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Abstract 

This thesis presents a new two dimensional (2D) method based on complex Fourier series to 

characterize spindle radial error motions. One subtlety of spindle metrology is that the radial 

motion measurements have an undesired component caused by the ball installation eccentricity. 

The current standard methods cannot distinguish between this undesired component and 

fundamental radial error motion of spindle. The new 2D method identifies what fundamental 

radial error motion is and how it can be distinguished from the test ball installation eccentricity.  

Current standard methods give the consequence of radial error motion in two classes of 

spindle applications, but not the radial error motion itself. By identifying the fundamental radial 

error motion, the 2D method can not only determine the axis of rotation radial error motion, but 

also the consequence of error motion in all classes of spindle applications, including a new class 

of applications with two radial sensitive directions. 

Experiments are carried out on two types of spindles to confirm that fundamental radial 

error motion not only exists but it can have a magnitude higher than any other error motion 

component. The 2D method is used to find the actual radial error motion of the spindles as well 

as the consequence of error motion in applications. Possible physical causes of the fundamental 

error motion are also discussed and experiments are carried out to identify their actual effect on 

the spindles under test. 
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Chapter 1. Introduction 

Error motion of axis rotation is a major criterion for evaluating accuracy of machine tools. By 

the turn of the 20
th

 century, primitive techniques were available to measure the spindle runout 

[1]. Usually the measurement was carried out by attaching a mandrel to the spindle and 

measuring the movement of the mandrel’s surface using a dial indicator. Schlesinger, in 1927, 

was first to publish standards for spindle runout to set a benchmark for accuracy of machine 

tools.  

Over the past few decades, techniques were developed to extract the error motion of the 

spindle from the run out measurements and predict the quality of the finished work piece. In 

1985, American National Standards Institute (ANSI) adopted a standard which fully describes 

the testing of axes of rotation and its terminology (ANSI/ASME B89.3.4 M [2]). International 

Organization for Standardization (ISO) later published its own version: ISO 230-7 [3].These 

techniques were generally focused on traditional machining operations such as turning and 

boring where there is a single sensitive direction. 

Today, spindles are not restricted to generating axis-symmetric patterns. Some processes, 

such as FTS-assisted turning, machining of non-round holes, and rotary beam writing, are 

simultaneously sensitive to radial error motion in two dimensions. To evaluate spindle 

performance for these applications, a new 2D method is developed based on complex Fourier 

series. This method gives a new perspective of the motion of axis of rotation and reveals error 

motion components which cannot be measured using the existing methods.   

1.1. Axis of rotation error motion 

As the axis of rotation rotates around an axis, any motion in other five degrees of freedom is 

considered as error motion. Interaction between excitation forces coming from internal or 

external sources with the mass, damping and elasticity of the axis and its supporting structure 

causes the error motion [2]. 
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As defined in the current standards [2] and [3], there are three primary categories of error 

motion: tilt motion (Figure 1.1(a)), pure radial motion (Figure 1.1(b)), and axial motion (Figure 

1.1(c)). Furthermore, there are two secondary error motions which are radial and face error 

motions. Radial error motion is a combination of tilt and pure radial motion at a particular axial 

position. Face error motion is a combination of axial and tilt error motion a specified radius of 

the spindle face.  

 

 
Figure 1.1. Types of axis of rotation error motion. 

 

In ANSI standard [2], the term error motion is referred to relative displacement between the 

spindle and the tool or gage head only in the sensitive direction. As defined by standard, 

―sensitive direction is perpendicular to the ideal generated work piece surface through the 

instantaneous point of machining or gaging‖. In machining applications with a single sensitive 

direction, such as boring and turning, any motion perpendicular to the sensitive direction has a 

second order effect. Therefore, standard methods neglect these motions when characterizing 

spindle performance. But these methods are not sufficient for applications with two simultaneous 

radial sensitive directions, such as axis-asymmetric and/or multiple-tool machining. In contrast, 

this research introduces a new 2D method which characterizes spindle based on error motion in 

any radial direction.  

1.2. Prior art in measuring axes of rotation 

1.2.1. The current ISO and ASME/ANSI standards  

Spindle motion in the sensitive direction is defined as the ―component of the axis motion that 

moves toward or away from a cutting tool or gage head‖ [2]. Over the years, researchers focused 



3 

 

on specifying spindle performance for applications where the spindle has a single sensitive 

direction. To this end, methods for measuring axes of rotation radial error motion have been 

divided in two categories: rotating sensitive direction method and fixed sensitive direction 

method. 

Tlusty [4] realized the need to generate a base circle for better visualizing the motion of axis 

of rotation. Using two mutually perpendicular gage heads as shown in Figure 1.2, the motion of 

the test sphere was measured and the resulting runout was displayed on the oscilloscope X-Y 

plot. To generate the base circle, Tlusty installed the test sphere slightly eccentric with respect to 

the rotation axis. This eccentricity generates once-per-revolution sinusoidal signals superimposed 

on the probe signals.  

 

 
Figure 1.2. Tlusty’s rotating sensitive direction method setup. Redrawn from [3]. 

 

As an example, Figure 1.3(a) shows a numerical example of the motion captured by the vertical 

and horizontal sensors. Figure 1.3(b) shows the resulting polar plot displayed on the 

oscilloscope. 
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Figure 1.3. Numerical example illustration of Tlusty’s rotating sensitive direction method. 

 

The deviation of the polar plot shown in Figure 1.3(b) from a perfect circle gives the radial error 

motion of the spindle. Tlusty’s method is referred as rotating sensitive direction method since it 

can only capture error motions in the direction of the eccentricity of the ball. This method is 

insensitive to spindle motions which are tangential to test sphere eccentricity. In applications 

where the tool is fixed, such as outside cylinder surface turning, these tangential motions have a 

direct effect on the finished part when they are in the sensitive direction. For these applications, 

Bryan [5] introduced a new method referred as fixed sensitive direction method. This method 

measures the spindle motion moving toward or away from a fixed tool. Figure 1.4 shows Bryan’s 

setup which generates radial error motion polar plot on the oscilloscope. 

 

 
Figure 1.4. Bryan’s fixed sensitive direction method. Redrawn from [5]. 
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To generate the base circle for the polar plot, Bryan used two cylinders which were equally 

eccentric with respect to the rotation axis but had 90 degree phase shift. Two low-magnification 

gage heads measured the runout of the cylinders. A single high-magnification gage head was 

used to measure the runout of the spherical master which is centered as close as possible. The 

two signals coming from the circle generating gage heads were electrically multiplied by the 

signal measuring the spherical master runout and fed into the oscilloscope. Figure 1.5(b) shows 

an example of the polar plot for the example data of Figure 1.5(a). The deviation of the polar plot 

shown in Figure 1.5(b) from a perfect circle gives the radial error motion of the spindle in the 

direction of the gage installation. 

 

 
Figure 1.5. Numerical example illustration of Bryan’s fixed sensitive direction. 

 

In 1973, Vanherck and Peters [6] presented a setup which used encoder for measuring rotary 

position instead of eccentric cams. In addition, the new setup used computer to capture and 

display the data instead of oscilloscope. This setup is shown in Figure 1.6.  
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Figure 1.6. Vanherck and Peters digital measurement setup. Redrawn from [6]. 

 

In addition, Vanherck and Peters introduced digital processing such as Fourier transform into 

spindle metrology. The transformation of data from time domain into frequency domain is a 

convenient way to distinguish between synchronous and asynchronous error motions. As defined 

in [3], synchronous error motion is the portion of the total error motion that occurs at integer 

multiples of the rotation frequency. The polar plot of synchronous motion is indicative of 

roundness errors of the work piece under ideal cutting conditions. Asynchronous error motion 

consists of motion components that are random or have frequencies other than spindle rotational 

frequency and its integer multiples. The polar plot of asynchronous error motion presents the 

surface roughness under ideal cutting conditions. The mathematical derivation of synchronous 

and asynchronous error motions using both Frequency and time domain is given in Appendix A. 

Artifact roundness is another important issue for axis-of-rotation metrology, and several 

methods have been developed to remove ball roundness from radial indicator measurement, 

including reversal methods [7, 8], multiple-step method [9], and multiple-point methods (also 

known as multiple-probe method) [10, 11, 12]. As an alternative to test balls, another aerostatic 

bearing spindle can be used as a probe target in master axis method to measure the axis of 

rotation under test [13]. Bryan summarized the major milestones in the history of rotation axis 

research [14]. All these works helped establish the foundation of the current standards for 

geometric accuracy of rotation axes [2, 3]. The codes presented by the standards are widely 

accepted and are the common language used for technical communication regarding the subject. 

A recent book by Marsh documented and illustrated these existing methods with many practical 

details and experimental examples [15].  
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1.2.2. Radial error motion in two dimensions  

Any motion of the axis of rotation in X-Y plane at a particular axial location is radial error 

motion. Therefore, to find the actual spindle radial trajectory, a two dimensional point of view is 

required. Tlusty’s rotating sensitive direction polar plot was the first attempt to visualize the 

motion of axis of rotation in X-Y plane. This plot is redrawn in Figure 1.7(a) as a set of spindle 

error motion vectors: the origin of each vector is a point on the base circle corresponding to the 

rotary angle of the axis. The vectors include both the radial motion of the axis and the 

eccentricity of the target at a particular rotary position. 

Naguchi et al. published one of the earliest papers to investigate spindle radial error motion 

in two dimensions. In his method, the spindle error motion vectors are obtained after removing 

the ball eccentricity from the X and Y probe measurements [16].The plot of these vectors gave 

the motion path of the axis of rotation in X-Y plane(Figure 1.7(b)). Naguchi’s method removes 

ball eccentricity by applying least squares fitting method to X and Y measurements together.  

 

 
Figure 1.7. Numerical example illustration of existing methods to specify radial error motion in two dimensions.  
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1.3. Existing methods for specifying axis of rotation error motion 

According to the current standards, the polar plots themselves are not radial error motion, but the 

error motion values can be extracted from them by removing the centering error. There are two 

methods proposed in the standard to eliminate the centering error. 

Figure 1.8 shows the existing methods applied to a polar plot. The polar plot is the one 

obtained in Bryan’s fixed sensitive direction in the previous section but same conclusion can be 

obtained with any polar plot. In the least squares fitting method shown in Figure 1.8(left), the 

least squares circle of the polar plot is found and the deviation of the polar plot from this circle is 

specified as radial error motion. This process removes the DC (the radius of the least squares 

fitting circle) and fundamental component (the offset from the polar chart center to the least 

squares circle center) from the polar plot data. In the frequency domain method shown in Figure 

1.8(right) the polar plot data (N points per revolution) is first transferred to frequency domain. 

Next, the DC (0 cpr) and fundamental component (both 1 cpr and -1 cpr) is removed from the 

spectrum [6]. The data is then transferred back to angle domain by inverse Fourier transform.  
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Figure 1.8. Numerical example illustration of two existing methods of specifying radial error motion from polar 

plots. 

 

These two methods are essentially equivalent. Least squares fitting was very convenient for 

presenting the results graphically at the time when digital processing was not readily available. 

However, it suffers from a second-order distortion effect which is dependent on the polar plot 
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base-circle radius, as discussed in [2]. To show this effect, the radial error motion is plotted in 

Figure 1.8(bottom) for a radius of 50 r  µm and 500 r  µm. When the polar plot base circle 

radius is big enough, the error motion extracted from polar plot least squares fitting will be the 

same as that from the frequency domain method. In comparison, the frequency domain method 

can consistently give results independent of base-circle radius, 0r . Appendix B shows why these 

two methods converge as the base-circle radius increases.  

1.4. Current standard methods vs. 2D method 

In current standards [2, 3] ―error motion is used to refer to relative displacement in the sensitive 

direction between the tool or gage head and the workpiece‖. As a result, the major tool for 

specifying the spindle performance has been polar plots. The problem is that polar plots do not 

represent the actual error motion of axes of rotation. They only indicate the consequence of 

spindle error motion in the specified application. On the other hand, the new 2D method gives 

the actual radial error motion of the spindle regardless of whether the spindle is used to make 

something or how the spindle is used in a particular application. In addition, 2D analysis reveals 

the fundamental error motion of the spindle which cannot be identified with the existing 

methods. This fundamental component has a significant effect in application with two radial 

sensitive directions. In summary the new 2D method:  

 

1. Distinguishes between radial error motion and is consequence. It gives enough 

information to visualize the actual radial error motion regardless of spindle application.   

2. Captures all the components of the error motion including the fundamental error motion 

which is considered to be nonexistent in the current standards. 

3. Gives the consequence of spindle error motion for all types of applications including the 

ones which are sensitive to radial error motion in two directions. 

 

In the following subsections, a detailed description of the above points is given.  

1.4.1. Radial error motion and its consequence 

When a spindle is used in a surface cutting machine, the consequence of spindle radial error 

motion refers to the produced part surface/shape distortion that is caused by the spindle radial 
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error motion. When a spindle is used in a rotary CMM, the consequence of spindle radial error 

motion refers to the measurement data error that is caused by spindle radial error motion. 

Therefore, axis of rotation error motion and its consequence in a particular spindle application 

are two related but distinct concepts. Error motion consequence is certainly caused by error 

motion, but consequence also depends on the application details, such as how the cutting tools 

are installed, how many tools are installed, what type of parts to be made, and so on. Whenever 

the axis of rotation error motion consequence is discussed, the full details of the spindle 

application should be clearly specified. Current standards have adopted this approach and 

proposed two distinct methods for testing axes of rotation: one for applications with a fixed 

sensitive direction, and one for applications with a rotating sensitive direction. Each method 

gives a polar plot which indicates the consequence of spindle error motion in the corresponding 

category of applications. The specified performance of a spindle will differ based on the method 

used for testing it (rotating or fixed). This has been illustrated in A15 of [2], by Donaldson. He 

has given a case where the fixed sensitive direction method gives an elliptical pattern (2-lobe 

shape) polar plot while the rotating sensitive direction method gives a perfect circular shape 

polar plot. As a result, the spindle has a twice per revolution error motion when tested with fixed 

sensitive direction method but it has no error motion when tested with rotating sensitive direction 

method.  

In reality, any motion deviation of the axis of rotation from a fixed line in space is error 

motion. This error motion cannot be fully captured using the current standard methods. This 

thesis introduces a new 2D method for testing axes of rotation in which spindle’s behavior is 

characterized regardless of the spindle application. Instead of polar plot, the 2D method gives 

enough information to visualize the error motion of axis of rotation in two dimensions. This new 

approach distinguishes between spindle error motion and consequence of spindle error motion in 

a particular application. 

1.4.2. Fundamental radial error motion 

In the fixed sensitive direction method, spindle error motion is obtained by eliminating the 

centering error in the polar plot. As discussed in section 1.3., this is done by removing the 

fundamental component of the polar plot data. However, no reason has been given to support the 

assumption that fundamental (one cycle-per-revoltion or 1 cpr) radial error motion cannot 

physically exist in the fixed sensitive direction. Current belief is that the motion component 
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removed is generated only by the eccentricity of the target ball. Similarly, in Tlusty’s rotating 

sensitive direction method, the fundamental component of the polar plot data is removed but no 

reason has been given to support that spindle cannot have a fundamental error motion in the 

rotating direction. Therefore, the routine practice of eliminating a 1-cpr component from radial 

motion measurement is questionable. By proper and careful installation of the test artifact, the 1 

cpr component in one probe measurement (X or Y) can be completely eliminated, but the 1 cpr 

in the other probe measurement does not necessarily vanish. The results of the new 2D analysis 

shows that 1 cpr radial error motion not only exists but it can also have a magnitude higher than 

any other error motion component. 

