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Abstract 
Introduction: Cardiac hypertrophy is an adaptive response to increased myocardial 

workload that becomes maladaptive when hypertrophied hearts are exposed to an acute 

metabolic stress, such as ischemia/reperfusion. Acceleration of glycolysis occurs as part 

of the hypertrophic response and may be maladaptive because it enhances glycolytic 

metabolite accumulation and proton production. Activation of AMP-activated protein 

kinase (AMPK), a kinase involved in the regulation of energy metabolism, is proposed 

as a mechanism for the acceleration of glycolysis in hypertrophied hearts. However, 

this concept has not yet been proven conclusively. Additionally, several studies suggest 

that AMPK is involved in hypertrophic remodeling of the heart by influencing cardiac 

myocyte growth, a suggestion that remains controversial. 

Hypothesis: AMPK mediates hypertrophic remodeling in response to pressure 

overload. Specifically, AMPK activation is a cellular signal responsible for accelerated 

rates of glycolysis in hypertrophied hearts. Additionally, AMPK influences myocardial 

structural remodeling and gene expression by limiting hypertrophic growth. 

Experimental Approach: To test this hypothesis, H9c2 cells, derived from embryonic 

rat hearts, were treated with (1 µM) arginine vasopressin (AVP) to induce hypertrophy. 

Substrate utilization was measured and the effects of AMPK inhibition by either 

Compound C or by adenovirus-mediated transfer of dominant negative AMPK were 

determined. Subsequently, adenovirus-mediated transfer of constitutively active form 

of AMPK (CA-AMPK) was expressed in H9c2 to specifically increase AMPK activity 

and, thereby, further characterize the role of AMPK in hypertrophic remodeling. 

Results: AVP induced a metabolic profile in hypertrophied H9c2 cells similar to that in 

intact hypertrophied hearts. Glycolysis was accelerated and palmitate oxidation was 

reduced with no significant alteration in glucose oxidation. These changes were 

associated with AMPK activation, and inhibition of AMPK ameliorated but did not 

normalize the hypertrophy-associated increase in glycolysis. CA-AMPK stimulated 
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both glycolysis and fatty acid oxidation, and also increased protein synthesis and 

content. Howver, CA-AMPK did not induce a pathological hypertrophic phenotype as 

assessed by atrial natriuretic peptide expression. 

Conclusion: Acceleration of glycolysis in AVP-treated hypertrophied heart muscle 

cells is partially dependent on AMPK. AMPK is a positive regulator of cell growth in 

these cells, but does not induce pathological hypertrophy when acting alone. 
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CHAPTER 1 ‐ INTRODUCTION 

1.1 BACKGROUND  

Cardiac hypertrophy is an adaptive response of the heart to increased hemodynamic 

workload [1-3]. Alterations in mechanical function and structure which are 

accompanied with changes in metabolism as well as gene expression occur in cardiac 

hypertrophy [4, 5]. Two distinct forms of cardiac hypertrophy exist: pathological 

cardiac hypertrophy due to pressure or volume overload (i.e., hypertension or aortic 

stenosis); and physiological cardiac hypertrophy results from endurance exercise 

training and normal growth [2, 3, 6-8]. These two forms of cardiac hypertrophy 

demonstrate distinct patterns of substrate utilization with opposite changes in glycolysis 

and in oxidation of fatty acids and glucose (Figure 1-1) [20, 27]. The focus of the 

current study is mainly on the pathologic form of cardiac hypertrophy.  

Pressure-induced cardiac hypertrophy is very common in our society and is an 

independent risk factor for cardiac morbidity and mortality [2, 9-15]. For instance, it is 

associated with a substantially increased risk of myocardial ischemia, myocardial 

infarction, heart failure, and sudden death [2]. Cardiac hypertrophy occurs in response 

to increased hemodynamic workload produced by situations such as hypertension, 

valvular heart disease, and myocardial infarction [2, 6-8]. Hypertrophy is believed to be 
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an adaptive or compensatory response to increased hemodynamic workload which 

normalizes myocardial wall stress and maintains cardiac output [2, 7, 16]. However, 

this response becomes maladaptive if hypertrophied hearts are exposed to metabolic 

stresses, such as ischemia, or the increased workload on these hearts persists [2, 17-20]. 

This finding is particularly important since cardiac hypertrophy and ischemic heart 

disease commonly co-exist [21]. 

At the cellular and molecular levels, cardiac hypertrophy is characterized by an increase 

in cell size and protein content of cardiac myocyte without cell division that is 

accompanied by changes in gene expression and energy metabolism (Figure 1-1) [1, 4, 

5, 20, 22-24]. The alterations in energy metabolism observed in hypertrophied hearts 

are believed to contribute, at least in part, to the adaptive or maladaptive nature of the 

hypertrophic response [5, 17-20, 24-29]. An acceleration of glycolysis occurs as part of 

the hypertrophic response, which might contribute to the maladaptation. Accelerated 

glycolysis increases glycolytic metabolite (lactate, NADH) accumulation and proton 

production, both of which can interfere with contractile efficiency [18, 20, 30-33]. The 

exact mechanisms responsible for the acceleration of glycolysis in these hearts are not 

known. 

Activation of AMP-activated protein kinase (AMPK), a regulatory kinase involved in 

the regulation of energy metabolism of the whole body including the heart, has been 

proposed to be a key mediator of accelerated glycolysis in hypertrophied hearts [29, 34, 

35]. However, a role for AMPK has never been definitively demonstrated. 

Additionally, several studies suggest that, in addition to hypertrophic metabolic 

remodeling, AMPK might have a role in structural remodeling in hypertrophied hearts; 

in other words, AMPK may also inhibit hypertrophic growth, although this idea is 

controversial [29, 36, 37]. 
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1.2 OVERVIEW OF SUBSTRATE UTILIZATION BY THE NORMAL HEART 

Under normal physiologic conditions, the heart utilizes a variety of exogenous 

substrates, including free fatty acids, carbohydrates, amino acids and ketone bodies, as 

well as endogenous substrates, including glycogen and triglycerides (Figure 1-2) [38-

41]. The flux through metabolic pathways is determined by several factors including 

arterial carbon substrate concentration, hormone concentrations (such as 

catecholamines and insulin), coronary flow, inotropic state, and the nutritional status 

[42-45]. In the normal heart, up to 50-70 % of the heart’s energy is derived from fatty 

acid oxidation. Glucose and lactate oxidation provide most of the remaining energy 

requirement by the heart, with glycolysis accounting for small additional production of 

adenosine triphosphate (ATP) by the heart [5, 20, 38, 41, 46, 47].  

Triglycerides and glycogen are two endogenous sources for cardiac energy production. 

Triglycerides can produce fatty acid and account for 10-50 % of ATP produced in 

isolated perfused rat hearts [39]. Under aerobic conditions, the contribution of glycogen 

to energy production by the heart is significant, accounting for up to 40 % of ATP 

produced from catabolism of glucose; however, the contribution of glycogen to energy 

metabolism increases in situations such as increased work or hypoxia [48, 49]. 

1.3 FATTY ACID METABOLISM 

Fatty acids are hydrophobic molecules; therefore, they are carried in the circulation by 

albumin or incorporated into lipoproteins [41, 50, 51]. The concentrations of free fatty 

acids and activities of lipoprotein lipase (LPL) and transporter proteins (CD36, etc.) 

determine fatty acid uptake by the heart. Upon entering the cells, long-chain fatty acids 

(LCFA), such as oleic and palmitic acids, which are the major fatty acids used by the 

heart, are modified before entering into mitochondria. The majority of the LCFA taken 

up by the heart are oxidized and the rest converted to triglyceride stores or used for 

other complex lipid synthesis [28, 41, 50, 51]. The transport of fatty acids through the 
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plasma membrane occurs by both passive diffusion and a facilitated protein membrane 

mechanism [51, 52]. The uptake and transport of fatty acids by the heart is facilitated 

by fatty acid transport protein (FATP), fatty acid translocase (FAT/CD36) and fatty 

acid binding proteins (FABP) (Figure 1-3) [51, 53, 54]. 

Upon entering the cell, the LCFA are transported inside the cytoplasm by FABPs and 

are esterified with coenzyme A by the enzyme fatty acyl-CoA synthetase to form fatty 

acyl-CoA. From here, fatty acyl-CoA is either incorporated into triacylglycerols or 

other lipids or transported into the mitochondrial matrix for oxidation by means of the 

β-oxidation spiral and the tricarboxylic acid cycle (Figure 1-3) [50]. Long-chain fatty 

acyl-CoA transport into the mitochondria occurs through a complex process involving 

three carnitine-dependent enzymes, carnitine palmitoyl transferase 1 (CPT-1), 

carnitine-acylcarnitine translocase (CT), and carnitine palmitoyl transferase 2 (CPT-2) 

(Figure 1-3) [50]. Once inside the matrix of mitochondria, long-chain fatty acyl-CoA 

undergoes β-oxidation [41], a series of four reactions which cleaves two carbons in the 

form of acetyl-CoA from the parent acyl-CoA molecule per cycle, generating NADH2 

and FADH2. Acetyl-CoA in turn enters the tricarboxylic acid (TCA) cycle to produce 

further reducing equivalents (NADH2). FADH2 and NADH2 are oxidized in the 

electron transport chain and produce ATP. One molecule of palmitate, which contains 

18 carbons, yields 129 molecules of ATP. 

The rate of transport into mitochondria and, therefore, oxidation of LCFA is controlled 

largely by CPT-1 [50]. CPT-1 is inhibited allosterically by malonyl-coA formed by 

acetyl-CoA carboxylase (ACC) from acetyl-CoA (Figure 1-4) [42]. Malonyl-CoA is 

therefore an important regulator of fatty acid oxidation. High concentrations of citrate 

or insulin treatment increase malonyl-CoA production thereby inhibiting fatty acid 

oxidation. In fact, malonyl-CoA reduces influx of long-chain fatty acyl-CoA into the 

mitochondria, reducing fatty acid oxidation. Malonyl-CoA can be converted to acetyl-

CoA by malonyl-CoA decarboxylase (MCD) [55, 56]. The heart contains an active 

malonyl-CoA decarboxylase that decarboxylates malonyl-CoA to acetyl-CoA (Figure 
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1-4) [57]. AMPK activation leads to stimulation of fatty acid oxidation because AMPK 

phosphorylates and inactivates ACC and, possibly, by phosphorylating and activating 

MCD [57-61]. 

There are two isoforms of ACC, ACC-1 (265 KDa) and ACC-2 (280 KDa), which each 

plays distinct roles [62]. They share approximately 80 % homology; the major 

difference is that ACC-2 has a unique N-terminal extension of hydrophobic amino 

acids directing its mitochondrial membrane insertion [63]. ACC-1 localizes mostly in 

the cytosol and is primarily responsible for fatty acid synthesis; it is abundant in 

lipogenic tissues such as liver and adipose tissue [64]. ACC-2, on the other hand, is 

present in the outer leaflet of mitochondria and is the predominant isoform in the heart 

and muscle [42, 65]. ACC-2 controls malonyl-CoA production and therefore regulates 

CPT-1 activity and fatty acid oxidation. ACC activity is regulated allosterically by 

long-chain fatty acyl-CoA and citrate, and covalently by kinases such as protein kinase 

A (PKA) and AMPK [29, 66-70]. ACC phosphorylation generally leads to inhibition of 

enzyme activity. Both PKA and AMPK directly phosphorylate and inactivate both 

isoforms. 

1.4 CARBOHYDRATE METABOLISM 

Glucose, lactate, and pyruvate are the three major carbohydrate substrates of the heart 

[41]. Glucose uptake into the cardiac myocyte is regulated by the transmembrane 

glucose gradient and the concentration and activity of glucose transporters (GLUTs) 

located at the sarcolemma [47, 71]. GLUT-4 and GLUT-1, are the major GLUT 

isoforms expressed in the heart, with GLUT-4 predominating [44, 47, 71-73]. Both 

transporters are present in sarcolemma and in intracellular vesicles. Basal glucose 

uptake is largely accounted for by the presence of GLUT-1 in the sarcolemma of 

cardiac myocytes [44]. On the other hand, stimulation of glucose uptake is primarily 

due to translocation of glucose transporters, especially GLUT-4, from intracellular sites 

to the sarcolemma [44, 73]. Stimulation of glucose uptake results from translocation of 
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glucose transporters into the sarcolemma and increasing the membrane capacity for 

glucose uptake. GLUT4 translocation is stimulated by insulin in the fed state, and by 

increases in cardiac work and metabolic stresses such as ischemia and hypoxia [44, 71, 

73]. AMPK is believed to have an important role in the translocation of GLUTs during 

metabolic stresses [29, 70, 74-76]. 

When inside the cell, intracellular glucose is rapidly phosphorylated by the 

unidirectional enzyme hexokinase (HK) to form glucose-6-phosphate (G6P) [77]. G6P 

can be either incorporated into glycogen for storage or catabolized directly (Figure 1-5) 

[38, 44, 72]. When catabolized directly, glucose passes through the glycolytic pathway 

to pyruvate which is then transported to be oxidized to CO2 in mitochondria or 

alternatively reduced to lactate or transaminated to alanine [38, 71]. 

1.4.1 Glycolysis 

Glycolysis is the common pathway for both glucose and glycogen breakdown. It is the 

major metabolic pathway of G6P in which one molecule of glucose is broken down to 

two molecules of pyruvate by a sequential series of reactions in the heart (Figure 1-6) 

[44, 72]. Glycolysis also produces two NADH and 2 ATP per glucose molecule. The 

NADH and pyruvate produced in the glycolytic pathway are either shuttled into 

mitochondria to be oxidized or converted to lactate in the cytosol (non oxidative 

glycolysis (NOG)). The ATP produced in the glycolytic pathway is utilized for ion 

homeostasis and is important for diastolic relaxation [78-80]. Glycolysis can occur in 

both aerobic and anaerobic conditions, without the presence of oxygen in the latter 

case; therefore, its importance is greater during myocardial ischemia when oxidative 

metabolism is reduced.  

The starting point of glycolysis is production of G6P from either glucose through HK 

or glycogen (glycogen → G1P → G6P). In the heart, HK has two isoforms I and II, 

with HKII being more abundant. The voltage-dependent anion channels (VDACs), 

which are pore-forming proteins in the outer mitochondrial membrane, are known to 
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bind to many molecules including HK [81, 82]. Binding of HK to VDAC leads to 

reversible translocation of HK from cytosol to the outer mitochondrial membrane [83]. 

Binding of HK to VDACs is viewed as a key factor responsible for insulin-induced 

glucose uptake in skeletal muscle and acceleration of glycolysis in malignant 

neoplasms by providing HK preferential access to mitochondrial-derived ATP and 

reducing allosteric inhibition by the product of its reaction, G6P [83].  

Among the enzymes participating in the glycolytic pathway, phosphofructokinase-1 

(PFK-1) is one that most strongly regulates flux (Figure 1-7) [44, 84]. It catalyzes the 

conversion of fructose-6-phosphate (F6P) to fructose 1,6-bisphosphate (F1,6P2) and 

hydrolyses one molecule of ATP. PFK-1 is allosterically inhibited by ATP, phospho-

creatinine (PCr), citrate, and H+ and is allosterically activated by AMP, ADP, alkalosis, 

and very importantly, fructose 2,6-bisphosphate (F2,6BP). In the absence of 

physiologic concentrations of F2,6BP, PFK-1 activity is almost completely inhibited. 

F2,6BP is produced from F6P by the enzyme 6-phophofructo-2-kinase (PFK-2) (Figure 

1-7). PFK-2 is a bifunctional enzyme which controls both the synthesis and degradation 

of F2,6BP. PFK-2 is allosterically inhibited by ATP and citrate, and stimulated by 

AMP and F2,6BP. PFK-2 is also phosphorylated by PKB in response to insulin 

signaling. Additionally, AMPK can phosphorylate and activate PFK-2 [85, 86]. 

1.4.2 Glucose Oxidation  

Under aerobic conditions, approximately 10-20 % of the pyruvate generated by 

glycolysis is transported into the mitochondria, where it is decarboxylated and oxidized 

[84]. The extent of pyruvate oxidation, which in addition to glucose may also be 

derived from glycogen or lactate, is controlled mainly by the mitochondrial pyruvate 

dehydrogenase complex (PDC) [44]. The PDC, a multi-enzyme complex in the 

mitochondrial matrix, is the key irreversible step in carbohydrate oxidation. It consists 

of several catalytic subunits which includes E1α/β, E2, and E3 components, an E3 –

binding protein, as well as regulatory kinases and a phosphatase [44, 87-90]. The PDC 

oxidatively decarboxylates pyruvate to form CO2, NADH2 and acetyl-CoA [44]. PDC 
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activity is inhibited by phosphorylation mediated by pyruvate dehydrogenase kinase 

(PDK); dephosphorylation by pyruvate dehydrogenase phosphatase (PDP) reverses this 

inhibition (Figure 1-8) [91, 92]. The activities of PDK and PDP are determined by the 

intramitochondrial concentrations of metabolites and ions. High concentrations of 

acetyl-CoA and NADH, as occur during fatty acid oxidation, activate PDK, while 

pyruvate or its analogue dichloroacetate (DCA), CoA, NAD+, or inhibition of fatty acid 

oxidation inhibits PDK [44, 50, 87, 90, 93-98]. On the other hand, Mg2+ and Ca2+ 

stimulate PDP [44, 90, 92, 99-101]. Once formed by PDC, acetyl-CoA can enter the 

TCA cycle and undergoes further series of oxidation reactions to produce substrates for 

the electron transport chain [5, 44]. For every glucose molecule enters TCA cycle, 36 

ATP molecules are formed. 

1.5 GLYCOGEN METABOLISM 

Glycogen is the storage form of glucose found in the cytoplasm of the heart and other 

tissues and makes a significant contribution to energy metabolism of the myocardium, 

accounting for approximately 40 % of ATP generated from glucose catabolism [20, 38, 

40]. Under non-ischemic conditions, glycogen turnover; i.e., simultaneous synthesis 

and degradation, occurs in the heart [40]. In addition, under normal physiologic 

conditions, glucose-6-phosphate derived from glycogen is preferentially oxidized as 

compared to its exogenous counterpart [20, 40]. Glycogen synthesis is influenced by 

the G6P concentration and the activity of glycogen synthase. Under conditions such as 

hyperinsulinemia and high concentrations of exogenous glucose, increased glycogen 

synthesis occurs [40, 102]. On the other hand, adrenergic stimulation or a fall in tissue 

ATP content stimulates glycogen degradation [44, 103]. Glycogenolysis is regulated by 

glycogen phosphorylase activity. 
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1.6 SUBSTRATE UTILIZATION IN THE HYPERTROPHIED HEART 

Several ex vivo or in vivo studies in hypertrophied hearts have shown that oxidation of 

LCFA, the major energy source of these hearts, is reduced by 30-40 % as compared to 

non-hypertrophied hearts (Figure 1-9) [5, 20, 23, 24, 28, 35, 104-112]. Surprisingly, the 

oxidation of octanoate, a medium chain fatty acid which can freely diffuse into the 

mitochondria, is not reduced in these hearts, suggesting that the β-oxidation pathway is 

not impaired in these hearts; at least, non-failing hypertrophied hearts [5, 106, 113]. 

In contrast to fatty acid oxidation, glucose utilization is enhanced in hypertrophied 

hearts presumably as a compensatory response to reduced rates of fatty acid oxidation 

and/or reduced energy reserve (Figure 1-9) [19, 31, 33, 35, 89, 114, 115]. In fact, both 

experimental and clinical studies have documented that, in the hypertrophied heart, 

basal glucose uptake is accelerated, while insulin-dependent glucose uptake is 

decreased [116-118]. Additionally, several studies in mammalian species, including 

human, have documented that rates of glycolysis are accelerated in hypertrophied 

hearts [19, 20, 23, 30, 33-35, 104, 105, 107, 114, 119-123].  

However, flux through different pathways responsible for glucose metabolism is not 

uniformly increased in hypertrophied hearts. The observed acceleration of glycolysis in 

these hearts is not accompanied by increases in glucose oxidation and, in fact, glucose 

oxidation is either unchanged or decreased in hypertrophied hearts as compared to non-

hypertrophied hearts [19, 20, 24, 31, 33, 35, 89]. As a result, a substantial proportion of 

pyruvate is converted into lactate instead of being oxidized which leads to a low 

fractional oxidation rate of glucose (approximately 10-15 % as compared to 14-25% in 

non-hypertrophied hearts [111]) or increased NOG (NOG, the proportion of glucose 

passing through glycolysis that is not oxidized) [20, 124]. The low fractional oxidation 

observed is surprising, especially considering that LCFA oxidation is also low in these 

hearts [20, 106]. Based on the Randle cycle, a reduction in LCFA oxidation is usually 

associated with a compensatory acceleration of glucose oxidation [87]. Additionally, as 
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a result of increased glycolysis and pyruvate production in hypertrophied hearts, one 

would expect that pyruvate-induced activation of PDC would occur, thereby 

stimulating glucose oxidation [87, 90]. In hypertrophied hearts, rates of lactate 

oxidation are either unchanged or decreased as compared to non-hypertrophied hearts 

[20, 109]. Additionally, consistent with the fact that NOG is increased in these hearts, 

net release of lactate is increased [20, 109]. 

1.7 CONSEQUENCES OF ALTERATIONS IN SUBSTRATE UTILIZATION ON 

FUNCTION OF HYPERTROPHIED HEARTS  

The metabolic profile observed in hypertrophied hearts may be a beneficial adaptation 

by which cardiac output is preserved [25, 26, 28]. In support of this idea, Young et al 

have shown that reversing this metabolic profile leads to decreased contractile function 

of hypertrophied hearts [26]. However, while this metabolic profile may be considered 

an adaptive response in non-stressful conditions, it can become maladaptive when 

hypertrophied hearts are exposed to metabolic stress, as happens during ischemia-

reperfusion [2, 17-20, 35]. Functional recovery after ischemia/reperfusion is lower in 

hypertrophied hearts as compared to non-hypertrophied hearts [17-19]. Alterations in 

substrate utilization, particularly glucose, may be responsible for this impaired recovery 

in hypertrophied hearts [25]. 

Support for the concept that alterations in glucose metabolism influence function of 

hypertrophied hearts arises from both clinical and experimental studies in which a 

decrease in NOG, i.e. by stimulating glucose oxidation and/or by reducing glycolysis, 

improve functional recovery of ischemic-reperfused hypertrophied hearts (Figure 1-10) 

[19, 20, 24, 44, 104, 111, 125-127]. For example, several studies have documented that 

dichloroacetate (DCA), an inhibitor of PDC kinase, and trimetazidine (TMZ), a partial 

3-ketoacyl coenzyme A thiolase inhibitor, improve post-ischemic contractile function 

and efficiency of hypertrophied hearts by reducing NOG (Figure 1-10) [24, 44, 126, 

127]. As discussed below, this protective effect might be due to a reduction in H+ 
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production during glucose catabolism leading to recovery of intracellular pH, which 

then in turn limits calcium overload and therefore reduces the energetic cost associated 

with the maintenance of ion homeostasis [44, 124, 127].  

In non-hypertrophied hearts, lower rates of glucose oxidation and therefore increased 

NOG are considered to be, in part, detrimental to heart function during ischemia-and 

repefusion [8, 124]. During ischemia, oxidative metabolism is decreased and anaerobic 

glycolysis becomes a more important source of myocardial energy production [38, 44] 

resulting in increased lactate, NADH, and H+ production [124]. For each molecule of 

glucose passing through glycolysis that is not oxidized, two H+ protons are produced by 

hydrolysis of adenosine triphosphate (ATP) [124, 128]. Excess H+ produced from 

hydrolysis of glycolytically derived ATP during ischemia contributes to acidosis in the 

myocardium [129], and may therefore lead to development of cardiac arrhythmias 

[130], decreases in cardiac contractility [130], and increases in sarcolemmal Na+/H+ 

exchanger activity [131]. Upon reperfusion, extracellular pH quickly recovers leading 

to a large pH gradient across the membrane that activates the Na+/H+ exchanger and 

causes intramyocyte Na+ overload. This Na+ overload and membrane depolarization in 

turn activates the Na+/Ca2+ exchanger resulting in Ca2+ influx [44]. The subsequent 

Ca2+ is thought to be a major contributor to ischemia-reperfusion myocyte injury by 

activating proteases and phosphatases that might lead to myocardium arrhythmias and 

necrosis [44, 131, 132]. Ca2+ overload might also lead to an inappropriate use of ATP 

since a greater amount of ATP must be used for cellular Ca2+ transport rather than 

contractile function [133]. It should be noted that, during ischemia, circulating free fatty 

acid concentrations and fatty acid metabolites rise as a result of increased endogenous 

catecholamine production and therapeutic administration of heparin [44, 134, 135]. 

During reperfusion, fatty acid oxidation is the prominent source of energy production 

due not only to its increased circulation level, but also to stimulation of fatty acid 

oxidation as a result of changes in enzymes and metabolites responsible for the 

regulation of fatty acid oxidation [44, 134, 136]. Therefore, based on the Randle cycle, 

this stimulation of fatty acid oxidation is accompanied by attenuation of glucose 



Chapter 1 – Introduction 

 -12-

utilization with suppression of glucose oxidation to a gtreater extent than glycolysis, 

leading to further increases NOG and H+ production [44, 50, 124, 127, 137-139]. 

Therefore, during reperfusion continued H+ production contributes to exacerbate the 

injury [124, 127]. 

In hypertrophied hearts, the greater NOG might contribute to the increased post-

ischemic dysfunction as compared to the non-hypertrophied hearts [19, 20, 113]. In 

these hearts, even though oxidative metabolism of key exogenous substrates returns to 

pre-ischemic values as with non-hypertrophied hearts, contractile efficiency and 

myocardial function do not return to pre-ischemic values [19, 20, 30, 31]. During 

ischemia and reperfusion, the excess H+ is carried over and contributes to the severity 

of acidosis, which leads to greater left ventricular dysfunction in hypertrophied hearts 

than in normal hearts. It has been known that intracellular accumulation of Na+ and 

Ca2+ are greater in hypertrophied hearts than in non-hypertrophied hearts due to the 

greater H+ production during ischemia [33] and reperfusion [19, 30, 31], and alterations 

in expression of Na+/H+ and Na+/Ca2+ exchangers observed in these hearts [113]. In 

fact, impaired recovery of hypertrophied hearts during reperfusion is, in part, the result 

of Ca2+ overload, because more ATP has to be used for maintenance of ion balancing 

than contraction; this explains the discrepancy that exists between oxidative 

metabolism and function [20]. 

1.8 METABOLIC REMODELING: (UNDERLYING MECHANISM)  

The mechanisms underlying the changes in metabolism in hypertrophied hearts are not 

fully understood. In the heart, the flux through different metabolic pathways is 

controlled by extracellular factors (substrate supply, hormones, and myocardial 

workload) as well as intracellular factors (covalent modulation, allosteric modulation, 

changes in subcellular distribution, and changes in gene expression) [40, 53, 84]. The 

reasons for the reduction in fatty acid oxidation rates in hypertrophied hearts might be 

due to the degree of cardiac hypertrophy, the concentration of fatty acid in blood or 
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perfusate, the severity of carnitine deficiency, the myocardial workload as well as 

reduced expression or activity of oxidative enzymes and FABPs [5, 11, 106, 113]. 

Studies on spontaneously hypertensive rats (SHR) have shown that a FAT/CD36 

transport protein was reduced or not detectable at protein and mRNA levels [53, 112, 

140]. The other factor that might limit myocardial fatty acid and mitochondrial 

oxidation is the expression of proteins involved in fatty acid oxidation, namely medium 

chain acyl-CoA dehydrogenase (MCAD), long-chain acyl-CoA dehydrogenase 

(LCAD) and very long-chain acyl-CoA dehydrogenase (VLCAD) which together form 

a family of acetyl-CoA dehydrogenases that start the initial step in the oxidative spiral 

[28, 141-143]. While we have shown that the protein expression of MCAD and LCAD 

is not changed in pressure-induced cardiac hypertrophy [24], other studies on human 

and animal models of heart failure have documented that the activity or expression of 

MCAD, LCAD, at the mRNA or protein level are downregulated [28, 72, 144, 145, 146 

, 147, 148]. In fact, some studies have suggested that this transcriptional 

downregulation of fatty acid oxidation genes is not associated with a corresponding 

downregulation of fatty acid oxidation enzymes unless heart failure is also present [25, 

146, 149]. The other factor that might limit myocardial fatty acid oxidation in these 

hearts is low tissue carnitine levels. To address this matter, several experimental and 

clinical studies have documented that carnitine levels are reduced in hypertrophied 

hearts, leading to a decrease in the import of fatty acids to the mitochondria [106, 125, 

150]. However, after restoring carnitine, fatty acid oxidation was still lower in 

hypertrophied hearts, indicating that, although carnitine deficiency in hypertrophied 

hearts is associated with lower rates of fatty acid oxidation in the heart, it is not a 

principal factor [106, 125, 150].  

The underlying mechanism responsible for the enhancement of glucose uptake and 

glycolysis in hypertrophied hearts is not fully understood. Several studies have 

indicated that, in cardiac hypertrophy, GLUT-4 expression may be normal [24, 151] or 

reduced [72, 116], but expression of GLUT-1 is either unchanged or increased [151]. 

