
Capacity of Multidimensional Constrained
Channels

Estimates and Exact Computations

by

Erez Louidor

B.Sc., The Technion Inst. of Technology, 1998
M.Sc., The Technion Inst. of Technology, 2004

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

The Faculty of Graduate Studies

(Mathematics)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

May 2010

c© Erez Louidor 2010

Abstract

This work considers channels for which the input is constrained to be from a given
set of D-dimensional arrays over a finite alphabet. Such a set is called a constraint.
An encoder for such a channel transforms arbitrary arrays over the alphabet into
constrained arrays in a decipherable manner. The rate of the encoder is the ratio
of the size of its input to the size of its output. The capacity of the channel or con-
straint is the highest achievable rate of any encoder for the channel. We compute
the exact capacity of two families of multidimensional constraints. We also gen-
eralize a known method for obtaining lower bounds on the capacity, for a certain
class of 2-dimensional constraints, and improve the best known bounds for a few
constraints of this class.

Given a binary D-dimensional constraint, a D-dimensional array with entries
in {0, 1,�} is called “valid”, for the purpose of this abstract, if any “filling” of
the ‘�’s in the array with ‘0’s and ‘1’s, independently, results in an array that be-
longs to the constraint. The density of ‘�’s in the array is called the insertion rate.
The largest achievable insertion rate in arbitrary large arrays is called the maximum
insertion rate. An unconstrained encoder for a given insertion rate transforms arbi-
trary binary arrays into valid arrays having the specified insertion rate. The tradeoff
function essentially specifies for a given insertion rate the maximum rate of an un-
constrained encoder for that insertion rate. We determine the tradeoff function for
a certain family of 1-dimensional constraints.

Given a 1-dimensional constraint, one can consider the D-dimensional con-
straint formed by collecting all the D-dimensional arrays for which the original
1-dimensional constraint is satisfied on every “row” in every “direction”. The se-
quence of capacities of these D-dimensional generalizations has a limit as D ap-
proaches infinity, sometimes called the infinite-dimensional capacity. We partially
answer a question of [37], by proving that for a large class of 1-dimensional con-
straints with maximum insertion rate 0, the infinite dimensional capacity equals 0
as well.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . vii

Dedication . viii

Statement of Co-Authorship . ix

1 Overview . 1

2 Multidimensional constraints . 6
2.1 One-dimensional constraints and labeled directed graphs 6
2.2 Higher dimensional constraints 8
2.3 Capacity . 10
2.4 Axial product . 13
2.5 Two-dimensional constraints . 15

2.5.1 Horizontal and vertical strips 15
2.6 Open questions . 17

3 Lower bounds on capacity of 2-dimensional symmetric constraints 18
3.1 Constraints with symmetric edge-constrained strips 18
3.2 Constraints with symmetric vertex-constrained strips 27
3.3 Capacity bounds for axial products of constraints 31
3.4 Heuristics for choosing φ . 33

3.4.1 Using max-entropic probabilites 33
3.4.2 General optimization . 36

3.5 Numerical results for selected constraints 38

iii

Table of Contents

3.5.1 The constraint RWIM 40
3.5.2 The constraint EVEN⊗2 40
3.5.3 The constraint CHG(b)⊗2 40

3.6 Open questions . 43

4 Exact computation of capacity . 44
4.1 The capacity of ODD⊗D . 44
4.2 The capacity of CHG(2)⊗D . 45

5 Multi-choice constraints and independence capacity 49
5.1 Multi-choice constraints . 49
5.2 Independence capacity . 51
5.3 Independence capacity and axial products 53
5.4 Independence capacity and limD→∞ cap(S⊗D) 55
5.5 Open questions . 61

6 The tradeoff function for binary 1-dimensional constraints 62
6.1 A brief overview of digital recording 62
6.2 Previous work . 64
6.3 Background and definitions . 64
6.4 Proof of Theorem 12 . 69
6.5 Proof of Theorem 13 . 71

6.5.1 Outline of proof . 72
6.5.2 Proof of propositions 78

6.6 Open questions . 96

7 Bounds on capacity using probability 97
7.1 Some correlation inequalities 97
7.2 Bounds on capacity using probability 99

7.2.1 Proof of Proposition 14 102
7.2.2 Proof of Lemma 11 . 106

7.3 Open questions . 108

Bibliography . 109

iv

List of Tables

3.1 Matrix size in the method of [3, 7] for the NAK constraint. 39
3.2 Best bounds on capacities of certain constraints. 40
3.3 Lower bounds using max-entropic probability heuristic. 41
3.4 Lower bounds using optimization. 42

6.1 Values of |∆(g)| for 1≤g≤2d+6 and d≥2. 90

v

List of Figures

1.1 Presentations of 1-dimensional constraints. 2

2.1 Presentations of 2-dimensional constraints. 10

3.1 Paths generating an `α×n-array of S, in G(V)
n and I. 23

4.1 Example of the graph Gr for D = 2, n = 6. 47

5.1 Proof of Theorem 10. 60

6.1 Graphs of the tradeoff function for certain RLL constraints. 68
6.2 The graph ĜFRLL(d,∞)

. 69

6.3 The non-trivial component of ĜFRLL(d,2d+2)
. 72

vi

Acknowledgements

I am sincerely grateful for the support of my advisor, Prof. Brian Marcus, for
being actively involved in my work, being realistically optimistic along the way,
and making these abstract concepts a little more tangible by allowing me to discuss
them with another. The only downside is that I now have high expectations of the
next person I work with.

vii

Dedicated to my parents: Eti & Adam Louidor.

viii

Statement of Co-Authorship

Chapters 2,3 and 4 were jointly authored by Erez Louidor and Brian Marcus. Erez
Louidor and Brian Marcus were responsible for the identification and design of
the research program. The research was performed by Erez Louidor and Brian
Marcus with the majority of the research done by Erez Louidor. The manuscript
was prepared by Erez Louidor and Brian Marcus with the majority of the writing
done by Erez Louidor. A version of these chapters appears in [28].

Chapter 5 was jointly authored by Erez Louidor, Brian Marcus and Ronnie
Pavlov. Panu Chaichanavong, Brian Marcus and Tze-Lei Poo were responsible for
the identification and design of the research program. The research was performed
by Panu Chaichanavong, Erez Louidor, Brian Marcus, Ronnie Pavlov and Tze-Lei
Poo. The manuscript was prepared by Erez Louidor, Brian Marcus and Ronnie
Pavlov with the majority of the writing done by Erez Louidor. A version of this
chapter appears as part of [29].

Chapter 6 was authored by Erez Louidor. Brian Marcus was responsible for
the identification and design of the research program. The research was performed
by Erez Louidor. The manuscript was prepared by Erez Louidor. A version of this
chapter appears in [27].

Chapter 7 was authored by Erez Louidor. Erez Louidor and Brian Marcus were
responsible for the identification and design of the research program. The research
was performed by Erez Louidor. The manuscript was prepared by Erez Louidor.

ix

Chapter 1

Overview

Fix an alphabet Σ and let G be a directed graph whose edges are labeled with sym-
bols in Σ. Each path in G corresponds to a finite word obtained by reading the labels
of the edges of the path in sequence. The path is said to generate the corresponding
word, and the set of words generated by all finite paths in the graph is called a
1-dimensional constrained system or a 1-dimensional constraint. Such a graph is
called a presentation of the constraint. We say that a word satisfies the constraint
if it belongs to the constrained system. One-dimensional constraints have found
widespread applications in digital storage systems, where they are used to model
the set of sequences that can be written reliably to a medium. A central exam-
ple is the binary run-length-limited constraint, denoted RLL(d, k) for nonnegative
integers 0≤d≤k, consisting of all binary sequences in which the number of ‘0’s
between consecutive ‘1’s is at least d, and each “run” of ‘0’s (that is a contiguous
sub-sequence of ‘0’s) has length at most k. The value of k is allowed to be∞, in
which case there is no restriction on the maximum length of a run of ‘0’s. Another
1-dimensional constraint, often used in practice, is the bounded-charge constraint,
denoted CHG(b), for some positive integer b; it consists of all words w1w2. . .w`,
where `=0, 1, 2, . . . and each wi is either +1 or −1, such that for all 1≤i≤j≤`,
|
∑j

k=iwk|≤b. This constraint is often used to overcome low frequency noise such
as fingerprints on compact discs. Other examples of 1-dimensional constraints
are the EVEN and ODD constraints, which contain all finite binary sequences in
which the number of ‘0’s between consecutive ‘1’s is even and odd, respectively.
Presentations for these constraints are given in Figure 1. See [32] for more exam-
ples of 1-dimensional constraints and a more detailed explanation of their use in
storage systems.

In this work, we consider multidimensional constraints of dimension D for
some positive integer D. Such a constraint is a set, specified by D edge-labeled di-
rected graphs, of finite-size D-dimensional arrays with entries over some finite
alphabet. In Chapter 2 we give a precise definition of what we mean by D-
dimensional constraints. As in the 1-dimensional case, we say that an array sat-
isfies the constraint if it belongs to it. Given a 1-dimensional constraint S, one can
construct a D-dimensional constraint by collecting all the D-dimensional arrays for
which the original 1-dimensional constraint is satisfied on every “row” in every “di-

1

Chapter 1. Overview

0

0

1

(a)

0

0

1

(b)

0 1 2 . . . b

+1 +1 +1 +1

−1−1−1−1

(c)

0 1 . . . d d+1 . . . k
0 0 0 0 0 0

1

1
1

(d)

Figure 1.1: Presentations of 1-dimensional constraints: (a) EVEN; (b) ODD; (c)
CHG(b); (d) RLL(d, k).

rection” along an “axis” of the array. We denote such a D-dimensional constraint
by S⊗D. A well-known 2-dimensional constraint studied in statistical mechanics is
the so called “hard-square” constraint. It consists of all finite-size (2-dimensional)
binary arrays which do not contain 2 adjacent ‘1’s either horizontally or vertically.
Two variations of this constraint are the isolated ‘1’s or “non-attacking-kings” con-
straint, denoted NAK, and the “read-write-isolated-memory” constraint, denoted
RWIM. The former consists of all finite-size binary arrays in which there are no
two adjacent ‘1’s either horizontally, vertically, or diagonally, and the latter con-
sists of all finite-size binary arrays in which there are no two adjacent ‘1’s either
horizontally, or diagonally. Like their 1-dimensional counterparts, 2-dimensional

2

Chapter 1. Overview

constraints play a role in storage systems, where with recent developments, in-
formation is written in a true 2-dimensional fashion rather than using essentially
1-dimensional tracks. The RWIM constraint is used to model sequences of states
of a binary linear memory in which no two adjacent entries may contain a ‘1’, and
in every update, no two adjacent entries are both changed. See [4] and [13] for
more details.

Let S now be a D-dimensional constraint over an alphabet Σ. For a D-tuple
m = (m1,m2, . . .,mD) of positive integers, let Sm or Sm1×...×mD

denote the set
of all m1×m2×. . .×mD arrays in S, and vol(m) denote the product of the entries
of m. We say that a sequence mi = (m

(i)
1 , . . . ,m

(i)
D) diverges to infinity, denoted

mi →∞, if (m
(i)
j)∞i=1 does for each j. The capacity of S is then defined by

cap(S) = lim
i→∞

log |Smi |
vol(mi)

, (1.1)

where (mi)
∞
i=1 is a sequence of D-tuples in (N)D diverging to infinity, | · | de-

notes cardinality, and log = log2. We show in Chapter 2 that the limit always
exists and is independent of the choice of (mi)

∞
i=1. The capacity is a fundamental

quantity that has been studied under different names in several disciplines dealing
with constrained systems. In symbolic dynamics it is known as the “topological
entropy” and in statistical physics it is derived from the “grand partition function”.
In the context of coding for storage systems, capacity has a practical role. As al-
ready mentioned, in many such systems due to physical constraints, only a subset
of binary sequences can be written to the media reliably. This subset is typically
modeled as a 1-dimensional constrained system over the binary alphabet {0, 1}. In
practice, user information, consisting of an arbitrary sequence of binary digits is
encoded into a sequence of the constraint before being written to the media. When
reading back the data, the constrained sequence is decoded and the original infor-
mation is recovered. Typically, an encoder divides its input into fixed size blocks
of p digits each, emitting, for each block, a block of q digits, such that when all
the output blocks are concatenated the result satisfies the constraint. The ratio p/q
is called the rate of the encoder and, naturally, it is desirable that the rate of the
encoder be as large as possible. It turns out, that the capacity of a 1-dimensional
constraint, is the largest possible rate of any such encoder for the constraint, and
hence, is important for the design and evaluation of efficient encoders for digital
storage systems.

While there is a formula for computing the capacity of a general 1-dimensional
constrained system (up-to finding the largest root of a polynomial), no such formula
is known for 2- and higher-dimensional constraints. There are only a handful of
constraints for which the capacity is nonzero and is known exactly [23, 25, 39].

3

Chapter 1. Overview

Even for the hard-square constraint, the exact capacity is unknown and the problem
goes back more than 40 years [12]. Some rigorous evidence for the hardness of
computing the capacity of multidimensional constraints is given in [2], where it is
shown that there is no algorithm that accepts a 2-dimensional constraint system S
as input and determines whether |Sm×n| ≥ 1 for all m,n.

In many storage systems, restricting the set of sequences that can be written
to the media to be from a constrained system is not enough to ensure the low bit-
error-rate required in these systems. Accordingly, a conventional error correcting
code, or ECC, is used in addition to further reduce the number of errors. Tradi-
tionally, arbitrary user information is encoded twice, first by the ECC encoder and
then by the constrained system encoder, before it is written to the media. Immink
and Wijngaarden [40] proposed a scheme to embed the ECC directly in the con-
strained system. In this scheme, the user information sequence is encoded into
a binary sequence in which certain preset positions are left blank. These posi-
tions are denoted by ‘�’s and are “unconstrained” in the sense that any way of
filling them independently with ‘0’s and ‘1’s would result in a sequence that satis-
fies the given constrained system. The density of ‘�’s in the resulting sequence is
called the insertion rate. Next, a systematic ECC is used to compute parity check
bits, which are stored directly in these unconstrained positions and the resulting
sequence is written to the media. In this manner the written sequence is both a
constrained sequence and an ECC codeword. As the error correcting capability of
an ECC depends on the number of parity-check bits, it is desirable that the num-
ber of unconstrained positions emitted by the encoder, or equivalently the insertion
rate, be as large as possible. The maximum insertion rate is the largest insertion
rate achievable in arbitrary long sequences. On the other hand as the number of
constrained sequences of a given length with a given insertion rate is inversely re-
lated to the insertion rate, increasing the insertion rate reduces the overall encoding
rate (that is the rate of the combined constrained system and ECC encoders). The
tradeoff function [5, 38] quantifies this and provides for a given insertion rate the
highest possible rate of any matching encoder. Accordingly, the tradeoff function
of a constraint evaluated at 0 equals its capacity and thus can be regarded as a
generalization of capacity.

In this work we generalize some of these concepts to higher dimensional con-
straints and non-binary alphabets. In particular, we define independence capac-
ity of a constraint that, roughly speaking, captures the contribution of indepen-
dence between symbols in arrays of the constraint to its capacity. For the binary
alphabet this coincides with the notion of maximum insertion rate. We denote
it by capind(S) for a constraint S. For a 1-dimensional constraint S, it turns
out that cap(S⊗1) ≥ cap(S⊗2) ≥ . . . ≥ capind(S) and we denote the limit

4

Chapter 1. Overview

limD→∞ cap(S⊗
D

) by cap∞(S); hence cap∞(S)≥capind(S). Chaichanavong
and Poo observed the curious fact that for all 1-dimensional constraints S, for
which we we know cap∞(S), it turns out to be equal to capind(S), and they ask
whether this always holds [37]. Here, we give a partial answer by showing that
for a large class of constraints, if capind(S) = 0, than so is cap∞(S) and the
convergence is exponentially fast.

The main contributions of this work are summarized below.

• Calculated the capacity of CHG(2)⊗D and ODD⊗D, for all D∈N [28].

• Generalized an earlier method for computing lower bounds on a certain
class of 2-dimensional constraints, and using the method improved the best
bounds on cap(NAK) and cap(RWIM), and gave the first published esti-
mates of cap(EVEN⊗2) and cap(CHG(3)⊗2) [28].

• Showed that for a large class of constraints S with zero independence capac-
ity, cap(S⊗D)→ 0 exponentially fast [29, 30].

• Determined the tradeoff function of RLL(d,∞) and RLL(d, 2d+ 2) [27].

• Showed how correlation inequalities can be used to obtain lower bounds on
“monotone” 2-dimensional constraints.

This work is organized as follows. In Chapter 2 we define multidimensional
constraints and related concepts. In Chapter 3 we show a method for obtaining
lower bounds on the capacity, for a class of 2-dimensional constraints. In Chap-
ter 4 we calculate the exact capacity of CHG(2)⊗D and ODD⊗D. In Chapter 5 we
generalize some of the concepts of [37, 38] to dimensions larger than 1 and non-
binary alphabets and define multi-choice constraints and independence capacity.
We show some of their properties and in particular prove the exponential conver-
gence of capind(S) to cap∞(S) for certain constraints S, discussed above. In
Chapter 6 we compute the tradeoff function for RLL(d, 2d + 2) and RLL(d,∞).
Finally, in Chapter 7 we show some probabilistic inequalities that hold for certain
2-dimensional binary constraints. From these, we obtain a lower bound on the
capacity.

5

Chapter 2

Multidimensional constraints∗

In this chapter we define multidimensional constraints and related concepts that we
use in the rest of this thesis.

2.1 One-dimensional constraints and labeled directed
graphs

We deal with a finite directed graph G = (V,E), sometimes simply called a graph,
with vertices V and edges E. We occasionally refer to the vertices as states and
to the edges as transitions. For e∈E we denote by σG(e) and τG(e) the initial and
terminal vertices of e inG, respectively. We shall omit the subscriptG from σG and
τG when the graph is clear from the context. For a sequence (ai)

`
i=1 and a set A,

we abuse notation and write (ai)⊆A to mean that ai∈A for i = 1, 2, . . ., `. A path
of length ` in G is a sequence of ` edges (ei)

`
i=1⊆E, where for i = 1, 2, . . ., `−1,

τ(ei)=σ(ei+1). The path starts at the vertex σ(e1) and ends at the vertex τ(e`). A
cycle in G is a path that starts and ends at the same vertex. Fix a finite alphabet
Σ. A directed labeled graph G with labels in Σ is a pair G = (G,L), where
G = (V,E) is a directed graph, and L : E → Σ is a labeling of the edges of G
with symbols of Σ. The paths and cycles of G are inherited from G and we will
sometime use σG and τG to denote σG and τG respectively. For a path (ei)

`
i=1 of G,

we say the path generates the word L(e1)L(e2). . .L(e`) in Σ∗ (Σ∗ denote the set
of all finite (1-dimensional) words over Σ).

As mentioned in Chapter 1, a 1-dimensional constraint or 1-dimensional con-
strained system over Σ is the set of all words generated from finite paths in some
labeled graph with labels in Σ. The graph is called a presentation of the constraint.
A labeled direct graph is called lossless if for any two of its vertices u and v, all
paths starting at u and terminating at v generate distinct words. It is called deter-
ministic if there are no two distinct edges with the same initial vertex and the same
label. Every 1-dimensional constraint S has a deterministic, and therefore lossless,

∗A version of this chapter has been published. Louidor, E. and Marcus, B.H. (2010) Improved
Lower Bounds on Capacities of Symmetric 2-Dimensional Constraints using Rayleigh Quotients.
IEEE Transactions on Information Theory 56:1624–1639.

6

2.1. One-dimensional constraints and labeled directed graphs

presentation [32].
A 1-dimensional constraint over an alphabet Σ is said to have memory m,

for some positive integer m, if for every word w of more than m letters over Σ,
in which every sub-word of m + 1 consecutive letters satisfies S, it holds that
w satisfies S as well, and m is the smallest integer for which this is true. A 1-
dimensional constraint with memory m, for some integer m, is called a finite-
type constraint. Of the examples introduced in Chapter 1, RLL(d, k) is a finite-
type constraint—with memory k, for k<∞, and memory d, for k=∞—whereas
EVEN, ODD and CHG(b) for b≥2 are not finite-type constraints.

We introduce two 1-dimensional constraints defined by general directed
graphs. Let G=(V,E) be a directed graph. The edge constraint defined by G,
denoted X(G), is the 1-dimensional constraint over the alphabet E, presented by
G = (G, IE) where IE is the identity map on E. Equivalently, an edge constraint
is a constraint that can be presented by a labeled graph in which all the edges have
distinct labels. For a graph G=(V,E) with no parallel edges, the vertex-constraint
defined by G, denoted Ẋ(G), is the set{

(vi)
`
i=1⊆V :

`=0,1,2,. . ., and for 1≤i<`, ∃ei∈E s.t.
σ(ei)=vi, τ(ei)=vi+1

}
.

It is not hard to verify that vertex-constraints and edge-constraints are 1-
dimensional constraints with memory (at most) 1. In fact, the vertex constraints
are precisely the finite-type constraints with memory (at most) 1, and it can be
shown that edge constraints are characterized as follows. The follower set of a
symbol a in a constraint S is defined to be {b : ab ∈ S}; edge constraints are
precisely the constraints with memory 1 such that any two follower sets are either
disjoint or identical [26, exercise 2.3.4].

A graph G = (V,E) is irreducible if for any pair of vertices u, v∈V there is
a path in G starting at u and terminating at v; otherwise it is reducible. A graph
G is primitive if it is irreducible and the gcd of the lengths of all cycles of G is 1.
These concepts naturally extend to labeled graphs as well. We denote by A(G) the
adjacency matrix ofG: namely the |V |×|V |matrix where (A(G))i,j is the number
of edges in G from i to j, where | · | denotes cardinality. We use 1 in this work to
denote a real vector in which each entry is 1 and for two real matrices (or vectors)
M ,N of the same size we write M≤N and M<N if the corresponding inequality
holds entry-wise. We say that a graph G is symmetric if A(G) is symmetric. We
say that a vertex of a graph is isolated if it has neither outgoing nor incoming
edges. We say that a vertex-constraint (resp. edge-constraint) is symmetric if it is
defined by a symmetric graph. For a vertex-constraint, this definition is equivalent
to requiring that the constraint is closed under reversal of the order of symbols

7

2.2. Higher dimensional constraints

in words. Note, that in a symmetric edge-constraint, up to removal of isolated
vertices, the (unlabeled) graph defining the constraint is unique.

2.2 Higher dimensional constraints

We consider multidimensional arrays of dimension D—a positive integer. We
use Z+ to denote the set of nonnegative integers. For a D-tuple m =
(m1, . . . ,mD)∈(Z+)D we denote by [m] the Cartesian product

∏
i 0, . . .,mi−1,

and for a finite set A, we call an m1 ×m2 × . . .×mD D-dimensional array with
entries in A, a D-dimensional array of size m over A. We shall index the entries
of such an array by [m]. We use Am and Am1×...×mD to denote the set of all D-
dimensional arrays of size m over A. We define A∗...∗ = A∗D , where the number
of ‘∗’s in the superscript is D, by

A∗D =
⋃
m

Am,

as the set of all finite-size D-dimensional arrays with entries in A. Let Γ∈Σ∗
D

be such an array. Given an integer 1≤i≤D, a row in direction i of Γ is a se-
quence of entries of Γ of the form

(
Γ(k1,k2,...,ki−1,j,ki+1,...,kD)

)mi−1

j=0
for some in-

tegers kl∈[ml]; 1≤l≤D, l 6=i. In this work, for D = 2, we use the convention
that direction 1 is the vertical direction and direction 2 is the horizontal; thus the
columns of a 2-dimensional array are its rows in direction 1, and its “traditional
rows” are its rows in direction 2. Let A,B be finite sets and L : A → B be a map-
ping. We extend L to a mapping L : A∗D→B∗D as follows. For a D-dimensional
array Γ∈Am, L(Γ) is the array in Bm obtained by applying L to each entry of Γ,
that is

(L(Γ))j = L((Γ)j) , j∈[m].

Additionally, for a subset S⊆A∗D we define L(S) = {L(Γ) : Γ∈S}.
We generalize the definition of a constrained system to D dimensions. Let

Ḡ = (G1,G2, . . .,GD), be a D-tuple of labeled graphs with the same set of edges
E and the same labeling L : E → Σ. The edge e has D pairs of initial and
terminal vertices (σGi(e), τGi(e))—one for each graph Gi in Ḡ. We say that an
array Γ∈Σ∗

D
of size m is generated by Ḡ if there exists an array Γ′∈E∗D of size

m, such that for i = 1, 2, . . .,D, every row in direction i of Γ′ is a path in Gi, and
L(Γ′) = Γ. We call the set of all arrays Γ∈Σ∗D generated by Ḡ, the D-dimensional
constrained system or the D-dimensional constraint presented by Ḡ, and denote it
by X(Ḡ) (note the difference from the notation used for edge-constraints where

8

2.2. Higher dimensional constraints

the argument inside the parenthese is an unlabeled graph). We say that Ḡ is a
presentation for X(Ḡ).

In [14], 2-dimensional constrained systems are defined by vertex-labeled
graphs, with a common set of vertices and a common labeling on the vertices.
It can be shown that their definition (generalized to higher dimensions) is equiva-
lent to ours. We find it more convenient to use our definition, since, just as in one
dimension, it permits use of parallel edges and often enables a smaller presentation
of a given constraint.

Figure 2.2 shows presentations for the NAK and RWIM constraints defined in
Chapter 1. In these presentations G1 and G2 describe the vertical and horizontal
constraints on the edges, respectively. Each edge e = (e)i,j is a 2×2 binary matrix
of the form

e =

(
(e)(0,0) (e)(0,1)

(e)(1,0) (e)(1,1)

)
,

and it is labeled by (e)(1,1), i.e., the labeling of an edge simply picks out the entry
in the lower-right corner. For NAK, the edges E = ENAK are the 2 × 2 matrices
which satisfy NAK, that is, with at most one 1. Similarly, for RWIM, the edges
E = ERWIM are the 2× 2 matrices which satisfy RWIM, namely, the elements of
ENAK together with (

1 0
1 0

)
and

(
0 1
0 1

)
,

In the figures, each edge is drawn twice—once in G1 and once in G2—and the
matrix identifying it is written next to it. The states are 1 × 2 blocks for G1 and
2× 1 blocks for G2; for an edge e,

σG1(e) = (e)(0,0)(e)(0,1) , and τG1(e) = (e)(1,0)(e)(1,1) ,

and

σG2(e) =
(e)(0,0)

(e)(1,0)
, and τG2(e) =

(e)(0,1)

(e)(1,1)
.

It follows that, for both constraints, and any rectangular array Γ′∈Em×n with each
of its rows a path in G2 and each of its columns a path in G1, it holds that

Γ′(i,j) =

(
L(Γ′(i−1,j−1)) L(Γ′(i−1,j))

L(Γ′(i,j−1)) L(Γ′(i,j))

)
for i = 1, 2, . . .,m−1, j = 1, 2, . . ., n−1. Therefore, the only 2×2 sub-arrays
appearing in the array L(Γ′) are elements of E, and it follows that L(Γ′) satisfies
the corresponding constraint. Similarly, it can be shown that any array satisfying
the constraint can be generated by the presentation.

9

2.3. Capacity

G1: 01 00 10

G2 : 0
1

0
0

1
0

(
01
00

) (00
00

)
(

00
01

)
(

00
10

)
(

10
00

)
(

00
10

) (00
00

)
(

00
01

)
(

01
00

)
(

10
00

)
(a)

G1: 01 00 10

G2 : 0
1

0
0

1
0

1
1

(
01
00

)(
01
01

) (
00
00

)
(

00
01

)
(

00
10

)
(

10
00

)
(

10
10

)

(
00
10

) (00
00

)
(

00
01

)
(

01
00

)
(

10
00

)(
10
10

) (
01
01

)
(b)

Figure 2.1: Presentations of 2-dimensional constraints: (a) NAK constraint; (b)
RWIM constraint.

2.3 Capacity

In Chapter 1, we introduced the notion of capacity of a D-dimensional constraint.
Here we expand on the definition; in particular we show that capacity is well-
defined. We first need a generalization of Fekete’s Subadditivity Lemma which
will prove useful in subsequent chapters as well. We denote by N the set of positive
integers and by R̄ = R ∪ {−∞,+∞} the extended real numbers. We say that a
function f : ND→R̄ has a limit L∈R̄ at infinity, denoted limm→∞ f(m) = L, if
for every sequence (mi)

∞
i=1⊆ND with mi → ∞, we have limi→∞ f(mi) = L.

This is equivalent to requiring that for any real ε > 0 there exists Nε∈N such
that for all m∈ND with every entry at least Nε, |f(m)−L|<ε. We call a function

10

2.3. Capacity

f : ND → R̄ entry-wise subadditive if for all m∈ND, f(m)<∞, and for any
(m1, . . .,mD)∈ND, i∈{1, 2, . . .,D} and n∈N, it holds that

f(m1, . . .,mi−1,mi+n,mi+1, . . .,mD) ≤f(m1, . . .,mD)+

f(m1, . . .,mi−1, n,mi+1, . . .,mD).

(2.1)

We call a function f : ND → R̄ entry-wise superadditive if −f is entry-wise
subadditive.

Lemma 1. Let f : ND → R̄ be a function, then the following statements hold.

1. If f is entry-wise subadditive then

lim
m→∞

f(m)

|[m]|
= inf

m∈ND

f(m)

|[m]|
. (2.2)

2. If f is entry-wise superadditive then

lim
m→∞

f(m)

|[m]|
= sup

m∈ND

f(m)

|[m]|
. (2.3)

Remark . Note that if f is entry-wise subadditive then for i = 1, 2, . . .,D, for any
mi+1, . . . ,mD ∈ N the mapping

mi → lim
mi−1→∞

lim
mi−2→∞

. . . lim
m1→∞

f(m1, . . . ,mD)

m1·. . .·mi−1

is subadditive; and hence by Part 1 we have the limit

lim
mi→∞

(
1

mi
lim

mi−1→∞
. . . lim

m1→∞

f(m1, . . . ,mD)

m1·. . .·mi−1

)
=

inf
mi∈N

(
1

mi
lim

mi−1→∞
. . . lim

m1→∞

f(m1, . . . ,mD)

m1·. . .·mi−1

)
.

By repeating this argument D times, one has,

lim
mD→∞

. . . lim
m1→∞

f(m1, . . .,mD)

m1·. . .·mD
= inf

mD∈N
. . . inf

m1∈N

f(m1, . . .,mD)

m1·. . .·mD

= inf
m∈ND

f(m)

|[m]|
= lim

m→∞

f(m)

|[m]|
.

An analogous result holds for the superadditive case.

