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Abstract 

Current practice in orthopaedic surgery relies on intra-operative two 

dimensional (2D) fluoroscopy as the main imaging modality for localization 

and visualization of bone tissue, fractures, implants, and surgical tool 

positions. However, with such projection imaging, surgeons typically face 

considerable difficulties in accurately localizing bone fragments in three 

dimensional (3D) space and assessing the adequacy and accuracy of reduced 

fractures. Furthermore, fluoroscopy involves significant radiation exposure. 

Ultrasound (US) has recently emerged as a potential non-ionizing imaging 

alternative that promises safer operation while remaining relatively cheap and 

widely available. US image data, however, is typically characterized by high 

levels of speckle noise, reverberation, anisotropy and signal dropout which 

introduce significant difficulties in interpretation of captured data, automatic 

detection and segmentation of image features and accurate localization of 

imaged bone surfaces. 

In this thesis we propose a novel technique for automatic bone surface and 

surgical tool localization in US that employs local phase image information to 

derive symmetry-based features corresponding to tissue/bone or tissue/surgical 

tool interfaces through the use of 2D Log-Gabor filters. We extend the 

proposed method to 3D in order to take advantage of correlations between 

adjacent images. We validate the performance of the proposed approach 

quantitatively using realistic phantom and in-vitro experiments as well as 

qualitatively on in-vivo and ex-vivo data. Furthermore, we evaluate the ability 

of the proposed method in detecting gaps between fractured bone fragments. 

The current study is therefore the first to show that bone surfaces, surgical 

tools and fractures can be accurately localized using local phase features 

computed directly from 3D ultrasound image volumes.  

Log-Gabor filters have a strong dependence on the chosen filter parameters, 

the values of which significantly affect the outcome of the features being 
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extracted. We present a novel method for contextual parameter selection that is 

autonomously adaptive to image content. Finally, we investigate the 

hypothesis that 3D US can be used to detect fractures reliably in the 

emergency room with three clinical studies. We believe that the results 

presented in this work will be invaluable for all future imaging studies with US 

in orthopaedics.  
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Chapter 1 

Introduction 

1.1 Thesis Objective 

The focus of this work was to develop robust, accurate and automatic 

segmentation techniques in the field of ultrasound (US) guided minimally 

invasive surgery.  Ultimately this research was intended to advance the larger 

goal of developing a novel three dimensional (3D) US based computer assisted 

orthopaedic surgery (CAOS) system for minimally invasive bone reduction 

procedures.  Such a system will ultimately address a variety of problems with 

the planning and execution of orthopaedic surgery procedures. Specifically we 

have investigated the potential and feasibility in using 3D US imaging 

modality for real-time identification of fractures in emergency departments 

(ED). The specific clinical application of focus was distal radius and pelvic 

fractures. The goals of this research include the following: 

• Develop new and robust image processing methods that can allow 

automatic and real-time extraction of bone surfaces and surgical tools 

from two dimensional (2D) and 3D US scans with sufficient accuracy.  

• Develop new and robust image processing methods that can 

automatically extract fractured bone fragments from 3D US data with 

sufficient accuracy.  

• Perform extensive validation studies that will allow to address the 

engineering challenges found in real clinical situations. 

• Validate the proposed methods with clinical studies.  
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This in turn will help us in the future design, develop, and evaluate a 3D US 

based CAOS system which could: 

• Improve performance by providing better assessment and placement of 

the fracture fragments which could in turn improve reduction and 

decrease the operation time  

• Promote minimally invasive surgery (MIS) by minimizing soft tissue 

exposure 

• Decrease cost and improve efficiency by replacing fluoroscopy at key 

points in the diagnosis and treatment 

• Decrease the amount of radiation exposure to patients and to staff 

• Decreasing the post operative complications related to fracture 

fragment reduction and implant position, which are encountered 

because of imaging limitations.  

This study has introduced the concept of using radiation-free real time 3D 

US imaging modality for fracture assessment in ED. It provided a method 

which is robust, fast and easy to use and which allows imaging of the fracture 

at the time of presentation and during surgery. The proposed method also 

allows accurate and robust extraction of bone surfaces and surgical tools from 

3D US volumes. We believe that the results presented in this study are 

invaluable for all future ultrasound guided computer assisted orthopaedic 

surgery studies.  

1.2 Thesis Motivation and Problem Statement 

During 1986–1995, annual medical-care costs for fractures in United States 

among older adults (aged ≥65) ranged from $7 billion to $10 billion in 1986 to 

$13.8 billion in 1995. The statistics also show that the number of persons aged 

≥65 years is projected to increase from 32.0 million to 51.5 million during 

1990–2020 [1]. In a study made by National Center for Health Statistics 

(NCSH) it was shown that the number for annual ED visits for fractures was 

3,443,000 from a total of 21,163,000 visits for all types of injuries. Among the 
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injury types which require hospitalization they are the most common one with 

70% [1]. The study also showed that 17,706 people died from fracture related 

injuries in 2003, which accounts for 10% of the total deaths in ED [1]. 

According to the Canada National Trauma Registry (CNTR) bulletin the three 

most common injury diagnoses for trauma hospitalization in 1998/1999 were 

fractures and dislocations of the lower and upper limb accounting for 51.2% of 

all injury types [2].  

Distal radius fracture is the most common fracture type in the forearm 

region. It is usually caused by a fall onto an outstretched hand (FOOSH). It can 

also result from direct impact or axial forces.  In the United States, fractures of 

the distal radius constitute about one sixth of all fractures seen in emergency 

room [3, 4], and this number increases to 20% in United   Kingdom [5]. It is 

more frequently seen in patients between the ages of 5-14 and 60-69 years [6].  

On the other hand pelvic injuries commonly result from high energy trauma. 

Motor vehicle accidents accounting for up to 73% of injuries are the most 

common cause of pelvic fractures [7]. The incidence of pelvic fractures in the 

United States is estimated to be more than 100,000 per year [8]. The Canadian 

National Trauma Registry have recorded that out of 109,738 major injuries 

occurring in 1999, 4531 had a pelvis fracture (4%) [7]. Furthermore, mortality 

rates following pelvic trauma have ranged from 9 to 27% [7]. Due to these 

high incident rates and the problems faced during the fixation of distal radius 

and pelvic fractures, which will be explained in section 1.3, the clinical focus 

of this thesis was on distal radius and pelvic fractures.  

1.2.1 Current Fracture Treatment in Orthopaedic Surgery 

A range of operative and non-operative treatment options are recommended 

based on injury and patient characteristics. In today’s practice, methods for 

distal radius fracture fixation are based on either cast immobilization, 

percutaneous pinning, external fixation, internal fixation with plates, or 

combination treatments [9], while pelvic fractures are either managed non-
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operatively with protected mobilization or with internal and external fixation 

devices following reduction (realignment) of the fracture fragments [10,11,12]. 

Management for either injury is generally based on the fracture pattern, degree 

of displacement, other associated injuries, and the individual patient's needs 

and demands.  

For distal radius fractures, other than casting,  external fixation is 

considered the next least invasive procedure, which can be used to correct 

radial shortening and metaphyseal angulation, but may not always restore 

articular congruity in intra-articular fractures. For these situations a 

combination of open reduction and percutaneous pinning or internal fixation 

under fluoroscopic visualization is usually the favored option and in many 

cases offers more secure fixation [13, 14]. 

In complex intra-articular fractures, open reduction and internal fixation 

(ORIF) with metal implants (T-plates) on the surface of the distal radius allows 

better reduction of the fracture fragments and in many cases offers more secure 

fixation. However, this treatment method demands more extensive surgical 

exposure and more aggressive use of retractors that can be dangerous for the 

skin and other soft tissues which may devascularize the fracture fragments. 

This may contribute to necrosis caused by trauma and, consequently, increase 

the risk of delayed healing and infection. Hardware problems may also require 

removal of the implant. Furthermore, due to the difficulties encountered during 

the fixation of the fracture the distal bone fragment may fail to realign to its 

proper anatomical position during healing which can lead to pain and reduced 

range of motion in the wrist and accelerated wear which may warrant another 

surgery for deformity correction. The list of complications in malunited distal 

radius fractures is extensive and includes limitation of wrist mobility due to 

joint incongruencies, loss of radial length leading to impingement or 

subluxation of the distal radial joint, all causing a painful wrist, reduced grip 

strength, problems with the median nerve and, in later stages, carpal instability 

and secondary arthritic changes [15].  The treatment goals have therefore 
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aimed at improving the radiographic alignment of fragments using the least 

invasive approach which will achieve this. 

Similar treatment options, ranging from external fixation methods to open 

reduction and stabilization, are also available for pelvic ring fractures [10, 11, 

12]. External fixation devices cannot restore enough stability in the unstable 

complex fractures to allow mobilization of the patient without risk of 

redisplacement of the pelvis, which may lead to suboptimal functional results. 

In such cases, additional reduction manoeuvres are carried out, followed by 

internal fixation. The goal of the surgical treatment is to maintain anatomical 

shape of the pelvis and to reduce the fragments within 5-10mm of their normal 

location to maximize function.  

Complications after operatively treated pelvic fractures include loss of the 

reduction; wound infection, neurological and/or vascular injuries, pain 

syndromes and leg length discrepancies which may result in permanent 

disability [10]. Of these, some may be related to inability to reduce the pelvis 

to an acceptable position or may be related to improper placement of implants.  

1.3 Current Challenges in Orthopaedic Surgery 

1.3.1 Imaging and Visualization 

Imaging is one of the main components of all fracture treatments. The most 

commonly used medical imaging modalities in orthopaedic surgery are 

preoperative X-ray or computed tomography (CT) and intra-operative 

fluoroscopy (Fig.1.1) for guidance during the surgery. Although these imaging 

modalities provide high quality visualization of bones, they nevertheless pose 

several challenges.  

Because traditional fluoroscopic images provide two dimensional (2D) 

representations of a 3D structure, scans from different directions must be 

obtained in order to visualize the anatomical region being operated on. A lot of 

skill is required to visualize 3D anatomy based on information obtained from 
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2D scans and to properly perform the necessary surgical action accordingly. 

The surgeon must position the implant in one view, and then obtain additional 

images in other planes using trial and error placements of guide wires or 

screws. In order to determine the drill trajectory of K-wires, commonly used 

for fixation during distal radius fracture surgeries as a provisional fixation step 

prior to plating or as definitive fixation, different 2D fluoroscopy images are 

taken. The same procedure is also used for screw fixation for T-plates and for 

assessing the proximity of the plate to the articular joint surface.  

The quality of the reduction of distal radius fractures also depends on the 

restoration of anatomical parameters. Visually investigating 2D fluoroscopic 

images intraoperatively may not be enough to assess anatomic reduction, 

especially for determining articular step off, which is one of the major 

determinants of the functional outcome in distal radius fractures. In a recent 

study, the in-vivo accuracy of fluoroscopy and plain radiographs (X-ray) in 

measuring the articular step off was investigated. The results showed that none 

of these imaging modalities allowed for consistent measurement of anatomic 

reduction [16].  

Recently introduced 3D fluoroscopy units [17, 18, 19] provide 3D 

information about the anatomical area but are almost twice as expensive as 

conventional 2D fluoroscopy. Also in extremely obese individuals, image 

quality can be suboptimal for navigation. Furthermore the accuracy of 3D 

fluoroscopy depends on the rigid relationship between the reference arc and 

the navigated anatomy. Current radiopaque retractors must be removed before 

the image acquisition. Re-placing the retractor could affect the accuracy of the 

navigation system [20].  

CT imaging on the other hand provides 3D information about the 

anatomical area with very good resolution but is limited to imaging before and 

after the surgical procedure. The preoperatively obtained 3D scans can not be 

updated in the operating room (OR) after reduction is achieved and it is not 

possible to use this imaging modality in real time. 
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(a) 

  
(b) (c) 

Fig.1.1 (a) Intra-operative 2D Mini-C arm (fluoroscopy), (b) 2D fluoroscopy 
scan showing the fractured distal radius and inserted K-wire, (c) 2D 
fluoroscopy scan showing the fractured distal radius and metal T-plate used 
during the surgery. The images are taken during a distal radius surgery at 
Vancouver General Hospital (VGH), Vancouver, BC, Canada. 

 

1.3.2 Navigation and Guidance 

Positioning of surgical tools or implants relative to bones, moving a drill 

guide sleeve or a cutting jig, drilling K-wires, and T-plate screw fixation are 

mainly based on the surgeon’s knowledge about the target anatomy and 

experience obtained from performing various surgeries. Surgeons typically 

localize their targets by placing a radiologically opaque instrument near the 

region of interest. From this view, the surgeon visually estimates the location 

of the target structure and plans the trajectory. Throughout the surgery the 
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accuracy of the trajectory estimate is controlled with additional fluoroscopic 

images. Operation time, quality and accuracy of the surgical procedure and 

reproducibility of the surgical actions therefore largely depend on information 

obtained from 2D fluoroscopy images and the experience of the surgeon.  

1.3.3 Safety and Accuracy 

The pre and intraoperative imaging modalities currently employed in 

orthopaedic surgeries require the use of X-rays therefore exposing the surgical 

team and patients to potentially harmful ionizing radiation. It is reported that 

more than 15 million skeletal studies are performed yearly in the United States 

using radiography [21]. A recent study investigating the exposure of the 

orthopaedic surgeon’s hands to radiation during the surgery found an exposure 

of 20mrem/case which is reported to be 187 times greater than the amount 

predicted by the manufacturer [21] (mrem represents the unit in radiation 

dose). For comparison, a chest x-ray exposes the patient to about 20mrem. The 

surgeries included in this study were treatments for distal radius fractures and 

malunions, scaphoid nonunion, small joint fusion, perilunate dislocation, and 

metacarpaophalangeal joint arthoplasty. Both the National Council on 

Radiation Protection and the International Commission of Radiological 

Protection recommend a maximum exposure of the hands of 50000mrem, 

which allows up to 2500 cases per year. Though 20mrem/case is below this 

limit, however, receiving nearly the equivalent of a chest X-ray per case 

indicates special care must be taken especially if we think the amount of 

surgeries a surgeon has to perform. It is reasonable to keep the radiation 

exposure as low as possible, regardless of safety regulations. 

Since images used for guidance and fracture reduction assessment are 2D, 

the number of fluoroscopy images taken during the surgery increases 

depending on the experience of the surgeon. In a recent study, Blattert et al. 

[22] formed two teams according to their professional qualification and 

clinical appointment in order to determine whether skill dependence affects the 
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amount of radiation exposure to orthopaedic surgeons. The study showed that 

the mean time of fluoroscopy per operation was higher for the team which had 

less experienced surgeons.  

Misdiagnosis of a fracture is a very common occurrence in ED and can 

have serious consequences because of delays in treatment and resulting long 

term disability [23]. In a study which was made in order to find out the 

diagnostic errors in emergency departments it has been shown that fractures 

were the leading types among the other diagnostic errors with 19% [24]. Guly 

et al. [25] reported that the primary reason for diagnostic error was due to 

abnormalities missed on radiographs with a rate of 77.8%.  

Another important issue to mention is the overload of imaging studies 

requested from the ED to the radiology department (RD). In a recent study 

Blane et al. [26] reported that 72,886 imaging studies were requested from the 

ED to the RD in a year period. 65,7% of these studies were plain radiographs 

and 21.4% CT. These numbers show that the volume of imaging studies 

requested through the ED is significant. With the increasing importance of 

imaging for both diagnosis and management in patient care in ED there is a 

need for quick, accurate, and easy to use imaging modality for preoperative 

fracture assessment which will decrease both the overload and amount of plain 

radiographs to the RD.  

Due to the many problems associated with fracture reduction treatments, 

there is an immediate need for improved safe, accurate and efficient CAOS 

systems that can potentially reduce surgical complications, improve the quality 

of the surgical outcome, decrease the time spent in the operating room (OR), 

and produce less invasive new treatment options. 

1.4 Computer Assisted Orthopaedic Surgery (CAOS) 

Systems 

The importance and demand for precise, efficient and minimally invasive 

surgery is driving the search for new ways to integrate computer systems into 
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surgical procedures. Higher accuracy in surgical interventions, less invasive 

operation, better planning and simulation, and reduction of radiation exposure 

to both patient and surgeon are some of the potential advantages of such 

systems. Computer assisted surgery (CAS) systems were first introduced to 

locate brain tumors based on stereotactic principles [27]. Following that, the 

CAS field started to grow in different subspecialties with CAOS being one of 

them. Due to the rigid structure of bone, orthopaedic surgeries are particularly 

suitable for CAS systems [28, 29]. 

The first application of CAS in orthopaedics was developed for the spinal 

surgical procedure of placing pedicle screws [30]. That paper described an in-

vitro setup for drilling pedicle holes in lumbar vertebrae. Since then, many 

authors have reported clinical series on computer assisted pedicle screw 

insertion [31, 32, 33]. The good results obtained in computer assisted pedicle 

screw placement opened new opportunities for CAS in other fields of 

orthopaedic surgery such as total hip replacement (THR) [34, 35], total knee 

replacement (TKR) [36, 37], intramedullary nail locking [38], tibial [39], 

femoral and pelvic [40, 41, 42], and distal radius [15] osteotomies.  

Navigation is one of the main components of a CAS system. It is required 

in order to visualize surgical actions performed with different instruments and 

provide positional information about these surgical tools or implants relative to 

the target organ on a computer screen in real time. Navigation can be divided 

into three major components: 

The target represents the anatomical location in the body where the surgical 

action is performed. In orthopaedic surgery target object are bones or bone 

fragments.  

The virtual target is a virtual representation of the target object obtained 

from preoperative CT or MRI scans. It allows the surgeon to plan the 

intervention before the surgery without visual contact with the target object.  

The real-time tracker is used to provide real-time guidance during the 

surgery. In order to achieve this position of surgical tools, bone fragments and 
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the patient must be simultaneously tracked in the OR. Typically a specially 

constructed tracking device is attached rigidly to each surgical object the bone 

fragments and the patient and tracked by the real-time tracker. The two most 

commonly used real-time tracking devices in CAOS are optical tracking 

systems and magnetic tracking systems.  In optical systems position 

information is acquired using charged couple device (CCD) cameras in order 

to detect infrared lights. The infrared lights are created from infrared light 

emitting diodes (IRLEDs) or passive markers such as retro-reflective spheres 

or disks.  Shields with at least two but usually four or six IRLEDs/passive 

markers are attached to the instruments and the operated bone (Fig. 1.2). To 

allow freedom of movement of the operation field during surgery, the position 

of the target bone also has to be tracked. Therefore, a frame with IRLEDs or 

passive markers is attached to the skeleton, the so-called dynamic reference 

frame (DRF). Measurements by optical sensors are highly accurate and fast; 

and many IRLEDs can be tracked simultaneously, although an uninterrupted 

line of sight must be maintained between the CCD camera and DRF and 

tracked objects. On the other hand in a magnetic tracking system instead of the 

infrared light a magnetic field is detected created by a transmitter. There is no 

line of sight problem with magnetic tracking systems. However, there are 

concerns about their accuracy, which may be disturbed by the motor of the OR 

table or metallic tools. 
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(a) 

 
(b) 

Fig.1.2 (a) An experimental system constructed with OPTOTRAK tracking 
system with three CCD cameras. (b) K-wire with infrared light emitting 
diodes attached. 
 

A relationship between the target (current patient anatomy in the operating 

field) and the virtual target (patient anatomy obtained from preoperative scans) 

is obtained through a procedure known as registration. During the registration 

a set of intra-operatively obtained scans together with their corresponding 

position information are obtained. These intra-operative images are than 

mapped to the preoperative scans by using a 3D transformation matrix which 

is calculated during the registration procedure. There are three main types of 

registration techniques used in CAOS system: 
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Fiducial based registration: In this method, corresponding anatomical 

landmarks, also known as fiducial markers, are identified in both reference and 

target images and registered. In CAOS systems, fiducial markers are implanted 

on the bone surface and are identified from preoperative CT volumes. These 

identified landmarks are then registered to intraoperative fluoroscopy scans. 

Fiducial marker registration methods are usually used as a gold standard 

registration method in order to evaluate accuracy of other registration methods 

[43, 44]. The major disadvantage of this approach is the high invasiveness and 

the increase in operation time. During the placement of markers, there also are 

risks of infection, damage to soft tissue, and extra pain to the patient. 

Intensity based registration: This method uses intensities in the two images 

without the need for segmenting or extracting geometric features. If the 

registration involves two images from same modality this is called intra-

modality registration, if different modalities are used than this is called inter-

modality registration. In orthopaedic applications this kind of registration is 

used for preoperative CT to intraoperative fluoroscopy registration [45, 46, 47, 

48].  

Feature based registration: This is a shape based or surface based registration 

algorithm and has been used in many applications [49, 50, 51, 52, 53, 54, 55, 

56]. In this method, anatomical structures such as bone surfaces are extracted 

from preoperative and intraoperative scans. To identify and extract bone 

surfaces from these images segmentation algorithms need to also be 

developed. After segmenting the surfaces automatically or manually, rigid 

body registration is applied in order to match the surfaces using methods like 

Iterative Closest Point (ICP) [57] or recently introduces Unscented Kalman 

Filter (UKF) [58]. The accuracy of the surface based registration depends on 

the accuracy of generating 3D surface models from preoperative CT volumes 

and the quality and quantity of intraoperative data sampling.  

Based on the imaging modality used and principles to provide navigation, 

CAOS systems can be divided into two main parts: one that makes use of 
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intraoperative fluoroscopy, and another that uses volumetric images such as 

magnetic resonance imaging (MRI) or CT. 

1.4.1 Fluoroscopy Based CAOS Systems 

Fluoroscopic navigation is less expensive than volumetric image based 

navigation. In these systems, a fluoroscopy device, also called a C-arm or mini 

C-arm based on it’s size, is used intraoperatively for guidance in the OR [45, 

46, 47, 59] (Fig. 1.3) . To determine the position of the images relative to the 

patient, position tracking devices are attached to the C-arm device and the 

target bones. This facilitates superimposing tracked surgical tools in the 

images without the need for registration. This approach has gained some 

popularity as it is based on imaging technology familiar to all orthopaedic 

surgeons, and has the advantage that images are acquired during surgery, 

which allows the pose of instruments and prosthetic components to be assessed 

directly as the surgery progresses. Furthermore, since the first several images 

are used repeatedly to guide operative procedures it reduces the imaging time 

and radiation dosage. However, in practice, there is a significant degree of 

uncertainty in determining the pose of 3D objects from 2D projection images, 

and under some circumstances this can lead to inaccurate navigation. Finally, 

there is still a substantial amount of exposure to radiation.  

   
(a) (b) (c) 

Fig.1.3 (a) Intra-operative 2D fluoroscopy, (b) and (c) 2D fluoroscopy is used 
during a distal-radius fracture surgery. (Images courtesy of Vancouver General 
Hospital, Vancouver, Canada) 
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1.4.2 Volumetric Image Based CAOS Systems 

Recent state of the art CAOS systems are based on volumetric image 

guided techniques which use CT or MRI imaging modalities. Because of its 

high resolution, high contrast between the bone and its surrounding soft 

tissues, long scanning range, and short scanning time, CT is the preferred 

modality in CAOS. The latest research based in this area involves high tibial 

osteotomy [39], distal radius osteotomy [15], spine pedicle screw insertion [32, 

33], total hip arthoplast [34, 35], and total knee arthoplast [35, 36, 37, 38]. 

Usually in such systems, a preoperative plan is developed based on CT 

scans. This is achieved based on one of two methods. The first method is multi 

image slice based where the patient’s anatomy is displayed in three orthogonal 

slices and the position and orientation of implants and surgical tools are 

superimposed onto these views. The other method is volume rendering or 

surface modeling based where the 3D surface of the anatomy is reconstructed 

using state of the art segmentation algorithms. This pre-operative plan is then 

registered with intra-operative scans obtained from the patient during the 

surgery.  

Several research groups who proposed volumetric CAOS systems that used 

2D fluoroscopy as the intra-operative imaging modality and showed promising 

improvements in overall surgical accuracy, decreased invasiveness of the 

surgeries. Furthermore, a decrease in the total amount of radiation exposure 

was also reported [60, 61, 62, 63]. However, these techniques still involve the 

use of ionizing radiation during surgery and require a CT scan which may not 

always be acquired in conjunction with a conventional procedure. 

In order to address some of these issues, a recent approach proposed the use 

of statistical shape models built from CT scans of a patient population and 

registered using intraoperatively-obtained patient-specific geometric data [64]. 

The geometric data is acquired by digitizing the surgically exposed bone 

surface using a tracked pointer. Though promising, this technique requires 



Chapter 1 

  16 

prior models for each fragment of interest; given the high variability of 

fracture patterns, it is difficult to produce a library which describes the range 

of possible fragments.   

Recently, 3D fluoroscopy (e.g. Siemens Siremobil ISO-C 3D) has been 

introduced for intra-operative use [17, 18, 19]. However, 3D fluoroscopy 

machines are currently approximately twice as expensive as conventional 2D 

fluoroscopy machines and are used by relatively few hospitals. Radiopaque 

surgical instruments such as retractors can interfere with the registration 

process linking the 3D image and the bone fragments, which can complicate 

the process and affect registration accuracy [20]. Finally, this technique still 

involves radiation exposure to the patient and surgical team. 

1.4.3 Ultrasound Based CAOS Systems 

Ultrasound has traditionally been used to image the body’s soft tissue, 

organs, and blood flow in real time. Since there is no clinically reported risk of 

using US, it is still regarded the only safe method to image a fetus. 

Consequently, in order to eliminate the substantial exposure of ionizing 

radiation to both the surgical teams and patients, which is inherent to 

fluoroscopic imaging, special attention has been recently given to 

incorporating US imaging instead of fluoroscopy [49, 53, 65-70].  Though 

preoperative MRI and CT scans still remain a valuable source of information 

for surgeons in planning the intervention, US features such as real time 

operation, lack of radiation, and low cost make it a very suitable modality for 

intraoperative imaging. Many of the reported results showed promising 

improvements in overall surgical accuracy, decreased invasiveness of the 

surgeries and a decrease in the overall radiation exposure time [66, 68]. 

In order to enable more efficient image guidance the registration of the pre-

operative volume to the intra-operative US data must be achieved, 

automatically, and rapidly with sufficient accuracy. Consequently a lot of 

attention was given to develop automatic US registration methods.  
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1.5 Ultrasound Image Registration  

Previous research on registering intra-operative US to preoperative CT 

images in orthopaedic surgery involved registration of vertebrae [65, 67, 76], 

pelvis [49, 53, 66, 67, 77, 78] long bones [79, 80], scaphoid [68], and shoulder 

[81]. 

 Since the first introduction of computer assisted surgery (CAS) [27] a 

number of registration methods have been developed by different research 

groups. Normalized cross correlation (NCC) [53], iterative closest point (ICP) 

[49, 78, 81], unscented kalman filtering (UKF) [58] based algorithms are 

largely dominant in CAOS applications and have shown promising results.  

 However, most state of the art registration methods require either manual 

interaction from the user or are not robust enough to the typical US artifacts, 

such as speckles and shadows. Furthermore, one of the major stumbling blocks 

facing all of the proposed registration methods is the requirement of an 

optimization procedure during the registration which is time consuming and 

not robust enough if the misalignment between the two registered data sets is 

large.  

1.6 Bone Imaging With Ultrasound  

US images are obtained by using a pulse-echo approach. This process is 

illustrated in Fig. 1.4 A small, spatially localized pulse of ultrasound is 

produced by a device called a transducer (positioned at the top of the US 

image shown as a sketch in Fig.1.4) and is transmitted into the patient. 

