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Abstract

In many research areas, measurement error frequently occurs when investigators are
trying to analyze the relationship between exposure variables and response variable in
observational studies. Severe problems can be caused by the mismeasured exposure vari-
ables, such as loss of power, biased estimators, and misleading conclusions. As the idea
of measurement error is adopted by more and more researchers, how to adjust for such
error becomes an interesting point to study. Two big barriers in solving the problems
are as follows. First, the mechanism of measurement error (the existence and magnitude
of the error) is always unknown to researchers. Sometimes only a small piece of informa-
tion is available from previous studies. Moreover, the situation can be worsen when the
study conditions are changed in the present study, which makes previous information not
applicable. Second, some researchers may still argue about the consequences of ignoring
measurement error due to its uncertainness. Thus, the adjustment for the mismeasure-

ment turn to be a difficult, or impossible task.

In this thesis, we are studying situations where the binary response variable is pre-
cisely measured, but with a misclassified binary exposure or a mismeasured continuous
exposure. We propose formal approaches to estimate unknown parameters under the
non-differential assumption in both exposure conditions. The uncertain variance of mea-
surement error in the continuous exposure case, or the probabilities of misclassification
in the binary exposure case, are incorporated by our approaches. Then the posterior
models are estimated via simulations generated by the Gibbs sampler and the Metropo-

lis - Hasting algorithm.
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Abstract

Meanwhile, we compare our formal approach with the informal or naive approach in
both continuous and exposure cases based on simulated datasets. Odds ratios on log
scales are used in comparisons of formal and informal approaches when the exposure
variable is binary or continuous. General speaking, our formal approaches result in bet-
ter point estimators and less variability in estimation. Moreover, the 95% credible, or

confidence intervals are able to capture the true values more than 90% of the time.

At the very end, we apply our ideas on the QRS dataset to seek consistent conclu-
sions draws from simulated datasets and real world datasets, and we are able to claim
that overall our formal approaches do a better job regardless of the type of the exposure

variable.
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Chapter 1

Introduction

In many research areas, statistical methods are used to analyze the relationships between
two or more variables. For example, in the epidemiology area, statistical models are
used to understand or study the relationship between an outcome variable Y and an
explanatory variable X. For instance Y can be presence or absence of heart disease, and
X can be presence or absence of smoking, where Y and X are both binary variables, or
X can be the blood pressure, which is a continuous variable. There are four types of
designs that are most often applied, which are the cross-sectional study, cohort study,
case-control study and randomized controlled clinical trial. In this thesis, we are focused
on the case-control study, which is also referred to as a retrospective study. We randomly
select subjects from “case” and “control” groups, then compare the health outcomes for
the two groups based on selected subjects. The explanatory variable X is often measured
by some instruments. When X is precisely measured, the instrument is called a gold
standard. However, due to the high cost and lack of such precise instrument, X is often
measured imprecisely. If X is a categorical variable, imprecise measurements are called
misclassifications, while if X is a continuous variable, they are called measurement errors.

In this thesis, we are working on both discrete and continuous cases of X.

1.1 Misclassification and Measurement Error

Generally speaking, misclassification means grouping a subject into a wrong category .
For example, a person who smoked one pack of cigarette in the day of the experiment
might be accidently grouped as a heavy smoker while this person might barely smoke

in other days. Thus, rather than recording X itself, a surrogate variable X* is often

1



1.2. Overview of Current Available Methods

recorded instead. The misclassification probability (say p;;) defines the probability of
classifying a subject into group i while its true status is in group j.

When X is a continuous variable, by the definition of the classical error model in the
measurement error literature, a surrogate variable X* is the linear term of X plus an er-
ror term. For example, a recorded patient’s blood pressure might be higher than his/her
true values due the equipment error. As defined in Chapter 3 in this thesis, X* = X + Z,
where Z is the error term and E(Z|X)=0.

Measurement error and misclassification can be categorized into differential and non-
differential cases. If the distribution of the surrogate variable X* only depends on the
true value X but not the health outcome Y, then the mismeasurement is classified as
non-differential. Otherwise, the mismeasurement is categorized as differential.

Due to the misclassification and measurement error , usually we only have precisely mea-
sured health outcome Y , the surrogate variable X* and some other precisely measured
covariates U in the data. Since the goal of most studies is to understand the relationship
between X and Y, conclusions obtained from X* and Y instead could be very misleading.

Thus, the study of measurement error and misclassification is significantly important.

1.2 Overview of Current Available Methods

In the literature, especially in the biomedical research, many methods were proposed to
deal with misclassification and measurement error. Barron (1977) proposed the matrix
method that estimate the expectation of cell counts by using their margins, and the
odds ratio can be estimated later on based on the cell counts. By reparameterizing the
misclassification, Marshall (1990) presented the inverse matrix method to retrieve the
odds ratio. However, Lyles (2002) pointed out that the inverse matrix method is just a
maximum likelihood estimate method that corrects the biased odds ratio due to misclas-
sification. The efficiency of the matrix method and inverse matrix method were compared
under the assumption of differential misclassification (the degree of measurement error is

different across different groups) by Morrissey and Spiegelman (1999). They concluded
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that the inverse matrix is more efficient than the matrix method; nevertheless, the sensi-
tivity, specificity, and probability of exposure are some key determinants of the efficiency.
Later, other methods like simulation extrapolation (SIMEX) and logistic regression model
are also developed to approach the misclassification problem (Kuchenhoff, Mwalili, and
Lesaffre, 2006; Skrondal and Rabe-Hesketh, 2004). With the improvement of computa-
tional capability of computers and enhanced simulation techniques, the Bayesian analysis

becomes another prospective method to study the misclassification problem.

Carroll, Ruppert, Stefanski, and Cainiceanu (2006) grouped methods that deal with
measurement error into functional and structural models, where X is considered as fixed
or random with minimum assumptions of distributions in the functional models while
X is considered as random variables in the structugsl models. Two general methods
used in the functional model category are the regression calibration (Pierce and Kellerer,
2004) and SIMEX (Cook and Stefanski, 1994) methods. Carroll, Ruppert, Stefanski,
and Cainiceanu (2006) stated that even though these two methods are very simple, they
are only consistent in some special cases such as linear regression and they have limited
contributions in reducing the bias caused by the measurement error. Disregarding some
limitations of the regression calibration and SIMEX methods, they are still widely used
since both of them are very easy to implement by using the existing software packages,
which reduces the potential difficulties in the analysis set-up part. In the structural
method category, the Expectation-Maximization algorithm in the frequentist perspec-
tive and Markov chain Monte Carlo algorithm in the Bayesian perspective are two useful

algorithms to solve the measurement error problems.

Bayesian methods are capable of dealing with biases induced by both misclassification
and measurement error. One great advantage of Bayesian methods is that they can
fully incorporate the uncertainties of parameters. Though fully specified models are of-

ten required, this kind of information plus some knowledge of mismeasurement are often
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available to medical researchers before they conduct studies. When an observed dataset is
available, the natural existence of prior information make Bayesian analysis an appealing
method, since inference now can be made through the prior and present information. In
this thesis, we are focus on using the Gibbs sampler and Metropolis-Hastings algorithm

in Bayesian methods to solve the misclassification and measurement error problems.

1.3 Bayesian Analysis

Bayesian inference is statistical inference in which data are used to update or to newly
infer quantities that are observed or wished to learn by using probability model. The
“combination” of Markov Chain Monte Carlo (MCMC) algorithm and Bayesian infer-

ences is often used in solving the mismeasurement related problems.

1.3.1 Bayes Rule

To understand the Bayesian analysis, it is essential to understand the fundamental prin-
ciple of the analysis - Bayes rule. Assume there is a independently and identically dis-
tributed dataset y = (y1,%2, ..., Yn) With unknown parameter  and following distribution
fo. Bayesian analysis is to conclude a parameter  based on the observed data, so we
denote the conditional distribution on the observed data as f(8y), which is called the

posterior distribution. Meanwhile, the sampling distribution of the data set is:

Fwlo) =] fo(w)
i=1

Then, a joint probability distribution of  and y can be defined as:

f(6,y) = £(6) x £(yl6)
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where f(0) refers the prior distribution of . Applying the basic property of conditional

distribution (Bayes’ rule), the posterior distribution turns to:

_ f6,y) _ £(6) x f(yl6)
) f(y)

f(0ly) (1.1)

Since the f(y) is a constant term, independent of the parameter 8, we can express the
unnormalized posterior density as f(8|y) « f(8) x f(¥]6).
To estimate the parameter 6, we can calculate the expected value of § under the posterior

density (Gelman et al., 2004) by taking the integral:

J0£(6)1(yl6)d8
J £0)f(yl6)do

6= / 65 (6ly)dd =

If there is a closed form of the posterior distribution, the estimation of § would be very
easy to carry out . However, sometimes there is no closed form of the posterior density, we

have to use the other numerical methods, such as Markov Chain Monte Carlo algorithms.

1.3.2 Prior Distribution

As an “absent” term in classical statistical analysis, the prior distribution plays a major
role in the Bayesian analysis. There are mainly two types of prior distributions: infor-
mative priors and non-informative priors. A non-informative prior also can be called
a “flat” prior that has a limited impact on the posterior distribution. Researchers use
non-informative priors usually because they don’t have very much knowledge about the
parameter in the previous study or they don’t want the inference to be greatly affected
by some external sources. Moreover, the determination of “fat” prior is not trivial since
everyone has a different definition of “fat”.

The informative prior, information that gained from previous study , on the other hand,
may provide a strong influence on the posterior distribution. However, the influence
is somehow related to the sample size, number of MCMC iterations and the form of

the prior. In most cases, strong priors are not necessary when the sample size is big.
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Nevertheless, in some cases, the priors are needed to be strong regardless of the sample

size.

1.3.3 Markov Chain Monte Carlo Algorithm

The computation of the posterior distribution is always a problem since the density of
the posterior sometimes is very complicated or even high dimensional. Because of this
problem, the usage of Bayesian analysis has been very limited. When the MCMC algo-
rithm was first applied in 1990, the limitation of Bayesian analysis then vanished and
Bayesian methods becomes increasingly popular.

In the following two sections, two particular MCMC algorithms are introduced: Metropolis-
Hastings algorithm (Greenberg and Chib, 1995) and Gibbs sampler (Casella and George,
1992).

Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is an iteration method for generating a se-
quence of samples from a probability distribution when directly sampling is difficult or
impossible. It uses an acceptance/rejection rule to cover the target distribution. The

basic algorithm follows:
1. Randomly choose a starting point §°
2. For the ithiteration from i=1,2,...,

(a) Sample a proposal §* from a jumping distribution at iteration i, p(*|6*~!)

(b) Calculate the ratio of densities,

1)
D@ e

where f(6) is the target distribution.
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(c) Set

g — 6*  with the probability min(r,1)
61  otherwise

Note that the acceptance rate shouldn’t be close to 0% or 100%, otherwise, the random

walk would either move too slowly (cover the target population too slowly) or stand still

for too long (likely to stay in certain regions). Thus, proper adjustments of the jumping

distribution sometimes are necessary.