Therefore, the increased glucose uptake by hypertrophied hearts is not simply due to 
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changes in expression of GLUTs. Other factors such as alterations in activity or 

subcellular distribution of GLUTs might have a role in this setting. To support the 

latter, Tian et al [33] have documented that, in hypertrophied hearts, enhanced 

translocation of GLUT-4 to plasma membrane occurs under non-stressful conditions, 

which may partly explain enhanced glucose uptake in these hearts. We have shown 

that, in hypertrophied hearts, the accelerated glycolytic rate was not accompanied by 

changes in the expression of key metabolic enzymes and proteins [24]; however, others, 

albeit in different species, have shown that the activity of a number of glycolytic 

enzymes is enhanced in these hearts [114, 120]. Also, the activity of LDH, the enzyme 

responsible for reversible production of lactate from pyruvate, is increased in some 

hearts exposed to a pressure-overload. Moreover, several studies have indicated that, in 

pressure-induced cardiac hypertrophy, isoenzymes of LDH and enolase shift toward the 

anaerobic and fetal form [114, 152].  

The increased NOG in hypertrophied hearts cannot be explained by alterations in PDC 

expression or activity. We and others have revealed that, in hypertrophied hearts, the 

expression of PDC subunits as well as expression of the PDK or PDP does not change 

[24, 89, 153]. More interestingly, Lydell et al [153] have demonstrated that, in 

hypertrophied hearts, the activation state of PDC, calculated by expressing active PDC 

as a percent of total PDC, is higher as compared to non-hypertrophied hearts which 

contrasts with the lower fractional oxidation of glucose in these hearts. Additionally, 

the increased NOG observed in hypertrophied hearts cannot be explained by alterations 

in intramitocondrial concentrations of metabolites which might influence activity of the 

PDC by allosteric/or product feedback effects. Support for this notion comes from a 

study in which perfusion of hypertrophied and non-hypertrophied hearts in the absence 

of exogenous LCFA resulted in decreased intramitochondrial acetyl-CoA/CoA ratio in 

both groups, but reduced NOG in only non-hypertrophied hearts [153]. Therefore, 

while changes in the expression and activity of the PDC or defects in metabolite 

feedback and/or allosteric mechanisms are not responsible for increased NOG in 

hypertrophied hearts, other mechanisms such as impaired pyruvate or`NADH2 transport 
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from cytosol to mitochondria or lactate dehydrogenase (LDH) catabolism might have a 

role in this setting (Figure 1-11). In this regard we have shown that, in isolated 

mitochondria from hypertrophied hearts, both the sensitivity to pyruvate as well as the 

maximal oxygen consumption was not significantly altered as compared with non-

hypertrophied hearts, indicating that pyruvate transport inside the mitochondria is not 

restricted in these hearts [89]. In the glycolytic pathway, pyruvate production from 

glucose leads to the production of cytosolic NADH2. In order to be oxidized, pyruvate 

needs an equivalent oxidation of cytosolic NADH2 in the mitochondria. NADH2 enters 

into cardiac mitochondria mainly by the malate-aspartate shuttle (MAS). If MAS were 

restricted, this would lead to an increase in lactate production and a decrease in glucose 

oxidation, resulting in an increase in NOG. The contribution of limitations in MAS 

activity remains to be clarified. Several studies provided evidence that, in hypertrophied 

hearts, LDH isoenzyme activity is shifted towards the fetal/anaerobic form [114, 154, 

155] which favours the production of lactate and an increase in NOG [156].  

AMPK is proposed to be centrally involved in the regulation of a number of metabolic 

enzymes and is therefore considered a major regulator of cardiac energy metabolism. 

AMPK might be involved in the shift toward glucose utilization in the setting of cardiac 

hypertrophy. 

1.9 5’ AMP‐ACTIVATED PROTEIN KINASE 

AMP-activated protein kinase (AMPK) acts as a master regulator of metabolism [157] 

at the cellular and at the whole body level [158], being conserved throughout all 

eukaryotes [159] and widely expressed in all mammalian tissues including the heart 

[160]. AMPK functions as a “low fuel warning system” [157]. Upon activation, it 

switches on catabolic pathways that generate ATP, such as the uptake and metabolism 

of fatty acid and glucose, and switches off anabolic pathways that consume ATP, such 

as synthesis of fatty acid, cholesterol and protein thereby maintaining energy 

homeostasis [159, 161-164]. More recently, AMPK has also emerged as a regulator of 
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appetite by playing a role in hypothalamic glucose and nutrient sensing. Several studies 

have shown that pharmacological or genetic activation or inhibition of AMPK result in 

increased or reduced food intake, respectively [165, 166]. 

1.9.1 Structure of AMPK  

Mammalian AMPK is a heterotrimeric complex containing one α catalytic subunit and 

two β and γ regulatory subunits (Figure 1-12) [159 , 161, 163]. For full AMPK activity, 

heterotrimeric complex formation is necessary [167]. Each AMPK subunit exists as 

several isoforms which have varying tissue expression patterns and each is encoded by 

distinct genes (α1, α2; β1, β2; γ1, γ2, γ3) [159, 168]. At least 12 heterotrimeric 

combinations exist, along with alternative splicing and/or alternative transcription sites, 

so that a diverse collection of αβγ heterotrimers can exist [159, 161, 163]. While 

subunits of α1, β1, γ1 are expressed in almost all tissues and are responsible for the 

activity, in the heart subunits α2, β2, γ2 are highly expressed [160]. Interestingly, these 

different isoforms of AMPK largely influence its activity and subcellular distribution 

[169-171]. For example, the α2- and β1-subunits contain a putative nuclear localization 

sequence, and they are therefore enriched in nucleus, whereas the α1-subunit is largely 

cytoplasmic and appears to be excluded from the nucleus [171-174]. Among the γ-

subunits, the γ2-subunit has the highest sensitivity to AMP [29]. The N-terminus of the 

α-subunits contains a kinase domain [175] and phosphorylation site (Thr-172) and the 

C-terminal domain is responsible for binding to β- and γ-subunits [176]. Truncation of 

the α-subunit from 1-548 to 1-392 results in loss of both catalytic activity and βγ 

binding. Also, truncation to 1-312 results in a constitutively active form of the kinase 

which indicates that the sequence of 312-392 contains an autoregulatory domain [177]. 

The C-terminal region of the β-subunits acts as a scaffolding protein which binds to α- 

and γ-subunits and is regulated by AMP [178, 179]. The N-terminal region of the β-

subunits is myristoylated and has glycogen binding domains (GBD) that target binding 

of the complex to glycogen [178, 180, 181]. The GBD is found in enzymes that 

metabolize the α1→6 branches in α1→4-linked glucagans such as starch and glycogen. 
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The γ-subunits contain a variable N-terminal region followed by four tandem repeats of 

cystathionine β synthase (CBS) motifs. Each pair of CBS motifs forms a nucleotide-

binding site called a Bateman domain. Each of these domains binds to one molecule of 

AMP or ATP in a competitive manner [182, 183]. AMPK is inhibited at high ATP 

concentrations by ATP binding to the γ-subunit [184]. Mutations in the N- or C-

terminal domain of the γ-subunit lead to a hereditary human heart disease, i.e., Wolff-

Parkinson-White (WPW) syndrome [182, 185]. The mutations are believed to decrease 

AMPK activation by AMP; however, there is evidence that some mutations also 

increase basal phosphorylation and activation of AMPK [186]. 

1.9.2 Regulation of AMPK 

AMPK is activated both allosterically and by phosphorylation through upstream AMPK 

kinases (AMPKKs). AMPK is activated in response to any physiological (such as 

endurance exercise) or pathological (such as ischemia, oxidative stress) metabolic stress 

that leads to a rise in the AMP/ATP ratio [58, 158, 159, 161, 163]. AMP can activate 

AMPK in three distinct ways (Figure 1-13). First, AMP binding to the γ-subunit of 

AMPK causes allosteric activation of AMPK [169, 182, 187]. The magnitude of this 

action depends on AMPK isoforms but it is typically up to 5-fold [159]. Second, AMP 

binding to the γ-subunit of AMPK makes it a better substrate for the AMPKK [188]. 

AMPKK phosphorylates Thr-172 of the α-subunit activating the kinase 50- to 100-fold. 

However, recent studies question the idea that increased AMP concentration makes 

AMPK a better substrate for phosphorylation by AMPKK [189]. Third, AMP binding 

to the γ-subunit of AMPK inhibits dephosphorylation of AMPK by protein 

phosphatases [190]. All these activating effects of AMP on AMPK are antagonized by 

high ATP concentrations, confirming that AMPK essentially monitors changes in the 

cellular AMP/ATP. Even though AMPK is dephosphorylated and inactivated by both 

protein phosphatases 2A and 2C, inactivation by protein phosphatase 2C is more 

important in intact cells [191]. 
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While the AMP/ATP ratio seems to be responsible for AMPK activation, AMPK can 

also be activated by a decrease in phosphocreatine/creatine (PCr/Cr) ratio in skeletal 

muscle [192] but not in the heart [193]. In addition to Thr-172 on AMPK, other 

phosphorylation sites such as Thr-258 and Ser 485/491 have been identified [194]. 

Even though these sites are not involved in AMPK activity, they prevent the AMPKK 

from phosphorylating AMPK at its primary activation site, Thr (172) [195, 196]. In 

fact, Hurely et al have suggested that these additional phosphorylation sites are 

controlled by the cAMP signaling pathway to attenuate AMPK activity [197]. In 

addition to classical mechanisms responsible for AMPK activation, several studies have 

shown that AMPK can also be activated by other stimuli independent of changes in the 

AMP/ATP ratio [198, 199]. For example, several studies have reported that leptin, 

hyperosmotic stresses, metformin, and long-chain fatty acid can activate AMPK in an 

AMP-independent manner [199-203]. The latter is very interesting and in fact, several 

studies have shown that perfusion of hearts in the presence of physiologic concentration 

of LCFA results in AMPK activation [201, 202]. This finding is very important and 

further supports the concept that AMPK has a role in substrate utilization by the heart.  

1.9.3 Upstream Kinases in the AMPK Cascade 

To date several AMPKKs have been identified: the mammalian kinase LKB1, which is 

dependent on elevation in the AMP/ATP ratio [194, 205]; the Ca2+/calmodulin-

dependent protein kinase kinases (CaMKK), which is dependent on changes in 

intracellular calcium [206-210]; and the transforming growth factor-β-activated kinase-

1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase family also 

known as MAPKK kinase-7 (MAP3K7) [211, 212]. The serine/threonine kinase LKB-1 

shares significant sequence homology with S. Cerevisiae AMPKK [205, 213]. LKB-1 

is ubiquitously expressed in all mammalian tissues including the heart [164, 214]. It 

was originally recognized as a gene mutated in human Peutz-Jegers syndrome [215, 

216]. LKB-1, like AMPK, exists as a heterotrimer, with two other proteins: mouse 

protein 25 (MO25) and STE20-related adaptor protein (STRAD), all of which are 
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required for full kinase activity [205]. LKB-1 activity is not regulated by the stimuli 

that activate AMPK, and is not activated directly by AMP but rather appears to be 

constitutively active. Elevations in AMP levels cause AMPK to become phosphorylated 

by upstream kinases but also prevent its dephosphorylation by protein phosphatases 

[194]. Gq-coupled receptor (GqCR) analogues also activate AMPK in vitro and in vivo 

through Ca2+/calmodulin-dependent protein kinase kinases (CaMKKα and CaMKKβ); 

this is a calcium dependent pathway independent of cellular energy status [158, 188, 

206, 207, 209]. Increased cytosolic calcium concentration can trigger ATP-consuming 

pathways. Additionally, this calcium has to be pumped out of cytosol through ATP-

pumps. Therefore, AMPK activation by CaMKKs could represent a response to the 

increased demand for ATP which accompanies calcium release [164]. In the heart, 

LKB-1 is highly expressed while CaMKK is less abundant [214, 217]. Interestingly, 

unlike LKB-1, CaMKKs expression is restricted. Both isoforms are abundant in neural 

tissues; however, CaMKKβ is also expressed in the heart and endothelial cells [164]. 

We have shown that the level of expression of CaMKKβ does not differ in 

hypertrophied as compared to non-hypertrophied hearts [35]. 

Several GqCR agents have been known to activate AMPK including bradykinin, 

epinephrine, and thrombin [218, 219]. We also found that arginine vasopressin (AVP), 

a neuropeptide hormone that also acts through a GqCR, activates AMPK. TAK-1, 

another AMPK activator, has been shown to act downstream of a variety of signaling 

molecules, including TGF-β1 [220]. TAK1 is widely expressed during mammalian 

development [221]. Zhang et al have shown that expression of constitutively active 

TAK1 in the heart induces cardiac hypertrophy [222]. However, Xie et al have shown 

that inhibition of TAK1 by a cardiac-specific dominant-negative mutation evoked 

electrophysiological and biochemical properties reminiscent of human WPW 

syndrome. WPW syndrome arises from mutations in AMPK, most notably, accelerated 

atrioventricular conduction and impaired AMPK activation [212]. This raises the 

possibility that the effects of TAK-1 inhibition could be attributed to decreased AMPK 

activation. 
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1.9.4 Function of AMPK 

AMPK has a central role in the regulation of energy metabolism. In the heart, AMPK 

activation leads to activation of ATP-producing pathways and is therefore, 

accompanied by stimulation of fatty acid oxidation, glucose uptake, and glycolysis [56, 

58, 68, 223]. In muscle tissue, AMPK regulates lipid and carbohydrate metabolism by 

controlling uptake and catabolism for energy generation [175, 224]. AMPK achieves 

these effects both by acute, direct phosphorylation of metabolic enzymes and proteins 

controlling key metabolic pathways and long-term stimulation of mitochondrial 

biogenesis and expression of oxidative metabolism enzymes and proteins involved 

especially in fatty acid metabolism [29, 36, 37, 158, 159, 225-231].  

Fatty acid oxidation: In the heart, AMPK is able to mediate the uptake and utilization of 

fatty acids as shown in Figure 1-14. AMPK activation in the heart is accompanied by 

increases in both protein expression and plasma membrane translocation of CD36 and 

FABP [232, 233]. Given the importance of lipoprotein lipase (LPL) in providing hearts 

with fatty acids, An et al have shown that activation of AMPK augments synthesis and 

recruitment of lipoprotein lipase (LPL) to the coronary lumen [234]. AMPK activation, 

also, stimulates fatty acid oxidation by phosphorylation and inactivation of ACC [35, 

68] and, possibly, by phosphorylating and activating malonyl-CoA decarboxylase 

(MCD), which degrades malonyl-CoA [57, 61, 235]. The latter does not appear to be a 

direct effect of AMPK since AMPK does not phosphorylate MCD directly [236]. 

Sambandam et al have recently demonstrated that AMPK might increase MCD 

association with mitochondria [237]. 

Glucose Utilization: AMPK activation in the heart mediates content of glucose uptake, 

glycolysis, and glycogen metabolism (Figure 1-14). AMPK stimulation of glucose 

uptake occurs independent of the insulin signaling pathway and, in fact, AMPK appears 

to control a different intracellular pool of glucose transporters from that of insulin [29, 

238, 239]. AMPK activation increases both the expression and sarcolemmal 

translocation of GLUT-4, and, therefore; stimulates glucose uptake [199, 240, 241]. For 
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example, several studies have shown that AMPK activation stimulates glucose uptake 

in the heart during ischemia or oxidative stress [76, 239, 242], in muscles in response to 

5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAr) [239, 243], in skeletal 

muscle during increased contractile activity [243-245], and in pathological 

hypertrophied hearts [34, 35, 246]. AICAr is an adenosine analog and cell-permeable 

activator of AMPK [247]. Incubation of cells with AICAr leads to accumulation of the 

monophosphorylated derivative 5-aminoimidazole-4-carboxamide ribonucleoside 

(ZMP or AICAR) inside the cell. ZMP activates AMPK by mimicking all activating 

effects of AMP; thereby activating AMPK by direct allosteric activation and promoting 

the phosphorylation by AMPK kinases. The molecular mechanisms responsible for 

these effects of AMPK are proposed to be mediated through protein kinase C (PKC), 

endothelial nitric oxide synthase, and the p38 mitogen activated protein 

kinase/transforming growth factor β-activated protein kinase -1 binding protein (TAB1) 

complex [74, 242, 248]. In addition to stimulation of glucose uptake, AMPK activation 

causes stimulation of glycolysis by phosphorylation and activation of PFK-2 to produce 

the PFK-1 activator, F2,6BP [86].  

Gene expression and Mitochondrial Biogenesis: Chronic AMPK activation mediates 

the transcription of genes involved in lipid and glucose metabolism [164]. For example, 

chronic muscle AMPK stimulation leads to upregulation of GLUT-4 and HKII 

expression, mitochondrial biogenesis in muscle, and downregulation of genes encoding 

enzymes involved in fatty acid synthesis and gluconeogenesis in liver [199, 226, 228, 

230, 240, 249]. These effects of AMPK are believed to be mediated through activation 

of transcription factors and co-activators [225, 228]. Recently, Narkar et al [250] have 

shown that oral treatment of mice with AICAr results in increased activation of 

metabolic genes and enhancement of oxidative metabolism.  

Ischemia/Reperfusion: AMPK has an essential role during myocardial ischemia. In 

hearts exposed to ischemia, AMPK activation is accompanied by an increase in AMP 

levels and stimulation of glucose uptake, glycolysis and fatty acid oxidation [68, 239, 
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241]. During reperfusion, AMPK activity remains high, accompanied by acceleration of 

fatty acid oxidation. These metabolic effects of AMPK can be both beneficial and 

detrimental during ischemia and during reperfusion following ischemia. Transgenic 

mice lacking AMPK activity have provided useful information regarding the role of 

AMPK during ischemia/reperfusion. In AMPKα2 deficient mice, hearts exposed to 

ischemia/reperfusion failed to increase glucose uptake [241, 251].  

Protein Synthesis: Several studies have shown that AMPK activation inhibits protein 

synthesis by inhibition of the target of rapamycin (TOR) pathway that stimulates 

translational initiation, and by activation of elongation factor-2 kinase which inhibits 

the elongation step [252-255]. Another mechanism by which AMPK might inhibit 

protein synthesis is through glycogen synthase kinase-3β (GSK-3β). When GSK-3β is 

phosphorylated it becomes inactivated diminishing its inhibitory effect on the 

eukaryotic translation initiation factor 2B (eLF2B) and promoting protein synthesis 

[256-260]. To support this, several studies have shown that AMPK activation results in 

phosphorylation and inactivation of GSK-3β or decrease GSK-3β protein expression 

[261-263]. However, others have shown that AMPK activation might activate GSK-3β 

[419-421].  

1.9.5 Pharmacological Manipulation of AMPK Activity 

The pharmacological agent AICAr enters cells by adenosine transporters and is 

phosphorylated by adenosine kinase to AICAR or ZMP [247, 264-266]. ZMP, a normal 

intermediate in purine-nucleotide biosynthesis, accumulates in different cell types, 

including muscle and cardiac cells, and activates AMPK by mimicking AMP. AMPK 

activation by AICAr in both skeletal muscle and the heart is accompanied by fatty acid 

uptake [233, 267]. In muscle cells, AMPK activation by AICAr is accompanied by 

decreases in both ACC activity and malonyl-CoA levels; and thereby stimulation of 

fatty acid oxidation [268]. In addition to activating fatty acid oxidation, AICAr 

treatment of muscle leads to increase in glucose uptake and stimulation of glycolysis by 

increasing the translocation of GLUT-4 to plasma membrane and activation of PFK-2, 
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leading to increases fructose 2,6-bisphosphate production and activation of PFK-1 [86, 

268-271]. However, ZMP is not fully specific for AMPK and can modulate other AMP-

sensitive enzymes, such as glycogen phosphorylase, and fructose 1,6-bisphosphate, 

independent of any effects on AMPK [204, 265]. Additionally, AICAr can compete 

with adenosine for uptake by the nucleoside transporter leading to accumulation of 

adenosine in the extracellular environment and subsequent activation of adenosine 

receptors [264].  

Metformin, an insulin-sensitizing biguanide widely used to treat type 2 diabetes 

mellitus, [272] has metabolic actions that are believed to be mediated by AMPK in 

intact cells and/or in vivo [199, 273-275]. Metformin exerts its action by increasing the 

cytosolic AMP concentration inside the cytosol possibly through inhibiting complex 1 

of the respiratory chain, thereby activating AMPK [207, 275-277]. However, an 

adenine nucleotide-independent activation of AMPK by metformin has been proposed 

in other cell types including heart and liver [273]  

Compound C, 6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyrrazolo[1,5-a]-

pyrimidine, an inhibitor of AMPK, was originally developed by Zhou et al [273]. It is a 

cell-permeable pyrrazolopyrimidine compound acting as a potent, reversible, selective, 

and ATP-competitive inhibitor of AMPK. It apparently has no effect on the activities of 

other protein kinases, which have been examined including PKCθ, PKA, or JAK3. 

1.10 POTENTIAL ROLE OF AMPK IN HYPERTROPHIED HEARTS 

Metabolic remodelling: Several studies of moderate forms of cardiac hypertrophy have 

shown that the activity and expression of AMPK is increased in association with an 

increase in glucose uptake and PFK-2 activity, and a decrease in energy status of the 

cardiac myocytes [34, 119]. We have shown that in mildly hypertrophied hearts the 

activity of AMPK is increased, accompanied by acceleration of glycolysis and a 

decrease in rates of fatty acid oxidation, but without any measurable changes in the 
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energy status of cells [35]. Additionally, in the same study we documented that, by 

increasing rates of fatty acid oxidation, both accelerated glycolysis and elevated AMPK 

activity were normalized to the same value seen in non-hypertrophied hearts, 

suggesting that AMPK has a role in the acceleration of glycolysis in these hearts [35]. 

AMPK activation in mild forms of cardiac hypertrophy might be a compensatory 

response to pressure-overload without any changes in energy status of cells possibly 

through Gq-coupled receptors; however, in moderate forms of cardiac hypertrophy, it 

might be a maladaptive response which is dependent on energy status of cells.  

Structural remodelling: The exact role of AMPK in myocardial growth in response to 

pressure-overload is not fully understood [29]. Several studies have shown that AMPK 

activation results in prevention of cardiac hypertrophy by inhibiting protein synthesis 

[246, 278-283]. Additionally, Liao et al have shown that in mice with low AMPK 

activity, transverse aortic constriction leads to progressive cardiac remodeling [284]. 

However, several other studies have shown that transgenic mice lacking the AMPK α-

subunits do not demonstrate increases in cardiac mass and hypertrophy indicating that 

AMPK does not restrict normal cardiac growth [214, 241, 251, 285-287]. Additionally, 

mutations in the human γ2-subunit encoded by PRKAG2 lead to the human 

cardiomyopathy WPW Syndrome, which is characterized by hypertrophy and abnormal 

glycogen accumulation and conduction system disease [29, 36, 186, 288-291]. 

Interestingly, mutations in the γ-subunit in mice models lead to cardiac hypertrophy; 

however, it is not obvious if these mutations cause activation or inhibition of AMPK 

[29, 36].  

Taken together, AMPK seems to have a role in metabolic as well as structural 

remodelling in pressure-overload induced cardiac hypertrophy. However, the exact role 

of AMPK in these settings needs to be characterized. The following hypothesis and 

specific aims, which correspond to the experimental chapters of this thesis, have been 

designed to address some of the questions regarding the role of AMPK in metabolic 

and structural remodeling of hypertrophied hearts. 
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1.11 HYPOTHESIS 

AMPK mediates hypertrophic remodeling in response to pressure-overload. 

Specifically, AMPK activation is a cellular signal responsible for accelerated rates of 

glycolysis in hypertrophied hearts. Additionally, AMPK influences myocardial 

structural remodeling and gene expression by limiting hypertrophic growth. 

1.12 EXPERIMENTAL APPROACH 

1.12.1 Effect of Metformin and AICAr on AMPK Activity 

To investigate the role of AMPK in hypertrophic remodeling in the heart, 

pharmacological activators of AMPK, such as metformin and AICAr were 

administrated. The hypothesis that metformin and AICAr activate AMPK and alter 

metabolism in H9c2 cells, a line of cells derived from embryonic rat ventricular 

myocytes, was investigated. If proven correct, metformin and AICAr would be useful 

agents to use in characterizing the effects of AMPK activation. Energy metabolism as 

well as AMPK activity in response to AICAr and metformin treatment was measured. 

Also, the effects of inhibition of AMPK activity on normalization of the metabolic 

effects induced by metformin were investigated. The role of phosphoinositol-3-

phosphate kinase (PI3K), MAP kinases, and PKC pathways in metabolic actions 

induced by metformin were characterized. 

1.12.2 Cellular Model of Cardiac Hypertrophy 

Here, it was determined if AMPK plays a role in metabolic remodeling in response to 

pressure overload-induced cardiac hypertrophy. Specifically, it was investigated if 

increased expression and activity of AMPK in hypertrophied hearts is responsible for 

the acceleration of glycolysis. A model of hypertrophy in which H9c2 cells were made 

hypertrophic by exposure to arginine vasopression (AVP) was developed. The 

activation state of AMPK in hypertrophied H9c2 cells was investigated and it was 
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determined if hypertrophied cells recapitulated the hypertrophic remodeling 

characteristic of the intact heart. Pharmacological agents (Compound C) as well as 

molecular approaches, employing adenoviral gene transduction, were then used in 

hypertrophied myocytes to specifically decrease AMPK activity and thereby further 

establish the role of AMPK in the control of glycolysis in the setting of myocyte 

hypertrophy. 

1.12.3 Acute Effects of AVP on Glucose Utilization in H9c2 Cells 

The acute effect of AVP on AMPK activity and glucose utilization in H9c2 cells was 

investigated. By inhibiting the AMPK activity, it was determined if the accelerated 

rates of glycolysis induced by acute treatment with AVP were dependent on AMPK. 

Then the mechanism by which AVP accelerated glucose utilization was determined. 

Specifically, the role of PI3K and/or calcium-dependent signaling pathways on AVP-

induced acceleration of glycolysis was investigated. 

1.12.4 Effect of Constitutively Active AMPK in H9c2 Cells 

Here, the role of AMPK on structural remodeling in cardiac hypertrophy was 

investigated by using a constitutively active form of AMPK (CA-AMPK) expressed in 

H9c2 cells by means of adenoviral gene transduction. Specifically, it was determined if 

AMPK activation led to structural and metabolic remodeling in the setting of cardiac 

hypertrophy. Also, the role of eEF2 and GSK-3β signaling pathways in AMPK-induced 

protein synthesis in H9c2 cells was investigated. 

1.13 USING  H9C2  CELLS  TO  INVESTIGATE  THE  ROLE  OF  AMPK  IN 

HYPERTROPHIC REMODELING 

Among many different approaches, one popular approach to investigate the energy 

metabolism and signaling transduction pathway is the use of cultured cell models [292, 

293, 347]. In the current study, H9c2 cells, a cell line derived from embryonic rat 
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ventricular myocytes, was used. The cultured cells have a number of advantages. First, 

they provide a homogeneous population of the cells so that the data collected using 

them will be more specific and accurate. Second, in cultured cells, cellular-molecular 

approaches can be performed easly. It should be recognized that, although H9c2 cells 

are derived from the rat heart and show some characteristics of adult cardiac myocytes, 

they cannot be considered to be identical to cardiac myocytes from adult or neonatal 

rats. H9c2 cells were used in the current investigation for several very practical reasons. 

Firstly, long-term culture of these cells is feasible whereas it is very difficult in primary 

cardiac myocytes, and this was important to establish new methodologies such as 

measurement of substrate use and adenoviral gene transfer. For the same reasons, the 

scope of investigation which could be undertaken to unravel potential mechanisms was 

wider. Second, H9c2 cells do resemble cardiac myocytes and although results must be 

extrapolated with caution, they can provide important and relevant insights. 
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Figure 1-1:    Substrate utilization profile in pathologic and physiologic cardiac 
hypertrophy. 

Rates of glycolysis and oxidations of glucose and palmitate were measured in isolated 

working hearts from Sham-operated and abdominal aortic constricted rats (Top panel) 

and in isolated working hearts from sedentary Control and treadmill trained rats (Below 

panel). Values are Mean ± SEM. * vs. corresponding non-hypertrophied rat hearts; p< 

0.05. N=8-14 per each group.  

Allard et al, Am J Physiol 1994, 267(2 pt2):H742-750.  

Burelle et al, Am J Physiol HeartCirc Phsiol 2004, 287(3):H1055-1063.  
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Figure 1-2:    Overview of energy metabolism in the myocardium. 

Heart utilizes a variety of substrates to meet its energy demand including exogenous as 

well as endogenous substrates. Glucose taken up is converted to G6P which can be 

converted to either glycogen or pyruvate. Pyruvate enters mitochondria to be oxidized. 

Fatty acids also enter mitochondria, undergo β-oxidation, and enter TCA cycle to 

generate reducing equivalents. These pass electrons to ETC which generates ATP. 

Tricarboxylic acid (TCA) cycle, Electron transport chain (ETC), Adenosine 

triphosphate (ATP), Glucose-6-phosphate (G6P), Reduced nicotinamide adenine 

dinucleotide (NADH2), Pyruvate dehydrogenase (PDC). 
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Figure 1-3:    Myocardial fatty acid metabolism. 

Fatty acids are taken up by CD36 and FABPs. Fatty acyl-CoA is taken up by the 

carnitine shuttle system to the mitochondria. The fatty acyl-CoA undergoes β-oxidation 

generating acetyl-CoA which further enters TCA cycle. 

