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Abstract

In order to model the binary process of precipitation and the dichotomized
temperature process, we use the conditional probability of the present given
the past. We find necessary and sufficient conditions for a collection of
functions to correspond to the conditional probabilities of a discrete–time
categorical stochastic process X1,X2, · · · . Moreover we find parametric rep-
resentations for such processes and in particular rth–order Markov chains.

To dichotomize the temperature process, quantiles are often used in the
literature. We propose using a two–state definition of the quantiles by con-
sidering the “left quantile” and “right quantile” functions instead of the
traditional definition. This has various advantages such as a symmetry re-
lation between the quantiles of random variables X and −X. We show that
the left (right) sample quantile tends to the left (right) distribution quantile
at p ∈ [0, 1], if and only if the left and right distribution quantiles are iden-
tical at p and diverge almost surely otherwise. In order to measure the loss
of estimating (or approximating) a quantile, we introduce a loss function
that is invariant under strictly monotonic transformations and call it the
“probability loss function.” Using this loss function, we introduce measures
of distance among random variables that are invariant under continuous
strictly monotonic transformations. We use this distance measures to show
optimal overall fits to a random variable are not necessarily optimal in the
tails. This loss function is also used to find equivariant estimators of the
parameters of distribution functions.

We develop an algorithm to approximate quantiles of large datasets
which works by partitioning the data or use existing partitions (possibly
of non-equal size). We show the deterministic precision of this algorithm
and how it can be adjusted to get customized precisions. Then we develop a
framework to optimally summarize very large datasets using quantiles and
combining such summaries in order to infer about the original dataset.

Finally we show how these higher order Markov models can be used to
construct confidence intervals for the probability of frost–free periods.
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Chapter 1

Thesis introduction

This thesis develops mathematical and statistical framework to model stochas-
tic processes over time. In particular it develops models for precipitation
and extreme (high or low) temperature events occurrences. This is impor-
tant for Canada’s agriculture since agricultural production is dependent on
weather and water availability.

We study the quantiles of data and distributions in detail and develop
a framework for approximating quantiles in large datasets and inference.
We also study categorical Markov chains of higher order and apply them to
precipitation and temperature processes. However, the methodologies and
theories developed here are general and can be used in many other appli-
cations where such processes are encountered (such as physics, chemistry,
climatology, economics and so on).

Sample quantiles and quantile function are fundamental concepts in
statistics. In the study of extreme events they are often used to pick appro-
priate thresholds. We use the quantiles specifically to pick thresholds for the
temperature process. This motivates us to study the concept of quantiles and
extend their classic definition to provide a more intuitively appealing alter-
native. This alternative also enables us to get interesting asymptotic results
about their sample counterparts and a framework to approximate quantiles
and make inference. In fact weather datasets (observed weather or output of
climate models) are very large in size. This makes computing the quantiles
of such large datasets computationally intensive. Along with this alternative
definition, we present an algorithm for computing/approximating quantiles
in large datasets.

The data used in this thesis come from the climate data CD published by
Environment Canada [10], which includes the daily observed precipitation
and temperature data for several station from 1895 to 2007 (the years vary-
ing with the station). The data are saved in several binary files. We have
written a Python module to extract the data in desired formats. The guide
to using this module is in Appendix B. For most of the analysis however, we
have used the “homogenized” dataset for Alberta. This dataset is adjusted
for change of instruments and location of the stations. More information
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about the datasets is given in Appendix B and Chapter 2.
Chapter 2 presents results from the exploratory analysis of the dataset.

We look at the variables’ daily time series, monthly means time series, annual
means time series and the distribution of the daily/annual means values. We
also look at the relation between the variables as well as some long–term
trends by simple techniques such as linear regression. For example it seems
that the mean summer daily minimum temperature has increased over time
at some locations in Alberta. Then we study the seasonal patterns of these
variables over the course of the year. As expected there is a strong sea-
sonal component in these processes. For example, we observe that the daily
temperature is more variable in the colder seasons than the warmer ones.
The daily values for the minimum and maximum temperature seem to be
described fairly well by a Gaussian process. However, some deviations from
the Gaussian assumption is seen in the tails. This is particularly impor-
tant in modeling extreme events and will help us in later chapters to choose
our approach to modeling the occurrence of such extremes. As a part of
the exploratory analysis, we look the precipitation occurrence. A question
that has been addressed by several authors (e.g. Tong in [45] and Gabriel
et al. in [18]) is the Markov order of such a chain. The exploratory anal-
ysis using the transition probabilities plots leads to the conjecture that a
1st–order Markov chain should be appropriate. This is studied in detail in
later chapters. We also look at the spatial–temporal correlation function of
these processes. Several interesting features are observed. For example for
the maximum and minimum temperature, the correlation seems to be sta-
tionary over time. Also the geodesic distance seems to describe the spatial
correlation for temperature well. For precipitation on other hand not much
spatial correlation is observed. This could be due to the fact that we have
only 47 precipitation stations available over Alberta and it is more variable
over space compared to temperature.

Let us denote a general weather process by Xt, where t denotes time.
The main approach we take to model the process is discrete–time categorical
rth–order Markov chains (r a natural number), where we have the following
assumption for the conditional probabilities:

P (Xt|Xt−1, · · · ) = P (Xt|Xt−1, · · · ,Xt−r).

“Categorical chain” here means thatXt takes only a finite number of possible
states. For example it can be a two state space of the (occurrence)/(non-
occurrence) of precipitation. Dichotomizing the temperature process, we
can consider processes such as (freezing)/(not freezing). Processes with
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more than two states can also be considered. For example a process with
three states: (not warm)/(warm)/(hot).

Chapter 3 studies the rth–order categorical Markov chains in general.
We present a new representation theorem for such chains that expresses the
above conditional probability as a linear combination of the monomials of
past process values Xt−1, · · · ,Xt−r. We will show the existence and unique-
ness of such a representation. In the stationary case since the conditional
probability is the same for all time points, some more work on the consis-
tency shows that this representation characterizes all stationary categorical
rth–order Markov chains. For the binary case the result is a corollary of
a theorem stated in [6]. However, the expression of the theorem in [6] is
flawed as also pointed out by Cressie et al. [14]. We present a rigorous
statement along with a constructive proof for the theorem. For discrete–
time categorical chains with more than two states this theorem does not
seem especially useful. We prove a new theorem for this case that gives
us representation for all discrete–time categorical chains (rather than only
binary). In order to estimate the parameters of such a model in the binary
case and infer about them, we use the “Time series following general linear
models” as described in [27]. The inferences are similar to generalized linear
models. However because of dependencies over time some extensions of the
usual theory are needed. Maximizing the “partial likelihood” will give us
“consistent” estimators as shown in [48]. We apply the partial likelihood
theory to our proposed rth–order Markov models. Simulations show that
partial likelihood and the representation together give us satisfactory re-
sults for the binary case. We also check the performance of the Bayesian
information criterion (BIC), developed in [42] and others, to pick optimal
models by simulation studies and we get satisfactory results. This allows us
not only to pick the order of the Markov chain but also to compare several
Markov chains of the same order. Another advantage of this model to ex-
isting ones is the capacity to accommodate other continuous variables. For
example, we can add some seasonal processes to get a non–stationary chain.
[In previous studies regarding the order of the chain e.g. [45] and [18], it
was assumed that the precipitation chain is stationary.] We can also add
covariate processes such as temperature of the previous day to the model.
Then we apply these techniques to the binary precipitation process in Al-
berta and pick appropriate models. A 1st–order non-stationary (with one
seasonal term) seem to be the most appropriate based on the BIC method
for model selection.

To apply these techniques to the temperature processes, we need a way
of dichotomizing the temperature process. Usually certain quantiles are cho-
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sen in order to do so. Computing the quantiles for large datasets can be
computationally challenging. Very large datasets are often encountered in
climatology, either from a multiplicity of observations over time and space or
outputs from deterministic models (sometimes in petabytes= 1 million giga-
bytes). Loading a large data vector and sorting it, is impossible sometimes
due to memory limitations or computing power. We show that a proposed
algorithm to approximating the median, “the median of the median” per-
forms poorly. Instead, we propose a new algorithm that can give us good
approximations to the exact quantiles, which is an extension of the algo-
rithm proposed in [3]. In fact, we derive the precision of the algorithm. The
algorithm partitions the data, “coarsens” the partitions at every iteration,
put the coarsened vectors together and sort it instead of the original vector.

Working on the quantiles, in order to find some theory to justify the use-
fulness and accuracy of the algorithm motivated us to think about the defi-
nition of the quantile function and quantiles for data vectors. The quantile
function of a random variable X with distribution function F is traditionally
defined as

q(p) = inf{u|F (u) ≥ p}.
Applying this to the fair coin example with 0, 1 as outputs, we get q(1/2) =
0. This is counterintuitive to the fact that the distribution has equal mass
on 0 and 1. Also a standard definition for the quantiles does not exist for
a data vector. [For example Hyndman et al. [25] point out that there are
many definitions of quantiles in different packages.] For example suppose
a data vector has an even number of points, then there is no point exactly
in the middle, in which case, the average of the two middle values is often
proposed as the median. We argue that this is not a good definition. In fact,
we present an alternative way of defining quantiles that is motivated by an
intuitive experiment and resolve all the above problems. We propose using
the two-state definition of right and left quantiles instead of only quantile.
The left quantile is defined as above and the right quantile is defined to be

rq(p) = sup{u|F (u) ≤ p}.

We also define left and right quantiles for the data vectors and study the
limit properties of the sample quantiles. For example it turns out the sample
left and right quantile converge to the distribution quantiles if and only if
the left and right quantile are equal. This again shows another interesting
aspect of the definition of quantiles and confirms that it is not redundant.
This definition is an extension to the concept of upper and lower median
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in robustness literature. Also in some books (e.g. [41]) rq(p) is taken to
be the definition of quantiles. However, we do not know of any study of
their properties or a claim that considering both can lead to many inter-
esting results. We also show that the widely claimed equivariance property
of traditional (left) quantile functions under strictly increasing transforma-
tions (for example in [21] and [29]) is false. However, we show that the
left (right) quantile is equivariant under left (right) continuous increasing
transformations. We also provide a neat result for continuous decreasing
transformations. We also show that the probability that the random vari-
able is between these the right and left quantile is zero and the left and right
quantile are identical except for at most a countable subset of [0,1].

Since our objective is to approximate to the exact quantiles by our al-
gorithm, we need a way of assessing the accuracy such an approximation
(a loss function). We introduce a new loss function that is invariant un-
der strictly monotonic transformations of the data or the random variable.
This loss function is very natural and in summary the loss of estimating a
quantile z by z′ is the probability that the random variable is between these
two values. In other words, we use the mass of the random variable itself
between the two values to judge the goodness of the approximation. We
also show some limit theorems to show the empirical loss function tends to
the loss function of the distribution. This loss function might be a useful
tool in many other contexts and is an interesting topic for future research.

We show by simulations and real data the algorithm performs well. Then
we will apply it to the weather data to pick the 95% quantile for the max-
imum daily temperature. After picking the quantiles we use the rth–order
Markov techniques and partial likelihood to find appropriate models to de-
scribe the temperature. Using this loss function and the theory developed
for the quantiles, we introduce measures to compute “distance” among dis-
tribution functions over the reals (random variables) that are invariant un-
der continuous strictly monotonic transformations. We use this distance
measures to show optimal overall fits to a random variable are not neces-
sarily optimal in the tails (and hence not appropriate to study extremes).
We also find “optimal” ways of picking a limited number of probabilities
0 ≤ p1 < · · · < pk ≤ 1 to summarize a random variable by its corresponding
quantiles.

Finally we show how these higher order Markov models can be used to
construct confidence intervals for the probability of a frost free week at the
beginning of August at Medicine Hat (in Alberta).

The last chapter provides a summary of the work and the conclusions.
It also points out some interesting questions that are not answered in this
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thesis and a research proposal for the future.
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Chapter 2

Exploratory analysis of the
Canadian weather data

2.1 Introduction

This chapter performs an exploratory analysis for the Homogenized climate
dataset for the province of Alberta in Canada. We have access to daily
maximum temperature (MT ), daily minimum temperature (mt) and precip-
itation (PN). The temperature data have been provided to us by Vincent,
L.A. and the precipitation data have been provided to us by Eva Mekis both
from Environment Canada. This dataset has been homogenized for changes
of instrument, changes of the location of the stations and so on. More in-
formation about these data can be found in [34] and [47]. These data are
a homogenized part of a larger dataset published by Environment Canada
(2007), which are in binary format and a Python module in order to extract
them is provided in Appendix B.

This chapter uses several graphical and analytical tools to examine the
behavior of selected climate variables. Looking at the data, we will see some
interesting features that suggest future research.

Section 2 describes the dataset. For example the location plots of the
stations and their elevation plots are given. In Section 3, we look at the daily
and annual time series of temperatures and precipitation. The normality
of the distribution of annual values and the associations between different
variables are investigated. We have also investigated the seasonal patterns
as well as the long–term patterns for different variables over the course
of the year. For example, the mean summer daily minimum temperature
shows a significant increasing pattern over the course of the past century
in Calgary and some other locations. Section 4 looks at the distribution
of the daily values. For example, a normal distribution seems to describe
the temperature and a Gamma distribution, the precipitation daily values.
Confidence intervals for the mean/standard deviation in the normal case
and shape/scale parameters in the Gamma case are given. Section 5 looks
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Figure 2.1: Alberta site locations for temperature (deg C) data. There are
25 stations available with temperature data over Alberta.

at the spatial and temporal correlation of different variables.

2.2 Data description

The temperature data comes from 25 stations over Alberta which operated
from 1895 to 2006. PN data involve 47 stations from 1895 to 2006. Different
stations have different intervals of data available. For example, the PN data
for Caldwell is available from 1911 to 1990. Figures 2.1 and 2.2 respectively
depict the location of the stations for temperature (both MT and mt) and
PN . The number of years available for each station is plotted against the
location in Figures 2.3 and 2.4. Another available variable for the location
of the stations is the elevation. Figures 2.5 and 2.6 show the elevation in
meters. As seen in the plots, some stations have both temperature and
precipitation data.

2.3 Temperature and precipitation

To get some initial impression of the data, we look at the time series of MT,
mt, and PN at a fixed location. We use the Calgary site since it has a long
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2.3. Temperature and precipitation
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Figure 2.2: Alberta site locations for precipitation (mm) data. There are 47
stations available with precipitations data over Alberta.
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Figure 2.3: The number of years available for sites with temperature (deg
C) data.
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Figure 2.4: The number of years available for sites with precipitation (mm)
data available.
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Figure 2.5: The elevation (meters) of sites with temperature data available.
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Figure 2.6: The elevation (meters) of the sites with precipitation data avail-
able.

period of data available and includes both temperature and precipitation.
Looking at the maximum and minimum temperature, we see the peri-

odic trend over the course of a year as shown in Figures 2.7 and 2.8 which
illustrate the MT and mt daily values from 2000 to 2003. A regular seasonal
trend is seen in both processes.

Looking at the PN plot in Figure 2.9, we observe a large number of zeros.
Moreover, seasonal patterns are hard to see by looking at daily values. To
illustrate the seasonal patterns better, we look at the monthly averages for
MT , mt and PN over the period 1995 to 2005 in Figures 2.10, 2.11 and 2.12.
Now the seasonal patterns for precipitation can be seen better in Figure 2.12.

Next we look at the mean annual values of the three variables for all
available years that have less than 10 missing days (Figures 2.13, 2.14 and
2.15). Table 2.1 gives a summary of these annual means.
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2.3. Temperature and precipitation
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Figure 2.7: The time series of daily maximum temperature (deg C) at the
Calgary site from 2000 to 2003.
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Figure 2.8: The time series of daily minimum temperature (deg C) at the
Calgary site from 2000 to 2003.
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2.3. Temperature and precipitation
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Figure 2.9: The time series of daily precipitation (mm) at the Calgary site
from 2000 to 2003.
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Figure 2.10: The time series of monthly maximum temperature (deg C) at
the Calgary site, 1995–2005.
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Figure 2.11: The time series of monthly minimum temperature means (deg
C) at the Calgary site, 1995–2005.
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Figure 2.12: The time series of monthly precipitation means (mm) at the
Calgary site, 1995–2005.
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2.3. Temperature and precipitation
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Figure 2.13: The annual mean maximum temperature (C) for Calgary site
for all available years.

1900 1920 1940 1960 1980 2000

−
4

−
3

−
2

−
1

Year

m
t (

de
g 

C
)

Figure 2.14: The annual mean minimum temperature (C) for Calgary site
for all available years.
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2.3. Temperature and precipitation
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Figure 2.15: The annual mean precipitation (mm) for Calgary site for all
available years.

Variable min 1st quartile median mean 3rd quartile max

MT (deg C) 7.59 9.64 10.37 10.36 11.19 13.46
mt (deg C) -4.83 -3.40 -2.54 -2.66 -1.95 0.07
PN (mm) 0.68 1.12 1.28 1.29 1.39 2.51

Table 2.1: The summary statistics for the mean annual maximum temper-
ature, min temperature and precipitation at the Calgary site.

Assuming stochastic normality and independence of the observations, we
can obtain confidence intervals for all three variables and these are given in
Table 2.2. The confidence intervals are fairly narrow.

Variable 95% confidence interval

MT (deg C) (10.14,10.57)
mt (deg C) (-2.85,-2.47)
PN (mm) (1.24,1.35)

Table 2.2: Confidence intervals for the mean annual maximum temperature,
min temperature and precipitation at the Calgary site.
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Figure 2.16: The histogram of annual maximum temperature means (deg
C) for Calgary with a normal curve fitted to the data.

To investigate the shape of the distribution of annual means, we look at
the histogram of each variable with a normal curve fitted in Figures 2.16, 2.18
and 2.20. The corresponding normal qq–plots (quantile–quantile) are also
given in Figures 2.17, 2.19 and 2.21 to asses the normality assumption. Both
the histogram and the qq–plots for MT validate the normality assumptions.
The histogram for mt is slightly left skewed. For PN, some deviation from
the normality assumption is seen. This is expected since the daily PN
process is very far from normal to start with. Hence, even averaging through
the whole year has not quite given us a normal distribution.

We plot all three variables (annual mean MT , mt and PN) in the same
graph, Figure 2.22. As shown in that figure, MT and mt show the same
trends over time. To get an idea of how the two variables are related, we fit a
regression line, taking mt as response and MT as the explanatory variable.
As seen in Figure 2.23, the regression fit looks very good. We repeat this
analysis this time taking MT as explanatory variable and PN as response.
As shown in Figure 2.24, the fit is still reasonable, but the association is not
as strong. As shown in Table 3, both fits are significant. One can criticize
the use of a simple regression since the independence assumption might
not be satisfied. Finding more reliable and sensible relationships among the
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Figure 2.17: The normal qq–plot for annual maximum temperature means
(deg C) for Calgary.
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Figure 2.18: The histogram of annual minimum temperature means (deg C)
for Calgary with normal curve fitted to the data.
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Figure 2.19: The normal qq–plot for annual minimum temperature means
(deg C) for Calgary.
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Figure 2.20: The histogram of annual precipitation means (mm) for Calgary
with normal curve fitted to the data.
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Figure 2.21: The normal qq–plot for annual precipitation means for Calgary.

variables needs a multivariate model taking account of correlation and other
aspects of the processes. Also note that these are annual averages which are
not as correlated as daily values over time as seen in the annual time series
plots.

Variables Intercept Slope p-value for intercept p-value for slope

mt (deg C) -10.40 0.746 2 ×10−16 2 ×10−16

PN (mm) 2.13 -0.082 1.49 × 10−14 0.0005

Table 2.3: Lines fitted to annual mean minimum temperature and annual
mean precipitation against annual mean maximum temperature.

Next we look at the change in the seasonal means for all three variables.
As we noted above there are missing data particularly near the beginning of
the time series. This has caused the gap at the beginning of most plots. To
get a longer time series of means, we first compute the monthly means al-
lowing 3 missing days and then compute the annual mean using the monthly
means. This is reasonable since nearby days have similar values. We do the
regression analysis for three locations: Calgary, Banff and Medicine Hat.
We fit the regression line to annual means, spring means, summer means,
fall means and winter means for each of MT , mt and PN with respect to
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Figure 2.22: The time series plots of maximum temperature (deg C), mini-
mum temperature (deg C) and precipitation (mm) annual means for Calgary.
The time series plot in the bottom is minimum temperature, the one in the
middle is precipitation and the top curve is maximum temperature.
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Figure 2.23: The regression line fitted to maximum temperature and mini-
mum temperature annual means for Calgary.
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Figure 2.24: The regression line fitted to maximum temperature and pre-
cipitation annual means for Calgary.
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1900 1920 1940 1960 1980 2000

6
7

8
9

10

Year

m
t (

de
g 

C
)

Figure 2.25: The regression line fitted to summer minimum temperature
means against time for Calgary.

time. The results are given in Table 4, 5 and 6. We have only included fits
that turned out to be significant. Note that PN does not appear in any of
the tables. Annual minimum temperature and summer mean temperature
show an increase in all three locations. Figure 2.25 depicts one of the time
series (mt summer mean for Calgary) with the regression line fitted.
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2.4. Daily values, distributions

Variable Season Intercept Slope p-value for intercept p-value for slope

mt (deg C) Year -24.72 0.112 2× 10−05 0.0001
mt (deg C) Spring -30.05 0.138 0.0008 0.0024
mt (deg C) Summer -20.11 0.0144 6× 10−7 3× 10−11

Table 2.4: The regression line parameters for the fitted lines for each variable
with respect to time for the Calgary site.

Variable Season Intercept Slope p-value for intercept p-value for slope

MT (deg C) Year -12.99 0.0105 0.019 0.0002
MT (deg C) Spring -17.0 0.0048 0.075 0.009
MT (deg C) Fall -12.64 0.0106 0.19 0.0326
mt (deg C) Year -37.0 0.01666 2× 10−10 2× 10−8

mt (deg C) Spring -49.8 0.0229 5× 10−9 10−7

mt (deg C) Summer -36.8 0.0212 2× 10−15 2× 10−16

Table 2.5: The regression line parameters for the fitted lines for each variable
with respect to time for the Banff site.

Variable Season Intercept Slope p-value for intercept p-value for slope

MT (deg C) Year -24.6 0.0185 0.00102 3× 10−6

MT (deg C) Spring -34.24 0.0235 0.009 0.0005
mt (deg C) Year -39.98 0.0197 5× 10−10 2× 10−9

mt (deg C) Spring -39.81 0.0196 5× 10−5 9× 10−5

mt (deg C) Summer -10.93 0.0112 0.0199 7× 10−6

mt (deg C) Fall -24.66 0.0122 0.0110 0.0137

Table 2.6: The regression line parameters for the fitted lines for each variable
with respect to time for the Medicine Hat site.

2.4 Daily values, distributions

This section studies the daily values for all three variables. To that end,
we pick four days of the year, Jan 1st, April 1st, July 1st and October 1st.
Let us look at the time series, histograms and normal qq–plots for each
variable over the years. Figures 2.26 to 2.31 give the results. In fact the
plots show that a normal distribution fits the data for daily MT and mt for
the the selected days fairly well. However, some deviations from the normal
distribution is seen, particularly in the tails. We also tried the first day of
each month and observed similar results.

24



2.4. Daily values, distributions
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Figure 2.26: The time series of daily maximum temperature at the Calgary
site for four given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 2.27: The histogram of daily maximum temperature at the Calgary
site for four given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 2.28: The normal qq–plots of of daily maximum temperature at
the Calgary site for four given dates: January 1st, April 1st, July 1st and
October 1st.
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Figure 2.29: The time series of daily minimum temperature for Calgary for
four given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 2.30: The histogram of daily minimum temperature at the Calgary
site for four given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 2.31: The normal qq-plots of daily minimum temperature at the Cal-
gary site for four given dates: January 1st, April 1st, July 1st and October
1st.
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Figure 2.32: The time series of daily precipitation at the Calgary site for
four given dates: January 1st, April 1st, July 1st and October 1st.

We plot the histogram for PN as well (Figure 2.33). The distribution is
far from normal because of high frequency of no PN (dry) days.

Next, we use the available years to compute the confidence intervals for
the mean of every given day of the year for MT and mt. For PN , we
construct the confidence intervals for probability of PN . [A PN day is
defined to be a day with PN > 0.2 (mm). This is because any precipitation
amount less than 0.2 (mm) is barely measurable.] Figures 2.34 to 2.36
give the confidence intervals for the means. The confidence interval for the
standard deviations (obtained by bootstrap techniques) are given in Figures
2.37 to 2.39. A regular seasonal pattern is seen in the means and standard
deviations. For example the maximum for MT and mt occurs around the
200th (in July) day of the year and the minimum occurs at the beginning
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Figure 2.33: The histogram of daily precipitation at the Calgary site for
four given dates: January 1st, April 1st, July 1st and October 1st.
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Figure 2.34: The confidence intervals for the daily mean maximum temper-
ature (deg C) at the Calgary site. Dashed line shows the upper bound and
the solid line the lower bound of the confidence intervals.

and the end of the year. Comparing the plots of the means and the standard
deviations, we observe that warmer days have smaller standard deviations
than colder days. For example the minimum standard deviation for the
Maximum and minimum temperature happens around the 200th day of the
year which correspond to the warmest period of the year. The plots seem
to indicate that a simple periodic function suffices to model the seasonal
patterns. Contrary to MT and mt, for the 0-1 PN process, the standard
deviation is the highest in June, when the probability of precipitation is
close to 1

2 .
As shown above, the distribution of daily PN values is far from normal.

This time, after removing the zeros, we fit a Gamma distribution to PN
(Figure 2.42). The Gamma qq–plots are given in Figure 2.43 and reveal a
fairly good fit.
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Figure 2.35: The confidence intervals for the daily mean minimum temper-
ature (deg C) at the Calgary site. Dashed line shows the upper bound and
the solid the lower bound of the confidence intervals.
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Figure 2.36: The confidence intervals for the probability of precipitation
(mm) at the Calgary site for the days of the year. Dashed line shows the
upper bound and the solid the lower bound of the confidence intervals.
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Figure 2.37: The confidence intervals for the standard deviation of each day
of the year for maximum temperature (deg C) at the Calgary site. Dashed
line shows the upper bound and the solid the lower bound of the confidence
intervals.
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Figure 2.38: The confidence intervals for the standard deviation of each day
of the year for minimum temperature (deg C) at the Calgary site. Dashed
line shows the upper bound and the solid the lower bound of the confidence
intervals.
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Figure 2.39: The confidence intervals for standard deviation (sd) of each
day of the year for the probability of precipitation (mm) (0-1 precipitation
process) at the Calgary site. Dashed line shows the upper bound and the
solid the lower bound of the confidence intervals. Plot shows sd ≤ 1/2. This
is because sd =

√

p(1− p) which has a maximum value of 1
2 .
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Figure 2.40: The distribution of each day of the year for MT (C) from
Jan 1st to Dec 1st. The year has been divided to two halves. In each half
rainbow colors are used to show the change of the distribution.
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Figure 2.41: The distribution of each day of the year for mt (C) from Jan 1st
to Dec 1st. The year has been divided to two halves. In each half rainbow
colors are used to show the change of the distribution.
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Figure 2.42: The histogram of daily precipitation greater than 0.2 mm at the
Calgary site with Gamma density curve fitted using Maximum likelihood.
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Figure 2.43: The qq–plots of daily precipitation greater than 0.2 mm at the
Calgary site with Gamma curve fitted using Maximum likelihood.
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Figure 2.44: The Gamma fit of each day of 4 months for precipitation (mm).
In each month rainbow colors are used to show the change of the distribution.

Figures 2.40, 2.41 and 2.44 reveal the result of our investigation of the
change in the distribution over a period of time. For MT and mt, we have
done that for the course of the year. The figures show how the distribution
deforms continuously over the year. We can also notice changes in mean
and standard deviation over the year. For PN , we have done the same only
for 4 different months because of high irregularity of the process.

Next, we look at the parameters of the Gamma distribution fitted to
PN over the course of a year. If we use maximum likelihood estimates
(MLE), which we have used above to form the Gamma curve, the confidence
intervals, obtained by bootstrap method will be very wide (tend rapidly to
infinity). Hence, we use the “method of moments estimates” (MOM), to
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Figure 2.45: The maximum likelihood estimate for α, the shape parameter
of the Gamma distribution fitted to the precipitation amounts.

obtain confidence intervals. The MOM confidence intervals are given in
Figure 2.46. When using MLE estimates, since there is no closed form for
them, we need to use Newton method to find the Maximum values. However,
MOM gives us closed form solution. This advantage might explain the better
behavior of MOM estimates in forming the confidence intervals. However,
even the MOM confidence intervals do not look satisfactory and are rather
wide and irregular specially at the beginning and end of the year.

We can also consider the 0-1 process of PN (1 for wet and 0 for dry)
and compute the transition probabilities for PN (Figure 2.47). The figure
shows the probability of PN is changing continuously over the year and can
be modeled by a simple periodic function.

Considering the 0-1 process of PN as a chain leads to the interesting
question as the order of the Markov chain. Let us denote by 1 a PN oc-
currence and 0 otherwise. Suppose xt = 1 denote PN on day t and xt = 0
denote no PN and let pxt−r···xt(t), denote the probability of observing xt on
day t of the year conditional on the chain (xt−r · · · xt−1). In Figure 2.47, we
have plotted the estimated p̂11(t) and p̂01(t) for different days of the year.
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Figure 2.46: The confidence interval for MOM estimate of the shape param-
eter, α, of the Gamma distribution fitted to daily precipitation amounts.
The dotted line is the upper bound and the solid line the lower bound. As
seen in the figure the upper bounds at the beginning and end of the year
have become very large. We have not shown them because otherwise then
the pattern in the rest of the year could not be seen.
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Figure 2.47: The 1st-order transition probabilities. The dotted line is the
the probability of precipitation if it happened the day before (p̂11) and the
dashed is the probability of precipitation if it did not happen the day before
(p̂01).
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Figure 2.48: The 2nd–order transition probabilities for the precipitation at
the Calgary site: p̂111 (solid) against p̂011 (dotted).

The clear gap between this two estimated probabilities indicate that a 1st–
order Markov chain should be preferred to a 0th–order. Figures 2.48 and
2.49 plot p̂111 against p̂011 and p̂001 against p̂101. The estimated probabilities
seem to be close and overlap heavily over the course of the year. Hence a
1st–order Markov chain seems to suffice for describing the binary process of
PN .

2.5 Correlation

The correlation in a spatial–temporal process can depend on time and space.
This section studies the temporal and spatial patterns of the correlation
function separately.
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Figure 2.49: The 2nd–order transition probabilities for the precipitation at
the Calgary site: p̂001 (solid) against p̂101 (dotted).
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Figure 2.50: The correlation and covariance plot for maximum temperature
at the Calgary site for Jan 1st and 732 consequent days.

2.5.1 Temporal correlation

Here we look at the correlation/covariance of the variables as a function of
time. The location is taken to be the Calgary site. First we look at the
correlation/covariance of a given day and its consequent days. We pick Jan
1st and compute the correlation/covariance with the following days: Jan
2nd, Jan 3rd and etc. Figure 2.50 shows that the correlation and covariance
have the same trends for maximum temperature. Figures 2.51 to 2.53 show a
decreasing trend for correlation over time forMT,mt and PN . The decrease
is far from linear and it looks to be exponentially decreasing. The plots also
indicate that only a few consequent days are possibly correlated and in
particular two days that are one year apart can be considered independent.
This assumption might be useful in building a spatial–temporal model.
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Figure 2.51: The correlation plot for maximum temperature (deg C) at the
Calgary site for Jan 1st and 732 consequent days.
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Figure 2.52: The correlation plot for minimum temperature (deg C) at the
Calgary site for Jan 1st and 732 consequent days.
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Figure 2.53: The correlation plot for precipitation (mm) at the Calgary site
for Jan 1st and 732 consequent days.

Next we look at the correlation of responses on other days of the year
with their 30 consecutive days. Our goal is to see if the correlation function
has the same behavior over the course of a year. We pick, Feb 1st, April
1st, July 1st, Oct 1st. Figures 2.54 and 2.56 show similar patterns.

Finally, we look at the correlation of two fixed locations over the course
of the year (by changing the day). The results are given in Figures 2.57 and
2.58. Strong correlation and clear seasonal patterns are seen for MT and
mt. This seems to indicate in particular that the temperature process is not
stationary. The correlation in the middle of the year around day 200 which
corresponds to the summer season seems to be smaller than the correlation
at the beginning and end of the year which correspond to the cold season.
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Figure 2.54: The correlation plot for maximum temperature (deg C) at the
Calgary site for Feb 1st (solid), April 1st (dashed), July 1st (dotted) and
Oct 1st (dot dash) and 30 consequent days.

52



2.5. Correlation

0 5 10 15 20 25 30

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Day

C
or

re
la

tio
n

Figure 2.55: The correlation plot for minimum temperature (deg C) at the
Calgary site for Feb 1st (solid), April 1st (dashed), July 1st (dotted) and
Oct 1st (dot dash) and 30 consequent days.
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Figure 2.56: The correlation plot for precipitation (mm) at the Calgary site
for Feb 1st (solid), April 1st (dashed), July 1st (dotted) and Oct 1st (dot
dashed) and 30 consequent days.
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Figure 2.57: The correlation plot for maximum temperature and minimum
temperature (deg C) between Calgary and Medicine Hat.
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Figure 2.58: The correlation plot for precipitation (mm) between Calgary
and Medicine Hat.

55



2.5. Correlation

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Jan 1st

C
or

re
la

tio
n

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Apr 1st

C
or

re
la

tio
n

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

July 1st

Distance (km)

C
or

re
la

tio
n

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Oct 1st

Distance (km)

C
or

re
la

tio
n

Figure 2.59: The correlation plot for maximum temperature (deg C) with
respect to distance (km).

2.5.2 Spatial correlation

This subsection looks at the spatial correlation by fixing the time to a few
dates: January 1st, April 1st, July 1st and Oct 1st distributed over year’s
climate regime. We plot the correlation with respect to the geodesic distance
(km) on the surface of the earth. Figures 2.59 to 2.62 show the results for
MT , mt, PN and 0-1 PN respectively. For MT and mt, we observe a clear
decreasing trend with respect to distance. The trend for PN does not seem
to be regular.
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Figure 2.60: The correlation plot for minimum temperature (deg C) with
respect to distance(km).
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Figure 2.61: The correlation plot for precipitation (mm) with respect to
distance (km).
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Figure 2.62: The correlation plot for precipitation (mm) 0-1 process with
respect to distance (km).
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2.6 Summary and conclusions

This section summarizes our findings of the exploratory analysis.

• There is a strong seasonal trend in the temperature and precipitation
processes. See Figures 2.7, 2.8, 2.11 and 2.36.

• The summer average minimum temperature has increased over several
locations over the past century. See Figure 2.25.

• mt and MT are highly correlated. See Figure 2.23.

• The distributions of daily maximum temperature and minimum tem-
perature are rather close to the Gaussian distribution in the center
with some deviations seen in the tails. See Figures 2.27 and 2.29.

• The temperature process in Alberta is less variable in the warm seasons
and the converse holds for the precipitation process. See Figures 2.37,
2.38 and 2.39.

• The distribution of the daily temperature varies continuously over the
course of the year. This could not be shown for precipitation. (This
might be because we need more data.)

• The correlation between two sites depends on the time of the year.
They are more correlated in cold seasons. This might be because
there are more (strong) global weather regimes in the cold seasons
influencing the whole region.

• The correlation over time for MT , mt and PN seems stationary and
is decreasing with a nonlinear trend (exponentially) with respect to
the time difference.

• The spatial correlations for MT and mt are strong and decreasing
almost linearly with respect to the geodesic distance.

• The spatial correlation for PN is not strong. It might be because the
sites are too faraway to capture the spatial correlation for PN .

The future chapters investigate some of these items. In particular after
developing some theory regarding Markov chains, we investigate the order
of the binary precipitation process. Then we will turn to modeling the
occurrence of extreme temperature. Instead of using a Gaussian process to
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model the temperature and use that to infer about the occurrence of the
extremes, we use a categorical chain. This is because of the deviations from
normality in the tails as pointed out above.
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Chapter 3

rth-order Markov chains

3.1 Introduction

This chapter studies rth–order categorical Markov chains and more gen-
erally, categorical discrete–time stochastic processes. By “categorical”, we
mean chains that have a finite number of possible states at each time point.
Such chains have important applications in many areas, one of which is mod-
eling weather processes such as precipitation over time. In fact, we use these
chains to model the binary process of precipitation as well as dichotomized
temperature processes. In rth–order Markov chains, the conditional proba-
bility of the present given the past is modeled. Such a conditional probability
is a function of the past r states, where each one of them only takes finite
possible values.

It is useful and intuitively appealing to specify or model a discrete process
over time by the conditional probabilities rather than the joint distribution.
However, one must check the consistency of such a specification i.e. to prove
that it corresponds to a full joint distribution. In the case of discrete–time
categorical processes, we prove a theorem that shows the conditional prob-
abilities can be used to specify the process. Also we prove a representation
theorem which states that every such conditional probability after an appro-
priate transformation can be written as a linear summation of monomials
of the past processes. In fact, we represent all categorical discrete–time
stochastic processes over time, in particular rth–order Markov chains and
more particularly stationary rth–order Markov chains. For the binary case
the result is a consequence of an expansion theorem due to Besag [6]. To
generalize the result to arbitrary categorical Markov chains, we prove a new
expansion theorem which generalizes the result to the case of arbitrary cat-
egorical rth–order Markov chains (rather than binary only).

The result simplifies the task of modeling categorical stochastic pro-
cesses. Since we have written the conditional probability as a linear com-
bination, we can simply add other covariates as linear terms to the model
to build non-stationary chains. For example, we can add seasonal terms or
geographical coordinates (longitude and latitude). The theory of “partial
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likelihood” allows us to estimate the parameters of such chain models for
the binary case. By restricting the degree of those polynomials or by requir-
ing that some of their coefficients be the same, we can find simpler models.
Simulation studies show that the “BIC” criterion (Bayesian information cri-
terion) combined with the partial likelihood works well in that they recover
the correct simulation model. Since we are only dealing with the categorical
case all the density functions in this chapter are densities with the respect
to the counting measure on the real line.

Specifying a categorical chain over time (with positive joint densities)
using conditional probabilities of the present given the past is quite common
in statistics and probability. However, we did not find a rigorous result for
sufficient and necessary condition for a collection of function to correspond
to the conditionals of a unique stochastic process. The proof is given in
Theorem 3.5.6. This is an easy consequence of Lemma 3.3.2 that states that
the “ascending” joint densities can uniquely determine such a stochastic
process.

Another commonly used technique in statistics is transforming a discrete
probability density from (0, 1) to the real numbers using a transformations
such as “log” for example in logistic regression. This is done to remove
the restriction of these quantities and ease modeling of such probabilities.
Theorem 3.4.1 provides a characterization of all such density functions given
any bijective transformation between positive numbers and reals. Hence
any positive discrete density function (mass function) correspond to a a
unique function on reals and any arbitrary function on reals correspond
to a positive function (after fixing the transformation and one element with
positive probability). We do not know of a result in this generality elsewhere.
Obviously now modeling such arbitrary function on reals which can only take
finite values is easier.

In order to find a parametric form for an arbitrary function over the reals
that only takes finite values, for the binary case, we use a corollary of a result
stated by Besag [6] who used such functions in modeling Markov random
fields. However, Besag did not provide a rigorous proof and the statement of
the theorem is flawed as also pointed out by Cressie et al. in [14]. They also
state a correct version of the theorem without offering a proof. We provide
a rigorous statement and proof in Theorem 3.5.1. The corollary can only be
obtained if the flaw in the statement is fixed. In order to extend to stochastic
processes that can have more than two states at some times, we prove a new
representation theorem in Theorem 3.5.6. Some novel simplified models with
less parameters for such processes are given in Subsection 3.5.3 and many
of them have been investigated in later chapters to model precipitation and
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extreme temperature events occurrences.

3.2 Markov chains

Let {Xt}t∈T be a stochastic process on the index set T , where T = Z, T = N

(the integers or natural numbers respectively) or T = {0, 1, · · · , n}. It is
customary to call {Xt}t∈T a chain, since T is countable and has a natural
ordering. {Xt}t∈T is called an rth–order Markov chain if:

P (Xt|Xt−1, · · · ) = P (Xt|Xt−1, · · · ,Xt−r), ∀t such that t, t− r ∈ T.

We call the Markov chain homogenous if

P (Xt = xt|Xt−1 = xt−1, · · · ,Xt−r = xt−r) =

P (Xt′ = xt|Xt′−1 = xt−1, · · · ,Xt′−r = xt−r),

∀t, t′ ∈ T such that t− r and t′− r are also in T . Note that Markovness can
be defined as a local property. We call {Xt}t∈T locally rth–order Markov at
t if

P (Xt|Xt−1, · · · ) = P (Xt|Xt−1, · · · ,Xt−r).

Hence, we can have chains with a different Markov order at different times.
Let Xt be the binary random variable for precipitation on day t, with 1

denoting the occurrence of precipitation and 0 non-occurrence. In particular,
consider the precipitation (PN) for Calgary site from 1895 to 2006. This
process can be considered in two possible ways:

1. Let X1,X2, · · · ,X366 denote the binary random variable of precipi-
tation for days of a year. Suppose we repeatedly observe this chain
year-by-year from 1895 to 2006 and take these observed chains to be in-
dependent and identically distributed from one year to the next. With
this assumption, techniques developed in [4] can be applied in order to
infer the Markov order of the chain. However, this approach presents
three issues. Firstly independence of the successive chains seems ques-
tionable. In particular, the end of any one year will be autocorrelated
with the beginning of the next. Secondly this model unrealistically as-
sumes the 0-1 precipitation stochastic process is identically distributed
over all years. Thirdly and more technically, leap years have 366 days
while non–leap years have 365. We can resolve this last issue by for-
mally assuming a missing data day in the non–leap years, by dropping
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the last day in the leap year or by using other methods. However,
none of these approaches seem completely satisfactory.

2. Alternatively, we could consider the observations of Calgary daily pre-
cipitation as coming from a single process that spans the entire time
interval from 1895 to 2006. In this case, we will show below that we
can still build models that bring in the seasonality effects within a
year.

3.3 Consistency of the conditional probabilities

To represent a stochastic process, we only need to specify the joint probabil-
ity distributions for all finite collections of states. The Kolmogorov exten-
sion theorem then guarantees the existence and uniqueness of an underlying
stochastic process from which these distributions derive, provided they are
consistent as described below. (See [9] for example.)

To state the version of that celebrated theorem we require, let T denote
some interval (that can be thought of as “time”), and let n ∈ N = {1, 2, . . . }.
For each k ∈ N and finite sequence of times t1, · · · , tk, let νt1···tk be a prob-
ability measure on (Rn)k. Suppose that these measures satisfy two consis-
tency conditions:

1. Permutation invariance. For all permutations π (a bijective and
one–to–one map from a set to itself) of 1, · · · , k and measurable sets
Fi ⊂ R

n,

νtπ(1)...tπ(k)
(F1 × · · · × Fk) = νt1...tk

(

Fπ−1(1) × · · · × Fπ−1(k)

)

.

2. Marginalization consistency. For all measurable sets Fi ⊆ R
n, m ∈

N:

νt1...tk (F1 × · · · × Fk) = νt1...tktk+1,...,tk+m
(F1 × · · · × Fk × R

n × · · · × R
n) .

Then there exists a probability space (Ω,F ,P) and a stochastic process

X : T ×Ω → R
n,

such that:

νt1...tk (F1 × · · · × Fk) = P (Xt1 ∈ F1, . . . ,Xtk ∈ Fk) ,

for all ti ∈ T , k ∈ N and measurable sets Fi ⊆ R
n, i.e. X has the νt1...tk

as its finite–dimensional distributions. (See [37] for more details.)
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3.3. Consistency of the conditional probabilities

Remark. Note that Condition 1 is equivalent to

νtπ(1)...tπ(k)

(

Fπ(1) × · · · × Fπ(k)

)

= νt1...tk (F1 × · · · × Fk) .

This is seen by replacing F1×· · ·×Fk by Fπ(1)×· · ·×Fπ(k) in the first equality.

Remark. We are only concerned about the case n = 1. This is because
we consider stochastic processes, a collection of random variables from the
same sample space to R

1 = R.
When working on (higher order) Markov chains over the index set N, it

is natural to consider the conditional distributions of the present, time t,
given the past instead of the finite joint distributions, in other words

Pt(x0, · · · , xt) = P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0),

for {Xt}t∈N∪0 plus the starting distribution

P0(x0) = P (X0 = x0).

However that raises a fundamental question – does there exist a stochastic
process whose conditional distributions match the specified ones and if so, is
it unique? We answer this question affirmatively in this section for the case
of discrete–time categorical processes, in particular higher order categorical
Markov chains. We also restrict ourselves to chains for which all the joint
probabilities are positive. Let M0,M1, · · · ⊂ R be the state spaces for time
0, 1, · · · , where each one of them is of finite cardinality. A probability mea-
sure on the finite space M0 can be represented through its density function,
a positive function P0 : M0 → R satisfying the condition

∑

m∈M0

P0(m) = 1.

The following theorem ensures the consistency of our probability model.

Theorem 3.3.1 Suppose M0,M1, · · · ⊂ R, |Mt| = ct < ∞, t = 0, 1, · · · .
Let P0 : M0 → R be the density of a probability measure on M0 and more
generally for n = 1, . . . , Pn(x0, x1, · · · , xn−1, .) be a positive probability den-
sity on Mn, ∀(x0, · · · , xn−1) ∈ M0×· · ·×Mn−1. Then there exists a unique
stochastic process (up to distributional equivalence) on a probability space
(Ω,Σ, P ) such that

P (Xn = xn|Xn−1 = xn−1, · · · ,X0 = x0) = Pn(x0, x1, · · · , xn−1, xn).
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To prove this theorem, we first consider a related problem whose solu-
tion is used in the proof. More precisely, we consider stochastic processes
{Xn}n∈N∪{0}, where the state space for Xn is Mn, i = 0, 1, 2, · · · and finite.
Suppose pn : M0 ×M1 × · · · ×Mn → R is the joint probability distribution
(density) of a random vector {X0, . . . ,Xn}, i.e.

pn(x0, · · · , xn) = P (X0 = x0, · · · ,Xn = xn).

We call a such sequence of functions, {pn}n∈N, the “ascending joint distribu-
tions” of the stochastic process {Xn}n∈N∪{0}. It is clear that given a family
of functions {pn}n∈N, other joint distributions such as

P (Xt1 = xt1 , · · · ,Xtk = xtk),

are obtainable by summing over appropriate components. Now consider
the inverse problem. Given the {pn}n∈N and some type of consistency be-
tween them, is there a (unique) stochastic process that matches these joint
distributions? The following lemma gives an affirmative answer.

Lemma 3.3.2 Suppose Mt ⊂ R, t = 0, 1, · · · are finite, p0 : M0 → R repre-
sents a probability density function (i.e.

∑

x0∈M0
p(x0) = 1) and functions

pn : M1×· · ·×Mn → R
+∪{0} satisfy the following (consistency) condition:

∑

xn∈Mn

pn(x0, · · · , xn) = pn−1(x0, · · · , xn−1).

Then there exist a unique stochastic process (up to distributional equivalence)
{Xt}t∈N∪{0} such that

P (X0 = x0, · · · ,Xn = xn) = pn(x0, · · · , xn)

Proof

Existence: By the Kolmogorov extension theorem quoted above, we only
need to show there exists a consistent family of measures (density functions)

{qt1,··· ,tk |k ∈ N, (t1, · · · , tk) ∈ N
k},

such that q1,··· ,t = pt. We define such a family of functions, prove they are
measures and consistent.

For any sequence, t1, · · · , tk, let t = max{t1, · · · , tk} and define

qt1,··· ,tk(xt1 , · · · , xtk) =
∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,tk}
pt(x1, · · · , xt).

We need to prove three things:
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3.3. Consistency of the conditional probabilities

a) Each qt1,··· ,tk is a density function. It suffices to show that qt is a mea-
sure because the qt1,··· ,tk are sums of such measures and so are measures
themselves. But pt is nonnegative by assumption. It only remains to
show that pt sums up to one. For t = 1 it is in the assumptions of the
theorem. For t > 1, it can be done by induction because of the following
identity

∑

xi∈Mi,i=0,1,··· ,t
pt(x0, · · · , xt) =

∑

xi∈Mi,i=0,1,··· ,t−1

pt−1(x0, · · · , xt−1)

where the right hand side is obtained by the assumption
∑

Mn
pn = pn−1.

b) In order to satisfy the first condition of Kolmogorov extension theorem,
we need to show

qt1,··· ,tk(xt1 , · · · , xtk) = qtπ(1),··· ,tπ(k)
(xtπ(1)

, · · · , xtπ(k)
),

for π a permutation of {1, 2, · · · , k}. But this is obvious since

max{t1, · · · , tk} = max{tπ(1), · · · , tπ(k)}.

c) In order to satisfy the second condition of Kolmogorov extension theorem,
we need to show
∑

xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) = qt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk),

where the notationˆabove a component means that component is omit-
ted.

To prove this, we consider two cases:

Case I: t = max{t1, · · · , tk} = max{t1, · · · , t̂i, · · · , tk}:

∑

xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) =

∑

xti∈Mti

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,ti,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,t̂i,··· ,tk}
pt(x0, · · · , xt) =

pt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk)
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3.3. Consistency of the conditional probabilities

Case II: max{t1, · · · , t̂i, · · · , tk} = t′ < t = ti:

∑

xti∈Mti

qt1,··· ,ti,··· ,tk(xt1 , · · · , xti , · · · , xtk) =

∑

xti∈Mti

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,ti,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t}−{t1,··· ,t̂i,··· ,tk}
pt(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t′}−{t1,··· ,t̂i,··· ,tk}

∑

xv∈Mv,v∈{t′+1,··· ,t}
ft(x0, · · · , xt) =

∑

xu∈Mu,u∈{1,··· ,t′}−{t1,··· ,t̂i,··· ,tk}
pt′(x0, · · · , xt′) =

qt1,··· ,t̂i,··· ,tk(xt1 , · · · , x̂ti , · · · , xtk).

Uniqueness: Suppose {Yt}t∈N∪{0} is another stochastic process satisfying the
conditions of the theorem with the p′t1,··· ,tk as the joint measures.

p′1,··· ,t = pt = p1,··· ,t,

by the assumption. Taking the appropriate sums on the two sides, we get
p′t1,··· ,tk = pt1,··· ,tk . Now the uniqueness is a straight consequence of the Kol-
mogorov Extension Theorem.

Remark. Note that we did not impose the positivity of the functions for
this case.
Now we are ready to prove Theorem 3.3.1.
Proof

Existence: In Lemma 3.3.2, let
p0 = P0,
p1 : M0 ×M1 → R, p1(x0, x1) = p0(x0)P1(x0, x1),
...
pn : M1×M2×· · ·×Mn → R, pn(x0, · · · , xn) = pn−1(x0, · · · , xn−1)Pn(x0, · · · , xn).
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To see that the {pi} satisfy the conditions of Lemma 3.3.2, note that

∑

xn∈Mn

pn(x0, · · · , xn) =
∑

xn∈Mn

pn−1(x0, · · · , xn−1)Pn(x0, · · · , xn) =

pn−1(x0, · · · , xn−1)
∑

xn∈Mn

Pn(x0, · · · , xn) =

pn−1(x0, · · · , xn−1).

Lemma 3.3.2 shows the existence of a stochastic process with joint dis-
tributions matching the pi. Furthermore, the positivity of the {Pi} implies
that of the {pi}. Thus all the conditionals exist for such a process and they
match the Pi by the definition of the conditional probabilities.
Uniqueness. Any stochastic process satisfying the above conditions, has a
joint distribution that matches those of the {pi} and hence by the above
theorem they are unique.

3.4 Characterizing density functions and
rth–order Markov chains

The previous section saw discrete–time categorical processes represented in
terms of conditional probability density functions. However such densities
on finite domains satisfy certain restrictions that can make modeling them
difficult. That leads to the idea of linking them to unrestricted functions
on R in much the same spirit as a single probability can profitably be logit
transformed in logistic regression.

To begin, let X be a random variable with probability density p defined
on a finite set M = {m1, · · · ,mn}. The section finds the class of all possible
such ps with p(mi) > 0, i = 1, · · · , n and g : R → R

+, a fixed bijection. For
example g(x) = exp(x). The following theorem characterizes the relationship
between p and g. While particular examples of the following theorem are
used commonly in statistical modeling we are not aware of a reference which
contains this result or the proof in this generality.

Theorem 3.4.1 Let g : R → R
+ a bijection. For every choice of probability

density p on M = {m1, · · · ,mn}, n ≥ 2, there exists a unique function
f : M − {m1} → R, such that
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p(m1) =
1

1 +
∑

y∈M−{m1} h(y)
, (3.1)

p(x) =
h(x)

1 +
∑

y∈M−{m1} h(y)
, x 6= m1, (3.2)

where h = g ◦ f . Moreover, h(x) = p(x)/p(m1). Inversely, for an arbitrary
function f : M − {m1} → R, the p defined above is a density function.

Proof

Existence: Suppose p : M → (0, 1) is given. Let h(x) = p(x)
p(m1)

, x 6= m1 and

f : M − {m1} → R, f(x) = g−1 ◦ h(x). Obviously h = g ◦ f . Moreover

1

1 +
∑

y∈M−{m1} h(y)
=

1

1 +
∑

y∈M−{m1} p(y)/p(m1)
=

1

1 + (1− p(m1))/p(m1)
= p(m1)

and
h(x)

1 +
∑

y∈M−{m1} h(y)
=

p(x)/p(m1)

1 + (1− p(m1))/p(m1)
= p(x),

thereby establishing the validity of equations (3.1) and (3.2).
Uniqueness: Suppose for f1, f2, we get the same p. Let h1 = g ◦f1, h2 = g ◦
f2, by dividing 3.2 by 3.1 for h1 and h2, we get h1(x) = p(x)/p(m1) = h2(x)
hence g ◦ f1 = g ◦ f2. Since g is a bijection f1 = f2.

Corollary 3.4.2 Fixing a bijection g and m1 ∈ M , every density function
corresponds to an arbitrary vector of length n− 1 over R.

Example Consider the binomial distribution with a trials and probability
of success π and the transformation g(x) = expx. Then M = {0, 1, · · · , a}.
Let m1 = 0 then for x 6= 0

f(x) = g−1(h(x)) = log p(x)/p(0) = log

(

n

x

)

px(1− p)n−x/(1 − p)n =

log

(

n

x

)

+ x log{p/(1 − p)}.
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3.4. Characterizing density functions and rth–order Markov chains

Theorem 3.4.3 Fix a bijection g : R → R
+, mn

1 ∈ Mn. Let Mn, n =
0, 1, · · · be finite subsets of R with cardinality greater than or equal to 2 and
M ′

n = Mn − {mn
1}, ∀n. Then every categorical stochastic process with pos-

itive joint distribution on the Mn having initial density P0 : M0 → R and
conditional probabilities Pn at stage n given the past, can be uniquely repre-
sented by means of unique functions:

g0 : M
′
0 → R

...

gn : M0 × · · · ×Mn−1 ×M ′
n → R

...

for n = 1, . . . , where

P0(m
0
1) =

1

1 +
∑

y∈M0−{m0
1} h0(y)

, (3.3)

P0(x) =
h0(x)

1 +
∑

y∈M0−{m0
1} h0(y)

, x 6= m0
1 ∈ M0, (3.4)

and h0 = g ◦ g0. Moreover h0(x) =
P (X0=x)
P (X0=m1

0)
.

The conditional probabilities Pn are given by

Pn(x0, · · · , xn−1,m
n
1 ) =

1

1 +
∑

y∈Mn−{mn
1 } hn(y)

, (3.5)

Pn(x0, · · · , xn−1, x) =
h(x)

1 +
∑

y∈Mn−{mn
1 } hn(y)

, x 6= mn
1 ∈ Mn, (3.6)

where, hn = g ◦gn. Moreover hn(x0, · · · , x) = P (Xn=x|Xn−1=xn−1,··· ,X0=x0)
P (Xn=m1

n|Xn−1=xn−1,··· ,X0=x0)
.

Conversely, any collection of arbitrary functions g0, g1, · · · gives rise to a
unique stochastic process by the above relations.

