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Abstract

In epidemiologic studies, measurement error in the exposure variable can
have large effects on the power of hypothesis testing for detecting the impact
of exposure in the development of a disease. As it distorts the structure of
data, more uncertainty is associated with the inferential procedure involving
such exposure variables. The underlying theme of this thesis is the adjust
ment for misclassification in the hypothesis testing procedure. We consider
problems involving a correctly measured binary response and a misclassi
fied binary exposure variable in a retrospective case-control scenario. We
account for misclassification error via validation data under the assumption
of non-differential misclassification. The objective here is to develop a test
to check whether the exposure prevalence rates of cases and controls are the
same or not, under the frequentist and Bayesian point of view. To evalu
ate the test developed under the Bayesian approach, we compare that with
an equivalent test developed under the frequentist approach. Both these
approaches were developed in two different settings: in the presence or ab
sence of validation data, to evaluate whether there is any gain in hypothesis
testing for having such validation data. The frequentist approach involves
the likelihood ratio test, while the Bayesian test is developed from posterior
distribution generated by a mixed MCMC algorithm and a normal prior
under realistic assumptions. The comparison between these two approaches
is conducted using different simulated scenarios, as well as two real case-
control studies having partial validation (internal) data. Different scenarios
include settings with varying sensitivity and specificity, sample sizes, ex
posure prevalence and proportion of unvalidated and validated data. One
other scenario that was considered is to evaluate the performance under a
fixed budgetary constraint. In the scenarios under consideration, we reach
the same conclusion from the two hypothesis testing procedures. The simu
lation study suggests that the adjusted model (with validation data model)
is always better than the unadjusted model (without validation data model).
However, exception is possible in the fixed budget scenario.
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Chapter 1

Prelude

1.1 Introduction

A health outcome, often simply presence or absence of disease, is usually
the central issue of an epidemiological inquiry, whereas the exposure is a
related factor that is possibly involved in development of disease. The scope
of an exposure assessment is much broader in the sense that it can originate
from various sources such as some physiological characteristic, psychologi
cal characteristic, genetic factor, social or environmental element or genetic
attribute. We can use some biological test or even self-reported survey in
strument to assess exposure status. Intuition suggests that, whatever tool
we use to evaluate that exposure status, there is always a possibility of hav
ing mismeasurement. We can have a gold standard method of exposure
status evaluation with a well-set definition of superior or ideal exposure as
sessment. However, since such superior assessment may not be possible to
implement on the whole study sample for various practical reasons, such
as available resources or ethical considerations, an operational method of
assessment has to be settled upon so that we can use that method on the
entire sample. This operational definition is basically an indirect measure
of the exposure of ultimate interest. The methodologies of assessing disease
and evaluating exposure are quite different from one another. Therefore, the
mechanisms by which measurement errors will occur from these two sources
are very different.

Evaluating the affect of the exposure to a given risk factor in the de
velopment of a disease or infection is usually the goal in epidemiological
studies. While making the causal association between an outcome variable
that defines the disease and the exposure variable(s), it is crucial that both
are recorded without error. However, due to restriction of resources, often
such quantification by any association measure is hindered by the lack of
preciseness of the measures of relevant exposures which are collected us
ing the operational definition. When there exist any sources of error, it is
possible that the researcher’s interpretations or findings of causal inference
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1.2. The Impact of Misclassification

have alternative explanations. A rich literature suggests that this has long
been identified as a problem and there has been considerable interest in this
problem. Most applied work still ignores this issue and suffers detrimental
effects. In the current work, this issue is acknowledged and addressed.

This problem is relevant as much to continuous as to categorical mea
sures — although the terminology differs slightly. ‘Measurement error’ is the
terminology used when the predictor variable under consideration is continu
ous in nature. On average, the closer the true explanatory variable value and
the measured value from the surrogate variable (error-corrupted variable)
are, tho less measurement error exits, If the predictor variable is categorical
instead (with two or more categories), we call it a problem of ‘misclassifica
tion’. In this case, the probabilities of classifying a subject into the correct
category are considered. The impact of both of the mismeasurement cases
are somewhat similar, although the expressions and terminologies to evalu
ate them are quite different.

