repeats that 

interact with nuclear localization signals (NLS) present on the Rel homology domains of NF-κB 

dimers, and an N-terminal regulatory domain that has a role in their inducible degradation (22).  

All members display unique binding preferences to NF-κB dimers and undergo signal induced 

proteasomal degradation with different kinetics (23). 

 

1.3.1 Importance of IκBα in regulation of NF-κB 

IκBα is the best studied member of the IκB family that displays a strong negative feedback 

control of NF-κB (5, 23). In an unstimulated state, IκBα masks the NLS of p50, but not the NLS 

on the p65 subunit of the p50-p65 NF-κB heterodimer and thus sequesters it in the cytoplasm. 

In response to an upstream stimulus, the activated IKK complex phosphorylates IκBα on Ser32 

and Ser36 residues. This leads to the polyubiquitination of the Lys19 residue by the SCFIκBE3 

ubiquitin ligase complex (βTRCP) which catalyzes the formation of degradative Lys48-linked 

polyubiquitin chains (24). Ubiquitination of IκBα leads to its degradation by the 26s proteasome. 

The now unhindered NLS on the p50 subunit of the p50-p65 heterodimer allows this complex to 

migrate to the nucleus and bind to NF-κB response elements on proinflammatory genes and 

begin their subsequent transcription. The NFKBIA gene that encodes IκBα is also a target gene 

that is expressed early in response to the P50-P65 heterodimer. This results in a strong 

induction of IκBα mRNA synthesis, followed by a restoration of IκBα protein levels in the cell 

(25). IκBα then translocates to the nucleus and binds to NF-κB, and the complex is exported 

back to the cytoplasm (26). This feedback regulation of NF-κB ensures that activation of NF-κB 

is limited and transient. The apparent simplicity of such an autoregulatory loop has been 

questioned (26). Studies have revealed that under unstimulated conditions, the unbound NLS of 

the p65 subunit of the p50p65 heterodimer and the nuclear export signal (NES) work in 

opposing directions, resulting in a constant shuttling of the complex between the nucleus and 

the cytoplasm (27). Degradation of IκBα tips this dynamic balance in favor of nuclear localization 

of NF-κB (5). Although the precise transport mechanism behind the transport of IκBα to the 



 

5 

nucleus, and subsequent return to the cytoplasm with the p50p65 dimer is not clear, recent 

experiments have shown IκBα is remarkably efficient at increasing the dissociation rate (kd) of 

NF-κB from DNA (28). 

 

1.3.2 Functional consequences of altered IκBα function in mammals 

Mice 

Mice that lack NFKBIA, the gene encoding IκBα,  though normal at birth, display severe runting, 

skin defects and extensive granulopoiesis, leading to death by 8 days (29). Other IκBα knockout 

experiments in mice reveal increased percentages of monocytes/macrophages in spleen cells of 

5, 7 and 9 day old pups. Death is accompanied by severe dermatitis and increased levels of 

TNFα mRNA in the skin (30).  

 

Humans 

In humans, to date, individuals with mutations leading to dramatically decreased IκBα levels 

have not been found. Consequently, hypermorphic mutations, i.e., mutations that enhance the 

inhibitory capacity of IκBα by preventing its phosphorylation and subsequent degradation have 

been observed. Such individuals display impaired NF-κB signaling and impaired T-cell function, 

coupled with ectodermal dysplasia with immunodeficiency (EDA-ID) (15, 31-33).  Thus, although 

direct consequences of the loss or gain of IκBα activity has not been observed, functional 

experiments in mice and primary immunodeficiency cases in humans suggests that the under 

expression of IκBα can lead to inflammation whereas sustained expression can lead to 

immunodeficiency. 

 

1.4 Understanding linkage disequilibrium (LD) 
Genetic association studies have been pivotal in providing clues for the genetic nature of 

complex syndromes. Such studies have become the method of choice for clinicians and 

researchers alike for determining susceptibility to disease. It is a method which utilizes families, 

cases and controls, or cohort data to statistically relate genetic factors to the phenotype of 

interest (34). The dominant theory behind conducting a genetic association study is the 

‘common disease-common variant hypothesis.’ The hypothesis states that many common 

variants in the population with a frequency of 1% or greater have a modest effect on an 

individual’s phenotype (35). It is the joint effect of these variants that determines disease 

susceptibility in the population. These variants are called polymorphisms. They can be tandem 

repeats, insertions, deletions or single nucleotide polymorphisms (SNPs). SNPs, by far, are the 

most abundant polymorphisms with more than 10 million present in the human genome (36).  

Currently, owing to technological limitations, it is not possible to account for the identity of all 
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SNPs. However, as it will be shown in the sections below, by relying on the concept of linkage 

disequilibrium (LD), it is possible to identity the majority of these SNPs in cases and controls 

(37). This section briefly describes the use of linkage disequilibrium (LD) in mapping genetic 

variation. From a research perspective, it is pivotal that the reader be acquainted with the 

concept of LD as this concept was used in this project to functionally validate promoter variants 

of NFKBIA. 

 

1.4.1 Linkage disequilibrium (LD) 

Mutation occurs at  a slow rate in the human genome, at 10-8 per site per generation (38). 

Initially a variant such as a SNP is jointly inherited by the offspring along with all the 

accompanying sequences on the same chromosome from the parent. However, during meiosis 

homologous recombination occurs, allowing genetic material to be exchanged from the paternal 

and maternal chromatids (39). Thus, the chromosome that is passed on to the next offspring 

contains sequences that are not identical to the chromosome in the parent. Over time, owing to 

several generations of recombination events occurring during meiosis, the chromosome housing 

the SNP gradually loses its ancestral sequence homogeneity. Since the frequency of 

recombination is proportional to the frequency of genetic distance between two nucleotides, 

sequences in the vicinity of the original mutation tend to be retained  This leads to the formation 

of islands of nucleotide sequences that still retain the ancestral sequence on a chromosome 

(referred to as the Haplotype), interspersed by ‘hot spots’ of recombination (40). Nucleotides or 

variants in a haplotypes are said to be linked and this association is defined as linkage 

disequilibrium (LD) i.e., non-random association of two alleles at one or many loci. 

 

1.4.2 Using LD for association mapping  

Initially, investigators relied on ‘linkage analysis’ which served as a prelude to the use of LD, to 

identify candidate loci implicated in disease. This approach relies on the fact that genetic 

markers closely linked to the locus of interest tend to remain associated with the candidate 

locus through several rounds of recombination. In an affected family, as a causative gene 

segregates through a kindred, other nearby markers on the same chromosome tend to 

segregate together (34). Linkage analysis in combination with positional cloning showed 

remarkable success in identifying genes responsible for single gene Mendelian disorders such 

as Cystic fibrosis and Duchenne muscular dystrophy (41, 42). 

 

1.4.3 Using LD for genome wide association studies 

In the case of complex diseases the traditional method of linkage analysis had initially proven to 

be difficult because previously used markers of linkage analysis such as microsatellites did not 
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provide sufficient coverage of the genome to map multiple variants that were presumed to be 

associated with the various phenotypes of such diseases (43). Furthermore, it was believed 

based on simulations by Kruglyak that patterns of LD would be low in the human genome and 

would be limited to a maximum of 3 kB segments of chromosomes (44). The poor genomic 

coverage of previous markers was resolved by SNPs that were more abundantly present in the 

genome. Secondly, with the availability of larger sequence data sets, it was proven that the 

extent of LD was greater than what was assumed initially, with results indicating that as much 

as 65% to 85% of the human genome was comprised of haplotype blocks 10 kb in length or 

greater (45).  The discovery of the relative abundance of haplotype blocks in the human 

genome led to the postulation that a single variant in a haplotype block-owing to strong LD could 

be predictive of the identity of other variants in the block and could be used as a ‘tag’ to 

distinguish one haplotype block from the other (46). Therefore, one would only need to 

catalogue a sufficient number of ‘tagging’ SNPs to scan the entire human genome for any 

common risk variants that would associate with disease. However, in order to choose the 

appropriate tag SNPs for conducting genome wide studies of association, genome wide ‘LD-

maps’ were needed for different human ancestral populations. This became the impetus for the 

international Hap Map project which was undertaken with the purpose of cataloguing such 

variation in various ethnic groups (47).   

 

1.4.4 Patterns of LD in different populations 

The first phase of the HapMap project involved the studying of 1 million SNPs in the 4 different 

population groups that included the Yoruba of Ibadan (YRI), Nigeria, Utah residents of Northern 

and Western European descent (CEU), Han Chinese of Beijing (HCB), China , and Japanese 

individuals of Tokyo (JPT), Japan (47). This was followed by the second phase that involved the 

identification of an additional 3.1 million SNPs. Results indicated that the degree of LD was 

lower in YRI population but  similar across regions with higher LD  in the 4 population panels 

(48).   

 

1.4.5 Tag SNP coverage and transferability in different populations 

An important statistic of LD is r2 which measures how well a SNP acts as a proxy for a nearby 

SNP (An r2 value of 100 implies 100% concordance of a selected SNP with a nearby SNP). 

Preliminary results of the HapMap study showed that selecting as few as 447,579 SNPs for 

CEU, 434,476 SNPs for CHB+JPT and 604,886 SNPs for YRI as tags was sufficient to account 

for 100% of all the common SNPs in the HapMap panel. The second phase, however, reduced 

the coverage to at least 80% while increasing the minimum number of tag SNPs to 579,978, 

670,407 and 780,336 (for CEU, CHB+JPT and YRI respectively). Owing to a larger number of 
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SNPs needed for adequately covering SNPs in YRI population, most existing genotyping 

platforms provide poor coverage for SNPs in this panel when compared to SNPs in CEU or 

CEU+JPT panels. The highest coverage provided is by the Illumina HumanHap 550k platform, 

which is 68% coverage for the YRI panel versus 95% for CEU and CHB+JPT (49). Another 

debated issue is how useful are selected tag SNPs for providing coverage in the genomes of 

other major population groups. The emerging understanding is that transferability of selected 

tag SNPs is high when selected from a HapMap panel that is geographically adjacent to the 

target population (50).   

 

1.5 Association of observed variation in the gene (NFKBIA) encoding IκBα with infection, 
autoimmunity/inflammation, and cancer 
A brief description of the major association studies done with variants in the NFKBIA gene is 

described below. A summary table (table 1.1) is also included at the end of the chapter with 

relevant information, such as sample size, ethnicity, P values, etc.  

 

1.5.1 Association of NFKBIA polymorphisms with infections 

Trachoma 

The first known association of NFKBIA polymorphisms was reported by Chamay et al. in 

Gambian patients with trachoma (51). Trachoma is an infectious disease caused by repeated 

infections of the ocular surface by Chlamydia trachomatis. Subsequent inflammation leads to 

scarring followed by inturning of the eyelashes and blinding corneal opacification (52). Three 

promoter SNPs of NFKBIA, rs3138053, rs2233406, and rs2233409 were analyzed. The SNPs 

rs3138053 and rs2233406 were in complete linkage disequilibrium, and the minor allele 

haplotype (GT) was shown to be protective against infection (p=0.046). 

 

Invasive pneumococcal disease (IPD) 

Chapman et al. examined associations of 62 SNPs in NFKBIA, NFKBIB, and NFKBIE for 

susceptibility to invasive pneumoccal disease (IPD) in individuals of European descent (53). The 

minor alleles of NFKBIA promoter SNPs rs3138053 and rs2233406 were shown to be protective 

against IPD in an initial study group (odds ratio (OR) 0.64(0.48-0.87), 0.57(0.43-0.76)) and 

against pneumcoccal empyema in a subgroup (OR 0.42 (0.21-0.83), 0.47(0.24-0.93). However, 

the association for rs3138053 was lost after applying the Bonferroni correction for multiple 

testing. 
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Respiratory syncytial virus (RSV) 

Siezen et al. analyzed variants in the innate immunity cascade for associations with 

susceptibility to RSV in premature infants (54). The minor allele of the NFKBIA promoter SNP 

rs2233409 was shown to be more protective against RSV in premature infants, born with 

underdeveloped lungs, than in term children (p=0.0261). 

 

1.5.2 Association of NFKBIA polymorphisms with autoimmune/inflammatory conditions 

Sarcoidosis 

Abdallah et al. analyzed Dutch patients with sarcoidosis for associations with NFKBIA promoter 

SNPs rs3138053, rs2233406, and rs2233409 (55). The minor allele of the rs2233409 SNP was 

more prevalent in patients with sarcoidosis (p=0.008). The minor allele haplotype (GTT) was 

associated with risk of sarcoidosis (p=0.01).   