Gibbs sampler

The Gibbs sampler is a special case of MH algorithm. It is applied when the ex-
plicit form of the joint distribution is unknown but the conditional distribution of each
variable is known. Assume we divide the parameter vector @ into p components, say
6 = (61,0, ...,6p). Each iteration of Gibbs sampler cycles thought all the components of
6. Each component is drawn based on the values of all others. Thus, the algorithm that

generates a Markov chain at iteration i is:
1. Randomly set the initial values for all the components § = (0(0) 0(0) ,01(,0) ).

2. For the it*iteration from i=1,2,...,
for j=1...p, sample 0(.i) from the distribution of f (0j|0§)-),
where 0( A ; represents all the components of 6, except for 6;, at their current values:

0(1) (0(3) 0(“) . 0§1) L 0:5:_11) .. (" 1))

Though the above two MCMC algorithms looks very simple, sometime the technical
details can be very challenging. In this thesis, we will apply Gibbs sampler algorithm in
Chapter 2 and Metropolis-Hastings algorithm in Chapter 3.



Chapter 2

Simulation Study for Categorical

Exposure Variable

2.1 Introduction

Assume a researcher is interesting in study the relationship between a binary exposure
variable X and a continuous response variable Y. The exposure variable X is often coded
as 0 or 1, where X = 0 refers to “unexposed” and X = 1 refers to “exposed” in most
epidemiological situation. Instead of observing X, a surrogate variable X* is measured.
Under the non-differential misclassification assumption, X and X* are conditionally in-
dependent of Y, and the specificity and sensitivity are used to measure the magnitude of
the misclassification (Gustafson, 2004). Then, the sensitivity SN = Pr(X* = 1|X = 1)
is the probability of correctly classifying a truly “exposed” subject, and the specificity
SP = Pr(X* = 0|X = 0) is the probability of correctly classifying a truly “unexposed”
subject. In the following subsections, we will introduce two approaches to analyze the

relationship between discrete exposure variables and health outcome Y.

2.2 2x 3 Table-Formal Analysis

Though there are only two conditions of the true exposure X, Yes or No, sometimes the
surrogate variable X* has three conditions instead as: Unlikely, Maybe and Likely, due

to possible instrument error (as displayed in Table 2.1).



2.2. 2x 3 Table-Formal Analysis

Assessed Exposure
Unlikely | Maybe | Likely
True Exposure | No Poo Po1 Do2

Yes P1o P11 P12

Table 2.1: 2x 3 table due to the misclassification and measurement error

Note that the p;; in the table defines the probability of classifying a subject into

group j while its true status is in group i.

If the truly exposed condition, X, is known, then the exact relationship (referred as
a “true” result) of X and Y is able to be analyzed. However, in reality, X is often
inaccessible, and researchers only know its surrogate, X*. Even though, researchers are
analyzing the relationship between X* and Y, they also tend to conclude it as the re-
lationship between X and Y. It is very dangerous to make such conclusion since it can
be very biased. The first analysis method is termed as a formal analysis: analysis that
acknowledge the existences of 2 x 3 table (Table 2.1) structure in the exposure condition.

Specifically, the analysis is carried out based on Table 2.2.

Exposure
Unlikely | Maybe | Likely
Health Outcome | controls 700 701 o2
cases n1o0 n1 Ni12

Table 2.2: A 2x 8 table for formal analysis

where n;; in the table is the number of subjects that fall in the condition (e.g. ngo is
the number of subjects that “Unlikely” have the exposure in controls). In the literature,
there are fewer studies that involves the formal analysis, which makes it an interesting
point to study. The second approach is termed as an informal analysis: analysis that tend
to ignore the 2 x 3 table structure in the exposure condition. More details of informal

analysis are going to be talked about in the next section.
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2.3 Informal Analysis

When we assume the mismeasurement is non-differential, sensitivity and specificity of
X* for X can be used to described the magnitude of the misclassification. The closer the
values of SN and SP are to one, the less severe the misclassification is.

As stated in Gustafson (2004), when the probability of the exposure is very rare, the
effects of misclassification worsens much more with the decrease of specificity than the
decreases of sensitivity, which means the impact of low specificity will be bigger than the
impact of low sensitivity in a further analysis. This attracts particular attention in the
epidemiological area for the study of rare disease since it implies that when the expo-
sure is very rare, the analysis can be fully misleading even with a very small effects of
misclassification. Thus, when some epidemiologists realize that they have the 2x3 table
structure (as Table 2.1) in hand, they tend to group the “Maybe” and “Unlikely” groups

together to form a 2x2 table as in Table 2.3: where ggo = poo + po1 and gio = P10 + p11.

Assessed Exposure
No | Yes
True Exposure No | goo | g01
Yes | qi0 | qu1

Table 2.3: 2x 2 table by epidemiologists’ rule

They prefer such grouping so that more subjects are classified as unexposed, and this
leads an increase of probability that a true negative is correctly classified, which means
a large SP value. In such way, a low specificity could be avoided so that a small effect of

misclassification won’t lead a huge impact in the further analysis.

In the literature, most analyses are constructed based on the ignorance of the struc-

ture of Table 2.1. Thus, they are based on Table 2.4, and we would like to refer such

analysis as informal analysis in the rest of the Chapter.

10
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Exposure

No Yes
Health outcome | controls | ngp + no1 | noo
cases 710 + 11 | N2

Table 2.4: A 2x2 table for informal analysis
2.4 Odds Ratio

Suppose we have two groups of subjects, controls and cases, and denoted the number
of subjects in each group as mg and n;. Let ro denote the prevalence of exposure in
the control group and r; denote the prevalence of exposure in the case group, i.e. ro =
Pr(X =1|Y = 0) and 1 = Pr(X = 1|Y = 1). Thus, the odds ratio, which defines the

relationship between X and Y is formed as:

U= 1 (2.1)

In the informal analysis, the odds ratio is usually calculated as:

n12 X (noo + no1)
no2 X (n1o +na1)’

5-\Rin formal =

where the standard error of log odds ratio is formulated as:

( 1 1 1 1 )1/ 2

se=|———+ —F—— ] .

Moo +Mo1  No2 Mo t+Nu1 N2

In the formal analysis, there are three different ways to calculate the odds ratio. Since
the MCMC algorithm estimates the prevalence in both case and control groups (ro and
1) at each iteration, they are going to be updated every time. Thus, the first way is to
find the posterior mean of odds ratios, which is to calculate the odds ratio at each MCMC

iteration, and then take the average of them. The second way is to find the posterior

average of ro,r, of each iteration, then use formula (2.1) to find the odds ratio. The

11
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third way is to find the posterior mean of log odds ratio, which is to calculate average
of the log of odds ratio at each iteration first and then transfer it by using exponential

function. Mathematically, those three odds ratio can be written as:

——— 1 & —
ORI=EZi:OR,

where i refers to the ** iteration, and m is the total number of iterations.

1 & 1 &
o ~q o a4
o=——Z7‘o 1=-—-Z1"1 2.2
—df A=) (22)
1 2
M
OR, = oL
o _
1—%

where rg, 1 are calculated from equation (2.2). And also,
OBy = exp [ -3 1og(OF)
3 = €TP m £ g

We are interested in comparing the odds ratios in both analysis. Since the odds ratio
always falls into a very skewed distribution, we tend to compare the informal odds ratio
and the formal odds ratio in the log scale, such that the distribution will be more sym-
metric. We are going to focus on comparing the @nfmal with 51\23 in the log scale

with respect to their point estimator and confidence/credible intervals as :

l0g(ORinformar) = log <n02 x (n1o + n11)) ’

12



2.5. Case 1: When We Know p;;s

with its 95% confidence interval as:

Clinformal (1og(51\2,-nfmal) — 1.96 * se,log(él\%,-nfwmal) + 1.96 x se) .

The log formal odds ratio is as:
logOR; = — > log(OR')
3 3 m 3 ’

Note that the 95% credible interval for log 61\%3 can be simply obtained by finding the
2.5% and 97.5% quantiles of all log ORj3 that obtained from each iteration.

In order to evaluate the performance of our proposed formal approach, we conduct simu-
lation studies under three cases as: when the probability of classify, p;; are known; when
we only have prior information on p;;; when we have some validation data, i.e. we have

some subjects have both X and X* measured.

2.5 Case -1: When We Know p;;s

In some cases, researchers may know the probabilities of classifying the assessed exposure
to true exposure from previous experiments, i.e. the p;;s are known. Under this condition,

the posterior density is expressed as:

f(r0>r1>X1 naIYI j,Xl X;)

= [[ & (1 - rg) 0= X010, X% (1 _ ) 0-X3)%;

IX"‘—O)(I—X IX*—l)(l -X I(X‘—2)(1—X)
% Hp ( ])Poi ])p02 3

XH I(X;=0)X; I(X‘—l)X, I(x*—-z)x,

?

13



2.6. Case 2: When p;;s are Unknown

where I is an indicator function. We assume the prior distribution of r¢p and »; are
uniform (the same assumption carries in the following two cases), and then we use the
Gibbs sampling method to update the unknowns, 79 and r; since their posterior distribu-
tions have familiar distributions that we can recognize, namely Beta distributions. The

posterior distribution of X is viewed as:

b
b+a

f(leTo, 1, X1, ...Xj..l, Xj+1, ...Xn, Y1Y_'7, XfX;) X

where

v  I(Xr=0) I(Xr=1) I(X*=2)
a= (1“7'0)1 Y’(l"'rl)y’poo Y P Doo ° ,
1-Y; v; I(X*=0) I(X*=1) I(X*=2)
b=ry "ri’po’ P’ P12’

Thus, at each iteration of MCMC algorithm, the probability of getting X; = 1 by given
everything else “known” is b/(a + b).

2.6 Case 2: When p;;s are Unknown

Though, in the previous section, we studied the case that p;;s are available from other
experiments, in reality, those values are often unknown. The maximum information that
we have on them are some knowledge of their priors. We choose a Dirichlet distribution
as the prior distribution for p;;s for two reasons. First, the summation of py; and the
summation of p;; are both equal to 1, i.e. poo + po1 + po2 = 1 and pio + p11 + P12 = 1.
Second, the Dirichlet distribution has the property of being conjugate, which means
the posterior distribution of p;;s would also come from the Dirichlet distribution family.
Thus, by choosing Dirichlet distribution as the prior, the MCMC algorithm is easy to

compute the updated p;;s at each iteration, and the results are also easy to be interpreted.

14



2.6. Case 2: When p;js are Unknown

Hence, we have:

D00, Po1, Poz ~ Dir(coo, co1, Coz),

P10, P11, P12 ~ Dir(cio, €11, C12)-

Then, the posterior distribution is changed to:

f(ro, 71, X1, ... X, Poo, Po1, Po2, P10, P11, P12| Y1, - Yo, X7, .. X )
~ l—Irx,-(l—Y,-)(1 _ ro)(1_x,-)(1—Y,-)7.fijj(1 _ Tl)(l‘Xi)Yi

I(X3=0)(1-X;) I(X‘-l)(l X;) I(X‘...2)(1—-X)
XH "o " Pog !

