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Abstract

In this thesis we exhibit an explicit non-trivial example of the twisted fusion

algebra for a particular finite group. The product is defined for the group

G = (Z/2)3 via the pairing θg(φ)R(G) ⊗θh(φ) R(G) →θgh(φ) R(G) where

θ : H4(G, Z) → H3(G, Z) is the inverse transgression map and φ is a carefully

chosen cocycle class. We find the rank of the fusion algebra X(G) =
∑

g∈G

θg(φ)R(G) as well as the relation between its basis elements. We also give

some applications to topological gauge theories.

We next show that the twisted fusion algebra of the group (Z/p)3 is

isomorphic to the non-twisted fusion algebra of the extraspecial p-group of

order p3 and exponent p.

The final point of my thesis is to explicitly compute the cohomology

groups H∗(X/G; Z) where X/G is a toroidal orbifold and G = Z/p for a

prime number p. We compute the particular case where X is induced by

the ZG-module (IG)n, where IG is the augmentation ideal.
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Chapter 1

Introduction

In the past twenty years there has been a great influence of physical ideas

on mathematics. One such example is the subject of string theory which

increased the interest on some topological objects such as orbifolds, a very

natural generalization of manifolds, and also on the invariants related to

these objects, for example, the Euler characteristic, homotopy groups, ho-

mology groups and cohomology rings. The study of orbifolds in physics

began with the introduction of the conformal field theory model on singular

spaces by Dixon-Harvey-Vafa-Witten in 1985.

Orbifolds are spaces that locally look like a quotient of an open set of a

vector space by the action of a group such that the isotropy group at each

point is finite. Chen and Ruan [19] discovered a cohomology theory for these

inspired by their ideas in quantum cohomology and orbifold string theory.

The interest in K-theory is also introduced from the consideration of a D-

brane charge on a smooth manifold and the notion of discrete torsion on

an orbifold by Vafa. K-theory relates to equivariant theories if the orbifolds

are the quotient of a smooth manifold M by a compact Lie group acting

on M . Adem and Ruan [7] defined the twisted orbifold K-theory to study

the resulting Chern isomorphism. In [8], Adem, Ruan and Zhang give an

associative stringy product for the twisted orbifold K-theory of a compact,

almost complex orbifold. This product is defined on the twisted K-theory
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Chapter 1. Introduction

of the inertia orbifold ∧X where the twisting gerbe τ is assumed to be

in the image of the inverse transgression map H4(BX) −→ H3(B ∧ X).

If the orbifold is X = ∧[∗/G] and G is a group then the resulting ring
τKorb(∧[∗/G]) is called fusion algebra.

One way to approach the fusion algebra is the finite group modular data

which is mainly explored in [20]. In our context, when we mention the term

modular data one should understand two symmetric matrices associated to a

finite group G. This modular data was originally introduced, in Lusztig’s de-

termination of the irreducible characters of the finite groups of Lie type [31],

[32]. To describe the unipotent characters, he considered the modular data

for some particular finite groups. The primary fields of the fusion algebra

parametrize the unipotent characters associated to a given 2-sided cell in the

Weyl group. Lusztig interprets this fusion algebra as the Grothendieck ring

for G-equivariant vector bundles; in other words, the equivariant K-theory.

The most physical application of this modular data is in (2+1)-dimensional

quantum field theories where a continuous gauge group has been sponta-

neously broken into a finite group [13]. Non-abelian anyons (i.e. particles

whose statistics are governed by the braid group rather than the symmetric

group) arise as topological objects. The effective field theory describing the

long distance physics is governed by the quantum group of [23].

A set of modular data (i.e. matrices S and T ) may be obtained for any

choice of finite group G. Much information about a group can be recov-

ered easily from its character table including whether it is abelian, simple,

solvable, nilpotent, etc. For instance, G is simple if and only if for all ir-

reducible χ 6≡ 1, χ(a) = χ(e) only for a = e. Thus it may be expected

that finite group modular data, which probably includes the character ta-

ble, should provide more information about the group, i.e. be sensitive to a
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Chapter 1. Introduction

lot of the group-theoretic properties of G.

One way to generalize this data is to twist with a cocycle from the co-

homology group. One can obtain topological (e.g. oriented knot) invariants

from this twisted data, as explained in [9]. These invariants are functions

of the knot group (i.e., the fundamental group of the complement of the

knot). Although non-isomorphic knots can have the same invariant, these

invariants can distinguish a knot from its inverse (i.e., the knot with oppo-

site orientation), unlike the more familiar topological invariants arising from

affine algebras.

Another important example of orbifolds is obtained by group actions on

tori induced by the integral representations of finite groups. These orbifolds

appear as examples of interest in physics. For this reason we are interested

in computing the cohomology groups H∗(X/G; Z) where X/G is a toroidal

orbifold.

One can give an integral presentation ϕ : G → GLn(Z) for finite group

G. In this way G acts linearly on Rn preserving the integral lattice Zn,

thus inducing a G-action on the torus Xϕ = X := Rn/Zn. The quotient

X → X/G naturally has the structure of an orbifold as a global quotient,

and these kind of orbifolds are usually referred to as toroidal orbifolds. The

goal of this chapter is to compute the cohomology groups H∗(X/G; Z) for

the particular case where G = Z/p for a prime number p.

The quotients of the form X/G appear naturally in different contexts.

For example, given a topological space Y , the m-th cyclic product of Y is

defined to be the quotient

CPm(Y ) := Y m/Z/m,
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Chapter 1. Introduction

where Z/m acts by cyclically permuting the product Y m. In the particular

case where the representation ϕ : G → GLn(Z) induces the ZG-module

(ZG)n, the associated torus X is (S1)p)n, where G acts cyclically on each

(S1)p and diagonally on the product ((S1)p)n. In this case

X/G = (((S1)p)n)/Z/p ∼= ((S1)n)p/Z/p

where now Z/p acts cyclically on the ((S1)n)p. Therefore

X/G ∼= CP p((S1)n).

The homology groups of quotient spaces of the form Xm/K, where K ⊂ Σm,

have long been studied. In particular, in [38] Swan formulated a method for

the computation of cyclic products of topological spaces.

In Chapter 2, the stringy product on twisted orbifold K-theory in [8]

is reviewed, and an example for non-trivial twistings is calculated. For a

finite group G this reduces to the twisted fusion algebra. Here we exhibit

an explicit non-trivial example of the twisted fusion algebra for a particular

finite group. The product is defined for the group G = (Z/2)3 via the pairing
θg(φ)R(G)⊗θh(φ) R(G) →θgh(φ) R(G) where θ : H4(G, Z) → H3(G, Z) is the

inverse transgression map and φ is a carefully chosen cocycle class. We

find the rank of the fusion algebra X(G) =
∑

g∈G
θg(φ)R(G) as well as the

relation between its basis elements. We also provide some applications to

topological gauge theories.

In Chapter 3, we study the twisted fusion algebra for the finite group

(Z/p)3. One way to calculate the coefficients in the fusion algebra is to use

conformal field theory. The modular data in conformal field theory provides

4



Chapter 1. Introduction

the Verlinde formula, which gives the fusion coefficients for fusion algebras.

The modular data associated to finite groups is introduced in the work of

Coste, Gannon and Ruelle [20]. They also consider the data arising from a

cohomological twist, and write down the modular data for a general twist

in terms of quantities associated directly with the finite group. We utilise

the results from the conformal field theory, namely finite group modular

data, to prove this algebra is isomorphic to the non-twisted fusion algebra

of extraspecial p-group with exponent p and of order p3.

Chapter 4 is devoted to computing the cohomology of orbit space X/G

where G = Z/p and X = ((S1)p−1)s and the action is induced by the action

on the ZG-module H1(X) = L = IGs, where IG is the augmentation ideal

of ZG.

5



Chapter 2

A Twisted Fusion Algebra

Inspired by the Chen-Ruan cohomology for orbifolds, it has been shown by

Adem, Ruan, Zhang [8] that there is an internal product in twisted orbifold

K-theory αKorb(X). The information determining this stringy product lies in

H4(BX, Z) instead of H3(BX, Z): Given a class φ ∈ H4(BX, Z), it induces

a class θ(φ) ∈ H3(B ∧ X, Z) where ∧X is the inertia stack. As a result, one

can define a twisted K-theory on θ(φ)K(∧X). The map θ can be thought of

the inverse of the classical transgression map.

The construction of this internal product is motivated by the so-called

Pontryagin product on KG(G) for a finite group G. Indeed, if the orbifold

is X = ∧[∗/G], one obtains the same product for the orbifold K-theory

in the untwisted case. There is also an explicit calculation of the inverse

transgression map θ for the cohomology of finite groups (see [8]). Using these

results, we exhibit a non-trivial product structure in the case of G = (Z/2)3.

We use an integral cohomology class φ ∈ H4(G, Z) such that under the

inverse transgression it maps non-trivially for every twisted sector, yielding

a product structure on the algebra θ(φ)KG(G) = X(G) =
∑

g∈G
θg(φ)R(G)

defined via the pairing θg(φ)R(G)⊗θh(φ) R(G) →θgh(φ) R(G). In this chapter,

we derive the relations between the basis elements of the algebra X(G), and

we prove the uniqueness of this product in this particular case. G = (Z/2)3

is indeed the abelian group of smallest rank such that it has non-trivial

6



Chapter 2. A Twisted Fusion Algebra

transgressions (see [8], section 5).

These twisted rings have also been worked out in the conformal field

theory literature. In [35], the modular invariant (i.e. S and T matrices)

of this group G = (Z/2)3 is calculated. As a result, one can calculate

the relations between basis elements of X(G) using the Verlinde formula.

Moreover, the same example is considered in [15], where a decomposition

formula for twisted K-theory is given and the product is calculated after

tensoring by rational numbers.

There is also a physical counterpart of this theory. In our case this

map is the inverse transgression map, which is actually the map coming

from the correspondence between the Chern-Simons action and the Wess-

Zumino terms that arise in connecting a specific three-dimensional quantum

field theory to its related two-dimensional quantum field theory. One can

see that the Chern-Simons theory associates to each group element gi ∈

G a 2-cocycle βi of the stabilizer group Ngi , which is G = (Z/2)3 in our

abelian case. We use the formulations in [25] to calculate the partition

function Z(S1×S1×S1). It is also worth mentioning that the algebra X(G)

corresponds to a fusion algebra in this physical context.

In this chapter, we first introduce projective representation and its basic

properties. We next give some preliminaries and the definition of our fusion

algebra. In the third section, we calculate the rank and the uniqueness of

this algebra as well as the relation between the basis elements which are the

projective representations. Finally, we present the application to topological

gauge theories by using the formulation in [25].

7



Chapter 2. A Twisted Fusion Algebra

2.1 Projective representations

For the entirety of this section, G is a finite group. More information on

projective representations can be found in [30].