Proof

The result is immediate by Theorems 3.3.1 and 3.4.1.
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Remark. We can view the arbitrary functions g0, · · · , gn on M ′
0,M0 ×

M ′
1, · · · ,M0×· · ·×Mn−1×M ′

n as arbitrary functions g0 onM ′
0, g1(., x1), x1 6=

m1
1 on M0 and gn(., xn), xn 6= mn

1 on M0 × · · · ×Mn−1. As a check we can
compute the number of free parameters of such a stochastic process on
M0, · · · ,Mn. We can specify such a process by c0c1 · · · cn− 1 parameters by
specifying the joint distribution on M0 ×M1 × · · · ×Mn. If we specify the
stochastic process using the above theorems and the gi functions, we need
(m0−1)+m0(m1−1)+m0m1(m2−1)+ · · ·+m0m1 · · ·mn−1(mn−1) which
is the same number after expanding the terms and canceling out.
Remark. In the case of rth–order Markov chains, gn(x0, · · · , xn) only de-
pends on the last r + 1 components for n > r.
Remark. In the case of homogenous rth–order Markov chains, Mi =
M0, ∀i. Fix m0 ∈ M0 and suppose |M0| = c0. We only need to spec-
ify g0 to gr, which are completely arbitrary functions. We only need to
specify g0 on M ′

0, g1 on M0 × M ′
1 to gr on M0 × · · · × M ′

r+1. This also
shows every homogenous Markov chain of order at most r is characterized
by (c0 − 1)

∑r
i=0 c

r
0 = cr+1

0 − 1 elements in R. We could have also counted
all such Markov chains by noting they are uniquely represented by the joint
probability density pr+1 on M r+1

0 which has cr+1
0 − 1 free parameters (since

it has to sum up to 1).
To describe processes using Markov chains, we need to find appropriate

parametric forms. We investigate the generality of these forms in the fol-
lowing section and use the concept of partial likelihood to estimate them.
We find appropriate parametric representations of gn which are functions of
n + 1 finite variables. In the next section we study the properties of such
functions. We call a variable “finite” if it only takes values in a finite subset
of R.

3.5 Functions of r variables on a finite domain

This section studies the properties of functions of r variables with finite
domain. First, we present a result of Besag [6] who studied such functions
in the context of Markov random fields. However the statement of the result
in his paper is inaccurate and moreover it gives no rigorous proof of his result.
We present a rigorous statement, proof of the result and generalization of
Besag’s theorem.
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3.5.1 First representation theorem

This subsection presents a corrected version of a theorem stated by Besag
in [6] and a constructive proof. Then we generalize this theorem and apply
it to stationary binary Markov chains to get a parametric representation.

Theorem 3.5.1 Suppose, f :
∏

i=1,··· ,r Mi → R, Mi being finite with |Mi| =
ci and 0 ∈ Mi, ∀i, 1 ≤ i ≤ r. Let M ′

i = Mi−{0}. Then there exist a unique
family of functions

{Gi1,··· ,ik : M ′
i1×M ′

i2×· · ·×M ′
ik

→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r},

such that

f(x1, · · · , xr) = f(0, · · · , 0) +
r
∑

i=1

xiGi(xi) + · · ·+
∑

1≤i1<i2<···<ik≤r

(xi1 · · · xik)Gi1,··· ,ik(xi1 , · · · , xik)

+ · · ·+ (x1x2 · · · xr)G12···r(x1, · · · , xr).

.

Remark. In [6], Besag claims that {Gi1,··· ,ik : Mi1 ×Mi2 × · · · ×Mik → R}
(without removing one element from each set) are unique.
Proof Denote by IA the indicator function of a set A and

Nk = {(x1, · · · , xr) :
r
∑

i=1

I{0}(xi) ≤ k}.

Existence: The proof is by induction. For i = 1, · · · , r, define

Gi : M
′
i → R,

Gi(xi) =
f(0, · · · , 0, xi, 0, · · · , 0)− f(0, · · · , 0)

xi
,

where xi is the ith coordinate. Then let f1(x1, · · · , xr) = f(0, · · · , 0) +
∑r

i=1 xiGi(xi). Note that f1 = f on N1.
Next define Gi1,i2 : M ′

i1
×M ′

i2
→ R by
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Gi1,i2(xi1 , xi2) =

f(0, · · · , 0, xi1 , 0, · · · , 0, xi2 , 0, · · · , 0) − f1(0, · · · , 0, xi1 , 0, · · · , 0, xi2 , 0, · · · , 0)
xi1xi2

,

where, xi1 , xi2 are the ith1 and ith2 coordinates, respectively. Using the
{Gi1,i2}, we can define f2 on N2 by

f2(x1, · · · , xr) = f(0, · · · , 0) +
r
∑

i=1

xiGi(xi) +
∑

1≤i1<i2≤r

xi1xi2Gi1,i2(xi1 , xi2).

Or equivalently,

f2(x1, · · · , xr) = f1(x1 · · · , xr) +
∑

1≤i1<i2≤r

xi1xi2Gi1,i2(xi1 , xi2).

It is easy to see that f2 = f on N2.
In general, suppose we have defined Gi1,··· ,ik−1

and fk−1, let

Gi1,··· ,ik(xi1 , · · · , xik) =
f(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)− fk−1(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)

xi1 · · · xik
,

for (xi1 , · · · , xik) ∈ M ′
i1
× · · · ×M ′

ik
.

Also let

fk(x1, · · · , xr) = fk−1(x1, · · · , xr)+
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik)

We claim f = fk on Nk.

To see that, fix x = (x1, · · · , xr). If x has less than k nonzero elements,
the second term in the above expansion will be zero and

fk(x1, · · · , xr) = fk−1(x1, · · · , xr) = f(x1, · · · , xr),

by the induction hypothesis and we are done.
However if x has exactly k nonzero elements

x = (x1, · · · , xr) = (0, · · · , 0, xj1 , 0, · · · , 0, xjk , 0 · · · ).
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Then
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) =

xj1 · · · xjkGj1,··· ,jk(xj1 , · · · , xjk).

Hence

fk(x1, · · · , xr) = fk−1(x1, · · · , xr) + (xj1 , · · · , xjk)Gj1,··· ,jk(xj1 , · · · , xjk)
= fk−1(x1, · · · , xr)+

xj1 · · · xjk
f(· · · , 0, xj1 , 0, · · · , 0, xjk , 0, · · · )− fk−1(· · · , 0, xj1 , 0, · · · , 0, xjk , 0, · · · )

xj1 · · · xjk
= f(x1, · · · , xr).

By induction, f = fr on Nr =
∏

i=1,··· ,r Mi. Hence, the family of functions
satisfies the conditions.
Uniqueness: To prove uniqueness, suppose

{Gi1,··· ,ik : M ′
i1×M ′

i2×· · ·×M ′
ik

→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r},

and

{Hi1,··· ,ik : M ′
i1×M ′

i2×· · ·×M ′
ik

→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r},

are two families of functions satisfying the equation. Also assume fG
k and

fH
k are the summation functions as defined above corresponding to the two
families. We need to show Gi1,··· ,ik = Hi1,··· ,ik on M ′

i1
× · · · ×M ′

ik
. We use

induction on k. It is easy to verify the result for the case k = 1. Now
suppose x = (xi1 , · · · , xik) ∈ M ′

i1
×M ′

i2
× · · · ×M ′

ik
. Then by definition

Gi1,··· ,ik(xi1 , · · · , xik) =
f(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)− fG

k−1(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)
xi1 · · · xik

,

and

Hi1,··· ,ik(xi1 , · · · , xik) =
f(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)− fH

k−1(0, · · · , 0, xi1 , 0, · · · , 0, xik , 0, · · · , 0)
xi1 · · · xik

.
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3.5. Functions of r variables on a finite domain

But by induction hypothesis fG
k−1 = fH

k−1. Hence we are done.

We can think of this representation of f as an expansion around (0, · · · , 0).
However, (0, · · · , 0) has no intrinsic role and we can generalize the above
theorem as follows.

Theorem 3.5.2 Suppose, f : M =
∏

i=1,··· ,r Mi → R, Mi being finite and
|Mi| = ci. For any fixed (µ1, · · · , µr) ∈ M , let M ′

i = Mi − {µi}. Then there
exist unique functions

{Hi1,··· ,ik : M ′
i1×M ′

i2×· · ·×M ′
ik

→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r},

such that

f(x1, · · · , xr) = f(µ1, · · · , µr) +

r
∑

i=1

(xi − µi)Hi(xi) + · · ·+
∑

1≤i1<i2<···<ik≤r

(xi1 − µi1) · · · (xik − µik)Hi1,··· ,ik(xi1 , · · · , xik)+

· · ·+ (x1 − µ1)(x2 − µ2) · · · (xr − µr)H12···r(x1, · · · , xr).

Proof Let Ni = Mi−µi (meaning that we subtract µi from all elements of
Mi) so that Ni and Mi have the same cardinality. Also let N =

∏

i=1,··· ,r Ni

and N ′
i = Ni − {0}. Then define a bijective mapping

φi : Ni → Mi,

φi(xi) = xi + µi.

This will induce a bijective mapping Φ betweenN andM that takes (0, · · · , 0)
to (µ1, · · · , µr). Now consider f ◦ Φ :

∏

i=1,··· ,r Ni → R. By the previous
theorem, unique functions

{Gi1,··· ,ik : N ′
i1×N ′

i2×· · ·×N ′
ik

→ R, 1 ≤ k ≤ r, 1 ≤ i1 < i2 < · · · < ik ≤ r}

exist such that

f ◦Φ(x1, · · · , xr) = f ◦Φ(0, · · · , 0) +
r
∑

i=1

xiGi(xi) + · · ·+
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+ x1x2 · · · xrG12···r(x1, · · · , xr).
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Hence,

f(φ1(x1), · · · , φr(xr)) = f(φ1(0), · · · , φr(0)) +

r
∑

i=1

xiGi(xi) + · · ·+
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+

x1x2 · · · xrG12···r(x1, · · · , xr).

We conclude,

f(x1 + µ1, · · · , xr + µr) = f(µ1, · · · , µr) +

r
∑

i=1

xiGi(xi) + · · ·+
∑

1≤i1<i2<···<ik≤r

xi1 · · · xikGi1,··· ,ik(xi1 , · · · , xik) + · · ·+

x1x2 · · · xrG12···r(x1, · · · , xr).

This gives

f(x1, · · · , xr) = f(µ1, · · · , µr) +
r
∑

i=1

(xi − µ1)Gi(xi − µi) + · · ·+
∑

1≤i1<i2<···<ik≤r

(xi1 − µi1) · · · (xik − µik)Gi1,··· ,ik(xi1 − µi1 , · · · , xik − µik)+

· · · + (x1 − µ1)(x2 − µ2) · · · (xr − µr)G12···r(x1 − µ1, · · · , xr − µr).

To prove the existence, let

Hi1,··· ,ik(xi1 , · · · , xik) = Gi1,··· ,ik(xi1 − µi1 , · · · , xik − µik).

The uniqueness can be obtained as in the previous theorem.
We call this expression the Besag expansion around (µ1, · · · , µr).

Corollary 3.5.3 In the case of binary {0, 1} variables, the G functions
are simply real numbers, since M ′

i1
× · · · × M ′

ik
has exactly one element:

(1, · · · , 1). Hence, we have found a linear representation of f in terms of
the xi1 · · · xik .

Corollary 3.5.4 Suppose that {Xt} is an rth–order Markov chain, Xt tak-
ing values in Mt = {0, 1} and the conditional probability

P (Xt = 1|Xt−1, · · · ,X0),
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3.5. Functions of r variables on a finite domain

is well-defined and in (0,1). Let g : R → R
+ be a given bijective transfor-

mation. Then

gt(xt−1, · · · , x0) = g−1{P (Xt = 1|Xt−1 = xt−1, · · · ,X0 = x0)

P (Xt = 0|Xt−1 = xt−1, · · · ,X0 = x0)
},

is a function of t variables, (xt−1, · · · , x0), for t < r and is a function of r
variables, (xt−1, · · · , xt−r), for t > r. Hence there exist unique parameters
αt
0, {αt

i1,··· ,it}1≤i1,··· ,it≤t for t < r and αt
0, {αt

i1,··· ,ir}1≤i1,··· ,ir≤r for t ≥ r such
that
for t < r:

g−1{P (Xt = 1|Xt−1, · · · ,X0)

P (Xt = 0|Xt−1, · · · ,X0)
} =

αt
0 +

t
∑

i=1

Xt−iα
t
i + · · ·+

∑

1≤i1<i2<···<ik≤t

αt
i1,··· ,ikXt−i1 · · ·Xt−ik + · · ·+

αt
12···tXt−1Xt−2 · · ·X0.

and for t ≥ r:

g−1{P (Xt = 1|Xt−1, · · · ,X0)

P (Xt = 0|Xt−1, · · · ,X0)
} =

αt
0 +

r
∑

i=1

Xt−iα
t
i + · · ·+

∑

1≤i1<i2<···<ik≤r

αt
i1,··· ,ikXt−i1 · · ·Xt−ik + · · ·+

αt
12···rXt−1Xt−2 · · ·Xt−r.

Moreover, given any collection of parameters, αt
0, {αt

i1,··· ,it}1≤i1,··· ,it≤t for
t < r and αt

0, {αt
i1,··· ,ir}1≤i1,··· ,ir≤r for t ≥ r a unique stochastic process

(upto distribution) is specified using the above relations.
In the case of homogenous Markov chains the αt

0, α
t
i1,··· ,ik do not depend on

t for t > r.

The above corollary shows that the conditional probability of a Markov chain
after an appropriate transformation can be uniquely represented as a linear
combination of monomial products of previous states.
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3.5. Functions of r variables on a finite domain

One might conjecture that the same result holds for all categorical–
valued Markov chains (with a finite number of states) using the above the-
orem. This is not true in general since the {Gi1,··· ,ik} are functions. In the
next section, we prove another representation theorem which paves the way
for the categorical case. As it turns out, we need more terms in order to
write down the transformed conditional probability as a linear combination
of past processes.

3.5.2 Second representation theorem

In this section, we prove a new representation theorem for functions of r
finite variables. We start with the trivial finite–valued one–variable function
and then extend the result to r–variable functions. The proof for the general
case is non–trivial and is done again by induction.

Lemma 3.5.5 Suppose f : M → R, M ⊂ R being finite of cardinality c.
Let d = c− 1. Then f has a unique representation of the form

f(x) =
∑

0≤i≤d

αix
i, ∀x ∈ M.

Remark. The lemma states that, if we consider the vector space V =
{f : M → R}, then the monomial functions {pi}0≤i≤d, where pi : M →
R, pi(x) = xi form a basis for V .
Proof First note that the dimension of V is c. To show this, suppose
M = {m1, · · · ,mc} and consider the following isomorphism of vector spaces,

I : V → R
c

f 7→ (f(m1), · · · , f(mc)).

It only remains to show that {pi}0≤i≤d is an independent set. To prove this
suppose,

∑

0≤i≤d

αix
i = 0, ∀x ∈ M.

That would mean that the d–th degree polynomial p(x) =
∑

0≤i≤d αix
i has

at least c = d+ 1 disjoint roots which is greater than its degree. This con-
tradicts the fundamental theorem of algebra.
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3.5. Functions of r variables on a finite domain

Theorem 3.5.6 (Categorical Expansion Theorem) Suppose Mi is a finite
subset of R with |Mi| = ci, i = 1, 2, · · · , r. Let di = ci−1,M =

∏

i=1,··· ,r Mi

and consider the vector space of functions over R, V = {f : M → R} with
the function addition as the addition operation of the vector space and the
scalar product of a real number to the function as the scalar product of the
vector space. Then this vector space is of dimension C =

∏

i=1,··· ,r ci and

{xi11 · · · xirr }0≤i1≤d1,··· ,0≤ir≤dr forms a basis for it.

Proof To show that the dimension of the vector space is C, suppose
M = {m1, · · · ,mc} and consider following the isomorphism of vector spaces:

I : V → R
C ,

f 7→ (f(m1), · · · , f(mC)).

To show that {xi11 · · · xirr }0≤i1≤di,··· ,0≤ir≤dr forms a basis, we only need to
show that it is an independent collection since there are exactly C elements
in it. We proceed by induction on r. The case r = 1 was shown in the above
lemma. Suppose we have shown the result for r − 1 and we want to show
it for r. Assume a linear combination of the basis is equal to zero. We can
arrange the terms based on powers of xr:

p0(x1, · · · , xr−1)+xrp1(x1, · · · , xr−1)+ · · ·+xdrr pd(x1, · · · , xr−1) = 0, (3.7)

∀(x1, · · · , xr) ∈ M1 × · · · ×Mr.

Fix the values of x′1, · · · , x′r−1 ∈ M1 × · · · ×Mr−1. Then Equation (3.7) is
zero for cr values of xr. Hence by Lemma 3.5.5, all the coefficients:

p0(x
′
1, · · · , x′r−1), p1(x

′
1, · · · , x′r−1), · · · , pd(x′1, · · · , x′r−1),

are zero and we conclude:

p0(x1, · · · , xr−1) = 0, p1(x1, · · · , xr−1) = 0, · · · , pd(x1, · · · , xr−1) = 0,

∀(x1, · · · , xr−1) ∈ M1 × · · · ×Mr−1.

Again by the induction assumption all the coefficients in these polynomials
are zero. Hence, all the coefficients in the original linear combination in
Equation (3.7) are zero.
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Corollary 3.5.7 Suppose Xt is a categorical stochastic process, where Xt

takes values in Mt, |Mt| = ct = dt+1 < ∞. Also assume that the conditional
probability

P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0),

is well–defined and in (0,1). Fix m1
t ∈ Mt. Let g : R → R

+ be a bijective
transformation, then there are unique parameters

{αt
i0,··· ,it}t∈N,0≤i0≤dt−1,0≤i1≤dt−1,0≤i2≤dt−2,··· ,0≤it≤d0 ,

such that

P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0) = Pt(x0, · · · , xt),
where

Pt(x0, · · · , xt−1,m
t
1) =

1

1 +
∑

y∈M−{mt
1} ht(y)

, (3.8)

Pt(x0, · · · , xt−1, x) =
h(x)

1 +
∑

y∈M−{m1} ht(y)
, x 6= mt

1 ∈ Mt, (3.9)

for ht(x0, · · · , xt) = g ◦ gt(x0, · · · , xt−1, xt) and

gt(x0, · · · , xt−1, xt) =
∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0

αt
i0,··· ,itx

i0
t−0 · · · xitt−t,

(x0, · · · , xt) ∈ M0 × · · · ×Mt−1 ×M ′
t .

On the other hand any set of arbitrary parameters αt
i0,··· ,it gives rise to a

unique stochastic process with the above equations.

Corollary 3.5.8 Suppose that {Xt} is an rth–order Markov chain where Xt

takes values in Mt a finite subset of real numbers, |Mt| = ct = dt + 1 < ∞,
the conditional probability

P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0),

is well–defined and belongs to (0, 1). Fix m1
t ∈ Mt, let M

′
t = Mt−{m1

t} and
suppose g : R → R

+ is a given bijective transformation. Then

gt(xt, · · · , x0) = g−1{ P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · ,X0 = x0)

},
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is a function of t + 1 variables for t < r, (xt, · · · , x0) and is a function of
r + 1 variables,(xt, · · · , xt−r), for t > r. Hence there exist parameters

{αt
i0,··· ,it}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0 , for t < r

and
{αt

i0,··· ,ir}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r , for t ≥ r

such that for t < r:

g−1{ P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · ,X0 = x0)

} =

∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0

αt
i0,··· ,itx

i0
t−0 · · · xitt−t,

(x0, · · · , xt) ∈ M0 × · · ·Mt−1 ×M ′
t ,

and for t ≥ r:

g−1{ P (Xt = xt|Xt−1 = xt−1, · · · ,X0 = x0)

P (Xt = m1
t |Xt−1 = xt−1, · · · ,X0 = x0)

} =

∑

0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r

αt
i0,··· ,irx

i0
t−0 · · · xirt−r

(x0, · · · , xt) ∈ M0 × · · ·Mt−1 ×M ′
t .

Moreover any collection of arbitrary parameters

{αt
i0,··· ,it}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤it≤d0 , for t < r,

and
{αt

i0,··· ,ir}0≤i0≤dt−1,0≤i1≤dt−1,··· ,0≤ir≤dt−r , for t ≥ r,

specify a unique stochastic process (upto distribution) by the above relations.
In the case of homogenous Markov chains the αt

i1,··· ,ir do not depend on t
for t > r.

One might question the usefulness of such a representation. After all we
have exactly as many parameters in the model as the values of the original
function. In the following, we explain the importance of linear representa-
tions of such functions.
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1. A vast amount of theory has been developed to deal with linear mod-
els. Generalized linear models in the case of independent sequence of
random variables is a powerful tool. As we will see in sequel, these
ideas can be imported into time series using the concept of partial
likelihood.

2. Although we have as many parameters in the model as the values of the
original function, the representation gives us a convenient framework
for modeling, in particular for making various model reductions by
omitting some terms or assuming certain coefficients are equal.

3. Although this is a representation for stationary rth–order Markov
chains (or representation for arbitrary locally rth–order chains at time
t), this representation allows us to accommodate other explanatory
variables simply as additive linear terms and extend the model to
non–stationary cases. This cannot be done in the same way if we try
to model the original values of the function.

Example As an example consider a categorical response variable Y and r
categorical explanatory variables

X1, · · · ,Xr,

are given. Suppose the Xi takes values in the Mi which include 0. Our
purpose is to model Y based on X1, · · · ,Xr. In order to do that, we consider
the conditional probability

P (Y = y|X1 = x1, · · · ,Xr = xr).

Again, we assume that the conditional probability is well-defined everywhere
and takes values in (0, 1). The above theorem shows that after applying a
transformation the conditional probability can be written as a linear com-
bination of multiples of powers of the Xi.

Although, the theorem above shows the form of the conditional prob-
ability in general and paves the way to the estimation of the conditional
probabilities by estimating the parameters, the large number of parameters
makes this a challenging task which might be impractical in some cases. In
the next section, we introduce some classes of r variable functions that can
be useful for some applications.
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3.5.3 Special cases of functions of r finite variables

The first class of functions we introduce are obtained by power restrictions.
We simply assume that gt can be represented only by powers less than k.
Suppose Xt takes values in 0, 1, · · · , ct − 1. Then for a k-restricted power
stationary rth–order Markov chain, the gt, t > r is given by:

∑

0≤i1≤d1,··· ,0≤ir≤dr ,
∑

j ij≤k

αi1,··· ,irX
i1
t−1 · · ·Xir

t−r.

In particular, we can let k = 1 and get

β0 +
∑

i

βiXt−i.

This is useful especially for binary Markov chains.
The second class of functions are useful in the case when relationships

exist between the states in terms of a semi–metric d. Suppose {Xt} is an
rth–order Markov chain and Xt takes values in the same finite set M =
{1, · · · ,m}. Also let

d : M ×M → R,

be a semi–metric being a mapping on M that satisfies the following condi-
tions:

d ≥ 0;

d(x, z) ≤ d(x, y) + d(y, z);

d(x, x) = 0.

Then we introduce the following model:

g−1{P (Xt = j|Xt−1, · · · ,Xt−r)

P (Xt = 1|Xt−1, · · · ,Xt−r)
} = α0,j +

k
∑

i=1

αi,jd(j,Xt−i)

for j = 2, · · · ,m. For this model

P (Xt = 1|Xt−1, · · · ,Xt−r) = 1−
∑

j=2,··· ,m
P (Xt = j|Xt−1, · · · ,Xt−r).

Finally, we introduce a simple class for the binary Markov chain of order
r. For any bijective transformation g : R → R

+

g−1{P (Xt = 1|Xt−1, · · · ,Xt−r)

P (Xt = 0|Xt−1, · · · ,Xt−r)
} = α0 + α1Nt−1,
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where Nt−1 =
∑r

j=1Xt−j . For example in the 0-1 precipitation process
example seen in the Introduction, Nt−1 counts the number of the days out
of r days before today that had some precipitation.

3.6 Generalized linear models for time series

Generalized linear models were developed to extend ordinary linear regres-
sion to the case that the response is not normal. However, that extension
required the assumption of independently observed responses. The notion
of partial likelihood was introduced to generalize these ideas to time series
where the data are dependent. What follows in this section is a summary
of the first chapter in Kedem and Fokianos [27], which we have included for
completeness.

Definition Let Ft, t = 1, 2, · · · be an increasing sequence of σ–fields, F0 ⊂
F1 ⊂ F2, · · · and let Y1, Y2, · · · be a sequence of random variables such that
Yt is Ft–measurable. Denote the density of Yt, given Ft, by ft(yt; θ), where
θ ∈ R

p is a fixed parameter. The partial likelihood (PL) is given by

PL(θ; y1, · · · , yN ) =

N
∏

t=1

ft(yt; θ).

Example As an example, suppose Yt represents the 0-1 PN process in
Calgary, while MTt denotes the maximum daily temperature process. We
can define Ft as follows:

1. Ft = σ{Yt−1, Yt−2, · · · }. In this case, we are assuming the information
available to us is the value of the process on each of the previous days.

2. Ft = σ{Yt−1, Yt−2, · · · MTt−1,MTt−2, · · · }. In this case, we are assum-
ing we have all the information regarding the 0-1 process of precipita-
tion and maximum temperature for previous days.

3. Ft = σ{Yt−1, Yt−2, · · · MTt,MTt−1,MTt−2, · · · }. In this case, we add
to the information in 2 the knowledge of today’s maximum tempera-
ture.

The vector θ that maximizes the above equation is called the maximum
partial likelihood (MPLE). Wong [48] has studied its properties. Its con-
sistency, asymptotic normality and efficiency can be shown under certain
regularity conditions.
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In this report, we are mainly interested in the case: Ft = σ{Yt−1, Yt−2, · · · }.
We assume that the information Ft is given as a vector of random variables
and denote it by Zt, which we call the covariate process:

Zt = (Zt1, · · · , Ztp)
′.

Zt might also include the past values of responses Yt−1, Yt−2, · · · .
Let µt = E[Yt|Ft−1], be the conditional expectation of the response given

the information we have up to the time t.
Kedem and Fokianos in [27] address time series following generalized

linear models satisfying certain conditions about the so-called random and
systematic components:

• Random components: For t = 1, 2, · · · , N

f(yt; θt, φ|Ft−1) = exp{ytθt − b(θt)

at(φ)
+ c(yt;φ)}.

• The parametric function αt(φ) is of the form φ/wt, where φ is the
dispersion parameter, and wt is a known parameter called “weight
parameter”. The parameter θt is called the natural parameter.

• Systematic components: For t = 1, 2, · · · , N ,

g(µt) = ηt =

p
∑

j=1

βjZ(t−1)j = Z ′
t−1β,

for some known monotone function g called the link function.

Example Binary time series: As an example consider {Yt}, a binary time
series. Let us denote by πt the probability of success given Ft−1. Then for
t = 1, 2, · · · , N ,

f(yt; θt, φ|Ft−1) = exp(yt log(
πt

1− πt
) + log(1− πt))

with E[Yt|Ft−1] = πt, b(θt) = − log(1 − πt) = log(1 + exp(θt)), V (πt) =
πt(1− πt), φ = 1, and wt = 1.
The canonical link gives rise to the so–called “logistic model”:

g(πt) = θt(πt) = log(
πt

1− πt
) = ηt = Z ′

t−1β.
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In the notation of Corollary 3.5.4, Yt = Xt, πt = P (Xt = 1|Xt−1, · · · ,Xt−r)
and Z ′

t−1 = (1,Xt−1, · · · ,Xt−r,Xt−1Xt−2, · · · ,Xt−1 · · ·Xt−r). We can also
consider other covariate processes such as Z ′

t−1 = (1,Xt−1, · · · ,Xt−r) and
so on.

In order to study the asymptotic behavior of the maximum likelihood
estimator, we consider the conditional information matrix. To establish
large sample properties, the stability of the conditional information matrix
and the central limit theorem for martingales are required. Proofs may be
found in Kedem and Fokianos [27].

Inference for partial likelihood

The definitions of partial likelihood and exponential family of distributions
imply that the log partial likelihood is given by

l(β) =
N
∑

t=1

log f(yt; θt, φ|Ft−1) =
N
∑

t=1

{ytθt − b(θt)

αt(φ)
+ c(yt, φ)} =

N
∑

t=1

{ytu(z
′
t−1β)− b(u(z′t−1))

αt(φ)
+ c(yt, φ)} =

N
∑

t=1

lt,

where u(.) = (g◦µ(.))−1 = µ−1(g−1(.)), so that θt = u(zt−1β). We introduce
the notation,

▽ = (
∂

∂β1
, · · · , ∂

∂βp
)′

and call ▽l(β) the partial score. To compute the gradient, we can use the
chain rule in the following manner

∂lt
∂βj

=
∂lt
∂βj

∂θt
∂µt

∂µt

∂ηt

∂ηt
∂βj

.

Some algebra shows

SN (β) = ▽l(β) =

N
∑

t=1

Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

,

where, σ2
t (β) = V ar[Yt|Ft−1]. The partial score process is defined from the

partial sums as

St(β) = ▽l(β) =
t
∑

s=1

Z(s−1)
∂µs

∂ηs

Ys − µs(β)

σ2
s(β)

.
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One can show the terms in the above sums to be orthogonal:

E[Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

Z(s−1)
∂µs

∂ηs

Ys − µs(β)

σ2
s(β)

] = 0, s < t.

Also, E[SN (β) = 0].
The cumulative information matrix is defined by

GN (β) =
N
∑

t=1

Cov[Z(t−1)
∂µt

∂ηt

Yt − µt(β)

σ2
t (β)

|Ft−1].

The unconditional information matrix is simply

Cov(SN (β)) = FN (β) = E[GN (β)].

Next let

HN (β) = −▽▽
′l(β).

Kedem and Fokianso [27] show that

HN(β) = GN (β)−RN (β),

where

RN (β) =
1

αt(φ)

N
∑

t=1

Zt−1dt(β)Z
′
t−1(Yt − µt(β)),

and dt(β) = [∂2u(ηt)/∂η
2
t ].

St satisfies the martingale property:

E[St+1(β)|Ft−1] = St(β).

To prove the consistency and other properties of the estimators, we need:
Assumption A:

A1. The true parameter β belongs to an open set B ⊂ R.
A2. The covariate vector Zt almost surely lies in a non random compact
set Γ of Rp, such that P [

∑N
t=1 Zt−1Z

′
t−1 > 0] = 1. In addition, Z ′

t−1β lies
almost surely in the domain H of the inverse link function h = g−1 for all
Zt−1 ∈ Γ and β ∈ B.
A3. The inverse link function h, defined in (A2), is twice continuously
differentiable and |∂h(λ)/∂λ| 6= 0.
A4. There is a probability measure ν on R

p such that
∫

Rp zz
′ν(dz) is positive

definite, and such that for Borel sets A ⊂ R
p,

1

N

N
∑

t=1

I[Zt−1∈A] → ν(A).
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Theorem 3.6.1 Under assumption A the maximum likelihood estimator is
almost surely unique for all sufficiently large N , and

1. the estimator is consistent and asymptotically normal,

β̂
p→ β

in probability, and

√
N(β̂ − β)

d→ Np(0, G
−1(β)),

in distribution as N → ∞, for some matrix G.

2. The following limit holds in probability, as N → ∞:

√
N(β̂ − β)− 1√

N
G−1(β)SN (β)

p→ 0.

We follow Kedem and Fokianos [27], who used similar models, to assume
the above conditions for our models. However, we conjecture that the above
assumptions hold for the partial likelihood of stationary rth–order Markov
chains (with strictly positive joint distribution) in terms of our parametric
linear form at least for the binary case. In fact assumptions A1. to A3. are
easy to check and only A4. poses some challenge. We leave this for future
research and use several simulation studies to check the consistency of the
estimators in next section as well as Chapter 4 and Chapter 10. For more
discussion regarding the assumptions and consistency see [27].

3.7 Simulation studies

This section presents the results of some simulation studies about the partial
likelihood applied to categorical rth–order Markov chains. We also investi-
gate the performance of the BIC to pick the appropriate (“true”) model. In
particular, we generate samples from a seasonal Markov chain Yt where,

Zt−1 = (1, Yt−1, cos(ωt)), ω =
2π

366
.

We consider this Markov chain over 5 years from 2000 to 2005 and assume

logit{P (Yt = 1|Zt−1)} = β′Zt−1,

where β = (−1, 1,−0.5).
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3.7. Simulation studies

To generate samples for this chain, we need an initial value of the past
two states, which we take it to be (1, 1). We denote the process Yt−k by Y k

for simplicity.
To check the performance of the partial likelihood and estimates of the

variance using GN , we generate 50 chains with this initial value and then
compare the parameter estimates with the true parameters. We also com-
pare the theoretical variances with the experimental variances. Table 3.7
shows that the parameter estimates are fairly close to the true values. Also
the experimental and theoretical variances are similar.

sim. sd theo. sd

β̂1 β̂2 β̂3 sd(β̂1) sd(β̂2) sd(β̂3) sd(β̂1) sd(β̂2) sd(β̂3)

-0.99 1.0 -0.42 0.07 0.10 0.07 0.06 0.12 0.07

Table 3.1: The estimated parameters for the model Zt−1 = (1, Yt−1, cos(ωt))
with parameters β = (−1, 1,−0.5). The standard deviation for the param-
eters is computed once using GN (theo. sd) and once using the generated
samples (sim. sd).

In Kedem and Fokianos [27] other simulation studies have been done to
check the validity of this method.

To check the normality of the parameter estimates, we plot the three
parameter estimates histograms in Figure 3.1. The figure shows that the
parameter estimates have a distribution close to Gaussian.

Next we check the performance of the BIC criterion in picking the op-
timal (“true”) model. We use the same model as above and then compute
the BIC for a few models to see if BIC picks the right one. We denote Yt−k

by Y k and cos(ωt) by COS for simplicity. For an assessment, we simulate
a few other chains.
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Figure 3.1: The distribution of parameter estimates for the model with the
covariate process Zt−1 = (1, Yt−1, cos(ωt)) and parameters (β1 = −1, β2 =
1, β3 = −0.5).

Model: Zt−1 BIC parameter estimates

(1) 2380.0 (-0.605)
(1, Y 1) 2267.1 (-1.03, 1.11)
(1, Y 1, Y 2) 2273.7 (-1.064, 1.091, 0.101)
(1, Y 1, COS) 2217.7 (-1.00, 0.970, -0.558)
(1, Y 1, SIN) 2274.4 ( -1.037, 1.117, 0.026)
(1, Y 1, COS, SIN) 2225.1 (-1.00, 0.970, -0.559, 0.028)
(1, Y 1, Y 2, Y 1Y 2) 2281.1 (-1.055, 1.0615, 0.0647, 0.077)
(1, Y 1, Y 2, Y 1Y 2, COS) 2232.4 (-0.985, 0.943, -0.0870, 0.0915, -0.564)
(1, Y 1, Y 2, Y 1Y 2, COS, SIN) 2239.8 (-0.981, 0.957, -0.0946, 0.0723, -0.575, 0.0232)

Table 3.2: BIC values for several models competing for the role of the true
model, where Zt−1 = (1, Y 1, COS), β = (−1, 1,−0.5).

As we see in Table 3.2, the true model has the smallest BIC showing it
performs well in this case. Also note that models which include the covari-
ates of the true model have accurate estimates for the parameters associated
with (1, Y 1, COS), while giving very small magnitude for other parameters.
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Model: Zt−1 BIC parameter estimates

(1) 2537.3 (0.0799)
(1, Y 1) 2329.5 (-0.649, 1.417)
(1, Y 1, Y 2) 2245.5 (-1.022, 1.144, 0.998)
(1, Y 1, COS) 2265.9 (-0.553, 1.236, -0.617)
(1, Y 1, SIN) 2336.7 (-0.648, 1.415, -0.0433)
(1, Y 1, COS, SIN) 2273.0 (-0.552, 1.235, -0.617, -0.0480)
(1, Y 1, Y 2, Y 1Y 2) 2251.3 (-1.08, 1.287, 1.140, -0.278)
(1, Y 1, Y 2, Y 1Y 2, COS) 2213.7 (-0.936, 1.11, 0.966, -0.175, -0.511)
(1, Y 1, Y 2, Y 1Y 2, COS, SIN) 2221.2 (-0.927, 1.101, 0.940, -0.160, -0.549, -0.0441)

(1, Y 1, Y 2, COS) 2206.8 (-0.899, 1.0263, 0.875, -0.515)

Table 3.3: BIC values for several models competing for the role of true model
given by Zt−1 = (1, Y 1, Y 2, COS), β = (−1, 1, 1,−0.5).

Table 3.3 presents the true model in the last row. Ignore that row for a
moment. The smallest “BIC” corresponds to (1, Y 1, Y 2, Y 1Y 2, COS), which
has an component Y 1Y 2 added to the true model. However, the coefficients
of this model are very close to the true model and the coefficient for Y 1Y 2

is relatively small in magnitude. The true model has the smallest BIC again
and the parameter estimates are close to the correct values.

3.8 Concluding remarks

In summary, this chapter shows that a categorical discrete–time stochastic
process can be represented using a small number of ascending joint distri-
butions

P (X0 = x0), P (X0 = x0,X1 = x1), P (X0 = x0,X1 = x1,X2 = x2), · · · .

As a corollary of the above, we showed that a categorical discrete–time
stochastic process can be represented using the conditional probabilities

P (X0 = x0), P (X1 = x1|X0 = x0), P (X2 = x2|X0 = x0,X1 = x1), · · · .

A parametric form was found for the conditional probability distribution
of categorical discrete–time stochastic processes. The parameters can be
estimated for stationary binary Markov chains using partial likelihood.
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Chapter 4

Binary precipitation process

4.1 Introduction

This chapter studies the Markov order of the 0-1 precipitation process (PN
from now on). Many authors such as Anderson et al. in [4] and Barlett
in [5] have developed techniques to test different assumptions about the
order of the Markov chain. For example in [4], Anderson et al. develop
a Chi-squared test to test that a Markov chain is of a given order against
a larger order. In particular, we can test the hypothesis that a chain is
0th–order Markov against a 1st–order Markov chain, which in this case
is testing independence against the usual (1st–order) Markov assumption.
(This reduces simply to the well–known Pearson’s Chi-squared test.) Hence,
to “choose” the Markov order one might follow a strategy of testing 0th–
order against 1st–order, testing 1st–order against 2nd–order and so on to
rth–order against (r + 1)th–order, until the test rejects the null hypothesis
and then choose the last r as the optimal order. However, some drawbacks
are immediately seen with this method:

1. The choice of the significance level will affect our chosen order.

2. The method only works for chains with several independent observa-
tions of the same finite chain.

3. We cannot account for some other explanatory variables in the model,
for example the maximum temperature.

Issues like this have led researchers to think about other methods of order
selection. Akaike in [2], using the information distance and Schwartz in
[42] using Bayesian methods develop the AIC and BIC, respectively. Other
methods and generalizations of the above methods have been proposed by
some authors such as Hannan in [20], Shibita in [44] and Haughton in [22].

Many authors have studied the order of precipitation processes at dif-
ferent locations on Earth. Gabriel et al. in [18] use the test developed in
Anderson et al. [4] to show that the precipitation in Tel-aviv is a 1st–order
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4.2. Models for 0-1 precipitation process

Markov chain. Tong in [45] used the AIC for Hong Kong, Honolulu and New
York and showed that the process is 1st–order in Hong Kong and Honolulu
but 0th–order in New York. In a later paper, [46], Tong and Gates use
the same techniques for Manchester and Liverpool in England and also re-
examined the Tel–aviv data. Chin in [12] studies the problem using AIC over
100 stations (separately) in the United States over 25 years. He concludes
that the order depends on the season and geographical location. Moreover,
he finds a prevalence of first order conditional dependence in summer and
higher orders in winter. Other studies have been done by several authors
using similar techniques over other locations. For example, Moon et al. in
[35] study this issue at 14 location in South Korea.

This report investigates the Markov order for a cold–climate region. The
Markov order of the precipitation in this region might be different due to a
large fraction of precipitation being being in the form of snowfall. The re-
port also drops the homogeneity (stationarity) condition usually imposed in
studying the Markov order. In fact the model proposed here can accommo-
date both continuous (here time and potentially geographical location and
other explanatory variables) and categorical variables (e.g. precipitation
occurred/not occurred on a given day).

An issue with increasing the order of a Markov chain is the exponential
increase in number of parameters in the model. Here as a special case, we
propose models that increase with the order of Markov chain by adding only
1 parameter. Other authors such as Raftery in [40] and Ching in [13] have
proposed other methods to reduce the number of parameters. The dataset
used in this study contains more than 110 years of daily precipitation for
some stations. This allows us to look at some properties of the precipitation
process such as stationarity more closely.

4.2 Models for 0-1 precipitation process

In the light of Categorical Expansion Theorem (Theorem 3.5.6), from the
previous chapter, we know all the possible forms of rth–order Markov chains
for binary data. Since, this theorem gives us linear forms, time series follow-
ing generalized linear models (TGLM) provides a method to estimate the
parameters. For two reasons it is beneficial to study simpler models rather
than a full model:

1. There are a large number of parameters to estimate in the full model.

2. There are better interpretations for the parameters in simpler models.
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4.2. Models for 0-1 precipitation process

We introduce a few processes that are useful in modeling precipitation:

• Yt represents the occurrence of precipitation on day t. Here Yt is a
binary process with 1 denoting precipitation and 0 denoting its absence
on day t.

• N l
t−1 =

∑l
j=1 Yt−j represents the number of PN days in the past l

days.

• Binary processes for modeling m years, say l1 to l2. Here, we define
the binary processes Al

t, l ∈ [l1, l2] by

Al
t =

{

1, if t belongs to the year l

0, otherwsie
.

This is a binary deterministic process to model the year effect.

• Seasonal processes (deterministic):

cos(ωt) and sin(ωt), ω =
2π

366
.

We can also consider higher order terms in the Fourier series cos(ωnt)
and sin(ωnt), where n is a natural number.

Some possibly interesting models present themselves when Zt−1 is a co-
variate process. The probability of precipitation today depends on the value
of that covariate process, and those processes might include:

• Zt−1 = (1, N l
t−1). This model assumes that the probability of PN

today only depends on the number of PN days during l previous days.

• Zt−1 = (1, N l
t−1, Yt−1). This model assumes that the PN occurrence

today depends on the PN occurrence yesterday and the number of
PN occurrences during l previous days.

• Zt−1 = (1, cos(ωt), sin(ωt), N l
t−1, Yt−1).

• Zt−1 = (1, cos(ωt), sin(ωt), Yt−1).

• Zt−1 = (1, Yt−1, · · · , Yt−r). This is a special case of Markov chain of
order r. No interaction between the days is assumed. In this model
increasing the order of Markov chain by one corresponds to adding one
parameter to the model.
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4.3. Exploratory analysis of the data

• Zt−1 = (1, Yt−1, · · · , Yt−r, Yt−1Yt−2). In this model, the interaction
between the previous day and two days ago is included.

• Zt−1 = (1, cos(ωt), sin(ωt), Yt−1, · · · , Yt−r). In this model, two sea-
sonal terms are added to the previous model.

• Zt−1 = (A1
t , · · · , Ak

t , Yt−1, · · · , Yt−r). This model has a different inter-
cept for various years (year effect).

4.3 Exploratory analysis of the data

The data includes the daily precipitation for 48 stations over Alberta from
1895 to 2006.

First, we make the plot of transition probabilities for a few locations.
We pick Calgary and Banff, which have a rather long period of data avail-
able for PN . We have also repeated the procedure for some other locations
such as Edmonton and seen similar results. Figures 4.1 to 4.7 show the
plots for Banff. For Calgary see plots in Chapter 2. Figure 4.1 plots the
estimated 1st–order transition probabilities p̂11 (the probability of precip-
itation if precipitation occurs the day before) and p̂01 (the probability of
precipitation if it does not occur the day before). These transition probabil-
ities are estimated using the observed data. For example p̂11 for January 5th
is estimated by n11

n1
, where n11 is the number of pairs of days (Jan. 4th, Jan.

5th) with precipitation and n1 is the number of Jan. 5th with precipitation
during available years. Figures 4.2 and 4.3 show similar plots for estimated
2nd–order transition probabilities. Figures 4.4 and 4.5 give the estimated
annual probability of precipitation for Banff and Calgary computed by di-
viding the number of wet days of a year by the number of days in that year.
The plot of the logit function and the transformed estimated probability of
precipitation in Banff are shown in Figures 4.6 and 4.7. We summarize the
conclusions and conjectures based on the exploratory analysis of the data
as followings:

• The binary PN process is not stationary. Figure 4.1 shows that the
transition probabilities change over time and depend on the season.

• Figure 4.1 also suggests the transition probabilities change continu-
ously over time. Although a high variation is seen in the higher order
probabilities, a generally continuous trend is observed. There is a pe-
riodic trend for the transition probabilities over the course of the year
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4.3. Exploratory analysis of the data

and a simple periodic function should suffice modeling these probabil-
ities.

• Figure 4.1 suggests p11 and p01 differ over the course of the year, so a
0th–order Markov chain (independent) does not seem appropriate.

• Figure 4.2 plots the curves p̂111, p̂011 and Figure 4.3 plots the curves
p̂001, p̂101. They have considerable overlaps over the course of the year.
Therefore a 2nd–order Markov chain does not seem necessary.

• Figures 4.4 and 4.5 show the estimated probability of precipitation for
different years, computed by averaging through the days of a given
year. The probability of precipitation seems to differ year–to–year. It
also seems that consecutive years have similar probability and hence
assuming that different years are identically distributed and indepen-
dent does not seem reasonable. The probability of precipitation has
increased over the past century for Calgary, while for Banff the prob-
ability of precipitation seems to have been changing with a more ir-
regular pattern.

• Figure 4.6 shows the plot of the logit function, while Figure 4.7 shows
the result of applying the logit function to the estimated probabilities.
We observe how the logit function transforms the values between 0
and 1 to a wider range in R. Since logit is an increasing function the
peaks are observed at the same time as the original values.

The Categorical Expansion Theorem (Theorem 3.5.6) shows the general
form for binary rth–order Markov processes. Table 4.8 compares all possi-
ble 2nd–order Markov chains (including the constant process). We discuss
the implications of these possible models and use the following abbrevia-
tions: Y k = Yt−k, COS = cos(ωt), SIN = sin(ωt), COS2 = cos(2ωt) and
SIN2 = sin(2ωt).
Some proposed models:

• Zt−1 = 1:
The probability of PN ’s occurrence does not depend on the previous
days. In other words days are independent.

• Zt−1 = (1, Y 1):
The probability of PN today depends only on the day before and given
the latter’s value, it is independent of the other previous days.
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Figure 4.1: The transition probabilities for the Banff site. The dotted line
represents p̂11 (the estimated probability of precipitation if precipitation oc-
curs the day before) and the dashed represents p̂01 (the estimated probability
of precipitation if precipitation does not occur the day before.)
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Figure 4.2: The solid curve represents p̂111 (the estimated probability of
precipitation if during both two previous days precipitation occurs) and the
dashed curve represents p̂011 (the estimated probability that precipitation
occurs if precipitation occurs the day before and does not occur two days
ago) for the Banff site.
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Figure 4.3: The solid curve represents p̂001 (the estimated probability of
precipitation occurring if it does not occur during the two previous days)
and the dotted curve is p̂101 (the estimated probability that precipitation
occurs if precipitation does not occur the day before but occurs two days
ago) for the Banff site.
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Figure 4.4: Banff’s estimated mean annual probability of precipitation cal-
culated from historical data.
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Figure 4.5: Calgary’s estimated mean annual probability of precipitation
calculated from historical data.
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Figure 4.6: The logit function: logit(x) = log(x/(1 − x)).
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Figure 4.7: The logit of the estimated probability of precipitation in Banff
for different days of the year.
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• Zt−1 = (1, Y 2) :
The probability of PN given the information for the day before yes-
terday is independent of other previous days, in particular yesterday!
This does not seem reasonable.

• Zt−1 = (1, Y 1, Y 2) :
This model includes both Y 1 and Y 2. One might suspect that it has all
the information and therefore is the most general 2nd–order Markov
model. However, note that in the model the transformed conditional
probability is a linear combination of the past two states:

logit{P (Y = 1|Y 1, Y 2)} = α0 + α1Y
1 + α2Y

2,

which implies,

logit{P (Y = 1|Y 1 = 0, Y 2 = 0)} = α0,

logit{P (Y = 1|Y 1 = 1, Y 2 = 0)} = α0 + α1,

logit{P (Y = 1|Y 1 = 0, Y 2 = 1)} = α0 + α2,

and
logit{P (Y = 1|Y 1 = 1, Y 2 = 1)} = α0 + α1 + α2.

We conclude that

logit{P (Y = 1|Y 1 = 1, Y 2 = 0)} − logit{P (Y = 1|Y 1 = 0, Y 2 = 0)} =

logit{P (Y = 1|Y 1 = 1, Y 2 = 1)} − logit{P (Y = 1|Y 1 = 0, Y 2 = 1)} =

α1.

In other words, the model implies that no matter what the value Y 2

has, the differences between the conditional probabilities given Y 1 = 1
and given Y 1 = 0 (in the logit scale) are the same.

• Zt−1 = (1, Y 1Y 2):
Among other things, this model implies that the conditional probabil-
ities given (Y 1 = 0, Y 2 = 1), (Y 1 = 1, Y 2 = 0) or (Y 1 = 0, Y 2 = 0)
are the same.
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• Zt−1 = (1, Y 1, Y 1Y 2):
Among other things this model implies that the conditional probabil-
ities given any of the pairs (Y 1 = 0, Y 2 = 0) or (Y 1 = 0, Y 2 = 0) are
the same.

• Zt−1 = (1, Y 2, Y 1Y 2):
The interpretation is similar to the previous case.

• Zt−1 = (1, Y 1, Y 2, Y 1Y 2) :
This is the full 2nd–order stationary Markov model with no restrictive
assumptions as shown by Categorical Expansion Theorem.

The above explanations show that one must be careful about the as-
sumptions made about any proposed model. Including/dropping various
covariates can lead to implications that might be unrealistic.

4.4 Comparing the models using BIC

This section uses the methods developed previously to find appropriate mod-
els for the 0-1 PN process. We use the PN data for Calgary from 2000 to
2004. We compare several models using the BIC criterion. The partial
likelihood is computed and then maximized using the “optim” function in
“R”.

Using “Time Series Following Generalized Linear Models” as discussed
by Kedem et al. in [27], for binary time series with the canonical link
function, we have:

P (Yt = 1|Zt−1) = logit−1(αZt−1),

and,

P (Yt = 0|Zt−1) = 1− logit−1(αZt−1).

We conclude that the log partial likelihood is equal to:

N
∑

t=1

log P (Yt|Zt−1) =

∑

1≤t≤N,Yt=1

log(logit−1(αZt−1)) +
∑

1≤t≤N,Yt=0

log(1− logit−1(αZt−1)).
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To ensure that the maximum picked by “optim” in the R package is close
to the actual maximum, several initial values were chosen randomly until
stability was achieved.

In order to find an optimal model to describe a binary (0-1) PN process,
we can include several factors such as previous values of the process, seasonal
terms, previous maximum temperature values and so on. We have done this
comparison in several tables. The smallest BIC in the tables is shown by
boldface.

Table 4.1 shows the constant process 1 and N l, the number of wet days
during l previous days, as predictors. Note that N1 = Y 1. The BIC criterion
in this case picks the simplest model which includes only the previous day.
Hence a 1st–order Markov chain is chosen among these particular lth–order
chains.

Model: Zt−1 BIC parameter estimates

(1, N1) 2268.1 (−1.035, 1.268)
(1, N2) 2294.5 (−1.097, 0.726)
(1, N3) 2293.4 (−1.181, 0.559)
(1, N4) 2292.7 (−1.244, 0.462)
(1, N5) 2296.9 (−1.281, 0.390)
(1, N6) 2305.9 (−1.292, 0.331)
(1, N7) 2311.3 (−1.308, 0.291)
(1, N8) 2317.2 (−1.317, 0.258)
(1, N9) 2322.1 (−1.32, 0.232)
(1, N10) 2325.6 (−1.34, 0.212)
(1, N11) 2330.4 (−1.34, 0.193)
(1, N12) 2335.7 (−1.34, 0.177)
(1, N13) 2336.3 (−1.36, 0.168)
(1, N14) 2340.5 (−1.35, 0.155)
(1, N15) 2342.6 (−1.36, 0.146)

Table 4.1: BIC values for models including N l, the number of precipitation
days during the past l days for the Calgary site.

Table 4.2 compares models with predictors:

1, Y l and N l, l = 1, 2, · · · , 30.

Since Y 1 = N1 the first row is obviously an over–parameterized model.
The smallest BIC corresponds to the model (1, Y 1, N28). Even the model
(1, Y 1, N4) shows an improvement over (1, Y 1). Hence by adding the number
of PN days to the simple model (1, Y 1), an improvement is achieved.
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4.4. Comparing the models using BIC

Model: Zt−1 BIC parameter estimates

(1, Y 1, N1) 2275.6 (-1.04, -0.40, 1.67)
(1, Y 1, N2) 2270.2 (-1.10, 0.94, 0.255)
(1, Y 1, N3) 2258.3 (-1.21, 0.88, 0.279)
(1, Y 1, N4) 2250.6 (-1.28, 0.88, 0.254)
(1, Y 1, N5) 2247.5 (-1.32, 0.91, 0.221)
(1, Y 1, N6) 2248.2 (-1.34, 0.95, 0.187)
(1, Y 1, N7) 2247.1 (-1.37, 0.97, 0.167)
(1, Y 1, N8) 2247.5 (-1.39, 0.99, 0.149)
(1, Y 1, N9) 2247.6 (-1.40, 1.01, 0.136)
(1, Y 1, N10) 2247.4 (-1.42, 1.02, 0.126)
(1, Y 1, N11) 2248.3 (-1.43, 1.04, 0.115)
(1, Y 1, N12) 2249.6 (-1.43, 1.05, 0.105)
(1, Y 1, N13) 2248.1 (-1.46, 1.06, 0.102)
(1, Y 1, N14) 2249.7 (-1.46, 1.07, 0.0945)
(1, Y 1, N15) 2249.5 (-1.47, 1.07, 0.0905)
(1, Y 1, N16) 2249.0 (-1.49, 1.08, 0.0872)
(1, Y 1, N17) 2245.3 (-1.51, 1.08, 0.0853)
(1, Y 1, N18) 2246.8 (-1.53, 1.08, 0.0831)
(1, Y 1, N19) 2246.8 (-1.55, 1.08, 0.0820)
(1, Y 1, N20) 2245.6 (-1.56, 1.08, 0.0787)
(1, Y 1, N21) 2246.0 (-1.56, 1.08, 0.0749)
(1, Y 1, N22) 2247.6 (-1.55, 1.09, 0.0703)
(1, Y 1, N23) 2245.9 (-1.58, 1.09, 0.0701)
(1, Y 1, N24) 2246.0 (-1.58, 1.09, 0.0678)
(1, Y 1, N25) 2246.8 (-1.58, 1.10, 0.0647)
(1, Y 1, N26) 2246.6 (-1.59, 1.10, 0.0632)
(1, Y 1, N27) 2246.2 (-1.60, 1.10, 0.0618)
(1, Y 1, N28) 2244.7 (-1.62, 1.10, 0.0615)
(1, Y 1, N29) 2245.4 (-1.62, 1.10, 0.0593)
(1, Y 1, N30) 2246.2 (-1.622, 1.11, 0.0571)

Table 4.2: BIC values for models including N l, the number of wet days
during the past l days and Y 1, the precipitation occurrence of the previous
day for the Calgary site.

Table 4.3 compares models with predictors (1, N l, COS, SIN). We have
added (COS,SIN) to capture the seasonality in the precipitation over a
year. (1, N1, COS, SIN) (which is the same as (1, Y 1, COS, SIN)) is the
winner. Note that this model is better than the simpler model (1, Y 1) or
the model (1, Y 1, N28).
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4.4. Comparing the models using BIC

Model: Zt−1 BIC parameter estimates

(1, N1, COS, SIN) 2222.5 (-1.00, 1.10, -0.588, 0.0999)
(1, N2, COS, SIN) 2254.6 (-1.02, 0.592, -0.564, 0.0977)
(1, N3, COS, SIN) 2260.1 (-1.07, 0.443, -0.538, 0.0961)
(1, N4, COS, SIN) 2264.1 (-1.11, 0.359, -0.518, 0.0959)
(1, N5, COS, SIN) 2270.8 (-1.12, 0.295,-0.508, 0.0971)
(1, N6, COS, SIN) 2280.5 (-1.11, 0.240, -0.510, 0.0999)
(1, N7, COS, SIN) 2286.7 (-1.11, 0.205, -0.508, 0.101)
(1, N8, COS, SIN) 2293.0 (-1.09, 0.176, -0.511, 0.103)
(1, N9, COS, SIN) 2293.1 (-1.08, 0.153, -0.513, 0.105)
(1, N10, COS, SIN) 2302.2 (-1.07, 0.136, -0.516, 0.107)

Table 4.3: BIC values for models including N l, the number of wet days
during the past l days and seasonal terms for the Calgary site.