 

Multiple sclerosis (MS) 

Miterski et al. found that the minor allele of an 8 base pair insertion/deletion variant (708ins8) in 

the promoter of NFKBIA  was protective against multiple sclerosis (P<0.01) (56). The variant 

seems to be rare as neither follow up studies have been performed with this SNP nor has a 

reference SNP accession id (rs number) been submitted to the single nucleotide polymorphism 

database (dbSNP). 

 

Acute respiratory distress syndrome (ARDS) 

Zhai et al. examined US patients with acute respiratory distress syndrome for associations with 

NFKBIA promoter SNPs rs3138053, rs2233406 and rs2233409 (57)  The GTT haplotype, 

consisting of minor alleles rs3138053/rs2233406 and the major allele for rs2233409, was 

associated with the risk of ARDS (OR 1.66 (1.09-2.53), p=0.02). 

 

Graves’ disease 

Kurlowicz et al. examined Polish patients with Graves’ disease for associations with SNPs in 

nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-like 1 (IKBL) 

(rs2071592 (promoter), rs2071592 (intron1), rs3130062 (exon4) and NFKBIA (rs2233409 and 

rs2233406 (promoter), rs696 (3’ untranslated region (UTR)) (58). Although SNPs for the 

NFKBIA gene were not associated with the risk of Graves’ disease, the minor alleles for the 

promoter SNPS rs2233406 and rs2233409 were associated with clinically evident 

ophthalmopathy ( OR 1.67 (1.20-2.36), p= 0.036 and OR 1.65 (1.18-2.38), p=0.07 respectively). 

The minor allele haplotype (TT) was also significantly associated with the presence of clinically 

evident ophthalmopathy (p=0.003).  
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Note: The next four studies (Primary Sjögren’s syndrome, Systemic lupus erythematosus, 

Rheumatoid arthritis and Ankylosing spondylitis) were performed by one research group based 

in Taiwan. A great deal of overlap is seen for associations of SNPs in the NFKBIA promoter with 

each of the four diseases examined. Also, the two promoter SNPS rs3138053 and rs2233406 

do not display strong linkage disequilibrium, which is contrary to what is seen in major HapMap 

populations. An email inquiry was made about the ethnicity of the population. The authors 

indicated that the Taiwanese nationality assigned for the patients did not imply ethnic 

homogeneity, but on the other hand included a heterogenous population of Han Chinese, 

Hakka, Taiwan Aboriginals, and other populations [personal communication July 4th, 2009]. 

Therefore results from these 4 studies may not be generally applicable at the population level 

owing to the inclusion of rare ethnicities in the study. 

 

Primary Sjögren’s syndrome 

Patients had a lower frequency for the minor allele of SNP rs3138053 (G) (OR 0.5 (0.2-0.9), 

p=0.02) and the major allele of SNP rs2233406 (C) (OR 16.2 (10.0-26.2)) than controls.  The 

haplotype (ATACC) was associated with the risk of Sjögren’s syndrome  (OR 34.14 (17.77-

65.59), p<0.007) while the haplotype (ACACC)  was associated with protection (OR 0.05(0.03-

0.08), p<0.007) (59). 

 

Systemic lupus erythematosus  (SLE) 

The minor allele for NFKBIA promoter SNP rs2233406 and the haplotype ATACC were 

associated with the risk of SLE ( OR 2.0 (1.2-3.4), p=0.01 and OR 3.2 (1.6-6.2), P<0.002) (60). 

 

Rheumatoid arthritis (RA) 

The minor allele of rs2233406 (T) and the major allele of rs2233407(A) were associated with the 

risk of RA ( OR 1.6 (1.1-2.4), P=0.027) and (5.1 (1.4-18.2), P=0.007). The TAC haplotype was 

also associated with the risk of RA (OR 1.8 (1.1-2.8), P=0.01) (61). 

 

Ankylosing spondylitis (AS) 

The minor allele of the SNP rs2233406 was associated with the increased risk of AS (4.1(2.7-

6.0), P<0.001). The haplotypes ATACC and ACATC were associated with the risk of AS (OR 

8.0 (4.26-15.02), P<0.007 and OR 8.54 (1.99-36.69), P=0.007 respectively) (62). 
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Ulcerative colitis 

Szamosi et al found that the minor allele genotype (GG) for the 3’UTR variant rs696 of NFKBIA 

was associated with the risk of ulcerative colitis in Hungarian individuals with inflammatory 

bowel disease. (OR 0.003 2.97(1.45-6.08) (63).  

 

Crohn’s disease 

Klein et al. found that the major allele genotype and (AA) and the major allele (A) of the 3’UTR 

variant rs696 were more prevalent in patients with Crohn’s disease than controls (P<0.003, 

relative risk 1.77 and P<0.02, relative risk 1.22) (64). 

 

Type 2 diabetes 

Romzova et al. found that the AA genotype for the 3’UTR (A to G) variant was associated with 

the risk of diabetic nephropathy (OR 3.59, P=0.0015) (65). The relative position of this variant 

and the rs number was not mentioned. However, based on a search of SNPs in dbSNP, the 

only A to G common variant is rs696. The only other 3’ UTR variant A to G variant is rs1131420, 

but there is no population frequency data for this variant in dbSNP. 

 

Latent autoimmune diabetes in adults (LADA) 

Latent autoimmune diabetes in adults occurs in subset of individuals with type 2 diabetes and is 

characterized by autoimmune and immune mediated β-cell dysfunction (66). Katarina et al. 

found that the AA genotype of a 3’UTR SNP rs696 was associated with the risk of LADA (OR 

2.68, P<0.0001) in a Czech population (67). 

 

1.5.3 Association of NFKBIA polymorphisms with cancer 

Myeloma 

Spink et al. found that risk haplotype (GCCTATCA) corresponding to SNPs  rs3138053 (A/G), 

rs22233409 (C/T), rs3138054 (G/A), rs2233419 (C/T), rs1957106 (C/T), rs10782383 (C/T), 

rs8904 (C/T) and +2921 (A/G) (not validated) was associated with the increased risk  of multiple 

myeloma (OR 2.29 (2.10-2.49), P= 0.006) (68).  

 

Colorectal cancer 

Gao et al. found that the AG genotype for rs696 in the 3’UTR was associated with the risk of 

colorectal cancer in Chinese patients ≥50 (OR 3.06 (1.55-6.02, P=0.001)). The GG genotype of 

the same SNP was associated with poor survival rate in Swedish patients (OR 3.10 (1.28-7.60), 

P=0.01) (69). 
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Hepatocelullar induced carcinoma  

Yongchao et al. examined patients with hepatitis B virus (HBV) infections for genetic 

susceptibility to HBV induced carcinoma (HCC) (70). Two HBV genotypes were examined:  

patients with HBV genotype B (HBVB) and patients with HBV genotype C (HBVC) infections. 

The CT genotype for the rs2233406 and the AG genotype for rs3138053 SNPs were more 

prevalent in patients with HBVC infections and HCC as compared to patients with HBVC 

infections and no HCC (1.71 (1.07-2.73), P=0.024 and 4.02 (2.14-7.59), P=0.000). The 

haplotype GTC (3138053(A/G), 2233406 (C/T), 2233408 (C/T)) was associated with the risk of 

HCC in patients with HBVC infections (3.142 (1.443-6.838, P=0.002)). 

 

1.6 Opposing associations of NFKBIA promoter polymorphisms with infection and 
autoimmunity: A genetic link to the hygiene hypothesis? 
The vast majority of promoter polymorphisms examined to date for NFKBIA  associate with 

either infectious or autoimmune/inflammatory conditions. After excluding studies that analyzed  

rare ethnic groups such as the ones present in the Taiwanese study group, a general pattern 

emerges-the minor variants for SNPs rs3138053(G) and rs2233406(T) that associate with 

protection from infectious conditions are associated with the risk of acquiring 

autoimmune/inflammatory conditions (see table 1.2). Epidemiological studies in Europe have 

shown that the decline of certain infections such as rheumatic fever, hepatitis A, tuberculosis 

have met with a concomitant  rise of autoimmune diseases such as multiple sclerosis, type 1 

diabetes, and Crohn’s disease in these regions (71). The hygiene hypothesis states that the 

decline of infections in the West is the causal link for the increase of immune disorders (72). 

Therefore, the next logical step would be to validate these associations to see if there is a 

functional explanation for these observations. In subsequent sections an overview is provided 

on the various approaches used in validating regulatory SNPs and specifically SNPs that lie in 

the promoter. 

 

1.7 Validating regulatory variants and the genetics of gene expression 
Even though SNPs that occur in coding regions of genes are predicted to be more deleterious 

because they affect protein function (73), the vast majority of variants that associate with 

complex syndromes lie in regulatory regions of the human genome (74). Therefore, there is a 

need to validate such variants for functional relevance to disease. In the absence of known 

functional effects of such variants at the biochemical level, the analysis of gene expression can 

serve as a intermediate phenotype for evaluating the functional effects of such variants (75). 

The measure of gene expression has been recommended as a surrogate for linking clinical 

features of a patient to a variant associated with the syndrome (76). Genetics of gene 
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expression studies therefore typically involve measuring steady state mRNA levels of many 

genes using microarray analysis or RNA sequencing, followed by genotyping of individuals for 

polymorphic markers (SNPs) and a statistical analysis to identify regulatory variants that 

associate with expression levels for genes of interest (77).  

 

1.7.1 Cis and trans-variation 

mRNA expression from the alleles of a given gene is under the control of cis or trans acting 

variants. Cis variants lie on the same chromosome (allele) of the gene that they regulate and 

they reside on the regulatory regions of the genes such as promoters, enhancers and splice 

sites (78). Thus, the impact of cis acting variants on gene expression is allele specific. Trans-

acting factors such as transcription factors may reside on different chromosomes and thus 

variants of such factors affect the expression of both alleles equally (79). In comparison to cis 

acting variants, trans-acting variants are difficult to detect as they can be present anywhere in 

the genome relative to the locus and their effects on gene expression tend to be of a smaller 

magnitude than cis variants (80). Cis-activating variants have been validated by in vitro studies 

involving the use of functional assays in cell lines and by in vivo approaches by the measure of 

differential allelic expression (DAE) in human tissues. The mapping of polymorphisms in trans-

acting factors has been difficult and has relied on traditional linkage analysis methods. 

 
1.8 Approaches for validating cis-acting variants 
1.8.1 Direct methods: Functional assays 

In vitro promoter assays 

A direct way to functionally validate the effects of a cis-acting polymorphism is to clone the 

promoter of the gene in an expression vector with a reporter that lacks endogenous promoter 

activity. The construct is transiently transfected into a cell line and the activity of a reporter gene 

is measured (73). When examining multiple variants, several constructs with individual variants, 

can be generated and transfected into cell lines. A control construct without the gene promoter 

is also transfected to measure any baseline activity of the reporter gene. A difference in reporter 

activity relative to control (baseline activity) between the variants of a polymorphism would 

indicate the functional importance of such a variant (73). However, a reporter gene assay is 

more suitable for measuring large differences in promoter activity, such as might be observed in 

the context of a mutation or deletion of functionally important transcription elements. The 

variation in promoter activity owing to the presence of regulatory variants can be of a small 

magnitude (81). Such low level differences are hard to distinguish from differences seen from a 

variety of non-genetic sources. Differences in promoter activity can result from variation in 
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transfection efficiencies of the promoter constructs. Such studies do not take into the account 

the effect of trans-acting variants that can impact promoter activity (82, 83).  

 

Electrophoretic mobility shift assays (EMSA) 

An EMSA is used to asses the strength of binding of a protein to a target DNA sequence that is 

known or predicted to be of functional importance. In its most basic form the assay involves 

generating fluorescently or radioactively labeled oligonucleotides corresponding to individual 

alleles of a SNP (84). The oligonucleotides are incubated with nuclear or cell extracts from 

tissues, cells or organelles. The lysate-oligonucelotide mix and oligonucleotides are run in 

parallel on a non-denaturing gel. If there is a binding interaction between the target site and 

proteins in the lysate, this leads to the retardation of the mixture on the gel relative to the lane 

that contains pure lysates or probe. This ‘band shift’ then corresponds or represents a functional 

interaction of the target site with the protein (73). This approach is limited by the size of the 

oligonucleotides  (approximately 20-30 nucleotides), and is unable to provide full resolution for 

oligonucleotides that bind multiple target sites (85, 86).  