I(X}=0)X; I(X‘—l)X, I(X}=2)X;
XH 12

000100116021 c10—1,c11—1, c12—1
XPoo Por Poz  *Piy P Pis

o Hrg(j(l—Y,-)(l _ To)(l_Xj)(l_Yj)ri{ij(l _ rl)(l—Xj)Yj

J
(I(X*—O)(I—XJ)+Coo 1) (I(X7=1)(1~X;)+co1—1] (I(X}=2)(1-X;)}+co2~1)
Dby Doz
J
(I(X;=0)Xj+clo—1) (I(X;:l)Xj-f-cll—l) (I(X;=2)Xj+012—1)
bn D19
J

ot K0T (VT -X) 1), D XY ) 8,0-X5)%;
xpOOZj I(X;:O)(I—Xj)+coo—1polz:j I(X;:l)(l—Xj)+c‘o1-1p022j I(X37=2)(1-X;)+co2~1)

xp1o 2 T =0 Xjte0=1y 57 IXG=1)Xtenn—1,, 55 I(X7=2)X;+cip~1

Note that coo, co1, oz, €10,c11 and ci2 are called hyper-parameters, and the specific values

assigned will be discussed in the results section.

15
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2.7 Case 3: Validation Data

Sometimes, the true exposure variable X might be possible to capture, but it is too
expensive to get for all the subjects. As a result, only a small proportion of the subjects
have the complete information of X, X* and Y, whereas the majority of the subjects
don’t have the precisely measured exposure status, X. Table 2.5 presents the structure

of the validation sample and the incomplete main data. While all counts corresponding to

Validation Data Main Data
X* X*
Unlikely { Maybe | Likely Unlikely | Maybe | Likely
=0 | X=0 Y=0
X=1
=1 ]| X=0 Y=1
X=1

Table 2.5: Validation data and main data

levels of X,Y, X are fully recorded in the validation data, only counts that correspond
to Y, X* are recorded in the main data. We want to use the information from the
validation data to impute X for the main data and to make inference on X and Y.

Our new posterior density is like:

F(X1, ... X, D00, Dot D023 D105 P11, D125 70, 71 [ Xty - Xy X7 - Xy Y1, . V)

m j=n
= JIro1x) < TTrexixs) < T] £ T £051%;5)
J J

j=1 m+1

x [T £(x51%5) x [T £(X5) % £(poo, por, oz, P10, 211, P12) X f(ro) X f(r1),
J J

where j = 1,...m is the non-validation data part and § = m + 1,...n is the validation
data part.

The simulation process for this case does not change a lot regarding the change of the
posterior distribution, and the only difference is that “kmown” X values in the validation

data do not need to be updated, where the “unknown” X values, ro,r; and p;;s are

16
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updated the same as in the previous case.

2.8 Results

In order to gain information about the performance of MCMC algorithms in all three
cases, the MCMC trace-plots, posterior mean, 95% equal-tail credible interval, estimated
bias, estimated mean square error of each unknown parameters are checked in the fol-
lowing subsections. Moreover, when the prevalence in control and cases are small, i.e. g
and 7, are relatively small, the odds ratio of “formal” and “informal” are compared later

on to assess their performance.

In all cases, two sets of the prevalence are used as (1): ro = 0.2,7, = 0.25 and (2):
ro = 0.7,71 = 0.4, and each one is combined with the “true” probability of classifying
values as poo = 0.5,po1 = 0.3,po2 = 0.2 and p1p = 0.1,p11 = 0.3,p12 = 0.6. Any hyper-
parameters used in the specific cases will be defined in the later subsections along with
detailed information of each case scenarios. Moreover, two simulation studies are per-
formed regarding each scenario in each case. The first one focuses on studying estimation
from one sample. The second concentrates on studying the sampling distributions of each

estimator across 100 simulated datasets.

2.8.1 Results for Case 1

T'wo scenarios we have in this case are:

e Scenario 1: (ro,r1) = (0.2,0.25), true odds ratio=1.33, (poo, Po1,Po2) =
(0.5,0.3, 0.2), (pm,p11,p12) = (0.1,0.3,0.6);

e Scenario 2: (rg,r1) = (0.7,0.4), true odds ratio=0.283, (poo, Po1,Po2) =
(O5a 0.3, 02)’ (pIO’pll,p12) = (01, 0.3, 06)

Two simulation studies are carried for each scenario, where studies for the first scenario

will be talked about in details as an example. Note that the same procedures are applied

17
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to the second scenario as well.

In the first study, a dataset of size 4000 (2000 controls and 2000 cases) was generated
based on the given “true” value, (rg,71) = (0.2,0.25), (poo, Po1,Po2) = (0.5,0.3,0.2), and
(P10, P11, P12) = (0.1,0.3,0.6). Then, we use 21000 iterations, where the first 1000 is the
burn-in period to update unknown parameters. The choice of burn-in period is make
based on visual inspection. Figure 2.1 shows the traceplot of MCMC algorithm for
ro and r; after the first 1000 burn-in period. It shows that the Markov chains moving

smoothly within the target area.

18



2.8. Results

(=]
N
e o
e
=} T T T T T
0 5000 10000 15000 20000
iterations
o
@
- [=]
(=]
N
o
T T T T T
5000 10000 15000 20000
iterations

Figure 2.1: Traceplots of ro and r1 from MCMC algorithm in scenario 1 case 1. The
traceplots show the 20000 iterations after 1000 burn-in period. The true values of ro and
r1 are 0.2 and 0.25 respectively.

Table 2.6 shows the true values, posterior means and the 95% credible intervals for rq

and r;. Both 95% credible interval of rg and 71 covers the “given” values, which indicates
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that for this particular generated dataset, our approach works well.

true value | posterior mean 95% CI
ro| 0.2 0.18 (0.15, 0.23)
1 0.25 0.27 (0.23, 0.31)

Table 2.6: True values, posterior means, 95% credible intervals of ro and r1. These are
results from the first simulation study (one dataset simulation) for scenario 1 in case 1.

The second study will repeats the first study 100 times, which enable us to investi-

gate the sampling distributions of rg and r;. Figure 2.2 is the histogram of 100 posterior

means of ry and ;. It demonstrates that the sampling distribution of 7 and 7} are ap-

proximately normally distributed and centered around the “true” values, majority values

are around the “true” values.
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Figure 2.2: Histogram of 100 posterior means of ro and r1 in the second simulation study
for scenario 1 case 1. The “true” values of ro and r1 are 0.2 and 0.25 respectively.

Table 2.7 confirms our observation by showing the 95% credible interval coverage
rates are very high and the average lengths of the credible intervals are very small.

Bias | MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.0024 | 0.0025 91 0.09
r1 | 0.0028 | 0.0023 95 0.091

Table 2.7: Bias, mean square error (MSE), coverage of 95 % CI and the average width
of ro and ry for scenario 1 case 1. All results are based on 100 datasets, and their true
values are 0.2 and 0.25 respectively.

Since desirable results are obtained from the statistical procedures and stabilized iter-
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ations are observed from the traceplot, it is reasonable to conclude that our approach

works well when the prevalence for both control and cases are relatively small.

Table 2.8 shows the first simulation study result for scenario 2, where 7o = 0.7 and

r1 = 0.4 and p;; values remain the same. Again, the result shows that for the particular

true value | posterior mean 95% CI
o 07 0.69 (0.63,0.72)
8 04 0.41 (0.36, 0.45 )

Table 2.8: True values, posterior means, 95% credible intervals of ro and r1. These are
results from the first simulation study (one dataset simulation) for scenario 2 in case 1.

generated dataset, we are able to get reasonable estimators. However, in order to know
how the model works in general, we need to review the results from the second simulation
study.

Figure 2.3 and Table 2.9 are histogram and statistical results from the second simulation
study for scenario 2 in case 1. All results from two studies for scenario 2 suggest that

our proposed approach works equally well when the prevalences are considerably larger.
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Figure 2.3: Histogram of 100 posterior means of ro and r1 in the second simulation study
for scenario 2 case 1. The true values of ro and r1 are 0.7 and 0.4 respectively.

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro [ 0.000068 | 0.0021 98 0.085
r1 | 0.00074 | 0.0023 94 0.092

Table 2.9: Estimated bias, mean square error (MSE), coverage of 95 % CI and the average
width of ro and ry for scenario 2 case 1. All results are based on 100 datasets, and their
true values are 0.7 and 0.4 respectively.
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2.8.2 Results for Case 2

In this case, there are also two scenarios as:

e Scenario 1: (ro,r1) = (0.2,0.25), true odds ratio=1.33, (poo, o1, Po2) =
(05, 03, 02), (Plo,Pn,Plz) = (01, 03, 06),

e Scenario 2 : (ro,r1) = (0.7.0.4), true odds ratio=1.33, (poo, po1,Po2) =
(05703102)7 (pIOapllap12) = (01703706)

Remember that in this case, since p;;s are unknown, we need to specify prior distributions
for them. The hyper-parameters c;; are chosen particularly as (cgo, co1, co2) = (55,30, 15),
(c10, €11, c12) = (10,25, 65) for both scenarios. Those values are chosen so that the prior
distribution are centrated nearly around the “true” values of p;;. Since any single com-
ponent of a Dirchlet vector has a Beta distribution, we are able to see how concentrated
these priors are by using the Beta distribution with certain hyper-parameters. For exam-
ple, previous information (prior) states that pgo is from a Beta distribution with shape
a = 55,3 = 45. Figure 2.4 displays the the true p;; values with its corresponding Beta
density function. From the figure, we can see that most “true” p;; values are close to
the centre of the the density function (especially with pp; and pjo) and the range of the
x-axis are pretty narrow, which suggests that the priors that we use in this case are
concentrated ones. We use the concentrated priors here is because by simulation studies,
we realized that the no matter the sample size is large or not, a strong prior is crucial in

this case (as mentioned in Section 1.3.2).

Same as in case 1, two simulation studies are carried for each scenario, where studies
for the first scenario will be talked about in detail as an example.

In the first study for scenario 1, a dataset of size 4000 (2000 controls and 2000 cases)
was generated based on the given “true” value. Then, we use 51000 iterations (the first
1000 is the burn-in period) to update unknown parameters.

Figure 2.5 show the traceplot of MCMC algorithm for 7o, r; and pi;s after the first 1000
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Figure 2.4: Density plots of “true” p;; values with its corresponding Beta density function.
The vertical lines in the graph indicate the “true” values. The Beta density functions
(from left to right) are: Beta (55,45), Beta(30,70), Beta(15, 85); Beta(10, 80), Beta(25,
80) and Beta(65,85).
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burn-in period. Again, the Markov chains move smoothly within target range and no
chain is fixed at a particular value. We also observe that the generated sample Markov
Chain is somehow more stabilized in some unknown parameters (e.g. po1,p11) than oth-
ers (e.g. ro and ) after the burn-in period.

Table 2.10 demonstrates the true value, estimated posterior mean and 95% credible

interval for each unknown parameter from the first study of scenario 1.

true value { posterior mean 95% CI
o 0.2 0.25 (0.14,0.40)
™ 0.25 0.32 (0.18, 0.41)
Poo 05 0.53 (0.46, 0.60 )
Po1 0.3 0.31 (0.27,0.35 )
D02 0.2 0.16 (0.09, 0.23 )
D10 0.1 0.1 (0.05,0.16 )
P11 0.3 0.25 (0.18, 0.35 )
P12 0.6 0.64 (0.54, 0.73 )

Table 2.10: True values, posterior means, 95% credible intervals of ro,r1 and p;;s. These
are results from the first simulation study (one dataset simulation) for scenario 1 in case

1.