Definition 2.1.1. Let V be a complex vector space. A projective represen-

tation of G is a map ρ : G → GL(V ) such that there exists α : G×G → C∗

with

• ρ(x)ρ(y) = α(x, y)ρ(xy) for all x, y ∈ G, and

• ρ(1) = I.

One can easily see that α is a 2-cocycle of G. The associativity of

multiplication in GL(V ) combined with the first condition gives the cocycle

condition, and α(g, 1) = α(1, g) = 1 for all g ∈ G by the second condition.

Any projective representation associated to α is called an α-twisted rep-

resentation of G. As in the case of complex representations of G, we have a

notion of isomorphism between two representations.

Definition 2.1.2. Two α-twisted representations ρi : G → GL(Vi), i = 1, 2,

are called linearly equivalent if there is a vector space isomorphism f : V1 →

V2 with

ρ2(g) = fρ1(g)f−1 for all g ∈ G.

Clearly, the direct sum of two α-twisted representations is an α-twisted

representation. Thus we can form the monoid of isomorphism classes of α-

twisted representations of G. Rα(G) is the associated Grothendieck group.

Note that if α is the trivial cocycle, then Rα(G) is R(G), the complex

representation ring of G.

8
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It is not hard to see that the tensor product of two α-twisted represen-

tations is no longer an α-twisted representation. Note however that if α and

β are two cocycles, then the tensor product of an α-twisted representation

and a β-twisted representation is an (α + β)-twisted representation. This

can be extended to a pairing

Rα(G)⊗Rβ(G) → Rα+β(G).

In order to study Rα(G), we introduce the α-twisted group algebra CαG.

We denote by CαG the vector space over C with basis {ḡ}g∈G and with

product ḡh̄ = α(g, h)gh extended by linearity. This makes CαG into a C-

algebra with 1̄ as the identity.

Definition 2.1.3. If α and β are cocycles of G, then we say that CαG and

CβG are equivalent if there exists a C-algebra isomorphism φ : CαG → CβG

and a mapping t : G → C∗ such that φ(ḡ) = t(g)g̃ for all g ∈ G, where ḡ

and g̃ are the bases for the two twisted group algebras.

This defines an equivalence relation on such twisted algebras, and we

have the following result.

Lemma 2.1.4. There is an equivalence of twisted group algebras, CαG '

CβG, if and only if α is cohomologous to β. In fact, α 7→ CαG induces a

bijective correspondence between H2(G, C∗) and the set of equivalence classes

of twisted group algebras of G over C.

In [30], it is proved that these twisted group algebras play the same role

in determing Rα(G) that CG plays in determining R(G):

Theorem 2.1.5. There is a bijective correspondence between α-twisted rep-

resentations of G and CαG-modules. This correspondence preserves sums

9



Chapter 2. A Twisted Fusion Algebra

and bijectively maps linearly equivalent representations into isomorphic mod-

ules.

2.2 The twisted fusion product for finite groups

In this section, we review a special case for the product in twisted orbifold K-

theory which is formalised by Adem, Ruan and Zhang in [8]. We consider

the inertia orbifold ∧[∗/G] where G is a finite group. In this case, the

untwisted orbifold K-theory of ∧[∗/G] is simply KG(G), which is additively

isomorphic to
∑

(g) R(ZG(g)), where ZG(g) denotes the centraliser of g in

G, and the sum is taken over conjugacy classes. The product in KG(G) is

defined as follows. An equivariant vector bundle over G can be thought of as

a collection of finite dimensional vector spaces Vg with a G-module structure

on
∑

g∈G Vg such that gVh = Vghg−1 . The product is defined as

(V ? W )g =
⊕

g1g2=g

Vg1 ⊗Wg2 .

One can give an alternative definition. We first define the maps e1 :

G × G → G, e2 : G × G → G and e12 : G × G → G as e1(g, h) = g ,

e2(g, h) = h and e12(g, h) = gh respectively, which are G-equivariant up to

the conjugation action. If α, β are elements in KG(G) the product is defined

as

α ? β = e12∗(e∗1(α)e∗2(β)).

We now need to review the inverse transgression map for finite groups

to extend the latter definition to twisted K-theory. In order to define the

product in twisted K-theory, Adem, Ruan and Zhang [8] define a map to

match up the levels which appear in the twistings. This cochain map θ is

10



Chapter 2. A Twisted Fusion Algebra

called inverse transgression map, and it induces the homomorphism

θ∗ : Hk+1(BG, Z) → Hk(B ∧ G, Z).

If the orbifold G is [∗/G], where G is a finite group, the inverse trans-

gression has a classical interpretation in terms of the shuffle product. Re-

call that ∧[∗/G] is equivalent to
⊔

(g)[∗/ZG(g)] (see [8]). Hence we would

like to focus on the map θg : Ck(G, U(1)) → Ck−1(ZG(g), U(1)). If G

is a finite group then the cochain complex C∗(G, U(1)) is in fact equal to

HomG(B∗(G), U(1)), where B∗(G) is the bar resolution for G (see [18], page

18). If t is the generator of Z, the shuffle product is Bk(ZG(g))⊗B1(Z) →

Bk+1(G) given by

[g1|g2| . . . |gk] ? [ti] =
∑

σ

σ[g1|g2| . . . |gk|gk+1],

where gk+1 = gi, σ ranges over all (k, 1)–shuffles and

σ[g1|g2| . . . |gk+1] = (−1)sgn(σ)[gσ(1)|gσ(2)| . . . |gσ(k+1)]. (2.1)

A (k, 1)–shuffle is an element σin the symmetric group Sk+1 such that σ(i) <

σ(j) for 1 ≤ i < j ≤ k.

We can dualize this using integral coefficients. Given a cocycle φ ∈

Ck+1(G, Z), one can see that the inverse transgression θg(φ) ∈ Ck(ZG(G), Z)

can be defined as

θg(φ)([g1|g2| . . . |gk]) = φ([g1|g2| . . . |gk] ? [g]) (2.2)

where g1, g2, . . . , gk ∈ G. Hence it induces a map in integral cohomology.

11



Chapter 2. A Twisted Fusion Algebra

We can now induce the inverse transgression map for H∗(G,F2) for

G = (Z/2)3 using Bockstein homomorphism. We want to find a non-trivial

cocycle in the image of the inverse transgression map. Notice that H∗(G,F2)

is a polynomial algebra on three degree one generators x, y and z. In

general, for an elementary abelian 2-group, the modulo 2 reduction map

for k > 0 is a monomorphism Hk(G, Z) → Hk(G,F2) which is the kernel

of the Bockstein homomorphism Sq1 : Hk(G,F2) → Hk+1(G,F2). In order

to get nontrivial cocycle in the image of the inverse transgression map, we

choose α = Sq1(xyz) = x2yz + xy2z + xyz2, which represents a non-square

element in H4(G, Z). The following lemma is proved in [8] by analyzing the

multiplication map in the cohomology.

Lemma 2.2.1. Let g = xaybzc be an element in G = (Z/2)3, where we

are writing in terms of the standard basis (identified with its dual). Let us

consider α = Sq1(xyz) = x2yz +xy2z +xyz2 which represents a non-square

element in H4(G, Z). Then

θ∗g(α) = a(y2z + z2y) + b(x2z + xz2) + c(x2y + xy2),

and so θ∗g(α) is non-zero on every component except the one corresponding

to the trivial element in G.

Proof. See [8], Lemma 5.2.

This implies that for all g, h ∈ G, θ∗g + θ∗h = θ∗gh in the cohomology up to

coboundaries. This also implies that the correspondence g 7→ θg(α) defines

a homomorphism. In the case of G = (Z/2)3, we have the isomorphism

θ?(α) : G → H3(G, Z) = G.

We now define the product as follows:

12



Chapter 2. A Twisted Fusion Algebra

Definition 2.2.2. Let τ be a 2-cocycle for the orbifold defined by the con-

jugation action of a finite group G on itself which is in the image of the

inverse transgression. The product on τKG(G) is defined by the following

formula: if α, β ∈τ KG(G), then

α ? β = e12∗(e∗1(α)e∗2(β)).

If τ = θ(φ) then we have the following formula proved in [8]:

e∗1τ + e∗2τ = e∗12τ

up to coboundary. Hence the product e1(α)e2(β) lies in

e∗1τ+e∗2τKG(G) =e∗12τ KG(G).

Applying e12∗, this is mapped to τKG(G), which gives the product in

the twisted K-theory.

Using the identification θ∗g + θ∗h = θ∗gh, the following product is defined

on the algebra
θ(φ)KG(G) = X(G) =

∑
g∈G

θg(φ)R(G)

via the pairing

θg(φ)R(G)⊗ θh(φ)R(G) → θgh(φ)R(G).

In the next section, we investigate the properties of this algebra while

calculating its rank and the relations between the irreducible projective rep-

resentation.

13



Chapter 2. A Twisted Fusion Algebra

2.3 Calculations

2.3.1 2-cocycles in G with values in U(1)

We will assume that G = (Z/2)3 for the remainder of this chapter. We

recall that, for a finite dimensional complex vector space, a mapping ρ :

G → GL(V ) is called a projective representation of G if there exists a U(1)-

valued 2-cocycle α ∈ Z2(G;U(1)) such that ρ(x)ρ(y) = α(x, y)ρ(x, y) for

all x, y ∈ G and ρ(1) = IdV . Hence in order to compute θg(φ)R(G) we

first need to find the 2-cocycles in H2(G, U(1)) corresponding to θg(φ) in

H3(G, Z) where both cohomology groups are isomorphic to G. For this

purpose, we consider the isomorphism

H2(G, U(1)) → H3(G, Z)

induced by the natural coefficient sequence 0 → Z → R → U(1) → 1. As

H3(G, Z) ∼= G, we need to find the eight non-cohomologous 2-cocycles in

H2(G, U(1)) corresponding to each θg(φ) for all g ∈ G.

We now determine the relations in order to obtain the 2-cocycles in

C2(G, U(1)). Any 2-cocycle β in C2(G, U(1)) should satisfy:

δβ = 1.

By the boundary formula of the bar resolution of G, we derive:

β(g2, g3)β(g1g2, g3)−1β(g1, g2g3)β(g1, g2)−1 = 1

for all gi ∈ G, i = 1, 2, 3. Some interesting relations result when we plug in

14
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g1 = g3 = g and g2 = 1 into this formula and we obtain

β(g, 1) = β(1, g). (2.3)

Moreover, for g1 = g2 = g, we have

β(1, g3)β(g, g) = β(g, g3)β(g, gg3). (2.4)

As β is defining a projective representation, say ρ, it should satisfy ρ(1)ρ(g) =

β(1, g)ρ(g). This implies β(1, g) = 1 for all g ∈ G. Now we consider the fol-

lowing tables for 2-cocycles βi : G×G → U(1) which satisfies the identities

(3.3) and (2.4). We call these cocycles fundamental cocycles.We choose β1

as the trivial co-cycle. Here, xi, yi and zi’s are in U(1), and they will be

determined later.