1.4.3. Applications with two radial sensitive directions 

Today, spindles are not restricted to generating axis-symmetric patterns. Some processes, such as 

FTS-assisted turning, machining of non-round holes, and rotary beam writing, are 

simultaneously sensitive to radial error motion in two dimensions. As a result, the fundamental 

spindle error motion of spindles has a significant effect on the finished pattern. The current 

standard methods which remove any first order harmonic from the measurements are not 

sufficient to characterize spindles for these types of applications. The new 2D analysis on the 

other hand can be used to specify the spindle error motion for any type of application.  

1.5. Thesis overview 

This thesis introduces a new 2D method for testing the radial error motion of axis of rotation. 

Chapter 2 introduces the theory behind the new 2D method and uses an analytical example to 

illustrate the concepts. The spindle error motion as well as the consequence of this error motion 

in different types of applications are derived and compared with the current standard method 

analysis.   

Chapter 3 presents the results of 2D analysis on two types of spindles: ball bearing spindle 

on a Mori Seiki 5-axis machining center and 10 R Block-Head aerostatic bearing spindle from 

Professional Instruments. These experiments prove that fundamental spindle error motion exists 

and its magnitude is higher than any other error motion component. In addtion, experimental 

results are used to derive the potential out-of-roundness of the work piece in different types of 

applications.  
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Chapter 4 discusses the possible causes of fundamental error motion. Dynamic stiffness test 

results on the ball bearing spindle and unbalance test results on the aerostatic spindle will be used 

to backup the discussion. Additional tests will be presented to illustrate effect of temperature and 

pressure on spindle error motion measurements. 

Chapter 5 concludes this thesis and points out some areas for future work on testing axes of 

rotation. 
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Chapter 2. Two-dimensional radial motion theory 

Figure 2.1 shows a widely-used spindle metrology setup: two radial displacement measurement 

indicators are orthogonally installed to read against the rotor-mounted test ball’s surface. The 

subtlety of spindle metrology is that the two radial indicators plus a rotary encoder capture not 

only spindle radial error motion, but also two undesired components: the ball installation 

eccentricity and the test ball roundness. The artifact roundness is composed of harmonic 

components of 2 and higher cycles per revolution (cpr), and the installation eccentricity brings a 

1-cpr component to the indicator measurements. The major task of spindle metrology is to 

precisely strip off these undesired components and present the true radial error motion. 

 

 

Figure 2.1. Typical metrology setup: (a) 3D model. (b) 2D cross-sectional view at the specified axial location. 

 

This chapter introduces the new 2D method for testing the radial error motion of axes of rotation. 

By using complex Fourier analysis, this method is able to identify all the components of radial 

error motion and give a complete description of the axis trajectory in space. Figure 2.2 presents 

the framework of this novel 2D method.  

The metrology reference frame and the concept of structural loop are discussed in section 

2.1.  Section 2.2 analyzes the radial motion of a particular test point on the spindle rotor, with 

respect to the specified metrology reference frame. Based on the result of the test point motion 

analysis, the axis of rotation radial error motion is determined in Section 2.3. Section 2.4 
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identifies the consequence of spindle radial error motion in spindle applications. In Section 2.5, 

the 2D method and the current standard methods are compared and discussed.  

 

 
Figure 2.2. Spindle radial error motion analysis sequences. 

2.1. Metrology reference frame 

In general, motion is the movement of one object relative to another reference body. When 

discussing motion, a rigid body should be assigned explicitly as a reference frame, with respect 

to which motion can be described without ambiguity.  Axis of rotation error motion is not an 

exception.  

Different reference frame selections will result in different motion measurements. For 

example, in a five-axis machining center, it will be more meaningful to measure the tool spindle 

error motion relative to the work-holding table than to the spindle stator; therefore the work-

holding table is chosen as the reference frame, and  the error motion induced by the machine 

structural loop is included as part of the measurement. Spindle suppliers usually select the 

spindle housing or stator as the reference frame to demonstrate spindles’ best possible 

performance, with a structural loop as short as possible. The selection of metrology reference 

frame is governed by the objective of axis-of-rotation motion analysis. Different choice of 

metrology reference frame reveals different information, which can serve different purposes. 

Generally, a rigid body with a minimum varying radial force load is preferred, but there is not a 

single best choice for reference frame. When presenting an axis-of-rotation error motion result, 

the chosen reference frame should be clearly stated so that the analysis result can be properly 

interpreted.  
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Once the metrology reference frame is determined, the gauge indicators, such as capacitance 

probes, should be rigidly installed in this reference frame to measure the relative motion between 

the rotor-installed test artifact (a ball or a cylinder) and the metrology reference frame. In a 

typical setup as shown in Figure 2.1, the reference frame is the rigid body on which the X and Y 

motion-measurement probes are installed. The reference directions of the two radial dimensions 

X and Y, as well as the rotary position  , are set by the right-hand rule.  

The metrology frame origin location can be set arbitrarily without any effect on the analysis 

result. In measurement, the origin location is determined by factors such as the probe installation, 

probe zero-biasing adjustment, and other possible offset values added by data acquisition and 

analysis software. For the purpose of spindle metrology, it is not necessary to know the exact 

location of the reference frame origin. When investigating the axis average line shift under 

various conditions, such as different loads and speeds, the reference origin location should 

remain unchanged.  

2.2. Test point radial motion   

Once defining the reference frame, the radial indicator measurements give the test artifact center 

point motion in two orthogonal radial directions. Specifically, in the test setup shown in Figure 

2.1, the test ball has a geometric center P, which is the least squares center of the ball profile in 

the cross-sectional plane where the two indicators are installed [17]. Each indicator measurement 

includes both the radial motion of the point P and the ball’s out-of-roundness. The out-of-

roundness component can be removed from each indicator measurement using one of the 

methods presented in [7, 8, 9, 10,11 or 12]. Consequently, the motion of a single point P on the 

spindle rotor is fully extracted. In this sense, the goal of installing a test artifact (ball or cylinder) 

on the rotor under test is to make the motion of one particular point on the rotor accessible to the 

radial measurement indicators. 

After removing the test ball out-of-roundness from the measurement data, the test ball’s 

center 2D radial motion in the X-Y plane can be represented by a rotation-dependent complex 

variable:  

)()()(  PPP jyxv   (2-1) 

where )(Px  and  )(Py  are the point P motion in the X and Y directions respectively, as shown 

in Figure 2.1(b).  
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In order to illustrate the theoretical formulation on experimental data, Figure 2.3 shows a 

numerical example that will be used throughout this paper: )(Px  and  )(Py  are test ball center 

motions over four consecutive revolutions. 

 

 
Figure 2.3. A numerical example of the X and Y components of the test ball 2D motion. Data over four revolutions 

are overlaid together. 

 

In a procedure similar to current standards [2, 3], the test point’s 2D motion )(Pv  can be 

decomposed into synchronous motion and asynchronous motion. The synchronous motion )(Pv  

is the synchronized average of )(Pv  over M (an integer number) revolutions: 
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where )(Px  and )(Py are the synchronous motion of the test ball’s center P in the X and Y 

directions, respectively.  

The asynchronous motion )(~ Pv  is the difference between )(Pv  and )(Pv : 
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 (2-3) 

where  ( )Px   and ( )Py  are the asynchronous motion of the test ball’s center P in X and Y 

directions, respectively. The asynchronous motion components do not repeat at integer cycles per 

revolution: some of them are random and some of them may repeat at non-integer cycle per 

revolution, such as the half-speed whirling motion found in hydrodynamic-bearing spindles. The 
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target ball synchronous and asynchronous motion calculation results are shown in Figure 2.4 for 

the example data in Figure 2.3. 

 

 
Figure 2.4. Test ball’s synchronous and asynchronous motion of the numerical example: (a) Synchronous radial 

motion in X. (b) Synchronous radial motion in Y. (c) Asynchronous radial motion in X. (d) Asynchronous radial 

motion in Y. 

 

By using Fourier analysis, the periodic function )(Pv  can be represented as the sum of vectors 

rotating at various harmonic rotation frequencies in both the positive and negative directions: 
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where k is an arbitrary integer number and )(kVP  is )(Pv ’s k-th Fourier coefficient, as given by: 
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It should be noted that the Fourier coefficients of a real-valued function such as ( )Px   are 

always in complex conjugate pairs with redundant information at k  and k  cpr. However, the 
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complex-valued function )(Pv ’s Fourier coefficients )(kVP  and )( kVP   are generally 

independent from each other, representing two vectors rotating k  times faster than the speed of 

the axis of rotation but in opposite directions. Figure 2.5 illustrates this concept for the case 

where measurements )(x   and )(y  have only generated 1k  harmonic component. Note that 

the trajectory of the measured point is a full circle in X-Y plane.   

 

 
Figure 2.5. Physical meaning of V(1) Fourier coeficient  

 

Figure 2.6 shows the amplitude and phase of the first 20 Fourier coefficients )(kVP  for the 

numerical example.  
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Figure 2.6. Fourier coefficients of the test ball’s synchronous motion for the numerical example. 

 

Based on Eq. (2-4), Figure 2.7 illustrates the test ball’s 2D synchronous motion represented by 

the sum of the rotating vectors. When each vector rotates with the direction and speed indicated, 

the point P will travel along the dashed trajectory. 

 

 

Figure 2.7. Vector representation of point P’s synchronous radial motion for the numerical example. 
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2.3. Axis of rotation radial error motion 

In this section, the concept of axis of rotation is first discussed. Then, by relating the test ball 

center P’s radial motion to the axis of rotation, the location of this axis as well as its error motion 

are analytically derived. 

2.3.1. Concept of axis of rotation 

There are two key concepts introduced in [2, 3] to specify spindle error motion: axis of rotation 

and axis average line. Axis of rotation is a straight line about which the rotor rotates. Axis 

average line is the spatial average position of the axis of rotation in the reference frame. 

Therefore, at a specified test condition, the axis of rotation is a line fixed on the spindle rotor and 

the axis average line is a line fixed to the reference frame. As shown in Figure 2.8, the spindle 

rotor (in gray) rotates about the axis of rotation. The axis of rotation itself moves relative to the 

stationary axis average line, and this relative motion is referred as the spindle error motion. As 

long as the spindle rotor spins, the axis of rotation error motion can be determined, and therefore, 

does not rely on how the spindle is used in a particular application. 

 

 

Figure 2.8. The concepts of axis of rotation and axis average line. 
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At a specified axial location, such as the rotor’s top surface as shown in Figure 2.8, the spindle 

rotor is represented by its cross-section; the axis of rotation is represented by the rotation center 

C1; the axis average line is represented by the average point A1. Accordingly, the 2D picture is as 

follows: the rotation center C1 is a point of the rotor cross-section, and this rotor cross-section 

rotates around C1; the rotation center C1 itself moves around a stationary point A1. The 2D radial 

error motion is the motion vector pointing from the average point A1 to the rotation center C1. 

From the rotation centers at two axial locations such as C1 and C2, the tilt error motion can be 

fully specified. 

 It should be noted that the rotation center here is different from the instantaneous center, 

which is a totally different concept and is not used in spindle error motion definition.  

2.3.2. Perfect spindle 

On a perfect spindle, the axis of rotation and axis average line are the same. As shown in Figure 

2.9, at a specified axial location, the rotation center C is a stationary point in the XOY plane and 

coincides with the average point A. When a test ball is installed, the ball’s center P will revolve 

around C, or the vector from C to P rotates with the rotor. If the spindle speed is n [rpm], then the 

vector from C to P rotates at n [rpm], in the same direction as the spindle rotation. For this simple 

case, the motion vector of P will contain only a DC component and 1k  component: 

 j
PPP eVVv )1()0()(   (2-6) 

Obviously, )1(PV  represents the eccentricity of the test ball’s center P to the rotation center C. 

The eccentricity can only bring in 1k  component )1(PV to the test ball’s radial motion. The 

DC component )0(PV  is the position of the axis average line in the metrology frame. 
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Figure 2.9. Relation between the average point A, the rotation center C, and the test ball center P on a perfect 

spindle. The dashed arrow line indicates the rotary position of the spindle rotor. Points A and C coincide. The 

distance between C and P is the eccentricity of the test ball installation.   

 

2.3.3. Axis of rotation radial error motion 

For a general spindle, under a specified test condition and at a specified axial location, Figure 

2.10 shows the relation among P (the test ball’s center), C (the rotation center), and A (the 

average point). P and C are two points on the rotor, and A is a stationary point in the XOY plane. 

The vector from C to P has constant length and rotates at exactly the same speed and direction as 

the spindle rotation. Same as the perfect spindle, the eccentricity from C to P will bring the 

1k  component j
P eV )1(  to the radial motion of P. Removing the 1k  component j

P eV )1(  

from the test ball center P’s radial motion gives the motion of rotation center C:  

 j

PPC eVvv )1()()(   (2-7) 

Further, the synchronous and asynchronous motion of the rotation center C is  
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and  

)(~)(~  PC vv   (2-9) 
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Figure 2.10. Relation between the average point A, the rotation center C, and the test ball center P on a spindle with 

radial error motion. The dashed arrow line indicates the rotary position of the spindle rotor. The vector )(  from 

A to C is the spindle radial error motion at the current angular position. The distance between C and P is the 

eccentricity of the test ball installation.   

 

By taking the average of the spindle rotation center C over M  revolutions, the average location 

of the spindle rotation center C can be found as follows: 
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as the asynchronous motion and non-zero frequency synchronous motion component of C have 

zero mean value over the recorded M  revolutions.  

The radial error motion )(  is the vector from A to C:  
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Further, the synchronous radial error motion can be calculated as 
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The synchronous radial error motion in X and Y directions can be calculated by taking the real 

and imaginary parts of the 2D error motion: 

 
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where Re[  ]  and Im[  ]  mean taking the real and imaginary part, respectively. The 

asynchronous radial error motion is 

)(~)(~)(~  PC vv   (2-14) 

The radial error motion vector )(  is a 2D vector function of  . Here are some ways to 

quantitatively specify its overall amplitude: 

(a) The Root-Mean-Square (RMS) value of the synchronous radial error motion: 

      
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According to Parseval’s relation [18], the RMS RMS  can also calculated from its Fourier 

coefficients as 
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(b) RMS asynchronous error motion:  
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(c) RMS total error motion:  

      
22~
RMSRMSRMS    (2-18) 

(d) maximum synchronous error motion:  

      )(max
20




MAX  (2-19) 

(e) maximum asynchronous error motion:  

      )(~max~
20


 M

MAX


  (2-20) 
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(f) maximum total error motion:  

      )(max
20


 M

MAX


  (2-21) 

The above derivations are based on continuous motion measurements )(Px  and )(Py . When a 

test ball’s motion is measured at discrete rotary locations with equally-spaced sample intervals, 

similar analysis can be carried out as shown in the Appendix C.  