Though there are discrepancies between the estimated posterior means of rg and r; and
their true values, 95% credible intervals of estimated means do cover the true values.
Figure 2.6 and Table 2.11 display the results from the second study (100 datasets

simulation) of the first scenario in this case .
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Figure 2.5: Traceplots of ro,r1 and pi;s from MCMC algorithm in scenario 1 case 2. The
traceplots show the 50000 iterations after 1000 burn-in period. The “true” values are
ro = 0.2, = 0.25, (poo, po1, Po2) = (0.5,0.3,0.2) and (p10,p11,p12) = (0.1,0.3,0.6).
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Figure 2.6: Histogram of 100 posterior means of ro,r1 and p;;s in the second simulation
study for scenario 1 case 2. The “true” walues are ro = 0.2,71 = 0.25, (poo, Po1,P02) =
(0.5,0.3,0.2) and (p10,p11,P12) = (0.1,0.3,0.6).

28



2.8. Results

From Figure 2.6, we observe that the histograms of 100 posterior means of 7y, 71, poo, Po1, Pio
and poy are shifted to the right from their true values, which indicates an overestimation
of the parameters of interest. Though the graph suggests a possible unpleasant result,
we still need to study those parameters’ corresponding sampling distributions to find out
the true performance of our model. Table 2.11 shows the estimated bias, mean square
error, 95% credible intervals coverages (of the true value) and the average length of 100
95% credible intervals for each parameter.

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.062 | 0.0021 100 0.25
ry | 0.056 | 0.0019 . 100 0.24
poo | 0.035 | 0.00079 100 0.14
po1 | 0.014 | 0.00088 99 0.074
po2 | -0.049 | 0.00023 100 0.14
p10 | 0.0022 | 0.00015 100 0.12
p11 | -0.039 | 0.00072 100 0.16
p12 | 0.0366 | 0.00061 100 0.18

Table 2.11: Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and ry for scenario 1 case 2. All results are based on 100 datasets, and
their true values arero = 0.2,71 = 0.25, (poo, Po1, Po2) = (0.5,0.3,0.2) and (p1o, P11,P12) =
(0.1,0.3,0.6).

It indicates that the even though the graph shows a potential unpleasant result, the
parameters’ posterior distributions still cover their true values most of the time. As we
discussed earlier, this case is very sensitive to the choice of prior distributions, and the
observation obtained from Figure 2.6 could just imply a not strong enough prior for the
particular dataset. Thus, it’s still reasonable to conclude that the algorithm works well

for this case.

Figure 2.7 and Table 2.12 are histogram and statistics results from the second sim-
ulation study for scenario 2 in case 2. We omit the results of the first study here due to
its limitation of interpretation. From both the figure and table, we notice that no matter

whether the probability of exposure is large or small, the prior distributions are always
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very important. Weak priors may lead to poor results, and the stronger the prior is the

better the results would be. This is dissimilar with most Bayesian cases, where when the

sample size is large, the choice of the prior becomes insignificant. Future studies could

be conducted on this case.

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
70 0.015 0.0027 100 0.23
1 0.048 0.0025 99 0.23
poo | 0.036 0.0017 100 0.15
po1 | 0.012 0.0020 96 0.10
po2 | -0.04 | 0.00043 100 0.15
p1o | -0.0036 | 0.00022 100 0.11
p11 | -0.011 | 0.0017 97 0.079
p12 | 0.015 0.0015 100 0.14
Table 2.12:

their true values are ro = 0.7,71 = 0.4, (poo, Po1, Po2) = (0.5,0.3,0.2) and (p10, P11,P12) =

Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and r1 for scenario 1 case 2. All results are based on 100 datasets, and

(0.1,0.3,0.6).
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Figure 2.7: Histogram of 100 posterior means of ro,m1 and pi;s in the second simulation
study for scenario 1 case 2. The “true” walues are ro = 0.7,71 = 0.4, (poo, Po1,Po2) =
(0.5,0.3,0.2) and (p10,p11,P12) = (0.1,0.3,0.6).
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2.9 Results for Case 3

Under this cases, we will have four scenarios as follows:

e Scenario 1: (rg,7r1) = (0.2,0.25), true odds ratio=1.33, (pgo, o1, Poz2)

= (0.5,0.3, 0.2),(p10,p11,p12) = (0.1,0.3, 0.6), (600,001,002) = (1,1, 1),
(c10,11,c12) = (1,1,1) , validation size=200;

e Scenario 2: (ro,71) = (0.2.0.25), true odds ratio=1.33, (oo, Po1,Po2)

= (05, 03, 0-2)’(1710,?11,1’12) = (01’037 06)’ (600’001;602) = (1’ 1; 1),
(c10, 11, €12) = (1,1,1), validation size=100;

e Scenario 3: (ro,71) = (0.7,0.4), true odds ratio=0.28, (pgo, Po1, Po2)

= (0'5,0'3’ 0-2),(1)10,1’11,?12) = (01,03’06)y (COO, 001,002) = (1,1’ 1))

(c10,c11,€12) = (1,1,1), validation size=200;

e Scenario 4: (ro,71) = (0.7.0.4), true odds ratio=0.28, (poo, Po1, Po2)

= (0'5’0'3’0'2), (PIO)Pll,Plz) = (01’03)06)’ (COO, 001’002) = (1’ 1) 1))
(c10,c¢115€12) = (1,1,1) ,validation size=100.

Notice that in scenario 1 and scenario 3, the validation size is 200 compared to scenario 2
and scenario 4 (validation size is 100). As in case 2, let’s plot the true values of p;;s along
with their prior density functions. From Figure 2.8, we can see that now the range of
the x-axis (possible generated values) becomes wider and the “true” values are not that
close the to the center of the density functions. This directly implies that these priors
are flatter than the one we chose in case 2. We assign flat priors in this case because we
believe valuable information could be obtained from the validation data.

Once more, two simulation studies are carried for each of the scenario, and only the first
of the two scenario will be talked about in details. Figure 2.9 and Figure 2.10 show the
traceplots of MCMC algorithm for r9,; and p;;s after the first 1000 burn-in period for

scenario 1 and 2.

32



2.9. Results for Case 3

0 ] e (\ @ (\
§ 2 g - g e
& 3
0 0 | « |
o o o
o _J : \ o -J 9 -J
o o o
1 T T T T T T T T ¥ T 1 1 4 1 T 1
00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10
Poo Po1 Pe

£ o £ o | £ o |
§ < - 8 -
- &
w w w
o o o
Q -J . o | N 0 o _J ;
o o (-3
LN B . T T T T T T T
00 02 04 08 08 1.0 0.0 02 04 06 08 1.0 00 02 04 08 08 1.0
P10 P11 P12

Figure 2.8: Density plots of “true” p;; values with its corresponding Beta density function.
The vertical lines in the graph indicate the “true” values. The Beta density functions
(from left to right) are: Beta (1,2), Beta(1,2), Beta(l1, 2); Beta(1, 2), Beta(1, 2) and
Beta(1,2).
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Figure 2.9: Traceplots of ro,r1 and pi;s from MCMC algorithm in scenario 1 case 3.
The traceplots show the 20000 iterations after 1000 burn-in period. The “true” values
are ro = 0.2, rmn = 0.25, (poo,pm_,poz) = (0.5,0.3, 0.2) and (p10,p11,p12) = (0.1,0.3, 0.6).
Validation size =200.

We can see that for the generated sample Markov Chain are somehow more stable

in this case than case 2. Table 2.13 and 2.14 demonstrates the true value, estimated

posterior mean and 95% credible interval for each unknown parameter from the first
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Figure 2.10: Traceplots of ro,m1 and pi;js from MCMC algorithm in scenario 1 case 3.
The traceplots show the 20000 iterations after 1000 burn-in period. The “true” values
are o = 0.2,71 = 0.25, (Poo, Po1, Po2) = (0.5,0.3,0.2) and (p10,p11,p12) = (0.1,0.3,0.6).
Validation size =100.
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study of scenario 1 and 2.

true value | posterior mean 95% CI
o 0.2 0.18 (0.13,0.24)
m | 0.25 0.24 (0.19, 0.30 )
Poo 0.5 0.49 (0.45, 0.52 )
Po1 0.3 0.31 (0.28, 0.34 )
poz | 02 0.20 (0.16, 0.24 )
po| 01 0.07 (0.00 0.13 )
Y45 0.3 0.27 (0.16, 0.37 )
P12 0.6 0.66 (0.56, 0.77 )

Table 2.13: True values, posterior means, 95% credible intervals of ro, 71 and pijs. These
are results from the first simulation study (one dataset simulation) for scenario 1 in case

8. Validation size =200.

true value | posterior mean 95% CI
o 0.2 0.22 (0.13,0.31)
8 0.25 0.27 (0.18,0.37)
Poo 0.5 0.53 (0.46, 0.59 )
Po1 0.3 0.25 (0.19, 0.31 )
poz | 0.2 0.22 (0.19, 0.25 )
P10 0.1 0.07 (0,0.13)
P11 0.3 0.42 (0.29, 0.54 )
P12 0.6 0.51 (0.42, 0.61 )

Table 2.14: True values, posterior means, 95% credible intervals of ro,r1 and p;js. These
are results from the first simulation study (one dataset simulation) for scenario 2 in case

8. Validation size =100.

From these one sample studies, we observe that the approach works very well with flat

priors. Though the observation now is only based on one sample study result, it is verified

by Tables 2.15 and 2.16 from the second simulation study (sampling distribution study

based on 100 datasets).
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Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.0047 | 0.0032 93 0.12
1 0.0024 | 0.0029 98 0.12
poo | 0.0017 | 0.0020 95 0.07
po1 | -0.00045 | 0.0015 96 0.067
po2 | -0.0013 | 0.0015 98 0.071
p1o | 0.0090 | 0.0036 97 0.15
P11 -0.01 0.0045 97 0.20
p12 | 0.001 | 0.0039 99 0.19

Table 2.15: Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and r1 for scenario 1 case 3. All results are based on 100 datasets, and
their true values are ro = 0.2,71 = 0.25, (poo, po1, po2) = (0.5,0.3,0.2) and (p10, p11,P12) =
(0.1,0.3,0.6). Validation data=200.

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.0066 | 0.0039 96 0.16
r1 | 0.0027 | 0.0038 96 0.16
poo | 0.00050 | 0.0022 94 0.093
po1 | 0.0049 | 0.0023 94 0.086
poz | -0.0054 | 0.0021 99 0.09
po | 0.0090 | 0.0043 96 0.18
p11 | -0.021 | 0.0068 93 0.25
pi2 | 0.012 | 0.0049 100 0.23

Table 2.16: Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and r1 for scenario 2 case 3. All results are based on 100 datasets, and
their true values are ro = 0.2, = 0.25, (poo, Po1, Po2) = (0.5,0.3,0.2) and (p10, P11,P12) =
(0.1,0.3,0.6). Validation data=100.
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Figure 2.11 and Figure 2.12 show the histograms of sampling distributions for each
unknown parameter in scenario 1 and 2. Results from the above two tables and figures
indicate that when there are some validation data, the formal approach performs equally
well (compare with the case 2) though the prior information is weak. Even though
intuitively, we may think that the larger validation size would have better results than
the smaller size, by comparing Table 2.15 and Table 2.16, it is hard to conclude that
there is significant difference in the results obtained from the scenario 1 and scenario
2. One possible explanation is that by increase the validation size from 100 to 200, the
algorithm is only able to gain limited “valuable” information. This immediately rises
a question that whether there is a cut off point that we are able to get the maximum
benefit, i.e. fewer validation data and enough information to obtain a good estimation.