Ultrasound echoes directed back toward the transducer are produced as the 

pulse travels along a straight line through the tissues. The straight line is 

(shown as dotted red line in Fig. 1.4) is usually referred to as an US scanline or 

US beam line. The direction of ultrasound pulse propagation along the beam 

line is referred to as the axial direction, the direction in the image plane 

perpendicular to axial is called the lateral direction, and the direction 
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perpendicular to the image plane is called elevational direction. Usually, only 

a very small fraction of the ultrasound pulse is reflected as an echo from any 

point in the patient, with the remainder of the pulse continuing along the beam 

line to greater tissue depths. As the pulse travels deeper into the body, in 

general there will be a long train of echoes reflected back towards the 

transducer and received by the imaging arrays (piezoelectric crystals), where 

they will be detected. The different reflectivities of various structures 

encountered by the pulse cause a corresponding variation of the detected echo 

amplitude. The detected echo signals are processed and translated into 

luminance, resulting in a “brightness- mode” or B-mode image display. In B-

mode images, more reflective structures appear brighter than less reflective 

structures. A complete image is obtained by repeating this pulse-echo cycle for 

many coplanar scanlines. Pulses for successive scanlines are transmitted after 

all of the echoes from the previous scanline have been detected by the 

transducer. After all of the echoes from all of the scanlines have been detected 

and processed, these signals are mapped to the proper locations in the image 

pixel matrix, and the complete B-mode image is displayed. The location is 

determined by measuring the time the reflected echo is detected by the 

transducer.  

A high intensity pixel in an US image indicates a strong likelihood of the 

presence of a boundary, such as soft tissue interface or bone. In order to use 

US imaging successfully in CAOS systems the bone boundaries must be 

localized with sufficient accuracy. The bone surface is highly specular, 

creating a very high intensity feature in the image followed by a shadow which 

is a black region followed right after the high intensity bone boundary. The 

shadow region is one of the typical US imaging artifacts and is caused due the 

strong reflection (high attenuation) of US pulses from strong reflectors (Fig. 

1.4 (a)). 
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                                                  (a) 

  
(b) (c) 

Fig.1.4 Sequence of images showing the propagation of an ultrasound pulse 
(yellow shape) along one particular scanline (dotted red line). Echoes (blue 
shapes) are generated by reflections of the pulse from structures in the tissue 
medium all along this path, and the echoes travel back to the transducer. The 
images are obtained by scaning an in-vivo human distal radius.  
 

The high intensity feature depicting bone boundary response looks like a line 

with a shape closely resembling the surface. However the thickness of this line 

can reach a value of 4mm in certain cases. The actual location of the bone 

surface may merge within this response where the amount of migration is 

dependent on the local 3D geometry of the imaged bone surface. Each 

piezoelectric crystal will receive reflections from surfaces outside its direct 

line of sight and will record a thicker response along its own scanline. The 

greater the inclination of the imaged surface the greater is the response 
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thickness. Furthermore, the finite beam width in the elevational direction 

produces a thick response when it is projected to a 2D plane (Fig. 1.5).  

 

 
(a) 

 
(b) 

Fig.1.5 Bone surface response thickness in US images. (a) Affect of 3D 
geometry of the bone on the bone surface response where each imaging array 
receives reflections outside its direct line of sight and causes a thicker bone 
reponse, (b) elevational beam width artifact causes a thicker bone surface 
response where the actual surface is merged inside this response. 
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1.7 Bone Segmentation from Ultrasound  

One of the most important tasks in analyzing US images is segmentation of 

the relevant anatomical structures. US image data, however, is typically 

characterized by high levels of speckle noise, reverberation, anisotropy and 

signal dropout which introduce significant difficulties in interpretation of 

captured data, automatic detection of image features and accurate localization 

of imaged bone surfaces [74]. In particular, the appearance of bone surfaces in 

US remains strongly influenced by beam direction and regions corresponding 

to bone boundaries appear blurry (Fig.1.6). Furthermore, since the final 

clinical application is orthopaedic surgery, the scanned bone surfaces may 

have discontinuities over fractured regions which affect many of the common 

segmentation algorithms that assume continuity. Due to these difficulties faced 

in extraction of the bone surfaces, in most of the recently proposed ultrasound 

guided CAOS systems, the main interest was in developing fast and accurate 

surface based registration methods in order to find a transformation between 

intraoperative US scans and preoperative CT volumes. In most of these studies 

the bone surfaces were segmented manually. Reports were given about the 

accuracy of the proposed registration method and little attention was given to 

the bone surface localization accuracy from US images. 
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(a) 

 
(b) 

Fig.1.6 Examples of 2D US images acquired. (a)  Phantom Sawbone with 
bovine soft tissue overlaid on top. (b) In-vivo distal radius. Regions within 
white rectangles highlight typical bone responses and common artefacts in 
bone US. Note the highly realistic nature of our phantom data in (a) and its 
close likeness to real in-vivo data in (b). 

 

To successfully use US scans in image guided procedures the bone surface 

localization error should be within the allowable limits which also depends on 

the anatomical area being operated. This accuracy will also affect the 

registration error results; therefore special care must be given not only to 

registration but also to bone surface extraction from ultrasound.  

US imaging has the potential of providing a powerful new tool for practical 

and real-time guidance during orthopaedic surgery as long as anatomical 

structures of interest can be visualized and localized with sufficient accuracy 

and efficiency. 
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Manual identification is still the most common way of identifying bone 

surface points from the US data [52, 66, 68 ]. Tonetti et al. [66] used manually 

digitized bone contour points from B-mode ultrasound images of a pelvis for 

the registration to a CT dataset. The clinical validation of the proposed 

method, which was percutaneous iliosacral screwing surgery, showed 

sufficient accuracy for the placement of screws. The study also confirmed that 

the amount of radiation exposure decreased compared to the standard 

fluoroscopy-based approach. In a different study on human cadavers, Barratt et 

al. [52], manually segmented the pelvis and femur bone surfaces from US data 

and registered them to the corresponding CT dataset. They reported an average 

RMS target registration error of 1.6mm. Beek et al. [68] used a maximum of 5 

manually selected seed pixels from the US image of a scaphoid phantom bone 

to obtain a point cloud which is then used during the registration algorithm. 

The reported CT to US registration error was 0.54mm (max error: 0.68 mm; 

STD: 0.07 mm). Despite the accurate results obtained in these studies, a major 

drawback was the time needed for manual segmentation. The accuracy of the 

systems also depends on the operator performing the manual segmentation 

which may introduce significant inter- and intra-user variability [52, 68]. 

Several groups have explored ways to automate US image segmentation for 

various applications [82]. For bone segmentation traditional methods based on 

image intensity and local gradient information have been used [72, 67, 51]. 

Kowal et al. [67] used depth weighted thresholding followed by morphological 

operations and connected component labeling in his proposed framework. The 

algorithm was tested in porcine and bovine specimens. Mean accuracy of 

0.42mm and a 0.8s average processing time for each ultrasound image frame 

was reported. Daanen et al. [72] proposed an automated segmentation method 

for delineation of the bone soft tissue interface from US images. The method 

was tested on three different cadavers and real patients. Results were compared 

with manual expert segmentation. For patients, the maximum mean error was 

8.8 pixels, with a pixel size of 0.112mm ×0.109mm, while the minimum mean 
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error was 4.545 pixels. For cadavers, the maximum mean error was 4.056 

pixels and the minimum mean error was 2.679 pixels. The time to delineate 

one image was less than 4s and a dataset of 69 images took about 4 minutes. 

However, it remains difficult to manage the sensitivity of intensity and 

gradient-based techniques to US artifacts, machine settings and algorithm 

parameters. In particular, small scale variations resulting from speckle must be 

addressed explicitly to reduce the incidence of false bone edge detection. The 

dependence of the appearance of bone on the US beam direction and 

shadowing beneath the bone increases the number of false and missed edges. 

In order to render the problem more tractable, some researchers have tried to 

incorporate a priori bone appearance information into their framework [72, 74,  

83]. This was achieved by mathematically modeling bone surface regions.  

Combining such models with intensity and gradient information gave 

promising results. However, fractured bone surfaces in orthopaedic surgery 

applications, as well as reduced bones secured with internal fixation devices, 

do not have a continuous smooth surface and often significantly violate prior 

assumptions regarding bone shape. This is also an important drawback for 

methods which use active shape models in their framework [84]. Therefore, 

building reasonable models of all possible fracture scenarios into the system is 

not currently practical. Furthermore, the evolving contour will have difficulties 

near the fractured regions where it will start to ‘leak’ into the soft tissue 

regions. 

Some groups have proposed methods combining segmentation techniques 

with multimodal registration of US to CT [49, 79, 85]. Amin et al. [49] 

combined three sources of information: the bone surface reflection indicated 

by image intensity, edge information obtained from the bone shadow region by 

using a directional edge detector, and a spatial prior obtained by processing a 

CT volume. Instead of segmenting the bone surface explicitly from the US 

image, these three sources of information were used to obtain a set of regions 

which are likely to contain bone surfaces. During the registration process, the 
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regions were refined to select data that is most consistent with the 3D shape of 

the bone surface. The overall accuracy of the system is directly related to the 

accuracy of the initial registration estimate which will also depend on the 

experience of the surgeon and the imaged anatomical region. No accuracy 

results for the bone surface extraction were given; rather, registration error 

results were reported which were 1.94mm for average translation and 0.90 

degrees for average rotation. Brendel et al. [79] first segmented 3D bone 

surfaces from the CT data set.  Then, the part of the bone surface, which 

should be visible in the ultrasound data, is segmented considering the 

restrictions of bone imaging with ultrasound. The segmented bone surfaces 

were then registered to the US image using an average grey value sum. This 

sum should reach a maximum for a correct registration. Ionescu et al. [85] used 

a similar approach; the main difference was that the US images were 

segmented as well using classical image segmentation techniques based mainly 

on linear filtering or mathematical morphology. This segmentation is then 

updated using US-CT registration. The purpose of these studies was to 

overcome the limitations of US by fusing US with information from CT 

datasets where bone is more easily identified. However, in orthopaedic 

surgery, CT is not routinely used for many types of fractures, but is reserved 

for cases where the fracture is complex and the identification of the fractured 

parts has proven difficult with standard fluoroscopy. CT scanning of all 

fracture cases for the purpose of US segmentation would increase the 

associated costs and radiation exposure, which defeats one of the main 

advantages of employing US.   

Due to these difficulties, US has only been used intra-operatively in CAOS 

as a surface digitization tool in order to obtain patient-specific data rather than 

as an imaging modality. The possibility of using 3D US as an alternative to 

fluoroscopy imaging for guiding basic surgical tasks and assessing fracture 

reduction in orthopaedic surgery has so far not been well studied. Furthermore, 

none of the previous studies presented a bone detection and localization 
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framework for 3D US that is sufficiently accurate, robust and efficient for 

routine intraoperative use.  This possibility is explored in this thesis.  

1.8 Thesis Contributions 

The thesis makes contributions both in the areas of image feature extraction 

from ultrasound data and in the areas of computer assisted orthopaedic 

surgery. The main contributions of this thesis are summarized as follows: 

• We introduce an automatic, fast and accurate method for extracting 

bone surfaces from 2D US data. The method is based on the design 

and use of 2D Log-Gabor filter in order to construct a local phase 

symmetry measure that produces strong responses at bone surfaces and 

suppresses responses elsewhere.  

• We extend our original local phase based image processing technique 

from 2D to 3D US using 3D Log-Gabor filters. Extending the 2D 

method to 3D enables the extraction of much smoother and continuous 

bone surfaces with increased localization accuracy. Furthermore, 

integrating the surface information along the axis perpendicular to the 

scan plane direction makes the proposed 3D algorithm less sensitive to 

soft tissue artifacts and more sensitive to weak bone surface responses.  

• We analyze the ability of our proposed 2D/3D local phase based 

method to localize surgical tools from 2D/3D US scans. Using the 

proposed method we show that even relatively small surgical tools 

(less than 2 mm in diameter) can be localized with sub-millimeter 

resolution in a soft tissue model. 

• We present extensive validation studies using carefully designed 

phantom, in-vitro and in-vivo experiments, and demonstrate the 

accuracy and robustness of our proposed approach for localizing 

fractured bone segments from 2D and 3D ultrasound data.  

• We investigate the effects of Log-Gabor filter parameters on local 

phase-based feature extraction, specifically for bone surface 
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localization.  Although local phase measures can be quite successful in 

extracting important image features, they remain somewhat sensitive 

to the underlying filter parameters used. Therefore, we present a novel 

method for contextual parameter selection that is adaptive to image 

content. Our technique automatically selects the scale, bandwidth and 

orientation parameters of Log-Gabor filters for optimizing the local 

phase symmetry in ultrasound images. The proposed approach 

incorporates principle curvature computed from the Hessian matrix 

and directional filter banks in a phase scale-space framework. 

• We demonstrate the clinical feasibility and effectiveness of the 

proposed method with two clinical studies.   

1.9 Thesis Overview 

The remainder of this dissertation presents formulation and experimental 

validation studies for the proposed system. In addition to this introductory 

chapter, the thesis includes five chapters. The final chapter discusses the 

conclusions and directions for future work.  

Chapter 2 presents the theoretical framework and formulation of the 

proposed 2D local phase based feature extraction method for segmenting bone 

surfaces from US data. It explains the experiments designed in laboratory 

conditions that are used in order to evaluate the performance of the proposed 

phase-based US data processing method and represents quantitative results. 

Finally, the ability of the proposed approach for segmenting surgical tools 

from 2D US data is also provided in this chapter together with the validation 

studies.  

In chapter 3 we extend the proposed local phase based bone segmentation 

algorithm to 3D by constructing a 3D local phase symmetry metric. We 

validated the proposed 3D method by carefully designed experiments and 

show the improvement achieved in terms of bone surface localization 

accuracy. We report qualitative results obtained from in-vivo, in-vitro scans 
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and show that more smooth and continues 3D bone surfaces could be extracted 

using the proposed method. Finally, we present surgical tool localization 

results using the proposed method.  

Chapter 4 describes the proposed novel data driven parameterization method 

for phase based bone localization from US data using Log-Gabor filters. By 

automatically selecting the filter parameters we show that an improvement in 

terms of surface localization could be achieved. We also show that by correct 

filter parameter selection the proposed method becomes less sensitive to the 

typical US artifacts. We also compare the filter parameters obtained using the 

proposed method with the filter parameters obtained after an exhaustive search 

method. 

Chapter 5 describes the three clinical pilot studies that have been conducted 

in order to demonstrate the feasibility of using 3D US imaging modality for 

assessing distal radius fractures in the ED.   

 Chapter 6 summarizes the contributions of this dissertation and presents 

promising directions for future applications in the concept of orthopaedic 

surgery. The particular surgical procedures that are likely to benefit from 

ultrasound based CAOS system are highlighted. Furthermore, the relative ease 

of achieving widespread utilization of US based fracture assessment is ER and 

orthopaedic surgery is outlined as well as the possible improvements for future 

generations of US imaging.  
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Chapter 2 

 

Bone Surface and Surgical 

Tool Localization in 

Ultrasound Using Image 

Phase Based Features∗∗∗∗ 

2.1 Introduction 

Image phase information is a key component in the interpretation of a scene 

that has been long known to contribute more to the visual appearance of an 

image than magnitude information [1]. The importance of phase information is 

shown in Fig. 2.1. If we take the Fourier transform of two US images of bone 

and use the phase information from one image and the magnitude information 

of the other image to construct a new, synthetic Fourier transform and back-

transform it to produce a new image we can clearly see that the dominant 

                                                      

 

∗ A version of this chapter has been published. I. Hacihaliloglu, R. Abugharbieh, A. 

Hodgson, R. Rohling. “Bone Surface Localization in Ultrasound Using Image Phase 

Based Features”, Ultrasound in Medicine and Biology, vol.35, no.9, pp. 1475-1487, 

2009. 
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feature in the new constructed image corresponds to the one where the phase 

information was combined (Fig. 2.1).  

 

  
(a) (b) 

  
(c) (d) 

Fig.2.1 Importance of phase information. (a) In-vivo 2D B-mode US image of 
human distal radius, (b) different in-vivo 2D B-mode US image of human 
distal radius obtained by changing the US transducer position. (c) New image 
where the phase information was obtained from (b) and magnitude from (a), 
(d) new image where the phase information was obtained from (a) and 
magnitude from (b). Investigating (c) and (d) we can clearly see that the 
dominant feature corresponds to the image where the phase information was 
taken from.  
 

  In a seminal paper, Morone and Owens [2] proposed the use of a local energy 

model for phase-based feature detection where they argued that features are 

perceived at points in the signal where the Fourier components are maximally 

in phase, i.e., where phase congruency (PC) is maximal. Since then, phase 

information has been widely investigated as a basis for feature extraction in 

various medical image data such as feature extraction in magnetic resonance 

(MR) images [3], airway wall estimation from CT images [4], as an additional 
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feature for guidance for livewire segmentation [5], and various combinations 

of registration: CT-fluoroscopy, MR T1-MR T2, and MR-CT [ 6, 7, 8]. In 

these applications, conventional approaches based on intensity thresholding or 

gradient-based edge detection were shown to pose problems due to non-

uniform intensity variations across the images and smooth tissue transitions 

due to partial volume effects. Since image phase features are intensity 

invariant, phase-based techniques were found to be more robust than 

conventional intensity and gradient-based techniques.  

Recently it has been used successfully for processing US images of various 

soft tissues. It has provided promising results in applications such as MR-US 

registration  of brain [8], ultrasound compounding for echocardiography image 

enhancement [9], endocardial border detection and image enhancement in 3D 

echocardiography [10, 11, 12, 13]. However, to the best of our knowledge, 

phase-based image features have never before been applied to bone US nor 

was directed at assessing bone fractures.  

2.1.1 Main Contributions 

Main contributions of this chapter are: 

1. We propose and evaluate the novel use of phase symmetry features 

derived from US images using 2D Log-Gabor filters for automatic 

segmentation of bone surfaces. We show that the proposed local phase 

method mostly captured continuous sections of the bone with little 

influence exhibited by soft-tissue interfaces.  

2. We propose that local phase features provide accurate localization of 

fractured bone fragments from US data. For the first time we show that 

fractures could be identified from US imaging data using local phase 

information.  

3. We present extensive validation studies using carefully designed 

phantom, in-vitro and in-vivo experiments, and demonstrate the 
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accuracy and robustness of the proposed approach in localizing bone 

surfaces from US data. 

4. We propose that surgical tools such as K-wires, which are commonly 

used for fixation during fracture surgeries as a provisional fixation step 

prior to plating or as definitive fixation, could be extracted from US 

images successfully using the proposed local phase based symmetry 

features.  

The remainder of this chapter is organized as follows. In section 2.2 we 

describe local phase features and how they are extracted for 1D signals. 

Section 2.3 presents the proposed phase based bone surface extraction method. 

Furthermore, we explain the laboratory experiments that were constructed in 

order to validate the method together with the obtained results. We also 

illustrate qualitative results in this section. Section 2.4 shows the application of 

the proposed method in localizing surgical tools from US images. We finally 

draw our conclusion in section 2.5. 

2.2 Local Phase Based Image Features 

Local properties (Amplitude and Phase) of a 1D real signal f(x) are defined 

using the so called analytical signal fA(x): 

x
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where f(x) is the original signal and fH(x) is its Hilbert transform of f(x)defined 
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Investigating these three equations we can see that the analytical signal 

suppresses the negative frequencies of the signal and multiplies all the positive 

frequencies by two. The analytic signal plays an important role in one-

dimensional signal processing. One of the main reasons for this fact is, that the 

instantaneous amplitude (A(x)) and the instantaneous phase (Φ(x)) of a real 

signal f(x) at a certain position x can be defined as the magnitude and the 

angular argument of the complex-valued analytic signal fA at the position x as: 

2 2( ) ( ) ( )HA x f x f x= +    ( ) arctan( ( ) / ( ))
H

x f x f xφ =               (2.4) 

From equations (2.1-2.3) we can see that the analytic signal is a global 

concept. The value of the signal at a position x depends on the whole original 

signal and not only on values at positions near x.  

In most of the image processing applications local concepts are highly 

desirable. They are of lower computational complexity than global concepts. 

Furthermore, it is reasonable that the local signal structure, like local phase and 

local amplitude should only depend on local neighborhoods. Therefore, 

designing an operator that approximates these quantities in a small, spatial 

interval and over a narrow range of frequencies which will enhance spatial 

localization is of spatial interest. Filtering the input signal is one of the most 

used methods in order to achieve this localization. In order to be invariant to 

grey level shift the filter should have zero response for a constant signal. This 

is achieved by designing a filter which is a band-pass filter (zero DC) and 

symmetric with constant phase so as not to change the phase information of the 

original signal. The symmetry condition suggests that the filter must be an 

even filter. The new localized analytical signal will be obtained as:  
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Here H denotes the Hilbert transform operation and fo(x) is the Hilbert 

transform of fe(x), hence these two filters (fo(x), fe(x)) are in quadrature. From 

this the local phase and amplitude of the signal c ould be defined as:  

))()(/)()(arctan()(ˆ

)]()([)]()([)(ˆ 22
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eo

oe
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φ
                         (2.6)     

 

The analytical signal and the corresponding quadrature filters provide a very 

effective framework for extracting local phase information of signals. The 

extension of this analysis to two dimensions is performed via the use of 

steerable filters or by performing the analysis at a set of orientations and, then 

combining the output to provide the localized phase information at any 

orientation in the image [11, 12, 13,14].  

2.2.1 Quadrature Filters 

In US image processing the two most widely used quadrature filters for 

obtaining localized phase information are the Monogenic filter (Riesz filter) 

and Log-Gabor filter [11, 12, 13]. In this thesis we choose to work with Log-

Gabor filters since they offer orientation selectivity. When imaged with US 

bone features appear as long elongated line like structures with specific 

orientation.  When the orientation of the Log-Gabor filter is tuned to the 

orientation of bone surfaces it allows extraction of localized bone features 

from the US images while suppressing the unnecessary soft tissue interfaces or 

typical US artifacts. On the other hand since the monogenic filter can not be 

tuned to specific orientations the filter is sensitive to soft tissue interfaces as 

well as bone boundaries (Fig. 2.2).  
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(a) (b) (c) 

Fig.2.2 (a) B-mode US image, (b)local phase information extracted by processing 
the image shown in (a) using monogenic filter, (c) local phase information 
extracted by processing the image shown in (a) using 2D Log-Gabor filter.  
 Furthermore, Log-Gabor filters can be constructed with arbitrarily large 

bandwidths and still maintain a zero DC component which is of major 

importance for achieving intensity invariant local phase information. In US 

image processing large bandwidth filters are needed in order to differentiate 

soft tissue interface or speckle from bone surface response.  

 Log-Gabor filter [14, 15] is defined in the frequency domain as in (2.7) 

(note that equations for a one dimensional (1D) signal are shown for 

simplicity):  
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Here κ is a scaling factor used to determine the bandwidth of the filter in the 

radial direction, and ω0 is the filter’s center spatial frequency. The ratio of 

these two variables is related to the filter’s bandwidth (β) [17] as: 
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Simultaneous localization of spatial and frequency signal information can 

hence be obtained by constructing a filter bank using a set of quadrature filters 

created from rescalings of the reference Log-Gabor filter. The filter bank is 

constructed at different scales that are multiples of a minimum user-defined 

wavelength, λmin. The scaling of the Log-Gabor function is achieved by using 

different wavelengths that are based on multiples of the minimum wavelength, 

λmin, which is a user-defined parameter. The relationship between the filter 
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scale m, and the filter center frequency ω0 is set as ω0=2/ (λmin×(δ)m-1)where δ 

is a scaling factor defined for computing the center frequencies of successive 

filters. Let the signal to be analyzed be I(x), and let Me
m(x) = real (F

-1 
(G(ω)) 

and Mo
m(x) = imag (F

-1
(G(ω))  denote the even and odd Log-Gabor filters at a 

scale m where F-1 denotes the inverse Fourier transform operation. The local 

amplitude Am(x), local phase ϕm(x) at a given filter scale (m) can then be 

calculated as in (2.9): 
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Accordingly, at each point x in the signal I(x), a different response for each 

scale of the Log-Gabor filter can be obtained. These responses form the basis 

of a localized representation of the signal as we describe next. 

2.3 Proposed US Image Features for Bone Localization and 

Fracture Identification 

In US images, bone surfaces mostly appear blurred with non-uniform intensity 

and substantial shadowing beneath the surface. A 1D scanline profile through 

the bone surface (Fig.2.3) shows how the US response depicts a ridge edge 

rather than a step or ramp edge at the bone boundaries. However, due to the 

soft tissue interface and associated US artifacts, there are also different edge 

responses, present in the same intensity profile, which resemble the bone edge 

response (e.g. Fig. 2.3, region with yellow dotted line). Furthermore, on the 

other side of the ridge edge (e.g. Fig. 2.3, yellow continuous line), the intensity 

values of different edge responses decrease drastically due to shadowing. 

Based on the above observations, we argue that a ridge is an appropriate 

feature to detect in our application. The purpose of ridge detection is to capture 

the major axis of symmetry. Signals that have even symmetry about the origin 

will have real (and even) Fourier transforms, while signals that have odd 

symmetry will have imaginary (and odd) Fourier transforms. Signals that are 
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neither perfectly odd nor perfectly even will have complex Fourier transforms 

(i.e. have both real and imaginary parts) where the resultant phase values 

describe their degree of symmetry.  
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(a) (b) 

Fig.2.3 (a) 2D in-vivo US image where the investigated 1D scanline profile 
is shown as a vertical line (yellow dotted and continuous). The US probe is 
pointing top to bottom in the image. (b) Corresponding scanline profile of 
the bone surface. The arrow indicates the ridge profile of the expected bone 
surface location.   

 

Based on local phase information, as calculated in (2.9), a point of symmetry 

on the scale of the spatial extent of the filters will result in the response of the 

even filter (em(x)) dominating the response of the odd filter (om(x)) [16]. 

Taking the difference of these responses over a number of scales, a measure of 

phase symmetry (PS) can thus be defined as: 
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where A = max(A,0), ε is a small number included to avoid division by zero, 

and T is a noise threshold calculated as a specified number (k) of standard 

deviations (σ) above the mean (µ) of the local energy distribution due to noise 

(Kovesi 1999). T is defined as: T = µ + k σ [17]. The response of the smallest 

scale filter is used to estimate µ and σ since it has the largest bandwidth and 
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will give the strongest noise response. For different US machine settings and 

for different sequences, k can be tuned to provide a balance between the 

detected bone surface and speckle scale. At the tissue/bone interface, the PS 

value will be shown later in this chapter to be much higher compared to the PS 

values obtained from soft tissue interfaces and US artifacts. 

If a 1D scanline profile is convolved with a pair of quadrature Log-Gabor 

filters, the result can be displayed graphically via a scalogram. Each row of the 

scalogram is created by convolving the signal with a pair of quadrature filters 

at a different scale. Figure 2.4 shows an example of scalogram calculated at 

different scales across a bone boundary using the same scanline profile given 

in Fig.2.3. Investigating this figure, we can see that using a small analysis scale 

(smaller filter wavelength) will treat each feature relatively independently from 

other features in the image. Each feature will be compared to a small number 

of other features that are nearby, and hence will be perceived as being more 

important locally. At the largest scale, each feature will be considered in 

relation to all other features, which will produce a measure of global 

significance for each feature. Therefore, a feature that may have high 

significance when analyzed at small scale may end up losing that significance 

when analyzed at a larger scale. By investigating the scalogram, the 

significance of the bone surface feature can be seen. The line corresponding to 

the bone feature starts from the smaller scale and extends downwards. Bone 

surface features give a localized response over a wide range of scales 

compared to features obtained from US artefacts. 
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Fig.2.4 Local phase scalogram corresponding to the 1D scanline 
profile from fig. 2.1 (a). Phase is encoded with hue. The intensity 

values show the phase angle φm(x). 

 

To extend the analysis into 2D for our US images, our feature detection is 

performed at a number of separate orientations (r) with the results 

subsequently combined. Accordingly, orientable 2D filters are defined by 

spreading a Log-Gabor function into two dimensions where a filter tuned to a 

particular orientation φ0 is constructed by masking a radial Log-Gabor function 

with an angular Gaussian tuned to φ0. The radial component controls the 

frequency band to which the filter responds and the angular component 

controls the orientation to which the filter responds. The resulting two 

components are then combined into a 2D Log-Gabor function as in (2.11):  
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κ is a scaling factor used to determine the bandwidth of the filter in the radial 

direction, and ω0 is the filter’s center spatial frequency. Here σφ =∆φ/s defines 

the angular bandwidth ∆Ω given as:  

                                      2log22 ××=∆Ω φσ                                       (2.12) 

where ∆φ is the angular separation between neighbouring orientations and is 

defined as ∆φ=180°/Nr, where Nr denotes the total number of orientations used. 