For the numerical example, Figure 2.11 shows the Fourier coefficients of the axis of rotation 

2D radial error motion by eliminating the 0k   and 1k components from Figure 2.11. The 

spindle error motion X and Y components ( )x   and ( )y  are shown in Figure 2.12. 

Accordingly, the 2D radial error motion can be represented by the sum of rotating vectors, as 

shown in Figure 2.13. The calculation results for various specified error motion values (15)-(21) 

are listed in Table 2-1. 

 

 
Figure 2.11. The Axis of rotation 2D radial error motion Fourier coefficients of the numerical example. 
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Figure 2.12. The Axis of rotation 2D radial error motion components of the numerical example. 

 

 
Figure 2.13. Vector representation of the 2D radial error motion of the numerical example. 

 

Table 2-1. Various 2D error motion values of the numerical example. 

Error motion 
RMS  RMS  RMS  MAX  MAX  MAX  

Values [nm] 229.5 8.8 230.0 387.4 22.7 407.5 
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2.3.4. Factors affecting spindle motion components 

)0(PV  represents the average point (axis average line) location relative to the origin of the 

metrology frame. The origin is determined by the probe installation and zero-biasing adjustments 

and can be changed by adding a DC offset to the measurements. Given a fixed reference origin, 

the axis average line might shift during the test under different test conditions such as change in 

temperature, loads and speeds. 

)1(PV  represents the motion of a test point with respect to the rotation center on the rotor. 

By changing the ball installation, the target ball center motion will match the motion of a 

different point on the rotor. The new test point on the rotor will have a different motion relative 

to the rotation center and as a result ]1[PV  changes. Given a fixed ball installation point, the test 

point on the rotor will still change if the rotation center or the axis average line shift under 

different test conditions.   

)1(PV  is part of spindle error motion and does not depend on the location of axis average 

line or test ball eccentricity. This means choosing a different reference origin, shifting the axis 

average line, or changing the test ball installation point does not affect ]1[PV  component. On 

the other hand, changing test conditions such as temperature, speed, or load can change the affect  

]1[PV  component. This is also true for any other harmonic of the measurement which 

represents spindle error motion. As a result, radial error motion vector )(  excludes both 

1k and 0k of the point P radial motion but should include ]1[PV  component. 

2.3.5. Illustration of fundamental radial error motion  

The axis of rotation fundamental (1 cpr) radial error motion is considered as non-existent in the 

current standards [2, 3]. In this section, the 2D radial error motion analysis is applied to some 

hypothetical examples to show that the fundamental ( 1k ) radial error motion can actually 

exist. 

Figure 2.14shows the trajectories of labeled points on both a perfect spindle (a) and a 

spindle with fundamental radial error motion (b). Figure 2.14(a) shows the trajectories of 3 

points (A1, A2, and A3) on a perfect spindle rotor as it goes through one full revolution. The 

trajectories of all points are concentric circles. For a particular point such as A1, its X and Y 

motions are sinusoidal with identical amplitude, and the Y motion lags the X motion by 90 
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degrees. By applying Eq. (2-12) as shown in Table 2-2, the radial error motion of the spindle is 

always zero, regardless of test point selection (test ball installation); therefore, spindle A is a 

perfect spindle, which means there exists a point on the rotor that remains stationary relative to 

the metrology frame as the spindle rotates. This point is unique since standing on the metrology 

frame all other points on the rotor have a circular motion around this point in the direction of 

spindle rotation.  

Figure 2.14(b) shows the trajectories of three points (B1, B2, and B3) on a spindle with 

fundamental radial error motion as it goes through one full revolution. For a particular point B1, 

the trajectory is also circular where both the X and Y motions are once-per-revolution sinusoidal 

with equal amplitude; however, the Y motion leads the X motion by 90 [deg], which is opposite 

to the trajectory of A1 in Figure 2.14(a). When the spindle rotates counter-clockwise, B1’s motion 

can be represented by a vector rotating clockwise with respect to the circle center. The 

trajectories of other points on the same spindle rotor could be very different. For example, if a 

test ball is installed at B2 or B3, the trajectory will be an ellipse or a straight line, respectively. 

This spindle is obviously not perfect, despite the fact that X and Y motion measurements of any 

point on the rotor are once per revolution sinusoidal. Applying Eq. (2-12) as shown in Table 2-2, 

the spindle exhibits a fundamental radial error motion rotating opposite to the spindle’s main 

rotation, regardless of which point is selected. 
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Figure 2.14. Comparison between a perfect spindle (a) and a spindle with fundamental radial error motion. 

 

Comparing the trajectories in Figure 2.14, A1 and B1 both have a circular motion path, but 

belong to two different spindles. Therefore, the spindle error motion information cannot be found 

purely from the X-Y plot of test ball’s motion measurements. Also, two points on the same 

spindle, such as B1 and B2, can have very different trajectories in X-Y plane. Using the 2D 

method, the 1 cpr error motion of the spindle can be derived regardless of the test ball 

installation. The vector representation of these points at 45  is shown in Figure 2.15. Note 

that the 1k  rotating vectors for points on the same spindle are the same, while the 1k  

rotating vectors can change significantly. This confirms that )1(V  is a property of the spindle 

motion and ( 1)V   is eccentricity of the test point. 
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Table 2-2. Spindle error motion calculation. 

 Test point motion Fourier Coefficient Radial Error 
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Figure 2.15. Vector decomposition of test point motion: (a) Perfect spindle. (b) Spindle with fundamental radial 

error motion. 
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2.4. Radial error motion consequence in various spindle 

applications 

Based on the test ball motion measurement, section 2.3 gave the actual radial error motion of 

axis of rotation with respect to a specified reference frame, regardless of whether the spindle is 

used to make something or how the spindle is used in a particular application. In this sense, the 

axis of rotation radial error motion is a pure geometric property, representing the deviation 

between the axis of rotation and the axis average line. 

From application point view, a spindle user may be only concerned with the consequence of 

axis of rotation error motion under a particular spindle application scenario, instead of the axis of 

rotation error motion itself. As discussed in section 1.4.1. axis of rotation error motion and its 

consequence in a particular spindle application are two related but distinct concepts: error motion 

consequence is certainly caused by error motion, but consequence also depends on the 

application details, such as how the cutting tools are installed, how many tools are installed, what 

type of parts to be made, and so on. Whenever the axis of rotation error motion consequence is 

discussed, the full details of the spindle application should be clearly specified. As far as radial 

error motion is concerned, spindle applications are classified into two categories: applications 

with single radial sensitive direction and applications with two radial sensitive directions. Each 

category can be further subdivided as shown in Figure 2.16.  
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Figure 2.16. Catgories of spindle applications based on radial sensitive direction 

 

In the following sections, the new 2D method is used to derive the consequence of spindle radial 

error motion in all types of applications shown in Figure 2.16. Three case studies will also be 

presented to illustrate the difference between the actual radial error motion and its consequence. 
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2.4.1. Applications with single radial sensitive direction 

Applications with the single radial sensitive direction refer to those applications which are 

affected by error motion in only one particular radial direction and are insensitive to error motion 

in the other orthogonal radial direction. Depending on whether this radial direction is fixed or 

rotating with respect to the reference frame, the application is referred to as single fixed radial 

direction (SFSD) or single rotating radial direction (SRSD). As shown in Figure 2.17, the 

specified radial sensitive direction has angle   with reference to the X axis, and )(  is the 

spindle radial error motion vector calculated according to Eq. (2-11). Generally, )( ’s phase 

angle   (the angle between vector )(  and the X axis) has no direct relation to the spindle 

rotary position   . The radial error motion in the specified sensitive direction is represented by

)( , which is the projection of the vector )(  on the unity vector je : 

 
 sin)(cos)(])(Re[)( yx

je  
 (2-22) 

where )( x  and )( y
 are the X (real) and Y (imaginary) components of error motion vector 

)( . 

 
Figure 2.17. The relation between )(  (radial error motion) and )(  (the radial error motion in a specified 

direction). 

 

Further, the synchronous component )(  and asynchronous component )(~   can be 

calculated as: 
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and  
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   
 sin)(~cos)(~)(~Re)(~

PP

j yxe    (2-24) 

 

2.4.1.1. Applications with single fixed radial sensitive direction (SFSD) 

As discussed in the current spindle standards [2, 3], an example of SFSD application is outside 

cylinder surface turning with a fixed cutting tool, where the sensitive direction angle is a 

constant: 0  . According to Eq. (2-23), the spindle synchronous radial error motion in the 

specified fixed sensitive direction can be calculated from test ball’s motion measurement: 
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In general, there exists a once-per-revolution component 0( )
Re[ ( 1) ]

j

PV e
  

  in )(
0
 . The 

main consequence of 0( )
Re[ ( 1) ]

j

PV e
  

  in this example (turning axis-symmetric surface with 

single fixed tool) is that the produced part center is offset from the axis of rotation by a distance 

of )1(PV . Another consequence brought by 0( )
Re[ ( 1) ]

j

PV e
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 , which is a second-order effect of )1(PV  and therefore is negligible. 
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error on the finished part. Accordingly, 
0
( )  ’s consequence in this SFSD application, 

0
( )A  , 

should exclude the once-per-revolution component: 
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In particular, when the fixed sensitive direction is X, 00   and the synchronous radial error 

motion consequence is 
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Similarly, when the fixed sensitive direction is Y, 2/0    and the synchronous radial error 

motion consequence is 
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The asynchronous radial error motion consequence is the asynchronous error motion projection 

in the sensitive direction: 

00 sin)(~cos)(~)(~)(
~

00
  PP yxA   (2-29) 

 

2.4.1.2. Applications with single rotating radial sensitive direction (SRSD) 

As discussed in the current spindle motion standards [2, 3], an example of SRSD is the operation 

of boring a round hole with single tool attached to the spindle rotor, where the sensitive direction 

rotates synchronously with the spindle rotor and its phase angle is   . According to Eq. 

(2-23), the spindle synchronous radial error motion in the specified rotating sensitive direction 

can be calculated from the test ball’s motion measurement as: 
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 (2-30) 

Clearly, the spindle synchronous radial error motion vector )(  is modulated by the 

rotating vector je  in Eq. (2-30). As a result, the k -cpr component jk

P ekV )(  in )(  will 

become the )1( k -cpr component ])(Re[ )1( kj

P ekV  in )( . In general, there exists a once-

per-revolution component ])2(Re[ j
P eV  in ( )  , due to the spindle synchronous error motion 

at 2k  cpr. The main effect of this 1-cpr component ])2(Re[ j
P eV  in the example of boring 

axis-symmetric hole surfaces with single tool is that the produced part center is offset from the 

axis of rotation by a distance of )2(PV . Another effect is the hole out-of-roundness error with 

amplitude RVP 2/)2(
2

, which is a second-order effect of )2(PV . All these are not considered as 

out-of-roundness errors. Therefore the synchronous radial error motion consequence in SRSD 

application, ( )A  , does not include the once-per-revolution component: 
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The asynchronous error motion consequence in SRSD application can be derived directly from 

the spindle asynchronous error motion projection in the sensitive direction as: 

  sin)(~cos)(~)(~)(
~

PP yxA   (2-32) 

For the numerical example, Figure 2.18 shows the synchronous radial error motion 

consequence in applications with single sensitive direction in X, Y, and the rotating direction. 

For comparison, the spindle synchronous radial error motions in the specified sensitive directions 

are also shown. Clearly, radial error motion and its consequence are very different. 
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Figure 2.18. Comparison between the spindle radial error motion and its consequence in applications with single 

radial sensitive direction: (a) in X direction, (b) in Y direction, and (c) in a rotating direction. 

 

2.4.2. Applications with two sensitive directions (TSD) 

Applications with two radial sensitive directions refer to those applications which are 

simultaneously sensitive to spindle error motion in two radial directions, such as 2D or axis-

asymmetric pattern generation and measurement. One example is turning axis-asymmetric 
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patterns with a fast tool servo (FTS) on a lathe. As shown in Figure 2.19, the horizontal turning 

spindle is mounted on the cross slide traveling in the X direction, and the fast tool servo on the 

in-feed slide can generate fast cutting tool motion in the Z direction. In face turning of a three 

dimensional sculptured surface, the desired Z motion of the fast tool servo changes with the 

spindle angular position and the cross slide position in the X axis. Spindle rotor radial error 

motion in both X and Y will result in radial dislocation of each feature relative to their desired 

positions. The process of turning a sculptured surface on a cylinder drum with a FTS also has 

two sensitive directions, as shown in Figure 2.20.   

 

  
Figure 2.19. Face turning of axis-asymmetric patterns with a fast tool servo. 
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Figure 2.20. Axis-asymmetric pattern turning on a drum lathe with a fast tool servo. 

 

Applications with TSD are not limited to processes involving axis-asymmetric patterns. In some 

instances of axis-symmetric pattern generation with multiple tools, the produced parts can be 

affected by spindle error motion in two radial directions. This is discussed later in section 2.4.4. 

In spindle applications with TSD, the radial error motion consequence should include all 

radial error motion components:  
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and 
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~

 PvA   (2-34) 

 

2.4.3. Case study: Beam writing on a spindle with fundamental radial error 

motion 

Figure 2.21 shows a rotary beam writing process, used in applications such as optical disk 

mastering with a laser, electron beam lithography, and plasmonic lithography [19]. The overall 

structure is a vertical spindle and bridge type machine. A beam writer is attached to a linear 

slider that travels in the X direction. A substrate is installed on top of the spindle rotor to be 

written with some desired patterns. When the writing beam on/off is properly synchronized with 

the slider’s X position and the spindle’s rotary angle, arbitrary two-dimensional patterns can be 

generated on the substrate.  
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In order to evaluate the effect of the fundamental ( 1k   ) radial error motion in this spindle 

application, the motion of the spindle rotation center (the intersection between the axis of 

rotation and the substrate top surface) is assumed to be: 









)sin()(

)cos()(





C

C

y

x
 (2-35) 

In the following sub-sections, several pattern examples and radial error motion consequences are 

discussed. 

 

 
Figure 2.21. A rotary beam writing machine. 

 

2.4.3.1. Axis-symmetric pattern writing with one tool 

In this case, the desired pattern is a circle, and only one beam writer is used as shown in Figure 

2.22. For such pattern writing, the beam writer needs to position itself at a fixed location and 

then turn the beam on all the time. This is an application with a fixed radial sensitive direction, 

similar to turning a cylindrical surface on a vertical lathe. If a spindle with error motion of Eq. 

(2-35) were examined with the fixed sensitive direction method [3], the radial error motion value 

would be zero as the fundamental component is removed in the current standards. 

Figure 2.22 shows the simulated pattern on the work piece. Although the produced pattern 

center is offset from the spindle rotation center, the pattern deviation from a perfect circle is 

negligible, much less than the spindle 1k error motion magnitude of 1. Therefore, the value 

specified by the fixed sensitive direction method can effectively predict the consequence of the 

spindle error motion in this application case. 
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Figure 2.22. The simulated pattern when the desired pattern is a circle. The origin is the spindle rotation center. 

 

2.4.3.2. Axis-asymmetric pattern writing with one tool 

In this case, the desired pattern is a cross as shown in Figure 2.23(a) and the setup is the same as 

shown in Figure 2.21. Obviously, the cross pattern is axis-asymmetric. In order to produce such a 

pattern on a perfect spindle, at each radial location, the beam writer needs to be momentarily 

turned on at spindle rotary angles 0, 90, 180, and 270 degrees, and remain off at other rotary 

positions of the spindle. 