Lipoprotein lipase (LPL), Long-chain fatty acid (LCFA), Fatty acyl-CoA synthatase 

(FACS), Fatty acid translocase (FAT/CD36), Fatty acid binding proteins (FABP), 

Carnitine palmitoyl transferase 1 (CPT-1), Carnitine palmitoyl transferase 2 (CPT-2), 

Tricarboxylic acid (TCA); Adenosine monophosphate (AMP), Adenosine triphosphate 

(ATP). 

 



Chapter 1 – Introduction 

 -31-

Acetyl-CoA

Malonyl-CoA

Fatty acyl-CoA

MCDACC

AMPK

Acetyl-CoA

TCA
Cycle

ß-Oxidation

Mitochondria

LCFA CPT-1

Citrate
Insulin

β - adrenergic stimulation

Acetyl-CoA

Malonyl-CoA

Fatty acyl-CoA

MCDACC

AMPK

Acetyl-CoA

TCA
Cycle

ß-Oxidation

Mitochondria

LCFA CPT-1

Citrate
Insulin

β - adrenergic stimulation

 

Figure 1-4:    Regulation of myocardial fatty acid oxidation. 

Malonyl-CoA is produced from cytosolic acetyl-CoA by ACC. Both AMPK and β-

adrenergic stimulation phosphorylate and inhibit ACC leading to a decrease in malonyl-

CoA level and therefore relieving inhibition of CPT-1. This results in stimulation of 

fatty acid oxidation. 

Long-chain fatty acid (LCFA), Acetyl-CoA carboxylase (ACC), Malonyl-CoA 

decarboxylase (MCD), Carnitine palmitoyl transferase 1 (CPT-1), AMP-activated 

protein kinase (AMPK), Protein kinase A (PKA), Tricarboxylic acid (TCA) cycle. 
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Figure 1-5:    Myocardial glucose metabolism. 

Glucose is taken up by GLUT1/4 and converted to G6P which then can enter the 

glycolytic pathway to produce pyruvate. PFK-1 is a key enzyme in glycolytic pathway. 

Pyruvate enters mitochondria through pyruvate transporters to be oxidized.  

Glucose transporter (GLUT), Hexokinase (HK), Glucose-6-phosphate (G6P), 

Phosphofructokinase-1 (PFK-1), Fructose 1,6- bisphosphate (F1,6P2), Tricarboxylic 

acid (TCA) cycle. 
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Figure 1-6:    Glycolytic pathway. 

Hexokinase (HK), Glucose-6-phosphate (G6P), Fructose-6-phosphate (F6P), 

Phosphofructokinase (PFK), Fructose 1,6- bisphosphate (F1,6P2), 1,3 
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Bisphosphoglycerate (1,3-BPG), 2-Phosphoglycerate (2-PG), 3-Phosphoglycerate (3-

PG), Phosphoenolpyruvate (PEP), Glyceraldehyde-3-phosphate (GAP), Glycerol-3-

phosphate dehydrogenase (GPDH), Phosphoglycerate kinase (PGK), Fructose-1,6-

bisphosphate aldolases (FBPA), Phosphoglycerate mutase (PGM),  Pyruvate kinase 

(PK), Tricarboxylic acid (TCA) cycle. 
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Figure 1-7:    Regulation of phosphofructokinase-1. 

PFK-1 is a key regulatory enzyme in the glycolytic pathway and catalyzes the first 

irreversible step. PFK-1 uses ATP to produce F1,6-BP and is activated by ADP, AMP, 

and Pi and is inhibited by ATP, citrate and by a fall in pH. F2,6BP is a potent stimulator 

of PFK-1 and is formed by PFK-2. PKC, PKA, PI3K, and AMPK can activate PFK-2 

therefore stimulate glycolysis. 

Fructose-6-phosphate (F6P), Phosphofructokinase-1 (PFK-1), Phosphofructokinase-2 

(PFK-2), Fructose-1,6- bisphosphate (F1,6P2), AMP-activated protein kinase (AMPK), 

Protein kinase A (PKA), Adenosine monophosphate (AMP), Adenosine triphosphates 

(ATP), Adenosine diphosphates (ADP), Protein kinase C (PKC), Phosphoinositol-3-

phosphate Kinase (PI3K), Phospho creatinine (PCr). 
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Figure 1-8:    Pyruvate dehydrogenase complex (PDC) regulation. 

The PDC oxidatively decarboxylates pyruvate to form acetyl-CoA. PDK 

phosphorylates and inhibits PDC activity; by contrast, PDP dephosphorylates and 

activates PDC. The activities of PDP and PDK are determined by intramitochondrial 

concentration of ions and metabolites. 

Pyruvate dehydrogenase kinase (PDK), Pyruvate dehydrogenase phosphatase (PDP), 

Pyruvate dehydrogenase (PDC), Dichloroacetate (DCA), Oxidized nicotinamide 

adenine dinucleotide (NAD), Adenosine diphosphate (ADP), Coenzyme A (CoA), 

Reduced nicotinamide adenine dinucleotide (NADH2). 
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Figure 1-9:    Myocardial energy production in hypertrophied and non-hypertrophied 
hearts when hearts utilizes exogenous substrate. 

Isolated working hearts from sham-operated and abdominal aortic-constricted rats were 

perfused with Krebs-Henseleit solution containing 5.5 mM [5-3H/U-14C]-glucose, 1.2 

mM [1-14C]-palmitate, 0.5 mM [U-14C]-lactate, and 100 mU/l insulin to measure 

glycolysis and glucose oxidation in one series and oxidation of palmitate and lactate in 

the second. 

Black represents fatty acid oxidation, white represents lactate oxidation, grey represents 

glucose oxidation and stippled represents glycolysis. 

Allard et al, Am J Physiol 1994, 267(2 pt2):H742-750. 

 

 



Chapter 1 – Introduction 

 -38-

 

R2= 0.8901

0

120

240

600 1400 2200 3000

Pathologic Hypertrophy

TMZ
DCA

360

(nmol/min/g dry wt)

R
ec

ov
er

y 
of

 E
xt

er
na

l W
or

k

Non-Oxidative Glycolytic Flux

(%
 C

on
tr

ol
)

Glucose

PyruvateLactate

CO2

Glycolysis

Glucose Oxidation

Non-Oxidative Glycolysis

Untreated

R2= 0.8901

0

120

240

600 1400 2200 3000

Pathologic Hypertrophy

TMZ
DCA

360

(nmol/min/g dry wt)

R
ec

ov
er

y 
of

 E
xt

er
na

l W
or

k

Non-Oxidative Glycolytic Flux

(%
 C

on
tr

ol
)

Glucose

PyruvateLactate

CO2

Glycolysis

Glucose Oxidation

Non-Oxidative Glycolysis

Untreated

 

Figure 1-10: Non oxidative glycolysis (NOG). 

This figure shows NOG and its relationship with functional recovery during reperfusion 

after ischemia in rodent model of pathologic cardiac hypertrophy. NOG is the 

proportion of glucose passing through glycolysis that is not oxidized. Reduction in 

NOG leads to improvement of post-ischemic contractile function and efficiency of 

hypertrophied hearts. Pharmacological agents that decrease glycolysis (Trimetazidine) 

and/or stimulate glucose oxidation (Dichloroacetate, Trimetazidine) lead to 

improvement of post-ischemic recovery of hypertrophied hearts by decreasing NOG.  

Dichloroacetate (DCA), Trimetazidine (TMZ). 

Lydell et al, Cardiovasc Res 2002, 53(4):841-51 

Saeedi et al, J Pharmacol Exp Ther 2005, 314(1):446-54. 
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Figure 1-11:  A possible mechanism for limitation in glucose oxidation in hypertrophied 
hearts. 

In order to be oxidized, pyruvate needs an equivalent oxidation of cytosolic NADH2 in 

the mitochondria. NADH2 enters into cardiac mitochondria mainly by the NADH2 

shuttles. If this shuttle is restricted, this leads to an increase in lactate production and a 

decrease in glucose oxidation. 

Oxidized nicotinamide adenine dinucleotide (NAD), Reduced nicotinamide adenine 

dinucleotide (NADH2), Lactate dehydrogenase (LDH), Tricarboxylic acid (TCA) cycle, 

Pyruvate dehydrogenase complex (PDC). 
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Figure 1-12:  Structure of AMPK. 

AMPK contains one catalytic subunit (α subunit) and two regulatory subunits (β and γ). 

The N-terminus of the α-subunits contains a kinase domain and the C-terminal domain 

is responsible for binding to the β- and γ-subunits. Each bateman domain of γ-subunit 

binds to one molecule of AMP or ATP. 

Glycogen binding domains (GBD), Cystathionine β synthase (CBS), Adenosine 

monophosphate (AMP), Adenosine triphosphate (ATP). 
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Figure 1-13:  AMPK activation by AMP. 

AMP binding to AMPK makes AMPK a better substrate for the upstream kinase, 

AMPKK. 

Second, AMP binding to AMPK inhibits dephosphorylation of AMPK by protein 

phosphatases. Third, AMP binding to AMPK results in allosteric activation of AMPK. 

Adenosine monophosphate (AMP), AMP-activated protein kinase (AMPK), AMP 

kinase kinase (AMPKK), Protein phosphatase-2C (PP2C). 
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Figure 1-14:  Effects of AMPK on metabolism of fatty acid and glucose. 

AMPK can stimulate glucose utilization by stimulating glucose uptake and by 

activation of PFK-2. Also, it stimulates fatty acid oxidation by increasing uptake of 

fatty acids and by phosphorylation and inhibition of ACC activity. 

AMP-activated protein kinase (AMPK), Fatty acid translocase (FAT/CD36), Acetyl-

CoA caarboxylase (ACC), Malonyl-CoA decarboxylase (MCD), Carnitine palmitoyl 

transferase 1 (CPT-1), Glucose transporters (GLUT), Glucose-6-phosphate (G6P), 

Phosphofructokinase-2 (PFK-2). 
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CHAPTER 2 ‐ MATERIALS AND METHODS 

2.1 CELL CULTURE 

H9c2 (2-1) cells (passage number 12), CRL-1446, lot number 2056335, embryonic rat 

ventricular myocytes, were obtained from American Type Culture Collection (ATCC) 

(Manassas, VA). The cell stocks were designated passage 1 and cultured. Aliquots of 

cultured cells from different passages were set aside and kept frozen in liquid nitrogen. 

In all experiments, H9c2 cell cultures were maintained through a maximum of 12 

passages. Cells were cultured in a water-jacketed cell culture incubator (Model 3326, 

Forma Scientific, Marietta, Ohio) under standard culture conditions (at 37 ºC in a 

humified atmosphere of 95 % O2 / 5 % CO2). All culture material used, such as 6 well 

plates, 25 cm2 and 75 cm2 flasks, and 60 mm dishes were purchased from Sarstedt 

(Quebec, Canada). The medium used in cell cultures was based on Dulbecco's Modified 

Eagle's Medium (DMEM) from Invitrogen (Carlsbad, California) containing 5.5 mM 

(1000 mg/l) D-glucose, 4 mM L-glutamine, 0.02 mM pyridoxine hydrochloride (4 

mg/l), and 1 mM sodium pyruvate (110 mg/l). 25 mM Sodium bicarbonate (2.2 g/l; 

Sigma, St.Louis, Missouri) was added to the DMEM for pH balancing as indicated by 

the supplier. When indicated, DMEM/F12, a 1:1 mixture of DMEM and Ham’s F-12 

nutrient mixture was used. It contains 17.51 mM (3.151 g/l) D-glucose, L-glutamine, 

and essential amino acids and vitamins as well as sodium bicarbonate at a final 
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concentration of 50 mM (2.4 g/l) to balance the pH. All media were supplemented with 

antibiotics, including penicillin (100 IU/ml) and streptomycin (100 IU/ml) (Invitrogen, 

Carlsbad, California). Phosphate-buffered saline (PBS) was purchased from Invitrogen, 

Carlsbad, California. In selected experiments, Krebs-Henseleit (KH) solution 

containing 118 mM NaCl, 4.7 mM KCl, 1.2 mM KH2PO4, 0.12 mM MgSO47H2O, 2.5 

mM CaCl22H2O, 0.025 mM NaHCO3 was used. Arginine vasopressin (AVP), all-trans 

retinoic acid, 2-aminoethoxydiphenyl borate (2-APB), O,O'-bis(2-

aminoethyl)ethyleneglycol-N,N,N',N'-tetraacetic acid (EGTA), SP600125, SB203580, 

PD98059, Wortmannin, and protease inhibitor cocktail containing 4-(2-

aminoethyl)benzenesulfonyl fluoride (AEBSF), E-64, bestatin, leupeptin, aprotinin, and 

sodium EDTA were purchased from Sigma (St.Louis, Missouri). Compound C, (6-[4-

(2-Piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-pyyrazolo [1,5-a] pyrimidine), was 

obtained from Merck (San Diego, California). LY-294002, [2-(4-morpholinyl)-8-

phenyl-4H-1-benzopyran-4-one], was obtained from Cell Signaling Technology Inc. 

(Danvers, Massachusetts). 

2.1.1 H9c2 Cell Culture 

Stock H9c2 cells were cultured in 75 cm2 culture flasks and were grown in the DMEM 

supplemented with 10 % fetal bovine serum (FBS) and 0.1 mM L-Carnitine (Sigma, St. 

Louis, Missouri), as previously described [292, 293]. At 70-80 % confluency, H9c2 

cultures were split in ratio of 1: 2 to 1: 4 using a PBS wash and trypsin to detach the 

cells. For experiments, cells were plated into 25 cm2 culture flasks, 60 mm culture 

dishes or 6 well plates with a density of 4 x 104 cells /cm2. Cultured cells were grown in 

10 % FBS DMEM supplemented with 0.1 mM L-Carnitine until they reached 70-80 % 

confluency and before fusion into myotubes occured. At this stage, differentiation 

toward a cardiac phenotype was induced by culturing cells in DMEM containing 1 % 

horse serum (HS) (Invitrogen, Carlsbad, California) and 100 nM all-trans-retinoic acid 

(Sigma, St. Louis, Missouri) for four days [292, 293].  
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In the absence of retinoic acid, H9c2 cells will undergo myogenic transdifferentiation to 

acquire a skeletal muscle phenotype [292, 293]. However, chronic treatment of these 

cells with low concentrations of retinoic acid has been shown to favour development of 

a cardiac muscle phenotype [292, 293]. Retinoic acid was prepared in the dark in 

dimethyl sulphoxide (DMSO) and aliquots were stored at –20 ºC until use. The 

concentration of DMSO in the culture medium was less than 0.2 %. Medium was 

changed every day.  

2.2 RETINOIC ACID AND CARDIAC PHENOTYPE OF H9C2 CELLS 

Exposure of H9c2 cells to medium containing retinoic acid for four days resulted in 

increased expression of the cardiac isoform of troponin-T as compared to untreated 

cells (Figure 2-1). Such findings are in keeping with the view that the culture conditions 

used in these experiments favour development of a cardiac-like phenotype in H9c2 

cells [292, 293]. 

2.3 TREATMENT OF H9C2 CELLS WITH METFORMIN OR AICAR 

For metformin/AICAr experiments, differentiated H9c2 cells were treated with or 

without metformin (2 mM), or 5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside 

(AICAr, 1.2 mM) in KH solution containing 0.4 mM [U-14C]-palmitate pre-bound to 3 

% bovine serum albumin (BSA), 5.5 mM glucose, and 10-7 M insulin for 8 hours. It had 

previously been found that 8 hours was required for metformin to achieve maximal 

metabolic effects (data not shown), in keeping with the view that metformin is poorly 

taken up by cells and prolonged treatment is needed for maximal effects [294]. In the 

above medium, tracer amounts of labeled [5-3H]-glucose (1.0 µCi/ml), and [U-14C]-

palmitate (0.4 µCi/ml) were added during the last hour of study to measure glycolysis 

and fatty acid oxidation, respectively. 

AICAr 
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The concentration of AICAr used in the current study (1.2 mM) is based on the 

previous studies of AMPK activation in the heart [204]. Higher concentrations of 

AICAr were not used because we have previously shown that it adversely affected heart 

function. In selected experiments, AMPK activity was reduced by either treating cells 

with Compound C or adenovirus over expressing dominant negative form of AMPK 

(DN-AMPK) by means of adenoviral transduction. 

Differentiated H9c2 cells were treated with Compound C (40 µM) in KH solution for 

30 minutes before addition of 2 mM metformin [273]. For viral mediated transducing 

of DN-AMPK, differentiated H9c2 cells were transduced with adenoviruses containing 

either green fluorescent protein (GFP) or DN-AMPK at a multiplicity of infection (moi) 

of 150 virus particles per cell and left in culture for 24 hours prior to addition of 

metformin. 

2.3.1 Investigation  of  the  Role  of  MAP  Kinases,  PKC,  and  PI3‐Kinase 

Pathways on Metabolic Actions of Metformin 

Modulation of several signaling pathways, including mitogen-activated protein kinase 

(MAPK), protein kinase C (PKC) and phosphoinositol-3-phosphate kinase (PI3K)-PKB 

pathways, have been implicated in the cellular effects of metformin [295-298]. As such, 

we evaluated the role of these pathways in mediating the metabolic response of H9c2 

cells to metformin using pharmacological inhibitors. Differentiated H9c2 cells were 

pretreated with 10 µM SB203580, a reportedly selective p38 MAPK inhibitor, 10 µM 

SP600125 and 50 µM PD98059, specific inhibitors of JNK and ERK pathways, 

respectively, 10 nM calphostin C, a potent and specific inhibitor of conventional and 

novel isoforms of PKC [299, 300], or 10 µM LY-294002, a selective PI3K inhibitor 

[301], before addition of metformin. Studies were conducted in KH solution 

supplemented with fatty acid, glucose, and insulin as above.  
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The concentrations of MAP kinase inhibitors as well as PKC inhibitor used in this 

study did not influence basal glucose utilization by the cells. However, higher 

concentrations affected basal glucose utilization.  

2.4 CHRONIC TREATMENT OF H9C2 CELLS WITH AVP 

Hypertrophy of H9c2 cells was induced by exposure of differentiated H9c2 cells to 

DMEM/F12 containing 0.5 % horse serum with or without 1μM arginine vasopressin 

(AVP) for 48 hours, as previously described [292]. After 48 hours, AVP-containing 

medium was replaced with serum-free DMEM. A trace amount of [5-3H]-glucose (1.0 

µCi/ml) was added to the medium 7 hours later to determine rates of glycolysis over a 

subsequent 1 hour period. In order to more closely reproduce the in vivo milieu in terms 

of energy substrates and hormones, additional studies were performed as above in 

either DMEM supplemented with 0.25 mM oleic acid pre-bound to 3 % bovine serum 

albumin, 5.5 mM glucose, 10-7 M insulin or in Krebs-Henseleit (KH) solution 

containing 0.4 mM palmitate pre-bound to 3 % bovine serum albumin, 5.5 mM glucose, 

and 10-7 M insulin for 8 hours. In the latter medium, glycolysis and oxidations of 

glucose and fatty acid in hypertrophied H9c2 cells were studied 8 hours after 

withdrawal of the AVP. Tracer amount of labeled [5-3H]-glucose (1.0 µCi/ml), [U-14C]-

glucose (1.0 µCi/ml), and [U-14C]-palmitate (0.4 µCi/ml) were added during the last 

hour of study to measure glycolysis, glucose oxidation, and fatty acid oxidation, 

respectively. 

Regardless of the medium used, glycolytic rates in hypertrophied H9c2 cells were 

measured over a period of 2-3 days after withdrawal of the AVP in order to determine 

how long the metabolic alterations persisted after removal of AVP. In these studies, 

AVP containing medium was removed and cells were cultured in DMEM/F12 without 

AVP for up to 2-3 days. Every 24 hours a subset of H9c2 cells were treated as above 

with removal of DMEM/F12 and exposure to KH solution or DMEM for 8 hours. 
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Tracer amounts of labeled [5-3H]-glucose (1.0 µCi/ml) were added during the last hour 

of study to measure rates of glycolysis.  

To suppress AMPK activity, hypertrophied and non-hypertrophied cells were treated 

with 40 µM Compound C for 8 hours in KH solution containing fatty acid, glucose, and 

insulin as above. As an alternative to pharmacological inhibition by Compound C, 

experiments were carried out with DN-AMPK [321, 322]. For these experiments, 

hypertrophied and non-hypertrophied H9c2 cells were transduced with adenovirus 

containing GFP (moi 150) or DN-AMPK plus GFP (moi 150) by incubation in DMEM 

containing 1 % HS for 24 hours after removal of AVP. This medium was replaced with 

KH solution containing 0.4 mM palmitate pre-bound to 3 % bovine serum albumin, 5.5 

mM glucose, and 10-7 M insulin and rates of glycolysis were measured by addition of 

tracer amounts of [5-3H]-glucose 7 hours later, as described above. 

2.5 ACUTE TREATMENT OF H9C2 CELLS WITH AVP 

To investigate the acute metabolic actions of AVP, differentiated H9c2 cells were 

treated with or without AVP (1µM) for 2 hours and rates of glycolysis were measured 

in KH solution containing 0.4 mM palmitate pre-bound to 3 % fatty acid free BSA, [5-
3H] 5.5mM glucose (1.0 µCi/ml) and 10-7 M insulin. In selected experiments, cells were 

incubated for two hours in serum-free DMEM containing [5-3H] 5.5 mM (1.0 µCi/ml) 

glucose with or without 1 µM AVP. The lowest concentration of AVP capable of 

stimulating glycolysis was assessed by exposing H9c2 cells to a range of AVP 

concentrations, including concentrations observed in the setting of heart failure in 

humans and in rodents [302-304]. 

The potential role of AMPK in the acute metabolic actions of AVP was assessed by 

using pharmacological and molecular means to inhibit AMPK in H9c2 cells. 

Specifically, H9c2 cells were exposed to 40 µM Compound C for 30 minutes prior to 

the switch to KH solution containing fatty acid, glucose and insulin with or without 1 
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µM AVP. For inhibition by DN-AMPK, cells were exposed to GFP (moi 150) or DN-

AMPK (moi 150) for 24 hours prior to acute exposure to AVP. 

2.5.1 Determination of the Role of Calcium in the Acute Metabolic Actions 

of AVP 

Binding of AVP to the V1a receptor, the receptor subtype shown to be involved with 

the hypertrophic response to AVP [305], leads to activation of phospholipase C, 

production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG) and the 

mobilization of intracellular calcium and influx of extracellular calcium (Figure 2-2) 

[292, 306]. Due to the unavailability of calcium free DMEM commercially, 

DMEM/F12, which has a glucose concentration of 17.5 mM, was used as a substitute to 

investigate the effects of different signaling pathways on glucose utilization induced by 

AVP. The role of calcium in mediating the metabolic response of H9c2 cells to AVP 

was evaluated by selectively modulating intracellular calcium mobilization and 

extracellular calcium influx. 

In one series of experiments, H9c2 cells were pretreated for 30 min with 25 µM 

dantrolene, an inhibitor of Ca2+ release from sarcoplasmic reticulum (SR) via the 

ryanodine receptor [307]. To evaluate the involvement of the IP3 receptor, whose 

activation also leads to calcium release from the SR, cells were pretreated for 5 minutes 

with 100 μM 2-amino-ethoxydiphenyl borate (2-APB), a non-competitive IP3 receptor 

antagonist [308]. The role of extracellular Ca2+ was assessed by preincubating H9c2 

cells with 3 mM EGTA (to chelate extracellular calcium) for 5 minutes before a 

challenge with AVP. 

The concentrations of all above inhibitors used in the study did not influence basal 

glucose utilization by the cells. However, higher concentrations affected basal glucose 

utilization. 
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2.5.2 Investigating the Role of Phosphoinositol‐3‐Phosphate Kinase  (PI3K) 

in the Acute Metabolic Action of AVP 

Considering the fact that AVP stimulates PI3K pathway (Figure 2-2) [310] and that 

PI3K is known to accelerate glucose use [298, 311], a pharmacological approach was 

used to assess the role of PI3K in the observed AVP- induced acceleration of glucose 

utilization. H9c2 cells were studied with and without 30 minutes of pretreatment with 

300 nM wortmannin, a well known inhibitor of PI3K [312], before addition of AVP. 

2.6 TREATMENT OF H9C2 CELLS WITH CA‐AMPK 

To assess the role of AMPK in structural remodeling, differentiated H9c2 cells were 

transduced with an adenovirus containing constitutively active form of AMPK (CA-

AMPK) (moi 25 and 150) or GFP (moi 150) by incubation in DMEM containing 1 % 

HS for 48 hours. The recombinant CA-AMPK adenovirus vectors contain a reporter 

gene of green fluorescent protein (GFP), which serves as a marker of successful viral 

transduction and protein over expression. Additionally, the recombinant CA-AMPK 

protein contains a short sequence derived from c-myc, which could be detected by 

means of a monoclonal anti-c-myc antibody. After 48 hours, the DMEM was replaced 

with Krebs-Henseleit solution containing 0.4 mM palmitate pre-bound to 3 % bovine 

serum albumin, 5.5 mM glucose, and 10-7 M insulin for 8 hours. In this medium, 

glycolysis and oxidation of glucose and fatty acids were studied over 8 hours. Tracer 

amount of labeled [5-3H]-glucose (1.0 µCi/ml), [U-14C]-glucose (1.0 µCi/ml), and [U-
14C]-palmitate (0.4 µCi/ml) were added during the last hour of study to measure 

glycolysis, glucose oxidation, and fatty acid oxidation, respectively. 

2.7 ANIMALS 

All the animal-related procedures were conducted by experienced technicians in our 

laboratory. 
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Male Sprague-Dawley rats weighing 350-450 g were housed in a temperature-

controlled (22 ± 1ºC) and light-controlled (12:12-hours light-dark cycle) room. Rats 

had free access to food and water. Animal care and experimentation were approved by 

the institutional animal care committee and were in accordance with guidelines set forth 

by the Canadian Council on Animal Care and with the American Physiological 

Society’s “Guiding Principles for Research Involving Animals and Human Beings”. 

2.7.1 Isolated Heart Preparation and Perfusion Protocol 

Hearts from halothane (3-4 %)-anesthetized rats were isolated and perfused in working 

preparations with Krebs-Henseleit (KH) solution under normoxic non-ischemic 

conditions at a left atrial preload of 11.5 mmHg and an aortic afterload of 80 mmHg, as 

described [20]. The KH solution contained 1.2 mM [1-14C]-palmitate prebound to fatty 

acid-free albumin (3 %), 5.5 mM [5-3H]-glucose, 0.5 mM lactate, and 100 mU/l insulin. 

A higher concentration of insulin was used to ensure that insulin-dependent glucose 

uptake was not limiting, while a high concentration of palmitate was used to overcome 

possible inhibitory effects of insulin on AMPK and to prevent the net loss of 

endogenous substrates [39, 202, 274, 313]. The KH solution was oxygenated with 95 % 

O2-5 % CO2 and maintained at 37 ºC. Hearts were exposed to metformin (2 mM) or 

vehicle (distilled H2O, dH2O) throughout the perfusion period. A pressure transducer 

(Viggo-Spectramed, Oxnard, CA) inserted in the afterload line was used to measure 

heart rate and peak systolic pressure. Cardiac output and aortic flow were measured via 

external flow probes (Transonic Systems, Ithaca, NY) on the left atrial preload and 

aortic afterload lines, respectively. Rate-pressure product, the product of heart rate and 

peak systolic pressure, and hydraulic work, the product of cardiac output and peak 

systolic pressure, were used to measure external work performed by the heart. Hearts 

were perfused for either 15 or 30 minutes at which time they were rapidly frozen in 

liquid nitrogen for biochemical analysis or determination of wet-dry tissue weight ratio. 
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2.8 EXOGENOUS SUBSTRATE METABOLISM 

2.8.1 Cellular Glycolysis 

Glycolytic rates were determined by measuring the rate of production of 3H2O from [5-
3H]-glucose (1.0 µCi/ml) included in the experimental medium [20, 314, 315]. Tritiated 

glucose that enters the glycolytic pathway is completely detririated at the enolase and 

triosephosphate isomerase steps to produce 3H2O. 3H2O was separated from [3H] 

glucose by use of screening columns (Fisher Scientific) containing Dowex 1-X4 anion 

exchange resin (200-400 mesh) suspended in potassium tetraborate. Potassium 

tetraborate (0.4 mM; 122.196 g/l ddH2O) was dissolved in ddH2O before addition of 90 

g/l Dowex anion exchanger and was slowly stirred overnight in room temperature. On 

the day of the experiment, 2 ml of the Borate/Dowex mixture was added to each 

column and extensively rinsed with ddH2O (3 times). After double distilled H2O 

(ddH2O) was drained thoroughly, the columns were placed over 7 ml-scintillation vials. 

The cell medium (200 µl) were added slowly in duplicates to each column followed by 

2 aliquots of 400 µl ddH2O for washing purpose. Following elution of 3H2O into the 

scintillation vial, Ecolite scintillant (4 ml) (ICN, Costa Mesa, CA) was added to each 

vial. Vials were vortexed and left overnight in room temperature before subjection to 

isotope counting procedure. The specific activity was calculated by measuring the 

radioactivity of [3H]-labeled experimental medium. Glycolytic rates were expressed as 

nanomoles of glucose catabolized per minute per milligram protein. 