11

2.3. Capacity

Proof. Part 1. Let f be entry-wise subadditive. It’s easy to check that (2.1) implies
that for all (a

(0)
1 , . . ., a

(0)
D), (a

(1)
1 , . . ., a

(1)
D)∈ND, k∈N, and i∈{1, . . .,D}, we have

f(a
(0)
1 , . . ., a

(0)
i−1, ka

(0)
i , a

(0)
i+1, . . ., a

(0)
D) ≤ kf(a

(0)
1 , . . ., a

(0)
D) (2.4)

f(a
(0)
1 +a

(1)
1 , . . ., a

(0)
D +a

(1)
D) ≤

∑
x∈{0,1}D

f(a
(x1)
1 , . . ., a

(xD)
D), (2.5)

where x = (x1, . . ., xD) in the sum in the RHS of (2.5).
Now, let (m(i))∞i=1⊆ND be a sequence satisfying m(i) → ∞. Write m(i) =

(m
(i)
1 , . . .,m

(i)
D), and let n = (n1, . . ., nD) be a vector in ND. Since m(i) → ∞

(and D is finite), there is an i0=i0(n) such that for all i≥i0, m(i)≥2n. Set M =
max({0}∪{f(x) : x∈

∏
j{1, . . ., nj}}) and let i≥i0. Note, that by our assumption

on f , M 6= ±∞. For each j = 1, . . .,D, there are (unique) q(i)
j , r

(i)
j ∈N, such that

m
(i)
j = q

(i)
j nj + r

(i)
j , and 1≤r(i)

j ≤nj . We define α(0)
j =β

(0)
j =r

(i)
j , α(1)

j =q
(i)
j nj , and

β
(1)
j =nj . Let T = {0, 1}D\{1} (where 1 denotes the vector in ND with every

entry equal to 1). Then using (2.5) and (2.4) we have

f(m(i))

|[m(i)]|
=
f(q

(i)
1 n1+r

(i)
1 , . . . , q

(i)
D nD+r

(i)
D)

|[m(i)]|

≤
∑

x∈{0,1}D f(α
(x1)
1 , . . . , α

(xD)
D)

|[m(i)]|

≤

∑
x∈{0,1}D

(
f(β

(x1)
1 , . . . , β

(xD)
D)

∏
j

(
q

(i)
j

)xj)
|[m(i)]|

=
f(n)

∏
j q

(i)
j +

∑
x∈T

(
f(β

(x1)
1 , . . . , β

(xD)
D)

∏
j

(
q

(i)
j

)xj)
|[m(i)]|

≤ f(n)
∏
j

q
(i)
j

q
(i)
j nj+r

(i)
j

+
∑
x∈T

M∏
j

(q
(i)
j)xj

q
(i)
j nj+r

(i)
j

 , (2.6)

where, again, in each sum above x = (x1, . . ., xD). Since m(i) → ∞, it follows
that limi→∞ q

(i)
j = ∞ for each j=1, . . .,D. Observe that, as i goes to infinity,

the first summand of the RHS of (2.6) converges to f(n)/|[n]|, and each of the
other summands converges to 0. Hence, taking the lim sup of both sides of the
last inequality, we obtain lim supi→∞(f(m(i))/|[m(i)]|) ≤ f(n)/|[n]|. Since n is
arbitrary, this implies

lim sup
i→∞

f(m(i))

|[m(i)]|
≤ inf

n∈ND

f(n)

|[n]|
. (2.7)

12

2.4. Axial product

On the other hand, clearly,

inf
n∈ND

f(n)

|[n]|
≤ lim inf

i→∞

f(m(i))

|[m(i)]|
≤ lim sup

i→∞

f(m(i))

|[m(i)]|
.

Combining this with (2.7) we get limi→∞(f(m(i))/|[m(i)]|) = infn{f(n)/|[n]|},
and the result follows.

Part 2. Easily follows by applying Part 1 to −f . �

Observe that D-dimensional constraints are closed under taking contiguous
sub-arrays, meaning that if an array belongs to the constraint then any of its D-
dimensional contiguous sub-arrays also belongs to the constraint. This implies that
the mapping m→ log |Sm| for m∈ND, where we define log 0=−∞, is entry-wise
subadditive. Thus by Lemma 1, the limit in (1.1) always exists, is independent of
the choice of (mi)

∞
i=1, and satisfies

cap(S) = inf
m∈ND

log |Sm|
|[m]|

(2.8)

For a nonnegative matrix A denote by λ(A) its Perron eigenvalue, that is, its
largest real eigenvalue. It is well-known that for a 1-dimensional constraint S pre-
sented by a lossless labeled graph G = (G,L), the capacity of S is log λ (A(G)).
In particular, for a graph G, it holds that cap(X(G)) = log λ (A(G)).

2.4 Axial product

The axial product of D sets L1, . . ., LD⊆Σ∗, denoted L1⊗L2⊗. . .⊗LD ⊆ Σ∗
D

,
is the set of all arrays Γ∈Σ∗

D
such that for i = 1, 2, . . .,D every row of

Γ in direction i belongs to Li. If L1=L2=. . .=LD = L we say that the
axial-product is isotropic and denote it by L⊗D. Given a presentation Ḡ =
((G1,L), . . ., (GD,L)) for a D-dimensional constraint S with a common set of
edges E, the set X(G1)⊗. . .⊗X(GD) ⊆ E∗

D
is a D-dimensional constraint pre-

sented by ((G1, IE), . . ., (GD, IE)), where IE is the identity map on E.
If cap(X(G1)⊗. . .⊗X(GD))=cap(S), we say that Ḡ is capacity-preserving.

For D=1 any lossless, and therefore deterministic, presentation of S is capacity-
preserving, since in a lossless graph with |V | vertices there are at most |V |2 paths
generating any given word; for D > 1, the question whether every D-dimensional
constraint has a capacity-preserving presentation is open. This is a major open
problem in symbolic dynamics, although it is usually formulated in a slightly
different manner; see [6], where it is shown that for every D-dimensional con-
straint S and ε > 0, there is a presentation Ḡ = ((G1,L), . . ., (GD,L)) such

13

2.4. Axial product

that cap(S)≤cap(X(G1)⊗. . .⊗X(GD))<cap(S)+ε. We show in the next propo-
sition that the answer to this question is positive, if S is an axial product of D
one-dimensional constraints.

Proposition 1. Let S(1), S(2), . . ., S(D)⊆Σ∗ be D one-dimensional constraints
over Σ, and let S = S(1)⊗. . .⊗S(D), then S is a D-dimensional constraint over
Σ. Moreover, S has a capacity-preserving presentation.

Remark . There are D-dimensional constraints which are not axial products of D
one-dimensional constraints. For example for D=2, the NAK constraint defined
in Chapter 1 is not an axial product.

Proof. Let GS(1) , . . .,GS(D) be presentations of S(1), . . ., S(D), where, for i =
1, 2, . . .,D, GS(i) = ((Vi, Ei),Li). Define the D-tuple of labeled graphs Ḡ =
(G1, . . .,GD), as follows. Let

E=

{
(e1, . . ., eD)∈

D∏
i=1

Ei:L1(e1)=L2(e2)=. . .=LD(eD)

}
,

and let L : E → Σ be given by

L(e1, . . ., eD) = L1(e1) ; (e1, . . ., eD)∈E.

For i = 1, 2, . . .,D, the graph Gi is defined by Gi = (Gi,L) with Gi = (Vi, E),
where for e = (e1, . . ., eD)∈E, σGi(e) = σG

S(i)
(ei) and τGi(e) = τG

S(i)
(ei). It’s

easy to verify that Ḡ is a presentation of S(1)⊗S(2)⊗. . .⊗S(D).
Assume now that every GS(i) is lossless. We show that in this case Ḡ is capacity

preserving. Let X=X(G1)⊗. . .⊗X(GD), n be a positive integer, and let n be the
D-tuple with every entry equal to n. We extend the mapping L to L : Xn→Sn as
described above. Now, fix an array Γ∈Sn, and for i = 1, 2, . . .,D let Γ′(i)∈(Ei)

n

be an array such that every row in direction i, (Γ
′(i)
jk

)nk=1 is a path in GS(i) generating
the corresponding row (Γjk)nk=1 in Γ. Let Γ′∈En be the array with entries given by
Γ′j = (Γ

′(1)
j , . . .,Γ

′(D)
j), j∈[n]D. It follows from the construction of Ḡ that Γ′∈Xn,

and that L(Γ′) = Γ. Moreover, any array ∆∈Xn such that L(∆) = Γ can be
constructed in this manner. Now, as each GS(i) is lossless, there are at most |Vi|2
possibilities of choosing each row in direction i of Γ′(i), and as there are nD−1 such
rows, there are at most |Vi|2n

D−1
possibilities of choosing each Γ′(i). It follows that

|L−1({Γ})| ≤
D∏
i=1

|Vi|2n
D−1

,

14

2.5. Two-dimensional constraints

where L−1({Γ}) = {Γ′∈Xn : L(Γ′) = Γ}. Summing the latter inequality over all
Γ∈Sn, we obtain

|Xn|≤|Sn|
D∏
i=1

|Vi|2n
D−1

.

Taking the log, dividing through by nD, and taking the limit as n approaches infin-
ity, we have cap(X)≤cap(S). Clearly, cap(X)≥cap(S), sinceX is a presentation
of S. The result follows. �

Let S be a 1-dimensional constraint. Since for any m∈ND |(S⊗D)m| =
|(S⊗(D+1))(m,1)| it follows from (2.8) that cap(S⊗D) is non-increasing in D.

2.5 Two-dimensional constraints

We introduce some specialized definitions for 2-dimensional constraints. For a
2-dimensional array Γ∈Σm1×m2 , for nonnegative integers m1, m2, we denote by
Γt its transpose, namely (Γt)(i,j) = (Γ)(j,i) for all (i, j)∈[m1]×[m2]. For a 2-
dimensional constraint S over Σ, we use St to denote the set

St =
{

Γ∈Σ∗∗ : Γt∈S
}
,

Clearly St is a 2-dimensional constraint with cap(St) = cap(S).
We shall use the following (MATLAB-like) notation for 2-dimensional arrays.

Let A be a set and Γ∈As×t. For integers 0≤s1≤s2<s and 0≤t1≤t2<t, we denote
by Γs1:s2,t1:t2 the sub-array:

(Γs1:s2,t1:t2)i,j = Γs1+i,t1+j ; (i, j)∈[s2−s1+1]×[t2−t1+1],

and by Γs1:s2,∗ (resp. Γ∗,t1:t2) the sub-array Γs1:s2,0:t−1 (resp. Γ0:s−1,t1:t2). We
also abbreviate x:x in the subscript by x. We shall use the same notation for one-
dimensional vectors: for a vector v∈As, vs:t denotes the sub-vector

(vs:t)i = vs+i ; i∈[t−s+1].

2.5.1 Horizontal and vertical strips

Let S be a 2-dimensional constraint over Σ, and m be a positive integer. The
horizontal (resp. vertical) strip of height (resp. width) m of S, denoted Hm(S)
(resp. Vm(S)) is the subset of S given by

Hm(S) =
⋃
n

Sm×n (resp. Vm(S) =
⋃
n

Sn×m).

15

2.5. Two-dimensional constraints

Let S be a 2-dimensional constraint over an alphabet Σ, and consider a hor-
izontal (resp. vertical) strip Hm(S) (resp. Vm(S)) of S for some positive inte-
ger m. We regard such a strip as a set of 1-dimensional words over Σm where
each m×n (resp. n×m) array in the strip is considered a word of length n
over Σm. Below we show that the horizontal and vertical strips of S are 1-
dimensional constraints over Σm. For this, we need the following definition.
Let G = (V,E) be a graph, and let m be a positive integer. Let G×m be
the graph given by G×m = (V m, Em), where for each e = (e1, . . ., em)∈Em,
σG×m(e) = (σG(e1), . . ., σG(em)) and τG×m(e) = (τG(e1), . . ., τG(em)). For a
labeled graph G = (G,L) with G = (V,E) and L : E → Σ, let G×m be the
labeled graph defined by G×m = (G×m,L×m), where L×m : Em → Σm is given
by

L×m(e1, . . ., em)=(L(e1), . . .,L(em)) ; (e1, . . ., em)∈Em

We callG×m (resp., G×m) themth tensor-power ofG (resp., G). We can now state
the following proposition.

Proposition 2. Let S be a 2-dimensional constraint over Σ and let m be a positive
integer. Then

1. Hm(S) (resp. Vm(S)) is a 1-dimensional constraint over Σm.

2. Let S = T (V)⊗T (H) for 1-dimensional constraints T (V), T (H) over Σ, pre-
sented by labeled graphs G(V), G(H), respectively. Then the 1-dimensional
constraintHm(S) is presented by the labeled graph G(H)

m defined as the sub-
graph of the labeled graph (G(H))×m consisting of only those edges whose
label (anm-letter word over Σ) satisfies T (V). An analogous statement holds
for Vm(S), with respect to the graph G(V)

m formed in a similar way from
(G(V))×m.

Proof. It suffices to prove this only for horizontal stripsHm(S)—the argument for
the vertical strip being analogous. We first prove part 2. It’s easy to verify that the
labeled graph (G(H))×m presents the constraint over Σm, consisting of all m×n
arrays of Σ∗∗ such that every row satisfies T (H). It follows that the subgraph G(H)

m ,
formed by removing all the edges of (G(H))×m that are labeled with a word that
does not satisfy T (V), presents the 1-dimensional constraint consisting of all m×n
arrays with every row satisfying T (H) and every column satisfying T (V). This is
precisely the constraintHm(S).

We proceed to prove part 1. Let the pair of labeled graphs (G(V),G(H)) be
a presentation of S, where G(V) = ((V (V), E),L) and G(H) = ((V (H), E),L).
Define the edge-constraints E(V) = X(V (V), E) and E(H) = X(V (H), E). Since
(G(V),G(H)) is a presentation of S, we have S = L(E(V)⊗E(H)), and therefore

16

2.6. Open questions

Hm(S) = L(Hm(E(V)⊗E(H))). By part 2, Hm(E(V)⊗E(H)) is a 1-dimensional
constraint, presented by a labeled graph G(H)

m with edges labeled by words in Em.
Replacing each such label e∈Em in that graph with L(e), we clearly obtain a
presentation of L(Hm(E(V)⊗E(H))) = Hm(S). �

2.6 Open questions

A major problem in the theory of multidimensional constrained systems is the com-
putation of their capacity. As already mentioned before, the problem is essentially
solved for 1-dimensional constraints, however, in higher dimensions, only a few
methods for estimating the capacity of a general D-dimensional constraint exist.
In the light of [2], no “computable” formula for the capacity of such constraints
exists; yet, it still may be true that for some specialized sub-classes of constraints,
one can compute the capacity exactly. For example, the hard square constraint is a
relatively old open problem for which no “closed-form” formula for computing the
capacity is currently known. However, such a formula is known for the hexagonal-
lattice version of this constraint (the “hard-hexagon constraint”) [1], which perhaps
suggests that a similar formula exists for the capacity of the hard-square constraint.

17

Chapter 3

Lower bounds on capacity of
2-dimensional symmetric
constraints∗

A method for computing very good lower-bounds on the capacity of the hard-
square constraint is given in [7] (see also [34, 41]). [3] generalizes the method
slightly and also presents a method for obtaining good upper-bounds on the capac-
ity of this constraint. Both the method for obtaining the lower- and the method for
obtaining the upper-bounds can be shown to work on any 2-dimensional constraint
for which every horizontal or every vertical strip is a symmetric vertex-constraint.
In this chapter we show a generalization of the method for obtaining the lower-
bounds that gives improved bounds on capacities of such constraints. Moreover,
we show how this generalization as well as the method for obtaining the upper-
bounds may be applied to a larger class of 2-dimensional constraints that includes
constraints in which the vertical and horizontal strips are not necessarily finite-
type. We illustrate this by computing lower and upper bounds on the capacities of
the EVEN⊗2 and CHG(3)⊗2 constraints, and show that

0.4402086447 ≤ cap(EVEN⊗2) ≤ 0.4452873312, and

0.4222689819 ≤ cap(CHG(3)⊗2) ≤ 0.5328488954.

3.1 Constraints with symmetric edge-constrained strips

In this section we generalize the method presented in [3, 7] to provide improved
lower bounds on capacities of 2-dimensional constraints whose horizontal strips
are symmetric edge-constraints.

Fix an alphabet Σ, and let S be a 2-dimensional constraint over Σ. We say
that S has horizontal edge-constrained-strips if for every positive integer m, the

∗A version of this chapter has been published. Louidor, E. and Marcus, B.H. (2010) Improved
Lower Bounds on Capacities of Symmetric 2-Dimensional Constraints using Rayleigh Quotients.
IEEE Transactions on Information Theory 56:1624–1639.

18

3.1. Constraints with symmetric edge-constrained strips

constraint Hm(S) is an edge-constraint. If, in addition, every horizontal strip is
symmetric, we say that S has symmetric horizontal edge-constrained strips. Anal-
ogously, using Vm(S), we have the notions of a 2-dimensional constraint with
vertical edge-constrained-strips and symmetric vertical edge-constrained-strips

Here, we consider constraints of the form S = T ⊗ E , where E=X(GE)
is an edge-constraint defined by the graph GE = (VE , EE) and T is an arbi-
trary 1-dimensional constraint over Σ. Then E is presented by GE = (GE , IE)
where IE is the identity map on EE . Let m be a positive integer. By Propo-
sition 2, part 2, Hm(S) is a 1-dimensional constraint presented by a subgraph
G(H)
m = (G

(H)
m , I×mE) of G×mE . It follows that Hm(S) = X(G

(H)
m), and so S has

horizontal edge-constrained strips. Henceforth, we further assume that it has sym-
metric horizontal edge-constrained strips; note that symmetry of the graph GE is
necessary but not sufficient for this assumption (see Proposition 3 below).

For a positive integer m, let Fm = |(VE)m|, and let Hm denote the Fm × Fm
adjacency matrix of G(H)

m . Since limn→∞(log(|Sm×n|)/n) = cap(Hm(S)) for
every positive integer m, we have

cap(S) = lim
m,n→∞

log |Sm×n|
mn

= lim
m→∞

lim
n→∞

log |Sm×n|
mn

= lim
m→∞

cap(Hm(S))

m

= lim
m→∞

log λ(Hm)

m
. (3.1)

For a matrix M , let Mt denote its transpose. Fix a positive integer m. Following
[3, 7], since Hm is real and symmetric, we obtain by the min-max principle [16]

λ(Hp
m) ≥ yt

mH
p
mym

yt
mym

,

for any Fm×1 real vector ym 6= 0 and positive integer p. The RHS of the last
inequality is known as a Rayleigh quotient. Choosing ym to be the vector Hq

mxm,
for some positive integer q and Fm × 1 real vector xm such that ym 6= 0, we have

λ(Hp
m) ≥ xtmH

2q+p
m xm

xtmH
2q
m xm

. (3.2)

Thus by (3.1), it follows that

cap(S) ≥ 1

p
lim sup
m→∞

1

m
log

xtmH
2q+p
m xm

xtmH
2q
m xm

. (3.3)

19

3.1. Constraints with symmetric edge-constrained strips

In [3, 7], each xm is chosen to be the vector 1 with Fm entries. We
obtain improved lower bounds in many cases by choosing other sequences
of vectors, (xm)∞m=1, as follows. We fix integers µ≥0 and α≥1, and let
φ : (VE)

µ+α → [0,∞) be a nonnegative function. Our method works for se-
quences (xmk)∞k=1, where mk = µ + kα for positive integers k, and the entries
of each xmk are indexed by (VE)

mk and given by

(xmk)v=
k−1∏
i=0

φ(viα:iα+µ+α−1) ; v∈(VE)
mk . (3.4)

For such sequences and a fixed positive integer n, we will show that one can com-
pute Ln, the growth rate of xtmkH

n
mk

xmk :

Ln = lim
k→∞

logxtmkH
n
mk

xmk
mk

,

and from (3.3) we obtain the lower bound cap(S)≥(L2q+p − L2q)/p.
Before doing this for general µ and α, it is instructive to look at the special

case: µ = 0 and α = 1. In this case mk=k, and using (3.4) to define xk we obtain

(xk)v =
k−1∏
i=0

φ((v)i) ; v∈(VE)
k.

Let n be a positive integer. For a word w = w1. . .wn∈E define its weight,Wφ(w),
by Wφ(w)=φ(σ(w1))φ(τ(wn)), where w1, wn are regarded as edges in GE and
extend this to arrays Γ∈Sm×n by

Wφ(Γ) =
m−1∏
i=0

Wφ(Γi,∗).

Observe that for an array Γ∈Sm×n that is a path in G(H)
m of length n starting at

v∈(VE)
m and ending at u∈(VE)

m, it holds thatWφ(Γ)=(xm)v(xm)u. It follows
that

xtmH
n
mxm=

∑
Γ∈Sm×n

Wφ(Γ). (3.5)

Now, pick a deterministic presentation, G(V)
n , of Vn(S), where G(V)

n =

((V
(V)
n , E

(V)
n),L(V)

n), and let Wφ : E
(V)
n →[0,∞) be the edge weighting defined

by Wφ(e) = Wφ(L(V)
n (e)), for e∈E(V)

n . Let A(G(V)
n ,Wφ) be the |V (V)

n |×|V (V)
n |

20

3.1. Constraints with symmetric edge-constrained strips

weighted adjacency matrix of G(V)
n with entries indexed by V (V)

n ×V (V)
n and given

by (
A(G(V)

n ,Wφ)
)
i,j

=
∑

e∈E(V)
n :

σ(e)=i,τ(e)=j

Wφ(e) ; i, j∈V (V)
n .

Then

1tA(G(V)
n ,Wφ)m1 =

∑
γ

Wφ(L(V)
n (γ)),

where the sum is taken over all paths γ in G(V)
n of length m and L(V)

n (γ) denotes
the array in Sm×n generated by γ. Since G(V)

n is deterministic it follows that

lim
m→∞

log 1tA(G(V)
n ,Wφ)m1

m
= lim

m→∞

log
∑

Γ∈Sm×nWφ(Γ)

m
.

By (3.5) the RHS is Ln and by Perron-Frobenius theory the LHS is
log λ(A(G(V)

n ,Wφ)), and thus Ln = log λ(A(G(V)
n ,Wφ)).

For general µ, α, we proceed similarly. We pick a deterministic presentation,
G(V)
n , of the vertical strip Vn(S), with G(V)

n = ((V
(V)
n , E

(V)
n),L(V)

n), and construct a
labeled directed graph I=I(µ, α, n,G(V)

n , GE)=((VI , EI),LI), with nonnegative
real weights on its edges given by Wφ : EI → [0,∞). The graph I and weight
functionWφ are defined as follows. The set of vertices VI is given by

VI =
{

(f , v, l) : v ∈ V (V)
n , f , l ∈ (VE)

µ
}
,

and the function LI : EI → Σα×n labels each edge with an α×n array over
Σ. We specify the edges of I by describing the outgoing edges of each of its
vertices along with their weights. Let v = (f , v, l) ∈ VI be a vertex of I. The
set of outgoing edges of v consists of exactly one edge for every path of length
α in G(V)

n starting at v. Let γ = (ei)
α−1
i=0 ⊆ E

(V)
n be such a path and let u be its

terminating vertex. We regard the word generated by γ in G(V)
n as an array Γ ∈

Σα×n with entries given by (Γ)i,j =
(
L(V)
n (ei)

)
j
. Let f = (f0, . . . , fµ−1) and l =

(l0, . . . , lµ−1) and for i = µ, µ+1, . . ., µ+α−1, define fi to be σ(Γi−µ,0) and li to
be τ(Γi−µ,n−1), where Γi−µ,0 and Γi−µ,n−1 are regarded as edges in the graphGE .
For such a path γ the corresponding outgoing edge e ∈ EI of v satisfies σ(e) =
v, LI(e) = Γ, τ(e) = ((fα, fα+1, . . . , fα+µ−1), u, (lα, lα+1, . . . , lα+µ−1)). The
weight of e, Wφ(e), is given by Wφ(e) = φ(f0, . . . , fµ+α−1)φ(l0, . . . , lµ+α−1).
We shall regard the label of a path (ei)

`−1
i=0 in I as the `α×n array Γ over Σ resulting

21

3.1. Constraints with symmetric edge-constrained strips

from concatenating the labels of the edges of γ in order in the vertical direction,
namely Γiα+k,j = (LI(ei))k,j , for all i∈[`], k∈[α] and j∈[n]. Finally, we define
the weighted adjacency matrix of the labeled directed graph I with weights given
byWφ as the |VI | × |VI | nonnegative real matrix A(I,Wφ) with entries indexed
by VI × VI and given by

(A(I,Wφ))i,j =
∑
e∈EI :

σ(e)=i,τ(e)=j

Wφ(e) ; i, j ∈ VI .

Figure 3.1 shows paths generating an `α×n array Γ∈S: the left part of the fig-
ure shows such a path in G(V)

n and the right part of the figure shows the “correspond-
ing” path in I. The label of each edge in G(V)

n and I is “overlayed” on top of it.
Each row of Γ—a path inGE of length n—is depicted in the figure as a grey “snake-
like” curve. In the figure, we denote by si,ti the states σ(Γi,0), τ(Γi,n−1)∈GE
respectively, for i = 0, 1, . . ., `α−1.

The following lemma generalizes ideas in [3, 7] and uses the weighted labeled
graph I to compute Ln, when (xmk)∞k=1 is the sequence defined by (3.4).

Lemma 2. For a sequence (xmk)∞k=1 with each xmk given by (3.4), and I =

I(µ, α, n,G(V)
n , GE),

lim
k→∞

logxtmkH
n
mk

xmk
mk

=
log λ(A(I,Wφ))

α
.

Proof. Let (xmk)∞k=1 be a sequence of vectors with each xmk given by (3.4). We
shall show that there are positive real constants c,d (depending on I and φ) such
that for all positive integers k,

c · 1t (A(I,Wφ))k+dµ/αe 1 ≤ xtmkH
n
mk

xmk

≤ d · 1t (A(I,Wφ))k 1.
(3.6)

For a positive integer s and vector e = (e0, . . . , es−1) in (EE)
s denote by

σ(e), τ(e) ∈ (VE)
s the vectors with entries given by

(σ(e))i = σ(ei)
(τ(e))j = τ(ei)

; i ∈ {0, 1, . . . , s−1}.

Now, fix a positive integer k. Let Γ be an array in Smk×n. Recall that each
entry of Γ is an edge in GE and define the weight of Γ, denotedWφ(Γ), by

Wφ(Γ)=

k−1∏
i=0

φ(σ(Γiα:iα+µ+α−1,0))φ(τ(Γiα:iα+µ+α−1,n−1)).

22

3.1. Constraints with symmetric edge-constrained strips

s0 t0

v0

s1 t1

v1

s`α−1 t`α−1

v`α−1

v2

v`α

f0 l0
v0

...
...

f1 l1
vα

...
...

...
...

f2 l2
v2α

...
...

...
...

f` l`
v`α

...
...

...
...

s0 t0

s1 t1

sα−µ tα−µ

sα−1 tα−1

sα tα

sα+1 tα+1

s2α−µ t2α−µ

s2α−1 t2α−1

s(`−1)α t(`−1)α

s(`−1)α+1 t(`−1)α+1

s`α−µ t`α−µ

s`α−1 t`α−1

Figure 3.1: Paths generating an `α×n-array of S, in G(V)
n (left) and I (right).

23

3.1. Constraints with symmetric edge-constrained strips

For a positive integer `, let P` denote the set of paths of length ` in I. We denote
the label of a path γ∈P` by LI(γ). It is easily verified that there exists a path in
P` with label Γ ∈ Σ`α×n if and only if there exists a path in G(V)

n of length `α
that generates Γ. As G(V)

n is a presentation of Vn, the set of labels of paths in P` is
S`α×n.

For a finite path γ in I, define its weight, denotedWφ(γ), as the product of the
weights of the edges in the path. Recalling that the entries of xmk are indexed by
(VE)

mk , we observe that

xtmkH
n
mk

xmk =
∑

Γ∈Smk×n

(xmk)σ(Γ∗,0) (xmk)τ(Γ∗,n−1)

=
∑

Γ∈Smk×n

Wφ(Γ).

For an array Γ ∈ Smk×n, we say that a path γ ∈ Pk matches Γ if it is labeled by the
sub-array Γµ:mk−1,∗ and starts at a vertex (f , v, l) ∈ VI with f = σ(Γ0:µ−1,0) and
l = τ(Γ0:µ−1,n−1). It can be verified from the construction of I that if γ matches
Γ thenWφ(γ) =Wφ(Γ).

Now, since G(V)
n is a presentation of Vn(S), it follows from the construction of

I that every Γ ∈ Smk×n has a path in Pk matching it. Conversely, since for a path
γ ∈ Pk all arrays Γ ∈ Smk×n that it matches have the same sub-array Γµ:mk−1,∗,
it follows that there are at most |Σ|µn arrays in Smk×n that γ matches. Therefore,

xtmkH
n
mk

xmk =
∑

Γ∈Smk×n

Wφ(Γ)

≤ |Σ|µn
∑
γ∈Pk

Wφ(γ)

= |Σ|µn1t (A(I,Wφ))k 1.

This shows the right inequality of (3.6), we now turn to the left. Set k′ = k+dµ/αe,
s = dµ/αeα− µ, and let ψ : Pk′ → Smk×n be given by

ψ(γ) = (LI(γ))s:k′α−1,∗ ; γ ∈ Pk′ .

24

3.1. Constraints with symmetric edge-constrained strips

For a path γ ∈ Pk′ , with γ = (ei)
k′−1
i=0 ⊆ EI , its weight satisfies

Wφ(γ) =
k′−1∏
i=0

Wφ(ei)

=

dµ/αe−1∏
i=0

Wφ(ei)

Wφ(ψ(γ))

≤ Φ2dµ/αeWφ(ψ(γ)),

where we take Φ to be a positive constant satisfying Φ≥max {φ(v):v∈(VE)
µ+α}.

Now let Γ be an array in Smk×n. Since G(V)
n is deterministic, so is I, and thus

for every vertex v ∈ VI , the paths in P ′k starting at v are labeled distinctly. As
all paths γ that map to Γ under ψ have the same sub-array (LI(γ))s:k′α−1,∗, it
follows that there are at most |Σ|sn paths γ ∈ P ′k starting at v such that ψ(γ) = Γ.
Consequently, there are at most |VI ||Σ|sn paths in Pk′ that map to Γ under ψ.
Therefore,

1t (A(I,Wφ))k+dµ/αe 1 =
∑
γ∈Pk′

Wφ(γ)

≤ Φ2dµ/αe
∑
γ∈Pk′

Wφ(ψ(γ))

≤ Φ2dµ/αe|VI ||Σ|sn
∑

Γ∈Smk×n

Wφ(Γ)

= Φ2dµ/αe|VI ||Σ|sn

·xtmkH
n
mk

xmk .

Dividing both sides by Φ2dµ/αe|VI ||Σ|sn we obtain the left inequality of (3.6). The
claim of the lemma now follows from Perron-Frobenius theory by taking the log
of (3.6), dividing it by mk and taking the limit as k approaches infinity. �

We thus obtain the following lower bound on the capacity of a 2-dimensional
constraint.

Theorem 1. Let T, E be 1-dimensional constraints over an alphabet Σ, with E an
edge constraint defined by a graph GE = (VE , EE). Set S = T⊗E and suppose
that S has symmetric horizontal edge-constrained strips. Let µ≥0 and α, p, q>0
be integers and φ : (VE)

µ+α → [0,∞) be a nonnegative real function. For a
positive integer n, let Gn be a deterministic presentation of Vn(S), and set An,φ =

25

3.1. Constraints with symmetric edge-constrained strips

A(I(µ, α, n,Gn, GE),Wφ). Then

cap(S) ≥
log λ(A2q+p,φ)− log λ(A2q,φ)

pα
. (3.7)

Remark 1. In addition to computing lower-bounds, [3] gives a method for comput-
ing upper bounds on the capacity of the hard-square constraint. It can be shown
that this method can also be applied to all constraints of the form T⊗E , with E an
edge constraint, having symmetric horizontal edge-constrained strips.

Remark 2. Theorem 1 can be generalized to apply to 2-dimensional constraints
having symmetric horizontal edge-constrained strips, which are not necessarily
axial-products. Let S be such a constraint, and for every positive integer m, let
G

(H)
m = (V

(H)
m , E

(H)
m) be the symmetric graph, with no isolated vertices, defining

Hm(S). Set GE = G
(H)
1 , VE = V

(H)
1 and EE = E

(H)
1 . We claim there exists a

mapping fm : V
(H)
m →(VE)

m such that for every edge e = e0e1. . .em−1∈E(H)
m ,

with each ei∈EE ,

fm(σ(e)) = (σ(e0), . . ., σ(em−1)) and

fm(τ(e)) = (τ(e0), . . ., τ(em−1)). (3.8)

This mapping is defined as follows. For a vertex v∈V (H)
m , pick an incoming edge

e = e0e1. . .em−1∈E(H)
m and define fm(v) as (τ(e0), . . ., τ(em−1)). This mapping

is uniquely-defined: indeed if e′ = e′0. . .e
′
m−1∈E

(H)
m is another incoming edge

of v, and g = g0. . .gm−1∈E(H)
m is an outgoing edge of v, then clearly, for every

i∈[m], both eigi and e′igi are paths in GE ; consequently τ(ei) = τ(e′i). It is easy
to check that fm satisfies the conditions in (3.8). Now, replace the definition of
(xmk)v in (3.4) with

(xmk)v=

k−1∏
i=0

φ(uiα:iα+µ+α−1) ; u = fmk(v),v∈V (H)
mk

.