When the spindle has the fundamental radial error motion of Eq. (2-35), the produced 

pattern is shown in Figure 2.23(b). There exists significant distortion: the intersection point of is 

not the center of the horizontal line, and is shifted by a distance 1, which is the fundamental 

radial error motion amplitude. Such distortion indicates that this spindle is not perfect, although 

it can produce an axis-symmetric pattern as shown previously in Figure 2.22. Therefore, the 

spindle application of writing an axis-asymmetric pattern with single tool is an example of an 

application with two radial sensitive directions, and the 2D method is required to predict the 

consequence of spindle error motion. 
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(a) The desired pattern.                                                (b) The produced pattern. 

Figure 2.23. Simulated result of axis-asymetric pattern writing with single beam. Instead of lines, only discrete 

points are shown. 

 

2.4.3.3. Axis-symmetric pattern writing with multiple tools 

In this case, the machine setup is shown in Figure 2.24. Two tools are installed at different radial 

locations, either to speed up the writing process or for on-line inspection.  

 

 
Figure 2.24. A multi-beam rotary writing machine. 

 

As shown in Figure 2.25(a), the desired pattern is two concentric circles. Slider 1 is used to 

produce the bigger circle of radius 10 and slider 2 is used to produce the smaller circle of radius 
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8. Once these two sliders are positioned properly, they are held stationary and the beams remain 

on during the spindle rotation process. 

 Figure 2.25(b) shows the simulated pattern produced on a spindle with fundamental radial 

error motion. There exists significant deviation from the desired pattern as the two circles are not 

concentric at all. Both circle centers are shifted away from the spindle rotation center by the 

amplitude of the fundamental error motion, but in opposite directions. Therefore, the spindle 

application of writing an axis-symmetric pattern with two tools has two radial sensitive 

directions. 

 

 
Figure 2.25. Axis-symmetric pattern writing with two beams. (a) the desired pattern. (b) the produced pattern on a 

spindle with fundamental radial error motion. 

 

This example demonstrates that the fixed radial sensitive direction method in the current 

standards can predict the consequence of spindle radial error motion in single beam writing of 

axis symmetric pattern. On the other hand, it cannot predict the consequence of fundamental 

spindle error motion in single beam writing of axis-asymmetric patterns or multi-beam writing.  
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2.4.4. Case study: Multi-tool boring on a spindle with  2-cpr error motion 

Figure 2.26 shows the setup of multi-tool boring operation. Four boring tools are installed to 

produce four concentric step holes in one boring operation. The advantage is higher productivity 

and balanced cutting forces for improved machining accuracy. In order to evaluate the effect of 

2k   radial error motion in this spindle application, the motion of the rotation center motion of 

the spindle is assumed to be: 









)2sin()(

)2cos()(





C

C

y

x
 (2-36) 

 

 
Figure 2.26. Multi-tool boring operation. Four concentric holes are produced in a single boring operation. 

 

As pointed out in [7], the rotating sensitive direction method gives zero error for this spindle, 

which means that each single boring tool installed on this spindle can produce a round hole with 

negligible distortion. However, when multiple tools are combined together in step-boring 

operation, the 2k  radial error motion can generate significant distortion. If looking at the 

simulated holes produced by two orthogonal tools as shown in Figure 2.27, they are not 

concentric at all. Therefore, the 2k  radial error motion can produce consequences that cannot 

be predicted by the rotating sensitive direction method in the current standards.  

This example demonstrates that the rotating sensitive direction method in the current 

standards can predict the consequences of spindle radial error motion in single tool boring but 

cannot predict the distortion caused by 2-cpr spindle error motion in multi-tool boring. The 2D 

method needs to be used for spindle applications with two rotating radial sensitive directions. 
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Figure 2.27. Holes produce by two orthogonal boring tools. 

2.5. Comparison between 2D method and current standard 

methods 

This section illustrates the differences between the new 2D method and the current standard 

methods. As discussed in section 1.2 current standard methods employ polar plots to characterize 

spindle error motion. The problem with this approach can be summarized as follows 

 

1. Polar plots do not give a full picture of axis of rotation radial error motion.   

2. The fundamental error motion of the spindle cannot be identified. 

3. Polar plots cannot predict consequence of spindle error motion when there are more than 

one sensitive direction.  

 

In the following section, the 2D framework will be used to illustrate the problems mentioned 

above. It will be shown that current standard methods are sufficient to predict error motion 

consequences when there is a single sensitive direction. On the other hand, the 2D method gives 

a full description of radial error motion and can be used to characterize spindles for any type of 

application. A case study is also presented to further illustrate the difference between current 

standard methods and the new 2D analysis. 
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2.5.1. Implementation of the current standard methods in the 2D framework 

As illustrated in the section 1.3, the least squares fitting method and the frequency domain 

method are equivalent in calculating radial error motion from polar plots when the base-circle 

radius is big enough. Therefore, the following analysis will be carried out using only the 

frequency domain method. 

Using the 2D framework, the synchronous measurement polar plot for the rotating sensitive 

direction method is 
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The DC component in )(r  is )]1(Re[0 PVr  , and the fundamental component is 

])2()0(Re[  j

P

j

P eVeV  .  Removing these components as specified by the standards, the radial 

error motion for the rotating sensitive direction is: 
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Note that the error motion component )2(PV  is excluded in the rotating sensitive direction 

method, as pointed out by Donaldson [7]. In comparison with the 2D analysis, the error motion 

specified by the rotating sensitive direction method, )( , is the same as the spindle radial 

error motion consequence in application with SRSD )(A  (Eq. (2-31)), not the synchronous 

error motion in the rotating direction )(  (Eq. (2-30)). 

For the fixed sensitive direction method, the synchronous polar plot is 
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The DC component in )(
0
r  is ])0(Re[ 0

0

j

P eVr


   and the fundamental component is 

0 0Re[ ( 1) (1) ]
j j j j

P PV e V e
     

  . After removing these components, the radial error motion in the 

0  sensitive direction specified in the current standards is 
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Note that the error motion component )1(PV  is excluded in the fixed sensitive direction 

method. In comparison with the 2D analysis, the error motion specified by the fixed sensitive 

direction method, )(
0
 , is the spindle radial error motion consequence in application with 

SFSD, )(
0
A (Eq. (2-26)), not the synchronous error motion in the 0  direction, )(

0
 (Eq. 

(2-25)).  

Another observation in the above analysis is that the same error motion component can have 

a different cpr in the fixed frame and in the rotating frame. The 1k  error motion, j
P eV  )1(  

will be 1 cpr or fundamental in a fixed radial direction, but will become 2 cpr in a rotating radial 

direction due to modulation effect. Similarly, the 2k  error motion, 2)2( j

P eV ,will be 2 cpr in a 

fixed radial direction, but will become 1 cpr or fundamental in a rotating radial direction.  

Table 2-3 summarizes the above results in terms of error motion and its consequence. It 

shows that the radial error motion values specified in the current standards are radial error 

motion consequence in spindle application with single radial sensitive direction. For this type of 

application, the current standards are sufficient to evaluate axis of rotation radial error motion 

effect. For spindle application with two radial sensitive directions, the 2D method needs to be 

used. In addition, the 2D method is able to give the actual radial error motion in any direction. In 

the next section, a case study is presented to illustrate this with more details. 

 

Table 2-3. Radial error motion comparison between the current standards and the 2D method.  

Physical meaning Existing methods 2D method 

Radial error 

motion 

In a fixed direction N/A )(
0
  

In a rotating direction N/A )(  

In two dimensions N/A )(  

radial error motion 

consequence in 

spindle 

applications  

Application with SFSD 
0
( )   )(

0
A  

Application with SRSD ( )   )(A  

Application with TSD N/A )(A  

2.5.2. Case study: spindle with 1,2, and 3 cpr radial error motion 

In this example, it is assumed that the test ball measurement data from two orthogonal radial 

probes are: 
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By combining the measurement data into a vector, the 2D radial motion of the test ball can be 

expressed as: 

 3235)( jjjj

PPP eeeejyxv    (2-42) 

Eliminating the 1k  component (the eccentricity of the test ball), the 2D error motion of the 

axis of rotation becomes: 

 323)( jjj eee    (2-43) 

According to the current standards, the polar plot in the fixed X direction is 

)3cos()2cos(3)cos(6)( 0   rrX  (2-44) 

The radial error motion in the X direction specified by the standards, )(X
,  is obtained by 

removing the fundamental component from the polar plot as discussed in section 1.3: 

)3cos()2cos(3)(  X
 (2-45) 

Similarly, the radial error motion in the Y direction specified by the standards is: 

)3sin()2sin(3)(  Y
 (2-46) 

Eq. (2-45) and Eq. (2-46) show that the fixed sensitive direction method is blind to the 1k  

fundamental radial error motion component. 

For the rotating sensitive direction method in the current standards, the radial error motion 

polar plot is:  

 cos35sincos)( 00  ryxrr PP  (2-47) 

After removing the fundamental component and the DC component from Eq. (2-47), the radial 

error motion along the rotating sensitive direction specified by the standards becomes: 

0)(   (2-48) 

The rotating sensitive direction method is unable to capture the radial error motion that 

rotates at twice the spindle speed, as pointed out in [7]. In addition, the rotating sensitive 

direction polar plot (Eq. (2-47)) is unable to tell the difference between 1k  and 3k  radial 

error motion components. For the example shown, the radial error motion value specified by the 

rotating sensitive direction method missed all 3 error motion components in the 2D radial error 

motion Eq. (2-43).  
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Chapter 3. Experimental results 

Experiments  

This chapter presents the experiments carried out on two types of spindle: 1) ball bearing spindle 

in a Mori Seiki high-speed 5 Axis machining center, and 2) an aerostatic bearing spindle(10R 

Block-Head by Professional Instruments). Using the new 2D method, the radial error motion of 

the spindles are measured and analyzed. In addition, the consequence of these error motions in 

spindle applications is obtained. Furthermore, the 2D method analysis is compared against the 

result obtained using current standard methods.     

3.1. General consideration 

The aim of the spindle metrology setup is to measure the actual motion of the test ball center in 

X-Y plane as a function of the spindle rotary angle. Probe misalignment with the target ball 

center, target ball curvature, aliasing, and indexing introduce uncertainty in the measurements. 

To make sure the capacitance probe read outs are meaningful, these issues are addressed in the 

following subsections.  

3.1.1. Probe misalignment with the target ball center 

As discussed in section 2.2., in the ideal test setup shown in Figure 2.1, the probes are aligned 

with Pball which is the least squares center of the ball profile in the cross-sectional plane where 

the two indicators are installed. This ensures that roundness profile measured by the probe is the 

actual roundness profile of the target ball, )(ballr . For the ideal setup, the measurements in X 

and Y directions are: 

)()()(

)()()(





bally

ballx

ryp

rxp




 (3-1) 

where )(x and )(y are the radial motion of the target ball center, Pball, relative to X and Y 

probes. In reality, the capacitance probes are not perfectly aligned with Pball as the spindle rotates 

(Figure 3.1).  
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Figure 3.1. Effect of probe misalignment on measuring the motion of target ball least squares center Pball.. 

 

This misalignment, )(y , causes an error in the probe readout equal to )()(  mball rr   where 

)(mr  is the roundness profile measured by the probe. This error is a second order effect with a 

maximum value of: 

 
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|)()(|max

2
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ball

mball
r

y
rr


  (3-2) 

which is very small due to large radius of the target ball, )(ballr , relative to the motion )(y . 

Similar analysis can be done for the probe in Y direction. Therefore, the capacitance probe 

measurements can be interpreted as the motion of the test ball center, Pball, and the actual 

roundness profile of the target ball )(ballr .  

3.1.2. Target ball curvature 

The capacitance probes used in the experiments are calibrated by the manufacturer (Lion 

Precision) for flat target surfaces. A detailed investigation on effect of spherical targets on the 

capacitance probe measurements is given in [20]. The spherical targets give higher change in 

voltage read out for a given change in target displacement. In addition, a spherical target needs to 

be closer to the probe than the flat target to maintain the same capacitance between the probe and 

the target. For spindle error motion measurements, the change in the gap between the target and 
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the probe should be measured accurately but the absolute distance of the probe from the target is 

irrelevant.  

The output voltage of the capacitance probe V corresponds to the inverse of measured 

capacitance: 

)(/ xCKV   (3-3) 

where the proportionality constant K , is determined by the probe internal circuitry. The 

sensitivity of the probe is defined as  

)
1

(
Cdx

d
K

dx

dV
G   (3-4) 

The change in capacitance ( C ) for a given change in the gap ( x ) is different for flat and 

spherical targets. The sensitivity value given by the manufacturer, G  , corresponds to )
1

(
Cdx

d
 of 

a flat target. Figure 3.2 shows a spherical target facing the probe. For this target, )
1

(
Cdx

d
is 

different and as a result the sensitivity needs to be adjusted by a factor A : 

flat
AG

round
G   (3-5) 

 

 

Figure 3.2. Lion precision capacitance probe agains a spherical target. 

 

To find the adjusting factor A , first step is to find the relationship between the inverse 

capacitance and the gap distance for both a flat target and the round target. Two methods, 

numercial analysis in MATLAB, and finite element analysis in FEMM, have been utilized to 
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calculate the capacitance sensed by the probe at different distances from the target. Both methods 

agree with each other while the numerical method is much faster to compute. By reducing the 

mesh size, finite element results converge to numerical method results. Figure 3.3 and Figure 3.4 

show the results of simulation for two types of probes: C2-A with 50-µm stroke and 400.0G  

V/µm sensitivity, and C5-D with 10-µm stroke and 000.2G V/µm sensitivity.  

 

 
Figure 3.3. Effect of a spherical target on the sensed capacitance of C2-A probe (50-µm stroke). 

  

 
Figure 3.4. Effect of a spherical target on the sensed capacitance of C5-D probe (10-µm stroke). 

 

Above plots show that with a round target, the gap corresponding to the sensing range is smaller 

and closer to the sensing electrode. In addition, the slope of the plots indicate that to get the same 

change in inverse capacitance )/1( C  (and output voltage V ), the round target needs to move 

less than a flat target.  

Next, for the capacitance values within the sensing range of the probe, the corresponding 

gap distances from the round target is plotted against the corresponding gap distances from a flat 
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target (Figure 3.5 and Figure 3.6). The slope of the least squares line through data points is the 

adjusting factor A  which will be applied to the measurements. 

 

 
Figure 3.5. Finding adjustment factor for C2-A probe (50-µm stroke). 

 

 
Figure 3.6. Finding adjustment factor for C5-D probe (10-µm stroke). 
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3.1.3. Aliasing 

Digital processing of the spindle motion measurements require that the sampled points from the 

probe be equally spaced in spatial domain. Figure 3.7 shows an ideal setup for testing axis of 

rotation.  

 

 
Figure 3.7. Typical data acquisition setup. 

 

In this setup, capacitance probe signal is sampled at every count of encoder signal. This ensures 

that samples correspond to rotary positions which are equally spaced. Lion Precision TMP190 

drive employs this type of configuration. Using this setup, the highest harmonic of spindle 

motion which can be captured is half the number of encoder counts per revolution (Nyquist 

frequency). To avoid aliasing, harmonics which are higher than the Nyquist frequency are 

removed using a low pass filter before sampling the signal.   