The parameter s controls the angular overlap of the filters transfer function. 

We empirically found that setting Nr=6 ensured even spectral coverage of the 

spectrum with a sufficient number of bone surface response directions tested. 

Increasing the number of orientations, in our experience, had little effect on the 

quality of the outcome but increased the computational complexity of the 

algorithm. Our angular bandwidth was set to 250, which corresponds to s=1.2. 

During the construction of the angular component of the filter, σφ  should be 

kept small in order to ensure good orientation resolution. On the other hand the 

angular component should contain an adequate range of frequencies to ensure 

its robustness to noise (setting s=1.2 ensured that this compromise was met). 

By using the above 2D filter over a number of scales (m) and at different 

orientations (r), a 2D PS measure can then be defined as in (2.13): 
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The orientation-dependent noise threshold Tr is calculated as previously 

explained (for the 1D case), however, with the response of the smallest scale 

filter belonging to a specific orientation being used which allows for the 

calculation of an independent noise compensation term for each orientation. 

Fig.2.5 demonstrates our proposed processing approach and shows an example 

line profile across the bone surface obtained from the extracted PS image 
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overlaid on top of the corresponding profile in the original US image. It can be 

clearly seen that the PS image has a maximum at the bone boundary.   
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(c) 

Fig.2.5 Illustration of the bone response in original and processed US images 
with an example (vertical) line profile shown. (a) Original 2D in-vivo image of 
a human distal radius (US probe is pointing top to bottom in the image). (b) 
Corresponding phase PS image obtained using our proposed phase based 
feature. (c) Example line profile across the bone surface in (a) shown in solid 
black, and across that in (b) shown in dashed blue. Note how the PS profile 
shows a high peak at the expected bone surface location (indicated by the 
arrow on the ridge-like bone profile in US). Note how PS facilitates robust 
detection of the bone edge even in the presence of many different edge 
responses that are due to the soft tissue interface and associated US artefacts. 
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Fig.2.6 PS image results for different minimum wavelength (λmin) and 
bandwidth (κ/ω0). Increasing the bandwidth (decreasing κ/ω0 ratio) and λmin 
makes the location of the bone surface more distinct compared to the other 
responses from speckle and soft tissue interfaces. 

A better understanding of the influence of minimum wavelength (λmin) and 

bandwidth (β) on the PS image (hereafter, the term ‘PS image’ will be used to 

refer to the phase symmetry feature image of an US image) results can be seen 

in Fig.2.6. Selecting an appropriate wavelength for the smallest scale filter and 

a constant bandwidth for all the filters will extract bone surfaces while 

reducing the influence the US artefacts. Fig. 2.6 shows different combinations 

of λmin with κ/ω0. Selecting an appropriate bandwidth and minimum 

wavelength is important during the design of the filters. We noticed that 

greatly increasing these values did not provide better localization results. If the 

bandwidth is increased, the local phase information will be averaged over 

larger regions of the spectrum. This will decrease the resolution at which the 

phase information is obtained, which will in turn affect the bone surface 

localization results.  
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2.3.1 Imaging and Experiments 

The acquisition system consisted of an US scanner (Voluson 730, GE 

Healthcare, Waukesha, WI) with a 3D RSP5-12 probe. A tracking system 

(OPTOTRAK 3020, Northern Digital Inc., Waterloo, ON, Canada) was used to 

generate the gold standard measurement of relative bone fragment 

displacements. The acquired US volumes (each comprising cubic voxels of 

0.19mm) were transferred from the US machine to a computational 

workstation using 3DView2000, a propriety software package from GE 

Medical Systems.   

Experiment-1 Accuracy Assessment of Bone Surface Localization 

In this experiment, we compared the surface localization accuracy obtained 

from both the original B-mode US image and the proposed PS feature image to 

the 'gold standard' measurement of the surface made with a stylus whose 3 mm 

diameter spherical tip was visible in the US image (Fig. 2.7). The echo from 

this tip was determined to be accurate down to a sub-pixel resolution, as will 

be shown later, so the bone can be considered to lie 3 mm distal to the near 

side of the spherical tip.  

Two surface models were used; a flat metal block and a Sawbone model 

(#1018-3, Sawbones Inc., Vashon WA). Each model was immersed inside a 

water filled tank with the long axis of the model aligned with the scan plane to 

the best of the operator’s ability. Images were obtained at three different 

depths by raising or lowering the probe position inside the water tank and 

realigning the model at each depth to ensure it was centred in the elevation 

direction. Two orientations of the model were also tested; horizontal and 

inclined at 20°, which we consider to be an upper limit for longitudinal 

angulation in the clinical situations for which we intend to use this imaging 

technique (Fig. 2.8).   
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(a) (b) (c) 

 
(d) 

Fig.2.7 Bone surface localization experiment. (a) Sketch of a spherical bead on 
top of a specular surface (bone in this example). (b) Sketch showing the 
surface response thickness of bead top surface and specular surface (bone in 
this example) when imaged with US. (c) B-mode US image of a bead imaged 
inside a water tank. The feature extending to the bottom part of the image is 
due to the reverberation artifact which cause due to the multiple reflectins of 
the US signal from hard specular surfaces such as the bead top surface. 
(d)Picture showing the stylus with a spherical bead tip touching the top surface 
of the sawbone. 
 

At each orientation and depth, the bead which was attached to the tip of the 

stylus (Fig. 2.7) was scanned at 15 different locations along the model surface. 

For each location we obtained 10 different US scans. To ensure that the bead 

was centred in the beam direction, the position of the stylus was adjusted until 

the clearest possible surface reflection was obtained. 
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(a) (b) 

  
(c) (d) 

Fig.2.8 Experiment 1: Horizontal and angled cases. (a) Horizontal Sawbone. 

(b) Sawbone angled at 20°. (c) US image of horizontal case with tip of the 
stylus visible. (d) US image of the angled case with the tip of the stylus 
visible. 

 

The location of the bright intensity response from the top of the bead tip, f, 

in the US image, and the location of the intensity response of the model 

surface obtained from the PS image, b, were then extracted as shown in Fig. 

2.9 using an automated algorithm to reduce operator related variability.  

First, a region of interest (ROI) was selected by the user around the bead 

top surface. A subpixel edge detection algorithm then automatically detected 

the top surface of the bead within the ROI by locating the position with the 

maximum vertical gradient. The same edge detection algorithm was also used 

to detect edges of the model surface in the PS image. The model surface 

localization error (in mm) was therefore defined as: error = D − (b − f ) * pixel 

length, where D is the bead diameter. In the inclined orientation case, we 

corrected for the geometric error resulting from the bead not touching the 

surface along the vertical measurement direction (Fig. 2.9 (a)) as in (2.14): 
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A 20° angle produced an error of 0.096mm, which was added to f. Some error 

may also arise from the squint angle of the transducer, but this error is assumed 

to be negligible for the range of bead diameters used in the tests. This error is 

less than 0.01mm for a squint angle of 2 degrees and less than 0.1mm for a 

squint angle of 10 degrees; the actual squint angle is assumed to be much less 

than 10 degrees. 

  
(a) (b) 

Fig.2.9 Experiment 1: Bone surface localization measurements using a 3mm 
bead. (a) Original US image. (b) Corresponding PS feature image. For each 
vertical profile (at position h) the measurements f and b are made from US 
and PS images. PS measurements are considered accurate when b 
approaches f+3mm. 

 

Our accuracy tests assumes that the sphere surface detected in the B-mode 

US image is in fact located at the top of the sphere (or at least at a small fixed 

offset) rather than at some interior or exterior point which depends on the 

radius of the sphere. To confirm the validity of our assumption, a separate 

validation step was conducted in which US images were acquired with a 

selection of differently sized beads (with 1.5mm, 3.2mm, 4.3mm and 6.3mm 

radius, respectively) glued against a metal block (Fig. 2.10 (b)) and immersed 

in water.  B-mode US scans were obtained at three different depths (10 

repetitions at each depth) with the same previously-described edge detection 

algorithm used to locate the top of each bead. The differences in depth 
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measurements between the surfaces of all possible pairs of beads were 

compared against the actual known differences in bead diameter. 

 

 
(a) 

 
(b) 

Fig.2.10 Testing different bead radii in experiment 1. (a) For cases where 

the bone surface is angled by α=20°, a geometric error is induced in the 
estimation of the bone surface because the bead does not touch the surface 
along the vertical measurement direction. This error is calculated and 
added to the measurements. (b) A series of US images were acquired with 
four beads of decreasing diameter. D1 is the difference in diameter 
between beads 1 and 2, D2 is the difference between beads 2 and 3, and 
D3 is the difference between beads 3 and 4. The appearance of the echo 
from the top surface of each bead should decrease by the difference in 
diameters to the next smaller bead. 
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Experiment 2-Accuracy Assessment of Bone Fracture Measurement 

An important capability in an orthopaedic surgery system for fracture 

assessment is the ability to easily identify bone fragments and accurately 

assess their reduction. Our second experiment was thus designed to evaluate 

the accuracy of using the proposed PS features in measuring gaps between 

bone fragments.  

The Sawbone model was cut into two parts with each part glued to the top 

surface of a metal block. Infrared emitting diodes were glued to the surface of 

one of the metal blocks to allow tracking of the displacements by an 

OPTOTRAK system. One block remained fixed while the other block was 

moved and clamped at different displacements and both vertical and horizontal 

displacements were measured (Fig. 2.11).  

 

 
Fig.2. 11 Experimental setup for accuracy assessment of bone fracture 
measurement.  
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The OPTOTRAK, which was used to provide the gold standard 

displacement measurements, has a reported RMS accuracy of 0.1mm in the x 

and y (lateral) directions, and 0.15mm in the z (depth) direction at a distance of 

2.5 meters. The range of displacements tested varied between ≈0.6mm-2.2mm. 

Continuous OPTOTRAK measurements verified that the displaced fractures 

remained stationary during US imaging. Tests were conducted first with 

standard coupling gel and then repeated with a 2cm thick slice of bovine 

muscle tissue overlaid on top of the fracture to simulate more realistic 

specimen conditions.  The bovine tissue was obtained through a certified 

butcher following guidelines and notification of the UBC Animal Care and 

Biosafety Committee. A total of 10 scans were obtained for each displacement 

and the resulting measurements of the displacement from the PS image were 

compared with those measured by the OPTOTRAK system. The 

measurements in the image space were done by first applying the previously 

described sub-pixel edge detection (experiment 1) on a selected ROI around 

the fracture in the PS image and then measuring the distance between the 

detected edges on each side of the fragment. For horizontal displacements, this 

was performed by measuring the horizontal distance between the two closest 

edge pixels that lie along the gap (Fig. 2.12). The same method was used for 

measuring vertical displacements (Fig. 2.13). Measurement error was defined 

as the displacement measured from the PS image subtracted from the 

displacement obtained from the OPTOTRAK.  
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Fig.2.12 Experiment 2. Horizontal displacement of bone fragments. (a) 
US image with soft tissue overlaid on the Sawbone. (b) Corresponding 
PS image showing the ROI selected for the sub-pixel edge detection. 
(c) Edge pixels detected by the edge detection algorithm are shown in 
red. (d) Enlarged ROI. The  horizontal gap betweeen the two 
fragments was calculated by measuring the horizontal distance 
between the last pixel shown in red in the right-left direction from the 
top bone surface (left arrow) and the last red pixel in the right-left 
direction from the top bone surface (right arrow). 
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(c) (d) 

Fig.2.13 Experiment 2. Vertically displacement of bone fragments. (a) US 
image with soft tissue overlaid on the Sawbone. (b) Corresponding PS 
image showing the ROI selected for the sub-pixel edge detection. (c) Edge 
pixels detected by the edge detection algorithm are shown in red. (d) ROI. 
The vertical gap betweeen the two fragments was calculated by measuring 
the vertical distance between the first pixel shown in red in the top-down 
direction from the top bone surface on the left of the fracture (left arrow) 
and the first red pixel in the top-down direction from the top bone surface  
on the right of the fracture (right arrow).  
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Experiment 3 - Qualitative Evaluation Using In-Vivo Specimens 

 For qualitative evaluation of the proposed bone localization method, tests 

were performed in-vivo on the distal radius and ulna of a normal volunteer as 

well as on the Sawbone model overlaid with ~2.5 cm of bovine tissue. Since 

most previous work on bone localization in US used gradient or edge-based 

segmentation methods, we also applied gradient calculations and Canny edge 

detection to compare with the PS image results. The parameters of the gradient 

and Canny calculations were adjusted empirically for each image to give the 

best appearance. For the in-vivo study we have obtained 30 different US 

volumes. 

2.3.2 Results 

Implementation Details 

For each experiment, the phase images were calculated as in (2.13) using 

empirically determined filter parameters. A set of scales (m=2) and 

orientations (Nr=6) with κ/ω0=0.25 and a filter wavelength of λmin =25 pixels 

were used which offered good spectral coverage and orientation resolution and 

produced good bone surface localization in the presence of speckle. The noise 

threshold parameter k was set to 8. Throughout the experiments, these values 

were not changed. During the construction of the angular component of the 

filter, σφ  should be kept small in order to ensure good orientation resolution. 

On the other hand the angular component should contain an adequate range of 

frequencies to ensure its robustness to noise (setting s=1.2 ensured that this 

compromise was met).  

Experiment 1- Bone Surface Localization 

The processing time for the PS calculation for each 2D US image was 

approximately 0.5s on an Intel Pentium 4 PC (3.64 GHz, 2GB of RAM). Box 
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and whisker plots of the localization errors from both US and PS images are 

shown in Fig. 2.14 for horizontal Sawbones and metal blocks. Fig.2.15 shows 

box and whisker plots for the angled case. The simpler surface geometry of the 

metal block produced smaller errors than the Sawbone for both cases.  

The model surface estimated using the PS image tended to lie slightly 

interior to the bone on both models (metal block: mean= −0.28mm with STD= 

0.27mm; Sawbone model: mean= −0.34mm with STD = 0.16mm  relative to 

the gold standard estimate of 3mm distal to the edge of the sphere detected in 

the B-mode US image).  The point of maximum gradient on the proximal edge 

was also a closer match to the gold standard estimate (Fig.2.16).  The surface 

detected directly from the B-mode US image had no significant bias (mean = 

−0.11mm with STD = 0.2mm).  We also found the PS localization accuracy 

results had statistical significance for Sawbone and metal block surfaces 

(p>0.05 Independent student t-test ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 2 

  64 

 

 

Horizontal Case 

US PS 

Sawbone

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Shallow Middle Deeper

E
rr

o
r 

(m
m

)

  

Sawbone

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Shallow Middle Deeper

E
rr

o
r 

(m
m

)

 
(a) (b) 

 

Metal Block

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Shallow Middle Deeper

E
rr

o
r 

(m
m

)

 

 

Metal Block

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Shallow Middle Deeper

E
rr

o
r 

(m
m

)

 
(c) (d) 

Fig.2.14. Experiment 1. Bone surface localization errors for a horizontal surface 
in a water bath. Errors are calculated as the difference between the edge-detector 
results and the results from the bead location. Tests are repeated for the phantom 
near the top, middle, and bottom of the US image. (a) US image used in edge-
detection on a Sawbone. (b) PS image used in edge-detection on a Sawbone. (c) 
US image used in edge-detection on a flat metal block. (d) PS image used in 
edge-detection on a flat metal block. The black point represents the mean, and 
the box and whiskers represent the standard deviation and range of the data. 
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Fig.2.15 Experiment 1. Bone surface localization errors for a surface angled 
α=20o in a water bath. Errors are calculated as the difference between the edge-
detector results and the results from the bead location. Tests are repeated for the 
phantom near the top, middle, and bottom of the US image. (a) US image used 
in edge-detection on a Sawbone. (b) PS image used in edge-detection on a 
Sawbone. (c) US image used in edge-detection on a flat metal block. (d) PS 
image used in edge-detection on a flat metal block. The black point represents 
the mean, and the box and whiskers represent the standard deviation and range 
of the data. 
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Fig.2.16 Sample scanline profile through the bone surface in the original US 
image (blue) and proposed PS (red) images. The two vertical dotted lines 
correspond to the pixel preceding the first positive intensity (line to the left) 
and the maximum intensity (line to the right) value of the line profiles. The 
real bone location lies close to the dotted line on the left, suggesting that the 
location where the gradient of PS is maximal corresponds to the true bone 
surfaces. 

 

In both horizontal and inclined measurements, whether obtained from US or 

from PS images, the mean error was calculated based on measurements taken 

at 15 different bead locations for each depth setting. Hereafter we will report 

the highest mean error results of these three different depth settings as 

“maximum mean error”. For the Sawbone model, the maximum mean error 

from US was 0.25 mm inside the Sawbone surface when the surface was 

horizontal and 0.26 mm when angled. The maximum mean error from PS was 

0.40 mm inside the bone surface when horizontal and 0.38 mm when angled.  

These tests were performed in a water bath, so both US and PS show a high 
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level of accuracy that is independent of the angle of the surface in this range 

and independent of the depth.  It should be noted that the ability to detect the 

bone surface directly from US is relatively easy in a water bath but images of 

real tissue will contain significant artefacts. Edge detection in US is also more 

sensitive to parameter adjustment; the values used here to achieve the highest 

accuracy later proved unsuitable for in-vivo tests and had to be readjusted 

empirically. The PS results are less sensitive to parameter setting where the 

same parameter values were found suitable both for water tank and in-vivo 

tests. Figure 2.17 confirms that the top surface of the bead response does 

indeed drop by the difference in bead diameters for different beads. This 

suggests that the edge detector is identifying the top of the bead with at most a 

constant bias that is independent of bead diameter. No statistically significant 

difference was found between the actual differences of bead diameter and 

measured diameter for all locations in the image (paired student t-test, p=0.90). 

Experiment 2 - Bone Fracture Displacement 

Box and whisker plots of the errors from horizontal and vertical displacements 

are shown in Fig. 2.18 for both gel and soft tissue mediums. The errors in 

estimating displacements were consistently small, with maximum mean errors 

under 0.5 mm for all tests (here again “maximum mean error” indicates the 

mean error result that had the highest error among the introduced 

displacements). These results are especially encouraging for the potential use 

of PS in fracture assessment since the accuracy required in surgical navigation 

systems is typically in the range of 2-4mm [18].   
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Fig.2.17 Experiment 1. Validation of bead measurements. If the edge 
measurements from the US images correspond to the top of the bead, 
then the difference in measurements from one bead to a smaller bead 
should be equal to the difference in the bead diameters. The measured 
differences between bead diameters is plotted against the actual 
differences in diameters. Tests were repeated for the bead near the top, 
middle and bottom of the image. The data fall close to the line y=x, 
indicating good agreement. 
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(c) (d) 

Fig.2.18 Horizontal and vertical displacement measurement errors from a 
fractured Sawbone for PS images only. ‘Gel’ indicates that the US 
transmission medium was coupling gel, and ‘Soft Tissue’ indicates that a 
layer of bovine muscle tissue was used. The error is defined as the 
difference between the measurements from PS and the OPTOTRAK. (a) 
Horizontal displacement with coupling gel. (b) Horizontal displacement 
with soft tissue. (a) Vertical displacement with coupling gel. (b) Vertical 
displacement with soft tissue. 
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Experiment 3 - Qualitative Results 

Fig. 2.19 shows qualitative bone localization results on in-vivo scans of the 

human radius and ulna obtained using PS and compared to results of standard 

Canny and gradient images. For the gradient calculations, a 2D Gaussian with 

a standard deviation of two pixels for both directions was used for all scans. 

For the Canny edge detector, a threshold value of 90% and standard deviation 

of 2 pixels was used. These parameters were changed to 80% threshold value 

and a standard deviation of three pixels for the in-vivo scans to obtain good 

results with minimal artifacts.  

As can be observed in Fig. 2.19, PS mostly captured continuous sections of 

the bone with little influence exhibited by soft-tissue interfaces which was not 

the case for the Canny and gradient images. Furthermore, while PS results 

were noticeably robust and stable, Canny filter results were highly dependent 

on the choice of parameters whereas gradient results were strongly influenced 

by speckle and soft tissue features. In a number of cases, the Canny edge 

detector extracted two surfaces, one above and one below the actual bone 

surface, due to the thick response of the bone reflection in US.  

Figure 2.20 shows a stack of 2D PS images obtained by processing 

individual 2D slices from a 3D US scan. This result demonstrates how the 

proposed PS features can produce a 3D surface representation that is relatively 

continuous and robust in the presence of speckle, shadowing and other 

ultrasound-specific artifacts. The consistency of the surface produced by PS 

processing as it proceeds from scan to scan along a bone surface suggests the 

possibility of extending PS processing to 3D US imaging data.  
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Fig.2.19 Qualitative results of the proposed bone localization method in experiment 
3. In-vivo distal radius and ulna images of a normal volunteer and Sawbone imaged 
with bovine soft tissue overlaid (a) In-vivo scanning orientation, and Sawbone with 
two part fracture. (b) B-mode US image. (c) Gradient image obtained using 2D 
Gaussian with a standard deviation of two pixels for both directions. (d) Canny image 
with standard deviation of 2 pixels and 90% threshold value. (e) Canny image with 
standard deviation of 3 pixels and 80% threshold value. (f) Proposed PS  image. 
Columns 1-3 show US images of a distal radius obtained at different probe positions. 
Column 4 shows an US image of the distal radius and ulna. Column 5 shows a 
Sawbone with two part fracture imaged with bovine soft tissue overlaid. Note how 
our proposed PS feature mainly localizes the bone boundaries with little visible 
influence from US image artifacts whereas gradient images are influenced strongly 
by speckle and soft tissue interfaces. Also note how the Canny edge detector extracts 
two surfaces, one above, and one below the actual bone, due to the thick response of 
the bone reflection in US. Rows (b) and (c) also show how sensitive the results are to 
the set parameters except in PS images which were obtained using the same 
parameter set in all images tested. 
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(a) 

  
(b) (c) 

Fig.2.20 Qualitative results of the proposed bone localization method in 
experiment 3 where a stack of 2D images obtained by scanning an in-vivo 
distal radius with a 3D US probe was processed.  (a) 3D anatomical sketch of 
a human radius. The scanned area is highlighted by the white rectangle. (b) 
3D US volume of the scanned distal radius. (c) Corresponding 3D PS image 
which shows that the 2D algorithm (after processing individual 2D slices from 
a 3D volume) can produce relatively continues and clean bone surfaces with 
little speckle and US artifacts. This 3D test is only meant to show how 
repeatable the PS calculations are along a bone surface which suggests the 
possibility of extending PS processing to 3D US data. 

2.4 Surgical Tool Localization from Ultrasound Using 2D 

Local Phase Features 

Since our final aim is to develop a system for fracture reduction surgeries we 

are also interested in localizing surgical tools from US data. In current practice 

surgical tools such as K-wires are commonly used for fixation in orthopaedic 

fracture surgeries as a provisional fixation step prior to plating or as a 
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definitive fixation. During the surgery in order to determine the drill trajectory 

of the surgical tool different 2D fluoroscopy images are taken from different 

directions. A lot of skill is required to visualize 3D anatomy based on 

information obtained from 2D scans and to properly perform the necessary 

surgical action accordingly. The surgeon must position the implant in one 

view, and then obtain additional images in other planes using trial and error 

placements of guide wires which increases the amount of radiation received. 

To overcome these limitations we tried to localize surgical instruments from 

US images using the proposed local phase symmetry approach.  

In current orthopaedic surgery the surgical tools typically have narrow 

metallic surfaces which act as a strong reflector.  Consequently, reverberation 

artefacts caused by these instruments aggravate the image quality and obscure 

the underlying bone surface making the localization of the bone surface 

difficult. Furthermore, at steep angles of the surgical tool the ultrasound beams 

are scattered causing problems during the accurate identification of the tool tip. 

Therefore, simultaneous identification of the bone surfaces and surgical tools 

is still a challenge due to the low signal to noise ratio in US data and the many 

artefacts present which complicate image interpretation.   

Different methods have been proposed in order to improve the instrument 

imaging in US data. Ortmeier et al. [19] uses median filtering, adaptive 

thresholding and morphological operations to identify the head of the graspers 

made of various materials inside a water tank. The algorithm was tested in US 

images obtained from a water tank setup without the presence of soft tissue.  

In a different study Novotny et al. [20] divides the 3D volume into discrete 

candidate volumes by using thresholding and connecting the neighboring 

voxels. Principle component analysis (PCA) was performed on each candidate. 

The longest and thinnest structure from the candidate US volumes was selected 

as the surgical tool. The experiments were conducted inside the water tank 

where the tool was incrementally moved toward a bovine tissue sample which 

was placed at the surface of the water tank. However in surgical situations the 



Chapter 2 

  74 

tool is in contact with the soft tissue which produces artefacts that obscure the 

instruments location and geometric detail. In his recent paper Novotny [21] 

also proposed to use a form of generalized Radon transform to search for long 

straight objects which was combined with the information obtained from a 

passive marker attached to the instrument shaft. The algorithm was tested with 

a water tank study and in-vivo animal study. For the tank study when the 

algorithm correctly identified the position of the passive markers the root mean 

square (RMS) error was 1.8mm. For the in-vivo study the maximum RMS was 

found 1.4mm.  

Stoll et al. [22] used a line detection algorithm together with a passive 

marker attached to the tip of the instrument to locate the position and 

orientation of it from a single US image. The instrument was imaged inside the 

water tank and a mean error of 0.8mm was reported.  

Linguraru et al. [23], proposed a statistical framework which consist of a 

combination of expectation maximization (EM), PCA and watershed transform 

(WT) algorithms. The algorithm requires expert segmented images to initialize 

the statistical distribution of the surgical tool and the surrounding soft tissue. 

This information is then used in the EM algorithm. The algorithm is tested in 

water tank settings and in-vivo interventions. The maximum segmentation 

error for in-vivo setting was 3.17 voxels. 

In this part we extend the work that was explained in detail in sections 2.2 

and 2.3 to scenarios involving K-wires which are commonly used for fixation 

during distal radius fracture surgeries as a provisional fixation step prior to 

plating or as definitive fixation. Following reduction and K-wire placement, 

the clinical scenario usually calls for intraoperative imaging (ionizing radiation 

fluoroscopy) to confirm the reduction and wire placement, a modality which 

we are aiming to replace. 
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2.4.1 Imaging and Experiments 

To investigate the ability of our proposed 2D local phase method to localize 

surgical tools in US images, an experiment was conducted to assess the 

resolution of the tool localization relative to a simulated bone interface in both 

a water bath and in a more realistic tissue model; in both experiments, the 

surgical tool was a K-wire with a diameter of 1.6 mm.  In the first part of the 

study, the bone was modeled using a flat metal block and the tissue was 

modeled using a water bath.  In the second part of the study, the bone was 

modeled using a plastic bone model (Sawbone model #1018-3, Sawbones Inc., 

Vashon WA) and the tissue was modeled using a 2 cm thick piece of bovine 

muscle tissue.  The wire, shown in Fig. 2.21, was fixed to a stylus which was 

tracked with an optical tracking system (OPTOTRAK 3020, NDI, Canada) 

which is accurate to approximately 0.1 mm in each cardinal direction. The 

optical tracking system measured the tool tip position with an RMS error of 

0.12mm, so it can be considered the gold standard.  The stylus was rigidly 

mounted onto a clamp which could be repositioned relative to the bone 

model’s surface. The distance from the tool tip to the specular surface 

(Sawbone or metal block) was incrementally decreased by reducing the 

vertical distance while maintaining the horizontal position (Fig. 2.21.). After 

each position change we verified that the tool tip was in essentially the same 

position in the horizontal plane. The range of displacements in the vertical 

direction was 1.73mm to 6.39mm for the water medium and 2.01mm to 

7.96mm for the bovine tissue medium. For each displacement we obtained 10 

different scans. 