 

Chromation immunoprecipation  (ChIP) assays 

A ChIP assay is useful for studying interactions between transcription factors and their target 

DNA sites in vivo. It involves the cross-linking of transcription factors to target sites by the use of 

cross-linking agents such as formaldehyde followed by sonication to fragment the DNA and 

immunoprecipiation by a transcription-factor specific antibody. The amount of DNA that is 

present in the immunoprecipated protein-DNA complex is determined by PCR for each allele. A 

difference in the amount of DNA bound to the complex illustrates the strength of binding of a 

transcription factor to its target. This elucidates the functional impact of any variant that lies in 

the binding site (84). 

 

1.8.2 Indirect methods: Differential allelic expression (DAE) or allelic imbalance (AI) 

The problem of quantitating promoter variants: 

When it comes to quantitating the impact of a promoter variant on the transcription efficiency of 

the transcript encoded, it is difficult to discriminate between the two allelic transcripts. Figure 

1.2a illustrates this conundrum. Since the mRNA transcript lacks the promoter, it is difficult to 

discriminate between the transcript that arises from the major allele versus the transcript that 

arises from the minor allele. The solution is to quantify a coding SNP in the mRNA that is linked 
with the promoter variant. By pre-screening an individual for the linkage of both variants i.e., the 

major variant in the promoter co-segregates with a major variant in the coding region while the 

minor variant of the promoter co-segregates with the minor variant in the coding region, it is 
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possible to discriminate between the major and minor alleles of the region (Fig. 1.2b). The 

amount of each transcript can be quantified and expressed as a ratio of major transcript to 

minor transcript or vice versa. This ratio is compared to the ratio of both alleles in (base line 

condition) genomic DNA to determine if there is allelic imbalance in the gene. 

 

There are several advantages for utilizing differential allelic expression assays as opposed to 

other methods of validation. Both alleles are expressed in their natural environment. They are 

exposed to the same trans-acting factors. Comparisons of alleles are made within an individual 

as opposed to between individuals. This minimizes inter-individual variation (87).  

 

Methods for detecting allelic imbalance 

Most indirect methods of quantitating cis allelic variation work on the basic principle of 

quantitating the ratio of the alleles of the coding SNP that are in strong linkage with the 

promoter. The difference arises in what is used as the indicator or a ‘surrogate’ for determining 

allelic ratio. Methods such as SNaPshot, sequencing, pyrosequencing, rely on the ‘endpoint’ 

readings of PCR. Probe based assays such as TaqMan real-time PCR allow greater precision, 

as they rely on measuring differences in the threshold of amplification, referred to as ΔCt  of 

each allele (87). This method relies on comparing differences of allelic amplification cycles for 

each allele in a heterozygous individual for a SNP in the coding region. Under genomic 

condition i.e., in the genomic DNA of an individual, the allelic ratio in a gene is 1:1. In a probe 

based assay such as the TaqMan assay, a 1:1 expression in theory should correspond to no net 

difference between the thresholds of amplification for either alleles of a gene. In practical terms 

there is always a background difference in the genomic DNA resulting from differing probe 

binding efficiencies for each allele. This difference is unique for each individual and is accounted 

for when determining allele ratios. Any difference in ΔCt in heterozygous individual cDNA versus 

the difference seen in the genomic DNA indicates allelic imbalance (88).   

 

1.9 Hypothesis  
Based on the role of NFKBIA that has been inferred from examining: 1) targeted NFKBIA gene 

knockouts in mice, 2) humans who display abnormalities in IκBα function, and 3) the association 

of SNPs in the NFKBIA regulatory regions with disease, we hypothesize that the presence of 

minor variants of SNPs rs3138053, rs2233406 and rs2233409 in the promoter of NFKBIA will 

have functional consequences. Specifically, this will lead to a reduced expression of this 

NFKBIA allelic transcript, resulting in allele specific differences in expression, which will 

translate to a lower overall NFKBIA mRNA expression in individuals who have the minor allele, 
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ultimately resulting in an increase in proinflammatory cytokine secretion. Figures 1.4a and 1.4b 

illustrate this hypothesis.  
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Fig. 1.1. Steps needed to verify if variation in a candidate gene influences susceptibility 
to a complex disease. Genetic association studies provide hints for the association of variants 

in a gene with diseases. Further validation at the biological level is needed along with clinical 

validation to show that variants within the candidate gene of interest have causal roles in the 

onset of complex disease. The next step would involve developing therapeutic measures to 

optimize the activity of the gene in order to treat the disease. 
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Table 1.1. Genetic association of studies of variants of  NFKBIA 

 

 
The table summarizes all the genetic association studies involving variants of NFKBIA done to date.  For the variants located at 

position +2921, no rs number is available. For multiple sclerosis and type 2 diabetes, the identity (relative location from the start site 

or the rs number) of the variant was not mentioned in the publication nor could it be traced on dbSNP. 
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Table 1.2. The GT haplotype is associated with protection against infections and risk for 
inflammatory conditions 
 

 
SNPs rs3138053 and rs2233406 show complete (100%) linkage in individuals of European, 

African, Chinese (Han) descent and 91% linkage in individuals of Japanese descent. The 

223409 SNP shows strong linkage with rs3138053 in individuals of European, Chinese (Han), 

and Japanese descent (83%, 83%, 89% respectively), but display only 56% linkage in  

individuals of African descent.
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Figure 1.2. Validating impact of cis acting promoter variants on gene expression.  As the 

promoter is not transcribed during gene expression, one loses the ability to discriminate 

between transcripts that arose from the allele housing the major variant or the minor variant (A). 

A solution to this problem is to amplify a synonymous coding variant that is in high linkage with 

the promoter variant (B). The major and minor variants of the coding SNP thus act as 

surrogates for discriminating between the major and minor allele transcripts, respectively. 
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Figure 1.3. Hypothesis: Impact of minor variants in the NFKBIA promoter on NF-κB 
signaling. Individuals who are homozygous (ACC/ACC) for the NFKBIA promoter SNPs 

rs3138053, rs2233406, and rs2233409, are expected to display normal negative regulation of 

NF-κB where IκBα, upon phosphorylation by the IKK complex, would be ubiquitinated and 

subsequently proteasomically degraded. This would allow the p50p65 NF-κB heterodimer to 

bind response elements of proinflammatory genes and begin their transcription. NF-κB (p50p65) 

would also bind response elements on NFKBIA, the gene that encodes for IκBα, and initiate its 

expression. Newly synthesized IκBα would bind NF-κB (p50p65) and translocate it back to the 

cytoplasm (A). In individuals who are heterozygous (ACC/GTT) for these SNPs, there would be 

a reduction (dotted arrow) in the amount of mRNA transcript that is produced. This would lead to 

a reduction (dotted arrow) in the amount of IκBα that is available to bind NF-κB (p50p65). A 

reduced inhibition on NF-κB (p50p65) translocation to the nucleus would in turn lead to an 

increase in the expression of proinflammatory genes which would subsequently lead to an  

increase in inflammation (large text) (B)

A B 
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Chapter 2: Material and methods 

2.1 Analysis of linkage disequilibrium (LD) 
2.1.1 Source populations 

LD was examined in 4 ethnic groups which included individuals of European, African, Chinese 

(Han) and Japanese descent. To incorporate the maximum amount of variants for each ethnic 

group, genotype data was taken from 2 source populations- one genotyped by the HapMap 

consortium (www.hapmap.org) and the second genotyped by Programs for Genomic 

Applications (PGA) (http://pga.jgi-psf.org/). Even though there was considerable overlap 

between individuals used by HapMap and PGA, yet PGA assayed for more variants of NFKBIA. 

(as shown in table 2.1).  The only ethnicity for which there was no overlap between individuals 

genotyped by PGA or HapMap was for individuals of African descent. PGA genotyped African 

Americans of South-Western USA whereas HapMap genotyped Yoruba of Ibadan, Nigeria. To 

eliminate any redundant genotypes, parameters in the Genome Variation Server (GVA) were 

set to ‘merge’ duplicate genotypes from the same individual found in two source populations. 

More detail is provided on the use of GVA in the next section.  The  location assigned to a 

NFKBIA SNP i.e. whether it was an intronic, exonic, 3’ UTR, 5’UTR or promoter SNP was based 

on the designation given by the dbSNP (http://www.ncbi.nlm.nih.gov/SNP).   

 

2.1.2 Software  

Haplotype analyses 

The Genome Variation Server (GVA) (http://gvs.gs.washington.edu/GVS/) was used to 

download genotype information for each ethnic group. In the search engine, the entire NFKBIA 

gene sequence plus 1000 bp of upstream sequence, was initially screened for variants. The 

'genotype' and 'marker haplotype' files, obtained from GVA, were uploaded in Haploview 3.1. 

Common variants i.e., variants with a minor allele frequency ≥1% were only included in the 

analysis. In our case we chose to define LD between two SNPs as ‘strong’ if the r2 values were 

greater than or exceeded 80%, as this has been used traditionally by the HapMap consortium 

as an accepted level of tag SNP coverage (48). 

 

Functional site analyses  

The “SNP@Promoter” search engine (http://variome.kobic.re.kr/SNPatPromoter/) was used to 

analyze the NFKBIA promoter for any variants that were present in putative transcription factor 

binding sites.  
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2.2 Analysis of NFKBIA mRNA expression, and allelic imbalance  
2.2.1 Subject recruitment 

Recruitment for NFKBIA allele specific and total mRNA expression measure 

Ninety seven healthy individuals were recruited from the research department at the BC 

Children’s Hospital. Initially saliva samples were obtained for genotyping and determining 

NFKBIA haplotype for SNPs rs3138053/2233406/2233409/1050851(A/G, C/T, C/T, C/T). Each 

individual had consented for the extraction and use of their DNA for this study which was 

approved by the board of ethics at the University of British Columbia. Individuals with HIV 

infection, spleen abnormailities, significant heart and lung disease, some kidney and liver 

diseases, diabetes, cancer, cerebrospinal fluid leaks, sickle disease and other primary 

immunodeficiences were excluded from the study.  32 individuals who had consented for the 

use of their blood in this study were approached for blood samples.  

 

2.2.2 Genomic DNA extraction 

Genomic DNA was extracted from controls and case blood samples using QIAamp ® DNA 

Blood Mini Kit (Qiagen, MD, USA). Genomic DNA was extracted from case saliva samples 

using ORAgene® DNA extraction kit (DNA genotek, ON, Canada). DNA was eluted in 25μl of 

T.E. buffer and was quantified by a NANODROP 1000TM UV/VIS spectrophotometer (Thermo 

Scientific, USA). Between 224.75 to 2538.75 nanograms of DNA was eluted in 25μl of  Tris-

EDTA (T.E.) buffer.   

 

2.2.3 Optimization of bacterial growth 

Optimizing growth medium 

In spite of its pathogenicity in blood, Streptococcus pneumoniae grows relatively poorly on 

media. Many isolates require prolonged preincubation prior to entering the exponential phase of 

growth. In a recent publication, 47 clinical isolates of S. pneumoniae representing 15 serotypes 

were grown in brain heart infusion (BHI) media with and without 5% fetal calf serum (FCS). 

Supplementation with 5% FCS led to a significant shortening of the lag phase in serotypes 

associated with invasive disease (89)(91). The clinical isolate used in this project, serotype 14, 

is one of the 7 commonly invasive serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F) known to cause 

the majority of pediatric invasive pneumococcal disease cases in Canada (90). We monitored 

growth of serotype 14 for 10 hours using a spectrophotometer adjusted at 600nm wavelength in 

BHI medium supplemented with and without 5% FCS. Comparisons were made for cultures 

started from overnight cultures (which were colony inoculations grown in BHI medium to an 

optical density (OD) of 0.1) or single colonies. All cultures were grown under anaerobic 

conditions at 37°C with 5% CO2. With the inclusion of 5% FCS, cultures inoculated from over 
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night cultures (Fig. 2.1a) or  single colonies (Fig. 2.1b) had a shorter lag time to exponential 

growth compared to cultures that were grown in BHI medium only. In the case of cultures 

inoculated from overnight cultures the lag time for growth in BHI medium supplemented with 5% 

FCS, was shorter by 90 minutes when compared to cultures that were grown in media lacking 

5% FCS (Fig. 2.1a).  For cultures started from single colonies, quantitative comparisons for time 

required to reach exponential phase could not be made as cultures grown in the (control) BHI 

medium failed to reach exponential phase after 10 hours of incubation (Fig. 2.1b). However, 

single colony cultures took a longer time to reach the exponential phase than cultures that were 

started from overnight cultures (440 minutes versus 380 minutes). 