Figure 3.8 shows the setup used for the experiments presented in this thesis. Lion Precision 

CPL190 drive with a bandwidth of 15 kHz is used for the capacitance probes. Both the encoder 

signals as well as the capacitance probe signals are captured using dSPACE 1103 digital control 

system. The probe signals are then interpolated in software to get measurements at equally 

spaced angular intervals. Two issues need to be addressed here:  

 

1) The error of the interpolation depends on how constant the spindle speed is over one 

revolution.  

2) The Nyquist frequency is half the clock frequency of the dSapce 1103 (given that the 

interpolation does not down sample the probe signal). Aliasing will happen if two 

conditions are met: the bandwidth of the low pass filter is lower than the Nyquist 

frequency, and the probe signal contain harmonics higher than the Nyquist frequency.    
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In the experiments presented, the interpolation error is negligible due to relatively constant 

spindle speed over each revolution. In addition, the spindle’s error motion harmonics above the 

Nyquist frequency are negligible. This is true over the whole tested speed range; therefore, the 

effect of aliasing can be neglected.  

 

 
Figure 3.8. Data aquisition setup used in the experiments. 

 

3.1.4. Indexing error 

The new 2D method requires the measurement of the test point motion be in orthogonal 

directions. As shown in Figure 3.9, indexing error happens when any of the probes is placed with 

an offset to the corresponding axis. With an offset angle  , the measurements become 

)()(  Pm xx   (3-6) 

)sin()()cos()()(  PPm xyy   (3-7) 

In the frequency domain, the measurements are 

)()( kXkX Pm   (3-8) 

)sin()()cos()()(  kXkYkY PPm   (3-9) 

The 2D motion measurement will be 

)()()( kjYkXkV mmm   (3-10) 

and the error in measurement is 

|)()(||)(| kVkVkE pm   (3-11) 

where 

)()()( kjYkXkV pPP   (3-12) 
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For small angular offset, the error can be approximated as 

|)(||)(| kXkE P  (3-13) 

 

 
Figure 3.9. Indexing error on the spindle metrology setup. 

 

3.2. Experiments on a ball bearing spindle  

Figure 3.10 shows a 5-axis machining center with a ball bearing tool spindle. The machine work 

table is selected as the metrology reference frame; therefore, the measured axis of rotation error 

motion includes both bearing error motion and structural error motion. Two capacitance probes 

(10-µm stroke, part number C5-D by Lion Precision), are clamped onto the table by an L-shaped 

probe holder and a target ball with 10 nm roundness is mounted on the tool spindle rotor. The 

probes measure the relative motion between the target ball and the machine table in X and Y 

directions in the plane coincident with the target ball center. These probes have a nominal 

sensitivity of 0.5 m/V for a flat target surface. However, the actual sensitivity is corrected to 

0.405 m/V due to the ball radius of 12.7 mm. The spindle’s built-in encoder is used to measure 

the spindle rotary position. This rotary encoder outputs analog quadrature signals at 192 lines per 
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revolution. A dSPACE 1103 digital control system is used to collect data. Table 3-1 summarizes 

the specifications of the measurement system. 

 

Table 3-1. Sensors and data acquisition system. 

Sensor Sensitivity Data acquisition Resolution 

Y probe 0.405 m/V +/- 10V, 16 bit, ADC 0.2 nm 

X probe 0.405 m/V +/- 10V, 16 bit, ADC 0.2 nm 

Rotary encoder 192 line/rev 256-fold interpolation 0.01 deg 

 

All sensor signals are sampled at 10 kHz. In order to facilitate the angle domain processing of the 

radial motion data, these signals are interpolated at equally spaced rotary angles to 500 samples 

per revolution, which is equivalent to 0.72 degree per sample. Since the target ball roundness (10 

nm) is much less than the micron level radial error motion of the spindle, the ball out-of-

roundness is neglected. In the following sections, the spindle error motion is evaluated at two 

constant speeds of 1000 and 4000 rpm using the 2D method. In addition, the change in error 

motion across speed from 100 up to 4500 rpm is presented.  

 

 
Figure 3.10. Radial error motion measurement setup of the ball bearing spindle. 

3.2.1. Experimental results at 1000 rpm 

3.2.1.1. Test ball motion measurement 

After running the spindle at 1000 rpm for 30 minutes, 500 revolutions of data are collected. 

Figure 3.11 shows 20 revolutions overlaid on top of each other for both X and Y directions. 

From revolution to revolution, some of the motion components consistently repeat and are 
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referred as synchronous error motion. The rest of the motion components are referred as 

asynchronous error motion.  

 

 
Figure 3.11. Test ball motion measurement data over 20 revolutions at 1000 rpm. 

 

Averaging the captured 500 revolutions gives the test ball synchronous motion shown in Figure 

3.12. The first harmonic components of X and Y motion are also plotted in the dashed lines. X 

motion has a first harmonic component with peak-valley (p-v) amplitude of 0.86 m. In 

comparison, Y motion has a first harmonic component with much smaller p-v amplitude of 0.21 

m. This indicates that the spindle has fundamental radial error motion at 1000 rpm. 

 

 
(a) X and Y motion versus rotary angle. 
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 (b) Y versus X motion trace plot.

 

Figure 3.12. Test ball synchronous 2D motion on the ball bearing spindle at 1000 rpm. 

 

By combining the X and Y motion into complex values, Fourier coefficients of the test ball 2D 

synchronous radial motion can be calculated, as shown in Figure 3.13. The DC component (

0k ) is related to the probe installation and offset settings, and doesn’t represent spindle motion 

performance. Additionally, the 1k  component is related to the test ball installation eccentricity 

and is not part of spindle error motion. The 1k component with the amplitude of 0.21 m 

represents the fundamental spindle radial error motion. 

 

 
Figure 3.13. Fourier coefficients of the test ball 2D motion at 1000 rpm. 

 

The difference between the test ball total motion in Figure 3.11 and its synchronous component 

in Figure 3.12 is the test ball asynchronous motion. Figure 3.14 shows the asynchronous motion 

over 4 revolutions with p-v amplitude of less than 0.7 µm in both X and Y directions.  
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Figure 3.14. The test ball asynchronous motion in X and Y directions at 1000 rpm. 

 

3.2.1.2. Spindle 2D radial error motion 

By eliminating the 0k  and 1k components from Figure 3.13, the Fourier coefficients of the 

axis of rotation 2D radial error motion are obtained as shown in Figure 3.15(a). Further, by 

applying the inverse Fourier transform on these Fourier coefficients, the spindle 2D radial error 

motion in angle domain is determined as shown in Figure 3.15(b). Both X and Y components of 

spindle radial error motion contain the 1 cpr harmonic components as shown in the dashed lines. 

 

 

k -4 -3 -2 -1 2 3 4 

|V[k]|[um] 0.04 0.01 0.03 0.21 0.04 0.03 0.04 
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(a)   Fourier coefficients of the axis of rotation radial error motion. 

 

 
(b) The axis of rotation radial error motion in the spatial domain. 

Figure 3.15. The ball bearing spindle synchronous radial error motion measurement result at 1000 rpm. 

 

 

3.2.1.3. Comparison with current standards 

Figure 3.16 compares the error motion result using the current standard [3] and that using the 2D 

method in three cases: a) the error motion in X using the fixed sensitive direction method [3] and 

using the 2D method; b) the error motion in Y using the fixed sensitive direction method [3] and 

using the 2D method; c) the error motion in the rotating radial direction using the rotating 

sensitive direction method [3] and using the 2D method. In case (a) and (b), the radial error 

motion specified by the current standards is significantly different from the one calculated by the 

2D method. The reason is that the fundamental radial error motion ( 1k ) is removed in the 

current standard. In case (c), the difference is relatively small, as the 2k  radial error motion 

missed from the rotating sensitive direction method is small for the tested spindle at 1000 rpm.  
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Figure 3.16. Radial error motion comparison between the current standards and the new 2D method. 

3.2.2. Experimental results at 4000 rpm 

3.2.2.1. Test ball motion measurement 

In a similar way to the experiment at 1000 rpm, the ball-bearing spindle radial error motion is 

measured at 4000 rpm. The first 20 revolutions of the test ball motions measurement are overlaid 

on top of each other in Figure 3.17.  
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Figure 3.17. Test ball motion measurement over 20 revolutions at 4000 rpm. 

 

Figure 3.18 shows the test ball synchronous motion. The first harmonic component in the X 

direction is 2.30 m p-v, which is much smaller than 7.16 m p-v in the Y direction. In 

comparison, the test results at 1000 rpm show a bigger first harmonic component in X direction 

than that in the Y direction. This indicates that X and Y first harmonic components vary 

significantly from one speed to another. 

 
(a) X and Y motion versus rotary angle. 

 
(b) X and Y motion versus rotary angle. 

Figure 3.18. Test ball synchronous 2D motion on the ball bearing spindle at 4000 rpm. 
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From the X and Y motion in Figure 3.18, Fourier coefficients of the test ball 2D radial motion 

can be calculated, as shown in Figure 3.19. The fundamental radial error motion represented by 

1k  component has amplitude of 1.22 m. 

 

 
Figure 3.19. Fourier coefficients of the test ball 2D radial motion at 4000 rpm. 

 

Figure 3.20 is the test ball asynchronous motion over 4 revolutions at 4000 rpm. The 

asynchronous motion is 1.2 µm p-v in X direction and 0.7 µm p-v in Y direction.  

 

 
Figure 3.20. The test ball asynchronous motion in X and Y directions at 4000 rpm. 
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3.2.2.2. Spindle 2D radial error motion 

By eliminating the 0k  and 1k components from Figure 3.19, the Fourier coefficients of the 

spindle radial error motion are obtained as shown in Figure 3.21(a). Furthermore, by applying 

the inverse Fourier transform on these coefficients, the spindle radial error motion in both X and 

Y directions is found, as shown in Figure 3.21 (b). Both X and Y components of spindle radial 

error motion contain 1 cpr harmonic component. 

 

 
k -4 -3 -2 -1 2 3 4 

|V[k]|[um] 0.02 0.02 0.01 1.22 0.10 0.03 0.03 
(a) Fourier coefficients of the axis of rotation radial error motion. 

 

 
(b) The axis of rotation radial error motion in the spatial domain. 

Figure 3.21. The test ball asynchronous motion in X and Y directions at 4000 rpm. 

 

 

3.2.2.3. Comparison with current standards 

Figure 3.22 compares the error motion result using the current standard [3] and that using the 2D 

method in three cases: a) the error motion in X using the fixed sensitive direction method [3] and 
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using the 2D method; b) the error motion in Y using the fixed sensitive direction method [3] and 

using the 2D method; c) the error motion in the rotating radial direction using the rotating 

sensitive direction method [3] and using the 2D method. For cases (a) and (b), neglecting the 

fundamental radial error motion ( 1k ) in the current standard causes a significant decrease in 

the error motion amplitude. For case (c), neglecting  2k  radial error motion in the current 

standard causes a small difference.  

 

 
Figure 3.22. Radial error motion comparison between the current standards and the 2D method. 

 

3.2.3. Experiments across speed 

Expermeriments on the Mori Seiki machine is carried out at several speeds in the range of 100 to 

4500 rpm At each measured speed, 500 revolutions are used to calculate synchronous motion 
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and the spindle error motion is then derived using the 2D method. This section uses the 2D 

method to characterize some of these measurements. 

Figure 3.23(a) shows the trajectories of synchronous test ball center motion in X-Y plane at 

4000 and 4500 rpm. Figure 3.23(b) shows the Fourier coefficients for the two trajectories.  

 

 
a) Y versus X motion trace plot.           

 

 
b) Complex Fourier coefficients of the test ball motion 

Figure 3.23. Test ball motion at 4000 rpm and 4500 rpm 

 

Using the complex Fourier coefficients, the test point trajectories can be fully characterized.  The 

difference in magnitude of )1(V  and )1(V  components determine the shape of the trajectory. 

At 4000 rpm, the magnitude of )1(V  and )1(V  components are significantly different and as 

a result the trajectory is an ellipse. At 4500 rpm, their magnitude is very similar and as a result 
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the trajectory is close to a straight line. Higher order harmonics generate ripples on the motion 

path. 

The phase of )1(V  and )1(V  components determine the orientation of the trajectory. At 

4000 rpm, )1(V  and )1(V  phases are both close to -90 degree; as a result the major axis of 

the ellipse is along Y direction. At 4500 rpm, phase of  )1(V  is close to -90 deg while the 

phase of )1(V  is close to zero; as a result the line is oriented diagonally.  

At 4000 rpm the test point motion moves in the same direction of spindle rotation since  

)1(V  component is bigger than )1(V  component. At 4500 rpm, test point reverses direction 

since the opposite is the case.  

Figure 3.24 shows the first few Fourier coefficients of the spindle 2D radial error motion 

versus speed. For this spindle, all coefficients vary with speed. The fundamental ( 1k ) radial 

error motion amplitude is significantly larger than all other error motion components for all the 

measured speeds. The very large fundamental radial error motion (k=-1) around 4000 rpm is 

mainly caused by the interaction between unbalance and axis-asymmetric supporting structure 

compliance which has a resonance at 70 Hz. This is discussed in more detail in section 4.6.1. 

 
Figure 3.24. Spindle 2D radial error motion Fourier coefficients versus speed. 

  

The 1k Fourier coefficient is plotted versus speeds in Figure 3.25.  
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Figure 3.25. The change of axis of rotation position relative to the test ball center, ( 1)

p
V  . 

 

Although V(+1) component is not part of the spindle error motion, it reflects the test ball center 

offset from the spindle axis of rotation. The variation of the 1k  component reflects the shift of 

the axis of rotation inside the spindle rotor. The test ball has not been moved during the whole 

test but the following two factors cause the change in V(+1) component: 

 

1) Change of test point due to motion of the axis average line. At each speed, the new test 

point has a different location relative to rotation center and therefore different V(+1) 

component. 

2) Change of axis of rotation on the rotor which affects both the spindle error motion and 

V(+1) component of the test point.  

 

3.3. Experiments on an aerostatic bearing spindle 

Figure 3.26 shows the experimental setups used to measure the radial error motion of an 

aerostatic bearing spindle (10R Block-Head by Professional Instruments). Three independent 

setups are used to measure the axis of rotation radial error motion at the same axial location:  

 

a) The ball-probe measurement setup where a 50-µm stroke capacitance probe (model 

number: C2-A by Lion Precision) labeled as P3 is used to sequentially measure the radial 

motion of a target ball (20 nm out-of-roundness, 25.4 mm diameter) in two orthogonal 

directions;  
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b) The ring-probe measurement setup where two 10-µm stroke capacitance probes (model 

number: C5-D by Lion Precision) labeled as P1 and P2 are used to simultaneously 

measure the radial motion of an encoder scale ring (209-mm diameter) in two orthogonal 

directions. This is done at the same axial location as the target ball’s equator.  

c) The encoder measurement setup where four equally spaced encoder heads (model 

number: Heidenhain 4282C) H1, H2, H3, and H4 are used to measure the spindle encoder 

rotary position. The spindle radial error motion is then derived from calibrated error map 

of the four encoder heads. 

 

 
Figure 3.26. Aerostatic bearing spindle test setups. 