Table 4.4 includes Y 1, seasonal terms and N l for l = 1, 2, · · · , 10 as
predictors. The model with predictors

(1, Y 1, N5, COS, SIN),

which includes a combination of seasonal terms and number of precipitation
days has the smallest BIC so far. Note that both the seasonal terms and the
number of precipitation days prior to the day we are looking at, are indica-
tors of “weather conditions”. There are natural cycles throughout the year
that can inform us about the weather conditions of a particular day of the
year. These natural cycles are modeled by the periodic functions COS and
SIN . Also by looking at a short period prior to the current day (short–term
past), we might be able to determine the weather conditions. Precipitation
may not follow a very regular seasonal pattern similar to temperature as
shown in the exploratory analysis. Which one of these variables (seasonal
or short–term past) is more important or necessary might depend on the
location and other factors.
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4.4. Comparing the models using BIC

Model: Zt−1 BIC parameter estimates

(1, Y 1, N1, COS, SIN) 2230.0 (-1.00, -2.31, 3.41, -0.589, 0.0999)
(1, Y 1, N2, COS, SIN) 2229.2 (-1.03, 0.977, 0.0997, -0.576, 0.0985)
(1, Y 1, N3, COS, SIN) 2224.8 (-1.10, 0.895, 0.156, -0.546, 0.0946)
(1, Y 1, N4, COS, SIN) 2222.1 (-1.14, 0.89, 0.147, -0.525, 0.0941)
(1, Y 1, N5, COS, SIN) 2221.7 (-1.16, 0.922, 0.124, -0.515, 0.0934)
(1, Y 1, N6, COS, SIN) 2223.3 (-1.16, 0.959, 0.0954, -0.517, 0.0946)
(1, Y 1, N7, COS, SIN) 2223.7 (-1.17, 0.978, 0.0822, -0.513, 0.0947)
(1, Y 1, N8, COS, SIN) 2224.7 (-1.16, 0.997, 0.0682, -0.515, 0.0945)
(1, Y 1, N9, COS, SIN) 2225.5 (-1.16, 1.0129, 0.0582, -0.515, 0.0961)
(1, Y 1, N10, COS, SIN) 2226.0 (-1.16, 1.026, 0.0502, -0.517, 0.0958)

Table 4.4: BIC values for models including N l, the number of PN days
during the past l days, Y 1, the precipitation occurrence of the previous day
and seasonal terms for the Calgary site.

Table 4.5 compares models with different number of predictors from
(1, Y 1) to

(1, Y 1, · · · , Y 7).

The first model is a 1st–order Markov chain and the last one is a 7th–
order chain. The optimal model picked is: (1, Y 1, Y 2, Y 3). Comparing this
table to Table 4.2, we see that (1, Y 1, N3) is superior to (1, Y 1), (1, Y 1, Y 2)
and (1, Y 1, Y 2, Y 3). Note that (1, Y 1, N3) is equivalent to (1, Y 1, Y 2 + Y 3).
Hence, including Y 2 and Y 3 and giving them the same weight is better than
not including them, including one of them or including both of them.

Model: Zt−1 BIC parameter estimates

(1, Y 1) 2268.1 (-1.034, 1.27)
(1, Y 1, Y 2) 2270.2 (-1.11, 1.20, 0.23)
(1, Y 1, Y 2, Y 3) 2263.3 (-1.21, 1.19, 0.140, 0.410)
(1, Y 1, · · · , Y 4) 2263.9 (-1.28, 1.16, 0.133, 0.334, 0.281)
(1, Y 1, · · · , Y 5) 2268.5 (-1.32, 1.15, 0.121, 0.328, 0.232, 0.192)
(1, Y 1, · · · , Y 6) 2335.4 (-1.34, 1.15, 0.0837, 0.357, 0.213, 0.135, 0.115)
(1, Y 1, · · · , Y 7) 2286.7 (-1.51, 1.33, -0.113, 0.378, 0.418, 0.204, -0.0050, 0.214)

Table 4.5: BIC values for Markov models of different order with small num-
ber os parameters for the Calgary site.

Table 4.6 compares models with different Markov orders plus the seasonal
terms. The model (1, Y 1, COS, SIN) is the winner. Hence, whether we
include the seasonal terms or not, the model that only depends on the
previous day is the winner.
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4.4. Comparing the models using BIC

Model: Zt−1 BIC parameter estimates

(1, COS, SIN, Y 1) 2222.6 (-1.0, -0.5, 0.1, 1.1)
(1, COS, SIN, Y 1, Y 2) 2229.1 (-1.0, -0.5, 0.1, 1.0, 0.1)
(1, COS, SIN, Y 1, Y 2, Y 3) 2230.4 (-1.1, -0.5, 0.1, 1.0, 0.02, 0.3)
(1, COS, SIN, Y 1, · · · , Y 4) 2247.3 (-1.1, -0.5, 0.1, 1.0, 0.03, 0.2, 0.15)
(1, COS, SIN, Y 1, · · · , Y 5) 2243.4 (-1.3, -0.4, 0.2, 1.4, -0.4, -0.1, 1.0, -0.15)
(1, COS, SIN, Y 1, · · · , Y 6) 2501.6 (-1.2, -1.5, 0.4, 0.2, 0.8, 0.9, 0.9, -0.6, -0.2)
(1, COS, SIN, Y 1, · · · , Y 7) 2447.3 (-1.1, -0.2, 0.07, 0.8, -0.02, 0.3, 0.4, -0.07, 0.4, -0.3)

Table 4.6: BIC values for Markov models with different order plus seasonal
terms for the Calgary site.

Table 4.7 studies seasonality more. We consider the possibility that there
are more/less terms of the Fourier series of a periodic function over the year.
It turns out that the model with (1, Y 1, COS) is the optimal model so far.
Hence, only one term seem to suffice modeling the seasonal nature of the
process.

Model: Zt−1 BIC parameter estimates

(1, COS) 2322.7 (-0.556, -0.717)
(1, SIN) 2424.3 (-0.523, 0.115)
(1, COS, SIN) 2327.3 (-0.568, -0.738, 0.119)
(1, Y 1, COS) 2216.9 (-1.00 , 1.10, -0.587)
(1, Y 1, SIN) 2273.9 (-1.03, 1.26, 0.0933)
(1, Y 1, COS, SIN) 2222.6 (-1.004, 1.102, -0.589, 0.100)
(1, Y 1, COS, SIN,COS2) 2229.7 (-1.00, 1.10, -0.586, 0.0998, 0.0247)
(1, Y 1, COS, SIN, SIN2) 2230.0 (-1.00, 1.10, -0.590, 0.101, 0.0125)
(1, Y 1, COS, SIN,COS2, SIN2) 2237.2 (-1.01, 1.11, -0.575, 0.0978, 0.0236, -0.0101)

Table 4.7: BIC values for models including seasonal terms and the occur-
rence of precipitation during the previous day for the Calgary site.

Table 4.8 compares all stationary 2nd–order Markov models. The small-
est BIC corresponds to (1, Y 1).
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4.4. Comparing the models using BIC

Model: Zt−1 BIC parameter estimates

(1) 2419.6 (-0.528)
(1, Y 1) 2268.0 (-1.04, 1.27)
(1, Y 2) 2392.8 (-0.756, 0.590)
(1, Y 1, Y 2) 2270.2 (-1.110, 1.197, 0.256)
(1, Y 1Y 2) 2335.5 (-0.779, 1.134)
(1, Y 1, Y 1Y 2) 2272.7 (-1.040, 1.113, 0.282)
(1, Y 2, Y 1Y 2) 2342.3 (-0.757, -0.113, 1.225)
(1, Y 1, Y 2, Y 1Y 2) 2277.7 ( -1.103, 1.177, 0.234, 0.048)

Table 4.8: BIC values for 2nd–order Markov models for precipitation at the
Calgary site.

Table 4.9 compares all 2nd–order Markov chains with a seasonal COS
term. The model (1, Y 1, COS) is the winner.

Model: Zt−1 BIC parameter estimates

(1, COS) 2322.7 (-0.567, -0.738)
(1, COS, Y 1) 2216.8 (-1.005, -0.587, 1.106)
(1, COS, Y 2) 2317.4 (-0.708, -0.679, 0.372)
(1, COS, Y 1Y 2) 2223.5 (-0.760, -0.618, 0.905)
(1, COS, Y 1, Y 2) 2276.1 (-1.033, -0.575, 1.080, 0.103)
(1, COS, Y 1, Y 1Y 2) 2223.9 (-1.004, -0.580, 1.041, 0.120)
(1, COS, Y 2, Y 1Y 2) 2280.9 (-0.709, -0.632, -0.244, 1.093)
(1, COS, Y 1, Y 2, Y 1Y 2) 2231.0 (-1.028, -0.575, 1.065, 0.085, 0.037)

Table 4.9: BIC values for 2nd–order Markov models for precipitation at the
Calgary site plus seasonal terms.

Table 4.10 also includes the maximum and minimum temperature of the
day before, as predictors of some of the models which performed better in the
above tables. We have also included the annual processes A1, · · · , A5 to one
of the models. Finally, we have included the model (1, Y 1, N5, COS). This
model has a combination of the seasonal term COS and the short–term past
process N5 which did the best when combined with the seasonal terms and
Y 1 in Table 4.4. It turns out that including MT and mt does not improve
the BIC as well as does the annual terms. However, (1, Y 1, N5, COS) has
the smallest BIC in all the models, which is a seasonal Markov chain of order
5 with only 4 parameters. Also the simpler model,

(1, Y 1, COS),

has a close BIC to (1, Y 1, N5, COS).
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4.5. Changing the location and the time period

Model: Zt−1 BIC parameter estimates

(1, COS, Y 1) 2216.8 (-1.005, -0.587, 1.106)
(1, Y 1, COS,MT 1) 2221.7 (-0.84, 1.0, -0.74, -0.012)
(1, Y 1, COS,mt1) 2224.2 (-1.0, 1.0, -0.65, -0.0055)
(1, Y 1, COS,MT 1,mt1) 2227.4 (-0.65, 0.99, -0.67, -0.025, 0.022)
(1, Y 1, COS,A1, · · · , A5) 2241.2 ( 1.1, -0.5, -0.9, -1.2, -1.1, -1.0, -0.7)
(1, Y 1, N5, COS,MT 1) 2297.3 (-2.13, 0.9, 0.4, 0.6, 0.2, 0.04)
(1, Y 1, N5, COS, SIN,MT 1,mt1) 2516.8 (1.4, 0.04, 0.2, 0.7, 0.8, -0.2, 0.3)
(1, Y 1, N5, COS,MT 1,mt1) 2393.9 ( 1.4, 0.7, -0.1, -0.5, 0.5, -0.1, 0.2)
(Y 1, N5, COS,MT 1, A1, · · · , A5) 2697.1 (1.23, -0.64, -2.0, -0.10, 2.0, 1.2, 2.2, 1.2, 1.8)
(Y 1, N5, COS,A1, · · · , A5) 2447.1 (0.1, 0.1, -0.7, -0.39, -0.01, -0.2, -0.9, -1)
(1, Y 1,MT 1) 2251.5 (-1.2, 1.3, 0.021)
(1, Y 1, N5, COS) 2215.8 (-1.1, 0.9, 0.1, -0.5)
(1, Y 1, N5, COS,MT 1) 2223.8 (-1.2, 0.9, 0.1, -0.4, 0.0)

Table 4.10: BIC values for models including several covariates as tempera-
ture, seasonal terms and year effect for precipitation at the Calgary site.

4.5 Changing the location and the time period

This section compares various models for a different time period and loca-
tion. Table 4.11 compares various models for the 0-1 PN process in Calgary
between 1990 and 1994 which is a 5–year period. In Table 4.12, we have
compared several models for 0-1 PN process over Medicine Hat site between
2000 and 2004.

Table 4.11 shows that among the compared models (1, Y 1, COS) has
the smallest BIC. In particular the BIC for this model is smaller than the
BIC for (1, Y 1, N5, COS) which has the smallest BIC for Calgary 2000–
2004. However (1, Y 1, COS) was the second optimal model also for Calgary
2000–2004 with a close BIC to the optimal. Including the maximum and
minimum temperature to the model increases the BIC again.
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4.5. Changing the location and the time period

Model: Zt−1 BIC parameter estimates

(1, Y 1) 2312.7 (-0.931, 1.275)
(1, Y 1, Y 2) 2318.8 (-0.967, 1.238, 0.126)
(1, Y 1, COS) 2228.8 (-0.858, 1.036, -0.712)
(1, Y 1, N5) 2303.3 (-1.168, 1.012, 0.168)
(1, Y 1, N10) 2287.9 (-1.581, 1.015, 0.132)
(1, Y 1, N15) 2282.7 (-1.486, 1.045, 0.105)
(1, Y 1, COS, SIN) 2231.9 (-0.855, 1.026, -0.715 , 0.152)
(1, Y 1, N5, COS) 2236.4 (-0.864, 1.032, 0.004, -0.709)
(1, Y 1, N5, SIN) 2307.8 (-1.160, 1.011, 0.164, 0.125)
(1, Y 1, N5, COS, SIN) 2239.4 (-0.849, 1.031, -0.004, -0.718, 0.152)
(1, Y 1, N10, COS) 2236.4 (-0.847, 1.030, -0.002, -0.721, 0.153)
(1, Y 1, N10, COS, SIN) 2239.4 (-0.847, 1.030, -0.002, -0.721 , 0.153)
(1, Y 1, N5, COS,MT 1) 2244.3 (-0.433, 1.046, -0.096, -1.078, -0.021)
(1, Y 1, N5, COS,mt1) 2244.1 (-0.910, 1.011, 0.031, -0.584, 0.006)

Table 4.11: BIC values for several models for the binary process of precipi-
tation in Calgary, 1990–1994

Table 4.12 shows that the smallest BIC corresponds to (1, Y 1, COS).
However, several models have similar BIC values. Also, including the max-
imum and minimum temperature increases the BIC here.

Model: Zt−1 BIC parameter estimates

(1, Y 1) 2202.9 (-1.138, 1.094)
(1, Y 1, Y 2) 2207.9 (-1.183, 1.051, 0.181)
(1, Y 1, N5) 2203.6 (-1.275, 0.921, 0.119)
(1, Y 1, N10) 2228.9 (-0.858, 1.036, -0.712)
(1, Y 1, N15) 2200.5 (-1.420, 0.980, 0.065)
(1, Y 1, N20) 2202.5 (-1.421, 1.008, 0.048)
(1, Y 1, COS) 2201.2 (-1.134, 1.067, -0.224)
(1, Y 1, COS, SIN) 2202.9 (-1.132, 1.052, -0.225, 0.177)
(1, Y 1, N5, COS) 2203.9 (-1.252, 0.924, 0.101, -0.201)
(1, Y 1, N5, SIN) 2206.6 (-1.263, 0.922, 0.109, 0.158)
(1, Y 1, N5, COS, SIN) 2206.6 (-1.239, 0.925, 0.091, -0.204, 0.163)
(1, Y 1, N10, COS) 2201.9 (-1.336, 0.958, 0.073, -0.183)
(1, Y 1, N10, COS, SIN) 2205.1 (-1.311, 0.958, 0.065, -0.187, 0.151)
(1, Y 1, N5, COS,MT 1) 2306.5 (-1.455, 2.099, -0.130, 0.041, 0.004)
(1, Y 1, N5, COS,mt1) 2211.1 (-1.238, 0.937, 0.087, -0.267, -0.005)
(1, Y 1, N15, COS) 2202.7 (-1.363, 0.981, 0.053, -0.175)

Table 4.12: BIC values for several models for precipitation occurrence in
Medicine Hat, 2000-2004
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4.5. Changing the location and the time period

In summary, in all the three cases

(1, Y 1, COS),

is either optimal or the second to the optimal (using BIC). We have also
tried BIC for Calgary with a long time period of close to 100 years and
surprisingly the same simple model (1, Y 1, COS) was the optimal.
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Chapter 5

On the definition of
“quantile” and its properties

5.1 Introduction

This chapter points out deficiencies in the classical definition (as well as some
other widely used definitions) of the median and more generally the quan-
tile and the so-called quantile function. Moreover redefining it appropriately
gives us a basis on which we can find necessary and sufficient conditions for
the sample quantiles to converge for arbitrary distribution functions. In the
next chapter, we define a “degree of separation” function to measure the
goodness of the approximation (or estimation). We argue that this func-
tion can be viewed as a natural loss function for assessing estimations and
approximations. One characteristic of this loss function is its invariance un-
der strictly monotonic transformations of the random variable, in particular
re-scaling.

In this chapter, we have used the terms data vector, approximation,
estimation, exact and true quantiles repeatedly. To clarify what we mean
by these terms, we give the following explanations:

• Data vector: A vector of real numbers. We do not consider these values
as random in general. We use the term random vector or random
sample for a vector of random variables. We define the quantile for
data vectors, but the same definition applies to a random sample.

• Approximation and exact value: Suppose a very large data vector
is given. We can compute the exact mean/median of such a vector
by using all the data and the definition of mean/median. One can
approximate the mean/median using various techniques. Note that
both approximation and exact terms are used for data vectors of (non-
random) numbers.

• Estimation and true value: Estimation means finding functions of the
random sample to estimate parameters of the underlying distribution.
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5.1. Introduction

The parameters are called the true values.

The sample definition of quantiles varies in different text books. In [24],
Hyndman et al. point out many different definitions in statistical packages
for quantiles of a sample. In [17], Freund et al. point out various defini-
tions for quartiles of data and propose a new definition using the concept of
“hinge”.

The traditional definition of quantiles for a random variable X with
distribution function F ,

lqX(p) = inf{x|F (x) ≥ p},

appears in classic works as [38]. We call this the “left quantile function”. In
some books (e.g. [41]) the quantile is defined as

rqX(p) = sup{x|F (x) ≤ p},

this is what we call the “right quantile function”. Also in robustness lit-
erature people talk about the upper and lower medians which are a very
specific case of these definitions. However, we do not know of any work that
considers both definitions, explore their relation and show that considering
both has several advantages.

A physical motivation is given for the right/left definition of quantiles.
It is widely claimed that (e.g. Koenker in [29] or Hao and Naiman in [21])
the traditional quantile function is invariant under monotonic transforma-
tions. We show that this does not hold even for strictly increasing functions.
However, we prove that the traditional quantile function is invariant un-
der non-decreasing left continuous transformations. We also show that the
right quantile function is invariant under non-decreasing right continuous
transformations. A similar neat result is found for continuous decreasing
transformations using the Quantile Symmetry Theorem also proved in this
chapter.

Suppose we know that a data point is larger than a known number of
other data points and smaller than another known number of data points.
Of interest are the quantiles to which this data point corresponds. Lemma
5.2.4 gives a result about this. We will use this lemma later to establish
the precision of our proposed algorithm for approximating quantiles of large
datasets.

Quantiles are often used as the inverse of distribution functions. In gen-
eral neither the distribution function nor the quantile function are invertible.
However Lemma 5.5.1 shows how quantiles can be used to characterize sets
of the form {x|F (x) < p}, a case that is equivalent to (−∞, lqF (p)).
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5.1. Introduction

Lemma 5.7.1 shows the left continuity of the left quantile function and
the right continuity of the right quantile function.

Section 5.8 finds necessary and sufficient conditions for the left and right
quantile functions to be equal at p ∈ [0, 1]. We also find out that the left
and right quantile functions coincide except for at most a countable number
of values in [0,1]. Then we characterize the image of the the left and right
quantile functions and show that the image corresponds to “heavy” points
(heavy point is a point that the probability of being in a neighborhood
around that point is positive).

Section 5.9 shows that given any of lq, rq and F uniquely determines the
other two and formulas are given in order to find them. We also show that
if one of lq and rq is two-sided continuous then so is the other one. Lemma
5.10.1 shows that the strict monotonicity of the distribution function F on
its “real domain” {x|0 < F (x) < 1} is equivalent to two-sided continuity of
lq/rq. Conversely, strict monotonicity of lq/rq corresponds to continuity of
F .

Section 5.12 presents the desirable “Quantile Symmetry Theorem”, a re-
sult that could be only obtained by considering both left and right quantiles.
This relation can help us prove several other useful results regarding quan-
tiles. Also using the quantile symmetry theorem, we find a relation for the
equivariance property of quantiles under non-increasing transformations.

Section 5.14 studies the limit properties of left and right quantile func-
tions. In Theorem 5.14.7, we show that if left and right quantiles are equal,
i.e. lqF (p) = rqF (p), then both sample versions lqFn , rqFn are convergent to
the common distribution value. We found an equivalent statement in Ser-
fling [43] with a rather similar proof. The condition for convergence there
is said to be lqF (p) being the unique solution of F (x−) < p ≤ F (x) which
can be shown to be equivalent to lqF (p) = rqF (p). Note how considering
both left and right quantiles has resulted in a cleaner, more comprehensible
condition for the limits. In a problem Serfling asks to show with an example
that this condition cannot be dropped. We show much more by proving that
if lqF (p) 6= rqF (p) then both rqFn(p) and rqFn(p) diverge almost surely. The
almost sure divergence result can be viewed as an extension to a well-known
result in probability theory which says that if X1,X2, · · · an i.i.d sequence
from a fair coin with -1 denoting tail and 1 denoting head and Zn =

∑n
i=1 Xi

then P (Zn = 0 i.o.) = 1. The proof in [9] uses the Borel–Cantelli Lemma
to get around the problem of dependence of Zn. This is equivalent to say-
ing for the fair coin both lqFn(1/2) and rqFn(1/2) diverge almost surely.
For the general case, we use the Borel–Cantelli Lemma again. But we also
need a lemma (Lemma 5.14.10) which uses the Berry–Esseen Theorem in

117



5.2. Definition of median and quantiles of data vectors and random samples

its proof to show the deviations of the sum of the random variables can
become arbitrarily large, a result that is easy to show as done in [9] for the
simple fair coin example. Finally, we show that even though in the case that
lqF (p) 6= rqF (p), lqFn , rqFn are divergent; for large ns they will fall in

(lqF (p)− ǫ, lqF (p)] ∪ [rqF (p), rqF (p) + ǫ).

In fact we show that

lim inf
n→∞

lqFn(p) = lim inf
n→∞

rqFn(p) = lqF (p)

and
lim sup
n→∞

lqFn(p) = lim sup
n→∞

rqFn(p) = rqF (p).

The proof is done by constructing a new random variable Y from the original
random variable X with distribution function FX by shifting back all the
values greater than rqX(p) to lqX(p). This makes lqY (p) = rqY (p) in the
new random variable. Then we apply the convergence result to Y .

5.2 Definition of median and quantiles of data
vectors and random samples

This section presents a way to define quantiles of data vectors and random
samples. We confine our discussion to data vectors since the definition for
random samples is merely a formalistic extension. Suppose, we are given a
very long data vector. The goal is to find the median of this vector. Let us
denote the data vector by x = (x1, · · · , xn). Suppose y = (y1, · · · , yn) is an
increasing sorted vector of elements of x = (x1, · · · , xn). Then usually the

median of x is defined to be y(n+1)/2 if n is odd and
yn/2+y(n+2)/2

2 if n is even.
Essentially the median is defined so that half data lies below it and half

lies above it. However, when n is even, any value between yn/2 and y(n+2)/2

serves this purpose and taking the average of the two values seems arbitrary.
Intuitively, the quantile should have the following properties:

1. It should be a member of the data vector. In other words if x =
(x1, · · · , xn) is the data vector then the quantile should be equal to
one of xi, i = 1, · · · , n.

2. Equivariance: If we transform the data using an increasing continuous
transformation of R, find the quantile and transform back, we should
get the same result, had we found the quantile of the original data.
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More formally, if we denote the quantile of a data vector x for p ∈ (0, 1)
by qx(p) then for any φ : R → R strictly increasing and bijective

qx(p) = y ⇔ qφ(x)(p) = φ(y).

3. Symmetry: The p-th quantile of the data vector x = (x1, · · · , xn)
should be the negative of (1 − p)-th quantile of data vector −x =
(−x1, · · · ,−xn):

qx(p) = −q−x(1− p).

Particularly, the median of x should be the image of the median of the
image of x with respect to 0.

4. The “amount” of data between qx(p1) and qx(p2) should be p2 − p1 of
the the “data amount” of the whole vector if p1 < p2.

5. If we “cut” a sorted data vector up until the p1-th quantile and com-
pute the p2-th quantile for the new vector, we should get the p1p2-th
quantile of the original vector. For example the median of a sorted
vector upto its median should be the first quartile.

This chapter develops a definition for quantiles that satisfies the first
three conditions. We will address the last two conditions in later chapters
and develop a framework in which they are satisfied.

Consider the example x = (0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 10). We see that the
median by the usual definition is 1.5 not apparent in the observed data. Also
if we take bijective, increasing and continuous transformation φ(x) = x3, we
see that the classic definition does not satisfy the second property.

The median and quantiles can be defined both for distributions and
data vectors (and random samples). For a random variable X having a
distribution function F , the p-th quantile is traditionally defined as

qF (p) = inf{x|F (x) ≥ p}. (5.1)

This can be used to define the quantiles of a data vector using the empirical
(sample) distribution function Fn,

Fn(x) =

n
∑

i=1

1(−∞,xi](x).
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With this definition of the quantile, the equivariance property holds and the
result is a realizable data value. This definition faces another issue however.
Consider flipping a fair coin with outcomes: 0,1. Then the distribution of
X is given by

FX(x) =







0 x < 0
1/2 0 ≤ x < 1
1 x ≥ 1

Hence by definition 5.1, qF (p) = 0, p ≤ 1/2 and qF (p) = 1, p > 1/2. This
all seems to be reasonable other than qF (p) = 0, p = 1/2. Based on the
symmetry of the distribution there should not be any advantage for 0 over
1 to be the median. For the quantiles of the data vectors the same issue
occurs. For example, consider x = (1, 2, 3, 4, 5, 6) and apply definition 5.1
to Fn corresponding to this data vector. We will get 3 as the median but in
fact 4 should to be as eligible by symmetry.

Before to get to our definition of quantile we provide the following mo-
tivating examples.

Example A student decided to buy a new memory chip for his computer.
He needed to choose between the available RAM sizes (1 GB, 2GB etc) in
his favorite store. In a trade-off between price and speed, he decided to
get a RAM chip that is at least as large as 2/3 RAMs bought in the store
during the day before. He could access the information regarding all RAMs
bought the day before, in particular their size. He entered the size data into
the R package he had recently downloaded for free. He had heard about
the quantiles in his elementary statistics course so he decided to compute
the quantile of the data for p = 2/3. When he computed that he got 2.666
(GB). He knew a RAM of size 2.666 does not exist and concluded this must
be a result of an interpolation procedure in R. Since the closest integer to
2.666 is 3 he concluded that 3 GB is the size he is looking for. He went back
to the store asking for 3 GB RAM and was told they have never sold such
a RAM in that store! He thought there must be an error in the dataset so
he looked the data again

1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4

Surprisingly there was no 3. R had interpolated 2 and 4 to give 2.66 and
mislead the student.

Example A supervisor asked 2 graduate students to summarize the follow-
ing data regarding the intensity of the earthquakes in a specific region:
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row number ML (Richter) A (shaking amplitude)

1 4.21094 1.62532 × 104

2 4.69852 4.99482 × 104

3 4.92185 8.35314 × 104

4 5.12098 13.21235 × 104

5 5.21478 16.39759 × 104

6 5.28943 19.47287 × 104

7 5.32558 21.16313 × 104

8 5.47828 30.08015 × 104

9 5.59103 38.99689 × 104

10 5.72736 53.37772 × 104

Table 5.1: Earthquakes intensities

Earthquake intensity is usually measured in ML scale, which is related
to A by the following formula:

ML = log10A.

In the data file handed to the students (Table 5.1), the data is sorted with
respect to ML in increasing order from top to bottom. Hence the data is
arranged decreasingly with respect to A from top to bottom.

The supervisor asked two graduate students to compute the center of the
intensity of the earthquakes using this dataset. One of the students used A
and the usual definition of median and so obtained

(16.39759 × 104 + 19.47287 × 104)/2 = 17.93523 × 104.

The second student used the ML and the usual definition of median to
find

(5.21478 + 5.28943)/2 = 5.252105.

When the supervisor saw the results he figured that the students must
have used different scales. Hence he tried to make the scales the same by
transforming one of the results

105.252105 = 17.86920 × 104.

To his surprise the results were not quite the same. He was bothered to
notice that the definition of median is not invariant under the change of
scale which is continuous strictly increasing.
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Example A scientist asked two of his assistants to summarize the following
data regarding the acidity of rain:

row number pH aH

1 4.7336 18.4672 × 10−6

2 4.8327 14.6994 × 10−6

3 4.8492 14.1514 × 10−6

4 5.0050 9.8855 × 10−6

5 5.0389 9.1432 × 10−6

6 5.2487 5.6403 × 10−6

7 5.2713 5.3543 × 10−6

8 5.2901 5.1274 × 10−6

9 5.5731 2.6724 × 10−6

10 5.6105 2.4519 × 10−6

Table 5.2: Rain acidity data

pH is defined as the cologarithm of the activity of dissolved hydrogen
ions (H+).

pH = − log10 aH.

In the data file handed to the students (Table 5.2) the data is sorted with
respect to pH in increasing order from top to bottom. Hence the data is
arranged decreasingly with respect to aH from top to bottom.

The scientist asked the two assistant to compute the 20th and 80th
percentile of the data to get an idea of the variability of the acidity. First
assistant used the pH scale and the traditional definition of the quantile

qF (p) = inf{x|F (x) ≥ p},
where F is the empirical distribution of the data. He got the following two
numbers

qF (0.2) = 4.8327 and qF (0.8) = 5.2901 (5.2)

these values are positioned in row 2 and 8 respectively.
The second assistant also used the traditional definition of the quantiles

and the aH scale to get

qF (0.2) = 2.6724 × 10−6 and qF (0.8) = 14.1514 × 10−6, (5.3)

which correspond to row 9 and 3.
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The scientist noticed the assistants used different scales. Then he thought
since one of the scales is in the opposite order of the other and 0.2 and 0.8
are the same distance from 0 and 1 respectively, he must get the other assis-
tant’s result by transforming one. So he transformed the second assistant’s
results given in Equation 5.3 (or by simply looking at the corresponding
rows, 9 and 3 under pH), to get

5.5731 and 4.8492,

which are not the same as the first assistants result in Equation 5.2. He
noticed the position of these values are only one off from the previous values
(being in row 9 and 3 instead of 8 and 2).

Then he tried the same himself for 25th and 75th percentile using both
scales

pH : qF (0.25) = 4.8492 and qF (0.75) = 5.2901,

which are positioned at 3rd and 8th row.

aH : qF (0.25) = 5.1274 × 10−6 and qF (0.25) = 14.1514 × 10−6,

which are positioned at row 8th and 3rd. This time he was surprised to
observe the symmetry he expected. He wondered when such symmetry exist
and what is true in general. He conjectured that the asymmetric definition
of the traditional quantile is the reason of this asymmetry. He also thought
that the symmetry property is off at most by one position in the dataset.

To define the quantile, we perform a thought experiment and use our
intuition to decide how it should be defined. Suppose a data vector x =
(x1, · · · , xn) is given. Define the sort operator which permutes the compo-
nents of a vector to give a vector with non-decreasing coordinates by

sort(x) = (y1, · · · , yn).

In statistics yi defined as above is called the i–th order statistics of x and
is usually denoted by x(i) or xi:n. [This definition extends to random vec-
tors (X1, · · · ,Xn) as well.] The concept of quantile should only depend on
sort(x). Let z = (z1, · · · , zr) be the non–decreasing subvector of all distinct
elements of x. If zi is repeated mi times, we say zi has multiplicity mi

and therefore
∑r

i=1 mi = n. Now imagine, a uniform bar of length 1. Cut
the bar from left to right to r parts of lengths m1

n , · · · , mr
n proportional to
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the multiplicity of the zi. Assign a unique color to every zi, i = 1, · · · , r
and color its piece with that color. Then reassemble the stick from left to
right in the original order. To define the p-th quantile measure a length p
from the left hand of the bar (whose total length is one). Determine the
reassembled bar’s color at that point. However, this protocol fails at the
end points as well as the points where two colors meet. Since each color is
an equally eligible choice, we are led to the idea in defining the quantiles of
a two–state solution at these points, giving us the left and right quantiles.
But proceeding with our bar analogy, the intersection points and boundary
points are:

0,
m1

n
,
m1 +m2

n
, · · · , m1 + · · ·+mr−1

n
, 1.

By the above discussion, if p is not an intersection/boundary point both left
and right quantiles, which we denote by lqx and rqx respectively should be
the same and equal to

lqx(p) = rqx(p) =







z1 0 < p < m1
n

zi
m1+···+mi−1

n < p < m1+···+mi
n

zr
m1+···+mr−1

n < p < 1

For the intersection points, if p = m1+···+mi−1

n then

lqx(p) = zi−1 and rqx(p) = zi.

For the boundary points we define

lqx(0) = −∞, rqx(0) = z1, lqx(1) = zr, rqx(1) = ∞.

As a convention, for a sorted vector y of length n, we define y0 = −∞ and
yn+1 = ∞.

Lemma 5.2.1 Suppose x is a data vector of length n and y = sort(x) =
(y1, · · · , yn). Also let y0 = −∞ and yn+1 = ∞. For 0 < p < 1, let [np]
denote the integer part of np. Then

a) np = [np] ⇒ lqx(p) = y[np], rqx(p) = y[np]+1.

b) np > [np] ⇒ lqx(p) = y[np]+1, rqx(p) = y[np]+1.

c) y = sort(x) and pi = i/n, i = 0, 1, · · · , n, implies

y = (lqx(p1), · · · , lqx(pn)) = (rqx(p0), · · · , rqx(pn−1)).
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Proof

a) Let np = h ∈ N. There are four cases:

1. For h = 0 and h = n the result is trivial by the definition of y0 and
yn+1.

2. 0 < h < m1 ⇒ 0 < p < m1/n and by definition lqx(p) = rqx(p) = z1.
But yh = yh+1 = z1.

3. There exists 1 < i ≤ r such that m1+· · ·+mi−1 < h < m1+· · ·+mi ⇒
m1+···+mi−1

n < p < m1+···+mi
n and by definition lqx(p) = rqx(p) = zi.

But yh = yh+1 = zi since m1 + · · · +mi−1 < h < m1 + · · ·+mi.

4. h = m1 + · · · +mi, i < r ⇒ p = m1+···+mi
n , i < r. By definition since

this is an intersection point lqx(p) = zi and rqx(p) = zi+1. But zi = yh
and zi+1 = yh+1.

b) Let h = [np] ⇒ h
n < p < h+1

n . Since h and h + 1 differ exactly by one
unit, there exists an i such that

m1 + · · ·+mi−1

n
≤ h

n
< p <

h+ 1

n
≤ m1 + · · · +mi

n
.

Then by definition lqx(p) = rqx(p) = zi. But since

m1 + · · ·+mi−1 < h+ 1 ≤ m1 + · · ·+mi,

yh+1 = zi.
c) Straightforward consequence of the definition.

Suppose y′ ∈ {y1, · · · , yn}, for future reference, we define some additional
notations for data vectors.

Definition The minimal index of y′, m(y′) and the maximal index of y′,
M(y′) are defined as below:

m(y′) = min{i|yi = y′}, M(y′) = max{i|yi = y′}.

It is easy to see that in y = sort(x) = (y1, · · · , yn) all the coordinates
between m(y′) and M(y′) are equal to y′. Also note that if y′ = zi then
M(y′) −m(y′) + 1 = mi is the multiplicity of zi. We use the notation mx

andMx whenever we want to emphasize that they depend on the data vector
x.
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Lemma 5.2.2 Suppose x = (x1, · · · , xn), y = sort(x) and z a non–decreasing
vector of all distinct elements of x. Then
a) m(zi+1) = M(zi) + 1, i = 0, · · · , r − 1.
b) Suppose φ is a bijective increasing transformation over R,

mφ(x)(φ(zi)) = mx(zi),

and
Mφ(x)(φ(zi)) = Mx(zi),

for i = 1, · · · , r.

Proof a) is straightforward.
b) Note that

mx(y
′) = min{i|yi = y′} = min{i|φ(yi) = φ(y′)} = mφ(x)(φ(y

′)).

A similar argument works for Mx.

We also define the position and standardized position of an element of a
data vector.

Definition Let x = (x1, · · · , xn) be a vector and y = sort(x) = (y1, · · · , y n).
Then for y′ ∈ {y1, · · · , yn}, we define

posx(y
′) = {mx(y

′),mx(y
′) + 1, · · · ,Mx(y

′)},

where pos stands for position. Then we define the standardized position of
y′ to be

sposx(y
′) = (

mx(y
′)− 1

n
,
Mx(y

′)
n

).

In the following lemma we show that for every p ∈ spos(y′) (and only p ∈
spos(y′)), we have rq(p) = lq(p) = y′. For example if 1/2 ∈ spos(y′) then y′

is the (left and right) median.

Lemma 5.2.3 Suppose x = (x1, · · · , xn), y = sort(x) = (y1, · · · , yn) and
y′ ∈ {y1, · · · , yn}. Then

p ∈ sposx(y
′) ⇔ lqx(p) = rqx(p) = y′.

Proof Let z = (z1, · · · , zr) be the reduced vector with multiplicities m1, · · · ,mr.
Then y′ = mi for some i = 1, · · · , r.
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case I: If i = 2, · · · , r, then
m(y′) = m1 + · · · +mi−1 + 1,

and
M(y′) = m1 + · · ·+mi.

case II: If i = 1, then m(y′) = 1 and M(y′) = m1.

In any of the above cases for p ∈ (m(y′)−1
n , M(y′)

n ) and only p ∈ (m(y′)−1
n , M(y′)

n )

rqx(p) = lqx(p) = zi,

by definition.

Now we prove a lemma that will become useful later on. It is easy to see
that if u ∈ pos(y′) then

(
u− 1

n
,
u

n
) ⊂ spos(y′).

We conclude that

∪u∈pos(y′)(
u− 1

n
,
u

n
) ⊂ spos(y′).

In fact spos(y′) can possibly have a few points on the edge of the intervals
not in ∪u∈pos(y′)(

u−1
n , un).

Lemma 5.2.4 Suppose x is a data vector of length n and y′ is an element
of this vector. Also assume

y′ ≥ xi, i ∈ I, y′ ≤ xj, j ∈ J,

I ∩ J = φ, I, J ⊂ {1, 2, · · · , n}.
Then there exist a p in ( |I|−1

n , 1 − |J |
n ) that belongs to spos(y′). In other

words lq(p) = rq(p) = y′.

Proof From the assumption, we conclude that pos(y′) includes a number
between |I| and n−|J |. Let us call it u0. Hence (u0−1

n , u0
n ) ⊂ spos(y′). Since

|I| ≤ u0 ≤ n− |J |, we conclude that spos(y′) intersects with

∪|I|≤u≤n−|J |(
u− 1

n
,
u

n
) ⊂ (

|I| − 1

n
, 1− |J |

n
).
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5.3 Defining quantiles of a distribution

So far, we have only defined the quantile for data vectors. Now we turn to
defining the quantile for distribution functions.

The p-th quantile for a random variable X with distribution function F
as pointed out above is traditionally defined to be

q(p) = inf{u|F (u) ≥ p}.
We showed by an example above the asymmetry issue to which that defini-
tion can lead. We show that the issue arises due to the flatness of F in an
interval. To get around this problem as the case of data vectors, we define
the left and right quantile for the distribution F as follows:

lqF (p) = inf{u|F (u) ≥ p},
and

rqF (p) = inf{u|F (u) > p}.
If there are more than one random variables in the discussion, to avoid

confusion, we use the notations lqFX
, rqFX

. Also when there is no chance of
confusion, we simply use lq, rq. The reason for this definition should become
clear soon. First let us apply this definition to the fair coin example. If
p 6= 1/2 then both lqF (p) and rqF (p) will be the same and give us the same
value. However, lqF (1/2) = 0 and rqF (1/2) = 1. This is exactly what one
would hope for. To see the consequences of this definition, we prove the
following lemma:

Lemma 5.3.1 (Quantile Properties Lemma) Suppose X is a random vari-
able on the probability space (Ω,Σ, P ) with distribution function F :

a) F (lqF (p)) ≡ P (X ≤ lqF (p)) ≥ p.

b) lqF (p) ≤ rqF (p).

c) p1 < p2 ⇒ rqF (p1) ≤ lqF (p2). This and (b) imply that

lqF (p1) ≤ rqF (p1) ≤ lqF (p2) ≤ rqF (p2).

d) rqF (p) = sup{x|F (x) ≤ p}.
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e) P (lqF (p) < X < rqF (p)) = 0. In other words if lqF (p) < rqF (p) then F
is flat in the interval (lqF (p), rqF (p)).

f) P (X < rqF (p)) ≤ p.

g) If lqF (p) < rqF (p) then F (lqF (p)) = p and hence P (X ≥ rqF (p)) = 1−p.

h) lqF (1) > −∞, rqF (0) < ∞ and P (rqF (0) ≤ X ≤ lqF (1)) = 1.

i) lqF (p) and rqF (p) are non–decreasing functions of p.

j) Suppose F has a jump at x, in other words P (X = x) > 0, which is
equivalent to limy→x− F (y) < F (x). Then lqF (F (x)) = x.

k) x < lqF (p) ⇒ F (x) < p and x > rqF (p) ⇒ F (x) > p.

Proof

a) Take a strictly decreasing sequence {xn} in R that tends to lq(p). For
every xn, F (xn) ≥ p since xn > lq(p). Otherwise

F (xn) < p ⇒ F (y) < p, ∀y ≤ xn.

Hence (−∞, xn] ∩ {y|F (y) ≥ p} = ∅. We conclude that

lq(p) = inf{y|F (y) ≥ p} ≥ xn > lq(p),

which is a contradiction. Now since F is right continuous

lim
n→∞

F (xn) = F (lq(p)).

But F (xn) ≥ p, ∀n ∈ N. Hence limn→∞ F (xn) ≥ p.

b) Note that {u|F (u) > p} ⊂ {u|F (u) ≥ p}.

c) Note that {x|F (x) ≥ p2} ⊂ {x|F (x) > p1} if p2 > p1.
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d) Suppose p ∈ [0, 1] is given. Let A = {x|F (x) > p} and B = {x|F (x) ≤
p}. We want to show that inf A = supB.

Consider two cases:

1) Suppose inf A < supB. Then pick inf A < y < supB. We get a
contradiction as follows:

inf A < y ⇒ F (y) > p. Otherwise, since F is increasing F (y) ≤ p ⇒
y < x, ∀x ∈ A ⇒ y ≤ inf A.

y < supB ⇒ F (y) ≤ p. Otherwise, since F is increasing F (y) > p ⇒
y > x, ∀x ∈ B ⇒ y ≥ supB.

We conclude F (y) > p and F (y) ≤ p, a contradiction.

2) Suppose supB < inf A. Take supB < y < inf A.

supB < y ⇒ F (y) > p. Otherwise, F (y) ≤ p ⇒ y ∈ B ⇒ y ≤ supB.

y < inf A ⇒ F (y) ≤ p. Otherwise F (y) > p ⇒ y ∈ A ⇒ y ≥ inf A.

Once more F (y) > p and F (y) ≤ p which is a contradiction.

e) Suppose F is not flat in that interval. ∃v1 < v2 ∈ (lq(p), rq(p)) such that
F (v2) > F (v1).

F (v2) > F (v1) ≥ F (lq(p)) ≥ p.

This is a contradiction since v2 < rq(p).

f) Take an increasing sequence xn ↑ rqF (p), then note that P (X ≤ xn) ≤ p
since xn < rqF (p). Let An = {X ≤ xn} and A = {X < rqF (p)} then
limn→∞An = A, by continuity of the probability (See [9]):

P (X < rqF (p)) = P ( lim
n→∞

An) = lim
n→∞

P (An) ≤ p.

g) By a) F (lqF (p)) = P (X ≤ lqF (p)) ≥ p. Suppose P (X ≤ lqF (p)) > p.
This implies that lqF (p) ≥ rqF (p). By b) we get lqF (p) = rqF (p), which
is a contradiction.

h) Note that
lqF (0) = inf{x|F (x) ≥ 0} = inf R = −∞.

Suppose rqF (0) = ∞. Then

{x|F (x) > 0} = ∅ ⇒ ∀x ∈ R, F (x) = 0,

a contradiction to the properties of a distribution function F .
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Also note that

rqF (1) = inf{x|F (x) > 1} = inf ∅ = ∞.

Suppose lqF (1) = −∞. Then

inf{x|F (x) ≥ 1} = −∞ ⇒

∀x ∈ R, F (x) ≥ 1 ⇒ ∀x ∈ R, F (x) = 1,

a contradiction. For the second part note that rqF (0) ≤ lqF (1) by (c).
Then

P (rqF (0) ≤ X ≤ lqF (1)) =

1− P (lqF (1) < X < rqF (1)) − P (lqF (0) < X < rqF (0)) =

1− 0− 0,

by part (e).

i) Trivial.

j) Suppose P (X = x) > 0 then limy→x− F (y) = P (X < x) < P (X <
x) + P (X = x) = F (x). Now assume that limy→x− F (y) < F (x), then
P (X < x) < F (x) ⇒ P (X = x) > 0.

To prove that in this case lqF (F (x)) = x, let p = F (x) we want to show
lqF (p) = x. Note that F (x) = p gives lqF (p) ≤ x. On other hand for
any y < x, we know that F (y) < p, by a) y cannot be lqF (p). Hence
x = lqF (F (x)).

k) First part follows from the definition of lq and the second part from part
(d).

The following lemma is useful in proving that a specific value is the left
or right quantile for a given p.

Lemma 5.3.2 (Quantile value criterion)

a) lqF (p) is the only a satisfying (i) and (ii), where
(i) F (a) ≥ p,
(ii) x < a ⇒ F (x) < p.
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b) rqF (p) is the only a satisfying (i) and (ii), where
(i) x < a ⇒ F (x) ≤ p,
(ii) x > a ⇒ F (x) > p.

Proof

a) Both properties hold for lqF (p) by previous lemma. If both a < b satisfy
them, then F (a) ≥ p by (i). But since b satisfies the properties and a < b,
by (ii), F (a) < p which is a contradiction.

b) Both properties hold for rqF (p) by previous lemma. If both a < b satisfy
them, then we can get a contradiction similar to above.

5.4 Left and right extreme points

In Lemma 5.3.1, we showed these properties about rqX(0) and lqX(1):

rqX(0) < ∞, lqX(1) > −∞,

rqX(0) ≤ lqX(1),

and
P (rqX(0) ≤ X ≤ lqX(1)) = 1.

The above states that all the mass is between these two values. We will
show in the next lemma that these values are also the minimal values to
satisfy this property. This is the motivation for the following definition.

Definition We call rqF (0) the “left extreme” and lqF (1) the “right ex-
treme” of the distribution function F .

Lemma 5.4.1 (Left and right extreme points property)
Suppose X is a random variable with distribution function F .
a) The right extreme lqF (1) is the smallest a satisfying

P (X ≤ a) = 1.

In other words
min
a

{P (X ≤ a) = 1} = lqF (1).
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b) The left extreme rqF (0) is the biggest a satisfying

P (X ≥ a) = 1.

max
a

{P (X ≥ a) = 1} = rqF (0).

c) Consider the following subset of R2

I2 = {(a, b) ∈ R
2|P (X ∈ [a, b]) = 1}.

Then
∩(a,b)∈I2 [a, b] = [rqX(0), lqX(1)].

Proof a) In Lemma 5.3.1, we showed F (lqF (1)) = 1. Also F (a) < 1 for
a < lqF (1) by the definition of lqF .
b) In Lemma 5.3.1, we showed P (X ≥ rqX(0)) = 1. Suppose a > rqX(0).
Then since rqX(p) = inf{x|F (x) > 0},

∃c ∈ {x|F (x) > 0}, c < a ⇒
∃c < a, F (c) > 0 ⇒

∃c, P (X < a) ≥ F (c) > 0 ⇒
P (X ≥ a) = 1− P (X < a) < 1.

c) This is straightforward from a) and b).

5.5 The quantile functions as inverse

The following lemma shows that lqX and rqX can be considered as the
inverse of the distribution function in some sense.

Lemma 5.5.1 (Quantile functions as inverse of the distribution function)
a) F (x) < p ⇔ x < lqX(p). (i.e. {x|F (x) < p} = (−∞, lqF (p)).)
b) {x|F (x) ≤ p} = (−∞, rqX(p)] or (−∞, rqX(p)).
c) If F is continuous at rqX(p) then {x|F (x) ≤ p} = (−∞, rqX(p)].
d) {x|F (x) ≥ p} = [lqX(p),∞).
e) {x|F (x) > p} = (rqX(p),∞) or [rqX(p),∞).
f) If F is continuous then {x|F (x) > p} = (rqX(p),∞).

Proof
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5.5. The quantile functions as inverse

a) (⇒) is true because otherwise if x ≥ lqX(p) ⇒ F (x) ≥ F (lqX(p)) ≥ p,
which is a contradiction. To show (⇐) note that by the definition of
lqX(p), if F (x) ≥ p then x ≤ lqX(p).

b) We need to show that (1) (−∞, rqX(p)) ⊂ {x|F (x) ≤ p} and (2) {x|F (x) ≤
p} ⊂ (−∞, rqX(p)]. For (1), suppose x < rqX(p). We claim F (x) ≤ p.
Otherwise if F (x) > p by the definition of rqX(p), rqX(p) ≤ x. For (2),
suppose F (x) ≤ p. Then since rqX(p) = sup{x|F (x) ≤ p}, we conclude
x ≤ rqX(p).

c) By Part (b), it suffices to show F (rqX(p)) = p. This is shown in the next
lemma.

d) R.H.S ⊂ L.H.S by Lemma 5.3.1 part (a). L.H.S ⊂ R.H.S by the definition
of lq.

e) Note that x > rqF (p) then F (x) > p by Lemma 5.3.1 part (k). Also
F (x) > p ⇒ rqF (p) ≤ x by definition of rq.

f) This is a consequence of part (e) and next lemma.

For the continuous distribution functions, we have the following lemma.

Lemma 5.5.2 (Continuous distributions inverse) If F is continuous F (x) =
p ⇔ x ∈ [lqX(p), rqX(p)].

Proof If x < lqX(p) then we already showed that F (x) < p. Also if x >
lqX(p) then rqX(p) = sup{x|F (x) ≤ p} ⇒ F (x) > p. (Because otherwise if
F (x) ≤ p ⇒ rqX(p) ≥ p.) It remains to show that F (lqX(p)) = F (rqX(p)) =
p. But by Lemma 5.3.1, we have

F (lqX(p)) ≥ p.

Hence it suffices to show that F (rqX(p)) ≤ p. But by Part (f) of Lemma
5.3.1 and continuity of F

F (rqF (x)) = P (X ≤ rqF (x)) = P (X < rqF (x)) ≤ p.
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5.6 Equivariance property of quantile functions

Example (Counter example for Koenker–Hao claim) Suppose X is dis-
tributed uniformly on [0,1]. Then lqX(1/2) = 1/2. Now consider the follow-
ing strictly increasing transformations

φ(x) =

{

x −∞ < x < 1/2

x+ 5 x ≥ 1/2
.

Let T = φ(X) then the distribution of T is given by

P (T ≤ t) =































0 t ≤ 0

t 0 < t ≤ 1/2

1/2 1/2 < t ≤ 5 + 1/2

t− 5 5 + 1/2 < t ≤ 5 + 1

1 t > 5 + 1

.

It is clear form above that lqT (1/2) = 1/2 6= φ(lqX(1/2)) = φ(1/2) =
5 + 1/2.

We start by defining

φ≤(y) = {x|φ(x) ≤ y}, φ⋆(y) = supφ≤(y),

and
φ≥(y) = {x|φ(x) ≥ y}, φ⋆(y) = inf φ≥(y).

Then we have the following lemma.

Lemma 5.6.1 Suppose φ is non-decreasing.

a) If φ is left continuous then

φ(φ⋆(y)) ≤ y.

b) If φ is right continuous then

φ(φ⋆(y)) ≥ y.

Proof
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a) Suppose xn ↑ φ⋆(y) a strictly increasing sequence. Then since xn < φ⋆(y),
we conclude xn ∈ φ≤(y) ⇒ φ(xn) ≤ y. Hence limn→∞ φ(xn) ≤ y. But by
left continuity φ(xn) ↑ φ(φ⋆(y)).

b) Suppose xn ↓ φ⋆(y) a strictly decreasing sequence. Then since xn > φ⋆(y),
we conclude xn ∈ φ≥(y) ⇒ φ(xn) ≥ y. Hence limn→∞ φ(xn) ≥ y. But by
right continuity φ(xn) ↓ φ(φ⋆(y)).

Theorem 5.6.2 (Quantile Equivariance Theorem) Suppose φ : R → R is
non-decreasing.

a) If φ is left continuous then

lqφ(X)(p) = φ(lqX(p)).

b) If φ is right continuous then

rqφ(X)(p) = φ(rqX(p)).

Proof

a) We use Lemma 5.3.2 to prove this. We need to show (i) and (ii) in that
lemma for φ(lqX(p)). First note that (i) holds since

Fφ(X)(φ(lqX(p))) = P (φ(X) ≤ φ(lqX(p))) ≤ P (X ≤ lqX(p)) ≥ p.

For (ii) let y < φ(lqX(p)). Then we want to show that Fφ(X)(y) < p. It
is sufficient to show φ⋆(y) < lqX(p). Because then

P (φ(X) ≤ y) ≤ P (X ≤ φ⋆(y)) < p.

To prove φ⋆(y) < lqX(p), note that by the previous lemma

φ(φ⋆(y)) ≤ y < φ(lqX(p)).

b) We use Lemma 5.3.2 to prove this. We need to show (i) and (ii) in that
lemma for φ(rqX(p)). To show (i) note that if y < φ(rqX(p)),

P (φ(X) ≤ y) ≤ P (φ(X) < φ(rqX(p))) ≤ P (X < rqX(p)) ≤ p.
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To show (ii), suppose y > φ(rqX(p)). We only need to show φ⋆(y) >
rqX(p) because then

P (φ(X) ≤ y) ≥ P (X < φ⋆(y)) > p.

But by previous lemma φ(φ⋆(y)) ≥ y > φ(rqX(p)). Hence φ⋆(y) >
rqX(p).

5.7 Continuity of the left and right quantile
functions

Lemma 5.7.1 (Continuity of quantile functions) Suppose F is a distribu-
tion function. Then
a) lqF is left continuous.
b) rqF is right continuous.

Proof

a) Suppose pn ↑ p be a strictly increasing sequence in [0,1]. Then since lqF
is increasing, lqF (pn) is increasing and hence has a limit we call y. We need
to show y = lqF (p). We show this in two steps:

1. y ≤ lqF (p): Let A = {x|F (x) ≥ p}. Then for any x ∈ A:

F (x) ≥ p ⇒ F (x) ≥ pn ⇒ x ≥ lqF (pn) ⇒ x ≥ sup
n∈N

lqF (pn) ⇒ x ≥ y.

Hence lqF (p) = inf A ≥ y.

2. y ≥ lqF (p): We only need to show that F (y) ≥ p. But

y ≥ lqF (pn), ∀n ⇒ F (y) ≥ F (lqF (pn)) ≥ pn, ∀n ⇒ F (y) ≥ p.

b) Take a strictly decreasing sequence pn ↓ p, we need to show rqF (pn) →
rq(p). The limit of rqF (pn) exists since rq is non–decreasing. Let y =
infn∈N rqF (pn). We proceed in two steps:

1. rqF (p) ≤ y:

rqF (p) ≤ rqF (pn), ∀n ∈ N ⇒ rqF (p) ≤ inf
n∈N

rqF (pn) = y.
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2. rqF (p) ≥ y: Since rqF (p) = sup{x|F (x) ≤ p} by Lemma 5.3.1, we
only need to show z < y ⇒ F (z) ≤ p. But if F (z) > p then

F (z) > pn for some n ∈ N ⇒ z ≥ rqF (pn) for some n ∈ N.