This could be an interesting point to study later on.
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Figure 2.11: Histogram of 100 posterior means of ro, 1 and p;;s in the second simulation
study for scenario 1 case 8. The “true” walues are ro = 0.2,71 = 0.25, (poo, Po1,Po2) =
(0.5,0.3,0.2) and (p10,P11,P12) = (0.1,0.3,0.6). Validation size =200.
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Figure 2.12: Histogram of 100 posterior means of ro,T1 and p;;s in the second simulation
study for scenario 2 case 8. The “true” values are ro = 0.2,7 = 0.25, (poo, Po1,Po2) =
(0.5,0.3,0.2) and (p10,11,p12) = (0.1,0.3,0.6). Validation size =100.
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The following tables and figures show the results of scenario 3 and scenario 4 where

the prevalence rates are relatively larger (ro = 0.7 and r; = 0.4).

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.0033 | 0.0031 97 0.13
r1 | 0.0064 | 0.0039 92 0.14
poo | 0.0042 | 0.0033 94 0.11
po1 | 0.00019 | 0.0025 94 0.09
po2 | -0.0044 | 0.0029 96 0.11
p1o | 0.0001 | 0.002 95 0.078
p11 | -0.0012 | 0.0020 93 0.075
p12 | 0.0011 | 0.0023 96 0.093

Table 2.17: Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and r1 for scenario 8 case 3. All results are based on 100 datasets, and
their true values are ro = 0.7, 71 = 0.4, (poo, Po1, Po2) = (0.5,0.3,0.2) and (p10,p11,P12) =
(0.1,0.3,0.6). Validation data=200.

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
ro | 0.0041 | 0.0038 97 0.19
r1 | 0.0062 | 0.0047 96 0.19
poo | 0.0097 | 0.0037 96 0.14
po1 | -0.0030 | 0.0026 96 0.10
po2 | -0.0067 | 0.0034 96 0.14
p1o | -0.0006 | 0.0021 99 0.10
p11 | -0.0011 | 0.0025 90 0.082
p12 | 0.0017 | 0.0028 97 0.11

Table 2.18: Estimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of ro and ry for scenario 4 case 3. All results are based on 100 datasets, and
their true values are ro = 0.7,71 = 0.4, (poo, Po1, Poz2) = (0.5,0.3,0.2) and (p19, P11,P12) =
(0.1,0.3,0.6). Validation data=100
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From the above results, we are able to conclude that our formal approach works well
when the prevalence rate is relatively high, and again it is hard to conclude that more

validation data will help in getting more precise results.

2.10 Comparison of Odds Ratios

As we talked about previously, it is interesting to compare odds ratios estimated by formal
and informal approaches, to see which one tends to be closer to the true vales. Since in
the informal approach, we tend to group two categories from the exposure “Unlikely”
and “Maybe” together, only when the probability of exposure is rare, we would only
compare odds ratios in scenarios that 7o = 0.2 and »; = 0.25 in each case, i.e. scenario

1 in case 1 and 2, scenario 1, 2 in case 3.
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Figure 2.15: Comparisons of log informal odds ratios with log formal odds ratios for
scenario 1 in case 1(upper left), scenario 1 in case 2 (upper right), scenario 1 & 2 in
case 8 (lower left and right) . The true log odds ratio value is 0.285. The line in the

each graph plots if two odds ratios are the same (y=z line). The dash lines represent the
“true” value.
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Figure 2.15 suggests that the informal odds ratios tend to underestimate the true
values, where the formal odds ratios sometimes overestimates the true value. For most
of generated datasets, the informal odds ratio is always less than the formal odds ratios,
since the majority of the plots are below the “y=x” line. The following table illustrates

the comparisons in details.

Bias MSE | Cov. of 95%CI | Ave. 95%CI Width
Scenario 1 Case 1 ORinformar | -0.19 | 0.0078 21 0.27
OR3 0.008 | 0.020 93 0.75
Scenario 1 Case 2 ORinforma | -0.19 | 0.0072 23 0.30
OR3 -0.055 | 0.016 93 0.66
Scenario 1 Case 3 ORjnformar | -0.19 | 0.0072 23 0.27
ORj3 0.00027 | 0.018 93 0.70
Scenario 2 Case 3 ORjnforma | -0.18 | 0.0068 27 0.27
OR3 -0.0043 | 0.018 97 0.76

Table 2.19: Estimated bias, mean square error (MSE), coverage of 95 % confidence
intervals and average 95%CI width of informal and formal log odds ratios for scenario 1
(or 2) in three cases. True log odds ratio is 0.28.

Table 2.19 indicates that the formal analysis produces more precise estimation of log
odds ratio. It has a small bias, great coverage rate, and a reasonable average of 95% CI
width, where, on the other hand, the informal approach gives larger bias and unexpected
small coverage rate.

Thus, we are able to conclude that the formal approach generally does a better job than
the informal approach in estimating the odds ratio. Researchers who apply the informal
approach may need to take serious consideration of the measurement error, otherwise,

the results might be very biased.
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Chapter 3

Simulation Study for Continuous

Exposure Variable

3.1 Introduction

Suppose a researcher is interested in investigating the relationship between a health
outcome, Y, and a continuous variable, X, and then concluding that E(Y|X) = Bo+5 X
for unknown parameters fy and B;. Nevertheless, when the health outcome is measured
precisely, a noisy measurement X* is often obtained instead of X. If the researcher does
not realize the existence of measurement error, or decide to ignore it, then his conclusion
about Y and X could be biased. Thus, it is useful to study the impact of the mismeasured
covariate X.

Let’s assume a precisely measured predictor X has a normal distribution with mean u and
variance A2, while its mismeasured surrogate X* arises from an additive measurement
error, which is non-differential, unbiased and normally distributed. Thus, X* is normally
distributed with mean X and variance o2. Moreover, since the measurement error is non-
differential, which means X* and Y are conditional independent of Y, the distribution of
(X*|X,Y’) and the distribution of (X*|X) are identical. The joint distribution of X, X*

and Y can then be viewed as:

f(X*Y, X) FXTIX,Y) x fY]X) x f(X) (3.1)

FXTX) x f(Y]X) x f(X).
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The first term in equation (3.1) is called the measurement model, which is the conditional
density of X* given X and Y. This defines that under the influence of Y, the surrogate
X* arises from the true variable X in a particular way. The second term is called the
response model, which explains the relationship between the true explanatory variableX
and the response Y. The last term is called the exposure model in epidemiological
applications (Gustafson, 2004).

Usually, specific distributions, which involve some unknown parameters will be assumed
in equation 3.1, and to make inferences about the X*, X and Y relationship. Since in
reality, the true explanatory variable X is unobserved, the likelihood function of X* and

Y is formed as

ey = [ s xvax (3.2)

= [ X S0 x S0,

Though in some cases, equation 3.2 is easy to evaluate, in other cases, big problems could
arise when the integral does not have a closed form. Often, a Bayesian MCMC analysis
will be used in such condition since one advantage of Bayesian approach is that the likeli-
hood function is not necessary expressed in explicit form. Dempster, Lairdd, and Rubin
(1977) proposed the EM algorithm to solve the implicitly problem in a non-Bayesian way,

however, in this paper, we will stay with the Bayesian MCMC methods.

Researchers often want to compare the health outcome Y within two groups, thus, they
often dichotomize the continuous variable X into two or more categories. Though, Roys-
ton, Altman, and Sauerbrei (2006) pointed out a considerable disadvantage of the di-
chotomization, it is still very common in the literature (MacCallum, Zhang, Preacher,
and Rucker, 2002). In this paper, we dichotomize X into two groups with the rule if
X > c, the subject is truly exposed, otherwise, the subject is not exposed. Note that

in reality, the value c is often decided from a previous study or chosen by a health expert.
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3.2. Posterior and Prior Distributions

The relationship of the health outcome and predictor variable is often estimated by
obtaining the coefficients from a linear regression model. Since the health outcome, Y, is
a binary variable here, logistic regression appeals as a suitable model. General speaking,
there are three approaches to estimate the coefficients. An “naive” approach would di-
chotomize X* with respect to ¢, where an “informal” approach dichotomize the surrogate
variable X* according to ¢* (a threshold not necessarily the same as c). In reality, the
true predictor variable X is unobserved, however, in the “formal” approach (discuss in
the paper), it is pretended to be known and be dichotomized with respect to ¢ and fit
the model afterward. The choice of the threshold, c¢*, is somehow arbitrary, however, in
order to keep a high specificity (as in discrete case), some epidemiologists would intend
to choose c* to be bigger than the true c value, such that Pr(X* > ¢*|X < ¢) is very
small.

Notice that researchers, who use the “naive” approach are often not aware of the measure-
ment error or intend to ignore it, while people who use “informal” or “formal” approach
do acknowledge existence of the measurement error and try to find out a solution to the

problem. Results from all three approach will be compared later in the Chapter.

3.2 Posterior and Prior Distributions

In this paper, the constituent models are studied based on normal distributions. Specif-
ically speaking, we assume the measurement model, (X*|X,Y’), to be a normal distribu-
tion with mean X and variance o2. Since the measurement error is non-differential, we
have

X*X ~ N(X,o?).

The exposure model is also assumed as a normal distribution with unknown parameters
wand A2, i.e.
X ~ N(p,»?).
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3.3. Case 1: When We Know o2

Prentice and Pyke (1979) pointed out that the odds ratios are equivalent when both
prospective and retrospective logistic model are applied to the case-control data, thus
we would like to assume the response model Y| X follows a logistic regression, which is
logitPr(Y = 1|X) = Bo + f1I(X > c). By easy transformation, the response model turn

to:
e[ﬁ0+ﬁ11(X>c)]
-+ eﬂO+ﬁ1I(X>C) :

Pr(Y =11X) = -

Note that all parameters o2, u, A2, By and B, are unknown, and proper prior distribu-
tions might be needed in order to proceed. Meanwhile, we would like to assume the

independence of all prior distributions, so that

F(0%, 1,22, B0, B1) = F(0%) x f(p) x F(A) x f(Bo) x f(Br).

Specific prior distributions will be assigned later on.

In this chapter, we focus on studying three cases to demonstrate the performance of
the “formal approach” : when we have some knowledge the noise of the true exposure
value from previous study, i.e. 02 is known; when we only have some prior information
about the noise term, i.e. o2 is unknown but we have some information there; when we
have some validation data, i.e. we have some data on X along with X* and Y for some

subjects.

3.3 Case 1: When We Know o2

Sometimes, researchers might have some knowledge about the noise of the true explana-

tory variable from previous study results, then the posterior density function is :

f(Xl, (XX} X‘n) :80) :81) Hy A2|Y‘1) (XX} Yn)XI) LIX}} X;I') (33)

o [[ 7% ;) x [T £(X51%5) x T] £(X5) x £(Bo) x £(B1) x £(w) x f(A2).
J J 3
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3.3. Case 1: When We Know o2

In order to proceed, we need to specify prior distributions for unknown parameters
©, 22,80 and B1. To simplify the MCMC algorithm later on, it is convenient to as-
sign the normal distribution for u, 8y, /1 and Inverse Gamma, distribution for A2 as their

prior distributions. Thus, we have
o~ N (07 d%))

B1 ~ N(0,d2);
pu ~ N(0,d2);
A2 ~ IG(dg, ds).

where the choice of hyper-parameters d2,d%,d3,ds and ds determine how flat or con-
centrated a prior could be. Here, we choose d? = d2 = d2 = 1002 and d4 = d5 = 0.01 so
that have flatter priors for unknown parameters u, A2, Gp and 5.