With this new definition and the aid of (3.8), it can be verified that Lemma 2 and
consequently Theorem 1 still hold.

Remark 3. Clearly, it is sufficient, for the theorem to hold, thatHm(S) is symmet-
ric for large enough m.

We now give a sufficient condition for the constraint S = T⊗E to have
symmetric horizontal edge-constrained strips. For this to happen, we (generally)
must have that GE is symmetric. This means that there exists a “matching” be-
tween edges, were each edge is matched with an edge in the “reverse” direc-
tion. More precisely there is a bijection R : EE → EE such that for all e ∈ EE ,

26

3.2. Constraints with symmetric vertex-constrained strips

(σ(e), τ(e)) = (τ(R(e)), σ(R(e))) and R(R(e)) = e. We call such a bijection
an edge-reversing matching, and we denote byR(GE) the set of all edge-reversing
matchings of GE . Clearly a graph G is symmetric iff it has an edge-reversing
matching. Thus T⊗E has symmetric horizontal edge-constrained strips iff for ev-
ery m, G(H)

m has an edge-reversing matching. We present a sufficient condition for
this to hold.

Proposition 3. Let T, E be 1-dimensional constraints over an alphabet Σ, with E
an edge constraint defined by a graph GE = (VE , EE) with R ∈ R(GE) an edge-
reversing matching. If for every word e1. . .em∈T one has R(e1). . .R(em)∈T as
well (for all m), then T⊗E has symmetric horizontal edge-constrained strips.

Proof. Let G(H)
m = (V m

E , E
(H)
m) be the subgraph of G×mE that definesHm(S). We

show that G(H)
m is symmetric. Let R×m : EmE → EmE be defined by

R×m(e1, . . ., em) = (R(e1), . . ., R(em)).

Clearly, R×m is an edge-reversing matching of G×mE . Recall that E(H)
m consists

of all the edges in EmE that, when regarded as m-letter words over Σ, satisfy T .
Therefore, by the assumption, it follows that for all e∈E(H)

m , R×m(e)∈E(H)
m as

well. Consequently, R×m restricted to E
(H)
m , is an edge-reversing matching of

G
(H)
m and hence it is symmetric. �

If GT is a presentation of T and R∈R(GE), a sufficient condition for the hy-
pothesis of Proposition 3 to hold, which may be easier to check, is the existence of
a function f : ET → ET satisfying: 1) LT (f(e)) = R(LT (e)) for all e ∈ ET and
2) for any path e1e2 of length 2 in GT , the sequence f(e1)f(e2) is also a path in
GT . Indeed, if such a function exists then any path ε1ε2. . .εm in GT generating a
word e1e2. . .em has a corresponding path f(ε1)f(ε2). . .f(εm) generating the word
R(e1)R(e2). . .R(em), and thus the hypothesis of Proposition 3 is fullfiled. In fact,
it can be shown that when GT is irreducible, deterministic and has the minimum
number of vertices among all deterministic presentations of T , this condition is
also necessary for the hypothesis of Propositon 3 to hold (see [26, Section 3.3]).

In Section 3.3 we use Proposition 3 to show that the method described in this
section can be used to compute lower bounds on CHG(b1)⊗CHG(b2) for any
positive integers b1 and b2.

3.2 Constraints with symmetric vertex-constrained strips

In this section we present an analog to Theorem 1 that gives lower bounds on the
capacities of constraints for which every horizontal or every vertical strip is a sym-

27

3.2. Constraints with symmetric vertex-constrained strips

metric vertex-constraint. We do this by transforming a 2-dimensional constraint
with symmetric vertex-constrained strips to a 2-dimensional constraint with sym-
metric edge-constrained strips, having the same capacity.

Fix an alphabet Σ, and let S be a 2-dimensional constraint over Σ. We say
that S has horizontal vertex-constrained strips if for every positive integer m, the
constraint Hm(S) is a vertex-constraint. If, in addition, every horizontal strip is
symmetric, we say that S has symmetric horizontal vertex-constrained strips. The
notions of a 2-dimensional constraint with vertical vertex-constrained strips and
symmetric vertical vertex-constrained strips are defined analogously.

It turns out that RWIM and NAK do not have horizontal or vertical edge-
constrained strips, and so the method in section 3.1 does not apply directly. We
illustrate this only for horizontal strips for S = RWIM. Recall from Chapter 2 that
an edge constraint is a constraint of memory 1 such that any two follower sets are
either disjoint or identical. We claim that this condition does not hold for Hm(S).
To see this, given any m, let w = w0. . .wm−1 be the all-zeros word of length m
and u = u0. . .um−1 be any other word of length m. Now, the m× 2 arrays

w0 w0

w1 w1
...

...
wm−1 wm−1

,

w0 u0

w1 u1
...

...
wm−1 um−1

,

u0 w0

u1 w1
...

...
um−1 wm−1

,

belong to S, yet the m× 2 array

u0 u0

u1 u1
...

...
um−1 um−1

,

does not. Thus,w and u, regarded asm×1 columns, have different but non-disjoint
follower sets. Consequently, RWIM does not have horizontal edge-constrained
strips.

However, it is not hard to show that RWIM and NAK have both symmet-
ric horizontal vertex-constrained strips and symmetric vertical vertex-constrained
strips. For instance, for S = RWIM,Hm(S) is the vertex constraint defined by the
graph G = (V,E), where V consists of all binary vectors u0 . . . um−1 of length m
and E consists of a single edge from u ∈ V to v ∈ V iff for all i, whenever ui = 1,
then vi+1 = vi = vi−1 = 0 (with the obvious modification when i = 0 or m− 1).
And Vm(S) is the vertex constraint defined by the graph of G′ = (V ′, E′), where
V ′ consists of all binary vectors u0 . . . um−1 of length m which do not contain two

28

3.2. Constraints with symmetric vertex-constrained strips

adjacent ‘1’s and E′ consists of a single edge from u ∈ V to v ∈ V iff for all i,
whenever ui = 1, then vi+1 = vi−1 = 0 (again, with the obvious modification
when i = 0 or m− 1). Clearly, both G and G′ are symmetric.

Now, let S be a 2-dimensional constraint over Σ. For a finite m × n array Γ
with m ≥ 1 and n ≥ 2 over Σ its [1× 2]-higher block recoding or [1× 2]-recoding
is an m× (n− 1) array Γ̃ over Σ1×2 with entries given by

Γ̃i,j = (Γi,j Γi,j+1) ; i = 0, . . . ,m− 1, j = 0, . . . , n− 2.

We denote by S[1×2] the set of all [1 × 2]-recodings of arrays in S and refer to it
as the [1 × 2]-higher block recoding of S. The [1 × 2]-higher block recoding of a
constraint is a constraint. This is stated in the following proposition.

Proposition 4. Let S be a 2-dimensional constraint over Σ. Then S[1×2] is a 2-
dimensional constraint over Σ1×2.

Remark . We may, of course, define, in a similar manner, the [s × t]-higher block
recoding of S, for any positive integers s and t, and the [s×t]-higher block recoding
of a 2-dimensional constraint S is a 2-dimensional constraint.

Proof. Set S′ = S[1×2] and let (GV ,GH) be a presentation of S with GV =
(VV , E,L) and GH = (VH, E,L). We construct labeled graphs G′V =
(VV×VV , E′,L′) and G′H = (E,E′,L′) as follows. The set of edges E′ is defined
as

E′ =
{

(e0 e1)∈E1×2 : e0, e1 is a path in GH
}
,

and the labeling function L′ : E′ → Σ1×2 is given by

L′(e0 e1) = (L(e0) L(e1)) ; (e0 e1)∈E′.

For every edge (e0 e1)∈E′ we define

σG′V (e0 e1) = (σGV (e0), σGV (e1))

τG′V (e0 e1) = (τGV (e0), τGV (e1))

σG′H(e0 e1) = e0

τG′H(e0 e1) = e1

.

It’s easy to verify that (G′V ,G′H) is a presentation of S′. �

Clearly, recoding is an injective mapping, thus |Sm×n| = |S[1×2]
m×(n−1)| for all

positive integers m ≥ 1, n ≥ 2. It follows that cap(S) = cap(S[1×2]). The
next proposition shows that the [1 × 2]-higher block recoding of a constraint with
symmetric horizontal vertex-constrained strips has symmetric horizontal edge-
constrained strips.

29

3.2. Constraints with symmetric vertex-constrained strips

Proposition 5. Let S be a 2-dimensional constraint with horizontal vertex-
constrained strips.

1. S[1×2] has horizontal edge-constrained strips. Moreover, S[1×2] has symmet-
ric horizontal edge-constrained strips iff S has symmetric horizontal vertex-
constrained strips.

2. S[1×2] = V1(S[1×2])⊗H1(S[1×2]).

Proof. (1). Let m be a positive integer, G(H)
m = (V

(H)
m , Em) be the graph defining

the vertex-constraintHm(S) and set ∆ = Σ1×2, where Σ is the alphabet of S. We
define a labeling L : Em → ∆m×1 of the edges of G(H)

m . For e∈Em, we regard
σ(e) and τ(e) as m×1 arrays over Σ, and define L(e) to be the array in ∆m×1

with entries given by

L(e)(i,0) = (σ(e)i,0 τ(e)i,0) ; i∈[m].

It’s easily verified that the word generated by every path in the labeled graph
(G

(H)
m ,L) is the [1×2]-higher block recoding of the array formed by concatenat-

ing the vertices along the path horizontally in sequence. It follows that (G
(H)
m ,L)

is a presentation of Hm(S[1×2]). Since the labels of the edges in (G(H)m,L) are
distinct, we may identify each edge with its label, and it follows that Hm(S[1×2])
is an edge-constraint. Since the same graph defines both Hm(S) and Hm(S[1×2])
(the former as a vertex-constraint and the latter as an edge-constraint), it follows
thatHm(S) is symmetric iffHm(S[1×2]) is. This completes the proof.

(2). Clearly, S[1×2] ⊆ V1(S[1×2])⊗H1(S[1×2]). As for the reverse inclusion,
let Γ̃ ∈ V1(S[1×2])⊗H1(S[1×2]) be an m × n array over Σ1×2. Since every row
of Γ̃ is in H1(S[1×2]), every row has a unique 1 × (n + 1) pre-image under the
recoding map. Let Γ be the m × (n + 1) array over Σ, whose ith row is the pre-
image under the recoding map of the ith row of Γ̃, for i = 0, . . . ,m−1. Clearly, Γ̃
is the [1× 2]-higher block recoding of Γ. Thus, it suffices to show that Γ ∈ S. For
i = 0, 1, . . . , n− 1 clearly, the m× 2 array Γ∗,i:i+1 over Σ recodes to the column
Γ̃∗,i. By our assumption this column is in V1(S[1×2]). Since recoding is injective,
Γ∗,i:i+1 must be in S. Since this holds for all i = 0, 1, . . . , n− 1 and sinceHm(S)
has memory 1, it follows that Γ ∈ S and therefore Γ̃ ∈ S[1×2]. �

We can now use the method described in Section 3.1 to get lower bounds on 2-
dimensional constraints with symmetric horizontal vertex-constrained strips. This
is stated in the following theorem.

30

3.3. Capacity bounds for axial products of constraints

Theorem 2. Let S be a 2-dimensional constraint over an alphabet Σ with sym-
metric horizontal vertex-constrained strips. Let µ≥0, and α, p, q>0 be inte-
gers, GE = (VE , EE) be the graph defining the vertex-constraint H1(S) (hence
VE⊆Σ), and φ : (VE)

µ+α → [0,∞) be a nonnegative function. For an inte-
ger n≥2, let Gn be a labeled graph obtained from a deterministic presentation
for Vn(S) by replacing each edge-label with its [1×2]-higher block recoding. Set
Ãn,φ = A(I(µ, α, n−1,Gn, GE),Wφ), where I, Wφ, and A(I,Wφ) are as de-
fined in Section 3.1. Then

cap(S) ≥
log λ(Ãp+2q+1,φ)− log λ(Ã2q+1,φ)

pα
.

Proof. Let S′ = S[1×2]. By Proposition 5, S′ = V1(S′)⊗H1(S′), and S′ has hori-
zontal symmetric edge-constrained strips. Since GE has no parallel edges, we may
identifiy each edge e∈EE with the pair (σ(e), τ(e)); then, with this identification,
H1(S′) = X(GE). Also, note that G2q+p+1 and G2q+1 are deterministic presenta-
tions for V2q+p(S

′) and V2q(S
′), respectively. The result follows from Theorem 1

applied to S′. �

3.3 Capacity bounds for axial products of constraints

In this section we show how the method described in Section 3.1 can be applied
to axial products of certain 1-dimensional constraints. Let S and T be two 1-
dimensional constraints over an alphabet Σ. We wish to lower bound the capacity
of the 2-dimensional constraint T⊗S. To this end, we pick a lossless presentation
GS = (GS ,LS), with GS = (VS , ES), for S. We extend the function LS to
multidimensional arrays over ES in the manner described in Chapter 2, and for a
set A ⊆ Σ∗, we denote by L−1

S (A)⊆E∗S the inverse image of A under this map,
namely

L−1
S (A) = {w ∈ E∗S : LS(w)∈A} .

The following proposition shows that we can reduce the problem of calculating the
capacity of T⊗S to that of calculating the capacity of L−1

S (T)⊗X(GS).

Proposition 6. Let S, T be two 1-dimensional constraints and let X(GS) and
L−1
S (T) be as defined above. Then

1. L−1
S (T) is a 1-dimensional constraint.

2. cap(T⊗S) = cap(L−1
S (T)⊗X(GS)).

31

3.3. Capacity bounds for axial products of constraints

Proof. 1. Let GT = (VT , ET ,LT) be a presentation of T . We shall construct
a presentation F = (VT , EF ,LF) of L−1

S (T). The set of edges is given by
EF = {(eT , eS)∈ET×ES : LT (eT)=LS(eS)}, and for an edge (eT , eS)∈EF ,
σF (eT , eS) = σGT (eT), τF (eT , eS) = τGT (eT) and LF (eT , eS) = eS . It is easily
verified that L−1

S (T) is presented by F , and therefore it is a 1-dimensional con-
straint.

2. We set R = T⊗S, U = L−1
S (T)⊗X(GS). For an array ∆∈Rm×n, define

P∆ = {Γ∈Um×n : LS(Γ) = ∆}, we claim that

1≤|P∆| ≤ |VS |2m. (3.9)

Indeed, it’s easily verified that an array Γ∈Em×nS is in P∆ iff for all i∈[m] the
row (Γi,j)

n−1
j=0 is a path in GS that generates (∆i,j)

n−1
j=0 . Since GS is a lossless

presentation of S, for every i∈[m], there is at least one path in GS generating
(∆i,j)

n−1
j=0 and at most |VS |2 such paths; the claim follows. Now, clearly for any

Γ∈Um×n the array LS(Γ) is in Rm×n. It follows that the sets P∆, for ∆∈Rm×n
form a partition of Um×n, and we have

|Um×n| =
∑

∆∈Rm×n

|P∆|.

Therefore, by (3.9), we get

|Rm×n| ≤ |Um×n| ≤ |Rm×n| |VS |2m,

and it follows from (1.1) that cap(R) = cap(U). �

Therefore if L−1
S (T)⊗X(GS) has symmetric horizontal edge-constrained

strips, we can apply the method of Section 3.1 to obtain lower bounds on
cap(T⊗S). In this case, it also follows from Remark 1 of Theorem 1, that the
method of [3] for obtaining upper bounds on the capacity of the hard-square
constraint, can be used to obtain upper bounds on cap(T⊗S). Proposition 3
present a sufficient condition for L−1

S (T)⊗X(GS) to have symmetric horizon-
tal edge-constrained strips. Here we give another stronger sufficient condition
involving only the presentation GS . We say that a labeled graph (G,L), with
G = (V,E), is symmetric as a labeled graph, if there exists an edge-reversing
matching R ∈ R(G) which preserves L, that is L(R(e)) = L(e) for all e ∈ E.
We assume now that GS is symmetric as a labeled graph, and that R ∈ R(GS) is
an edge-reversing matching which preserves LS . Since for any positive integer m
and e1. . .em∈EmS , the label L(e1). . .L(em) = L(R(e1)) . . .L(R(em)), it follows
that e1. . .em∈L−1

S (T) iff R(e1). . .R(em)∈L−1
S (T). Consequently, the hypothesis

of Proposition 3 holds and we have the following corollary.

32

3.4. Heuristics for choosing φ

Corollary 1. If GS is symmetric as a labeled graph then L−1
S (T)⊗X(GS) has

symmetric horizontal edge-constrained strips.

Since the presentation in Figure 1.1a is symmetric as a labeled graph, we can
apply the method of Section 3.1 to get lower bounds on the capacity of all con-
straints T⊗EVEN for any 1-dimensional constraint T .

Let S = CHG(b1) and let T = CHG(b2) for integers b1, b2 ≥ 2. Let GS =
(GS ,LS), with GS = (VS , ES), be the presentation given in Figure 1.1c for b =
b1. Evidently, GS is symmetric with exactly one edge-reversing matching, R :
ES→ES . Fix a positive integer m and let e = e1e2. . .em∈EmS . Obviously, T is
closed under negation of words (i.e., negating each symbol), and we have

e1e2. . .em∈L−1
S (T)

⇐⇒ LS(e1)LS(e2). . .LS(em)∈T
⇐⇒ (−LS(e1))(−LS(e2)). . .(−LS(em))∈T
⇐⇒ LS(R(e1))LS(R(e2)). . .LS(R(em))∈T
⇐⇒ R(e1)R(e2). . .R(em)∈L−1

S (T).

Consequently, it follows by Proposition 3 thatL−1
S (T)⊗X(GS) has symmetric hor-

izontal edge-constrained strips and we can apply the method of Section 3.1 to ob-
tain lower bounds on the capacity of CHG(b2)⊗ CHG(b1).

The reader will note a similarity in the constructions in proofs of Propositions 1
and 6. Indeed, as an alternative approach, one may be able to use the construction
in Proposition 1 to obtain bounds on cap(S ⊗ T): namely, if G1 and G2 are the
underlying graphs of a capacity-preserving presentation (G1,G2) of S ⊗ T and
X(G1) ⊗ X(G2) has symmetric horizontal edge-constrained strips. However, the
approach given by Proposition 6 seems to be more direct and simpler than the
alternative approach.

3.4 Heuristics for choosing φ

In this section, we use the notation defined in Section 3.1, and assume that S =
T⊗E is a 2-dimensional constraint with symmetric horizontal edge-constrained
strips, where E is an edge constraint. We describe heuristics for choosing the func-
tion φ to obtain “good” lower bounds on the capacity of S.

3.4.1 Using max-entropic probabilites

Recall that a vertex of a directed graph is isolated if no edges in the graph are
connected to it. Note, that since G(H)

m is symmetric, every vertex is either isolated

33

3.4. Heuristics for choosing φ

or has both incoming and outgoing edges. We assume here that for every positive
integer m, ignoring isolated vertices, G(H)

m is a primitive graph. In this case, the
Perron eigenvector of Hm is unique up to multiplication by a scalar. Let rm be the
right Perron eigenvector of Hm normalized to be a unit vector in the L2-norm. Ob-
serve, that substituting rm for xm satisfies (3.2) with an equality. This motivates us
to choose φ so that the resulting vector xm approximates rm. Since G(H)

m (without
its isolated vertices) is irreducible, there is a unique stationary probability measure
having maximum entropy on arrays of Hm, namely the max-entropic probability
measure onHm. We denote it here by Pr∗,m. It is given by

Pr∗,m(Γ) =
(rm)σ(Γ) (rm)τ(Γ)

λ(Hm)`
.

For Γ ∈ Sm×`, for some positive integer `, and where σ(Γ), τ(Γ) ∈ V m
E are given

by
(σ(Γ))i = σ(Γi,0)
(τ(Γ))i = τ(Γi,`−1)

; i = 0, 1, 2, . . . ,m−1.

Let V(m) be a random variable taking values in V m
E with distribution given by

Pr(V(m)=v) = Pr∗,m {Γ ∈ Sm×1 : σ(Γ) = v} ; v ∈ V m
E .

It’s easily verified that
Pr(V(m)=v) = ((rm)v)2 . (3.10)

Thus approximating Pr(V(m) = v) and taking a square root will give us an
approximation for (rm)v. Roughly speaking, Pr(V(m) = v) is the probability of
seeing the column of vertices v in the “middle” of anm×` array chosen uniformaly
at random from Sm×`, for large `. Fix integers µ ≥ 0, α ≥ 1 as in Section 3.1,
and assume now that m = mk = µ + kα, for a positive integer k. For an integer
0≤s<m and vectors u∈V `

E ,w∈V r
E , with lengths satisfying `≤m−s, r≤s, denote

by p(m)
s (u) and p(m)

s (u|w) the probabilities given by

p(m)
s (u) = Pr(V

(m)
s:s+`−1 = u)

p(m)
s (u|w) = Pr(V

(m)
s:s+`−1 = u|V(m)

s−r:s−1 = w).

Then by the chain rule for conditional probability we have, for any vector v∈V m
E ,

Pr(V(m)=v) =p
(m)
0 (v0:µ−1)

·
k−1∏
i=0

p
(m)
µ+iα(vµ+iα:µ+(i+1)α−1|v0:µ+iα−1).

34

3.4. Heuristics for choosing φ

A plausible way to approximate Pr(V = v), is by treating V as the outcome
of a Markov process. Here we use a Markov process with memory µ, and as-
sume that ps(u|w) can be “well” approximated by ps(u|wr−µ:r−1), for vectors
u∈V `

E ,w∈V r
E , with r, ` as above, and r≥µ. Using this approximation we get

Pr(V(m)=v) ≈p(m)
0 (v0:µ−1)

·
k−1∏
i=0

p
(m)
µ+iα(vµ+iα:µ+(i+1)α−1|viα:µ+iα−1).

We hypothesize that for fixed vectors u∈V α
E ,w∈V

µ
E , as m gets large, the con-

ditional probabilities p(m)
s (u|w), for 0�s�m−1, are “approximately equal” to

the value when s is in the “middle” of the interval [0,m− 1]. We hypothesize that
this holds for “most” of the integers s in that inteval and moreover that this middle
value converges as m gets large. Accordingly, we try to approximate the con-
ditional probability p(m)

s (u|w) by the conditional probability found in the “mid-
dle” of a “tall” horizontal strip. More precisely, we fix an integer δ ≥ 0, set
ω=2δ+µ+α, and approximate p(m)

s (u|w) by p(ω)
δ+µ(u|w). We also approximate

p
(m)
0 (w) by p(ω)

0 (w). This gives us

Pr(V(m)=v) ≈p(ω)
0 (v0:µ−1)

·
k−1∏
i=0

p
(ω)
δ+µ(vµ+iα:µ+(i+1)α−1|viα:µ+iα−1),

which, by (3.10), implies that

(rm)v ≈
√
p

(ω)
0 (v0:µ−1)

·
k−1∏
i=0

√
p

(ω)
δ+µ(vµ+iα:µ+(i+1)α−1|viα:µ+iα−1).

(3.11)

Set Fm=|VE |m, and denote by r̃mk∈RFmk the nonnegative real vector with entries
indexed by V mk

E and given by the RHS of equation (3.11). Let φ : (VE)
µ+α →

[0,∞) be given by

φ(u) =

√
p

(ω)
δ+µ(uµ:µ+α−1|u0:µ−1) ; u∈(VE)

µ+α, (3.12)

and let xmk ∈ RFmk be the vector with entries indexed by V mk
E and defined

by (3.4). We obtain

(rmk)v ≈ (r̃mk)v = (xmk)v

√
p

(ω)
0 (v0:µ−1) ; v∈(VE)

mk .

35

3.4. Heuristics for choosing φ

Now for mk≥ω, if v∈V mk
E is not an isolated vertex in Gmk , then clearly, v0:ω−1 is

not an isolated vertex in Gω as well. Therefore (rω)v0:ω−1>0, which implies that
p

(w)
0 (v0:ω−1)>0 and thus p(ω)

0 (v0:µ−1)>0. Let pmin = p
(ω)
min = min{p(ω)

0 (w) :

w∈V µ
E and p(ω)

0 (w)>0}. It follows that for all vertices v∈ (VE)
mk of Gmk that

are not isolated, we have

(r̃mk)v ≥
√
pmin (xmk)v .

Now, for any positive integer ` and (Fmk×1)-real vector y, the product ytH`
my

depends only on the values of the entries of y indexed by non-isolated vertices of
Gmk . Consequently, we may write

pminx
t
mk
H`
mk

xmk ≤ r̃mk
tH`

mk
r̃mk ≤ xtmkH

`
mk

xmk ,

for all positive integers `. Taking the log, dividing by mk, and taking the limit as k
approaches infinity, we obtain

lim
k→∞

log r̃mk
tH`

mk
r̃mk

mk
= lim

k→∞

logxtmkH
`
mk

xmk
mk

,

where by Lemma 2, the limit in the RHS exists. Thus, choosing φ as given by (3.12)
and computing the lower bound by the method described in Section 3.1 is equiv-
alent to computing the limit of the lower bound in (3.2), with r̃m substituted for
xm, as m approaches infinity. If r̃m approximates rm well enough, we expect
to get good bounds. Note that we may use the heuristic described here even for
constraints for which the graphs G(H)

m are not always irreducible. In this case, the
geometric multiplicity of the Perron eigenvalue may be larger than 1, and there
may be more than one choice of the vector rω in the computation of p(ω)

δ+µ(·|·). Re-
gardless of our choice, we will get a nonnegative function φ and a lower bound on
the capacity. In Section 3.5 we show numerical results obtained using the heuristic
described here for several constraints.

3.4.2 General optimization

We may also use general optimization techniques to find functions φ which max-
imize the lower bound on the capacity. Fix integers µ≥0 and p, q, α>0, and for
a positive integer `, set D` = (VE)

`. In this subsection, we identify a function
φ:Dµ+α→R with a real vector φ∈R|Dµ+α| indexed by Dµ+α; for each j∈Dµ+α

we identify φ(j) with the entry φj. For a positive integer n, let Gn be a de-
terministic presentation for Vn(S), In = I(µ, α, n,Gn, GE), and for a function
φ : Dµ+α→[0,∞), set An,φ = A(In,Wφ). Observe that for a scalar c ∈ [0,∞),

36

3.4. Heuristics for choosing φ

An,cφ = c2An,φ. It follows that using cφ in place of φ in equation (3.7) of
Thereom 1 does not change the lower bound. Consequently, (as φ cannot be the
constant 0 function), it’s enough to consider functions φ whose images (of all vec-
tors in (VE)

µ+α) sum to 1. We thus have the following optimization problem.

maximize (log λ(A2q+p,φ)− log λ(A2q,φ)) / (pα)
subject to φ ≥ 0,

φ · 1 = 1,
(3.13)

where 0 and 1 denote the real vectors of size |Dµ+α| with every entry equal to 0
and 1 respectively, and for two real vectors of the same size, t, r we write t ≥ r or
t>r if the corresponding inequality holds entry-wise.

Finding a global solution for a general optimization problem can be hard. We
proceed to show that if we replace the constraint φ≥0 with φ>0 in (3.13), thereby
changing the feasable set and possibly decreasing the optimal solution, it can be
formulated as an instance of a particular class of optimization problems known as
“DC optimization” which may be easier to solve. Let d be a positive integer. A
real-valued function f : Rd → R is called a DC (difference of convex) function, if
it can be written as the difference of two real-valued convex functions on Rd. An
optimization problem of the form

maximize f(x)
subject to x∈X,

hi(x) ≤ 0 ; i = 0, 1, . . . , `,

where X ⊆ Rd is a convex closed subset of Rd and the functions f, h0, . . . , h` are
DC functions, is called a DC optimization or DC programming problem. See [17]
and the references within for an overview of the theory of DC optimization.

A nonnegative function f : Rd → [0,∞) is called log-convex or superconvex,
if either f(t)>0 for all t∈Rd and log f is convex in Rd, or f≡0. A log-convex
function is convex, and in [24], it is shown that the class of log-convex functions is
closed under addition, multiplication, raising to positive real powers, taking limits,
and additionally that for a square matrix A(t) = (ai,j(t)) whose entries are log-
convex functions ai,j : Rd → [0,∞), the function t → λ(A(t)) is log-convex as
well.

Now, observe, that for a positive integer n, every entery of An,φ is a quadratic
form in the entries φ(j), j∈Dµ+α, with nonnegative integer coefficients. Such a
function is generally not log-convex. To fix this, we perform the change of vari-
ables φ = eψ, where ψ is a real-valued function ψ : Dµ+α → R. Note that by
doing so, we added the constraint φ>0. Since every entry of φ is now positive,

37

3.5. Numerical results for selected constraints

we may replace the constraint φ · 1 = 1 by the constraint φ(v0) = 1 or equiva-
lently ψ(v0) = 0, for some fixed v0∈Dµ+α. Problem (3.13) with the additional
constraint φ>0, can now be rewritten as

maximize
(
log λ(A2q+p,eψ)− log λ(A2q,eψ)

)
/ (pα)

subject to ψ(v0) = 0.
(3.14)

Obviously, we may substitue the maximization problem constraint, ψ(v0) = 0,
above into the objective function, thereby reducing the number of variables by 1;
however, this is not relevant for the discussion, so, for simplicity, we do not do so
here. Now, for a positive integer n, the entries of the matrix An,eψ are of the form

qi,j∑
k=1

eψ(wk,i,j)+ψ(uk,i,j),

where qi,j are nonnegative integers, and wk,i,j and uk,i,j are vectors in Dµ+α, for
all i, j∈VIn and integers 1≤k≤qi,j . It can be verified that a function of such a
form is log-convex in ψ. It follows that the function ψ→λ(An,eψ) for ψ ∈ R|Dµ+α|

is log-convex as well. Therefore either λ(An,eψ)≡0, or λ(An,eψ)>0 for all ψ ∈
R|Dµ+α|. In particular, forψ≡0 the matrixAn,1 is the adjacency matrix of the graph
In. Since In is deterministic, and for every nonnegative integer `, the set of labels
of its paths of length ` is S`α×n, it follows that (1/α) log λ(An,1)=cap(Vn(S)) ≥
cap(S) (the latter inequality follows from (2.8)). Hence, if cap(S)>−∞ (or equiv-
alently cap(S)≥0), then λ(An,eψ)>0 for all ψ ∈ R|Dµ+α| and log λ(An,eψ) is a
convex function of ψ. Clearly cap(S)>−∞ iff. Sm×n 6=∅, for all positive integers
m,n. We thus obtain the following theorem.

Theorem 3. Let S be a constraint such that for all positive integersm,n, Sm×n 6=∅
then Problem (3.14) is a DC optimization problem.

3.5 Numerical results for selected constraints

In this section we give numerical lower bounds on the capacity of some 2-
dimensional constraints obtained using the method presented in the sections above.
The constraints considered are NAK, RWIM, EVEN⊗2, and CHG(3)⊗2. Ta-
ble 3.2 summarizes the best lower bounds obtained using our method. For compar-
ison, we provide the best lower bounds that we could obtain using other methods.
We also give upper bounds on the capacity of these constraints obtained using the
method of [3]. Table 3.3 shows the lower bounds obtained using our max-entropic
probability heuristic for choosing φ, described in Section 3.4.1. Table 3.4 shows the

38

3.5. Numerical results for selected constraints

lower bounds obtained with our method by trying to solve the optimization prob-
lem described in Section 3.4.2. In this, we did not make use of the DC property
of the optimization problem; instead, we used a generic sub-optimal optimization
algorithm whose results are not guarenteed to be global solutions. Utilizing special
algorithms for solving DC optimization problems may give better lower bounds.
The rightmost column of each of these tables shows the lower bound calculated
for the same values of p and q using the method of [3, 7]. The largest lower-bound
obtained for each constraint is marked with a ‘?’. In the next subsections we give
remarks specific to some of these constraints.