In order to detect the tip of the K-wire, the US image was first processed 

using the local phase algorithm. Next, an edge detection algorithm, similar to 

the one used in section 2.3.2, was applied to the phase image in order to 

identify the inferior edge of the tool tip, which was defined as the pixel closest 

to the metal block’s surface. The distance from this pixel to the metal block 
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surface was recorded as the displacement in the image domain. Changes in this 

distance were compared to changes in vertical position obtained from the 

optical tracking system. 

 

 
 

  
  

Fig.2.21 Surgical tool localization experimental setup.  a) A K-wire with a 
diameter of 1.6 mm is shown attached to a tracked stylus that was used in the 
surgical tool localization experiment. (b) First part of the K-wire localization 
experiment where the imaging medium was water and the specular surface was 
modelled using a flat metal block. (c)  Second part of the K-wire localization 
experiment where the was modeled using a plastic bone model (Sawbone 
model #1018-3, Sawbones Inc., Vashon WA) and the tissue was modeled 
using a 2 cm thick piece of bovine muscle tissue.   
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2.4.2 Results 

The local phase algorithm is fully automatic and can process one slice in 

approximately 0.77s on an Intel Pentium 4 PC (3.64 GHz, 2GB of RAM). The 

tip of the K-wire was localized with a mean maximum localization error of 

0.4mm when the tool was imaged inside the water tank. This number increased 

to 0.8mm when the K-wire was imaged inside the soft tissue (Fig. 2.22). 

Investigating Fig.2.22 we can see that the obtained results are encouraging for 

using local phase method for localizing surgical tools in a controlled 

environment. While the water tank study carefully characterized the accuracy 

of the method, it does not reflect the target conditions for the algorithm, 

detecting instruments within a soft tissue interface. However, the second study 

validated the effectiveness of the technique in a surgical setting and showed 

that the accuracy is still well below the required average accuracy which was 

reported to be typically in the range of 2-4mm for orthopaedic surgery [18]. 

 

 
Fig.2.22 Quantitative results for the K-wire tracking experiment. Comparing 
the error results we can see that its more difficult to localize the K-wire tip 
for a soft tissue interface. However, the accuracy of the method is still under 
the required limits.  
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Qualitatively, the local phase algorithm produced clearer images of the 

bone surface and the K-wires than conventional ultrasound in all our 

experiments, especially when there was a soft tissue overlay, despite the 

decreased signal to noise ratio and increased imaging artifacts the soft tissue 

produces (see Fig. 2.23). Our results show that using the local phase 

information of ultrasound images is a promising approach for US guided 

CAOS applications.   

 

  
(a) (b) 

  
(c) (d) 

Fig.2.23 K-wire localization in ultrasound images:  (a & b) conventional 
US images of the soft tissue overlaid on the bone model with a K-wire 
inserted into the soft tissue;  (c & d) the corresponding local phase images. 
The thick arrows point to the K-wires in all of the images while the thin 
arrows point to the bone surface. 

 

While it was clear in our experiments that identifying both the bone surface 

and K-wires is considerably more challenging with a model bone overlaid with 

soft tissue than in a simple water bath, the automatically-segmented surfaces 

were sufficiently clear and computed sufficiently quickly. Since the local 
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phase algorithm can be performed essentially automatically, these results 

suggest that ultrasound can likely be used to track both surgical tools and bone 

surfaces in computer-assisted orthopaedic procedures such as fracture repairs. 

2.5 Conclusion 

Accurate localization of tissue/bone interfaces and surgical tools in US images 

is a challenging problem that continues to hamper US deployment in 

orthopaedic applications. This chapter presents a novel approach for automated 

and accurate bone segmentation and surgical tool localization from 2D US 

images based on local phase information. Phase symmetry extracted using 2D 

Log-Gabor filters was proposed as a robust image feature for accurate 

localization of bone surfaces. Quantitative validation demonstrated sub-

millimetre localization accuracy in phantom studies. Phase information was 

also shown to be suitable for measuring small bone displacements, also with 

sub-millimetric accuracy, a very encouraging finding relevant to applications 

in fracture assessment and fixation.  

In this chapter, the PS calculations are described but extension to clinical 

applications will require modifications of the algorithms for specific clinical 

tasks. Here, the PS feature was defined and the leading edge was extracted. An 

automatic algorithm may follow this approach that may require more specific 

definitions of the decision criteria used to identify the presence of bone or the 

extent or displacement of a fracture. Additional outlier rejection, incorporation 

of a priori anatomical information when available, pre-processing of the US 

images, and post-processing of the PS images are also likely to improve the 

accuracy and robustness of the algorithm.  

Our preliminary results on in-vivo scans of the human distal radius and K-

wire are very encouraging and demonstrate the power of the proposed method 

in extracting bone surfaces and surgical tools in practical applications in the 

presence of real soft-tissue interfaces. In the next chapter we extend this 

method to 3D designing 3D Log-Gabor filters and show that by incorporating 
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the correlation between adjacent slices increases the success of the local phase 

based bone surface extraction.  
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Chapter 3 

3D Local Phase Features 

for Bone Segmentation and 

Fracture Detection from 3D 

Ultrasound Data* 

 

3.1 Introduction 

Intra-operative visualization becomes more important with increasing use of 

minimal invasive operative techniques. In trauma and orthopaedic surgery, 

especially 3D visualization is in the centre of interest. Intra-operative 

visualization for fracture reduction and implant positioning in orthopaedic 

trauma surgery is classically based on two-dimensional imaging using routine 

X-ray or fluoroscopy. This technique however, lacks real time three-

dimensional imaging capabilities. Unsatisfactory reconstruction results for 

joint fractures or incorrectly positioned screws are frequently discovered only 

on post-operative CT scans.  

                                                      

 

* A version of this chapter will be submitted for publication. I. Hacihaliloglu, R. 

Abugharbieh, A. Hodgson, R. Rohling. “3D Local Phase Features for Bone 

Segmentation and Fracture Detection from 3D US Data”. 
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With continuing developments in US technology, it has been recently 

demonstrated that 3D US can be efficiently and successfully used [1], [2] in a 

range of minimally invasive techniques in cardiac surgery [3], neurosurgery 

[4] and liver surgery [5]. Nevertheless, extraction of relevant anatomical 

information from US images continues to be very challenging because US 

images typically contain significant speckle and other artifacts that complicate 

image interpretation and automatic processing [6], [7]. Due to these 

difficulties, US has only been used intra-operatively in CAOS as a surface 

digitization tool in order to obtain patient-specific data rather than as an 

imaging modality [6], [8]-[12].  Although some research groups have had 

some success in automating bone segmentation from US images using image 

intensity and gradient information, these methods still remain highly 

influenced by image intensity variations and imaging artifacts and to date have 

been limited to 2D images [13]-[16]. The possibility of using 3D US as an 

alternative to fluoroscopy imaging for guiding basic surgical tasks and 

assessing fracture reduction in orthopaedic surgery has so far not been well 

studied. This possibility is explored in this chapter through the use of intensity-

invariant 3D local image phase features to segment bone surfaces. 

In chapter 2 we have proposed a method for automatic bone surface 

extraction from 2D US data using local phase features.  However, 2D methods 

are inherently limited to cross-sectional analysis and do not take advantage of 

surface continuity between adjacent images (i.e., along the axis perpendicular 

to the scan plane direction). In this chapter we demonstrate that bone surfaces 

and fractures can be accurately localized using 3D local phase features 

computed directly from 3D US image volumes. We extend our original local 

phase based processing technique from 2D to 3D US using 3D Log-Gabor 

filters. Specifically, a 3D local phase symmetry measure is constructed that 

produces strong responses at bone surfaces and suppresses responses 

elsewhere.  
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3.1.1 Main Contributions 

The main contributions of this chapter can be summarized as follows: 

1. We extend our original local phase based bone surface 

extraction method to 3D. 

2. We show that integrating the surface information along the axis 

perpendicular to the scan plane direction makes the proposed 

algorithm less sensitive to soft tissue artifacts and more sensitive 

to weak bone surface responses. 

3. We improve the bone surface localization accuracy.  

4. We validate the proposed method using carefully designed 

phantom, ex-vivo, in-vivo experiments.   

5. We also use the proposed method in extracting surgical tools 

from 3D US volumes.  

The remainder of this chapter is organized as follows. In Section 3.2 we 

describe the extension of our previous method to 3D using 3D Log-Gabor 

filter. Section 3.3 explains the laboratory experiments that were constructed in 

order to validate the method together with the obtained results. We also 

illustrate qualitative results in this section. Section 3.4 shows the application of 

the proposed method in localizing surgical tools from 3D US volumes. We 

finally draw our conclusion in section 3.5. 

3.2 3D Local Phase Features 

In this chapter, we extend our previous 2D adaptation of phase symmetry for 

US bone segmentation to 3D by using 3D Log-Gabor filters.  The transfer 

function (G) of a 3D Log-Gabor filter in the frequency domain (3.1) is 

constructed as the product of two components: a one dimensional Log-Gabor 

function that controls the frequencies to which the filter responds and a 

rotational symmetric angular Gaussian function that controls the orientation 

selectivity of the filter [17]: 
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Here κ is a scaling factor used to determine the bandwidth of the filter in the 

radial direction, and ω0 is the filter’s center spatial frequency. To achieve 

constant shape-ratio filters, which are filters that are geometric scalings of a 

reference filter, the term κ/ω0 must be kept constant. The angle between the 

direction of the filter, which is determined by the azimuth (φ) and elevation (θ) 

angles, and the position vector of a given point f in the frequency domain is 

given by α(φi ,θi) = arcos(f • νi /|| f ||) where  νi= (cosφi cosθi , cosφi sinθi, sinφi) 

is a unit vector in the filter’s direction. Here σα is the standard deviation of the 

Gaussian spreading function in the angular direction that describes the filter’s 

angular selectivity. To obtain higher orientation selectivity, the angular 

function must become narrower. 

 

 

Fig.3.1 Flowchart for local phase analysis for a 3D volume. Here erm(x,y,z) and 
orm(x,y,z) denote the even and odd filter outputs, respectively, which are used 
during the construction of 3D phase symmetry metric given in equation (3.2).  

 

The scaling of the radial Log-Gabor function is achieved by using different 

wavelengths that are based on multiples of a minimum wavelength, λmin, which 

is a user-defined parameter. The relationship between the filter scale m, and 

the filter center frequency ω0 is set as ω0=2/ λmin×(δ)m-1 where δ is a scaling 

factor defined for computing the center frequencies of successive filters. Local 
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phase analysis of a 3D image volume proceeds by convolving the image with 

the 3D Log Gabor filters (Fig.3.1).  

Extending our previous work explained in chapter 2 where 2D phase symmetry 

was defined, we construct a 3D phase symmetry measure (3D PS), for 

different scales (m) and orientations (r) as in (3.2):  
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Here A = max(A,0), ε is a small number included to avoid division by zero, 

and T is a noise threshold calculated as a specified number (k) of standard 

deviations (σ) above the mean (µ) of the local energy distribution. Based on 

this, T is defined as: T = µ + kσ and the distribution is expected to be Rayleigh 

[18]. The response of the smallest scale filter is used for the calculation of µ 

and σ since it has the largest bandwidth and will give the strongest noise 

response. k can be tuned to provide a balance between the detected bone 

surface and speckle scale, though no principled basis for choosing this value 

has yet been described in the literature.  Previous authors [18, 19, 20] have 

used values in the range of 3-5; we experimented with values beyond this 

range (up to about 12) but found that a value of 5 worked well. 

3.2.1 Imaging and Experiments 

US image acquisition was performed on a GE Voluson 730 Expert ultrasound 

machine (General Electric Healthcare, Waukesha, WI) with a 3D RSP5-12 

transducer; this is a mechanized transducer in which a linear array transducer 

is swept through an arc range of 20° at a rate of 30 Hz. The reconstructed US 

volumes are of 199×119×60 voxel resolution (lateral×axial×elevational) with 

an isotropic voxel size of 0.19mm. Two different experiments were conducted 

to quantitatively evaluate the performance of the proposed 3D bone US 

segmentation method. In the experiments where bovine soft tissue was used as 

an imaging medium the tissue was obtained through a certified butcher 
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following guidelines and notification of the UBC Animal Care and Biosafety 

Committee.   The first experiment aimed at assessing the localization accuracy 

of the bone surface detection technique, while the second focused on assessing 

the accuracy of relative displacement measurements between bone fragments, 

as this is a clinically relevant task for which we are investigating the use of 3D 

US.  A human left radius model and an ex vivo porcine fibula and tibia were 

used in our validation experiments. In order to quantify the bone localization 

accuracy, our segmented 3D PS surfaces were validated against two different 

‘gold standard’ surfaces. The first gold standard reference was based on a 

stylus with a spherical bead tip placed at a variety of locations on the surface 

of a bone or bone model, in a manner similar to the method explained in 

Chapter 2 for 2D bone segmentation; the spherical bead tip produces a 

consistent and well-defined response a fixed distance from the bone that is 

independent of the orientation of the transducer relative to the underlying bone 

surface.  The second gold standard measurements were based on CT imaging. 

Stylus Validated Sawbone Experiment  

Scans of a bone model (#1018-3, Sawbones Inc., Vashon WA) were acquired 

inside a water tank with the long axis of the bone aligned with the axis of the 

linear array of the mechanized transducer. This alignment produced the 

clearest depiction of the bone surface. Images of the Sawbone were obtained at 

varying depths (shallow: 0.9cm, middle: 1.5cm, deep: 3cm) by changing the 

transducer position inside the water tank. In addition, to test the accuracy of 

surface localization at different beam orientations relative to the bone surface, 

as might occur in clinical use, two different orientations for the Sawbone were 

tested – horizontal and inclined at 20° which we consider to be an upper limit 

for longitudinal angulations in the clinical situations for which we intend to 

use this imaging technique. For this reason angle values over 20°  were not 

relevant.   For each of these six transducer positions, a reference 3D US image 

was acquired and processed using our phase-symmetry algorithm. Following 
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this, a stylus with a 3mm diameter spherical tip was sequentially placed at 30 

locations along the bone surface (these points ranged over approximately 37.8 

mm in length and 9.5 mm in width) and 10 different 3D US volumes were 

acquired for each tip placement.  The tip produces a high-intensity response at 

the top surface which is known to be accurately correlated with an accuracy of 

0.1mm (which was explained in detail in chapter 2) with the actual sphere 

surface. Since the physical diameter of the spherical tip is known, we use 

simple geometry to deduce the location of the actual bone surface (Fig. 3.2).  

 

 

Fig.3.2 Using a stylus with a spherical bead tip as gold standard surface 
measurement for bone surface localization accuracy assessment. For 
cases where the bead was not aligned with the central slice of the 
volume, the location of the bone surface was calculated from the 
geometry of the angle of the plane showing the bead (α), the angle of 
the bone surface (β) and the radius of the bead (r). 

 

 The localization error at each point was defined to be the difference between 

the bone surface estimated using the PS image and the corresponding point 

calculated relative to the spherical tip. We also investigated the effect of the 

surface inclination and depth on the localization accuracy of the proposed 

method. Note that since mechanized 3D US transducers use a set of 2D images 
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to reconstruct a volume, the effect of the finite beam thickness is implicitly 

incorporated into the volume data through the machine’s reconstruction 

process. 

Stylus Validated Porcine Experiment 

To investigate the effect of more realistic soft tissue interfaces on our 

localization accuracy, we conducted an ex-vivo experiment on a porcine tibia 

and fibula. First, the soft tissue was removed of the bone and the same 

spherical-tipped stylus described above was placed against the bone. The 

removed soft tissue was then re-laid on top, leaving the tip underneath the 

tissue and touching the bone. A set of 3D scans were then acquired with the 

bead positioned at 30 different locations along the bone surface (again these 

points covered a range of 3.78 cm in length and 0.95 cm in width). The error 

calculation proceeded in the same manner described earlier.   

CT-based Validation  

We performed a more comprehensive surface accuracy assessment using a CT 

scan as a reference.  For this study, we built a novel phantom by placing an ex 

vivo bovine femur specimen inside an open-topped plexiglass cylindrical tube 

(Fig. 3.3). Twenty eight markers (1mm diameter steel balls) were added to the 

construct with fourteen beads placed on each side of the bone (longitudinally), 

spaced at equal axial intervals over a distance of 75 mm. We obtained US 

scans of this specimen where the captured volumes contained 16 fiducials (8 

on each side) spanning a region of 37.8mm. To hold the specimen and 

fiducials securely in place during both CT and US scanning, the tube was filled 

with a polyvinyl chloride gel (Super Soft Plastic, M-F Manufacturing, Texas, 

USA).   

3D US scans were acquired of the phantom resulting in images of 

199×119×60 (lateral×axial×elevational) voxels at an isotropic resolution of 

0.19mm. Since the speed of sound differed in the soft tissue from that in the 

gel, the portion of the bone positioned below the gel appeared displaced 

relative to the rest of the bone (i.e. that positioned under the soft tissue). We 
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therefore applied a simple correction for that difference in the speed of sound. 

This adjustment brought the fiducials back into their correct position relative to 

the bone which is necessary prior to registration to the corresponding CT 

image. 

The same specimen was also scanned in the axial plane using a high-

resolution CT machine (HR-pQCT, XtremeCT, Scanco Medical, Switzerland) 

resulting in a 512×512×324 voxels image with an isotropic resolution of 

0.25mm. Registration of the CT dataset to 3D US volume was then performed 

using the AMIRA software (TGS, San Diego, USA). A landmark-based rigid 

registration algorithm transformed the input image (CT dataset) by applying a 

rigid transformation that minimized the sum of the squared distances between 

the corresponding fiducial points captured in both datasets. The accuracy of 

the registration was measured by calculating the fiducial registration error 

(FRE).  

Following CT-US registration, bone surfaces were extracted from the CT 

scan by Otsu thresholding [21] which we used to define the gold standard 

surface. In order to investigate the effect of the thresholding method on the 

resulting gold standard bone surface from CT, we also tested seven different 

automatic threshold selection methods [22]-[28]. Since the US images 

captured the top surface of the bone surface, only the upper transition in the 

vertical direction was extracted from the CT dataset to generate a 

corresponding bone surface.  

In order to compare our 3D gold standard CT surface to the 3D US-extracted 

surface localized using our phase-based processing method, a signed distance 

map was computed around the CT bone surface.  Each non-zero value in the 

phase-processed US image was then mapped to its corresponding location in 

the CT image so as to identify the signed distance value associated with that 

location. This produced a set of intensity/distance pairs. High intensity values 

confined to a zone near zero distance indicate a highly accurate US surface 

localization. The surface matching error was thus defined by the average 
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signed distance values corresponding to the maximum phase intensity value 

along the vertical direction of the 3D phase symmetry image. Our described 

surface localization accuracy assessment was repeated for 15 different volumes 

obtained from the same specimen in order to minimize any errors introduced 

during the manual fiducial landmark selection process.  

 

 
(a) 

 
(b) 

Fig.3.3 Using CT as a gold standard surface measurement for bone surface 
localization accuracy assessment. (a) Our constructed phantom comprised 
of an ex vivo bovine femur specimen inside an open-topped plexiglass 
cylindrical tube filled with polyvinyl chloride gel. (b) Diagram depicting a 
2D axial cut of the constructed phantom showing the fiducials inserted into 
the gel.   
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Fracture Misalignment Experiment 

In order to assess the capability of our proposed 3D phase symmetry technique 

to detect small gaps between bone fragments in 3D US data, which is relevant 

to using 3D US in fracture reduction applications, we created a simulated 

fracture using a Sawbones model (#1018-3, Sawbones Inc., Vashon WA) and 

applied a series of displacements to the two fragments ranging between 0.6 to 

2.2 mm in the vertical and horizontal directions. The displacement values were 

chosen to be similar to the range of bone fracture separations which our 

consulting orthopedic surgeons advised they would need to resolve in order to 

perfect an intra-articular fracture reduction. An optical tracking system 

(OPTOTRAK 3020, Northern Digital Inc., Waterloo, ON, Canada) with a 

localization accuracy of 0.1 mm provided the gold standard displacement 

measurement of the fracture fragments. Tests were conducted first with 

standard coupling gel alone and then repeated with a 2-cm thick slice of bovine 

muscle tissue overlaid on top of the fracture to simulate more realistic 

specimen conditions. This experiment is similar to our original 2D study, 

however, in this current experiment, we measured displacements along the top 

edges of the fracture boundaries on each slice of the 3D phase volume in 

which they appeared, rather than using only a single imaging plane as we did 

in chapter 2.  Since fracture reduction is a 3D problem we believe that 

integrating displacement information from multiple slices provides a more 

accurate assessment of the reduction. Ten US volumes were obtained for each 

displacement. The displacements estimated from each of the US volumes were 

then compared to the known applied displacement. 

Qualitative Validation Experiments 

In this experiment, we performed several qualitative evaluation tests using in-

vivo scans of a human distal radius and pelvis, and from ex-vivo scans of a 

porcine tibia and fibula using the high frequency (RSP5-12) 3D transducer. 

Furthermore, we also show qualitative results of the 3D local phase surfaces 
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extracted from US volumes obtained using a low frequency transducer (RAB4-

8P) with a greater penetration depth, but lower axial resolution  We compared 

the 3D surfaces obtained from our proposed 3D PS based method (i.e. where 

processing was applied directly on the entire 3D US volume) to our previously 

reported 2D PS method (where processing was applied to individual 2D US 

slices that were subsequently stitched together to form a surface).  We also 

repeated similar tests on a fractured Sawbone model (#1018-3, Sawbones Inc., 

Vashon WA) imaged with an overlay of a 2-cm thick bovine tissue. For in-

vivo studies 30 different US volumes were investigated using the proposed 

method.  

Implementation Details 

The proposed method was implemented in MATLAB (The Mathworks Inc., 

Natick, MA, USA) and run on an Intel Pentium 4 PC (3.64 GHz, 2GB of 

RAM). After investigating results from various 1D scanline profiles of a distal 

radius and pelvis, scanned in-vivo, with a pair of quadrature filters at different 

scales, selecting a single scale (m=1)  with a large wavelength (λmin= 25 pixels) 

resulted in very well localized bone surface phase features. In the CT-validated 

porcine experiment we extracted 3D PS images using multiscale analysis with 

scale values of m=2,3 by selecting a scaling factor of δ=3 in order to 

investigate the effect of multi-scale analysis to surface localization accuracy. A 

value of κ/ω0 =0.25 provided good surface localization in the presence of 

speckle. For the angular component, we empirically determined, based on 

experimentation with models of the human distal radius and pelvis, that it was 

possible to get good orientation resolution while containing an adequate range 

of frequencies by selecting an angular bandwidth value σα=14.3°. The filter 

bank used in this work used 15 different (α) 3D filter orientations. The noise 

threshold parameter k was set to 5. The selected filter parameters were kept the 

same in all experiments. 
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3.2.2 Results 

Stylus-Validated Sawbone Experiment  

For both the horizontal and inclined specimens, the mean PS error was 

calculated from the measurements taken at the 30 different bead locations for 

each depth setting. The mean errors at the different scanning depths ranged 

from 0.40 to 0.62 mm (biased towards the inside of the bone surface) with 

standard deviations of approximately 0.25 mm.  There was no significant 

influence on these results of surface inclination angle when comparing the 

fiducial localization errors for the same depth setting (p values > 0.05 except in 

the shallow depth setting p=0.01, see Table 1). If the imaged surface had an 

inclination, the error results obtained from all the depth settings had no 

significant difference (except shallow-middle depth setting p=0.06 using t-test) 

(Table 3.1). The processing time was approximately 43s for each 3D volume.  

 

Table 3.1Quantitative results for bone surface localization accuracy assessment 
using stylus with a spherical bead tip as gold standard measurement for 3D PS 
method. Number of measurements (different stylus positions) used for 
calculating the mean error is n=30 for each volume.  
 

Surface Inclination: Horizontal 
Depth Setting Mean Error 

(mm) 
Std  

(mm) 

Shallow -0.54 0.27 
Middle -0.62 0.24 
Deep -0.42 0.22 

Surface Inclination: 20° inclined 

Depth Setting Mean Error 
(mm) 

Std  
(mm) 

Shallow -0.40 0.22 
Middle -0.53 0.26 
Deep -0.45 0.23 

Std: Standard deviation 
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Stylus-Validated Porcine Experiment 

The mean localization error was 0.44mm (STD 0.16mm) inside the bone 

surface response. This was similar to the Sawbone error values, which 

demonstrates the ability of the proposed 3D method to accurately detect bone 

surfaces even in the presence of significant artefacts due to the presence of soft 

tissue.   

CT-Validated Bovine Experiment 

The fiducial registration error for the 15 different US volumes averaged to 

0.18mm (Std: 0.31mm) (Table 3.2).  The average localization error was the 

lowest with a mean value of 0.18mm (Std:0.31mm) using a single scale 

compared to 2 scales (0.21mm), or 3 scales (0.23mm) for the proposed 3D 

method. Multi-scale analysis added additional computation time during the 

calculation of 3D PS image (Table 3.2).  Comparing the 2D PS results 

(0.31mm  Std: 0.61mm) given in Table 3.2, we can see that extending the 

local- phase analysis to 3D resulted in an 42% increased accuracy of the bone 

surface localization. The local phase bone surfaces extracted using 2D PS and 

3D PS method were significantly different (all p values were < 0.05).  

The effect of using different automatic threshold selection algorithms on the 

extracted gold standard CT surface was in the range of 0.04mm to 0.1mm. The 

distribution of phase intensity values with their corresponding signed distance 

values obtained from volume 5 by processing it with 2D PS method and the 

proposed 3D PS method are shown in Fig.3.4. Investigating these two figures 

we can see that the proposed 3D method is less sensitive to typical US image 

artifacts and most of the intensity distribution is concentrated close to the zero 

signed distance region. 
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Table 3.2 Quantitative results for bone surface localization accuracy 
assessment using CT scan as the gold standard measurement. Number of 
measurements used for calculating the mean is n=11940. For FRE this number 
is n=16.  

2D phase 
symmetry  

3D phase symmetry   

Two Scales Single Scale 
Run time: 

43sec 

Two Scales 
Run time: 

90sec 

Three Scales 
Run time: 

150sec 
US 
Vol. 

FRE 
(mm) 

ME 
(mm) 

Std 
(mm) 

ME 
(mm) 

Std 
(mm) 

ME 
(mm) 

Std 
(mm) 

ME 
(mm) 

Std 
(mm) 

1 0.28 0.52 1.02 0.24 0.44 0.31 0.37 0.36 0.36 
2 0.33 0.56 0.39 0.47 0.33 0.43 0.29 0.44 0.32 
3 0.21 0.42 0.58 0.33 0.21 0.36 0.20 0.41 0.19 
4 0.36 0.36 0.98 0.25 0.71 0.21 0.16 0.23 0.16 
5 0.22 0.46 1.02 0.21 0.52 0.31 0.44 0.32 0.40 
6 0.24 0.38 0.92 0.06 0.54 0.16 0.46 0.19 0.47 
7 0.26 0.20 0.26 0.16 0.22 0.18 0.23 0.19 0.25 
8 0.28 0.53 0.37 0.42 0.30 0.52 0.29 0.57 0.28 
9 0.30 0.58 0.37 0.48 0.28 0.52 0.29 0.51 0.29 
10 0.28 0.28 0.79 0.23 0.17 0.27 0.16 0.27 0.16 
11 0.22 0.24 0.48 0.23 0.30 0.24 0.31 0.27 0.31 
12 0.25 0.12 0.24 0.07 0.22 0.11 0.2 0.14 0.22 
13 0.31 0.33 1.97 -0.06 0.17 -0.04 0.74 -0.10 0.20 
14 0.34 -0.32 0.20 -0.38 0.18 -0.36 0.16 -0.37 0.19 
15 0.34 0.05 0.15 0.03 0.14 0.05 0.16 0.06 0.16 

Avr. 0.28 0.31 0.64 0.18 0.31 0.21 0.29 0.23 0.26 

Vol.: Volume, Avr.: Average, ME.: Mean Error, Std: Standard deviation, FRE: 
Fiducial registration error. 