Hence,
y > z ≥ rq(pn) for some n ∈ N,

which is a contradiction to y = infn∈N rq(pn).

FX is a function that ranges over [0, 1]. Once F hits 1 it will remain one.
Similarly before F becomes positive it is always zero. This is the motivation
for the following definition.

Definition Suppose F is a distribution function. We define the real domain
of F to be RD(F ) = {x|0 < F (x) < 1}.

Lemma 5.7.2 Suppose F is a distribution function. Then

RD(F ) = (rq(0), lq(1)) or RD(F ) = [rq(0), lq(1)).

Proof We proceed in two steps (a),(b).
(a) RD(F ) ⊂ [rq(0), lq(1)):
Note that (a) ⇔ [rq(0), lq(1))c ⊂ RD(F )c, where c stands for taking the
compliment of a set in R. If x ∈ [rq(0), lq(1))c then x < rq(0) or x ≥ lq(1).
x < rq(0) then F (x) = 0 by the definition of rq(0).
x ≥ lq(1) then F (x) ≥ F (lq(1)) ≥ 1 ⇒ F (x) = 1.
(b) (rq(0), lq(1)) ⊂ RD(F ):
x > rq(0) ⇒ F (x) > 0. (This is because rq(0) = sup{x|F (x) ≤ 0}.)
x < lq(1) ⇒ F (x) < 1. (This is because lq(1) = inf{x| F (x) = 1}.)

Definition For a random variableX with distribution function F , we define
the L-quantile and R-quantile functions on R:

LQF : R → R, LQF = lqF ◦ F,

RQF : R → R, RQF = rqF ◦ F.
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Lemma 5.7.3 (Properties of LQ and RQ)
a) LQF , RQF are non–decreasing.
b)LQF (x) ≤ x ≤ RQF (x).
c) LQF , RQF are left continuous and right continuous, respectively.
d) lqF (F (x)) = rqF (F (x)) ⇒ LQF (x) = RQF (x) = x.
e) We have the following equalities:

LQF (v) = inf{u|F (u) = F (v)}, RQF (v) = sup{u|F (u) = F (v)}.

f) P (LQF (x) < X < RQF (x)) = 0.

Proof

a) This result follows from the fact that lqF , rqF and F are non–decreasing.
b) LQF (x) = inf{y|F (y) ≥ F (x)}. Since x ∈ {y|F (y) ≥ F (x)}, x ≥
LQF (x).
RQF (x) = sup{y|F (y) ≤ F (x)}. Since x ∈ {y|F (y) ≤ F (x)}, RQF (x) ≥ x.
c) Suppose xn ↓ x is a strictly decreasing sequence, then F (xn) ↓ F (x) since
F is right continuous. Hence rqF (F (xn)) ↓ rqF (F (x)) since rqF is right
continuous by Lemma 5.7.1.
To prove LQF is left continuous, let xn ↑ x be a strictly increasing sequence
and let pn = F (xn). Then since {pn} is an increasing and bounded sequence,
pn → p′. Also let F (x) = p. We consider two cases:

1. p = p′. In this case pn ↑ p is a strictly increasing sequence. Since lqF
is left continuous, limn→∞LQF (xn) = limn→∞ lqF (pn) = lqF (p) =
LQF (x).

2. p′ < p. This means F has a jump at x. By Lemma 5.3.1 j), LQF (x) =
lqF (F (x)) = x. Let y = limn→∞ lqF (F (xn)). We claim y ≥ x.
Otherwise since F (x) = p and F has a jump at p, F (y) < p ⇒
F (y) < pn, for some n ∈ N. But y = supn∈N lq(F (xn)). Hence
y ≥ lq(F (xn)) and F (y) ≥ F (lq(pn)) ≥ pn > p a contradiction. Thus
y = limn→∞ lqF (F (xn)) ≥ x.

Also note that lqF (pn) ≤ lqF (F (x)) = x, ∀n ⇒ y = supn∈N lqF (pn) ≤
lqF (F (x)) = x. We conclude y = x. In other words y = limn→∞LQF (xn) =
LQF (x).

d) This result is a straightforward consequence of b).

e) This result follows immediately from the definition of these quantiles.
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f) P (LQF (x) < X < RQF (x)) = P (lqF (F (x)) < X < rqF (F (x))) = 0, by
Lemma 5.3.1.

Example Suppose the distribution function F depicted in Figure 5.1 is
given as follows

F (x) =



































2
π
arctan(x)+1

5 x ≤ 0

1/5 0 ≤ x ≤ 1

x/5 1 ≤ x < 2

3/5 2 ≤ x < 3
2
π
arctan(x−3)+4

5 x ≥ 3

.

Then lqF (0.2) = 0, rqF (0.2) = 1, lqF (0.5) = rqF (0.5) = 2 and lqF (0.55) =
rqF (0.55) = 2. We have also plotted lq, rq, LQ,RQ in Figures 5.2 to 5.5.

If we are given a data vector, we can compute the sample distribution
and then compute the left and right quantile functions. In the sequel, we
show that we get the same definition as we gave for left and right quantile
for a vector.

Lemma 5.7.4 Suppose a data vector x is given and Fn is its sample distri-
bution. Then lqx(p) = lqFn(p) and rqx(p) = rqFn(p).

Proof

We show this for non–intersection points. Similar arguments work for
intersection points. If p is not an intersection point, then

m1+···+mi−1

n < p < m1+···+mi
n and rqx(p) = lqx(p) = zi. We want to show

that inf{u|Fn(u) ≥ p} is also zi, where

Fn(u) =
n
∑

i=1

I(−∞,xi](u).

But it follows that:

Fn(zi) =
m1 + · · ·+mi

n
;

lqFn(p) = inf{u|Fn(u) ≥ p};

rqFn(p) = inf{u|Fn(u) > p}.
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Figure 5.1: An example of a distribution function with discontinuities and
flat intervals.
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0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

4
5

p

lq
(p

)

Figure 5.2: The left quantile (lq) function for the distribution function given
in Example 5.7. Notice that this function is left continuous and increasing.
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Figure 5.3: The right quantile (rq) function for the distribution function
given in Example 5.7. Notice that this function is right continuous and
increasing.
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Figure 5.4: LQ function for Example 5.7. Notice that this function is in-
creasing and left continuous.
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Figure 5.5: RQ function for Example 5.7, notice that this function is in-
creasing and right continuous.
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Since Fn is a step function the right hand side of the two above equations
can only be one of −∞, z1, · · · , zr,∞. The first u that makes Fn greater
than or equal to p is zi, proving the assertion.

Lemma 5.7.4 guarantees that our definition of quantile for data vectors
is consistent with the definition for distributions.

Lemma 5.3.1 shows that if a distribution function F is flat then rq and
lq might differ. To study this further when rq and lq are equal, we define
the concept of heavy and weightless points in the next section.

5.8 Equality of left and right quantiles

This section finds necessary and sufficient conditions for the left and right
quantiles to be equal. We start with some definitions.

Definition Suppose X is a random variable with the distribution function
F . x ∈ R is called a weightless point of a distribution function F if there
exist a neighborhood (an open interval) around x such that F is flat in that
neighborhood. We call a point heavy if it is not weightless. Denote the set
of all heavy points by H.

Definition A point x ∈ R is called a super heavy point if

P (X ∈ (x− ǫ, x]) > 0, P (X ∈ [x, x+ ǫ)) > 0, ∀ǫ > 0.

We denote the set of super heavy points by SH. Obviously any super heavy
point is heavy.

We can also define right heavy points and left heavy points.

Definition A point x ∈ R is called a right heavy point if

P (X ∈ [x, x+ ǫ)) > 0, ∀ǫ > 0.

We show the set of all right heavy points by RH. A point x ∈ R is called a
left heavy point if

P (X ∈ (x− ǫ, x]) > 0, ∀ǫ > 0.

We denote the set of all such points by LH. Obviously any heavy point
is either right heavy or left heavy. Also a super heavy point is both right
heavy and left heavy.
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Lemma 5.8.1 Suppose X is a random variable with distribution function
F . Also suppose that u1 < u2 are heavy points and F is flat on [u1, u2]
i.e. F (u1) = F (u2). Then lq(p) = u1 and rq(p) = u2, where p = F (u1) =
P (X ≤ u1).

Proof

1. lq(p) = u1: Since F (u1) = p, lq(p) ≤ u1. Suppose lq(p) < u1. Then

P (lq(p) < X < u2) > 0,

since u1 is a heavy point. We can rewrite above as

P (lq(p) < X ≤ u1) + P (u1 < X < u2) > 0,

the second term is zero by the flatness assumption. Hence

P (lq(p) < X ≤ u1) > 0.

But then

P (X ≤ lq(p)) = p(X ≤ u1)− P (lq(p) < X ≤ u1) < p,

which is a contradiction to Lemma 5.3.1 a).

2. rq(p) = u2: From F (u) = p for all u1 ≤ u < u2, we conclude rq(p) ≥
u2. To prove the inverse, note that for any u1 < u3 < u2, F (u3) = p
since F is flat on [u1, u2]. Since rq(p) = sup{x|F (x) ≤ p} by Lemma
5.3.1, rq(p) ≥ u2. Now note that since u2 is heavy, for any u3 > u2,

P (u1 < X < u3) > 0 ⇒ F (u3) = F (u1) + P (u1 < X < u3) > p.

Hence only values less than or equal to u2 are in {x|F (x) ≤ p}. We
conclude the sup is at most u2. In other words rq(p) ≤ u2.

Lemma 5.8.2 Suppose X is a random variable with distribution function
F . Then
v is a weightless point ⇔ v ∈ (LQF (v), RQF (v)).
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Proof (⇐): This is trivial by Lemma 5.7.3 part (f).
(⇒): If v /∈ (LQF (v), RQF (v)) ⇒ LQF (v) = RQF (v) = v by Lemma 5.7.3.

RQF (v) = v ⇒ inf{x| F (x) > F (v)} = v ⇒
F (x) > F (v), ∀x > v ⇒ P (v < X ≤ x) > 0, ∀x > v ⇒

P (v < X < x) > 0,∀x > v,

where the last (⇒) is because for any x > v, we can take v < x′ < x and
note that P (v < X < x) ≥ P (x < X ≤ x′) > 0. We conclude v is a right
heavy point which is a contradiction.

For a weightless point v, there is an interval (a, b) such that v ∈ (a, b)
and F is flat in that interval. It is useful to consider the flat interval around
v. This is the motivation for the following definition.

Definition Suppose X is a random variable with distribution function F
and v is a weightless point of F . Then we define the weightless interval of
v, I(v) by

I(v) = ∪a<b,F (a)=F (b)=F (v)(a, b).

Lemma 5.8.3 Suppose F is a distribution function and v is a weightless
point of this distribution function. Then

I(v) = (LQF (v), RQF (v)).

Proof (L.H.S ⊂ R.H.S): x ∈ (a, b) for some a, b where F (a) = F (b) = F (v)
then F (x) = F (v). Take x1, x2 such that a < x1 < x < x2 < b then

F (x1) = F (x2) = F (v) ⇒
LQF (v) ≤ x1 < x < x2 ≤ RQF (v) ⇒

x ∈ (LQF (v), RQF (v)).

(R.H.S ⊂ L.H.S): This is trivial since if v is weightless then LQF (v) <
RQF (v). Let a = LQF (v) and b = RQF (v) then (a, b) ⊂ I(v) by definition
of I(v).

Corollary 5.8.4 For any weightless point v, its weightless interval is indeed
an open interval.

Lemma 5.8.5 Suppose X is a random variable with a distribution function
F and v, v′ are weightless points then I(v) = I(v′) or I(v) ∩ I(v′) = ∅.
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Proof Suppose I(v) ∩ I(v′) 6= ∅. Fix u ∈ I(v) ∩ I(v′). But

F (u) = F (v) ⇒

LQF (u) = lqF (F (u)) = lqF (F (v)) = LQF (v)

and

RQF (u) = rqF (F (u)) = rqF (F (v)) = RQF (v).

Hence by the previous lemma

I(u) = (LQF (u), RQF (u)) = (LQF (v), RQF (v)) = I(v).

A similar argument shows that I(u) = I(v′) and this completes the proof.

Theorem 5.8.6 Suppose X is a random variable with distribution function
F , then

a) Let N be the set of all weightless points. Then N is measurable and
of probability zero.

b) The ranges of rqF and lqF do not intersect N . In other words

range(rqF ) ∪ range(lqF ) ⊂ H.

c) Any heavy point is either lqF (p) or rqF (p) (or both) for some p ∈ [0, 1].
In other words

H ⊂ range(rqF ) ∪ range(lqF ).

More precisely, if x is right heavy then x ∈ range(rqF ) and if x is left heavy
then x ∈ range(lqF ).

d) x = lq(p) = rq(p) for some p ∈ [0, 1] if and only if x is a super heavy
point. Also H − SH is countable.

Proof

a) Suppose v is a weightless point and consider I(v) = (LQF (v), RQF (v)).
Then by Lemma 5.7.3, all the points in I(v) are weightless. We showed that
I(v) ∩ I(v′) 6= ∅, then I(v) = I(v′). Hence N can be written as a disjoint
union of the form:

N = ∪v∈N ′I(v),
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for some N ′ ⊂ N . Pick a rational number qv ∈ I(v), v ∈ N ′ (“the Axiom
of choice” from set theory is not needed to pick a rational number from
an interval (a, b) because one can take a rational number by comparing the
expansion of a and b in the base 10). But

I(v) ∩ I(v′) = ∅, v 6= v′ ∈ N ′ ⇒ qv 6= qv′ .

This shows N ′ is countable since the set of rational numbers is countable.
Hence, N is a countable union of intervals and is measurable. Moreover,

P (N) = P (∪v∈N ′I(v)) =
∑

v∈N ′

P (X ∈ I(v)) = 0.

b) Suppose z ∈ N . Then there exist a, b such that a < z < b and P (a <
X < b) = 0. Take a′, b′ such that a < a′ < z < b′ < b. Suppose z = lqF (p)
for some p. Then P (X ≤ z) ≥ p and also P (X ≤ a′) = P (X ≤ z) ≥ p. This
is a contradiction since z is the left quantile. Similarly, suppose z = rqF (p)
for some p. Then since z < b′, F (b′) > p while a′ < z gives F (a′) ≤ p. Hence
P (a′ ≤ X ≤ b′) > 0, a contradiction.
c) Assume x is right heavy. Then let p = F (x). We claim that rqF (p) = x.
Suppose rqF (p) = x′ < x then F (x) = p is a contradiction to rqF (p) =
sup{y|F (y) ≤ p}. On the other hand for any x′ > x, pick x < x′′ < x′. We
have F (x′′) > p since x is right heavy. Since rqF (p) = inf{y|F (y) > p} and
F (x′′) > p then x′ > rqF (p). We conclude that rqF (p) = x.

Now suppose x is left heavy. Let p = F (x). We claim lqF (p) = x. First
note that for any x′ < x, F (x′) < F (x) = p since x is left heavy. Hence
lqF (p) ≥ x. But F (x) = p and since lqF (p) = inf{y|F (y) ≥ p} we are done.
d) The necessary and sufficient conditions follow immediately from c). To
show that H − SH is countable, we prove LH − SH and RH − SH are
countable. To that end, for any x ∈ LH−SH consider Ix = (LQ(x), RQ(x)).
Since x is not super heavy this interval has positive length. Also note that
x < y, x, y ∈ H implies Ix ∩ Iy = ∅. To prove this, note that since x, y are
left heavy, LQ(x) = x and LQ(y) = y. We conclude

Ix = (x,RQ(x))

Iy = (y,RQ(y)).

If Ix ∩ Iy is nonempty then we conclude x < y < RQ(x). Then

0 = P (X ∈ (x,RQ(x))) ≤ P (X ∈ (x, y)) > 0.
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(P (X ∈ (x, y)) > 0 since y is left heavy.) This is a contradiction and hence
Ix ∩ Iy = ∅. Now pick a rational number qx ∈ Ix. Then

Ix ∩ Iy = ∅ ⇒ qx 6= qy.

Since the set of rational numbers is countable LH − SH is countable. A
similar argument works for RH − SH.

Lemma 5.8.7 Suppose X is a random variable with distribution function
F . Then the set A = {p| p ∈ [0, 1], lqF (p) 6= rqF (p)} is countable.

Proof For every p ∈ A let J(p) = (lqF (p), rqF (p)). Then for every x ∈ J(p),
F (x) = p. (F (x) ≥ F (lqF (p)) ≥ p. Now if F (x) > p, we get a contradiction
to x < lqX(p).) We conclude

p, p′ ∈ A, p 6= p′ ⇒ J(p) ∩ J(p′) = ∅.

The intervals are disjoint, every interval has a positive length and their union
is a subset of [0, 1]. Hence there are only countable number of such intervals.
We conclude A is countable.

The following lemma gives sufficient and necessary conditions for lqX =
rqX , ∀p ∈ (0, 1).

Lemma 5.8.8 lqX(p) = rqX(p), p ∈ (0, 1) iff FX is strictly increasing.

Proof (⇒)

lqX(p) = inf{x|FX (x) ≥ p} =

inf{x|x ≥ F−1
X (p)} =

inf{x|x > F−1
X (p)} = rqX(p) .

(⇐): If Fx is not strictly increasing then ∃x2 < x1 s.t FX(x1) = FX(x2).
Then let p = FX(x1). We also have p = FX(x2). Hence

lqX(p) = inf{FX(x) ≥ p} ≤ x1,

and
rqX(p) = sup{FX(x) ≤ p} ≥ x2,

which is a contradiction.
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5.9 Distribution function in terms of the quantile

functions

It is interesting to understand the connections amongst lq, rq and F . We
answer the following question:
Question: Given one of lq, rq or F , are the other two uniquely determined?
The answer to this question is affirmative and the following theorem says
much more.

Theorem 5.9.1 Suppose F is a distribution function. Then

a) For p0 ∈ (0, 1), lq(p0) = limp→p−0
rq(p0). Hence, the function rq uniquely

determines lq.

b) For p0 ∈ (0, 1), rq(p0) = limp→p+0
lq(p0). Hence lq uniquely determines

rq.

c) lq or rq continuous at p0 ∈ (0, 1) ⇒ lq(p0) = rq(p0).

d) lq(p0) = rq(p0) ⇒ lq and rq are continuous at p0.

e) lq is continuous at p ⇔ rq is continuous at p.

f) F (x) = inf{p|lq(p) > x}.

g) F (x) = inf{p|rq(p) > x}.

Proof

a) Take a strictly increasing sequence pn ↑ p0 in [0, 1]. Then

pn−1 < pn < pn+1 ⇒

lq(pn−1) < rq(pn) < lq(pn+1), (5.4)

by Lemma 5.3.1, part (c). By the left continuity of lq, lq(pn) → lq(p0).
Applying the Sandwich Theorem about the limits from elementary cal-
culus to the Equation (5.4), we conclude that rq(pn) → lq(p0).

150



5.9. Distribution function in terms of the quantile functions

b) Take a strictly decreasing sequence pn ↓ p0 in [0, 1]. Then

pn−1 > pn > pn+1 ⇒

rq(pn−1) > lq(pn) > rq(pn+1), (5.5)

again by Lemma 5.3.1, part (c). By the right continuity of rq, rq(pn) →
rq(p0). Applying the Sandwich Theorem for limits to Equation (5.5), we
conclude that lq(pn) → rq(p0).

c) Suppose lq is continuous at p0. Then limp→p+0
lq(p) = lq(p0). But by the

previous parts of this theorem, we also have limp→p+0
= rq(p0). Similar

arguments work if rq is continuous at p0.

d) To prove lq is continuous at p0 note that

lim
p→p−0

lq(p0) = lq(p0) = rq(p0) = lim
p→p+0

lq(p0),

where the first equality comes from the left continuity of lq and the last
one comes from (b). Similar arguments work for rq.

e) This result follows immediately from the previous two parts.

f) Let A = {p|lq(p) > x}. We want to show that F (x) = inf A.
To do that we first show that F (x) ≤ inf A.
By Lemma 5.7.3,

lq(F (x)) ≤ x ⇒ F (x) ≤ a, ∀a ∈ A ⇒ F (x) ≤ inf A.

It remains to show that inf A ≤ F (x). Suppose to the contrary that
F (x) < inf A. Then take F (x) < p0 < inf A to get

lq(p0) ≤ x, p0 > F (x)

⇒ F (lq(p0)) ≤ F (x), p0 > F (x).

But by Lemma 5.3.1 part (a), p0 ≤ F (lq(p0)). Hence

p0 ≤ F (lq(p0)) ≤ F (x), p0 > F (x),

which is a contradiction.
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g) Let B = {p|rq(p) > x} and A be as the previous part. Then F (x) =
inf A ≤ inf B.
It only remains to show that inf B ≤ F (x). Otherwise, we can pick p0,
F (x) < p0 < inf B so that

rq(p0) ≤ x, p0 > F (x) ⇒

p0 ≤ F (rq(p0)) ≤ F (x), p0 > F (x),

which is a contradiction.

5.10 Two-sided continuity of lq/rq

Lemma 5.10.1 Suppose F is a distribution function for the random vari-
able X and lq, rq are its corresponding left and right quantile functions.
Then
a) F is continuous ⇔ lq is strictly increasing on (0, 1).
b) F is strictly increasing on RD(F ) = {x|0 < F (x) < 1} = (rq(0), lq(1))
or [rq(0), lq(1)) ⇔ lq is continuous on (0, 1).

Proof a)
(⇒): F is continuous iff P (X = x) = 0, ∀x ∈ R. If the R.H.S does not
hold then x = lq(p1) = lq(p2), p1 < p2. Then for every y < x, we have
F (y) < p1. Hence

P (X < x) = lim
y→x−

P (X ≤ y) ≤ p1 < p2.

But F (x) ≥ p2 since lq(p2) = x and we conclude P (X = x) ≥ p2 − p1, a
contradiction.
(⇐): If F is not continuous then P (X = x) = ǫ > 0 for some x ∈ R. Let
p = F (x) then P (X < x) = p− ǫ. Pick p1 < p2 in the interval (p− ǫ, p) then
lq(p1) = lq(p2) = x.
b)
(⇒): lq is left continuous. Hence if it is not continuous then

lim
p→p+0

lq(p) = rq(p0) 6= lq(p0).

Hence F is flat on (lq(p0), rq(p0)) 6= ∅, which is a contradiction to F being
increasing.
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(⇐): Suppose F is not continuous on RD(F ), then there exist a, b ∈ R such
that F is flat on [a, b]:

F (a) = F (b) = p ∈ (0, 1).

But then lq(p) ≤ a and rq(p) ≥ b. Hence lq(p) 6= rq(p), which means lq is
not continuous.

Remark. We can replace lq is the above lemma by rq. A similar argument
can be done for the proof.

5.11 Characterization of left/right quantile

functions

The characterization of the distribution function is a well–known result in
probability. Here we characterize the left and right quantile functions of a
distribution. We start by some simple lemmas which we need in the proof.

Lemma 5.11.1 Suppose An ⊂ R, n ∈ N . Then

inf ∪n∈NAn = inf
n∈N

(inf An)

Proof

a) inf ∪n∈NAn ≥ infn∈N(inf An):

a ∈ ∪n∈NAn ⇒ ∃m ∈ N, a ∈ Am ⇒ ∃m ∈ N, a ≥ inf Am ⇒ a ≥ inf
n∈N

(inf An).

Hence, inf ∪n∈NAn ≥ infn∈N(inf An).
b) inf ∪n∈NAn ≤ infn∈N(inf An):

inf ∪n∈NAn ≤ inf Am, ∀m ∈ N ⇒ inf ∪n∈NAn ≤ inf
n∈N

(inf An).

Lemma 5.11.2 Suppose h : (0, 1) → R is a non–decreasing function. Then
G(x) = inf{p ∈ (0, 1)|h(p) > x} is a distribution function.

Proof a) We claim G is non–decreasing. Suppose x1 < x2 then let A =
{p|h(p) > x1} and B = {p|h(p) > x1}. Then G(x1) = inf A and G(x2) =
inf B. But clearly B ⊂ A hence G(x1) ≤ G(x2).
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b) limx→∞G(x) = 1: First note that such a limit exist and is bounded by
1. (Because the domain of h is (0,1)). Assume limx→∞G(x) = q < 1, take
q < q′ < 1 then take x0 > h(q′). Let A = inf{p|h(p) > x0} such that
G(x0) = inf A. Then

(p ∈ A ⇒ h(p) > x0 > h(q′) ⇒ p > q′) ⇒ G(x0) = inf A ≥ q′ > q.

We have shown there is an x0 such that G(x0) > q this is a contradiction to
limx→∞G(x) = q since G is non-decreasing.
c) Suppose that limx→−∞G(x) = q > 0 then take 0 < q′ < q and x0 < h(q′).
Let A = inf{p|h(p) > x0} such that G(x0) = inf A. We have

h(q′) > x0 ⇒ q′ ∈ A ⇒ inf A ≤ q′ ⇒ G(x0) ≤ q′ < q

This contradicts limx→−∞G(x) = q > 0 since G is non–decreasing.
d) G is right continuous: limx→x+

0
G(x) = x0. Suppose xn ↓ x0. In the

previous lemma, let An = {p|h(p) > xn} and A = ∪n∈NAn = {p|h(p) > x0}.
Then

G(x0) = inf A = inf ∪n∈NAn = inf
n∈N

(inf An) = inf
n∈N

G(xn) = lim
x→x+

0

G(x).

Theorem 5.11.3 (Quantile function characterization theorem) Suppose a
function h : (0, 1) → R is given. Then
(a) h is a left quantile function for some random variable X iff h is left
continuous and non–decreasing.
(b) h is a right quantile function for some random variable X iff h is right
continuous and non–decreasing.

Proof If h is a left quantile function, then h is left continuous and non–
decreasing as we showed in previous sections. Also if h is right continuous
function then h is non–decreasing and right continuous. For the inverse of
both a) and b) define G as in the above lemma. We will prove that h is lqG
in a) and rqG in b).

(a) Let A = {x|G(x) ≥ p0}, we want to show h(p0) = inf A.
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(i) inf A ≤ h(p0): Otherwise if inf A > y > h(p0), then:

inf A > y ⇒ inf{x|G(x) ≥ p0} > y ⇒ G(y) < p0 ⇒
inf{p ∈ (0, 1)|h(p) > y} < p0 ⇒
∃p ∈ (0, 1), h(p) > y, p < p0 ⇒

∃p ∈ (0, 1)h(p0) ≥ h(p) > y,

which is a contradiction.
(ii) inf A ≥ h(p0) :

x ∈ A ⇒ G(x) ≥ p0 ⇒ inf{p ∈ (0, 1)|h(p) > x} ≥ p0.

Hence,
∀p < p0, h(p) ≤ x ⇒ lim

p→p−0

h(p) ≤ x ⇒ h(p0) ≤ x,

by left continuity of h. Hence

∀x ∈ A, h(p0) ≤ x ⇒ h(p0) ≤ inf A.

(b) Let A = {x|G(x) > p0}, we want to show h(p0) = inf A.
(i) inf A ≤ h(p0): Otherwise if inf A > y > h(p0), then

inf A > y ⇒ y /∈ A ⇒ G(y) ≤ p0 ⇒
inf{p′ ∈ (0, 1)|h(p′) > y} ≤ p0 ⇒
∀p > p0, inf{p′|h(p′) > y} < p ⇒

∀p > p0, ∃p′ ∈ (0, 1), h(p′) > y, p′ < p ⇒
∀p > p0, ∃p′ ∈ (0, 1), h(p) ≥ h(p′) > y ⇒

h(p0) ≥ y

which is a contradiction.
(ii) inf A ≥ h(p0) :

x ∈ A ⇒ G(x) > p0 ⇒ inf{p ∈ (0, 1)|h(p) > x} > p0 ⇒
p0 /∈ {p ∈ (0, 1)|h(p) > x} ⇒ h(p0) ≤ x.

Hence h(p0) ≤ inf A.

Now we characterize the quantile functions of data vectors. See Figure
5.6 for an example of quantile functions for the vector

x = (−2,−2, 2, 2, 2, 2, 4, 4, 4, 4).
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Figure 5.6: For the vector x = (−2,−2, 2, 2, 4, 4, 4, 4) the left (top) and right
(bottom) quantile functions are given.
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Theorem 5.11.4 (Data vector quantile function characterization theorem)
a) h : (0, 1) → R is a left quantile function for a data vector x iff h is a left
continuous step function with no steps (jumps) or a finite number of steps
(jumps) at some points 0 < a1 < a2 < · · · < ak < 1 where ai =

1
nni, for

some n, ni ∈ N.
b) h : (0, 1) → R is a right quantile function for a data vector x iff h is
a right continuous step function with no steps (jumps) or finite number of
steps (jumps) at some points 0 < a1 < a2 < · · · < ak < 1 where ai =

1
nni

for some n, ni ∈ N.

Proof

We only prove a) and b) is obtained either by repeating a similar argu-
ment or using the Quantiles Symmetry Theorem (Theorem 5.12.3), which
we prove in next sections.

a) (⇒) For x = (x1, · · · , xn), it is clear that lqx is a step function with
jumps at points proportional to 1/n and we proved the left continuity before.

a) (⇐) The result is easy to show if h has no jumps. Let h′ = limx→+∞ h(x)
and suppose h is given with jumps at a1 < a2 < · · · < ak, a1 = n1(1/n), · · · , ak =
nk(1/n). Let b1 = a1, b2 = a2 − a1, · · · , bk = ak − ak−1, bk+1 = 1− ak. Then
bi =

1
nmi, i = 1, 2, · · · , k+1 withm1 = n1,m2 = n2−n1, · · · ,mk = nk−nk−1

and finally mk+1 = n −∑k
i=1mi. Then let x be a data vector with h(ai)

repeated mi times. We claim that h = lqx. First note that x is of length n.
For 0 < p ≤ a1, we have lqx(p) = h(a1) = h(p). For ai−1 < p ≤ ai, i ≤ k, we

have ni−1

n =
∑i−1

j=1 mj

n < p ≤
∑i

j=1 mj

n = ni
n . Hence

lqx(p) = h(ai) = h(p), ai−1 < p ≤ ai, i ≤ k.

For ak < p < 1, we have nk
n =

∑k
j=1 mj

n < p < 1,

lqx(p) = h′ = h(p), ak < p < 1.

5.12 Quantile symmetries

This section studies the symmetry properties of distribution functions and
quantile functions. Symmetry is in the sense that if X is a random vari-
able with left/right quantile function, some sort of symmetry between the
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quantile functions of X and −X should exist. We only treat the quantile
functions for distributions here but the results can readily be applied to data
vectors by considering their empirical distribution functions.

Here consider different forms of distribution functions. The usual one
is defined to be F c

X(x) = P (X ≤ x). But clearly one could have also
considered F o

X(x) = P (X < x), Gc
X(x) = P (X ≥ x) or Go

X(x) = P (X > x)
to characterize the distribution of a random variable. We call F c the left–
closed distribution function, F o the left–open distribution function, Gc the
right–closed and Go the right–open distribution function. Like the usual
distribution function these functions can be characterized by their limits in
infinity, monotonicity and right continuity.

First note that

F c
−X(x) = P (−X ≤ x) = P (X ≥ −x) = Gc

X(−x).

Since the left hand side is right continuous, Gc
X is left continuous. Also note

that

F c
X(x) +Go

X(x) = 1 ⇒ Go
X(x) = 1− F c

X(x),

F o
X(x) +Gc

X(x) = 1 ⇒ F o
X(x) = 1−Gc

X(x).

The above equations imply the following:
a) Go and F c are right continuous.
b) F o and Gc are left continuous.
c) Go and Gc are non–decreasing.
d) limx→∞F (x) = 1 and limx→−∞F (x) = 0 for F = F o, F c.
e) limx→∞G(x) = 0 and limx→−∞G(x) = 1 for G = Go, Gc.

It is easy to see that the above given properties for F o, Go, Gc character-
ize all such functions. The proof can be given directly using the properties of
the probability measure (such as continuity) or by using arguments similar
to the above.

Another lemma about the relation of F c, F o, Go, Gc is given below.

Lemma 5.12.1 Suppose F o, F c, Go, Gc are defined as above. Then
a) if any of F c, F o, Go, Gc are continuous, all of other are continuous too.
b) F c being strictly increasing is equivalent to F o being strictly increasing.
c) if F c is strictly increasing, Go is strictly decreasing.
d) Gc being strictly decreasing is equivalent to Go being strictly increasing.
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Proof a) Note that limy→x− F c(x) = limy→x− F o(x) and limy→x+ F c(x) =
limy→x+ F o(x). If these two limits are equal for either F c or F o they are
equal for the others as well.
b) If either F c or F o are not strictly increasing then they are constant on
[x1, x2], x1 < x2. Take x1 < y1 < y2 < x2. Then

F o(x1) = F o(x2) ⇒ P (y1 ≤ X ≤ y2) = 0 ⇒ F c(y1) = F c(y2).

Also we have

F c(x1) = F c(x2) ⇒ P (y1 ≤ X ≤ y2) = 0 ⇒ F o(y1) = F o(y2).

c) This is trivial since Go = 1− F c.
d) If Gc is strictly decreasing then F o is strictly increasing since Gc = 1−F o.
By part b), F c strictly is increasing. Hence Go = 1− F c is strictly decreas-
ing.

The relationship between these distribution functions and the quantile
functions are interesting and have interesting implications. It turns out that
we can replace F c by F o in some definitions.

Lemma 5.12.2 Suppose X is a random variable with open and closed left
distributions F o, F c as well as open and closed right distributions Go, Gc.
Then
a) lqX(p) = inf{x|F o

X (x) ≥ p}. In other words, we can replace F c by F o in
the left quantile definition.
b) rqX(p) = inf{x|F o

X (x) > p}. In other words, we can replace F c by F o in
the right quantile definition.

Proof a) Let A = {x|F o
X (x) ≥ p} and B = {x|F c

X (x) ≥ p}. We want to
show that inf A = inf B. Now

A ⊂ B ⇒ inf A ≥ inf B.

But
inf B < inf A ⇒ ∃x0, y0, inf B < x0 < y0 < inf A.

Then
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inf B < x0 ⇒ ∃b ∈ B, b < x0 ⇒ ∃b ∈ R, p ≤ P (X ≤ b) ≤ P (X ≤ x0)

⇒ P (X ≤ x0) ≥ p ⇒ P (X < y0) ≥ p.

On the other hand

y0 < inf A ⇒ y0 /∈ A ⇒ P (X < y0) < p,

which is a contradiction, thus proving a).
b) Let A = {x|F o

X(x) > p} and B = {x|F c
X(x) > p}. We want to show

inf A = inf B. Again,

A ⊂ B ⇒ inf A ≥ inf B.

But
inf B < inf A ⇒ ∃x0, y0, inf B < x0 < y0 < inf A.

Then

inf B < x0 ⇒ ∃b ∈ B, b < x0 ⇒ ∃b ∈ R, p < P (X ≤ b) ≤ P (X ≤ x0)

⇒ P (X ≤ x0) > p ⇒ P (X < y0) > p.

On the other hand,

y0 < inf A ⇒ y0 /∈ A ⇒ P (X < y0) ≤ p,

which is a contradiction.

Using the above results, we establish the main theorem of this section
which states the symmetry property of the left and right quantiles.

Theorem 5.12.3 (Quantile Symmetry Theorem) Suppose X is a random
variable and p ∈ [0, 1]. Then

lqX(p) = −rq−X(1− p).

Remark. We immediately conclude

rqX(p) = −lq−X(1− p),

by replacing X by −X and p by 1− p.
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Proof

R.H.S = − sup{x|P (−X ≤ x) ≤ 1− p} =

inf{−x|P (X ≥ −x) ≤ 1− p} =

inf{x|P (X ≥ x) ≤ 1− p} =

inf{x|1 − P (X ≥ x) ≥ p} =

inf{x|1−Gc(x) ≥ p} =

inf{x|F o(x) ≥ p} = lqX(p).

Now we show how these symmetries can become useful to derive other
relationships/definitions for quantiles.

Lemma 5.12.4 Suppose X is a random variable with distribution function
F . Then

lqX(p) = sup{x|F c(x) < p}.

Proof

lqX(p) = −rq−X(1− p) = − inf{x|F o
−X (x) > 1− p} =

− inf{x|1 −Gc
−X(x) > 1− p} = sup{−x|Gc

−X(x) < p} =

sup{−x|P (−X ≥ x) < p} = sup{x|P (X ≤ x) < p} =

sup{x|F c(x) < p}.

In the previous sections, we showed that both lqX and rqX are equivari-
ant under non-decreasing continuous transformations:

lqφ(X)(p) = φ(lqX(p)),

where φ is non-decreasing left continuous. Also

rqφ(X)(p) = φ(rqX(p)),

for φ : R → R non-decreasing right continuous. However, we did not provide
any results for decreasing transformations. Now we are ready to offer a result
for this case.
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Theorem 5.12.5 (Decreasing transformation equivariance)
a) Suppose φ is non-increasing and right continuous on R. Then

lqφ(X)(p) = φ(rqX(1− p)).

b) Suppose φ is non-increasing and left continuous on R. Then

rqφ(X)(p) = φ(lqX(1− p)).

Proof a) By the Quantile Symmetry Theorem, we have

lqφ(X)(p) = −rq−φ(X)(1− p).

But −φ is non-decreasing right continuous, hence the above is equivalent to

−(−φ(rqX(1− p))) = φ(rqX(1− p)).

b) By the Quantile symmetry Theorem

rqφ(X)(p) = −lq−φ(X)(1−p) = −− φ(lqX(1− p)) = φ(lqX(p)),

since −φ is non-decreasing and left continuous.

Lemma 5.12.6 Suppose X is a random variable and F c, F o, Gc, Go are the
corresponding distribution functions. Then we have the following inequali-
ties:

a) F c(lq(p)) ≥ p. (Hence F c(rq(p)) ≥ p.)

b) F o(rq(p)) ≤ p. (Hence F o(lq(p)) ≤ p.)

c) Go(lq(p)) ≤ 1− p. (Hence Go(rq(p)) ≤ 1− p.)

d) Gc(rq(p)) ≥ 1− p. (Hence Gc(lq(p)) ≥ 1− p.)

Proof We already showed a).
b) Suppose there F o(rq(p)) = p+ ǫ for some positive ǫ. Then since F o is left
continuous

lim
x→rq(p)+

F o(x) = p+ ǫ.

Hence there exist x0 < rq(p) such that F (x0) ≥ F o(x0) > p+ ǫ/2. This is a
contradiction to rq(p) being the inf of the set {x|F (x) > p}.
c) and d) are straightforward consequence of a) and b) since F c + Go = 1
and F o +Gc = 1.

162



5.13. Quantiles from the right

The quantile functions as the inverse of an open distribution
function

Lemma 5.12.7 Suppose X is a random variable with distribution function
F and open distribution function F o.

a) {x|F o(x) < p} = (−∞, lqF (p)) or (−∞, lqF (p)].

b) {x|F o(x) ≤ p} = (−∞, rqF (p)].

c) If F o is continuous then {x|F o(x) < p} = (−∞, lqF (p)].

d) {x|F o(x) > p} = (rqF (p),∞).

e) {x|F o(x) ≥ p} = (lqF (p),∞) or [lqF (p),∞)

Proof The proof is very similar to Lemma 5.5.1 and we skip the details.

5.13 Quantiles from the right

So far, we have defined left/right quantiles using the classic distribution
function F c. We also showed that in quantile definitions F c can be replaced
by F o. F c

X(x) = P (−∞ < X ≤ x) measures the probability from minus
infinity. When we define left/right quantiles, we seek to find points where
this probability from minus infinity reaches (passes) a certain value. One
could also consider Gc

X(x) = P (x ≤ X < ∞) and define another version of
quantile functions which seek points where the probability from plus infinity
reaches or passes a point. This is a motivation to define the “left/right
quantile functions from the right”. By indicating from the right we clarify
that the probability is compute from the right hand side i.e. plus infinity.
The previously defined left and right quantile functions should be called
“left/right quantile functions from the left”.

Definition Suppose X is a random variable with closed right distribution
function Gc

X(x) = P (X ≥ x). Then we define the “left quantile function
from the right” as follows

lqfrX(p) = sup{x|Gc
X(x) > p}.

Definition Suppose X is a random variable with closed right distribution
function Gc

X(x) = P (X ≥ x). Then we define the right quantile function
from the right as follows
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rqfrX(p) = sup{x|Gc
X (x) ≥ p}.

Using the symmetries in the definition of these quantities, we will show
that we have already characterized left/right from the right quantile func-
tions. We need the following lemma.

Lemma 5.13.1 Suppose X is a random variable with quantile functions
lqX , rqX . Then
a) rqX(p) = sup{x|F o(x) ≤ p}.
b) lqX(p) = sup{x|F o(x) < p}

Proof a) Let A = {x|F c(x) ≤ p} and B = {x|F o(x) ≤ p}. First note that

A ⊂ B ⇒ supA ≤ supB.

To show that the sups are indeed equal, note

supA < supB ⇒ ∃x0, y0, supA < x0 < y0 < supB.

Then
supA < x0 ⇒ F c(x0) > p,

and

y0 < supB ⇒ ∃b ∈ B, y0 < b ⇒ ∃b, F o(b) ≤ p, y0 < b ⇒ F o(y0) ≤ p.

But
F c(x0) > p,F o(y0) ≤ p,

which is a contradiction.
b) Let A = {x|F c(x) < p} and B = {x|F o(x) < p}. First note that

A ⊂ B ⇒ supA ≤ supB.

To show that the sups are indeed equal, note

supA < supB ⇒ ∃x0, y0, supA < x0 < y0 < supB.

Then
supA < x0 ⇒ F c(x0) ≥ p,

and

y0 < supB ⇒ ∃b ∈ B, y0 < b ⇒ ∃b, F o(b) < p, y0 < b ⇒ F o(y0) < p.
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But
F c(x0) ≥ p, F o(y0) < p,

which is a contradiction.

Lemma 5.13.2 (Quantile functions from the right)
a) lqfrX(p) = rqX(1− p).
b) rqrfX(p) = lqX(1− p).

Proof

a)

lqrfX(p) = sup{x|Gc
X (x) > p} = sup{x|F o

X (x) ≤ p} = rqX(1− p).

b)

rqrfX(p) = sup{x|Gc
X(x) ≥ p} = sup{x|F o

X (x) < 1− p} = lqX(1− p).

5.14 Limit theory

To prove limit results, we need some limit theorems from probability theory
that we include here for completeness and without proof. Their proofs can be
found in standard probability textbooks and appropriate references are given
below. If we are dealing with two samples, X1, · · · ,Xn and Y1, · · · , Yn, to
avoid confusion we use the notation Fn,X and Fn,Y to denote their empirical
distribution functions respectively.

Definition Suppose X1,X2, · · · , is a discrete–time stochastic process. Let
F(X) be the σ-algebra generated by the process and F(Xn,Xn+1, · · · ) the
σ-algebra generated by Xn,Xn+1, · · · . Any E ∈ F(X) is called a tail event
if E ∈ F(Xn,Xn+1, · · · ) for any n ∈ N.

Definition Let {An}n∈N be any collection of sets. Then {An i.o.}, read as
An happens infinitely often is defined by:

{An i.o.} = ∩i∈N ∪∞
j=i Aj .
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Theorem 5.14.1 (Kolmogorov 0–1 law):
E being a tail event implies that P (E) is either 0 or 1.

Proof See [9].

Theorem 5.14.2 (Glivenko–Cantelli Theorem):
Suppose, X1,X2, · · · , i.i.d, has the sample distribution function Fn. Then

lim
n→∞

sup
x∈R

|Fn(x)− F (x)| → 0, a.s..

Proof See [7].

Here, we extend the Glivenko–Cantelli Theorem to F o, Go and Gc.

Lemma 5.14.3 Suppose X is a random variable and consider the associated
distribution functions F o

X , Go
X and Gc

X with corresponding sample distribu-
tion functions F o

X,n, G
o
X,n and Gc

X,n. Then

sup
x∈R

|Go
X,n −Go

X | → 0, a.s.,

sup
x∈R

|F o
X,n − F o

X | → 0, a.s.,

and
sup
x∈R

|Gc
X,n −Gc

X | → 0, a.s..

Proof Note that

F c
X +Go

X = 1 ⇒ Go
X = 1− F c

X ,

and
F c
X,n +Go

X,n = 1 ⇒ Go
X,n = 1− F c

X,n.

Since Glivenko–Cantelli Theorem holds for F c
X it also holds for Go

X .
To show the result for F o

X , note that F o
X(x) = Go

−X(−x) and F o
X,n(x) =

Go
−X,n(−x). Also to show the result for Gc

X note that Gc
X = 1 − F o

X and
Gc

X,n = 1− F o
X,n.
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Theorem 5.14.4 (Borel–Cantelli lemma):
Suppose (Ω,F , P ) is a probability space. Then

1. An ∈ F and
∑∞

1 P (An) < ∞ ⇒ P (An i.o) = 0.

2. An ∈ F independent events with
∑∞

1 P (An) = ∞ ⇒ P (An i.o) = 1,
where i.o. stands for infinitely often.

Proof See [9].

Theorem 5.14.5 (Berry–Esseen bound): Let X1,X2, · · · , be i.i.d with E(Xi) =
0 < ∞, E(X2

i ) = σ and E(|Xi|3) = ρ. If Gn is the distribution of

X1 + · · · +Xn/σ
√
n

and Φ(x) is the distribution function of a standard normal random variables
then

|Gn(x)− Φ(x)| ≤ 3ρ/σ3√n.

Corollary 5.14.6 Let X1,X2, · · · , be i.i.d with E(Xi) = µ < ∞, E(|Xi −
µ|2) = σ and E(|Xi−µ|3) = ρ. If Gn is the distribution of (X1+ · · ·+Xn−
nµ)/σ

√
n =

√
n( X̄n−µ

σ ) and Φ(x) is the distribution function of a standard
normal random variable then

|Gn(x)− Φ(x)| ≤ 3ρ/σ3√n.

Proof This corollary is obtained by applying the theorem to Yi = Xi − µ.

Now let An = (X1 + · · · +Xn − nµ)/σ
√
n. Then

|P (An > x)−(1−Φ(x))| = |P (An ≤ x)−Φ(x)| = |Gn(x)−Φ(x)| < 3ρ/σ3√n.

Also

|P (x < An ≤ y)−(Φ(y)−Φ(x)))| ≤ |Gn(y)−Φ(y)|+|Gn(x)−Φ(x)| ≤ 6ρ/σ3√n.

These inequalities show that for any ǫ > 0 there exist N such that n > N,

Φ(z2)−Φ(z1)− ǫ < P (z1 <
√
n(

X̄n − µ

σ
) ≤ z2) < Φ(z2)− Φ(z1) + ǫ,

for z1 < z2 ∈ R ∪ {−∞,∞}.
It is interesting to ask under what conditions lqFn and rqFn tend to lqF

and rqF as n → ∞. Theorem 5.14.7 gives a complete answer to this question.
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Theorem 5.14.7 (Quantile Convergence/Divergence Theorem)

a) Suppose rqF (p) = lqF (p) then

rqFn(p) → rqF (p), a.s.,

and
lqFn(p) → lqF (p), a.s..

b) When lqF (p) < rqF (p) then both rqFn(p), lqFn(p) diverge almost surely.

c) Suppose lqF (p) < rqF (p). Then for every ǫ > 0 there exists N such that
n > N,

lqFn(p), rqFn(p) ∈ (lqF (p)− ǫ, lqF (p)] ∪ [rqF (p), rqF (p) + ǫ).

d)
lim sup
n→∞

lqFn(p) = lim sup
n→∞

rqFn(p) = rqF (p), a.s.,

and

lim inf
n→∞

lqFn(p) = lim inf
n→∞

rqFn(p) = rqF (p), a.s..

Proof

a) Since, lqF (p) = rqF (p), we use qF (p) to denote both. Suppose ǫ > 0 is
given. Then

F (qF (p)− ǫ) < p ⇒ F (qF (p)− ǫ) = p− δ1, δ1 > 0,

and
F (qF (p) + ǫ) > p ⇒ F (qF (p) + ǫ) = p+ δ2, δ2 > 0.

By the Glivenko–Cantelli Theorem,

Fn(u) → F (u) a.s.,

uniformly over R. We conclude that

Fn(qF (p)− ǫ) → F (qF (p)− ǫ) = p− δ1, a.s.,
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and
Fn(qF (p) + ǫ) → F (qF (p) + ǫ) = p+ δ2, a.s..

Let ǫ′ = min(δ1,δ2)
2 . Pick N such that for n > N :

p− δ1 − ǫ′ < Fn(qF (p)− ǫ) < p− δ1 + ǫ′,
p+ δ2 − ǫ′ < Fn(qF (p) + ǫ) < p+ δ2 + ǫ′.

Then

Fn(qF (p)− ǫ) < p− δ1 + ǫ′ < p ⇒
lqFn(p) ≥ qF (p)− ǫ and rqFn(p) ≥ qF (p)− ǫ.

Also

p < p+ δ2 − ǫ′ < Fn(qF (p) + ǫ) ⇒
lqFn(p) ≤ qF (p) + ǫ and rqFn(p) ≤ qF (p) + ǫ.

Re-arranging these inequalities we get:

qF (p)− ǫ ≤ lqFn(p) ≤ qF (p) + ǫ,

and
qF (p)− ǫ ≤ rqFn(p) ≤ qF (p) + ǫ.

b) This needs more development in the sequel and the proof follows.

c) This also needs more development in the sequel and the proof follows.

d) If lqF (p) = rqF (p) the result follows immediately from (a). Other-
wise suppose lqF (p) < rqF (p). Then by (b) lqFn(p) diverges almost
surely. Hence lim sup lqFn(p) 6= lim inf lqFn(p), a.s. . But by (c), ∀ǫ >
0, ∃N, n > N

lqFn(p) ∈ (lqF (p)− ǫ, lqF (p)] ∪ [rqF (p), rqF (p) + ǫ).

This means that every convergent subsequence of lqFn(p) has either limit
lqF (p) or rqF (p), a.s.. Since lim sup lqFn(p) 6= lim inf lqFn(p), a.s., we
conclude lim sup lqFn(p) = rqF (p) and lim inf lqFn(p) = lqF (p), a.s..
A similar argument works for rqFn(p).
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To investigate the case lqF (p) 6= rqF (p) more, we start with the simplest
example namely a fair coin. Suppose X1,X2, · · · an i.i.d sequence with
P (Xi = −1) = P (Xi = 1) = 1

2 and let Zn =
∑n

i=1Xi. Note that

Zn ≤ 0 ⇔ lqFn(1/2) = −1, Zn > 0 ⇔ lqFn(1/2) = 1,

and

Zn < 0 ⇔ rqFn(1/2) = −1, Zn ≥ 0 ⇔ rqFn(1/2) = 1.

Hence in order to show that lqFn(1/2) and lqFn(1/2) diverge almost surely,
we only need to show that P ((Zn < 0 i.o.) ∩ (Zn > 0 i.o.)) = 1. We start
with a theorem from [9].

Theorem 5.14.8 Suppose Xi is as above. Then P (Zn = 0 i.o.) = 1.

Proof The proof of this theorem in [9] uses the Borel–Cantelli Lemma part
2.

Theorem 5.14.9 Suppose, X1,X2, · · · i.i.d. and P (Xi = −1) = P (Xi =
1) = 1/2. Then lqFn(1/2) and rqFn(1/2) diverge almost surely.

Proof Suppose, A = {Zn = −1 i.o.} and B = {Zn = 1 i.o.}. It suffices to
show that

P (A ∩B) = 1.

But ω ∈ A ∩ B ⇒ lqFn(p)(ω) = −1, i.o. and lqFn(p)(ω) = 1, i.o. Hence
lqFn(p)(ω) diverges.

Note that P (A) = P (B) by the symmetry of the distribution. Also it is
obvious that both A and B are tail events and so have probability either zero
or one. To prove P (A ∩B) = 1, it only suffices to show that P (A ∪B) > 0.
Because then at least one of A and B has a positive probability, say A.

P (A) > 0 ⇒ P (A) = 1 ⇒ P (B) = P (A) = 1 ⇒ P (A ∩B) = 1.

Now let C = {Zn = 0, i.o.}. Then P (C) = 1 by Theorem 5.14.8. If Zn(ω) =
0 then either Zn+1(ω) = 1 or Zn+1(ω) = −1. Hence if Zn(ω) = 0, i.o. then
at least for one of a = 1 or a = −1, Zn(ω) = a, i.o.. We conclude that
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ω ∈ A ∪B. This shows C ⊂ A ∪B ⇒ P (A ∪B) = 1.

To generalize this theorem, suppose X1,X2, · · · , arbitrary i.i.d process
and lqF (p) < rqF (p). Define the process

Yi =

{

1 Xi ≥ rqF (p)

0 Xi ≤ lqF (p).

(Note that P (lqX(p) < X < rqX(p)) = 0.) Then the sequence Y1, Y2, · · · is
i.i.d., P (Yi = 0) = p and P (Yi = 1) = 1− p. Also note that

lqFn,Y
(p) diverges a.s. ⇒ lqFn,X

(p) diverges a.s.

Hence to prove the theorem in general it suffices to prove the theorem for
the Yi process. However, we first prove a lemma that we need in the proof.

Lemma 5.14.10 Let Y1, Y2, · · · i.i.d with P (Yi = 0) = p = 1 − q > 0 and
P (Yi = 1) = 1 − p = q > 0. Let Sn =

∑n
i=1 Yi, 0 < α, k ∈ N. Then there

exists a transformation φ(k) (to N) such that

P (Sφ(k) − φ(k)q < −k) > 1/2 − α,

P (Sφ(k) − φ(k)q > k) > 1/2− α.

Remark. For α = 1/4, we get

P (Sφ(k) − φ(k)q < −k) > 1/4,

P (Sφ(k) − φ(k)q > k) > 1/4.

Proof Since the first three moments of Yi are finite (E(Yi) = q,E(|Yi −
q|2) = q(1− q) = σ,E(|Yi − q|3) = q3(1− q) + (1− q)3q = ρ), we can apply

the Berry-Esseen theorem to
√
n Ȳn−µ

σ . By a corollary of that theorem, for
α
2 > 0 there exists an N1 such that

1− Φ(z)− α

2
< P (

√
n
Ȳn − µ

σ
> z) < 1− Φ(z) +

α

2
,

and

Φ(z)− α

2
< P (

√
n
Ȳn − µ

σ
< −z) < Φ(z) +

α

2
,

for all z ∈ R and n > N1. Now for the given integer k pick N2 such that
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1

2
− α

2
< Φ(

k

σ
√
N2

) <
1

2
+

α

2
.

This is possible because Φ is continuous and Φ(0) = 1/2. Now let

φ(k) = max{N1, N2}, z =
k

σ
√

φ(k)
.

Then since φ(k) ≥ N1

P (
√

φ(k)
Ȳφ(k) − µ

σ
> z) > 1− Φ(z)− α

2
> 1/2 − α,

and

P (
√

φ(k)
Ȳφ(k) − µ

σ
< −z) > Φ(z)− α

2
> 1/2 − α.

These two inequalities are equivalent to

P ((Sφ(k) − φ(k)q) < −k) > 1/2− α,

and
P ((Sφ(k) − φ(k)q) > k) > 1/2 − α.

If we put α = 1/4, we get

P ((Sφ(k) − φ(k)q) < −k) > 1/4,

and
P ((Sφ(k) − φ(k))q > k) > 1/4.

We are now ready to prove Part b) of Theorem 5.14.7.
Proof [Theorem 5.14.7, Part b)]

For the process {Yi} as defined above, let n1 = 1,mk = nk + φ(nk) and
nk+1 = mk + φ(mk). Then define

Dk = (Ynk+1 + · · ·+ Ymk
− (mk − nk)q < −nk),

Ek = (Ymk+1 + · · ·+ Ynk+1
− (nk+1 −mk)q > mk),

CK = Dk ∩ Ek.

Since {Ck} involve non–overlapping subsequences of Ys, they are indepen-
dent events. Also Dk and Ek are independent. Now note that
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Ynk+1 + · · · + Ymk
− (mk − nk)q < −nk ⇒

Y1 + · · ·+ Ymk
< −nk + (mk − nk)q + nk ⇒

Ȳmk
<

mk − nk

mk
q < q ⇒

lqFn,Y
(p) = rqFn,Y

= 0 ⇒
{Ck, i.o.} ⊂ {lqFn,Y

(p) = rqFn,Y
= 0, i.o.}.