 

Determining the mid-log phase of exponential growth  

In order to determine the optical density at which S. pneumoniae had reached the mid-log stage 

of exponential growth, 2 additional growth curve experiments were conducted. A clinical isolate 

of S. pneumoniae, serotype 14, was sub-cultured twice on Columbia agar plates with 5% sheep 

blood. A single colony was inoculated overnight in 50mL BHI medium. The next day (after 12 

hours), once the culture had reached an O.D. of 0.5, 300μl of the culture was inoculated in 

media consisting of 50mL BHI + 5% FCS to an O.D. of 0.1. Growth was monitored for 10 hours. 

Plate counts were taken periodically, throughout the growth curve, whenever an O.D increase of 

0.1 was observed. The next day, colonies were counted and colony count per ml for each O.D. 

was determined. Results from two growth curves indicated that the mid-log phase occurred at 

an approximate O.D. of 0.5 (Fig. 2.2a). Colony counts were plotted against colony forming units 

(CFU)/mL for each O.D. to yield a standard curve for predicting colony counts for a given O.D. 

of S. pneumoniae in culture (Fig. 2.2b). 

 

Bacterial growth on the day of the experiment 

A clinical isolate of Steptococcus pneumoniae, serotype 14, was sub-cultured twice on 

Columbia agar plates with 5% sheep blood. On the day of the experiment, a single colony from 

the second subculture was inoculated in 25 mL of BHI medium supplemented with 5% FCS. 

The culture was grown under anaerobic conditions at 37°C with 5% CO2 for 6 hours. At an 

optical density reading of 0.5, the bacteria were pelleted by centrifugation at 5000X g for 10 

minutes. The bacterial pellet was serially diluted in appropriate volumes of PBS to generate 

multiplicity of infections (MOI) of 20 and 10.  Prior to stimulation of cells, the MOIs were plated 

on Columbia blood agar plates, with 5% V/W sheep blood, in order to determine the number of 

live bacteria present in each dilution 



 

                                                                                                                      25  

2.2.4 PBMC isolation 

 Heparinized whole blood was mixed in a 1:1 ratio with R10 medium consisting of RPMI 1640 

medium with 10% (v/v) fetal calf serum and 2 mM l-glutamine and 1 mM sodium pyruvate 

(Gibco). Human peripheral blood mononuclear cells (PBMCs) were isolated by density gradient 

centrifugation (Ficoll-Paque™ Plus, Amersham Pharmacia Biotech). PBMCs were washed twice 

with R10 and viable cells were quantified by trypan blue exclusion. 

 

2.2.5 PBMC stimulation 

PBMCs were suspended in R10 and were dispensed into a flat-bottom 24-well plate (6.6 x 105 

cells in 666μl R10). 66.7μl of LPS (1000ng/mL)  (Escherichia coli 0111:B4) and 66.7μl  S. 

pneumoniae (serotype 14), at MOIs of 20 and 10, were added separately to duplicate wells The 

cells were incubated at 37°C in a 5% CO2 atmosphere for 3 and 4 hours post stimulus. 

Supernatants were harvested and stored at -20°C. 333.33 μl of buffer RLT (Qiagen) was added 

to the cells and samples were stored at -80°C. 

 

2.2.6 RNA isolation and cDNA reverse transcription 

RNA was isolated from lysates stored at -80°C using the RNeasy® Plus Mini Kit (Qiagen, Hilden, 

USA). An additional DNAse treatment step was performed prior to adding of buffer RW1. RNA 

samples were eluted in 17μl of DNAse/RNAse free H2O. 10μl of sample (with a minimum 

concentration of 10ng/μl RNA) was used as template for reverse transcription into cDNA using 

the SuperScript®VILO™ cDNA synthesis kit (Invitrogen). In order to increase the yield of cDNA, 

the incubation time at 42°C was increased to 120 minutes. Following reverse transcription, each 

sample was quantified and diluted to a concentration of 800ng/μl, which was determined to be 

the optimal cDNA template concentration for quantitative PCR.  

 

2.2.7 Genotyping 

The NFKBIA SNPs rs2233406, rs3138053 and rs2233409 were ordered from Applied 

Biosystems as part of the TaqMan® Pre-Designed SNP Genotyping Assay. The context 

sequences of the SNPs are as follows: 

Rs3138053 5’-ATTCGTTTATGCTATCTGACCTACA[C/T]TGTGCTCCCGCAGAA 

AAAGGATCGT-3’ 

Rs2233406 5’-TGGTGGTTGTGGATACCTTGCAATA[A/G]CAGAGTAGCTATTG 

TGTTCATAAGT-3’ 

Rs2233409 5’-TGTAATCCTGTCCCTCTGCAAGTGA[A/G]CCTTCTTTCCCTGG 

GGTTTCCCACG-3’ 
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The primers for the coding SNP rs1050851 were custom designed. The primer sequences are 

as follows: 

Forward 5’-AAGTGATCCGCCAGGTGAAG-3’ 

Reverse 5’-GCTGCAGGTTGTTCTGGAAGT-3’ 

 

The probe sequences to detect the rs1050851 major allele ( C ) and the minor allele ( T ) were 

as follows (the position at which the nucleotide change occurs is underlined): 

Reporter1 (VIC)  (C ) 5’-ACCTGGCCTTCCTCA-3’ 

Reporter2 (FAM)  (T) 5’-ACCTGGCTTTCCTCA-3’ 

 

The genotyping reagents were added in the following format: 

Component Volume (μl) 

2X PerfeCta master mix 10 μl 

Nuclease-free H2O 9 μl 

40X SNP assay mix 0.5 μl 

gDNA (1-25 ng) 0.5 μl  

Total volume 20 μl 

 

Allele calling 

The automated allele calling feature was used in accompanying sequence detection software, 

included with the Applied Biosystems 7300 Real Time PCR Machine.  

 

2.2.8 NFKBIA gene expression 

The forward and reverse primer sequences for NFKBIA were as follows 

Forward 5’-TCAACAGAGTTACCTACCAGGGCT-3’ 

Reverse 5’-TCCTCTGTGAACTCCGTGAACTCT-3’ 

 

The forward and reverse primer sequences for ACTB (β-actin) were as follows 

Forward 5’-GTTGCGTTACACCCTTTCTT-3’ 

Reverse 5’-ACCTTCACCGTTCCAGTTT-3’ 
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Quantitative PCR was performed on cDNA using SYBR green reagent. The PCR reagents were 

added in the following format: 

Component Volume (μl) 

2X SYBR green 12.5 μl 

RNAse and DNAse free H2O 10.5 μl 

Forward and reverse primers 0.5 μl( 5μM concentration) for each primer 

Template (cDNA) concentration 1μl (800ng/mL) 

Total volume 25 μl 

 

The reaction setup for NFKBIA genotyping and gene expression in the Applied Biosystems 

7300 Real Time PCR Machine was as follows: 

Cycle 1 Cycle 2 Cycle 3 

CYCLE (40 cycles)  
HOLD HOLD 

Denature Anneal/Extend

Temperature 50°C 95°C 95°C 60°C 

Time 2 min 10 min 15 sec 1 min 

 

The fluorescence was measured at cycle 3, step 2 of the reaction. 

 

2.2.9 Genotyping for allelic imbalance 

cDNA from PBMCs of individuals heterozygous or homozygous (major allele) for the promoter 

SNPs rs3138053/rs2233406/rs2233409 and the coding SNP rs1050851 was genotyped for all 

conditions (unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, 

stimulated with S. pneumoniae for 3 hours, and stimulated with S. pneumoniae for 4 hours). 

Genotyping for each condition was performed in triplicate. Genomic DNA for each donor was 

also genotyped in triplicate. Detailed descriptions of assay design, validation as well as 

calculation of allelic imbalance is described in chapter 3. 

 
2.3 Neonatal innate immune response 
The neonatal immune response analysis was done on neonatal cord blood by the Kollmann lab. 

For information regarding subject recruitment, blood isolation, processing, and cytokine analysis 

refer to the publication by Kollmann et al  (91). Briefly, cord blood from healthy, full-term elective 

Caesarian sections without labour was collected directly into sodium heparin-containing 

vacutainers (BD Biosciences). PBMCs were isolated by density gradient centrifugation. 96 well 
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plates containing 1.3 μl of TLR ligands (PAM3CSK4 (TLR2/1); poly(I:C) (TLR3); 0111:B4 LPS 

(TLR4), 3M-002 (TLR8), 3M-003 (TLR7/8); 3M-013 (TLR7); CpG (A type); RFSL (TLR 2/6)) 

were prepared. 180 μl of cell suspension (monocyte mixed with 1:1 RPMI 1640) was added to 

each TLR plate and the plates were incubated for 6 hours at 37˚C. Supernatants were thawed 

at room temperature, and filtered into a clean 96 well plate. The Luminex assay was performed 

using the Upstate/Millipore “Flex Kit.” Genomic DNA was extracted from cord samples of 20 

neonates using the QIAamp ® DNA Blood Mini Kit.  

 
2.4 Statistics 
2.4.1 Statistical analysis for allelic imbalance 

A 95% confidence interval of the mean allelic ratio was taken for each of the 5 conditions 

(unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, stimulated with 

S. pneumoniae for 3 hours and S. pneumoniae for 4 hours). 

 

2.4.2 Statistical analysis for gene expression 

A non-parametric Mann-Whitney-test was used to compare the mean gene expression values of 

NFKBIA relative to the ACTB for 3 and 4 hour stimulations with LPS and S. pneumoniae. 

 

2.4.3 Statistical analysis for innate immune response 

A two-way ANOVA was used to analyze mean cytokine response for each ligand concentration 

with a Bonferroni post-test to account for multiple testing. 

 
2.5 Order of operations 
The order in which all the major steps in the experimental protocol were performed is outlined in 

Fig. 2.3. 
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Table 2.1. Data on the number of individuals and variants in different population ethnic 
groups examined for LD analysis of NFKBIA variants 

 
 These data were downloaded on January 2nd, 2010 and were downloaded again on March 21st, 

2010 to record any new SNP genotypes for the above populations. No new SNP genotypes 

were observed in the second download relative to the first download.
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Figure 2.1. Streptococcus pneumoniae serotype 14 shows a reduced lag time for 
exponential growth when grown in media BHI media supplemented with 5% FCS. Growth 

of S. pneumoniae was monitored in cultures started from overnight cultures (A) and single 

colonies (B) for 10 hours under anaerobic conditions at 37˚C with 5% CO2 
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Figure 2.2  Determining the optimal growth range for Streptococcus pneumonia serotype 
14.  A single colony of S. pneumoniae serotype 14, was subcultured twice and grown in BHI 

medium supplemented with 5% FCS for 10 hours. Plate counts were taken for an OD increase 

of 0.1. Data from two growth curves is shown (A). CFU/ml were plotted against OD readings to 

yield a standard curve for determining colony counts for a given OD (B).  

 

0 100 200 300
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.0×100 8

1.0×100 9

1.0×101 0

Minutes

O
D

 (6
00

nm
) Log C

FU
/m

L

0.0 0.5 1.0 1.5
0

5.0×108

1.0×109

1.5×109

OD (600nm)

C
FU

/m
L

A

B r2= 0.79 



 

                                                                                                                      32  

 
 
 
 
 
 
 

 
Figure 2.3. Overview of experimental protocol. Experimental procedures were performed as 

outlined in the Figure. All assays were done in healthy adults, with the exception of the innate 

immune response assay which was done in healthy neonates. 
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Chapter 3: Results 

 

3.1 Emerging picture of the NFKBIA promoter haplotype 
3.1.1 Analysis of variants 

As both the type of variation and the location of the variant in a gene determine the subsequent 

impact on gene function, it was important to get an understanding of the nature and location of 

variants in the NFKBIA gene. Table 3.1 shows the location of variants of NFKBIA in different 

ethnic groups. In the European panel, of the 28 variants genotyped by HapMap and PGA, there 

were only 2 synonymous-coding variants (rs 1050851 and rs1957106). The remainder of the 

variants consisted of 13 variants in the intron, 2 in the 5’ UTR, 5 in the 3’ UTR and 6 variants in 

the promoter region. The African panel consisted of 30 variants (3 exonic, 15 intronic, 0 in the 5’ 

UTR, 5 in the 3’ UTR, and 7 promoter variants). Both the CHB and JPT panels consisted of 9 

variants (2 exonic, 1 intronic, 0 in the 5’ UTR, 3 in the 3’ UTR, and 3 promoter variants).  