 

Fracture Misalignment Experiment 

The PS images permitted accurate assessment of both horizontal and vertical 

displacements, although vertical displacements were more accurately resolved 

than horizontal ones (0.51 mm vs. 0.66 mm) (Fig. 3.5).  There was no 

significant effect of imaging medium, gel vs. soft tissue, on these accuracies 

except for the 0.6mm and 1.5mm vertical displacements where the p value was 

less than 0.05.  Furthermore, there was no significant dependence (all p-values 

<0.05) of the accuracy of displacement measures on the degree of 

displacement except when the introduced fracture displacement was 0.6mm in 
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vertical direction (p=0.07 using t-test) when the imaging medium was soft 

tissue (Fig. 3.5).  

 
(a) 

 
(b) 

Fig.3.4 Signed distance plots for CT validated bovine experiment for 
volume 5. (a) Signed distance (mm) vs intensity plot using 2D PS method, 
(b) Signed distance (mm) vs intensity plot for the proposed 3D PS method 
demonstrating how the proposed 3D method is less sensitive to typical US 
artifacts. 
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Vertical Fracture Displacement 
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Horizontal Fracture Displacement 
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(c) (d) 
Fig.3.5 Fracture misalignment results imaged through gel (left column) or a 
layer of bovine soft tissue (right column).  The black point represents the mean, 
the red horizontal line shows the median and the box and whiskers represent 
the standard deviation and range of the data. 

 

Qualitative Results 

Figs 3.6, 3.7 and 3.8 show 3D phase symmetry images of an in-vivo human 

distal radius, an in-vivo human pelvis, and an ex-vivo pig leg, respectively. 

Comparing columns (b) and (c) of Figs. 3.6, 3.7 and 3.8 it can be seen that the 

3D version of the phase symmetry images is markedly smoother than the 2D 

version (where each slice is treated independently) due to the fact that our 

proposed 3D method takes into account the information in the elevational 

direction as well. Furthermore, the 3D phase surfaces from Fig. 3.6 (column 

(b) bottom image) and Fig. 3.6 (column (b) bottom image) show that the 

proposed method is able to extract bone features even when a low frequency 
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transducer (with lower resolution, which produces a weaker bone feature 

response) is used.  Finally, it can be seen that fracture displacements can be 

clearly visualized in 3D phase symmetry images (Fig. 3.9).  Fig. 3.9 also 

shows that the proposed method is able to extract a connected smooth surface 

even when the bone surface response is weak due to shadowing from muscle 

and fascia interfaces above the bone surface. In contrast, the 2D method is 

more severely affected by this overlying tissue and shows a small gap on the 

extracted bone surface (Fig. 3.9).  

 

3D-US B-Mode  
Images 

3D Phase Symmetry 
Images 

Assembly of 2D PS 
Images 

   

   
(a) (b) (c) 

Fig.3.6 Qualitative results for in-vivo human distal radius scans. 3D mode US 
volumes obtained using 3D 5-12 MHz transducer (top) and 3D 4-8MHz 
transducer (bottom). The top left image also shows a 3D anatomical sketch of 
a human radius where the scanned area is highlighted by the white rectangle. 
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(a) (b) (c) 

Fig.3.7 Qualitative results for in-vivo human pelvis scans.  3D US volumes 
obtained using 3D 5-12 MHz transducer (top) and 3D 4-8 MHz transducer 
(bottom). Top left image also shows a 3D anatomical sketch of a human pelvis 
with a 3D transducer showing the scanned area. 
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3D-US B-Mode  
Images 

3D Phase Symmetry  
Images 

Assembly of 2D PS  
Images 

 

   
(a) (b) (c) 

Fig.3.8 Qualitative results for ex-vivo pig leg scans. 3D US volumes of tibia and 
fibula (top) and tibia (bottom) obtained using 3D 5-12 MHz transducer. Top left 
image also shows a 3D anatomical sketch of a pig leg tibia and fibula bones.   
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(a) (b) (c) 

Fig.3.9 Qualitative results for fractured Sawbones model imaged with soft 
tissue overlaid.  3D US volumes of fractured Sawbones model (top) and same 
Sawbone where fractured pieces are displaced differently (bottom) obtained 
using a 3D 5-12 MHz transducer. The top left image also shows a 3D 
anatomical sketch of the scanned Sawbone with the fracture indicated by a red 
arrow. The red rectangles highlight the location of the fracture.  Again the 
detected fracture is shown inside the red rectangle. 
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3.3 Surgical Tool Localization using 3D Local Phase 

Features 

In this part we extend the work that was explained in detail in section 2.4 to 3D 

using the proposed 3D local phase symmetry method explained in this chapter. 

In non-ultrasound-based applications of local phase filtering, the outputs of the 

various filter responses are normally combined to produce a single feature 

map.  However, we have observed that due to the directional characteristics of 

ultrasound, orientations perpendicular to the specular surface (K-wire or bone) 

tend to produce stronger responses to the surgical tool surfaces, while other 

orientations are more sensitive to ultrasound data artifacts. Therefore, instead 

of combining all filter responses, we relied on prior knowledge of the 

ultrasound image formation to combine the filter responses that provided the 

strongest echoes from the surgical tool.  Finally, we applied thresholding to the 

3D volume to extract the strong bone feature responses from the remaining 

weaker features.  

3.3.1 Imaging and Experiments 

The same experimental setup explained in section 2.4.1 was used as well. 

Therefore we refer the reader to the appropriate section for detailed 

explanation of the conducted experiment. The main difference from the 

previous setup was during the calculation of the error which is explained next. 

Rather than using the central slice we used all the slices where the K-wire tip 

was visible and averaged the error results obtained using the error calculation 

method explained in section 2.4.1.   

3.3.2 Results 

The tip of the K-wire was localized with a mean maximum localization error 

of 0.6mm when the tool was imaged inside the water tank. This number 



Chapter 3 

  106 

increased to 0.9mm when the K-wire was imaged inside the soft tissue (Fig. 

3.10).  

Fig. 3.11 shows that the 3D Log-Gabor filter successfully extracts 3D 

features corresponding to the surgical tool and the bone surface and it strongly 

attenuates US artifacts. There was remarkable separation of the K-wire from 

the bone surface and soft tissue, especially given the near-invisibility of the K-

wire on the standard B-mode image. 

 

 

Fig.3.10 Quantitative results for the 3D K-wire tracking experiment. 
Comparing the error results we can see that its more difficult to localize the K-
wire tip for a soft tissue interface.  
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(a) 

 
(b) 

Fig.3.11 Surgical toll localization qualitative results. (a) 3D B-mode US 
volume of the soft tissue overlaid on the bone model with a K-wire inserted 
into the soft tissue. Note significant US artifacts and relative invisibility of K-
wire, (b) corresponding thresholded 3D local phase volume showing the K-
wire extracted clearly from soft tissue and other US artifacts. 

3.4 Conclusion 

We proposed a novel approach for accurate and fully automatic extraction of 

bone surfaces and surgical tools directly from 3D ultrasound volumes based on 

3D local phase symmetry image features calculated using 3D Log-Gabor 

filters. The proposed method is an extension of the method explained in 

chapter 2 for 2D bone segmentation in US to 3D enabling the extraction of 

more accurate bone surfaces. Integrating the surface information along the axis 

perpendicular to the scan plane direction makes the proposed algorithm less 
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sensitive to soft tissue artifacts and more sensitive to weak bone surface 

responses.  

Using carefully designed experiments, we demonstrated how bone surface 

localization error could be decreased down to 42% of the error levels obtained 

with the earlier 2D PS bone localization method by incorporating the image’s 

third dimension. The proposed bone surface localization accuracy was 

extensively and rigorously assessed using phantom bone models and ex-vivo 

porcine specimens. Quantitative results demonstrated a maximum mean error 

of 0.44 mm and a low standard deviation across the sampled points of only 

0.16 mm. These errors were relatively independent of the depth of the bone 

interface and of the inclination of the transducer relative to the bone surface. 

Furthermore, the 3D phase method resulted in high localization accuracy even 

when the US beam was not perfectly perpendicular to the bone surface.  

Horizontal and vertical displacements between model bone fragments were 

also accurately measured with a maximum mean error under 0.6 mm.  

The quantitative and qualitative results presented in this work were obtained 

using single-scale analysis. Although the method is amenable to multi-scale 

analysis, we have observed that the use of extra scales did not affect the 

accuracy results; however, it adds extra computation time. Nevertheless, we 

anticipate that multi-scale analysis will likely be useful in clinical situations 

when weak bone surface responses are expected due to swollen soft tissue. We 

plan to further investigate this issue in future clinical studies.  

Our bone localization accuracy results (0.18-0.6 mm) were comparable to 

the best results reported by other groups, in particular, Foroughi et al. [14] and 

Kowal et al. [15] who showed mean errors in the range of 0.3-0.6 mm.  

Previously reported results, however, were obtained from 2D US studies in 

which the transducer was optimally aligned relative to the bone surface by a 

trained sonographer in order to achieve the best surface response. In addition, 

both of the cited previous studies incorporated bone surface connectivity 

information as part of their proposed framework which will likely fail when 
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the imaged bone surface involves a fractured region and will thus limit the 

applicability of these methods to track fractures. In contrast, our proposed 

method performs very well with arbitrary probe orientations eliminating the 

need for a trained sonographer and is also able to handle fractured bone 

segments and gaps.  

The average time to obtain a 3D US volume is an order of magnitude lower 

than acquiring a 3D fluoroscopy scan (about 10 s vs 120 s) [29], and we have 

shown that the phase symmetry processing time in a high-level programming 

environment (MATLAB) is about a third of the fluoroscopy acquisition time 

(43 s vs 120 s); we anticipate that we would be able to reduce this processing 

time significantly by implementing our algorithm in a lower-level language 

and optimizing the coding.  This short acquisition and processing time would 

make 3D US especially attractive for use in orthopaedic fracture reduction 

surgeries where multiple scans are frequently needed to confirm the reduction.   

We also showed that surgical tools such as K-wires could also be 

successfully extracted. 3D generalization of the local phase filter can produce 

remarkably clear images of the surgical tool positioned above a simulated bone 

surface. 

Potential limitations of 3D US in orthopaedic surgery are related primarily 

to difficulties in obtaining a scan under typical operative conditions and to 

limited availability of 3D US machines. With regard to the first issue, US 

imaging typically requires the use of a coupling gel between the transducer and 

the patient; in a trauma situation, the patient may have an open wound above 

the bone, which could potentially interfere with the ability to place the US 

transducer in a reasonable position.  We are currently conducting a clinical 

study to assess the potential opportunities and limitations of 3D US on an 

orthopaedic trauma service. The first results of our clinical study are explained 

in chapter 5. With regard to limited availability of 3D US machines, we expect 

that the number of such machines will increase in the future.  Another 

limitation of the proposed method is the limited field of view of the US which 
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could be problematic during the assessment of long bone fractures and might 

require volume stitching. This could introduce additional sources of error 

including speed of sound variations, refraction, miscalibration of the position 

tracker and non-constant tissue compression. Previous research by our group 

has already investigated methods for stitching 3D US volumes obtained from 

mechanical 3D transducers used in this study. However, quantification of the 

proposed method, using stitched 3D volumes or 3D volumes obtained using 

2D tracked freehand transducers, remains an open question which we are 

aiming to answer in the future. Finally, parameter selection such as 

orientations, bandwidth, scale were so far done empirically by investigating 

different outputs of the 3D Log-Gabor filter. This will be further investigated 

in chapter 4 of this thesis work.  

Our reported results are very encouraging and suggest a strong potential for 

success in using local phase processed images for bone localization and 

fracture assessment since the average accuracy required for such applications 

is typically in the range of 2-4mm [30]. A comparison of in-vivo scans of the 

human distal radius and pelvis showed that a true 3D analysis produced a 

noticeably smoother image of the bone surface than previously reported 2D 

analysis. We expect that such 3D processing will be of special importance 

during the assessment of fractures where good accuracy is needed to avoid 

malunions. Furthermore, since there is no need to align the imaging plane with 

the anatomical area of interest, evaluation of the fractured area can likely be 

performed more rapidly 
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Chapter 4 

Data-Driven 

Parameterization for 

Automatic Bone 

Localization in Ultrasound 

Using Log-Gabor Filter 

Based Phase Features∗∗∗∗ 

4.1 Introduction 

In chapters 2 and 3 we have shown for the first time that bone surfaces could 

be extracted automatically and with sufficient accuracy from 2D and 3D US 

data using local phase features.  Although local phase measures can be quite 

successful in extracting important image features, they remain somewhat 

sensitive to the underlying filter parameters used. Previous approaches using 

                                                      

 

∗ A version of this chapter will be submitted for publication. I. Hacihaliloglu, R. 

Abugharbieh, A. Hodgson, R. Rohling. “Data-Driven Parameterization for Automatic 

Bone Localization in Ultrasound Using Log-Gabor Filter Based Phase Feature”. 
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local phase relied on empirical selection of appropriate filter parameters, which 

was typically performed by trial and error and ad hoc investigation of filter 

outputs on samples of US images depicting a certain anatomical area of 

interest ([1, 2, 3, 4]).Once acceptable filter parameters were found, they were 

typically fixed for subsequent application to new data. The difficulty in 

relating correct parameter choices to the properties of the image and image-

processing task has thus inhibited more widespread use of phase-based 

techniques. Specifically, in ultrasound image processing, the effect of each 

parameter, as well as the effects of their interaction remains unclear.  In this 

work, we present a novel method for automatic selection of the scale, 

bandwidth, orientation and angular bandwidth parameters of a Log-Gabor 

filter based phase symmetry (PS) measure in US images, specifically in the 

context of bone surface localization. The proposed approach incorporates the 

use of principal curvature computed from the Hessian matrix and directional 

filter banks in a phase scale-space framework. Our technique relies on 

contextual information obtained solely from image content.  

4.1.1 Main Contributions  

The main contributions of this chapter can be summarized as follows: 

1. We show the importance of correct filter parameter selection in the 

extraction of local phase features and develop a method to 

automatically select 2D Log-Gabor filter parameters to extract bone 

surfaces from US data.  

2. We validate the proposed method with carefully designed in-vitro 

experiments and demonstrate 35% improvement in accuracy of bone 

surface localization compared to empirically set parameterization 

results [1, 2]. 

3. We compare the proposed method with the filter parameters obtained 

through an exhaustive search procedure which gave the best 
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localization accuracy results and show that the proposed method 

achieves similar filter parameters.  

The remainder of this chapter is organized as follows. In Section 4.2 we give a 

brief introduction to Log-Gabor filter and discuss the important parameters 

that need to be optimized for extracting bone surfaces from US data. Section 

4.3 presents the proposed data-driven filter parameterization approach. 

Experimental setup for quantitative validation is explained in section 4.4. 

Qualitative and quantitative results are given in section 4.5 and finally we 

present our conclusions in section 4.6.  

4.2 Review of Log-Gabor Filter Based Analysis of Bone in 

Ultrasound 

In chapters 2 and 3 we have presented a local phase-based method for 

extracting ridge-like features, similar to those that occur at soft tissue/bone 

interfaces, using a PS measure. Here, we propose an improvement to such an 

approach by presenting complete automation of the parameter selection 

process.  In this chapter the focus is on extraction of ridge-like features but 

could be extended to other feature types.  

A ridge can be thought of as a one dimensional curve representing an axis of 

local symmetry. It is well known that symmetric features can be easily 

extracted using local phase information [3]. Local phase of a one dimensional 

(1D) signal can be obtained by convolving the signal with a pair of band-pass 

quadrature filters (an odd filter and an even filter). Using the two filters in 

quadrature enables the calculation of signal amplitude and phase at a particular 

scale (spatial frequency) at a given spatial location. One choice of quadrature 

filters is the 2D Log-Gabor filter, R(ω,ω0), which can be constructed with an 

arbitrary bandwidth. In order to obtain simultaneous localization of spatial and 

frequency information, analysis of the signal must be done over a narrow range 

(scale) of frequencies at different locations in the signal. This can be achieved 
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by constructing a filter bank using a set of quadrature filters created from 

rescalings of the Log-Gabor filter.  

This analysis can be extended into two dimensions (2D) where a filter tuned 

to a particular orientation φ0  in the frequency domain (ω) is constructed by 

masking a radial Log-Gabor function (R(ω,ω0)) with an angular Gaussian 

(G(φ,φ0)) tuned to φ0:  
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Here κ is the standard deviation of the filter in the radial direction and ω0 is the 

filter’s center spatial frequency. The term κ/ω0 is related to the bandwidth (β) 

of the filter with β= -2 (ln2/2)(-0.5) ln(κ/ω0) [2].  

The scaling of the radial Log-Gabor function is achieved by using different 

wavelengths that are based on multiples of a minimum wavelength, λmin, which 

is a user-defined parameter. The relationship between the filter scale m, and 

the filter center frequency ω0 is set as ω0=1/ λmin×(δ)m-1 where δ is a scaling 

factor defined for computing the center frequencies of successive filters. σφ 

=∆φ/s defines the angular bandwidth ∆Ω = 2 σφ  (2log2)-05 where ∆φ is the 

angular separation between neighbouring orientations and is defined as 

∆φ=180°/Nr, and Nr denotes the total number of orientations used. The 

parameter s is the standard deviation of the Gaussian spreading function in the 

angular direction that describes the filter’s angular selectivity. To obtain higher 

orientation selectivity, the angular function must become narrower. Steering of 

the filter is achieved by changing its angle (φ0). After investigating different 

filter outputs empiricially we have found that selecting 2 scales and 6 

orientations (0°-150° with 30° increments) with σφ=25°, κ/ω0=0.25, δ=3 and a 

filter wavelength of λmin =25 pixels offered good spectral coverage and 

orientation resolution and produced good bone surface localization in the 

presence of speckle. The obtained results using these filter parameters were 
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presented in chapter 2. An example of a 2D Log-Gabor filter is given in 

Fig.4.1.  

 

   
(a) (b) (c) 

Fig.4.1 An example of a 2D Log-Gabor filter with λmin =25, δ =3, φ0=0°, 

σø=30°, κ/ω0=0.25, s=1. (a) Log-Gabor component R(ω,ω0) of the filter, (b) 

Angular Gaussian component G(φ,φ0) of the filter, (c) product of the two 
components which represents the 2D Log-Gabor filter in the frequency 
domain. 

4.3 Proposed Data Driven Filter Parameterization  

The design of the Gabor filter bank relies on the proper selection of a set of 

filter parameters: bandwidth (β), scale (λmin), angular bandwidth (∆Ω) and 

orientation (φ0). The possible combinations of these various parameters 

directly affect the filter’s ability to accurately extract local phase image 

features. In the following sections, we analyze the Log-Gabor filter response in 

detail and present a data-driven approach for contextual selection of its main 

parameters. Our approach first optimizes the bandwidth parameter according 

to image acquisition properties. We then optimize for the scale parameter 

based on a set of initial filter orientations extracted through analysis of bone 

surface orientation information from the B-mode US image. We finally 

optimize for the orientations and angular bandwidth parameters. The flowchart 

of the proposed framework is given in Fig.4.2. 
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Fig.4.2 Flowchart of the proposed data driven parameterization of Log-
Gabor filter for bone surface localization from B-mode US images.  Each 
section of the proposed framework is shown with a different line pattern.  
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4.3.1 Filter Bandwidth Selection 

The proper filter bandwidth (β=−2 (2/ln2)(-0.5)ln(κ/ω0)) in the radial direction 

is related to both the spatial extent of the speckle and boundary responses in 

the image.  Therefore, we first estimate the image speckle size by selecting a 

set of images covering a range of depths acquired by the US transducer used in 

the imaging (in our experiments, the transducer’s center ultrasound frequency 

= 7.5 MHz, image depth setting ranged between 1.9cm-7.2cm). By analysing a 

region with fully developed speckle from each image, we compute the 

autocorrelation of each region, and extract the full-width at half-maximum 

(FWHM) value of these autocorrelations which we then use as a measure of 

the speckle size [5]. We compute the ratio, κ/ω0, for each image using: 

0

1
/ exp( 2 (2) )

4
ln FWHM rκ ω = − × × ×  

   
(4.2) 

where r is the pixel size in mm. We average the κ/ω0 ratio over the set (in our 

case 25) different B-mode US test images. The resultant average is then set as 

the filter bandwidth. Note that selecting a bandwidth significantly greater than 

this value (i.e. selecting a smaller value for κ/ω0) will result in a filter that fails 

to separate small scale speckle features from larger scale boundary responses. 

On the other hand, selecting a significantly lower bandwidth will reduce the 

accuracy of the boundary detection and cause blurring of the detected bone 

boundary (Fig.4.3).  
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(a) (b) 

  
(c) (d) 

Fig.4.3 Effect of filter bandwidth selection on local phase based bone 
detection. (a)  in-vivo B-mode US image of human distal radius, (b) – (d) 
PS images obtained using κ/ω0 values of 0.05, 0.24, and 0.55 respectively. 
(b) illustrates unintended speckle detection at high bandwidths and (d) 
illustrates bone boundary blurring at low bandwidths while (c) reflects the 
effect of selecting an appropriate bandwidth where the PS captured 
continuous sections of the bone with little influence exhibited by soft-
tissue interfaces and speckle. 

4.3.2 Initial Filter Orientation Selection 

The orientation of the Log Gabor filter is controlled by the angular Gaussian 

function (G(φ,φ0)).  During the calculation of the PS metric, the filter is 

directed at a number of orientations. Commonly, six orientations are employed 

to cover the entire angular range (0°-180° with 30° increments) with the 

responses subsequently averaged [1, 2, 4].  However, given the highly 

directional nature of ultrasound bone image data, integration of the responses 

from all these different filter orientations in fact largely degrades the PS 

response due to the inclusion of many non-relevant filter orientations. Noting 

that the strongest ridge features appear when the filter orientation is 

perpendicular to the bone surface (Fig. 4.4), identifying and combining filter 
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angles which produce strong responses will therefore likely enhance feature 

extraction (Fig. 4.5). 

 

 

  
(a) (b) 

  
(c) (d) 

Fig.4.4 Effects of filter orientation selection. (a) B-mode US of in-vivo 

distal radius, (b) filter response at φ=60°, (c) filter response at φ=120°, (d) 

filter response at φ=0°. All images were produced at a fixed filter scale of 
λmin =25  and κ/ω0 =0.25. 
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(a) (b) 

  
(c) (d) 

Fig.4.5 Effect of varying the number of orientations used. (a) B-mode US 

image of in-vivo human distal radius. (b) PS image using 3 orientations (58° 

74° 89°), (b) PS image using 6 orientations (0°-150° with 30° increments), 

(c) PS image using 10 orientations (0°-270° with 30° increments). The white 
arrows point out extracted phase features that are not bone surfaces (i.e. 
artefacts of combining orientations that are not close to perpendicular to the 
bone surface during the calculation of PS). The white circle points to a 
location of a degraded bone surface due to the inclusion of less informative 
orientations with weaker bone responses.   

 
Bone surfaces in B-mode US images typically appear as elongated line-like 

objects with a higher intensity compared to the other image features. The same 

in fact applies to the corresponding PS images. Therefore, integration along a 

bony feature produces a higher intensity value than doing the integration along 

a non-bony feature. Using this simple fact, we employ the radon transform 

(RT) in order to detect the orientation of such line-like structures. To 

automatically define meaningful starting angles for our filter, we initially 

cluster the RT (obtained from the B-mode US image) image using k-means 

clustering (Fig. 4.6).  
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(c) 

Fig.4.6 Filter orientation selection step. (a) RT of B-mode US image in 
Fig.4.3 (a), (b) k-mean clustered RT of (a), (c) the cluster corresponding to 
the highest RT values. The three initial angles deduced from this cluster are 
66°, 88° and 106°. Detailed explanation on how these three angles were 
calculated is given in the below paragraph. 

 

The projection angles corresponding to the peak values of the RT reflect the 

angles that are perpendicular to the high intensity features, bone surfaces in our 

case. Those angles are therefore used for initializing the orientations of the 

Log-Gabor filter. Three initial filter angles are selected, which we choose from 

the cluster that corresponds to the peak values of the RT (Fig. 4.6. (c)). 

Specifically, the mean value of the projection angles corresponding to the RT 

values in that chosen cluster and two additional angles set at ±1 standard 

deviation within the thresholded region are used. These three initial angles are 

used as the initial filter angle parameters during the calculation of the filter 

scale as will be explained in section 4.3.3.  
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4.3.3 Filter Scale Selection 

Local image PS is computed by convolving the image with a number of scaled 

Log-Gabor filters. Each scaling is designed to pick out particular features of 

the image being analyzed with results typically integrated over multiple scales 

(in addition to multiple orientations) [2]. Since boundaries are extracted by 

analyzing the PS measure over a range of scales, correct scale selection is of 

major importance. When using very small scales, the filters become highly 

sensitive to speckle. Selecting larger scales blurs the extracted bone features. 

Simply integrating different filter scales for PS calculations is typically 

insufficient as it results in PS images that either extract speckle or blurs the 

detected features (in our case bone boundaries), as demonstrated in Fig.4.7. 

 

  
(a) (b) 

  
(c) (d) 

Fig.4.7 Effects of filter scale selection. (a) Original B-mode US image of 
in-vivo distal radius, (b) PS obtained using a scale value of λmin =2, (c) PS 
obtained using a scale value of λmin =88, (d) PS obtained by combining the 
results of both scales (2 and 88). 
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Line enhancing filters based on multiscale eigenvalue analysis of the Hessian 

matrix have been commonly used to extract vessel-like structures in 2D and 

3D medical images [6]. The scale selection approach we present in this chapter 

is inspired by these studies where we use the Log-Gabor filter response as the 

input to the Hessian matrix defined as in (4.3): 

,
xx xy

yx yy

L L
H

L L

 
=  
 

with 

2

ab

L
L

a b

∂
=

∂ ∂
 

 

   (4.3) 

    

 L is an image obtained by convolving the US image with a Log-Gabor filter at 

a particular scale. Here, the subscripts x and y represent spatial derivatives in 

the x and y directions. At this stage, the orientation of the Log-Gabor filter 

during the scale setting step is set to the initial filter angle calculated from the 

B-mode US image as outlined in section 4.3.2. We calculate a ridge strength 

measure, Aγ=t
2γ((Lxx−Lyy)

2+4Lxy
2), which is the square of the γ normalized 

eigenvalue difference, and t is the scale of the filter (t= λmin) [7]; see Fig. 4.8. 

This metric in our context measures the ‘ridgeness content’ of an image, since 

our main interest here is in localizing bone contours, which generally appear as 

ridges in US images. The optimal scale is thus defined as the one 

corresponding to the maximal ridgeness content in the Gabor filtered image. In 

order to define the optimum global filter scale, which highlights the most 

significant ridge content in the image, we analyze the intensity distribution of 

Aγ over all possible scales (e.g. ranging from 2-150 in our experiments). We 

then select the scale where the sum of the intensities achieves a maximum 

value as the optimal filter scale (Fig.4.8 (d)). This is based on the observation 

that at the optimal scale the response of the filter will produce a sharp ridge 

feature aligned with the bone surface, whereas significantly different scales 

will result either in detection of speckle or blurred bone surfaces which will 

reduce the intensity sum (Fig. 4.8 (a)–(c)). This analysis is repeated for each 

orientation separately.  
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(d) 

Fig.4.8 Effects of filter bandwidth selection. Aγ ridge strength obtained from 
B-mode US image in Fig.4.3 (a) for a fixed filter orientation (140°) and scale 
(a) λmin=10, (b) λmin=35, (c) λmin=140.  Investigating (a)-(c) we see that the 
bone ridge content in (b) is the strongest and the most continuous. (d) Filter 
scale versus sum of intensity values of Aγ. 
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4.3.4 Final Filter Orientation Selection 

In order to select the final filter orientations, the RT is re-calculated for the 

ridge strength image Aγ as obtained using the scale calculated in section 4.3.3. 