Similarly,

Ymk+1 + · · ·+ Ynk+1
− (nk+1 −mk)q > mk

⇒ Y1 + · · ·+ Ynk+1
> (nk+1 −mk)q +mk

⇒ Ȳnk+1
>

mk + (nk+1 −mk)q

nk+1
> q = 1− p

⇒ lqFn,Y
(p) = rqFn,Y

(p) = 1

⇒ {Ck, i.o.} ⊂ {lqFn,Y
(p) = rqFn,Y

(p) = 1, i.o.}.

Let us compute the probability of Ck:

P (Ck) =

P (Ynk+1 + · · · + Ymk
− (mk − nk)q < −nk)×

P (Ymk+1 + · · ·+ Ynk+1
− (nk+1 −mk)q > mk) =

P (Y1 + · · ·+ Yφ(nk) − φ(nk)q < −nk)×
P (Y1 + · · · + Yφ(mk) − φ(mk)q > mk) > 1/4.1/4 = 1/16.

We conclude that ∞
∑

k=1

P (Ck) = ∞.

By the Borel–Cantelli Lemma, P (Ck, i.o.) = 1. We conclude that

P (lqFn,Y
(p) = rqFn,Y

(p) = 0, i.o.) = 1,

and
P (lqFn,Y

(p) = rqFn,Y
(p) = 1, i.o.) = 1.
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Hence,

P ({lqFn,Y
(p) = rqFn,Y

(p) = 0, i.o.}∩{lqFn,Y
(p) = rqFn,Y

(p) = 1, i.o.}) = 1.

Proof (Theorem 5.14.7, part (c))
Suppose that rqF (p) = x1 6= lqF (p) = x2 and a is an arbitrary real number.
Let h = x2 − x1. We define a new chain Y as follows:

Yi =

{

Xi Xi ≤ lqFX
(p)

Xi − h Xi ≥ rqFX
(p).

(See Figure 5.7.) Then Y1, Y2, · · · is an i.i.d sample. We drop the index i
from Yi and Xi in the following for simplicity and since the Yi (as well as
the Xi) are identically distributed. We claim

lqFY
Y (p) = rqFY

(p) = lqFX
(p).

To prove lqFY
(p) = lqFX

(p), note that

FY (lqFX
(p)) = P (Y ≤ lqFX

(p)) ≥ P (X ≤ lqFX
(p)) ≥ p ⇒ lqFY

(p) ≤ lqFX
(p).

(The first inequality is because Y ≤ X.) Moreover for any y < lqFX
(p),

FY (y) = FX(y) < p. (Since X,Y < lqFX
(p) ⇒ X = Y .) Hence lqFY

(p) ≥
lqFX

(p) and we are done. To show rqFY
(p) = lqFX

(p), note that rqFY
(p) ≥

lqFY
(p) = lqFX

(p). It only remains to show that rqFY
(p) ≤ lqFX

(p). Suppose
y > lqFX

(p) and let δ = y − lqFX
(p) > 0. First note that

P ({Y ≤ lqFX
(p) + δ}) =

P ({Y ≤ lqFX
(p) + δ and X ≥ rqFX

(p)} ∪
{Y ≤ lqFX

(p) + δ and X ≤ lqFX
(p)}) =

P ({X − h ≤ lqFX
(p) + δ and X ≥ rqFX

(p)} ∪
{X ≤ lqFX

(p) + δ and X ≤ lqFX
(p)}) =

P ({rqFX
(p) ≤ X ≤ rqFX

(p) + δ} ∪ {X ≤ lqFX
(p)}) =

P ({X ≤ rqFX
(p) + δ}).

Hence,

FY (y) = P (Y ≤ lqFX
(p) + δ) = P (X ≤ rqFX

(p) + δ) > p ⇒
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rqFY
(p) ≤ y, ∀y > lqFX

(p).

We conclude that rqFY
(p) ≤ lqFY

(p).
To complete the proof of part (c) observe that for every ǫ > 0, we may
suppose that lqFn,Y

(p) ∈ (qFY
(p)− ǫ, qFY

(p) + ǫ). Then

lqFn,X(p), rqFn,X
(p) ∈ (lqFX

(p)− ǫ, rqFX
(p) + ǫ). (5.6)

This is because from lqFn,Y
(p) ∈ (qFY

(p) − ǫ, qFY
(p) + ǫ), we may conclude

that

Fn,Y (qFY
(p) + ǫ) > p ⇒ Fn,X(rqFX

(p) + ǫ) > p ⇒
lqFn,X

(p), rqFn,X
(p) < rqFX

(p) + ǫ,

and
Fn,Y (qFY

(p)− ǫ) < p ⇒ FnX
(lqFX

(p)− ǫ) < p ⇒
lqFn,X

(p), rqFn,X
(p) > lqFX

(p)− ǫ.

But by part (a) of Theorem 5.14.7, lqFn,Y
(p) → qFY

(p) and rqFn,Y
(p) →

qFY
(p). Hence for given ǫ > 0 there exists an integer N such that for any

n > N, lqFn,Y
(p) ∈ (qFY

(p) − ǫ, qF,Y (p) + ǫ). By (5.6), we have shown that
for every ǫ > 0 there exists N such that for every n > N

qFn,X
(p), rqFn,X

(p) ∈ (lqFX
(p)− ǫ, rqFX

(p) + ǫ),

since
P (Xi ∈ (lqFX

(p), rqFX
(p)) for some i ∈ N) = 0.

We can conclude that

P (lqFn,X
(p) ∈ (lqFX

(p), rqFX
(p)) for some i ∈ N) = 0

and
P (rqFn,X

(p) ∈ (lqFX
(p), rqFX

(p)) for some i ∈ N) = 0.

Hence with probability 1

qFn,X
(p), rqFn,X

(p) ∈ (lqFX
(p)− ǫ, lqFX

(p)] ∪ [rqFX
(p), rqFX

(p) + ǫ).
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Figure 5.7: The solid line is the distribution function of {Xi}. Note that
for the distribution of the Xi and p = 0.5, lqFX

(p) = 0, rqFX
(p) = 3. Let

h = rq(p)−lq(p) = 3. The dotted line is the distribution function of the {Yi}
which coincides with that of {Xi} to the left of lqFX

(p) and is a backward
shift of 3 units for values greater than rqFX

(p). Note that for the {Yi},
lqFY

(p) = rqFY
(p) = 1.
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5.15 Summary and discussion

This section highlights the results obtained for a two state-definition for
quantiles and discuss why these results show such a consideration is useful.

Justifications and consequences of using left and right
quantile functions

1. The equivariance property (under non-decreasing continuous transfor-
mations) of lqX and rqX makes them equivariant under the change of
scale. This is a nice theoretical property. Also from a practical view
it means that if we compute the quantile in one scale it can be easily
calculated in another scale.

2. Considering lqX , rqX allowed us to find a symmetry relation on quan-
tiles:

lqX(p) = −rq−X(1− p).

3. We found a nice formula for continuous non-increasing transforma-
tions:

lqφ(X)(p) = φ(rqX(1− p)).

4. We showed that lqFn(p) the traditional sample quantile function and
rqFn(p) tend to the distribution version if and only if lqF (p) = rqF (p).
Hence finding a sufficient and necessary condition that is easy to for-
mulate in terms of lqF and rqF .

5. If we start with only the traditional quantile function lqF , then rqF (p)
would arise in the limit

lim sup
n→∞

lqFn(p) = rqF (p).

6. It is widely claimed that the “median” minimizes the absolute error
E|X − a|. In next chapters, we show that

argminaE|X − a| = [lqX(1/2), rqX (1/2)].

We observe both lqX(p) and rqX(p) would arise if we intend to use this
as a way defining quantiles. A generalization from 1/2 to arbitrary p
is left for future research.
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7. We offered a physical motivation using a uniform bar to define quan-
tiles for data vectors which resulted in a definition that coincide with
lqX , rqX .

8. If we only use the traditional quantile function, for p = 0, we get
lqX(0) = ∞ in general. However rqX(0) < ∞ is a useful value in
the sense that it is the maximum a satisfying P (X ≥ a) = 1. Also
rqX(1) = −∞ in general. However lqX(1) > −∞ in general and is a
useful value since it is the minimum a satisfying P (X ≤ a) = 1.

9. Middle values of lqX(p), rqX(p) (for example a specific weighted combi-
nation of the two) or the whole interval [lqX(p), rqX(p)] are not prefer-
able as a definition. This is because we showed that the range of lqX
and rqX is exactly the set of heavy points. Points where the probabil-
ity of being in any positive radius of them is positive.

10. From a practical point of view giving a value that has already occurred
as quantile we can expect the same value or a close value happen again
in the future. More formally, suppose a random sample X1, · · · ,Xn

is given and we want to compute the sample qunatile. Then lqFn(p)
and rqFn(p) are one of Xis by definition. If we denote XF a future
value meaning that XF is identically distributed and independent from
X1, · · · ,Xn

P (XF ∈ (Xi − ǫ,Xi + ǫ)) > 0.

A middle value might not satisfy such a property.

11. We found out a clean nice way to show in what sense exactly lqX and
rqX are close. We showed

P (lqX(p) < X < rqX(p)) = 0.

For data vectors this means the two values are side by side in the
sorted vector.

12. We showed that lqX(p) and rqX(p) coincide except for at most a count-
able subset of the reals.

13. We showed that even though lqX(p) ≤ rqX(p) in general, they are not
too far apart since for a very small positive value ǫ

lqX(p) ≤ rqX(p) ≤ lqX(p+ ǫ).
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14. Given one of lqF or rqF , the other one can be obtained by taking the
limits

lqF (p0) = lim
p↑p0

rqF (p),

and
rqF (p0) = lim

p↓p0
lqF (p).

15. In order to invert F , lqF , rqF gives us nice expressions for sets such as
x|F (x) > p which is equal to (rqX(p),∞) if F is continuous at rqX(p).

16. For a continuous distribution function, we have a nice formula for the
inverse based on lqF and rqF

F−1(p) = [lqX(p), rqX(p)].

17. The left (right) quantile function at given probability p can be simply
put as the minimal value that the distribution function reaches (passes)
p.

In some practices fixing one lq or rq might be sufficient. This is because
lq and rq are close in terms of the probability of the underlying random
variable. For example in data vectors lq, rq will be at most one element off
in terms of their position in the data vector.

In most elementary statistics text books and statistical softwares quan-
tiles are given as a one-state solution generally a weighted combination of
the left and right quantiles. In order to teach the right and left quantile
functions, we suggest using a simple example x = (1, 2, 3, 4) to show that
there are no values in the middle and the left (2) and right median (3) are
natural to consider. Then one can point out this can be generalized from
p = 1/2 to any p without getting into details. It can also be pointed out
that the left (right) quantile function at given probability p can be simply
put as the minimal value that the distribution function reaches (passes) p.
In a more advanced courses perhaps for mathematics, statistics or science
students the teacher might like to show how the quantiles can be defined
using the bar of length 1. Finally the mathematical formulas can be given to
students with appropriate mathematical background (i.e. Familiar with the
definition of sup and inf and their existence property for the real numbers).

In case an interpolation procedure is to be used, we suggest the interpo-
lation procedure to be between lqX(p) and rqX(p). Surprisingly this is not
the case. For example for x = (0, 0, 0, 0, 0, 1, 1, 1, 1, 1) in the R package as
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5.15. Summary and discussion

the quantile for p = 0.48, we get 0.32. But in the vector we notice that 0s
have covered 50 percent of the data and since 0.48 is strictly less than 0.48,
we expect 1 to be the quantile. 0.32 in our notation is both greater than
lqx(0.50) and rqx(0.50).
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Chapter 6

Probability loss function

6.1 Introduction

This chapter develops a “loss function” to assess the goodness of an ap-
proximation or an estimator of quantiles of a distribution (or a data vec-
tor). Suppose a quantile of a very large data vector, q is approximated by
q̂. Several classic losses can be considered. For example: absolute error
L(q, q̂) = |q − q̂| or squared error L(q, q̂) = (q − q̂)2 which was proposed
by Gauss. Quoting from [30]: “Gauss proposed the square of the error as a
measure of loss or inaccuracy. Should someone object to this specification as
arbitrary, he writes, he is in complete agreement. He defends his choice by
an appeal to mathematical simplicity and convenience.” An obvious prob-
lem with this loss is its lack of invariance under re-scaling of of data. We
propose a loss function that is invariant under strictly monotonic transfor-
mations. We also show that the sample version of this loss function tends
uniformly to the distributional version. This loss function can be used also
to find optimal ways to summarize a data vector and to define a measure of
distance among random variables as shown in the next chapters.

We define the loss of estimating/approximating q by q̂ to be the prob-
ability that the random variable falls in between the two values. A limited
version of this concept only for data vectors can be found in computer sci-
ence literature, where ǫ-approximations are used to approximate quantiles
of large datasets. (See for example [32].) However, this concept has not
been introduced as a measure of loss and the definition is limited to data
vectors rather than arbitrary distributions.

6.2 Degree of separation between data vectors

Our purpose is to find good approximations to the median and other quan-
tiles. It is not clear how such approximations should be assessed. We con-
tend that such a method should not depend on the scale of the data. In
other words it should be invariant under monotonic transformations. We
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6.2. Degree of separation between data vectors

define a function δ that measures a natural “degree of separation” between
data points of a data vector x. For the sake of illustration, consider the
example sort(x) = (1, 2, 3, 3, 4, 4, 4, 5, 6, 6, 7). Now suppose, we want to de-
fine the degree of separation of 3,4 and 7 in this example. Since 4 comes
right after 3, we consider their degree of separation to be zero. There are
3 elements between 4 and 7 so it is appealing to measure their degree of
separation as 3 but since the degree of separation should be relative, we cab
also divide by n = 11, the length of the vector, and get: δ(4, 7) = 3/11. We
can generalize this idea to get a definition for all pairs in R. With the same
example, suppose we want to compute the degree of separation between 2.5
and 4.5 that are not members of the data vector. Then since there are 5
elements of the data vector between these two values, we define their degree
of separation as 5/11. More formally, we give the following definition.

Definition Suppose z < z′ let ∆x(z, z
′) = {i|z < xi < z′}. Then we define

δx(z, z
′) =

|∆x(z, z
′)|

n
,

and δx(z, z) = 0. We call δx the “degree of separation” (DOS) or the “prob-
ability loss function” associated with x.

We then have the following lemma about the properties of δ.

Lemma 6.2.1 The degree of separation δx has the following properties:

a) δx ≥ 0.

b) y < y′ < y′′ ⇒ δx(y, y
′′) ≥ δx(y, y

′).

c) If z < z′ and z, z′ are elements of x, δx(z, z
′) = mx(z)−Mx(z′)−1

n . [For the
definition of m(z) and M(z) see Chapter 5.]

d) δφ(x)(φ(z), φ(z
′)) = δx(z, z

′) if φ is a strictly monotonic transformation.

e) y = sort(x) and y′ = yi < y′′ = yj ⇒ δx(y
′, y′′) ≤ (j − i− 1)/n.

Proof

Both a) and b) are straightforward. We obtain c) as a straightforward
consequence of the definition of mx(y

′) and Mx(y
′). To show (d), suppose

z < z′ and φ is strictly decreasing. (The strictly increasing case is similar.)
Then φ(z′) < φ(z) and hence

∆φ(x)(φ(z), φ(z
′)) = {i|φ(z′) < φ(xi) < φ(z)} = {i|z < xi < z′} = ∆x(z, z

′).
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Finally e) is true because |∆x(y
′, y′′)| = |{l|yi < xl < yj}| ≤ j − i− 1.

All the definitions and results above can be applied to random vectors
X = (X1, · · · ,Xn) as well. In that case, lqX(p) and rqX(p) and δX(z, z′) are
random. To develop our theory, we need to study the asymptotic behavior
of these statistics. We do so in later sections.

6.3 “Degree of separation” for distributions: the

“probability loss function”

We define a degree of separation for distributions which corresponds to the
notion of “degree of separation” defined for data vectors to measure separa-
tion between data points.

Definition Suppose X has a distribution function F . Let

δF (z
′, z) = δF (z, z

′) = lim
u→z−

F (u) − F (z′) = P (z′ < X < z), z > z′,

and δF (z, z) = 0, z ∈ R. We also denote this by δX whenever a random
variable X with distribution F is specified. We call δX the “degree of sepa-
ration” or the “probability loss function” associated with X.

The following lemma is a straightforward consequence of the definition.

Lemma 6.3.1 Suppose x = (x1, · · · , xn) is a data vector with the empirical
distribution Fn. Then

δFn(z, z
′) = δx(z, z

′), z, z′ ∈ R.

This lemma implies that to prove a result about the degree of separation
of data vectors, it suffices to show the result for the degree of separation of
random variables.

Theorem 6.3.2 Let X,Y be random variables and FX , FY , their corre-
sponding distribution functions.
a) Assume Y = φ(X), for a strictly increasing or decreasing function φ :
R → R. Then δFX

(z, z′) = δFY
(φ(z), φ(z′)), z < z′ ∈ R.

b) δF (z, z
′) ≤ δF (z, z

′′), z ≤ z′ ≤ z′′.
c) δF (z1, z3) ≤ δF (z1, z2) + δF (z2, z3) + P (X = z2).
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d) Suppose, p ∈ [0, 1]. Then δF (lqF (p), rqF (p)) = 0.
e) Suppose, p1 < p2 ∈ [0, 1]. Then δF (lqF (p1), rqF (p2)) ≤ p2 − p1. This im-
mediately implies δF (lqF (p1), lqF (p2)) ≤ p2 − p1 and δF (rqF (p1), lqF (p2)) ≤
p2 − p1 by b).

Remark. We may restate Part (c), for data vectors: Suppose x has length
n and z2 is of multiplicity m, (which can be zero). Then the inequality in
(c) is equivalent to δx(z1, z3) ≤ δx(z1, z2) + δx(z2, z3) +m/n.

Proof

a) Note that for a strictly increasing function φ, we have

P (z < X < z′) = P (φ(z) < φ(X) < φ(z′)).

Now suppose φ is strictly decreasing. Then z < z′ ⇒ φ(z′) < φ(z). Let
Y = φ(X). Then

δX(z, z′) = P (z < X < z′) = P (φ(z′) < φ(X) < φ(z)) = δY (φ(z), φ(z
′)).

b) This is trivial.
c) Consider the case z1 < z2 < z3. (The other cases are easier to show.)

Then

δF (z1, z3) = P (z1 < X < z3) = P (z1 < X < z2)+P (X = z2)+P (z2 < X < z3)

= δ(z1, z2) + δ(z2, z3) + P (X = z2).

d) This result is a straightforward consequence of Lemma 5.3.1 b) and
c).

e) This result follows from

δF (lq(p1), rq(p2)) = P (lq(p1) < X < rq(p2))

= P (X < rq(p2))− P (X ≤ lq(p1)) ≤ p2 − p1.

The last inequality being a result of Lemma 5.3.1 a) and d).

Remark. We call part c) of the above theorem the pseudo–triangle inequal-
ity.

Here we give two examples about using the probability loss function and
its interpretation.

184



6.3. “Degree of separation” for distributions: the “probability loss function”

Example We showed above that the triangle property does not hold for
the probability loss function and that might lead to the criticism that this
definition is not intuitively appealing. By an example, we now show why it
makes sense that the triangle property should not hold for such a situation.
Suppose a few mathematicians are standing in a line

Euclid, Khawarzmi, Khayyam, Gauss, Von Neumann.

If we were to ask Khwarzmi about his distance from Euclid, he would an-
swer: “0, since I am right beside him.” If we ask Khwarazmi again about his
distance to Khayyam, he will say that “my distance is 0 since I am right be-
side him.” However if we were to ask Euclid about his distance to Khayyam
he would answer: “One unit (person) since Khwarzmi is in the middle.” We
observe that this distance does not satisfy the triangle property as well. In
this example the people sitting in the middle are the relevant factors. If we
deal with a vector of sorted observations, then observations in the middle
are the relevant factors.

Example A student is told that he will receive a scholarship if he ranks first
in an exam in his class in either of the subjects mathematics and physics.
The teacher of the courses differ and take a practice exam in each subject.
They return the students back their marks out of 100. They also publish the
lists of all the marks after removing the names, to give the students a feeling
of how they did in the class. Table 6.1 shows the marks in mathematics and
physics.
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Mathematics Physics Physics before scaling

80 90 81.0
65 89 79.2
63 86 74.0
61 85 72.2
54 83 68.9
54 82 67.2
53 79 62.4
50 79 62.4
49 76 57.8
48 75 56.2
47 72 51.8
47 72 51.8
46 69 47.6
44 68 46.2
30 55 30.2

Table 6.1: A class marks in mathematics and physics. The third column are
the raw physics marks before the physics teacher scaled them.

Reza got 63 in math and 75 in physics. He decided to focus on just one
subject that gives him a better chance in order to win the scholarship. He
compared his mark in math with the best student in math: 63 against 80.
So he needed

|best mark− Reza’s mark| = 80− 63 = 17

more marks to be as good as the best student. Then he compared his physics
mark to the best student in physics. He found he needs 90-75=15 marks to
be as good as him. So he thought it’s better to focus on physics. But then he
realized that different teachers use different exam and scoring methods. He
had heard that the physics teacher scales the marks upward by the formula

new mark =
√
100× old mark.

So the student calculated the untransformed values and put the result in the
third column. Now he noticed that his new mark is 56.2 while the best mark
is 91. The difference this time is 24.8 which is a larger difference than before.
According to his “decision-making tool”, the absolute difference, he should
focus on math since the absolute difference for math was only 17. But what
if the mathematics teacher had used another transformation to re-scale the
marks without him knowing it? This made him see a disadvantage to using
the absolute value difference. Instead he realized, he can use the number
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of the students between himself and the best student as a measure of the
difficulty of getting the best mark. He noticed his decision in this case will
be independent of how the teachers re-scaled the marks. In the math case
there is only one and for physics there are 8 students between him and the
best student. Hence he decided that he should focus on math.

This example was under the assumption that other students do not
change their study habits or do not have access to the marks. If the other
students had access to their marks or were ready to change their study fo-
cus, we need to take into account other possible actions of the other students
and the problem will become game-theoretical in nature, a very interesting
problem on its own right. The solution for that problem we conjecture to
be the same.

6.4 Limit theory for the probability loss function

Theorem 6.4.1 Suppose X1,X2, · · · , is a sequence of i.i.d random vari-
ables with distribution function F . Then as n → ∞,

δFn(z, z
′) → δF (z, z

′), a.s.,

uniformly in z, z′ ∈ R. In other words

sup
z>z′∈R

|δFn(z, z
′)− δF (z, z

′)| → 0, a.s..

Proof If z = z′, the result is trivial. Suppose z > z′. We need to show that

lim
u→z−

Fn(u)− Fn(z
′) →

a.s.
lim

u→z−
F (u)− F (z′), (6.1)

as n → ∞, uniformly in z > z′ ∈ R. Suppose ǫ > 0 is given. By Glivenko-
Cantelli Theorem there exist N ∈ N such that for every n > N :

|Fn(u)− F (u)| < ǫ

2
, a.s., ∀u ∈ R.

Now for n > N ,

|( lim
u→z−

Fn(u)− Fn(z
′))− ( lim

u→z−
F (u)− F (z′))| ≤

| lim
u→z−

(Fn(u)−F (u))|+|Fn(z
′)−F (z′)| = lim

u→z−
|Fn(u)−F (u)|+|Fn(z

′)−F (z′)|.
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But since |Fn(u) − F (u)| < ǫ
2 , limu→z− |Fn(u) − F (u)| ≤ ǫ

2 . Also |Fn(z
′) −

F (z′)| < ǫ
2 . Hence

|( lim
u→z−

Fn(u)− Fn(z
′))− ( lim

u→z−
F (u)− F (z′))| < ǫ.

6.5 The probability loss function for the

continuous case

This section studies the probability loss function when the distribution func-
tion is continuous. The results are given in the following lemmas, which show
some of its desirable properties in the continuous case.

Lemma 6.5.1 (Probability loss for continuous distributions) Suppose X is
a random variable with distribution function FX . Then δX(lqX(p1), rqX(p2)) =
p2 − p1, p2 > p1, ∀p1, p2 ∈ [0, 1] iff FX is continuous.

Proof

If FX is continuous then for p1 < p2 and by Lemma 5.5.2,

δ(lqX(p1), rqX(p2)) = P (lqX(p1) < X < rqX(p2)) =

P (X < rqX(p2))− P (X ≤ lqX(p)) = F (rqX(p2))− F (lqX(p2)) = p2 − p1.

If F is not continuous then there exists an x0 such that a = PX(X = x0) > 0.
Let p1 = P (X < x0)+a/3 and p2 = P (X < x0)+a/2. Clearly lqX(p1) = x0
and rqX(p2) = x0. Hence

δ(lqX(p1), rqX(p2)) = 0 6= p2 − p1.

Lemma 6.5.2 Suppose δ(lqX(p1), rqX(p2)) = δ(rqX(p1), lqX(p2)) = a, p1 <
p2.
Then also

a = δ(lqX(p1), lqX(p2))

= δ(rqX(p1), lqX(p2))

= δ(rqX(p1), rqX(p2)).

Moreover, if X is continuous, all the above are equal to p2 − p1.
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Proof The result follows immediately from the fact that all the three quan-
tities are greater than or equal to δ(rqX(p1), lqX(p2)) = a and smaller than
or equal to δ(lqX(p1), rqX(p2)) = a. The second part is straightforward us-
ing the previous lemma.

6.6 The supremum of δX

This section investigates how large the probability loss can become under
various scenarios. The results are given in the following lemmas.

Lemma 6.6.1 Let Dist be the set of all distribution functions. Then

sup
F∈Dist

δF (lqF (p1), lqF (p2)) = p2 − p1, p2 > p1, p1, p2 ∈ (0, 1).

Proof This follows from the fact that δF (lqF (p1), lqF (p2)) ≤ p2 − p1 in
general, as shown in Lemma 6.3.2 and δF (lqF (p1), lqF (p2)) = p2 − p1 for
continuous variables.

The same is true for data vectors as shown in the following lemma.

Lemma 6.6.2 Suppose the supremum in the following is taken over all data
vectors, then

sup
x

δx(lqx(p1), lqx(p2)) = p2 − p1, p2 > p1, p1, p2 ∈ (0, 1).

Proof We know that δx(lqx(p1), lqx(p2)) ≤ p2 − p1. To show that the
supremum attains the upper bound, let xn = (1, · · · , n). Then lqxn(p1) =
[np1] or [np1] + 1. Also lqxn(p2) = [np2] or [np2] + 1. Then ∆, the number
of elements of x between lqxn(p1) and lqxn(p2) satisfies:

[np2]− [np1]− 1 ≤ ∆ ≤ [np2]− [np1] + 1 ⇒

np2 − 1− np1 − 1− 1 ≤ ∆ ≤ np2 − np1 + 1 ⇒
−3/n ≤ δxn(p1, p2)− (p2 − p1) ≤ 1/n.

This shows that δxn(p1, p2) tends to p2−p1 uniformly for all p1 < p2 ∈ [0, 1].
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Lemma 6.6.3 Suppose p1, p2, · · · , pm ∈ [0, 1] and m = 2k. Then

sup
x

max{δx(lqx(p1), lqx(p2)), δx(lqx(p3), lqx(p4)), · · · , δx(lqx(pm−1), lqx(pm))}

= max{|p2 − p1|, · · · , |pm − pm−1|}.

Proof The supremum is less than or equal to the left hand side by Lemma
5.3.1. Let xn = (1, 2, · · · , n). Without loss of generality suppose p1 <
p2, p3 < p4, · · · , p2k−1 < p2k. By the properties of quantiles of data vectors:
lqxn(pi) = x[npi] = [npi] or lqxn(pi) = x[npi]+1 = [npi] + 1.
Also, lqxn(pi+1) = x[npi+1] = [npi+1] or lqxn(pi+1) = x[npi+1]+1 = [npi+1] + 1.

Then, δxn(lqxn(pi), lqxn(pi+1)) ≥ 1
n([npi+1]−[npi]−1) ≥ 1

n(npi+1−npi−2) =
(pi+1 − pi)− 2

n . Hence

δxn(lqxn(pi), lqxn(pi+1)) > |pi+1 − pi| −
2

n
, i = 1, · · · ,m− 1.

The inequality shows the supremum is greater than

= max{|p2 − p1| −
2

n
, · · · , |pm − pm−1| −

2

n
},

for all n ∈ N. Now let n → +∞ to get the conclusion.

Lemma 6.6.4 Suppose p1, p2, · · · , pm ∈ [0, 1] and a1, a1, · · · , a2m ∈ [0, 1].
Then

sup
x
[

∫ a2

a1

δx(lqx(p1), lqx(p))dp +

∫ a4

a3

δx(lqx(p2), lqx(p))dp+

· · ·+
∫ a2m

a2m−1

δx(lqx(pm), lqx(p))dp]

=

∫ a2

a1

|p− p1|dp +
∫ a4

a3

|p− p2|dp + · · ·+
∫ a2m

a2m−1

|p− pm|dp.

Proof The proof is similar to the previous lemmas and we skip the details.
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6.6.1 “c-probability loss” functions

This section introduces a family of loss functions that are very similar to
the probability loss function but might be more useful in some contexts,
particularly when the distribution function is not continuous. A defect of
the probability loss function is: it can be equal to zero even if a 6= b, a, b ∈
R. Also we noted that even though it resembles a metric it is not one.
For example the triangle inequality does not hold. We introduce the “c-
probability loss function” to solve these problems.

Definition Suppose X is a random variable, δX its associated probability
loss function and c ≥ 0. Then let

δcX(a, b) = δX(a, b) + c(1− 1{0}(a− b)),

where 1{0} is the indicator function at zero.

Note that the c-probability loss is the sum of two losses. The first,
δX(a, b), is the probability of being between the two values (a and b), the
second, c(1 − 1{0}(a − b)), is the penalty for a and b not being equal. One
question is what value of c should be chosen as the “penalty” of not being
equal to the true value. It turns out that the value of c is not very important
for many purposes as shown in the following lemma.

Lemma 6.6.5 (Properties of the c-probability loss functions)
a) δcX(a, b) = c ⇔ a 6= b and δX(a, b) = 0.
b) δcX(a, b) = 0 or δcX(a, b) ≥ c.
c) δcX is invariant under strictly monotonic transformations.
d) Let d = sup

x0∈R
P (X = x0). Then if c ≥ d, δc satisfies the triangle inequality.

e) δcX(lqX(p), rqX(p)) ≤ c. (It is either zero or c.)
f) Suppose δcX is given for any c > 0. Then we can obtain any other δdX for
d ≥ 0.

Proof a) and b) are trivial.
c) Both δX and c(1 − 1{0}(a − b)) are invariant under monotonic transfor-
mations.
d) We use the pseudo–triangle inequality for the probability loss function.
Take z1, z2, z3 ∈ R. We need to show δcX(z1, z3) ≤ δcX(z1, z2) + δcX(z2, z3) .
If z1 = z3, the result is trivial. Otherwise c(1− 1{0}(z1 − z3)) = c and

δcX(z1, z3) = δX(z1, z3) + c ≤ δX(z1, z2) + δX(z2, z3) + P (X = z2) + c
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≤ δX(z1, z2) + δX(z2, z3) + c(1 − 1{0}(z1 − z2)) + c(1− 1{0}(z2 − z3)) =

δcX(z1, z2) + δcX(z2, z3).

e) Trivial by properties of lq, rq and δX as shown in Lemma 5.3.1.
f) Suppose δcX is given. If δcX(a, b) = 0 then a = b and hence δdX(a, b) = 0.
If a 6= b then δcX(a, b) = δX(a, b) + c. From this we can obtain δX(a, b) =
δcX(a, b)− c and hence δdX(a, b) = δcX(a, b) − c+ d.

δX(X1,X2) (or δcX(X1,X2)), if X1,X2
i.i.d∼ X can be considered as a

measure of disparity of the common distribution. The following lemma
shows that the expectation of this quantity is constant for all continuous
random variables!

Lemma 6.6.6 Suppose X is a continuous random variable, then

E(δX(X1,X2)) = 2/3,

where X1,X2
i.i.d∼ X. Also

E(δcX (X1,X2)) = 2/3 + c.

Proof We know that FX(X1) and FX(X2) are both uniformly distributed
on (0,1) and independent. Hence

E(δX (X1,X2)) = E(|F (X1)− F (X2)|) =
∫ 1

0

∫ 1

0
|p1 − p2|dp1dp2 = 2

∫ 1

0

∫ 1

p2

(p1 − p2)dp1dp2 =

2

∫ 1

0
(1− 2p2 + p22)dp2 = 2/3.

E(δcX (X1,X2)) = 2/3 + c is obtained by noting that P (X1 = X2) = 0 for
continuous random variables.
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Chapter 7

Approximating quantiles in
large datasets

7.1 Introduction

This chapter develops an algorithm for approximating the quantiles in petas-
cale (petabyte= one million gigabytes) datasets and uses the “probability
loss function” to assess the quality of the approximation. The need for such
an approximation does not arise for the sample average, another common
data summary. That is because if we break down the data to equal parti-
tions and calculate the mean for every partition, the mean of the obtained
means is equal to the total mean. It is also easy to recover the total mean
from the means of unequal partitions if their length is known.

However computer memories, several gigabytes (GBs) in size, cannot
handle large datasets that can be petabytes (PBs) in size. For example, a
laptop with 2 GBs of memory, using the well–known R package, could find
the median of a data file of about 150 megabytes (MBs) in size. However, it
crashed for files larger than this. Since large datasets are commonly assem-
bled in blocks, say by day or by district, that need not be a serious limitation
except insofar as the quantiles computed in that way cannot be used to find
the overall quantile. Nor would it help to sub–sample these blocks, unless
these (possibly dependent) sub–samples could be combined into a grand
sub-sample whose quantile could be computed. That will not usually be
possible in practice. The algorithm proposed here is a “worst–case” algo-
rithm in the sense that no matter how the data are arranged, we will reach
the desired precision. This is of course not true if we sample from the data
because there is a (perhaps small) probability that the approximation could
be poor.

We also address the following question:

Question: If we partition the data–file into a number of sub–files
and compute the medians of these, is the median of the medians
a good approximation to the median of the data–file?
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We first show that the median of the medians does not approximate
the exact median well in general, even after imposing conditions on the
number of partitions or their length. However for our proposed algorithm,
we show how the partitioning idea can be employed differently to get good
approximations. “Coarsening” is introduced to summarize data vector with
the purpose of inferring about the quantiles of the original vector using the
summaries. Then the “d-coarsening” quantile algorithm which works by
partitioning the data (or use previously defined partitions) to possibly non-
equal partitions, summarizing them using coarsening and inferring about the
quantiles of the original data vector using the summaries. Then we show
the deterministic accuracy of the algorithm in Theorem 7.4.1. The accuracy
is measured in terms of the probability loss function of the original data
vector. This is an extension of the work of Albasti et al. in [3] to non-equal
size partition case. Theorem 7.4.1 still requires the partition sizes to be
divisible by d the coarsening factor. In order to extend the results further
to the case where the partitions are nit divisible by d, we investigate how
quantiles of a data vector with missing data or contaminated data relate to
the quantiles of the original data in Lemma 7.4.3 and Lemma 7.4.4. Also
in Lemma 7.5.1, we show if the quantiles of a coarsened vector are used in
place of the quantiles of the original data vector how much accuracy will
be lost. Finally we investigate the performance of the algorithm using both
simulations and real climate datasets.

7.2 Previous work

Finding quantiles and using them to summarize data is of great importance
in many fields. One example is the climate studies where we have very large
datasets. For example the datasets created by computer climate models are
larger than PBs in size. In NCAR (National Center for Atmospheric sciences
at Boulder, Colorado), the climate data (outputs of compute models) are
saved on several disks. To access different parts of these data a robot needs
to change disks form a very large storage space. Another case where we
confront large datasets is in dealing with data streams which arise in many
different applications such as finance and high–speed networking. For many
applications, approximate answers suffice. In computer science, quantiles
are important to both data base implementers and data base users. They
can also be used by business intelligence applications to drive summary
information from huge datasets.

As pointed out by Gurmeet et al. in [32], a good quantile approximation
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algorithm should

1. not require prior knowledge of the arrival or value distribution of its
inputs.

2. provide explicit and tunable approximation guarantees.

3. compute results in a single pass.

4. produce multiple quantiles at no extra cost.

5. use as little memory as possible.

6. be simple to code and understand.

Finding quantiles of data vectors and sorting them are parallel problems
since once we sort a vector finding any given quantile can be done instantly.
A good account of early work in sorting algorithms can be found in [28].
Munero et al. in [36] showed for P–pass algorithms (algorithms that scan
the data P times) Θ(N/P ) storage locations are necessary and sufficient,
where N is the length of the dataset. (See Appendix C for the definitions
of complexity functions such as Θ.) It is well–known that the worst-case
complexity of sorting is n log2 n + O(1) as shown in [33]. In [39], Paterson
discusses the progress made in the so–called “selection” problem. He lets
Vk(n) be the worst–case minimum number of pairwise comparisons required
to find the k–th largest out of n “distinct elements”. In particular M(n) =
Vk(n) for k = ⌈n/2⌉. In [8], it is shown that the lower bound for Vk(n) is
n+min{k−1, n−k}−1, an achieved upper bound by Blum is 5.43n. Better
upper bounds have been achieved through the years. The best upper bound
so far is 2.9423N and the lower bound is (2+α)N where α is of order 2−40.

Yao in [49], showed that finding approximate median needs Ω(N) com-
parisons in deterministic algorithms. Using sampling this can be reduced to
O( 1

ǫ2
log(δ−1)) independent of N , where ǫ is the accuracy of the approxima-

tion in terms of the “probability loss” in our notation. In [36], Munero et al.
showed that O(N1/p) is necessary and sufficient to find an exact φ–quantile
in p passes.

Often an exact quantile is not needed. A related problem is finding
space–efficient one–pass algorithms to find approximate quantiles. A sum-
mary of the work done in this subject and a new method is given in [1]. Two
approximate quantile algorithms using only a constant amount of memory
were given by Jain [26] Agrawal et al. in [1]. No guarantee for the error
was given. Alsabti et al. in [3], provide an algorithm and guaranteed error
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in one pass. This algorithm works by partitioning the data into subsets,
summarizing each partition and then finding the final quantiles using the
summarized partitions. The algorithm in this chapter is an extension of this
algorithm to the case of partitions of unequal length.

7.3 The median of the medians

A proposed algorithm to approximate the median of a very large data vector
partitions the data into subsets of equal length, computes the median for
each partition and then computes the median of the medians. For example,
suppose n = lm and break the data to m vectors of size l. One might
conjecture that by picking l or m sufficiently large the median of the medians
would ensure close proximity to the exact median. We show by an example
that taking l and m very large will not help to get close to the exact median.
Let l = 2b+ 1 and m = 2a+ 1.

partition number Partition Median of the partition

1 (1, 2, · · · , b, b+ 1, 10b, · · · , 10b) b+ 1
2 (1, 2, · · · , b, b+ 1, 10b, · · · , 10b) b+ 1
. . .
. . .
. . .

a (1, 2, · · · , b, b+ 1, 10b, · · · , 10b) b+ 1

a+1 (1, 2, · · · , b, b+ 1, 10b, · · · , 10b) 10b

a+2 (10b, 10b, · · · , 10b) 10b

. . .

. . .

. . .

2a+1 (10b, 10b, · · · , 10b) 10b

Table 7.1: The table of data

Example

Table 7.1 shows the dataset partitioned into m = 2a+1 vectors of equal
length. Every vector is of length l = 2b + 1. The first a + 1 vectors are
identical and 10b is repeated b times in them. The last a vectors are also
identical with all components equal to 10b. The median of the medians turns
out to be b + 1. However, the median of the dataset is 10b. We show that
b+1 is in fact “almost” the first quantile. This is because (b+1) is smaller
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than all 10b’s. There are (a+1)b+a(2b+1) data points equal to 10b. Hence
b+ 1 is smaller than this fraction of the data points:

(a+ 1)b+ a(2b+ 1)

(2a+ 1)(2b + 1)
=

2a+ 2

2a+ 1

b

4b+ 2
+

a

2a+ 1
≈ 1× 1

4
+

1

2
≈ 3

4
.

With a similar argument, we can show that b + 1 is greater than almost a
quarter of the data points (the ones equal to 1, 2, · · · , b). Hence b + 1 is
“almost” the first quantile.

One can prove a rigorous version of the the following statement.

The median of the medians is “almost” between the first and the third
quartile.

We only give a heuristic argument for simplicity. To that end, let n = lm
and m = 2a + 1 and l = 2b + 1. Let M be the exact median and M ′ be
the median of the medians. Order the obtained medians of each partition
and denote them by M1, · · · ,Mm. By definition M ′ ≥ Mj , j ≤ a and
M ′ ≤ Mj , j ≥ a+ 1. Each Mj , j ≤ a is less than or equal to b data points
in its partition. Hence, we conclude that M ′ is less than or equal to ab data
points. Similarly M ′ is greater than or equal to ab data points (which are
disjoint for the data points used before). But ab

n = ab
(2a+1)(2b+1) ≈ 1

4 . Hence,

M ′ is greater than or equal to 1/4 data points and less than or equal to 1/4
data points.

7.4 Data coarsening and quantile approximation
algorithm

This section introduces an algorithm to approximate quantiles in very large
data vectors. As we demonstrated in the previous section the median of
medians algorithm is not necessarily a good approximation to the exact
median of a data vector even if we have a large number of partitions and
large length of the partitions. The algorithm is based on the idea of “data
coarsening” which we will discuss shortly. The proposed algorithm can give
us approximations to the exact quantile of known precisions in terms of
degree of separation. After stating the algorithm, we prove some theorems
that give us the precision of the algorithm. The results hold for partitions
of non–equal length.
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Definition Suppose a data vector x of length n = n1n2 is given, n1, n2 >
1 ∈ N. Also let sort(x) = y = (y1, · · · , yn). Then the n2–coarsening
of x, Cn2(x) is defined to be (yn2 , y2n2 , · · · , y(n1−1)n2

). Note that Cn2(x)
has length n1 − 1. Let pi = i/n1, i = 1, 2, · · · , (n1 − 1). Then Cn2(x) =
(lqx(p1), · · · , lqx(pn1−1)).

We can immediately generalize the coarsening operator. Suppose

sort(x) = (y1, · · · , yn),
and n2 < n is given. Then by The Quotient–Remainder Theorem from
elementary number theory, there exist n1 ∈ N ∪ {0} and r < n2 such that
n = n1n2 + r. Define Cn2(x) = (yn2 , · · · , yn2(n1−1)). The expression is
similar to before. However, there are n2 + r elements after yn2(n1−1) in the
sorted vector y. In this sense this coarsening is not fully symmetric. We
show that if n2 is small compared to n this lack of symmetry has a small
effect on the approximation of quantiles.

Suppose x is a data vector of length n =
∑m

i=1 li. We introduce the
coarsening algorithm to find approximations to the large data vectors.

d–Coarsening quantiles algorithm:

1. Partition x into vectors of length l1, · · · , lm. (Or use pre–existing
partitions, e.g. partitions of data saved in various files on the hard
disk of a computer.)

x1 = (x1, · · · , xl1), x2 = (xl1+1, · · · , xl1+l2), · · · , xm = (x∑m−1
j=1 lj+1, · · · , xn)

2. Sort each xl, l = 1, 2, · · · ,m and let yl = sort(xl), l = 1, · · · ,m:

y1 = (y11 , · · · , y1l1), · · · , ym = (ym1 , · · · , ymlm).

3. d–Coarsen every vector:

(y1d, · · · , y1(c1−1)d), · · · , (ymd , · · · , ym(cm−1)d),

and for simplicity drop d and use the notation wj
i = yjid.

w1 = (w1
1, · · · , w1

(c1−1)), · · · , wm = (wm
1 , · · · , wm

(cm−1)).
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4. Stack all the above vectors into a single vector and call it w. Find
rqw(p) (or lqw(p)) and call it µ. Then µ is our approximation to
rqx(p) (or lqx(p)).

Theorem 7.4.1 Suppose x is of length n =
∑m

i=1 li, m ≥ 2 and li =
cid. Let C =

∑m
i=1 ci. Apply the coarsening algorithm to x and find µ

to approximate rqx(p) (or lqx(p)). Then µ is a (left and right) quantile in
the interval

[p− ǫ, p+ ǫ],

where ǫ = m+1
C−m . In other words δx(µ, rqx(p)) ≤ ǫ and δx(µ, lqx(p)) ≤ ǫ.

When li = cd, i = 1, · · · ,m, ǫ = m+1
m−1

1
c−1 ≤ 3

c−1 .

We need an elementary lemma in the proof of this theorem.

Lemma 7.4.2 (Two interval distance lemma)
Suppose two intervals I = [a, b] and J = [c, d] subsets of R are given. Then

sup{|p− q|, p ∈ I, q ∈ J} = max{|a− d|, |b− c|}.

Proof sup{|p − q|, p ∈ I, q ∈ J} ≥ max{|a − d|, |b − c|} is trivial because
a, b ∈ I and c, d ∈ J .
To show the converse note that |p− q| = p− q or q − p, p ∈ I, q ∈ J . But

p− q ≤ b− c,

and
q − p ≤ d− a.

Hence
|p − q| ≤ max{b− c, d− a} ≤ max{|b− c|, |a − d|}.

This completes the proof.

Proof of Theorem 7.4.1.

Let n′ =
∑m

i=1(ci − 1) =
∑m

i=1 ci − m = C − m and MC = {(i, j)|i =
1, 2 · · · ,m, j = 1, · · · , ci−1}, the index set of w. Also let c = max{c1, · · · , cm}.

Suppose, h−1
n′ ≤ p < h

n′ , h = 1, · · · , n′. Then since µ = rqw(p), there
are disjoint subsets of MC , K and K ′ such that |K| = h, |K ′| = n′ − h,
µ ≥ wi

j, (i, j) ∈ K and µ ≤ wi
j, (i, j) ∈ K ′. (This is because if we let

v = sort(w), rqw(p) = vh since [n′p] = h− 1.)
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7.4. Data coarsening and quantile approximation algorithm

K,K ′ are not necessarily unique because of possible repetitions among
the wi

t. Hence we impose another condition on K and K ′. If (i, t) ∈ K
then (i, u) /∈ K ′, u < t. It is always possible to arrange for this condition.
For suppose, (i, t) ∈ K and (i, u) ∈ K ′, u < t. Then µ ≥ wt

i and µ ≤ wi
u,

hence wi
t ≤ wu

i . But since u < t we have wi
t ≤ wu

i by the definition of wi.
We conclude that wi

t = wu
i . Now we can simply exchange (i, t) and (i, u)

between K and K ′. If we continue this procedure after finite number of
steps we will get K and K ′ with the desired property.

Now define

•
K1 = {(i, 1)|(i, 1) ∈ K},

with |K1| = k1 and

I1 = {(i, j)|j ≤ d, (i, 1) ∈ K},

Then |I1| = k1d. Also note that if (i, j) ∈ I1, µ ≥ wi
1 ≥ yij.

• Let
K2 = {(i, 2)|, (i, 2) ∈ K},

with |K2| = k2 and

I2 = {(i, j)|d < j ≤ 2d, (i, 2) ∈ K}.
Then |I2| = k2d. Also note that if (i, j) ∈ I2, µ ≥ wi

2 ≥ yij.

• Let
Kt = {(i, t)|(i, t) ∈ K},

with |Kt| = kt and

It = {(i, j)|(t − 1)d < j ≤ td, (i, t) ∈ K}.
Then |It| = ktd. Also note that if (i, j) ∈ It, µ ≥ wi

t ≥ yij.

• Let
Kc−1 = {(i, (c − 1))|(i, c − 1) ∈ K},

with |Kc−1| = kc−1 and

I(c−1) = {(i, j)|(c − 2)d < j ≤ (c− 1)d, (i, c − 1) ∈ K}.
Then |Ic−1| = kc−1d. Also note that if (i, j) ∈ I(c−1), µ ≥ wi

(c−1) ≥ yij.
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7.4. Data coarsening and quantile approximation algorithm

Note that K = ∪c−1
t=1Kt, |K| = k1,+ · · ·+kc−1. Since the Kt are disjoint

the It are also disjoint. Let I = ∪c−1
t=1It then |I| = d(k1 + · · ·+ kc−1) = d|K|.

Also note that (i, j) ∈ I ⇒ µ ≥ yij.
Similarly define,

•
K ′

1 = {(i, 1)|(i, 1) ∈ K ′}, |K ′
1| = k′1,

and
I ′1 = {(i, j)|d < j ≤ 2d, (i, 1) ∈ K ′}.

Then |I ′1| = k′1d. Also note that if (i, j) ∈ I ′1, µ ≤ wi
1 ≤ yij.

• Let
K ′

2 = {(i, 2)|(i, 2) ∈ K ′}, |K ′
2| = k′2,

and
I ′2 = {(i, j)|2d < j ≤ 3d, (i, 2) ∈ K ′}.

Then |I ′2| = k′2d. Also note that if (i, j) ∈ I ′2, µ ≤ wi
2 ≤ yij.

• Let
K ′

t = {(i, t)|(i, t) ∈ K ′}, |K ′
t| = k′t,

and
I ′t = {(i, j)|td < j ≤ (t+ 1)d, (i, t) ∈ K ′}.

Then |I ′t| = k′td. Also note that if (i, j) ∈ I ′t then µ ≤ wi
t ≤ yij.

•
K ′

c−1 = {(i, (c − 1))|(i, c − 1) ∈ K ′}, |K ′
c−1| = k′c−1,

and
I ′c−1 = {(i, j)|j > (c− 1)d, (i, c − 1) ∈ K ′}.

Then |I ′c−1| = k′c−1d. Also note that if (i, j) ∈ I ′c−1 ⇒ µ ≤ wi
(c−1) ≤ yij.

Then |I| = |K|d and |I ′| = |K ′|d. We claim that I ∩ I ′ = ∅. To see this
note that because of how the second components in It and I ′t are defined,
it is only possible that It+1 = {(i, j)|td < j ≤ (t + 1)d, (i, t + 1) ∈ K} and
I ′t = {(i, j)|td < j ≤ (t+ 1)d, (i, t) ∈ K ′} intersect for some t = 1, · · · , c− 2.
But if they intersect then there exist i, t such that (i, t+1) ∈ K and (i, t) ∈
K ′ which is against our assumption regarding K and K ′. Hence by Lemma
5.2.4, µ is a quantile between
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7.4. Data coarsening and quantile approximation algorithm

[
|K|d
n

,
n− |K ′|d

n
] = [

hd
∑m

i=1 cid
,
n− (n′ − h)d
∑m

i=1 cid
] = [

h

C
,
m+ h

C
].

But we know that

p ∈ [
h− 1

C −m
,

h

C −m
).

We are dealing with two interval in one of them µ is a quantile and the other
contains p.

We showed in Lemma 7.4.2 if two intervals [a, b] and [c, d] are given, the
sup distance between two elements of the two intervals is

max{|a− d|, |b − c|}.
Applying this to the above two intervals we get,

max{|m+ h

C
− h− 1

C −m
|, | h− 1

C −m
− h

C
|},

which is equal to,

max{|mC −m2 − hm+ C

C(C −m)
|, | C − hm

C(C −m)
|}.

But m2 + hm ≤ m2 + (C −m)m = mC. Hence

|mC −m2 − hm+ C

C(C −m)
| = mC −m2 − hm+ C

C(C −m)
≤ mC + C

C(C −m)
=

m+ 1

C −m
.

Also

| C − hm

C(C −m)
| ≤ C +mC

C(C −m)
≤ m+ 1

C −m
.

Hence the max is smaller than ǫ = m+1
C−m and we conclude that µ is a quantile

for p′ which is at most as far as ǫ to p.
The case li = cd is easily obtained by replacing C = mc and noting that

m+1
m−1 ≤ 3 m ≥ 2.

In most applications, usually the data partitions are not divisible by
d. For example the data might be stored in files of different length with
common factors. Another situation involves a very large file that is needed
to be read in successive stages because of memory limitations. Suppose that
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7.4. Data coarsening and quantile approximation algorithm

we need a precision ǫ (in terms of degree of separation) and based on that
we find an appropriate c and m. Note that n might not be divisible by mc.

First we prove two lemmas. These lemmas show what happens to the
quantiles if we throw away a small portion of the data vector or add some
more data to it. The first lemma is for a situation that we have thrown away
or ignored a small part of the data. The second lemma is for a situation
that a small part of the data are contaminated or includes outliers. In
both cases, we show how the quantiles computed in the “imperfect” vectors
correspond to the quantiles of the original vector. In both case x stands for
the imperfect vector and w is the complete/clean data.

Lemma 7.4.3 (Missing data quantile summary lemma)
Suppose x = (x1, · · · , xn), sort(x) = (y1, · · · , yn) and y′ = lqx(p), p ∈ [0, 1].
Consider a vector x⋆ of length n⋆ and let w = stack(x, x⋆). Then y′ =
lqw(p

′), where p′ ∈ [p − ǫ, p + ǫ] and ǫ = n⋆

n+n⋆ .
Similarly if y′ = rqx(p) and p ∈ [0, 1], y′ = rqw(p

′), where p′ ∈ [p−ǫ, p+ǫ]
and ǫ = n⋆

n+n⋆ .

Proof We prove the result for lqx only and a similar argument works for
rqx.
Let z = sort(w) then lqz = lqw. For p = 1 the result is easy to see.
Otherwise, i

n ≤ p < i+1
n for some i = 0, · · · , n−1. But then y′ = lqx(p) = yi.

In the new vector z since we have added n⋆ elements y′ = zj for some j,
i ≤ j < i+ n⋆. Hence y′ = lqz(

j
n+n⋆ ). From np− 1 < i ≤ np, we conclude

np− 1

n+ n⋆
<

i

n+ n⋆
≤ j

n+ n⋆
<

i+ n⋆

n+ n⋆
≤ np+ n⋆

n+ n⋆
.

Hence,
n⋆(1− p)− 1

n+ n⋆
<

j

n+ n⋆
− p <

n⋆(1− p)

n+ n⋆
⇒

| j

n+ n⋆
− p| < max{|n

⋆(1− p)− 1

n+ n⋆
|, |n

⋆(1− p)

n+ n⋆
|}.

But |n⋆(1−p)
n+n⋆ | ≤ n⋆

n+n⋆ and |n⋆(1−p)−1
n+n⋆ | ≤ max{ n⋆−1

n+n⋆ ,
1

n+n⋆} since p ranges in
[0, 1]. We conclude that that

| j

n+ n⋆
− p| < n⋆

n+ n⋆
.
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Lemma 7.4.4 (Contaminated data quantile summary lemma)
Suppose x = (x1, · · · , xn), sort(x) = (y1, · · · , yn) and y′ = lqx(p), p ∈ [0, 1].
Consider the vector w = (x1, x2, · · · , xn−n⋆) then y′ = lqw(p

′), where p′ ∈
[p − ǫ, p + ǫ] and ǫ = n⋆

n−n⋆ .
Similarly if y′ = rqx(p) and p ∈ [0, 1], y′ = rqw(p

′), where p′ ∈ [p−ǫ, p+ǫ]
and ǫ = n⋆

n−n⋆ .

Proof We only show the case for lqx and a similar argument works for rqx.
Let z = sort(w). Then lqz = lqw. If p = 1 the result is easy to see. Otherwise,
i
n ≤ p < i+1

n for some i = 0, · · · , n − 1. But then y′ = lqx(p) = yi. In
the new vector z since we have removed n⋆ elements y′ = zj for some j,
i − n⋆ ≤ j ≤ i. Hence y′ = lqz(

j
n−n⋆ ). From np− 1 < i ≤ np, we conclude

np− 1− n⋆ < j ≤ np ⇒ np− n⋆ ≤ j ≤ np. Hence

−n⋆ + n⋆p

n− n⋆
≤ j

n− n⋆
− p ≤ n⋆p

n− n⋆
⇒

| j

n− n⋆
− p| ≤ n⋆

n− n⋆
.

In the case that the partitions are not divisible by d, we can use the same
algorithm with generalized coarsening. The error will increase obviously and
the next two lemmas say by how much.

Lemma 7.4.5 Suppose x has length n = lm + r, 0 ≤ r < l and m = cd.
To find lqx(p), apply the algorithm in the previous theorems to a sub–vector
of x of length lm. Then the obtained quantile is a quantile for a number in
[p − ǫ, p + ǫ], where ǫ = m+1

m−1
1

c−1 +
r

lm+r .

Proof The result is a straightforward consequence of the Theorem 7.4.1
and the Lemma 7.4.3.