The posterior density function in (3.3) now turns to:

f(Xl,X2’ X3, ---’XnnBO; ,31, K, }‘2|Y1’ Y2, sy Ym XT,XE, X:;, vy Xr*z) (3'4)
oc [ £51%5) x [ [ £(X51%) x [ £(X5) x £(Bo) x F(Br) x f(u) x F(A2)
j 3 j

e (VGlBo+Bl(X>e)) 1 -Zi(x7-x)? 1 —Zi(X-m)?

« ]._.[_7 1+ eﬂo+ﬂ1I(Xj>c) X Fe 207 X )\—ne 22
-2 _ a2 2
128 1 1= gk ) g
dv A X ——e%% X === X A 5/
Xgre™ x -e™3 x o-e X e ¢

We chose the normal distribution and Inverse Gamma distribution for u and A\? as prior
distributions, since they have the property of being conjugate. A conjugate prior means
the posterior distribution of x and A2 would come from the same distribution family as
the prior distribution. In particular, a simple Gibbs sampler algorithm can be used to
generate a sample of y from the posterior distribution of x4, which is a normal distribu-
tion. Similarly, we can use Gibbs sampler algorithm to generate a sample of A? from its

posterior distribution, the Inverse Gamma distribution.
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3.3. Case 1: When We Know o2

Unlike with u and A2, the posterior distributions of 8y, 81 and X do not have the same
form as any other familiar distributions that we recognize . Thus, the Gibbs sampler
does not work for updating them and we need to use the Metropolics - Hasting algorithm
instead. As introduced in Chapter 1, this algorithm is based on the accept/ reject rule.
We would like to avoid the acceptance rate being extreme, such as 100% or 0%. The key
to decide the rate is the jump distribution of the parameter. Let’s take By for example.
Suppose we are at it* iteration right now and after updating p and A%, we want to update

the i** value of Bo. We would calculate the joint density as

a = fi_l(Xh X27X37 ceey Xm (1;_171317 #(i)7 Az(i)IYi7Yé7 ""Yn’Xf7X5)X§7 7X:;,)

where f is the joint density as in equation (3.4). Then, we would assign a jump size for
Bo, such that ﬂ(()cm'i) = @571 + ¢, where t is from the normal distribution with mean 0

and variance k? and we would again calculate the new joint density value as:

b = fz_l(X17X2,X3’ ""Xn’ﬁ(()cond)’ﬂ].)u(i)’Az(z)ly’l’Y‘z7 "')Yn’Xf)X;)Xgi "'7X:L)

Now, we will pick the new updated & as:

p A" with the probability min(b/a, 1),
0 =

gt otherwise.

A similar procedure is applied for §; and X. The individual jump size often follows
a normal distribution with mean 0 and variance k2. Note that the jump size for each

estimated parameter may vary in next two cases.
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3.4. Case 2: When We Don’t Know o2

3.4 Case 2: When We Don’t Know o2

Though, in the previous section we talked about knowing the measurement error variance
of the true X from other studies, in most situation, we do not know the exact value of

o2 but rather have a prior distribution for it. Then, the new posterior density turns to:

f(-le-X27X3’ ---,Xn, :30’:317 H, A2’0_2|Y'1’ Yé’ 0oy Yn’ X;’X;"X;’ ’X:L) (35)
= [T r¥1%5) x [T £51X%) x [ £(X5) x £(Bo) x f(Br) x (i) x F(A?)
J j j
x f(o®)

Similarly for other parameters, we need specify a prior distribution for o2. Again, be-
cause of the conjugately property of Inverse Gamma distribution, we would like to assign
Inverse Gamma distribution with shape parameter ds and scale parameter d; as the
prior distribution of 02. Note that dg and dy are hyper-parameters. The choice of prior
distributions for other unknown parameters are the same as in case 1 and all other hyper-

parameters would be assigned the same values.

Now the joint density becomes:

(X1, X2, X3, e Xn, Bo, By 11, A2, 0|1, Ya, ooy Yoo, X3, X3, X3, 0 X2)

= Hf(Y |1 X5) x Hf X51X) x Hf(X X f(Bo) % f(Br) x f(u)

><f(f\2) x f(o?)
Y;[Bo+B8LI(X;> - - (X —)?
e2i (YilBo+B1LI(X;>0)]) z,<xz X;)? x_e zz;::g )
H 1+eﬂo+ﬁ1-’(xa>c) A"
2
1 2% 1 # 1 34 di 9~(dat+1) __gg /2
X—e? X —e? X —e?8 x —2— X\ e~ ds/
dy da ds ['(d4)
x dga X0.2"(dfi“'l)e—dv/a2

I'(ds)
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3.5. Case 3: When We Have Validation Data

We are able to update o2 by Gibbs sampling since its posterior distribution is known
as Inverse Gamma distribution, and hyper-parameters dg and d; are specified later in

the result section.

3.5 Case 3: When We Have Validation Data

Similarly as the validation case in the discrete case, here we assume there is a small
proportion of data with complete information on X, X* and Y, whereas the majority of
the data do not have the precise measurement of X but have the surrogate variable X*
instead. Thus, unlike the equation (3.3) and (3.5) in case 1 and case 2, the joint density

here becomes:

f(XI)X2) X3’ ceny Xm’ ﬂ()) ﬁl’ 1y Az, 02|Xm+11 Xm+2, "'1X‘na Yl’ Y2’ ceey
Yo, X1, X2, X3, ., Xp)

= [T raixs) < [ rexs1x) x [[£x) T] £(%51%5)
j=1 i i

j=m-+1

x [T A1) x [T £(X5) x £(Bo) x £(B1) x £(1) x f(3?) x f(a?),
J J

where the first j = 1,...m are the non-validation data and the rest is the validation data.
Though the joint density changes, there are not many changes regarding the simulation
process. The only difference is we do not update the “known” X values in the simulations.
We used Gibbs sampler to update u, A2 and 02, and the Metropolis - Hastings Algorithm
is used to update the By, /1 and the “unknown” X values.

3.6 Results

In the following subsections, traceplots of MCMC algorithms in all three cases are checked

along with some statistics for each unknown parameter, such as the posterior mean, 95%

54



3.6. Results

equal-tail credible interval, bias, and estimated mean square error. In this way, we are
able to gain some information about how well the MCMC algorithms are working for par-
ticular models and randomly generated datasets. Moreover, comparisons of estimated
logistic regression coefficients are made among all three approaches, “formal”, “naive”

and “informal”.

In all three cases, the true unknown (common) parameters are set to be: u = 0,\% =
1,80 = —1.5, and B; = 1.5, with the dichotomization value ¢ = 1. Other choice of
the hyper-parameters as well as the jump size are subject to different cases. Moreover,
two simulation studies are performed for each case. The first concentrates on gathering
information on estimates from one sample. The second focuses on studying the sampling

distributions of each estimator across 100 simulated datasets.

3.6.1 Results for Case 1

In the first study, a dataset of size 500 was generated based on a choice of given parameter
values. Then, we use 6000 iterations (the first 1000 iterations are burn-in period) of
the MCMC algorithm to estimate unknown parameters. Note that the jump sizes for
Bo, /1 and X in the Metropolis-Hasting algorithm are chosen to be 0.15, 0.75, and 1
respectively. Figure 3.1 and Figure 3.2 show the traceplots of the MCMC algorithm
outputs for unknown parameters in case 1. These traceplots only plots the iterations
after the burn-in period. We can see that the Markov Chain is somehow stabilized after

the burn-in period, and the Markov chain move thoroughly within the target range.



3.6. Results
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Figure 3.1: Traceplots of Bo, 51, X1, X2 from MCMC algorithm in case 1. The traceplots
show the 5000 iterations after 1000 burn-in period.

56



3.6. Results
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Figure 3.2: Traceplots of p, A2 from MCMC algorithm in case 1. The traceplots show the
5000 iterations after 1000 burn-in period.
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3.6. Results

Table 3.1 shows the true values, posterior means and the 95% credible intervals for

each of the unknown parameters estimated from the data.

true value | posterior mean 95% CI
i 0 70.013 (-0.112, 0.086)
A2 1 1.014 (0.86, 1.17)
Bo| -15 148 (-1.73, -1.21)
B 15 1.48 (0.79, 2.13)

Table 3.1: True values, posterior means, 95% credible intervals of p, A2, By, 1. These
are results from the first study in case 1.

From the table, we can see that the 95% credible interval of each unknown parameter

actually covers the corresponding true value and the posterior mean is very close to the

corresponding true value.

The second study just involves repeating the first study 100 times and the sampling

distribution of each estimator is studied. Figure 3.3 is the histogram of the posterior

means for the 100 samples in case 1.

58



3.6. Results
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Figure 3.3: Histograms of 100 posterior means for pu,)2, 8,81 in the second study in
case 1. The true values are p =0,)2=1,8y=—1.5 and 1 = 1.5
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3.6. Results

From the figure, we can see that the sampling distributions of /i and ,31 are approx-
imately normally distributed and centered at their true values, whereas the sampling
distribution for A2 is a little right skewed and ,5‘0 is somehow left skewed.

Table 3.2 summarizes each parameter estimator as:

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
x| 0.0023 | 0.0050 95 0.19
A% | -z0.0096 | 0.0080 98 0.31
Bo | -0.065 | 0.013 93 0.54
6 | 0.051 | 0.038 94 1.42

Table 3.2: Estimated bias, mean square error (MSE), coverage of 95% CI and the average
width of p, A2, Bo, B1 for case 1. All results are based on 100 datasets.

The above table shows that the biases and estimated mean square error (MSE) for each
unknown parameter are quite small, especially for u and A2. Furthermore, the average
widths, out of the 100 runs, of the credible intervals for u and A? are pretty small. How-
ever, the wide average widths for Gy and f; suggest that there is more variation among
the 100 estimated Gy and 3. Also, out of the 100 times, the 95% credible intervals cover
(CI) cover the true u and A? value 96 times, and cover the true B and 81 94 times, which

suggests a good overall performance of the formal approach.

3.6.2 Results for Case 2

In this case, 02, the measurement error variance, is also estimated with other parameters
and the “true value” is chosen as 0.25. The hyper-parameters of the Inverse Gamma,
distribution of o2 are specified as 200 and 50 respectively. The specific choice of the
hyper-parameters results in a concentrated prior distribution. From Figure 3.4, we can
see that this prior has a relatively narrow range and the centre of the distribution is close

to the “true” value.
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3.6. Results
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Figure 3.4: Density plot of Inverse Gamma distribution with hyper-parameters: o = 200
and B = 50. The vertical line is “true” value of the 02 = 0.25
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3.6. Results

Moreover, the jump sizes for updating £y, 51 and X in Metropolis - Hastings Algo-
rithm are changed to 0.15, 0.55, 0.8, to avoid extreme acceptance/rejection rates.
Again results from the first study (1 sample study) are displayed first. Figure 3.5 and
Figure 3.6 are the traceplots of parameters the MCMC algorithm in case 2.
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Figure 3.5: Traceplots of Bo, 1, X1, X2 from MCMC algorithm in case 2. The traceplots
show the 5000 iterations after 1000 burn-in period.
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3.6. Results
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Figure 3.6: Traceplots of p, A2 and o? from MCMC algorithm in case 2. The traceplots
show the 5000 iterations after 1000 burn-in period.