Figure 4.9 shows the calculated RT of the Aγ for the initial angles of 66° and 

106° as an example. Noting that the RT has high intensity locations indicating 

the presence of line-like structures in the image, the maximum value of the RT 

simply indicates the main orientation of the bone, since it has the strongest 

filter response, and is thus used to set the final filter orientation. Figure 4.9 (c) 

and (d) show an example where the angles corresponding to the peak occur at 

62° and 115°, hence the initial angles set as per section 4.3.2 are corrected 

based on these new calculated angles. We would like to note that this analysis 

is done for all the three initial filter angles obtained from section 4.3.2. In Fig. 

4.9 we only show two angles.  
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(c) (d) 

Fig.4.9 Filter orientation selection. (a) & (b): Aγ obtained using the initial 

filter angle (a) φ=66° and(b) φ=106° which are calculated from the RT of the 
B-mode image Fig.4.3, (c) & (d) RT of (a) & (b) showing new peaks at 62° 
and  115°, respectively. The two initial orientation of the filter is thus fine-
tuned to 62° and 115°. 
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4.3.5 Filter Angular Bandwidth Selection 

The angular bandwidth parameter, σø= π/(No/k), corresponds to the standard 

deviation of the Gaussian spreading function in the angular direction and 

describes the filter’s angular selectivity. Here No is the number of filter 

orientations and “k” is the constant that is used to define the filter angular 

bandwidth, which is a user defined parameter. Investigating the example in 

Fig. 4.10, we can see how at large angular bandwidths, the Log-Gabor filter 

acts as a smoothing filter without being sensitive to any orientation. On the 

other hand, for small angular bandwidths, the filter acts like a line detector 

degrading the curvature of the bone surface as it becomes less sensitive to 

curvature making the extracted features look like short line segments. 

Therefore, using the same analysis we used in our filter scale selection process 

would not be suitable to set σø since the intensity distribution of Aγ over all 

possible angular bandwidths will give a peak at very large angular bandwidths. 

An example for his situation is given in Fig. 4.11 (a) where selecting the peak 

value of the angular bandwidth versus sum of intensity values of Aγ plot 

corresponds to a filter response shown in Fig.4.10 (a).    

Based on these observations, we thus analyze the kurtosis of the RT of Aγ 

over different angular bandwidth values. Higher kurtosis means more of the 

variance is due to infrequent extreme deviations (Aγ image with uniform black 

background with sharp high intensity bone boundary), as opposed to frequent 

modestly-sized deviations (Aγ image with uniform black background degraded 

with speckle/ soft tissue interfaces or short line segments with different 

intensity values). We select the bandwidth corresponding to the peak kurtosis 

value (Fig.4.11 (b)). During this stage, the Aγ images used are obtained using 

the optimum filter scale as calculated in section 4.3.3.  
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(a) (b) 

 
(c) 

Fig.4.10 Effect of varying angular bandwidth on the Log-Gabor filter output 
for filter orientation 115°. (a), (b) and (c) are Log-Gabor filter outputs 
obtained using angular bandwidth values of σø=120°, σø =30°, σø=7.5° 
respectively.  
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(a) (b) 

Fig.4.11 Angular bandwidth selection step. (a) Filter angular bandwidth versus 
sum of intensity values of Aγ. (b) Filter angular bandwidth versus kurtosis of RT 
obtained from calculating the RT of Aγ. 
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4.4 Experimental Setup for Quantitative Validation 

The same experimental setup explained in chapter 3 section 3.2.1 was used for 

quantitative validation of the proposed method. Therefore, we will not go into 

the detailed explanation of the constructed phantom and the scanning process 

and refer the reader to the appropriate section for the details. The gold standard 

surface was again provided from the obtained CT scan. The main difference of 

the surface validation experiment from the previously explained one is the 

extraction of the bone surfaces from US scans using the PS method which is 

explained next.  

The PS images were obtained using the 2D Log-Gabor filter which is 

designed with the filter parameters obtained using the proposed framework. In 

order to compare the localization accuracy with our previous method, 

explained in chapter 2, we also obtained PS images with the Log-Gabor filter 

designed using filter parameters (given in chapter 2) which were empirically 

selected by investigating different filter outputs. The error calculations were 

calculated the same way as explained in chapter 3 section 3.2.1. This surface 

localization accuracy assessment was repeated for 15 different volumes 

obtained from the same specimen by processing each 2D slice of the US 

volume and averaging the results. 

In order to show that the proposed method is less sensitive to typical US 

artifacts and soft tissue interfaces we also calculated the signed distance values 

corresponding to all PS intensity values rather than the maximum PS intensity 

in the vertical direction as was done for surface localization accuracy 

assessment. This analysis was again repeated by processing each 2D slice of 

the 3D US volume and averaging the results.  

Finally, we have also performed an exhaustive search parameter selection 

procedure in order to compare these parameters and the localization accuracy 

achieved using these parameters with the parameters/accuracy found by using 
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the proposed method. The ranges of parameters that have been tested are given 

in Table 4.1. PS images were extracted using all the possible parameter 

combinations and calculating the previously explained signed distance error 

metric. The optimum parameters were chosen as the ones that gave the lowest 

mean error.  

 

Table 4.1 The ranges of the filter parameters that were used as an input to the 
exhaustive search algorithm.  

Parameters Start Value Increment End Value 

Filter Bandwidth 
 (κ/ω0) 

0.1 0.1 0.6 

Filter Scale 
 (λmin) 

2 1 100 

Number of Filter 
Orientation (No) 

1  1 6 

Filter Angular 
Bandwidth constant (k) 

0.2 0.1 3 

 
 

4.5 Results  

The proposed method was implemented in MATLAB (The Mathworks Inc., 

Natick, MA, USA). The extra added time of the proposed framework to the 

previously reported 2D PS method (0.5sec) is 6sec. For our data, the filter 

bandwidth was calculated to be 0.24 by using the proposed method in section 

4.3.1. During the scale selection process the γ value was set to 0.75 since this 

was reported to be optimal value for ridge feature detection [7]. For filter 

orientation we chose to work with three angles since choosing greater than 

three orientations had an insignificant effect on the results.    

4.5.1 Quantitative Results 

The distribution of intensity values with their corresponding signed distance 

values obtained from one B-mode US image volume by processing each 

individual 2D slice are shown in Fig. 4.12.  The figure also shows the 
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corresponding results obtained from PS images calculated using the best 

empirically-set parameters and the PS image calculated using the proposed 

parameter-optimized approach.  

Investigating these figures and Table 4.2 we can see that in both of the PS 

images, the concentration of the intensity values away from the zero signed 

distance value is much less compared to the B-mode US image intensity 

distribution which highlights the ability of the PS method in extracting bone 

surfaces without being affected by the US image artifacts. It can be easily 

noted how the PS obtained using the optimized parameters is much less 

sensitive to typical US artifacts or soft tissue interfaces compared to the PS 

obtained using the empirically-set parameters (Table 4.2).  

The average surface matching mean error was 0.51 mm (Std: 1.46mm) with 

the best empirically-set parameters compared to 0.33mm (Std: 0.71mm) for 

our proposed automatically-set parameters. Choosing two scales for the 

empirical method decreases the surface matching mean error to 0.41mm (Std: 

1.16mm) but introduces more outlier points away from the zero signed 

distance indicating an increase in the detection of US artifacts (Table 4.2 and 

4.3).   

For future applications the statistical distribution of signed distance values 

inside regions A and B (Fig. 4.12) could be used as a potential image quality 

metric since we would like to minimize the distribution inside these regions.  
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(a) 

 
(b) 

 
(c) 

Fig.4.12 Signed distance plots obtained from our quantitative validation 
experiment. (a) Signed distance (mm) versus B-mode US image intensity, (b) 
Signed distance (mm) versus phase intensity obtained from phase symmetry 
method with the best empirically set parameters using two scales, (c) Signed 
distance (mm) versus phase  intensity obtained from our proposed optimized 
parameter phase symmetry method. Signed distance/intensity pairs inside the 
red rectangular boxes B reflect features corresponding to soft tissue interface 
or speckle noise. Signed distance/intensity pairs inside the red rectangular 
boxes A are features corresponding to shadowing artefact, speckle noise or 
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thick bone response. Comparing these rectangles we can see that with the 
proposed parameter optimization algorithm the PS method becomes less 
sensitive to typical US artifacts. 

 

 

 

Table 4.2 Quantitative results for bone surface localization accuracy 
assessment comparing empirical PS with the proposed parameter tuned PS. 
The results represent the average signed distance values that correspond to all 
phase intensity values of a 3D US volume. 

 Empirical PS Parameter Tuned 
PS 

US Vol. One scale Two scales One scale 
 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Average 

ME 
(mm) 
1.67 
2.03 
2.54 
1.84 
3.1 
3.07 
2.62 
2.52 
2.33 
2.03 
2.13 
1.78 
0.95 
2.65 
0.97 
2.14 

std 
(mm) 
3.91 
4.56 
4.91 
4.12 
4.17 
4.60 
3.95 
4.48 
4.06 
4.05 
4.09 
4.26 
4.01 
4.70 
4.07 
4.26 

ME 
(mm) 
3.32 
3.87 
3.46 
3.19 
4.20 
4.28 
3.85 
4.49 
3.74 
3.07 
3.39 
2.71 
2.84 
4.29 
2.92 
3.58 

std 
(mm) 
4.70 
5.21 
5.48 
4.74 
4.85 
5.09 
4.97 
5.30 
5.03 
4.84 
4.98 
4.72 
4.94 
5.32 
4.98 
5.01 

ME 
(mm) 
0.77 
1.98 
0.91 
1.2 
2.44 
2.6 
2.35 
2.85 
2.26 
1.7 
2.61 
1.54 
0.22 
3.97 
0.23 
1.84 

std 
(mm) 
2.17 
4.21 
2.74 
3.15 
3.47 
4.11 
3.91 
4.88 
3.94 
3.5 
4.43 
3.66 
2.18 
5.07 
2.50 
3.59  

Vol.:Volume; std : Standard Deviation; ME: Mean Error 
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Table 4.3 Quantitative results for bone surface localization accuracy 
assessment comparing empirical PS with the proposed parameter tuned 
PS. 

 Empirical PS Parameter Tuned 
PS 

US Vol. One scale Two scales One scale 
 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Average 

ME 
(mm) 
0.83 
0.75 
1.25 
0.65 
0.69 
0.25 
0.57 
0.83 
0.57 
0.19 
0.29 
0.96 
-0.35 
0.69 
-0.40 
0.51 

std 
(mm) 
1.81 
2.23 
2.92 
1.69 
1.26 
0.54 
0.50 
1.47 
0.95 
0.95 
0.96 
2.31 
1.39 
1.64 
1.38 
1.46 

ME 
(mm) 
0.79 
0.66 
0.96 
0.63 
0.76 
0.31 
0.60 
0.47 
0.58 
0.15 
0.28 
0.76 
-0.46 
0.15 
-0.46 
0.41 

std 
(mm) 
1.79 
1.89 
2.34 
1.87 
1.28 
0.90 
0.53 
0.96 
0.62 
0.52 
0.53 
1.84 
0.59 
0.82 
0.97 
1.16 

ME 
(mm) 
0.67 
0.51 
0.65 
0.50 
0.62 
0.30 
0.59 
0.40 
0.44 
0.14 
0.27 
0.66 
-0.40 
0.12 
-0.50 
0.33 

std 
(mm) 
1.14 
1.42 
1.35 
1.45 
0.34 
0.64 
0.54 
0.28 
0.27 
0.35 
0.55 
1.35 
0.15 
0.65 
0.17 
0.71  

Vol.:Volume; std : Standard Deviation; ME: Mean Error 
 

Investigating Table 4.4 we can see that the filter parameters from the 

proposed method are very close the filter parameters obtained from the 

exhaustive search method. One of the main advantages of the proposed method 

is that the orientation selection procedure is based on the information obtained 

from the image content which makes the algorithm more robust to typical US 

artifact. Furthermore, filter scale and angular bandwidth is also adaptive with 

orientation. On the other hand in the original method the filter angles, filter 

scale (λmin), and filter angular bandwidth are always fixed which will result in 

the extraction of non bone surfaces as well. The average localization accuracy 

obtained from the exhaustive search method was 0.24mm (Std: 1.06mm). 

However, we would like to mention that the exhaustive search method requires 
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one day per slice where the proposed method only takes 6 sec per slice. 

Therefore, in this paper we are not targeting an optimization method since this 

would not be feasible in a clinical environment where speed is of major 

importance.  

 

4.5.2 Qualitative Results 

 

Figures 4.13-4.15 show a qualitative comparison of PS images of an in vivo 

human distal radius (Fig. 4.13 and 4.14) and pelvis (Fig.4.15) obtained with 

the proposed optimized Gabor filter parameters and contrasted to the best 

values we could empirically set. Note how the local phase images obtained 

empirically using 2 scales extracted more US artifacts and resulted in a thicker 

bone boundary due the unsuitable scale combination. Moreover, integrating the 

zero angle as one of the filter orientations caused the detection of unwanted 

features on the sides of the bone surface (white arrows). Decreasing the filter 

scale to 1 in the empirical case caused gaps in the extracted bone surfaces 

(white circles). Our surface results on the other hand, which used optimized 

filter parameters, were consistently sharper with reduced unwanted features on 

the bone sides and with no gaps in the detected surfaces. Figure 4.16 shows 

further supporting qualitative examples where scans of a fractured ex-vivo 

porcine tibia fibula specimen were acquired. Note how the proposed method 

again produced a cleaner identification of the bone fracture.  
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Table 4.4 Quantitative results comparing the filter parameters obtained 
using the exhaustive search method to the proposed method. The results 
represent the average signed distance values that correspond to maximum 
phase intensity values in vertical direction of a 3D US volume. 

US 
Vol. 

 κ/ω0 λmin No k 

ES 0.4 69 4 

(30°, 45°, 90°,135°) 

3 1 

PO 0.25 55, 45, 65 3 

(72°,92°,112°) 

2.2, 2.5, 1.89 

ES 0.4 60 3 

(60°, 90°,120°) 

3 2 

PO 0.25 49, 52, 65 3 

(72°,94°,116°) 

2.2, 1.56, 2.1 

ES 0.4 60 3 

(60°, 90°,120°) 

3 3 

PO 0.25 55, 66, 65 3 

(88°,98°,107°) 

2.2, 2.2, 2.4 

ES 0.3 65 3 

(60°, 90°,120°) 

3 4 

PO 0.25 48, 66, 56 3 

(96°,105°,114°) 

2.1, 2.2, 2.3 
 

ES 0.5 47 4 

(30°, 45°, 90°,135°) 

2 5 

PO 0.25 52, 61, 56 3 

(85°,101°,118°) 

2.1, 2.3, 1.95 

ES 0.4 67 4 

(30°, 45°, 90°,135°) 

2.7 6 
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(a) (b) 

Fig.4. 13 Qualitative results on in-vivo human distal radius data where the 
imaging depth was 3.5cm. (a)US image obtained by positioning the US 
transducer in volar plane, (b) US image obtained by positioning the US 
transducer in dorsal plane. From top to bottom: B-mode US image, PS image 
obtained using empirical filter parameters with 2 scales, PS image obtained 
using empirical filter parameters with one scale, proposed data-driven PS 
image. White arrows point out some extracted phase features that are not bone 
surfaces due to combining orientations that are not perpendicular to the bone 
surface during the calculation of PS. The white circles highlights example 
locations of a degraded bone surface due to the inclusion of less informative 
orientations with weaker bone responses.   
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(a) (b) 

Fig.4. 14 Qualitative results on in-vivo human distal radius data where (a)the 
imaging depth was 1.9 cm (left B-mode image), (b) 4.5cm (right B-mode 
image). From top to bottom: B-mode US image, PS image obtained using 
empirical filter parameters with 2 scales, PS image obtained using empirical 
filter parameters with one scale, proposed data-driven PS image. White arrows 
point out some extracted phase features that are not bone surfaces due to 
combining orientations that are not perpendicular to the bone surface during 
the calculation of PS. The white circles highlights example locations of a 
degraded bone surface due to the inclusion of less informative orientations 
with weaker bone responses.   
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Fig.4. 15 Qualitative results on in-vivo human pelvis where the imaging depth 
was 4.9cm. From top to bottom: B-mode US image, PS image obtained using 
empirical filter parameters with 2 scales, PS image obtained using empirical 
filter parameters with one scale, proposed data-driven PS image. White arrows 
point out some extracted phase features that are not bone surfaces due to 
combining orientations that are not perpendicular to the bone surface during 
the calculation of PS. The white circles highlights example locations of a 
degraded bone surface due to the inclusion of less informative orientations 
with weaker bone responses.   
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(a) (b) 

Fig.4. 16 Qualitative results on fractured ex-vivo porcine tibia fibula specimen 
showing two different fractures (a) and (b). From top to bottom: B-mode US 
image, PS image obtained using empirical filter parameters with 2 scales, PS 
image obtained using empirical filter parameters with one scale, proposed data-
driven PS image. White arrows point out some extracted phase features that are 
not bone surfaces due to combining orientations that are not perpendicular to the 
bone surface during the calculation of PS. The white circles highlights example 
locations of a degraded bone surface due to the inclusion of less informative 
orientations with weaker bone responses.   
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4.6 Discussion and Conclusion  

We believe that this scale and orientation adaptation approach addresses the 

key weaknesses of the previously published local phase based image 

enhancement methods [2]. In particular, the combination of automatic scale 

selection method with a very simple orientation optimization module was 

shown to produce qualitatively and quantitatively improved results. It should 

be noted that the previous local phase based feature extraction algorithms [2]  

are likely to enhance speckle regions and soft tissue interfaces as well as bone 

surfaces since they do not provide an explicit mechanism for distinguishing 

between these features, whereas the proposed data driven approach handles 

this situation by means of the ridgeness measure for automatic scale selection 

and orientation optimization with the RT.  

Qualitative results obtained from in-vivo and ex-vivo scans and 

demonstrated the critical importance of selecting the correct scales and 

orientations in local phase based US processing. Quantitative results were also 

presented on a specially constructed bone phantom where the gold standard 

surface of the bone was established through CT imaging. An improvement of 

close to 0.18mm in bone localization accuracy was observed. Furthermore, our 

adaptive parameter selection approach produces close to a 50% decrease in the 

variability and in the reduction of worst case scenario (i.e., the standard 

deviation of the bone surface localization error for the proposed method 

(0.71mm) is almost half of the empirical PS (1.46mm) method) compared to 

empirical and exhaustive search methods. In US based computer assisted 

orthopaedic surgery (CAOS) systems, inaccuracies may arise from various 

sources such as US-CT registration, tracking of surgical instruments, and 

localization of the surgical tool tips. Therefore an improvement in bone surface 

extraction from US data will play an important role in all US based CAOS 

systems, which will in turn improve the total accuracy of the system which, for 



Chapter 4 

  145 

a number of applications in orthopaedic surgery will need to be in the range of 

2-4mm [8].  

Though local image phase information has previously been successfully 

applied for extracting US image features, none of the prior studies investigated 

the effects of parameter setting on the extracted features nor provided 

guidelines on how proper selection could be achieved. Some authors left this 

as an open question for future development, while others tried to address it in 

an ad hoc manner, by investigating the filter outputs on samples of US imaged 

depicting a certain anatomical area of interest. In this chapter, we proposed a 

novel approach for automatic data-driven selection of the scale, bandwidth and 

orientation of Log-Gabor filters for calculating phase symmetry responses in 

bone US.  

To determine the filter bandwidth, US images with fully developed speckle 

were analyzed and the image speckle size was measured by calculating the 

autocorrelation function. For scale selection, we used a ridgeness content 

measure obtained from the Hessian matrix eigenvalues and investigated the 

information content extracted at different scales. This measure was adopted 

since a line profile across a bone surface in an US response typically depicts a 

ridge-like rather than a step or ramp-like edge at the bone boundaries [2]. This 

metric could be changed to a step edge response which is a common feature in 

echocardiography US images seen at the epicardial, the endocardial and 

pericardial boundaries [4]. For orientation selection, the appearance of bone 

surfaces was incorporated within our framework where a RT obtained from the 

image ridgeness content measure was used to deduce the optimal angles of the 

directional filter. This orientation optimization approach would be also useful 

during the extraction of K-wires, commonly used for fixation during distal 

radius fracture surgeries as a provisional fixation step prior to plating or as 

definitive fixation, as well as possibly other surgical instruments used during 

cardiac surgeries from US images [9, 10]. Because bone surfaces in US images 

typically appear as elongated line-like features, the RT which was used in this 
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study is the traditional RT where the integration of intensity values is 

performed along a line. This could be easily extended to a generalized RT 

where the integration could be performed on a curve which would be more 

suitable during enhancing curved features from US images.  

Our qualitative and quantitative results demonstrate how the proposed 

framework for automatic filter parameter selection captures essential aspects of 

US image feature enhancement based on local phase information, which would 

be of interest to developers of US based computer aided intervention systems.  

Future work will include the extension of this automatic parameter selection 

method to 3D and a clinical study where the proposed method will be tested on 

scans obtained from patients with distal radius and pelvis fractures. 
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Chapter 5 

Clinical Evaluation and 

Validation*  

5.1 Introduction 

In previous chapters we have shown for the first time that local phase features 

provide useful information for automatic and accurate extraction of bone 

surfaces and fractures from 2D and 3D US image data. In this chapter we 

present our first clinical results with three studies to assess the feasibility of the 

proposed methods.  

5.2 Current Distal Radius and Pelvis Reduction Procedure 

Close cooperation with orthopaedic surgeons is an absolute necessity for 

the proper design and realization of a successful CAOS system. The 

cooperation for this work was motivated by a necessity of the computer 

assistance in distal radius and pelvic fracture identification and fracture 

reduction assessment. As was mentioned in chapter 1, traditional approaches 

are facing many problems ranging from navigation to lack of real-time 3D 

surface information. Furthermore, current orthopaedic surgery relies on the use 

of imaging modalities that operate on X-rays which causes serious radiation 

exposure to the patient and surgical team. 

                                                      

 

* A version of this chapter will be submitted for publication. I. Hacihaliloglu, R. 

Abugharbieh, A. Hodgson, R. Rohling, P.Guy. “Local Phase Features of Ultrasound 

Images for Orthopaedic Surgery: First Clinical Results”. 
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To extract detailed information about the procedures currently followed by 

orthopedic surgeons for fracture reduction and address the problems, we 

attended numerous distal radius and pelvic fracture surgeries (Fig.5.1) at the 

Vancouver General Hospital (VGH), and worked closely with two orthopaedic 

surgeons; Drs. Peter O’Brien and Pierre Guy. A typical flowchart for the 

preoperative treatment and intra-operative reduction procedure used is given in 

Fig 5.2.  

Generally, X-ray scans are obtained in order to validate the initial fracture 

reduction and to identify the basic anatomic structures. The treatment method 

is then chosen. A range of operative and non-operative treatment options are 

recommended based on injury and patient characteristics. In today’s practice, 

methods for distal radius fracture fixation are based on either cast 

immobilization, percutaneous pinning, external fixation, internal fixation with 

plates, or combination treatments, while pelvic fractures are either managed 

non-operatively with protected mobilization or with internal and external 

fixation devices following reduction (realignment) of the fracture fragments.  

Our aim is to eliminate the difficulties encountered during the conventional 

2D fluoroscopy based orthopaedic surgeries and open new minimally invasive 

treatment options. Therefore, the work presented in this thesis is part of a 

larger project to develop a three dimensional (3D) US based computer assisted 

orthopaedic surgery (CAOS) system for fracture reduction assessment. The 

envisioned system is given in Fig.5.3. 

In the next sections we present our first clinical results using the proposed 

methods to identify fractures from B-mode images. We would like to mention 

3 cases will be presented in the following chapters as pilot cases which are the 

first cases within a clinical study that will continue beyond this Thesis.  The 

scanning studies performed in the previous chapters were obtained under 

controlled laboratory environments with optimum scanning conditions. With 

these three prospective case studies we hope demonstrate that similar results 

could also be obtained under clinical environments. Furthermore, we anticipate 
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that with these three studies we will determine the potential benefits of the 

proposed methods and what limitations are faced during the actual scanning 

procedure. Finally, we hope to learn useful information about which type of 

fractures are easy to identify and which types are causing limitations during 

the scanning and localization procedure.  

 

 

  
(a) (b) 

 
(c) 

Fig.5. 1 Distal radius surgery at the Vancouver General Hospital. (a) 2D 
fluoroscopy shot during surgery, (b) drilling the K-wire, (c) 2D 
fluoroscopy showing the position of the K-wire inside the bone. 
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Fig.5.2 Flowchart of typical preoperative treatment and intra-operative 
reduction of distal radius fracture surgery followed by our clinical 
partners at the VGH orthopedic surgery department. 
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Fig.5.3 Proposed 3D US based fracture reduction assessment CAOS system 
framework. Red boxes show the pre-operative actions and the black boxes 
represent the intra-operative actions 
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5.3 Bone Fracture Assessment Using 3D Ultrasound: A Pilot 

Study 

To validate the proposed US based CAOS system US scans were obtained 

from patients who arrived to the emergency department with a distal radius or 

pelvic ring fracture. Enrollment in this pilot study was limited to 20 patients 

who have already been diagnosed with a fracture in this area and who have 

been referred to the Orthopedic Trauma team at VGH for consultation and 

treatment. The patient was already undergone a standard investigation 

procedure, which involved anatomical investigation by the surgeon and 

obtaining X-ray scans and CT scan. Once the area (wrist or pelvis) was 

confirmed to involve a fracture requiring further care (surgery), the patient was 

informed about the study and invited to participate. Informed consent for the 

use of 3D US were obtained. The time allowed for the patient to make a 

decision after he/she was informed about the study was limited to 2 hours. 

Inclusion criteria for the study were: 

• Patients presenting to VGH Emergency Room with a diagnosis of 

distal radius or pelvis fracture, who are referred to the orthopaedic 

Trauma team. 

Exclusion criteria for the study were: 

• Patients with skin conditions, skin breakdown, or allergy which 

precludes the use of ultrasound gel. 

• Patients who have sustained a previous pelvis or distal radius fracture.  

• Patients unable to provide informed consent. 
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5.3.1 Data Collection and Qualitative Validation 

All US examinations in this clinical study were performed with a 

commercially available real-time scanner (Voluson 730, GE Healthcare, 

Waukesha, WI) with a 3D RSP5-12 transducer. This is a mechanized probe 

where a linear array transducer is swept through an arc range of 20°. During 

the scanning standard US coupling gel was placed on the skin over the 

positions for the dorsal, volar, and radial sections (Fig.5.3). In total 15 different 

US volumes were acquired. The gold standard comparison was provided by 

the 3D surfaces extracted from the pre-operative CT scans. The analysis was 

done by assessing the “fitness” of US derived surfaces to the gold standard 

which was achieved using the same procedure explained chapter 3-Section 

3.2.1 and chapter 4-Section 4.4. US image was matched to the CT surface by 

matching selected anatomical landmarks (note: in previous ex vivo bovine 

study, we used implanted fiducials to perform the registration, but fiducials 

could not be used in this clinical study) and computing the rigid body 

transformation. In order to minimize the user variability due to anatomical 

landmark selection the registration procedure was repeated 10 times. 

   
(a) (b) (c) 

Fig.5.4 Pictures showing the scanning position of the US transducer. 
(a)dorsal, (b) volar, (c) radial sections.  

 

 

 



Chapter 5 

  155 

5.4 Results 

5.4.1 Case 1  

The patient was presented to the emergency department with right wrist pain.  

The fracture was identified as a right distal dorsal radius cortex fracture. 

Figures 5.5 and 5.6 are showing the conventional X-ray scans and gold 

standard CT scans respectively. 