For the sake of clarity, let us define some notation: the goal of the study
is to explain the relationship between the outcome variable (Y) and exposure
variable. In the current work, we will restrict ourselves to a binary exposure
variable and denote it as V. That is, we will only consider the situation
whether a subject is either exposed or not. However, for practical reasons
such as cost, time factors or unavailability of a gold standard, V might not be
measured precisely or directly. Therefore, a cruder classification method is
applied and a corresponding surrogate variable V* is recorded instead. This
is mostly the case when the exposure status is unobservable or cannot be
measured precisely within reasonable cost. Nevertheless, although plugging-
in a surrogate variable by using an imprecise but cheap classification tool
might seem a very intuitive solution, this is are not without consequences.
The phenomenon of such error on the measure of association is sometimes
referred to as information bias. A question of accuracy of the estimate of
the measure of association between disease and exposure arises, and hence
we need to evaluate the impact of such replacements.

1.2 The Impact of Misclassification

Mismeasurement in the explanatory variables, when ignored, can have detri
mental effects on statistical analysis such as: making the estimates of the
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1.3. Suggested Correction of Misclassification in the Literature

parameters biased in the model under investigation, reducing the discrim
inative power, and masking various features of the data [Carroll et al., 2006].

In the case of obtaining an estimate of a measure of association, misclas
sification presents a serious problem. Naive analysis that just substitutes
the apparent exposure status for the unobserved true exposure status can
produce highly biased estimates. When misclassification probabilities are
equal for the two compared groups (exposed and unexposed), the estimates
of measures of association such as relative risk, odds ratio, are biased toward
the null value [Copeland et al., 1977].

However, the effect of misclassification error on hypothesis testing pro
cedures might not be as detrimental as that on estimation, as mentioned
in Bross [1954]. In this paper, it is argued that, if similar misclassification
prevails in both exposed and unexposed populations, then the validity of the
test of finding whether two proportions, that is, the exposure prevalences
are different or not, is not affected. However, this does not come without a
price - and the price is the power of the test, which is reduced in the pres
ence of misclassification. Usually the extent of loss depends on the amount
of misclassification.

1.3 Suggested Correction of Misclassification in
the Literature

Fortunately, reasonable estimates of measures of association are still attain
able, even though the exposure variable under consideration is corrupted.
For that, the researchers must have some knowledge about the nature of
error to be able to correct or account for it. Identifiability becomes an issue
for the likelihoods - if we have no clue regarding the extent of misclassifi
cation [Walter and Irwig, 1988]. A number of methods for the correction
of measurement error have been developed throughout the years, both in
design and analysis stages. Methodologies in the design stage include repli
cated measurements, validation studies, etc. In the validation study, the
validated sub-sample is derived randomly from the same population under
investigation (either internal or external to those included in the primary
sample) and a superior method of exposure assessment is implemented on
each subject in the sub-sample. All these methods have their own pros and
cons. Taking into account such information, correction for misclassification
or measurement error can be performed either in frequentist or Bayesian
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1.4. Settings of the Problem under Investigation

ways. We will discuss this topic in the current work from the ‘test of hy
pothesis’ point of view.

It is worth mentioning that we will be using internal validation sub-
samples throughout this work. Although external validation sample some
times helps generalizing the results to larger extent, it suffers from various
other limitations as well, especially in the situations when cause is depen
dent on many factors, not only on the predictor variable under investigation,
which is a very common circumstance in the disease-exposure relationships.
Also, in terms of cost, internal validation sub-samples are cheaper than ex
ternal validation samples since inferior method of exposure assessment is
already applied on the subjects of internal validation sub-samples.

1.4 Settings of the Problem under Investigation

Let Y be the outcome of interest:

for diseased subjects
for disease free subjects.

To keep the problem simple, it is assumed that the outcome variable Y is
measurement error free. That is, we will deal with exposure misclassifica
tion, not disease misclassification.