2.8.2 Cellular Glucose Uptake 

2-Deoxyglucose uptake was measured in H9c2 cells as previously described [307]. To 

measure glucose uptake, trace amounts of 2-deoxy-D-[1-14C] glucose (0.2 µCi/ml) were 

added to the experimental medium and incubated for 1 hour with the cells. Upon the 

removal of labeled medium, the cells were rinsed twice with ice-cold PBS and then 

dissolved in 0.1 M potassium hydroxide (KOH) (500 µl). Cell lysates were collected 
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and transferred to eppendorf tubes. Aliquots of dissolved cell lysate (in duplicate) were 

transferred into scintillation vials containing Ecolite scintillant (4 ml). Vials were 

vortexed and left overnight at room temperature before subjection to isotope counting 

procedure. The specific activity was calculated by measuring the radioactivity of [1-
14C]-labeled experimental medium. Glucose uptake was expressed as nanomoles 

glucose catabolized per minute per milligram protein. 

2.8.3 Cellular Fatty Acid and Glucose Oxidation 

Rates of glucose and fatty acid oxidation were measured by treating cells with [U-14C]-

glucose and [U-14C]-palmitate, respectively, as previously described [20, 315, 316]. 

Rates of glucose and fatty acid oxidation were measured by quantitative collection of 
14CO2 released as a gas and dissolved in the cell medium as [14C]-bicarbonate. H9c2 

cells cultured in T25 flasks were incubated in preoxygenated medium containing [U-
14C]-palmitate (0.4 µCi/µmol) complexed to 3 % bovine serum albumin (BSA) or [U-
14C]-glucose (1.0 µCi/ml) of a final volume of 2 ml. The flasks were sealed with a 

rubber stopper fitted with a scintillation vial and parafilm containing pieces of 

Whatman #1 filter paper soaked with 0.3 ml of 1 M hyamine hydroxide that acted as a 
14CO2 trap. After incubation for 1 hour at 37 ºC, the reaction was stopped by injection 

of 5 M H2SO4 (1 ml) through the rubber stopper into the flask, which caused the 

liberation of 14CO2 dissolved in the medium. The 14CO2 entered the vials and was 

trapped in the hyamine-saturated filter paper. The filter papers were taken for 

scintillation counting after 2 hours of gentle shaking at room temperature. Both glucose 

and fatty acid oxidation rates were expressed as nanomoles per minute per milligram 

protein. 

2.8.4 Myocardial  Fatty  Acid  and  Glucose  Oxidation,  Glycolysis,  and 

Glucose Uptake 

In hearts, palmitate oxidation was determined by quantitative collection of 14CO2 

released from [U-14C]-palmitate as a gas and dissolved in the perfusate as [14C]-
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bicarbonate [20]. Rates of glycolysis were determined by quantitatively measuring the 

rate of 3H2O production released into the perfusate from [5-3H]-glucose [20]. Perfusate 

and gas samples were taken every 10 minutes during the perfusion period. Metabolic 

rates are as expressed as nmole per minute per gram dry weight. Rates of glucose 

uptake by the heart were determined using a previously described method [317]. 

2.9 GLYCOGEN METABOLISM 

2.9.1 Total Glycogen Content 

Total glycogen content of cells was determined by enzymatic degredation of total 

glycogen into glucose as described prevoiusly [318]. Upon removal of experimental 

medium, cell cultures were washed with ice-cold PBS (pH 7.4) and subjected to 

alkaline extraction of glycogen from exogenous glucose by the addition of 0.5 ml of 0.4 

M KOH and incubation at room temperature for 15 minutes. The cell lysates were 

boiled at 95 ºC for 10 minutes to remove existing exogenous glucose in the samples 

[318]. Then, duplicate samples of the above heat-exposed cell lysate (150 µl) were 

spotted onto 2 cm x 2 cm 31ET filter papers (Whatman, Kent, UK) in duplicate. This 

was followed by ethanol precipitation of the glycogen by washing the filter papers in 

ice-cold 66 % ethanol (3 washes of 15 minutes each). The filter papers were air-dried 

over night and then each filter paper was cut into 8 pieces and placed into 2 ml 

centrifuge tubes. To release endogenous glucose from precipated glycogen, 500 µl of 

glycogen buffer consisting of 0.2 M acetate buffer, pH 4.7, and 0.625 mg/ml 

amyloglucosidase (Sigma, St. Louis, Missouri) was added to each tube, and the tubes 

were incubated at 37 ºC for 2 hours with shaking. After this incubation, an aliquot of 

200 µl of glycogen buffer containing glucose product from the complete degradation of 

the glycogen was transferred into a standard 1.5 ml cuvette (Sarstedt, Quebec, Canada). 

Glucose released from glycogen was assayed colorimetrically. 1 ml of glucose-

detecting reagent (500 ml ddH2O/capsule containing glucose oxidase (500 U/calsule 

and peroxidase (100 U/capsule); Sigma Diagnostics, St. Louis, Missouri) was added to 
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each cuvette and incubated at 37 ºC for 30 minutes with gentle shaking. The absorbance 

at 475 nm was read by a spectrophotometer and the data was compared to a glucose 

standard curve created with glucose standard solution (Sigma, St. Louis, Missouri). 

Glycogen content was expressed as nanomoles of glucose per milligram protein. 

2.9.2 Glycogen Synthesis 

Glycogen synthesis was determined by the incorporation of [5-3H]-glucose into 

glycogen [40]. When indicated, 1.0 µCi/ml of labeled [5-3H]-glucose was added to the 

cell medium to allow the measurement of glycogen synthesis. Glycogen was collected 

and quantified as described above. To determine the amount of [5-3H]-labeled 

glycogen, 200 ul of cell lysate were spotted onto 3IET filter papers and washed in ice-

cold ethanol as desribed above. After the filter papers were dried, they were inserted 

into scinitillation vials and 4 ml of scintillant was added to each vial. The vials were 

vortexed and left over night at room temperature before they were subjected to 

counting. The specific activity of medium was determined by measuring unused [3H]-

labeled experimental medium aliquots. Glycogen synthesis was expressed as 

nanomoles of glucose incorporated per milligram protein. 

2.10 ENZYME‐LINKED  IMMUNOSORBENT ASSAY  (ELISA) AND ATRIAL 

NATRIURETIC FACTOR/ PEPTIDE (ANF/ANP) EXPRESSION 

ANF expression was measured in H9c2 cell lysates using a commercially available 

colorimetric ELISA kit (R & D systems; Mississauga, Ontario, Canada). Cultured cells 

were rinsed with ice-cold PBS and lysed on ice by addition of 300 µl of total protein 

extraction buffer (pH 7.4) containing 20 mM HEPES, 250 mM sucrose, 1 mM EDTA, 

phosphatase inhibitors (100 mM sodium fluoride, NaF, 100 mM sodium 

pyrophosphate, Na4P2O7, and 10 mM sodium orthovanadate, Na3O4V), and protease 

inhibitor cocktail. The cell lysates were scraped, collected, sonicated and centrifuged 

for 10 minutes at 13000 g at 4 ºC. Protein concentration was measured using the 
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bicinchoninic acid method. Samples of supernatant containing 10 µg of total protein 

were added to the 96-well polystyrene plates precoated with polyclonal sheep anti- 

proANP (1-98) provided in the kit. The N terminal part of ANP, proANP (1-98), has a 

longer half life (1-2 hours) and thus is a better indicator for measurement of ANF in the 

circulation. The ANF in the cell lysate acted as an antigen. This antigen was complexed 

with a polyclonal anti-proANP antibody conjugated to a horseradish peroxidase that 

produces a coloured product in the presence of substrates. The absorbance at 620 nm 

was read in a spectrophotometer (Perkin Elmer, Shelton, Connecticut). The change in 

absorbance at 620 nm was directly proportional to the ANF concentration in the 

sample. A standard curve of known ANF concentrations ranging from 0-10 fM was 

generated using synthetic human proANP standard solution provided with the kit. ANF 

production was expressed as fmole per microgram protein. 

2.11 AMPK ACTIVITY ASSAY 

Measurement of isoform-specific AMPK activity was determined in H9c2 cell lysates, 

as described [35, 202, 315] with minor modifications. H9c2 cells were washed in ice-

cold PBS and 300 µl of AMPK homogenization buffer (pH 7.5) containing 50 mM 

Tris-HCl, 0.25 M mannitol, 1 mM EDTA, 1 mM EGTA, 50 mM sodium flouride 

(NaF), 5 mM sodium pyrophosphate (Na4P2O7), protease inhibitor cocktail and 1 mM 

dithiothreitol (DTT) was added (on ice). After scraping the cells, the homogenates were 

collected, sonicated and centrifuged for 10 minutes at 13000 g at 4 ºC. Protein 

concentration was measured using the bicinchoninic acid method. The supernatant 

containing approximately 150 µg total protein was incubated with the isoform-specific 

anti-α1 or anti- α2 AMPK antibodies (1:500 dilutions, Upstate, Charlottesville, VA) in 

150 µl of AMPK homogenization buffer overnight at 4 ºC on a rotator. Then 20 µl of 

50 % protein A-sepharose slurry (Amersham) was added to the mixture and incubated 

for 1 hour at 4 ºC on a rotator. The supernatant was removed followed by three 

washing/recentrifugation steps at 4 ºC with AMPK resuspension buffer containing 100 

mM Tris-base, 1 mM EDTA, 1 mM EGTA, 50 mM NaF, 5 mM Na4P2O7, 10 % 
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glycerol, 0.02 % Na azide, protease inhibitor cocktail, 1 mM DTT and 0.12 % Triton. 

After the final centrifugation the supernatant was removed so that a total volume of 50 

µl was left. Five µl of the above samples were added to 12.5 µl of AMPK assay buffer 

(pH 7.5) containing 40 mM HEPES, 80 mM NaCl, 8 % glycerol, and 0.8 mM EDTA. A 

timed reaction to measure AMPK activity of the immunoprecipitated samples was 

performed in the presence of 200 µM synthetic AMARA (AMARAASAAALARRR) 

peptide [319], 0.8 mM DTT, 200 µM AMP at a total volume of 25 µl of assay mixture 

was made. After addition of 17.5 µl of assay mixture to 2.5 µl of ATP mix containing 1 

µCi [32P- γ]ATP, 200 µM ATP, 5 mM MgCl2, cells were incubated for 10 min at 30 ºC. 

This incubation causes incorporation of 32P into the AMARA peptide. At the end of 10 

minutes, 17 µl of the incubation mixture was blotted onto a 1 cm2 square of 

phosphocellulose paper. The paper was washed three times each for 10 minutes in 150 

mM phosphoric acid, air dried and placed in scintillation vials. 4 ml of scintillation 

fluid (EcoLite™, ICN, CA, USA) was added to each vial, and the samples counted in a 

scintillation counter. A standard was created by counting of 2 µl of untreated ATP mix. 

AMPK activity was expressed as picomoles of 32P incorporated into AMARA peptide 

per minute per milligram protein. 

Total AMPK activity was also measured from homogenized H9c2 cells by using a 

saturated ammonium sulfate (AS) precipitation assay to purify AMPK, followed by 

measurement of AMPK activity using AMARA peptide. To make super saturated 

ammonium sulfate solution, 76.1 g of AS was added to 100 ml ddH2O and allowed to 

stir overnight, after which some remained undissolved.  Aliquots of 250 µl of cell 

homogenate prepared as above were added to 250 µl of AS solution. After incubation 

of the mixture for 20 minutes on ice, they were centrifuged at maximum RPM for 20 

minutes at 4 ºC. The supernatant was removed and the pellet was resuspended in 15 µl 

of AMPK lysis buffer containing 1:100 phosphotase inhibitor, 50 mM NAF, 1:1000 

protease inhibitor cocktail, 1 % TritonX-100, 1:1000 DTT. Protein quantification was 

performed on the resuspended lysate. Finally, 5 µg of protein was used to measure 

AMPK activity using AMARA peptide as described above. 
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2.12 IMMUNOBLOT ANALYSIS 

Selected proteins in H9c2 cells were assessed by immunoblot analysis and quantified 

by densitometry of ECL images as described previously [24]. Cultured cells were lysed 

in the above described total extraction buffer. Cellular homogenates were centrifuged 

for 10 minutes at 13000 g at 4 ºC and the supernatant was used for immunoblot 

analysis. Protein concentration was measured using the bicinchoninic acid method. 

Samples of supernatant containing 30 µg total protein or immunoprecipitated protein 

(150 µg of total protein) were solubilized by boiling samples for 10 minutes in reducing 

sample buffer containing 6 % sodium dodecyl (SDS), 185 mM Tris-HCl, 30 % 

glycerol, 14 % mercaptoethanol, 0.7 % bromophenol blue. The proteins were separated 

by electrophoresis on 5-10 % polyacrylamide gels using SDS-polyacrylamide 

electrophoresis (SDS-PAGE), and transferred by electroblotting to a nitrocellulose 

membrane. The membranes were blocked with 100 mM tris buffered saline (TBS) 

containing 5 % non-fat dry milk or BSA (low free fatty acid) and 0.1 % Tween 20 for 

60 minutes at room temperature with constant agitation. After blocking, the blots were 

probed overnight in blocking buffer plus primary antibodies with constant agitation at 4 

ºC. The primary antibodies used were: those against the cardiac troponin-T (0.1 µg/ml, 

NeoMarker, CA), GLUT-4 (1:3000 dilution, Cell Signalling Technology, Missisauga, 

Ontario), HKII (1:500 dilution, Santa Cruz Biotechnology, Santa Cruz, CA), PDC E1α 

(1:100000 dilution, Santa Cruz Biotechnology, Santa Cruz, CA), phosphoAMPK 

(1:1000 dilution, Upstate Cell Signalling Solutions, Lake Placid, NY), phosphoACC 

(1:500 dilution, Upstate Cell Signalling Solutions, Lake Placid, NY), PKB (1:1000 

dilution, Upstate Cell Signalling Solutions, Lake Placid, NY), PKC (1:750 dilution, 

Upstate Cell Signalling Solutions, Lake Placid, NY), α-pan-AMPK (1:1000 dilution, 

Upstate Biotechnologies, Lake Placid, NY), phosphoeEF2 (1:1000 dilution, Upstate 

Biotechnologies, Lake Placid, NY), total eEF2 (1:1000 dilution, Upstate 

Biotechnologies, Lake Placid, NY), GAPDH (1:15,000 dilution, Molecular Probes, 

Eugene, Oregon), GSK-3β (4 µg/ml dilution, Upstate Biotechnologies, Lake Placid, 
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NY). After removal of the primary antibody solution, the nitrocellulose membranes 

were rinsed twice briefly with TBS followed by 3 washes with TBS for 5 minutes at 

room temperature. The membranes were incubated with blocking buffer plus secondary 

antibody (e.g. 1:4000 Goat anti-Rabbit conjugated with horse radish peroxidase) for 1 

hour at 4 ºC. The membranes were rinsed twice briefly with TBS followed by 3 washes 

with TBS for 5 minutes at room temperature. The membranes were incubated with 

enhanced chemiluminescent substrates and the subsequent signals were detected with a 

Syngene Chemigenius (Cambridge, UK). Densitometry of bands was measured using 

the Image J program (NIH). 

2.13 MEASUREMENT  OF  ADENINE  NUCLEOTIDES  AND  CREATINE 

PHOSPHATE  

Adenosine triphosphate, adenosine diphosphate, adenosine monophosphate, creatine 

and creatine phosphate were measured in Dr. Roger Brownsey’s laboratory at the 

University of British Columbia by perchloric acid extraction of frozen ventricular tissue 

[204]. Since HPLC measures the total amount of AMP in tissue extracts with the 

functionally relevant free AMP representing a small fraction of the total, concentrations 

of free AMP were determined using the creatine kinase and adenylate kinase 

equilibrium reactions, as previously described [35]. 

2.14 [14C]‐PHENYLALANINE INCORPORATION 

Phenylalanine incorporation into the cells was assessed by exposure of cultures to 

[14C]-phenylalanine (1 µCi/ml) provided in the experimental medium. The 

incorporation of radioactivity into the acid insoluble cell mass was measured. After 

treatment of cells with medium containing [14C]-phenylalanine for 24 hours, cells were 

washed with ice-cold PBS, and 500 µl of ice-cold 10 % trichloroacetic acid was added 

and incubated overnight at 4 ºC [320] to precipitate the proteins. The precipitates were 
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washed with ice-cold PBS and dissolved in 500 µl of 1 M NaOH-0.01 % sodium 

dodecyl sulfate by incubation for 2 hours at 37 ºC. 100 µl of this solution was added to 

scintillation vials containing 4 ml of Ecolite scintillant (ICN, Costa Mesa, CA). Vials 

were vortexed and left overnight in room temperature before being subjected to an 

isotope counting procedure. The standard was generated by counting an aliquot of 

unused medium containing [14C]-phenylalanine in scintillation counting machine. 

2.15 MEASUREMENT OF TOTAL PROTEIN CONTENT 

All metabolite concentrations and enzyme activities were expressed relative to the 

protein content of the sample, determined using a commercial Bicinchoninic Acid 

(BCA) protein assay kit from Sigma (St. Louis, Missouri). A standard curve of BSA 

from Sigma (St. Louis, Missouri) ranging from 0 to 15 µg/µl was made that included an 

appropriate amount of the buffer used to homogenize the sample. Then aliquots of 25 

µl of suitably diluted cell samples (5–30X) were added to a 96-well plate (BD 

Biosciences, Lexington, Kentucky) in duplicates. After the addition of 150 µl of assay 

reagent consisting of of 95 % BCA: 5 % CuSO4, the plate was incubated at 37 ºC for 30 

minutes with gentle shaking. The plate was cooled to room temperature before the 

absorbance at 562 nm was measured in a spectrophotometer (Perkin Elmer, Shelton, 

Connecticut). The protein content was expressed in milligrams of protein. 

2.16 CELL COUNTING 

After washing the cells with ice-cold PBS, cells were trypsinized and the cell cultures 

were incubated at room temperature for 5-10 minutes until the cells were fully 

dissociated from the cell surface. After adding DMEM to the cells (the volume was 

estimated from the cell surface area of the dish or well), the cells were resuspended 

thoroughly. The cell number in the samples was determined by adding 18 µl of the cell 

suspension to a hemocytometer and counting four quadrants under a light microscope. 
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The cell number is determined using a hemocytometer and adjusted to approximately 

20-100 cells/mm2 with medium. 

2.17 GENERATION OF RECOMBINANT ADENOVIRAL VECTORS 

Recombinant, replication-deficient adenoviral vectors were obtained from Dr. Jason 

Dyck at the University of Alberta. Adenoviral vectors containing a dominant negative 

form of AMPK (DN-AMPK) were produced by administration of cDNA encoding α1-

AMPK with a mutation in which aspartic acid 157 was changed to alanine [321, 322]. 

Adenoviral vectors containing constitutively active form of AMPK (CA-AMPK) were 

produced by administration of cDNA encoding residues of 1-312 of α1-AMPK with a 

mutation in which threonine 172 was changed to aspartic acid. The recombinant 

adenovirus vectors contain a reporter gene of green fluorescent protein (GFP), which 

serves as a marker of successful viral transduction and protein over expression. The 

same protocol was used to construct adenoviruses encoding a c-myc tagged CA-

AMPK, DN-AMPK, as well as an adenovirus encoding GFP alone. 

2.17.1 Generation  of  Recombinant  Adenoviral  Plasmids  by  Homologous 

Recombination in Escherichia Coli 

The cDNA of interest was subcloned into the pAdTrack-CMV shuttle vector. The 

resultant plasmid-containing insert was linearized by digesting with restriction 

endonuclease PmeI, purified by phenol/chloroform, and precipitated with sodium 

acetate and ethanol. The dry DNA was resuspended in sterile water and quantified. The 

resultant PmeI digested shuttle vector (100-300 ng) containing insert (100 ng/µl) was 

inserted by pAdEasy-1 system into 20 µl of the electrocompetent Escherichia coli 

BJ5183 cells (stratagene Cat. # 200157) which contains the adenoviral backbone vector 

pADEasy-1. This mixture was placed in a pre-chilled electroporation cuvette and 

electroporation was performed at 2500 V, 200 ohm, and 25 µF in a Bio-Rad Gene 

Pulser electroporator. The cells then were placed in 500 µl of L-Broth (LB) (Life 
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Technology) and incubated at 37 ºC for 1 hour with rotation. An increased stepwise 

amount of the cell suspension (from 50 to 200 µl) was inoculated into 100 mm petri 

dishes containing L-agar supplemented with 25 µg/ml of kanamycin and incubated at 

37 ºC overnight. Around 10-20 of the smallest colonies were picked and grown in 2.5 

ml LB containing kanamycin (25 µg/ml) in a 15 ml conical falcon tubes with vigorous 

shaking in a 37 ºC orbital shaker overnight. Clones were first screened with extensive 

restriction digestion. The digestion patterns were compared with the pAdEasy stock 

DNA made in strains incapable of homologous recombination. Then recombinants were 

selected for kanamycin resistance, and recombination was further confirmed by 

digestion with restriction endonucleases, generally PacI, speI, and BamHI. The 

resultant digested recombinant adenoviral construct was transfected into the packaging 

cell line HEK293 to propagate. 

2.17.2 Production of Adenovirus in HEK293 Packaging Cells 

HEK293 cells were grown at density of 2 X 106 cells per T75 flask in DMEM 

supplemented with 10 % FBS less than 24 hours prior to transfection. At the time of 

transfection, cells were 50-70 % confluent. During transfection, no antibacterial agent 

was used. After washing the cells with serum free OPTI-MEM, 3 ml of OPTI-MEM 

was added to the flasks and the flasks were incubated in the incubator for 15-30 

minutes before transfection. Meanwhile a transfection mix was prepared by adding 8 

µg of PacI digested recombinant and 40 µl of Lipfectamine to 200 µl of serum-free 

OPTI-MEM and incubating at room temperature for 15-30 minutes. After incubation at 

room temperature, the transfection mixture was added to the cells and incubated for 4-6 

hours at 37 ºC incubator. Then, the medium containing the transfection mix was 

removed and 6 ml of DMEM supplemented with 5 % HS and 10 µg/ml was added; 

cells were then incubated for a further 48 hours. Then a final medium change was made 

and the transfected cells were monitored for GFP expression and collected 7-10 days 

after transfection during which viral lysis occured. The cells then were collected by 

scraping and centrifugation at 500 g for 10 minues. After three cycles of freezing in a 
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liquid nitrogen and rapid thawing at 37 ºC, 1 ml of viral lysate was used to infect 3-5 X 

106 cells and the efficiency of transduction was assessed by GFP expression. After 3-4 

days viruses were harvested as described above. 

In order to generate higher titer viral stocks, packaging cells were infected at a 

multiplicity of infection (moi) of 25 to 300 and grown for 3-4 days when viruses were 

harvested as described above.  

The recombinant adenoviruses were purified by ultracentrifugation on a cesium 

chloride gradient at 604000 g for 15 minutes at 4º C and tangential flow filtration as 

described previously [323, 324]. The purification caused removal of all cell debris and 

cytokines. 

2.17.3 Titration of the Adenovirus 

Titration of the adenovirus was performed as described previously [323, 324]. The 293 

cells were cultured in 6-well culture dishes till they reached about 50-60 % confluency. 

In a final of 1 ml MEM, 5 % horse serum, 10 µg/ml gentamicin and serial dilutions of 

adenovirus (103 to 1012) were made and added to the wells. One well was preserved as a 

Control without having adenovirus. Cells were incubated with the virus for 4 hours in 

the incubator. Meanwhile 1 % agar (Difco 214530 (0145-17)) was made in ddH2O 

(autoclaved) and heated in the microwave. Once it was dissolved, it was placed in an 

incubator at 42 oC. After 4 hours of incubation of cells with the adenovirus, the 

adenovirus was removed and 2 ml of 1 X MEM alpha (Gibco) supplemented with 5 % 

horse serum and 0.5 % agar was added and cells were incubated. Every 4 to 5 days 1.5 

ml of 1 X MEM alpha with 5 % horse serum and 0.5 % agar was added on top of the 

existing agar. Generally it takes 6 or more days before the plaques are obvious. The 

plaques were counted everyday and were maintained for 2 weeks. For the fluorescent 

titer all the fluorescing cells were counted 4 days after infection. 
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2.18 STATISTICAL ANALYSIS 

Results were expressed as means ± SEM. Differences among groups were compared by 

means of Analysis of Variance (ANOVA) using NCSS, version 2000 (Statistical 

Solutions, Saugus, MA). Newman-Keuls was used as a post-hoc test to identify which 

groups were significantly different when the ANOVA yielded a significant F-ratio. A P 

value <0.05 was considered significant. 
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Figure 2-1:    Cardiac troponin-T expression in H9c2 cells. 

Representative immunoblot of cardiac troponin-T expression in H9c2 cells 

differentiated in 1 % horse serum in DMEM in the presence or absence of 100 nM 

retinoic acid for 4 days. Each lane represents a different sample. N=3 per each group. 
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Figure 2-2:    Potential signaling pathways responsible for stimulation of glucose use in 
H9c2 by AVP. 

Binding of AVP to V1a receptor promotes the dissociation of Gq-coupled receptors. 

The α subunit of Gq stimulates phospholipase Cβ (PLCβ) leading to hydrolysis of 

phosphatidylinositol (4,5)-bisphosphate (PIP2), increasing intracellular levels of 

diacylglycerol (DAG) and inositol (1,4,5)-trisphosphate (IP3). IP3 promotes release of 

calcium from intracellular stores via the IP3 receptor and evokes calcium entry across 

the plasma membrane via the capacitative calcium channel (CCE). In addition, the β-

subunit of Gq activates phosphatidylinositol-3-phosphate kinase (PI3K) leading to 

activation of protein kinase B (PKB). A rise in intracellular calcium or activation of 

PKB involves the recruitment of the glucose transporter GLUT to the plasma 

membrane and the activation of phosphofructo kinase-2 (PFK-2), which in turn 
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increases the concentration of fructose 2,6-bisphosphate, a well-known stimulator of 

PFK-1 and therefore of glycolysis. 
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CHAPTER 3 ‐ METABOLIC  ACTIONS  OF  METFORMIN  IN 

THE  HEART  CAN  OCCUR  BY  AMPK‐

INDEPENDENT MECHANISMS 

3.1 INTRODUCTION 

AMP-activated protein kinase (AMPK) is considered to be a “metabolic fuel gauge” 

that is activated by several mechanisms including allosteric activation during periods of 

decreased cellular energy state, phosphorylation activation of the α catalytic subunit by 

one or more upstream kinases (AMPK kinase, AMPKK), and/or activation by 

inhibition of phosphatase [157, 158, 161]. Additionally, AMPK can be activated in 

cells without changes in energy state by a calcium-dependent pathway involving 

calcium/calmodulin-dependent protein kinase kinases as upstream AMPK kinases [158, 

206, 207, 209] and by long-chain fatty acids [202, 325]. In the heart, AMPK is involved 

in the control of fatty acid oxidation, glucose uptake, and glycolysis [223]. 5-

aminoimidazole-4-carboxamide 1-β-D-ribofuranoside (AICAr), a cell-permeable 

adenosine analog [247], has been shown to pharmacologically activate myocardial 

AMPK resulting in stimulation of fatty acid oxidation [69, 204] as well as translocation 

of glucose transporters to the sarcolemma and increased glucose uptake [239]. 
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Metformin, an insulin-sensitizing biguanide widely used to treat type 2 diabetes 

mellitus [272], has metabolic actions that are believed to be mediated by AMPK 

activation as observed through studies in liver and skeletal muscle [199, 273]. 

Metformin also has been used to activate AMPK in isolated cardiac myocytes [274, 

298, 326] and in intact hearts [275]. Consequently, metformin is now widely used as a 

means to activate AMPK in experimental model systems. The concentration of 

metformin used in the experiments with isolated cardiac myocytes [274] and intact 

hearts [275] was sufficiently high; however, to cause a reduction in high energy 

phosphates leading to an elevation of AMP [275, 327], presumably because metformin 

inhibits complex 1 of the respiratory chain [161]. Such findings indicate that metformin 

at these concentrations, not surprisingly, causes activation of myocardial AMPK via an 

adenine nucleotide-dependent mechanism. However, an adenine nucleotide-

independent activation of AMPK by metformin has been proposed in other cell types 

[198], including liver, where metformin may act in liver to prevent alcohol-induced 

injury via an AMPK-independent pathway [328].  

Of additional importance is the fact that clinically-relevant and metabolically-active 

concentrations of metformin are substantially lower than those typically used 

experimentally [294] raising the distinct possibility that the metabolic effects of 

metformin occur without alterations in cellular energy status. Moreover, the effects of 

metformin on metabolism have been characterized in tissues such as liver and skeletal 

muscle [273, 329, 330] and cardiac myocytes [298, 326], whereas the metabolic effects 

of metformin on the intact working heart are less well understood. 

Thus, we set out to test the hypothesis that metformin has AMPK-independent effects 

on energy metabolism in heart muscle using isolated working rat hearts and cultured 

heart-derived H9c2 cells as experimenta model systems. Further, we also investigated 

selected signal transduction pathways potentially responsible for the metabolic actions 

of metformin. The effects of metformin on AMPK activation and energy metabolism to 

those of AICAr, a well-recognized activator of AMPK in the heart, were compared. 
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Also, the roles of selected signal transduction pathways that are potentially responsible 

for the metabolic actions of metformin were investigated. 

3.2 METHODS 

Details of methods used for this investigation are described in the Materials and 

Methods chapter. 

3.3 RESULTS 

3.3.1 Isolated Rat Heart 

3.3.1.1 Heart Function 
Cardiac output and hydraulic work of metformin-treated hearts were significantly 

higher than in vehicle-treated hearts while heart rate was slightly but significantly 

decreased in hearts exposed to metformin (Table 3-1). Function was stable throughout 

the perfusion in all groups (Figure 3-1). 