Fig 5.7 shows the corresponding US images for case study 1. Distinct 

presentation of homogeneous, strong, bright reflective echoes with dorsal 

acoustic shadowing was the characteristic feature of the bone border in all 

patients. A longitudinal examination across the fracture site revealed a clear 

disruption of the continuous reflection of the radius; furthermore, the 

displacement between the fracture fragments and the angle formed by the 

fracture fragments could be observed easily in every case.  The PS images 

obtained using the methods explained in chapter 2 and chapter 4 are shown in 

Fig. 5.7 (b) and (c) respectively. Investigating Fig. 5.7 (b) we can se that the 

proposed method extracts bone surfaces without being affected too much by 

the typical US artifacts. However, due to the empirical filter parameter 

selection and without tuning the filter orientations to the specific bone 

appearance the method also extract soft tissue interfaces which are not part of 

the bone surface. Using the method provided in chapter 4 we can see that using 

the optimized filter parameters the extracted bone surfaces were consistently 

sharper with reduced soft tissue interfaces and unwanted features. 

Comparisons of the extracted PS surfaces with the gold standard CT surface 

are given in Fig. 5.8. Finally we show 3D surfaces extracted using the 

proposed methods in Fig. 5.9 and Fig. 5.10.  
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(a) (b) 

Fig.5.5 Case study 1 conventional X-ray images. (a) Anterior posterior 
view on post attempted reduction, (b) Lateral view on post attempted 
reduction. Red arrows point out to the location of fracture.  

 

 
(a) 

 Fig.5.6 Case study 1 gold standard 2D CT slice. (a)Sagittal 2D CT 
slice. Red arrows point to the location of fracture. 
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(a) (b) (c) 

Fig.5.7 US images for case study 1. (a) B-mode US image, (b) PS image with 
empirical parameters used in chapter2, (c) Optimized PS image obtained using 
the proposed method in chapter 4. Red arrows in B-mode US images point to 
the location of fracture.  
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Fig.5.8 The analysis of “fitness” of bone surfaces extracted from B-mode US 
and corresponding PS images to the gold standard CT surface.  
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(a) 

 
(b) 

Fig.5.9 3D US images for case study 1. (a) 3D B-mode US volume, (b) 
corresponding 3D PS volume obtained by processing each individual 2D 
slice of the volume using the proposed method with empirical filter 
parameters. 
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(a) 

 
(b) 

Fig.5.10 3D PS images for case study 1. (a) 3D PS volume obtained by 
processing the 3D B-mode US volume given in Fig 5.9 using optimized 
filter parameters. The volume is obtained by processing each individual 
2D slice with the method proposed in chapter 4. (b) 3D PS volume 
obtained using 3D PS method explained in chapter 3.  
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Quantitative surface matching results are given in Table 5.1. Investigating 

Table 5.1 we can see that by optimizing the filter parameters using the 

proposed framework in chapter 4 we achieve a better localization accuracy. On 

the other hand 3D PS method achieves the best localization accuracy. 

Table 5.1 Clinical validation Case 1 US to CT surface matching error results. 

 EPS OPS 3D PS 
 

Average Mean 
Error (mm) 

0.77 0.33 0.21 

Std (mm) 1.10 0.52 0.47 

Std: Standard deviation. 

5.4.2 Case 2  

The patient was presented to the emergency department with left wrist pain.  

The fracture was identified as a left distal radius fracture. Figures 5.11 and 

5.12 are showing the conventional X-ray scans and gold standard CT scans 

respectively. 

  
(a) (b) 

Fig.5.11 Case study 2 conventional X-ray images. (a) Anterior posterior 
view on post attempted reduction, (b) Lateral view on post attempted 
reduction. Red arrows point out to the location of fracture. 
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(a) (b) 
Fig.5.12 Case study 2 gold standard CT surfaces. (a)Top to bottom: Sagittal, 
axial, and sagittal 2D CT slices. (b)Corresponding zoomed in images. 
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Fig 5.13 shows the corresponding US images for case study 2. Again distinct 

presentation of homogeneous, strong, bright reflective echoes with dorsal 

acoustic shadowing was the characteristic feature of the bone border in all 

scans. The PS images, obtained using the methods explained in chapter 2 and 

chapter 4, are shown in Fig. 5.13 (b) and (c) respectively.  

 

   

   

   

   
(a) (b) (c) 

Fig.5.13 US images for case study 2. (a) B-mode US image, (b) PS image 
with empirical parameters used in chapter2, (c) Optimized PS image 
obtained using the proposed method in chapter 4. Red arrows in B-mode 
US images point to the location of fracture. 
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Finally we show 3D surfaces extracted using the proposed methods in Fig. 

5.14 and Fig. 5.15. 

 
(a) 

 
(b) 

Fig.5.14 3D US images for case study 2. (a) 3D B-mode US volume, (b) 
Corresponding 3D PS volume obtained by processing each individual 
2D slice of the volume using the proposed method with empirical filter 
parameters. 
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(a) 

 
(b) 

Fig.5.15 3D PS images for case study 2. (a) 3D PS volume obtained by 
processing the 3D B-mode US volume given in Fig 5.14 using optimized filter 
parameters, (b) 3D PS volume obtained using 3D PS method explained in 
chapter 3. 
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Quantitative surface matching results are given in Table 5.2. Investigating 

Table 5.2 we can see that by optimizing the filter parameters using the 

proposed framework in Chapter 4 we achieve a better localization accuracy. 

On the other hand 3D PS method achieves the best localization accuracy.  

Table 5.2  Clinical validation Case 2 US to CT surface matching error results. 

 EPS OPS 3D PS 
 

Average Mean 
Error (mm) 

0.94 0.46 0.42 

Std (mm) 1.45 0.55 0.65 

Std: Standard deviation. 

5.4.3 Case 3  

The patient was presented to the emergency department with right wrist pain.  

The fracture was identified as a right distal radius fracture. Figures 5.16-5.18 

show the US images for case study 3 with the corresponding gold standard 2D 

CT scans. Again distinct presentation of homogeneous, strong, bright 

reflective echoes with dorsal acoustic shadowing was the characteristic feature 

of the bone all scans. The PS images, obtained using the methods explained in 

chapter 2 and chapter 4, are shown in Fig. 5.16 -5.18 (b) and (c) respectively.  

Investigating the figures we can se that the proposed method extracts bone 

surfaces without being affected too much by the typical US artifacts. However, 

due to the empirical filter parameter selection and without tuning the filter 

orientations to the specific bone appearance the empirical PS method also 

extract soft tissue interfaces which are not part of the bone surface. 

Furthermore, the empirical PS method also fails to identify the fracture in 

some scans (Fig. 5.16 and 5.18) whereas the parameter optimized 2D PS 

extracts the fracture clearly.  The extracted 3D PS results using the method 

explained in chapters 2-3 and 4 are shown in figures 5.19 and 5.20. 
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(a) 

   
(b) (c) (d) 

Fig.5.16 Case study 3. (a) Gold standard 2D sagittal CT slice where the zoomed in 
version shows a clear fracture, (b) 2D B-mode US image, (c) PS image with 
empirical parameters used in chapter 2, (d) Optimized PS image obtained using the 
proposed method in chapter 4.  
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(a) 

   
(b) (c) (d) 

Fig.5. 17 Case study 3. (a) Gold standard 2D sagittal CT slice where the 
zoomed in version shows a clear fracture, (b) 2D B-mode US image, (c) PS 
image with empirical parameters used in chapter 2, (d) Optimized PS image 
obtained using the proposed method in chapter 4. 
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(a) 

   

(b) (c) (d) 

Fig.5. 18 Case study 3. (a) Gold standard 2D sagittal CT slice where the zoomed in 
version shows a clear fracture, (b) 2D B-mode US image, (c) PS image with 
empirical parameters used in chapter 2, (d) Optimized PS image obtained using the 
proposed method in chapter 4. 
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(a) 

 
(b) 

Fig.5. 19 3D US images for case study 3. (a) 3D B-mode US volume, (b) 
Corresponding 3D PS volume obtained by processing each individual 2D slice 
of the volume using the proposed method with empirical filter parameters. 
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(a) 

 
(b) 

Fig.5.20 3D PS images for case study 3. (a) 3D PS volume obtained by 
processing the 3D B-mode US volume given in Fig 5.14 using optimized filter 
parameters, (b) 3D PS volume obtained using 3D PS method explained in 
chapter 3. 
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Quantitative surface matching results for case study 3 are given in table 5.3.   

Table 5. 3 Clinical validation Case 3 US to CT surface matching error results 

 EPS OPS 3D PS 
 

Average Mean 
Error (mm) 

0.47 0.33 0.22 

Std (mm) 1.39 0.88 0.77 

Std: Standard deviation. 

 

5.5 Discussion 

With these three studies we have demonstrated our first clinical results using 

the proposed methods for extracting bone fractures from US images.  With 

real-time scanning and confirmations obtained from the US and PS images we 

were able to identify the location of the fracture. Quantitative validation of the 

surface matching was also achieved by investigating surface matching between 

the surfaces extracted from B-mode US volumes using the proposed methods 

and gold standard CT surface. The surface results obtained from these two 

clinical cases were identical to the X-ray and CT findings. This similarity 

supports the hypothesis that real-time 3D US can provide real-time observation 

that can guide and confirm the fracture.  

During these three studies we observed that proper alignment of the US 

transducer is of major importance in order to identify fractures. The scanning 

positions shown in Fig.5.4 provided good starting points.  

Obtaining the US scans for case study 2 proved to be little bit problematic 

compared to the other cases since the fracture was very close to articular 

surface. Identification of the fractured part proved to be challenging and added 

extra time to the original scanning time. However, as we already know, 

observation of the articular surface is limited because of their deep-seated 

position. Furthermore, the articular surface is blocked by carpal components. 

Also, US cannot be used instead of radiographs to assess or confirm the quality 
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of the reduction of intra-articular displacement of distal radial fractures, which 

is not uncommon. Finally, if the fracture is close to the articular surface or the 

soft tissue involves substantial swelling the extracted PS surfaces are affected 

from this by causing detection of unwanted soft tissue interfaces (Fig. 5.13). 

While US has some limitations that prevent it from completely replacing 

conventional radiography, it can facilitate the reduction and prevent repeated 

reduction attempts. Despite the encouraging experimental results and clinical 

study which demonstrate the potential benefits of the proposed method 

additional clinical studies are required in order to fully address the potential 

opportunities and limitations of the proposed work. 
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Chapter 6 

Conclusion and Future 

Work 

6.1 Significance of the Research 

In this thesis we investigated the employment of 3D US as an alternative safer 

imaging modality for a prospective minimally invasive computer assisted 

orthopaedic surgery system (CAOS) designed specifically for pre-operative 

bone fracture assessment and inter-operative guidance in fracture reduction 

procedures. We proposed several medical image processing methods for 

extraction of bone surfaces and fractures from 3D US volumes. 

In the introduction we discussed the incidence rates of fractures and the 

importance of fracture treatment in orthopaedic surgery. We also discussed the 

current challenges faced in orthopaedic surgery during the treatment of 

fractures and the CAOS systems that were proposed to solve these problems. 

We introduced 3D US as a potential imaging modality in order to improve the 

problems associated with the current state of the art CAOS systems.  

 As with other imaging systems, US has many disadvantages over direct 

visual contact. The images are difficult to interpret, low resolution, and have a 

small field of view. However, there are features that can be taken advantage of 

to improve performance. First, 3D US is real-time volumetric data. There is no 

other medical imaging modality that provides volumetric data at the temporal 

resolution of ultrasound. In addition, it is non-ionizing, compatible with a wide 

range of materials and anatomy, and comparatively inexpensive. In chapter 2 

we introduced the concept of phase symmetry for extracting bone surfaces 
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from US data. The method was based on extracting local phase features using 

2D Log-Gabor filters. We also showed for the first time that using the 

proposed method bone fragments could be extracted and tracked from US data 

using the proposed method. Knowing the location and orientation of the 

surgical instrument is arguably the most important piece of information for the 

surgeon. As a final application surgical tools were also extracted from US data 

with the proposed method. A key advantage of the proposed method is that it is 

fully automatic and intensity/amplitude invariant which makes it especially 

attractive for US image processing since the image gray value content depends 

on the orientation of the transducer and the US machine settings.  

To further improve the extraction of bone surfaces from US data we 

extended the proposed method to 3D in chapter 3. By integrating bone surface 

information along the axis perpendicular to the US scan plane direction 

decreased the sensitivity of the algorithm to soft tissue interfaces/US artifacts 

and increased the localization accuracy.  The significance of this method is that 

this is the first study to demonstrate the potential of 3D US in orthopaedic 

surgery. 

In order to further improve the proposed method, in chapter 4, we 

investigated the effects of filter parameters on the extracted features.  We 

developed a method that is based on the information obtained from the image 

content. With qualitative and quantitative results we demonstrated how the 

proposed framework captures essential aspects of US image feature 

enhancement based on local phase information, which would be of interest to 

developers of US based computer aided intervention systems.  

Finally we demonstrate the clinical feasibility and effectiveness of the 

proposed system with three clinical studies in chapter 5.   
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6.2 Contributions 

The main contributions of this thesis are summarized as follows: 

• We introduced an automatic, fast and accurate method for extracting 

bone surfaces from 2D US data. The method is based on the design 

and use of 2D Log-Gabor in order to construct a local phase symmetry 

measure that produces strong responses at bone surfaces and 

suppresses responses elsewhere.  

• We extended our original local phase based image processing 

technique from 2D to 3D US using 3D Log-Gabor filters. Extending 

the 2D method to 3D enables the extraction of much smoother and 

continues bone surfaces with increased localization accuracy. 

Furthermore, integrating the surface information along the axis 

perpendicular to the scan plane direction made the proposed 3D 

algorithm less sensitive to soft tissue artifacts and more sensitive to 

weak bone surface responses.  

• We analyzed the ability of our proposed 2D/3D local phase based 

method to localize surgical tools from 2D/3D US scans. Using the 

proposed method we showed that even relatively small surgical tools 

(less than 2 mm in diameter) can be localized with sub-millimeter 

resolution in a soft tissue model. 

• We presented extensive validation studies using carefully designed 

phantom, in-vitro and in-vivo experiments, and demonstrate the 

accuracy and robustness of our proposed approach for localizing 

fractured bone segments from 2D and 3D ultrasound data.  

• We investigated the effects of Log-Gabor filter parameters on local 

phase-based feature extraction, specifically for bone surface 

localization.  Although local phase measures can be quite successful in 

extracting important image features, they remain somewhat sensitive 

to the underlying filter parameters used. Therefore, we presented a 
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novel method for contextual parameter selection that is adaptive to 

image content. Our technique automatically selects the scale, 

bandwidth and orientation parameters of Log-Gabor filters for 

optimizing the local phase symmetry in ultrasound images. The 

proposed approach incorporates principle curvature computed from the 

Hessian matrix and directional filter banks in a phase scale-space 

framework. 

• We demonstrated the clinical feasibility and effectiveness of the 

proposed system with three clinical studies.   

6.3 Future Work 

While the proposed US feature extraction methods have shown promising 

results, they still require further improvements to the implementation and must 

be further validated to be ready for a clinical application.  

6.3.1 System Improvement 

Intra-operative surgery necessitates real-time performance. To provide 

interactive feedback to the surgeons the data processing must occur in real-

time as well. A number of improvements could be performed specifically to 

improve the speed and usability of the proposed system. The software platform 

used to develop the methods explained in this thesis was a high-level 

programming environment (MATLAB, The Mathworks Inc., Natick, MA, 

USA). Although the average time of the proposed method in this programming 

environment is an order of magnitude lower than acquiring a 3D fluoroscopy 

scan the processing time could be significantly reduced  by implementing the 

algorithm in a lower-level language and optimizing the coding.  

The image processing methods proposed in chapter 4 provides a significant 

first step for ultrasound guided orthopaedic surgery systems. However, the 

methods should be extended to 3D to fully address all the engineering 

challenges. The 3D RT is defined using 1D projections of a 3D object f(x,y,z) 
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where these projections are obtained by integrating f(x,y,z) on a plane with an 

orientation defined as α  (Fig.6.1).  

 
Fig.6.1 3D projection geometry. 

Given a 3D function f( x )=f(x,y,z) and a plane which is represented using the 

normal α  and the distance “s” which represents the distance of the plane from 

the origin, the 3D RT for this plane is defined as: 
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The 3DRT maps the spatial domain (x,y,z) to the domain (α ,s). Each point in 

(α ,s) space corresponds to a plane in the spatial domain (x,y,z). On the other 

hand the extension of the 2D hessian matrix to 3D is given as:  
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Despite the encouraging experimental results and clinical study which 

demonstrate the potential benefits of the proposed method, additional clinical 

studies are required in order to fully address the potential opportunities and 

limitations of the proposed work. These studies will eventually report the 

additional time introduced compared to the current reduction methods, 

reduction in the total amount of radiation exposure, achieved improvement in 

the reduction surgeries.  

Finally, additional cadaver studies are required to compare fracture 

reduction accuracy, the number of attempts to achieve the desired bone 

alignment position, and the surgical and fluoroscopic times in 3D US guided 

and conventional (fluoroscopically guided) procedure. The cadaver studies will 

provide valuable feedback to identify the different error sources that contribute 

to the overall clinical accuracy, to investigate ways to measure this accuracy, 

to identify the main error contributors and finding ways to reduce the errors 

associated with these sources.  

6.3.2 Other Applications 

With the work presented here there are many promising new directions. 

Previously mentioned clinical studies such as pedicle screw placement, total 

hip replacement, or total knee replacement could benefit from the concepts 

introduced by this work.  

However, the ultimate benefit of this work is more likely to be realized 

through the application to pelvic ring fractures where surgeons face 

considerable amount of difficulties during the alignment of the pelvic 

anatomical coordinate system. Furthermore, due to the difficulties faced during 

the intra-operative alignment and the use of a bigger C-arm unit (compared to 

mini-C arm which is used in distal radius surgeries) the amount of radiation 

exposure in pelvic surgeries is very high. Since post-operative CT scans are 

always available in these surgeries intra-operative registration of pre-operative 

CT data to the pelvic bone surfaces extracted using the proposed methods 



Chapter 6 

  180 

could be achieved. The previously proposed US based CAOS systems are 

based on the use of freehand 2D US transducers as an intra-operative imaging 

modality. Therefore, the collection of necessary data points in order to achieve 

successful point based registration, takes several minutes. We believe that 

providing real 3D surface information using the proposed methods would 

increase the registration accuracy and decreased operation time since the 

proposed methods are fully automatic and extraction of a 3D surface is 

sufficiently fast. Currently we are investigating the feasibility of the proposed 

method in extracting pelvic surfaces.  

 In order to use US in orthopaedic surgery applications there must be a 

direct line of sight between the transducer surface and the imaged bone 

anatomy. This could be problematic when imaging intra-articular fracture 

surfaces since the imaged anatomy will not allow a strong reflection from the 

top surface of the bones which in turn would results in an US image with a 

weak or no bone feature at all. However, in most of the intra-articular fracture 

cases there will be a pre-operative CT scan available. Again in the situations 

where the extraction of bone surfaces proves to be difficult an intra-operative 

registration of the distal part with the pre-operative CT data could be achieved. 

6.3.3 US Image Registration 

As mentioned in the previous section intra-operative registration is one of the 

most important steps in all US based CAOS systems. The ability to perform 

this registration accurately, automatically, and rapidly is critical for enabling 

more effective image guidance. The local phase features extracted using the 

proposed method could also be used in a registration framework which has 

already been investigated by our research group [1]. Since the proposed 

method is robust to typical US artifacts successful results were achieved in 

terms of registration accuracy. In chapter 4 we have also shown that RT 

provides useful information about the orientation and location of the bone 

boundaries in US images. Currently we are investigating the combination of 
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RT properties in a registration framework for extended field of view US and 

registering pre-operative CT data to intra-operative US images.  
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Appendix A 

Clinical Evaluation Protocol Form 

Background information 

Distal radius and pelvic fractures are common injuries. Distal radius fracture is 

the most common fracture type in the forearm region. It is usually caused by a 

fall onto an outstretched hand (FOOSH). In the United States, fractures of the 

distal radius constitute about one sixth of all fractures seen in emergency 

department [1, 2, 3]. On the other hand, the incidence of pelvic fractures in the 

United States is estimated to be more than 100,000 per year [4] and typically 

occur in young patients and result from higher energy trauma.   

Appropriate management and treatment of distal radius and pelvic ring 

fractures is important to prevent long-term disability and sequelae that may 

originate from the nature of the original fracture or complications of the 

treatment method.  

A range of operative and non-operative treatment options are recommended 

based on injury and patient characteristics. In today’s practice, methods for 

distal radius fracture fixation are based on either cast immobilization, 

percutaneous pinning, external fixation, internal fixation with plates, or 

combination treatments [5], while pelvic fractures are either managed non-

operatively with protected mobilization or with internal and external fixation 

devices following reduction (realignment) of the fracture fragments [6,7,8]. 

Management for either injury is generally based on the fracture pattern, degree 

of displacement, other associated injuries, and the individual patient's needs 

and demands.  

For distal radius fractures, other than casting,  external fixation is considered 

the next least invasive procedure, which can be used to correct radial 

shortening and metaphyseal angulation, but may not always restore articular 

congruity in intra-articular fractures. For these situations a combination of 
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open reduction and percutaneous pinning or internal fixation under 

fluoroscopic visualization is usually the favoured option and in many cases 

offers more secure fixation [9, 10].  

The list of complications in malunited distal radius fractures is extensive and 

includes limitation of wrist mobility due to joint incongruencies, loss of radial 

length leading to impingement or subluxation of the distal radial joint, all 

causing a painful wrist, reduced grip strength, problems with the median nerve 

and, in later stages, carpal instability and secondary arthritic changes [11]. The 

treatment goals have therefore aimed at improving the radiographic alignment 

of fragments using the least invasive approach which will achieve this. 

Similar treatment options, ranging from external fixation methods to open 

reduction and stabilization, are also available for pelvic ring fractures [6, 8]. 

External fixation devices cannot restore enough stability in the unstable 

complex fractures to allow mobilization of the patient without risk of 

redisplacement of the pelvis, which may lead to suboptimal functional results. 

In such cases, additional reduction manoeuvres are carried out, followed by 

internal fixation. The goal of the surgical treatment is to maintain anatomical 

shape of the pelvis and to reduce the fragments within 5-10mm of their normal 

location to maximize function.  

Complications after operatively treated pelvic fractures include loss of the 

reduction; wound infection, neurological and/or vascular injuries, pain 

syndromes and leg length discrepancies which may result in permanent 

disability [6]. Of these, some may be related to inability to reduce the pelvis to 

an acceptable position or may be related to improper placement of implants. 

The main factors limiting the ability to reduce fractures and safely place 

implants are related to intra-operative fluoroscopy’s limited ability (from 2-

Dimensional images) to represent the complex 3-Dimensional structure of the 

pelvis and safely guide reduction and implant placement. 

Imaging is therefore a critical component of adequate fracture treatment. 

The most commonly used medical imaging modalities in orthopaedic surgery 
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are preoperative X-ray or computed tomography (CT) and intra-operative 

fluoroscopy for guidance during the surgery. Although these imaging 

modalities provide high quality visualization of bones, they still pose several 

challenges.  

The traditional fluoroscopic images provide two dimensional (2D) 

representations of a 3D structure. Scans from different directions must 

therefore be obtained to visualize the 3D anatomical region undergoing 

surgery. This poses a particularly significant challenge during pelvic surgeries 

where large fragments are indirectly reduced back into position without direct 

visualization and implants are then placed to fix the fragments while avoiding 

important adjacent nervous and vascular structures (respectively the spinal 

canal and peripheral nerves, and major arteries and vessels).  As no direct 

visualisation of the fragments or implants is possible during these operations, 

surgeons rely on 2-Dimensional images provided by intra-operative 

fluoroscopy to make decisions on a 3D environment.  

Similarly during distal radius surgery, the surgeon must position the 

implant without direct visualization of all parts of the fracture or the implants. 

In order to determine the drill trajectory of K-wires, or screws commonly used 

for fixation during distal radius fracture surgeries, different 2D fluoroscopy 

images are taken assessing the quality of reduction, the position of implants 

particularly avoiding intra-articular penetration of the hardware.  

CT imaging would on the other hand provide 3D information about the 

anatomical area with very good resolution but is limited to imaging before and 

after the surgical procedure. No intra-operative CT scanners are presently 

commonly in use. The preoperatively obtained 3D scans cannot at present be 

updated in the OR with CT once the reduction is achieved. It is therefore not 

possible to use this imaging modality in real time. 

The pre and intra-operative imaging modalities currently employed in 

orthopaedic surgeries require the use of X-rays therefore exposing the surgical 

team and patients to potentially harmful ionizing radiation. It is reported that 
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more than 15 million skeletal studies are performed yearly in the United States 

using radiography [14]. A recent study investigating the exposure of the 

orthopaedic surgeon’s hands to radiation during the surgery found an exposure 

of 20mrem/case which is reported to be 187 times greater than the amount 

predicted by the manufacturer [15] (mrem represents the unit in radiation 

dose). For comparison, a chest x-ray exposes the patient to about 20mrem. The 

surgeries included in this study were treatments for distal radius fractures and 

malunions, scaphoid nonunion, small joint fusion, perilunate dislocation, and 

metacarpo-phalangeal joint arthroplasty. Both the National Council on 

Radiation Protection and the International Commission of Radiological 

Protection recommend a maximum exposure of the hands of 50000mrem, 

which allows up to 2500 cases per year. Though 20mrem/case is below this 

limit, however, receiving nearly the equivalent of a chest X-ray per case 

indicates special care must be taken especially if we think the amount of 

surgeries a surgeon has to perform. It is reasonable to keep the radiation 

exposure as low as possible, regardless of safety regulations and to strive to 

develop imaging modalities which avoid ionizing radiation whenever possible. 

Since images used for guidance and fracture reduction assessment are 2D, 

the number of fluoroscopy images taken during the surgery increases 

depending on the experience of the surgeon. In a recent study, Blattert et al 

[16] formed two teams according to their professional qualification and 

clinical appointment in order to determine whether skill dependence affects the 

amount of radiation exposure to orthopaedic surgeons. The study showed that 

the mean time of fluoroscopy per operation was higher for the team which had 

less experienced surgeons.  

Because of the difficulties encountered during the fixation of these 

fractures special interest has developed in computer assisted orthopaedic 

surgery (CAOS).  Computer Assisted Surgery (CAS) was first introduced to 

locate brain tumors based on stereo tactics principles [19]. After that the CAS 

field has started to grow in different subspecialties; CAOS being one of them. 
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The most recent review about the latest developments of CAOS was conducted 

by Sugano [20] and Schep [21].Because of the rigid structure of the bone 

Orthopaedic surgeries are particularly suitable for CAS systems. There are two 

main categories in current Computer Assisted Orthopaedic Surgeries based on 

their imaging modalities and guidance capabilities: Fluoroscopy Guided and 

Volumetric Image Guided systems.  

In Volumetric Image Guided systems preoperatively three dimensional (3D) 

models are created with the help of different imaging modalities such as 

computed tomography (CT), and magnetic resonance imaging (MRI). These 

models are then used together with the intra-operatively captured tracked two 

dimensional (2D) Fluoroscopic or  2D Ultrasound  images to localize the 

patient in the OR and to guide the surgeon during the surgery. In CAOS 

systems CT is the most common used preoperative imaging modality. Because 

of its high resolution, and high contrast between the bone and surrounding 

tissue segmentation of bone is easy in CT.  This imaging modality is used in 

several applications like: distal radius osteotomy [22, 23] spine pedicle screw 

insertion [24, 25, 26], total hip arthroplasty [27], total knee arthroplasty [28, 

29], and reconstruction of knee cruciate ligaments [30]. 

For Fluoroscopic navigation; which is less costly than volumetric image 

based navigation, 2D Fluoroscopic images are used to construct the guiding 

process. A tracked C-arm, which is known as a mobile fluoroscopy device, is 

used during the surgery for data acquisition. The major disadvantage is the 

substantial exposure to ionizing radiation and fluoroscopy images only provide 

2D planar view of the anatomical area being imaged.  