Lemma 7.4.6 Suppose x has length n =
∑m

i=1 li and li = cid+ ri, ri < d.
Let R =

∑m
i=1 ri. Then apply the algorithm above to x to find lqx(p), using

the generalized coarsening. The obtained quantile is a quantile for a number
in [p− ǫ, p+ ǫ] where ǫ = m+1

C−m + R
R+Cd .

Proof Let l′i = cid. Consider x
′ a sub–vector of x consisting of

(y11 , · · · , y1l′1), (y
2
1 , · · · , y2l′2), · · · , (y

m
1 , · · · , yml′m).
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7.5. The algorithm and computations

Then x′ has length
∑m

i=1 l
′
i. By Lemma 7.4.3 p-th quantile found by the al-

gorithm is a quantile in [p− ǫ1, p+ ǫ1], ǫ1 =
m+1
C−m for x′. x has R =

∑m
i=1 ri

elements more than x′. Hence the obtained quantile is a quantile for x for
a number in [p− ǫ, p + ǫ], ǫ = ǫ1 +

R
R+Cd .

7.5 The algorithm and computations

Suppose a data vector x has length n. To find the quantiles of this vector,
we only need to sort x. Since then for any p ∈ (0, 1), we can find the first h
such that p ≥ h/n. Note that

sort(x) = (lqx(1/n), lqx(2/n), · · · , lqx(1)) = (rqx(0), rqx(1/n), · · · , rqx(
n− 1

n
)).

We only focus on left quantiles here. Similar arguments hold for the right
quantile.

Obviously, the longer the vector x, the finer the resulting quantiles are.
Now imagine that we are given a very long data vector which cannot even
be loaded on the computer memory. Firstly, sorting this data is a challenge
and secondly, reporting the whole sorted vector is not feasible. Assume that
we are given the sorted data vector so that we do not need to sort it. What
would be an appropriate summary to report as the quantiles? As we noted
also the sorted vector itself although appropriate, maybe of such length
as to make further computation and file transfer impossible. The natural
alternative would be to coarsen the data vector and report the resulting
coarsened vector. To be more precise, suppose, length(x) = n = n1n2 and
y = sort(x) = (y1, · · · , yn). Then we can report

y′ = Cn2(y) = (yn2 , · · · , y(n1−1)n2
).

This corresponds to

(lqy′(1/n2), · · · , lqy′(1)).
How much will be lost by this coarsening? Suppose, we require the left
quantile corresponding to (h − 1)/n < p ≤ h/n, h = 1, · · · , n. Then x
would give us yh. But since (h− 1)/n < p ≤ h/n

np < h ≤ np+ 1.
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Also suppose for some h′ = 1, · · · , n1,

(h′ − 1)/(n1 − 1) < p ≤ (h′)/(n1 − 1) ⇒ (h′ − 1) < p(n1 − 1) ≤ h′

⇒ (n1 − 1)p ≤ h′ < p(n1 − 1) + 1.

Then
(h− 1)(n1 − 1)/n < h′ < h(n1 − 1)/n + 1,

and
(h− 1)(n1 − 1)n2/n < h′n2 < h(n1 − 1)n2/n+ n2. (7.1)

Using the coarsened vector, we would report yh′(n2) as the approximated
quantile for p. The degree of separation between this element and the exact
quantile using Equation 7.1 is less than or equal to

max{|h− (h− 1)(n1 − 1)n2/n|
n

,
|h(n1 − 1)n2/n+ n2 − h|

n
}.

This equals

max{|−hn2 − n1n2 + n2

n2
|, |−hn2 + nn2

n2
|}.

But

|−hn2 − n1n2 + n2

n2
| = n2(n1 + n− 1)

n2
<

n2(n1 + n)

n2
=

1

n
+

n2

n
,

and

|−hn2 + nn2

n2
| < n2

n
.

Hence the degree of separation is less than 1/n+1/n1. We have proved the
following lemma.

Lemma 7.5.1 Suppose x is a data vector of the length n = n1n2 and y =
sort(x), y′ = Cn2(y). Then if we use the quantiles of y′ in place of x, the
accuracy lost in terms of the probability loss of x (δx) is less than 1/n+1/n1.

The algorithm proposes that instead of sorting the whole vector and then
coarsening it, coarsen partitions of the data. The accuracy of the quantiles
obtained in this way is given in the theorems of the previous section. This
allows us to load the data into the memory in stages and avoid program
failure due to the length of the data vector. We are also interested in the
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performance of the method in terms of speed, and do a simulation study
using the “R” package (a well–known software for statistical analysis) to
assess this. In order to see theoretical results regarding the complexity of the
special case of the algorithm for equal partitions see [3]. For the simulation
study, we create a vector, x, of length n = 107. We apply the algorithm for
m = 1000, c = 20, d = 500. We create this vector in a loop of length 1000.
During each iteration of the loop, we generate a random mean for a normal
distribution by first sampling from N(0, 100). Then we sample 10,000 points
from a normal distribution with this mean and standard deviation 1. We
compare two scenarios:

1. Start by a NULL vector x and in each iteration add the full generated
vector of length 10000 to x. After the loop has completed its run, sort
the data vector which now has length 107 by the command sort in R
and use this to find the quantiles.

2. Start with a NULL vector w. During each iteration after generating
the random vector, d–coarsen the data by d = 500. (Hence m = 1000,
c = 20.) In order to do that computing, first apply the sort command
to the data and then simply d–coarsen the resulting sorted vector.
During each iteration, add the coarsened vector to w. After all the
iterations, sort w and use it to approximate quantiles.

Remark. The first part corresponds to the straightforward quantiles’ cal-
culation and the second corresponds to our algorithm. Note that in the real
examples instead of the loop, we could have a list of 1000 data files and still
this example serves as a way of comparing the straightforward method and
our algorithm.
Remark. Note that if we wanted to create an even longer vector say of
length 1010 then the first method would not even complete because the
computer would run out of memory in saving the whole vector x.
Remark. The final stage of the algorithm can use the fact that w is built
of ordered vectors to make the algorithm even faster. We will leave that a
problem to be investigated in the future.

We have repeated the same procedure for n = 2×107,m = 1000, d = 500
and n = 108,m = 1000, d = 500. The results of the simulation are given in
Table 7.2, in which “DOS” stands for the degree of separation between the
exact median and the approximated median. The “DOS bound” bounds the
degree of separation obtained by the theorems in the previous section. For
n = 107, n = 2 × 107 significant time accrue by using the algorithm. For
a vector of length 108, R crashed when we tried to sort the original vector

207



7.5. The algorithm and computations

and only the algorithm could provide results. For all cases the exact and
approximated quantiles are close. In fact the dos is significantly smaller
than the dos bound. This is because this is a “worst–case” bound. The
exact and approximated quantiles for n = 107 are plotted in Figure 7.1.

Length n = 107 n = 2× 107 n = 108

Exact median value 1.847120 1.857168 NA
Algorithm median value 1.866882 1.846463 1.846027
DOS 0.00012 −6.475 × 10−5 NA
DOS bound 0.05268421 0.02566667 0.005030151
Time for exact median 186 sec 461 s NA
Time for the algorithm 6 sec 18 s 98 s

Table 7.2: Comparing the exact method with the proposed algorithm in R
run on a laptop with 512 MB memory and a processor 1500 MHZ, m =
1000, d = 500. “DOS” stands for degree of separation in the original vector.
“DOS bound” is the theoretical degree of separation obtained by Theorem
7.4.1.

Next, we apply the algorithm on a real dataset. The dataset includes the
daily maximum temperature for 25 stations over Alberta during the period
1940–2004. We focus on the 95th percentile. The results are given in Table
7.3. The algorithm finds the percentile more quickly but the time difference
is not as large as the simulation. This is because most of the time of the
algorithm and the exact computation is spent on reading the files from the
hard drive. The dos bound is about 0.01 (on the 0–1 probability scale). The
true degree of separation is about 0.001. The estimated quantiles and the
exact quantiles are plotted in Figure 7.2. Notice that the exact and approx-
imated values match except at the very beginning (very close to zero) and
end (when it is close to 1), where we see that the circles (corresponding to
exact quantiles) and the +s (corresponding to the approximated quantiles)
do not completely match. This difference is at most 0.01 in terms of dos in
any case.
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Figure 7.1: Comparing the approximated quantiles to the exact quantiles
N = 107. The circles are the exact quantiles and the + are the corresponding
approximated quantiles.
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Figure 7.2: Comparing the approximated quantiles to the exact quantiles for
MT (daily maximum temperature) over 25 stations in Alberta 1940–2004.
The circles are the exact quantiles and the + the approximated quantiles.
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Exact 95th percentile 27 C
Algorithm 95th percentile 26.7 C
DOS 0.001278726
DOS bound 0.01052189
time for exact median 8 min 6 sec
time for the algorithm 7 min 29 sec

Table 7.3: Comparing the exact method with the proposed algorithm in R
(run on a laptop with 512 MB memory and processor 1500 MHZ) to compute
the quantiles of MT (daily maximum temperature) over 25 stations with
data from 1940 to 2004.
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Chapter 8

Quantile data summaries

8.1 Introduction

This chapter introduces techniques to summarize data (using quantiles), ma-
nipulate and combine such summaries. “Weighted data vectors”, which are
an extension of data vectors are introduced. The operators sort and stack
are extended to weighted data vectors and the operator comp (compress) is
introduced to compress a data vector as much as possible with no loss of
information. In the quantile definition chapter, we expressed a few appeal-
ing properties that quantiles should satisfy. We established the equivariance
and symmetry properties and left the following to later:

1. The “amount” of data between qx(p1) and qx(p2) should be a p2 −
p1, p1 < p2 fraction of the “data amount” of the whole data.

2. If we cut a sorted data vector up until the p1-th quantile and compute
the p2-th quantile for the new vector, we should get the p1p2-th quan-
tile of the original vector. For example the median of a sorted vector
upto its median should be the first quartile of the original vector.

A natural definition for the “amount of data” between a, b would be
the number of data points between a, b divided by the length of the whole
vector. However, by this definition there is no hope of establishing property
(1) knowing that p2−p1 can be irrational. Also for the second property one
might conjecture that if we define the cut operator to be the sorted vector
from left to lqx(p1) (or rqx(p1)) then this property holds. However, consider
x = (1, 2) and a cut of length 0.6. Then we get the same vector x′ = (1, 2)
after the cut using this definition since lqx(0.6) = 2. Now the 0.7th left (or
right) quantile of the cut vector x′ is

lqx′(0.7) = 2.

However,
lqx(0.6 × 0.7) = lqx(0.42) = 1.
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In the following, we define the cut operator for p ∈ (0, 1) in a way that it
ends with lqx(p) but satisfies property (2). The idea can be explained in
the example by considering the vector x = (1, 2) as a weighted vector with
weights (1/2, 1/2) and give 2 less “weight” than 1 after the cut. In summary,
this chapter provides a framework to establish these properties, using the
“partition” operator and the “cut” operator.

When dealing with summarized data the following general question is a
fundamental one:
Question: Suppose x is a data vector which consists of m subvectors

x1, · · · , xm.

In other words x = stack(x1, · · · , xm). Assume we do not have access to
the xi but to the wi, their summaries (possibly a result of coarsening of the
xi). Then how can we approximate the quantiles of the original data vector
x and assess how good this approximation is?
We have already encountered such a problem in Chapter 7, where we an-
swered the question in some specific cases. We do not answer the question
in general in this chapter but provide a framework to formalize and answer
these type of questions.

In computer science quantiles are sometimes used to summarize large
datasets. A good summary of the work for creating quantile summaries of
datasets in a single pass is given in [19].

In order to make a summary (of length k) of a data vector using the
quantiles, one has various choices to pick certain probability indices

p1 ≤ p2 ≤ · · · ≤ pk,

and save the corresponding quantiles. Using the probability loss function,
we find an optimal way of doing this. Then we consider the problem of
finding

argmin
a

E(L(X, a)),

for various L (loss) functions. It is widely claimed that if L is the absolute
value function, the argmin is the median of X. We show that the argmin
is in fact [lqX(1/2), rqX (1/2)]. We also find the

argmin
a

E(δX (X, a)).

Finally, we find optimal “probability index vectors” to assign quantiles to a
random sample X1, · · · ,Xn, which can be used to make a quantile–quantile
plot. Some previous techniques to make a q–q plot are discussed in [24].
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8.2 Generalization to weighted vectors

This section extends the definitions and ideas developed before (quantiles,
probability loss function, sorting, stacking etc.) from ordinary data vectors
to weighted vectors. A weighted vector has two extra components compared
to an ordinary vector: a weight allocation and a data amount. This allows us
to summarize information in some cases. For example, consider the vector
(1, 1, 1, 1, 1, 1, 1, 1, 1, 2). We observe that 1 is repeated 9 times and 2 only
one time. We can summarize this by giving the elements (1, 2) a weight
allocation (0.9, 0.1) and a data amount 10 which is the length of the vector
in this case. Weighted vectors also enable us to define the “cut” operator to
cut data vectors.

Definition We call a triple χ = (x,wχ, nχ) a weighted vector if length(x) =
length(wχ) = lx, x = (x1, · · · , xl), wχ = (wχ

1 , · · · , wχ
l ),
∑l

i=1 w
χ
i = 1 and nχ

a positive real number. Note that nχ is not necessarily equal to the length
of x. We call wχ the “weight vector” of χ and nχ the “data amount” of χ.

Remark. Note that in order to specify a weight vector w, we do not need
to specify the last component since the weights must sum up to one.

Examples:

1. χ = ((1, 2, 3), (1/3, 1/3, 1/3), 3). This is equivalent to an ordinary
vector of length 3 in a sense we make clear soon.

2. χ = ((1, 2, 3), (1/3, 1/3, 1/3), 6). Notice this weighted vector has the
same elements as before with a data amount of 6 which is two times
the previous vector. This vector is equivalent to the ordinary vector
x = (1, 1, 2, 2, 3, 3).

3. χ = ((1, 1, 2, 3), (1/6, 1/6, 1/3, 1/3), 3). This is equivalent to vector
given in 1. Note that one is repeated two times here. However, the
sum of the weights for 1 is 1/6+1/6=1/3 which is the same as the
vector defined in 1.

4. χ = ((1), (1), 1/2). Here we only have 1/2 data amount. i.e. we have
less than one observation! (1/2 of an observation to be precise.)

5. χ = ((1, 2), (1/2, 1/2),
√
3).
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8.2. Generalization to weighted vectors

The first vector, x, in the definition χ = (x,wχ, nχ), is the vector of possible
values, the second one, wχ, is the corresponding weights for elements of x
and the third component, nχ, is a measure of how fine the vector is.

A vector is called an ordinary vector if the length of x, lx, is equal to nχ

and wχ
i = wχ

j , i, j ∈ 1, · · · , lx. The ordinary vector corresponds to the usual
data vectors. Denote the space of all weighted vectors by Υ. We define some
operations and an equivalence relation on Υ.

Definition Suppose χ = (x,wχ, nχ) then comp(χ) = ξ = (y,wξ , nξ), where
y = (y1, · · · , yr) is a non-decreasing vector of all disjoint elements of x,

wξ
i =

∑

xj=yi
wχ
j and nξ = nχ.

It is clear that comp (compress operator) is an operator from Υ to Υ. Then
we define an equivalence relation on Υ.

Definition χ ∼ ξ in Υ iff comp(χ) = comp(ξ).

Clearly, ∼ is an equivalence relation. Let us define a transformation of a
weighted vector.

Definition Suppose χ = (x,wχ, nχ) is a weighted vector and φ a trans-
formation of R (not necessarily increasing). Then φ(χ) = ζ = (z, wζ =
wχ, nζ = nχ), where zi = φ(xi), i = 1, 2, · · · , lx.

For ordinary vectors x, y, comp(x) = comp(y) iff sort(x) = sort(y). Also
comp leaves the last component of a weighted vector (the data amount)
unchanged.

Since x and wχ have the same length, we can show an element of Υ by
pair consisting of a matrix of dimension 2× lx and a number nχ:

χ = (

(

x1 · · · xlx
wχ
1 · · · wχ

lx

)

, nχ)

Given a weighted vector χ = (x,wχ, nχ), we can naturally define a dis-
tribution function as follows.

Definition Suppose χ = (x,wχ, nχ) is a weighted vector. The the empirical
distribution of χ is defined as

Fχ(a) =
∑

i, xi≤a

wχ
i .
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8.2. Generalization to weighted vectors

Remark. If χ is an ordinary vector then Fχ is the usual empirical function.
Then we extend the definition of the stack operator to weighted vectors.

Definition Suppose χ = (x,wχ, nχ) and ξ = (y,wξ, nξ) are given then

stack : Υ×Υ → Υ,

(χ, ξ) 7→ ζ = (z, wζ , nχ + nξ),

where (z, wζ) in the matrix notation is given by

(

x1 · · · xlx y1 · · · yly
wχ
1

nχ

nχ+nξ · · · wχ
lx

nχ

nχ+nξ wξ
1

nξ

nχ+nξ · · · wξ
ly

nξ

nχ+nξ

)

.

Remark. In the definition, notice how the data amounts are used to adjust
the weights.
Remark. For ordinary vectors x, y the stack operator coincide to concate-
nating x and y.

Lemma 8.2.1 (Stack operator properties)
a) The stack operator preserves the equivalence relation defined above, i.e.

χ1 ∼ ξ1, χ2 ∼ ξ2, then stack(χ1, χ2) ∼ stack(ξ1, ξ2)

b)
stack(χ1, stack(χ2, χ3)) ∼ stack(stack(χ1, χ2), χ3)

Proof a) Suppose χi = (xi, wχi , nχi), ξi = (yi, wξi , nξi) and χi ∼ ξi for
i = 1, 2. Let

χ = comp(stack(χ1, χ2)), comp(stack(ξ1, ξ2)) = ξ.

We need to show χ = ξ. Let χ = (x,wχ, nχ) and ξ = (y,wξ , nξ). From
χi = ξi for i = 1, 2, we conclude nχi = nξi , i = 1, 2, which in turn gives

nχ = nχ1 + nχ2 = nξ1 + nξ2 = nξ.

Also x = y since both x and y are increasingly sorted and every element in
x is an element of x1 or x2 which have the same elements as y1 or y2. Now
to show wχ

i = wξ
i , i = 1, 2, · · · , lx, suppose xi = yi be the corresponding

element in x = y. Assume that the corresponding weight for xi in χ1 is w
and in χ2 is w′. Then the corresponding weight in ξ1 and ξ2 must be w and
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8.2. Generalization to weighted vectors

w′ respectively by the assumed equivalence relations. Hence wχ
i and wξ

i are
equal to

w.
nχ1

nχ1 + nχ2
+ w′.

nχ2

nχ1 + nχ2
,

and

w.
nξ1

nξ1 + nξ2
+ w′.

nξ2

nξ1 + nξ2
,

which are equal.
b) Let

χ = (x,wχ, nχ) = comp[stack(χ1, stack(χ2, χ3))]

and
χ′ = (x′, wχ′

, nχ′

) = comp[stack(stack(χ1, χ2), χ3))].

We show χ = χ′. Firstly, note that

nχ = nχ1 + (nχ2 + nχ3) = (nχ1 + nχ2) + nχ3 = nχ′

.

x = x′ is trivial. Fix xi = x′i in x = x′. Suppose its corresponding weight
in χj is equal to wj, j = 1, 2, 3. To show that the corresponding weights

wχ
i and wχ′

i are equal, note that the corresponding weight of xi in χ is a
combination of its weights in χ1 and stack(χ2, χ3):

wχ
i = w1

nχ1

nχ1 + (nχ2 + nχ3)
+[w2

nχ2

nχ2 + nχ3 +w3
nχ3

nχ2 + nχ3 ]
nχ2 + nχ3

nχ1 + (nχ2 + nχ3)

and the corresponding weight of xi in χ′ is a combination of its weights in
stack(χ1, χ2) and χ3:

wχ′

i = [w1
nχ1

nχ1 + nχ2
+w2

nχ2

nχ1 + nχ2
]

nχ1 + nχ2

(nχ1 + nχ2) + nχ3
+w3

nχ3

(nχ1 + nχ2) + nχ3
.

But the previous two expressions are equal and the proof is complete.

This lemma implies that we can use the notation stack(χ1, · · · , χm).

Definition of quantiles and DOS for weighted vectors

Now let us get to the definition of quantiles. We can proceed exactly in
the same way as we did before by having in mind a bar of length one.
Or alternatively, we can apply the quantile function definition for usual
distributions to the empirical distribution of a weighted vector Fχ. This
time, we proceed in a slightly different fashion which is equivalent to these

217



8.2. Generalization to weighted vectors

methods. Suppose χ = (x,wχ, nχ) is given and ζ = comp(χ) = (z, wζ , nχ).
We assume z has length lz. First, we define

lqindχ : (0, 1] → {1, 2, · · · , lz},

and
rqindχ : [0, 1) → {1, 2, · · · , lz},

the “left quantile index” and “right quantile index” functions and then
define the left and right quantile functions using the index functions. If
ζ = comp(χ) = (z, wζ , nx) then we define

lqχ(p) = zlqindχ(p), p ∈ (0, 1], lqχ(p) = −∞, p = 0,

and
rqχ(p) = zrqindχ(p), p ∈ [0, 1), rqχ(p) = ∞, p = 1.

Let ζ = comp(χ). lqindχ and rqindχ are defined as follows:

• p = 0 then lqindχ(p) not defined and rqindχ(p) = 1.

• 0 < p < wζ
1 then lqindχ(p) = rqindχ(p) = 1.

• p = wζ
1 then lqindχ(p) = 1 and rqindχ(p) = 2.

...

• wζ
1 + · · ·+ wζ

i−1 < p < wζ
1 + · · ·+ wζ

i then lqindχ(p) = rqindχ(p) = i.

• p = wζ
1 + · · ·+ wζ

i then lqindχ(p) = i, rqindχ(p) = i+ 1.
...

• p = 1 then lqindχ(p) = lz and rqindχ is not defined.

Remark. It is easy to see that χ ∼ ξ then lqχ = lqξ, rqχ = rqξ.

Remark. For ordinary vectors, this is equivalent to the definition given in
the previous sections.
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8.2. Generalization to weighted vectors

Remark. Consider the natural distribution function Fχ corresponding to a
weighted vector χ then lqχ = lqFχ and rqχ = rqFχ. Hence, lqχ, rqχ satisfy all
the properties proved for left and right quantile functions of a distribution
function.

Definition We generalize the degree of separation (probability loss func-
tion) δχ on the set of weighted vectors as follows:

δχ : R× R → R
+ ∪ {0},

δχ(z
′, z) = δχ(z, z

′) =
∑

z<xj<z′

wχ
j , z < z′,

and δχ(z, z) = 0.

Lemma 8.2.2 (Properties of the probability loss function for weighted vec-
tors)
a) δχ = δFχ .
b) δχ only depends on comp(χ).
c) δχ satisfies the pseudo–triangle property.

Proof a) and b) are trivial and c) follows from a) and pseudo–triangle
property for the probability loss functions for distributions.

8.2.1 Partition operator

This section introduces the partition operator to partition data into arbitrar-
ily sized partitions. This allows us to address the two remaining properties
for quantiles we pointed out in the introduction (in Lemma 8.2.5). The idea
behind the definition of the partition operator can be explained as follows.
Suppose a weighted vector χ = (x,wχ, nχ) is given and we want to partition
it to smaller vectors with weights (p1, · · · , pm),

∑m
i=1 pi = 1. Consider a bar

of length 1 and then color it from left to right using colors corresponding to
the xi with length wχ

i . Then cut the bar from left to right using the given
weights (p1, · · · , pm). Now each one of the small bars is the partitions we
needed. More formally, we have the following definition:

Definition Suppose P = (p1, p2, · · · , pm) is given, such that
∑m

i=1 pi = 1.
Then a P-partition of a weighted data vector χ = (x,wχ, nχ) is denoted
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8.2. Generalization to weighted vectors

by part(P, χ) = (χ1, · · · , χm) and is a collection of m weighted vectors
χ1 = (x1, wχ1

, nχ1
= nχ.p1), · · · , χm = (xm, wχm

, nχm
= nχ.pm) defined as

follows:
1. x1 = (xs1 , · · · , xt1), s1 = 1, v1 =

∑

1≤j≤t1
wj ≥ p1,

∑

1≤j<t1
wj < p1

2. x2 = (xs2 , · · · , xt2), v2 =
∑

1≤j≤t2
wj − p1 ≥ p2,

∑

1≤j<t2
wj − p1 <

p2, s2 =

{

t1 + 1 v1 = p1

t1 v1 > p1
...
k. xk = (xsk , · · · , xtk), vk =

∑

1≤j≤tk
wj −

∑k−1
j=1 pj ≥ pk,

∑

1≤j<t2
wj −

∑k−1
j=1 pj < pk, sk =

{

tk−1 + 1 vk−1 = pk−1

tk−1 vk−1 > pk−1

.

...
The corresponding weight vectors and data amounts are defined as:
1. wχ1

= 1
p1
(wχ

s1 , w
χ
s2 , · · · , wχ

t1 − (v1 − p1)),
...

k. wχk
=

{

1
pk
(wχ

sk , w
χ
sk+1, · · · , wχ

tk
− (vk − pk)) vk−1 = pk−1

1
pk
(vk−1 − pk−1, w

χ
sk+1, · · · , wχ

tk
− (vk − pk)) vk−1 > pk−1

.

...

Lemma 8.2.3 If χ = (x,wχ, nχ) is an ordinary vector and lx = nχ =
n1 + · · · + nm. Let P = ( n1

nχ , · · · , nm
nχ ) then the P-partition of χ is simply

obtained by starting from the left and partitioning x to vectors of length
n1, n2, · · · , nm.

Proof This is a straightforward conclusion of the definition.

Lemma 8.2.4 Suppose χ = (x,wχ, nχ) is partitioned by some P = (p1, · · · , pm)
to χ1, · · · , χm then

stack(χ1, · · · , χm) ∼ χ.

Proof Let χ′ = stack(χ1, · · · , χm) and suppose χ′ = (x′, wχ′

, nχ′

). Then
clearly x′ and x have the same distinct elements. (Although it might be the
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8.2. Generalization to weighted vectors

case that x′ 6= x since some elements of x are repeated more than once in
x.) Also

nχ′

=
m
∑

i=1

pin
χ = nχ.

In order to show that for z an element of the vector x, its corresponding
weight is equal in χ and χ′, suppose z is equal to xi1 , · · · , xir in x with
corresponding weights wχ

i1
, · · · , wχ

ir
. Then the weight corresponding to z in χ

is equal to
∑r

k=1w
χ
ik
. Now note that any of xik , k = 1, · · · , r, corresponds to

one or two elements in stack(χ1, · · · , χm) by the definition of the partitions
operator. It can be the case that xik only appears in χs or in χs, χs+1 if xik
is at the end of the partition χs and at the beginning of the next. In the
first case when xik only appears in χs, its weight in χs will be 1

ps
wχ
ik

and

hence its weight contribution in stack(χ1, · · · , χm) will be nχ.ps
nχ

1
ps
wχ
ik

= wχ
ik
.

In the second case its weight in χs will be 1
ps
(wχ

ik
− (vs − ps)) and in χs+1

will be 1
ps+1

(vs − ps). Hence its weight contribution in stack(χ1, · · · , χm)

coming from χs, χs+1 is nχps
nχ

1
ps
(wχ

ik
− (vs− ps))+

nχps+1

nχ
1

ps+1
(vs − ps) = wχ

ik
.

Summing up all the weights in stack(χ1, · · · , χm), we get the same value of
∑r

k=1w
χ
ik
.

Using the partition operator, we can easily define the cut operator as
follows.

Definition Let D = {(a, b)| a, b ∈ (0, 1), a < b}. Then cut : Υ×D → Υ is
defined to be

cut(χ, p1, p2) = χ2,

where χ2 is the second component of part(P, comp(χ)) = (χ1, χ2, χ3), the
result of applying a partition operator with weights P = (p1, p2 − p1, 1− p2)
to comp(χ). We also define left cut and right cuts,

lcut, rcut : (0, 1) → R,

lcut(χ, p) = χ1, rcut(χ, 1 − p) = χ2,

where χ1 and χ2 are the first and second component of the partition of χ
by P = (p, 1− p).

Lemma 8.2.5 Suppose χ = (x,wχ, nχ) is a weighted vector and (p1, p2) in
D. Then
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a) The amount of data in cut(χ, p1, p2) is nχ(p2 − p1).
b) cut(χ, p1, p2) starts with rqχ(p1) and ends with lqχ(p2).
c) The vector of lcut(χ, p) ends with lqχ(p).
d) The vector of rcut(χ, p) starts with rqχ(1− p).
e) Suppose p1, p2 ∈ (0, 1) then lcut(lcut(χ, p1), p2) = lcut(χ, p1p2).
f) Suppose p1, p2 ∈ (0, 1) then rcut(rcut(χ, p1), p2) = rcut(χ, p1p2).

Proof a) is trivial. To prove b), consider the definition of the partition
operator as given in Definition 8.2.1 for arbitrary P = (p′1, · · · , p′m). For the
first partition, xs1 = x1 = lqχ(p

′
1) and for xt1 , we have

∑

1≤j≤t1

wj ≥ p′1, and
∑

1≤j<t1

wj < p′1,

which concludes lqχ(p
′
1) = xt1 . For the k-th partition,

sk =

{

tk−1 + 1 vk−1 = p′k−1

tk−1 vk−1 > p′k−1

.

If vk−1 = p′k−1, then
∑

1≤j≤tk−1
wj =

∑k−1
i=1 p′i. Hence rqχ(

∑k−1
i=1 p′i) =

xtk−1+1 = xsk . For tk, we have
∑

1≤j<tk
wj <

∑k
i=1 p

′
i and

∑

1≤j≤tk
wj ≤

∑k
i=1 p

′
k. Hence lqχ(

∑k
i=1 p

′
k) = xtk . To finish the proof, let m = 3 and

p′1 = p1, p
′
2 = p2− p1, p

′
3 = 1− p2 and note that cut(χ, p1, p2) corresponds to

the second component of the partition operator of P = (p′1, p
′
2, p

′
3) on χ.

The proof of c) is similar to b). d) can be either done by a similar direct
proof or by using the Quantile Symmetry Theorem.
To prove e) let

χ1 = lcut(χ, p1) = ((x1, · · · , xt1), (w1
1 , · · · , w1

t1), n
χ.p1)

χ1,2 = lcut(lcut(χ, p1), p2) = ((x1, · · · , xt1,2), (w1,2
1 , · · · , w1,2

t1 ), nχ.p1.p2)

χ12 = lcut(χ, p1p2) = ((x1, · · · , xt12), (w12
1 , · · · , w12

t1 ), n
χ.p1.p2)

We want to show χ1,2 = χ12. It is clear that their data amount is equal. By
applying the definition of lcut to the above three equations, we conclude the
following:

∑

1≤j<t

wj < p1,
∑

1≤j≤t

wj ≥ p1, (8.1)

∑

1≤j<t1,2

w1
j < p2,

∑

1≤j≤t1,2

w1
j ≥ p2, (8.2)
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∑

1≤j<t12

wj < p1p2,
∑

1≤j≤t12

wj ≥ p1p2. (8.3)

If j < t1 then w1
j = 1

p1
wj . Hence from the first equation in 8.2, we conclude

1

p1

∑

1≤j<t1,2

wj < p2 ⇒
∑

1≤j<t1,2

wj < p1p2.

Now consider two cases:
Case I: t1,2 < t1. In this case, similarly, from the second equation in 8.2, we
conclude

1

p1

∑

1≤j≤t1,2

wj ≥ p2 ⇒
∑

1≤j≤t1,2

wj ≥ p1p2.

Case II: t1,2 = t1. In this case note that for j < t1,2 = t1, we still have
w1
j = 1

p1
wj and for j = t1,2 = t, we have w1

j ≤ 1
p1
wj. But

∑

1≤j≤t1,2=t

w1
j = 1 ⇒

∑

1≤j≤t1,2=t

w1
j ≥ p1 ≥ p1p2.

In both cases, we showed that
∑

1≤j≤t1,2
wj ≥ p1p2 and

∑

1≤j≤t1,2=t1
w1
j ≥

p1 ≥ p1p2. We conclude that t1,2 = t12. In order to show that the weight
vectors of χ1,2 and χ12 are the same, note that they have the same length.
We only need to show that they match on all the components except for the
last one because the equality of the last one will follow. But if j < t1,2 = t12
then w1,2

j = 1
p2
( 1
p1
wj) and w12

j = 1
p1p2

wj.
f) can be done either by a similar argument as e) or using the Quantile
Symmetry Theorem.

Remark. Part a) and e) address the two remaining properties we were
seeking in the introduction.

8.2.2 Quantile data summaries

Here, we formally define quantile data summaries. They arise when a large
data vector is summarized by a smaller vector and possibly some other
information about the original vector and how the summary is been created.
A large vector might have been partitioned into smaller vectors and the
smaller vectors might have been summarized. First we define a probability
index vector which is needed to define quantile data summaries.
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Definition A vector P = (p1, · · · , pk) is called a probability index vector if
0 ≤ p1 < · · · < pk ≤ 1.

Definition Suppose χ = (x,wχ, nχ), a weighted vector and a probability
index vector P = (p1, · · · , pm) is given such that 0 ≤ p1 < p2 < · · · < pm ≤
1. Then a P-quantile summary of χ is defined to be

qs(P, χ) = (lqχ(p1), · · · , lqχ(pm)).

Definition A summary triple is defined to be a triple (qs(P, χ),P, nχ),
where qs is the summarized vector as defined above, P is the summary
probability index vector and nχ is the data amount of the original vector.

We also define an ǫ-summary for ǫ < 1/2.

Definition Let h = [1/ǫ]. Then the ǫ-summary for χ is defined to be the
triple (qs(ǫ, χ), ǫ, nχ):

qs(ǫ, χ) = (lqχ(ǫ), lqχ(2ǫ), · · · , lqχ((h− 1)ǫ)).

Note that [0, ǫ), [ǫ, 2ǫ), · · · , [(h − 1)ǫ, 1] is a partition of [0,1] to intervals of
the same length ǫ other than the last one, which can be greater than ǫ.
However it is less than 2ǫ. If ǫ = 1/s for a natural number s, then the 1/s
summary is going to be

qs(1/s, χ) = (lqχ(1/s), lqχ(2/s), · · · , lqχ((s− 1)/s)).

Remark. For an ordinary vector x = (x1, · · · , xn), suppose n = n1n2.
Then we defined the n2–coarsening operator to be

Cn2(x) = (lqx(p1), · · · , lqx(pn1−1),

where pi = i/n, i = 1, · · · , n1 − 1. This is the same as

qs(ǫ, x),

for ǫ = 1/n1. Hence the coarsening operator is a special case of creating an
ǫ-summary.

We also define summary lists.

Definition Suppose χ = stack(χ1, · · · , χm) and m probability index vec-
tors P1, · · · ,Pm are given. Then let ξi = qs(χi,Pi). Then the list
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ξ =







ξ1 P1 nχ1

...
...

...
ξm Pm nχm







is called a quantile summary list of χ. Note that ξ is not a matrix in
general since the length of the summary indices might differ.

Quantile summary vectors or quantile summary lists are to be used to
infer the original vector χ. They can be used as “inputs” to procedures for
approximating lqχ. The formal definition of a data summary procedure is
defined below.

Definition Suppose χ is a weighted vector and input is a quantile summary
list. Then a quantile summary procedure is defined to be a left quantile
function:

proc(input, χ) : [0, 1] → R.

“proc” tries to approximate the quantiles of the original vector χ using the
input. It is desirable to find procedures that have good accuracy.

Example The d-coarsening algorithm can be viewed as an example of the
above framework. There the vector χ is simply an ordinary vector of length
n which is a concatenation of x1, · · · , xl. The summary list consists of d-
coarsening of partitions x1, · · · , xl. In other words x1, · · · , xm which are of
length li = cid are summarized by Pi = (1/ci, · · · , (ci − 1)/ci, i = 1, · · · ,m)
to w1, · · · , wm. Finally the “proc” is simply the left quantile function of the
concatenation of w1, · · · , wm. The accuracy in terms of the probability loss
was bounded by ǫ = m+1

C−m , C =
∑m

i=1 ci. In other words

sup
p∈(0,1)

δx(proc(input, x)(p), lqx(p)) ≤ ǫ.

8.3 Optimal probability indices for vector data

summaries

Suppose a data vector x or a distribution X is given. The data vector x
might be too long to carry around or save in the memory. Similarly the
distribution X might be too complicated or unknown. To make inferences
about a data vector x or the distribution of X, we might use a summary or
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some other procedure. For example, we might save a vector data summary
instead of the vector x of length n, where n is very large:

qs(P, x) = (lqx(p1), · · · , lqx(pm)), p1 < · · · < pm.

The following question motivates our ensuing development:
Question: How should P = {p1, · · · , pm} be chosen to provide good approx-
imation/prediction to x (or X)?

A natural way to approximate x or X is to estimate all the quantiles.
(This is equivalent to approximating or estimating the whole data vector
x or the distribution function of X.) We are given an input. In the case
of a data vector it is usually a quantile data summary and in the case of
the random variable X it might be a random sample. Then a “procedure”
can be employed to approximate/estimate the quantiles of x or X. For any
given p the left quantile lqx(p) or lqX(p) is approximated/estimated by the
procedure using the input. We denote this value by proc(input, x)(p) or
proc(input,X)(p). Then a loss L can be used to assess the goodness of such
a procedure:

L(proc(input, x)(p), lqx(p)).

To assess the overall goodness of such a procedure, we can use either the
sup loss or the integral loss:

sup
p∈[0,1]

L(proc(input, x)(p), lqx(p)),

or
∫

p∈[0,1]
L(proc(input, x)(p), lqx(p))dp.

For simplicity, we restrict to data vectors from here. We use the prob-
ability loss δx as the most natural choice. We want to minimize this loss
n order to find optimal ways to summarize data (create input) and find
optimal procedures.

Definition We define the crudity of the procedure proc at p given the input
to be

crud(proc(input, x)(p)) = δx(proc(input, x)(p), lqx(p)).

Also the “sup crudity” and “integral crudity” are respectively given by
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SC(proc(input, x)) = sup
p∈[0,1]

δx(proc(input, x)(p), lqx(p)),

and

IC(proc(input, x)) =

∫

p∈[0,1]
δx(proc(input, x)(p), lqx(p))dp.

Using the above framework, we look for good procedures to summarize
data vectors and later distribution functions.

A quantile data summary was defined to be

qs(P, x) = (lqx(p1), · · · , lqx(pm)), p1 < · · · < pm,

for a probability index vector P = (p1, · · · , pm). There is a natural procedure
associated with this input that is a quantile data summary, which we define
below.

Definition Suppose x is a data vector which has been summarized by P =
(p1, · · · , pm). Then we define the shortest distance quantile procedure of x
associated with P to be

proc(input, x)(p) = lqx(pi), i = argmin
j

{|p − pj|, j = 1, · · · ,m}.

If there were more than one minimum above, take the smaller value. We
denote this procedure by shproc(x,P).

The shortest distance procedure be specified by the notation “7→” as
shown below:
1. 0 ≤ p ≤ p1 +

p2−p1
2 7→ lqx(p1).

2. p1 +
p2−p1

2 < p ≤ p2 +
p3−p2

2 7→ lqx(p2).
...
m. pm−1 +

pm−pm−1

2 < p ≤ 1 7→ lqx(pm).
The largest loss in the first part of the procedure is the maximum of the two
values,

δx(lqx(0), lqx(p1)), δx(lqx(p1), lqx(p1 +
p2 − p1

2
)). (8.4)

For the second part, it is the maximum of

δx(lqx(p1 +
p2 − p1

2
), lqx(p2)), δx(lqx(p2), lqx(p2 +

p3 − p2
2

)). (8.5)
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For the m-th part it is the maximum of

δx(lqx(pm−1 +
pm − pm−1

2
), lqx(pm)), δx(lqx(pm), lqx(1)). (8.6)

We use quantile data summaries to save space and memory for operations
on very large datasets. Hence, we have a limitation on m. The interesting
question is what is an optimal index set P of length m to summarize data
vectors? In the beginning, we usually do not have any information about
x so the P should be chosen in way that works well for all possible data
vectors. Hence, we settle for either

argmin
P

sup
x

SC(shproc(input, x)(p), lqx(p)) =

argmin
P

sup
x

sup
p∈[0,1]

δx(shproc(input, x)(p), lqx(p)),

or
argmin

P
sup
x

IC(shproc(input, x)(p), lqx(p)) =

argmin
P

sup
x

∫ 1

0
δx(shproc(input, x)(p), lqx(p))dp.

We sort out the sup crudity case first. By Lemma 6.6.3, taking the sup
of the max over all x in Equations 8.4, 8.5 and 8.6, we get the maximum of
the following quantities:

1. p1,
p2−p1

2 .
2. p2−p1

2 , p3−p2
2 .

3. p3−p2
2 , p4−p3

2 .
...
m. pm−pm−1

2 , 1− pm.
Hence,

sup
x

sup
p∈[0,1]

δx(shproc(input, x)(p), lqx(p)) =

max
p∈[0,1]

{p1,
p2 − p1

2
,
p2 − p1

2
,
p3 − p2

2
,
p3 − p2

2
,
p4 − p3

2
, · · · , pm − pm−1

2
, 1− pm}.

After omitting the repetitions, we need to minimize:

max{p1,
p2 − p1

2
,
p3 − p2

2
,
p4 − p3

2
, · · · , pm − pm−1

2
, 1− pm},
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over all p1 < p2 < · · · < pm ∈ [0, 1]. We claim that

p1 =
1

2m
, p2 − p1 = 1/m, p3 − p2 = 1/m, · · · , pm−1 = 1/m, pm = 1− 1

2m
,

is the solution. Note that in this case the max is equal to 1/2m. We show
that we cannot do better. Let

α1 = p1,

α2 =
p2 − p1

2
,

α3 =
p3 − p2

2
,

...

αm =
pm − pm−1

2
,

αm+1 = pm.

We have α1+2α2+· · ·+2αm+αm+1 = 1. The αi are non-negative, there are
1+ 2(m− 2) + 1 of them (counting the ones with multiple 2 two times) and
they sum up to 1. If all of them are less than 1

2m the sum will be less than
1. Hence we conclude the maximum is obtained when they are all equal to
1/2m.

Now let us do the integral crudity case. We claim the solution is the
same. We compute the integral in the following, using 6.6.4 in the second
equality:

sup
x

∫ 1

0
δx(lqx(p), shproc(input, x)(p))dp =

sup
x
[

∫ p1+
p2−p1

2

0
δx(lqx(p1), lqx(p))dp +

∫ p2+
p3−p2

2

p1+
p2−p1

2

δx(lqx(p2), lqx(p))dp

+ · · · +

∫ 1

pm−1+
pm−pm−1

2

δx(lqx(pm), lqx(p))dp]
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=

∫ p1+
p2−p1

2

0
|p − p1|dp+

∫ p2+
p3−p2

2

p1+
p2−p1

2

|p − p2|dp+ · · ·+
∫ 1

pm−1+
pm−pm−1

2

|p− pm|dp

=

∫ p1

0
(p1 − p)dp+

∫ p1+
p−p1

2

p1

(p− p1)dp +

∫ p2

p1+
p2−p1

2

(p2 − p)dp

+

∫ p2+
p3−p2

2

p2

(p − p2)dp+ · · ·+
∫ pm

pm−1+
pm−pm−1

2

(pm − p)dp+

∫ 1

pm

(p− pm)dp

=

∫ p1

0
pdp+

∫
p2−p1

2

0
pdp+

∫
p2−p1

2

0
pdp

+

∫
p3−p2

2

0
pdp+ · · · +

∫

pm−pm−1
2

0
pdp+

∫ 1−pm

0
pdp

= (1/2)α2
1 + α2 + · · ·+ α2

m + (1/2)α2
m+1 = (1/2)(α2

1 + 2α2 + · · · + 2α2
m + α2

m+1),

where α1 = p1, α2 =
p2−p1

2 , · · · , αm = pm−pm−1

2 , αm+1 = 1− pm.
We have the restriction α1 + 2α2 + · · · + 2αm + αm+1 − 1 = 0 and αi ≥ 0.
In order to minimize

α2
1 + 2α2

2 + · · ·+ 2α2
m + α2

m+1,

we use Lagrange Multiplier’s Method. Let

f(x1, · · · , xm+1) = x21+2x22 · · ·+2x2m+x2m+1−λ(x1+2x2+· · ·+2xm+xm+1−1).

Taking the partial derivatives and putting them equal to zero, we get:

∂g
∂x1

= 2x1 − λ = 0,

∂g
∂x2

= 4x2 − 2λ = 0,

...
∂g
∂xm

= 4xm − 2λ = 0,

∂g
∂xm+1

= 2xm+1 − λ = 0.

By summing up the equations we get:

2(x1 +2x2 + · · ·+2xm+ xm+1)− 2λ(m− 1)− 2λ = 2− 2λ(m− 1)− 2λ = 0.

Hence λ = 1
m . This gives xi =

1
2m . Hence p1 = pm = 1

2m and p2 − p1 =
· · · = pm − pm−1 =

1
m .
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8.4 Other loss functions

It is well-known that
argmin

a
EX(X − a)2,

is the mean, when it exists. This fact is used in classical statistics for
estimation of parameters and regression. It is also widely claimed that

argmin
a

EX |X − a|,

is “the median”. In particular for data vectors x = (x1, · · · , xn), this will
take the form

argmin
a

1

n

n
∑

i=1

|xi − a|.

It is not clear what is meant by “the median”? For data vectors does it
mean that the classic median (the middle value when there is odd number
of elements and the average of the two middle values otherwise) is the unique
solution? In general, is the answer unique? What is the connection of the
solution to the left and right quantiles? We provide answers to some of these
questions in the following theorem.

Theorem 8.4.1 Suppose X is a random variable and E|X −a| is finite for
some a ∈ R then

argmin
a

E|X − a| = [lqX(
1

2
), rqX(

1

2
)].

Proof

E|X − a| =
∫

R

|X − a|dP =

∫

X>a
(X − a)dP +

∫

X<a
(a−X)dP.

We prove the theorem in three steps:
1. If a < lqX(1/2) then E|X − a| > E|X − lqX(1/2)|.
2. If a > rqX(1/2) then E|X − a| > E|X − rqX(1/2)|.
3. If lqX(1/2) ≤ a, b ≤ rqX(1/2) then E|X − a| = E|X − b|.

Step 1. Let b = lqX(1/2) and ǫ = b− a > 0. Then
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E|X − b| =
∫

X≥b
(X − b)dP +

∫

X<b
(b−X)dP

=

∫

X≥b
(X − a− ǫ)dP +

∫

X<b
(a+ ǫ−X)dP

≤
∫

X≥b
|X − a| − ǫdP +

∫

X<b
(|X − a|+ ǫ)dP

= E|X − a| − ǫ(P (X ≥ b)− P (X < b)).

But P (X ≥ b) − P (X < b) is non-negative since P (X < lqX(1/2)) ≤ 1/2.
Hence E|X − b| ≤ E|X − a|. To show that the equality cannot happen take
a < a′ < b and let ǫ′ = a′ − a then

E|X − a′| =
∫

X≥a′
(X − a′)dP +

∫

X<a′
(a′ −X)dP

=

∫

X≥a′
(X − a− ǫ′)dP +

∫

X<a′
(a+ ǫ′ −X)dP

≤
∫

X≥a′
|X − a| − ǫ′dP +

∫

X<a
(|X − a|+ ǫ′)dP

= E|X − a| − ǫ′(P (X ≥ a′)− P (X < a′)).

But P (X ≥ a′) − P (X < a′) is positive since P (X < a′) < 1/2 and a′ <
lqX(p) ⇒ P (X < a′) < 1/2. Hence E|X − a′| < E|X − a|. But also since
a′ < b, we have

E|X − b| ≤ E|X − a′| < E|X − a|.
Step 2. For a > rqX(1/2) = c one can either repeat a similar argument
to that in Step 1 or use the Quantile Symmetry Theorem as we do here.
Consider the random variable −X. Then

a > rqX(1/2) ⇒ −a < −rqX(1/2) = lq−X(1/2)

Now since −a < −c = lq−X(1/2) by applying Step 1 to −X, we get

E| −X − (−c)| < E| −X − (−a)| ⇒ E|X − a| < E|X − c|.

Step 3. If lqX(1/2) = rqX(1/2) the result is trivial. Otherwise let b =
lqX(1/2) < rqX(1/2) = c and a < a′ ∈ [b, c]. By Lemma 5.3.1 if lqX(p) <
rqX(p). So P (X ≤ lqX(p)) = p and P (X ≥ rqX(p)) = 1 − p. Hence
P (X ≤ b) = P (X ≥ c) = 1/2. Let ǫ = a′ − a. Then
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E|X − a| =

∫

b<X<c
|X − a|dP +

∫

X≥c
(X − a)dP +

∫

X≤b
+ǫ/2− ǫ/2

=

∫

X≥c
(X − a− ǫ)dP +

∫

X≤b
(a−X + ǫ)dP

=

∫

X≥c
(X − a′)dP +

∫

X≤b
(a′ −X)dP

= E|X − a′|.

Corollary 8.4.2 Suppose FX is continuous and ∃a ∈ R, E|X − a| < ∞.
Then

argmin
a

E|X − a| = {a|F (a) = 1/2}.

Proof Note that if F is continuous F (a) = p ⇔ a ∈ [lqX(p), rqX(p)], by
Lemma 5.5.2.

Now let us find
argmin

a
E(δF (X, a)).

We solve the problem for continuous variables only here and leave the general
case as an interesting open problem. Our conjecture is that the same result
holds in general.

Lemma 8.4.3 Suppose X be a random variable with continuous distribu-
tion function F . Then

argmin
a

E(δF (X, a)) = [lqX(1/2), rqX (1/2)].

Proof If F is continuous then F (X) ∼ U(0, 1). Also δF (X, a) = |F (X) −
F (a)|.

argmin
a

E(δF (X, a)) = argmin
a

∫

Ω
|F (X) − F (a)|dP.

The last expression is minimized if F (a) equals the median of the uniform.
We conclude F (a) = 1/2 and the proof is complete.
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8.4.1 Optimal index vectors for assigning quantiles to a
random sample

Given a sample X1, · · · ,Xn, i.i.d ∼ X, we can find the sample order statis-
tics X(i), i = 1, · · · , n. Suppose we want to assign these order statistics
to quantiles, lqX(pi), i = 1, · · · , n, of the true distribution of X. In other
words, what is the optimal index vector P = (p1, · · · , pn) to assign lqX(pi)
to X(i). This can be used to make a qq–plot. We define the optimal vector
to be the index vector that minimizes the expected probability loss

E[
1

n

n
∑

i=1

δX(X(i), lqX(pi))].

We only solve the problem for continuous variables and leave the general
case as an open problem. Under the continuity assumption, we have

E[
1

n

n
∑

i=1

δX(X(i), lqX(pi))] =
1

n

n
∑

i=1

E(|FX (X(i))− pi|),

which is minimized if and only if the individual terms E(|FX(X(i)) − pi|)
are minimized. Since FX is a continuous random variable, FX(X(i)) is also
continuous. Hence the minimum is obtained by solving P (FX(X(i)) ≤ x) =
1/2 by the corollary of Theorem 8.4.1. By Lemma 5.5.1, this is equivalent
to P (X(i) ≤ rqF (x)) = 1/2. The distribution of the order statistics, X(i) is
given by

P (X(i) ≤ y) =

n
∑

j=i

(

n

j

)

F (y)j(1− F (y))n−j ,

as discussed by Casella and Berger in [11]. Hence, the minimum is obtained
by solving

n
∑

j=i

(

n

j

)

F (rqX(x))j(1− F (rqX(x)))n−j =

n
∑

j=i

(

n

j

)

xj(1− x)n−j = 1/2,

which does not have a closed form solution in general. Also note that the
solution does not depend on F . However, the solution always exists and
is unique since

∑n
j=i

(n
j

)

xj(1 − x)n−j is increasing, continuous on (0,1) and
ranges between 0 and 1. We also prove that the resulting index vector
is symmetric in the sense that pn−i+1 = 1 − pi, i = 1, 2, · · · , n. For the
proof, consider the random sample (Y1, · · · , Yn) = (−X1, · · · ,−Xn). Then
the sorted vector is (Y(1), · · · , Y(n)) = (−X(n), · · · ,−X(1)). Hence Y(i) =
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−X(n−i+1). Suppose p1, · · · , pn is an optimal summary index vector. Then
pi is the solution of the first equation below

argmin
a

E|FY (Y(i))− a| = argmin
a

E|1− FX(Y(i))− a| =

argmin
a

E|FX(X(n−i+1))− (1− a)|.

But if we let b = 1−a the solution to the last equation is b = 1−a = pn−i+1.
We conclude that pi = 1− pn−i+1.

As examples, we solve the equation for n = 1, 2, where closed form
solutions exist.
n = 1. Then X(1) = X1. It is easy to see that the solution is p = 1/2.
n = 2. Then we want to solve two equations

2
∑

j=1

(

2

j

)

xj(1− x)2−j = 1/2,

and
2
∑

j=2

(

2

j

)

xj(1− x)2−j = 1/2,

which are equivalent to

2x(1− x) + x2 = 1/2,

and
x2 = 1/2,

We get p1 =
1√
2
and p2 = 1− 1√

2
.

Note that in general for n, the last equation is xn = 1/2. Hence pn =
1/ n

√
2 and p1 = 1− 1/ n

√
2.
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Chapter 9

Quantile distribution
distance and estimation

9.1 Introduction

This chapter uses the probability loss function as a basis for estimating
unknown parameters of a distribution and defining a distance among distri-
bution functions. The “probability loss” and “c-probability loss” functions
were introduced to measure the distance between quantiles. This is not the
same as any other specific loss functions that have been proposed in sta-
tistical decision theory [30], where the loss function, L, is the loss of the
statistician in estimating the true parameter vector θ = (θ1, · · · , θk) ∈ Θ,
by an estimator θ̂(X1, · · · ,Xn) which is a function of the data (a random
sample X1, · · · ,Xn drawn from the distribution parameterized by θ). The
estimator is then chosen in such a way that L(θ̂(X1, · · · ,Xn), θ) becomes
small in some sense. However, it is not possible to use the probability loss
function in the same manner for parameter estimation. We defined

δX(z′, z) = δX(z, z′) = P (z′ < X < z), z′ ≤ z, z, z′ ∈ R.

Now it is clear that δX(θ, a) cannot even be evaluated since θ is a k-
dimensional vector and k is possibly greater than 1. This chapter presents
two methods to estimate the parameters of distributions. More theoretical
and applied development is necessary to justify such estimation procedures
which we leave for future research. The first method derives from consid-
ering families of distributions that are identified by their values on certain
quantiles and the second method from defining a distance among distribu-
tions and then trying to minimize that distance.

These methods are designed to give estimates that are equivariant un-
der continuous strictly monotonic transformations. The distances associated
with probability measures in this section are based on the distances between
the quantiles using the probability loss function and they are invariant under
monotonic transformations. This property does not hold in classical meth-
ods. For example the sample mean x̄, an estimator of the location parameter
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for normal distribution is equivariant under linear transformations but not
all continuous strictly monotonic transformations.

Quantile distance allows us to measure closeness of distributions to each
other. We also define a quantile distance for the tails of the distributions. We
show that even though two distributions are very close in terms of “overall
quantile distance”, they might not be very close in terms of “tail quantile
distance”. This shows that to study extremes (for example extremely hot
temperature) if we use a good overall fit, our results might not be reliable.
We use this observation in the next chapter in choosing our method of
studying extreme temperature events.

9.2 Quantile–specified parameter families

This section considers families of distributions that are identified by their
values on certain quantiles. In this case the parameters in the vector θ =
(θ1, · · · , θk) are certain quantiles. Then we use the “probability loss” or the
“c-probability loss” to characterize the loss and thus yield optimal parameter
estimators.

Definition A family of random variables {Xθ}θ=(θ1,··· ,θk)∈Θ, and a proba-
bility index vector P = (p1, · · · , pk), 0 ≤ p1 < p2 < · · · < pk ≤ 1 are called a
left–quantile–specified family if

(θ1, · · · , θk) = (lqXθ
(p1), · · · , lqXθ

(pk)),

and the distribution of Xθ is know given θ. Note that this implies that θ ∈ Θ
then θ1 ≤ θ2 ≤ · · · θk.