3.3.1.2 Substrate Utilization and Content of Triglyceride and Glycogen 
Metformin treatment significantly increased palmitate oxidation (Figures 3-2A) and 

significantly reduced triglyceride content as compared to Control (Control, 14.09 ± 

0.59; Metformin, 11.38 ± 0.75 mg/g dry wt; N=8 per each group; p<0.05). This 

difference in rates of fatty acid oxidation was not simply due to an increase in cardiac 

work in response to metformin because rates of fatty acid oxidation remained elevated 

in metformin-treated hearts when rates were normalized to cardiac work (Control, 1.03 

± 0.05; Metformin, 1.55 ± 0.05 nmol/min/cardiac work; N=8 per each group; p<0.05). 

Glycolysis (Figure 3-2B) and glucose uptake (Table 3-2) were significantly reduced in 

response to metformin in hearts perfused with 1.2 mM palmitate. Compared to vehicle-

treated hearts, overall glycogen content was not different, although synthesis of 

glycogen was significantly increased by metformin (Table 3-2). 
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3.3.1.3 Activity of AMPK and PKB Phosphorylation 
Myocardial isoform-specific activity of AMPK was not significantly increased by 

metformin (Table 3-3). Metformin also failed to increase total AMPK activity as 

measured in ammonium sulfate (AS) precipitated samples from myocardial 

homogenates (Control, 787 ± 52; Metformin, 761 ± 37 pmol/min/mg protein; N=6-8 

per each group. Total AMPK activity determined in ischemic myocardial tissue was 

1586 pmol/min/mg protein; N=2). Finally, western blot analysis of the hearts indicated 

that neither phosphorylation of Thr-172 of the α-catalytic subunit of AMPK (Figure 3-

3A) nor phosphorylation of ACC differed from that in vehicle-treated Control hearts 

(Figure 3-3B). Phosphorylation state of PKB in hearts exposed to metformin was 

measured as metformin has been shown to enhance insulin-induced phosphorylation of 

PKB in cardiac myocytes [298]; however, metformin did not significantly alter PKB 

phosphorylation (Figure 3-3C). 

3.3.1.4 Myocardial High Energy Phosphates 
Metformin treatment did not significantly alter the content of adenine nucleotides 

(Table 3-4). Myocardial content of phosphocreatine was significantly elevated in 

metformin-treated hearts as compared to Control hearts (Table 3-4). Free AMP was not 

elevated in metformin-treated hearts and, in fact, there were no significant differences 

among groups (Control, 0.38 ± 0.08 vs. Metformin, 0.20 ± 0.09 µmol/l, N=5 per each 

group, P=NS). Taken together, these results indicate that, if anything, energy state was 

improved in the heart by this concentration of metformin. 

3.3.2 H9c2 Cells 

3.3.2.1 Effects of AICAR and Metformin on Metabolism 
Metformin dose-dependently increased rates of glycolysis in cultured heart muscle cells 

from concentrations as low as 10 µM up to 5 mM, the highest concentration assessed 

(Figure 3-4). A metformin concentration of 5 mM reduced the energy state of intact 

hearts [275]. In contrast, 2 mM did not lead to a reduction of in high energy phosphates 
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in a rat hepatoma cell line, H4IIE [198]. Thus, a concentration of 2 mM was chosen for 

use in the current experiments because it had the greatest metabolic effect without any 

reported impact on cellular energy status. 

Metformin (2 mM) significantly increased rates of glycolysis as compared to Control 

values (Control 18.7 ± 1.3 vs. Metformin 35.0 ± 2.2; nmol/hr/mg protein, N=10-12 per 

each group, P<0.05). In contrast, AICAr did not affect glycolysis as compared to 

Control values (Control 18.7 ± 1.3 vs. AICAr 21.6 ± 0.5; nmol/hr/mg protein, N=10-12 

per each group, P=NS). Of note, as shown in Figure 3-3, 10 μM metformin, a clinically 

relevant concentration, also significantly increased glycolytic rates compared to Control 

rates (Control 18.7 ± 1.3 vs. Metformin 27.4 ± 2.6; nmol/hr/mg protein, P<0.05). Rates 

of glucose uptake were also increased significantly by 2 mM metformin in H9c2 cells 

(Control, 24.5 ± 2.4 vs. Metformin, 34.9 ± 1.2 nmol/hr/mg protein, N=6 per group, 

p<0.05). Fatty acid oxidation rates were significantly lower in H9c2 cells treated with 2 

mM metformin as compared to Control (Control 4.6 ± 0.14 vs. metformin 3.7 ± 0.15; 

nmol/hr/mg protein, N=5 per each group, P<0.05). Rates of fatty acid oxidation did not 

alter in response to AICAr treatment as compared to controls (Control 4.6 ± 0.14 vs. 

AICAr 5.1 ± 0.24; nmol/hr/mg protein, N=5 per each group, P=NS). Metformin at 2 

mM concentration did not have any significant effect on total glycogen content 

(Control 412.6 ± 26.8 vs. metformin 442.1 ± 44 nmol/mg protein, N=6 per each group, 

P=NS). 

3.3.2.2 AMPK Activity 
Activity of AMPK did not differ between Control and metformin treated H9c2 cells 

(Control 205.87 ± 22.14 vs. Metformin 244.24 ± 34.71, pmol/min/mg protein, N=18 

per each group, P=NS). Similarly, phosphorylation state of both AMPK and ACC was 

not altered by either AICAr or metformin (Figure 3-5). Collectively, these data indicate 

that AMPK is not activated by either AICAr (1.2 mM) or metformin (2 mM) in heart-

derived H9c2 cells. The latter is in keeping with data obtained in the heart. 
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3.3.2.3 Inhibition of AMPK Fails to Alter the Metabolic Actions Induced by 
Metformin in H9c2 Cells 

In order to more clearly determine the role of AMPK in metformin-induced changes in 

metabolism in H9c2 cells, AMPK was inhibited by molecular and pharmacologic 

means, prior to treatment with 2 mM metformin. Twenty-four hours after transduction 

of cells with adenovirus containing a dominant-negative form of AMPK α2 (DN-

AMPK) (moi 150) nearly 100 % of cells showed GFP (Figure 3-6A), indicative of 

successful viral-mediated gene transfer and protein expression. Importantly, AMPK 

activity was significantly reduced in H9c2 cells infected with DN-AMPK α2 as 

compared to Control cells or cells exposed to adenovirus containing GFP alone (Figure 

3-6B). 

Rates of glycolysis were stimulated by metformin to the same degree, regardless of the 

presence or absence of DN-AMPK (Figure 3-7). Inhibition of AMPK by 40 µM 

Compound C, a pharmacological inhibitor of AMPK, also significantly reduced AMPK 

activity (Figure 3-8A) but failed to reduce the acceleration of glycolysis induced by 

metformin (Figure 3-8B). Taken together, these findings indicate that acceleration of 

glycolysis by metformin at a concentration of 2 mM and under these experimental 

conditions occurs independently of AMPK activation. 

3.3.2.4 Metabolic Actions  of Metformin  in H9c2 Cells Occur by p38‐MAP 
Kinase‐ and PKC‐Dependent Pathways 

Modulation of other signaling pathways, including mitogen-activated protein kinase 

(MAPK), PKC and phosphoinositol-3-phosphate kinase (PI3K)-PKB pathways, have 

been implicated in cellular effects of metformin [295-298]. As such, the role of these 

pathways in mediating the metabolic response of H9c2 cells to metformin was 

investigated by use of pharmacological inhibitors. It was found that metformin elevated 

measured activity of p38 MAPK (Control, 12.4 ± 1.6 vs. Metformin, 20.0 ± 2.7 

pmol/min/mg protein, N=9-12 per each group, p=<0.05) and increased phosphorylation 

of PKC (Figure 3-9) in H9c2 cells. Treatment of cells with 10 µM SB203580, a 

reportedly selective p38 MAPK inhibitor, significantly reduced but did not abolish the 
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metabolic effects of metformin (Figure 3-10A). In contrast, pre-treatment of cells with 

SP600125 (Figure 3-10B) and PD98059 (Figure 3-10C), specific inhibitors of JNK and 

ERK, respectively, had no effect on metformin induced acceleration of glycolysis in 

H9c2 cells. Pretreatment of cells with 10 nM calphostin C, a potent and specific 

inhibitor of conventional and novel isoforms of protein kinase C (PKC) [299, 300], 

completely abolished the metabolic actions of metformin (Figure 3-10D), while a 

selective PI3K inhibitor, LY-294002 [301] (10 µM), did not significantly alter 

metformin-induced changes in glycolysis (Figure 3-10E). Interestingly, insulin did not 

increase rates of glycolysis in H9c2 cells (Insulin, 19.05 ± 0.75 vs. No insulin, 20.56 ± 

0.91 nmol/hr/mg protein, N=9-19 per each group, P=NS). 

3.4 DISCUSSION 

The current study demonstrated that metformin has AMPK independent effects on 

energy metabolism in heart muscle cells. Metformin (2 mM) altered fatty acid oxidation 

and glucose utilization in the intact heart and isolated heart muscle cells. The metabolic 

changes induced by metformin in the heart occurred in the absence of a reduction in 

energy status and without measurable activation of AMPK. Here, it was confirmed that 

the metabolic effects of metformin occurred independently of AMPK by showing that 

inhibition of AMPK activity by either over expression of a dominant negative form of 

AMPK or by administration of the AMPK inhibitor, Compound C, failed to prevent the 

metabolic effects observed. These findings were extended by demonstration that the 

metabolic effect of metformin is abrogated by pharmacological inhibition of p38 

MAPK and PKC. Additionally, AICAr (1.2 mM) failed to activate AMPK or alter 

energy metabolism in H9c2 cells. 

Several investigations in tissues and cells [198, 199, 273, 275, 298, 326 , 331] have 

provided strong support for the concept that metformin activates AMPK. The current 

study, however, showed that in intact hearts and heart-derived H9c2 cells, the activity 

and phosphorylation state of AMPK were not significantly altered by metformin, even 



Chapter 3 – -Metabolic Actions of Metformin in the Heart Can Occur by AMPK-
Independent Mechanisms 

 -75-

though the concentration used yielded metabolic effects. It is important to recognize 

that failure to detect measurable changes in AMPK activity or phosphorylation in tissue 

extracts does not rule out allosteric activation of AMPK [204], an effect that can be 

assessed by measuring phosphorylation of ACC, a downstream target of AMPK. In the 

current study, ACC phosphorylation, at Serine-79 which is an AMPK specific 

phosphorylation site, did not differ between metformin treated and untreated hearts and 

H9c2 cells, in keeping with measured activity and phosphorylation of AMPK. Thus, 

these findings indicate that AMPK is not activated in the intact heart and H9c2 cells by 

metformin at the concentration used and under these experimental conditions. 

In the current study, specifically a concentration and time of exposure to metformin 

was chosen that did not alter energy state. To support this, cellular energy status, 

including absence of elevation in free AMP concentration, was not impaired by 2 mM 

metformin (Table 3-4). This finding contrasts with the finding of other researchers that 

have used higher concentrations of metformin (5 to 10 mM) and impaired cellular 

energy status in cardiac myocytes and intact hearts [275, 327] that resulted in increase 

in AMPK activity in the intact heart [275]. The reduction in cellular energy status likely 

occurred because metformin inhibits complex 1 of the respiratory chain when used at 

high concentrations [161]. The fact that cellular energy status was not impaired by 

metformin in the current experiments (Table 3-4) indicates that no significant inhibition 

of complex 1 of the respiratory chain occurred and provides a good explanation as to 

why AMPK was not activated.  

Metformin has been reported to reduce [332], stimulate [273], or not significantly alter 

[333] rates of fatty acid oxidation in a variety of tissues and cells. This variability likely 

reflects underlying cell- or tissue-specific characteristics as well as different 

concentration used that determine the nature of the metabolic response to metformin. 

The current study showed that metformin stimulates myocardial fatty acid oxidation 

(Figure 3-2A) in intact heart. This finding serves to emphasize that cell - or tissue-

specific characteristics are key determinants of the metabolic response produced by 
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metformin. The exact mechanisms responsible for the cell and tissue-specific metabolic 

response are not yet known.  

Metformin led to net degradation of endogenous triglycerides in isolated perfused 

hearts. Endogenous triglycerides have been shown to contribute substantially to energy 

production in the heart and to be simultaneously synthesized and degraded [39]. With 

the data available, it is not possible to determine if metformin-induced changes in total 

myocardial triglyceride content were due to reduced synthesis or enhanced degradation 

of triglycerides. 

The suppression of glucose use by metformin in intact hearts is not surprising as the 

suppression of glucose catabolism likely is a reflection of the well-recognized glucose-

fatty acid cycle in which elevated fatty acid oxidation rates lead to a reduction in 

glucose uptake, glycolysis, and glucose oxidation [334]. Metformin reportedly 

enhances both glucose and fatty acid catabolism in non-cardiac tissues [273, 333]. Our 

data indicate that the stimulatory effect of metformin on fatty acid oxidation (Figure 3-

1A), when present, is the predominant effect in the heart, accompanied by a 

compensatory reduction in glucose use (Figure 3-2B and Table 3-2). 

In contrast to the intact heart, metformin decreased fatty oxidation rates in cultured 

H9c2 cells, presumably as a consequence of increased rates of glucose use and the well 

recognized reciprocal relationship between fatty acid and glucose use [334]. The 

discrepancy between the intact heart and cultured H9c2 cells may possibly be due to 

fact that cultured cells are quiescent with substantially lower energy requirements and 

that the fate of fatty acid taken up by the cell is directed predominantly toward storage 

rather than oxidation [335]. An additional factor that may have contributed to the 

discrepant responses of H9c2 cells and hearts to metformin is the fact that H9c2 cells 

might be resistant to the effects of insulin. As such, others have shown that exposure of 

cardiac myocytes to insulin for a prolonged period is known to cause insulin resistance 

[298]. The current study showed that the incubation of H9c2 cells with insulin (10-7M) 

did not significantly increase glycolysis as compared to cells incubated without insulin. 
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This indicates that the H9c2 cells are resistant to the metabolic actions of insulin with 

respect to glycolysis, under the conditions of our study. Additionally, the presence or 

absence of insulin did not influence rates of glycolysis in cells exposed to metformin. 

Therefore, it is conceivable that this finding might account for differential responses of 

intact hearts and H9c2 cells to metformin. 

The absence of effects of DN-AMPK and Compound C on metformin-induced changes 

in metabolism (Figures 3-7 and 3-8) confirms that activation of AMPK is not necessary 

for the metabolic effects of metformin to occur in heart muscle, at least without changes 

in cellular energy status. This result is consistent with the observation that metabolic 

effect of metformin in liver occurs independently of AMPK [336]. The finding that 

exposure of H9c2 cells to Compound C caused a reduction in measurable AMPK 

activity is interesting because Compound C is considered an allosteric inhibitor of 

AMPK [273] whose effects should disappear during the purification procedure [199]. 

Detection of a measurable reduction in AMPK activity by Compound C, which has also 

been observed by others in neural tissue [337], indicates that phosphorylation state of 

AMPK has been decreased and suggests that Compound C has other as yet, 

uncharacterized actions on AMPK. 

A relationship between metformin-induced AMPK activation and a metabolic effect 

has been reported previously in adult cardiac myocytes [298, 326]. Importantly, those 

studies also highlight the concentration- and time-dependent nature of the effects of 

metformin on metabolism. For example, in the latter study, a lower concentration of 

metformin (1 mM) activated AMPK and increased glucose uptake in cardiac myocytes, 

but the duration of exposure to metformin was very prolonged (18 hours) [326]. A 4 

hour duration of exposure to the same concentration of metformin increased glucose 

uptake but did not activate AMPK significantly [298], Bertrand et al have documented 

that exposure to substantially higher concentrations of metformin (5 and 10 mM) for 4 

hours caused both activation of AMPK and stimulation of glucose uptake in cardiac 

myocytes [298]. In neither study was the energy status measured, so it is possible that 
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higher concentrations of metformin or longer exposures to metformin led to sufficiently 

high intracellular concentrations of metformin that had an inhibitory effect on the 

respiratory chain and caused AMPK activation. Notably, in the same study by Bertrand 

et al, 4 hour metformin (1 mM) incubation resulted in stimulation of glucose uptake, 

but no significant alteration in AMPK activity, a result in keeping with our data. These 

results highlight the fact that the metabolic actions of metformin are concentration and 

time dependent. 

The absence of a role for AMPK indicates that other signaling pathways are responsible 

for the metabolic effects of lower concentrations of metformin in heart muscle. 

Investigations in other tissues suggest that PI3K [298, 338], PKC [242], p38 MAPK 

[297], JNK MAPK [339], and ERK MAPK [242] pathways are potential mediators of 

the effects of metformin in heart muscle. By use of selective inhibitors of each above 

pathways in H9c2 cells, metformin-induced acceleration of glycolysis in H9c2 cells 

was partially abrogated by inhibition of p38 MAPK and completely abrogated by 

inhibition of PKC. The metabolic effect of metformin on H9c2 cells is independent of 

PI3K, ERK, and JNK pathways. All above data suggest that the metabolic effects of 

metformin are related to p38 MAPK and PKC pathways. It is important to recognize 

that even though this study showed that p38 MAPK activity was increased in response 

to metformin, SB203580, the p38 MAPK inhibitor used in these experiments, has been 

shown to influence glucose use independently of p38 MAPK [340] indicating that an 

alternative means of inhibiting p38 MAPK is required to fully characterize its role. 

Another interesting finding in the current study is that under these experimental 

conditions AMPK activity of H9c2 cells also was unchanged by treatment with AICAr. 

Additionally, AICAr treatment did not influence energy metabolism in H9c2 cells. 

Upon entering into the cell, AICAr is monophosphorylated by adenosine kinase to form 

5-aminoimidazole-4-carboxamide ribonucleoside (ZMP) [341]. ZMP mimics all the 

effects of AMP on AMPK, causing allosteric activation and also promoting 

phosphorylation and activation by the upstream kinase, AMPK kinase (AMPKK) [157, 
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342]. The effects of AICAr on glucose and lipid metabolism have been documented in 

numerous studies [69, 204, 239, 343-345]. It should be mentioned that the 

concentration of AICAr used in current study has been shown to be sufficient to 

increase AMPK activity in intact heart [204]. Thus, in the context of the current 

experiments, absence of changes in phosphorylation of AMPK and ACC, a downstream 

target of AMPK whose phosphorylation and activation states are useful indicators of 

AMPK activity, confirms that AMPK is not activated in H9c2 cells by AICAr. 

The reason that AICAr failed to activate AMPK or alter metabolism in H9c2 cells is not 

immediately apparent. One possible explanation as to why AICAr was unable to alter 

metabolism or activate AMPK may be that AICAr is unable to enter into the heart 

muscle cells. Also, a tissue- or cell-specific response to agents such as AICAr has been 

reported previously and is one possible explanation. For example, AMPK is required 

for the metabolic response to AICAr in skeletal muscle, but not adipocytes [331]. 

Consistent with our study, others have also shown that AICAr does not activate AMPK 

in vascular smooth muscle from rat carotid artery [346] and even within skeletal 

muscle, the extent to which AMPK is activated by AICAr depends upon the fiber-type 

of the muscle in question [172]. Such cell type specific responses to these agents are 

likely a reflection, at least in part, of unique regulation and cell-type specific expression 

patterns of AMPK and perhaps of the transporter required for AICAr uptake. 

Functional AMPK exists as a heterotrimeric complex made up of a catalytic α-subunit 

and two regulatory subunits, β and γ [157]. Each subunit exists in several isoforms, 

which have variable tissue distributions as well as differing regulatory properties, a 

situation that may contribute to the cell and tissue specific responses that have been 

observed. 

In conclusion, the most significant and the major outcome of this investigation is that 

metformin has AMPK independent effects on energy metabolism in heart muscle cells; 

a finding that provides insights into the mechanism of action of metformin and 

establishes the basis for future investigations. Such a result may occur because 
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insufficient metformin entered the heart muscle cells. These data also indicate that 

metabolic effects of metformin in the heart do not require AMPK activation and that 

p38 MAPK and PKC signaling pathways are involved. 
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Table 3-1:    Function of hearts perfused with or without 2 mM metformin. 

Isolated working rat hearts were perfused in KH solution supplemented with 5.5 mM 

glucose, 1.2 mM palmitate, 0.5 mM lactate and 100 mU/l insulin in the presence or 

absence of 2 mM metformin for 30 minutes. Values are Mean ± SEM at the end of 

perfusion. Metformin, 2 mM. *, significantly different from Control value in group, 

p<0.05. 

 
Control 

(n=8) 
Metformin 

(n=8) 

Heart Rate (bpm) 261 ± 6 238 ± 3* 

Peak Systolic Pressure 
(mmHg) 112.1 ± 1.1 115.6 ± 1.9 

Cardiac Output 
(ml/min) 74.4 ± 2.1 81.5 ± 1.5* 

Rate Pressure Product 
(bpm x mmHg x 10-3) 29.2 ± 0.6 27.5 ± 1.1 

Hydraulic Work 
(ml/min x mmHg x 10-3) 83.3 ± 2.1 94.3 ± 2.9* 
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Table 3-2:    Myocardial glucose and glycogen metabolism of hearts perfused with or 
without 2 mM metformin. 

Isolated working rat hearts were perfused in KH solution containing 5.5 mM [5-3H]-

glucose, 1.2 mM palmitate, 0.5 mM lactate and 100 mU/l insulin to measure glucose 

uptake and glycogen content in the presence or absence of 2 mM metformin. Values are 

Mean ± SEM. Metformin, 2 mM. *, significantly different from Control value within 

group, p<0.05. 

 Control 
(n= 4 to 8) 

Metformin 
(n= 4 to 8) 

Glucose uptake 
(nmol/min/g dry wt) 2129 ± 138 1535 ± 92* 

Glycogen 
(μmol/g dry wt) 138.4 ± 5.5 130.0 ± 8.2 

Glycogen synthesis 
(nmol/min/g dry wt) 120 ± 6 276 ± 25* 
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Table 3-3:    Isoform-specific AMPK activity of hearts perfused with or without 2 mM 
metformin. 

Values are Mean ± SEM. Metformin, 2 mM. Isoform-specific AMPK activity 

determined in ischemic myocardial tissue was 54.2 pmol/min/mg protein for the α1-

AMPK and 20.3 pmol/min/mg protein for the α2-AMPK, N=2. *, significantly different 

from Control value within group, p<0.05. 

 Control 
(n=8) 

Metformin 
(n=8) 

α1-AMPK 
(pmol/min/mg protein) 12.4 ± 2.5 7.8 ± 1.3 

α2-AMPK 
(pmol/min/mg protein) 6.0 ± 0.7 4.3 ± 0.8 
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Table 3-4:    Myocardial adenine nucleotide and creatine phosphate content of hearts 
perfused with or without 2 mM metformin. 

Values are Mean ± SEM. Metformin, 2 mM. Values for 1.2 mM palmitate were 

obtained at 15 min of perfusion. *, significantly different from Control value within 

group, p<0.05. 

 Control 
(n=8) 

Metformin 
(n=8) 

ATP 
(μmol/g dry wt) 9.4 ± 1.0 11.3 ± 0.6 

ADP 
(μmol/g dry wt) 3.5 ± 0.3 4.2 ± 1.0 

AMP 
(μmol/g dry wt) 3.1± 0.8 3.4 ± 0.2 

Creatine (Cr) 
(μmol/g dry wt) 

33.1 ± 2.4 37.5 ± 0.6 

Phosphocreatine (PCr) 
(μmol/g dry wt) 13.7 ± 1.1 22.8 ± 3.5* 
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Figure 3-1:    Cardiac work in hearts perfused with metformin. 

Isolated working rat hearts were perfused in KH solution containing 5.5 mM glucose, 

1.2 mM palmitate, 0.5 mM lactate and 100 mU/l insulin for 30 minutes in the presence 

or absence of 2 mM metformin. Values are Mean ± SEM. N=8 hearts per each group. 
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Figure 3-2:    Substrate utilization in hearts perfused with metformin. 

Isolated working rat hearts were perfused in KH solution containing 5.5 mM [5-3H]-

glucose, 1.2 mM [U-14C]-palmitate, 0.5 mM lactate and 100 mU/l insulin to measure 

palmitate oxidation (A) and glycolysis (B), respectively, in the presence or absence of 2 

mM metformin. Values are Mean ± SEM. *, vs. control hearts (p<0.05). N=6-8 hearts 

per each group. 
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Figure 3-3:    Role of AMPK and PKB in metabolic action of metformin in hearts 
perfused with or without 2 mM metformin. 

Phosphorylation state of AMPK (A), ACC (B), and PKB (C) in hearts perfused in KH 

solution containing 5.5 mM glucose, 1.2 mM palmitate, 0.5 mM lactate and 100 mU/l 

insulin in the presence or absence of 2 mM metformin. Phosphorylation state of AMPK 

and ACC was assessed in selected hearts exposed to global no-flow ischemia for 20 

min (Ischemia), serving as a positive control for increased phosphorylation. Values are 

Mean ± SEM and are expressed as arbitrary density units. *, vs. control hearts (p<0.05). 

N=6-8 hearts per group except for Ischemia where N=2. 
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Figure 3-4:    Effects of metformin on glycolysis. 

Differentiated H9c2 cells were treated with different concentrations of metformin for 8 

hours in KH solution containing 5.5 mM [5-3H]-glucose, 0.4 mM palmitic acid pre-

bound to albumin and 10-7 M insulin in the absence (Control) or in the presence of 

different concentrations of metformin. Tracer amounts of labeled [5-3H]-glucose (1.0 

µCi/ml) was present in the medium for the last hour of study to measure glycolytic 

rates. Values are Mean ± SEM. *, significantly different from Control (p<0.05). N=10-

12 per each group. 
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Figure 3-5:    AMPK activity in cells treated with metformin or AICAr. 

Representative immunoblots and corresponding densitometric analysis of 

phosphorylation state of AMPK and ACC proteins in differentiated H9c2 cells treated 

with or without 2 mM metformin or 1.2 mM AICAr for 8 hours in KH solution 

supplemented 5.5 mM glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M. 

Values are Mean ± SEM and are expressed as arbitrary density units. Each lane 

represents a different sample. N=3 per each group. 
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Figure 3-6:    GFP expression and AMPK activity in cells treated with DN-AMPK. 

(A) Representative images of GFP expression in differentiated H9c2 cells infected with 

DN-AMPK (moi 150) for 24 hours in 1 % HS DMEM. (B) AMPK activity in 

differentiated H9c2 cells infected with GFP or DN-AMPK (moi 150) for 24 hours in 1 

% HS DMEM prior to treatment with or without 2 mM metformin in KH solution 

supplemented with fatty acid, glucose, and insulin for 8 hours. Activity values are 

Mean ± SEM. *, significantly different from Control, p<0.05; $, significantly different 

from GFP, p<0.05. N=6-12 per each group. 
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Figure 3-7:    Rates of glycolysis in GFP or DN-AMPK treated H9c2 cells. 

Differentiated H9c2 cells were treated with or without DN-AMPK (mio 150) or GFP 

(moi 150) for 24 hours in 1 % HS DMEM. Then cells were treated in presence or 

absence of 2 mM metformin for 8 hours in KH solution supplemented with 5.5 mM [5-
3H]-glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M insulin. Tracer 

amounts of labeled [5-3H]-glucose (1.0 µCi/ml) was present at the last hour of study to 

measure rates of glycolysis. Values are Mean ± SEM. *, significantly different from 

Control, p<0.05; $, significantly different from, p<0.05; GFP; @ significantly different 

from DN-AMPK, p<0.05. N=22-24 per each group. 
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Figure 3-8:    AMPK activity (A) and rates of glycolysis (B) in H9c2 cells incubated with 
or without Compound C. 

Differentiated H9c2 cells were preincubated with or without 40 µM Compound C for 

30 minutes in KH solution in the presence of 5.5 mM glucose, 0.4 mM palmitic acid 

pre-bound to albumin and 10-7 M insulin before 8 hours study in the presence or 

absence of 2 mM metformin. Tracer amounts of labeled [5-3H]-glucose (1.0 µCi/ml) 

was present at the last hour of study to measure rates of glycolysis. White bar, Control 

treated H9c2 cells; light grey bar, Compound C treated H9c2 cells; black bar, 

metformin treated H9c2 cells; dark grey bar, Compound C plus metformin treated H9c2 

cells. Values are Mean ± SEM. *, significantly different from Control, p<0.05; $, 

significantly different from Compound C, p<0.05. N=6 per each group. 
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Figure 3-9:    PKC expression in H9c2 cells treated with or without metformin. 

Representative immunoblots and corresponding densitometric analysis of 

phosphorylation state of PKC protein in differentiated H9c2 cells treated with or 

without 2 mM metformin for 8 hours in KH solution containing 5.5 mM glucose, 0.4 

mM palmitic acid pre-bound to albumin and 10-7 M insulin. Values are Mean ± SEM 

and are expressed as arbitrary density units. *, significantly different from Control, 

p<0.05. N=3 per each group. 
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Figure 3-10:  Role of p38-MAPK, PKC, and PKB in the metabolic actions of metformin 
in H9c2 cells. 