 

Table 3-2 summarizes the specifications of the used instruments. P3 probe has a nominal 

sensitivity of 2.5 m/V for a flat target surface. However, the actual sensitivity is corrected to 2.2 

m/V due to the ball radius of 12.7 mm. The probes P1 and P2 has a nominal sensitivity of 0.5 

m/V for a flat target surface, and this number is left uncorrected as the target ring radius is 

much larger than the probe sensing area. The capacitance probe output signals are collected by a 

dSPACE 1103 digital control system at 10 kHz. This data is then spatially interpolated at 0.36 

degree sample intervals to facilitate the angle domain processing. Customized time-counting 

electronics capture the encoder signals for error map calibration [21]. 

 
Table 3-2. Sensors and data acquisition system. 

Sensor Sensitivity Data acquisition Effective resolution 

P3  2.2 m/V  +/- 10V, 16 bit, ADC 0.7 nm 

P1, P2 0.5 m/V +/- 10V, 16 bit, ADC  0.2 nm 

H1, H2, H3, H4 32768 line/rev 600 MHz time capture <2 nm at 200rpm 
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In the next three sections, the radial error motion measurement from each setup is presented. The 

comparison of results from the three setups is discussed afterwards. 

3.3.1. Radial error motion measurements using the ball-probe setup 

3.3.1.1. Measurement procedures and theories 

Figure 3.27 shows the four steps used to measure the radial motion of the target ball in the ball-

probe setup. In step (i), P3 probe is installed in the XB direction. The probe measurement result is 

the combination of the ball out-of-roundness, ( )BR  , and the test ball radial error motion, 

)(Bx , in the XB direction:  

)()()(  BBi xRm   (3-14) 

For step (ii), the test ball installation is the same as step (i), but probe P3 is installed in the YB 

direction. The measurement becomes: 

)()2/()(  BBii yRm   (3-15) 

where )(By is the test ball motion in direction YB.  Step (iii) is a standard Donaldson’s reversal 

procedure [7] with respect to step (i). The probe is moved to the direction opposite of XB, and the 

ball is rotated 180 degree relative to the spindle rotor, resulting in the measurement ( )iiim  : 

)()()(  BBiii xRm   (3-16) 

Simlalry, step (iv) is a standard Donaldson’s reversal procedure [7] with respect to step (ii). The 

probe is moved to the direction opposite of YB, and the ball installation is the same as step (iii), 

resulting in the measurement )(ivm : 

)()2/()(  BBiii yRm   (3-17) 

 The test ball out-of-roundness can be derived from the measurements in the X direction as 

follows 

 )()(
2

1
)(  iiiB mmR   (3-18) 

Alternatively, the measurements in the Y direction can be used to derive the ball out-of-

roundness: 

 )()(
2

1
)2/(  iviiB mmR   (3-19) 
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Note that in Eq. (3-18) and (3-19), the DC and fundamental components need to be removed 

from the measurements as there is no once-per-revolution out-of-roundness. Further, the test ball 

radial motion can be calculated: 

( ) ( ) ( )B i Bx m R     (3-20) 

( ) ( ) ( / 2)B ii By m R       (3-21) 

 

 
Figure 3.27. Four steps in spindle radial error motion test using setup (a). 
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3.3.1.2. Experimental results at 400 rpm 

In Figure 3.28, the first 20 revolutions of the probe measurement at 400 rpm are overlaid.  

 

 
Figure 3.28. Probe measurement results at 400 rpm from the four steps. 20 revolutions are overlaid. 
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Figure 3.29 shows the synchronous component of the measurements obtained by averaging 500 

revolutions at 400 rpm.   

 
Figure 3.29. Synchronous component of the measurements from the four steps at 400 rpm. 
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Figure 3.30 shows the asynchronous component of the measurements over four revolutions at 

400 rpm. The increase in structural loop vibrations seen in steps (i) and (ii) is due to the probe 

holder mounting.   

 
Figure 3.30. Asynchronous component of the measurements from the four steps at 400 rpm. 
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Figure 3.31 shows the ball roundness extracted from the synchronous components of the 

measurements shown in Figure 3.29. The result from steps (i) and (iii) measurement )(BxR  is 

shifted by 90 degrees for better comparison with the result from steps (ii) and (iv) measurements, 

)(ByR . 

 
Figure 3.31. The test ball out-of-roundness. 

 

Further, by applying Eq. (3-20) and (3-21), the test ball synchronous motion in XB and YB 

directions are extracted and shown in Figure 3.32. From Figure 3.32, it is clear that the motion in 

the XB direction has a significantly larger first harmonic component than the motion in the YB 

direction. As a result, the test ball motion path in the X-Y plane is close to a line in the XB 

direction. 
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Figure 3.32. Target ball synchronous 2D motion of the aerostatic bearing spindle at 400 rpm, using the ball-probe 

setup. (a) XB motion versus rotary angle. (b) YB motion versus rotary angle. (c) YB versus XB motion trace plot. 

 

In order to demonstrate that the fundamental radial error motion is independent from the test ball 

installation, a second measurement test was performed on the same spindle at 400 rpm: the target 

ball was installed in a different location on the spindle rotor from the previous test and the three 

steps are repeated for this second test. Figure 3.33 shows the test ball synchronous motion 

measurement result from the second test. The XB-YB motion path is now close to a line in YB 

direction, which is due to large first harmonic component in the YB direction. Obviously, the 

target ball in the two tests has very different eccentricity. 
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Figure 3.33. A second test of the target ball synchronous 2D motion at 400 rpm. The target ball installation location 

on the rotor is changed to a rotor location different from the one in Figure 3.32 results. (a) XB motion versus rotary 

angle. (b) YB motion versus rotary angle. (c) YB versus XB motion trace plot.
 

 

After applying the 2D theory in part 1 and removing the k=+1 harmonic component (test ball 

eccentricity), the spindle radial error motion in XB and YB directions can be calculated for both 

tests, as shown in Figure 3.34(a). The results from the two tests are very consistent. Figure 

3.34(b) shows the Fourier coefficients comparison of the 2D synchronous radial error motion 

from these two tests. The consistency confirms that the fundamental radial error motion, )1(V , 

is not related to the test ball installation eccentricity.   
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(a) Axis of rotation radial error motion. 

 

 
Test  k -5 -4 -3 -2 -1 2 3 4 5 

1 |V[k]|[nm] 1.0 0.4 0.3 5.4 49.8 7.9 4.5 0.5 1.1 

2 |V[k]|[nm] 0.8 0.3 0.6 5.5 50.9 8.0 4.7 0.6 1.1 

(b) Fourier coefficients of axis of rotation 2D radial error motion. 

Figure 3.34. Spindle radial error motion measurement results from two tests with very different target ball 

eccentricity. 

 

3.3.1.3. Comparison with current standards 

Figure 3.35 shows the comparison between radial error motion specified in the current standard 

[3] and the 2D radial error motion in three radial directions: the XB direction, the YB direction, 

and the rotating direction. For the directions XB and YB, the 2D method gives a significantly 

higher error motion than that obtained from the fixed sensitive direction method [3], which does 

not include 1k  component. For the rotating direction, the difference in results is caused by 

the missing 2k  component in the rotating sensitive direction method [3].  
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Figure 3.35. Radial error motion comparison between the current standards and the 2D method.

 

 

3.3.2. Radial error motion measurements using the ring-probe setup 

In order to further confirm the existence of the fundamental radial error motion, V(-1), the 

spindle radial error motion was measured with another independent setup: two probes, P1 and 

P2, simultaneously measuring against a gold plated encoder scale ring, as shown in Figure 3.36. 

The probes are orthogonally installed in XR and YR directions.  
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Figure 3.36. The ring-probe setup for axis of rotation radial error motion measurement.

 

 

The measurement in XR is the combination of the ring radial motion in XR direction, )(Rx , and 

the ring out-of-roundness, )(RR : 

)()()(  RRx Rxm   (3-22) 

Similarly, the measurement in YR directions is  

)2/()()(   RRy Rym  (3-23) 

where )(Ry is the ring radial motion in YR direction. As the ring target is much more flexible 

than the test ball, it is difficult to ensure the same roundness in a reversal test; therefore, the 

roundness is not removed from the measurement in this setup. Transferring Eq. (3-22) and (3-23) 

into frequency domain, the k-th Fourier coefficients of the measurement become 

)()()(

)()()(

kRjkYkM

kRkXkM

R
k

Ry

RRx




 (3-24) 

where ( )RR k , )(kXR and )(kYR are the k-th Fourier coefficients of ( )RR  , )(Rx and )(Ry , 

respectively. The ring out-of-roundness can be eliminated from the measurements using the 

following Eq.:   

)()()()( kYjkXkMjkM R
k

Ry
k

x 
 

(3-25) 

Particularly, for 1k , 

)1()1()1()1()1(  RRRyx VjYXjMM
 (3-26) 
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where )1(RV  is the fundamental radial error motion. Therefore, the 1k  component can be 

calculated from the ring-probe measurement without removing the ring roundness.  

Figure 3.37 shows the 500 revolutions of overlaid probe measurement results at 400 rpm. By 

averaging the measurement, the synchronous components can be extracted as shown in Figure 

3.38. The X and Y results are dominated by out-of-roundness of the ring and show a very similar 

pattern aside from a 90 degree phase shift. Using Eq. (3-26), the amplitude of 1k  component 

of the 2D radial motion is calculated as 2.50)1( RV nm, which matches the two test results 

using ball-probe setup in Figure 3.34. Again, this confirms that )1(RV  is an error motion 

component independent of target shape and installation. The asynchronous component of the 

probe measurements over four revolutions is shown in Figure 3.39. These are the asynchronous 

radial error motions in XR and YR directions plus electrical noises. 

 

 
Figure 3.37. Probe measurement results at 400 rpm using the ring-probe setup. 500 revolutions are overlaid. 

 

 
Figure 3.38. Synchronous motion of the ring-probe setup measurements.
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Figure 3.39. Asynchronous radial error motion results. 

3.3.3. Radial error motion measurements using the four encoder head setup 

Figure 3.40 shows setup (c) in top view. Four encoder heads are equally spaced around the 

encoder ring and are used to measure spindle rotation. Each encoder head output signal has 

measurement error due to ring scale grating error and radial error motion. With the self-

calibration method presented in [23] and [24], the error map for each head can be calibrated.  
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Figure 3.40. Setup (c): radial error motion measurement using four encoder scanning heads.
 

 

The calibrated error maps can be expressed as:  
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where )(1 Hq , )(2 Hq , )(3 Hq , and )(4 Hq  are encoder error maps from head H1, H2, H3 and 

H4 respectively; )(g is the scale grating error; )(Ex  and )(Ey  are the encoder ring scale 

radial motion in XE and YE directions, respectively. By Fourier transform, these equations can be 

formulated as: 
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 (3-28) 

where )(kQHi  is the k-th Fourier coefficient of )(Hiq , for i =1, 2, 3, 4; )(kG , )(kX E , and 

)(kYE  are the k-th Fourier coefficients of )(g , )(Ex  and )(Ey , respectively. Particularly, 

for 1k , the spindle radial error motion can be calculated Eq. (3.28) as: 

)1()1()1()1()1( 21  EEEHH VjYXQjQ . (3-29) 
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Figure 3.41 shows the calibrated encoder error maps of the four heads at 400 rpm. According to 

Eq. (3-29), the calculated fundamental radial error motion amplitude is nm4.50)1( EV , 

which matches the previous results obtained from the ball-probe and ring-probe setups. 

 

 

Figure 3.41. Calibrated encoder error maps of four encoder scanning heads at 400 rpm.  

 

The radial error motion measurement using four encoder head setup is carried out as part of the 

―On-Axis self-calibration of angle encoders‖ research by Richard Graetz [24].  

3.3.4. Comparison of three methods for spindle motion measurement 

In this section, the fundamental spindle error motion obtained from the three setups is compared. 

To make the comparison, measurements in setup (a) and (c) frame are transformed to setup (c) 

frame. Figure 3.42 shows the relationship between the three frames.  
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Figure 3.42. Relationship between the measurement coordinate of the three setups 

 

For the ball-probe setup measurement, the transformation is: 

15)()( j
BR evv    (3-30) 

where )(Rv  is the test ball motion in the ring setup frame and )(Bv is the test ball motion in 

the ball setup frame. Similarly, for the encoder head setup, the transformation is:  

135)()( j
ER evv    (3-31) 

Since this aerostatic bearing spindle has less than 1 nm asynchronous radial error motion, as 

shown in Figure 3.39, the fundamental radial error motion calculated from one revolution of data 

is nearly identical to that calculated from 500 revolutions. In order to efficiently compare the 

measurement results from three setups over a wide speed range, the spindle radial error motion is 

calculated while the spindle is freely slowing down using only one revolution.  

Figure 3.43, shows that the fundamental radial error motion results from the three setups 

match within 2 nm. Also note that the results change with speed by only few nanometers. This 

comparison confirms that the fundamental radial error motion is a spindle motion property 

independent of test setup and artifact installation offset. The different phase of )1(V in the three 
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setups is caused by the deviation between the nominal probe/encoder installation location and 

their actual locations.  

 

 

Figure 3.43. Comparison of the fundamental radial error motion measurement V(-1) results from the three setups. 
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Chapter 4. Physical causes of fundamental error motion 

So far in the thesis, the existence of fundamental error motion has been proved based on the 

kinematic analysis of the spindle motion in space. In this chapter, the aim is to understand what 

can cause the spindle rotor to move such that its rotation center move once-per-revolution in the 

opposite direction of spindle rotation.  

In general, the axis of rotation would have no error motion if two conditions were satisfied: 

 

1) The drive motor torque which causes rotation around the desired axis is the only force 

acting on the rotor.  

2) All the other components of the structural loop have no motion relative to the gage head. 

This type of motion could be caused by external sources such as shop floor vibration 

exerting force on the spindle supporting structure. 

 

As the spindle rotates, the motion of any component in the structural loop except the spindle is 

not synchronized with the rotation. In general, to have synchronous error motion, there should be 

interaction between a force acting on the spindle shaft and the stiffness element associated with 

it. Table 4-1 summarizes the type of interactions which causes synchronous error motion as 

discussed in [25]. 

 

Table 4-1. Types of interaction which cause spindle synchronous error motion. 

Radial force Stiffness element 
Example on a lathe 

machine 

Example on a 

boring machine 

Fixed 

Fixed 
Cutting force and 

spindle support 

Gravity and spindle 

support 

Rotating 
Cutting  force and 

work piece 

Gravity and boring 

bar 

Rotating 

Fixed 
Unbalance force and 

machine support 

Cutting force and 

spindle support 

Rotating 
Unbalance force and 

work piece 

Cutting force and 

boring bar 
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The fundamental error motion is a synchronous motion and can only be caused by the forces 

acting on the spindle itself. In particular, this type of error motion is generated when the force 

acting on the shaft rotates once-per-revolution and the stiffness element is fixed. In all other 

cases given in Table 4-1, the resulting motion cannot be once-per-revolution.  

Table 4-2 summarizes several examples where there is an interaction between a rotating 

radial force and a fixed stiffness element. Following subsections explain how each of these 

interactions can cause spindle to have fundamental error motion. Experimental results on both 

the Mori Seiki ball bearing spindle and Professional Instruments aerostatic bearing spindle will 

also be presented to confirm the analysis. 