β2 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 1 x1 x2 x1 x2 x3 x3

g3 1 x1 −1 x4 −x1 x6 −x4 −x6

g4 1 x2 −x4 1 x5 x2 −x4 x5

g5 1 x1 −x1 −x5 −1 x8 −x8 x5

g6 1 x2 −x6 x2 −x8 1 −x8 −x6

g7 1 x3 x4 x4 x8 x8 1 x3

g8 1 x3 x6 −x5 −x5 x6 x3 1

15
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β3 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 y1 y2 −y1 −y2 y3 −y3

g3 1 y1 1 y4 y1 y6 y4 y6

g4 1 −y2 y4 1 y5 −y2 y4 y5

g5 1 −y1 y1 −y5 −1 y8 −y8 y5

g6 1 y2 y6 y2 −y8 1 −y8 y6

g7 1 −y3 y4 y4 y8 y8 1 −y3

g8 1 y3 y6 −y5 −y5 y6 y3 1

β4 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 z1 z2 −z1 −z2 z3 −z3

g3 1 −z1 1 z4 z1 z6 z4 z6

g4 1 z2 z4 −1 z5 −z2 −z4 −z5

g5 1 z1 z1 z5 1 z8 z8 z5

g6 1 −z2 z6 −z2 −z8 1 −z8 z6

g7 1 −z3 z4 −z4 −z8 z8 −1 z3

g8 1 z3 z6 −z5 z5 −z6 −z3 −1

As the multiplication of two cocycles gives us another cocycle, one can con-

struct five more cocycles, one of which is the trivial cocycle. We recall that

for β ∈ Z2(G;U(1)), an element g ∈ G is called β-regular if β(g, x) = β(x, g)

for all x ∈ CG(g) (see [30], page 107). Thus all of the 2-cocycles have two

16
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β-regular elements, one of which is 1, the other one is different for each

cocycle. For example, one can immediately see that the β-regular elements

for β2, β3 and β4 are g2, g3 and g4, respectively.

On the other hand, from the boundary formula we note that a 2-coboundary

should satisfy β(g1, g2) = σ(g1)σ(g2)σ(g1g2)−1 where σ is in C1(G, Z). As

G is abelian, we have

β(gi, gj) = β(gj , gi)

for all gi and gj in G. This implies that all of these eight cocycles represent

different cohomology classes, as multiplication with a coboundary does not

change the β-regular elements. Thus, we have following proposition.

Proposition 2.3.1. The rank of θg(φ)R(G) is 2 if θg(φ) is nontrivial.

Proof. A basic result of projective representations states that αR(G)

is a free abelian group of rank equal to the number of distinct α-regular

conjugacy classes of G (see [30], theorem 6.7). So, the ranks of βiR(G) is 2

for any non-trivial βi.

On the other hand, we obtained eight non-cohomologous cocycles which

should correspond to θg(φ)’s because H2(G, U(1)) and H3(G, Z) are isomor-

phic to G. The result follows.

We can therefore conclude:

Corollary 2.3.2. The rank of X(G) is equal to 22.

Proof. The ranks of βiR(G) are 2 for any non-trivial βi accounting for 14

and beta1R(G) has rank 8.
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2.3.2 The projective representations

In order to compute the irreducible projective representations of G, it is

helpful to determine the xi, yi and zi’s. From the boundary formula, we

have the following relations in β2:

−1 = x1x3x4x5

−1 = x2x3x5x8

1 = x6x8x3x1.

By a routine calculation, one can check that the other relations depend

on these three relations. We can choose x1 = x2 = x3 = x4 = −x5 = x6 =

x7 = x8 = 1 that obviously satisfy these relations. Similarly, we find yi’s

and zi’s. The other cocycles are computed by multiplying β2, β3 and β4.

We will later show that the choice of xi, yj and zk from the set {±1} does

not change our representations. Here are our eight cocycles.

β2 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 1 1 1 1 1 1 1

g3 1 1 −1 1 −1 1 −1 −1

g4 1 1 −1 1 −1 1 −1 −1

g5 1 1 −1 1 −1 1 −1 −1

g6 1 1 −1 1 −1 1 −1 −1

g7 1 1 1 1 1 1 1 1

g8 1 1 1 1 1 1 1 1

18



Chapter 2. A Twisted Fusion Algebra

β3 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 1 1 −1 −1 1 −1

g3 1 1 1 1 1 1 1 1

g4 1 −1 1 1 −1 −1 1 −1

g5 1 −1 1 1 −1 −1 1 −1

g6 1 1 1 1 1 1 1 1

g7 1 −1 1 1 −1 −1 1 −1

g8 1 1 1 1 1 1 1 1

β4 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 1 1 −1 −1 1 −1

g3 1 −1 1 1 −1 −1 1 −1

g4 1 1 1 −1 1 −1 −1 −1

g5 1 1 1 1 1 1 1 1

g6 1 1 1 1 1 1 1 1

g7 1 −1 1 −1 −1 1 −1 1

g8 1 1 1 −1 1 −1 −1 −1
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β5 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 1 1 −1 −1 1 −1

g3 1 1 −1 1 −1 1 −1 −1

g4 1 −1 −1 1 1 −1 −1 1

g5 1 −1 −1 1 1 −1 −1 1

g6 1 1 −1 1 −1 1 −1 −1

g7 1 −1 1 1 −1 −1 1 −1

g8 1 1 1 1 1 1 1 1

β6 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 −1 1 1 −1 −1 1 −1

g3 1 −1 −1 1 1 −1 −1 1

g4 1 1 −1 −1 −1 −1 1 1

g5 1 1 −1 1 −1 1 −1 −1

g6 1 −1 −1 −1 1 1 1 −1

g7 1 −1 1 −1 −1 1 −1 1

g8 1 1 1 −1 1 −1 −1 −1
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β7 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 1 1 1 1 1 1 1

g3 1 −1 1 1 −1 −1 1 −1

g4 1 −1 1 −1 −1 1 −1 1

g5 1 −1 1 1 −1 −1 1 −1

g6 1 −1 1 −1 −1 1 −1 1

g7 1 1 1 −1 1 −1 −1 −1

g8 1 1 1 −1 1 −1 −1 −1

β8 1 g2 g3 g4 g5 g6 g7 g8

1 1 1 1 1 1 1 1 1

g2 1 1 1 1 1 1 1 1

g3 1 −1 −1 1 1 −1 −1 1

g4 1 −1 −1 −1 1 1 1 −1

g5 1 −1 −1 1 1 −1 −1 1

g6 1 −1 −1 −1 1 1 1 −1

g7 1 1 1 −1 1 −1 −1 −1

g8 1 1 1 −1 1 −1 −1 −1

By considering the 2-cocycles that we obtained, it is obvious that there

is no 1-dimensional projective representation whenever the 2-cocycle is not

trivial. For the trivial cocycle, we have eight 1-dimensional representations

which are just the irreducible linear representations of G. For the other

cases, we find two 2-dimensional irreducible representations for each of the

2-cocycles (see [30], Theorem 6.7). Let ρi
1 and ρi

2 be the irreducible rep-

resentations corresponding to the cocycle βi. It is also enough to give the
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matrices corresponding to the generators of G. Without loss of general-

ity, we assume g2 = (1, 0, 0), g3 = (0, 1, 0), g4 = (0, 0, 1), g5 = (1, 1, 0),

g6 = (1, 0, 1), g7 = (0, 1, 1), g8 = (1, 1, 1). Here, βiR(G) is the projective

representation for 2-cocycle βi. We give only the matrices corresponding to

three elements the rest can be obtained from these.
β2R(G) :

ρ2
1 : g2 7→

 1 0

0 1

 g3 7→

 0 1

−1 0

 g4 7→

 0 1

1 0



ρ2
2 : g2 7→

 −1 0

0 −1

 g3 7→

 0 −1

1 0

 g4 7→

 0 −1

−1 0


β3R(G) :

ρ3
1 : g2 7→

 0 1

−1 0

 g3 7→

 −1 0

0 −1

 g4 7→

 0 1

1 0



ρ3
2 : g2 7→

 0 −1

1 0

 g3 7→

 1 0

0 1

 g4 7→

 0 −1

−1 0


β4R(G) :

ρ4
1 : g3 7→

 0 1

1 0

 g5 7→

 0 i

−i 0

 g6 7→

 1 0

0 −1


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ρ4
2 : g3 7→

 0 −1

−1 0

 g5 7→

 0 −i

i 0

 g6 7→

 −1 0

0 1


β5R(G) :

ρ5
1 : g2 7→

 0 1

−1 0

 g4 7→

 0 1

1 0

 g5 7→

 1 0

0 1



ρ5
2 : g2 7→

 0 −1

1 0

 g4 7→

 0 −1

−1 0

 g4 7→

 −1 0

0 −1


β6R(G) :

ρ6
1 : g2 7→

 0 1

−1 0

 g3 7→

 0 i

i 0

 g6 7→

 1 0

0 1



ρ6
2 : g2 7→

 0 −1

1 0

 g3 7→

 0 −i

−i 0

 g6 7→

 −1 0

0 −1


β7R(G) :

ρ7
1 : g2 7→

 0 1

1 0

 g3 7→

 0 i

−i 0

 g6 7→

 1 0

0 −1


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ρ7
2 : g2 7→

 0 −1

−1 0

 g3 7→

 0 −i

i 0

 g6 7→

 −1 0

0 1


β8R(G) :

ρ8
1 : g2 7→

 0 1

1 0

 g5 7→

 0 i

−i 0

 g6 7→

 1 0

0 −1



ρ8
2 : g2 7→

 0 −1

−1 0

 g5 7→

 0 −i

i 0

 g6 7→

 −1 0

0 1


The projective representations ρ1 and ρ2 are not linearly isomorphic to

each other. Indeed, for the 2-cocycles β2, β3, β5 and β6, there exist gi such

that

ρ1(gi) =

 1 0

0 1


while

ρ2(gi) =

 −1 0

0 −1


. Thus there is no M ∈ GL2(Z) such that Mρ1(gi)M−1 = ρ2(gi). The other

representations of β4, β7 and β8 are obtained from the book of Karpilovski

[30] (see page 120 and 124 Theorem 7.1 and 7.2). Thus none of them are

linearly isomorphic to each other.

One question that needs to be answered is whether these representations

depend on the choice of xi, yi and zi. One can check by calculation that
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the representations only depend on the values of βi(g, g). More precisely,

ρ(g)ρ(g) should be equal to β(g, g) for all g ∈ G. For example,

ρ(g3)ρ(g8) = β(g3, g8)ρ(g7)

⇔ ρ(g3)β(g2, g7)ρ(g2)ρ(g7) = β(g3, g8)β(g2, g4)ρ(g2)ρ(g4)

⇔ ρ(g3)β(g2, g7)ρ(g2)β(g3, g4)ρ(g3)ρ(g4) = β(g3, g8)β(g2, g4)ρ(g2)ρ(g4)

⇔ ρ(g3)ρ(g3)β(g2, g7)β(g3, g4) = β(g3, g8)β(g2, g4)I

which is true if and only if ρ(g3)ρ(g3) = β(g3, g3)I by the relations we get

from the boundary formulas. The other elements can be checked in a similar

manner.