As can be seen from the results in Table 3.4, using the optimization heuristic
with our method gives better lower bounds on the capacity than the method of [3,7].
On the other hand, using optimization typically requires many evaluations of the
objective function which results in longer running times compared to the method
of [3, 7], for the same values of p and q. Increasing the value of q in the method
of [3, 7] usually gives better lower bounds but requires more time and memory to
run. It is therefore relevant to check if their method can be used to attain the lower
bounds, obtained using the technique described here, with the same computational
resources. Our experiments show that this is typically not the case. For example,
for the NAK constraint, when µ = 1, α = 1, p = 1 and q = 4, an implementation
of the method described here with the optimization heuristic took roughly 70 sec-
onds to run, required operating on matrices of size 144×144 and resulted with the
lower bound 0.4250767727. In contrast, our implementation of the method of [3,7]
with p = 1, and q = 8, took roughly 1000 seconds to run, required operating on
matrices of size 6765×6765 and resulted with the lower bound 0.4250725619. Ta-
ble 3.1 shows some of the lower bounds obtained using the method of [3, 7] along
with the size of the largest square matrix involved in the computation.

The numerical results were computed using the eigenvalue routines in Mat-
lab and rounded (down for lower bounds and up for upper-bounds) to 10 decimal
places. Given accuracy problems with possibly defective matrices, we verified the
results using the technique described in [35, Section IV].

Table 3.1: Matrix size in the method of [3, 7] for the NAK constraint.
p q Lower bound using [3, 7] Largest matrix size
1 5 0.4248771038 377×377
2 4 0.4249055702 233×233
1 6 0.4250215987 987×987
1 7 0.4250615286 2584×2584
2 6 0.4250636891 1597×1597
1 8 0.4250725619 6765×6765

39

3.5. Numerical results for selected constraints

3.5.1 The constraint RWIM

Observe that this constraint has both symmetric horizontal and symmetric verti-
cal vertex-constrained strips. Thus, we can apply our method in the vertical as
well as the horizontal direction to get lower bounds. Clearly, cap(RWIMt) =
cap(RWIM), so we can obtain additional lower bounds on cap(RWIM) by using
our method to get lower bounds on cap(RWIMt). Some of these bounds are given
in Tables 3.3 and 3.4.

3.5.2 The constraint EVEN⊗2

We used the reduction described in Section 3.3 with GEVEN being the presentation
of EVEN given in Figure 1.1a, to get lower bounds on the capacity of EVEN⊗2.
Table 3.4 gives the results obtained with our method using the optimization de-
scribed in Section 3.4.2. We also used the method with the max-entropic probabil-
ity heuristic of Section 3.4.1 and the results are given in Table 3.3.

3.5.3 The constraint CHG(b)⊗2

For this constraint, the case b=1 is degenerate. Indeed, there are exactly two
m×n arrays in CHG(1)⊗2 for all positive integers m and n, and consequently,
cap(CHG(1)⊗2)=0. For b=2, we show in Theorem 5 in Chapter 4 that the ca-
pacity is exactly 1/4. For b=3, we used the reduction of Section 3.3 with GCHG(3)

being the presentation of CHG(3) given in Figure 1.1c, to get lower bounds on
the capacity of CHG(3)⊗2. Table 3.4 gives the results obtained with our method
using the optimization described in Section 3.4.2. We also used the method with
the max-entropic probability heuristic of Section 3.4.1 and the results are given in
Table 3.3.

Table 3.2: Best bounds on capacities of certain constraints.
Constraint Previous best

lower bound
New lower bound Upper bound

NAK 0.4250725619?? 0.4250767745 0.4250767997?

RWIM 0.5350150??? 0.5350151497 0.5350428519?

EVEN⊗2 0.4385027973?? 0.4402086447 0.4452873312?

CHG(3)⊗2 0.4210209862?? 0.4222689819 0.5328488954?

?Calculated using the method of [3].
??Calculated using the method of [3, 7].
???Appears in [42].

40

3.5. Numerical results for selected constraints

Table 3.3: Lower bounds using max-entropic probability heuristic (Section 3.4.1).

Constraint δ µ α p q Lower bound Using [3, 7]
NAK 3 1 1 1 5 0.4250766244 0.4248771038

3 1 1 2 4 0.4250766446 0.4249055702
6 1 1 1 5 0.4250767227 0.4248771038
3 3 4 1 5 0.4250767590 0.4248771038
7 1 1 1 5 0.4250767617 0.4248771038
3 1 1 2 6 0.4250767647 0.4250636891
3 1 4 1 5 0.4250767733 0.4248771038
5 1 1 1 5 0.4250767744 0.4248771038
3 1 4 2 6 0.4250767745 0.4250636891
3 1 2 2 6 0.4250767745 0.4250636891

RWIM 3 1 3 1 6 0.5350147968 0.5235145644
1 1 1 3 6 0.5350148753 0.5318753627
3 2 2 1 5 0.5350148814 0.5160533001
3 1 2 2 6 0.5350149069 0.5337927416
2 1 2 2 6 0.5350149071 0.5337927416
0 1 2 2 6 0.5350149136 0.5337927416
2 2 2 1 5 0.5350149271 0.5160533001
1 1 2 2 6 0.5350149462 0.5337927416
1 1 3 1 6 0.5350149525 0.5235145644
1 1 1 1 7 0.5350149707 0.5280406048

RWIMt 4 1 3 2 4 0.5350145937 0.5350144722
1 1 1 1 5 0.5350146612 0.5350149478
4 2 1 1 4 0.5350147212 0.5350142142
3 1 1 1 5 0.5350147328 0.5350149478
5 1 1 1 5 0.5350147619 0.5350149478
2 2 1 1 4 0.5350147969 0.5350142142
4 1 1 1 5 0.5350148255 0.5350149478
2 1 1 1 5 0.5350148449 0.5350149478
0 1 1 1 5 0.5350148814 0.5350149478
0 2 1 1 4 0.5350148980 0.5350142142

EVEN⊗2 3 2 1 1 3 0.4383238232 0.4347423815
3 1 1 1 4 0.4383243738 0.4367818624
3 1 3 2 3 0.4383632350 0.4356897662
3 1 2 4 3 0.4383838005 0.4364303826
3 1 1 2 4 0.4384647082 0.4371709990
3 1 3 3 3 0.4384906740 0.4360537982
3 1 2 1 4 0.4385448358 0.4367818624
3 1 2 2 4 0.4386655840 0.4371709990
3 1 3 1 4 0.4387455520 0.4367818624

CHG(3)⊗2 0 0 1 1 2 0.4188210386 0.4101473707
0 0 1 1 4 0.4222689819? 0.4197053158

?Best lower bound.

41

3.5. Numerical results for selected constraints

Table 3.4: Lower bounds using optimization (Section 3.4.2).

Constraint µ α p q Lower bound Using [3, 7]
NAK 2 1 2 4 0.4250767692 0.4249055702

1 2 1 5 0.4250767736 0.4248771038
1 1 3 4 0.4250767737 0.4248960814
1 2 1 3 0.4250767739 0.4224650194
1 1 4 4 0.4250767739 0.4249674993
1 1 5 4 0.4250767740 0.4249783192
1 1 6 4 0.4250767741 0.4249995626
1 2 3 3 0.4250767743 0.4244240822
1 2 6 3 0.4250767744 0.4247979797
1 2 2 5 0.4250767745? 0.4250294285

RWIM 1 1 1 3 0.5350147515 0.4832292495
1 1 2 3 0.5350148675 0.5300373650
1 1 3 3 0.5350149371 0.5212673183
1 1 1 4 0.5350150805 0.5037272248
1 1 2 4 0.5350151001 0.5318663054
1 1 3 4 0.5350151123 0.5265953036
1 1 1 5 0.5350151372 0.5160533001
1 1 2 5 0.5350151410 0.5330440001
1 1 2 6 0.5350151491 0.5337927416
1 2 1 5 0.5350151497? 0.5160533001

RWIMt 1 2 4 3 0.5350151364 0.5350130576
1 2 3 4 0.5350151377 0.5350146307
1 2 5 3 0.5350151392 0.5350134356
2 1 1 4 0.5350151405 0.5350142142
1 1 1 5 0.5350151442 0.5350149478
1 2 1 4 0.5350151465 0.5350142142
1 2 1 5 0.5350151481 0.5350149478
1 2 2 4 0.5350151482 0.5350144722
1 3 1 4 0.5350151483 0.5350142142

EVEN⊗2 1 1 1 3 0.4395381520 0.4347423815
1 1 2 3 0.4397347451 0.4356897662
1 1 1 4 0.4402086447? 0.4367818624

CHG(3)⊗2 0 1 1 2 0.4189237100 0.4101473707
0 1 2 2 0.4197037681 0.4182017399
0 1 3 2 0.4201450063 0.4176642274
0 1 1 3 0.4210954837 0.4165892023
0 1 2 3 0.4214748454 0.4210209862

1 4 0.4197053158

?Best lower bound.

42

3.6. Open questions

3.6 Open questions

The authors of [9, 10, 35] show how the methods of [7] and [3] can be extended to
get lower and upper bounds on the capacity of constraints with dimension larger
than 2 which are “symmetric in all but one direction”. Similarly, it should be a
relatively easy exercise to extend our generalization of the method to obtain better
lower bounds to the capacities of such constraints.

For a D-dimensional constraint S over Σ, one can define a more general notion
than capacity called “weighted-capacity” or “pressure” [10, 11]. First, one assigns
a positive weight to each symbol in Σ. Then, the weight of a D-dimensional array
Γ over Σ, denotedW(Γ) is defined to be the product of the weights of its entries.
The weighted-capacity of S is now given by

lim
m→∞

∑
Γ∈Sm

W(Γ)

|[m]|
.

As before, the limit exists since the numerator is an entry-wise subadditive func-
tion. It would be beneficial to extend the method of this chapter to obtain lower
bounds on the weighted-capacity of symmetric constraints.

Finally, consider the method of [3] for obtaining upper-bounds on the capacity
of 2-dimensional symmetric constraints. While the method gives better upper-
bounds than those obtained by computing the normalized capacity of a horizon-
tal or vertical strip, empirical results suggest that for many constraints the upper-
bounds approach the capacity slower than their lower-bound counterparts. Hence,
a better method for upper bounding the capacity of symmetric (and general) con-
straints would be useful.

43

Chapter 4

Exact computation of capacity∗

As already stated, finding the exact capacity of D-dimensional constraints, for
D>1, is hard, and the list of constraints for which the capacity is known precisely
is quite small. In this chapter we add two families of isotropic multidimensional
constraints to this list, namely ODD⊗D and CHG(2)⊗D. Some of the results pre-
sented here have been extended to other similar constraints in [22].

4.1 The capacity of ODD⊗D

Theorem 4. For all positive integers D,

cap
(

ODD⊗D
)

=
1

2
.

Proof. Let S be the D-dimensional constraint ODD⊗D. We first show
cap(S)≥1/2. For an integer n, let Yn ⊆ [2n]D be the set of all vectors in [2n]D

whose entries sum to an even number, and let Xn be the set of all binary D-
dimensional arrays Γ of size 2n×2n×. . .×2n, with entries satisfying (Γ)j = 0
for all j∈Yn. Then the number of zeros between consecutive ‘1’s, in any row of
an array in Xn is odd since it must be of the form i−j−1 for some integers i, j—
either both odd, or both even. Thus, all such arrays satisfy the constraint S, and
since |Xn| = 2(2n)D−|Yn| = 2(2n)D/2, we have |S2n×2n×...×2n| ≥ 2(2n)D/2 for all
positive integers n, which implies cap(S)≥1/2.

It remains to show that cap(S)≤1/2. Since cap(ODD⊗D) is non-increasing
in D, it’s enough to show cap(S)≤1/2 for D = 1. Let n be a positive integer. It
can be easily verified that any 1-dimensional array Γ∈ODDn with entries indexed
by [n], satisfies either Γj = 0 for all even integers j∈[n], or Γj = 0 for all odd
integers j∈[n]. It follows that |ODDn|≤2dn/2e+2bn/2c which implies the desired
inequality �

∗A version of this chapter has been published. Louidor, E. and Marcus, B.H. (2010) Improved
Lower Bounds on Capacities of Symmetric 2-Dimensional Constraints using Rayleigh Quotients.
IEEE Transactions on Information Theory 56:1624–1639.

44

4.2. The capacity of CHG(2)⊗D

4.2 The capacity of CHG(2)⊗D

Theorem 5. For all positive integers D,

cap
(

CHG(2)⊗D
)

=
1

2D
.

Proof. Let S = CHG(2)⊗D. We first show that cap(S)≥1/2D. Let Γ(0),Γ(1) be
the D-dimensional arrays of size 2×2×. . .×2 with entries indexed by {0, 1}D and
given by (

Γ(i)
)
j

= (−1)i+j·1 ; j ∈ {0, 1}D ,

where as usual 1 denotes the D-dimensional vector with every entry equal to 1.
Observe that the sum of every row of both of these arrays is zero. Now, let n
be a positive integer. For any D-dimensional array of size n×n×. . .×n with en-
tries in {0, 1}, it can be easily verified that replacing every entry equal to 0 with
Γ(0) and every entry equal to 1 with Γ(1) results in a D-dimensional array of size
2n×2n×. . .×2n that satisfies S. It follows that |S2n×2n×...×2n|≥2n

D
for all posi-

tive integers n, which implies cap(S)≥1/2D.
We now show that cap(S)≤1/2D. For a positive integer n≥2, denote by N (0)

n

the set of all even integers in {0, 1, . . ., n−2} and byN (1)
n the set of all odd integers

in {0, 1, . . ., n−2}. We shall make use of the following lemma.

Lemma 3. Fix a positive integer n≥2, and let (ai)
n−1
i=0 ⊆{+1,−1} be a sequence

of length n. Then a0. . .an−1∈CHG(2) if and only if at least one of the following
statements hold.

1. For all i∈N (0)
n , ai=−ai+1.

2. For all i∈N (1)
n , ai=−ai+1.

Proof. We first show the “if” direction. Let (ai)
n−1
i=0 ⊆ {+1,−1} be a sequence

for which at least one of statements 1,2 of the lemma holds. Then clearly, for any
integers 0≤i≤j<n, all the terms in the sum

∑j
k=i ak, with the possible exception

of the first and last terms, cancel. Therefore |
∑j

k=i ak| ≤ |ai| + |aj | = 2 and
a0. . .an−1∈CHG(2).

As for the “only if” direction, let (ai)
n−1
i=0 ⊆{+1,−1} such that a0. . .an−1 ∈

CHG(2), and consider the presentation of the CHG constraint given in Figure 1.1c
for b = 2 (and vertices {0, 1, 2}). Let (ei)

n−1
i=0 be a path in this presentation gen-

erating a0. . .an−1. It’s easily verified that if σ(ei) = 1, for some i∈[n−1], then
aj = −aj+1 for all integers i≤j≤n−2 such that j≡i (mod 2). Evidently, either
σ(e0) = 1 and so statement 1 holds, or σ(e1) = 1 implying statement 2. �

45

4.2. The capacity of CHG(2)⊗D

We now return to the claim that cap(S)≤1/2D. Fix a positive integer n≥2.
For an integer 1≤i≤D, let e(i)∈{0, 1}D, be the vector, indexed by {1, 2, . . .,D},
containing 1 in its ith entry and 0 everywhere else and let Ji⊆[n]D denote the
subset of all the vectors indexed by {1, 2, . . .,D} with a 0 in the ith entry. For a
vector j∈Ji, the sequence

(
j + ke(i)

)n−1

k=0
, is a sequence of indices of entries of a

row in direction i of a D-dimensional n×n×. . .×n array, and we shall say that
it is a sequence in direction i. Let R(n,D) be the set of all such sequences for
all integers 1≤i≤D and vectors j∈Ji, and let r∈{0, 1}|R(n,D)| be a binary vector
indexed by R(n,D). For the purpose of this proof, let us refer to a sequence
(ai)

n−1
i=0 ⊆ {+1,−1} as a phase-0 sequence if statement 1 of Lemma 3 holds, and

as a phase-1 sequence if statement 2 holds (note that a sequence may be both a
phase 0 and a phase 1 sequence). Also, we denote by X(r)⊆{+1,−1}∗D , the
set of all D-dimensional arrays Γ of size n×n×. . .×n for which the row Γ%̄ is a
phase-r%̄ sequence, for all %̄ =

(
j + ke(i)

)n−1

k=0
∈R(n,D). Then by Lemma 3, we

have
Sn×...×n =

⋃
r

X(r). (4.1)

We shall give an upper bound on the size of X(r). For a vector v∈[n]D, denote
by ρ(i,v) the unique sequence in direction i in R(n,D) that has v as one of its
elements. Let Tr,i : [n]D→ZD be given by:

Tr,i(v) =

{
v + e(i) if vi ≡ rρ(i,v) (mod 2)
v − e(i) otherwise

,

v∈[n]D, v = (v1, . . ., vD).

Next, we define the undirected graph Gr = (V,Er) (without parallel edges), with
vertices given by

V = [n]D,

and edges given by

Er =

{
u v :

u,v∈V and v = Tr,i(u)
for some integer 1≤i≤D

}
,

where u v denotes the undirected edge connecting vertices u,v. It’s easy to
verify that an array Γ∈{+1,−1}∗D of size n×n×. . .×n is in X(r) iff for every
edge u v∈Er, it holds that Γu = −Γv. Figure 4.1 shows an example of Gr for
D = 2.

Let C1, . . ., C` be the connected components of Gr, and let v(1), . . .,v(`) be
arbitrary vertices such that v(i)∈Ci, for i = 1, 2, . . ., `. It follows that for every

46

4.2. The capacity of CHG(2)⊗D

0 1

1 1

2 0

3 1
4 1

5 0

0

1

1

1

2

1

3

0

4

1

5

0

Figure 4.1: Example of the graph Gr for D = 2, n = 6. Each entry of r corre-
sponding to a row (column) is written to the right of it (below it). The index of
each row (column) is written to its left (above it).

vector b = (b1, . . ., b`)∈{+1,−1}`, there exists at most one array Γ∈X(r) sat-
isfying Γv(i) = bi for all i∈{1, 2, . . ., `}, and consequently, |X(r)|≤2` (in fact,
while this is not needed for the proof, such an array Γ∈X(r) does exist, for any
choice of b, since each Ci is bipartite; thus |X(r)| = 2`).

Now, let u = (u1, . . ., uD)∈([n] \ {0, n−1})D be a vertex in the “interior”
of Gr. We show that the connected component of Gr containing u has at least
2D vertices. To this end, we match each word w = w1w2. . .wD∈{0, 1}D, with a
sequence of vertices

(
π(w,j)

)D
j=0
⊆V , defined recursively by

π(w,j) =


u if j=0
π(w,j−1) if j > 0 and wj = 0

Tr,j(π
(w,j−1)) if j > 0 and wj = 1

.

It’s easy to verify that since every 1≤ui≤n−2, the sequence is well-defined and
indeed (π(w,j))Dj=0 ⊆ [n]D. Clearly, the sequence is contained entirely in the
connected component containing u, and so this component contains the vertex
π(w,D). Write π(w,D)=(π

(w,D)
1 , . . ., π

(w,D)
D). Then for i=1, 2, . . .,D, it holds that

π
(w,D)
i =ui if wi=0, and π(w,D)

i =ui±1 if wi=1. Therefore, for two distinct words
w,w′∈{0, 1}D, the vertices π(w,D) and π(w′,D) are distinct as well, and conse-
quently there are 2D such vertices. Thus, the connected component of Gr contain-
ing u has at least 2D vertices.

It follows that there are at most nD/2D connected components ofGr containing
a vertex in {1, 2, . . ., n−2}D. There are at most nD − (n−2)D connected compo-
nents not containing a vertex in {1, 2, . . ., n−2}D and hence the total number of

47

4.2. The capacity of CHG(2)⊗D

connected components, `, in Gr satisfies `≤nD/2D + nD − (n−2)D. Hence,

|X(r)|≤2n
D/2D+nD−(n−2)D .

Since there are 2Dn
D−1

binary vectors r∈{0, 1}|R(n,D)|, we obtain from (4.1)

|Sn×n×...×n| ≤
∑
r

|X(r)|

≤ 2n
D/2D+nD−(n−2)D+DnD−1

= 2n
D(1/2D+1−(1−2/n)D)+DnD−1

,

and the result follows from (1.1). �

48

Chapter 5

Multi-choice constraints and
independence capacity∗

In this chapter we generalize some of the concepts appearing in [37, 38] to more
than 1 dimension and to non-binary alphabets. In particular we define the notion
of independence capacity of a multidimensional constraint which, roughly, is the
contribution to the capacity resulting from independence between symbols in ar-
rays of the constraint. For the binary alphabet {0, 1} this concept coincides with
the maximum insertion rate defined in [38]. We also show that for a 1-dimensional
constraint S of finite-type with 0 independence entropy, cap(S⊗D) converges to 0
exponentially fast as D approaches infinity.

5.1 Multi-choice constraints

Let Σ̂ denote the set of all nonempty subsets of Σ. Let S be a D-dimensional
constraint over Σ and for a D-dimensional array Γ̂∈Σ̂m for some m∈ND, define
the set of possible choices of entries in Γ̂, denoted Φ(Γ̂), by

Φ(Γ̂) =
{

Γ∈Σm : For all i∈[m], Γi∈Γ̂i

}
.

We define the multi-choice set corresponding to S, denoted Ŝ, by

Ŝ =
{

Γ̂∈Σ̂∗D : Φ(Γ̂) ⊆ S
}
,

and, as for constraints, we use the notation Ŝm, for m∈ND, to denote the set
of D-dimensional arrays of size m in Ŝ. Note that Ŝ is closed under taking of
contiguous sub-arrays, and so it’s plausible that Ŝ is a D-dimensional constraint
over Σ̂. Unfortunately, we do not know if this is true for general D-dimensional
constrained systems S. In this work, we are mostly interested in Ŝ for a constraint
S which is an axial product of some D 1-dimensional constraints. In this case, it

∗A version of this chapter has been submitted for publication. Louidor, E., Marcus B.H. and
Pavlov R. (2010) Independence Entropy of Zd Shift Spaces.

49

5.1. Multi-choice constraints

turns out that Ŝ is indeed a constrained system. This is an easy corollary of the
next theorem which shows that for a 1-dimensional constraint S, Ŝ is indeed a 1-
dimensional constraint. This is shown in [38] for Σ = {0, 1}. For completeness,
we state and prove the theorem for general alphabets. We require the following
definitions. Let Σ be a finite alphabet. For words x, y∈Σ∗ and integer n we use
the conventional notation of |x|, xy, xn to denote, respectively, the length of x,
the word formed by concatenating y to the right of x, and the word formed by
concatenating x to itself n times. We use ε to denote the empty word. Let S be a
1-dimensional constraint over Σ. For a word x∈S the follower set of x, denoted
F(x) = FS(x) is given by

FS(x) = {w∈Σ∗ : xw∈S} .

If G = ((V,E),L) is a presentation of S, and for v∈V , we denote by F(v) the
set of words generated by paths in G starting at v, then FS(x) = ∪vF(v), where
the union is taken over all terminal vertices, v, of paths in G generating x. It
follows that the number of follower sets of a constraint is finite. In [38] the authors
construct a presentation of Ŝ when Σ = {0, 1}. We generalize their construction
here for arbitrary alphabets and denote it by ĜFS = ((VFS , EFS),LFS). The set of
vertices VFS consists of all (finite) intersections of follower sets of words in S:

VFS =

{
k⋂
i=1

FS(wi) : w1, . . ., wk∈S, k=1, 2, . . .

}
.

For a vertex v∈VFS , v=
⋂k
i=1FS(wi), and symbol â∈Σ̂ with â⊆v define

δ(v, â) =
⋂
a∈â

k⋂
i=1

FS(wia)

(note that wia∈S for every a∈â and i = 1, 2, . . ., k). It’s easy to verify that
δ(v, â) = {w∈Σ∗ : aw∈v for all a∈â}, and therefore δ(v, â) does not depend on
the choice of k and w1, . . ., wk. The set EFS is now defined by

EFS = {(v, â, δ(v, â)) : v∈VFS , â⊆v} ,

and for an edge e = (v, â, δ(v, â))∈EFS we define σ(e) = v, τ(e) = δ(v, â) and
LFS (e) = â. We are now ready to prove the aforementioned theorem.

Theorem 6. If S is a 1-dimensional constraint over an alphabet Σ, then Ŝ is a
1-dimensional constraint over Σ̂ and ĜFS is a presentation of Ŝ.

50

5.2. Independence capacity

Proof. The theorem readily follows from the following fact, which is easily veri-
fied by induction on the length of w.

Fact 1. For any vertex v =
⋂k
i=1FS(wi)∈VFS , and a word w∈Σ̂∗, there is a path

starting at v and generating w in Ĝ if and only if Φ(w)⊆v, in which case the path
ends at the vertex

⋂k
i=1

⋂
z∈Φ(w)FS(wiz).

Now, for a word x̂∈Σ̂∗ generated by a path of Ĝ starting at some vertex v, we
have Φ(x̂)⊆v⊆S, and therefore x̂∈Ŝ. Conversely, since S = F(ε), it follows from
the above fact that there is a path generating any word x̂∈Ŝ (starting from F(ε))
in Ĝ. �

Let S(1), . . ., S(D) be 1-dimensional constraints over Σ, and set S =

S(1)⊗. . .⊗S(D). Then it’s easy to verify that Ŝ = Ŝ(1)⊗. . .⊗Ŝ(D), and we have
the following corollary:

Corollary 2. If S(1), . . ., S(D) are 1-dimensional constraints over Σ, and S =
S(1)⊗. . .⊗S(D), then Ŝ is a D-dimensional constrained system.

5.2 Independence capacity

In this section, we introduce the notion of “independence capacity” of a constraint.
Roughly, this is the part of the capacity resulting from inter-symbol independence
in elements of the constraint.

Let S be a D-dimensional constraint over Σ. For an array Γ̂∈Ŝ of size m,
the real number log(|Φ(Γ̂)|)/|[m]| can be thought of as the contribution to the
capacity resulting from independence between entries in elements of S as “cap-
tured” by Γ̂. We define the independence capacity as the limit (as m → ∞)
of the maximum possible such contribution. Precisely, observe that the mapping
m → log max

{
|Φ(Γ̂)| : Γ̂∈Ŝm

}
for m∈ND is entry-wise subadditive. Using

Lemma 1, we define the independence capacity of S, denoted capind(S), by

capind(S) = lim
m→∞

log max
{
|Φ(Γ̂)| : Γ̂∈Ŝm

}
|[m]|

= inf
m

log max
{
|Φ(Γ̂)| : Γ̂∈Ŝm

}
|[m]|

. (5.1)

As already mentioned [38] defines the independence capacity of a 1-dimensional
constraint, when Σ = {0, 1}, and calls it the “maximum insertion rate”. It is

51

5.2. Independence capacity

shown that the maximum insertion rate of a 1-dimensional constraint S can be
determined from a presentation Ĝ of Ŝ, when Σ = {0, 1}. The next theorem shows
the generalization of this result to larger alphabets.

Let G = ((V,E),L) be a labeled graph. A cycle (ei)
`
i=1⊆E is simple, if the

vertices τ(e1), . . ., τ(e`) are distinct.

Theorem 7. Let S be a 1-dimensional constraint over an alphabet Σ, and pick any
presentation Ĝ = ((V,E),L) for Ŝ. Then

capind(X) = max

{
log |Φ(ŵ)|
|ŵ|

: ŵ is generated by a simple cycle of Ĝ
}
.

(5.2)

Proof. Denote the RHS of (5.2) by ν∗. Let ŵ∗ be a word generated by a
simple cycle of Ĝ such that ν∗ = (log |Φ(ŵ∗)|)/|ŵ∗|. Set ` = |ŵ∗|. For
n∈N, clearly, the word ŵn∗∈Ŝn`, and (log |Φ(ŵn∗)|)/(n`) = ν∗. It follows that
ν∗≤(log max{|Φ(ŵ)| : ŵ∈Ŝn`})/(n`). Taking the limit as n→∞, we obtain
ν∗≤capind(S). To complete the proof we show that capind(S)≤ν∗. We first claim
that if ŵ∈Σ̂∗ is a word generated by a (possibly non-simple) cycle of Ĝ then

ν∗≥ log |Φ(ŵ)|
|ŵ|

. (5.3)

This is easily proved by induction on |ŵ|. If |ŵ| = 1, then the cycle generating
ŵ is simple and obviously (5.3) holds. For |ŵ|>1, let π = (ei)

`
i=1 be a cycle

of Ĝ generating ŵ. Obviously (5.3) holds if π is simple. Otherwise, there exist
integers 1≤j<k≤` such that τ(ej)=τ(ek). So both α = ej+1, . . ., ek and β =

e1, . . ., ej , ek+1, . . ., e` are cycles in Ĝ. Let x̂, ŷ denote the words generated by α
and β respectively. Then using the induction hypothesis on |x̂| and |ŷ|, we get

log |Φ(ŵ)|
|ŵ|

=
|x̂|
|ŵ|

log |Φ(x̂)|
|x̂|

+
|ŷ|
|ŵ|

log |Φ(ŷ)|
|ŷ|

≤ |x̂|
|ŵ|

ν∗ +
|ŷ|
|ŵ|

ν∗

= ν∗.

Now, for n∈N, let ẑ(n)∈Ŝn be a word such that |Φ(ẑ(n))| = max{|Φ(ŵ)| :

ŵ∈Ŝn}. Let (e
(n)
i)n−1

i=0 be a path in Ĝ generating ẑ(n). Then using [37, Lemma 13]
(and removing “0-length” cycles), it may be decomposed as follows. There exist
an integer 0≤m≤|V | and 2m integers 0 ≤ s1≤t1 < s2≤t2 < . . . < sm≤tm < n

52

5.3. Independence capacity and axial products

such that for each k = 1, . . .,m, (e
(n)
i)tki=sk is a cycle, and n−

∑
k(tk−sk+1)≤|V |.

Set X =
⋃m
k=1{sk, . . ., tk}. Using (5.3), we have

log |Φ(ẑ(n))|
n

=

m∑
k=1

log |Φ(L(e
(n)
sk). . .L(e

(n)
tk

))|
n

+
∑

i∈[n]\X

log |Φ(L(e
(n)
i))|

n

≤
m∑
k=1

(
log |Φ(L(e

(n)
sk). . .L(e

(n)
tk

))|
tk − sk + 1

· tk − sk + 1

n

)
+
|V |
n

log |Σ|

≤ ν∗ +
|V |
n

log |Σ|.

The result follows by taking the limit as n→∞ of both sides of the last inequality.
�

We next show that the independence capacity of a constraint cannot exceed its
capacity.

Theorem 8. Let S be a D-dimensional constraint over Σ then capind(S)≤cap(S).

Proof. For m∈ND, let ẑ(m)∈Ŝm be a configuration such that
|Φ(ẑ(m))| = max{|Φ(ŵ)| : ŵ∈Ŝm}. Since, Φ(ẑ(m)) ⊆ Sm, we get
(1/|[m]|) log |Φ(ẑ(m))| ≤ (1/|[m]|) log |Sm|. Taking the limit of both sides as
m→∞, we obtain the result. �

5.3 Independence capacity and axial products

In this section we show a relation between the independence capacity of an ax-
ial product of 1-dimensional constraints to the independence capacities of the 1-
dimensional constraints. A similar relation holds for the (conventional) capacities.
The relation is stated in the next theorem.

Theorem 9. Let S(1), . . ., S(D) be 1-dimensional constraints over Σ. Then the
following statements hold:

1. capind(S(1)⊗. . .⊗S(D))≤min
i

capind(S(i)).

2. cap(S(1)⊗. . .⊗S(D))≤min
i

cap(S(i)).

3. If S(1)=. . .=S(D)=S then capind(S⊗D) = capind(S).

53

5.3. Independence capacity and axial products

Remark 1. [37] proves Part 3 for binary 1-dimensional constraints. The proof uses
the existence of a word ŵ∈Ŝ with capind(S) = log(|Φ(ŵ)|)/|ŵ| and ŵn∈Ŝ for all
n∈N. The proof given here does not rely on the existence of such a word.