Differentiated H9c2 cells were preincubated with 10 µM SB203580 (P38 MAPK 

inhibitor) (A), 10 µM SP600125 (JNK MAPK inhibitor) (B) and 50 µM PD98059 

(ERK MAPK inhibitor) (C), 10 nM Calphostin C (PKC inhibitor) (D), or 10 µM 

LY294002 (PI3K inhibitor) (E) or vehicle for 30 min before study in the presence or 

absence of 2 mM metformin. Tracer amounts of labeled [5-3H]-glucose (1.0 µCi/ml) 

was present at the last hour of study to measure rates of glycolysis. White bar, Control 

treated H9c2 cells; light grey bar, inhibitor treated H9c2 cells; black bar, metformin 

treated H9c2 cells; dark grey bar, inhibitor plus metformin treated H9c2 cells. Values 

are Mean ± SEM. *, significantly different from Control, p<0.05; $, significantly 

different from inhibitor, p<0.05; @ significantly different from metformin, p<0.05. 

N=6-15 per each group. 
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CHAPTER 4 ‐ AMP‐ACTIVATED  PROTEIN  KINASE 

INFLUENCES METABOLIC REMODELING  IN 

HYPERTROPHIED  HEART‐DERIVED  H9C2 

CELLS 

4.1 INTRODUCTION 

AMP-activated protein kinase (AMPK) has a major role in control and regulation of 

energy metabolism [29, 36]. AMPK is activated by physiologic or pathologic stresses 

that deplete cellular high energy phosphate including ATP and phosphocreatine [29, 

36]. Additionally, it has been shown that AMPK can be activated by hormones acting 

through Gq-linked coupled receptors and a calcium-dependent pathway independent of 

any changes in energy status of the cells [36, 158]. Once activated, AMPK acts on 

substrates that mediate inhibition of energy consuming pathways and stimulation of 

energy producing pathways, such as fatty acid oxidation, glucose uptake, and glycolysis 

[29, 36]. 

Activation of AMPK stimulates fatty acid oxidation in muscle by increasing uptake of 

fatty acids across the cell and mitochondrial membranes [29, 36, 50]. The effects of 

AMPK on glucose metabolism in the heart are accounted for by enhanced translocation 

H9c2 
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of glucose transport proteins to the sarcolemma [36, 239] and by stimulation of 

glycolysis through phosphorylation and activation 6-phosphofructo-2-kinase (PFK-2) 

[86]. The consequent increase in F26P2 leads to allosteric activation of PFK-1, a major 

determinant of glycolytic rates in the heart and other tissues [86]. 

Substrate use switches from fatty acids toward glucose in pressure-overload induced 

cardiac hypertrophy with an acceleration of glycolysis being characteristic [24, 34, 35, 

112, 119]. We and others have shown that AMP-activated protein kinase (AMPK) is 

activated in hypertrophied hearts [34, 35, 119]. Furthermore, we have shown that 

accelerated rates of glycolysis are normalized when fatty acid oxidation is elevated to 

rates similar to those in non-hypertrophied hearts [35]. At the same time, elevated 

activity of AMPK in hypertrophied hearts is correspondingly reduced to values 

observed in non-hypertrophied hearts. These data provide correlative support for the 

view that AMPK is responsible for the acceleration of glycolysis in hypertrophied 

hearts, although this concept is not yet proven conclusively.  

The current investigation was designed to directly test the hypothesis that AMPK is 

responsible for the acceleration of glycolysis in hypertrophied heart muscle cells. 

Cultured H9c2 cells [347] were used as an in vitro model of cardiac myocyte 

hypertrophy in which AMPK activity was selectively altered by pharmacologic and 

molecular approaches. 

4.2 METHODS 

Details of methods used for this investigation are described in the Materials and 

Methods chapter. 
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4.3 RESULTS 

4.3.1 AVP Causes Hypertrophy and Metabolic Remodelling of H9c2 Cells 

Cellular hypertrophy was evaluated by measuring changes in protein synthesis and 

content as well as the expression of atrial natriuretic factor (ANF), a well-recognized 

marker of pathologic cardiac hypertrophy [348, 349]. Exposure of H9c2 cells to AVP 

for 48 hours significantly increased protein content (Figure 4-1A), [14C]-phenylalanine 

incorporation (Figure 4-1B), and ANF expression (Figure 4-1C) without changes in 

overall cell number (51.5 x 104 ± 0.8 vs. 52.3 x 104 ± 0.5 cells /60 mm dish, N=12 per 

group, p=NS), indicating that H9c2 cells exhibited several major characteristics of 

hypertrophy following treatment with AVP. Furthermore, rates of glycolysis were 

accelerated approximately 50 % in H9c2 cells following AVP treatment for 48 hours 

(Figure 4-2A). There were no significant differences in glucose oxidation between 

hypertrophied H9c2 cells and non-hypertrophied cells (Figure 4-2B). However, rates of 

fatty acid oxidation were significantly decreased in hypertrophied H9c2 cells as 

compared to non-hypertrophied cells (Figure 4-2C). Notably, when H9c2 cells were 

treated with AVP for 48 hours and then the AVP was removed, the accelerated rates of 

glycolysis persisted for at least a further 48 hours after AVP removal (Figure 4-3). 

Rates of glycolysis were accelerated in H9c2 cells hypertrophied by AVP, regardless of 

the presence or absence of fatty acid and insulin as it is summarized in Table 4-1. And 

these changes persisted for two days after removal of AVP. 

4.3.2 Cellular Content of Selected Metabolic Proteins 

Accompanying the changes in substrate use, expression of several key proteins 

involved in the control of glucose metabolism was altered in hypertrophied H9c2 cells. 

Specifically, expression of HKII was significantly increased, while that of GLUT-4 and 

PDC E1α was slightly but significantly decreased (Figure 4-4). 
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4.3.3 Inhibition of AMPK Reduces Glycolysis in Hypertrophied H9c2 Cells 

AMPK activity was significantly elevated in hypertrophied H9c2 cells (Figure 4-5A), 

while expression of the catalytic subunits of AMPK did not differ significantly between 

the two groups (Figure 4-5B). 

In order to determine if AMPK is responsible for the accelerated rates of glycolysis 

observed in H9c2 cells hypertrophied by AVP, two approaches were used to suppress 

AMPK activity. In one approach, AMPK was inhibited by expression of a dominant 

negative construct (DN-AMPK) and in the alternate pharmacological approach, AMPK 

was inhibited by incubating cells with Compound C. Exposure of H9c2 cells to 

adenovirus containing DN-AMPK (moi 150) for 24 hours resulted in nearly 100 % 

gene transfer as demonstrated by expression of GFP (Figure 4-6A). Compared to cells 

that were untreated or that were treated with the control GFP construct, AMPK activity 

was significantly reduced in H9c2 cells infected with DN-AMPK (Figure 4-6B). The 

effectiveness of inhibition of AMPK was confirmed by the substantial abrogation of the 

acceleration of glycolysis caused by mannitol and oligomycyin, two potent activators of 

AMPK (Table 4-2) [206, 350]. Likewise, Compound C resulted in a substantial 

reduction in AMPK activity (Figure 4-6B), a reduction that was significantly greater 

than that caused by DN-AMPK. 

Inhibition of AMPK after induction of hypertrophy in H9c2 cells by AVP caused a 

partial suppression of glycolysis in hypertrophied H9c2 cells by both DN-AMPK 

(Figure 4-7A) and Compound C (Figure 4-7B) such that rates of glycolysis were still 30 

to 50 % higher than non-hypertrophied H9c2 cells. Interestingly, suppression of 

glycolytic rates was relatively greater for Compound C (26 ± 0.02 % reduction) than for 

DN-AMPK (16 ± 0.04 % reduction), a finding that likely reflects the greater reduction 

in AMPK activity caused by Compound C (Figure 4-6B). 
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4.3.4 Myocardial High Energy Phosphates 

The content of ADP in H9c2 cells hypertrophied with AVP was significantly elevated 

as compared to Controls (Table 4-3). There was no significant difference in free AMP 

between hypertrophied and Control groups (Control, 2.09 ± 0.33 vs. hypertrophied, 

2.43 ± 0.56 µmol/l, N=7, P=NS). 

4.3.5 Other Hypertrophic Agents 

Treatment of H9c2 cells with other GqCR hypertrophic agents, which are shown to 

induce hypertrophy in adult and neonatal cardiac myocytes, such as endothelin-I (ET-1) 

[351-354] and phenylephrine (PhE) [280, 355, 356], and angiotensin II (AgII) [351, 

353, 357] under different conditions as mentioned in table legends were unable to 

induce cardiac hypertrophy (Table 4-4 & 5). 

4.4 DISCUSSION 

In the present study, arginine vasopressin (AVP) induced cellular hypertrophy in H9c2 

cells with parallel metabolic remodeling of heart muscle cells characterized by an 

acceleration of glycolysis and a reduction in long-chain fatty acid oxidation. The 

metabolic changes observed in hypertrophied heart muscle cells resembled those 

observed in intact hypertrophied hearts and included alterations in the expression of 

metabolic proteins and activation of AMPK. For the first time it was shown that the 

acceleration of glycolysis in hypertrophied heart muscle cells was only partially 

dependent on AMPK, a finding that indicates factors in addition to AMPK are 

involved. Of interest, these data demonstrated that AMPK was activated in 

hypertrophied cells without any measurable changes in the energy status of the cells, 

indicating that AMPK was activated by energy-independent mechanisms. 

The present study showed that AVP caused metabolic remodeling of heart muscle cells, 

in addition to causing cellular hypertrophy. AVP is well recognized for its ability to 
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cause hypertrophy of heart muscle cells [292, 305, 358] by way of the V1a receptor 

[358]. Here it was demonstrated that prolonged exposure to AVP for 48 hours induced 

hypertrophy which was accompanied by an increase in protein content and synthesis as 

well as elevation of ANP expression (Figure 4-1), without changes in overall cell 

number. AVP is released from the posterior pituitary and affects body fluid balance and 

vascular tone [359, 360]. Levels of AVP are significantly and chronically elevated in 

the plasma of patients and experimental animals with heart failure [302-304]. 

Moreover, the heart possesses a local AVP system that is activated in response to 

pressure-overload and may act in a paracrine or autocrine fashion [361]. Systemic and 

myocardial AVP may therefore contribute to structural remodeling of the failing heart. 

Of interest, this study showed that, besides causing hypertrophy, AVP led to metabolic 

remodeling of H9c2 cells. Specifically, glycolysis was accelerated and long-chain fatty 

acid oxidation was reduced in hypertrophied H9c2 cells with no significant alteration in 

glucose oxidation (Figure 4-2 & Table 4-1). That metabolic alteration in hypertrophied 

H9c2 cells persisted for at least 2 days after removal of AVP (Figure 4-3 & Table 4-1) 

indicate that the changes are related to a chronic remodeling process. The metabolic 

alterations observed in hypertrophied H9c2 cells recapitulate those seen in intact hearts 

from experimental animal models of cardiac hypertrophy induced by pressure-overload 

[24, 34, 35, 119]. 

In animal models of pressure-induced cardiac hypertrophy, acceleration in rates of 

glycolysis has been consistently observed [20, 23, 35, 110, 119]. Currently, the 

mechanisms responsible for the acceleration of glycolysis in hypertrophied hearts are 

not yet fully understood. Here it was shown that expression of selected proteins 

involved in the control of glucose catabolism in the heart and other tissues was altered 

in hypertrophied H9c2 cells, including an increase HKII expression and a slight 

decrease in expression of GLUT-4 (Figure 4-4). Similar changes in activity or 

expression of these proteins have been observed in some experimental models of 

hypertrophy in the intact heart [154] and heart failure [120], but not all studies have 
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given consistent results [24, 117, 362]. For instance, hexokinase activity is elevated in 

pressure-overload models of right [154] and left [120] ventricular hypertrophy in ferrets 

and rabbits but decreased or unchanged in hypertrophied hearts from rats [24, 362, 

363]. GLUT-4 expression has also been reported not to change [24, 362] or to decrease 

[119, 34]. Therefore, accelerated rates of glycolysis in hypertrophied hearts cannot 

easily be explained by changes in expression of relevant glycolytic enzymes, 

suggesting that other mechanisms such as sarcolemmal translocation of glucose 

transporters and activation of relevant enzymes by allosteric or covalent modification 

are responsible for acceleration of glycolysis observed in these hearts. 

By way of effects on glucose transporter translocation and the reaction catalyzed by 

phosphofructokinase, increased activity of AMPK in hypertrophied H9c2 cells provides 

a potential explanation for the acceleration of glycolysis observed. AMPK activity has 

been shown to increase in intact hearts hypertrophied by pressure-overload [34-35, 119] 

and to correlate to rates of glycolysis [35]. Additionally, we have found that accelerated 

rates of glycolysis in hypertrophied rat hearts were normalized by a combination of 

long-chain (palmitate) and medium-chain (octanoate) fatty acids as substrates, a 

combination that elevates fatty acid oxidation and results in overall fatty acid oxidation 

rates in hypertrophied hearts similar to those in non-hypertrophied hearts [35]. 

Interestingly, elevated activity of AMPK in hypertrophied hearts is also reduced to 

values observed in non-hypertrophied hearts, an outcome that provides strong support 

for the concept that AMPK is involved in alterations in glucose use in cardiac 

hypertrophy. 

However, inhibition of glycolysis in hypertrophied H9c2 cells by complementary 

pharmacological and molecular approaches (Figures 4-6 and 4-7), which were used to 

inhibit AMPK activity, unequivocally demonstrate that AMPK contributes to the 

acceleration of glycolysis in hypertrophied heart muscle cells. Of significance, 

accelerated rates of glycolysis induced by administration of oligomycin and mannitol, 

two potent activators of AMPK, were completely blocked in cells treated with DN-
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AMPK (Table 4-2). That inhibition of AMPK failed to completely normalize rates of 

glycolysis (Figure 4-7) suggests other factor(s) contribute to the increased glycolysis in 

this setting. 

As discussed earlier, AMPK, a key intracellular energy sensor, is activated by 

metabolic stresses which deplete cellular high energy phosphate including ATP and 

phosphocreatine [29, 36, 157, 163]. LKB1 is recognized as a major upstream kinase 

involved in activation of AMPK in response to increased in AMP/ATP ratio in the heart 

[214] and other tissues [161]. Additionally, AMPK can also be activated by hormones 

acting through Gq-coupled receptors (GqCR) and a calcium-dependent pathway 

through calcium/calmodulin-dependent protein kinase kinases (CaMKK) [36, 158, 163, 

206, 207] and long-chain fatty acids [202, 325], without any measurable changes in 

energy status of the cell. 

The current study showed that AMPK was activated in hypertrtrophied H9c2 cells 

without any measurable changes in the energy status of the cells (Table 4-3), including 

no significant changes in creatine phosphate, ATP, or free AMP among groups. This 

indicates that AMPK is activated independent of changes in energy status of cells, 

consistent with our previous study [35] in which we have demonstrated that, in 

pressure-ovearload induced cardiac hypertrophy, myocardial AMPK is activated by 

energy-independent mechanisms; however, it contradicts other studies [34] showing 

that AMPK is activated in hypertrophied hearts by energy-dependent mechanisms. This 

discrepancy between our finding and others is likely due to the different experimental 

models used as well as the severity of hypertrophy. In the current study and our 

previous study, in which abdominal aortic constriction was used as a model of pressure-

overload induced cardiac hypertrophy [35], we observed a mild form of cardiac 

hypertrophy (~ 20-25 % increase in total protein or mass) without any signs of 

decompensation. However, the thoracic aortic constriction model used by others [34, 

119] resulted in a moderate form of cardiac hypertrophy (~50 % increase in total heart 

mass) with signs of ventricular dysfunction, and a reduced myocardial energy status. 
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These findings indicate that, in hypertrophied hearts, AMPK is activated irrespective of 

the energy status of the cell. The exact mechanisms of activation of AMPK in 

hypertrophied hearts remain unclear. However, it could be speculated that the energy 

status-dependent activation of AMPK is possibly mediated by LKB-1; while the energy 

status-independent activation of AMPK is possibly mediated by a calcium and 

CaMKK-dependent pathway downstream of GqCRs [158, 364]. The latter also has a 

role in the development of cardiac hypertrophy [72]. In this regard, the agent used in 

the current study, AVP, belongs to the GqCR protein superfamily and is well known to 

induce cardiac hypertrophy [292, 305]. While the role of CaMKK in the control of 

AMPK is not investigated in the current study, we have previously shown that there are 

no significant changes in expression of CaMKK in hypertrophied hearts as compared to 

non-hypertrophied hearts [35]. This indicates that if CaMKK is involved in AMPK 

activation in hypertrophied hearts, it does so independent of any changes in protein 

expression. Future studies will be required to investigate the potential role of CaMKK 

in this setting. 

In addition to CaMKK, another mechanism that might modulate AMPK activity is 

LCFA. While several studies have indicated that LCFA activates AMPK [202, 325], 

others have shown that it inhibits AMPK activity [365]. Since LCFA oxidation is 

significantly reduced and glycolysis is accelerated in hypertrophied hearts [23, 24, 33, 

35, 104, 110-112, 125, 148, 313, 366] and the fact that enhancement of fatty acid 

oxidation normalized AMPK activity and glycolysis [35], it is conceivable that LCFA 

might have a role in activation of AMPK in hypertrophied hearts. However, future 

studies need to confirm this idea. 

Consistent with previous studies, the current study showed that rates of fatty acid 

oxidation were reduced in hypertrophied H9c2 cells as compared to controls (Figure 4-

2). The exact mechanism responsible for this reduction in LCFA oxidation is unknown. 

However, a reduction in the expression of enzymes and proteins involved in myocardial 

fatty acid uptake/transport [53, 140] and fatty acid oxidation [146, 149] as well as low 
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levels of myocardial carnitine [5, 104, 106, 125] have been described as being 

responsible. Therefore, unlike non-hypertrophied hearts in which AMPK activation 

results in increased in rates of fatty acid oxidation, in hypertrophied hearts these 

changes restrict oxidation of LCFA. 

The present study also demonstrated that rates of glucose oxidation in hypertrophied 

H9c2 cells did not differ from Controls (Figure 4-2). This finding is consistent with 

previous studies [19, 20, 30, 31, 33, 35, 104, 125] indicating that in hypertrophied 

hearts rates of glucose oxidation are similar to or even lower than of non-hypertrophied 

hearts. In fact, those studies have suggested that glucose oxidation is limited in 

hypertrophied hearts. This study also demonstrated that in hypertrophied H9c2 cells, 

expression of pyruvate dehydrogenase complex (PDC E1α) was slightly but 

significantly decreased (Figure 4-4). Regulation of PDC is crucial in determining the 

rates of glucose oxidation in the heart. However, in contrast with current study, 

significant differences in expression of PDC isoforms have not been observed in the 

intact hypertrophied heart [24, 89, 153]. Of interest, those studies have documented that 

while total PDC expression is unchanged in hypertrophied hearts, the fraction of PDC 

active was higher in these hearts, which contrasts with the lower fractional oxidation of 

glucose. Collectively, these findings indicate that while changes commonly occur in 

expression of proteins and enzymes controlling glucose use in hypertrophied heart 

muscle, the direction and extent of change that occurs is highly model dependent. 

Treatment of cells with other GqCR agonists, including ET-1, AgII, and PhE, under the 

same conditions in which AVP caused hypertrophy, were unable to induce hypertrophy 

(Tables 4-4 and 4-5). Several studies have shown that treatment of cardiac myocytes 

with retinoic acid inhibits GqCR agene-induced cardic hypertrophy [357, 367]. 

Therefore, we performed additional studies in which H9c2 cells were differentiated in 

the absence of retinoic acid; however, under these conditions, those agents were also 

unable to induce hypertrophy in H9c2 cells (Tables 4-4 and 4-5). The reasons that these 

agents failed to induce hypertrophy is not known. It is possible that H9c2 cells lack 
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some post-receptor signaling transduction pathways that ultimately result in cardiac 

hypertrophy. Alternatively, longer incubation times may be needed for these agents to 

cause hypertrophy in H9c2 cells. 

In conclusion, a cellular model of cardiac hypertrophy was established with altered 

metabolic phenotype resembling that observed in intact hypertrophied hearts and that 

includes alterations in the expression of metabolic proteins and activation of AMPK 

without changes in energy status. In this model, AMPK has a partial role in 

hypertrophic metabolic remodeling. Additionally, administration of several other GqCR 

agonists which are well known to induce cardiac hypertrophy, were unable to induce 

hypertrophy in H9c2 cells. 
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Table 4-1:    Rates of glycolysis in H9c2 cells hypertrophied by exposure to AVP. 

Differentiated H9c2 cells were treated with or without AVP (1 μM) for 48 hours in 

DMEM/F12 containing 0.5 % HS. Rates of glycolysis were measured over 2 days after 

removal of AVP as described in Materials and Methods chapter. Tracer amounts of 

labeled [5-3H]-glucose (1.0 µCi/ml) was present for the last hour of study to measure 

rates of glycolysis. Values are Mean ± SEM and are expressed as nmol glucose/hr/mg 

protein. N=5 per group. *, significantly different from Controls, p<0.05. 

 

Glycolysis 

(nmol/hr/mg ptn) 

(Day 1) 

Glycolysis 

(nmol/hr/mg ptn) 

(Day 2) 

DMEM 

Control 

AVP 

 

3.74 ± 0.38 

7.65 ± 0.95 * 

 

5.03 ± 0.54 

7.52 ± 0.72 * 

DMEM + Oleic acid + Insulin 

Control 

AVP 

 

2.24 ± 0.61 
 

7.98 ± 0.68 * 
 

 

2.44 ± 0.31 

6.01 ± 0.46 * 
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Table 4-2:    Effect of DN-AMPK on glycolysis stimulated by oligomycin and mannitol. 

Differentiated H9c2 cells treated with DN-AMPK (moi 150) for 24 hours before 

challenging with oligomycin or mannitol for 25 minutes. Values are Mean ± SEM and 

are expressed as nmol glucose/hr/mg protein. Numbers are 3-14 per group. DN-AMPK, 

Adenoviral-mediated transfer of dominant-negative AMP-activated protein kinase. *, 

significantly different from corresponding no treatment group; $ significantly different 

from corresponding no DN-AMPK p<0.05. 

Treatment No DN-AMPK DN-AMPK 

None 

4.23 ± 0.29 

(N=14) 

4.72 ± 0.33 

(N=13) 

Oligomycin (0.5 µM)

9.65 ± 2.22* 

(N=3) 

6.10 ± 0.11*$ 

(N=3) 

Mannitol (0.5 mM) 

10.08 ± 1.02* 

(N=3) 

4.94 ± 1.35$ 

(N=3) 

 

 

 

 

 

 



Chapter 4 – AMP-Activated Protein Kinase Influences Metabolic Remodeling in 
Hypertrophied Heart-Derived H9c2 Cells 

 -109-

Table 4-3:    Myocardial adenine nucleotide and creatine phosphate content in H9c2 
cells. 

Differentiated H9c2 cells were treated with AVP (1 µM) for 48 hours in DMEM/F12. 

Then cells were treated for 8 hours in KH solution supplemented with 5.5mM glucose, 

0.4 mM palmitic acid pre-bound to albumin and 10-7 M insulin. Values are Mean ± 

S.E.M. *, significantly different from Control value within Group, p<0.05. 

 Control 
(n=7) 

Hypertrophied 
(n=8) 

ATP 
(μmol/mg protein) 2.78 ± 0.19 2.88 ± 0.08 

ADP 
(μmol/mg protein) 0.32 ± 0.02 0.42 ± 0.03 * 

AMP 
(μmol mg protein) 0.07 ± 0.01 0.08 ± 0.01 

Creatine (Cr) 
(μmol/mg protein) 28.43 ± 1.21 22.01 ± 3.22 

Phosphocreatine (PCr) 
(μmol/mg protein) 8.35 ± 0.43 6.89 ± 0.59 
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Table 4-4:    Effects of other hypertrophic agents on total protein content in H9c2 cells. 

H9c2 cells were differentiated with or without retinoic acid. Then cells were treated 

with different concentrations of hypertrophic agents (phenylephrine (PhE), angiotensin 

(AgII), and endothelin-1 (ET-1)) in DMEM/F12 for 48 hours. Values are normalized to 

100 % Control (in total mg protein). Values are Mean ± SEM. N=3-6 per group. 

 (+) Retinoic acid (-) Retinoic acid 

Concentration PhE Ag II ET I PhE Ag II ET I 

Control 100.1±3.3 100.1±1.6 99.9±2.7 99.9±6.1 100.1±2.7 100.7±4.0 

10-4 105.7±0.6   84.5±2.4   

10-5 99.4±7.3 109.2±0.4  80.3±2.3 116.6±3.8  

10-6 104.0±1.2    99.2±3.4  

10-7  99.4±1.9 103.0±1.9  106.0±4.1 103.1±5.5 

10-8   100.2±3.0  97.8±1.7 104.6±7.1 

10-9  97.1±2.3 104.7±1.7  107.0±2.2 110.6±0.8 

10-10     99.6±0.5  

10-11     105.4±1.8  

10-12     104.1±2.5  
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Table 4-5:    Effects of other hypertrophic agents on total protein content in H9c2 cells. 

H9c2 cells were differentiated with or without retinoic acid. Then cells were treated 

with different concentrations of hypertrophic agents (phenylephrine (PhE), angiotensin 

(AgII), and endothelin-1 (ET-1)) in DMEM for 48 hours. Values are normalized to 100 

% Control (in total mg protein). Values are Mean ± SEM. N=3-6 per group. 

 (+) Retinoic acid (-) Retinoic acid 

Concentration PhE Ag II PhE Ag II 

Control 100.0±0.4 100.0±4.4 100.1±.7 99.9±0.4 

10-4 103.0±1.6  108.9±2.7  

10-5 107.8±2.4 100.7±1.8 109.8±4.4 95.4±4.2 

10-6 93.8±1.9 109.6±2.7 102.7±2.2 96.0±1.7 

10-7  102.8±5.6  102.6±1.9 

10-8  103.4±1.9  81.7±23.0 

10-9  106.8±1.9  97.4±5.3 

10-10  103.1±0.7  98.6±1.8 

10-11  104.8±0.4  101.8±1.8 

10-12  98.5±2.0  98.3±0.7 
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Figure 4-1:    Hypertrophic characteristic in response to chronic treatment with AVP. 

Total protein content (Panel A), [14C]-phenylalanine incorporation (Panel B), and ANF 

expression (Panel C) were measured in differentiated H9c2 cells treated with to AVP (1 

μM) for 24-48 hours in DMEM/F12 supplemented with 0.5 % HS. Values are 

normalized to 100 % Control. Values are given as Mean ± SEM. *, significantly 

different from Control (p<0.05). N=7-22 per group. 
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Figure 4-2:    Effects of AVP on H9c2 cells metabolism. 

Differentiated H9c2 cells were treated for 48 hours with (black bar) or without (white 

bar) AVP (1 μM) in DMEM/F12 supplemented with 0.5 % HS. Then cells were treated 

for 8 hours in KH solution supplemented with 5.5mM [5-3H/U-14C]-glucose, 0.4 mM 

[U-14C]-palmitic acid pre-bound to albumin and 10-7 M insulin to measure rates of 

glycolysis (Panel A), glucose oxidation (Panel B), and fatty acid oxidation (Panel C), 

respectively. All the labeled mterials were added at the last hour of study. Values are 

normalized to 100 % Control (in nmol/hr/mg ptn). Values are Mean ± SEM. *, 

significantly different from Control (p<0.05). N=4-14 per group. 
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Figure 4-3:    Time course of changes in glycolysis in H9c2 cells after removal of AVP. 

Differentiated H9c2 cells were treated with to AVP (1 μM) for 48 hours in 0.5 % HS 

DMEM/F12. Rates of glycolysis were measure over 3 days in in KH solution 

supplemented with 5.5 mM glucose, 0.4 mM palmitic acid pre-bound to albumin and 

10-7 M insulin. Tracer amounts of labeled [5-3H]-glucose (1.0 µCi/ml) was present at 

the last hour of study to measure rates of glycolysis. Values are normalized to 100 % 

Control (in nmol/hr/mg ptn). Values are Mean ± SEM. *, significantly different from 

Control (p<0.05). N=7-14 per group. 
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Figure 4-4:    Effects of AVP on expression of proteins involved in glucose metabolism in 
H9c2 cells. 

Differentiated H9c2 cells were treated with AVP (1 μM) for 48 hours in 0.5 % HS 

DMEM/F12. Expression of several enzymes in glycolytic pathways were determined. 

Glucose transporter-4 (GLUT-4). HexokinaseII, (HKII). E1-alpha subunit of pyruvate 

dehydrogenase, (PDC-E1-a). Expression of glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) was used as an internal standard to calculate relative expressions. Each lane 

represents a separate dish of cells. Values are Mean ± SEM. N=3 per each group. *, 

significantly different from Control (p<0.05). 
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Figure 4-5:    Effects of AVP on activity and expression of AMPK. 

Differentiated H9c2 cells treated with (Black Bar) or without (White Bar) AVP (1 μM) 

for 48 hours in 0.5 % HS DMEM/F12. Then cells were treated with KH solution 

containing 5.5mM glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M 

insulin before measuring AMPK activity (Panel A) or expression (Panel B). Expression 

of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was used as an internal 

standard to calculate relative expression. Values are normalized to 100 % Control (in 

pmol/hr/mg ptn). Values are Mean ± SEM. *, significantly different from Control 

(p<0.05). N=16-28 per group. 
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Figure 4-6:    Effect of AMPK inhibition on AMPK activity in H9c2 cells. 

AMPK activity was removed in differentiated H9c2 cells by treated with DN-AMPK 

(moi 150) for 24 hours or with Compound C (40 μM). Panel A illustrates extent of 

expression of the DN-AMPK (moi 150) construct, based on co-expressed GFP. Panel B 

illustrates the effects of inhibition of AMPK activity. Values are normalized to 100 % 

Control (in pmol/hr/mg ptn). Values are expressed as Mean ± SEM. *, significantly 

different from Control (p<0.05); $, significantly different from GFP (p<0.05); # 

significantly different from DN-AMPK (p<0.05). N=6-12 per group. 
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Figure 4-7:    Effects of AMPK inhibition on glycolysis in H9c2 cells. 