Thus we found the basis of our algebra. We will show that this product

is unique up to coboundary. First we prove the following result.

Proposition 2.3.3. If φ and φ′ are cohomologous cocycles in H4(G, Z) then

the fusion algebras corresponding to these cocycles are isomorphic.

Proof. If φ and φ′ are cohomologous cocycles then θg(φ) and θg(φ′) rep-

resent the same cohomology class in H3(G, Z). In order to compute the

2-cocycle corresponding to θg(φ) ∈ H3(G, Z) ∼= G, we will use the isomor-

phism induced from the short exact sequence

0 → Z → R → U(1) → 1.

Thus θg(φ) is mapped to a certain class of 2-cocycles in H2(G, U(1)) ∼= G.

As we found eight non-cohomologous 2-cocycles in G, it is enough to check

how the representations change if we multiply our fundamental 2-cocycles

by a 2-coboundary. This is a basic result of projective representation theory
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(see page 72 in [30]). After multiplying our fundamental 2-cocycles by a

2-coboundary, the new projective representation of this cocycle becomes

linearly isomorphic to the former one. The result follows from the above

argument.

2.3.3 The relations.

Now we are able to calculate the relation of this basis using the pairing
θ(φ)gR(G) ⊗ θ(φ)hR(G) → θ(φ)ghR(G). The calculations are nothing but

solving linear equations. Namely one should prove that ρk
i ⊗ρl

i’s are linearly

isomorphic to a sum of some basis elements. Here ρ1
i denotes the irreducible

regular representations of G for i = 1, 2, . . . , 8.

Let us start with ρ1
i ⊗ ρj

i which is linearly isomorphic to ρj
k for some k ∈

{1, 2} where j 6= 1 because ρ1
i⊗ρj

i should be 2 dimensional βj representation.

Here is the results of these multiplications:
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⊗
ρ
1 1

ρ
1 2

ρ
1 3

ρ
1 4

ρ
1 5

ρ
1 6

ρ
1 7

ρ
1 8

ρ
2 1

ρ
2 2

ρ
3 1

ρ
3 2

ρ
4 1

ρ
4 2

ρ
5 1

ρ
5 2

ρ
6 1

ρ
6 2

ρ
7 1

ρ
7 2

ρ
8 1

ρ
8 2

ρ
1 1

ρ
1 1

ρ
1 2

ρ
1 3

ρ
1 4

ρ
1 5

ρ
1 6

ρ
1 7

ρ
1 8

ρ
2 1

ρ
2 2

ρ
3 1

ρ
3 2

ρ
4 1

ρ
4 2

ρ
5 1

ρ
5 2

ρ
6 1

ρ
6 2

ρ
7 1

ρ
7 2

ρ
8 1

ρ
8 2

ρ
1 2

ρ
1 2

ρ
1 1

ρ
1 5

ρ
1 6

ρ
1 3

ρ
1 4

ρ
1 8

ρ
1 7

ρ
2 2

ρ
2 1

ρ
3 1

ρ
3 2

ρ
4 1

ρ
4 2

ρ
5 2

ρ
5 1

ρ
6 2

ρ
6 1

ρ
7 1

ρ
7 2

ρ
8 2

ρ
8 1

ρ
1 3

ρ
1 3

ρ
1 5

ρ
1 1

ρ
1 7

ρ
1 2

ρ
1 8

ρ
1 4

ρ
1 6

ρ
2 1

ρ
2 2

ρ
3 2

ρ
3 1

ρ
4 1

ρ
4 2

ρ
5 2

ρ
5 1

ρ
6 1

ρ
6 2

ρ
7 2

ρ
7 1

ρ
8 2

ρ
8 1

ρ
1 4

ρ
1 4

ρ
1 6

ρ
1 7

ρ
1 1

ρ
1 8

ρ
1 2

ρ
1 3

ρ
1 5

ρ
2 1

ρ
2 2

ρ
3 1

ρ
3 2

ρ
4 2

ρ
4 1

ρ
5 1

ρ
5 2

ρ
6 2

ρ
6 1

ρ
7 2

ρ
7 1

ρ
8 2

ρ
8 1

ρ
1 5

ρ
1 5

ρ
1 3

ρ
1 2

ρ
1 8

ρ
1 1

ρ
1 7

ρ
1 6

ρ
1 4

ρ
2 2

ρ
2 1

ρ
3 2

ρ
3 1

ρ
4 1

ρ
4 2

ρ
5 1

ρ
5 2

ρ
6 2

ρ
6 1

ρ
7 2

ρ
7 1

ρ
8 1

ρ
8 2

ρ
1 6

ρ
1 6

ρ
1 4

ρ
1 8

ρ
1 2

ρ
1 7

ρ
1 1

ρ
1 5

ρ
1 3

ρ
2 2

ρ
2 1

ρ
3 1

ρ
3 2

ρ
4 2

ρ
4 1

ρ
5 2

ρ
5 1

ρ
6 1

ρ
6 2

ρ
7 2

ρ
7 1

ρ
8 1

ρ
8 2

ρ
1 7

ρ
1 7

ρ
1 8

ρ
1 4

ρ
1 3

ρ
1 6

ρ
1 5

ρ
1 1

ρ
1 2

ρ
2 1

ρ
2 2

ρ
3 2

ρ
3 1

ρ
4 2

ρ
4 1

ρ
5 2

ρ
5 1

ρ
6 2

ρ
6 1

ρ
7 1

ρ
7 2

ρ
8 1

ρ
8 2

ρ
1 8

ρ
1 8

ρ
1 7

ρ
1 6

ρ
1 5

ρ
1 4

ρ
1 3

ρ
1 2

ρ
1 1

ρ
2 2

ρ
2 1

ρ
3 2

ρ
3 1

ρ
4 2

ρ
4 1

ρ
5 1

ρ
5 2

ρ
6 1

ρ
6 2

ρ
7 1

ρ
7 2

ρ
8 2

ρ
8 1

27



Chapter 2. A Twisted Fusion Algebra

Another type of multiplication is ρj
i ⊗ ρj

i , which is linearly isomorphic

to a sum of four irreducible regular representations ρ1
k as βj(g, h)2 = 1

for all j. We calculate all of these using the associativity of our algebra

X(G) and investigating the eigenvalues of the matrices. Of course, one

can also calculate them by defining the linear isomorphism explicitly. As

ρi
1(gj) = −ρi

2(gj) for three gj ’s in the definitions of representations, we have

ρi
1 ⊗ ρi

1 = ρi
2 ⊗ ρi

2 as well as ρi
2 ⊗ ρi

1 = ρi
1 ⊗ ρi

2.

⊗ ρ2
1 ρ2

2

ρ2
1 ρ1

1 + ρ1
3 + ρ1

4 + ρ1
7 ρ1

2 + ρ1
5 + ρ1

6 + ρ1
8

ρ2
2 ρ1

2 + ρ1
5 + ρ1

6 + ρ1
8 ρ1

1 + ρ1
3 + ρ1

4 + ρ1
7

⊗ ρ3
1 ρ3

2

ρ3
1 ρ1

1 + ρ1
2 + ρ1

4 + ρ1
6 ρ1

3 + ρ1
5 + ρ1

7 + ρ1
8

ρ3
2 ρ1

3 + ρ1
5 + ρ1

7 + ρ1
8 ρ1

1 + ρ1
2 + ρ1

4 + ρ1
6

⊗ ρ4
1 ρ4

2

ρ4
1 ρ1

4 + ρ1
6 + ρ1

7 + ρ1
8 ρ1

1 + ρ1
2 + ρ1

3 + ρ1
5

ρ4
2 ρ1

1 + ρ1
2 + ρ1

3 + ρ1
5 ρ1

4 + ρ1
6 + ρ1

7 + ρ1
8

⊗ ρ5
1 ρ5

2

ρ5
1 ρ1

1 + ρ1
5 + ρ1

6 + ρ1
8 ρ1

2 + ρ1
3 + ρ1

4 + ρ1
7

ρ5
2 ρ1

2 + ρ1
3 + ρ1

4 + ρ1
7 ρ1

1 + ρ1
5 + ρ1

6 + ρ1
8

⊗ ρ6
1 ρ6

2

ρ6
1 ρ1

1 + ρ1
3 + ρ1

6 + ρ1
8 ρ1

2 + ρ1
4 + ρ1

5 + ρ1
7

ρ6
2 ρ1

2 + ρ1
4 + ρ1

5 + ρ1
7 ρ1

1 + ρ1
3 + ρ1

6 + ρ1
8
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⊗ ρ7
1 ρ7

2

ρ7
1 ρ1

3 + ρ1
4 + ρ1

5 + ρ1
6 ρ1

1 + ρ1
2 + ρ1

7 + ρ1
8

ρ7
2 ρ1

1 + ρ1
2 + ρ1

7 + ρ1
8 ρ1

3 + ρ1
4 + ρ1

5 + ρ1
6

⊗ ρ8
1 ρ8

2

ρ8
1 ρ1

2 + ρ1
3 + ρ1

4 + ρ1
8 ρ1

1 + ρ1
5 + ρ1

6 + ρ1
7

ρ8
2 ρ1

1 + ρ1
5 + ρ1

6 + ρ1
7 ρ1

2 + ρ1
3 + ρ1

4 + ρ1
8

The last type of multiplication that we have to consider is ρj
i⊗ρn

m, where

distinct i, m are in {1, 2} and j and n are in {2, 3, . . . , 8}. As ρj
i ⊗ρn

m is four-

dimensional, it should be linearly isomorphic to 2ρl
1, 2ρl

2 or ρl
1 + ρl

2. None

of −2ρl
1, −2ρl

2 nor −ρl
1 − ρl

2 are possible as they are not βl representations

as indicated by the list of our representations in the previous section. The

representations 2ρl
1 and 2ρl

2 are also impossible by the following associativity

argument.

Suppose ρj
i ⊗ ρn

m = 2ρl
1 by the table above we can always find ρ1

k such

that ρ1
k⊗ρj

i = ρj
i and ρ1

k⊗ρl
1 = ρl

2. This gives a contradiction if we multiply

each side of ρj
i ⊗ ρn

m = 2ρl
1 by ρ1

k.

We can conclude ρj
i ⊗ ρn

m = ρl
1 + ρl

2. We have finished calculating all the

relations.

2.4 Topological gauge theories

In [25], Dijkgraaf and Witten show that three dimensional Chern-Simons

gauge theories with a compact gauge group can be classified by the integer

cohomology group H4(BG, Z). Wess-Zumino interactions of such groups G

are classified by H3(G, Z). The relation between three dimensional sigma

models involves a certain natural map of H4(BG, Z) to H3(G, Z) which is
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the inverse transgression map defined in the second section. Our calcu-

lations provide an example of three-dimensional topological theories with

finite gauge group. In this context, our algebra X(G) is a fusion algebra. In

QFT (Quantum Field Theory) one can associate to a (d + 1)-dimensional

manifold M a certain number Z(M), the partition function. A detailed

discussion is provided in [25].