The simplest setting in misclassification is a binary exposure variable,
which is frequently the case in epidemiological studies. The binary variable
V is used to denote the true exposure status:

— J 1 for truly exposed
—

0 for truly unexposed.

V” is a surrogate variable that denotes the exposure status observed by some
instrument or measurement that is subject to a certain amount of error:

— f 1 for apparently exposed
—

0 for apparently unexposed.

Here the exposure variable V is considered to be replaced by the surrogate
variable V* with considerable measurement error. It is also assumed that
such exposure measurements are independent of other errors.

4



1.4. Settings of the Problem under Investigation

To obtain information about the degree of mismeasurement, a validation
sub-sample is necessary, where complete information is available about true
exposure status (V), along with surrogate variable V* status (through an
imperfect assessment on exposure). This is a small fraction of the main sam
ple, where only the surrogate variable V* status is available. Throughout
this work, we used various compositions of data by varying this fraction.
We will discuss this further in Chapter 4.

Although it is known that prospective study data are usually preferable
study data, researchers have to make certain trade-offs due to feasibility.
Retrospective designs are more popular because the secondary data sources
are usually much cheaper. However, (unmatched) retrospective case-control
studies are more subject to errors of measurement or misclassification, which
often leads to invalid results. Therefore, we consider a retrospective case-
control scenario, where n1 subjects are sampled from the diseased population
(cases), and n0 subjects are sampled from the disease free population (con
trols).

To make valid causal inference from a retrospective study, a number of
assumptions need to be appreciated. Consideration of the type or pattern
of measurement error is very crucial in evaluating its likely impact on a
measure of association. Researchers should be able to distinguish the con
sequences of different patters of misclassification: such as differential and
nondifferential misclassification - which are based on whether the pattern of
error in exposure assessment varies with respect to disease status. Misclassi
fication probabilities of exposure vary with respect to disease status in case
of differential misclassification. Errors arising due to recall bias and percep
tion are common sources for misclassification probabilities being different in
relation to disease status. The presence of disease may have great influence
on how subjects interpret or report about the exposure status. In this case,
the conditional distribution of the surrogate exposure variable (or measure
ment by ‘imperfect’ exposure assessment method), given the true exposure
variable and outcome variable, that is, VV, Y, depends on Y. This is the
case for many realistic situations. However, to simplify the problem, we
sometimes assume that the conditional distribution of V* V, Y does not de
pend on Y, that is, misclassification probabilities are invariant with respect
to disease status (all cases and controls have the same probability of be
ing misclassified). This is the definition of nondifferential misclassification.
Throughout the current work, we will maintain the assumption of nondiffer
ential misclassification, and the conclusions are valid under this particular
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1.5. Basic Terminologies used to Evaluate Misclassification and Measures of Association

assumption. The reason for this assumption is basically due to some of the
simple features that are established in literature, such as “bias toward the
null” in absence of other forms of error for a dichotomous exposure variable
and its simplicity compared to relatively unpredictable effects of differential
misclassification, Researchers usually go through more sophisticated designs
like blinding (of exposure assessment with respect to the disease outcome) or
some of its advanced variants to attempt to ensure that the nondifferential
assumption holds.

The notation we will use for the unvalidated sub-sample and validation
sub-sample data structures under consideration is given in Table 1.1 and
Table 1.2 respectively. The unvalidated and validation sub-samples are sep
arate parts of the entire data. The validation sub-sample is the part of the
data where we implemented both the inferior and superior methods of ex
posure assessment. On the other hand, the unvalidated sub-sample is the
part on which we used only the inferior method of exposure assessment,
excluding those subjects who were randomly selected for the validation sub
sample. For convenience, we will use the phrase ‘unvalidated sub-sample
data’ and ‘main data’ interchangeably from now on. In each of these tables,
the nj’s are observed, where i = 0, 1, j = 1,2,3,4, 5,6, but in Table 1.1,
the uj ‘s are unobserved. Although the marginal totals of V* are observ
able, we do not have direct information on how those subjects are classi
fied with respect to V. The total number of subjects in the case group is
flu + nj + fl13 + n14 + ni + ni = ni and similarly, the total number of
subjects in the control group is oi + fl02 + fl03 + fl04 + no5 + floe = flo