Proof. Part 1. Denote by Ŝ the multi-choice constraint corresponding to
S(1)⊗. . .⊗S(D). Fix i∈{1, . . .,D}. For k∈N, let mk = (m

(1)
k , . . .,m

(D)
k)⊆ND,

be the D-tuple with m
(j)
k =1, for j∈{1, . . .,D}\{i}, and m

(i)
k =k. Every array

in Ŝmk
is essentially a word in Ŝ(i)

k and vice versa. Hence, (log max{|Φ(ŵ)| :

ŵ∈Ŝmk
})/|[mk]| = (log max{|Φ(ŵ)| : ŵ∈Ŝ(i)

k})/k. By (5.1) it follows that
capind(S(1)⊗. . .⊗S(D))≤capind(S(i)), and the theorem follows.

Part 2. The proof is similar to the proof of Part 1, so we omit it here.
Part 3. Let T=S⊗D. By Part 1, it’s enough to show capind(T)≥capind(S).

Let f :N→N be any function satisfying limi→∞(f(i)/i)=∞. For i∈N, let
mi = (i, i, . . ., i, f(i))∈ND be the D-tuple with every entry but the last equal
to i, and the last entry equal to f(i). Set `(i)=(D−1)(i−1)+f(i), and let
ẑ(i)=ẑ

(i)
0 . . .ẑ

(i)
`(i)−1∈Ŝ`(i) be a word such that |Φ(ẑ(i))| = max{|Φ(ŵ)| : ŵ∈Ŝ`(i)}.

Define the D-dimensional array Γ̂(i)∈Σ̂mi by

Γ̂
(i)
j = ẑ

(i)
ψ(j), j∈[mi],

where ψ : ZD → Z is given by ψ(j1, . . ., jD) =
∑

k jk. Observe that every row of
Γ̂(i) is a (contiguous) sub-word of ẑ(i); it follows that Γ̂(i)∈T̂mi . Consequently,

|Φ(Γ̂(i))| ≤ max{|Φ(Γ̂)| : Γ̂∈T̂mi}. (5.4)

We next lower bound log |Φ(Γ̂(i))|. Set X = {j∈Z : (i−1)(D−1)≤j<f(i)}, and
for Y⊆Z denote by ψ−1(Y) = {j∈ZD : ψ(j)∈Y }. Then

log |Φ(Γ̂(i))| =
∑

j∈[mi]

log |Φ(Γ̂
(i)
j)|

=
∑

k∈[`(i)]

(∣∣ψ−1({k})∩[mi]
∣∣ · log

∣∣∣Φ(ẑ
(i)
k)
∣∣∣)

≥ iD−1
∑
k∈X

log |Φ(ẑ
(i)
k)|

= iD−1

 ∑
k∈[`(i)]

log |Φ(ẑ
(i)
k)| −

∑
k∈[`(i)]\X

log |Φ(ẑ
(i)
k)|


≥ iD−1 log |Φ(ẑ(i))| − 2(D−1)(i−1)iD−1 log |Σ|,

54

5.4. Independence capacity and limD→∞ cap(S⊗D)

where we used the fact that for k∈X , it holds that ψ−1({k}) ∩ [mi] =
{(j1, . . ., jD−1, k−

∑
t jt) : (j1, . . ., jD−1)∈[i]D−1}. Combining the last inequal-

ity with (5.4), we have

log max{|Φ(Γ̂)| : Γ̂∈T̂mi}
|[mi]|

≥ iD−1 log |Φ(ẑ(i))| − 2(D−1)(i−1)iD−1 log |Σ|
|[mi]|

≥ log |Φ(ẑ(i))|
`(i)

− 2(D−1)(i−1) log |Σ|
f(i)

.

Taking the limit of both sides as i→∞, we obtain capind(T)≥capind(S). �

5.4 Independence capacity and limlimlimDDD→→→∞∞∞capcapcap(SSS⊗⊗⊗DDD)

Combining the fact that cap(S⊗D) is non-increasing in D with Theorem 8, we have
cap(S⊗1)≥cap(S⊗2)≥. . .≥capind(S). We denote the limit limD→∞ cap(S⊗D)
by cap∞(S). Obviously, cap∞(S)≥capind(S) and for all the constraints for which
we know the value of cap∞, it turns out to be equal to capind. We list these
constraints.

1. RLL(d, k) with k≤2d. For this family of constraints, capind turns out to be
0 [38]. In [20], it is shown that cap(∞) = 0 as well.

2. RLL(d,∞). For this family of constraints, capind turns out to be
1/(d+1) [38]. [36] shows that

cap(RLL(d,∞)⊗D) =
1

d+1
+O

(
log2(D(d+1))

D(d+1)

)
.

Additionally, for d = 1, [29] shows that, for sufficiently large D,

1

2
+

1

2
· 2−2D ≤ cap(RLL(1,∞)⊗D) ≤ 1

2
+ 2o(D)2−2D.

3. The 3-checkerboard constraint CHK is defined over the alphabet {0, 1, 2},
and consists of all words in which every 2 adjacent symbols are distinct. The
independence capacity of this constraint turns out to be 1/2, and [29] shows
that cap∞(CHK) = 1/2 as well.

The equality of cap∞ and capind was first noticed empirically by Chaichanavong
and Poo in [37], where they ask if this is true for all 1-dimensional constraints. The
following theorem gives a partial answer.

55

5.4. Independence capacity and limD→∞ cap(S⊗D)

Theorem 10. Let S be a 1-dimensional constraint having finite memory m over Σ
with capind(S) = 0. Then

cap(S⊗(D+1)) ≤ m

m+1
cap(S

⊗D
).

In particular, cap∞(S)=0.

To prove the theorem we need the following definitions on labeled graphs. For
a labeled graph G = (V,E,L) and a subset U⊆V , we call the graph (U,EU ,L|EU)
where EU = {e∈E : σ(e)∈U, τ(e)∈U} the subgraph of G induced by U . For two
vertices u, v∈V we say that u is reachable from v if there is a path in G that starts
in u and ends in v. We write u G↔ v if u is reachable from v and v is reachable
from u. If u G↔ v does not hold we write u 6 G↔ v. The relation G↔ is an equivalence
relation on the vertices of G and the equivalence classes are called the irreducible
components of G. For an irreducible component of G we shall sometime also call
the subgraph of G that it induces an irreducible component. Obviously, a graph
G is irreducible iff it has only one irreducible component. A labeled graph G has
memory m, for some nonnegative integer m, if all paths of length m generating
the same word terminate at the same vertex. Clearly, if G has memory m, then it
also has memory n for any n>m. The following proposition relates memory of a
constraint to memory of a graph.

Proposition 7. If S is a 1-dimensional constraint with finite memory m, then there
exists a presentation G of S with memory m.

Proof. We construct the “follower-set graph of S”, G = ((V,E),L), as follows.
V = {FS(x) : x∈S}, and for a vertex FS(x)∈V and symbol a ∈ FS(x)∩Σ,
define δ(FS(x), a) = FS(xa). It’s easy to verify that δ(·, ·) is well-defined. The
set of edges E is now given by E = {(u, a, δ(u, a)) : u∈V, a∈u∩Σ}, and for
an edge e = (u, a, v)∈E, σ(e) = u, τ(e) = v and L(e) = a. Clearly, G is
deterministic. The following fact is easily verified

Fact 2. For every vertex FS(x)∈V , a word w is generated from FS(x) in G if and
only if w∈FS(x) in which case the path generating it terminates at FS(xw).

As FS(ε) = S it follows from this fact that G is a presentation of S. We
show that G has memory m. Let w∈S with |w| = m be generated by some path
in G starting from a vertex FS(x), then by the above fact, the path terminates at
FS(xw). We claim that FS(xw)=FS(w). If x = ε this is obviously true, so
assume x 6= ε. Clearly, FS(xw)⊆FS(w). On the other hand, let y∈FS(w). Note
that by our assumption, |xwy|>m and every contiguous sub-word, with length
m+1, of xwy is a contiguous sub-word of xw or a contiguous sub-word of wy and

56

5.4. Independence capacity and limD→∞ cap(S⊗D)

therefore satisfies S. Since S has memory m, this implies that xwy satisfies S as
well, and hence y∈FS(xw). Thus FS(w) = FS(xw) as claimed. Therefore all
paths generating w terminate at FS(w) and it follows that G has memory m. �

Proof of Theorem 10. Let G = ((V,E),L) be a presentation of S with memory
m, and for a word x∈S with |x|≥m, denote by v(x) the terminal state of any path
generating x in G. We will need the next two lemmas. The first shows that if
capind(S) = 0, knowledge of long enough prefixes and suffixes of a word in S is
often sufficient to determine the middle of the word.

Lemma 4. Let x, y∈S be words of length m such that v(x)
G↔v(y). Then there is

at most one word of the form xay, where a∈Σ, in S.

Proof. Assume to the contrary that there are two such words xay, xby∈S where
a, b∈Σ and a6=b. Therefore there are two paths in G, (ei)

2m+1
i=1 , (fi)

2m+1
i=1 ⊆E gener-

ating xay and xby respectively. Since the paths (ei)
m
i=1 and (fi)

m
i=1 both generate x,

it follows that σ(em+1) = σ(fm+1) = v(x). Similarly, since both paths (ei)
2m+1
i=m+2

and (fi)
2m+1
i=m+2 generate y, it follows that τ(e2m+1) = τ(f2m+1) = v(y). There-

fore the paths (ei)
2m+1
i=m+1, (fi)

2m+1
i=m+1 both start at v(x), both end at v(y), and gen-

erate ay and by respectively. Since, by our assumption, v(x) and v(y) are in the
same irreducible component, there is a path generating some word z∈Σ∗ starting
at v(y) and ending at v(x). Concatenating this path to the end of (ei)

2m+1
i=m+1 and

(fi)
2m+1
i=m+1 we obtain two cycles—both starting and ending at v(x)—one generat-

ing ayz and the other generating byz. Consequently, for all k∈N and sequence
(ci)

k
i=1⊆{a, b}, there is a cycle in G generating the word c1yzc2yz. . .ckyz. Let

|z| = `, y = y0. . .ym−1 and z = z0. . .z`−1, where yi, zj∈Σ for i∈[m], j∈[`],
and denote by ŷ, ẑ the words over Σ̂ given by ŷ = {y1}. . .{ym−1} and ẑ =
{z1}. . .{z`−1}. It follows that for all k∈N, ({a, b}ŷẑ)k∈Ŝ. But this easily im-
plies that capind(S)≥1/(m+`+1), contradicting our assumption. �

Let CG denote the number of irreducible components of G. The next lemma
bounds the number of appearances of words of the form xay in a certain word of
S, where a∈Σ, |x| = |y| = m and v(x) 6 G↔ v(y).

Lemma 5. For `∈N and word z∈S`(m+1)+m, let y(0), . . ., y(`)∈Σm and
a(0). . ., a(`−1)∈Σ be defined by

z = y(0)a(0)y(1)a(1). . .y(`−1)a(`−1)y(`).

Then ∣∣∣{i∈[`] : v(y(i))6 G↔v(y(i+1))
}∣∣∣ < CG .

57

5.4. Independence capacity and limD→∞ cap(S⊗D)

Proof. Assume to the contrary that there are 0≤i1<i2<. . .<iCG<` such

that v(y(ij)) 6 G↔v(y(ij+1)), for every j∈{1, . . ., CG}. Then the sequence
v(y(i1)), v(y(i2)), . . ., v(y(iCG)), v(y(iCG+1)) has CG+1 vertices and therefore
contains two belonging to the same irreducible component, say v(y(s)) and
v(y(t)), for some integers 0≤s<t≤`, with s∈{i1, . . ., iCG}. Since the word
y(s)a(s)y(s+1)∈S, it follows that v(y(s+1)) is reachable from v(y(s)). Similarly,
since y(s+1)a(s+1)y(s+2)a(s+2). . .a(t−1)y(t)∈S, it holds that v(y(t)) is reachable
from v(y(s+1)). But since v(y(t)) is in the same irreducible component as v(y(s)),

it follows that v(y(s)) is reachable from v(y(s+1)) as well. Thus v(y(s))
G↔v(y(s+1))

which contradicts s∈{i1, . . ., iCG}. �

We can now prove the theorem. This part of the proof is a generalization of [20,
Lemma 3]. Figure 5.1 illustrates the proof. Let ` be a positive integer. Denote
by `̀̀∈ND the D-tuple with every entry equal to `, and let m`∈ND+1 be given by
m`=(`(m+1)+m, `, `, . . . , `). Set T = S⊗(D+1). We will give an upper bound on
|Tm`
|. Let X be the set [`(m+1)+m]\{i(m+1)+m : i∈[`]} and Y the Cartesian

productX×[̀`̀]. For an array Γ∈Tm`
let Γ|Y : Y → Σ denote the mapping given by

Γ|Y(x) = Γx. Let BY = {Γ|Y : Γ∈Tm`
} denote the set of all such mappings. For

a mapping ∆∈BY we define the setZ(∆)⊆Tm`
byZ(∆) = {Γ∈Tm`

: Γ|Y = ∆}.
Clearly, ⋃

∆∈BY

Z(∆) = Tm`
. (5.5)

Let ∆∈BY , and fix j∈[̀`̀]. For i∈[`+1], let y(i,j,∆)∈Σm be the word given by

y(i,j,∆) = ∆(i(m+ 1), j)∆(i(m+ 1) + 1, j). . .∆(i(m+ 1) +m− 1, j)

and for Γ∈Z(∆) let w(Γ,j)∈Σ`(m+1)+m be the word given by

w(Γ,j) = Γ(0,j)Γ(1,j). . .Γ(`(m+1)+m−1,j).

Note that for such Γ, since Γ∈Tm`
, w(Γ,j)∈S, and, since Γ|Y = ∆, we may write

w(Γ,j) = y(0,j,∆)a(0,j,Γ)y(1,j,∆)a(1,j,Γ). . .y(`−1,j,∆)a(`−1,j,Γ)y(`,j,∆),

where a(i,j,Γ) = Γ(i(m+1)+m,j) for i∈[`]. Now, if i∈[`] such that

v(y(i,j,∆))
G↔v(y(i+1,j,∆)) then, by Lemma 4, all Γ∈Z(∆) have the same a(i,j,Γ).

On the other hand, by Lemma 5, since Z(∆) 6= ∅, it holds that |{i∈[`] :

v(y(i,j,∆)) 6 G↔v(y(i+1,j,∆))}|<CG . It follows that |{w(Γ,j) : Γ∈Z(∆)}|≤|Σ|CG , and
consequently

|Z(∆)| ≤
∏
j∈[̀`̀]

|{w(Γ,j) : Γ∈Z(∆)}|≤|Σ|CG`D . (5.6)

58

5.4. Independence capacity and limD→∞ cap(S⊗D)

Since for any ∆∈BY , and i∈X , the D-dimensional array Λ(∆, i)∈Σ`̀̀ with entries
given by (Λ(∆, i))j = ∆(i, j) is clearly in S⊗D, it follows that |BY |≤|(S⊗D)`̀̀||X|.
Combining this with (5.6) and (5.5), we have

|Tm`
| =

∑
∆∈BY

|Z(∆)| ≤ |Σ|CG`D |(S⊗D)`̀̀|(`+1)m.

Taking the logarithm of both sides and dividing by |[m`]|, we obtain

log |Tm`
|

|[m`]|
≤ (`+ 1)m

`(m+ 1) +m

log |(S⊗D)`̀̀|
`D

+
CG log |Σ|

`(m+ 1) +m

The theorem follows by taking the limit as `→∞. �

59

5.4. Independence capacity and limD→∞ cap(S⊗D)

y(0,j,∆)

y(1,j,∆)

y(`−1,j,∆)

y(`,j,∆)

a(0,j,Γ)

a(1,j,Γ)

a(`−1,j,Γ)

m

`̀̀

j

Figure 5.1: Proof of Theorem 10.

As an application of Theorem 10, consider the the family of multiple-spaced
runlength constraints. Each of these constraints is denoted RLL(d, k, s) with d,k
and s nonnegative integers and d ≤ k. It is defined over the alphabet {0, 1} and
consists of all words in RLL(d, k) for which the length of each run of ‘0’s delimited
by ‘1’s on both ends is a multiple of s. Fix such integers d, k, and s with s ≥ 2,
and let S = RLL(d, k, s). It can be verified that each word of Ŝ has at most two

60

5.5. Open questions

letters equal to {0, 1}, and it follows that capind(S) = 0. As the memory of S is
(at most) k, by Theorem 10, we have the following corollary.

Corollary 3. Let d, k, s be nonnegative integers such that d≤k and s≥2. Then

cap(RLL(d, k, s)⊗D) =

(
k

k + 1

)D−1

·cap(RLL(d, k, s)).

5.5 Open questions

Is it true that cap∞(S) = capind(S) for every 1-dimensional constraint S? For
a 1-dimensional constraint S, what can be said about the rate of convergence of
cap(S⊗D) to cap∞(S)? Finally, is Ŝ a D-dimensional constraint, for every D-
dimensional constraint S, when D≥2?

61

Chapter 6

The tradeoff function for binary
1-dimensional constraints∗

This chapter deals with the tradeoff function for 1-dimensional binary constraints.
As mentioned in Chapter 1, the tradeoff function for a 1-dimensional constraint
evaluated at 0 equals the constraint’s capacity and thus is a more general notion
than capacity. The motivation for defining this function comes from the applica-
tion of 1-dimensional constraints in digital storage systems. We describe the mo-
tivation in more detail in the next section. Later on, we give the precise definition
of the tradeoff function for a general 1-dimensional binary constraint. The rest of
the chapter shows our computation of this function for two families of RLL(d, k)
constraints.

6.1 A brief overview of digital recording

In digital storage systems, user data is written to the device in the form of a bi-
nary sequence. Typically, not every binary sequence may be written reliably to the
device and therefore, only a subset of all possible sequences is “allowed” to be writ-
ten. The set of all the “allowed” sequences is usually modeled as a 1-dimensional
binary constraint. In practice, limiting the written sequence to this “allowed” set
is often not sufficient to guarantee the required reliability, and an error-correcting-
code or ECC is used as well. Consequently, user data (represented as an arbitrary
stream of ‘0’s and ‘1’s) is encoded twice before written to media. First the data is
encoded to a codeword of an error-correcting-code or ECC and then the resultant
codeword is encoded to an “allowed sequence” of some 1-dimensional binary con-
straint. In this context, the constraint is sometimes called a “modulation code” and
the encoding of the ECC codeword to a constrained sequence is known as “mod-
ulation encoding”. When reading back the data the process is reversed: the data
read from the device is first decoded by the modulation code decoder and then the
ECC decoder is used to recover the source data, attempting to correct any errors

∗A version of this chapter has been submitted for publication. Louidor, E. (2010) The Tradeoff
Function for a Class of RLL(d, k) Constraints.

62

6.1. A brief overview of digital recording

that may have occurred when the data was read. Roughly speaking, the rate of a
modulation encoder is the ratio between the length of its input to the length of its
output; it is typically strictly smaller than 1. In storage systems it is desirable that
the rate be as high as possible to maximize storage.

This scheme suffers from a couple of disadvantages. First, a small number
of errors that are present after reading the data from the device may turn into a
burst of errors at the output of the modulation decoder, which may overwhelm the
ECC decoder. Second, since the modulation code decoder is typically a “hard”
decoder—meaning that it outputs “hard” ‘0’s or ‘1’s rather than probabilities or
likelihoods—any soft or probabilistic information that might have been available
after reading the data from the device is not readily available to the ECC decoder,
thereby limiting its error correction capability.

In [40], [5], [38] and the references therein, several encoding schemes are pro-
posed to overcome these disadvantages. Here, we focus on one of these schemes, in
which the order of the two encodings mentioned above is reversed. The source data
is first encoded with a modulation code into a constrained sequence, but instead of
using the original constraint, we encode it to a sequence of the multi-choice con-
straint corresponding to the original constraint, where we use 0, 1, and � in place
of the symbols {0}, {1}, and {0, 1} of Σ̂, respectively. The entries containing the
‘�’s are “unconstrained” in the sense that replacing (or “filling”) them with any
values in {0, 1} independently would result in a sequence satisfying the constraint.
Next, a systematic ECC with a suitable redundancy is applied, placing the redun-
dancy (parity-check) bits in these unconstrained positions. Clearly, this addresses
both of the disadvantages listed above.

In this scheme, since the error correction capability of the ECC depends on
the number of redundancy bits, it is desirable that the number of unconstrained
positions be as large as possible. On the other hand, increasing the number of
unconstrained positions at the output of the modulation encoder naturally reduces
its rate, as no user information is encoded in the unconstrained positions. In [38]
the authors study the tradeoff function that defines for a given “density” of un-
constrained positions, called the insertion-rate, the maximum overall rate of the
encoding; knowing this function is obviously important to the design of efficient
digital storage systems employing this scheme. Currently, there are only very few
constraints for which the tradeoff function has been computed explicitly.

As mentioned in Chapter 1, the RLL(d, k) constraint is widely used in digital
storage systems employing optical or magnetic recording. Another constraint used
in practice is the maximum transition run or MTR constraint, denoted MTR(j, k)
for some nonnegative integers j, k. This constraint consists of all binary sequences
in which the length of each run of ‘1’s is at most j and the length of each run of ‘0’s
is at most k. More details on these constraints as well as other constraints used in

63

6.2. Previous work

practice may be found in [18] and [32]. We give a precise definition of the tradeoff
function in Section 6.3.

6.2 Previous work

In [5], the tradeoff functions for RLL(0, 1) and RLL(0, 2) are determined. In [37],
Poo computed the tradeoff function for RLL(0, 3) for insertion rates between 0 and
1/4, and the tradeoff function for RLL(d, 2d + 1) for any d. In [38] the authors
compute the tradeoff function for MTR(2, 2). For completeness, we present these
functions in Theorem 11. Lower bounds on the tradeoff function for RLL(0, k)
are given in [19] and [21]. In this chapter, we determine the tradeoff functions
for two other families of constraints: RLL(d, 2d+2), and RLL(d,∞). Our results
are stated precisely in Theorems 12 and 13. For RLL(d, 2d+2), we find a curious
dichotomy in the shape of the tradeoff function between different ranges of values
of d. The function is always piecewise linear; yet it consists of 2 linear “segments”
for 1≤d≤16 and 3 segments for d≥17.

This chapter is organized as follows. In Section 6.3 we define the tradeoff
function and related concepts as well as summarize some of its known properties.
We also state the previously known tradeoff functions and our new results. In
Section 6.4 we show the derivation of the tradeoff function for RLL(d,∞) and in
Section 6.5 we show the derivation of the tradeoff function for RLL(d, 2d+2).

6.3 Background and definitions

For the rest of this chapter, fix Σ = {0, 1}. Let S be a 1-dimensional constraint
over Σ and Σ̂, Φ, Ŝ and ĜFS be as defined in Chapter 5. As already stated, in this
chapter we use ‘0’, ‘1’ and ‘�’ in place of {0}, {1} and {0, 1}, respectively. So
Σ̂ = {0, 1,�}, and Φ(x), for x∈Σ̂∗, can be thought of as the set of all possible
“fillings” of the ‘�’s of x with bits. We also sometimes omit the subscript FS from
ĜFS to simplify notation. For a word w ∈ Σ̂∗, let #�(w) denote the number of
‘�’s in w. Observe that log |Φ(w)| = #�(w) and hence

capind(S) = lim
m→∞

max{#�(w) : w∈Ŝm}
m

;

so capind(S) is the asymptotic maximum density of ’�‘s in words of Ŝ. In this
chapter we use the following notation for sequences. For a set T and nonnega-
tive integer n we denote a sequence b1, . . ., bn of n elements of T by (bi), and
index its elements by {1, 2, . . ., n}. We refer to n as the length of the sequence

64

6.3. Background and definitions

and denote it by |(bi)|. We abuse notation and write (bi)⊆T to mean that bi∈T
for all i∈{1, 2, . . ., |(bi)|}. For two sequences (bi), (di)⊆T we denote by (bi)(di)
the sequence formed by concatenating the sequences (bi) and (di), that is the se-
quence b1, b2, . . ., b|(bi)|, d1, d2, . . ., d|(di)|. For a nonnegative integer m, the nota-
tion (bi)

m is used to denote the sequence formed by concatenating (bi) to itself m
times (as usual (bi)

0 is the empty sequence). We shall also consider infinite se-
quences b1, b2, . . . with elements in T and denote such sequences by (bi)

∞
i=1. For a

sequence (Mi) of m real nonnegative square matrices all having the same size, we
write λ((Mi)) to mean λ(

∏
iMi).

Let S be a constraint over Σ. For a positive integer n and a subset I⊆[n] we
defineM(I, n) =MS(I, n) = |{w0w1. . .wn−1∈Ŝn : ∀i∈[n], wi=� ⇔ i∈I}|.
Also, for any real number ρ∈[0, 1], define the set Iρ by

Iρ =

{
(Ij)

∞
j=1 : Ij⊆[j] for all j, and lim

j→∞

|Ij |
j

=ρ

}
.

Then the tradeoff function of S, fS : [0, 1]→[0, 1]∪{−∞} is given by

fS(ρ) = sup
(Ij)∈Iρ

lim sup
j→∞

logMS(Ij , j)

j
.

A 1-dimensional constraint is irreducible if it has an irreducible presenta-
tion. A graph (labeled graph) is called trivial if it has exactly one vertex and
no edges. Every RLL(d, k) constraint is irreducible. In [38] it is shown that if
S is an irreducible finite-type constraint (that has infinitely many words), then
ĜFS has exactly one non-trivial irreducible component. Here, we denote this com-
ponent by Ĝ? = (V̂?, Ê?, L̂?). For a subset Q⊆Σ̂, let ÊQ? denote the subset of
Ê? consisting of the edges whose label is in Q. We denote by Ĝ{0,1}? the sub-
graph of Ĝ? given by Ĝ{0,1}? =(V̂?, Ê

{0,1}
? , L̂?|Ê{0,1}?

) and by Ĝ{�}? the subgraph of

Ĝ? given by Ĝ{�}? =(V̂?, Ê
{�}
? , L̂?|Ê{�}?

). We define A{0,1}(S) = A(Ĝ{0,1}?) and

A{�}(S) = A(Ĝ{�}?). Let (Mi)⊆{A{0,1}(S), A{�}(S)} be a sequence of length
n. We say that a path (ei)⊆Ê? of Ĝ? matches (Mi) if it has length n, and for
every 1≤i≤n, L̂?(ei)=� iff Mi=A

{�}(S). Note that for any s, t∈V̂?, the entry
(
∏
iMi)(s,t) is the number of paths in Ĝ? starting at s, ending at t and matching

(Mi). For a finite sequence (Mi)⊆{A{0,1}(S), A{�}(S)}, we denote by %((Mi))
the density of A{�}(S) in (Mi), namely

%((Mi)) =

∣∣{1≤i≤|(Mi)| : Mi=A
{�}(S)

}∣∣
|(Mi)|

.

Let S be a 1-dimensional constraint over Σ. We list the following known facts
about the tradeoff function fS .

65

6.3. Background and definitions

• For 0≤ρ≤capind(S), fS(ρ)≥0, and for capind(S)<ρ≤1, fS(ρ) = −∞.

• fS(0) = cap(S).

• fS is decreasing in [0, capind(S)]. Moreover, for any 0≤ρ1<ρ2≤capind(S),

fS(ρ1)−fS(ρ2)≥ρ2−ρ1.

• fS is left-continuous in [0, capind(S)].

• If S is irreducible and finite-type then fS is concave and continuous in
[0, capind(S)]. Furthermore, for all rational ρ∈[0, 1]

fS(ρ) = sup
(Mi)

log λ((Mi))

|(Mi)|
, (6.1)

where the sup is taken over all sequences (Mi)⊆{A{0,1}(S), A{�}(S)}with
%((Mi))=ρ.

• For integers 0≤d≤k

capind(RLL(d, k)) =
b(k−d)/(d+1)c

b(k+1)/(d+1)c(d+1)
, (6.2)

and capind(RLL(d,∞)) =
1

d+1
. (6.3)

See [38] for proofs.
As mentioned in the introduction, there are a few constraints for which the

tradeoff function has been computed explicitly. These are summarized in the
next theorem, along with the references to the respective papers. For a finite se-
quence (xi)⊆R2 of points such that xi = (xi, yi) and x1<x2<. . .<xn, we define
L(xi) : [x1, xn]→R to be the function whose graph is the piecewise linear curve
connecting these points in sequence; namely, the function that satisfies

L(xi)(x) =
yi+1−yi
xi+1−xi

(x−xi)+yi , xi≤x≤xi+1,

for all 1≤i<n.

Theorem 11. Let S(1) = RLL(0, 1), S(2) = RLL(0, 2), S(3) = RLL(0, 3),
S(4) = RLL(d, 2d+1), and S(5) = MTR(2, 2). Let fi be the function fS(i) re-
stricted to [0, capind(S(i))]. Then the following statements hold:

1. f1=L(0,cap(S(1))),(1
2
,0) (shown in [5]).

66

6.3. Background and definitions

2. f2=L(0,cap(S(2))),(1
3
, 2
3

cap(S(1))),(2
3
,0) (shown in [5]).

3. f3(ρ)=L(0,cap(S(3))),(1
4
, 3
4

cap(S(2)))(ρ), for 0≤ρ≤1
4 (shown in [37]).

4. f4=L(0,cap(S(4))),(1
2(d+1)

,0) (shown in [37]).

5. f5=L(0,cap(S(5))),(1
3
,0) (shown in [38]).

We now state our new results.

Theorem 12. Let d be a nonnegative integer and S = RLL(d,∞). Set

p1 = (0, cap(S)) , p2 =

(
1

d+1
, 0

)
= (capind(S), 0).

Then
fS(ρ) = Lp1,p2(ρ), for ρ∈[0, capind(S)].

Theorem 13. Let d be a positive integer and S = RLL(d, 2d+ 2). Set

p1 = (0, cap(S)) , p2 =

(
3

6d+8
,

log 3

6d+8

)
,

p3 =

(
2

4d+5
,

1

4d+5

)
, p4 =

(
2

4d+4
, 0

)
= (capind(S), 0) .

Then the following statements hold:

1. If 1≤d≤16 then

fS(ρ) = Lp1,p3,p4(ρ), for ρ∈[0, capind(S)].

2. If 17≤d then

fS(ρ) = Lp1,p2,p3,p4(ρ), for ρ∈[0, capind(S)].

The proofs are given in the next sections. The graphs of the tradeoff functions
for RLL(d,∞) and RLL(d, 2d+2) for ρ∈[0, capind(S)] are sketched in Figure 6.1.
We need some properties of nonnegative matrices which we summarize here. If
(M ′i) is formed by cyclically shifting (Mi) (that is, there exists an integer o such
that for all i,M ′i=M((i−1+o) modm)+1, where for an integer j, jmodm denotes the
unique integer k∈[m] such that k≡j (mod m)) then

∏
iMi and

∏
iM

′
i have the

same characteristic polynomial ([33, 2.15.15]); in particular, λ((M ′i))=λ((Mi)).
If M and N are two nonnegative square matrices with M≤N then λ(M)≤λ(N)

67

6.3. Background and definitions

([33, 5.7.5]). The support graph of an m×m nonnegative matrix M denoted
GM = (VM , EM) is the directed graph with vertices VM = {1, 2, . . .,m} and
edges EM={(i, j)∈VM×VM : Mi,j>0}, where for an edge e = (i, j)∈EM ,
σ(e) = i and τ(e) = j. Such a matrix is called primitive if its support graph is
primitive. For a primitive matrix M , the limit limg→∞(Mg)/(λ(M)g) (where the
limit is taken entry-wise), exists and is strictly positive in each entry ([33, 5.9.7]).

fS(ρ)

ρ
0

cap(S)

1
d+1

(a)

fS(ρ)

ρ
0

cap(S)

(
2

4d+5 ,
1

4d+5

)

1
2d+2

(b)

fS(ρ)

ρ
0

cap(S)

(
3

6d+8 ,
log 3
6d+8

)(
2

4d+5 ,
1

4d+5

)

1
2d+2

(c)

Figure 6.1: The graphs of fS(ρ) for ρ∈[0, capind(S)] (not to scale): (a)
S=RLL(d,∞); (b) S=RLL(d, 2d+2) and 1≤d≤16; (c) S=RLL(d, 2d+2) and
17≤d.