Differentiated H9c2 cells were treated with AVP (1 μM) supplemented with 0.5 % HS 

for 48 hours. To remove AMPK activity, cells were treated with DN-AMPK (moi 150) 

for 24 hours or pre-incubated with Compound C (40 μM) for 30 minutes. Rates of 

glycolysis were measured over 8 hours in KH solution supplemented with 5.5 mM [5-
3H]-glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M insulin. Panel A 

illustrates glycolytic rates in hypertrophied and non-hypertrophied GFP or DN-AMPK 

treated H9c2 cells. Panel B illustrates glycolytic rates in hypertrophied and non-

hypertrophied H9c2 cells treated with Compound C. Values are normalized to 100 % 

corresponding Control (in nmol/hr/mg protein). Values are expressed as Mean ± SEM. 

*, significantly different from corresponding Control (p<0.05); $, significantly different 

from hypertrophied H9c2 cells (p<0.05). 
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CHAPTER 5 ‐ ARGININE  VASOPRESSIN  STIMULATES 

GLUCOSE UTILIZATION IN HEART‐DERIVED 

H9C2  CELLS  INDEPENDENT  OF  AMP‐

ACTIVATED PROTEIN KINASE ACTIVATION 

5.1 INTRODUCTION 

Experiments described in the previous chapter showed that chronic treatment of cells 

with arginine vasopressin (AVP) led to cardiac hypertrophy and AMP activated protein 

kinase (AMPK) activation. AMPK can be activated by metabolic stresses that deplete 

cellular high energy phosphate including ATP through upstream kinase LKB1 [57, 155, 

156, 158, 160, 189, 200]. AMPK can also be activated by hormones acting through Gq-

coupled receptors (GqCR) and a calcium-dependent pathway through 

calcium/calmodulin-dependent protein kinase kinases (CaMKK) as upstream AMPK 

kinases [200-205]. Also, others have shown that calcium ionophore treatment of several 

cell lines lead to AMPK activation through CaMKK-AMPK pathway [206, 207, 209]. 

AVP is significantly and chronically elevated in the plasma of human patients [359, 

360] and experimental animals [303] with heart failure and has effects on a number of 

processes that may participate in the pathogenesis of heart failure, including effects on 

H9c2 
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body fluid regulation, vascular tone, and cardiac contractile function and remodelling 

(See [360] for review). The AVP receptor is one of the GqCR family proteins that 

stimulate the release of calcium. Binding of AVP to the V1a receptor, the receptor 

subtype shown to be involved with the hypertrophic response to AVP [305], leads to 

activation of phospholipase C, production of inositol 1,4,5-triphosphate (IP3) and 

diacylglycerol (DAG) and the mobilization of intracellular calcium and influx of 

extracellular calcium (Figure 2-2) [292, 306]. In turn, it has been documented that 

increases in intracellular concentration of calcium can lead to increase in glucose 

utilization of cells [368, 369]. 

Alterations in myocardial energy metabolism, especially those related to glucose and 

fatty acids, are part of the remodeling process in heart failure and are considered to be 

key contributors to contractile dysfunction and worsening of heart failure [370]. It has 

been demonstrated that a switch away from utilization of fatty acids toward glucose 

utilization occurs during decompensated heart failure in dogs [371] and humans [372]. 

The shift away from fatty acid metabolism observed in heart failure is consistent with 

the observation that genes related to oxidation of fatty acids are downregulated in 

failing hearts [146]. It is also in keeping with the fact that inborn errors of fatty acid 

metabolism are associated with cardiomyopathy and heart failure [373]. Of interest, 

AVP is known to stimulate glucose (and glycogen) catabolism in a variety cell types, 

tissues, and organs [374, 375] including isolated perfused rat hearts [376]. However, 

AVP is a potent vasoconstrictor and, as such, the increased glucose use observed in 

perfused hearts may be due to regional ischemia caused by vasoconstriction. Since 

cardiac myocytes are able to respond to AVP directly [377], it is possible that 

elevations in AVP, of either local or systemic origin, may alter myocardial glucose 

metabolism and, in doing so, contribute to metabolic remodeling of the failing heart. 

Moreover, experiments in the chapter 4 have shown that chronic exposure to AVP leads 

to structural and metabolic remodelling. It is not known; however, if acute exposure to 

AVP also has metabolic effects in heart muscle cells. 
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Since AVP causes increases in calcium concentration inside the cell, and calcium can 

alter glucose metabolism and activate AMPK, the hypothesis that AVP directly 

activates AMPK and influences glucose metabolism in heart muscle cells was tested. A 

cell culture model was used in order to avoid confounding effects of AVP on the 

coronary circulation. The receptor subtype responsible for the effect of AVP was also 

determined. Additionally, the current study investigated whether the metabolic actions 

of AVP were mediated by calcium and phosphatidylinositol 3-kinase (PI3K) signaling 

pathways. 

5.2 METHODS 

Details of methods used for this investigation are described in the Materials and 

Methods chapter. 

5.3 RESULTS 

5.3.1 AVP Acutely  Influencess Glycolysis  and Glycogen Content  in H9c2 

Cells 

Rates of glycolysis were accelerated in H9c2 cells exposed to DMEM or DMEM/F12 

containing 1 μM AVP as is summarized in Table 5-1. Regardless of the medium, 

glycogen synthesis was also significantly reduced in response to AVP. Total glycogen 

content in H9c2 cells was decreased significantly by AVP as compared to untreated 

cells (Table 5-1). The lower total glycogen in AVP-treated cells might be due to AVP-

induced acceleration of glycogenosis or AVP-inhibition of glycogen synthesis.  

Treatment of H9c2 cells with AVP led to a dose-dependent stimulation of glycolysis, 

achieving a plateau at approximately 1 μM AVP (Figure 5-1). The lowest effective dose 

of AVP, 10 nM, is comparable to concentrations of circulating AVP seen in the setting 

of heart failure in humans [302, 304]. 
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5.3.2 AVP Acutely Accelerates Glycolysis via the V1a Receptor 

In order to determine the receptor involved in AVP-induced stimulation of glycolysis, 

H9c2 cells were pretreated with either d(CH2)5[Tyr(Me)2]AVP, a potent and selective 

V1a receptor antagonist [378], or d(CH2)5[D-Ile2,Ile4,Tyr-NH(2)9]AVP, a potent and 

selective V2 receptor antagonist [378]. Cells were exposed to these receptor antagonists 

at concentrations ranging from 10-7 to 10-5 M for 30 minutes before addition of 1 µM 

AVP. These receptor subtypes are known to be present on cardiac myocytes [379]. Pre-

treatment of H9c2 cells with the V1a receptor antagonist completely abolished the 

acceleration of glucose utilization that occurs in response to AVP (Figure 5-2). It is 

noteworthy that the maximum degree of inhibition was observed for all three 

concentrations of V1a receptor antagonist used. On the other hand, the V2 receptor 

antagonist did not significantly abrogate the effect of AVP on glucose utilization. 

5.3.3 AMPK and Acute Stimulation of Glycolysis by AVP 

Treatment of H9c2 cells for 2 hours with AVP resulted in a significant 1.6-fold increase 

in measured activity of AMPK (Figure 5-3A). To inhibit AMPK activity, H9c2 cells 

were exposed to 40 µM Compound C for 30 minutes or DN-AMPK for 24 hours prior 

to addition of AVP. Both approach resulted in a substantial reduction in AMPK activity 

(Figure 4-6B), with Compound C caused a reduction that was greater than that caused 

by DN-AMPK. Inhibition of AMPK by either Compound C or DN-AMPK did not 

cause a significant reduction in glycolysis in H9c2 cells treated for this short duration 

with AVP (Figure 5-3B and Table 5-2); a result differing from that seen in H9c2 cells 

hypertrophied by longer term (48 hours) exposure to AVP (Figures 4-6 and 4-7). 

5.3.4 Myocardial High Energy Phosphates 

Treatment of H9c2 cells with AVP for 2 hours altered the content of adenine 

nucleotides (Table 5-3). In AVP treated cells, the content of AMP was significantly 

higher as compared to Controls. Also, cellular content of PCr was significantly elevated 
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in AVP-treated cells as compared to Control hearts (Table 5-3). Free AMP; however, 

was significantly decreased in AVP-treated cells (Control, 10.36 ± 4.53 vs. AVP, 0.63 

± 0.13 µmol/l, N=6-8 per group, P<0.05). 

5.3.5 Intracellular  and  Extracellular  Calcium  and  Acute  Stimulation  of 

Glycolysis by AVP 

Given the well known effects of AVP on cellular calcium [380, 381] and the potential 

for calcium to accelerate glucose use [382, 383], pharmacological agents that interfere 

with calcium entry or intracellular release from calcium stores were used to assess the 

role of calcium in the acute metabolic actions of AVP. In one series of experiments, 

H9c2 cells were pretreated for 30 min with 25 µM dantrolene, an inhibitor of Ca2+ 

release from sarcoplasmic reticulum (SR) via the ryanodine receptor [307]. To evaluate 

the involvement of the IP3 receptor, whose activation also leads to calcium release 

from the SR, cells were pretreated for 5 minutes with 100 μM 2-amino-ethoxydiphenyl 

borate (2-APB), a non-competitive IP3 receptor antagonist [308, 384]. The role of 

extracellular Ca2+ was assessed by preincubating H9c2 cells with 3 mM EGTA (to 

chelate extracellular calcium) for 5 minutes before challenge with AVP. 

In contrast to AMPK inhibition, treatment of H9c2 cells with 2-APB, completely 

abolished the effect of AVP on glycolysis (Figure 5-4A), while incubation with 

dantrolene (Figure 5-4B) or EGTA (Figure 5-4C) partially attenuated the elevation in 

glycolysis caused by AVP. These data indicate the acute stimulation of glycolysis by 

AVP is mediated by changes in cellular calcium especially calcium release from the 

sarcoplasmic reticulum by stimulation of 2-APB receptor. 

5.3.6 Phosphoinositol‐3‐Phosphate Kinase Pathway and Acute Stimulation 

of Glycolysis by AVP 

Knowing that AVP stimulates the PI3K pathway (Figure 2-2) [310] and the known role 

of PI3K to accelerate glucose use [385], a pharmacological agent that inhibits PI3K was 
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used to assess the role of PI3K in the acute metabolic actions of AVP. To determine if 

the PI3K signaling pathway was involved in the observed acceleration of glucose 

utilization induced by AVP, H9c2 cells were studied with and without 30 minutes of 

pretreatment with 300 nM wortmannin, a well known inhibitor of PI3K [312, 386], 

before addition of AVP. As shown in Figure 5-5, pre-treatment of H9c2 cells with 

Wortmannin did not prevent the acceleration of glucose utilization caused by AVP, 

even though basal glucose utilization rates were slightly but significantly reduced by 

wortmannin. 

5.4 DISCUSSION 

The present study demonstrated that the acute exposure of H9c2 cells to AVP 

accelerated glycolysis in a dose-dependent manner and through the V1a receptor. This 

AVP-induced acceleration of glycolysis was not dependent upon AMPK activation, 

even though AMPK was activated. Rather, AVP acutely stimulated glycolysis by a 

calcium-dependent mechanism. 

This study showed that acute exposure of H9c2 cells to AVP dose-dependently 

accelerated glycolysis (Figure 5-1). Notably, glycolysis was initially stimulated at 

concentrations of AVP comparable to those reported in plasma of patients and rodents 

with congestive heart failure and therefore is potentially clinically relevant [302-304]. 

A stimulatory effect of AVP on glucose catabolism has been described previously in a 

variety of cell types, tissues, and organs including isolated perfused rat hearts [374, 

376, 387]. However, the latter finding could result from AVP-induced vasoconstriction 

leading to areas of regional myocardial ischemia and, thereby, stimulates glucose use 

indirectly. Results from the current investigation clearly demonstrated that acceleration 

of glycolysis in H9c2 cells is a direct effect of AVP on heart muscle cells. That 

glycolysis was enhanced at concentrations of AVP observed in patients and 

experimental animal models with heart failure raises the possibility that AVP may 

influence glucose use by the heart in vivo. 
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AVP exerts its actions through binding to three specific receptor subtypes, including 

V1a, V2, and V3 (V1b) all of which belong to the Gq-coupled receptor (GqCR) 

superfamily [380]. The V1a receptor is expressed in cardiac myocytes and a number of 

other cell types and tissues, including vascular smooth muscle, liver, testis, spleen, 

platelets, adrenal cortex, brain, and various immortalized cell types [379, 388, 389]. 

The the V2 receptor is expressed in the medullary portion of the kidney and cardiac 

myocytes as well as several cell lines [379, 390], while the V3 the receptor is expressed 

in pituitary gland and kidney, but is not in liver, myometrium or adrenal glands. The 

current experiments showed that AVP exerted its acute metabolic effects in H9c2 cells 

via the V1a receptor (Figure 5-2), the receptor subtype responsible for AVP-induced 

hypertrophy of heart muscle cells [358]. 

AVP binding to the V1a receptor activates a complex array of signaling pathways and 

effector molecules (Figure 2-2), many of which may influence glucose metabolism. 

Such binding activates phospholipases causing hydrolysis of membrane 

phosphoinositides leading to the formation of the second messengers, 

inositoltrisphosphate (IP3) and diacylglycerol (DAG) [388, 391]. Formation of IP3 

leads to mobilization of sarcoplasmic reticulum calcium stores via the IP3 receptor and 

a rapid initial rise in free intracellular calcium [391]. This rise is followed by a 

sustained increase in intracellular calcium caused by entry of extracellular calcium 

[392]. At the same time, DAG activates protein kinase C (PKC) by recruiting it to the 

plasma membrane [381, 391]. V1a receptor activation also leads to activation of the 

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) signaling pathway [393]. 

Importantly, binding of the V1a receptor does not lead to increases in cAMP and 

activation of protein kinase A [391]. 

Acute exposure to AVP caused a substantial elevation of AMPK activity (Figure 5-3A), 

possibly via GqCR induced alterations in calcium. Others have shown that the GqCR 

superfamily activates AMPK [158, 206, 207, 209]. However, acute AVP-induced 

acceleration of glycolysis in H9c2 cells was independent of AMPK activity since 
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inhibition of AMPK by Compound C or DN-AMPK failed to decrease glycolysis in 

response to AVP (Figure 5-3B and Table 5-2). This finding indicates that mechanisms 

other than AMPK activation are responsible for the acute acceleration of glycolysis 

induced by AVP. Moreover, this result indicates that the factors causing increased 

glycolysis differ between heart muscle cells hypertrophied by chronic treatment with 

AVP and those exposed acutely to AVP. 

The current study demonstrated that AVP-induced AMPK activation caused a 

significant reduction in free AMP (Table 5-3), indicating that AMPK is activated 

independent of changes in the energy status of cells. This finding is consistent with the 

notion that AMPK can be activated through GqCR agonists without any measurable 

changes in the energy status of cells. 

The stimulatory effect of AVP on glucose use observed in the current study might have 

occurred by several mechanisms (Figure 2-2). There is good evidence to implicate 

calcium-dependent pathways in the stimulation of glucose and/or glycogen use in 

response to a variety of agents, including AVP [394-396]. Elevation of intracellular 

calcium has been shown to play an important role in mediating the stimulation of 

glucose transport caused by mitochondrial uncoupling [383] and insulin [397]. In 

addition, results from other studies show that agents which raise intracellular calcium 

concentrations, such as W-7, caffeine, and Ca2+ ionophores, stimulate rates of glucose 

uptake [368, 369]. Increases in fructose 2,6- bisphosphate content and 6-phosphofructo-

2-kinase activity have both been related to a rise in intracellular calcium [398], the 

effect of which would lead to activation of the key glycolytic enzyme, 6-phosphofructo-

1-kinase and stimulation of glycolysis. Given that AVP increases intracellular calcium, 

it can be speculated that calcium may mediate the AVP-induced increased in glucose 

use observed in H9c2 cells. 

As a consequence, the role of intracellular and extracellular calcium in AVP-induced 

stimulation of glycolysis was assessed by administration of selective inhibitors of 

intracellular calcium release or chelation of extracellular calcium. Of significance, 
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2APB, an inhibitor of the sarcoplasmic reticulum IP3 receptor [308], completely 

abrogated the AVP-induced acceleration of glucose use in H9c2 cells (Figure 5-4A). At 

the same time, 2-APB did not significantly alter basal (AVP–free) rates of glucose use. 

Calcium may also be released from the sarcoplasmic reticulum via the ryanodine 

receptor, an effect that can be inhibited by dantrolene [307]. Dantrolene, which did not 

reduce basal rates of glucose use in H9c2 cells slightly but insignificantly, attenuated 

the response to AVP (Figure 5-4B). Chelation of extracellular calcium with EGTA 

reduced but did not eliminate the stimulation of glucose use induced by AVP (Figure 5-

4C). 

Another possible mechanism to account for the metabolic effects of AVP is the 

activation of the PI3K/protein kinase B (PKB) pathway. This pathway is the well 

recognized means by which insulin stimulates glucose uptake and glycolysis [399]. In 

the current study, inhibition of PI3K by wortmanin did not significantly abrogate the 

response to AVP indicating that PI3K was not involved (Figure 5-5). 

Taken together, these data strongly implicate calcium-dependent pathways, especially 

those related to intracellular calcium associated with IP3 receptors, as key mediators of 

the AVP-induced stimulation of glucose use in heart-derived H9c2 cells. This 

interpretation is consistent with that of others, who also found that the metabolic effects 

of AVP in hepatocytes or liver were calcium-dependent [396]. Of interest and in 

contrast to results presented here, several investigators found the metabolic effect of 

AVP in hepatocytes to be more dependent on extracellular calcium [396]. The 

discrepancy in results may be a reflection of differences in cell type, even though the 

receptor subtype is presumably similar in H9c2 cells and hepatocytes. Further studies 

will be necessary to fully clarify this discrepancy. When considering this interpretation, 

it should be recognized that the agents used in the current study were not necessarily 

fully selective. For example, 2-APB, while considered an inhibitor of the IP3 receptor, 

may also influence other aspects of calcium homeostasis such as inhibition of calcium 

ATPase activity and the store-operated calcium entry channel [384]. Of importance, the 
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effects of 2-APB all involve intracellular calcium mobilization, in keeping with the 

primacy of intracellular calcium in control of AVP-induced alterations in glycolysis in 

H9c2 cells. Further studies will be required to fully define the specific calcium-

dependent pathways involved in H9c2 cells. 

Total glycogen content was significantly decreased in response to AVP (Table 5-1), 

indicating that AVP caused glycogenolysis in H9c2 cells. This observation is entirely 

consistent with those of others who demonstrated that AVP causes glycogen 

degradation in hepatocytes [374, 387], due to stimulatory effects on glycogen 

phosphorylase [396] and inhibitory effects on glycogen synthase [400]. 

The results of the current investigation, coupled with those in the preceding chapter and 

with those of others, are of potential clinical significance. In heart failure, the outward 

phenotypic expression of this disorder, characterized clinically by alterations in the 

size, shape, and function, results from remodeling at cellular, interstitial, molecular, and 

genomic levels due a variety of factors, including neurohormonal activation. Metabolic 

remodeling, characterized by a switch in myocardial substrate utilization away from 

fatty acids toward glucose, occurs in the failing heart by mechanisms that are not yet 

fully understood. The finding that AVP directly stimulates glucose use in heart-derived 

muscle cells at concentrations comparable to those in heart failure patients coupled with 

evidence that it promotes metabolic and structural remodeling of myocyte and that its 

antagonism is beneficial, raise the distinct possibility that AVP contributes to 

remodeling of the failing heart and that such remodeling is detrimental. 

In summary, it could be concluded that AVP acutely stimulates glucose use in heart-

derived H9c2 cells by a mechanism that is dependent on calcium, especially calcium 

released from intracellular stores via the IP3 receptor, but independent of AMPK or 

PI3K activation. 
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Table 5-1:    Rates of glycolysis and glycogen content in H9c2 cells treated acutely with 
AVP. 

Differentiated H9c2 cells were treated with AVP (1 μM) AVP for 2 hours. A small 

amount of [5-3H]-glucose (1.0 µCi/ml) was present in the medium throughout the 

experiment to measure rates of glycolysis and glycogen synthesis. Values are Mean ± 

SEM. N=6-18 per group. *, significantly different from Controls, p<0.05. 

 Glycolysis 
(nmol/hr/mg ptn) 

Total Glycogen 
(nmol/mg ptn) 

Glycogen Synthesis 
(nmol/hr/mg ptn) 

DMEM 
 

Control 
 

AVP Treated 
 

 
 

5.53 ± 0.66 
 

9.94 ± 0.46 * 

 
 

410.57 ± 28.01 
 

304.74 ± 19.60 * 

 
 

19.49 ± 1.07 
 

15.97 ± 0.66 * 

DMEM/F12 
 

Control 
 

AVP Treated 

 
 

4.96 ± 0.09 
 

7.55 ± 0.29 * 

 
 

432.40 ± 24.88 
 

353.70 ± 26.78 * 

 
 

13.05 ± 0.65 
 

9.06 ± 0.55 * 
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Table 5-2:    The effect of AMPK inhibition on glycolysis in H9c2 cells. 

Differentiated H9c2 cells were treated with DN-AMPK (moi 150) for 24 hours or 

preincubated with 40 µM Compound C for 30 minutes prior to incubation with 1 µM 

AVP. For AVP treatment cells were incubated for 2 hours in KH solution supplemented 

with 5.5 mM glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M insulin. 

A small amount of [5-3H]-glucose (1.0 µCi/ml) was present throughout the incubation 

time with AVP to measure rates of glycolysis. Each column shows different day of 

experiment. Values are are Mean ± SEM. *, significantly different from Control 

(p<0.05). $, significantly different from Corresponding Control (p<0.05). 

 Experiment Day 1 
Glycolysis 

(nmol/hr/mg ptn) 

Experiment Day 2 
Glycolysis 

(nmol/hr/mg ptn) 

Experiment Day 3 
Glycolysis 

(nmol/hr/mg ptn) 

Control 4.43 ± 0.21 
(N=6) 

5.28 ± 0.01 
(N=6) 

7.28 ± 0.83 
(N=6) 

AVP 6.36 ± 0.45* 
(N=3) 

9.83 ± 0.20* 
(N=3) 

14.52 ± 0.33*$ 
(N=6) 

DN-AMPK  5.70 ± 0.48 
(N=3)  

DN-AMPK + AVP  8.01 ± 0.57*$ 
(N=3)  

Compound C   6.29 ± 0.25 
(N=6) 

Compound C + AVP   11.98 ± 1.31*$ 
(N=5) 
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Table 5-3:    Myocardial adenine nucleotide and creatine phosphate content of H9c2 
cells. 

Differentiated H9c2 cells were treated with or without 1 µM AVP for 2 hours in KH 

solution supplemented with 5.5 mM glucose, 0.4 mM palmitic acid pre-bound to 

albumin and 10-7 M insulin. Values are Mean ± SEM. *, significantly different from 

Control value within Group, p<0.05. 

 Control 
(n=7-8) 

AVP 
(n=6-8) 

ATP 
(μmol/mg protein) 3.02 ± 0.18 3.03 ± 0.18 

ADP 
(μmol/mg protein) 0.38 ± 0.07 0.46 ± 0.04 

AMP 
(μmol/mg protein) 0.10 ± 0.01 0.14 ± 0.02* 

Creatine (Cr) 
(μmol/mg protein) 

25.26 ± 2.16 24.63 ± 1.50 

Phosphocreatine (PCr) 
(μmol/mg protein) 5.35 ± 0.94 11.12 ± 0.45* 
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Figure 5-1:    Concentration dependency for acute effect of AVP on glycolysis. 

Differentiated H9c2 cells were incubated for 2 hours in DMEM/F12 with the indicated 

concentrations of AVP. A small amount of [5-3H]-glucose (1.0 µCi/ml) was present 

throughout the incubation time to measure rates of glycolysis. Values are normalized to 

100 % Control (in nmol/hr/mg ptn). Values are expressed as Mean ± SEM. *, 

significantly different from Control (p<0.05). N=6-9 per group. 
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Figure 5-2:    Receptor subtype responsible for acute effect of AVP on glycolysis. 

To test the role of specific AVP receptors, differentiated cells were treated with the 

indicated different concentrations of antagonists in DMEM/F12 for 30 minutes before 

addition of 1 µM AVP. Then H9c2 cells were incubated for additional 2 hours with 

AVP and rates of glycolysis were determined. Control, no AVP. V1a antagonist, V1a 

receptor antagonist; V2 antagonist, V2 receptor antagonist. Values are normalized to 

100 % Control (in nmol/hr/mg ptn). Values are expressed as Mean ± SEM. *, 

significantly different from Control (p<0.05). $, significantly different from AVP 

(p<0.05). N=6-9 per group. 
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Figure 5-3:    AMPK activity in H9c2 cells exposed to AVP acutely and effect of AMPK 
inhibition on glycolysis. 

In Panel A, differentiated H9c2 cells were incubated in KH solution supplemented with 

5.5 mM [5-3H]-glucose, 0.4 mM palmitic acid pre-bound to albumin and 10-7 M insulin 

for 2 hours in the absence (Control) or presence (AVP) of 1 µM AVP prior to 

measurement of AMPK activity. Alternatively, cells were treated with DN-AMPK (moi 

150) for 24 hours or preincubated with 40 µM Compound C  for 30 minutes prior to 

incubation with 1 µM AVP for additional two hours and measurement of glycolysis 

(Panel B). Values are normalized to 100 % corresponding Control (in nmol/hr/mg ptn). 

Values are are Mean ± SEM. *, significantly different from corresponding Control 

(p<0.05). N=3-15 per group.  
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Figure 5-4:    Role of calcium in the metabolic actions of AVP in H9c2 cells. 

Differentiated H9c2 cells were first incubated in the absence or presence of either 100 

μM 2-aminoethoxydiphenyl borate (2-APB) for 5 minutes (Panel A), 25 µM dantrolene 

for 30 minutes  (Panel B), or 3 mM O,O'-bis(2-aminoethyl)ethyleneglycol-N,N,N',N'-

tetraacetic acid (EGTA) for 5 minutes (Panel C). All experiments were performed in 

calcium-free DMEM/F12 and H9c2 cells exposed to the relevant vehicle served as 

Controls. Following this initial period, control and antagonist-treated cells were further 

incubated in the absence or presence of 1 μM AVP for 30 minutes (in the case of 2-

ABP) or 2 hours to measure rates of glycolysis. A small amount of [5-3H]-glucose (1.0 

µCi/ml) was present throughout the incubation time to measure rates of glycolysis. 

Values are normalized to 100 % Control (in nmol/hr/mg ptn). Values are are Mean ± 



Chapter 5 – Arginine Vasopressin Stimulates Glucose Utilization in Heart-Derived 
H9c2 Cells Independent of AMP-Activated Protein Kinase Activation 

 -136-

SEM. *, significantly different from Control (p<0.05). $, significantly different from 

AVP (p<0.05). N=6-8 per each group. 
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Figure 5-5:    Effect of PI3K signaling pathway on AVP-induced acceleration of glucose 
use in H9c2 cells. 

Differentiated H9c2 cells were preincubated with 300 nM wortmannin or vehicle for 30 

min in DMEM/F12 before addition of 1 µM AVP. Following this pre treatment, 

Control and antagonist-treated cells were further incubated in the absence or presence 

of 1 μM AVP for 2 hours. A small amount of [5-3H]-glucose (1.0 µCi/ml) was present 

throughout the incubation time to measure rates of glycolysis. Values are normalized to 

100 % Control (in nmol/hr/mg ptn). Values are are Mean ± SEM. *, significantly 

different from control (p<0.05). $, significantly different from AVP (p<0.05). N=12 per 

group. 
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CHAPTER 6 ‐ AMP‐ACTIVATED  PROTEIN  KINASE  AND 

HYPERTROPHIC  STRUCTURAL  AND 

METABOLIC  REMODELING  IN  HEART‐

DERIVED H9C2 CELLS 

6.1 INTRODUCTION 

As discussed in the introduction, cardiac hypertrophy is an adaptive response to 

increased hemodynamic workload. Cardiac hypertrophy is characterized by increased 

cell size, increased protein synthesis, alterations in energy metabolism, alterations in 

gene expression, and increased myofibrillar assembly [349, 401]. A necessary 

component of cardiac myocyte enlargement is an increase in protein synthesis, a 

process which is regulated through both initiation of translation and elongation [401-

403]. The mammalian target of rapamycin (mTOR) is known to be an important 

positive regulator of protein synthesis and cell growth (Figure 6-1) [404, 405]. mTOR 

activates translation through activation of the p70 ribosomal protein S6 kinase 

(P70S6K) and an increase in the phosphorylation of 4E-binding protein-1 (4E-BP1), 

which relieves inhibition of translation initiation [406]. mTOR also activates eukaryotic 

elongation factor-2 (eEF2) by inhibiting eukaryotic elongation factor-2 kinase (eEF2 

Kinase) resulting in stimulation of translation elongation [256]. mTOR activation 

H9c2 
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results in stimulation of protein synthesis by decreasing eEF2 phosphorylation. eEF2 is 

involved in the translocation of ribosomes relative to mRNA during the elongation 

phase [403]. Phosphorylation of eEF2 on Thr-56 by eEF2 kinase prevents its activity by 

reducing its affinity for ribosomes, thereby preventing translocation [403, 407, 408]. 