We can see that the Gibbs sémpling algorithm is very stable when updating o2 in
5000 iterations, and the chains do not have a mixing or convergence problem.
Table 3.3 shows the posterior means and 95% CI analyzed based on the particular
dataset. Again, all the 95% CI covers the true values of the parameters, and it’s reason-
able to conclude that the approach works well for this particular dataset.

The procedure of the first study is repeated 100 times in the second study. We are able
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3.6. Results

true value | posterior mean 95% CI
L 0 ~0.0061 (-0.089, 0.10)
X2 1 0.88 (0.73, 1.03)
a? 0.25 0.25 (0.22, 0.29)
Go |l -15 151 (-1.77, -1.27)
G 15 172 (1.06, 2.39)

Table 3.3: True values, posterior means, 95% credible intervals of u, )2, Bo, B1 and o2.
These are results from the first study in case 2. The “true” values are: p = 0,\% =
1,,30 = —1.5 and ,31 = 1.5.

to study the sampling distribution of 8; to get a better understanding of the potential
problem (overestimate the parameter) in the first study. The problem could be just
happening by chance or it could show that overall the MCMC algorithm underestimates
P1. Figure 3.7 confirms that the problem of underestimating () is just due to chance
and overall the estimated £; is roughly follows a normal distribution centered at the
“true” value. Except for A%, other parameter estimators are all approximately following

a normal distribution centered at their corresponding “true” value.
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3.6. Results
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Figure 3.7: Histograms of 100 posterior means for u, A2, B, 51 and a%in the second study
in case 2. The “true” values are: u=0,\2=1,6p = —1.5 and B = 1.5.
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3.6. Results

Table 3.4 outlined the bias, MSE, coverage of 95% and average width of the 95%

for each estimator. It suggest that our approach produces reliable estimators with small

biases, small MSE, satisfactory coverage rates and reasonable average credible interval

widths.
Bias MSE | Coverage of the 95%CI | Average 95%CI Width
¢ | 0.0034 | 0.0047 95 0.20
A% | 0.007 | 0.0087 95 0.32
Bo | -0.054 | 0.013 97 0.54
B, | 0019 | 0.035 95 1.41
a* | 0.0023 | 0.00013 100 0.071

Table 3.4: Estimated bias, mean square error (MSE), coverage of 95 % CI and the average
width of p, A2, Bo, B1 and o2 for case 2. All results are based on 100 datasets. The “true”
values are: u=0,A2=1,0, = —1.5 and B = 1.5.

3.6.3 Results for Case 3

In this case, we took our validation size to be 50, which means 10% each dataset has

precise measurements of X. The new jump sizes for Gy, 31 and X are 0.1, 0.35 and 0.7.

Figure 3.8 and Figure 3.9 are the traceplots of parameters in the MCMC algorithm in

the first study .
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3.6. Results
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Figure 3.8: Traceplots of Bo, 51, X1, X2 from MCMC algorithm in case 3. The traceplots
show the 5000 iterations after 1000 burn-in period.
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Figure 3.9: Traceplots of p, 2 and 0? from MCMC algorithm in case 8. The traceplots
show the 5000 iterations after 1000 burn-in period.
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3.6. Results

true value | posterior mean 95% CI
P 0 20.032 (-0.013, 0.066)
A% 1 1.03 (0.87, 1.19)
o* 0.25 0.24 (0.21, 0.28)
Bo -1.5 -1.44 (-1.68, -1.19)
B 15 1.30 (0.63, 1.97)

Table 3.5: True values, posterior means, 95% credible intervals of u, %, Bo, 1 and o>.
These are results from the first study in case 3.

Both figures (Figure 3.8 and Figure 3.9) and statistic values (Table 3.5) indicate that

for this particular generated dataset, the approach did a good job. Next, the histogram

(Figure 3.10) and summary statistics (Table 3.6) of the sampling distribution for each

unknown parameter in the second study are presented.
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Figure 3.10: Histograms of 100 posterior means for u, A2, Bo, 51 and o%in the second study
in case 8. The validation size is 50. The “true” values are: p = 0,)2 = 1,8y = —1.5
and B, = 1.5.
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3.7. Comparison of Three Approaches

From Figure 3.10, we can see that all the sampling distributions of parameter es-
timators are approximately normally distributed with some skewness involved, expect
the histogram for o2 looks uniformly distributed at first glance. However, by taking a
close look at the figure, we noticed that the scale for the histogram of o2 has 3 decimal
places, which suggests that most estimated values of 02 are very close to the true value,
0.25. This observation is also confirmed in Table 3.6, since the estimation of o2 has the

smallest bias, MSE and average CI width and highest coverage rate (100%).

Bias MSE | Coverage of the 95%CI | Average 95%CI Width
u | -0.0032 | 0.0050 97 0.19
A% [ 0.012 | 0.0080 95 0.31
Bo | -0.024 | 0.013 95 0.55
B | 0.051 0.036 95 1.34
a? | 0.00148 | 0.00059 100 0.066

Table 3.6: FEstimated bias, mean square error (MSE), coverage of 95 % CI and the
average width of u, A2, Bo, B1 and o2 for case 8. All results are based on 100 datasets with
validation size 50. The “true” values are: p= 0,02 =1,6y = —1.5 and B1 = 1.5.

Evidence, such as small bias, small MSE and hight percentage of true values coverage,

in Table 3.6 demonstrate a good performance for the validation model.

Overall, we can conclude that the “formal” approach did an excellent job in estimat-
ing unknown parameters for three different models as: knowing the measurement error
variance, prior information of the measurement error variance and validation model.
Next, we are going to study the comparative performance of the “formal” approach, the

“naive” and the “informal” approach.

3.7 Comparison of Three Approaches

As we discussed previously, the “naive”, “formal” and “informal” approach would di-

chotomize either X or X* with respect to ¢ or c* to fit a logistic regression model as
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3.7. Comparison of Three Approaches

following:

logit(Pr(Y = 1|X))format = Bo+BI(X >¢)
logit(Pr(Y = 11X ingormat = o+ AI(X" > <)

logit(Pr(Y =1 X*naive = Bo+BI(X*>c)

The relationship of the health outcome, Y and the exposure variable X is gained from the
estimated coefficients, By and B;. Thus, the comparisons are mainly based on estimating
these two parameters. The true values are the same as before: fy = —1.5 and 5 = 1.5,
and comparisons are constructed in each of the three cases of the “formal” approach.
Note that the c* is chosen as 1.3 so that the specificity and the sensitivity is very high
(both are around 95%).

Figure 3.11 to Figure 3.13 are the pairwise plots of results from the three approaches. By
observing them, we see there are some linear relationship between estimators, and the
linear relationship is somehow weaker when estimating $; than estimating 5. Moreover,
both the “naive” approach and the “informal” approach tend to overestimate By but
underestimate (3; , whereas estimations from “formal” approach are located around the
true value. Since it is very hard to tell which one is “better” between the “naive” and
the “informal” approach from the figures, the summary statistics of estimators’ sampling

distribution in these two approaches are crucial to know.
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3.7. Comparison of Three Approaches

Table 3.7 reports the average posterior means of 8y and 31, as well as 95% confidence

intervals for the average posterior means in all three cases. We are able to conclude that

the formal approach is superior to informal and naive approach, since only the confi-

dence interval of “formal” approach cover the true values of 8y and (3. Moreover, when

estimating (;, the formal approach produces posterior means and confidence intervals,

which are more closer to the true values. The “naive” approach generated the most

narrow confidence interval that may also implies over-confidence. These results suggests

that it is very dangerous to ignore the measurement errors in the analysis and making

proper adjustments for the measurement error is crucial.

Average Posterior Mean | 95%Confidence Interval
Case 1  PBongive -1.41 (-1.43, -1.39)
Boinformal -1.36 (-1.38, -1.34)
Bo formal -1.52 (-1.53, -1.48)
BPnaive 0.98 (0.93, 1.03)
Brinformal 1.14 (1.08, 1.20)
B1 formal 1.55 (1.47, 1.63)
Case 2 fBongive -1.40 (-1.42,-1.37)
Boin formal -1.34 (-1.36, -1.31)
Bo formal -1.49 (-1.52, -1.47)
1 naive 0.97 (0.92, 1.0201)
Binformal 1.04 (0.99, 1.10)
B1 formal 1.52 (1.45, 1.59)
Case 3 Bongive -1.43 (-1.45, -1.40)
Boin formal -1.37 (-1.39, -1.35)
Bo formai -1.49 (-1.52, -1.47)
Praive 0.99 (0.95, 1.04)
Binformal 1.12 (1.06, 1.18)
B formal 1.55 (1.48, 1.62)

Table 3.7: Average of posterior means and 95% confidence intervals for the average

posterior means of Bo and By for “naive

are based on 100 samples in case 1, 2 and 3

?, “nformal” and “formal” approaches. Results

76



Chapter 4

QRS Data Study

To illustrate the ideas and methods that we discussed in the previous chapters in a real
world example, we use the QRS dataset. This dataset is provide by Vittinghoff, Glid-
den, Shiboski, and McCulloch (2004). Heart problems can be diagnosed through the
timing of diverse stages in the contraction of the heart. Electrocardiography(EKG) is
the device that records the electrical activities of the heart through a duration of time.
As the authors indicate the QRS wave is defined as a commonly measured time interval
in the contraction of the ventricles. The study dataset contains the QRS times (in mil-
liseconds) for 53 patients, of whom 18 have the inducible ventricular tachycardia (IVT)
and 35 of them are without IVT. Note that the sample size is relatively small, since it
is very difficult to assemble a large number of subjects to participate in a brain wave
study, and the cost of the study is very high. Thus, studies that involve brain waves and
electrocardiography devices commonly have small sample sizes.

Though the sample size is considerably small, it is still a good and clean dataset to illus-
trate our ideas and methods. The response variable Y takes the value of 1 if the subjects
has IVT, and 0 otherwise, while the covariates variable X is the QRS time (in millisec-
onds). Since the QRS time is a continuous variable, we are focusing on the approach
introduced in Chapter 3. Even through, in the literature, there are researchers who argue
about the accuracy of the QRS duration (Tomlinson, Betts, and Rajappan, 2009), which
indicates that measurement error could exist in the measurement of timing in the real
world, for the purpose of this thesis, we treat the QRS timing as precisely measured (X)
and we simulate the surrogate variable, X*, in order to compare the results obtained

from the true values, naive analysis, informal analysis and our formal analysis.
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Chapter 4. QRS Data Study

Nevertheless accuracy of the QRS is questioned by many researchers, there are few
articles states the possible magnitude of the measurement error. According to Sahambi,
Tandon, and Bhatt (2009), the maximum error rate of the QRS is 6.25% due to the 50
Hz power-line interference. As we lack of detailed information about how the data are
collected, we would simply adopt the measurement error rate stated by Sahambi et al.
(2009). For our illustrative proposes, we have to assume we know the variance of additive
measurement error, o2, in order to generate X*. The error rate we accepted previously
is a multiplicative error, and proper transformation is necessary to acquire an additive
error (as we defined in Chapter 3). As a result, we choose X = log(QRStime) instead of
QRS time directly. As defined in Chapter 3, under the nondifferential assumption, the

measurement model here is

X*|X ~ N(log QRS, o?).