68

6.4. Proof of Theorem 12

6.4 Proof of Theorem 12

The proof is similar to the proof of [37, Proposition 45]. Set Cd = cap(S), and
let Ĝ=ĜFS=(V̂ , Ê, L̂) be the presentation of Ŝ defined in Section 6.3. Note that
S is irreducible and of finite-type. We denote by ai the follower set FS(10i) for
0≤i≤d. It can be verified that V̂ = {a0, a1, . . ., ad}. The graph Ĝ is given in
Figure 6.2.

a0 a1 . . . ad

0 0 0
0

1
�

Figure 6.2: The graph ĜFRLL(d,∞)
.

Clearly, Ĝ? = ĜFS in this case. Let A = A{0,1}(S), B = A{�}(S), and set
C=BAd and hd = Lp1,p2 . For a sequence (Ni)⊆{A,C} we denote by ε((Ni))
the “expanded” sequence, with elements in {A,B}, formed by substituting the
sequence (B)(A)d for every element C in (Ni).

It follows from (6.3) and the rest of the discussion in Section 6.3 that
fS(0) = hd(0) and fS(ρ)≥hd(ρ) for ρ∈(0, capind(S)]. Hence it’s enough to show
fS(ρ)≤hd(ρ) for ρ∈(0, capind(S)]. Since both fS and hd are continuous in that
interval, it’s enough to show the latter inequality for all rational ρ∈(0, capind(S)].
Let ρ be such a rational. By (6.1) it suffices to show that for any sequence
(Mi)⊆{A,B} with %((Mi))=ρ, we have

log λ((Mi))

|(Mi)|
≤ hd(%((Mi))). (6.4)

Let (Mi) be such a sequence. Set m=|(Mi)| and consider the sequence
(Xi)=(Mi)

2. Note that in any path of Ĝ the number of edges between a pair
of edges labelled with a ‘�’ must be at least d. It follows that if there exist integers
1≤i<j≤2m, with j−i−1<d, such thatXi=Xj=B, then no paths of Ĝ match (Xi)
or equivalently (

∏m
i=1Mi)

2=0. The latter equality implies λ((Mi))=0, and there-
fore (6.4) holds. So assume no such integers exist. It can be verified that in this case
we may cyclically shift (Mi) such that (Mi)=ε((Ni)) for some (Ni)⊆{A,C}with
N1=C; such a cyclic shift does not change either side of (6.4). We denote |(Ni)|

69

6.4. Proof of Theorem 12

by n. Now, it’s easy to verify that there is exactly one path matching (B)(A)d and
it starts and ends at ad; hence the only nonzero entry of C is (C)(ad,ad) and it is
equal to 1. It follows that

Ck = C, for k = 1, 2, . . . (6.5)

CQC ≤ C2Q, for any nonnegative |V̂ |×|V̂ | matrix Q. (6.6)

Let s be the number of elements in (Ni) equal to C; clearly,
s=mρ>0. Let (N ′i)=(C)s(A)n−s; then by (6.5) and (6.6), we have
λ((Mi))=λ((Ni))≤λ((N ′i))=λ(CAn−s). We order the entries of (CAn−s)
as follows. For every i, j∈[d] we place the element (CAn−s)(ai,aj) in the
ith row and jth column. Observe, that using this ordering, the matrix
CAn−s is lower triangular with (CAn−s)(i,i)=0 for 0≤i<d. It follows that
λ(CAn−s)=(CAn−s)(ad,ad) = (An−s)(ad,ad). Let Γ be the set of all paths in Ĝ
starting and terminating in ad and matching (A)n−s, and for a nonnegative integer
g define the set ∆(g)⊆S by

∆(g) =
{
w∈Sg : w does not end with 10i, 0≤i≤d−1

}
.

Then it’s not hard to check that ∆(n−s) is precisely the set of words gener-
ated by paths in Γ. Since Ĝ is deterministic, we have that |Γ|=|∆(n−s)|, so
λ((N ′i))=|∆(n−s)|. Now, observe that for g≥d, any word in Sg−d can be ex-
tended to a word in ∆(g) by adding ‘0’s; thus for all g≥d, |Sg−d|≤|∆(g)|≤|Sg|. It
follows that

lim
g→∞

log |∆(g)|
g

=Cd.

On the other hand, note that for any nonnegative integers g1, g2 and words
w∈∆(g1), x∈∆(g2), the word wx∈∆(g1 + g2); it follows that log |∆(·)| is su-
peradditive, and therefore by Lemma 1 we have

lim
g→∞

log |∆(g)|
g

= sup
g≥1

log |∆(g)|
g

.

In particular,
log |∆(n− s)|

n− s
≤Cd,

70

6.5. Proof of Theorem 13

and therefore,

log λ((Mi))

|(Mi)|
≤ log λ((N ′i))

m

=
log |∆(n−s)|

n−s
n−s
m

≤ Cd
n−s
m

=Cd
m− s(d+ 1)

m
= Cd (1− ρ(d+ 1)) = hd(ρ).

This completes the proof. �

6.5 Proof of Theorem 13

In this section we prove Theorem 13. As the proof is rather involved, we show an
outline of the proof in Section 6.5.1, relying on several propositions whose proofs
we defer to Section 6.5.2. Throughout this section, S, p1, . . .,p4 are as defined in
the statement of the theorem, and we set Cd = cap(RLL(d, 2d+2)). Note that S is
irreducible and of finite-type; let Ĝ? = (V̂?, Ê?, L̂?) denote the unique non-trivial
component of ĜFS . Then it can be verified that Ĝ? is the subgraph of Ĝ induced by
V̂?, where

V̂? =
{
FS(10i) : 0≤i≤2d+2

}
∪{

FS(10i) ∩ FS(10i+d+1) : 0≤i≤d−1
}
∪{

FS(10i) ∩ FS(10i+d+2) : 0≤i≤d−1
}
.

For the purpose of this proof we use the abbreviations

ai = FS(10i), 0≤i≤2d+2,

bi = FS(10i) ∩ FS(10i+d+1), 0≤i≤d−1, and

ci = FS(10i) ∩ FS(10i+d+2), 0≤i≤d−1.

The graph Ĝ? is shown in Figure 6.3.
Let A = A{0,1}(S), B = A{�}(S) and set C = AdBAd+1; we index the

entries of C by V̂ 2
? . For a sequence of matrices (Mi)⊆{A,C} we denote by

ε((Mi)) the sequence with elements in {A,B} formed by substituting the sequence
(A)d(B)(A)d+1 for every element C in (Mi). Let hd : [0, capind(S)]→[0, 1] be
given by

hd =

{
Lp1,p3,p4 if 1≤d≤16
Lp1,p2,p3,p4 if 17≤d .

71

6.5. Proof of Theorem 13

a0 a1 . . . ad ad+1 . . . a2d a2d+1 a2d+2

b0 . . . bd−1

c0 . . . cd−1

0 0 0 0 0 0 0 0

0 0

�

0 0

0

�

0

11111

Figure 6.3: The non-trivial component of ĜFRLL(d,2d+2)
.

6.5.1 Outline of proof

Let i, j∈V̂?. Since there are only 3 paths in Ĝ? matching (A)d(B)(A)d+1: a path
starting at vertex a0 and ending at vertex a2d+2, a path starting at vertex a0 and
ending at vertex a0 and a path starting at vertex a1 and ending at vertex a0, it
follows that the entries of C and C2 are given by

C(i,j) =


1 if i = a0 and j∈{a0, a2d+2}
1 if i = a1 and j = a0

0 otherwise
, i, j∈V, (6.7)

(C2)(i,j) =

{
1 if i∈{a0, a1} and j∈{a0, a2d+2}
0 otherwise

, i, j∈V. (6.8)

The following facts easily follow:

Fact 3. C2 ≥ C.

Fact 4. For all integers k≥2, Ck = C2.

Fact 5. C2 = cr, where c and r are the column and row vectors, respectively, of
size |V̂?| with entries indexed by V̂? and given by

(c)i =

{
1 if i ∈ {a0, a1}
0 otherwise

(r)i =

{
1 if i ∈ {a0, a2d+2}
0 otherwise

, i∈V̂?.

72

6.5. Proof of Theorem 13

Hence C2 is a (nonnegative) rank-1 matrix. The following proposition shows
how to compute the Perron eigenvalue of such a matrix.

Proposition 8. Let M be an m×m real nonnegative matrix of the form M = ab
with a and b column and row vectors of size m, respectively. Then the following
statements hold:

1. For any real nonnegative m×m matrix N , λ(MN) = bNa.

2. For any real nonnegative m×m matrices N1, N2,

λ(MN1MN2)=λ(MN1)λ(MN2).

Now, observe, that by (6.2), capind(S)=1/(2d+2); hence it follows from the
discussion in Section 6.3 that

fS(0)=hd(0), (6.9)

and fS(1/(2d+2)) ≥ hd(1/(2d+2)). (6.10)

So it’s enough to show fS(ρ)=hd(ρ) for all ρ∈(0, capind(S)]. The following
proposition characterizes hd.

Proposition 9. hd : [0, 1/(2d+ 2)]→ R is the smallest function satisfying:

1. hd is concave.

2. hd(0)≥Cd.

3. hd(3/(6d+ 8))≥ log 3/(6d+ 8)

4. hd(2/(4d+ 5))≥1/(4d+ 5)

5. hd(1/(2d+ 2))≥0

We first show that for every ρ∈[0, capind(S)], fS(ρ)≥hd(ρ). Consider the two
sequences of matrices (Yi)=ε((C,C,A)) and (Zi)=ε((C,C,A,C,A)). Clearly,

%((Yi)) =
2

4d+5
, (6.11)

%((Zi)) =
3

6d+8
. (6.12)

73

6.5. Proof of Theorem 13

Now, let c, r be the vectors defined in Fact 5; by Proposition 8 and Fact 5,

λ((Yi)) = λ(C2A)

= rAc

=
∑

i∈{a0,a2d+2},
j∈{a0,a1}

A(i,j) = 2,
(6.13)

and

λ((Zi)) = λ(C2ACA)

= rACAc.

Observe that for i∈V̂?, the entry (rA)i is the number of paths of length 1 in Ĝ{0,1}?

that begin in either a0 or a2d+2 and end at i. It follows that rA = ct (where ct is
the transpose of c). Using (6.7), we have

λ((Zi)) = ctCAc

= 2A(a0,a0) + 2A(a0,a1) +A(a2d+2,a0) +A(a2d+2,a1) = 3.
(6.14)

By (6.1), for any sequence (Xi)⊆{A,B}, fS(%((Xi)))≥λ((Xi))/|(Xi)|; hence
by (6.11), (6.12), (6.13), and (6.14) above, we get

fS(2/(4d+5)) ≥ 1/(4d+5), (6.15)

fS(3/(6d+8)) ≥ (log 3)/(6d+8). (6.16)

Since fS is concave in [0, capind(S)], equality (6.9), and inequalities (6.10), (6.15),
and (6.16) imply that fS(ρ)≥hd(ρ) for all ρ∈[0, capind(S)].

In the remainder of this section we show fS(ρ)≤hd(ρ) for ρ∈(0, capind(S)].
Since both fS and hd are continuous in this interval, it’s enough to show
fs(ρ)≤hd(ρ) for all rational ρ∈[0, capind(S)]. Let ρ be such a rational. By (6.1),
it’s enough to show that for all finite sequences (Mi)⊆{A,B} with %((Mi))=ρ,
we have

log λ((Mi))

|(Mi)|
≤ hd(%((Mi))). (6.17)

Let (Mi) be such a sequence. Set n=|(Mi)| and consider the sequence
(Xi)=(Mi)

2. Note that in any path of Ĝ? the number of edges between a pair of
consecutive edges labelled with a ‘�’ must be at least 2d+1. It follows that if there
exist nonnegative integers 1≤i<j≤2n, with j−i−1<2d+1, such thatXi=Xj=B,
then no paths of Ĝ? match (Xi) or equivalently (

∏n
i=1Mi)

2=0. This implies

74

6.5. Proof of Theorem 13

λ((Mi)) = 0, and therefore (6.17) holds. So assume no such integers exist. It can
be verified that in this case we may cyclically shift (Mi) such that (Mi)=ε((Ni))
for some (Ni)⊆{A,C}; such a cyclic shift does not change either side of (6.17).
Since we assumed ρ>0, the sequence (Ni) must have at least one element equal to
C. If every element of (Ni) is equal to C, then ρ = capind(S) and

λ((Ni)) = λ(C |(Ni)|)

=
(
λ(C2)

)|(Ni)|/2 = (rc)|(Ni)|/2 = 1,

where c, r are the vectors defined in Fact 5 and we used Proposition 8. There-
fore (6.17) holds with equality in this case. So we assume (Ni) has an element
equal to C and an element equal to A. By cyclically shifting (Mi) and (Ni), if
necessary, we may assume (Ni) is either of the form

(C)s1(A)g1(C)s2(A)g2 . . .(C)sk(A)gk ,
k≥1, g1, . . ., gk≥1, s1≥2, and s2, . . ., sk≥1,

(6.18)

or the form
(C)(A)g1(C)(A)g2 . . .(C)(A)gk ,

k≥1 and g1, . . ., gk≥1.
(6.19)

We claim it’s enough to show that (6.17) holds for (Mi) = ε((Ni)), where (Ni) is
of the form (6.18). Indeed, assume that (6.17) holds for all sequences (Mi) =
ε((Ni)) such that (Ni)⊆{A,C} is of the form (6.18), and let (Mi)=ε((Ni))
with (Ni) a sequence of the form (6.19). Pick a positive integer m, and set
(Xi)=ε((C)(Ni)

m). Then

log λ((Mi))

|(Mi)|
=

log λ((Mi)
m)

m|(Mi)|
=

log λ((CAg1CAg2 . . .CAgk)m)

m|(Mi)|

≤ log λ(C(CAg1CAg2 . . .CAgk)m)

m|(Mi)|
(6.20)

=
log λ((Xi))

|(Xi)|
|(Xi)|
m|(Mi)|

≤ hd(%((Xi)))
|(Xi)|
m|(Mi)|

(6.21)

= hd

(
1+m|(Mi)|%((Mi))

2d+2+m|(Mi)|

)
2d+2+m|(Mi)|

m|(Mi)|

where (6.20) follows from Fact 3 and (6.21) follows from our assumption, as
(C)(Ni)

m is of the form (6.18). Since hd is continuous, taking the limit of the
RHS as m approaches infinity, we get that (6.17) holds for (Mi).

75

6.5. Proof of Theorem 13

So henceforth, we assume (Ni) is of the form (6.18). We now further trans-
form (Ni) by reducing runs of C elements with lengths greater than 2; that is, we
(possibly) change (Ni) to be the sequence

(C)u(C)2(A)g1(C)s
′
2(A)g2(C)s

′
3(A)g3 . . .(C)s

′
k(A)gk ,

where each s′j= min{2, sj} and u=
∑

j(sj−s′j). We also update (Mi) so that
it still satisfies (Mi)=ε((Ni)). Clearly this does not change the RHS of (6.17)
and by Fact 4 the LHS remains the same, as well. Now, the sequence (Ni) may
be rewritten as (Ni)=(C)u(O

(1)
i)(O

(2)
i). . .(O

(m)
i), where each (O

(j)
i)⊆{A,C} is

given by

(O
(j)
i)=(C)2(A)gj,1(C)(A)gj,2(C)(A)gj,3 . . .(C)(A)

gj,kj ,
kj≥1, and gj,1, . . ., gj,kj≥1.

(6.22)

Observe that by Proposition 8 we have: λ(Ni) = λ(
∏m
j=1

∏
iO

(j)
i) =∏m

j=1 λ((O
(j)
i)). We will use the following two propositions to further transform

(Ni).

Proposition 10. For integers k≥2, 1≤i<k, g1, g2, . . ., gi−1, gi+2, . . ., gk≥1 and
gi, gi+1≥2

λ(C2Ag1CAg2 . . . CAgi−1CAgiCAgi+1CAgi+2 . . . CAgk) ≤
λ(C2Ag1CAg2 . . . CAgi−1CAgi+gi+1CAgi+2 . . . CAgk)

Proposition 11. For integers k≥2, 1≤i<k, s, g1, . . ., gi−1, gi+2, . . ., gk≥1 and
gi, gi+1≥2

λ(C2Ag1CAg2 . . . CAgi−1CAgi(CA)sCAgi+1CAgi+2 . . . CAgk) ≤
λ(C2Ag1CAg2 . . . CAgi−1CAgi+gi+1CAgi+2 . . . CAgkC2A(CA)s−1)

For each j=1, 2, . . .,m we transform (O
(j)
i) in turn, resulting in a new se-

quence (Õ
(j)
i)⊆{A,C}. We first replace occurrences of (contiguous) subse-

quences of the form (A)g1(C)(A)g2 , for some g1, g2≥2, in our sequence with
(A)g1+g2 . Each such replacement decreases the number of elements equal to C
by 1, does not change the number of elements equal to A, and by Proposition 10
does not decrease the λ of the sequence. We continue to do this until no more
occurrences of such sequences exist. Let qj be the number of the replacements
we performed. Next, we consider every occurrence of a (contiguous) subsequence
of the form (C,A)s(C), for some s∈N, whose two preceding elements and two
succeeding elements all equal A. For each such occurrence, in turn, we remove

76

6.5. Proof of Theorem 13

it, and concatenate the sequence (C,C,A)(C,A)s−1 to the end of our current se-
quence. Note that after each such removal-and-concatenation the number of ele-
ments equal to A and the number of elements equal to C do not change, and by
Proposition 11 and Part 2 of Proposition 8, the λ of the sequence does not decrease.
We denote by (Õ

(j)
i) the resulting sequence. Then it follows from this discussion

that (C)qj (Õ
(j)
i) and (O

(j)
i) have the same number of elements equal to A and the

same number of elements equal to C. It further follows that

λ((Õ
(j)
i)) ≥ λ((O

(j)
i)), (6.23)

and

(Õ
(j)
i) = (R

(j,1)
i)(R

(j,2)
i). . .(R

(j,wj)
i), (6.24)

where wj∈N, and for each 1≤k≤wj , the sequence (R
(j,k)
i) is either of the form

(C)2(A)(C,A)t−1 , for some t≥1, (6.25)

or of the form

(C)2(A,C)s(A)g(C,A)t , for some s, t≥0, g≥2. (6.26)

Set (Ñi) = (C)ũ(Õ
(1)
i)(Õ

(2)
i). . .(Õ

(m)
i), where ũ=u+

∑m
j=1 qj . Then

%(ε((Ñi))) = %((Mi)) and |ε((Ñi))| = |(Mi)|. Additionally, by (6.23),
Proposition 8 and Fact 4, we have λ((Ni))≤λ((Ñi)). Now, for j=1, . . .,m and
k=1, . . ., wj , denote by (F

(j,k)
i) the sequence ε((R(j,k)

i)). To finish the proof, we
claim, it’s enough to show that for every such j and k,

log λ((F
(j,k)
i))

|(F (j,k)
i)|

≤ hd(%((F
(j,k)
i))). (6.27)

77

6.5. Proof of Theorem 13

Indeed, assume that this holds. Then, noting that hd(capind(S)) = 0, we have

log λ((Mi))

|(Mi)|
=

log λ((Ni))

|(Mi)|
≤ log λ((Ñi))

|ε((Ñi))|

=
m∑
j=1

wj∑
k=1

(
log λ((F

(j,k)
i))

|(F (j,k)
i)|

|(F (j,k)
i)|

|ε((Ñi))|

)

≤ hd(capind(S))
|ε((C)ũ)|
|ε((Ñi))|

+

m∑
j=1

wj∑
k=1

(
hd(%((F

(j,k)
i)))

|(F (j,k)
i)|

|ε((Ñi))|

)
(6.28)

≤ hd

capind(S)
|ε((C)ũ)|
|ε((Ñi))|

+
m∑
j=1

wj∑
k=1

(
%((F

(j,k)
i))

|(F (j,k)
i)|

|ε((Ñi))|

)
(6.29)

= hd(%(ε((Ñi)))) = hd(%((Mi))),

where (6.28) follows from our assumption, and (6.29) follows from the concavity
of hd asserted in Proposition 9.

So we proceed to show that (6.27) holds for every j=1, . . .,m, k=1, . . ., wj .
This follows from the next proposition and the fact that each (R

(j,k)
i) is either of

the form (6.25) or (6.26).

Proposition 12. The following statements hold.

1. Let t≥1 be an integer and let (Fi)=ε((C)2(A)(C,A)t−1), then

log λ((Fi))

|(Fi)|
≤hd(%((Fi))).

2. Let s, t≥0, g≥2 be integers and let (Fi)=ε((C)2(A,C)s(A)g(C,A)t), then

log λ((Fi))

|(Fi)|
≤hd(%((Fi))).

The proof is now completed. �

6.5.2 Proof of propositions

Proof of Proposition 8. Part 1. Consider the matrix MN=a(bN). Clearly, it has
rank at most 1, and therefore the eigenvalue 0 has geometric multiplicity at least

78

6.5. Proof of Theorem 13

m−1; hence m−1 of the eigenvalues are 0. The last eigenvalue must then equal
the trace of the matrix, which in this case, is (bN)a. Obviously, it is a largest real
eigenvalue.

Part 2. Using part 1 we have,

λ(MN1MN2) = λ(M(N1MN2))

= b(N1MN2)a

= bN1abN2a

= λ(MN1)λ(MN2). �

Proof of Proposition 9. We make use of the following lemma.

Lemma 6. For all positive integers d,

Cd > Cd+1.

Proof of Lemma 6. It is well known (cf. [18]) that Cd= log λd, where λd>0 is the
largest real root of the polynomial Pd(x) given by

Pd(x) = x2d+3 −
d+2∑
i=0

xi.

Let γ be any positive root of Pd(x). Choose any x>γ, and write x=(1+δ)γ for
δ>0. Then

Pd(x) = (1 + δ)2d+3γ2d+3 −
d+2∑
i=0

(1 + δ)iγi

> (1 + δ)2d+3γ2d+3 − (1 + δ)2d+3
d+2∑
i=0

γi

= (1 + δ)2d+3Pd(γ)

= 0.

It follows that λd is the only positive root of Pd, and that Pd(x)>0 for all x>λd.
Moreover, as Pd is continuous and Pd(0)=− 1<0 it follows that for all 0≤x<λd,
Pd(x)<0. Clearly, the above holds for Pd+1(x) and λd+1 as well; hence to show
the claim it’s enough to prove that Pd+1(λd)>0. Now, since Pd(λd) = 0, we have

79

6.5. Proof of Theorem 13

λ2d+3
d =

∑d+2
i=0 λ

i
d and

Pd+1(λd) = λ2d+5
d −

d+3∑
i=0

λid

=

d+4∑
i=2

λid −
d+3∑
i=0

λid

= λd+4
d − λd − 1. (6.30)

Using Pd(λd) = 0 again, we get

λd+4
d = λ

−(d−1)
d λ2d+3

d

=
3∑

i=−(d−1)

λid > 1+λd.

Thus, from (6.30), we get Pd+1(λd)>0 and the claim follows. �

We now return to the proof of Proposition 9. We first note that for all d≥1

Cd≤ log(9/8)⇐⇒ d≥17. (6.31)

Indeed it’s a simple matter to verify that for d=17, the LHS holds, and for d=16 it
does not; (6.31) then follows by applying Lemma 6.

We show that hd is concave. Note that for a sequence (xi)⊆R2, with |(xi)| =
k, xi = (xi, yi) and x1<. . .<xk, the function L(xi) is concave iff the sequence of
the slopes of the linear segments is non-increasing, namely,

yi − yi−1

xi − xi−1
≥ yi+1 − yi
xi+1 − xi

, 2≤i≤k−1.

We check this for hd, when d≤16. In this case,

hd = Lp1,p3,p4 = L(0,Cd),(2
4d+5

, 1
4d+5

),(1
2d+2

,0),

so one needs to verify that

1/(4d+5)− Cd
2/(4d+5)

≥ 0− 1/(4d+5)

1/(2d+2)− 2/(4d+5)
.

Using simple algebraic manipulations this can be reduced to Cd≤1, which certainly
holds. As for the case d≥17, here,

hd = Lp1,p2,p3,p4

= L
(0,Cd),(3

6d+8
, log 3
6d+8

),(2
4d+5

, 1
4d+5

),(1
2d+2

,0)
,

80

6.5. Proof of Theorem 13

so one needs to verify the following two inequalities:

log 3/(6d+8)− Cd
3/(6d+8)

≥ 1/(4d+5)− log 3/(6d+8)

2/(4d+5)− 3/(6d+8)
(6.32)

1/(4d+5)− log 3/(6d+8)

2/(4d+5)− 3/(6d+8)
≥ 0− 1/(4d+5)

1/(2d+2)− 2/(4d+5)
. (6.33)

Again, using algebraic manipulations, (6.32) can be reduced to Cd≤ log(9/8),
which holds by (6.31) and our assumption on d, and (6.33) can be reduced to
2≥ log 3, which is obviously true. Next, we verify that hd satisfies the other prop-
erties listed in the proposition. Clearly, hd satisfies Properties 2,4,5 with equality,
and for d≥17, it satisfies Property 3 with equality as well. It remains to check
Property 3 for d≤16, namely that

L(0,Cd),(2
4d+5

, 1
4d+5

) (3/(6d+8))≥ log 3

6d+8
.

The latter inequality can be reduced to Cd≥ log(9/8), which holds by our assump-
tion on d and (6.31). Thus, hd is concave and satisfies Properties 2,3,4 and 5. It’s
easy to verify using the definition of hd and concavity that it is the smallest such
function. �

Before we show the proofs of Propositions 10 and 11, we develop some tools
for calculating λ((Xi)), where (Xi)⊆{A,C} is a sequence of the form

(C)2(A)g1(C)(A)g2 . . .(C)(A)gk , for some k≥1 and g1, . . ., gk≥1. (6.34)

To this end, we define the following sets. For a positive integer g, let ∆(g)⊆Sg be
given by

∆(g)=

{
w∈Sg :

w does not begin with ‘0i1’, 1≤i≤d−1,
and does not end with ‘00’

}
.

For positive integers k and g1, g2, . . ., gk, let
∏
j ∆(gj) denote the cartesian product

∆(g1)×. . .×∆(gj); define ∆(g1, . . ., gk) by

∆(g1, . . ., gk)=

(w1, . . ., wk)∈
∏
j

∆(gj) :
for 1≤i<k, if wi ends with a ‘0’
then wi+1 begins with a ‘0’

 .

Finally, for symbols a, b∈{0, 1}, and positive integers k,g1, . . ., gk, define the set
∆a→b(g1, . . ., gk) by

∆a→b(g1, . . ., gk)=

{
(w1, . . ., wk) ∈ ∆(g1, . . ., gk) :

w1 starts with a
and wk ends with b

}
.

81

6.5. Proof of Theorem 13

So for example, ∆(1) = {0, 1}, ∆(2) = {01, 10} if d = 1 and ∆(2) = {10} for
d ≥ 2, ∆(i)=∅ for 3≤i≤d, and ∆(d+ 1) = {0d1} for d ≥ 2, and so on. Also note
that ∆(1, 1, . . ., 1), where the number of 1’s is some integer s, is given by

∆(1, 1, . . ., 1) = {(0, 0, 0, . . ., 0),

(1, 0, 0, . . ., 0),

(1, 1, 0, . . ., 0),

...

(1, 1, 1, . . ., 1)},

(6.35)

and has s+1 elements. The following proposition shows how these sets can be
used to compute λ((Xi)), with (Xi) of the form (6.34).

Proposition 13. For all positive integers k, g1, . . ., gk

λ(C2Ag1CAg2 . . .CAgk)=|∆(g1, . . ., gk)|

Proof. For an integer n, let Pn denote the set of all paths of length n in Ĝ?. For a
path γ∈Pn we denote its starting vertex (resp. terminating vertex) by σ(γ) (resp.
τ(γ)). Let k and g1, . . ., gk be positive integers and let c, r be the vectors defined
in Fact 5 so that C2 = cr. By Proposition 8,

λ(C2Ag1CAg2 . . .CAgk) = rAg1CAg2 . . .CAgkc.

Let (Mi) = ε((A)g1(C)(A)g2 . . .(C)(A)gk) and let Γ be the set

Γ =
{
γ∈P|(Mi)| : γ matches (Mi), σ(γ)∈{a0, a2d+2}, τ(γ)∈{a0, a1}

}
.

Then it follows that

λ(C2Ag1CAg2 . . .CAgk) = rAg1CAg2 . . .CAgkc

= r

(∏
i

Mi

)
c

= |Γ|.

We will show that |Γ| = |∆(g1, . . ., gk)| by exhibiting a bijection between these
two sets. For i=1, 2, . . ., k define si = 1 +

∑i−1
j=1(gi+2d+2), and ti = si+gi−1.

Then 1=s1<t1<s2<t2<. . .<sk<tk=|(Mi)| (si, ti denote the start and end in-
dices of the sequence (A)gi in (Mi)). For a path γ = (e1, . . ., en)∈Pn let
L̂?(γ)=L̂?(e1)L̂?(e2). . .L̂?(en)∈{0, 1,�}n, be the word generated by the path,

82

6.5. Proof of Theorem 13

and for 1≤i≤j≤n denote by L̂?(γ)i the symbol L̂?(ei) and by L̂?(γ)i:j the
word L̂?(ei)L̂?(ei+1). . .L̂?(ej)∈{0, 1,�}∗. Note that, as Ĝ? is the only non-
trivial component of Ĝ, a word w∈{0, 1,�}∗ is generated by some path in Ĝ?
iff for any nonnegative integer m, there exists words z, y∈{0, 1,�}m, such that
zwy∈Ŝ. Next, fix γ∈Γ. Since Mj=B iff j=ti+d+1 for some 1≤i<k, we
have L̂?(γ)ti+d+1=� for 1≤i<k, and L̂?(γ)j∈{0, 1} for all j∈{1, . . ., tk} \
{t1+d+1, t2+d+1, . . ., tk−1+d+1}. Also, observe that in any path δ∈P2d+1 with
L̂?(δ)d+1=�, it must hold that L̂?(δ)=0d�0d. It follows that L̂?(γ)ti+1:ti+2d+1 =
0d�0d for all 1≤i<k. We now define φ : Γ→ ∆(g1, . . ., gk) by

φ(γ) = (L̂?(γ)s1:t1 , L̂?(γ)s2:t2 , . . ., L̂?(γ)sk:tk) , γ∈Γ,

and claim that it is a bijection. To show this, we need to verify the following
statements:

1. φ is well-defined: for all γ∈Γ, φ(γ)∈∆(g1, . . ., gk)

2. φ is one-to-one.

3. φ is onto ∆(g1, . . ., gk).

1. Let γ∈Γ and 1≤i≤k. Since L̂?(γ)si:ti∈{0, 1}∗ we have L̂?(γ)si:ti∈S.
Since σ(γ)∈{a0, a2d+2}, L̂?(γ) does not begin with ‘0r1’ for any 1≤r<d which
implies L̂?(γ)s1:t1 does not begin with ‘0r1’ for any 1≤r<d, as well. For
2≤i≤k, L̂?(γ)si:ti does not begin with ‘0r1’ for any 1≤r<d, since otherwise
L̂?(γ)ti−1+1:si+r=0d�0d00r1 or L̂?(γ)ti−1+1:si+r=0d�0d10r1, and both words
are not in Ŝ. Additionally, for 1≤i≤k−1, L̂?(γ)si:ti does not end with ‘00’
since otherwise L̂?(γ)ti−1:ti+2d+1 = 000d�0d which is not in Ŝ. And, as
τ(γ)∈{a0, a1}, L̂?(γ) does not end in ‘00’, which implies that L̂?(γ)sk:tk does not
end with ‘00’, as well. This shows that for all 1≤i≤k, L̂?(γ)si:ti∈∆(gi). Finally,
let 1≤i≤k−1, and assume L̂?(γ)si:ti ends with a ‘0’. If L̂?(γ)si+1:ti+1 begins with
a ‘1’, then L̂?(γ)ti:si+1=00d�0d01 or L̂?(γ)ti:si+1=00d�0d11, and both are not
in Ŝ. Therefore, if L̂?(γ)si:ti ends with a ‘0’ then L̂?(γ)si+1:ti+1 must begin with a
‘0’. It follows that φ(γ)∈∆(g1, . . ., gk).