We consider the partition function of the 3-torus S1 × S1 × S1. If g, h

and k are three commuting gauge fields, the partition function is evaluated

to give

Z(S1 × S1 × S1) =
1
|G|

∑
g,h,k∈G

W (g, h, k),

where [g, h] = [h, k] = [k, g] = 1. We define W as

W (g, h, k) =
α(g, h, k)α(h, k, g)α(k, g, h)
α(g, k, h)α(h, g, k)α(k, h, g)

.

for α ∈ H3(BG,U(1)).

The Chern-Simons theory associates to each group element gi ∈ G a

2-cocycle βi, which we calculated above. Again, by the result of Witten and

Dijkgraaf [25], we may express βi in terms of a 3-cocycle α ∈ H3(G, U(1)):

βi(h1, h2) =
α(gi, h1, h2)α(h1, h2, gi)

α(h1, gi, h2)
.

This may also be obtained by the formula for inverse transgression map (2.2):

βi(h1, h2) = θgi(α)([h1|h2]) = α([h1|h2] ? [gi]) =
α([gi|h1|h2])α([h1|h2|gi])

α([h1|gi|h2])
.

Note that the shuffle product (2.1) is defined via additive notation.
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Thus the action W can be written in terms of 2-cocycles:

W (gi, h, k) = βi(h, k)βi(k, h)−1.

We define εg(h) = β(g, h)β(h, g)−1 for fixed g which is a one dimensional

representation of G. Thus an element g is β-regular if and only if εg = 1.

This implies

r(G, β) =
1
|G|

∑
g,h∈G

β(g, h)β(h, g)−1

where r(G;β) denotes the number of irreducible projective representations of
βR(G). Our 2-cocycles defined in the second section satisfies this condition.

Comparing all these results we obtain the following result for the parti-

tion function of the 3-torus where G = (Z/2)3:

Proposition 2.4.1.

Z(S1 × S1 × S1) =
∑

i

r(G;βi) = 22.

Using our representations, we find that the basis elements να of Hilbert

space corresponds to 3-torus in QFT. These basis elements are given in [25]

as

να(gi, h) = Trρi(h).

In this context, our algebra X(G) can be regarded as the smallest twisted

non-trivial fusion algebra for abelian groups.
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Chapter 3

The Fusion Algebra of an

Extraspecial p-group

3.1 Introduction

In this chapter, we give an application of the finite group modular data which

is mainly explored in [20]. This modular data was originally introduced, in

Lusztig’s determination of the irreducible characters of the finite groups of

Lie type [31], [32]. To describe the unipotent characters, he considered the

modular data for some particular finite groups. The primary fields of the

fusion algebra parametrize the unipotent characters associated to a given

2-sided cell in the Weyl group. Lusztig interprets this fusion algebra as

the Grothendieck ring for G-equivariant vector bundles; in other words, the

equivariant K-theory.

The most physical application of this modular data is in (2+1)-dimensional

quantum field theories where a continuous gauge group has been sponta-

neously broken into a finite group [13]. Non-abelian anyons (i.e. particles

whose statistics are governed by the braid group rather than the symmetric

group) arise as topological objects. The effective field theory describing the

long distance physics is governed by the quantum group of [23].

A set of modular data (i.e. matrices S and T ) may be obtained for any
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choice of finite group G. Much information about a group can be recov-

ered easily from its character table including whether it is abelian, simple,

solvable, nilpotent, etc. For instance, G is simple if and only if for all ir-

reducible χ 6≡ 1, χ(a) = χ(e) only for a = e. Thus it may be expected

that finite group modular data, which probably includes the character ta-

ble, should provide more information about the group, i.e. be sensitive to a

lot of the group-theoretic properties of G.

One way to generalize this data is to twist with a cocycle from the co-

homology group. One can obtain topological (e.g. oriented knot) invariants

from this twisted data, as explained in [9]. These invariants are functions

of the knot group (i.e., the fundamental group of the complement of the

knot). Although non-isomorphic knots can have the same invariant, these

invariants can distinguish a knot from its inverse (i.e., the knot with oppo-

site orientation), unlike the more familiar topological invariants arising from

affine algebras.

In this chapter, we consider the internal product in twisted orbifold K-

theory αKorb(X) formalised by Adem, Ruan and Zhang [8] employing results

from the associated finite group modular data. Our aim is to exhibit that

the non-trivial product structure for αKG(G) for G = (Z/p)3 is the same

as the product structure for KH(H) where H is the extraspecial p-group

of order p3 and exponent p. The product structure in these theories is the

same as in the fusion algebras associated to the same finite group.

We first give some preliminaries and the definition of finite group mod-

ular data, then mention the results of Coste, Gannon and Ruelle [20] who

calculated the S matrix for (Z/p)3 with the particular twist. After this, we

calculate the S matrix of the extraspecial p-group and show that it gives

the same fusion algebra as the twisted case of (Z/p)3.
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3.2 Finite group modular data

In this section, we concentrate on the modular data associated with any

finite group G. We first fix a set R of representatives of each conjugacy

class of G. The identity e of G is in R, and more generally the center Z(G)

of G is a subset of R. For any a ∈ G, let Ka denote the conjugacy class of

a in G and CG(a) be the centralizer of a in G. We have |G| = |Ka||CG(a)|.

The primary fields of the G modular data are labeled by pairs (a, χ),

where a ∈ R, and where χ is an irreducible character of CG(a). We will

write Φ for the set of these pairs. We define the S matrix and T matrix as

S(a,χ),(b,χ′) =
1

|CG(a)||CG(b)|
∑

g∈G(a,b)

χ(gbg−1)∗χ′(g−1ag)∗

=
1
|G|

∑
g∈Ka,h∈Kb∩CG(g)

χ(xhx−1)∗χ′(ygy−1)∗,

T(a,χ)(a′,χ′) = δa,a′δχ,χ′
χ(a)
χ(e)

where G(a, b) = {g ∈ G|agbg−1 = gbg−1a} and where x and y are any

solutions to g = x−1ax and h = y−1by. If G(a, b) is empty then the sum is

equal to zero.

The matrix S is symmetric and unitary, and gives rise (via the Verlinde

formula) to non-negative integer fusion coefficients N
(c,χ3)
(a,χ1)(b,χ2), where

N c
ab =

∑
d∈Φ

SadSbdS
∗
cd

S0d
.

One way to generalize the group data is by introducing some twisting.

The twisting of the modular data is described in [20], where the explicit
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expressions for the modular matrix S appear.

The primary fields Φα in the model twisted by a given 3-cocycle α consist

of all pairs (g, χ) where g ∈ R and χ is a βg twisted irreducible character of

CG(g), where βg is defined by

βg(a, b) = α(g, a, b)α(a, a−1ga, b)−1α(a, b, (ab)−1gab)

from a normalized element α of H3(G, U(1)). The S matrix is calculated as

Sα
(a,χ)(b,χ′) =

1
|G|

∑
g∈Ka,g′∈Kb∩CG(g)

(
βg(g′, x−1)βg′(g, y−1)
βg(x−1, h)βg′(y−1, h′)

)∗
χ(h)∗χ′(h′)∗,

=
1
|G|

∑
g∈Ka,g′∈Kb∩CG(g)

(
βa(x, g′)βa(xg′, x−1)βb(y, g)βb(yg, y−1)

βa(x, x−1)βb(y, y−1)

)∗
χ(h)∗χ′(h′)∗,

where g = x−1ax = y−1h′y, g′ = y−1by = x−1hx, h ∈ CG(a), h′ ∈ CG(b).

In order to compute the T matrix, in [20]the 1-cochain εa : CG(a) → U(1)

is introduced. It is determined by the following equalities:

εa(e) = 1,

βa(h, g) = εa(h)εa(g)εa(hg)−1,

εx−1ax(x−1hx) =
βa(x, x−1hx)

βa(h, x)
εa(h),

for all g, h ∈ CG(a) and x ∈ G. Then the T matrix is

Tα
(a,χ)(a′,χ′) = δa,a′δχ,χ′

χ(a)
χ(e)

εa(a).
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3.3 Twisted example G = (Z/p)3

The simplest non-cyclic group is G = (Z/n)2 for a positive integer n, but it

does not lead to something new (see [8]). The cohomology group

H3((Z/n)2, U(1)) = (Z/n)3

has three generators, but all 3-cocycles give β’s which are all coboundaries.

Thus all twistings are cohomologically trivial.

The more interesting case of G = (Z/n)3 is given in [20]. Here, we recall

that work in order to compare it with our calculation in the next section:

The cohomology H3(G, U(1)) = (Z/n)7 is generated by the following

cocycles:

α
(j)
I (a, b, c) = exp

{
2iπaj(bj + cj − bj + cj)/n2

}
, 1 ≤ j ≤ 3,

α
(jk)
II (a, b, c) = exp

{
2iπaj(bk + ck − bk + ck)/n2

}
, 1 ≤ j < k ≤ 3,

αIII(a, b, c) = exp
{

2iπa1b2c3/n
}

,

where the group elements are the triplets a = (a1, a2, a3). The cocycles

which involve a non-trivial power of αIII define non-trivial twistings. The

2-cocycles are of the form

βa(b, c) = exp
{

2iπq(a1b2c3 − b1a2c3 + b1c2a3)/n
}

.

Given a, we wish to count the number of classes b (elements here)

which are βa-regular, i.e., which satisfy βa(b, c) = βa(c, b) for all c. Tak-
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ing c = (1, 0, 0), (0, 1, 0) and (0, 0, 1), the βa-regular elements b are those

which satisfy

a2b3 − a3b2 ≡ a1b3 − a3b1 ≡ a1b2 − a2b1 ≡ 0 (mod f),

where f = n/gcd(q, n). The number of solutions (b1, b2, b3) ∈ (Z/n)3 to this

system is equal to n3[gcd(a1, a2, a3, f)/f ]2.

It remains to sum those numbers for all a to obtain the number of pri-

maries:

|Φα| = n6

f3

∏
p|f

p prime

[
(pkp − 1)(1 + p−1 + p−2) + 1

]
.

We now consider the case when n is an odd prime number p, and when

the 3-cocycle is αIII .

When G is abelian, all factors in the formula for Sα that involve the

cocycles drop out, and one is left with the simple expression:

Sα
(a,χ̃),(b,χ̃′) =

1
|G|

χ∗(b) χ′∗(a),

where χ and χ′ are respectively βa and βb-projective characters, for the

cocycles given above with q = 1.

It remains to compute the projective characters. One then finds p dis-

tinct, irreducible βa-projective representations of dimension p if a is not the

identity, while there are of course p3 representations of dimension 1 if a = e.