 

3.1.2 Linkage disequilibrium(LD)analysis 

As LD has been critical for mapping complex disease variants in the human genome, it was 

important to study the NFKBIA LD pattern in different ethnic groups. In our analysis of the entire 

NFKBIA gene, we discovered LD was not continuous but limited to mostly non-coding variants 

in the gene (appendix: fig. A1-4). We categorized variants that showed strong LD and 

discovered that 75-95% of variants that displayed strong LD resided in non-coding regions of 

NFKBIA which included the promoter, introns, and the 3’ UTR (appendix: fig. A5a). Next, we 

determined the percentage of variants-within these three sites- that showed strong local-linkage 

i.e., we excluded variants in these sites that didn’t show strong LD with a variant within the 

same region but showed strong LD with a variant outside the region. In the 4 populations 

examined, 52-100% of the variants in the promoter showed strong local LD whereas 28-65% of 

the variants in the 3’ UTR showed strong LD (appendix: fig. A5b).  

 

3.1.3 Promoter haplotype analysis 

Since the promoter variants were in strong LD, we examined this region exclusively within each 

of the 4 populations (fig 3.1a-d). We determined that 2 promoter variants (rs2233406, and 

3138053) comprised a small, strongly-linked 2-variant haplotype in all 4 populations. The 

European panel (fig. 3.1a) was comprised of a 4-variant haplotype consisting of rs2233409, 

rs2233406, and rs3138053 in strong LD, and a fourth variant rs11569591-an 8bp 

insertional/deletion (structural) variant- that displayed 100% LD with rs2233406 and rs3138053. 
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The African panel (fig. 3.1b) had a second 2-variant haplotype consisting of SNPs rs11569593 

and rs11569590 in 100% LD. The CHB panel (fig. 3.1c) had a 3 variant haplotype where the 

third variant, rs2233409, displayed 83% LD with rs2233406 and rs3138053. 

 
3.2 Functional analysis of NFKBIA promoter variants  
3.2.1 Putative transcription factor binding sites 

In order to see if any of the NFKBIA promoter variants resided in functional sites for the binding 

of transcription factors we searched the entire NFKBIA gene sequence in the SNP@Promoter 

search engine (http://variome.kobic.re.kr/SNPatPromoter/) for any putative transcription factor 

binding sites. The search revealed that the variant rs3138053 that was found in all of the 4 

populations, resided at the binding site for retinoic related orphan receptor 2 (RORα2). Previous 

have identified it as a binding site for RORα1 and RORα2 (92). Functional experiments using 

human cell lines have shown that RORα2 binds to this response element and transcriptionally 

up regulates IκBα expression, and mutagenesis in this region leads to a consequent decline in 

IκBα expression (93).  There is a putative binding site AP-2 at an intronic variant (rs2233411) 

that was in 100% LD with the variant rs2233409 in the European and African panels. In the 

European panel the structural variant rs11569591 resides in a functional binding site for 2 

transcription factors- KROX and Egr. Table 3.2, shows all the variants of NFKBIA that reside in 

putative transcription factor binding sites.  

 

3.2.2 Risk haplotype prediction 

Based on the strong LD observed in the promoter region of NFKBIA in all 4 populations, and the 

presence of putative transcription factor binding sites in this region (Table 3.2), we came up with 

a risk haplotype  for the population groups examined (Fig. 3.2). The first risk haplotype was 

common in all populations and consisted of the risk variant rs3138053 which resided in the 

RORα1 and RORα2 binding site and was in strong LD with SNP rs2233406. The second 

haplotype was unique to individuals of European descent and consisted of 2 additional risk 

variants rs11569591 and rs2233411 in strong LD with SNPs rs3138053, rs2233406 and 

rs2233409, both of which resided in putative transcriptional factor binding sites. Therefore, we 

predicted that owing to the presence of the rs3138053 risk variant in all 4 populations, we would 

see a subsequent impact on allelic and mRNA expression of NFKBIA, but this effect would be 

more pronounced in individuals of European descent who have 2 additional risk variants in their 

haplotype. It is to be noted that the actual genotyping and functional validation i.e., analysis of 

NFKBIA allelic imbalance, NFKBIA gene expression and innate immune response was done for 

SNPs rs3138053, rs2233406 and rs2233409 as these SNPs had been shown to be associated 

with disease. 
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3.3 Allelic imbalance 
3.3.1 Validation of allele specific PCR assay 

In order to measure allelic imbalance we investigated whether: 1) we could detect differences in 

allele ratios using TaqMan probes and 2) what range of allele ratios were detectable using this 

technique. To answer these questions we selected a synonymous coding SNP rs1050851 which 

was in strong LD with promoter SNPs rs3138053, rs2233406 and rs2233409 and thus acted as 

a tag for differentiating between the major (ACC) and minor (GTT) allele transcripts of NFKBIA. 

Genomic DNA was extracted from a healthy individual who is homozygous for the NFKBIA 

rs1050851 coding SNP  wild type allele “C/C” and from an individual who is homozygous for the 

minor allele “T/T.” The concentration of genomic DNA was quantified and diluted to ensure that 

both samples had similar starting concentrations (187.82 ±2.03ng/µL for “C/C” and 

182.79±3.68ng/µL). The genomic DNA from the samples was mixed in different concentrations 

to mimic allelic imbalance seen in cDNA samples during gene expression. The allelic ratios 

were 1:0.5, 1:1, 1:1.5, 1:2, 1:2.5, 1:3, 1:3.5, 1:4, 1:8 CC:TT and 8:1, 4:1, 3.5:1, 3:1, 2.5:1, 2:1, 

1.5:1, 0.5:1 TT:CC. Each genomic mixture was genotyped for the rs1050851 SNP using the 

Applied Biosystems 7300 Real Time PCR Machine. Figure 3.3a illustrates this procedure.    

The cycle at which amplification of the DNA template enters the exponential phase is referred to 

as the threshold of activation or “ct.”  We observed that as the ratio of the major allele to the 

minor allele was decreased from 8:1 (C/C:T/T) to 1:8(C/C:T/T), a corresponding increase  in Δct 

was detected in the real time PCR read out for each ratio (Fig. 3.3b). We also observed a Δct 

value in a 1:1 ratio, which theoretically should be zero. This difference is a result of different 

probe binding efficiencies of the Vic and Fam probes for their respective alleles and has been 

reported in other allele specific PCR assays involving TaqMan probes (94). This background 

difference was subtracted from the observed “Δct” for all the mixtures of genomic DNA to obtain 

a corrected “Δct” reading for each sample. 

 

3.3.2 Generation of allele ratios 

The corrected “Δct” reading for each mixture was plotted against the logarithm of the known 

ratio of CC:TT for  each sample to obtain a standard curve (Fig. 3.4). This standard curve was 

used to determine the allelic ratios in cDNA samples for which the allelic ratio was not known. 

 

3.3.3 Determining allelic imbalance in NFKBIA rs1050851 heterozygotes 

To determine if NFKBIA heterozygotes (ACC/GTT) for promoter SNPs rs3138053, rs2233406 

and rs2233409 displayed allelic imbalance, we stimulated PBMCs from NFKBIA heterozygotes 

(ACC/GTT) who were also heterozygous for the coding SNP rs1050851 (C/T) with LPS 

(100ng/ml) and S. pneumoniae (moi 7.8-30) for 3 and 4 hours. The cDNA along with the 



 

                                                                                                                      36  

genomic DNA for each individual was genotyped in tandem for the rs1050851 SNP which was 

used as a ‘tag’ for genotyping the 3 promoter SNPs that could not be assayed for in cDNA (for 

more details on this, refer to section entitled ‘the problem of quantitating promoter variants’ in 

chapter 1). The ΔCt read out for the genomic samples was subtracted from the ΔCt readout 

each of the three conditions  (unstimulated, stimulated for 3 hours, and stimulated for 4 hours) 

to obtain a ‘corrected ΔCt’ (ΔCt’) read out. Using the standard curve for calculating unknown 

allele ratios we determined the allele ratio for each condition. 

 

In the unstimulated condition, the mean allele transcript ratio of the major allele (ACC) to the 

minor allele (GTT) was 1.21 (1.15-1.27 95% CI). In the presence of LPS (100 ng/ml), the mean 

allelic ratio for 3 and 4 hour stimulation was 1.22 (1.18-1.25 95% CI) and 1.21 (1.15-1.27 95% 

CI) respectively (Fig.3.5a). The ratios for each condition were not significantly different from 

each other, but were significantly higher than the base line 1:1 ratio seen in the genomic 

sample. Similarly, in the presence of S. pneumoniae the ratios for the 3 hour and 4 hour 

stimulation were 1.23 (1.16-1.31 95% CI) and 1.25 (1.17-1.33 95% CI) respectively (Fig. 3.5b). 

Since 11 out of the 12 individuals analyzed were of European descent, we also analyzed the 

mean allele ratios for these 11 individuals. In the one individual of Chinese (Han) descent, the 

allele ratios for unstimulated, LPS 3 and 4 hour stimulated, S. pneumoniae 3 and 4 hour 

stimulated conditions were 1.11, 1.22, 1.26, 1.12, 1.13 respectively. With the exclusion of this 

sample, the mean allele ratios were 1.22 (1.15-1.29), 1.22 (1.18-1.26), 1.21 (1.14-1.27), 

1.24(1.17-1.32), 1.26 (1.18-1.34) respectively. Therefore, by the use of a validated allele 

specific PCR assay, we were able to detect allele specific differences in individuals who were 

heterozygous for SNPs rs3138053, rs2233406, rs2233409 and rs1050851. 

 
3.4 Determining impact of allelic imbalance on NFKBIA mRNA expression 
3.4.1 Impact of allelic imbalance on NFKBIA mRNA expression in NFKBIA homozygotes and 

heterozygotes  

To investigate whether allelic imbalance had a subsequent downstream impact on NFKBIA 

expression, we measured NFKBIA expression relative to the housekeeping gene ACTB (β-

actin) at 3 and 4 hours post stimulus in the presence of LPS and S.pneumoniae.  Initially, we 

examined NFKBIA expression in all individuals who were heterozygous or homozygous for the 

promoter SNPs rs3138053/rs2233406/rs2233409. This included individuals of all ethnicities 

(Fig. 3.6a-d). Although no significant differences were seen in NFKBIA expression, a pattern 

was seen where NFKBIA homozygotes (ACC/ACC) displayed a higher fold expression of 

NFKBIA than NFKBIA heterozygotes (ACC/GTT); this pattern was more evident at 3 hours (p= 
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0.057and p=0.073 for stimulation with LPS and S.pneumoniae respectively) (Fig.3.6a and 3.6c) 

than 4 hours (p= 0.14 and p=0.10 respectively) (Fig.3.6b and 3.6d). 

 

3.4.2 Impact of allelic imbalance on NFKBIA mRNA expression in NFKBIA homozygotes and 

heterozygotes of European descent 

We had hypothesized earlier that owing to the presence of an 8 insertion/deletion polymorphism 

variant (rs11569591), and an intronic variant (2233411) in strong LD with the promoter SNPs 

rs3138053/rs2233406 in individuals of European descent, we would see more profound 

differences in mRNA expression of NFKBIA in heterozygotes or homozygotes (for the minor 

allele) of this group than homozygotes for the major allele. We observed that when only 

examining individuals of European descent at 3 hours a 1.4 fold greater expression of NFKBIA 

was seen in homozygotes (ACC/ACC) than heterozygotes (ACC/GTT) for  LPS (p=0.0095, 

Mann Whitney-U-test) and a 1.51 greater expression was seen in samples stimulated with  

S.pneumoniae (p=0.024, Mann-Whitney-U-test) (Fig 3.7a and 3.7c). A similar pattern was seen 

at the 4 hour time point. However the differences were not statistically significant (Fig 3.7b and 

3.7d). 