Mathematically, we can compute o2 as:

X* logQRS +0Z
=X = (QRS)e??
which motivates

=e’ = 1.0625

where Z is a standard normal random variable. We get the variance of additive mea-
surement error as 0.0312 = 0.00096, and the surrogate variable, X*, can be generated

afterward.

Since we don’t have validation data and we suppose we don’t know the variance of

the measurement error, the “formal analysis” approach is based on the model that was
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4.1. Naive Approach and Informal Approach

introduced as case 2 in Chapter 3. Thus, the response model is

P(Y =1I(X > ¢))
1-PY =1I(X >¢))
= ,30+,311(X>C)

logit(P(Y =1|X)) = log

(4.1)

Under the assumption of nondifferential measurement error, the measurement model is
X*|X ~ N(X,o?).
The exposure model is:
X ~ N(p,X?).

We will use this set-up to conduct naive, informal and formal analysis and compare

results produced by three approaches with the true values.

4.1 Naive Approach and Informal Approach

For the response model, the value of c is chosen as log(120) as suggested by Tomlinson,
Betts, and Rajappan (2009). To refresh the memory, the naive approach would formulate
the response model based on X* and ¢ as:

P(Y =1|I(X* > ¢))

1- PY = 1I(X*> o))
= fo+BI(X*>c)

logit(P(Y =1|X*)) = log

In order to perform the informal approach, we need to pick up a ¢* value such that, the

specificity is very high (as discussed in Chapter 3), and it is chosen as ¢* = log(123) so
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4.2. Formal Approach

that the SP = 0.94. Then the response model of informal approach is:

P(Y = 1|I(X* > ¢*))
1= PY = 1[I(X* > ¢*))
Bo+ (I(X* > c*)

logit(P(Y = 1|X™*)) logit

The estimates of 8y and B; for these two approaches can be easily obtained by using the

glm function in R. Results are shown in the section 4.3.

4.2 Formal Approach

Since we are assume the QRS timing from the dataset is the true value, we are able
to obtain some information about the exposure variable X, such as the the mean of
mean(X) = p = 4.64,var(X) = A? = 0.094 and the measurement error variance o2 =
0.00091. Note that those values are not applicable in the real world, and they are
available here for this example orly (because of our assumption). As discussed early in
the simulation study of Chapter 3, we need to assign prior information for the “unknown”
parameters. Remember that in section 3.6.2, flatter priors are assigned to unknown
parameters since the simulated sample size is considerably large. Though, the sample
size is pretty small in this dataset, we are still able to assign flatter priors to some
of the unknowns. For example, y is assigned as pu ~ N(0,100%), A2 is assigned as
A% ~ IG(0.01,0.01) and B; is assigned with N(0,100?). Dislike the non-informative
priors for u, A and By, the prior information becomes very crucial for ¢ and B,. It is
reasonable to assign concentrated priors to these two unknowns, since researchers could
easily obtain relative information about these two unknowns from precious study. As a
result, concentrated priors are assigned as such that 8 ~ N(0,1%) and o2 ~ IG(100,0.1).

Figure 4.1 displays the prior density plots vs their corresponding “true” values.
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4.2. Formal Approach
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Figure 4.1: Prior plots of unknown parameters with their hyper-parameters: u ~
N(0,100%), A2 ~ IG(0.01,0.01),0% ~ IG(100,0.1),50 ~ N(0,100%)and B; ~ N(0,12).
The vertical lines are the corresponding “true” values as: p = 4.64,)2 = 0.094, Gy =

—0.90, 51 = 0.76 and o = 0.00096.

81



4.2. Formal Approach

We observe that, regardless of the strength of the prior, the center of prior density for
each unknown parameter is most likely located around the corresponding true value. The
plot for A? looks abnormal, since the range of its density function goes from 0 to infinity
so that it is quite difficult to display on a limited scale. o2 has the most concentrated
prior, since approximately 95% of its data are enclosed by 0.0008 and 0.0014, a pretty
small range. x

Similarly as in the simulation study, we are unable to obtain the full conditional
distributions for By and 81, so we are going to use the Metropolis- Hastings Algorithm to
obtain their estimators. All other unknown parameters are updated as in the simulation
study of Chapter 3 case 2. The jump size for updating X, 3y and B in MH consist
with the simulation study, which are 0.15, 0.35, 0.8 respectively. Figure 4.2 shows the
traceplot of 200000 iterations after 2000 burn-in period, and there are no apparent mixing
problems to be noticed. The numeric results are presented and compared in the next

section.
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Figure 4.2: Traceplot and posterior density plots of 20000 iterations after 1000 burn-in
period of Bo and By when applying the MH sampling method.
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4.3. Results

4.3 Results

Before discussing the results estimated from the naive, informal and formal approaches,
we would like to find out the supposed true result first. It is very easily obtained from
the glm function in R and the true model for explaining whether or not a subject has
the IVT is estimated as follows:

PY =1{I(X >¢))

g TPy = 11X > o))

= —0.90 + 0.76I(X > c).

Table 4.1 records results of 3y and $3; from the naive, informal and formal approaches.

Estimate 95%CI CI width
Ponaive | -0.86 | (-1.58,-0.14) | 1.44
Boinformal | 086 | (-1.58,-0.14) | 1.44
Boforma | 090 | (-1.63,-0.22) | 135
Bloaive 061 | (-0.63,1.84) | 2.48
Blinformal | 061 | (-0.63, 1.84) | 2.48
Btorma | 067 | (046,173)| 2.10

Table 4.1: Estimators, 95% confidence, or credible, intervals of fo and By by using

» &y,

“naive”, “informal” and “formal” approaches.

In light of the study performed in Chapter 3, the results for analyzing this dataset
behave as we would expect. Though the results are close, the formal approach performed
the best when strong priors for 5, and o2 are provided. As the data size gets larger, we
believe that the formal approach will keep doing a good job, i.e. estimated values close
to the “true” values and the less variability of estimated parameters, even when flatter
priors are assigned. Surprisingly, the naive and informal approaches produce the same
results, and one possible explanation is that the data size is very small, and there is no
significant difference in modeling X™* with threshold c or ¢* in this special case. Note that
when the data size increases, the chance that naive and informal approaches produce the

same results will become slim.
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Chapter 5

Conclusion and Future Work

In this thesis, we propose a formal approach to adjust mismeasurement in case-control
studies. Ignoring potential mismeasurement on exposure variables could lead to serious
problems, such as loss of power, biased estimation and misleading conclusions. In the
literature, many methods were proposed to deal with misclassification and measurement
error, such as matrix method, inverse matrix method, regression calibration, SIMEX,
Expectation-Maximization algorithm in frequentist perspective. Lots of methods are
ready to use, nevertheless, they all have their limitations. For example, Carroll, Rup-
pert, Stefanski and Crainiceanu (2006) stated that though the SIMEX and regression
calibration are simple methods to implement, they have limited contributions in reduc-
ing the bias caused by the measurement error. The Bayesian approach, on the other
hand, is able to correct the bias more precisely and generally. Though, a potentially
misspecified exposure model, too complex posterior and intensive computational require-
ments are occasionally drawbacks in the approach, it has the great advantage that the

uncertainties of parameters can be fully incorporated.

A formal approach in the Bayesian perspective is introduced in this dissertation to ac-
count for both categorical and continuous exposure variables under the non-differential
assumption. Fundamental techniques and concepts are introduced in Chapter 1. Ideas
of the proposed formal approach that deals with a categorical exposure variable is in-
troduced and studied through investigating three cases in Chapter 2. The underlying
theme of the formal approach that adjusts the measurement error (continuous exposure

variable) is presented and examined by studying its performance on three cases again in
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Chapter 5. Conclusion and Future Work

Chapter 3. In Chapter 4, a real world dataset is used to evaluate the proposed model.
Gibbs sampler and Metropolis-Hasting algorithm are mainly used to sample the param-

eters of interest from their corresponding posterior distributions.

In Chapter 2, we investigate three cases where we have different levels of knowledge
about misclassified probabilities. In each case, the approach is implemented with both
low and high prevalence rate, as well as a different validation sample size when we assume
validation data are available. Stabilized traceplots suggest that the overall convergence
rate is adequate for Markov chain simulation in our proposed model. When the sampling
distribution of each unknown parameter is studied, statistical assessments such as, small
estimator bias, small mean square error, high coverage rate of the true value and reason-
able average 95% credible interval length, all indicate that overall the model is efficient
and accurate. When only the prior information about the misclassified probabilities is
known, strong and concentrated priors are required to get good estimation. One pos-
sible explanation is that, a strong prior is able to reduce the variability of estimators
and improve the efficiency of the approach. However, when a small proportion of the
validation data is available, it is found that the strong priors become unnecessary, which
indicates that the model is able to capture enough information to make good estimation.
Moreover, it seems like the size of the validation data does not significantly affect the
estimation, and this would be an interesting point to study later on. When the results
obtained from low prevalence rate and high prevalence in each case is compared, it is
delightful to observe that the approach could work for any prevalence rate. In the end
of Chapter 2, estimated log odds ratios are compared for the proposed formal approach
and informal approach. It is found, as expected, that the informal approach tends to
underestimate the association between the exposure variable and response variable most
of the time, and that less than 25% of the 95% confidence intervals actually cover the
true value. Even though, the formal approach sometimes overestimate the log odds ratio,

the majority of its 95% confidence intervals include the true values and the estimator
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Chapter 5. Conclusion and Future Work

bias is much smaller than it is in the informal approach.

In Chapter 5, the proposed approach is implemented with a continuous exposure variable.
A logistic regression model is specified for the binary exposure variable and dichotomized
continuous exposure variable so that their association is measured according to the coeffi-
cients of logistic regression. T'wo simulation studies for three cases studies are conducted
based on our knowledge of the magnitude of the measurement error. As expected, we find
that our proposed approach is both efficient and accurate. As in the discrete case, proper
priors are crucial when we only have the prior information in hand but not so important
when the validation data are accessible. Coefficients obtained from the “naive” approach
and informal approach (both of them use the association estimated from response vari-
able Y and X* to estimate the true relationship between Y and X) are compared with
our proposed formal approach at the end of the chapter. Overall, the performance of
those approaches decline as we move from formal approach to informal approach and
then naive approach. A real world example is used to illustrate our idea and approach.
Due to a very small sample size of the dataset, adjusted proper priors are again critical
to gain valuable estimations. Fortunately, it is proved that our suggested approach can

work practically after strong priors are assigned.

Our proposed Bayesian adjustment for mismeasurement can be extended to a variety
of research areas. One straightforward extension would be having more precisely mea-
sured covariates in addition to the model that we have right now. Further investigation
can be conducted to understand the weakness of our approach, which is that strong priors
are needed when we only have prior information. A relevant and interesting study would
be to find out whether there is a “cut-off” validation size so that the researchers are able

to gain the “maximum” information while spending minimum time or money.
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