Depending on the value of a = (a1, a2, a3), the characters are given in the

following table, where it is implicit that the element g = (g1, g2, g3) must

be βa-regular for the character not to vanish. In the first three cases, the

character label u runs over Z/p, and in the last column, ~u takes all values
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in (Z/p)3.

a1 6= 0 a1 = 0, a2 6= 0 a1 = a2 = 0, a3 6= 0 a1 = a2 = a3 = 0

χ(g) p ξ
a
−1
1 ug1−a

−1
1 a2a3g2

1/2
p p ξ

a
−1
2 ug2

p p ξ
a
−1
3 ug3

p ξ~u·~g
p

If for instance a2 is also invertible, then a−1
1 g1 = a−1

2 g2, so that the first

character value is also equal to χ̃(g) = p ξ
a−1
2 ug2−a1a−1

2 a3g2
2/2

p . The primary

fields are thus (e, χ~u) and (a, χ̃u), for a total of

|Φα| = p3 + (p3 − 1)p = p4 + p3 − p.

The matrices Sα and Tα are now straightforward to establish. Taking

the condition of β-regularity into account, one finds that Sα
(a,χu)(b,χu′ )

is

almost block-diagonal:

1
p


1

p2
1
p

ξ
−u1b1−u2b2−u3b3
p

1
p

ξ
−u2b2−u3b3
p

1
p

ξ
−u3b3
p

1
p

ξ
−u′1a1−u′2a2−u′3a3
p

ξ
−ua

−1
1 b1−u′b−1

1 a1+(a2a3b1+b2b3a1)/2
p

×δ(b2−a
−1
1 a2b1) δ(b3−a

−1
1 a3b1)

0 0

1
p

ξ
−u′2a2−u′3a3
p 0

ξ
−ua

−1
2 b2−u′b−1

2 a2
p

×δ(b3−a
−1
2 a3b2)

0

1
p

ξ
−u′3a3
p 0 0 ξ

−ua
−1
3 b3−u′b−1

3 a3
p


where the blocks correspond to the subsets {a = e}, {a1 6= 0} , {a1 =

0, a2 6= 0}, and {a1 = a2 = 0, a3 6= 0}.

The entries Tα
(a,χ)(a,χ) are 1 for a = e = (0, 0, 0) and ξ

u−a1a2a3/2
p in any

other case.

In the next section, we observe that the modular data of the extraspecial

p-group gives the same fusion coefficients with this twisted case. Hence we

can conclude that these two fusion algebras are the same.
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3.4 Modular data for extraspecial p-group

When discussing what he called electric/magnetic duality in [35], Propitius

observed that the modular data for (Z/2)3 with a particular twist equals

that of the untwisted dihedral group D8 (for an appropriate identification

of primary fields). In the more recent work of [20] it is claimed that there

are many more such examples; when calculating the modular data for an

appropriately twisted (Z/p)3, it is noted that the quantum dimensions and

number of primaries suggest that this twisted data would yield the modular

data for the extraspecial p-group H of order p3, which is the central extension

of the cyclic subgroup Z/p× Z/p. This group may be represented as

〈A,B, C|Ap = Bp = Cp = [A,C] = [B,C] = 1, [A,B] = C〉.

In this section we prove that this is indeed the case.

It is convenient to use an isomorphic realization of H via (r, s, t) ∈ (Z/p)3

with the following defining relations.

(r, s, t)−1 = (−r,−s,−t− rs),

(r, s, t)(r′, s′, t′) = (r + r′, s + s′, t + t′ − sr′).

The irreducible characters are calculated in [29]. For fixed x, y, z in {1, 2, . . . , p−

1}, we define the character as

χ(r, s, t) =

 0, if p
d - s ∨ (p

d - r ∧ z 6= 0);

pξtz+rx+sy
p , otherwise;

where d = gcd(z, p). It may be rewritten in a more compact form using the
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Kronecker delta function:

χ(r, s, t) =

 ξrx+sy
p , if z=0;

δ(p|r)δ(p|s)pξrx+sy+tz
p , if z 6= 0;

where δ(p|r) = 1 if p = r and 0 otherwise. Using this triple realization, the

conjugacy class of the element (a, b, c) can be given as C(a,b,c) = {(a, b, c +

bx− ay) | x, y ∈ Z/p}. Thus two elements, (a, b, c) and (a′, b′, c′), belong to

the same conjugacy class if and only if a = a′, b = b′ and there exist integers

x, y and z such that c = c′ − ay + bx + pz. This equation is solvable if and

only if c ≡ c′ ( mod gcd(a, b, p)). Therefore every conjugacy class contains

exactly one element of the set

L = {(a, b, c) ∈ {0. . . . , p− 1}3|c < gcd(a, b, p)}.

If neither a nor b is equal to 0 then gcd(a, b, p) = 0. Hence c should be

equal to 0. If a = b = 0 then c can be any number in {0, . . . , p − 1} as

gcd(0, 0, p) = p in this case. So the representative of the conjugacy classes

are either in the form of (a, b, 0) 6= (0, 0, 0) or (0, 0, c). We now calculate

the centralizer for each element. The elements (r, s, t) of CG(a, b, 0) should

satisfy

(r, s, t)(a, b, 0) = (a, b, 0)(r, s, t),

(a + r, s + b, t− as) = (a + r, s + b, t− rb).

Therefore as = rb and (r, s, t) = (a, asr−1, c). CG(a, b, 0) is of order p2.

From the basic results of finite group theory there are two groups of order

p2 up to isomorphism. CG(a, b, 0) cannot be the cyclic one as it has at least

two elements of order p, namely (a, 0, 0) and (0, 0, c). Thus, CG(a, b, 0) is
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isomorphic to Z/p× Z/p.

The elements (r, s, t) of CG(0, 0, c) should satisfy

(r, s, t)(0, 0, c) = (0, 0, c)(r, s, t),

(r, s, c + t) = (r, s, c + t).

Hence CG(0, 0, c) = G.

Let us denote the irreducible characters by Γi|p
2

i=1 and χi|p
2+p+1

i=1 for Z/p×

Z/p and G, respectively. The primary fields of the modular data may be

written as
(
(0, 0, c), χi

)
for all c ∈ G and

(
(a, b, 0),Γi

)
where (a, b, 0) 6=

(0, 0, 0). We find that the number of the primary fields is p(p2 + p − 1) +

(p2 − 1)p2 = p4 + p3 − p which is equal to the number of primary fields of

twisted modular data of (Z/p)3.

We next calculate the entries of the S matrix. We first consider the

primary fields (a, χi) and (b, χj) where a = (0, 0, r) and b = (0, 0, t). We use

the formula given in the second section:

S(a,χi)(b,χj) = 1
|CG(a)||CG(b)|

∑
g∈G(a,b) χi(gbg−1)∗χj(g−1ag)∗.

We know |CG(a)||CG(b)| = p6, G(a, b) = {g ∈ G|agbg−1 = gbg−1a} =

{g ∈ G|(0, 0, r + t) = (0, 0, r + t)} = G as well as χi(gbg−1) = χi(b) for

g ∈ G. Hence

S(a,χi)(b,χj) =
1
p3

χi(b)∗χj(a)∗.

By the above formula for χ, if z in the formula is equal to 0 then there are

p2 characters such that χ(0, 0, t) = 0. We denote these characters by χi,j

where i and j are in {0, . . . , p− 1}. If z 6= 0 then there are p− 1 characters

of the form as z ∈ {1, . . . , p − 1}. We denote these characters by χzi after

indexing the (p− 1) z’s. Hence, by the formula for the S matrix, we have
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S((0,0,r),χi,j)((0,0,t),χi′,j′ ) = 1/p3,

S((0,0,r),χzi )((0,0,t),χzj ) = 1/pξ
−rzj−tzi
p ,

S((0,0,r),χi,j)((0,0,t),χz) = 1/p2ξ−rz
p .

One may compare these results with the Sα matrix of the twisted mod-

ular data for (Z/p)3. In order to get the same entries as Sα, we change

((0, 0, t), χzi) to ((0, 0, z−1
i t), χzi), and notice that zi corresponds to a3 in

the notation of the twisted matrix. We basically proved that the blocks

at the corners of each matrix are the same. It is trivial to see that the

dimension of these blocks is also the same.

We now need to check the other blocks. For the other blocks we need to

consider the primary fields ((r, s, 0),Γi) where s or t are not equal to 0. We

have the following formula

S((r,s,0),Γi)((0,0,t),χz) =
1

|CG(a)||CG(b)|
∑

g∈G(a,b)

Γi(gbg−1)∗χz(g−1ag)∗

where a = (0, 0, t) and b = (r, s, 0). By the Kronecker delta functions δ(p|r)

and δ(p|s) in the definition of χ, the character χz(g−1ag) should be equal

to zero as at least one of r or s is nonzero. These zeros corresponds to the

(4, 2), (4, 3), (2, 4) and (3, 4) block entries of the Sα matrix of the twisted

case if we index the blocks starting from the left upper corner which is the

(1, 1) block.

Another kind of entry that we need to consider is

S((0,0,t),χi,j)((r,s,0),Γi) =
1

|CG(a)||CG(b)|
∑

g∈G(a,b)

χi,j(gbg−1)∗Γi(g−1ag)∗
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where a = (0, 0, t) and b = (r, s, 0). Here, we know |CG(a)| = p3, |CG(b)| =

p2 and

G(a, b) = {g ∈ G|agbg−1 = gbg−1a}

= {g ∈ G|(r, s, t− as + rb) = (r, s, t− as + rb)} = G.

Moreover, we have g−1ag = a for g ∈ G and

gbg−1 = (g1, g2, g3)(r, s, 0)(−g1,−g2,−g3 − g1g2) = (r, s, g2r − g1s)

by the formula for χ, χi,j(gbg−1) = ξrx+sy
p where x, y ∈ G are fixed for each

character χi,j . We can change the notation x and y to u1 to u2. On the other

hand, Γi(0, 0, t) = ξa3t
p where we can define Γi(r, s, t) = ξvs

p ξa3t
p where v and

a3 are fixed for each character Γi. We recall that, for (x, y, z) ∈ CG(r, s, 0),

x and y are the same up to a constant while z is independent than the other

coordinates. For the character Γi of Z/p×Z/p we thus consider the second

and third coordinates without loss of generality. We use this fact again in

the next calculation. As a result, we obtain

S((0,0,t),χi,j)((r,s,0),Γi) = 1/p2ξ−ru1−su2−ta3
p .

Hence if r 6= 0 this block coincides with (1, 2) and (2, 1) blocks of the Sα

matrix. If r = 0 it coincides with the (1, 3) and (3, 1) blocks if we change r,

s and t to a1, a2 and u3, respectively.

The remaining blocks that we need to check are the four blocks at

the center. Let us first check S((0,s,0),Γi)((r′,s′,0),Γj) where r′ 6= 0. In this

case we see that G(a, b) = {g ∈ G|agbg−1 = gbg−1a} = {g ∈ G|(r′, s +

s′, g2r
′ − g1s

′) = (r′, s + s′, g2r
′ − g1s

′ − sr′) = ∅ because sr′ 6= 0. Hence
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S((0,s,0),Γi)((r′,s′,0),Γj) = 0 corresponds to the zero blocks ((2, 3) and (3, 2)

blocks) at the center.