 
3.5 Determining impact of allelic imbalance on the innate immune response 
NFKBIA encodes for IκBα which negatively regulates NF-κB translocation. NF-κB positively 

regulates the expression of proinflammatory cytokines genes TNFα and IL6. A readout of 

proinflammatory cytokines is frequently used in a clinical immunology setting to determine the 

level of inflammation in an individual. However, when trying to specifically understand the 

genetic contribution to an individual’s phenotype, it is important to minimize any confounding 

effects to the cytokine readout that could result from environmental effects such as an infection 

or an autoimmune condition or the interaction of the adaptive immune system with innate 

immune system, as is the case in adults. To circumvent this problem, the innate immune 

analysis was conducted on PBMCs from cord blood belonging to healthy infants born at BC 

Children’s Hospital. Healthy infants were chosen over healthy adults as infants display poor 

immunological memory and predominantly rely on their innate immune system for protection 

against pathogens (95). 

 

3.5.1 Impact of allelic imbalance on the innate immune response in NFKBIA homozygotes and 

heterozygotes 

To determine if there was a difference in the innate immune response between NFKBIA 

homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) PBMCs of these genotypes were 

stimulated with a variety of Toll Like Receptor (TLR) ligands for 6 hours and the innate immune 
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response was measured. A significantly higher response was seen for TNFα in PBMCs of 

heterozygotes (ACC/GTT) than homozygotes (ACC/ACC) when stimulated with TLR ligands 

LPS (1.80 fold, p<0.05  at a dose of  100ng/ml), Pam3CSK4 (3.20 fold, p<0.01 at a dose of 100 

ng/ml, 2.76 fold , p<0.01 at a dose of 100ng/ml), 3M003 (1.63 fold, p<0.01 at a dose of 10 μM), 

3M002 (2.39 fold, p<0.001 at a dose of 10.0 uM), and RFSL (3.3 fold, p<0.05 at a dose of 

1000ng/ml,  2.36 fold p<0.01 at a dose of 10000ng/ml)  (Fig.3.8 (a-e)). 

 

 3.5.2 Impact of allelic imbalance on the innate immune response in NFKBIA homozygotes and 

heterozygotes of European descent 

To determine if reduced mRNA expression of NFKBIA in heterozygotes (ACC/GTT) of 

European descent led to an exacerbation of the innate immune response, we analyzed TNFα 

production between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) of European 

origin. Significantly higher fold production of TNFα was seen in PBMCs of heterozygotes 

(ACC/GTT) than homozygotes (ACC/ACC) in the presence of LPS (1.57 fold , p<0.05 at a dose 

of 100ng/ml), Pam3CSK4 (2.29 fold, p<0.01 at a dose of 100ng/ml and 1.91 fold, p<0.05 at a 

dose of 1000 ng/ml), 3M003 (1.79 fold, p<0.001 at a dose 10μM) and 3M002 (3.30 fold, 

p<0.001 at a dose of 10μMl) (Fig. 3.9 (a-d)). However, these differences did not significantly 

differ in magnitude from the differences seen between homozygotes (ACC/ACC) and 

heterozygotes (ACC/GTT) of mixed descent.  Analysis for stimulation with RFSL could not be 

done as sufficient samples of European descent were not available (3 homozygotes (ACC/ACC) 

versus 5 heterozygotes (ACC/GTT)) for stimulation with this ligand in order to make statistically 

meaningful comparisons.  

 

3.5.3 Impact of allelic imbalance on pathways that do not involve IκBα degradation 

In order to see if the observed differences in cytokine production between homozygotes 

(ACC/ACC) and heterozygotes (ACC/GTT) were not chance occurrences, we compared 

differences for pathways that do not require IκBα degradation. TLR9, in addition to activating the 

classical signaling pathway uses a non  IκBα pathway to produce interferon alpha (IFNα) (96). 

In the presence of the TLR9 ligand CpGA, both homozygotes (ACC/ACC) and heterozygotes 

(ACC/GTT) did not show any differences in IFNα production (Fig. 3.10a). Similarly, 

homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) of European descent also did not 

show any differences in IFNα production (Fig. 3.10b). 
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                       Table 3.1.  Region specific location of variants in NFKBIA 
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 Figure 3.1. Linkage disequilibrium (LD) plot of the NFKBIA promoter for the 4 major 
populations. LD plots correspond to European, African, Chinese (Han) of Beijing (CHB), and 

Japanese individuals of Tokyo(JPT).  Variant information was downloaded from the genome 

variation server database and uploaded into Haploview 3.1. The r2 are represented by a black to 

white gradient where black corresponds to 100% and white corresponds to 0-4% linkage 

between two SNPs. 
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Table 3.2. Putative transcription factor binding sites occupied by NFKBIA variants 
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Figure 3.2. Visual representation of functional binding sites for transcription factors of 
NFKBIA. Variants that show 100% linkage with rs3138053 are shown. GGAGGGGG 

corresponds to the major (insertion) allele for the structural variant rs11569591.  
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Figure 3.3. Validating NFKBIA allele specific PCR assay. Genomic DNA from NFKBIA 

coding SNP (rs1050851) major (CC) and minor (TT) allele homozygotes was mixed in different 

proportions of the C allele to the T allele (A). The change in allele ratios corresponded to a 

change in the ΔCt values when each mixture was genotyped for the rs1050851 SNP (B). The 

major allele is “CC” is represented by the blue curve and the minor allele “TT” is represented by 

the red curve. 



 

                                                                                                                      44  

0.1 10

-4
-3
-2
-1

1
2
3
4

Log Allele Ratio (C:T)

Δ
C

t'

Y= -3.682(X)+0.1693
r2= 0.965

Figure 3.4. Standard curve for detecting allelic imbalance in NFKBIA heterozygotes. The 

ΔCt value for 1:1 ratio of a NFKBIA 1050851 heterozygote was subtracted from the ΔCt value 

for each allelic ratio mixture genotyped to obtain a corrected ΔCt’ value. The log of each allele 

ratio was plotted against ΔCt to yield a standard curve. 
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Figure 3.5. NFKBIA heterozygotes (ACC/GTT) display allelic imbalance. Peripheral blood 

mononuclear cells of individuals heterozygous (ACC/GTT) for the NFKBIA promoter SNPs 

(rs3138053/rs2233406/rs2233409) and the synonymous coding SNP (rs1050851) were 

stimulated with 100ng/ml of LPS (A) and Streptococcus pneumoniae (serotype 14) (B) for 3 and 

4 hours. cDNA from unstimulated PBMCs and PBMCs stimulated for 3 and 4 hours was 

genotyped for the NFKBIA coding SNP rs1050851. Values represent means with 95% 

confidence intervals for 12 individuals. 11 out of 12 individuals assay were of European descent. 

A ratio of 1:1 represents allele ratio observed in genomic DNA.
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Figure 3.6. NFKBIA heterozygotes display a trend of reduced NFKBIA mRNA expression 
than NFKBIA homozygotes. Peripheral blood mononuclear cells of individuals who were either 

homozygous (ACC/ACC) or  heterozygous (ACC/GTT) for NFKBIA promoter SNPs 

rs3138053/2233406/2233409 were stimulated with 100ng/mL of LPS (A and B)  or 

Streptococcus pneumonia serotype 14 (C and D), for 3 and 4 hours. NFKBIA expression was 

determined by quantitative PCR. Relative expression was analyzed by   2-Δ ΔCt using β-actin as a 

reference gene. Values represent means ±SEM of 16 homozygotes (dark bars) and 16 

heterozygotes (grey bars). Statistical analysis was performed by the non-parameteric Mann-

Whitney-test. 
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Figure 3.7. NFKBIA mRNA expression is significantly reduced in NFKBIA heterozygotes 
of European descent. Peripheral blood mononuclear cells of individuals of European origin 

who were either homozygous (ACC/ACC) or  heterozygous (ACC/GTT) for NFKBIA promoter 

SNPs rs3138053/2233406/2233409 were stimulated with 100ng/mL of LPS (A and B)  or 

Streptococcus pneumonia serotype 14 (C and D), for 3 and 4 hours. NFKBIA expression was 

determined by quantitative PCR. Relative expression was analyzed by   2-Δ ΔCt using β-actin as a 

reference gene Values represent means ±SEM of 11 homozygotes (dark bars) and 13 

heterozygotes (grey bars). Statistical analysis was performed by the non-parameteric Mann-

Whitney-test. 
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Figure 3.8. NFBIA heterozygotes display a higher TNFα response. Peripheral blood 

mononuclear cells of healthy neonates were stimulated with various Toll like receptor (TLR) 

ligands for 6 hours and the TNFα response was measured using the luminex platform. 

Responses were compared between homozygotes (ACC/ACC) and heterozygotes (ACC/GTT) 

for NFKBIA promoter SNPs rs3138053/rs2233406/rs2233409. Responses for TLR ligands LPS, 

Pam3CSK4, 3M003, 3M002 and RFSL (A, B, C, D, E) are shown. . Values represent means 

±SEM of 5-8 heterozygotes (open circles) and 12 homozygotes (black squares). A two-way 

ANOVA was performed with a post-test.*, p<0.05, **,p<0.01, ***p<0.001. 
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Figure 3.9. NFBIA heterozygotes of European origin also display a higher TNFα 
response. Peripheral blood mononuclear cells of healthy neonates were stimulated with various 

Toll like receptor (TLR) ligands for 6 hours and the TNFα response was measured using the 

luminex platform. Responses were compared between homozygotes (ACC/ACC) and 

heterozygotes (ACC/GTT) for NFKBIA promoter SNPs rs3138053/rs2233406/rs2233409. 

Responses for TLR ligands LPS, Pam3CSK4, 3M003,  and 3M002 (A, B, C, D) are shown. . 

Values represent means ±SEM of 5-7 heterozygotes (open circles) and 5-10 homozygotes 

(black squares). A two-way ANOVA was performed with a post-test.*, p<0.05, **,p<0.01, 

***p<0.001. 
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Figure 3.10. Pathways that do not require IκBα signaling are not affected by SNPs in the 
NFKBIA promoter. Homozygotes (black squares, n=12) and heterozygotes (open circles, n=8) 

of mixed descent (A) as well as homozygotes (black squares, n=10) and heterozygotes (open 

circles, n=7) of European descent (B) did not show any differences in IFNα production. 
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Chapter 4: Discussion 

 

4.1 Overview 

In this project we analyzed the functional impact of minor variants of SNPs rs2233406, 

rs2233409 and rs3138053 in the NFKBIA promoter. Using LD and functional analysis we 

identified a 2 variant risk haplotype (consisting of SNPs rs3138053 and rs223406) which was 

common in the 4 major ethnic groups examined and a 5 variant risk haplotype (consisting of 

rs3138053, rs2233406, rs2233409, rs11569591 and rs2233411) which was unique in 

individuals of European descent. Subsequently using a tag SNP (rs1050851) that was in strong 

LD with SNPs rs2233406, rs2233409 and rs3138053 we were able to detect allelic imbalance in 

PBMCs of heterozygotes. This was followed by a measure of NFKBIA expression wherein 

heterozygous individuals of European descent showed reduced expression of NFKBIA in 

comparison to homozygotes. Analysis of neonatal innate immune responses revealed that 

NFKBIA heterozygotes displayed greater secretion of TNFα than homozygotes in response to 

various TLR ligands. In this chapter I will be reviewing the techniques utilized in this study, the 

feasibility of future follow up experiments and how the results from this project may be 

applicable to a clinical setting. 

 
4.2 Allele specific PCR  
4.2.1 Choice of tagging SNP 

We validated and applied an allele specific PCR assay to investigate allelic imbalance in the 

NFKBIA promoter. The advantages of working with a candidate gene such as NFKBIA is that it 

only has 3 synonymous SNPs in the coding region: rs1050851, rs2233411, and rs1957106 that 

are present at a minor allele frequency of greater than 1 percent. rs2233411 has a minor allele 

frequency of 4.2% in individuals of African descent and no known minor allele frequency in 

individuals of other ethnicities (dbSNP). It shows poor linkage (less than 5%) with promoter 

variants in all the 4 major population groups examined. rs1957106 has minor allele frequencies  

of 30.4%, 22.5%, 18.2%, and 25.0% in individuals of European, African, Chinese (Han) and 

Japanese descents respectively. However, rs1957106 shows poor linkage (less than 35%) with 

promoter SNPs in NFKBIA  for all the ethnic groups examined. rs1050851 has a minor allele 

frequency of 24.1% in individuals of European descent and minor allele frequencies of 0.9%, 

2.3%, 4.7% for individuals of African, Chinese (Han) and Japanese descent. It shows strong 

linkage with 5 variants, within the NFKBIA gene  in individuals of European descent, three of 

which are promoter SNPs (rs2233406, rs2233409, rs3138053), one is a promoter structural 
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variant (rs1156951) and one  is an intronic variant (rs 2233411). rs1156951 and rs2233411 are 

in strong LD with the promoter SNPs rs2233406 and rs3138953, and were shown to occupy 

putative transcription factor binding sites (refer to results). Strong linkage of rs1050851 with 

promoter variants is not seen in other ethnic groups (African, CHB, JPT) examined in this study. 