 

Table 4-2. Types of interaction which cause spindle fundamental radial error motion. 

Rotating Radial force Fixed stiffness element 

Unbalance 

Axis-asymmetric radial stiffness of the 

spindle bearing 

Axis-asymmetric stiffness of the 

supporting structure 

Off axis load 
Axis-asymmetric tilt stiffness of the spindle 

bearing 

Rotor surface misalignment Asymmetric bearing tilt stiffness 

Magnetized rotor Stator magnetic field 

 

4.1. Interaction between unbalance and spindle bearing axis-

asymmetric stiffness  

Asymmetric bearing stiffness could be caused by the out-of-roundness of the stator surface. 

Figure 4.1(a) shows such an example with aerostatic bearings: the rotor is perfectly round, but 

the stator surface is elliptical. As a result, when the stator center O coincides with the rotor 

geometric center G at zero speed, the air gap in the X direction is bigger than that in the Y 

direction. Usually, aerostatic bearings with larger nominal gaps exhibit lower supporting 

stiffness under the same supply pressure. This axis-asymmetric air gap can result in axis-

asymmetric radial stiffness, where the stiffness xk  in the X direction is smaller than the stiffness 

yk  in the Y direction. 
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Figure 4.1. Axis symmetric air gap between rotor and stator of an aerostatic bearing spindle at zero speed. 

 

When the radial stiffness is axis-asymmetric, the axis of rotation can exhibit fundamental radial 

error motion under a rotating excitation. In the following subsection, it is shown how unbalance  

can generate fundamental radial error motion. 

4.1.1. Unbalance 

As shown in Figure 4.2(a), when unbalance exists on the rotor, the inertial center of the rotor is 

at point E, which is offset from the rotor geometric center G by a distance  . This unbalance 

could have been caused by factors such as installation misalignment of a direct drive motor or 

internal hole misalignment in the rotor.  When the rotor rotates at constant speed , point G will 

deviate from the stator elliptical center O. Using the dynamics model shown in Figure 4.2(b), the 

force balance equations in X and Y directions will be 
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Seeking solutions of the form cosAxG 
 
and sinByG  , the steady state trajectory of point 

G can be calculated as: 
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 (4-2) 

where   is the angle between the X axis and the eccentricity vector (from point G to point E), 

and m  is the rotor mass. The 2D motion of point G can be combined as a complex number: 
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Therefore, the 1k  motion component (eccentricity of the rotor geometric center G) is 
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and the 1k  error motion component is 
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It is evident that the motion of point G is the superposition of two rotating vectors: )1(GV  

rotating in the same direction as the spindle rotation, and )1(GV  rotating in the opposite 

direction of spindle rotation. If the rotor behaves as the model presented, then at
m

kk yx

2


 , 

)1(GV  component of rotor geometric center vanishes. In this speed, the rotation center will be 

the rotor geometric center moving once-per-revolution opposite to spindle rotation with 

amplitude of  
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xy

xy

kk

kk




 (4-6) 

In the field of rotor dynamics, complex coordinates has previously been used the same way 

as the analysis in this section [26]. The general solution of homogenous equation of motion (no 

unbalance excitation  jem 2 ) is expressed as sum of two vectors rotating in forward and 

backward direction. Both vectors rotate with the speed equal to the natural frequency of the rotor 

( mk / ). The motion in the forward direction is referred as circular forward whirl and the 

motion in the opposite direction is referred as circular backward whirl. Unbalance force cause an 

excitation force with a frequency equal to the spin speed of the rotor. The spin speed which 

coincides with the rotor natural frequency is referred as critical speed. At this speed the 

unbalance response of the rotor shows a peak.  
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a) The unbalance of the spindle 

 

 
b) Dynamic model of the spindle 

Figure 4.2. An unbalanced spindle with axis-asymmetric radial stiffness. 

 

4.2. Interaction between unbalance and supporting structure axis-

asymmetric stiffness 

Most of the machine tools in use today have axis-asymmetric supporting stiffness. Figure 4.3 

shows one example of a five axis machine where a spindle is installed on stacked X and Y linear 

stages. Since the moving mass in X and Y directions are very different, the supporting structure 

lateral stiffness becomes axis-asymmetric. Another example is a diamond turning machine 

shown in Figure 4.4(a) where an aerostatic spindle is installed on the X slide, which is driven by 

linear motor and guided by hydrostatic static bearings. As shown in Figure 4.4(b), in the vertical 

Y direction, the spindle housing support stiffness is determined by the hydrostatic bearing, while 

in the X direction the spindle housing support stiffness comes from the linear motor closed-loop 



94 

 

control. In general, the stiffness of hydrostatic bearing is very different from that of the linear 

motor control stiffness, resulting in axis-asymmetric stiffness.  

 

 
Figure 4.3. Axis-asymmetric stiffness of a five axis machine. 

 

 
Figure 4.4. Axis-asymmetric stiffness of a diamond turning machine.  

 

Similar to the analysis done in section 4.1, spindle will exhibit fundamental error motion due 

to interaction between unbalanced mass or rotating cutting force and the axis-asymmetric 

stiffness of the structure.  

4.3. Interaction between off-axis load and spindle bearing axis-

asymmetric tilt stiffness 

As pointed out in [27], when the tilt stiffness of a vertical spindle is axis-asymmetric, any static 

unbalance of the spindle rotor can cause fundamental radial error motion. In Figure 4.5, the X-
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axis tilt stiffness, xk , is assumed unequal to the Y-axis tilt stiffness, 
yk . A weight w  is installed 

offset from the rotor geometric center O by a distance  to simulate rotor static unbalance. The 

part applies a torque that rotates with the rotor. The test ball’s center has height h above the tilt 

center. Assuming at this axial location the radial error motion is zero, the point ball’s center P  

motion can be calculated as 
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where   is the angle between the X axis and the vector pointing from the rotor geometric center 

O to w . The 2D motion can be represented as: 
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Therefore, the 1k  error motion component is: 
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Figure 4.5. Off-axis load on a rotary table. 
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4.4. Rotor surface misalignment and spindle bearing axis-

asymmetric tilt stiffness  

Figure 4.6 presents an aerostatic spindle example where the rotor shaft is round but the thrust 

plate has an alignment angular error  . As shown in Figure 4.6(a), the stator inter surface has an 

elliptical shape with long axis along X and short axis along Y.  As a result, the Y-axis tilt 

stiffness, 
yk , is smaller than the X-axis tilt stiffness, xk .  Figure 4.6(b) shows the rotor at rotary 

position,  0 . The mis-aligned thrust plate will generate a tilt angle 
y  between the rotor 

surface center line and the stator surface center line. The equilibrium condition for the rotor 

internal moment is 

)( ypyy kk    (4-10) 

where 
pk  is the tilt stiffness between the thrust plate and its stator mating surface. Rearranging 

the terms in Eq. (4-10) gives: 
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when the rotor rotates 90 degrees, the tilt angle around the X axis can similarly be calculated as: 
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 (4-12) 

From this it can be seen that the shaft center line is moving in an elliptical cone once per 

revolution and the radial error motion will have 1k    component. 
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Figure 4.6. An aerostatic spindle with misaligned rotor thrust plate and elliptical stator surface. a) spindle rotor and 

stator. b) assembled rotor and stator. 

4.5. Interaction between magnetized rotor and stator 

Figure 4.7 shows an example of a spindle exhibiting fundamental error motion caused by 

magnetization of stator and rotor. Both the spindle rotor and the stator are somehow magnetized. 

The rotor has only one pair of poles and its magnetic field is once per revolution. The stator has 

two pairs of poles with magnetic field varying twice per revolution. The magnetic interaction 

force between the rotor and stator depends on the rotation angle. At 0  and 180 , the 

rotor North pole is repelled from the stator North Pole. At 90  and 270  the rotor North 

pole is attracted toward the stator South pole. This interaction causes the rotor geometric center 
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C to move in the opposite direction of the rotor rotation. In this case, the rotor center C is the 

rotation center and its vector motion contains 1k    component. 

 
Figure 4.7. Interaction between a spindle stator and rotor’s magnetic fields. 

 

4.6. Physical cause experiments on the ball bearing spindle 

The compliance of the Mori Seiki ball bearing spindle is tested with an impact hammer (IMI 

Sensors Model 086C41) and accelerometer (PCB Quartz Shear ICP Model 353B31). The spindle 

is positioned at the same place where it was located for the error motion measurements (Machine 

coordinates: X: 247.8mm, Y: -298.4mm Z: -435.8mm C: 0 Z: 0). Figure 4.8 shows the stiffness 

tests carried out on the spindle: 

 

1. Test (i): Accelerometer mounted on rotor. Hammer hits on rotor (X direction).   

2. Test (ii): Accelerometer mounted on rotor. Hammer hits on rotor (Y direction).   

3. Test (iii): Accelerometer mounted on housing. Hammer hits on housing (X direction).   

4. Test (iv): Accelerometer mounted on housing. Hammer hits on housing (Y direction).   
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Figure 4.8. Experimental setup for radial compliance measurement. 

 

The measured compliance in X and Y directions are shown in Figure 4.9.  The measurement on 

the spindle rotor and housing give similar results which indicate that asymmetry is caused by the 

stiffness between spindle housing and machine structure. This is reasonable since the spindle is 

installed on one rail in X direction and two rails in Y direction. 
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Figure 4.9. Spindle compliance measurement test results. 

 

This axis-asymmetric structural compliance causes fundamental error motion under unbalance 

excitation. In particular at 70 Hz, which corresponds to 4200 rpm, the spindle structural 

compliance shows an evident resonance mode, with motion mainly in Y direction. This result 

matches the significant increase in 1k  amplitude at 4000 rpm in Figure 3.24. Additional 

compliance test results on the Mori Seiki machine is presented in Appendix D. 

4.7. Physical cause experiments on the aerostatic bearing spindle 

4.7.1. Unbalance experiment 

The effect of unbalance on the radial error motion of the aerostatic bearing spindle is 

investigated by placing a mass of 0.5kg on the shaft at the positions shown in Figure 4.10. All 

the mounting holes are at the radius of 50 mm. The mass of the spindle shaft including the parts 

mounted onto it is 52 kg. The spindle error motion is measured using the probes looking at the 
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encoder ring (setup (b) explained in chapter 3). The measurement is during the spindle freely 

slowing down and one revolution data at each speed is used to calculate the error motion. 

 

 
Figure 4.10. Unbalance mass mounted on the aerostatic spindle rotor. 

 

When the mass is at position i , the radial error motion vector due to unbalance is 

)()()(
)()(


massnoGiPiatmassGiPi vvv   (4-13) 

where )(Gv  is the motion vector measured by the probes. Neglecting harmonics higher than 

1k , )(Piv  can be written as 
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Using Eq. (4-3), )1(PiV and )1(PiV
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Since the mounting holes are placed 60 deg apart ( 601  ii  ), the relationship between 

)1(PiV  Fourier coefficients can be written as 

60

1 )1()1( j

PiPi eVV 

   (4-16) 
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Figure 4.11 shows the magnitude of  )1(PiV  Fourier coefficient for each of the positions 

shown in Figure 4.10. As expected the magnitude increases as the spindle speed,  , increases. 

The difference in )1(PiV  magnitude at different positions is due temperature and pressure 

effects as discussed later in section 4.6.3.  

 

 
Figure 4.11. Effect of unbalance mass on magnitude of VP(+1). 

 

Figure 4.12(a), shows the phase of )1(PiV
 
Fourier coefficient for each of the tested positions. 

The difference in the phase of  )1(PiV  should be equal to 60 deg as shown in Eq. (4-19). To find 

the actual difference, the average phase value at each position is found and a least squares line is 

fit to the data (Figure 4.12(b)). The slope of this line is -55 deg due installation errors coming 

from the loose clearance of the mounting hole.  

 

 
Figure 4.12. Effect of unbalance mass on phase of VPi(+1). a) Phase of  VPi(+1) for all the mounting positions, b) 

difference between VPi(+1) phases shown in (a). 
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The relationship between )1(PiV  Fourier coefficients can be written as 

60

1 )1()1( j

PiPi eVV 
 (4-17) 

Figure 4.13, shows the magnitude of  )1(PiV  Fourier coefficient for each of the positions shown 

in Figure 4.10.   

 

 
Figure 4.13. Effect of unbalance mass on magnitude of VPi(-1). 

 

This result shows that the unbalance mass has generated a very small )1(PiV  component which 

indicates that the radial stiffness along X and Y directions are very similar. Figure 4.14(a) shows 

the phase of  )1(PiV  Fourier coefficient for each of the tested positions. The difference in the 

phase of )1(PiV  should be equal to 60 deg as shown in Eq. (4-20). Similar to the method used 

for )1(PiV phase difference, the average phase value for each position is found and a least 

squares line is fit to the data (Figure 4.14(b)). The slope of this line is 50 deg due to installation 

errors coming from the loose clearance of the mounting holes. Comparing to the phase difference 

measured for )1(PiV  Fourier coefficients, the results are not as accurate due to small effect of 

unbalance mass on generating )1(PiV component.  
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Figure 4.14. Effect of unbalance mass on phase of VPi(-1). a) Phase of  VPi(+1) for all the mounting positions, b) 

difference between VPi(+1) phases shown in (a). 

 

The sudden change in the magnitude of )1(PiV  and )1(PiV around 70 rpm is due to the 

resonance frequency of the optical table where the spindle stator is mounted. Existence of 

)1(PiV  component shows that the aerostatic spindle has axis-asymmetric stiffness.  

4.7.2. Tilt stiffness measurement 

To verify the axis-asymmetric stiffness of the aerostatic bearing spindle, the static tilt stiffness is 

measured. Figure 4.15 shows the setup used in this experiment. The stiffness was measured 

along 6 different directions with angle  with respect to the stator reference point.   

 
Figure 4.15. Experimental setup for tilt stiffness measurement. 
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To measure the tilt stiffness, mass was placed on the rotor and the static deformation of the rotor 

was measured using the capacitance probes (Figure 4.16(a)). This measurement is repeated for 

each direction (
 300,...,60,0 ). Figure 4.16(b), shows one of the deformations measured 

using this method.    

 

 
(a) Placing mass on the rotor 

 

 
(b) Measured deformation of the rotor 

 

Figure 4.16. Measuring static deformation of the the aerostatic spindle. 

 

Above experiment was carried out for six different orientations of the rotor with respect to the 

stator. This orientation is given by   which is the relative angle between the reference point on 

the rotor and the reference point on the stator (Figure 4.15).  The measured tilt stiffness is shown 

in Figure 4.17.  



106 

 

 

Figure 4.17. Static tilt stiffness of the aerostatic spindle. 

 

Results show that at 
180 the tilt stiffness is around 9.5 Nm/µrad while at 

0 the tilt 

stiffness is around 7.25 Nm/µrad. This does not make physical sense since it is not possible to 

have different stiffness along two directions which are 180 degrees apart. It is concluded that due 

to high tilt stiffness of the aerostatic bearing spindle, the method presented in the thesis is not 

adequate for measuring the tilt stiffness. 

The other major cause of fundamental error motion on the aerostatic bearing spindle could 

be the non-round bearing surface shape. Investigating this cause is kept for future research. 