We continue with the block corresponding to S((0,s,0),Γi)((0,s′,0),Γj). Here

we have G(a, b) = {g ∈ G|agbg−1 = gbg−1a} = {g ∈ G|(0, s + s′,−g1s
′) =

(0, s + s′,−g1s
′)} = G, gbg−1 = (0, s′,−s′g1) and g−1ag = (0, s, sg1) where

g = (g1, g2, g3), and recall that we defined Γi and Γj as Γi(r, s, t) = ξvs
p ξa3t

p

and Γj(r, s, t) = ξv′s
p ξb3t

p . If a3s
′ = b3s then

Γi(gbg−1)∗Γj(g−1ag)∗ = ξ−vs′
p ξa3s′g1

p ξ−v′s
p ξ−b3sg1

p

= ξ−vs′−v′s
p ξg1(s′a3−b3s)

p = ξ−vs′−v′s
p .

If a3s
′ 6= b3s which means δ(a3s

′ − b3s) = 0, then

Γi(gbg−1)∗Γj(g−1ag)∗ = ξ−vs′−v′s
p ξg1(s′a3−b3s)

p .

We now consider the S-matrix formula

S((0,s,0),Γi)((0,s′,0),Γj) = 1/p4
∑
g∈G

ξ−vs′−v′s
p ξg1(s′a3−b3s)

p .

If a3s
′ 6= b3s, then ξ

g1(s′a3−b3s)
p is summed while g1 is covering all Z/p p2

times. As the sum of all the roots of unity is 0, the entry S((0,s,0),Γi)((0,s′,0),Γj)

must be zero. Otherwise S((0,s,0),Γi)((0,s′,0),Γj) = 1/pξ−vs′−v′s
p . Any non-zero

power of ξp is also a pth root unity. Hence we can choose v = ua−1
2 and

v′ = u′b−1
2 . If we change the notation s = a2 and s′ = b2, we obtain the

(3, 3) block of the twisted S matrix of (Z/p)3. Note that this assignment

does not change the order of the entries in the first column or in the first

row as they are determined by second factor ξa3t
p of the character Γi.
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The (2, 2) block is the only block left in the twisted Sα of (Z/p)3. We

need to calculate S((r,s,0),Γi)((r′,s′,0),Γj). Here G(a, b) = {g ∈ G|agag−1 =

gbg−1a} = {g ∈ G|(r + r′, s+s′, g2r−g1s
′− r′s) = (r + r′, s+s′,−g1s

′−s′r)

is G if and only if r′s = s′r. Otherwise G(a, b) is an empty set, a case which

is covered by examining the Kronecker delta functionδ(s′− r−1sr′), as these

terms are in the abelian group Z/p.

We now assume that r′s = s′r. We also have gbg−1 = (r′, s′, r′g2 −

s′g1) and g−1ag = (r, s, sg1 − rg1) where g = (g1, g2, g3). By the formulae

Γi(r, s, t) = ξvs
p ξa3t

p and Γj(r, s, t) = ξv′s
p ξb3t

p we get the multiplication

Γi(gbg−1)∗Γj(g−1ag)∗ = ξ−vs′−v′s
p ξg1(s′a3−b3s)+g2(r′a3−rb3)

p .

We note that s′a3 − b3s = 0 if and only if r′a3 − rb3 as r′s = s′r. If these

exponents are non-zero, the entry in our S is zero because gi is covering

the set G by resolving the power sum of the ξp which is equal to zero.

Hence another Kronecker delta function appears in our expression which is

δ(r′a3 − rb3). If δ(r′a3 − rb3) = 1 then S((r,s,0),Γi)((r′,s′,0),Γj) = 1/pξ−vs′−v′s
p .

We now make the conventional choice of v and v′ as ua−1
2 − a1a3/2 and

u′b2−1 − b1b3/2. Hence

S((r,s,0),Γi)((r′,s′,0),Γj) = 1/pξ
−(ua−1

2 −a1a3/2)s′−(u′b2−1−b1b3/2)s
p .

We also change the notation r = a1, s = a2, r′ = b1 and s′ = b2 to obtain

ξ
−ua−1

2 b2−u′b−1
2 a2+(a1a3b2+b1b3b2)/2

p = ξ
−ua−1

1 b1−u′b−1
1 a1+(a2a3b1+b2b3a1)/2,

p

where the equality follows from b1a2 = a1b2 and b2a3− b3a2 = 0. The choice

of v and v′ is the same as the last part we have calculated because r = a1 = 0
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in that case. We note that the change in variables does not change the order

of the entries in first column or row as they are determined by second factor

ξa3t
p of the character Γi. This completes our calculation of the S matrix of H

which as a result is the same as the twisted Sα matrix of the group (Z/p)3

We can write the change of variables as a map from the primary field

((r, s, 0),Γi) to ((a1, a2, a3), χu) in the twisted fusion algebra where r and s

are mapped to a1 and a2, respectively. The two factors in the character Γi

are mapped to a3 and u.

We next calculate the T matrix. We again start with the primary field

of type ((0, 0, t), χi,j) for which

T((0,0,t),χi,j)((0,0,t),χi,j) = χi,j(0, 0, t)/χi,j(0, 0, 0) = 1.

If the field is ((0, 0, t), χzi) then

T((0,0,t),χzi )((0,0,t),χzi ) = χzi(0, 0, t)/χzi(0, 0, 0) = ξtzi
p .

Remember that we replace (0, 0, t) by (0, 0, tz−1
i ). Hence T((0,0,t),χzi )((0,0,t),χzi )

is ξt
p.

If the field is of type ((0, s, 0),Γi) then

T((0,s,0),Γi)((0,s,0),Γi) = Γi(0, s, 0)/Γi(0, 0, 0) = ξsv
p .

By our previous change of v and s to ua−1
2 and a2, respectively, we obtainξu

p

for this primary field.

The last primary field to check is the field of type ((r, s, 0),Γi) for which

T((r,s,0),Γi)((r,s,0),Γi) = Γi(r, s, 0)/Γi(0, 0, 0) = ξsv
p ,
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where we replace s and v by a2 and ua−1
2 − a1a3/2, respectively. Therefore

we obtain the term ξ
u−a1a2a3/2
p . We conclude that the matrix Tα of the group

(Z/p)3 for a particular twist α and the T matrix of the extraspecial p-group

H of order p3 with exponent p coincide.

As a result, we have proved the following theorem.

Theorem 3.4.1. The twisted modular data of the group (Z/p)3 are the same

as the modular data of the extraspecial p-group of order p3 with exponent p.

We also have the following corollary.

Corollary 3.4.2. The twisted fusion algebra of (Z/p)3, which is isomor-

phic to the twisted orbifold K-theory αKorb(∧[∗/G]) in the sense of [8], is

isomorphic to the fusion algebra of the extraspecial p-group of order p3 with

exponent p, which is isomorphic to the orbifold K-theory Korb(∧[∗/H]).
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Chapter 4

Cohomology of Toroidal

Orbifolds

4.1 Introduction

Let G be a finite group and ϕ : G → GLn(Z) an integral representation

of G. In this way G acts linearly on Rn preserving the integral lattice Zn,

thus inducing a G-action on the torus Xϕ = X := Rn/Zn. The quotient

X → X/G naturally has the structure of an orbifold as a global quotient,

and these kind of orbifolds are usually referred to as toroidal orbifolds. The

goal of this chapter is to compute the cohomology groups H∗(X/G; Z) for

the particular case where G = Z/p for a prime number p.

The quotients of the form X/G appear naturally in different contexts.

For example, given a topological space Y , the m-th cyclic product of Y is

defined to be the quotient

CPm(Y ) := Y m/Z/m,

where Z/m acts by cyclically permuting the product Y m. In the particular

case where the representation ϕ : G → GLn(Z) induces the ZG-module

(ZG)n, the associated torus X is (S1)p)n, where G acts cyclically on each
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(S1)p and diagonally on the product ((S1)p)n. In this case

X/G = (((S1)p)n)/Z/p ∼= ((S1)n)p/Z/p

where now Z/p acts cyclically on the ((S1)n)p. Therefore

X/G ∼= CP p((S1)n).

The homology groups of quotient spaces of the form Xm/K, where K ⊂ Σm,

have long been studied. In particular, in [38] Swan formulated a method for

the computation of homology of cyclic products of topological spaces.

4.2 Preliminaries

Let G be a finite group and ϕ : G → GLn(Z) an integral representation of

G. Consider X = Xϕ the standard torus with the action of G induced from

ϕ. Then there is a fibration sequence

X → X ×G EG → BG. (4.1)

Using the long exact sequence in homotopy groups associated to this fi-

bration, it follows that X ×G EG is an Eilenberg-Maclane space of type

K(Γ, 1), where Γ := π1(X×GEG). The G-action on X makes L := π1(X) ∼=

H1(X; Z) ∼= Zn into a ZG-module. Moreover, since [0] ∈ Rn/Zn is always

a fixed point for the action of G on X, it follows that the fibration (4.1)

has a section. The existence of such a section implies that the short exact

sequence

1 → π1(X) → π1(X ×G EG) → π1(BG) → 1
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has a section and therefore Γ ∼= LoGis a semi-direct product. For example,

when the representation ϕ is injective, the group Γ is a crystallographic

group.

The cohomology groups of the groups of the form Γ ∼= L o G, when

G = Z/p for a prime number p, were computed in [4, Theorem 1.1] where

it is shown that a certain special free resolution ε : F → Z of Z as a

Z[L]-module admits an action of G compatible with ϕ. This implies that

the Lyndon-Hochshild-Serre spectral sequence associated to the short exact

sequence

1 → L → Γ → G → 1

collapses on the E2-term without extension problems, thus for any k ≥ 0

Hk(Γ; Z) ∼=
⊕

i+j=k

H i(G;
j∧

(L∗)),

where L∗ denotes the dual module Hom(L, Z).

One application of this, by [4, Theorem 1.2] is when G = Z/p acts on X

via a representation ϕ : G → GLn(Z), then

Hk(X ×G EG; Z) ∼=
⊕

i+j=k

H i(G;Hj(X; Z)).

for each k ≥ 0. The strategy we will use to compute the cohomology groups

H∗(X/G; Z) is as follows. Let F denote the subspace of fixed points under

the G-action. In general, F will be a disjoint union of product of circles.

Then the long exact sequence in cohomology associated to the pair (X/G,F )

can be used to compute the cohomology groups H∗(X/G; Z). To make this
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work, the relative cohomology groups H∗(X/G,F ; Z) need to be determined.

For this, we consider the equivariant projection π1 : X × EG → X. On the

level of orbit spaces π1 induces a map

φ : X ×G EG → X/G.

By [17, Proposition V 1.1], φ induces the isomorphism

φ∗ : H∗(X/G,F ; Z) → H∗
G(X, F ; Z).