This was also evident from our genotyping results where 11 out of 12 individuals who were 

heterozygous for SNPs rs3138053, rs2233406, rs2233409 and rs1050851 were of European 

descent. Since it is possible that rs1050851 might be in strong linkage with variants outside the 

NFKBIA gene, using the Genome Variation Server,  we searched 20,000 base pairs upstream 

and 20,000 bp down stream of rs1050851 for any variants that were in strong linkage with 

rs1050851.  The greatest linkage (55.8%) was seen for variants rs10148482 and rs3138045. No 

data on Hap Map is available about the location of these SNPs relative to the NFKBIA gene nor 

have these SNPs been identified to occupy any putative binding sites. Therefore, rs1050851 is 

a valid choice for a tag in measuring allelic imbalance of NFKBIA transcripts in NFKBIA 

promoter heterozygotes. 

 

4.2.2 Precision of assay 

Our standard curve gave us the precision to measure allelic imbalance from 1:0.5 (CC:TT or 

TT:CC) to 1:8 (CC:TT or TT:CC)  for rs1050851. Our measured allelic imbalance values ranged 

between 0.94 to 1.49 (CC:TT) with the median value ranging from 1.21 to 1.24 for each of the 5 

conditions (Unstimulated, stimulated with LPS for 3 hours, stimulated with LPS for 4 hours, 

stimulated with S. pneumoniae for 3 hours and stimulated with S. pneumoniae for 4 hours). 

Therefore our measured values fall within the known range of the standard curve. The only 

other measure of allelic imbalance in an innate immunity gene was done by Cambino et al. for 

an exonic SNP (rs352140) in TLR9 where heterozygous individuals showed allelic imbalance 

values ranging from 0.5-1.87 of the major allele relative to the minor allele (97). The assay was 

done using an Allelotype platform, which utilized mass spectrometry based nucleotide acid 

analysis for genotyping in lymphoblastoid cell lines (LCLs). The next section discusses the 

potential issues associated with selecting cell types for allelic imbalance studies. 

 
4.3 Choice of cell types 
In this study we performed NFKBIA allele specific and gene expression experiments on primary 

cells. Most allele specific PCR assays have been done using lymphoblastoid cell lines (LCLs) 

immortalized using Epstein Barr Virus (98, 99). The advantages of working with LCLs is that 

they provide a fixed environment for investigating differences in gene expression (80). However, 

such a system is not representative of in vivo biology and does not take into account epigenetic 

factors that might influence gene expression (100). The allelic imbalance (AI) observed in clonal 
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cell lines might in part result from a greater preponderance of  monoclonal allelic expression 

resulting from epigenetic imprinting (101). Therefore, in a LCL population of cells the greater 

prevalence of paternal or maternal allele expressing clones may result in a false positive result 

of allelic imbalance. A recent study has shown that as much as 20% of an LCL derived 

population might be affected by monoclonal allelic expression (102). Primary cells offer the 

advantage of being experimentally unmanipulated and the results obtained from performing 

experiments are more reflective of in vivo biology.  

 
4.4 Analysis of variation in gene expression 
4.4.1 Ligand and pathogen specific differences 

NFKBIA allele specific and mRNA expression was examined using LPS and Streptococcus 

pneumoniae (serotype 14). We noted that mean allelic imbalance values and standard 

deviations for PBMCs that were stimulated with S. pneumoniae (1.23±.0.11(SD), 1.25±0.12(SD)  

for 3 and 4 hours respectively)  were nominally higher than PBMCs that were stimulated with 

LPS (1.22±0.055(SD), 1.22±0.093(SD) for 3 and 4 hours respectively). However there were 

more pronounced differences in mean values and standard deviations when examining NFKBIA 

mRNA expression. Homozygote (ACC/ACC) and heterozygote (ACC/GTT) PBMCs stimulated 

with LPS for 3 hours had NFKBIA expression values of 2.106±0.497 (SD) and 2.954±0.936 

(SD), P= 0.0094  with LPS while with S. pneumoniae the values were  2.402±0.967 (SD) and 

3.629±2.182 (SD), P= 0.0244 respectively. Similarly for the 4 hour stimulation homozygotes 

(ACC/ACC) and heterozygotes (ACC/GTT) stimulated with LPS had NFKBIA expression values 

of 2.499±.0882 (SD) and 2.748±0.598 (SD), P=0.115 while stimulation with S.pneumoniae 

yielded values of 2.865±1.095 (SD) and 3.622±1.235 (SD), P= 0.0524). Similar differences were 

seen when examining expression between mixed ethnicities. The greater mean expression of 

NFKBIA and standard deviation for samples stimulated with S. pneumoniae can probably be 

attributed to the varying level of MOIs of S. pneumoniae given to PBMCs. Since we were 

working with a live pathogen, our goal was to limit the range MOI stimulation between MOIs 10-

15. But in practice, judging from plate counts, we noted the MOIs varied between 7.8 to 30.  

 

4.4.2 Inter-individual differences 

Inter-individual differences in gene expression from peripheral mononuclear cells (PBMCs) 

resulting from non-genetic factors such as diet, age and gender do exist (103, 104). In our study 

the mean allelic imbalance readouts with the standard deviations (SD) for all 12 individuals 

examined were  1.21±0.1 (unstimulated), 1.22±0.055 (LPS stimulated for 3 hours), 1.22±0.093 

(LPS stimulated for 4 hours), 1.23±.0.11 (S. pneumoniae stimulated  for 3 hours), and 1.25±0.12 

(S. pneumoniae stimulated  for 4 hours). We were not able to detect any differences in allelic 
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imbalance between unstimulated and stimulated samples. However, we did show that allelic 

imbalance is prevalent in all samples. This implies that the AI seen for NFKBIA promoter 

variants exists at base line levels and is not stimulus driven. It is to be noted that our purpose 

was to detect allelic imbalance in the NFKBIA promoter. In order to get an absolute 

quantification of allelic imbalance in stimulated and unstimulated conditions a larger set of 

individuals might be needed to detect such subtle differences, if they exist. 

 

4.4.3 Ethnic differences  

We also noted the NFKBIA mRNA levels in individuals of European descent were significantly 

lower in NFKBIA heterozygotes than homozygotes at the three hour time point (2.106±0.497 

(SD) vs 2.954±0.936 (SD), P= 0.0094  with LPS and   2.402±0.967 (SD) vs 3.629±2.182 (SD) 

with   S. pneumoniae, P= 0.0244)  than the four hour time point (2.499±.0882 (SD) vs 

2.748±0.598 (SD), P=0.115 with LPS and 2.865±1.095 (SD) vs 3.622±1.235 (SD), P= 0.0524). 

We had originally hypothesized this effect based on the presence of an insertional/deletion risk 

variant rs11569591 and an intronic variant rs2233411 both of which were in strong LD with the 

rs3138053 risk variant that. No previous association studies of NFKBIA involving these variants 

have been done. However, a 4 base pair insertion/deletion -94(ATTG) polymorphism 

(rs28362491) that is located between two putative key promoter regulatory elements of the 

NFKB1 gene-that encodes for the NF-κB1  protein-sub unit of the NFKB1/p50 and NFKB1/p105 

heterodimers has been associated with the risk of increased risk of ulcerative colitis, psoriasis, 

nasopharyngeal carcinoma, oral squamous cell carcinoma, cervical squamous cell carcinoma, 

superficial bladder cancer and prostate cancer (105-111). NFKB1 promoter-luciferase reporter 

plasmid constructs containing the -94delATTG, which were transfected in Hela or HT-29 cell 

lines, showed reduced promoter activity when compared to constructs containing the  

-94insATTG allele (105). The rs11569591 -599(-/GGAGGGGG) polymorphism has a minor 

allele frequency of 28.7% in individuals of European descent and 16.7% in individuals of African 

descent where the minor allele is the insertion allele and the major allele is the deletion allele 

(dbSNP). Based on the results obtained from association and functional studies done with the 4 

base -94delATTG polymorphism in NFKB1, it is highly plausible that the associated 8 base 

rs11569591 -599(-/GGAGGGGG) polymorphism in the NFKBIA promoter in combination with 

rs3138053 can potentially further impact promoter activity, leading to a more reduced NFKBIA 

expression level as was seen in populations where this polymorphism was commonly prevalent.  

 

No studies to date have compared expression levels between individuals homozygous and 

heterozygous for either of the 4 SNPs (rs3138053, rs2233406, rs2233409, and rs1050851) 

examined in this study. However, it has been previously shown that the minor allele (GTT) 
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haplotype has been associated with the risk of sarcoidosis; in a separate study,  untreated and 

treated patients with sarcoidosis show levels of NF-κB protein, in the nuclear extract of PBMCs, 

that are twice as high than healthy controls (55, 112).  

 

4.4.4 Artefactual differences 

Artefactual differences in mRNA expression can occur if a cis acting polymorphism is present on 

the primer target sequence of the gene (113). The primer pair used for measuring NFKBIA 

mRNA expression amplifies a 173bp sequence in exon 3 of the gene. All exonic polymorphisms 

map to exons 1,2, and 6 but not exon 3 in NFKBIA (http://www.ncbi.nlm.nih.gov/SNP). Similarly, 

for the house keeping gene ACTB (beta actin), the primer sets used amplify a 147 bp sequence 

in exon 6.  There is a synonymous polymorphism in this region, rs13447409, but it occurs at a 

low minor allele frequency (0.6% in a mixed population). 

 
4.5 Choice of ligand and time course selection 
LPS was chosen as a prototypical proinflammatory stimuli for studying NFKBIA expression. 

Even though from the perspective of NF-κB signaling, any ligand for a receptor system that 

culminates in the activation of the classical NF-κB pathway would be suitable for stimulation, 

differences exist between the specific downstream effects of ligands on the NF-κB/IκBα 

autoregulatory loop. Studies using mice embryonic fibroblasts (MEFs) have shown that TNFα 

mediated activation of NF-κB involves a negative feedback loop mediated by IκBα, whereas 

LPS and pathogenic mediated activation does not involve a negative feedback loop (114). In a 

study done by Covert et al.,  when MEFs were stimulated with LPS over a 3 hour time course, 

the IκBα protein level  decreased and remained consistently low, while IκBα mRNA transcript 

levels increased and remained consistently high (115). This finding is partially consistent with 

our trial experiments with LPS stimulation of human PBMCs, where cells were stimulated with 

100ng/ml of LPS for 1,2,3 and 4 hours. We noticed that the NFKBIA expression peaked at the 3 

hour time point and remained consistent at the 4 hour time point.  In the presence of TNFα, NF-

κB shows damped oscillations in activity which has been shown to be a consequence of the 

negative feedback inhibition by IκBα. In contrast NF-κB activation is stable in the presence of 

LPS (116). Taken together this implies that in response to an LPS stimulation, there is 

proteasomal degradation of IκBα that allows subsequent binding of NF-κB to its response 

elements on NFKBIA leading to an up-regulation of NFKBIA transcription. However, this 

stimulus does not lead to the restoration of the inhibiton of IκBα on NF-κB. From the viewpoint of 

examining the functional differences of promoter variants in the promoter of NFKBIA, a LPS 

stimulus is more useful, as it has allowed us to see differences in NFKBIA mRNA expression at 

time points were NFKBIA expression is consistent as opposed to a TNFα induction model where 
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NFKBIA expression shows an oscillatory behaviour (116). Therefore when studying the 

immediate impact of regulatory variation on NFKBIA expression the LPS stimulus is more 

useful, whereas for studying the impact of regulatory variation on the NF-κB/IκBα autoregulatory 

loop a TNFα stimulus would be more relevant. 