Although these systems provide successful results there is still a need for a 

intra-operative real time 3D imaging modality in orthopaedic surgery.  

The recently introduced 3D fluoroscopy units provide 3D visualization of 

the anatomical area of interest. However, the popularity of this technique is 

currently limited by the high cost of commercial systems, the limited field-of-

view and inferior image quality compared with CT images. Furthermore, a 



 

  171 

rigid relationship must be obtained between the reference arc and the navigated 

anatomy in order to have an accurate 3D fluoroscopy unit. Finally there is still 

radiation exposure to the patient and surgical team. 

Ultrasound has traditionally been used to image the body’s soft tissue, 

organs, and blood flow in real time. Since there is no clinically reported risk of 

using ultrasound, it is still regarded as the only safe method to image a fetus. 

Consequently, in order to eliminate the substantial exposure of ionizing 

radiation to both the surgical teams and patients, which is inherent to 

fluoroscopic and volumetric image guided systems, special attention has been 

recently given to incorporating ultrasound imaging instead of fluoroscopy 

which completely eliminates the exposure of ionizing radiation [31-44].  

Although unable to penetrate bone, ultrasound strategy is capable of 

delineating the surface of bone in 2 or 3 Dimensions, which may be used as an 

anatomical landmark. Our group’s preliminary work on using 3D ultrasound 

has shown promising laboratory results; supporting the present pilot proposal 

to investigate the technologies capabilities in a clinical setting [45-47].  

Purpose 

The purpose of this research proposal is to determine the effectiveness and 

demonstrate the clinical feasibility of using 3D ultrasound imaging modality 

for assessing distal radius and pelvic fractures in emergency departments. 

Using real time 3D ultrasound we would ultimately aim to decrease the 

amount of time spend in the emergency department, to decrease the radiation 

exposure to patient and to staff, and to increase the accuracy of reduction and 

implant placement in fracture fixation cases. The present goals are limited to 

the feasibility outcomes listed below. 

Hypothesis 

Our hypothesis is that 3D real time ultrasound can provide useful information 

about the fractured anatomical area.  

The specific research questions we aim to answer are: 
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• Can distal radius and pelvic ring fractures be assessed from 3D 

ultrasound scans using state of the art image processing techniques? 

• Is the ultrasound procedure well tolerated by patients? (questionnaire, 

rate of refusal) Separate document: 3D ultrasound patient assessment 

questionnaire:  

• Can we obtain the same or more information from this 3D scans 

compared to plain X-rays or CT? 

• Which characteristics of the fractured bone surfaces can we detect? 

• To what extent can we match the surface detected on ultrasound to that 

of X-ray or CT image? 

• Are the measures of post reduction as assessed by 3D ultrasound 

similar those assessed by traditional imaging modalities such as post 

reduction X-ray and CT?  

This in turn will help us in the future design, develop, and evaluate a 3D 

ultrasound based CAOS system which could: 

• Improve performance by providing better assessment and placement 

of the fracture fragments which could in turn improve reduction and 

decrease the operation time  

• Promote minimally invasive surgery (MIS) by minimizing soft tissue 

exposure 

• Decrease cost and improve efficiency by replacing fluoroscopy at key 

points in the diagnosis and treatment 

• Decrease the amount of radiation exposure to patients and to staff 

• Decreasing the post operative complications related to fracture 

fragment reduction and implant position, which are encountered 

because of imaging limitations. 

This research will introduce the concept of using radiation-free real time 3D 

ultrasound imaging modality for fracture assessment in emergency 

departments. It could provide a method which will be robust, fast and easy to 
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use and which will allow imaging of the fracture at the time of presentation 

and during surgery. 

Furthermore, it will be invaluable for all future imaging studies with 

ultrasound for fracture reduction assessment in orthopaedic surgeries. 

Methods 

The components of the proposed research method are an ultrasound scanner 

and a ultrasound probe. By interacting with the ultrasound probe the surgeon 

can acquire 3D ultrasound scans from the fractured wrist or pelvic area. The 

acquisition time for one ultrasound volume is approximately 30 seconds, 

translating into 2 minutes (4 sides) to assess an area, and doubling to 5 minutes 

per area scanned to factor in positioning time.  

Due to the physics of ultrasound imaging ultrasound signals cannot 

penetrate the bone surface. Therefore, only the bone surface which is 

perpendicular to the probe surface can be scanned and visualized. In order to 

span all the fractured bone area different ultrasound volumes will be obtained 

from dorsal, volar, radial and ulnar sections of the distal radius, and the 

superior and lateral portions of the iliac crest on the pelvis using the sterile-bag 

covered ultrasound probe. As stated, actual scanning time is expected to be 2 

minutes per area of interest. Considering the need for repositioning we expect 

this will take 5 minutes per scan. As we will need to scan patients 2 to 3 times 

over the course of care we expect the total time demand increase from usual 

care would be 10-15 minutes, which we expect would not affect the patients 

outcome. 

Ultrasound scans will be obtained from patients who arrive to the 

emergency department with a distal radius or pelvic ring fracture. Enrollment 

in this pilot study will be limited to 20 patients who have already been 

diagnosed with a fracture in this area and who have been referred to the 

Orthopedic Trauma team at VGH for consultation and treatment. The patient 

will have already undergone a standard investigation procedure, which 

involves anatomical investigation by the surgeon and obtaining X-ray scans (if 



 

  174 

necessary a CT scan). Once the area (wrist or pelvis) is confirmed to involve a 

fracture requiring further care, the patient will be informed about the study and 

invited to participate. Informed consent will be obtained. The time allowed for 

the patient to make a decision after he/she is informed about the study will be 

limited to 2 hours. 

Inclusion criteria:  

• Patients presenting to VGH Emergency Room with a diagnosis of 

distal radius or pelvis fracture, who are referred to the orthopaedic 

Trauma team. 

Exclusion criteria: 

• Patients with skin conditions, skin breakdown, or allergy which 

precludes the use of ultrasound gel. 

• Patients who have sustained a previous pelvis or distal radius fracture.  

• Patients unable to provide informed consent. 

 

The scanning will start after voluntary consent is obtained. For comparison of 

anatomical alignment and to ease study participant concerns related to an 

unfamiliar imaging modality involving gel and a probe, the uninjured wrist or 

pelvis of the patient will first be examined with ultrasound machine. 

US technique:  Before starting the ultrasound scan a special ultrasound gel 

(the amount equivalent to the tip of a thumb) will be spread into the skin 

surface. The gel makes the probe movement much easier and effective. It also 

helps coupling the probe interface with the skin surface which makes the 

image quality much better. The gel has no perfumes, no color, is 

hypoallergenic and is water-soluble. During the scanning no additional pain 

will be caused to the patient and the total scanning time will be limited to 15 

minutes.  

The acquired ultrasound volumes will be analyzed with state of the art 

image processing techniques after transferring them to a computer 
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workstation.The reliability and accuracy of ultrasound will be compared with 

the standard imaging modalities which are currently being used in emergency 

departments to assess the fracture as part of their usual care. Consequently, we 

will also ask for permission from the study participant to review the X-ray and 

CT scans (if available), collect the information and transform it to compare the 

ultrasound results to X-ray and CT scans. 

Analysis: After transferring the US scans to a workstation (PC) located at 

UBC-Department of Electrical and Engineering we will extract the 3D bone 

surfaces from the US scans by using state of the art image processing 

techniques that are already being developed by our group [45-48]. The gold 

standard comparison will be provided by the 3D surfaces extracted from the 

CT scans. The analysis will be done by assessing the “fitness” of US derived 

surfaces to the gold standard. Moreover, the reliability and accuracy of using 

US imaging in comparison with that of conventional X-rays for fracture 

fragment detection will also be evaluated by investigating the derived bone 

surfaces.  
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Appendix B 

Clinical Evaluation Patient Consent Form 

Bone Fracture Alignment Assessment Using 3D Ultrasound Imaging – A 

Pilot Study 

STUDY PARTICIPANT CONSENT FORM 

 
Principal Investigator:   Pierre Guy, MDCM, MBA, FRCSC, Assistant 
Prof.  
                                    UBC Department of Orthopedics 
    Div of Ortho Trauma 
    Ph: +1   604-875-5239 
                                                Fax: +1 604-875-4438                                                 
Co-Investigator:             Dr. Anthony J. Hodgson, Associate Prof. 
                                     UBC Department of Mechanical Engineering 
    Ph: +1 604-822-3240 
                                                Fax: +1 604-822-2403 
Co-Investigator:                   Dr. Rafeef Abugharbieh, Assistant Prof. 
    UBC Department of Electrical and Computer 
Engineering 
    Ph: +1 604-822-6034 
    Fax: +1 604-822-5949 
Co-Investigator:                   Dr. Robert N. Rohling, Associate Prof 
    UBC Department of Electrical and Computer 
Engineering 
                                                UBC Department of Mechanical Engineering 
    Ph: +1 604-822-2045 
    Fax: +1 604-822-5949  
Co-Investigator:                   Ilker Hacihaliloglu, PhD, Candidate 
              UBC Department of Electrical and Computer 
Engineering 
    Ph: +1 604-822-4988 
    Fax: +1 604-822-5949  
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Description 

You have been invited to participate in this study because you have a distal 

radius fracture in your forearm region or a fracture of your pelvis bone. Before 

you decide, it is important for you to understand what the research involves.  

This consent form will tell you about the study, why the research is being 

done, what will happen to you during the study and the possible benefits, risks 

and discomforts.   

If you wish to participate, you will be asked to sign this form.  If you do 

decide to take part in this study, you are still free to withdraw at any time and 

without giving any reasons for your decision. 

If you do not wish to participate, you do not have to provide any reason for 

your decision not to participate nor will you lose the benefit of any medical 

care to which you are entitled or are presently receiving. Please take time to 

read the following information carefully and to discuss it with your family, 

friends, and doctor before you decide.  

This research is currently being carried out as an internal study by the 

investigators listed above and is conducted by the University of British 

Columbia, Department of Orthopaedics, Department of Mechanical 

Engineering and Department of Electrical and Computer Engineering.  

    

Background 

Appropriate management and treatment of fractures is important to prevent 

long-term disability that may originate from the nature of the original fracture 

or its treatment. A variety treatment options involving either surgery or no 

surgery are commonly recommended for fractures, depending on the bone 

involved, the extent of the injury, the patient’s needs, and the ability to restore 

function. Your surgeon has recommended a treatment based on these criteria. 

This treatment (or procedure) involves realigning and holding into position the 

different fragments of your fracture with or without an operation. 
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 The study we are inviting you to take part in will not influence which 

treatment to choose but aims at performing an ultrasound to display the 

different fragments of your broken bone using ultrasound technology. 

Imaging is one of the main components of all fracture assessment and 

treatment methods. It uses a range of technologies to show physicians the 

extent of an injury, for example which bone is broken and to what extent. The 

most commonly used medical imaging modality in emergency departments 

and orthopaedic surgery are X-rays. These are usually done prior to any type 

of procedure to allow physicians to better define the injury. Along with the 

usual X-rays, CT scans are also obtained to define in additional detail the 

injured bone if the injured region can not be identified clearly from the 

previously obtained X-rays. Imaging is also performed during and after a 

procedure to confirm the proper position of the fracture. 

Although these imaging modalities provide high quality visualization of 

bones, they have limitations.  

Traditional X-rays provide two dimensional (2D) representations of your 

bones which are three dimensional (3D) structures. To compensate for that, X-

rays must be taken from different directions to visualize the anatomical region 

being imaged or operated on. A lot of skill is required to visualize 3D anatomy 

based on information obtained from 2D images and perform the necessary 

surgical action accordingly.  

Another type of imaging we already mentioned, CT imaging, on the other 

hand can provide 3D information, but as it is not readily available during a 

procedure or in the operating room it is therefore not a practical option to assist 

treatment.  

X-rays are also used during procedures such as orthopedic surgery to 

monitor the position of fragments but also to confirm the proper position of 

implants (wires, plates, screws) which are used to keep bones together. 

Surgeons use their knowledge of a bone’s anatomy to properly realign it and 
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fix it with implants. The result is usually confirmed during surgery by 

additional X-rays. Operation time, quality and accuracy of the surgical 

procedure and reproducibility of the surgical actions therefore largely depend 

on information obtained from 2D X-ray images and the experience of the 

surgeon.  

 

Although safe because used in small radiation doses, one final area of concern 

is that imaging modalities, such as X-rays, currently employed to monitor the 

position of fracture fragments and during surgery requires the use of X-rays, 

which expose the surgical team and patients to potentially harmful ionizing 

radiation. Note that the doses of radiation used for each operation remain 

within a safe range for patients and repeated doses are safe for surgical team 

staff.  

In contrast, Ultrasound is non ionizing imaging modality that involves no 

radiation and no known harmful side effects to humans. It is utilized to image 

soft tissues inside the body but can also show the contour of more solid 

structures such as bone. Many people would be familiar with the use of 

Ultrasound to image a baby or fetus prior to birth. In this study we will image 

fractures and surrounding bone with similar ultrasound technology with 

additional 3D capacity.  

The ability of 3D ultrasound to show fractures have not yet been established. 

This research will introduce the concept of using radiation-free real time 3D 

ultrasound imaging modality for fracture assessment in emergency department 

and in the operating room. Our aim is to compare this new technology to the 

usual one in its ability to image the fractured bone prior to and after 

repositioning.  

Furthermore, it could be helpful in developing new minimally invasive 

techniques for these surgeries, reducing amount of radiation, decreasing the 

post operative complications encountered because of the approaches 
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(placement of implants) applied in today's practice. This would involve other 

types of research than the one we are proposing to you. 

Purpose 

• The purpose of this study is to demonstrate the clinical feasibility of 

using three dimensional (3D) ultrasound, an imaging modality that 

involves no ionizing radiation, for assessing distal radius fractures and 

pelvis fractures in the emergency department and in the operating room. 

We will achieve this by performing to the usual imaging that is done for 

the type of injury you have, then additionally imaging the area with 3D 

ultrasound. Having done both, we will be able to find 3D Ultrasound’s 

ability to identify the usual imaging information. 

Who can participate?  

Patients who present to the Emergency Department at Vancouver General 

Hospital with a distal radius fracture or a pelvis fracture will be invited to 

participate. 

Who should not participate?  

Patients who do not have a distal radius fracture or a pelvis fracture should not 

participate in this study. Patients who have previously sustained a radius 

fracture or a pelvis fracture which has now healed should also not participate. 

Moreover, patients who have a skin condition, skin breakdown, or allergy 

which precludes the use of ultrasound gel over the area should also not 

participate. 

Study Procedure 

The study will take place in the Emergency Department and the Operating 

Room of Vancouver General Hospital (VGH, Vancouver, BC, Canada). 

Enrollment will be limited to 20 patients who have given their consent. All 

other patients will receive the usual level of care provided at VGH for these 

injuries.  

The components of the proposed research involve an ultrasound scanner 

and a 3D ultrasound probe. Before scanning the area on your body (wrist or 
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pelvis) an ultrasound gel will be spread into the skin surface. The gel makes 

the probe movement much easier and effective, and also improves the image 

quality. The gel has no perfumes, no color, is hypoallergenic and is water-

soluble. 

The ultrasound probe will then be placed on the skin over the fractured 

bone 4 times (once in each direction: superior, inferior, medial, lateral) for 

about 30 seconds each (total ultrasound time of 2 minutes). A sterile technique 

will be used keeping the gel and probe away from any planned or performed 

surgical incisions.  

The obtained images will be analyzed and compared with the standard 

imaging modalities (X-rays, CT scan) which were used to assess the fracture 

and which we will also use to analyze. .  

 

For comparison of anatomical alignment your uninjured wrist or pelvis will 

also be examined with 3D ultrasound using the same type of gel and probe; 

however no specific X-ray of this area will be taken. 

Risks 

As this study does not influence treatment and uses technology which is 

commonly used in other fields of medicine we foresee no additional risks from 

participating in this study. We expect the ultrasound procedure you will 

undergo will take an additional 5 minutes everytime the ultrasound is used. As 

the ultrasound will be used 2 and perhaps 3 times, depending on the number of 

attempts at realigning the bone (reductions) to be done, we expect an 

additional 10-15 minutes will be added to the usual care. This would be a small 

amount of time not expected to influence the outcome of your injury. 

Cost and Payments 

You will incur no additional cost and will not receive any payment for 

participation in this study. Your participation is purely voluntary.  
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Benefits 

There are no direct benefits to you for participating of this study. We hope that 

the information learned from this study will help in developing 3D ultrasound 

imaging for fractures of the distal radius and the pelvis and be a potential 

benefit to future patients.  

Discomforts 

As described, Ultrasound imaging involves the placement of a gel over the 

area to scan followed by the sliding of a probe on the gel and skin surface to 

visualize the area of interest. This procedure involves a very small amount of 

pressure over your wrist or pelvis. As ultrasound is often successfully used 

over affected tender areas of the body (for example to identify a fluid 

collection in a swollen area or on the infected skin overlying an abscess) we 

expect this test to be well tolerated and no more painful than the usual X-rays 

done for the injury.  

 

The usual care for the assessment and treatment of a fracture would involve 

you receiving analgesic medication, which we expect would be sufficient to 

allow you to undergo the usual X-rays and an Ultrasound. 

The Ultrasound will first be performed on your uninjured side; we expect 

this will allow you to appreciate the extent of the procedure. 

You may request to have the procedure stopped at any time for discomfort 

or any other reason.   

Alternative Treatments 

If you decide not to participate in this study, you will be treated with the 

standard procedure and a treatment method will be conducted depending on 

the fracture type.   

Privacy 

Your rights to privacy are protected by the Freedom of Information and 

Protection of Privacy Act of British Columbia. This act lays down rules for the 

collection, protection and retention of your personal information by public 
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bodies, such as the University of British Columbia and its affiliated teaching 

hospitals.  Further details about this Act are available upon request. 

Confidentiality 

Your confidentiality will be respected.  No information that discloses your 

identity will be released or published without your specific consent to the 

disclosure.  However, research records and medical records identifying you 

may be inspected by representatives of the UBC Research Ethics Board for the 

purposes of monitoring the research in the presence of the Investigator or his 

or her designate.  No records which identify you by name or initials will be 

allowed to leave the Investigator’s offices. 

Contact 

If you have any questions about the procedures employed in this study, if you 

desire further information with respect to this study, or if you experience any 

adverse effects you should contact Ms Raman Johal or Dr. Pierre Guy at 604-

875-5239 or Dr. Antony J. Hodgson at 604-822-3240. If you have any 

concerns about your treatment or rights as a research subject, you may contact 

the Director of the Office of Research Services at the University of British 

Columbia at 604-822-8598. 

Summary 

The proposed procedure requires your consent to proceed with ultrasound 

imaging of your uninjured wrist or pelvis, followed by ultrasound of the 

injured side. Finally consenting to use the images obtained in the course of 

your care (X-ray and/or CT scan) to compare ultrasound’s ability to match the 

images they provide. 

Voluntary Consent 

I understand that participation in this study is entirely voluntary and that I may 

refuse to participate or I may withdraw from the study at any time. The study 

doctor(s)/investigators may decide to discontinue the study at any time, or 

withdraw me from the study at any time, if they feel that it is in my best 

interests.  
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I also understand that if I choose to withdraw at any time, the data 

collected during my enrollment will be retained for analysis.  

I understand that signing this form in no way limits my legal rights as a 

patient. I also understand that participating in the study, refusing to participate 

or withdrawing from the study at any point in time has no affect whatsoever on 

my medical care. 

I have received a copy of this Consent Form for my own records. I have 

carefully reviewed all the pages of this form and I hereby consent to participate 

in this study. 

 

 

___________________ _______________________        

____________________ 

Printed name of participant                         Signature                              Date 

 

_________________________   _________________        

____________________ 

Printed name of witness                   Signature                    Date 

 

 

_________________________        _____________        

____________________ 

Printed name of principal 

Investigator                                        Signature                    Date 
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Appendix C 

Clinical Evaluation Patient Questionnaire Form 

SUBJECT QUESTIONNAIRE FORM 

 
 
Study Title: Bone Fracture Alignment Assessment Using 3D Ultrasound 
Imaging 

A Pilot Study 

 
Principal Investigator: Pierre Guy, MDCM, MBA, FRCSC, Assistant Prof.  
                                        UBC Department of Orthopedics 
    Div of Ortho Trauma 
    Ph: +1   604-875-5239 
                                        Fax: +1 604-875-4438         
                                         
Co-Investigator:  Dr. Anthony J. Hodgson, Associate Prof. 
                              UBC Department of Mechanical Engineering 
                              Ph: +1 604-822-3240 
                              Fax: +1 604-822-2403 
 
Co-Investigator:  Dr. Rafeef Abugharbieh, Assistant Prof. 

                 UBC Department of Electrical and Computer Engineering 
       Ph: +1 604-822-6034 
        Fax: +1 604-822-5949 
 
Co-Investigator:  Dr. Robert N. Rohling, Associate Prof 
                              UBC Department of Electrical and Computer Engineering / 
                              UBC Department of Mechanical Engineering 
                               Ph: +1 604-822-2045 
                   Fax: +1 604-822-5949  
 
Co-Investigator:  Ilker Hacihaliloglu, PhD, Candidate 
      UBC Department of Electrical and Computer Engineering 
      Ph: +1 604-822-4988 
                  Fax: +1 604-822-5949  
   

Emergency Telephone Number: Ms Raman Johal or Dr. Pierre Guy 
at 604-875-5239 or Dr. Antony J. Hodgson at 604-822-3240. If you 
have any concerns about your treatment or rights as a research 
subject, you may contact the Director of the Office of Research 
Services at the University of British Columbia at 604-822-8598. 
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Thank you for taking the time to participate in this study.  As the 

Ultrasound scanning procedure has finished we would like to take some 

time to ask you a few questions. 

Questions: 

1)  How painful was your wrist while waiting in the Emergency Room 

prior to being seen by a physician?  Please place a vertical mark on the 

line below to indicate how bad you felt you pain prior to seeing a 

doctor.. 

 

 

     No Pain                                                              Worst Pain 

         

2)  How painful was the process of scanning with the ultrasound probe 

and gel?  Please place a vertical mark on the line below to indicate how 

bad you felt you pain was during scanning 

 

 

 

     No Pain                                                              Worst Pain 

 

 

3)  Would you agree to the use of this ultrasound guided procedure 

performed again in the future? 

 

 

   No    Yes 
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Appendix D 

UBC Research Ethics Board Approval Certificates 

 

  

  

The University of British 

Columbia 

Office of Research Services 

Clinical Research Ethics Board – 

Room 210, 828 West 10th Avenue, 

Vancouver, BC V5Z 1L8 

ETHICS CERTIFICATE OF EXPEDITED APPROVAL  

  

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT: 

Institution Site 

Vancouver Coastal Health 

(VCHRI/VCHA) 
Vancouver General Hospital 

Other locations where the research will be conducted: 

The investigation of the obtained scans (Ultrasound, CT, and X-ray) using 

state of the art image processing techniques will be done at the Biomedical 

Signal and Image Computing Laboratory- Department of Electrical and 

Computer Engineering, UBC campus.  

  

CO-INVESTIGATOR(S): 

Rafeef Abugharbieh 
Ilker Hacihaliloglu 
Antony J. Hodgson 
Robert N. Rohling   

SPONSORING AGENCIES: 

N/A  

PRINCIPAL 

INVESTIGATOR: 

INSTITUTION / 

DEPARTMENT: 
UBC CREB NUMBER: 

Pierre Guy  
UBC/Medicine, Faculty 

of/Orthopaedics  
H06-03147 
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PROJECT TITLE: 

Bone Fracture Alignment Assessment Using 3D Ultrasound Imaging – A Pilot Study 

THE CURRENT UBC CREB APPROVAL FOR THIS STUDY 

EXPIRES:  September 11, 2009 

The UBC Clinical Research Ethics Board Chair or Associate Chair, has reviewed 
the above described research project, including associated documentation noted below, 
and finds the research project acceptable on ethical grounds for research involving 
human subjects and hereby grants approval. 

  

DOCUMENTS INCLUDED IN THIS APPROVAL: APPROVAL DATE: 

Document Name Version Date 

Protocol: 

Protocol for bone fracture assessment 

using 3D ultrasound 

Version 

1 

August 6, 

2008 

Consent Forms: 

Revised Consent form for bone 

fracture assessment using 3D 

ultrasound 

Version 

2 

September 

5, 2008 

Advertisements: 

revised Recruitment for bone fracture 

assessment using 3D ultrasound  

Version 

2 

September 

5, 2008 

Questionnaire, Questionnaire Cover Letter, Tests: 

Questionnaire for bone fracture 

assessment using 3D ultrasound  

Version 

1 

August 6, 

2008 

   

September 11, 2008 

CERTIFICATION: 

In respect of clinical trials: 

1. The membership of this Research Ethics Board complies with the membership 

requirements for Research Ethics Boards defined in Division 5 of the Food and Drug 

Regulations.  

2. The Research Ethics Board carries out its functions in a manner consistent with 

Good Clinical Practices.  
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3. This Research Ethics Board has reviewed and approved the clinical trial protocol 

and informed consent form for the trial which is to be conducted by the qualified 

investigator named above at the specified clinical trial site. This approval and the 

views of this Research Ethics Board have been documented in writing.  

  

The documentation included for the above-named project has been reviewed by the 

UBC CREB, and the research study, as presented in the documentation, was found to 

be acceptable on ethical grounds for research involving human subjects and was 

approved by the UBC CREB.  

  

Approval of the Clinical Research Ethics Board by one of: 

  

                 

Dr. Gail 

Bellward, 

Chair 
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The University of British 

Columbia 

Office of Research Services 

Clinical Research Ethics Board – 

Room 210, 828 West 10th Avenue, 

Vancouver, BC V5Z 1L8 

ETHICS CERTIFICATE OF EXPEDITED 

APPROVAL: RENEWAL 

  

PRINCIPAL 

INVESTIGATOR: 
DEPARTMENT: UBC CREB NUMBER: 

Pierre Guy  
UBC/Medicine, Faculty 

of/Orthopaedics  
H06-03147 

INSTITUTION(S) WHERE RESEARCH WILL BE CARRIED OUT:  

Institution Site 

Vancouver Coastal Health 

(VCHRI/VCHA) 
Vancouver General Hospital 

Other locations where the research will be conducted: 

The investigation of the obtained scans (Ultrasound, CT, and X-ray) using 

state of the art image processing techniques will be done at the Biomedical 

Signal and Image Computing Laboratory- Department of Electrical and 

Computer Engineering, UBC campus.  
 
CO-INVESTIGATOR(S): 

Rafeef Abugharbieh 
Ilker Hacihaliloglu 
Antony J. Hodgson 
Robert N. Rohling   

SPONSORING AGENCIES: 

N/A  

PROJECT TITLE: 

Bone Fracture Alignment Assessment Using 3D Ultrasound Imaging – A Pilot Study 
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EXPIRY DATE OF THIS APPROVAL:  August 14, 2010 

APPROVAL DATE:  August 14, 2009 

CERTIFICATION:  
In respect of clinical trials:  

1. The membership of this Research Ethics Board complies with the membership 
requirements for Research Ethics Boards defined in Division 5 of the Food and Drug 
Regulations.  
2. The Research Ethics Board carries out its functions in a manner consistent with 
Good Clinical Practices.  
3. This Research Ethics Board has reviewed and approved the clinical trial protocol 
and informed consent form for the trial which is to be conducted by the qualified 
investigator named above at the specified clinical trial site. This approval and the 
views of this Research Ethics Board have been documented in writing.  

The Chair of the UBC Clinical Research Ethics Board has reviewed the documentation 

for the above named project. The research study, as presented in the documentation, 

was found to be acceptable on ethical grounds for research involving human subjects 

and was approved for renewal by the UBC Clinical Research Ethics Board. 

  

 

Approval of the Clinical Research Ethics Board by one of: 

  

Dr. Peter Loewen, Chair 

Dr. James McCormack, Associate Chair 
 

 

 