We can similarly define:

Definition A family of random variables {Xθ}θ=(θ1,··· ,θk)∈Θ, and a proba-
bility index vector P = (p1, · · · , pk), 0 ≤ p1 < p2 < · · · < pk ≤ 1 are called a
right–quantile–specified family

(θ1, · · · , θk) = (rqXθ
(p1), · · · , rqXθ

(pk)),

and the distribution of Xθ is know given θ. Note that this implies that θ ∈ Θ
then θ1 ≤ θ2 ≤ · · · ≤ θk.

Example Consider the family {U(0, 2a)}a∈R+ , of uniformly distributed ran-
dom variables on (0, 2a), a > 0. Then, we can express this family as
the quantile–specified family {Xθ}θ∈R+ with P = (1/2). The reason is if
Xθ ∼ U(0, 2a) then θ = lqXθ

(1/2) = a.
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Example Consider the family N = {N(µ, σ2)| − ∞ < µ < +∞, σ2 >
0}. Then we claim this is a quantile–specified family. To verify that claim
let P = (1/2, p2) where p2 = P (Z ≤ 1) and Z has the standard normal
distribution. Let

µ = lqX(1/2) = θ1,

and
µ+ σ2 = lqX(p2) = θ2.

Then we can equivalently represent N by {Xθ}θ=(θ1,θ2)∈Θ, where

Θ = {(θ1, θ2)|θ1 < θ2}.
Because (µ, σ2) is in 1:1 correspondence with θ = (θ1, θ2) as defined above,
where

P (X ≤ µ+ σ2) = P (Z ≤ 1) = p2.

Note that this representation is not unique. For example, we can take P =
(1/2, p2) with p2 = P (Z ≤ 2). Then the alternate re-parametrization in
terms of variables is

µ = lqX(1/2) = θ1,

and
µ+ 2σ2 = lqX(p2) = θ2.

It should be clear that if the goal is to infer the parameters of the original
family, i.e. a in U(0, 2a) and (µ, σ2) then it is desirable that the θi are simple
functions of the original parameters and the original parameters be easily
obtainable from the θi. Linear combinations seem to be the easiest to handle.

We suggest the following framework to estimate the parameters:

• Express the original parameterized family Xβ as a quantile specified
family Xθ with P = (p1, · · · , pk).

• Use

argminDi∈FE[L(θi,Di(input)], i = 1, · · · , k
where input is the information available to us, usually a random sam-
ple,

(X1, · · · ,Xn),

Di is an estimator of θi = lqX(pi) (a function of the random sample),
L is a loss function and F is the class of the estimators. The loss
functions of our interest are L = δXθ

and L = δcXθ
, c > 0.
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9.2. Quantile–specified parameter families

• Using the estimated parameters solve for the original parameters, the
βi.

Note that δcXθ
, c > 0 depends on the unknown distribution function Xθ.

Many issues in the above framework need to be addressed including: the
existence and uniqueness of the argmin, properties of the estimators and
so on which we leave for future research. In next subsections we show the
Equivariance property of the method and apply it to a particular class of
estimators using simulations.

9.2.1 Equivariance of quantile–specified families estimation

Here, we show the equivariance property of estimation using quantile–specified
families in the following lemmas.

Lemma 9.2.1 Suppose {Xθ}θ∈Θ is left–quantile–specified with

P = (p1, · · · , pk),
and φ is a continuous strictly increasing transformation which induces a
map on R

k:
Φ : Rk → R

k,

(θ1, · · · , θk) 7→ (φ(θ1), · · · , φ(θk)).
Let Θ′ = Φ(Θ), θ′ = Φ(θ) for θ ∈ Θ and consider the family of distributions
Yθ′ = φ(Xθ). Then {Yθ′}θ′∈Θ′ is also a left–quantile–specified family with
the same index vector P = (p1, · · · , pk).

Proof Suppose the distribution of Xθ is specified by Fθ. Then

P (Yθ′ ≤ a) = P (φ(Xθ) ≤ a)

= Fθ(φ
−1(a)) = FΦ−1(θ′)(φ

−1(a)).

Hence the distribution of Yθ′ is known given θ′. It remains to show that for
θ′ ∈ Θ′,

(θ′1, · · · , θ′k) = (lqYθ′
(p1), · · · , lqYθ′

(pk)).

But

(lqYθ′
(p1), · · · , lqYθ′

(pk)) =

(lqφ(Xθ)(p1), · · · , lqφ(Xθ)(pk)) =

(φ(lqXθ
(p1)), · · · , φ(lqXθ

(pk))) =

(φ(θ1), · · · , φ(θk)) =

(θ′1, · · · , θ′k) .
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9.2. Quantile–specified parameter families

Lemma 9.2.2 Suppose {Xθ}θ∈Θ is left–quantile–specified with

P = (p1, · · · , pk),

and φ is a continuous strictly decreasing transformation which induces a
map on R

k:
Φ : Rk → R

k,

(θ1, · · · , θk) 7→ (φ(θk), · · · , φ(θ1)).
Let Θ′ = Φ(Θ), θ′ = Φ(θ) for θ ∈ Θ and consider the family of distributions
Yθ′ = φ(Xθ). Then {Yθ′}θ′∈Θ′ is a right–quantile–specified family with the
index vector P = (1− pk, · · · , 1− p1).

Proof Suppose the distribution of Xθ is specified by Fθ. Then since Fθ the
left closed distribution of Xθ is known, the right closed distribution of Xθ,
Gc

X(Xθ) is also known. Then

P (Yθ′ ≤ a) = P (φ(Xθ) ≤ a) = P (Xθ ≥ φ−1(a))

= Gc
θ(φ

−1(a)) = Gc
Φ−1(θ′)(φ

−1(a)),

where Gc
θ is the right closed distribution function. Hence the distribution of

Yθ′ is known given θ′. It remains to show that for θ′ ∈ Θ′,

(θ′1, · · · , θ′k) = (rqYθ′
(1− pk), · · · , rqYθ′

(1− p1)).

But

(rqYθ′
(1− pk), · · · , rqYθ′

(1− p1)) =

(rqφ(Xθ)(1− pk), · · · , rqφ(Xθ)(1− p1)) =

(φ(lqXθ
(pk)), · · · , φ(lqXθ

(p1))) =

(φ(θk), · · · , φ(θ1)) =

(θ′1, · · · , θ′k).

For a parameter θ, we want to find

argminD∈FE(δX (lqX(p),D))
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9.2. Quantile–specified parameter families

where F is a family of estimators for θ and D ∈ F is a function

D : Rn → R,

where n is the size of the sample and D(X1, · · · ,Xn) is the estimator of
θ = lqX(p).

Lemma 9.2.3 Suppose a random sample X1, · · · ,Xn is given, Xθ is a left–
quantile–specified family with θ = lqX(p), φ a strictly monotonic continuous
transformation on R, F is a family of estimators to estimate θ and the
following argmin is nonempty

argminD∈FE(δX(lqX(θ),D)),

and let F ′ = φ(F). Then
a) if φ is strictly increasing

argminD′∈F ′E(δφ(X)(lqφ(X)(p),D
′)) = φ(argminD∈FE(δX (lqX(p),D)))

b) if φ is strictly decreasing

argminD′∈F ′E(δφ(X)(lqφ(X)(p),D
′)) = φ(argminD∈FE(δX(rqX(1−p),D)))

Proof We only prove a) and b) is similar.

min
D′∈F ′

E(δφ(X)(lqφ(X)(p),D
′))

= min
D∈F

E(δφ(X)(φ(lqX)(p), φ(D)))

= min
D∈F

E(δX(lqX(p),D))

Note that for a general family of estimators, F

argminD∈FE(δX (lqX(p),D))

depends on the unknown distribution X by δX . We suggest two possible
ways to get around this issue:

• Restrict to a family F that

argminD∈FE(δX(lqX(p),D))

does not depend on the distribution.
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9.2. Quantile–specified parameter families

• Use the empirical distribution to approximate the expression

E(δX (lqX(p),D)).

We will not explore the second method here and leave it for future re-
search. Next subsection shows an important instance of the first method.

9.2.2 Continuous distributions with the order statistics
family of estimators

Suppose that the desired distribution X is continuous then

E(δX (lqX(p),D)) = E|FX(lqX(p))− FX(D)| = E|p− FX(D)|.
Now suppose a random sample X1, · · · ,Xn is given and we want to estimate
lqX(p). We restrict to an important family of estimators, order statistics:

F = {X1:n, · · · ,Xn:n}.
Then for i = 1, · · · , n:

E|p − FX(Xi:n)|,
does not depend on FX . This is because the distribution of FX(Xi:n) does
not depend on FX . It can be obtained as shown below:

Gi(y) = P (FX(Xi:n) ≤ y) = P (Xi:n ≤ lqX(y)) =
n
∑

j=i

(

n

j

)

P (X1, · · · ,Xj ≤ lqX(y) and Xj+1, · · · ,Xn > lqX(y)) =

n
∑

j=i

(

n

j

)

P (X ≤ lqX(y))jP (X > lqX(y))n−j =

n
∑

j=i

(

n

j

)

yj(1− y)n−j .

By taking the derivative of the above expression we can find the density
function gi(p) and conclude:

E|p − FX(Xi:n)| =
∫ 1

0
|p − y|gi(y)dy.

For a given p we want to find the i that minimize above which does not
on FX . We can approach this problem theoretically to find such an i. Or
we could try to estimate these integral using numerical methods. However,
here we use simulation for two examples and leave the general case for future
research.
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9.3. Probability divergence (distance) measures

Example Consider a family of continuous variables, quantile–specified by
P = (1/2, P (Z ≤ 1)) where Z is the standard normal. Suppose a ran-
dom sample X1, · · · ,Xn is given and we want to estimate lqX(1/2) and
lqX(P (Z ≤ 1)) using the family of estimators, order statistics:

F = {X1:n, · · · ,Xn:n}.

We estimate the parameters for n = 25 and n = 20. In order to minimize the
loss we can approximate the loss by approximating the integral in Equation
9.2.2 or approximating

E|p − FX(Xi:n)|,
using an arbitrary continuous distribution such as standard normal to do
the simulations. For a large number M , we create M samples of length n
from normal and for every sample we find the i that minimize the loss. Then
for every i, we compute the mean of such losses and find out which has the
smallest mean loss. We do that for M = 1, · · · , 1000. The results for n = 25
are given in Figure 9.1. We see that for large M the estimator for lqX(1/2)
is X13:25 and for lqX(P (Z < 1)) it is X22:25. The results for n = 20 are given
in Figure 9.2. The estimator for lqX(1/2) has changed between X10:20 and
X11:21 and it is X18:20 for lqX(P (Z ≤ 1)). This shows that the argmin is
not necessarily unique.

9.3 Probability divergence (distance) measures

In probability theory, physics and statistics several measures have been intro-
duced as the “distance” of two probability measures (or random variables).
These measures have several applications, one of which is parameter estima-
tion. We list some of these measures in this section. The next section then
introduces new measures of distance among probability measures using the
c-probability loss functions (c ≥ 0).

• The Kullback-Leibler (KL) distance: Suppose P,Q are probability
measures and P is absolutely continuous with respect to Q. Then
consider the Radon-Nikodym derivative of P with respect to Q, dP

dQ
[See [9]]. Then we define:

DKL(P,Q) =

∫

Ω
log

dP

dQ
dP.

If P and Q have density functions over R, p(x), q(x) then
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Figure 9.1: The order statistics family members that estimate lqX(1/2) and
lqX(P (Z ≤ 1)) for a random sample of length 25 obtained by generating
samples of size 1 to 1000 from a standard normal distribution
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Figure 9.2: The order statistics family members that estimate lqX(1/2) and
lqX(P (Z ≤ 1)) for a random sample of length 20 obtained by generating
samples of size 1 to 1000 from a standard normal distribution
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9.3. Probability divergence (distance) measures

∫

R

p(x)log(
p(x)

q(x)
)dx.

The symmetric version of this distance is called Kullback-Jeffreys

DKJ(P,Q) = DKL(P,Q) +DKL(Q,P ).

We show that the Kullback-Leibler distance is invariant under bijec-
tive differentiable monotonic transformations when the density func-
tions exists and are positive everywhere on the real line. Let g be
a monotonic, bijective and differentiable (bijective and differentiable
will automatically imply strictly monotonic) transformation and X,Y
random variables with density functions fX(x) and fY (x), positive
on R. Then the density functions of g(X) and g(Y ) are respectively
(g−1)′(x)fX(g−1(x)) and (g−1)′(x)fY (g−1(x)). Hence

DKL(φ(X), φ(Y )) =
∫∞
−∞(g−1)′fX(g−1(x)) log (g−1)′fX(g−1(x))

(g−1)′fY (g−1(x))dx =
∫∞
−∞(g−1)′fX(g−1(x)) log (fX(g−1(x))

fY (g−1(x))
dx.

We use the change of variable x = g(y). Then dx = (g−1)′dy and the
proof is complete. For the strictly decreasing case note that the density
function of g(X) and g(Y ) are respectively −(g−1)′(x)fX(g−1(x)) and
−(g−1)(x)′fY (g−1(x)) and a similar argument works. We leave the
general case (where the density function does not exist or is not positive
over all the real line) as an open(?) problem.

• Let P and Q be two probability distributions over a space Ω such
that P is absolutely continuous with respect to Q. Then, for a convex
function f such that f(1) = 0, the f -divergence of Q from P is

If (P,Q) =

∫

Ω
f

(

dP

dQ

)

dQ.

Note that the same argument as the one for KL distance shows that
this distance is invariant for monotonic differentiable bijective trans-
formations when the density functions exist and are positive.
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9.3. Probability divergence (distance) measures

• The Kolmogorov-Smirnov distance: Suppose X,Y are random vari-
ables on R with distribution functions FX and FY . Then

KS(X,Y ) = sup
x∈R

|FX (x)− FY (x)|.

The Gilvenko-Cantelli Theorem states that if X1, · · · ,Xn is a random
sample drawn from the distribution Fθ0 and Fn, the empirical distri-
bution function

lim
n→∞

KS(Fθ0 , Fn) > ǫ = 0, a.s..

Note that the KS metric is invariant under monotonic transforma-
tions. Take φ to be strictly monotonic on R. Then

sup
x∈R

|Fφ(X)(x)− Fφ(Y )(x)| =

sup
x∈R

|FX (φ−1(x)) − FY (φ
−1(x))| =

sup
φ−1(x)∈R

|FX (φ−1(x)) − FY (φ
−1(x))| =

sup
x∈R

|FX(x)− FY (x)|.

Although theKS metric is invariant under strictly monotonic transfor-
mations, it is not intuitively very appealing as we show in the following
example.

Example Consider X ∼ U(0, 1), Y ∼ U(1/2, 3/2) and let Z be dis-
tributed as FZ :

FZ(z) =























0 z < 0

1/2 0 ≤ z ≤ 1/2

z 1/2 < z < 1

1 z ≥ 1

.

Then we have KS(X,Y ) = KS(X,Z) = 1/2. But we observe that
FZ matches FX on (1/2, 1) while FX and FY differ by 1/2 on (0, 1).
Another way to see the defect is the quantiles of Z and X match half
of the time but the quantiles of X and Y are off as much as one half
of a unit at all times.
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To overcome the above problem one might (naively) suggest using an
integral version

IKS(X,Y ) =

∫

x∈R
|FX(x)− FY (x)|dx.

However, this definition is not well-defined. To see that consider
FX(x) = 1 − 8/x, x > 8 and FY (x) = 1 − 9/x, x > 9. Then
|FX(x) − FY (x)| = 1/x on [8,∞], which does not have finite inte-
gral. It is also not invariant under strictly monotonic transformations
for if φ is strictly monotonic and differentiable,

IKS(φ(X), φ(Y )) =

∫

x∈R
|FX(φ−1(x))− FY (φ

−1(x))|dx.

In the right hand side of the above equation the factor (φ−1)′, that
would make the distance invariant under transformations, is missing.

• Lévy distance: Suppose (Ω,Σ, Pθ)θ∈Θ be a statistical space, where the
Pθ are probability measures on Ω with σ-field Σ. Then we define

Lev(Fθ1 , Fθ2) = inf{ǫ > 0|Fθ1(x− ǫ) < Fθ2(x) < Fθ1(x+ ǫ), ∀x ∈ R}.

It can be shown that convergence in the Lévy metric implies weak
convergence for distribution function in R [31]. It is shift invariant
but not scale invariant as discussed in [31].

9.4 Quantile distance measures

This section introduces the quantile distance measure to measure the dis-
tance among distribution functions on R (or random variables). We begin
with a general definition using the quantiles and then consider interesting
particular cases. The intuition behind all these metrics lies in their capabil-
ity to measure the separation in the quantiles of two random variables.

Definition Suppose a statistical space (Ω, P, {Xθ}θ∈Θ) and a loss function
L defined over the extended real numbers R ∪ {−∞,+∞} are given. Also
let E be a measurable subset of (0,1) and dµE is a measure on E. Then we
can define the following two measures of distance between Xθ1 and Xθ2 ,
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SQDE
L (Xθ1 ,Xθ2) = sup

p∈E
L(lqXθ1

(p), lqXθ2
(p)),

and

IQDE
L (Xθ1 ,Xθ2) =

∫

p∈E
L(lqXθ1

(p), lqXθ2
(p))dµE ,

which we call the sup quantile distance and integral quantile distance re-
spectively.

Remark. Note that in general SQDE
L and IQDE

L are neither well-defined
nor metrics on the space of random variables..
Remark. We can also take L(rqXθ1

(p), rqXθ2
(p)) in the above definitions.

Remark. The natural choice for E is (0, 1) and the measure µ = L, where
L is the Lebègues measure on (0, 1). However, one might choose another
E depending on the purpose. For example E = (0.8, 1) might be more
appropriate if the purpose is modeling the high extremes.
Remark. Interesting choices for L are δXθ1

, δcXθ1
, δXθ1

+ δXθ2
and δcXθ1

+

δcXθ2
. Note that in all these cases the quantile distance is defined since these

quantities are bounded respectively by 1, 1 + c, 2, 2 + 2c.
The rest of this report focuses on quantile distances obtained from c-

probability losses (c ≥ 0). (Note that c = 0 corresponds to the usual prob-
ability loss.)

9.4.1 Quantile distance invariance under continuous strictly
monotonic transformations

This subsection show the invariance of quantile distance under strictly mono-
tonic tranformations in the following lemmas.

Lemma 9.4.1 (Quantile distance invariance under continuous strictly in-
creasing transformations)
Suppose X,Y are random variables, let

IQDE
δcX

(X,Y ) =

∫

E
L(lqX(p), lqY (p))dµE ,

and
SQDE

δcX
(X,Y ) = sup

p∈E
L(lqX(p), lqY (p)),

where E ⊂ (0, 1), c ≥ 0 and µE is a measure on E. Then

IQDE
δcX

(X,Y ) = IQDE
δc
φ(X)

(φ(X), φ(Y )),
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and
SQDE

δcX
(X,Y ) = SQDE

δc
φ(X)

(φ(X), φ(Y )),

for all φ : R → R continuous and strictly increasing transformations.

Proof The proof attains from noting that

δφ(X)(lqφ(X)(p), lqφ(Y )(p)) =

δφ(X)(lqφ(X)(p), lqφ(Y )(p)) + c(1− 1{0}(lqφ(X)(p)− lqφ(Y )(p))) =

δφ(X)(φ(lqX(p)), φ(lqY (p))) + c(1 − 1{0}(lqX(p)− lqY (p))) =

δX(lqX(p), lqY (p)) + c(1− 10(lqX(p)− lqY (p))) =

δcX(lqX(p), lqY (p)).

Remark. The above lemma is also true for δcX + δcY , which follows imme-
diately.

Lemma 9.4.2 If E a measurable subset of [0,1] then the two following dis-
tance measures are equal:

LQDE
δX

(X,Y ) =

∫

E
δX(lqX(p), lqY (p))dp,

and

RQDE
δX

(X,Y ) =

∫

E
δX(rqX(p), rqY (p))dp.

The following two measures are also equal:

LQDE
δX+δY

(X,Y ) =

∫

E
(δX + δY )(lqX(p), lqY (p))dp,

and

RQDE
δX+δY

(X,Y ) =

∫

E
(δX + δY )(rqX(p), rqY (p))dp.

Proof We prove the first part part of the lemma and the second part is
deduced from the first. We showed in the quantile definition section that
the set {p|lqX(p) 6= rqX(p)} is countable. Hence,

{p|lqX(p) 6= rqX(p)} ∪ {p|lqY (p) 6= rqY (p)},
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is also countable. In the complement of this set

δX(lqX(p), lqY (p)) = δX(rqX(p), rqY (p)).

Hence the integral values are the same.

Remark. Note that the above theorem also holds for any measure µ on
any E ⊂ (0, 1) which is continuous with respect to the Lebègue measure.
Because of this lemma we will not worry about the left or right quantile in
the definitions.

The following lemma establishes a relationship between LQDδX and
LQDδcX

.

Lemma 9.4.3 Let E be a measurable subset of [0,1] and

kE = L{p ∈ E|lqX(p) 6= lqY (p)},

where L is the Lebègue measure. Let

LQDE
δcX

(X,Y ) =

∫

E
δcX(lqX(p), lqY (p))dp,

and

LQDE
δX

(X,Y ) =

∫

E
δX(lqX(p), lqY (p))dp.

Then
LQDE

δcX
(X,Y ) = LQDE

δX
(X,Y ) + ckE .

Proof

LQDδcX
(X,Y ) =

∫

E
δcX(lqX(p), lqY (p))dp =

∫

lqX(p)=lqY (p),p∈E
δcX(lqX(p), lqY (p))dp +

∫

lqX(p)6=lqY (p),p∈E
δcX(lqX(p), lqY (p))dp =

∫

lqX(p)=lqY (p),p∈E
δX(lqX(p), lqY (p))dp +

∫

lqX(p)6=lqY (p),p∈E
[δX(lqX(p), lqY (p)) + c(1− 1{0})(lqX(p)− lqY (p))]dp =

LQDE
δX

(X,Y ) + ckE .
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Remark. Note that the same is true for RQDE
δcX

and RQDE
δX

. Also

L{p ∈ E|lqX(p) 6= lqY (p)} = L{p, p ∈ E|rqX(p) 6= rqY (p)},

because lqX , rqX and lqY , rqY are unequal only on a measure zero set. Hence
the constant kE is the same as before and

RQDE
δcX

(X,Y ) = RQDE
δX

(X,Y ) + ckE .

Lemma 9.4.4 Suppose E a measurable subset of [0,1] then the two follow-
ing distance measures are equal

LQDE
δcX

(X,Y ) =

∫

p∈E
δcX(lqX(p), lqY (p))dp,

and

RQDE
δcX

(X,Y ) =

∫

p∈E
δcX(rqX(p), rqY (p))dp.

Also these two measures are equal

LQDE
δcX+δcY

(X,Y ) =

∫

p∈E
(δcX + δcY )(lqX(p), lqY (p))dp,

and

RQDE
δcX+δcY

(X,Y ) =

∫

p∈E
(δcX + δcY )(rqX(p), rqY (p))dp.

Proof

This is a straightforward consequence of the previous two lemmas.

Remark. Note that the above theorem also holds for any measure µ on
any E ⊂ (0, 1) which is continuous with respect to the Lebègue measure.

Lemma 9.4.5 (Quantile distance invariance under continuous strictly mono-
tonic transformations)
Suppose X,Y are random variables and let

QDE(X,Y ) = LQDE
δX

(X,Y ), (9.1)

QDE
c (X,Y ) = LQDE

δcX
(X,Y ), (9.2)
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where, E ⊂ (0, 1) symmetric, meaning p ∈ E ⇔ (1− p) ∈ E, and µ is abso-
lutely continuous with respect to the Lebègue measure and symmetric on E
in the sense that if A is measurable then so is 1−A while µ(A) = µ(1−A).
Then 9.1 and 9.2 are invariant under continuous strictly monotonic trans-
formations, i.e.
a) QDE(φ(X), φ(Y )) = LQDE

δφ(X)
(φ(X), φ(Y )) = QDE(X,Y ) = QDE

δX
(X,Y ),

b) QDE
c (φ(X), φ(Y )) = LQDE

δc
φ(X)

(φ(X), φ(Y )) = QDE
c (X,Y ) = QDE

δcX
(X,Y ).

Proof For φ continuous and strictly increasing transformations, we have
shown the result in Lemma 9.4.1. Suppose φ is continuous and strictly
decreasing.
a) We use lqφ(X)(p) = φ(rqX(1− p)) which we proved above using quantile
symmetries:

δφ(X)(lqφ(X)(p), lqφ(Y )(p)) =

δφ(X)(φ(rqX(1− p)), φ(rqY (1− p))) =

δ−φ(X)(−φ(rqX(1− p)),−φ(rqY (1 − p))),

where the last equality is because δX(a, b) = δ−X(−a,−b). Now since −φ is
continuous and increasing, the above is equal to

δX(rqX(1− p), rqY (1− p)).

We use this result in the following:

QDE(X,Y ) =

∫

E
δX(lqX(p), lqY (p))dµE

=

∫

E
δX(rqX(1− p), rqY (1− p))dµE .

Then we do a change of variable p → (1− p) and by symmetry of µ, we find
that the above is equal to

∫

E
δX(rqX(p), rqY (p))dµE .

But by the previous lemmas and since µ is continuous with respect to the
Lebègue measure, this is equal to

∫

E
δX(lqX(p), lqY (p))dµE .
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b) We only consider continuous and strictly decreasing functions φ:

LQDE
δc
φ(X)

(φ(X), φ(Y )) =
∫

E
c(1 − 1{0}(lqφ(X)(p)− lqφ(Y )(p)))dp + LDQδφ(X)

(X,Y ) =

ckE + LDQE
δφ(X)

(φ(X), φ(Y )),

where,

kE = µ{p ∈ E|lqφ(X)(p) 6= lqφ(Y )(p)} =

µ{p ∈ E|φ(rqX(1− p)) 6= φ(rqY (1− p))} =

µ{p ∈ E|rqX(1− p) 6= rqY (1− p)} =

µ{p ∈ E|rqX(p) 6= rqY (p)} =

µ{p ∈ E|lqX(p) 6= lqY (p)}.

We showed in a) that

LDQE
δφ(X)

(φ(X), φ(Y )) = LDQE
δX

(X,Y )

and because we just showed that kE = µ{p ∈ E, |(lqX(p)) 6= (lqY )(p)}, we
conclude

DQE
δc
φ(X)

= ckE+LDQE
δφ(X)

(φ(X), φ(Y )) = ckE+LDQE
δX

(X,Y ) = LQDE
δcX

(X,Y ).

9.4.2 Quantile distance closeness of empirical distribution
and the true distribution

The next theorem shows that the quantile distance between the sample
distribution and the true distribution tends to zero when the sample size
becomes large.

Theorem 9.4.6 Let X1,X2, · · · be an i.i.d. random sample drawn from an
arbitrary distribution function F . Then

(a) SQDδX (F,Fn) = sup
p∈(0,1)

δF (lqFn(p), lqF (p)) → 0., a.s.,
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and

(b) IQDδX (F,Fn) =

∫

p∈(0,1)
δF (lqFn(p), lqF (p)) → 0., a.s..

Proof

We only need to prove (a) since (b) is a straightforward consequence of
(a). Clearly lqFn(p) = Xi:n for p ∈ ((i − 1)/n, i/n], i = 1, 2, · · · , n. Also
F c
n(Xi:n) ≥ i/n and F o

n(Xi:n) ≤ (i − 1)/n. Pick an N large enough in the
Glivenko-Cantelli Theorem such that

n > N ⇒ |Fn(x)− F (x)| < ǫ, and |F o
n(x)− F o(x)| < ǫ,

uniformly in x. Consider two cases:
Case I: Xi:n < lqF (p). Then

δF (lqFn(p), lqF (p)) = δF (Xi:n, lqF (p)) =

F o(lqF (p))− F c(Xi:n) ≤ F o(lqF (p))− F c
n(Xi:n) + ǫ

≤ p− i/n+ ǫ ≤ ǫ.

Case II: Xi:n > lqF (p). Then

δF (lqFn(p), lqF (p)) = δF (Xi:n, lqF (p)) =

F o(Xi:n)− F c(lqF (p)) ≤ F o
n(Xi:n) + ǫ− p

≤ (i− 1)/n + ǫ− p ≤ ǫ.

Since this holds for i = 1, 2, · · · , n and (0, 1) = ∪i=1,2,··· ,n(
i−1
n , i

n ], the supre-
mum is also less than ǫ.

9.4.3 Quantile distance and KS distance closeness

Clearly ifX ∼ Y , then LQDE
L (X,Y ) = 0. In the following theorem we study

the inverse question for L = δcX , c ≥ 0 and E = [0, 1]. The Kolmogorov
Smirnoff distance was defined to be

KS(X,Y ) = sup
x∈R

|FX(x)− FY (x)|.

We also define the “open Kolmogorov Smirnoff” distance as

KSo(X,Y ) = sup
x∈R

|F o
X(x)− F o

Y (x)|.
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Lemma 9.4.7 Suppose X,Y are random variables, then

KSo(X,Y ) = KS(X,Y ).

To prove the lemma, we show that

KS(X,Y ) ≤ ǫ ⇔ KSo(X,Y ) ≤ ǫ.

Suppose KS(X,Y ) ≤ ǫ. If the R.H.S does not hold then there exist x ∈ R

such that
F o
X(x) > F o

Y (x) + ǫ.

Since F o
X is left continuous, we conclude there is a y < x such that

F o
X(y) > F o

Y (x) + ǫ.

Hence,
F c
X(y) ≥ F o

X(y) > F o
Y (x) + ǫ ≥ F c

Y (y) + ǫ,

which is a contradiction.
Inversely, suppose KSo(X,Y ) ≤ ǫ. If the L.H.S does not hold then there
exist x ∈ R such that

F c
X(x) > F c

Y (x) + ǫ.

Since F c
Y is right continuous, we conclude there is y > x such that

F c
X(x) > F c

Y (y) + ǫ.

Hence,
F o
X(y) ≥ F c

X(x) > F c
Y (x) + ǫ ≥ F o

Y (y) + ǫ,

which is a contradiction.

Lemma 9.4.8 Kolmogorov Smirnoff closeness implies Quantile distance close-
ness. More formally if for two random variables X,Y , KS(X,Y ) ≤ ǫ then

SQDδX (X,Y ) = sup
p∈(0,1)

δX(lqX(p), lqY (p)) ≤ ǫ.

Proof

For p ∈ (0, 1), suppose lqX(p) < lqY (p). Then

δ(lqX(p), lqY (p)) = F o
X(lqY (p))− F c

X(lqY (p)) ≤
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F o(lqY (p)) + ǫ− p ≤ p+ ǫ− p = ǫ.

The discussion for lqY (p) < lqX(p) is similar.

Remark. By symmetry also KS(X,Y ) ≤ ǫ ⇒ SQDδY (X,Y ) ≤ ǫ.
The converse needs the continuity assumption:

Lemma 9.4.9 Suppose X,Y are continuous random variables. Then quan-
tile distance closeness implies Kolmogorov Smirnoff distance closeness. More
formally, suppose

SQDδX (X,Y ) = sup
p∈(0,1)

δX(lqX(p), lqY (p)) ≤ ǫ

and
SQDδY (X,Y ) = sup

p∈(0,1)
δY (lqX(p), lqY (p)) ≤ ǫ.

Then
KS(X,Y ) ≤ ǫ.

Proof Suppose the result is not true and there exists x such that

|FX(x)− FY (x)| ≥ ǫ.

Then let p1 = FX(x) and p2 = FY (x) and without loss of generality assume
p2 > p1. Since FY (x) = p2, lqY (p2) ≤ x. But lqX(p2) = y > x. Otherwise
p2 ≤ FX(lqX(p2)) = FX(x) = p1 which is a contradiction.

δX(lqX(p2), lqY (p2)) = F o
X(y)− FY (x) = FX(y)− FY (x) ≥ p2 − p1 > ǫ,

which is a contradiction. Note that we have used continuity of X in the
second equality.

Remark. This is not true in general. Consider X with P (X = 0) = 1 and
Y with P (Y = 1) = 1. Then FX(1/2) − FY (1/2) = 1 and SQDδX (X,Y ) +
SQDδY (X,Y ) = 0.

In the next theorem we show that if the quantile distance between two
variables are zero and one of them is continuous then they are identically
distributed.

Theorem 9.4.10 Suppose F1, F2 distribution functions, F1 continuous and
their quantile distance is zero. In other words,

sup
p∈(0,1)

δF1(lqF1(p), lqF2(p)) = 0.

Then F1 = F2.
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Proof Suppose the result does not hold. Then we have two cases.
Case I: ∃x, p1 = F1(x) < F2(x) = p2.

F1(x) = p1 ⇒ lqF1(p2) = y > x,

and
F2(x) = p2 ⇒ lqF2(p2) = z ≤ x.

Hence

δF1(lqF1(p2), lqF2(p2)) = F1(y)− F1(z) ≥ F1(y)− F1(x) ≥ p2 − p1.

Case II: ∃x, p1 = F1(x) > F2(x) = p2.
Take p3 ∈ (p2, p1). Then

F1(x) = p1 ⇒ lqF1(p3) = y ≤ x.

However if lqF1(p3) = x, we conclude

F1(lqF1(p3)) = F1(x) ⇒ p3 = p1,

which is a contradiction. Note that we have used the continuity of F1 in
F1(lqF1(p3)) = p3.
Also

F2(x) = p2 ⇒ lqF2(p3) = z > x.

Hence

δF1(lqF1(p3), lqF2(p3)) = δF1(y, z) = F1(z)−F1(y) ≥ F1(x)−F1(y) ≥ p1−p3.

Here we prove an easy lemma regarding the continuity of δ.

Lemma 9.4.11 Suppose F is a continuous distribution function. For any
fixed b ∈ R, δF (a, b) is a continuous function in a.

Proof Note that δF (a, b) = |F (b) − F (a)| because F is a continuous func-
tion.

Lemma 9.4.12 Suppose F1, F2 are distribution functions, F1 is continuous
and

δF1(lqF1(p0), lqF2(p0)) = ∆ > 0,

for some p0 ∈ (0, 1) then there exist 0 < ǫ < p0 such that

δF1(lqF1(p), lqF2(p)) > ∆/3, p ∈ (p0 − ǫ, p0).
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Proof Since F1 is continuous

δF1(lqF1(p), lqF2(p)) = |p− F1(lqF2(p))|.

Let lqF2(p0) = x1 and F1(x1) = p1. Then |p0 − p1| = ∆.
By continuity of F1 there exist ǫ′ > 0 such that

x ∈ (x1 − ǫ′, x1 + ǫ′) ⇒ F1(x) ∈ (p1 −
∆

3
, p1 +

∆

3
).

By left continuity of lqF2 for ǫ
′ positive, there exists an 0 < ǫ < min(∆/3, p0)

such that
p ∈ (p0 − ǫ, p0) ⇒ lqF2(p) ∈ (x1 − ǫ′, x1).

Hence for p ∈ (p0−ǫ, p0), we have F1(lqF2(p)) ∈ (p1−∆/3, p1+∆/3). Hence

δF1(lqF1(p), lqF2(p)) = |p − F1(lqF2(p))| ≥

|p0 − p1| − ǫ− ∆

3
≥ ∆/3.

Lemma 9.4.13 Suppose F1, F2 are distribution functions and F1 is contin-
uous. Also assume

IDQδF1
(F1, F2) =

∫ 1

0
δF1(lqF1(p), lqF2(p)) = 0.

Then F1 = F2.

Proof The assumption implies that δF1(lqF1(p), lqF2(p)) = 0, ∀p ∈ (0, 1).
For otherwise if δF1(lqF1(p0), lqF2(p0)) = ∆ > 0, for some p0. By the previous
lemma there exist 0 < ǫ < p0 such that

δF1(lqF1(p), lqF2(p)) > ∆/3, p ∈ (p0 − ǫ, p0).

This implies that

∫ 1

0
δF1(lqF1(p), lqF2(p)) ≥ ǫ∆,

which is a contradiction. Now we can use Lemma 9.4.10 to conclude F1 = F2.
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9.4.4 Quantile distance for continuous variables

From now on we only consider continuous variables and the probability loss
function with c = 0, δX . Some results can be generalized to the general
distributions but we leave that for future research. We use the simpler
notations:

QDX(X,Xθ) = LQDδX (X,Xθ) =

∫ 1

0
δX(lqX(p), lqXθ

(p))dp.

Also
QD(X,Xθ) = QDX(X,Xθ) +QDXθ

(X,Xθ).

Quantile distance in the continuous case can be obtained by:

QDX(X,Xθ) =

∫ 1

0
δX(lqX(p), lqXθ

(p))dp =

∫ 1

0
|FX ◦ lqX(p)− FX ◦ lqXθ

(p)|dp =

∫ 1

0
|p− FX ◦ lqXθ

(p)|dp.

We can also consider the quantile distance closeness in the tails. Consider
the tails to correspond to probabilities E = (0, 0.025) ∪ (0.0975, 1). Then
L(E) = 0.05 (L being the Lèbegue measure) and we can define

QDtail
X (X,Xθ) =

∫

E
δX(lqX(p), lqXθ

(p))dp/0.05 =

∫

E
|FX ◦ lqX(p)− FX ◦ lqXθ

(p)|dp/0.05 =

∫

E
|p− FX ◦ lqXθ

(p)|dp/0.05.

We have divided the integral by 0.05 the length of E to make this measure
comparable to the overall measure over [0,1], which has length 1.

Then we compute the quantile distance of the standard normal to some
known distributions. Both the overall quantile distance and the tail quantile
distance are calculated (by approximating the integrals) and the results are
given in Table 9.1 and 9.2. For the overall quantile distance we observe that
QDX and QDY have almost the same value. A theoretical result regarding
this observation is desirable and we leave this for future research. This is
not true in general for the tail distance.

Then we find the closest Cauchy with scale parameter in (0,4) (and loca-
tion parameter=0) to the standard normal. Once using the quantile distance
and once using the tail quantile distance. We find the quantile distance of
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the standard normal to all Cauchy distributions with scale parameters on
the grid (0.01, 0.02, · · · , 4.00) (and location parameter=0). The results are
given in Figures 9.3 and 9.5 respectively. For the overall quantile distance
the optimal Cauchy is the one with scale parameter 0.66 and for the tail
quantile distance, the optimal Cauchy is the one with scale parameter 0.12.
Figure 9.4 depicts the normal distribution functions compared with a few
Cauchy distributions including the optimal and Figure 9.6 depicts the nor-
mal distribution in the upper tail with a few Cauchy distributions including
the optimal in tails with scale parameter 0.12. Figure 9.7 depicts the stan-
dard normal distribution compared with the optimal Cauchy for the overall
quantile distance and the optimal Cauchy for the tail quantile distance. We
conclude that a fit that is optimally might not be optimal on the tails. We
use this fact later in choosing our method to model extreme temperature
events.

Distribution QDX(X,Y ) QDY (X,Y ) QD

Y = N(1, 1) 0.2605080 0.2605080 0.5210159
Y = N(0.5, 1) 0.138301 0.138301 0.276602
Y = N(0, 2) 0.1024215 0.1024207 0.2048422
Y = t(1) 0.06382985 0.0637436 0.1275734
Y = t(10) 0.0078747 0.007872528 0.01574723
Y = t(100) 0.000795163 0.0007951621 0.001590325
Y = Cauchy(scale = 1) 0.06376941 0.06376579 0.1275352
Y = χ2(1) 0.2190132 0.2190249 0.4380381
U(−0.5, 0.5) 0.1522836 0.1522991 0.3045827
U(−1, 1) 0.06562216 0.06563009 0.1312522
U(−2, 2) 0.05612716 0.0561283 0.1122555
U(−3, 3) 0.1171562 0.1171562 0.2343124

Table 9.1: Comparing standard normal with various distributions using
quantile distance, where U denotes the uniform distribution and χ2 the
Chi-squared distribution.
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Figure 9.3: Cauchy distribution’s distance with different scale parameter
(and location parameter=0) to the standard normal. In the plotsQD1 = QX

and QD2 = QDY and QD = QD1+QD2, where X is the standard normal
and Y is the Cauchy.
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Figure 9.4: The distribution function of standard normal (solid) compared
with the optimal Cauchy (and location parameter=0) picked by quantile
distance minimization with scale parameter=0.66 (dashed curve), Cauchy
with scale parameter=1 (dotted) and Cauchy with scale parameter=0.5 (dot
dashed).
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Figure 9.5: Cauchy distribution’s distance with different scale parameter
(and location parameter=0) to the standard normal on the tails. In the
plots QD1 = QX and QD2 = QDY and QD = QD1+QD2, where X is the
standard normal and Y is the Cauchy.
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Figure 9.6: The distribution function of standard normal (solid) compared
with the optimal Cauchy picked by tail quantile distance minimization with
scale parameter=0.12 (dashed curve), Cauchy with scale parameter=0.65
(dotted) and Cauchy with scale parameter=0.01 (dot dashed).
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Figure 9.7: Comparing the standard normal distribution (solid) with optimal
Cauchy picked by quantile distance (dashed) and the optimal Cauchy picked
by tail quantile distance minimization (dotted).
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Distribution QDtail
X (X,Y ) QDtail

Y (X,Y ) QDtail(X,Y )

Y = N(1, 1) 0.05075276 0.05075276 0.10150552
Y = N(0.5, 1) 0.01824013 0.01824013 0.03648026
Y = N(0, 2) 0.01249034 0.11206984 0.12456018
Y = t(1) 0.0125000 0.1184949 0.1309949
Y = t(10) 0.007631262 0.011192379 0.018823642
Y = t(100) 0.0009740074 0.0010122519 0.0019862594
Cauchy(scale = 1) 0.0125000 0.1180231 0.1305231
Y = χ2(1) 0.25006521 0.06467072 0.31473593
U(−0.5, 0.5) 0.3004565 0.0125000 0.3129565
U(−1, 1) 0.1523052 0.0125000 0.1648052
U(−2, 2) 0.01313629 0.01205279 0.02518908
U(−3, 3) 0.01083494 0.10054194 0.11137688

Table 9.2: Comparing standard normal on the tails with some distributions
using quantile distance, where U denotes the uniform distribution and χ2

the Chi-squared distribution.

9.4.5 Equivariance of estimation under monotonic
transformations using the quantile distance

Suppose a family of distributions {Xθ}θ∈Θ, Θ ⊂ R
k is given. Also assume

φ is a continuous and strictly monotonic transformation on R. Consider
the family of distributions {Yθ = φ(Xθ)}θ∈Θ. Then the family {Yθ}θ∈Θ is
parameterized by the same parameters since

P (Yθ < a) = P (φ(Xθ) < a) = P (Xθ < φ−1(a)).

Then the following lemma shows the equivariance property of quantile dis-
tance estimation.

Lemma 9.4.14 Suppose a random variable X and a family of distributions
{Xθ}θ∈Θ are given,

A = argminθ∈Θ

∫ 1

0
δX(lqX(p), lqXθ

(p))dp,

is nonempty and φ is a continuous and strictly monotonic transformation.
Let

B = argminθ∈Θ

∫ 1

0
δφ(X)(lqφ(X)(p), lqφ(Xθ)(p))dp.

Then A = B. In other words if Xθ is an optimal estimator of X, then φ(Xθ)
is an optimal estimator of φ(X).
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Proof This is trivial by invariance properties of quantile distance under
continuous strictly monotonic transformations.

Remark. The above is also true if we use replace the integral quantile
distance by the sup quantile distance.

9.4.6 Estimation using quantile distance

Here we only consider estimation using integral quantile distance. In order
to estimate a distribution X using a parameterized family {Xθ}θ∈Θ, one can
try to find

argminθ∈Θ

∫ 1

0
δX(lqX(p), lqXθ

(p))dp.

However, the above expression depends on δX an unknown. The available
information to us is usually a random sample X1, · · · ,Xn.
Remark. If we use the empirical distribution instead of the distribution of
X is above, we get:

argminθ∈Θ

∫ 1

0
δFn(lqFn(p), lqXθ

(p))dp.

The argmin can be checked again to be equivariant under continuous and
strictly monotonic transformations.

Tables 9.3 and 9.4 compare the maximum likelihood estimation to the
quantile distance estimation method for a sample of size N = 20 and
N = 100 respectively. In each case we generate 50 samples of length N
and estimate the parameters using both methods. Then we assess the per-
formance by a few measures: mean absolute error, mean square error, mean
probability loss error and mean quantile distance. In both cases maximum
likelihood has done slightly better in terms of all errors except the quantile
distance error in which case the quantile distance estimation has done signif-
icantly better. The histogram for both estimation methods for N = 20 and
N = 100 are given in Figures 9.8 and 9.9 respectively. For both maximum
likelihood and quantile distance estimations for N = 100 the parameters
have a symmetric (close to normal) distribution.
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Error type QD error s.e. of QD error ML error s.e. ML error

Mean probability loss error for 0.077 0.061 0.077 0.055
µ = lqN(µ,σ2)(1/2)
Mean probability loss for 0.185 0.114 0.176 0.096
σ2 + µ = lqN(µ,σ2)(P (Z < 1))
Mean abs. error for µ 0.198 0.160 0.196 0.143
Mean abs. error for σ 0.159 0.127 0.132 0.085
Mean square error µ 0.064 0.089 0.058 0.077
Mean square error for σ 0.041 0.065 0.025 0.028
Mean QD error 0.035 0.009 0.122 0.073

Table 9.3: Assessment of Maximum likelihood estimation and quantile dis-
tance estimation using several measures of error for a sample of size 20. In
the table s.e. stands for the standard error.

Error type QD error s.e. of QD error ML error s.e. ML error

Mean probability loss for 0.028 0.020 0.027 0.020
µ = lqN(µ,σ2)(1/2)
Mean probability loss for 0.157 0.046 0.165 0.038
σ2 + µ = lqN(µ,σ2)(P (Z < 1))
Mean abs. error for µ 0.070 0.051 0.068 0.051
Mean abs. error for σ 0.079 0.052 0.061 0.039
Mean square error µ 0.007 0.009 0.007 0.009
Mean square error for σ 0.009 0.011 0.005 0.005
Mean QD error 0.014 0.003 0.045 0.026

Table 9.4: Assessment of Maximum likelihood estimation and quantile dis-
tance estimation using several measures of error for a sample of size 100. In
the table s.e. stands for the standard error.
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Figure 9.8: Histograms for the parameter estimates using quantile distance
and maximum likelihood methods for a sample of size 20.
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Figure 9.9: Histograms for the parameter estimates using quantile distance
and maximum likelihood methods for a sample of size 100.
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Chapter 10

Binary temperature
processes

10.1 Introduction

This chapter uses the theory developed in previous chapters to find appro-
priate models for extreme temperature events. We consider both low and
high temperatures. The temperature is measured in degrees centigrade. We
define a day with minimum temperature (mt) less than zero as extremely
cold and denote it by e:

e(t) =

{

1 mt(t) ≤ 0 (deg C)

0 mt(t) > 0 (deg C)
.

Taking 0 (deg C) to be the cut–off for low temperature seems reasonable
in the absence of any other considerations, since it is the usual definition of
a frost. In agriculture, where most plants contain a lot of water this can be
considered as an important cut–off. No seemingly natural cut-off like that
for minimum temperature exists for extremely high temperature. To define
extreme events, we ask the following questions:

1. Should the definition of an extreme event depend on the purpose of
our model?

2. Should it depend on the time of the year and location?

3. What should be the cut–off (threshold) to define an extreme event?

4. Should we use a certain quantile as the cut-off? In that case which
quantile should be used?

We provide some answers in the following:

1. The answer to the first question is clearly affirmative. For example, a
high temperature day for agriculture purposes is different from energy
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10.1. Introduction

providing purposes. Even for the farmer, different crops may have
different tolerances to hot or cold weather.

2. The answer of the second question depends on the model’s purpose.
We might want to vary the definition over time and space for some
purposes.

3. We do not know of any such natural cut–off for high temperatures like
that for low temperature.

4. Quantiles have long been used to determine the extreme events. Choos-
ing the level of the quantile depends on the purpose. Some extreme–
value modelers pick the quantile high enough to insure the validity of
the assumptions underlying their models as Embrechts et al. discuss
in [16]. For example, a well–known result asserts that P (X − u <
v|X > u) follows a known distribution (extreme value distributions
e.g. Pareto) when u is large. [See [16].] We do not favor such methods
of choosing the threshold. The threshold should be picked primarily
to reflect our needs in the real problem rather than satisfy the assump-
tions of the models. If the models do not satisfy the conditions, we
should find others rather than move the threshold up.

Based on the above discussion with the statistician’s knowledge alone, one
cannot define the extreme events. Ralph Wright (personal communication)
in AAFRD (Agriculture and Rural Development in Alberta, Canada) raises
similar points. In particular he said the following about the droughts:

“Drought is really defined by the impact that the moisture deficit has on
a specific use or uses. Its definition can vary both with time of year and from
place–to–place. Drought can be short–term or long–term. For example, one
month of hot dry weather can significantly reduce crop yields, despite the
fact that normal amounts of precipitation have been received over the past
year. On the other hand, crops may do fine in dry weather conditions if
precipitation has been received in a timely manner and temperatures have
been favorable. However under the same conditions, a dam operator in the
same area may have severe shortages in the reservoir and declare drought
like conditions (e.g. with low winter snow–fall and poor spring run–off). You
will need to define your drought based on whom or what is being impacted
by the water shortage.”

Since we do not have any standard definition of an extremely hot day, we
use the data. In our example, to define a binary process of (hot)/(not hot)
for temperature, we pick the global spatial/temporal 95th percentile using
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10.1. Introduction

the data from 25 stations over Alberta that had daily maximum temperature
(MT ) data from 1940 to 2004. The 95th percentile was computed using the
quantile algorithm developed in previous chapters and turned out to be 26.7.
The exact value was also found and turned out to be q = 27 (deg C). Then
We define the binary process of extremely hot temperature as:

E(t) =

{

1 MT (t) ≥ q

0 MT (t) < q
,

where q = 27 (deg C) here.
In order to study extreme events (e.g. for MT ) three approaches come

to mind:

1. Model the whole daily MT process and use that to infer about the
extremes. For MT , we have shown that a Gaussian distribution fits
the daily values fairly well. However, in the tails, usually of paramount
concern, the fit does not do well as shown in the qq–plots in Chapter 2.
Another difficulty with this approach is picking a covariance function
to model the covariance over time. Also in Chapter 9, we showed
that even though two distributions are very close in terms of overall
quantile distance, they might not be very close in terms of tail quantile
distance (Figure 9.7). This shows in order to study extremes (for
example extremely hot temperature) if we use a good overall fit, our
results might not be reliable.

2. Use a specified threshold and model the values exceeding the threshold.
This approach has several drawbacks. Firstly we cannot answer the
question of how often or in what periods of the year the extremes
happen. This is because we model the actual extreme values and ignore
the non–extreme values. Secondly, strong assumption of independence
is needed for this method. Thirdly we need to pick the threshold high
enough to make the model reasonable as mentioned before. This might
not be an optimal threshold from a practical point of view.

3. Based on a real problem, use a threshold to define a new binary process
of (extreme)/(not extreme) values and then model that binary process.
This is the method we use and it does not have the issues mentioned
in 1 and 2 because the threshold is not taken to satisfy some statistical
property and we make few assumptions about the binary chain.
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10.2. rth–order Markov models for extreme minimum temperatures

10.2 rth–order Markov models for extreme

minimum temperatures

This section looks for appropriate models for the binary process e(t) of
cold/not cold temperature days. This is a binary process and the Cate-
gorical Expansion Theorem (Theorem 3.5.6) gives the form of all such rth–
order Markov chains. Here we also consider other covariates such as the
minimum temperature of the previous day and two days ago as well as sea-
sonal covariates (deterministic). The next subsection uses graphical tools
and exploratory techniques to investigate the properties the model should
have. Then we use the BIC criterion and compare several proposed models.
We use partial likelihood techniques to estimate parameters as proposed by
Kedem et al. in [27].

10.2.1 Exploratory analysis for binary extreme minimum
temperatures

Here we perform an exploratory analysis of the binary process e(t) using two
stations for this purpose, Banff and Medicine Hat which have data from 1895
to 2006. The transition probabilities are computed from the historical data
considering years as independent observations. The results are summarized
a follows:

• Figures 10.1 and 10.2 plot the probability of a freezing day over the
course of a year for the Banff and Medicine Hat stations, respectively.
A regular seasonal pattern is seen. Medicine Hat seems to have a much
longer frost–free period.

• Figures 10.3 and 10.4 plot the estimated transition probabilities, p̂01
and p̂11 for the Banff and Medicine Hat stations. If the chain were a
0th–order Markov chain then these two curves would overlap. This is
not the case and Markov chain at least of 1st–order seems necessary.
In the p̂01 curve for both Banff and Medicine Hat, high fluctuations
are seen at the beginning and end of the year which corresponds to the
cold season. This is not surprising because there are very few pairs in
the data with a freezing day followed by a non–freezing day in a cold
season in Alberta.

• In Figure 10.4, p̂11 is missing for a period over the summer. This is
because no freezing day is observed over this period in the summer
and hence p̂11 could not be estimated.
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Figure 10.1: The estimated probability of a freezing day for the Banff site
for different days of a year computed using the historical data.

• Figures 10.5 and 10.6 give the plots for the 2nd–order transition prob-
abilities. They overlap substantially and hence a 2nd–order Markov
chain does not seem to be necessary.

10.2.2 Model selection for extreme minimum temperature

This section finds models for the extreme minimum temperature process
e(t). Here Zt−1 denotes the covariate process. We investigate the following
predictors:

• ek(t) ≡ e(t− k). Was it an extremely cold day k days ago?

• mtk(t) ≡ mt(t− k), the actual minimum temperature k days ago.

• Nk, the number of freezing days during the k previous days.

• SIN , COS, SIN2 and COS2 which are abbreviations for sin(ωt),
cos(ωt), sin(2ωt) and cos(2ωt), respectively (with ω = 2π

366 ).
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Figure 10.2: The estimated probability of a freezing day for the Medicine
Hat site for different days of a year computed using the historical data.
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Figure 10.3: The estimated 1st–order transition probabilities for the 0-1
process of extreme minimum temperatures for the Banff site. The dotted
line represents the estimated probability of “e(t) = 1 if e(t − 1) = 1” (p̂11)
and the dashed, “e(t) = 1 if e(t− 1) = 0” (p̂01).
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Figure 10.4: The estimated 1st–order transition probabilities for the 0-1
process of extreme minimum temperatures for the Medicine Hat site. The
dotted line represents the estimated probability of “e(t) = 1 if e(t− 1) = 1”
(p̂11) and the dashed, “e(t) = 1 if e(t− 1) = 0” (p̂01).
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Figure 10.5: The estimated 2nd–order transition probabilities for the 0-1
process of extreme minimum temperature for the Banff site with p̂111 (solid)
compared with p̂011 (dotted) both calculated from the historical data.
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Figure 10.6: The estimated 2nd–order transition probabilities for the 0-
1 process of extreme minimum temperatures for the Banff site with p̂001
(solid) compared with p̂101 (dotted) calculated from the historical data.
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Figure 10.7: The estimated 2nd–order transition probabilities for the 0-1
process of extreme minimum temperatures for the Medicine Hat site with
p̂111 (solid) compared with p̂011 (dotted) calculated from the historical data.
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Figure 10.8: The estimated 2nd–order transition probabilities for the 0-1
process of extreme minimum temperatures for the Medicine Hat site with
p̂001 (solid) compared with p̂101 (dotted) calculated from the historical data.
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10.2. rth–order Markov models for extreme minimum temperatures

Table 10.1 compares models with a constant and Nk as the covariate
process. The optimal model picked by the BIC criterion is the model with
the covariates Zt−1 = (1, N11).