 
4.6 Choice of CpGA mediated TLR9 secretion of IFNα as a non-IκBα requiring pathway 
Type 1 interferons have key roles in anti viral and anti proliferative responses. Specifically, IFN 

α and IFN β bind to the interferon receptor and initiate the Janus kinase/signal transducer of 

transcription (JAK-STAT) signaling cascade. This leads to the transcription of host genes 

involved in the inhibition of viral replication (117). Activation of TLRS 3, 4, 7, 8, and 9 results in 

the production of type 1 interferons. TLRs 3 and 4 activate the gene encoding IFNβ via the TIR-

domain-containing adapter-inducing interferon-β-Interferon regulatory factor 3 (TRIF-IRF3) 

complex while TLRs 7, 8, 9 activate the gene encoding IFNα via the Myd88-IRF7 complex 

(118). The expression of the IFNβ gene occurs upon the binding of the 1) jun 

oncogene/activating transcription factor (c-jun/ATF-2) heterodimer, 2) IRFs 1, 7 and 9, and 3) 

NF-κB to their respective binding sites in the IFNβ promoter. However, the binding of  c-

jun/ATF-2 and NF-κB to the IFNβ promoter is not required for the induction of IFNβ mRNA  

expression (119).  Owing to the fact that IFNβ expression can occur in the presence of NF-κB, 

we chose not to use IFNβ as a readout cytokine for pathways that do not require IkBα 

degradation. 

 

The IFNα promoter lacks NF-κB binding sites but has binding sites for IRF transcription factors 

(119). Kawai et al, showed that in response to the TLR9 ligand CpG, Myd88 formed a complex 

with IRF7 and not IRF3, followed by recruitment of TRAF6 which lead to the activation of IFNα 

promoters (118). In its inactive form, IRF-7 resides in the cytoplasm. However unlike the 

activation of NF-κB which requires the phosphorylation of  IκBα by the IKK complex, activation 

of IRF-7  requires its direct phosphorylation by IKKα (120). Our preference for studying the 

CpGA mediated activation of TLR9 (as opposed to the activation of TLRs 7 and 8) was primarily 

owing to the fact that CpGA stimulation of plasmocytoid dendritic cells has been shown to lead 

to a greater upregulation of IFNα mRNA  expression over IFNβ mRNA  expression and a 

substantial increase in IFNα cytokine secretion (121, 122). Thus, as IFNα expression is not 

induced by NF-κB, and the primary transcription factor (IRF-7) involved in its induction is not 

regulated by IκBα, we selected IFNα as a cytokine whose production would not require IκBα 

degradation. However, to rule out any possible secretion of IFNα by an uncharacterized 

receptor system or pathway that might be regulated by IκBα, confirmatory experiments would be 
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required. This would include analyzing IFNα mRNA and protein expression in the context of 

selective knockdown of NFKBIA mRNA expression and IκBα inhibition. 

 
4.7 Follow up experiments: Need and feasibility 
Our hypothesis was that the presence of minor variants in the promoter of NFKBIA would lead 

to a reduced expression of its minor allele transcripts, leading to an overall reduction of NFKBIA 

mRNA levels. This would result in a reduction of IκBα molecules (which are needed to bind and 

sequester NF-κB in the cytosol) allowing more NF-κB molecules to bind and initiate 

proinflammatory cytokine expression. Our results have provided supporting evidence for 

reduced expression of minor allele containing transcripts and reduced mRNA levels of NFKBIA 

in individuals with the minor allele as well as increased inflammatory cytokine production. 

However, reduced IκBα production and increased NF-κB translocation are yet to be validated. 

Figure 4.1 outlines the key aspects of this study. An NF-κB  EMSA and an IκBα western blot 

would be suitable for examining variations in IκBα expression and NF-κB translocation between 

homozygotes and heterozygotes. These approaches have been used in validating promoter 

variants in other genes (87, 105). The differences observed in this project at the gene level are 

subtle; a 20-25% difference was seen in the expression of the major and minor allele 

transcripts, 28.5-33.8% differences in NFKBIA mRNA expression. Western blots and EMSAs 

are good qualitative measures of differences and their feasibility for measuring quantitative 

differences would be better served when examining larger differences such as those seen in the 

context of mutations or non-synonymous polymorphisms as opposed to regulatory 

polymorphisms. We were not able to recruit sufficient numbers of individuals who were 

homozygous for the minor alleles of rs3138053, rs2233406, and rs2233409 (GTT/GTT). Of the 

97 individuals screened we only came across one individual who was homozygous for the minor 

allele of all 3 SNPs. Similarly, we came across a single neonate that was homozygous for all 3 

SNPs. It would be informative to screen a larger subset of individuals to recruit minor allele 

homozygotes to see if the impact of the minor variants leads to more dramatic differences in 

NFKBIA gene expression and innate immune response in such individuals. A larger recruitment 

would also be needed to see if the magnitude of differences seen in TNFα output between 

homozygotes and heterozygotes of European descent differs in comparison to the magnitude of 

differences of TNFα output seen in other ethnicities. Another informative future experiment 

would be to analyze NFKBIA allelic imbalance and expression in homozygotes (ACC/ACC) and 

heterozygotes (ACC/GTT) using commonly invasive and rarely invasive serotypes of S. 

pneumoniae. Studies done in our lab have shown that human acute monocytic leukemia cell 

line (THP1) cells stimulated with commonly invasive serotypes of S. pneumoniae display a 

reduced TNFα secretion, and thus a reduced immune response, than rarely invasive ones 
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(123). It would be interesting to see if these differences are less pronounced or more 

pronounced in different NFKBIA genotypes of the host PBMCs when stimulated with different S. 

pneumonia serotypes. 

 
4.8 Clinical implication of dysregulated TNFα production in inflammatory/autoimmune 
disease 
The minor allele haplotype GTT has been shown to be associated with the risk of auto 

immune/inflammatory conditions. In this study it was shown that individuals heterozygous for 

these promoter SNPs displayed higher TNFα secretion than homozygotes in response to 

ligands for TLRs 1,2,4,7, and 8 which are involved in recognition of pathogen associated 

molecular patterns. TNFα was originally identified as an endotoxin induced glycoprotein, which 

caused haemorrhagic necrosis of sarcomas (124). Subsequent studies have revealed that 

TNFα is a key mediator of the inflammatory response to infection (125). TNFα is produced 

mainly by activated macrophages but is also produced by other immune cells such as mast 

cells,  T and B lymphocytes, natural killer (NK) cells and  neutrophils  as well as smooth muscle 

cells, adipocytes and fibroblasts (124, 126).  TNFα binds to its target receptors TNFR1 and  

TNFR2 which are expressed on most cell types with the exception of erythrocytes (126). TNFR1 

mediates signaling through proinflammatory and programmed cell death pathway via the 

activation of NF-κB and TNFR2, which has roles in signaling proliferation of thymocytes,  

cytotoxic T cells, and human mononuclear cells (127). Upon binding of TNFα to TNFR1 at the 

plasma membrane, the TNFR1 death domain binds the TNFRSF1A-associated death domain 

(TRADD) adapter protein. TRADD recruits TNF receptor-associated factor 2 (TRAF2) protein 

and Ral-interacting protein 1 (RIP1) protein which, through a series of signaling intermediates, 

signal the activation of NF-κB via the classical NF-κB signaling pathway (128). NF-κB in turn 

binds to consensus sites in the promoter of the TNFα gene and thereby initiates TNFα 

transcription. Subsequent synthesis of the TNFα protein results in a  positive feedback that 

leads to further production of TNFα (129, 130). Elevated TNFα levels are not observed in 

healthy individuals but are prominent in response to pathogenic stimuli. Elevated serum and 

tissue levels of TNFα  routinely associate with inflammatory and infectious conditions, and 

serum levels of TNFα correlate with the severity of infections (131, 132). Whereas elevated 

TNFα levels are needed in responding to infections, excessively high TNFα levels are 

associated with chronic inflammatory and autoimmune conditions which include rheumatoid 

arthritis, inflammatory bowel disease, psoriatic arthritis, vasculitis, and ankylosing spondilitis 

(133). Consequently, therapies that target TNFα production have shown promising results in 

reducing the severity of such conditions (134). 
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4.9 From bench to bedside: Diagnostic value of NFKBIA expression and NFKBIA 
polymorphisms in determining response to anti TNFα therapy  

 Anti-TNFα therapy is not applicable to all patients of chronic inflammatory conditions. One third 

of rheumatoid arthritis patients that are prescribed anti-TNFα therapy are non-responders (135).  

A subset of patients also display adverse side effects. Specifically, association and functional 

studies have shown that anti-TNFα therapy increases the risk of bacterial infections. For a 

recent review, refer to review articles cited at the end of this chapter (136, 137). Our results can 

potentially add more depth in the prognosis of non-response and adverse response to anti-

TNFα therapy. Expression levels of soluble TNFR2 which acts a surrogate for TNFα levels in 

blood was shown to be elevated 12 years prior to the development of rheumatoid arthritis and 

were positively associated with the incidence of rheumatoid arthritis in women (138). 

Consequently, NFKBIA expression has been shown to positively associate with non-

respondence to anti TNFα therapy in rheumatoid arthritis patients and has been recommended 

as a prognostic marker for anti-TNFα therapy (139). The importance of knowing an individual’s 

genetic response to anti-TNFα therapy will become more relevant once we enter the age of 

personalized medicine. 

 
4.10 Conclusion 
Genetic association studies have been critical in identifying genetic variants that associate with 

disease. Yet, the information obtained from such studies has functioned as the proverbial “tip of 

the iceberg” when it comes to understanding the precise disease pathology resulting from such 

variants and in determining therapeutic approaches applicable for reducing such pathologies. 

Our journey began with the observation that minor variants of SNPs rs3138053, rs2233406 and 

rs2233409 in the promoter of NFKBIA were associated with the risk of autoimmune and 

inflammatory conditions while at the same time they were protective against infections (Fig. 4.2).   

Our study has shown individuals heterozygous for NFKBIA promoter variants rs3138053, 

rs2233406, rs2233409 display allelic imbalance, reduced expression of NFKBIA mRNA than 

homozygotes while showing elevated levels of TNFα. The results presented here provide further 

evidence for the importance of the IκB family of proteins, specifically for IκBα in regulating the 

inflammatory response. A global understanding of the functional consequences of regulatory 

polymorphisms of NFKBIA  will be provided with subsequent experiments that examine 

differences between all NFKBIA promoter genotypes (including minor allele homozygotes) for 

IκBα protein expression and NF-κB translocation in all major ethnic groups.
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Figure 4.1. Possible future areas of research in mapping functional role of NFKBIA  
promoter variants. Solid arrows link experiments that were performed in this project, and 

dotted arrows represent potential future experiments that may be required for a better functional 

understanding of the functional impact of the promoter variants of NFKBIA. 
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Figure 4.2. Overall summary of research.  Our goal was to gain a functional understanding of 

the opposing associations of the minor allele haplotype GTT (corresponding to SNPs 

rs3138053, rs2233406, rs2233409) with infectious and auto immune conditions. Through a 

series of functional experiments, we were able to demonstrate the impact of the minor allele 

variants on NFKBIA allele specific expression, NFKBIA  gene expression and the innate  

immune response.
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Appendix: Haplotypes and LD measure for the entire NFKBIA gene in 4 major ethnic 
groups 

 
 

 
 
 
 
Figure A.1. Haplotyope for the NFKBIA gene in individuals of European descent. Variants 

in the promoter region are shown in a black triangular grid. 
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Figure A.2. Haplotype for the NFKBIA gene in individuals of African descent. Variants in 

the promoter region are shown in a black triangular grid. 
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Figure A.3. Haplotype for the NFKBIA gene in individuals of Chinese (Han) descent. 
Variants in the promoter region are shown in a black triangular grid. 

 
 

 
 
Figure A.4. Haplotype for the NFKBIA gene in individuals of Japanese descent. Variants in 

the promoter region are shown in a black triangular grid. 
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Figure A.5. Strong LD is seen in non-coding regions of NFKBIA. The total number of 

variants that displayed strong LD (LD≥80%) for each gene region were divided by the absolute 

number of variants in each of the 4 populations examined to yield a percentage of LD (A). 

Region-specific LD was also determined by dividing the number of variants that displayed 

strong LD within the region by the total number of variants (B). 
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