2. Let γ1, γ2∈Γ, such that φ(γ1) = φ(γ2). Clearly, all nonempty paths in G
starting at a2d+2 generate a word beginning with ‘1’ and all nonempty paths in Ĝ?
starting at a0 generate a word beginning with ‘0’. By our assumption, L̂?(γ1) and
L̂?(γ2) begin with the same symbol; hence σ(γ1) = σ(γ2). Now, observe that for

any path δ∈Γ, and 2≤i≤k, L̂?(δ)si−1=L̂?(δ)si , where, 0=1 and 1=0; otherwise,
L̂?(δ)ti−1+1:si=0d�0d00 or L̂?(δ)ti−1+1:si=0d�0d11 and both words are not in

83

6.5. Proof of Theorem 13

Ŝ. Thus for all 2≤i≤k,

L̂?(γ1)ti−1+1:si−1 = 0d�0dL̂?(γ1)si = 0d�0dL̂?(γ2)si = L̂?(γ2)ti−1+1:si−1.

It follows that L̂?(γ1) = L̂?(γ2) and since Ĝ? is deterministic, we have γ1=γ2.
Therefore φ is one-to-one.

3. Let j=(j1, j2, . . ., jn) be an n-tuple of positive integers for some n≥1.
Consider the set ∆(j1, . . .jn)=∆(j). For a word w=(w(1), . . ., w(n))∈∆(j),with
w(i)=w

(i)
1 w

(i)
2 . . .w

(i)
ji

, w
(i)
r ∈{0, 1}, 1≤r≤ji, 1≤i≤n, we define the word

z(w)∈Σ̂∗ by

z(w) = w(1)0d�0dw
(2)
1 w(2)0d�0dw

(3)
1 w(3). . .0d�0dw

(n)
1 w(n).

It is not hard to verify that for all w∈∆(j), any filling of the ‘�’s of z(w) with sym-
bols from {0, 1} does not contain the pattern 02d+3 nor any of the patterns 10r1
for 0≤r<d. It follows that z(w)∈Ŝ. More is true; fix a w∈∆(j) and for an inte-
ger m, let jm = (y1, . . ., ym, j1, . . ., jn, y1, . . ., ym) with y1=y2=. . .=ym=1, and
wm = (x1, . . ., xm, w

(1), . . ., w(n), x1, . . ., xm) with x1=x2=. . .=xm=1. Then,
clearly wm∈∆(jm) and by our previous argument z(wm)∈Ŝ. It thus follows that
z(w) can be extended indefinitely on both sides and is thus generated by a path in
Ĝ?.

Now, let w = (w(1), . . ., w(k))∈∆(g1, . . ., gk), and let γ be a path in Ĝ? gen-
erating z(w). We show that there is a path γ′∈Γ generating z(w). This will con-
clude the proof, since obviously for such a path γ′, φ(γ′)=w. If k=g1=1, then
z(w)∈{0, 1} and clearly there is a path γ′∈Γ generating z(w). So we assume
k>1 or g>1. In this case, observe that the length of z(w) is at least 2, and exactly
one of the last two symbols of z(w) must be a ‘1’. Therefore, τ(γ)∈{a0, a1}.
Additionally, either z(w) has the prefix ‘1’, or z(w) begins with a ‘0’ and either
g1>1, in which case z(w) has the prefix 0r1 with r≥d, or g1=1 and (since k>1),
z(w) has the prefix 00d�0d1. It is easily verified from Figure 6.3, that in ev-
ery case there is a path β in Ĝ? generating the corresponding prefix of z(w) with
σ(β)∈{a0, a2d+2} and τ(β)=a0. By replacing the initial part of γ generating this
prefix with β we obtain a path γ′ generating z(w) with σ(γ′)∈{a0, a2d+2} and
τ(γ′) = τ(γ)∈{a0, a1}. Clearly γ′ matches (Mi), and consequently γ′∈Γ. �

To prove Propositions 10 and 11 we need the following lemma, which shows a
relation between ∆(g1, g2) and ∆(g1 + g2) for g1, g2≥2.

Lemma 7. For all g1, g2≥2, there exists a function T :∆(g1, g2)→∆(g1+g2) such
that

84

6.5. Proof of Theorem 13

1. T is one-to-one.

2. For any (ax, yb)∈∆(g1, g2), if T (ax, yb)=cwd, where a, b, c, d∈{0, 1} and
x, y, w∈{0, 1}∗, then d=b and c≤a (using the normal order of the integers
in {0, 1}).

Proof. Let g1, g2≥2. For (x, y)∈∆(g1, g2), we define T (x, y) as follows.

1. If x = w10, y = 0z, where w, z∈{0, 1}∗ and z doesn’t start with 02d+1,
then

T (x, y) = xy.

2. If x = w0d+110, y = 02d+21z, where w, z∈{0, 1}∗, then

T (x, y) = w0d10d+210d+11z.

3. If x = w10, y = 02d+21z, where w, z∈{0, 1}∗ and w doesn’t end with 0d+1,
then

T (x, y) = w0d+210d+11z.

4. If x = w1, y = 0z, where w, z∈{0, 1}∗, then

T (x, y) = xy.

5. If x = w1, y = 1z, where w, z∈{0, 1}∗ and w doesn’t end with 02d+2, then

T (x, y) = w01z.

6. If x = w02d+21, y = 1z, where w, z∈{0, 1}∗, then

T (x, y) = w0d+210d1z.

For i = 1, 2, . . ., 6, let Λi denote the subset of pairs (x, y)∈∆(g1, g2) satisfying
the conditions of case i above. Then, one can verify that {Λ1, . . .,Λ6} is a par-
tition of ∆(g1, g2) and that in each case, T (x, y)∈∆(g1 + g2), thus T is well-
defined. Moreover, if (ax′, y′b)∈Λi and T (ax′, y′b) = cwd, were a, b, c, d∈{0, 1}
and x′, y′, w∈{0, 1}∗, then it’s easy to verify that d=b, and, unless i=3, then c=a;
for i = 3, c≤a. It remains to show that T is one-to-one. First, observe that T
restricted to Λi is one-to-one for i = 1, 2, . . ., 6. Next, for (x, y)∈∆(g1, g2), let
T (x, y)(1), T (x, y)(2)∈{0, 1}∗ be the sub-words of T (x, y) given by

T (x, y) = T (x, y)(1)T (x, y)(2) , |T (x, y)(1)| = g1, |T (x, y)(2)| = g2,

85

6.5. Proof of Theorem 13

and consider the following table.

Conditions T (x, y)(1) T (x, y)(2)

(x, y)∈Λ1 v10 0w
(x, y)∈Λ2 v100 0w
(x, y)∈Λ3, g1=2 00 0w
(x, y)∈Λ3, g1≥3 v000 0w
(x, y)∈Λ4 v1 0w
(x, y)∈Λ5 v0d+1 1w
(x, y)∈Λ6 v10d 1w

Each entry in the leftmost column describes the conditions on x, y, g1 under which
T (x, y)(1) and T (x, y)(2) have the forms written in the corresponding entries un-
der the rightmost two columns; here v, w denote arbitrary words over {0, 1}. For
example, the first line claims that if (x, y)∈Λ1 then T (x, y)(1) ends with ‘10’ and
T (x, y)(2) begins with a ‘0’. This and the claims corresponding to the other lines
can be easily verified from the definition of T . Clearly, for any (x, y)∈Λi and
(s, t)∈Λj with i6=j, we have T (x, y)6=T (s, t), and it follows that T is one-to-
one. �

We can now prove Propositions 10 and 11. For a vector v=(v1, v2, . . ., vk),
with positive integer entries, we use the abbreviation ∆(v) for ∆(v1, v2, . . ., vk),
and for a positive integer k we denote by 1k the vector in Zk with every entry equal
to 1.

Proof of Proposition 10. Let T : ∆(gi, gi+1) → ∆(gi+gi+1) be a function sat-
isfying the properties listed in Lemma 7. Set g = (g1, . . ., gk) and g′ =
(g1, . . ., gi−1, gi+gi+1, gi+2, . . ., gk) and U :∆(g)→∆(g′) be the function defined
by

U(x1, . . ., xk) = (x1, . . ., xi−1, T (xi, xi+1), xi+2, . . ., xk) , (x1, . . ., xk)∈∆(g).

Since T satisfies Property (2) in Lemma 7, it follows that for every z∈∆(g),
U(z)∈∆(g′); henceU is well-defined. Since T is one-to-one, so isU and therefore
|∆(g)|≤|∆(g′)|. The claim now follows from Proposition 13. �

Proof of Proposition 11. Let g(1)=(g1, . . ., gi)∈Zi and
g(2)=(gi+1, . . ., gk)∈Zk−i, where every gj>0. Define the block-vectors

g =
(
g(1) 1s g(2)

)
g′ =

(
g(1) g(2)

)
.

86

6.5. Proof of Theorem 13

Finally, let U : ∆(g)→∆(g′)×∆(1s) be the function given by

U(x1, . . ., xi, y1, . . ., ys, xi+1, . . ., xk) = (x1, . . ., xk, y1, . . ., ys),

for all (x1, . . ., xi, y1, . . ., ys, xi+1, . . ., xk)∈∆(g). Note that for such a vector, if
xi ends with a ‘0’, then yj=0, for j = 1, 2, . . ., s, and consequently xi+1 must be-
gin with a ‘0’. Therefore (x1, . . ., xi, xi+1, . . ., xk)∈∆(g′) and U is well-defined.
Since U is obviously one-to-one, it follows that |∆(g)|≤|∆(g′)||∆(1s)|. Now,
set M=C2Ag1CAg2 . . .CAgi(CA)sCAgi+1 . . .CAgk ; then by Propositions 13, 10
and 8, we get

λ(M) = |∆(g)| ≤ |∆(g′)||∆(1s)|
= λ(C2Ag1CAg2 . . .CAgi−1CAgiCAgi+1CAgi+2 . . .CAgk)λ(C2A(CA)s−1)

≤ λ(C2Ag1CAg2 . . .CAgi−1CAgi+gi+1CAgi+2 . . .CAgk)λ(C2A(CA)s−1)

= λ(C2Ag1CAg2 . . .CAgi−1CAgi+gi+1CAgi+2 . . .CAgkC2A(CA)s−1).

�

Proof of Proposition 12, part 1. For t=1, it can be easily verified using Proposi-
tion 13, that the conclusion holds with equality. So assume t≥2; in this case,
setting ρ=%((Fi)) we have,

ρ=
t+ 1

(t+1)(2d+2)+t
=

1

2d+3−1/(t+1)
≤ 1

2d+8/3
=

3

6d+8
.

By Proposition 9, it follows that hd(ρ)≥Lp1,p2(ρ). So, it’s enough to show

log λ((Fi))

|(Fi)|
≤ Lp1,p2(ρ)

Now, λ((Fi)) = λ(C2A(CA)t−1), which by Proposition 13 is |∆(1t)|; so
by (6.35), λ((Fi))=t+1. Therefore, we need to show

log λ((Fi))

|(Fi)|
≤ Lp1,p2(ρ)

⇐⇒ log λ((Fi))

|(Fi)|
≤ L

(0,Cd),(3
6d+8

, log 3
6d+8

)
(ρ)

⇐⇒ log(t+1)

|(Fi)|
≤ Cd − (log 3)/(6d+8)

−3/(6d+8)

(
ρ− 3

6d+8

)
+

log 3

6d+8

⇐⇒ log(t+1)

|(Fi)|
≤ Cd

(
1− ρ

3/(6d+8)

)
+

log 3

3
ρ

⇐⇒ log(t+1)

|(Fi)|
≤ Cd

(
1− ρ

3/(6d+8)

)
+

(t+ 1)(log 3)/3

|Fi|
.

87

6.5. Proof of Theorem 13

The last inequality holds, since ρ≤3/(6d+8), Cd≥0, and for any nonnegative inte-
ger t, (t+1)(log 3)/3≥ log(t+1). �

It remains to prove part 2 of Proposition 12. For this, we require the following
two lemmas. The first establishes some properties of |∆(·)| and |∆a→b(·)|, for
a, b∈{0, 1}.

Lemma 8. The following statements hold.

1. |∆(·)| and |∆a→b(·)| for all bits a, b∈{0, 1} obey the RLL(d, 2d+ 2) recur-
sion. Namely, for all positive integers g,

|∆(g+2d+3)| =
d+2∑
i=0

|∆(g+i)|

|∆a→b(g+2d+3)| =
d+2∑
i=0

|∆a→b(g+i)|.

(6.36)

2. |∆(g)|≤|∆(g+1)| for all g≥3.

3. log(|∆(·)|) is “eventually superadditive”: for all g1, g2≥3,

|∆(g1)||∆(g2)| ≤ |∆(g1+g2)|

4. lim
g→∞

log |∆(g)|
g

= sup
g≥2

log |∆(g)|
g

= Cd

5. |∆0→0(g)|=|∆1→1(g)| for all positive integers g.

6. |∆0→1(g)|≤2|∆0→0(g)| for g 6=d+1.

7. |∆0→1(g)|≤1
2 |∆(g)| for all g if d = 1, and for g 6=d+1 if d>1.

Proof. Part 1. Let V ′⊆V be the set of vertices {a0, . . ., a2d+2}, and let G′ be
the subgraph of Ĝ? induced by V ′ (so G′ is the “conventional” deterministic pre-
sentation of RLL(d, 2d+2)). For vertices u, v∈V ′ and positive integer g, let
Wu→v(g)∈{0, 1}g denote the set of words that are generated by paths of length
g in G′, starting at u and terminating at v. Since G′ is deterministic, clearly, the
number of such paths is |Wu→v(g)|. Let g be a positive integer. It’s not hard to
verify that

1. ∆0→0(g) =Wa0→a1(g)

2. ∆0→1(g) =Wa0→a0(g)

88

6.5. Proof of Theorem 13

3. ∆1→0(g) =Wa2d+2→a1(g)

4. ∆1→1(g) =Wa2d+2→a0(g)

Let A′=A(G′). It follows that each |∆a→b(g)|, for a, b∈{0, 1}, is equal to a single
entry of (A′)g. Now, the characteristic polynomial of A′ is (cf. [18])

x2d+3 −
d+2∑
i=0

xi.

Invoking the Cayley-Hamilton Theorem, we get

(A′)g+2d+3 =
d+2∑
i=0

(A′)g+i.

Thus, every |∆a→b(g)| satisfies the required recursion and therefore also |∆(g)| =∑
a,b |∆a→b(g)|.
Part 2. For d=1, any word int ∆(g) can be extended from the left to a word in

∆(g+ 1) and the claim follows. For d≥2, we use induction on g. Table 6.1, which
can be easily verified, shows the sets ∆(g) for g=1, 2, . . ., 2d+3 along with |∆(g)|
for g=1, 2, . . ., 2d+6 and d≥2. Evidently, |∆(g)|≤|∆(g+1)| for 3≤g≤2d+5.
This shows the induction basis. The induction step follows from the recursion
relation (6.36).

Part 3. Since the claim is symmetric in g1, g2, it’s enough to prove it only
for g1≤g2. We use induction on g2. For the basis of the induction we verify
the claim for all 3≤g1≤g2≤2d+5. For 1≤d≤7 we verified the induction basis
using a computer, so here we assume d≥8. Consider Table 6.1. If 3≤g1≤d, then
|∆(g1)| = 0 and the claim holds trivially. If g1 = d+1, then |∆(g1)| = 1 and the
claim follows from the monotonicity of |∆(g)| for g≥3 shown in part 2. If g1 =
g2 = d+2, the claim holds since |∆(d+2)|2=9≤|∆(2d+4)|=11. If g1 = d+2 and
d+3≤g2≤2d+1 then |∆(d+2)||∆(g2)| = 12<|∆(2d+5)|≤|∆(d+2+g2)|, with
the last inequality following from the monotonicity of |∆(g)|, for g≥3. If g1=d+2
and 2d+2≤g2≤2d+5 then

|∆(d+2+g2)| ≥ |∆(3d+4)| =
2d+3∑
i=d+1

|∆(i)|

= 1+3+(d−1)4+5+8≥45

> |∆(d+2)||∆(2d+5)|≥|∆(d+2)||∆(g2)|.

If d+3≤g1≤2d+1 and g1≤g2≤2d+1 then

|∆(g1)||∆(g2)|=16=|∆(2d+6)|≤|∆(g1+g2)|.

89

6.5. Proof of Theorem 13

g ∆(g) |∆(g)|
1 {0, 1} 2

2 {10} 1

3≤g≤d ∅ 0

d+1 {0d1} 1

d+2 {0d10, 0d+11, 10d1} 3

d+3≤g≤2d+1 {0g−210, 0g−11, 10g−21, 10g−310} 4

2d+2 {02d10, 0d10d1, 02d+11, 102d−110, 102d1} 5

2d+3
{02d+110, 0d10d10, 02d+21, 0d+110d1,
0d10d+11, 102d10, 102d+11, 10d10d1} 8

2d+4 {. . .} 11

2d+5 {. . .}
14, if d=2;

13, if d≥3.

2d+6 {. . .}
21, if d=2;

17, if d=3;

16, if d≥4.

Table 6.1: Values of |∆(g)| for 1≤g≤2d+6 and d≥2.

If d+3≤g1≤2d+1 and 2d+2≤g2≤2d+5 then

|∆(g1+g2)| ≥ |∆(3d+5)|=
2d+4∑
i=d+2

|∆(i)|

= 3+(d−1)4+5+8+11≥55

> |∆(g1)||∆(2d+5)|≥|∆(g1)||∆(g2)|.

Finally, if 2d+2≤g1≤g2≤2d+5 then, since d≥8 and hence 2d+11≤3d+3, we

90

6.5. Proof of Theorem 13

have

|∆(g1+g2)| ≥ |∆(4d+4)|=
3d+3∑
i=2d+1

|∆(i)|≥
2d+11∑
i=2d+1

|∆(i)|

=
2d+6∑
i=2d+1

|∆(i)|+
2d+11∑
i=2d+7

|∆(i)| = 57+
2d+11∑
i=2d+7

2d+3∑
j=d+1

|∆(i−j)|

≥ 57+

2d+11∑
i=2d+7

(1+3+4 (i−(d+ 1)− (d+2))) =197

> |∆(2d+5)|2≥|∆(g1)||∆(g2)|.

This shows the basis of the induction.
As for the induction step, let k≥2d+5 be an integer and assume the claim holds

for all 3≤g1≤g2≤k. We will prove that the claim holds for all 3≤g1≤g2≤k+1. For
g1=g2=k+1 we have

|∆(k+1)||∆(k+1)| =
2d+3∑
i=d+1

2d+3∑
j=d+1

|∆(k+1−i)||∆(k+1−j)|

≤
2d+3∑
i=d+1

2d+3∑
j=d+1

|∆(2k+2−i−j)| =
2d+3∑
i=d+1

|∆(2k+2− i)|

= |∆(2k+2)|.

where the equalities follow from (6.36), and the inequality follows from the induc-
tion hypotheses (note that in the first double sum k+1−i≥3 and k+1−j≥3 due to
our assumption on k). The case g2=k+1, 3≤g1≤k is handled in a similar manner.

Part 4. Let θ : {1, 2, . . .}→[0,∞) be the function defined by

θ(g) =

{
0 if g≤d+1
log |∆(g)| otherwise.

, g = 1, 2,

Then it’s easily verified, using parts 2 and 3, that this function is superadditive for
all positive integers g. Hence, by Lemma 1, limg→∞ θ(g)/g exists and satisfies

lim
g→∞

θ(g)

g
= sup

g≥1

θ(g)

g
.

Since θ is nonnegative, the RHS is equal to supg≥d+2(θ(g)/g), thus

lim
g→∞

θ(g)

g
= lim

g→∞

log |∆(g)|
g

= sup
g≥d+2

θ(g)

g
= sup

g≥d+2

log |∆(g)|
g

.

91

6.5. Proof of Theorem 13

Let A′ be the matrix defined in the proof of part 1 above, and let a, b∈{0, 1}. Since
A′ is primitive, it holds that limg→∞((A′)g/λ(A′)g) exists and is strictly positive
in each entry. As ∆a→b(g) is equal to a single entry of (A′)g, it follows that there
exists a positive real constant ca,b, such that

lim
g→∞

|∆a→b(g)|
λ(A′)g

= ca,b.

Since |∆(g)|=
∑

a,b |∆a→b(g)|, this implies that

lim
g→∞

log |∆(g)|
g

= log λ(A′) = Cd.

It remains to check that supg≥2(log |∆(g)|)/g= supg≥d+2(log |∆(g)|)/g. This
holds since for d≥2 and 2≤g<d+2, (log |∆(g)|)/g≤0≤Cd, and for d=1, it can
be verified that (log |∆(2)|)/2=1/2<C1.

Part 5. Obviously the claim holds for g=1, so assume g≥2. In this case, let
ψ:∆0→0(g)→∆1→1(g) be given by

ψ(0w0) = 10w , 0w0∈∆0→0(g), w∈{0, 1}∗.

It’s easy to verify that for any z∈∆0→0(g), ψ(z)∈∆1→1(g) and that ψ is one-to-
one and onto ∆1→1(g). This shows the claim.

Part 6. Note, that for 1≤g≤d, ∆0→1(g) = ∅, and the claim holds. To show
the claim for g≥d+2, we define a map φ : ∆0→1(g)→∆0→0(g). For a word
x∈∆0→1(g), φ(x) is defined as follows:

1. If x = w0d+11, where w∈{0, 1}∗, then

φ(x) = w0d10.

2. if x = w0d+110d1, where w∈{0, 1}∗, then

φ(x) = w0d10d10.

3. if x = w10d1, and w does not end with 0d+1, then

φ(x) = w0d10.

For i = 1, 2, 3, let Λi⊆∆0→1(g) denote the set of words satisfying the con-
ditions of case i above. Observe, that {Λ1,Λ2,Λ3} is a partition of ∆0→1(g),
and that in each case φ(x)∈∆0→0(g); thus φ is well-defined. We claim that φ

92

6.5. Proof of Theorem 13

is at most “two-to-one”. More precisely, we claim that there are no 3 distinct
words x, y, z∈∆0→1(g) such that φ(x)=φ(y)=φ(z); otherwise, since, clearly, φ
restricted to Λi is one-to-one, each of x, y, z must belong to a different Λi, say
x∈∆1, y∈∆2 and z∈∆3; but then φ(y) ends with 10d10 while φ(z) ends with
0d+110. Thus φ is at most two-to-one, and it follows that |∆0→1(g)|≤2|∆0→0(g)|.

Part 7. Let g 6=d+1. Then by parts 5 and 6,

|∆(g)| ≥ |∆0→0(g)|+ |∆1→1(g)|+ |∆0→1(g)|
= 2|∆0→0(g)|+ |∆0→1(g)|
≥ 2|∆0→1(g)|,

and the claim follows. The case d = 1 and g = d+1 = 2, is easily verified. �

We will use the next lemma in the proof of Proposition 12, part 2. It gives a
bound on λ((Ni)), where (Ni)⊆{A,C} is a sequence of the form (6.26).

Lemma 9. Let s, t≥0 and g≥2 be integers. Set λ=λ((C)2(A,C)s(A)g(C,A)t).
If g=d+1 and d>1 then

λ=(s+ 1)(t+ 1),

otherwise,

λ≤|∆(g)|
(
s+ 1

4
+
t+ 1

4
+

(s+ 1)(t+ 1)

2

)
.

Proof. Let g∈Zs+t+1 be the block vector given by g=(1s | g |1t). For a, b∈{0, 1}
let Γa→b⊆∆(g) be given by

Γa→b = {(x1, . . ., xs, y, z1, . . ., zt)∈∆(g) : y begins with a and ends with b}.

Clearly, {Γa,b : a, b∈{0, 1}} is a partition of ∆(g). On the other hand, consider
the following identities, when s, t>0, which are easy to verify:

Γ0→0	=	∆(1s)		∆0→0(g)	= (s+1)	∆0→0(g)		
Γ0→1	=	∆(1s)		∆0→1(g)		∆(1t)	= (s+ 1)(t+ 1)	∆0→1(g)
Γ1→0	=	∆1→0(g)						
Γ1→1	=	∆1→1(g)		∆(1t)	= (t+1)	∆1→1(g)		

where we used (6.35). Note that these identities hold even when s = 0 or t = 0.
By Proposition 13 it follows that

λ = |∆(g)|=
∑

a,b∈{0,1}

|Γa→b|

= (s+1)|∆0→0(g)|+ (s+1)(t+1)|∆0→1(g)|
+ |∆1→0(g)|+ (t+1)|∆1→1(g)|.

(6.37)

93

6.5. Proof of Theorem 13

Now, if g=d+1 and d>1, then ∆(g)={0d1} and the claim follows from (6.37). It
remains to show the case g 6=d+1 or d=1. If |∆(g)| = 0, then the claim readily
follows from (6.37). Otherwise, rewriting (6.37), we obtain

λ = |∆(g)|
(

(s+1)
|∆0→0(g)|
|∆(g)|

+ (t+1)
|∆1→1(g)|
|∆(g)|

+
|∆1→0(g)|
|∆(g)|

+ (s+1)(t+1)
|∆0→1(g)|
|∆(g)|

)
≤|∆(g)|

(
(s+1)

|∆0→0(g)|+|∆1→0(g)|/2
|∆(g)|

+ (t+1)
|∆1→1(g)|+|∆1→0(g)|/2

|∆(g)|
+ (s+1)(t+1)

|∆0→1(g)|
|∆(g)|

)
.

(6.38)

Now, by Lemma 8, part 5 we have

|∆0→0(g)|+ |∆1→0(g)|/2
|∆(g)|

=
|∆1→1(g)|+ |∆1→0(g)|/2

|∆(g)|

=
1

2

(
1− |∆0→1(g)|

|∆(g)|

)
.

Substituting this into (6.38) and applying part 7 of Lemma 8, we obtain

λ≤|∆(g)|
(
s+1

2
+
t+1

2
+
|∆0→1(g)|
|∆(g)|

(
(s+1)(t+1)− s+1

2
− t+1

2

))
≤ |∆(g)|

(
s+1

4
+
t+1

4
+

(s+1)(t+1)

2

)
.

.

This completes the proof. �

Proof of Proposition 12, part 2. Set ρ = %((Fi)). Then since g≥2,

ρ =
t+ s+ 2

(t+s+2)(2d+2)+t+s+g
=

1

(2d+3)+(g−2)/(t+s+2)
<

3

6d+8
.

Hence, by Proposition 9, it follows that hd(ρ)≥Lp1,p2(ρ). So, it’s enough to show

log λ((Fi))

|(Fi)|
≤ Lp1,p2(ρ)

94

6.5. Proof of Theorem 13

Set λ = λ((Fi)). We need to show

log λ

|(Fi)|
≤ Lp1,p2(ρ)

⇐⇒ log λ

|(Fi)|
≤ L

(0,Cd),(3
6d+8

, log 3
6d+8

)
(ρ)

⇐⇒ log λ

|(Fi)|
≤ Cd − (log 3)/(6d+8)

−3/(6d+8)

(
ρ− 3

6d+8

)
+

log 3

6d+8

⇐⇒ log λ

|(Fi)|
− log 3

3
ρ ≤ Cd

(
1− ρ

3/(6d+8)

)
⇐⇒ log λ− (t+ s+ 2)(log 3)/3

(1− ρ
3/(6d+8))|(Fi)|

≤ Cd

⇐⇒ log λ− (t+ s+ 2)(log 3)/3

g + (t+ s− 4)/3
≤ Cd (6.39)

Now, if g = d+1, and d>1, then by Lemma 9, the numerator of the LHS
of (6.39) is log(s+1)−(s+1)(log 3)/3+ log(t+1)−(t+1)(log 3)/3 which is non-
positive for any nonnegative integers s,t. Since the denominator of the LHS
of (6.39) is always positive, it follows that the LHS of (6.39) is nonpositive
and (6.39) holds in this case. So we assume that d=1 or g 6=d+1. In this case,
by Lemma 9,

log λ−(t+s+2) log 3
3

g+ t+s−4
3

≤
log |∆(g)|+ log(s+1

4 + t+1
4 + (s+1)(t+1)

2)−(t+s+2) log 3
3

g+ t+s−4
3

=
log |∆(g)| − α

g + β
,

where we set α=(t+s+2) log 3
3 − log(s+1

4 + t+1
4 + (s+1)(t+1)

2) and β= t+s−4
3 . Ob-

serve that

α ≥ (t+ s+ 2)
log 3

3
− log((s+ 1)(t+ 1))

= (t+ 1)
log 3

3
− log(t+ 1) + (s+ 1)

log 3

3
− log(s+ 1)

≥ 0.

95

6.6. Open questions

Now, if t+ s≥4 then β≥0 and

log λ− (t+ s+ 2) log 3
3

g + t+s−4
3

≤ log |∆(g)| − α
g + β

≤ log |∆(g)|
g

≤ Cd,

where the last inequality follows from Lemma 8, part 4. Hence (6.39) holds in this
case. Otherwise, if t+s<4 then β<0 and it can be verified that for all such t,s, we
have −α≤βC1. By Lemma 6 this implies that

−α ≤ βCd (6.40)

Again, by Lemma 8, part 4, we have (log |∆(g)|)/g≤Cd, which implies

log |∆(g)| ≤ gCd (6.41)

Summing equations (6.41) and (6.40) and dividing by g+β (which is positive), we
get

log |∆(g)| − α
g + β

≤ Cd.

Therefore (6.39) holds in this case as well. �

6.6 Open questions

By (6.2), the independence capacity of RLL(d, k) remains 1/(2d+2) for all 2d +
1≤k≤3d+ 1. Is it possible to generalize the derivation in the proof of Theorem 13
to obtain the tradeoff function for RLL(d, k) for this range of d and k?

The “reverse-concatenation” encoding scheme described in Section 6.1 is used
in practice for certain digital storage systems where the relevant constraint is
RLL(0, k). Knowing the tradeoff function for this constraint is thus especially
important. Unfortunately, currently, this function is only known exactly when
k = 1, 2 [5], and for k = 3 for insertion rates in [0, 1/4] [37].

We so far restricted ourselves to dealing with tradeoff functions of 1-
dimensional and binary constraints. It remains a task for future work to generalize
the definition to higher-dimensional and non-binary constraints.

96

Chapter 7

Bounds on capacity using
probability

In this chapter we give some probabilistic inequalities that hold for certain 2-
dimensional binary constraints. Using these, we obtain a lower bound, stated in
Theorem 16, on the capacity of certain constraints of the form S(V)⊗RLL(0, 1),
where S(V) is a 1-dimensional constraint over {0, 1}. We suspect that this bound
is usually inferior to the bounds we get using the method described in Chap-
ter 3: for example, for the (bit-flipped) hard square constraint, Theorem 16 gives
cap(RLL(0, 1)⊗2)≥0.49445718. . ., whereas with the method of Chapter 3 one
gets cap(RLL(0, 1)⊗2)≥0.58789116. . .. However, the arguments presented here
do not seem to require symmetry of either the horizontal or vertical strips of the
constraint, and thus may prove to be generalizable to constraints for which the
method of Chapter 3 cannot be used.

For the rest of this chapter, we assume Σ = {0, 1}.

7.1 Some correlation inequalities

The method described in this chapter uses correlation inequalities: specifically the
FKG and Holley inequality. We summarize them here. A partially ordered set
(Λ,≤) is called a lattice, if any two elements x, y∈Λ have a smallest upper bound
denoted x∨y (i.e. x∨y ≥ x and x∨y ≥ y and for all z∈Λ s.t. z≥x and z≥y, we
have z ≥ x∨y) and a greatest lower bound denoted x∧y. A lattice is distributive if
it satisfies either of the following two equivalent conditions:

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) for all x, y, z∈Λ,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all x, y, z∈Λ.