This reduces the problem to one of determining the cohomology groups

H∗
G(X, F ; Z). These groups will be computed using representation theory

and the fact that the Lyndon-Hochshild-Serre spectral sequence associated

to the fibration sequence

X → X ×G EG → BG

collapses on the E2-term without extension problems.

Let L := H1(X; Z) ∼= π1(X). As explained, L has the structure of a

ZG-lattice; this structure determines the cohomology groups of X/G. Let

R = Z(p) be the ring of integers localized at the prime p. Then (see [21])

there are only three distinct isomorphism classes of RG-lattices, namely

the trivial module R, the augmentation ideal IG and the group ring RG.

Moreover, if L is any finitely generated ZG-lattice, then there is a ZG-lattice

L′ ∼= Zr ⊕ ZGs ⊕ IGt and ZG homomorphism f : L′ → L such that f is an

isomorphism after tensoring with R. In general, a ZG-module of the form

Zr ⊕ ZGs ⊕ IGt is called a module of type (r, s, t).
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A fundamental tool in the computation of the cohomology groups of the

toroidal orbifolds is the next lemma.

Lemma 4.2.1. Suppose that p is a prime number. Let G = Z/p act on a

finite dimensional space X with fixed point set F . If there is an integer N

such that Hk(X, F ; Z) = 0 for k > N , then Hk
G(X, F ; Z) = 0 for k > N .

Proof. This follows by applying [17, Exercise III.9] and [17, Proposition

VII 1.1].

From now on G denotes the group Z/p for a prime number p. Given

a representation ϕ : G → GLn(Z), X denotes the G-space Rn/Zn with

the G-action induced by ϕ and F denotes the fixed point set under this

action. The representation ϕ makes L : H1(X; Z) into a ZG-module whose

structure completely determines the cohomology groups H∗(X/G; Z) as it

will be shown in the next section in the case of L = IGm.

4.3 The case L = IGm

In this section the particular case where the ZG-lattice L equals IGm is

considered. Let ρm := ⊕mρ : G → GLN (Z) be the integral representation

inducing the ZG-module L, where N = m(p − 1). The fixed point set of

such an action is easily identified by the following straightforward lemma.

Lemma 4.3.1. If X = X⊕mρ is the G-space induced by the representation

⊕mρ then the fixed point set F under this G-action is a discrete set with pm

points.

Proof. Consider the short exact sequence of G-modules defining the G-

space X

0 → L → L o R → (L o R)/L = X → 0.
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This short exact sequence induces a long exact sequence on the level of group

cohomology

0 → H0(G, L) → H0(G, LoR) → H0(G, X) → H1(G, L) → H1(G, LoR) → . . .

Note that H1(G, L o R) = 0 and H0(G, L) = H0(G, L o R) = 0, thus

there is an isomorphism F = H0(G, X) ∼= H1(G, L) ∼= (Z/p)m.

We are interested in computing the cohomology groups H∗
G(X, F ). These

can be computed using the Serre spectral sequence for the pair (X, F )

Ei,j
2 = H i(G, Hj(X, F )) =⇒ H i+j

G (X, F ).

Therefore the structure of Hj(X, F ) as a G-module needs to be studied. To

this end, we consider the long exact sequence in cohomology associated to the

pair (X, F ). Since Hj(F ) = 0 when j ≥ 1, it follows that Hj(X, F ) ∼= Hj(X)

for j ≥ 2 and there is a short exact sequence

0 → Zpm−1 → H1(X, F ) → (IG)m → 0. (4.2)

By the classification theorem for ZG-modules in [21], there are integers aj , bj

and cj ≥ 0, ideals A1, ..., Aaj of ZG rank p−1 and projective indecomposable

modules P1, ..., Pbj
such that

Hj(X, F ) ∼=

( aj⊕
1

Ai

)
⊕

 bj⊕
1

Pj

⊕

( cj⊕
1

Z

)
.
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In particular,

H i(G, Hj(X, F )) ∼=


Zbj+cj if i = 0,

(Z/p)aj if i is odd and i > 0,

(Z/p)cj if i is even and i > 0.

On the other hand, for j ≥ 2 we obtain

Hj(X, F ) ∼= Hj(X) ∼=
j∧

(IG)m.

Hence the rank of
∧j(IG)m is equal to the rank of Hj(X, F ) ∼= (

⊕aj

1 Ai)⊕

(
⊕bj

1 Pi)⊕ (
⊕cj

1 Z). This implies the following equation when j ≥ 2:

(
m(p−1)
j

)
= aj(p− 1) + bjp + cj . (4.3)

For each m, j ≥ 0, we define pm(j) to be the number of all possible

sequences of integers l1, ..., lm such that 0 ≤ lr ≤ p − 1 and l1 + · · · lm = j.

This forces pm(j) = 0 for j > N = (p− 1)m, pm(0) = 1, pm(1) = m and by

induction it is easy to see that

m(p−1)∑
j=0

pm(j) = pm.

When j ≥ 2, it follows from [3, Proposition 1.10] that

H i(G, Hj(X, F )) ∼=

 (Z/p)pm(j) if i + j is even and i > 0,

0 if i + j is odd and i > 0.
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This result implies

aj =

 pm(j) if j is odd and j ≥ 2,

0 if j is even and j ≥ 2,

and

cj =

 0 if j is odd and j ≥ 2,

pm(j) if j is even and j ≥ 2

We also need to find H0(G, Hj(X, F )) ∼= Zbj+cj . When j ≥ 2 by equa-

tion (4.3) we obtain

bj =


1
p

[(
m(p−1)
j

)
− (p− 1)pm(j)

]
if j is odd,

1
p

[(
m(p−1)
j

)
− pm(j)

]
if j is even.

The Ei,j
2 of the this spectral sequence is described below

Ei,j
2 =



0 if j = 0,

Zbj+cj if i = 0 and j > 0,

(Z/p)pm(j) if i + j is even and i > 0, j ≥ 2,

0 if i + j is odd and i > 0, j ≥ 2,

(Z/p)a1 if i is odd and j = 1,

(Z/p)c1 if i is even and j = 1.

Consider the Serre spectral sequence

Ẽi,j
2 = H i(G, Hj(X)) =⇒ H i+j

G (X)
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associated to the fibration sequence X → X ×G EG → BG. As it was

pointed out before this sequence collapses on the E2-term. The inclusion

X → (X, F ) defines a map of spectral sequences f i,j
r : Ei,j

r → Ẽi,j
r . Notice

that f i,j
2 is an isomorphism when j ≥ 2. This implies that the only possible

nontrivial differentials in the spectral sequence {Ei,j
r } must land in Ei,1

r . On

the other hand, by Lemma 4.2.1 it follows that Hk
G(X, F ) = 0 for k > N ; this

means that there are no permanent cocycles of total degree k with k > N .

We notice that all the differentials that end at E2k+1,1
2

∼= (Z/p)a1 start at

trivial groups. This implies that if 2k + 1 > N then E2k+1,1
2 must be the

trivial group and thus a1 = 0. On the other hand, when 2 ≤ j ≤ N and i+j

even, the only possible nonzero differential starting at Ei,j
2
∼= (Z/p)pm(j) is

dj : Ei,j
j → Ei+j,1

j .

If i + j > N , there are no permanent cocycles in Ei,j
j and thus dj must be

injective. We note that the spectral sequence Ei,j
r is a spectral sequence of

H∗(BG)-modules and we can find t ∈ H2(BG) such that multiplication by

tk is an isomorphism tk : Ei,j
j → Ei+2k,j

j . Since dj is a map of H∗(BG)

modules, we are able to choose k big enough such that i + j + 2k > N ; it

follows that dj : Ei,j
j → Ei+j,1

j is injective for all i + j > 0 and its image has

rank cj = pm(j) when i = 0 and j is even. Moreover Zbj ⊂ (Hj(X, F ))G

lies inside the image of the norm map.

We next consider the transfer map associated with the trivial subgroup

{1} → G. This map preserves the filtrations that induce the Serre spectral

sequence and thus it induces a map of the corresponding spectral sequences

τG
1 : H i({1},Hj(X, F )) → H i(G, Hj(X, F )).
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Since the image of the transfer map

τG
1 : H0({1},Hj(X, F )) → H0(G, Hj(X, F ))

consists of elements in the image of the norm map, it follows that all the

differentials in the Serre spectral sequence vanish on the elements that are

in the image of the norm map; in particular, dj is trivial on the summand

Zbj .

We conclude that when 2k > N , E2k,1
2

∼= (Z/p)c1 , E2k,1
3

∼= (Z/p)c1−pm(2),

... ,E2k,1
N+1

∼= (Z/p)c1−(
PN

j=2 pm(j)). Also, if 2k +1 > N , the group E2k,1
N+1 must

vanish because its elements are not permanent cocycles and there are no

nontrivial differentials with target E2k,1
N+1 as Ei,j

N+1 = 0 for j ≥ 2. This shows

that c1 = (
∑N

j=2 pm(j)) = pm − 1 −m. By the short exact sequence (4.2),

we obtain b1 = m.

Therefore E0,1
∞ ∼= Z(

PN
j=1 pm(j)) = Zpm−1, Ek,1

∞ ∼= (Z/p)(
PN

j=k+1 pm(j)) for

0 < k ≤ N even, E0,k
∞ ∼= Zbk+ck for 1 < k ≤ N and the other groups are

trivial.

By studying the Serre spectral sequence for the pair (X, F ) with coeffi-

cients in Z/q with q a prime number different from p and also with rational

coefficients, we can conclude that there are no extension problems and the

following theorem is obtained.

Theorem 4.3.2. Suppose that G = Z/p acts on X ∼= ((S1)p−1)m via the
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representation ⊕mρ. If F denotes the fixed point set under this action, then

Hk
G(X, F ) ∼=



0 if k = 0,

Zpm−1 if k = 1,

Zγk if k is even and k > 0,

Zγk ⊕ (Z/p)(
Pm(p−1)

j=k pm(j)) if k is odd and k > 0.

where γk = bk + ck = 1/p[
(

m(p−1)
k

)
+ (−1)k(p− 1)pm(k).

Consider now the long exact sequence in cohomology associated to the

pair (X/G,F ). Since F is a discrete set in this case, it follows at once that

Hk(X/G,F ) ∼= Hk(X/G) whenever k ≥ 2. On the other hand, for k = 1

it is easy to see directly that H1(X/G) = 0. This fact, together with [17,

Proposition VII 1.1] proves the following corollary.

Corollary 4.3.3. Suppose that G = Z/p acts on X ∼= ((S1)p−1)m via the

representation ρm, then

Hk(X/G; Z) ∼=



Z if k = 0,

0 if k = 1,

Zγk if k is even and k > 0,

Zγk ⊕ (Z/p)(
Pm(p−1)

j=k pm(j)) if k is odd and k > 0.

where γk = bk + ck = 1
p

[(
m(p−1)
k

)
+ (−1)k(p− 1)pm(k)

]
.
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