Model: Zt−1 BIC parameter estimates

(1, N1) 1251.7 (-2.144, 4.260)
(1, N2) 1166.5 (-2.501, 2.490)
(1, N3) 1142.9 (-2.653, 1.755)
(1, N4) 1121.6 (-2.773, 1.371)
(1, N5) 1111.2 (-2.852, 1.125)
(1, N6) 1093.1 (-2.932, 0.961)
(1, N7) 1087.4 (-2.977, 0.835)
(1, N8) 1081.7 (-3.015, 0.739)
(1, N9) 1077.1 (-3.047, 0.663)
(1, N10) 1066.5 (-3.089, 0.605)
(1, N11) 1056.4 (-3.130, 0.557)
(1, N12) 1059.5 (-3.135, 0.511)
(1, N13) 1062.3 (-3.140, 0.472)
(1, N14) 1072.8 (-3.126, 0.437)
(1, N15) 1080.9 (-3.118, 0.406)
(1, N16) 1091.9 (-3.102, 0.379)
(1, N17) 1104.2 (-3.083, 0.354)
(1, N18) 1112.1 (-3.075, 0.334)
(1, N19) 1118.6 (-3.068, 0.315)
(1, N20) 1126.5 (-3.058, 0.299)

Table 10.1: BIC values for models including Nk for the extreme minimum
temperature process e(t) at the Medicine Hat site.
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10.3. rth–order Markov models for extreme maximum temperatures

Model: Zt−1 BIC parameter estimates

(1) 2539.9 (-0.0251)
(1, e1) 1251.7 (-2.144, 4.260)
(1, e2) 1473.6 (-1.856, 3.683)
(1, e1, e2) 1157.7 (-2.501, 3.085, 1.896)
(1, e1, e2, e1e2) 1162.4 (-2.586, 3.389, 2.190, -0.593)
(1,mt1) 963.7 (0.109, -0.400)
(1,mt1,mt2) 954.0 (0.091, -0.329, -0.082)
(1, COS, SIN) 984.0 (-0.070, 4.292, 1.324)
(1, COS, SIN,COS2, SIN2) 984.2 (-0.502, 4.505, 1.399, -0.464, -0.493)
(1, COS, SIN,COS2) 986.7 (-0.258, 4.359, 1.335, -0.353)
(1, COS, SIN, SIN2) 984.4 (-0.217, 4.365, 1.360, -0.402)
(1,mt1,mt2,mt3) 940.7 (0.062, -0.319, -0.009, -0.094)
(1,mt1,mt2,mt1mt2) 943.4 (0.211, -0.339, -0.084, -0.0091)
(1, e1, COS, SIN) 901.5 (-1.008, 1.840, 3.325, 1.013)
(1,mt1, COS, SIN) 855.3 (-0.074, -0.234, 2.394, 0.746)
(1,mt1,mt2, COS, SIN) 861.9 (-0.076, -0.247, 0.023, 2.504, 0.785)

Table 10.2: BIC values for several models for the extreme minimum tem-
perature e(t) at the Medicine Hat site.

Table 10.2 compares several models some of which include seasonal terms
and continuous variables. The optimal model is (1,mt1, COS, SIN), which
has the temperature of the previous day and seasonal terms. The model
(1, e1, COS, SIN) has a larger BIC but is preferable to all models other
than (1,mt1, COS, SIN) and (1,mt1,mt2, COS, SIN). Note that it is not
possible to compute the probability of events in the long-term future using
(1,mt1, COS, SIN), since we do not know mt except for perhaps the present
time. Hence the optimal applicable model seems to be (1, e1, COS, SIN).

10.3 rth–order Markov models for extreme
maximum temperatures

This section finds appropriate models for the binary process of extremely
hot temperature E(t) as defined above. To define a hot day, we use the 95th
percentile of data from 25 stations over Alberta that had daily MT data
from 1940 to 2004. The 95th percentile turns out to be q = 27 (deg C).
Once we used the fast algorithm developed in Chapter 7 to pick the quantile
and once we used an exact method; the algorithm gave us the approximate
value q = 26.7, which is very close to the exact value. (See Table ?? for
more details on the computation.)
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10.3. rth–order Markov models for extreme maximum temperatures

10.3.1 Exploratory analysis for extreme maximum
temperatures

This section uses explanatory data analysis techniques to study the binary
process E(t). Again we use two stations for this purpose, the Banff and
Medicine Hat sites that have data from 1895 to 2006. The transition proba-
bilities are computed using the historical data considering years as indepen-
dent observations. The results are summarized as follows:

• Figures 10.9 and 10.10 plot the probabilities of a hot day over the
course of a year for the Banff and Medicine Hat stations respectively.
A regular seasonal pattern is seen. Medicine Hat seems to have a much
longer period of hot days.

• Figures 10.11 and 10.12 plot the estimated transition probabilities,
p̂01 and p̂11 for Banff and Medicine Hat. If the chain were a 0th–order
Markov chain then these two curves would overlap. This is not the
case so Markov chain of at least 1st–order seems necessary. In the p̂01
curve for both Banff and Medicine Hat, large fluctuations are seen in
the middle of the year, which corresponds to the warm season. This
is not surprising because there are very few pairs in the data with a
hot day followed by a not–hot day in the warm season in Alberta.

• In Figure 10.12, p̂11 is missing for a period over the cold season. This
is because no hot day is observed during this period in the cold season
and hence p̂11 could not be estimated.

• Figures 10.13 and 10.14 give the plots for the 2nd–order transition
probabilities. They overlap heavily and hence a 2nd–order Markov
chain does not seem to be necessary.

10.3.2 Model selection for extreme maximum temperature

Here, we use the following abbreviations:

• Ek(t) = E(t− k). Was it an extreme day k days ago?

• MT k(t) = MT (t− k), the actual maximum temperature k days ago.

• Nk, COS, SIN , COS, SIN2 and COS2 as previous sections.
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Figure 10.9: The estimated probability of a hot day (maximum temperature
≥ 27 (deg C)) for different days of the year for the Banff site calculated from
the historical data.
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Figure 10.10: The estimated probability of a hot day (maximum tempera-
ture ≥ 27 (deg C)) for different days of the year for the Medicine Hat site
calculated from the historical data.
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Figure 10.11: The estimated 1st–order transition probabilities for the binary
process of extremely hot temperatures for the Banff site. The dotted line
represent the estimated probability of “E(t) = 1 if E(t − 1) = 1” (p̂11) and
the dashed, “E(t) = 1 if E(t− 1) = 0” (p̂01).
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Figure 10.12: The estimated 1st–order transition probabilities for the binary
process of extremely hot temperatures for the Medicine Hat site. The dotted
line represents the estimated probability of “E(t) = 1 if E(t− 1) = 1” (p̂11)
and the dashed, “E(t) = 1 if E(t− 1) = 0” (p̂01).
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Figure 10.13: The estimated 2nd–order transition probabilities for the bi-
nary process of extremely hot temperatures for the Banff site with p̂111
(solid) compared with p̂011 (dotted) calculated from the historical data.
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Figure 10.14: The estimated 2nd–order transition probabilities for the bi-
nary process of extremely hot temperatures for the Banff site with p̂001
(solid) compared with p̂101 (dotted) calculated from the historical data.
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Figure 10.15: The estimated 2nd–order transition probabilities for the bi-
nary process of extremely hot temperatures for the Medicine Hat site with
p̂111 (solid) compared with p̂011 (dotted), calculated from the historical data.
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Figure 10.16: The estimated 2nd–order transition probabilities for the bi-
nary process of extremely hot temperatures for the Medicine Hat site with
p̂001 (solid) compared with p̂101 (dotted) calculated from the historical data.
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Table 10.3 compares several models containing Nk. The optimal model
turns out to be (1, N11) which is the same as the result for the extreme
minimum temperature process e(t).

Model: Zt−1 BIC parameter estimates

(1, N1) 955.7 (-2.95, 3.82)
(1, N2) 965.9 (-3.00, 2.16)
(1, N3) 942.5 (-3.11, 1.60)
(1, N4) 921.8 (-3.20, 1.29)
(1, N5) 926.8 (-3.23, 1.05)
(1, N6) 931.6 (-3.24, 0.89)
(1, N7) 932.5 (-3.26, 0.78)
(1, N8) 939.0 (-3.26, 0.69)
(1, N9 931.6 (-3.29, 0.63)
(1, N10) 925.9 (-3.31, 0.57)
(1, N11) 911.7 (-3.35, 0.49)
(1, N12) 917.5 (-3.34, 0.46)
(1, N13) 922.8 (-3.33, 0.42)
(1, N14) 926.0 (-3.32, 0.39)
(1, N15) 932.1 (-3.31, 0.37)
(1, N16) 941.7 (-3.29, 0.34)
(1, N17) 951.5 (-3.28, 0.31)
(1, N18) 955.3 (-3.27, 0.29)
(1, N19) 960.6 (-3.26, 0.28)
(1, N20) 968.3 (-3.25, 0.26)
(1, N21) 975.3 (-3.23, 0.25)
(1, N22) 981.8 (-3.22, 0.24)
(1, N23) 986.0 (-3.22, 0.23)
(1, N24) 991.6 (-3.21, 0.22)
(1, N25) 997.0 (-3.21, 0.21)
(1, N26) 1002.8 (-3.20, 0.20)
(1, N27) 1009.5 (-3.19, 0.19)
(1, N28) 1014.4 (-3.18, 0.19)

Table 10.3: BIC values for models includingNk for the extremely hot process
E(t).

Table 10.4 compares several models. We observe that major reductions
are seen if we use MT k instead of Ek. The optimal model turns out to
be (1,MT 1, COS, SIN) which is combination of seasonal terms and the
temperature of the day before.
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10.4. Probability of a frost–free period for Medicine Hat

Model: Zt−1 BIC parameter estimates

(1) 1520.3 (-1.774)
(1, E1) 955.8 (-2.95, 3.82)
(1, E2) 1170.5 (-2.581, 2.924)
(1, E1, E2) 941.3 (-3.034, 3.179, 1.099)
(1, E1, E2, E1E2) 929.0 (-3.202, 3.895, 2.137, -1.877)
(1,MT 1) 683.8 (-10.040, 0.362)
(1,MT 1,MT 2) 689.1 (-10.135, 0.333, 0.034)
(1, COS, SIN) 830.8 (-5.484, -5.616, -2.452)
(1, COS, SIN,COS2, SIN2) 837.5 (-4.343, -4.255, -0.993, 0.113, 1.016)
(1, COS, SIN,COS2) 837.9 (-5.850, -6.231, -2.406, -0.292)
(1, COS, SIN,SIN2) 830.0 (-4.481, -4.492, -0.978, 1.011)
(1,MT 1,MT 2,MT 3) 669.2 (-10.885, 0.338, -0.061, 0.120)
(1,MT 1,MT 2,MT 1MT 2) 681.9 (-21.003, 0.763, 0.452, -0.0162)
(1, E1, COS, SIN) 731.3 (-4.963, 2.005, -4.096, -1.685)
(1,MT 1, COS, SIN) 649.9 (-10.281, 0.283, -2.829, -1.079)
(1,MT 1,MT 2, COS, SIN) 657.3 (-10.109, 0.294, -0.011, -2.609,-1.072)

Table 10.4: BIC values for several models for the extremely hot process
E(t).

10.4 Probability of a frost–free period for

Medicine Hat

This section shows how the approach developed above can be used in appli-
cations. We use the developed methodology to compute two probabilities:

• π1 : The probability of no frosts in the first week of October at the
Medicine Hat site.

• π2 : The probability of at least 5 days without frost in the first week
of October at the Medicine Hat site.

The first day of October is the 275th day of the year in a leap year and
the 274th day of the year in a non–leap year. We compute the probabilities
for the week between 274th day and 281th day which corresponds to the first
week of October in a non–leap year. We prefer this option to computing the
probability for the actual first week of October, since this corresponds better
to the natural cycles. Of course with a little modification one could compute
the probability for the first week of October, for example by introducing a
probability of 1/4 for being in a leap year.

Figure 10.17 plots the probability of a frost for each day of years since
1985. Only years with more than 355 days of data are considered. The
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Figure 10.17: Medicine Hat’s estimated mean annual probability of frost
calculated from the historical data.
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figure shows that the probability of a frost is fairly consistent over the
years, so we assume a constant probability of frost for all years. Table
10.5 compares models with various Nk. The optimal model is (1, N11).
Table 10.6 includes two seasonal terms as well as Nk. The optimum this
time (1, N1, COS, SIN), showing that in the presence of seasonal terms, the
short–term past modeled by Nk is not necessary.

Model: Zt−1 BIC

(1, N1) 5072.2
(1, N2) 4634.8
(1, N3) 4465.9
(1, N4) 4407.4
(1, N5) 4366.0
(1, N6) 4357.4
(1, N7) 4356.2
(1, N8) 4342.6
(1, N9) 4330.5
(1, N10) 4329.1
(1, N11) 4328.4

(1, N12) 4332.4
(1, N13) 4330.8
(1, N14) 4345.1
(1, N15) 4362.9
(1, N16) 4385.7
(1, N17) 4407.1
(1, N18) 4420.1
(1, N19) 4440.1
(1, N20) 4463.7

Table 10.5: BIC values for models including Nk for the extremely cold
process e(t) at the Medicine Hat site.
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Model: Zt−1 BIC

(1, N1, COS, SIN) 3601.3

(1, N2, COS, SIN) 3654.8
(1, N3, COS, SIN) 3693.9
(1, N4, COS, SIN) 3735.2
(1, N5, COS, SIN) 3763.1
(1, N6, COS, SIN) 3791.0
(1, N7, COS, SIN) 3813.5
(1, N8, COS, SIN) 3826.2
(1, N9, COS, SIN) 3834.9
(1, N10, COS, SIN) 3843.6
(1, N11, COS, SIN) 3849.8
(1, N12, COS, SIN) 3855.5
(1, N13, COS, SIN) 3857.4
(1, N14, COS, SIN) 3862.9
(1, N15, COS, SIN) 3868.1
(1, N16, COS, SIN) 3873.7
(1, N17, COS, SIN) 3877.9
(1, N18, COS, SIN) 3878.6
(1, N19, COS, SIN) 3880.5
(1, N20, COS, SIN) 3882.8

Table 10.6: BIC values for several models including Nk and seasonal terms
for the extremely cold process e(t) at the Medicine Hat site.

Model: Zt−1 BIC parameter estimates

(1) 10122.4 (-0.0858)
(1, e1) 5072.2 (-2.13, 4.18)
(1, e1, e2) 4598.2 (-2.530, 2.977, 2.00)
(1, e1, e2, e1e2) 4582.8 (-2.65, 3.41, 2.43, -0.855)
(1, COS, SIN) 3916.870 (-0.3, 4.301, 1.139)
(1, COS, SIN,COS2, SIN2) 3865.6 (-0.746, 4.643, 1.253 -0.550 -0.504)
(1, e1, COS, SIN) 3601.3 (-1.116, 1.760, 3.332, 0.856)
(1, e1, COS, SIN,COS2, SIN2) 3566.7 (-1.49, 1.71, 3.65, 0.96, -0.48, -0.42)
(1, e1, e2, COS, SIN) 3601.6 (-1.22, 1.66, 0.33, 3.19, 0.810)
(1, e1, e2, COS, SIN,COS2, SIN2 3571.7 (-1.8, 1.7, 4.4, 1.3, -0.78, -0.74, 0.2, 0.4)
, COS3, SIN3)
(1, mt1, COS, SIN,COS2, SIN2) 3356.4 (-0.66, -0.22, 2.85, 0.73, -0.56, -0.42)

Table 10.7: BIC values for several models for the extremely cold process e(t)
at the Medicine Hat site.
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Covariate Theoretical sd Experimental sd

1 0.090 0.093
e1 0.097 0.100

COS 0.125 0.139
SIN 0.060 0.059
COS2 0.089 0.094
SIN2 0.081 0.077

Table 10.8: Theoretical and simulation estimated standard deviations for
extremely cold process e(t) at the Medicine Hat site.

Table 10.5 compares various models. The winner is

(1,mt1, COS, SIN,COS2, SIN2).

However, it is not possible to compute the desired probabilities using this
model since we do not know mt1 (perhaps except at the start of the chain).
Among all other models, the optimal is

(1, e1, COS, SIN,COS2, SIN2),

which we use to compute the probabilities.
We compute the standard deviations once using simulations by gener-

ating chains from the fitted model with the above covariates, and once by
computing the partial information matrix, GN . The results are given in Ta-
ble 10.8. The variance–covariance matrix calculated using partial likelihood
theory is given below:

















0.0082 −0.0043 −0.0038 −0.0011 0.0050 0.0030
−0.0043 0.0094 −0.0042 −0.0013 0.0002 0.0003
−0.0038 −0.0042 0.0158 0.0038 −0.0052 −0.0037
−0.0011 −0.0013 0.0038 0.0037 −0.0011 −0.0017
0.0050 0.0002 −0.0052 −0.0011 0.0079 0.0015
0.0030 0.0003 −0.0037 −0.0017 0.0015 0.0066

















We also find the variance–covariance matrix using simulations. To do
that we generate 50 chains over time using the estimated parameters. The
variance–covariance matrix using the simulations is given by:
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Figure 10.18: Normal curved fitted to the distribution of 50 samples of the
estimated parameters.

















0.0087 −0.0035 −0.0054 −0.0012 0.0047 0.0021
−0.0035 0.0101 −0.0058 −0.0009 0.0026 0.0012
−0.0054 −0.0058 0.0194 0.0032 −0.0086 −0.0032
−0.0012 −0.0009 0.0032 0.0035 −0.0011 −0.0018
0.0047 0.0026 −0.0086 −0.0011 0.0089 0.0016
0.0021 0.0012 −0.0032 −0.0018 0.0016 0.0059

















We see that the simulated variance–covariance matrix has close values to
the partial likelihood, all entries having the same sign. We also look at the
distribution of the estimators using the 50 samples. Figure 10.18 shows the
parameter estimates approximately follow a normal distribution.

To estimate the desired probabilities, we generate samples (10000) from
the parameter space using the mean of the parameters and variance–covariance
matrix from a multivariate normal. To fix ideas suppose we want to com-
pute the probability of no frost between (and including) the 274th day and
the 280th day of the year. For every vector of parameters, we then compute
the probability of observing (0, 0, 0, 0, 0, 0, 0) exactly once given it was be-
low zero on the 273th day and once it was above zero. In other words we
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compute

P (e(274) = 1, · · · , e(281) = 1|e(273) = 1),

and
P (e(274) = 1, · · · , e(281) = 1|e(273) = 0).

We also use the historical data to estimate p0 = P (e(273) = 1). Then the
desired probability would be

P (e(274) = 1, · · · , e(281) = 1) =

p0P (e(274) = 1, · · · , e(281) = 1|e(273) = 1) +

(1− p0)P (e(274) = 1, · · · , e(281) = 1|e(273) = 0)

Then in order to get a 95% confidence intervals we use (q(0.025), q(1 −
0.025)), where q is the (left) quantile function of the vector of the probabil-
ities.

Using the historical data, we obtain p0 = P (e(274) = 1) = 0.2432432.
Then for every parameter generated from the multivariate normal with mean
and the above variance–covariance matrix we can estimate the two proba-
bilities π1 and π2. We sample 10000 times from the multivariate normal,
compute 10000 probabilities and take the 0.025th and 0.975th (left) quan-
tiles to get the following confidence intervals for π1 and π2 respectively:

(0.28, 0.40),

and
(0.74, 0.85).

If we use the simulated variance–covariance matrix, we’ll get the following
confidence intervals for π1 and π2

(0.28, 0.40),

and
(0.75, 0.85),

which are very similar to the aforementioned intervals.
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10.5 Possible applications of the models

To understand the potential applications of these models and results I con-
tacted Dr. Nathaniel Newlands from AAFC (Agriculture and Agi-food
Canada). He give the following insightful comments.

“Forecasted (probability of precipitation) is a leading indicator used by
crop insurance companies. Probabilities of this kind (agroclimate) are typ-
ically most useful in early growing season by farmers in deciding planting
dates and deciding on irrigation scheduling and ordering fertilizer and other
kinds of inputs. Frost probability in latter growing season is critically impor-
tant in deciding when to harvest crops before they have a higher potential
for weather damage. So, essentially at the start and end of growing season,
frost, precipitation (sometimes as a water stress index) and temp extremes
are all informative for farmers and other decision makers in ag industry.

I would generally say that a broader set of probabilities like these are of
special interest to the government side as they look for improving and/or
developing new models, web portals and other tools to aid a wide array of
the decision makers in the agricultural industry with their business deci-
sions. Farmers (depending on what region of Canada they are in) are used
to dealing with reoccurring weather and now climate change events, so of-
ten their viewpoint and decision needs are far more regionally specific than
government which tries to balance regional with national needs and levels
of risk to changing agroclimate.

The crop insurance industry is probably the most specific user of such
information. For example, they base their insurance quotes for the event of
precipitation on some specific times of the year.”
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Chapter 11

Conclusions and future
research

11.1 Introduction

This chapter summarizes the work and draws conclusions from the the sta-
tistical analysis and the theory developed in the previous chapters. We also
point out a few topics for future research as a continuation of the work done
in this thesis.

11.2 Summary

This thesis has presented statistical techniques we have developed to model
precipitation and temperature over time. The dataset we use is the historical
weather data published by Environment Canada [10]. A Python code was
provided to extract the data from the binary format and the Python mod-
ule is available in [23]. [See the appendices for more information regarding
the dataset, the Python module and other resources.] Then we performed
an exploratory analysis of the data. See the conclusions section of Chapter
2 for details. In order to model the 0-1 precipitation process over time,
rth-order Markov chains are a natural choice. We found a representation
theorem for such chains using the conditional probabilities and used it to
pick appropriate models for precipitation and dichotomized temperatures in
the next chapters. In order to dichotomize a continuous process (tempera-
ture) one can use quantiles as thresholds. The climate data are often very
large in size and hence computing quantiles is not possible due to memory
or space limitations. We propose an algorithm that uses smaller partitions
of the data in order to approximate the quantiles and provides a measure
of goodness of such approximations. Thinking about the quantiles led us
to an extension of the traditional definition of “quantiles” to the “left–”
and “right–quantiles” and we showed by various theorems that this defi-
nition is more intuitively appealing and practically useful. For example a
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symmetric relation holds with the new definition which we used in various
applications. In order to assess the goodness of approximating quantiles,
we introduced the “probability loss function”, which we showed is invariant
under monotonic transformations. We used this loss function in various ap-
plications such as picking optimal probability index vectors to summarize
data vectors or assigning quantiles to a random sample in order to make a
quantile-quantile plot. Then we used this loss function, to define a distance
between random variables and showed that this distance is also invariant
under monotonic transformations. We also pointed out how the probabil-
ity loss function and the distance defined by it could be used to estimate
parameters of a distribution. Chapter 10 uses the above methods to find
appropriate models for extremely high and low temperatures. For example,
we show how these models can be used to build confidence intervals for the
probability of a frost-free period.

11.3 Future research

In this section, we suggest a few lines of research that are continuations of
this thesis work.

11.3.1 rth-order Markov chains

Chapter 3 developed a consistency theorem for the conditional probabilities
of a discrete–time categorical stochastic process and a representation theo-
rem for rth-order Markov chains. We expressed the conditional probabilities
of such chains as a linear combination of monomials of past times and used
partial likelihood to estimate the parameters in the binary case. We propose
the following extensions to this work:

• Find a similar consistency theorem for general (not only categorical)
discrete–time categorical processes and a representation theorem for
rth-order Markov chains.

• We used partial likelihood only to estimate the parameters in the bi-
nary case; an extension is needed to chains with larger number of
states.

• We pointed out in Chapter 3 that we can add other covariates to the
linear terms to get non-stationary chains. We can also add spatial
components to build spatial-temporal models. However, estimating
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the parameters in this case needs an extension of the theory due to
the possible dependence over space.

• A Bayesian method can be deployed to estimate the parameters of
these models.

11.3.2 Approximating quantiles and data summaries

We provided a general framework for summarizing data, combining sum-
maries and making inference about the original data. We propose the fol-
lowing research topics:

• Suppose a data vector x is given which is partitioned to x1, · · · , xm of
lengths n1, · · · , nm. We are allowed to read the partitions separately
and save k1, · · · , km data points from these partitions.

1. What information regarding x1, · · · , xm (of length k1, · · · , km)
should be saved to optimally approximate lqx(p) for a fixed p?

2. What information regarding x1, · · · , xm (of length k1, · · · , km)
should be saved to optimally approximate lqx(p) for all p ∈ E ⊂
[0, 1]?

3. Suppose pre-defined summaries of x1, · · · , xm are given which are
not necessarily optimal. How can we optimally infer about lqx(p)
or lqx(p) for all p ∈ E ⊂ [0, 1]?

4. Suppose a fixed memory space is given. Find an optimal (fastest)
algorithm which gives approximations of accuracy ǫ (in the prob-
ability loss sense).

• Suppose a random sampleX1, · · · ,Xn is given. We can build distribution-
free confidence intervals for quantiles of the underlying distribution.
(See [15].) Now suppose we have created a summary of this random
sample in a certain way. Build confidence intervals based on these
summaries.

11.3.3 Parameter estimation using probability loss and
quantile distances

Chapter 9 developed a framework to estimate parameters of distributions.
We also introduced the quantile distances in order to measure the distance
between random variables and showed its invariance under monotonic trans-
formations. We propose the following extensions:
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• Given a random sampleX1, · · · ,Xn what is the best estimate of lqX(p)
using the probability loss function. What are the properties of that
estimator? Is it consistent?

• What are the suprema of LQDδX (X,Y ) and LQDδX+δY (X,Y ) over
the space of all random variables?

• What is the relation between LQDδX (X,Y ) and LQDδY (X,Y )?

• Do LQD1(X,Y ) = LQDδX (X,Y ) or LQD(X,Y ) = LQDδX+δY (X,Y )
satisfy the triangle inequality?

• Chapter 9 was a theoretical chapter. A lot of simulation studies and
analysis of real data is needed to support the theory and get new ideas.
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Appendix A

Climate review

A.1 Organizations and resources

• WMO: The World Meteorological Organization (WMO) is a special-
ized agency of the United Nations. It is the UN system’s authoritative
voice on the state and behavior of the Earth’s atmosphere, its in-
teraction with the oceans, the climate it produces and the resulting
distribution of water resources.

• Environment Canada: Environment Canada’s mandate is to preserve
and enhance the quality of the natural environment; conserve Canada’s
renewable resources; conserve and protect Canada’s water resources;
forecast weather and environmental change; enforce rules relating to
boundary waters; and coordinate environmental policies and programs
for the federal government.

• The Meteorological Service of Canada: The Meteorological Service
of Canada is Canada’s source for meteorological information. The
Service monitors water quantities, provides information and conducts
research on climate, atmospheric science, air quality, ice and other
environmental issues, making it an important source of expertise in
these areas.

• Natural Resources Canada

• Agriculture and Agri–Food Canada: Agriculture and Agri-Food Canada
(AAFC) provides information, research and technology, and policies
and programs to achieve security of the food system, health of the en-
vironment and innovation for growth. AAFC, along with its portfolio
partners, reports to Parliament and Canadians through the Minister
of Agriculture and Agri-Food and Minister for the Canadian Wheat
Board.

• Alberta Agriculture Food and Rural Development
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• Statistics Canada

• AMS: The American Meteorological Society promotes the development
and dissemination of information and education on the atmospheric
and related oceanic and hydrologic sciences and the advancement of
their professional applications. Founded in 1919, AMS has a mem-
bership of more than 11,000 professionals, professors, students, and
weather enthusiasts. AMS publishes nine atmospheric and related
oceanic and hydrologic journals (in print and online) sponsors more
than 12 conferences annually, and offers numerous programs and ser-
vices.

• GeoBase is a federal, provincial and territorial government initiative
that is overseen by the Canadian Council on Geomatics (CCOG). It
is undertaken to ensure the provision of, and access to, a common,
up-to-date and maintained base of quality geospatial data for all of
Canada. Through the GeoBase portal, users with an interest in the
field of geomatics have access to quality geospatial information at no
cost and with unrestricted use.

A.2 Definitions and climate variables

• Atmosphere: Gaseous envelope which surrounds the Earth. Definition
source: International Meteorological Vocabulary, WMO - No. 182

• Troposphere: Lower part of the terrestrial atmosphere, extending from
the surface up to a height varying from about 9 km at the poles to
about 17 km at the equator, in which the temperature decreases fairly
uniformly with height. Definition source: International Meteorological
Vocabulary, WMO - No. 182

• Meteorology: Study of the atmosphere and its phenomena. Definition
Source: International Meteorological Vocabulary, WMO - No. 182

• Climatology: Study of the mean physical state of the atmosphere to-
gether with its statistical variations in both space and time as reflected
in the weather behavior over a period of many years. Definition Source:
International Meteorological Vocabulary, WMO - No. 182

• Hydrology: (1) Science that deals with the waters above and below
the land surfaces of the Earth, their occurrence, circulation and dis-
tribution, both in time and space, their biological, chemical and phys-
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ical properties, their reaction with their environment, including their
relation to living beings. (2) Science that deals with the processes
governing the depletion and replenishment of the water resources of
the land areas, and treats the various phases of the hydrological cycle.
Definition Source: International Meteorological Vocabulary, WMO -
No. 182

• Basic topography: General geometrical configuration of the distribu-
tion of geopotential height on an isobaric surface or on a thickness
chart, or of atmospheric pressure on a constant–height chart (e.g.,
mean sea–level surface chart). Definition Source: International Mete-
orological Vocabulary, WMO - No. 182

• Weather: State of the atmosphere at a particular time, as defined
by the various meteorological elements. Term Source: International
Meteorological Vocabulary, WMO - No. 182

• Climate: Synthesis of weather conditions in a given area, character-
ized by long–term statistics (mean values, variances, probabilities of
extreme values, etc.) of the meteorological elements in that area. Def-
inition source: International Meteorological Vocabulary, WMO - No.
182

• Paleoclimate: Climate of a prehistoric period whose main characteris-
tics may be inferred, for example, from geological and paleobiological
(fossil) evidence. Definition source: International Meteorological Vo-
cabulary, WMO - No. 182

• Climate change: (1) In the most general sense, the term ”climate
change” encompasses all forms of climatic inconstancy (i.e., any dif-
ferences between long–term statistics of the meteorological elements
calculated for different periods but relating to the same area) regard-
less of their statistical nature or physical causes. Climate changes
may result from such factors as changes in solar emission, long–period
changes in the Earth’s orbital elements (eccentricity, obliquity of the
ecliptic, precession of the equinoxes), natural internal processes of the
climate system, or anthropogenic forcing (e.g. increasing atmospheric
concentrations of carbon dioxide and other greenhouse gases). (2) The
term “climate change” is often used in a more restricted sense, to de-
note a significant change (i.e., a change having important economic,
environmental and social effects) in the mean values of a meteorolog-
ical element (in particular temperature or amount of precipitation)
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in the course of a certain period of time, where the means are taken
over periods of the order of a decade or longer. Definition Source:
International Meteorological Vocabulary, WMO - No. 182

• Climate model: Representation of the climate system based on the
mathematical equation governing the behavior of the various compo-
nents of the system and including treatments of key physical processes
and interactions,cast in a form suitable for numerical approximation
(generally now making use of electronic computers). Definition source:
International Meteorological Vocabulary, WMO - No. 182

• Precipitation: Hydrometeor consisting of a fall of an ensemble of par-
ticles. The forms of precipitation are: rain, drizzle, snow, snow grains,
snow pellets, diamond dust, hail and ice pellets. Definition Source:
International Meteorological Vocabulary, WMO - No. 182

• Rainfall: Amount of precipitation which is measured by means of a rain
gauge. Definition Source: International Meteorological Vocabulary,
WMO - No. 182

• Atmospheric pressure: Pressure (force per unit area) exerted by the
atmosphere on any surface by virtue of its weight; it is equivalent
to the weight of a vertical column of air extending above a surface
of unit area to the outer limit of the atmosphere. Definition Source:
International Meteorological Vocabulary, WMO - No. 182

• Humidity: Water vapor content of the air. Definition Source: Inter-
national Meteorological Vocabulary, WMO - No. 182

• Climatic season: A long spell of weather which characterizes part of
the year and which occurs with some approach to regularity, especially
in low latitudes. Definition Source: International Meteorological Vo-
cabulary, WMO - No. 182

• Growing season: Season during which meteorological conditions are
favorable to the growth of plants. Definition Source: International
Meteorological Vocabulary, WMO-No.182

• Dry season: Period of the year characterized by the (almost) complete
absence of rainfall. The term is mainly used for low latitude regions.
Definition Source: International Meteorological Vocabulary, WMO -
No. 182
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• Rainy season: In the lower latitudes, an annually recurring period of
high rainfalls preceded and followed by relatively dry periods. Defi-
nition Source: International Meteorological Vocabulary, WMO - No.
182

• Flood: (1) The overflowing by water of the normal confines of a stream
or other body of water, or the accumulation of water by drainage over
areas which are not normally submerged. (2) Controlled spreading
of water over a particular region. Definition Source: International
Meteorological Vocabulary, WMO - No. 182 Term Note

• Drought: (1) Prolonged absence or marked deficiency of precipitation.
(2) Period of abnormally dry weather sufficiently prolonged for the lack
of precipitation to cause a serious hydrological imbalance. Definition
Source: International Meteorological Vocabulary, WMO - No. 182

• Drought index: An index which is related to some of the cumulative
effects of a prolonged and abnormal moisture deficiency. Definition
Source: International Meteorological Vocabulary, WMO - No. 182

• Climate system: System consisting of the atmosphere, the hydrosphere
(comprising the liquid water distributed on and beneath the Earth’s
surface, as well as the cryosphere, i.e. the snow and ice on and be-
neath the surface), the surface lithosphere (comprising the rock, soil
and sediment of the Earth’s surface), and the biosphere (comprising
Earth’s plant and animal life and man), which, under the effects of
the solar radiation received by the Earth, determines the climate of
the Earth. Although climate essentially relates to the varying states
of the atmosphere only, the other parts of the climate system also
have a significant role in forming climate, through their interactions
with the atmosphere. Definition Source: International Meteorological
Vocabulary, WMO-No.182

• Wind: Air motion relative to the Earth’s surface. Unless otherwise
specified, only the horizontal component is considered. Definition
Source: International Meteorological Vocabulary, WMO-No.182

• Humidity: Definition Water vapor content of the air. Definition Source:
International Meteorological Vocabulary, WMO - No. 182

• Statistical model: (1) Mathematical model which has been derived
from the statistical analysis of relevant meteorological variables. (2)
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Numerical model, usually of the general circulation, which predicts
certain statistical properties of the atmosphere rather than the full
three-dimensional, time-dependent, distribution of each variable. Def-
inition Source: International Meteorological Vocabulary, WMO - No.
182

• Statistical forecast: Definition Objective forecast based on a statistical
examination of the past behavior of the atmosphere, using regression
formulae, probabilities, etc. Definition Source: International Meteoro-
logical Vocabulary, WMO - No. 182

• Probability forecast: Definition Objective forecast based on a statis-
tical examination of the past behavior of the atmosphere, using re-
gression formulae, probabilities, etc. Definition Source: International
Meteorological Vocabulary, WMO - No. 182

• Circulation model: Simplified representation of atmospheric flow used
to study its principal characteristics. Definition Source: International
Meteorological Vocabulary, WMO - No. 182

• El Niño: An anomalous warming of ocean water off the west coast of
South America, usually accompanied by heavy rainfall in the coastal
region of Peru and Chile. Definition Source: International Meteoro-
logical Vocabulary, WMO - No. 182

• Hurricane: (1) Name given to a warm core tropical cyclone with max-
imum surface wind of 118 km h-1 (64 knots, 74 mph) or greater (hur-
ricane force wind) in the North Atlantic, the Caribbean and the Gulf
of Mexico, and in the Eastern North Pacific Ocean. (2) A tropical
cyclone with hurricane force winds in the South Pacific and South-
East Indian Ocean. Definition Source: International Meteorological
Vocabulary, WMO - No. 182

• Green house effect: Warming of the lower layers of the atmosphere
due to its different absorption properties for long- and short-wave ra-
diation. Definition Source: International Meteorological Vocabulary,
WMO - No. 182
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A.3 Climatology

A.3.1 General circulations

Forces that cause variety of land forms on the Earth can be categorized into
two types:

• Inside forces: Volcanoes, earth quakes and etc.

• Outside forces: Forces that are conveyed by atmosphere to the Earth’s
surface. Sun is the most important factor in causing such forces in
different forms.

Although, the first type is of great importance and is not totally inde-
pendent of the second type, here we only focus on the second type.

Weather is defined to be day-to-day variations to the state of atmosphere.
In order to understand the weather, we need to understand how such forces
interact and the factors that cause such variations.

The climate system is composed of three parts:

• a radiative energy flow system

• a circulation system

• water cycle

We will explain these in the following.
The Sun is the most important source of energy driving the climate

system. The atmosphere reflects about 31 percent of the energy to the
space. It also absorbs (ozone, water vapor and carbon dioxide) 23 percent
of the energy from Sun before it reaches the Earth’s surface. Finally, the
Earth’s surface absorbs about 46 percent. The Earth’s surface radiates back
some of this energy with longer wavelengthes which in turn is absorbed by
the atmosphere. In fact atmosphere is able to absorb long wavelengthes
better. The presence of greenhouse gases (ozone, water vapor and carbon
dioxide) in the atmosphere can cause the greenhouse effect by absorbing
more energy from the long wavelengthes of energy. Also some of the heat
from the earth goes back to the atmosphere indirectly by the evaporated
water.

Near the Equator the solar radiation reaches the Earth’s surface with
a steeper angle and shorter path through the atmosphere compared to the
poles. This explains why it is warmer at the Equator than at the poles.
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Atmospheric circulation are created as a natural response to the differ-
ence of temperature between the Equator and the poles. However, other
factors also have an effect: the Earth’s rotation, the force of gravity, the
temperature of the ocean and land, and the presence of topographical fea-
tures such as mountains, plants ice and so on.

A.3.2 Topography of Canada

A listing of main features comprises the Western Cordillera, the Prairies, the
Great Lakes, the Canadian Shield, the Gulf of St. Lawrence and the Arctic
Islands. We only review the Prairies which are the most suitable lands for
farming.

The Prairies extend eastward from the Rocky Mountains sloping down
towards the great Canadian Shield. The elevations range from 1500 m in
the west to about 250 m in Manitoba. The slope however is not even but
is broken by steps, the Manitoba Escarpment and the Missouri Coteau.
Minor hill rows tend to run parallel to these; the Cypress Hills however are
an exception. A chain of large lakes in Manitoba marks the extent of a giant
inland lake during glacial times. The rivers run from the Rockies toward the
northeast, some into the Arctic Ocean, others into Hudson Bay. They are
often cut deeply into the flat or slightly rolling, generally featureless plain.

A.4 Some interesting facts about Canadian

geography and weather

• Total Area of Canada:
The total area of Canada is 9,984,670 square kilometers. Of this, 9
093,507 square kilometers is land and 891,163 square kilometers is
fresh water. Canada’s area is the second largest in the world (after
Russia which has a total area of 17,075,000 square kilometers). On
Canadian territory, the longest distance North to South (on land) is
4,634 kilometers from Cape Columbia on Ellesmere Island, Nunavut to
Middle Island in Lake Erie, Ontario. The longest distance East to West
is 5,514 kilometers from Cape Spear, Newfoundland and Labrador, to
the Yukon Territory–Alaska boundary.

• Boundary:
The total length of the Canada–United States boundary is 8890 kilo-
meters.
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• Landmass and Freshwater:
Approximately 40% of Canada’s landmass and freshwater is north of
60 degrees North latitude. Between them, the Northwest Territories
and Nunavut contains 9.2% of the world’s total freshwater. The area
of Canada north of the treeline is 2,728,800 square kilometers or 27.4%
of the total area of the country.

• The Great Lakes:
The Great Lakes (Superior, Michigan, Huron, Erie and Ontario) are
the largest group of freshwater lakes in the world. They have a total
surface area of 245,000 square kilometers, of which about one third is
in Canada. Lake Michigan is entirely within the USA.

• Coastline:
Canada has the world’s longest coastline: 202 080 kilometers.

• Hailstorm:
At the time it happened, the most expensive natural catastrophe in
terms of property damage was a violent hailstorm that struck Calgary
(photo of Calgary) on September 7th, 1991. Insurance companies paid
about $400 million to repair over 65,000 cars, 60,000 homes and busi-
nesses, and a number of aircraft.

• Tornado:
The Regina Tornado of June 30th, 1912, rated as F4 (winds of 330 to
416 kilometres per hour) was the most severe tornado so far known in
Canada. It killed 28 people, injured hundreds and demolished much
of the downtown area.

• Most Severe Flood:
The most severe flood in Canadian history occurred on October 14th
to 15th, 1954 when Hurricane Hazel brought 214 millimeters of rain
in Toronto region in just 72 hours.

• Manitoulin Island:
The world’s largest island in a freshwater lake is Manitoulin Island in
Lake Huron, 2765 square kilometers.

• Mount Logan:
The highest mountain in Canada is Mount Logan, Yukon Territory,
5959 meters.
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• Medicine Hat:
Medicine Hat is the driest city with 271 days without measurable pre-
cipitation. [Source: Phillips, D. 1990. The Climate of Canada. Cata-
logue No. En56-1/1990E. Ottawa: Minister of Supply and Services of
Canada.]
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Appendix B

Extracting Canadian Climate
Data from Environment
Canada dataset

B.1 Introduction

In this document, some instructions are given to use the climate data pro-
vided by environment Canada [10]. The data we are using are contained in
a file, which can be downloaded from the environment Canada website:

http://www.weatheroffice.ec.gc.ca.

“The National Climate Data and Information Archive, operated and main-
tained by Environment Canada, contains official climate and weather obser-
vations for Canada” (quoting from the website).

Environment Canada has published a series of climate data CDs: 1993,
1996, 2002, 2007. The newest version is the 2007 CD. The Environment
Canada website also includes some other useful information, as a glossary
of some useful terms in climate literature and also some information about
the files. In particular, the glossary includes the definition of precipitation:

Precipitation: The sum of the total rainfall and the water equivalent of
the total snowfall observed during the day.

On the 2007 CD, data are stored in a binary format in several files. The
CD includes two softwares to use the data, “cdcd” and “cdex” along with
manuals to use the softwares. “cdcd” is to view the data and “cdex” is to
extract the data. “cdex” can only extract the data for one climate station
at a time in certain formats which are not necessarily convenient to use in
R (a well known statistical software) or other statistical softwares. In these
formats the longitude, latitude and elevation are missing. Hence, to get
the data in our desired way, we need to read the binary files using another
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program. Bernhard Reiter has written a code using Python to get the data,
which is available online at

http://www.intevation.de/∼bernhard/archiv/uwm/canadian climate cdformat/.

However, this code fails to get the data for a large proportion of the stations.
We have modified the code to get the data for all stations. The modified
code [23] is available at

http://bayes.stat.ubc.ca/∼reza/python.

After getting the data, we need to write the data in our desired formats.
We have also included many new functions in Python for different extraction
purposes.

There are 7802 stations from all over Canada. The available variables
are:

1. maximum temperature

2. minimum temperature

3. one–day rainfall

4. one–day snowfall

5. one–day precipitation

6. snow depth on the ground

These data are available, both daily and monthly. For each station the data
are available for different intervals of time.

The data are saved in 8 directories on the CD labeled 1, 2, · · · , 8. They
correspond to different territories of Canada.

1 --> British Columbia

2 --> Yukon territories, Nunavut and North west territories

3 --> Alberta

4 --> Saskatchewan
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Figure B.1: Canada site locations

5 --> Manitoba

6 --> Ontario

7 --> Quebec

8 --> Nova Scotia, New found land and Labrador

Each directory contains a number of data files and index files. For ex-
ample, directory 3 which correspond to Alberta contains the following files:

DATA.301,DATA.302, · · · ,DATA.308

and
INDEX.301, INDEX.302, · · · , INDEX.308.

Each DATA file corresponds to the data of a region in Alberta and the
corresponding INDEX file contains the information about the stations in the
given region. In Figure B.1, you can see the location of available stations
over Canada.
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B.2 Using Python to extract data

In the following, we illustrate getting the data using the python module:

“Reza canadian data.py”

After opening the python interface, let us import some necessary packages
and tell python where the data are stored. Using sys.path.append specify
the directory where Reza canadian data.py is stored as shown below. Also,
define Topdirectory to be where the data are stored.

>>>import sys

>>>sys.path.append("D:\School\Research\Climate\Python_code")

>>>Topdirectory="D:\Data"

>>>from Reza_canadian_data import *

>>>stations=get_station_list(Topdirectory)

Once you did that you can call the command get station list from
Reza canadian data to get the list of the stations available on the CD. Let
us see how many stations we have access to:

>>> len(stations)

7802

Let us pick a random station, say the 3000–th station and find out its id
and index.

>>> s=stations[2436]

>>> s.stationnumber

’3025480’

>>> s.index_record

(’5480’, ’RED DEER A ’, ’YQF’, 5211, 11354, 905, 1938,

1938, 1938, 1938, 1938, 1938, 1955, 2007, 2007, 2007, 2007, 2007,

2007, 2007, 9904)

>>> len(s.index_record)

21

The command “stationnumber” gives back the id of the given station
on the CD. The stations in the same district start with the same numbers.
For example the stations in Alberta all start with 30 and so Red Deer is in
Alberta. You can use cdcd to see the list of the stations and id numbers to
figure out which ids correspond to which districts.
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The index record command reads the information available for the given
station. There are many values available and it is hard to understand what
they mean. As you see the index has 21 components. Here is the explanation
of each component:

1. The last four digits of the id

2. station name

3. Airport is the three–character airport identifier that some stations
have (e.g., “YWG” for Winnipeg); if none exists for this station then
the field is left blank

4. latitude

5. longitude

6. elevation

7. The first available year for max temperature

8. The first available year for min temperature

9. The first available year for mean temperature

10. The first available year for rainfall

11. The first available year for snowfall

12. The first available year for snow depth

13. The first available year for precipitation

14. The last available year for Max temperature

15. The last available year for min temperature

16. The last available year for mean temperature

17. The last available year for rainfall

18. The last available year for snowfall

19. The last available year for precipitation

20. The last available year for snow depth
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21. Starting Record Number: This record is a header that contains infor-
mation about the station

Hence, for example this station name is Red Deer. It has the data for
precipitation from 1938 to 2007. Whenever, 9999 is recorded as the first and
55537 as the last available year for a variable, that variable is missing. As
mentioned before the available data for a given station are maximum temper-
ature, minimum temperature, one–day rainfall, one–day snowfall, one–day
precipitation and snow depth. These are coded in Reza canadian data.py
as

"MT" "mint" "rain" "snow" "precip" "snow_ground"

We have used the following procedure in python interface to create a file
“stations.txt”, which has the information for all the available stations. In
every row the information for a stations is given. There are 22 columns,
the first one is the stations id and the other 21 are as described above.
Whenever, the station was not an airport station, the airport identifier was
recorded as NA. Notice, how using the “if” command in below, we have
separated the case where the airport identifier is blank from the case that
there is an airport identifier.

stations=get_station_list(Topdirectory)

f=open(’stations.txt’,’w’) for s in stations:

ind=s.index_record

if ind[2]==’ ’:

f.write(str(s.stationid)+’,’+str(ind[0])+’,’+str(ind[1])

+’,’+’NA’+’,’+str(ind[3])+’,’+str(ind[4])+’,’+str(ind[5])

+’,’+str(ind[6])+’,’+str(ind[7])+’,’+str(ind[8])

+’,’+str(ind[9])+’,’+str(ind[10])+’,’+str(ind[11])

+’,’+str(ind[12])+’,’+str(ind[13])+’,’+str(ind[14])

+’,’+str(ind[15])+’,’+str(ind[16])+’,’+str(ind[17])

+’,’+str(ind[18])+’,’+str(ind[19])+’,’+str(ind[20])

+’\n’)

else:

f.write(str(s.stationid)+’,’+str(ind[0])+’,’+str(ind[1])

+’,’+str(ind[2])+’,’+str(ind[3])+’,’+str(ind[4])

+’,’+str(ind[5])+’,’+str(ind[6])+’,’+str(ind[7])
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+’,’+str(ind[8])+’,’+str(ind[9])+’,’+str(ind[10])

+’,’+str(ind[11])+’,’+str(ind[12])+’,’+str(ind[13])

+’,’+str(ind[14])+’,’+str(ind[15])+’,’+str(ind[16])

+’,’+str(ind[17])+’,’+str(ind[18])

+’,’+str(ind[19])+’,’+str(ind[20])+’\n’)

f.close()

One of the useful commands in Reza canadian data.py is get data. Let
us use this command to get some data.

data=s.get_data(1995,‘‘precip")

>>> len(data)

3

>>> len(data[0])

366

>>> len(data[1])

366

>>> len(data[2])

108

As you see the data object created has three components. The first two
components each have 366 entries and the third one has 108 components.
The first component of the data is the data values for each day of the year,
the amount of precipitation. The second component includes the flag asso-
ciated with each daily values. The third component correspond to monthly
values, number of missing days for a given month and etc. Let us look at
the first two components. We print the value of precipitation for the first
60 days of the year:

>>> for precip in data[0][0:60]:

print "%5.1f" % precip,

0.0 0.2 0.0 0.0 0.0 0.5 0.0 0.0 0.0 2.0 0.8

0.0 0.2 0.4 2.2 0.4 0.6 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0

0.0 0.2 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.0 0.0 0.0 -999.9
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Everything looks OK other than the last value which is -999.9. Every
missing value in the dataset is shown by -999.9. In fact to see the status
of a data point look the corresponding flag which is given in the second
component of the data. Let us look at the flag for the first 60 days of the
year as well:

>>> for flag in data[1][0:60]:

print "%5.1f" % flag,

0.0 0.0 0.0 0.0 2.0 0.0 2.0 2.0 2.0 0.0 0.0

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0

2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 2.0 2.0

0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

2.0 0.0 2.0 0.0 14.0

We need to know what each flag means. Note that the flag corresponding
to -999.9 is 14. A description of the flags is given below:

0 -> Observed value

1 -> Estimated

2 -> Trace. Value is reported 0

3 -> Precipitation occurred, amount uncertain; value is 0

4 -> Precipitation may or may not have occurred; value is 0

5 -> Accumulated amount (from past days possibly)

6 -> Accumulated and estimated

7 to 13 -> unused

14 -> This is used to denote Feb 29 in a non-leap year

15 -> Missing data

In summary only a data point with 0 flag (no flag) is valid. The flag
2.0 corresponds to “trace” (as called by Environment Canada) which is a
precipitation under 0.2 (mm) that can not be measured accurately and the
value is reported as zero. In the above example the flag corresponding
to -999.9 is 14 which is to denote Feb 29 in a non–leap year as explained
above and this makes sense since the 60th day of the year corresponds to
Feb 29th. There are 13 points flagged 2.0 and so we have many “trace”
values. For more information regrading the flags and data format refer to
‘Reza canadianinfo.txt”

In order to extract and interpret the data, one needs to read each data
point as well as the flag corresponding to the data point.
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B.3 New functions to write stations’ data

In the Python package, “Reza canadian data.py”, we have also introduced
some functions to write the data for a given station including the stations’
information as longitude, latitude and elevation. Using these commands
has the advantage that we do not need to worry about the flags anymore.
Whenever, the data is missing we will get NA (instead of -999.9) and also for
trace values (precipitation occurrence with value smaller than 0.2 (mm)) for
precipitation, we get “trace”. The command for getting the data for a given
stations is “write station( , , )”. We need three entries for this command:
station number, the list of all stations (We can get that by the command
stations=get station list(Topdirectory) as shown above.) and value:

(“MT”,“mint”,“rain”,“snow”,“precip”).

For example consider:

>>>write_station(2436,stations,’MT’)

The output for this command (if the data are available) is a text file.
There is also an output in the terminal. If the data are available the output is
“success” and the name of the text file created. If the data are not available
then the output is simply “failure”. A statement is also printed depending
on the data being available or not. If the data are available, the number of
years the data are available is reported and also the name of the file created.
For the above example, we get:

The data file 3025480-MT.txt created. It should contain 69 years.

(’success’, ’3025480-MT.txt’)

If the data are not available, we get:

There was not any years containing more than 100 days. No file

created. (’failure’,’none’)

Also note that, we write data for a year only if it contains more than 100
days of data. You can modify this easily by modifying the write function in
the module.
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The data files are named by the id followed by “MT”, “mint” or “pre-
cip” which stand for Max temperature, min temperature and precipitation
respectively. For example, since the id for ABBOTSFORD’s id is ”1100030”
the file containing the data for maximum temperature for ABBOTSFORD
is called “1100030-MT.txt”

Each row of the data files corresponds to a year. The first entry is
the year and then 366 entries corresponding to the observed daily values
for the given year. Whenever the actual year has 365 days only, the value
corresponding to Feb 29th is recorded as NA (60th day of the 366 year).

Note that we can use this command in a “for” loop to write a bunch of
stations. To keep track of the stations that have data available, we make a
list of the created files. In the following we have done that with stations list
which contains the number of the stations that have data available. sta-
tions list contains the name of the created files.

list=733,4034,2517,7467,6744,1518,2113,7269 subset=list value=’MT’

stations_list=[] stations_files=[]

for i in subset:

snum=i

d=write_station(snum,stations,value)

if d[0]==’success’:

stations_list.append(i)

stations_files.append(d[1])

B.4 Concluding remarks

The software described in this report can be used to generate datasets suit-
able for analysis with R and other standard datasets. Moreover the tutorials
and demonstrations should help users understand the process for doing so.
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Appendix C

Algorithms and Complexity

In this appendix, we include the definitions for the complexity of the algo-
rithms. For a more detailed treatment see [28] for example.

Definition We say that f(x) = o(g(x)) if limx→∞ f(x)/g(x) exists and is
equal to 0.

Definition We say that f(x) = O(g(x)) if ∃C;x0 such that

|f(x)| < Cg(x), ∀x > x0.

Definition We say that f(x) = Θ(g(x)) if there are constants c1 6= 0; c2 6=
0;x0 such that for all x > x0 it is true that c1g(x) < f(x) < c2g(x).

Definition We say that f(x) = Ω(g(x)) if there is an ǫ > 0 and a sequence
x1, x2, x3, · · ·

xn → ∞ as n → ∞,

such that ∀j : |f(xj)| > ǫg(xj).
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Appendix D

Notations and Definitions

We follow the widely used conventions throughout the thesis. Latin upper-
case letters, often X, Y , Z, sometimes with subscripts such as s, t, are used
for random variables.
List of notation and abbreviations:

R The real numbers: (−∞,∞)
N The natural numbers: 1, 2, · · ·
Z The integer numbers: · · · ,−2,−1, 0, 1, 2, · · ·
∼ Distributed as
≈ Approximate to
Σ A σ-field
(Ω,Σ, P ) A probability space over the set Ω and σ-algebra Σ
X A random variable; X : (Ω,Σ, P ) → (R,B)

(a measurable function from Ω to R with Borel σ-field)
FX The distribution function of the random variable X
X|Y Random variable X conditional on random variable Y
α̂ Estimate of α
N(µ, σ2) Univariate normal distribution with mean µ and variance σ2

{Xt}t∈T A stochastic process over the space T
station Gauged site where measurements are available
i.i.d Independently and identically distributed
E(X) Expectation of random variable X
V ar(X) Variance of random variable X
Cov(X,Y ) Covariance of random variables X and Y
LHS Left hand side
RHS Right hand side
iff If and only if
∅ The empty set
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sort(x) The sorted version of the vector x
stack(x, y) Put (concatenate) the two vectors x and y together

(starting from x and ending with y) to make a single vector
length(x) The length (dimension) of a vector x
argmin

a
f(a) The set of elements of domain of f that minimize f .

MT Maximum temperature during a day
mt Minimum temperature during a day
PN Precipitation amount (or occurrence) during a day
COS and SIN The deterministic process cos(ωt), and sin(ωt),

where t denotes time and ω = 2π
366 .

AIC and BIC Akaike information and Bayesian information criterion
A ⊂ B A is a subset of B. It is possible that A = B
pn ↑ p The sequence pn is non–decreasing and tends to p
pn ↓ p The sequence pn is non–increasing and tends to p
X(i) or Xi:n The ith order statistics of a random sample X1, · · · ,Xn

{x|P (x)} The set defined by elements that satisfy the property P (x)

Definitions

• FX or F c
X : The distribution function of a random variable; P (X ≤ x).

• F o
X : The open distribution function; F o

X(x) = P (X < x).

• Go
X : The open right distribution function; Go

X(x) = P (X > x).

• Gc
X : The closed right distribution function; Gc

X(x) = P (X ≥ x).

• lqX(p): The left quantile function; lqX(p) = inf{x|FX (x) ≥ p}.

• rqX(p): The right quantile function; rqX(p) = inf{x|FX(x) > p}.

• (Ω, P, {Xθ}θ∈Θ): A statistical space consisting of a set Ω and a proba-
bility measure P on Ω and a set of random variables {Xθ}θ∈Θ indexed
by parameter θ in the parameter space Θ a subset of the Euclidean
space.

• 1A(x) is the standard indicator function formally defined as

1A(x) =

{

1 x ∈ A

0 x /∈ A
.
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• δX : The probability loss function associated with the random variable
X,

δX(a, b) = P (a < X < b) + P (b < X < a).
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