Protein synthesis can be stimulated independently of the mTOR pathway through 

glycogen synthase kinase-3β (GSK-3β). GSK-3β is a negative regulator of both normal 

[259, 409] and pathologic stress–induced (i.e. pressure-overload) hypertrophy [410]. In 

unstimualted cells, GSK-3β is active. However, phosphorylation of GSK-3β at serine 9 

results in its inactivation and therefore stimulation of protein synthesis by the activation 

of transcriptional regulators, such as NFAT, GATA4, etc., and translational regulator 

eukaryotic translation initiation factor 2B (elF2B) [257, 258, 260, 411]. 

Among a number of intracellular signaling pathways that have been implicated in 

regulation of hypertrophic response and cardiac myocyte growth, AMP-activated 

protein kinase (AMPK) has emerged as a regulator of cardiac myocyte growth [36, 280, 

282]. AMPK has been suggested to participate in the regulation of protein synthesis in 

the heart and other cell types. AMPK turns off energy-consuming pathways such as 

protein synthesis [159, 226] and numerous studies have revealed that AMPK activation 

in the heart attenuates cardiac hypertrophy by inhibiting protein synthesis [195, 254, 

279-282, 412]. It has been shown that AMPK activation inhibits eEF2 through 

activation of eEF2 kinase, resulting in inhibition of translation elongation and protein 

synthesis [195, 281]. Activation of AMPK is also known to downregulate the mTOR 

pathway, ultimately leading to inhibition of translation initiation [254, 413, 414].  

In addition, AMPK might influence protein synthesis through modulation of GSK-3β 

activity. Several studies have shown that AMPK activation results in phosphorylation 

or reduced expression of GSK-3β which results in inactivation of GSK-3β [261-263]; 

whereas, others have shown that AMPK activation might activate GSK-3β [419-421].  
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Several studies on neonatal cardiac myocytes [255, 278-283, 412] and intact rodent 

hearts [415] have documented that AMPK activation inhibits protein synthesis and 

hypertrophy. Also, Liao et al [284] have shown that inhibiting AMPK activity in mice 

produces progressive cardiac remodeling in pressure overload cardiac hypertrophy. 

Although a number of studies have implicated AMPK as a negative regulator of protein 

synthesis and hypertrophic growth, we and others have shown that the activity and 

expression of AMPK has been upregulated in hypertrophied hearts and correlates with 

the development of cardiac hypertrophy [34, 35, 291]. Also, Gq-coupled receptor 

(GqCR) activation, a key component of hypertrophic growth, is associated with AMPK 

activation [218]. Additionally, mutations in the γ-subunit of AMPK which activate or 

inhibit its activity are associated with cardiac hypertrophy [29, 36, 186, 263, 288, 289, 

416]. Over expression of a constitutively active form of AMPK in neonatal cardiac 

myocytes has also been shown to result in increased protein synthesis [263]. More 

interestingly, transgenic mouse models lacking the AMPK α-subunit fail to demonstrate 

increased cardiac mass [214, 241, 251, 285-287]; these findings raise questions about 

the exact role of AMPK in hypertrophic growth. Taken together, although much 

attention has been given to AMPK and hypertrophic growth, these data indicate that the 

relationship between AMPK and protein synthesis in the context of cardiac hypertrophy 

is not yet completely understood. 

Therefore, the current study set out to determine if AMPK directly plays a role in the 

regulation of protein synthesis in heart muscle cells. In the current investigation, 

cultured H9c2 cells [347] were used as an in vitro model system in which AMPK 

activity was selectively enhanced by molecular means. 

6.2 METHODS 

Details of methods used for this investigation are described in the Materials and 

Methods chapter. 
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6.3 RESULTS 

6.3.1 Over expression of AMPK Increased AMPK Activity 

Treatment of H9c2 cells with adenovirus containing CA-AMPK for 48 hours led to 

over expression of GFP and c-myc in a dose response matter as shown in Figure (6-2A 

and 62-B), indicating successful viral transduction and gene transfer. Also, AMPK 

activity was significantly increased in cells infected with CA-AMPK (moi 150) as 

compared to the GFP Controls (Figure 6-2C). 

6.3.2 Over  expression  of  AMPK  Caused  Hypertrophy  and  Metabolic 

Remodeling 

Exposure of H9c2 cells to CA-AMPK (moi 150) significantly increased protein content 

(Figure 6-3A), and [14C]-phenylalanine incorporation (Figure 6-3B), indicating that the 

cells were hypertrophied. This hypertrophy occured without any increase in ANF 

expression (Figure 6-3C). Furthermore, rates of glycolysis were accelerated by 

approximately 50 % in H9c2 cells overexpressing CA-AMPK (moi150) (Figure 6-4A). 

There were no significant differences in glucose oxidation between CA-AMPK treated 

H9c2 cells and GFP Control cells (Figure 6-4B). Additionally, rates of fatty acid 

oxidation were also significantly increased in CA-AMPK (moi 150) treated H9c2 cells 

as compared to GFP Control cells (Figure 6-4C). 

6.3.3 Over expression of AMPK Did not Influence eEF2 Phosphorylation 

To understand the signaling mechanisms that control protein synthesis in CA-AMPK 

treated H9c2 cells, cell lysates from cardiac myocytes treated as above were subjected 

to immunoblot analysis using anti-phospho-eEF2 (Thr 56). Treatment of cells with CA-

AMPK (moi 150) did not significantly alter the phosphorylation state of eEF2 at Thr 56 

(Figure 6-5). 
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6.3.4 Over expression of AMPK Decreased GSK‐3β Expression 

GSK-3β plays a role as a negative regulator of hypertrophic growth by phosphorylating 

and thereby inhibiting the transcription factor NFAT [259, 410]. Given the role of 

GSK-3β in protein synthesis, it was determined if over expression of AMPK had any 

effect on GSK-3β expression. As shown in Figure 6-6, exposure of H9c2 cells to CA-

AMPK (moi 150) decreased GSK-3β expression as compared to GFP Controls. 

6.4 DISCUSSION 

In the current study, adenoviral gene transduction of the constitutively active form of 

AMPK (CA-AMPK) was used to elucidate the role of AMPK in protein synthesis in 

heart muscle cells. Here, it has been demonstrated that over expression of AMPK 

induced a number of responses in H9c2 cells indicating cellular hypertrophy with 

parallel metabolic remodeling characterized by acceleration of rates of glycolysis and 

fatty acid oxidation. The AMPK-induced protein synthesis observed in H9c2 cells 

occured in association with reduced expression of glycogen synthase kinase -3β (GSK-

3β) but no changes in signaling via eukaryotic elongation factor-2 (eEF2). 

Transfer of CA-AMPK to H9c2 cells increased total protein content and phenylalanine 

incorporation, two well known markers of hypertrophy. However, the cellular 

hypertrophy produced by CA-AMPK is different from that of pressure overload-

induced cardiac hypertrophy or to that caused by agents such as AVP because 

expression of ANF was not increased. The finding that CA-AMPK increased protein 

synthesis is consistent with result reported by Folmes et al [263] who showed that over 

expression of the γ-subunit of AMPK tended to increase protein synthesis in neonatal 

cells. Even though they did not observe hypertrophic growth when cells were treated 

for 48 hours with γ-mutant, they concluded that longer treatment would likely induce 

hypertrophic growth. Additionally, Arad et al [291] have shown that, in mice 

overexpressing the γ-subunit of AMPK, heart muscle mass increases as does the 
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expression of genes associated with hypertrophy. In contrast, several animal studies in 

which AMPK activity was increased failed to demonstrate cardiac hypertrophy, 

indicating that AMPK does not restrict the normal growth of heart [36, 70, 263]. 

Moreover, several studies have shown that mutations in PRKAG2, the gene encoding 

the γ2-subunit of AMPK, are associated with Wolff Wolfe-Parkinson-White Syndrome 

and cardiac hypertrophy [288, 416]. 

In contrast to the finding that AMPK is a direct positive regulator of protein synthesis, 

several studies have documented that AMPK activation leads to inhibition of protein 

synthesis and cardiac hypertrophy [254, 280, 282]. To support this, several studies have 

shown that reduced AMPK activity in mice is accompanied by excessive cardiac 

hypertrophy after aortic banding [246, 284]. The discrepancy between these findings 

might be due to differences in model systems, study design, and/or the approach used to 

modulate AMPK activity. 

Cardiac hypertrophy can occur as a result of a number of different signaling pathways; 

therefore, the role of eEF2 and GSK-3β in AMPK-induced cardiac hypertrophy was 

investigated. eEF2 is a GTP binding protein, which is involved in translocation of 

ribosomes relative to mRNA during the elongation phase [403]. Phosphorylation of 

eEF2 on Thr-56 by eEF2 kinase prevents its activity thereby preventing translocation of 

ribosomes [403, 417]. Several studies on cardiac myocytes and other cell types have 

shown that activation of AMPK is accompanied by an increase in eEF2 

phosphorylation via eEF2 kinase activation resulting in decreased in protein synthesis 

[255, 279, 280]. The current study showed that AMPK-induced protein synthesis does 

not occur through activation of eEF2 since CA-AMPK (moi150) treatment of H9c2 

cells did not result in alterations in eEF2-phosphorylation at Thr-56 (Figure 6-5). It is 

interesting that several hypertrophic agents involved in pressure overload-induced 

cardiac hypertrophy activate eEF2 leading to stimulation of translation elongation [258, 

418]. 
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The current study provided evidence that AMPK-induced stimulation of protein 

synthesis might, in part, be mediated through decreased expression of GSK-3β (Figure 

6-6). This finding might be related to the nature of the mutated α-subunit since 

pharmacological activation of AMPK is accompanied by activation of GSK-3β and has 

no effect on its expression [419-421]. Interestingly, and consistent with this finding, 

Folmes et al [103] have documented that over expression of the γ-subunit of AMPK 

also results in a decrease in GSK-3β expression. 

GSK-3β has been found to be a negative regulator of cardiac myocyte growth in 

response to pathologic and physiologic stimuli [259, 409, 410]. To support this idea, 

Sanbe et al [422] have shown that GSK-3β over expression leads to regression of 

established pressure overload hypertrophy. GSK-3β is unusual in that it is negatively 

regulated by hypertrophic agonists and growth factors. GSK-3β is active in 

unstimulated cells until it is turned off by these and other stimuli. GSK-3β negatively 

regulates most of its substrates and so the inhibiting phosphorylation of GSK-3β at 

serine-9 therefore relieves its inhibitory effect on the translation initiation factor eIF2B 

and promotes protein synthesis [256-260]. Phosphorylation of GSK-3β also stimulates 

the activity of a number of transcription factors that are directly implicated in cardiac 

growth, including c-myc, NFAT, GATA4, and β-catenin [411, 423, 424] and therefore 

may be particularly important in the reprogramming of gene expression that 

characterizes both adaptive and maladaptive hypertrophy. Inactivation of GSK-3β by 

phosphorylation also induces cardiac hypertrophy by increasing nuclear translocation of 

NFAT and activation of hypertrophic gene program [259, 410]. Folmes et al [103] have 

shown that decreased GSK-3β expression induced by over expression of AMPK is 

accompanied by increased nuclear NFAT activity [261-263]. Consequently, it is 

possible that in the current study decreased expression of GSK-3β induced by CA-

AMPK led to increased protein synthesis by increased nuclear translocation. Further 

work is needed to elucidate these pathways. 
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Consistent with previous reports that activation of AMPK results in stimulation of fatty 

acid oxidation [28, 55, 57, 69, 154, 158, 170, 195], the current study demonstrated that 

CA-AMPK treatment of H9c2 cells, caused increased in rates of fatty acid oxidation 

(Figure 6-4C) AMPK activation in hearts and other tissues has been known to increase 

fatty acid oxidation by inactivating acetyl-CoA carboxylase (ACC) [35, 68] and, 

possibly, by activating malonyl-CoA decarboxylase (MCD) [57, 61, 235]. Malonyl-

CoA is an allosteric inhibitor of carnitine palmitoyltransferase-1 (CPT-1) which 

controls transfer of long-chain fatty acyl-CoA into the mitochondria. Therefore, AMPK 

activation results in decreased malonyl-CoA concentrations and thus increased fatty 

acid oxidation. 

In addition to activating fatty acid oxidation, CA-AMPK treatment of H9c2 cells 

resulted in acceleration of glycolysis (Figure 6-4A). It is well known that AMPK 

stimulates glycolysis by phosphorylation and activation of phosphofructokinase-2 [86], 

which produced fructose 2,6-bisphosphate, a potent stimulator of glycolysis pathway. 

It should be noted that, in addition to the acute metabolic functions of AMPK, AMPK 

also regulates the expression of specific genes. Given the critical role of AMPK in 

regulation of energy metabolism in the body in response to acute energy depletion, it is 

not surprising that AMPK has a major role in response to chronic energy depletion. 

Repetitive pharmacological activation of AMPK in vivo mimicks some of the effects of 

exercise training including increases in mitochondrial biogenesis, and increased 

transcription of genes involved in fatty acid and glucose metabolism [228, 425-427]. 

Prolonged activation of AMPK by daily injections with AICAr, chronic intake of the 

creatine analogue β-guanadinopropionic acid as well as exercise-training skeletal 

muscle promotes expression of glucose transporter-4 (GLUT-4), hexokinase II, 

mitochondrial biogenesis, and other mitochondrial enzymes [228-231, 240, 249, 428]. 

An important mediator of many of the above actions is peroxime prolifrator-activator 

receptor γ coactivator 1α (PGC-1α) [228, 429]. PGC-1α activation increases expression 

of transcription factors such as nuclear respiratory factors 1 and 2, mitochondrial 
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transcription factor A, and peroxime prolifrator-activator receptor α (PPARα). The 

former, which is predominatly expressed in liver, heart, and skeletal muscle, plays a 

role in the transcriptional control of mitochondrial fatty acid oxidation by upregulation 

of genes involved in fatty acid oxidation [149, 430-434]. AMPK, therefore, might have 

a key role in inducing metabolic adaptations of skeletal muscle to exercise-training. 

Since CA-AMPK treatment of H9c2 cells led to increase in both fatty acid oxidation 

and glycolysis, it can be speculated that this effect is mediated by PGC-1α and 

increased mitochondrial biogenesis, in keeping with the proposed adaptive role of 

AMPK in exercised trained heart. 

The other interesting finding in this study is that CA-AMPK led to increases in both 

glycolysis and fatty acid oxidation which raises the possibility that AMPK activation 

can bypass the Randle cycle as suggested by others [440]. This finding is also in 

agreement with the study performed by Merrill et al [435] in which they showed that 

AICAr-perfused skeletal muscle in rodent was accompanied with stimulation of both 

glucose uptake and fatty acid oxidation. They speculated that the concurrent stimulation 

of both glucose uptake and fatty acid oxidatoion in response to AMPK activation might 

have a role in the overall capacity of cell to meet energy demand. The finding that CA-

AMPK treatment of H9c2 cells might bypass the Randle cycle further strengthens the 

idea that prolonged AMPK activation might have an adaptive role in the heart. 

In summary, the current study showed that over expression of AMPK in H9c2 cells 

resulted in both structural and metabolic hypertrophic remodeling. The structural 

hypertrophic remodeling induced by over expression of AMPK is different from the 

pressure overload-induced cardiac hypertrophy due to lack of upregulation of ANF. 

Additionally, the hypertrophy induced by CA-AMPK was accompanied decreased 

expression of GSK-3β. Given the fact that GSK-3β is involved in both physiologic and 

pathologic forms of cardiac hypertrophy, it can be speculated that over expression of 

AMPK in heart muscle cells leads to a physiologic form of cardiac hypertrophy. 

Additionally, over expression of AMPK led to metabolic remodeling with acceleration 
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of both glycolysis and fatty acid oxidation. This action of AMPK to increase both 

glycolysis and fatty acid oxidation raises the possibility that AMPK can bypass the 

Randle Cycle and might enable the heart to meet increased energy requirements. Future 

studies are required to investigate whether AMPK activation in the heart leads to 

stimulation of mitochondrial biogenesis and expression of specific genes and proteins 

by PGC-1α and PPARα dependent pathways. Overall, this study adds to the emerging 

concept that AMPK enables the heart to adapt to changes in demand. Acting alone, 

AMPK does not induce a pathologic, but a more physiologic hypertrophic phenotype. 
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Figure 6-1:    Regulation of protein synthesis by AMPK. 

AMPK activation inhibits mTOR which this in turn stimulates protein synthesis, and 

hence cell growth, through P70S6K and 4E-BP1. AMPK activation also increases eEF2 

kinase activity thereby inhibits protein synthesis. AMPK activation can also modulate 

GSK-3β activity. 

AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), P70 

ribosomal protein S6 kinase (P70S6K), 4E-binding protein1 (4E-BP1), eukaryotic 

elongation factor-2 (eEF2), Glycogen synthase kinase-3β (GSK-3β), Protein kinase B 

(PKB), eukaryotic translation initiation factor (elF2B). 
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Figure 6-2:    Effect of over expression of AMPK on AMPK activity in H9c2 cells. 

Representative images of GFP expression (A), western blot showing c-myc expression 

(B), and AMPK activity (C) in differentiated H9c2 cells treated with CA-AMPK (moi 

25 and 150) for 48 hours in DMEM supplemented with 1 % HS. Values are normalized 

to 100 % Control (in nmol/hr/mg ptn). Values are are Mean ± SEM. *, significantly 

different from Control (p<0.05). $, significantly different from GFP (p<0.05). N=26-34 

per group. 
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Figure 6-3:    Hypertrophic characteristic in response to treatment with CA-AMPK. 

Total protein content (A), [14C]-phenylalanine incorporation (B), and ANF expression 

(C) in differentiated H9c2 cells treated with CA-AMPK (moi 25 and 150) in DMEM 

supplemented with1 % HS for 48 hours. Values are normalized to 100 % Control (in 

nmol/hr/mg ptn). Values are Mean ± SEM.*, significantly different from Control 

(p<0.05). $, significantly different from GFP (p<0.05). N=4-31 per each group. 
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Figure 6-4:    Effects of CA-AMPK on metabolism in H9c2 cells. 

Differentiated H9c2 cells were treated with CA-AMPK (moi 25 and 150) for 48 hours 

before switching the KH solution containing 0.4 mM palmitate pre-bound to 3 % 

bovine serum albumin, 5.5 mM glucose, and 10-7 M insulin for 8 hours. Tracer amounts 

of labeled [5-3H]-glucose (1.0 µCi/ml), [U-14C]-glucose (1.0 µCi/ml), and [U-14C]-

palmitate (0.4 µCi/ml) were present for the last hour of study to measure glycolysis 

(Panel A), glucose oxidation (Panel B), and fatty acid oxidation (Panel C), respectively. 

Values are normalized to 100 % Control (in nmol/hr/mg ptn). Values are are Mean ± 



Chapter 6 – AMP-Activated Protein Kinase and Hypertrophic Structural and Metabolic 
Remodeling in Heart-Derived H9c2 Cells 

 -152-

SEM.*, significantly different from Control (p<0.05). $, significantly different from 

GFP (p<0.05). N=12-27 per group. 
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Figure 6-5:    Effect of CA-AMPK on eEF2 expression in H9c2 cells. 

Representative immunoblots and corresponding densitometric analysis of 

phosphorylation state of eEF2 protein in differentiated H9c2 cells treated with CA-

AMPK (moi 25 and 150) in 1 % HS DMEM for 48 hours. Expression of total eEF2 was 

used as an internal standard to calculate relative expressions. Values are Mean ± SEM 

and are expressed as arbitrary density units. N=3 per each group. 
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Figure 6-6:    Effect of CA-AMPK on GSK3β expression in H9c2 cells. 

Representative immunoblots of total GSK3β protein expression in H9c2 cells treated 

with CA-AMPK (moi 25 and 150) in 1 % HS DMEM for 48 hours. Expression of total 

eEF2 was used as an internal standard to calculate relative expressions. Values are 

expressed as arbitrary density units. N=2-3 per each group. 
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CHAPTER 7 ‐  SUMMARY,  CONCLUSIONS  AND  FUTURE 

DIRECTIONS 

7.1 SUMMARY 

On the basis of the research presented here, several important and novel conclusions 

can be made regarding AMP-activated protein kinase (AMPK) activation in heart 

muscle cells and its role in the structural and metabolic remodeling. 

First, chronic treatment of H9c2 cells with arginine vasopressin (AVP, 1 µM), induced 

both hypertrophy and alterations in energy metabolism similar to those of pressure 

overload-induced cardiac hypertrophy with an acceleration of glycolysis being 

characteristic. In AVP-treated hypertrophied H9c2 cells, AMPK activity was increased, 

confirming previous studies which demonstrated that AMPK activity is increased in 

pressure overload-induced hypertrophied hearts. The increased activity of AMPK in 

AVP-treated hypertrophied H9c2 cells was independent of any measurable changes in 

the energy status of cells, which further confirms previous studies that AMPK can be 

activated by energy state-independent mechanisms in hearts exposed to pressure-

overload. Given the positive role of AMPK in glycolysis, activation of AMPK in 

hypertrophied hearts provides one potential mechanism for the acceleration of 

glycolysis. Here, it was shown for the first time that inhibition of AMPK by either 
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Compound C or DN-AMPK (moi 150) partially reduced glycolysis in AVP-treated 

hypertrophied H9c2 cells but did not normalize it. This finding unequivocally 

demonstrates a role for AMPK in the control of glycolysis in hypertrophied heart 

muscle cells and also suggests the involvement of other signaling pathways in 

acceleration of glycolysis in hypertrophied hearts. 

Second, over expression of a constitutively active form of AMPK by means of 

adenoviral gene transfer (CA-AMPK) (moi 150) in H9c2 cells induced a number of 

responses including cellular hypertrophy as well as metabolic remodeling. AMPK-

induced cardiac hypertrophy was accompanied by reduced expression of glycogen 

synthase kinase -3β (GSK-3β) but was independent of the eukaryotic elongation factor-

2 (eEF2) pathway. Interestingly, the hypertrophy induced by CA-AMPK was not 

accompanied with increased expression of atrial natriuretic peptide, suggesting that 

AMPK activation causes a form of hypertrophy in heart muscle cells which is different 

from that observed in response to pressure overload and maybe more adaptive and 

physiologic. The metabolic remodeling induced by over expression of AMPK was 

characterized by acceleration of both glycolysis and fatty acid oxidation. This finding 

raises the interesting possibility that AMPK activation can bypass the fatty acid-glucose 

cycle described by Randle, as seen in endurance exercise training or when AMPK is 

activated for longer time with AICAr. 

Third, in addition to its chronic effect, acute treatment of H9c2 cells with AVP (1 µM) 

caused AMPK activation and accelerated glycolysis. Also, AVP exerted its acute 

metabolic effects in H9c2 cells via the V1a receptor, the receptor subtype responsible 

for AVP-induced hypertrophy of heart muscle cells. Interestingly, the elevated rates of 

glycolysis induced by AVP were not altered by AMPK inhibition (by either Compound 

C or DN-AMPK), but were blocked by agents that interfere with calcium ion signaling, 

including extracellular EGTA, dantrolene and 2-aminoethoxydiphenyl borate. It can be 

concluded that the acute glycolytic effects of AVP are AMPK-independent and at least 

partially calcium-dependent. 
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Fourth, treatment of cells with other agents that may be involved in pressure overload-

induced hypertrophy, such as ET-1, AgII, and PhE, did not induce hypertrophy when 

given under the same conditions as AVP. The reasons that these agents failed to induce 

hypertrophy in H9c2 cells under the conditions used are not known. It is possible that 

H9c2 cells lack some post-receptor signaling transduction pathways that ultimately 

result in cardiac hypertrophy. Additionally, a longer incubation time may be needed for 

these agents to cause hypertrophy in H9c2 cells. 

Fifth, AMPK activity was not altered in isolated working rat hearts or H9c2 cells 

perfused/ or treated with 2 mM metformin in spite of the metabolic changes it induced. 

The absence of any measurable changes in AMPK activity in response to metformin 

supports data by others which indicate that activation of AMPK by metformin is due to 

reduction in the energy status of the cell. In the same study, it was found that inhibition 

of AMPK activity by either 6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl)]-3-pyridin-4-yl-

pyrrazolo [1,5-a]-pyrimidine (Compound C), a well recognized pharmacological 

inhibitor of AMPK, or by over expression of a dominant negative form of AMPK by 

means of gene transfer (DN-AMPK) failed to normalize the metabolic effect-induced 

by metformin in H9c2 cells. Exposure of H9c2 cells to inhibitors of p38 mitogen 

activated protein kinase (p38 MAPK) or protein kinase C (PKC), partially or 

completely abrogated metformin-induced alterations in metabolism in these cells, 

respectively. Thus, it can be concluded that the metabolic actions of metformin in heart 

muscle can occur independent of changes in AMPK activity and may be mediated by 

p38 MAPK- and PKC-dependent mechanisms. 

Sixth, treatment of H9c2 cells with 5-aminoimidazole-4-carboxamide 1-β-D-

ribofuranoside (AICAr), a cell permeable activator of AMPK, was unable to activate 

AMPK or alter metabolism in H9c2 cells. In fact, in the context of the current study, 

AICAr did not elicit any measurable changes in phosphorylation of AMPK and ACC, a 

downstream target of AMPK, whose phosphorylation and activation states are useful 

indicators of AMPK activity, suggesting that AMPK was not activated in H9c2 cells by 
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AICAr. The reason that AICAr was unable to activate AMPK or alter metabolism in 

H9c2 cells is not immediately apparent, but it could be speculated that AICAr was 

unable to enter the cells. To support this idea, a tissue- or cell-specific response to 

AICAr has been reported previously. 

Overall, these studies indicate that AMPK is not the sole mediator of the metabolic 

phenotype of pathological hypertrophy. Inhibition of AMPK does not completely 

reverse the metabolic remodelling of pathological hypertrophy, and stimulation of 

AMPK does not completely induce it. The view of AMPK as the key mediator of the 

metabolic phenotype of pathological hypertrophy, especially related to glycolysis, is 

oversimplified. AMPK accelerates glycolysis, but is not consistently recruited to do so 

by all stimuli. This study has revealed the existance of other pathways which can 

stimulate glycolysis in heart muscle cells. AMPK increases protein content by 

increasing protein synthesis, but does not induce ANF expression suggesting 

participation in an adaptive, physiological process. These studies have therefore 

revealed that AMPK produces parallel effects on metabolism and hypertrophy, playing 

a pivotal role in a wider signaling cascade. 

7.2 CONCLUSIONS 

• Chronic treatment of H9c2 cells with AVP caused hypertrophy characterized by 

increased protein content, phenylalanine incorporation, and ANF expression 

without changes in overall cell number. However, other hypertrophic agents 

(ET-1, AgII, and PhE) failed to induce hypertrophy in these cells. 

• In AVP-hypertrophied H9c2 cells glycolysis was accelerated and palmitate 

oxidation reduced with no significant alteration in glucose oxidation. The 

acceleration of glycolysis was associated with AMPK activation; inhibition of 

AMPK by molecular or pharmacological means ameliorated the increase in 
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glycolysis but did not prevent it. The increase in AMPK represented a change in 

activation state, not expression. 

• CA-AMPK increased protein content and phenylalanine incorporation but did 

not increase ANF expression; the effects on protein synthesis were associated 

with changes in GSK-3β expression, but not eEF2 activation. 

• CA-AMPK accelerated both glycolysis and fatty acid oxidation, therefore 

bypassing the Randle cycle. 

• Activation of AMPK alone is insufficient to induce pathological hypertrophy. 

• AVP was found to acutely and dose-dependently stimulate glycolysis via V1a 

receptor. Although AVP also acutely stimulated AMPK, inhibition of AMPK 

did not affect the stimulation of glycolysis; this response was blocked by agents 

that interfere with calcium ion signaling. 

• Metformin did not activate AMPK in H9c2 cells. The action of metformin to 

accelerate glycolysis was not prevented by AMPK inhibition, but was prevented 

by inhibition of p38MAP kinase and and PKC pathways. 

7.3 RECOMMENDATIONS AND FUTURE DIRECTIONS 

In the present study, H9c2 cells were used as an in vitro model system to investigate the 

effect of AVP on metabolic remodeling in the heart. These cells, which were originally 

derived from the rat embryonic ventricle, have morphological characteristics similar to 

those of immature embryonic cardiac myocytes [347, 436]. The H9c2 cells also show 

biochemical and electrophysiological properties similar to those of adult cardiac cells 

[347] and express cardiac and skeletal isoforms of L-type Ca2+ channels and 

sarcolemmal ATPase splice variants present in the normal heart [436, 437]. As a 

consequence, they are widely accepted as a model for the study of cardiac myocytes in 
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vitro [438], including the study of metabolism and signal transduction pathways [439]. 

Such cells, however, cannot be considered completely representative of adult or 

neonatal cardiac myocytes. Thus, the findings from the current study must be 

confirmed using adult cardiac myocytes in culture and, ultimately, in intact hearts. 

Therefore, cellular and animal models of cardiac hypertrophy in which the activity of 

AMPK could be altered using molecular approaches in cardiac myocytes before or after 

induction of hypertrophy should be used. Specifically, future studies should be 

performed to confirm that AMPK has a partial role in the acceleration of glucose use in 

hypertrophied cells. If this is true, the additional mechanisms responsible for increased 

glucose use in hypertrophied hearts should be investigated. Additionaly, the role of 

over expression of AMPK in hypertrophic growth and metabolism should be 

determined. 
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