4.7.3. Other physical factors affecting V(-1) 

4.7.3.1. Loose bolt test 

As pointed out in [28], the non flatness of the stator mating surfaces or the localized clamping 

force of the bolts can generate stress concentration and destroy the symmetry of the stator 

bearing surface. This distortion has an effect on the fundamental error motion of the spindle. 

This effect is tested by loosening 20 bolts which mounts ERA Head Mount Top onto ERA Head 

Mount Bottom (Figure 4.18). The four bolts closest to the encoder heads are left tightened to 

eliminate damaging the encoder ring.  
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Figure 4.18. Aerostatic bearing assembly solid model. 

 

The change in )1(V  component before and after losing the bolts are shown in Figure 4.19. As 

expected changing the stress concentration on the stator affect the fundamental radial error 

motion by few nanometers, but this cannot be the major cause of the observed fundamental radial 

error motion. 

 

 
Figure 4.19. Effect of loosening the stator bolts on V(-1). 

 

4.7.3.2. Drift test 

Environmental effects cause drift on the spindle motion measurement in the range of few 

nanometers. By placing the air bearing spindle on an optical table and regulating spindle air 

pressure, the effect of external vibrations and pressure change is minimized but some drift is still 

present in the measurement.  
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Figure 4.20(a) shows a 200 min test carried out to study the long-term drift of the spindle. 

The spindle is run for one hour at 400, 200, and 100 rpm and setup (b) is used to record the 

fundamental error motion, )1(V . At the end of three hours, the fundamental component is also 

measured as the spindle freely slows down.  

Figure 4.20(b) shows the )1(V motion drift at 200 rpm. The steps are related to cyclic 

change in the supply line pressure. In addition, as the spindle keeps rotating, its temperature 

rises. After one hour, the temperature rise has caused a 2% increase in the fundamental error 

motion. This shows that environmental effects such as change in temperature and spindle air 

pressure is negligible compared to the magnitude of 1 cpr motion.    

 

 
Figure 4.20. Change in V(-1)  due to temperature and pressure change. 
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Chapter 5. Conclusion and future work 

5.1. Conclusion 

This thesis presents a new 2D method for characterizing spindle radial error motion. This method 

provides a new framework in which the analysis can be carried out layer by layer: 

 

1)  The reference frame is chosen to measure the relative motion of the spindle with respect 

to a fixed frame.  

2) The motion of a single point on the rotor is measured using two orthogonal probes. 

3) Using complex Fourier series, the radial error motion of the spindle is extracted from the 

test point measurements. 

4) The consequence of spindle radial error motion in different types of applications is 

analyzed.   

 

This approach is quite different than the methods specified in the current standards which can 

only predict the consequence of spindle radial error motion in applications with a single sensitive 

direction (fixed or rotating). In comparison with these methods the new 2D method has the 

following advantages: 

 

1) It can distinguish between radial error motion and its consequence and can be used to 

find the actual radial error motion of the spindle in two dimensions which is an 

application-independent geometric characteristic. 

2) It can capture all the components of radial error motion including the fundamental error 

motion which is considered to be nonexistent in the current standards. The fundamental 

radial error motion is a vector motion rotating at the same speed as the spindle rotor but 

in the opposite direction. 

3) It can give the consequence spindle radial error motion in all types of applications 

including the ones which have two sensitive directions.  

 

Based on the application sensitive directions, spindle applications are categorized into three 

classes: applications with single fixed radial sensitive direction (SFSD), applications with single 
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rotating radial sensitive direction (SRSD), and applications with two radial sensitive directions 

(TSD). Examples of applications with TSD include axis-asymmetric pattern 

machining/measuring, and axis-symmetric pattern machining/measuring with multiple tools. For 

each application class, radial error motion consequence has been derived from 2D analysis.  

The experimental results have demonstrated that both the ball bearing spindle and the 

aerostatic bearing spindle can have fundamental radial error motion. In these tests, the 

fundamental radial motion is the dominant component, and exhibits much larger amplitude than 

the rest of radial error motion components. The radial error motion calculated with the fixed 

direction method in the current standards is much smaller than the one calculated with the 2D 

method. This is due to the missed fundamental radial error motion component in the current 

standard. In the rotating direction, the radial error motion calculated with the rotating sensitive 

direction method in the current standards is also different from the one calculated with the 2D 

method. This difference is not as large as that in a fixed direction, because the k=2 cpr 

component missed in the rotating sensitive direction method of the current standard has a much 

smaller amplitude than the fundamental radial error motion for the spindles tested. 

Fundamental radial error motion can be caused by the interaction between a rotating force 

and axis asymmetric stiffness of the spindle. On the ball bearing spindle, the axis asymmetric 

structure is verified by the impact hammer test. The significant increase at 4000 rpm occurs due 

to spindle speed coinciding with a structural resonance frequency.  

5.2. Future work 

5.2.1. Experimental setup modifications 

Setup (a) used in the aerostatic bearing spindle error motion measurements can be modified to 

reduce the effect of indexing and ball out-of-roundness on the error measurements. The 

mounting surface of the probe holder needs to be ground so that the height of the probes in X and 

Y directions become the same. This ensures that both probes measure the same ball out-of-

roundness. In addition, to eliminate indexing errors for Donaldson reversal, the sliding bearing 

designed in [21] can be used to rotate the probe holder bolted to the stator top surface. Using the 

ERA encoder, the rotation angle can be precisely measured as the encoder read heads rotate 

around the fixed drum along with the probe holder.  
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In addition, as pointed out by Donaldson [29], the interaction between the non-roundness of 

the rotor and the radial bearing stiffness could generate a twice-per-revolution ―breathing‖ 

motion on the stator surface. As a result, the capacitance probes mounted on the stator move 

relative to the target and the breathing motion becomes part of spindle error motion 

measurement.  

For the experimental results shown, the breathing effect is neglected since it has a twice per 

revolution rotational frequency and cannot contribute to the fundamental radial error motion 

)1(V . On the aerostatic bearing spindle, three independent setups are used to measure the error 

motion. Setups (a) and (b) uses capacitance probes against a target to measure the spindle motion 

and are both sensitive to breathing effect. On the other hand, setup (c) extracts spindle error 

motion from the encoder error maps measured by the four read heads. Breathing effect has little 

effect on this setup as the error map is mostly sensitive to tangential motion of the read head. All 

three methods give the same )1(V  measurement as shown in Figure 5.1 which confirms that 

breathing effect does not contribute to the fundamental error motion.  

To measure all the components of spindle error motion accurately, a new probe holder is 

designed using flexures as shown in Figure 5.1. Under the breathing effect, the flexures 

elastically deform along with the stator surface but the probes remain stationary. Testing all the 

components of spindle radial error motion more accurately using this setup is kept for future 

research. 

 
a) Modified aerostatic bearing assembly solid model 
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a) Probe holder flexure mount top view 

Figure 5.1. Modying aerostatic bearing spindle setup for more accurate radial error measurements. 

 

5.2.2. Cause of fundamental radial error motion 

Fundamental radial error motion is a new concept which has not been recognized in prior art. 

The ball bearing and aerostatic bearing spindles tested in this research both have this type of 

error motion. More tests need to be carried out on other types of spindles to find some design 

parameters which can reduce the fundamental error motion. In addition, the physical causes of 

this error motion needs to be investigated further. In particular, the fundamental radial error 

motion for the aerostatic bearing spindle is believed to be related to the bearing surface shape. 

Confirming this requires disassembling the spindle, which is not investigated in this paper and is 

kept for future research.  
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Appendices 

Appendix A 

Given N equally spaced points per revolution over M revolutions, the measurement at the n -th 

position 
N

n



2

 in the m -th revolution can be expressed as for revolution i  can be expressed 

as )(npm  where 10  Mm and 10  Nn . 

There are three methods to find synchronous component of the measurement data: 

1)Averaging in time domain, 2)averaging in frequency domain and 3)extracting harmonics 

which are integer multiples of total number of revolutions, M . In this appendix, it is shown that 

these three methods are mathematically the same. 

 

1) Averaging in time domain: In this method, the synchronous measurement can be found 

by averaging the data at each rotary position over the number of revolutions recorded:  







1

0

)(
1

)(
M

i

m np
M

np  (A-1) 

2) Averaging in frequency domain: In this method the time domain data of each revolution 

is transferred to frequency domain using FFT. The Fourier coefficient for the data in the 

m -th revolution is expressed as  

10,)(
1

][
1

0

2

 






Nkenp
N

kP
N

n

N

kn
j
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

 (A-2) 

The Fourier coefficients of the synchronous measurement can then be found by averaging 

each harmonic over all the revolutions:  

10],[
1

][
1

0

 




NkkP
M

kP
M

m

m  (A-3) 

Accordingly, the synchronous measurement can be reconstructed from its Fourier 

coefficients as 

10,][
1

)(

21
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 




NnekP
N

np N

kn
jN

k



 (A-4) 

3) Extracting synchronous harmonics in frequency domain: In this method FFT is applied to 

all the revolutions’ data at once to get a single frequency spectrum.  
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 (A-5) 

By dropping the ][kP  components that are not multiple of M (non-integer components), 

the synchronous component Fourier coefficients can be derived  

10],[][  NkkMPkP  (A-6) 

 

These three methods are mathematically identical. Consequently, all three methods give the same 

synchronous measurement. Once the synchronous motion component is extracted, asynchronous 

motion can be easily found using the following equation: 

][][][~  ppp   (A-7) 
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Appendix B 

Figure B.1. shows an example polar plot. The polar plot contains both DC , 0r  , and  fundamental 

component, )cos(  a :   

)()cos()( 0  earr   (B-1) 

 

 
Figure B. 1. Example polar plot with centering error. 

 

In the least squares fitting method, the least squares circle of the polar plot is found and the 

deviation of the polar plot from this circle is specified as radial error motion. The coordinates of 

the least squares circle center LSCO  are:  
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
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 (B-3) 

Once the Least square center is found, the polar plot relative to the new center is )(LSFr as 

shown in Figure B.1.  

In the frequency domain method, the fundamental component of the polar plot measurement 

given in Eq. (B-1) is removed from the measurement to get 
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)()( 0  errFFT   (B-4) 

Figure B.1 shows that )(LSFr  and )(FFTr  are two sides of a right angle rectangle; therefore 

their difference is  

0

2

2

))sin((
)()(

r

a
rr FFTLSF
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
  (B-5) 

The difference approaches zero as the base circle radius, 0r , increases.  
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Appendix C 

In practice, the test ball motion is usually measured at N  equally-spaced rotary positions per 

revolution. Over M  revolutions, the ball motion is recorded as: 

][][][ njynxnv PPP  , for MNn 1  (C-1) 

where ][nxP
 and ][nyP

 are X and Y motion of the test ball’s center P at n -th rotary position. 

The synchronous motion of the ball center P is calculated as the synchronized average value over 

M  revolutions 
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 (C-2) 

which represents the motion components repeatable at integer cycles per revolution. The 

asynchronous  ][~ nvP
 is accordingly calculated as: 

][][][~ nvnvnv PPP   (C-3) 

which represents the motion components not repeatable at integer cycles per revolution.  

As a complex-valued function, the k -th Fourier coefficient of ][nvP
 can be calculated as: 





N

n

Nknj

PP env
N

kV
1

/2][
1

][  , 1 k N    (C-4) 

The motion of the spindle rotation center C at the specified axial location can be found as 

Nnj

PPC eVnvnv /2]1[][][   (C-5) 

The synchronous and asynchronous motions of the spindle rotation center C can be 

calculated from the test point P motion as: 

Nnj

PPC eVnvnv /2]1[][][   (C-6) 

][~][~ nvnv PC   (C-7) 

Further, the location of rotation center average point A is 

[ ]A Pv V N  (C-8) 

The Fourier coefficients of the test ball’s center’s 2D motion have the following physical 

meanings: 
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1. ]1[PV  is the vector pointing from spindle rotation center C to the test ball’s center when 

the spindle is at zero position, at the specified axial location. 

2. Two rotation centers at two specified axial locations set the axis of rotation 

3. [ ]PV N  is the position of the rotation center average point (the average position of 

spindle ration center C) in the reference coordinate axes. 

4. Two rotation center average points at two specified axial locations set the axis average 

line.  

 

The spindle radial error motion is:  
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The synchronous and asynchronous radial error motions of the test spindle are  
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][~][~ nvn P  (C-11) 

The following quantities can be used to characterize the spindle radial error motion:  

(a) RMS synchronous error motion 
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(C-12) 

(b) RMS asynchronous error motion 
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(c) RMS total error motion 

            22 ~
RMSRMSRMS    (C-14) 

(d) maximum synchronous error motion 
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(e) maximum asynchronous error motion 
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(f) maximum total error motion 
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The spindle radial motion in a specified radial direction is: 

[ ] Re [ ] jn n e 

       (C-18) 

where   is the angle between the X-axis and the sensitive direction. In applications with single 

fixed radial sensitive direction (SFSD), the synchronous radial error motion consequence 
0
[ ]A n  

and asynchronous radial error motion 
0
[ ]A n  are: 

0

0

2
( 2 / )

2

[ ] Re [ ]
N

j k n N

P

k

A n V k e
 








 
  

 
  (C-19) 

0 0 0[ ] [ ]cos [ ]sinP PA n x n y n     (C-20) 

where 0  is the angle between the sensitive direction and the X axis. In applications with single 

rotating radial sensitive direction (SRSD), the synchronous error motion consequence [ ]A n
 and 

asynchronous radial error motion consequence [ ]A n
 are: 
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0
[ ] [ ]cos [ ]sinP PA n x n y n     (C-22) 

For applications with 2D radial sensitive directions (TSD), the synchronous error motion 

consequence [ ]A n  and asynchronous radial error motion consequence [ ]A n  are: 
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and 

[ ] [ ] [ ]PA n n v n   (C-24) 
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Appendix D 

In addition to the compliance results shown in Figure 4.9, Chapter 4, Mori Seiki spindle was 

tested using another impact hammer (PCB ICP Model 086C05) and same accelerometer (PCB 

Quartz Shear ICP Model 353B31). This impact hammer can excite frequency range of 50 to 500 

Hz on the machine. The spindle is positioned at the same place where it was located for the error 

motion measurements (Machine coordinates: X: 247.8mm, Y: -298.4mm Z: -435.8mm C: 0 Z: 

0). In all the tests, accelerometer is mounted on the rotor on the opposite side of where the 

hammer hits. Figure D. 1 shows the stiffness tests carried out on the spindle:  

 

1. Test (x_0): Rotor at 0 with respect to stator. Hammer hits on rotor in X direction.   

2. Test (x_90): Rotor at 90 with respect to stator. Hammer hits on rotor in X direction. 

3. Test (y_90): Rotor at 90 with respect to stator.. Hammer hits on rotor in Y direction. 

4. Test (y_180): Rotor at 180 with respect to stator.. Hammer hits on rotor in Y 

direction. 

 

 

Figure D. 1. Experimental setup for radial compliance measurement. 
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The measured compliance in X and Y directions are shown in Figure D.2. 

 

 

Figure D. 2. Spindle compliance measurement test results. 

 

As shown in the above Figure, changing the orientation of the rotor with respect to the stator 

does not affect the measured compliance. On the other hand, the measured compliance in X and 

Y directions are different which shows the spindle has axis-asymmetric stiffness.   