As an example consider the set Λ = Σm×n for some m,n ∈ N. As usual we
say that for ∆1,∆2 in Λ, ∆1≤∆2 if the inequality holds entry-wise. Then ≤ is
a partial order on Λ and (Λ,≤) is a finite distributive lattice. For two elements
∆1,∆2∈Σm, the arrays ∆1∨∆2 (resp. ∆1∧∆2) is the array formed by taking an
entry-wise maximum (resp. minimum) of ∆1,∆2. Every lattice that we use in this

97

7.1. Some correlation inequalities

chapter will essentially be such a lattice and in fact, it can be shown that every finite
distributive lattice is isomorphic to a sub-lattice of Σm×1 for some m [31, Chapter
14, Theorem 15]. Henceforth, we will regard Σm×n as the lattice (Σm×n, ≤).

Let (Λ,≤) be a finite distributive lattice. A function f : Λ → R is increasing
(i.e. non-decreasing) if for all x, y∈Λ with x≤y, f(x)≤f(y). We call a subset
A⊆Λ increasing if its indicator function is increasing and a 1-dimensional con-
straint S⊆Σ∗, increasing, if Sn is increasing (w.r.t the lattice Σn) for all n∈N. The
notions of a decreasing function, subset and 1-dimensional constraint are defined
in an analogous manner. A function f : Λ → R is monotone if it is increasing or
decreasing.

Now, let µ : P(Λ)→ [0, 1] be a probability measure on Λ, where P(Λ) denotes
the power set of Λ. For x ∈ Λ and such a measure µ, we abuse notation and write
µ(x) to mean µ({x}). For any real function f on Λ we use Eµ(f) = E(f) to
denote the expectation of f w.r.t µ, namely

Eµ(f) =
∑
x∈Λ

f(x)µ(x).

The following is known as the Holley inequality.

Theorem 14 (Holley inequality). Let (Λ,≤) be a finite distributive lattice, and
µ1,µ2 : P(Λ)→ [0, 1] be two probability measures on Λ such that

µ1(x ∧ y)µ2(x ∨ y) ≥ µ1(x)µ2(y) For all x, y∈Λ. (7.1)

Then for any increasing function f : Λ→ R,

Eµ1(f) ≤ Eµ2(f).

See [15] for a proof.
A simple corollary of this inequality is the following lemma which we use in

the next section.

Lemma 10. Let W0, . . .,Wm−1 be m random variables—each taking values in
Σ—with two probability distributions µ1, µ2 such thatW0, . . .,Wm−1 are indepen-
dent w.r.t both µ1 and µ2. Assume that for all t∈[m], µ1(Wt = 1) ≤ µ2(Wt = 1).
Then for any increasing set A⊆Σm

µ1((W0, . . .,Wm−1)∈A) ≤ µ2((W0, . . .,Wm−1)∈A).

Proof. It’s easy to verify that (7.1) holds for µ1 and µ2. The result follows by
applying the Holley inequality to the indicator function of A. �

98

7.2. Bounds on capacity using probability

We will also make use of the following inequality, known as the FKG inequality
([8]). A probability measure µ : P(Λ)→ [0, 1] on Λ is called log supermodular if
for all x, y∈Λ.

µ(x ∧ y)µ(x ∨ y) ≥ µ(x)µ(y). (7.2)

Theorem 15 (FKG inequality). Let Λ be a finite distributive lattice, and let µ :
P(Λ) → [0, 1] be a log supermodular probability measure on Λ. Then for any
monotone functions f, g : Λ→ R the following statements hold:

1. If f, g are both increasing or both decreasing then they are positively corre-
lated, namely E(f)E(g) ≤ E(fg)

2. If f is increasing and g is decreasing or vice versa then they are negatively
correlated, namely E(f)E(g) ≥ E(fg)

It is shown in [15] that this inequality is an easy corollary of Theorem 14. As
the proof is short, we reproduce it here for completeness.

Proof. Observe that it is enough to prove the theorem for the case where both f
and g are increasing—the other cases follow from this case by taking f̃ = −f or
g̃ = −g, as appropriate. Now, by adding a large enough constant to f , we may
assume without loss of generality that f is strictly positive. For a subset A⊆Λ, set
µ1(A) = µ(A) and µ2(A) =

∑
x∈A(f(x)µ(x))/Eµ(f). Then it’s easy to check

that (7.1) is satisfied and therefore since g is increasing,

Eµ1(g) ≤ Eµ2(g)

⇐⇒ Eµ(g) ≤
∑

x∈Λ f(x)µ(x)g(x)

Eµ(f)

⇐⇒ Eµ(g)Eµ(f) ≤ Eµ(fg).

�

7.2 Bounds on capacity using probability

Our goal in this section is to prove the following lower bound on the capacity of
certain 2-dimensional constraints.

Theorem 16. Let S = S(V) ⊗ S(H) be a 2-dimensional constraint with S(H) =
RLL(0, 1) and S(V) an increasing 1-dimensional constraint over Σ. Let ϕ = 1+

√
5

2

denote the golden mean and set µ∞(0) = 1
ϕ2+1

and µ∞(1) = ϕ2

ϕ2+1
. Let G(V) =

((V (V), E(V)),L(V)) be a lossless presentation of S(V), andW(V) : E(V) → [0, 1]

99

7.2. Bounds on capacity using probability

be the edge-weighting function given by W(V)(e) = µ∞(L(V)(e)). Let A be the
|V (V)|×|V (V)| real matrix with entries indexed by V (V)×V (V) and given by

(A)(i,j) =
∑

e∈E(V),
σ(e)=i,τ(e)=j

W(V)(e).

Then
cap(S) ≥ logϕ− 1

2

(
1− cap(S(V))− log λ(A)

)
,

Remark 1. If S = RLL(1,∞)⊗S(V) with S(V) a decreasing 1-dimensional con-
straint over Σ, then simultaneously changing ‘0’s to ‘1’s and ‘1’s to ‘0’s in every
array of S would result in a constraint that satisfies the requirement of the above
theorem and has the same capacity as S. Thus, we can also use the theorem to get
a lower bound on cap(S).

Proof. For a probability space (Ω,F, µ), and events A,B ⊆ Ω with µ(A) > 0,
we denote by µ(·|A) : F → [0, 1] the conditional probability measure given by
µ(B|A) = µ(B ∩ A)/µ(A) for all B∈F. For a word w∈Σ∗ of length m, m∈N,
we index its symbols by [m] so that w = w0w1. . .wm−1. For m,n∈N, let µm×n :
P(Σm×n) → [0, 1] be the uniform probability measure on Σm×n. Clearly, µm×n
satisfies (7.2) with equality. For a subset A⊆Σm×n, let 1A : Σm×n → {0, 1} be
the indicator function of A, and for integers i∈[m] and j∈[n], define the sets:

Ri = R
(m,n)
i = {∆∈Σm×n : ∆i,∗ satisfies S(H)},

Cj = C
(m,n)
j = {∆∈Σm×n : ∆∗,j satisfies S(V)},

R = R(m,n) =
⋂
i∈[m]

R
(m,n)
i ,

Ceven = C(m,n)
even =

⋂
j∈[n],
j even

C
(m,n)
j , and

Codd = C
(m,n)
odd =

⋂
j∈[n],
j odd

C
(m,n)
j .

Then since S(H) and S(V) are both increasing, it follows that, 1R∩Codd
and 1Ceven

100

7.2. Bounds on capacity using probability

are increasing, and consequently, by the FKG inequality,

µm×n(Sm×n) = µm×n(R ∩ Codd ∩ Ceven)

= Eµm×n(1R∩Codd
·1Ceven)

≥ Eµm×n(1R∩Codd
)Eµm×n(1Ceven)

= µm×n(R ∩ Codd)µm×n(Ceven).

It follows that

cap(S) = lim
(m,n)→∞

log |Sm×n|
mn

= lim
m→∞

lim
n→∞

log(2mnµm×n(Sm×n))

mn

≥ lim sup
m→∞

lim sup
n→∞

log (2mnµm×n(Ceven)µm×n(R ∩ Codd))

mn

= lim sup
m→∞

lim sup
n→∞

log
(
µm×n(Ceven) · 2mn · µm×n(R)µm×n(Codd|R)

)
mn

= lim sup
m→∞

lim sup
n→∞

(
log
((

2−m
∣∣∣S(V)
m

∣∣∣)dn/2e ∣∣∣S(H)
n

∣∣∣m)
mn

+

log
∏bn/2c
i=1 µm×n

(
C2i−1

∣∣R ∩⋂i−1
j=1C2j−1

)
mn

)
= cap(S(H)) +

1

2

(
cap(S(V))− 1

)
+

lim sup
m→∞

lim sup
n→∞

∑bn/2c
i=1 logµm×n

(
C2i−1

∣∣∣R ∩⋂i−1
j=1C2j−1

)
mn

. (7.3)

We claim that

µm×n(C2i−1|R∩
i−1⋂
j=1

C2j−1)≥µm×n(C2i−1|R), (7.4)

for all m,n ∈ N and integer 1≤i≤bn/2c. This follows from the right inequality
given in the next Proposition.

Proposition 14. For all m,n∈N and i∈[n]

µm×n(Ci|R ∩
⋂

1≤j≤i,
j odd

Ci−j) ≤ µm×n(Ci|R) ≤ µm×n(Ci|R ∩
⋂

1≤j≤i,
j even

Ci−j).

101

7.2. Bounds on capacity using probability

The proof of Proposition 14 is given in Section 7.2.1. Using (7.4) in (7.3) and
the well-known fact (c.f. [32]) that cap(S(H)) = logϕ, we obtain

cap(S) ≥ cap(S(H)) +
1

2

(
cap(S(V))− 1

)
+

lim sup
m→∞

lim sup
n→∞

∑bn/2c
i=1 logµm×n(C2i−1|R)

mn

= logϕ− 1

2
(1− cap(S(V)))+

lim sup
m→∞

lim sup
n→∞

∑bn/2c
i=1 logµm×n(C2i−1|R)

mn

The theorem now follows from the next lemma whose proof is given in Sec-
tion 7.2.2

Lemma 11. The following statements hold:

1. For allm∈N, lim
n→∞

∑bn/2c
i=1 logµm×n(C2i−1|R)

n
=

1

2
log

∑
w∈S(V)

m

∏
j∈[m]

µ∞(wj).

2. lim
m→∞

log
∑

w∈S(V)
m

∏
j∈[m] µ∞(wj)

m
= log λ(A).

7.2.1 Proof of Proposition 14

Proof. We prove the right inequality since it is the only one we use in the proof of
Theorem 16 and the proof of the left inequality is similar. Let m,n∈N and i∈[n].
We again use the FKG inequality. Set A = {i − j : j ∈ N, 1 ≤ j≤i, j is even},
S = [m]×A and let Λ′ = ΣS , be the set of all binary-valued functions with domain
S. We think of a function in Λ′ as a binary non-contiguous configuration on the
“sites” of S. For such a configuration ∆′∈Λ′ and j∈A, we write ∆′∗,j to denote the
1-dimensional word ∆′(0, j)∆′(1, j). . .∆′(m− 1, j). As usual for ∆′1,∆

′
2∈Λ′ we

write ∆′1≤∆′2 if ∆′1(j)≤∆′2(j) for all j∈S. Then Λ′ with this ordering is a finite
distributive lattice. For a binary array ∆∈Σm×n, denote by π(∆)∈Λ′ the restriction
of ∆ to S, namely the configuration ∆′∈Λ′ given by ∆′(j) = ∆j for all j∈S. For
a set B⊆Λ′, let π−1(B) denote the inverse image of B under π. Set µ = µm×n
and let µ′ : P(Λ′) → [0, 1] be the push-forward probability measure of µ(·|R),
defined by µ′(B) = µ(π−1(B)|R). For j∈A, let C ′j = {∆′∈Λ′ : ∆′∗,j ∈ S(V)}
and set C ′ =

⋂
j∈AC

′
j . Then π−1(C ′j) = Cj and π−1(C ′) =

⋂
j∈ACj . Finally,

102

7.2. Bounds on capacity using probability

let f, g : Λ′ → R be the functions given by

f(∆′) = 1C′(∆
′) =

{
1 If ∆′∈C ′.
0 otherwise.

, and

g(∆′) = µ(Ci|R ∩ π−1({∆′})),

for ∆′∈Λ′. We claim that the following statements hold.

• µ′ is log supermodular.

• f is increasing.

• g is increasing.

Assuming that these do hold, then by the FKG inequality, we have∑
∆′∈Λ′

(
f(∆′)g(∆′)µ′(∆′)

)
≥
∑

∆′∈Λ′

(
f(∆′)µ′(∆′)

) ∑
∆′∈Λ′

(
g(∆′)µ′(∆′)

)
⇐⇒

∑
∆′∈C′

(
µ(Ci|R ∩ π−1({∆′}))µ(π−1({∆′})|R)

)
≥∑

∆′∈C′
µ(π−1({∆′})|R)

∑
∆′∈Λ′

(
µ(Ci|R ∩ π−1({∆′}))µ(π−1({∆′})|R)

)
⇐⇒

∑
∆′∈C′

µ(Ci ∩ π−1({∆′})|R) ≥∑
∆′∈C′

µ(π−1({∆′})|R)
∑

∆′∈Λ′

µ(Ci ∩ π−1({∆′})|R)

⇐⇒ µ(Ci ∩
⋂
j∈A

Cj |R) ≥ µ(
⋂
j∈A

Cj |R)µ(Ci|R)

⇐⇒ µ(Ci|R ∩
⋂
j∈A

Cj) ≥ µ(Ci|R),

which is the desired inequality. So it remains to show that the above 3 claims hold.
We begin by showing that µ′ is log supermodular. Let ∆′∈Λ′. Then

µ′(∆′) =
µ(π−1({∆′}) ∩R)

µ(R)

=
2−mn

∣∣{∆∈Σm×n : ∀t∈[m]∀j∈A(∆t,j = ∆′(t, j) and ∆t,∗∈S(H))
}∣∣

2−mn|R|

=
∏
t∈[m]

∣∣∣{w∈S(H)
n : ∀j∈A wj = ∆′(t, j)

}∣∣∣∣∣∣S(H)
n

∣∣∣ (7.5)

103

7.2. Bounds on capacity using probability

Let j0 < j1 < . . . < j`−1=i−2 be the elements of A and for symbols a, b ∈ Σ

and integer u≥0, define αu(a) = |{w∈S(H)
u : wa∈S(H)}|, δ(a, b) = |{x∈Σ :

axb∈S(H)}| and ωu(a) = |{w∈S(H)
u : aw∈S(H)}|. Since the memory of S(H) =

RLL(0, 1) is 1, it readily follows that∣∣∣{w∈S(H)
n : ∀k∈[`] wjk = ak

}∣∣∣ = αj0(a0)

 ∏
k∈[`−1]

δ(ak, ak+1)

ωn−i+1(a`−1).

Setting r = n− i+ 1, we can rewrite (7.5) as

µ′(∆′) =
∏
t∈[m]

αj0
(
∆′(t, j0)

) (∏`−2
k=0 δ

(
∆′(t, jk),∆

′(t, jk+1)
))
ωr
(
∆′(t, j`−1)

)∣∣∣S(H)
n

∣∣∣ .

Now, pick ∆′1,∆
′
2 ∈ Λ′, and set Γ′1 = ∆′1 ∧∆′2 and Γ′2 = ∆′1 ∨∆′2.

µ′(∆1)µ′(∆2)=
∣∣∣S(H)
n

∣∣∣−2m

∏
t∈[m]

2∏
s=1

αj0
(
∆′s(t, j0)

) ·
∏
t∈[m]

∏
k∈[`−1]

2∏
s=1

δ
(
∆′s(t, jk),∆

′
s(t, jk+1)

) ·
∏
t∈[m]

2∏
s=1

ωr
(
∆′s(t, j`−1)

)

For all a, b, c, d∈Σ, it’s easy to verify that δ(a, b)δ(c, d) ≤ δ(a ∧ c, b ∧ d)δ(a ∨
c, b ∨ d), and obviously αj0(a)αj0(b) = αj0(a∧b)αj0(a∨b) and ωr(a)ωr(b) =
ωr(a∧b)ωr(a∨b). Thus,

µ′(∆1)µ′(∆2) ≤
∣∣∣S(H)
n

∣∣∣−2m

∏
t∈[m]

2∏
s=1

αj0
(
Γ′s(t, j0)

) ·
∏
t∈[m]

∏
k∈[`−1]

2∏
s=1

δ
(
Γ′s(t, jk),Γ

′
s(t, jk+1)

) ·
∏
t∈[m]

2∏
s=1

ωr
(
Γ′s(t, j`−1)

)
= µ′(Γ′1)µ′(Γ′2).

104

7.2. Bounds on capacity using probability

Hence µ′ is log supermodular.
The second claim that f is increasing follows immediately from the fact the

S(V) is increasing. So it remains to show that g is increasing (this is where the
proof of the left inequality of the proposition differs). Let ∆′∈Λ′. Then

g(∆′) = µ(Ci|R ∩ π−1(∆′)) =
µ(Ci∩R∩π−1(∆′))

µ(R∩π−1(∆′))

=
2−mn

∑
w∈S(V)

m

∣∣∣{∆∈Σm×n : ∆∗,i=w,∀t∈[m] ∆t,∗∈S(H),

∀t∈[m]∀j∈A∆t,j=∆′(t,j)

}∣∣∣
2−mn

∣∣{∆∈Σm×n : ∀t∈[m]∀j∈A(∆t,j = ∆′(t, j) and ∆t,∗∈S(H))
}∣∣

=

∑
w∈S(V)

m

∏
t∈[m]

∣∣∣{v∈S(H)
n : vi = wt, ∀j∈Avj=∆′(t, j)

}∣∣∣∏
t∈[m]

∣∣∣{v∈S(H)
n : ∀j∈A vj=∆′(t, j)

}∣∣∣ , (7.6)

For t∈[m], let qt = |{v∈S(H)
i−1 : ∀j∈A vj=∆′(t, j)}|; then since S(H) has memory

1, it follows that for all t∈[m], and a∈Σ we have∣∣∣{v∈S(H)
n : vi = a, ∀j∈Avj=∆′(t, j)

}∣∣∣ = qtδ(∆
′(t, i−2), a)ωn−i−1(a), and∣∣∣{v∈S(H)

n : ∀j∈Avj=∆′(t, j)
}∣∣∣ = qtωn−i+1(∆′(t, i−2))

Substituting this into (7.6), we obtain

g(∆′) =
∑

w∈S(V)
m

∏
t∈[m]

δ(∆′(t, i−2), wt)ωn−i−1(wt)

ωn−i+1(∆′(t, i−2))
=

∑
w∈S(V)

m

∏
t∈[m]

ψ∆′(t,i−2)(wt),

where ψa(b) = δ(a,b)ωn−i−1(b)
ωn−i+1(a) for all a, b ∈ Σ. Observe that ψa(0)+ψa(1) = 1 and

that ψa(0), ψa(1)∈[0, 1] for all a∈Σ. It follows that g(∆′) is the probability that a
randomly selected word consisting of m independent random bits, with the tth bit
having a probability of ψ∆′(t,i−2)(1) to be 1, satisfies S(V). Now, let ∆′1,∆

′
2 ∈ Λ′

satisfy ∆′1 ≤ ∆′2. We claim that for each t∈[m] ψ∆′1(t,i−2)(1)≤ψ∆′2(t,i−2)(1).
Indeed, let t∈[m] be such that ∆′1(t, i−2) = 0 and ∆′2(t, i−2) = 1. Then

ψ∆′1(t,i−2)(1) =
δ(0, 1)ωn−i−1(1)

ωn−i+1(0)
=
ωn−i−1(1)

ωn−i(1)
, and

ψ∆′2(t,i−2)(1) =
δ(1, 1)ωn−i−1(1)

ωn−i+1(1)
=

2ωn−i−1(1)

ωn−i+1(1)
,

and since ωn−i+1(1)≤2|S(H)
n−i|=2ωn−i(1) it follows that ψ∆′1(t,i−2)(1) ≤

ψ∆′2(t,i−2)(1). As S(V) is increasing, Lemma 10 implies that g(∆′1)≤g(∆′2) and
therefore g is increasing as claimed. �

105

7.2. Bounds on capacity using probability

7.2.2 Proof of Lemma 11

Fix m∈N. Observe that for any n1, n2∈N we have

µm×(n1+n2+1)(Cn1 |R) =
|Cn1∩R|2−mn

|R|2−mn

=
∑

w∈S(V)
m

∣∣∣{∆∈Σm×(n1+n2+1) :
∆∗,n1=w,

∀t∈[m]∆t,∗∈S(H)

}∣∣∣
|R|

=
∑

w∈S(V)
m

∏
j∈[m]

∣∣∣{v∈S(H)
n : vn1 = wj

}∣∣∣∣∣∣S(H)
n1+n2+1

∣∣∣
=

∑
w∈S(V)

m

∏
j∈[m]

µn1,n2(wj), (7.7)

where we define µn1,n2 : Σ → [0, 1] to be the function given by µn1,n2(a) =

|{v∈S(H)
n1+n2+1 : vn1 = a}|/|S(H)

n1+n2+1| for a∈Σ. Since S(H) is increasing, for

any v∈S(H)
n1+n2+1 with vn1 = 0, the word v′ formed from v by changing the n1’th

symbol to ‘1’ is also in S(H). It follows that for all n1, n2 ∈ N, µn1,n2(1)≥1
2 , and

thus by (7.7), one has

µm×(n1+n2+1)(Cn1 |R)≥(µn1,n2(1))m≥2−m. (7.8)

We next show that for all a∈Σ

lim
(n1,n2)→∞

µn1,n2(a) = µ∞(a). (7.9)

In fact it can be shown that the above limit exists (and equals a different µ∞) for
all vertex constraints S(H) defined by a primitive graph. Let fn = |(RLL(0, 1))n|.
It is well known (c.f. [32]) that fn is the (n + 2) Fibonacchi number and is given
by

fn = ϕn
ϕ3

1 + ϕ2
+ ϕ̄n

ϕ̄3

1 + ϕ̄2
, (7.10)

where ϕ̄ = 1 − ϕ. Since
∑

a∈Σ µn1,n2(a) =
∑

a∈Σ µ∞(a) = 1, it’s enough to

106

7.2. Bounds on capacity using probability

show that (7.9) holds for a = 1. In this case, clearly,

µn1,n2(1) =
|{v∈S(H)

n1+n2+1 : vn1 = 1}|
fn1+n2+1

=
|{x1y ∈ Σn1+n2+1 : x∈S(H)

n1 , y∈S(H)
n2 }|

fn1+n2+1

=
fn1fn2

fn1+n2+1
.

By substituting (7.10) into the last equality and taking the limit as (n1, n2) → ∞
it can be verified that (7.9) holds for a = 1.

Now, set L = log
∑

w∈S(V)
m

∏
j∈[m] µ∞(wj). It follows from (7.7) and (7.9)

that lim(n1,n2)→∞ logµm×(n1+n2+1)(Cn1 |R) = L. Let ε>0, and choose N∈N
such that for all n1, n2≥N , | logµm×(n1+n2+1)(Cn1 |R) − L| < ε. For n∈N set
An = {j∈[n] : j odd}, An,1 = {j∈An : j < N or j > n− 1−N} and An,2 =
An\An,1. Then, for all n∈N with n > 2N , we have∣∣∣∣∣
∑bn/2c

i=1 logµm×n(C2i−1|R)

bn/2c
− L

∣∣∣∣∣ ≤
∣∣∣∣∣
∑

i∈An,1 logµm×n(Ci|R)

|An|

∣∣∣∣∣+∣∣∣∣∣∣
∑

i∈An,2

(
logµm×n(Ci|R)−L

)
−|An,1|L

|An|

∣∣∣∣∣∣ .
Note that for all i∈An,2, it holds that i≥N and n − i − 1≥N ; thus
| logµm×n(Ci|R)−L| < ε. Also by (7.8), it follows that for all i∈An,1,
| logµm×n(Ci|R)|≤m. Therefore we obtain∣∣∣∣∣

∑bn/2c
i=1 logµm×n(C2i−1|R)

bn/2c
− L

∣∣∣∣∣ ≤ |An,1||An|
m+

ε|An,2|
|An|

+
|An,1|
|An|

L

≤ 2N(m+ L)

bn/2c
+ ε,

which is less than 2ε for large enough n. It follows that

lim
n→∞

∑bn/2c
i=1 logµm×n(C2i−1|R)

bn/2c
= log

∑
w∈S(V)

m

∏
j∈[m]

µ∞(wj),

which obviously implies the first statement of the lemma.

107

7.3. Open questions

As for the second statement, for a path in G(V), define its weight to be the
product of the weights of its edges. Denote byWm the sum of all the weights of
paths of length m in G(V). Since G(V) is a lossless presentation of S(V) we have

Wm

|V (V)|2
≤

∑
w∈S(V)

m

∏
j∈[m]

µ∞(wj) ≤ Wm.

On the other hand,Wm = 1tAm1 and, applying Perron-Frobenius theory, we have
limm→∞

logWm

m = log(λ(A)). The second statement follows. �

7.3 Open questions

Can Theorem 16 be generalized to other constraints S(H)? Can one use simi-
lar probabilistic tools to obtain upper bounds on the capacity of axial products of
monotone 1-dimensional constraints? Finally, can such tools be used to obtain
bounds on the capacity of constraints in more than 2 dimensions?

108

Bibliography

[1] R.J Baxter, Hard hexagons: exact solution, Journal of Physics A: Mathemat-
ical and General 13 (1980), L61–L70.

[2] R. Berger, The undecidability of the domino problem, Memoirs of the Amer-
ican Mathematical Society (1966).

[3] N.J. Calkin and H.S. Wilf, The number of independent sets in a grid graph,
SIAM Journal of Discrete Math. 11 (1998), no. 1, 54–60.

[4] M. Cohn, On the channel capacity of read/write isolated memory, Discrete
Applied Mathematics 56 (1995).

[5] J.C. de Souza, B.H. Marcus, R. New, and Wilson B.A., Constrained systems
with unconstrained positions, IEEE Transactions on Information Theory 48
(2002), 866–879.

[6] A. Desai, Subsystem entropy for Zd sofic shifts, Indagationes Mathematicae
17 (2006).

[7] K. Engel, On the Fibonacci number of an m×n lattice, Fibonacci Quarterly
28 (1990), 72–78.

[8] C.M. Fortuin, P.W. Kasteleyn, and J. Ginibre, Correlation inequalities on
some partially ordered sets, Comm. Math. Phys. 22 (1971), no. 2, 89–103.

[9] S. Friedland, On the entropy of Zd subshifts of finite type, Linear Algebra and
its Applications 252 (1997), no. 1–3, 199–220.

[10] S. Friedland, Multi-dimensional capacity, pressure and Hausdorff dimension,
Mathematical System Theory in Biology, Communication, Computation and
Finance (2003), 183–222.

[11] S. Friedland and U.N. Peled, The pressure, densities and first order phase
transitions associated with multidimensional SOFT, arXiv:0906.5176v3,
http://arxiv.org/abs/0906.5176v3, submitted, 2009.

109

[12] D.S. Gaunt and M.E. Fisher, Hard-sphere lattice gases, I. plane-square lat-
tice, J. Chem. Phys. 43 (1965), 2840–2863.

[13] M.J. Golin, X. Yong, Y. Zhang, and L. Sheng, New upper and lower bounds
on the channel capacity of read/write isolated memory, Discrete Applied
Mathematics 140 (2004).

[14] S. Halevy and R. Roth, Parallel constrained coding with application to
two-dimensional constraints, IEEE Transactions on Information Theory 48
(2002), 1009–1020.

[15] R.H. Holley, Remarks on the FKG inequalities, Comm. Math. Phys. 36
(1974), no. 3, 227–231.

[16] A. Horn and C. Johnson, Matrix analysis, Cambridge University Press, 1985.

[17] R. Horst and N.V. Thoai, DC programming: overview, Journal of Optimiza-
ton Theory and Applications 103 (1999), no. 1.

[18] K.A.S. Immink, Codes for mass data storage, Shannon Foundation Publish-
ers, Eindhoven, 2004.

[19] K.A.S. Immink and K. Cai, Simple classes of constrained systems with uncon-
strained positions that outperform the maxentropic bound, IEEE International
Symposium on Information Theory, 2008.

[20] H. Ito, A. Kato, Zs. Nagy, and K. Zeger, Zero capacity region of multidi-
mensional run length constraints, The Electronic Journal of Combinatorics 6
(1999).

[21] H. Kamabe, Insertion rate and optimization of redundancy of constrained
systems with unconstrained positions, Information Theory and Applications
Workshop, 2009.

[22] H. Kamabe, Lower bounds of capacity of 2D constraints, Information Theory
and Applications Workshop, 2010.

[23] P.W. Kasteleyn, The statistics of dimers on a lattice, Physica A 27 (1961),
1209–1225.

[24] J.F.C. Kingman, A convexity property of positive matrices, The Quarterly
Journal of Mathematics. Oxford. Second Series 12 (1963).

[25] E.H. Lieb, Residual entropy of square ice, Phys. Rev. 162 (1967), no. 1, 162–
172.

110

[26] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding,
Cambridge University Press, 1995 (reprinted 1999).

[27] E. Louidor, The tradeoff function for a class of RLL(d, k) constraints, In
review (SIAM Journal of Discrete Math).

[28] E. Louidor and B.H. Marcus, Improved lower bounds on capacities of sym-
metric 2-dimensional constraints using Rayleigh quotients, IEEE Transac-
tions on Information Theory 56 (2010), no. 4, 1624–1639.

[29] E. Louidor, B.H. Marcus, and R. Pavlov, Independence entropy of Zd shift
spaces, Submitted to Acta Applicandae Mathematicae.

[30] E. Louidor, T.L. Poo, P. Chaichanavong, and B.H. Marcus, Maximum inser-
tion rate and capacity of multidimensional constraints, IEEE International
Symposium on Information Theory, 2008.

[31] S. MacLane and G. Birkhoff, Algebra, second ed., Chelsea Pub Co, 1999.

[32] B. Marcus, R. Roth, and P. Siegel, Constrained systems and coding for
recording channels, Handbook of Coding Theory, Chapter 20, Elsevier Sci-
ence.

[33] M. Marcus and H. Minc, A survey of matrix theory and matrix inequalities,
Allyn and Bacon, 1964.

[34] N. Markley and M. Paul, Maximal measures and entropy of zν subshifts of
finite type, Classical mechanics and dynamical systems 70 (1981), 135–157.

[35] Z. Nagy and K. Zeger, Capacity bounds for the three-dimensional (0,1) run-
length limited channel, IEEE Transactions on Information Theory 44 (2000),
1030–1033.

[36] E. Ordentlich and R. Roth, Independent sets in regular hypergraphs and
multidimensional runlength-limited constraints, SIAM J. Discret. Math. 17
(2004), no. 4, 615–623.

[37] T.L. Poo, Optimal code rates for constrained systems with unconstrained po-
sitions: An approach to combining error correction codes with modulation
codes for digital storage systems, Ph.D. thesis, Department of Electrical En-
gineering, Stanford, 2005.

[38] T.L. Poo, P. Chaichanavong, and B.H. Marcus, Trade-off functions for con-
strained systems with unconstrained positions, IEEE Transactions on Infor-
mation Theory 52 (2006), 1425–1449.

111

[39] M. Schwartz and J. Bruck, Constrained codes as networks of relations, IEEE
Transactions on Information Theory 54 (2008), 2179–2195.

[40] A.J. van Wijngaarden and K.A.S. Immink, Maximum runlength-limited codes
with error control capabilities, IEEE J. Select. Areas Commun. 19 (2001),
602–611.

[41] K. Weber, On the number of stable sets in an m× n lattice., Rostock. Math.
Kolloq. 34 (1988), 28–36.

[42] X. Yong and M.J. Golin, New techniques for bounding the channel capacity
of read/write isolated memory, Data Compression Conference, 2002.

112