Table 1.1: Structure for main (unvalidated) part of the data

[ y y=i J_____
V/V* V=1 V’=0 V=1 V’=0
V = 1 U02

V = 0 u03

Total u11 + U13 U12 + U14 UOl + UO3 U02 + U04

= nlS = fl16 = o5 =

6



1 5. Basic Terminologies used to Evaluate Misclassification and Measures of Association

Table 1.2: Structure for validation part of the data

Y Y=1 Y=o
V/V* v=i V’=o I V=l VO
V 1 fljj fl12 O1

V = 0 n13 n14 n03 n04

Total [[ n11 + n13 n12 + 7114 I no1 + o3 fl1J2 + ‘O4

Table 1.3: Relationships among the basic terminologies in a 2 x 2 table

Test Condition

Exposed Unexposed
Exposed True Positive False Negative

True Condition
Unexposed False Positive True Negative

1.5 Basic Terminologies used to Evaluate
Misclassification and Measures of Association

Let us denote the true exposure prevalence as:

= P(V 1Y

where i = 0, 1 for control and case respectively. As V in this case is unob
served, the apparent exposure prevalence is defined as

= P(V*
= 1Y = i).

Sensitivity and specificity are commonly used statistical measures of the
performance of a binary classification test. In the current context, sensitivity
(SN) measures the proportion of actual exposed people which are correctly
identified as such. Specificity (SP) measures the proportion of unexposed
people which are correctly identified. Thus, by definition,

SN =P(V*
= 1V = 1,Y=i)

SP = P(V* = OIV =0, Y = i)

Notice that we are characterizing misclassification in terms of classification
probabilities. Therefore, SN2 and SP. range between 0 and 1, and the extent
to which these are less than 1 indicates the intensity of the misclassification
problem.

7



1.5. Basic Terminologies used to Evaluate Misclassification and Measures of Association

When the conditional distribution of V* Iv, Y does not depend on Y
(i.e., nondifferential misclassification condition), then we get SN0 = SN1 =

SN and SP0 = SP1 = SF. The apparent exposure prevalence é1 can be
expressed in terms of r1, SN1,SF1:

= F(V*=1IY=i)

= P(V =1, V = kIY = i)

= F(V*=1iV=k,Y=i)P(VkIYi)

= F(V*=liV=1,Y=i)P(V:=zliY=i)+
P(V* liv = 0,Y = i)P(V 0Y = i)

= SN1 r1 + (1 — 5P1)(l
— r1) (1.1)

= SNr1+(1—SF)(l—r1),

denoting common sensitivity by SN and common specificity by SF, under
the assumption of nondifferential classification. Simple algebraic manipula
tion from Equation (1.1) shows that (rI, SN1,SF1) and (1 — r1, 1 — SN1, 1 —

SF1) leads to same

From Youden’s Index [Youden, 19501, we know that if the sensitivity
and specificity are such that SN + SF — 1 <0, then the test is misleading.
SN + SF = 1 would mean that the test is no more useful than a coin-flip
guess. That is, the test has no discriminative power on the exposure group,
and reports same proportion of positive tests for both exposed and unex
posed groups. Therefore, a common assumption is SN + SF> 1.

In our scenario, where both the response Y and the exposure variable V
are binary, the odds-ratio is defined as:

— F(V 1Y 1)/F(V = OIY =1)
— F(V = 1Y = 0)/F(V = 0Y =0)
= ri/(l—ri)

(1.2)
ro/(l — ro)

which is a common measure of association between disease and exposure
status for retrospective case-control studies. However, if exposure variable
v is subject to misclassification error, an intuitive substitute is:

* —
8/(l

— i)

0 0

8



1.5. Basic Terminologies used to Evaluate Misclassification and Measures of Association

Thus, the attenuation factor is defined as:

I1*
AF=r--,

which gives us an idea of the magnitude of bias introduced by misclassifica
tion.

An alternative formulation for expressing degree of misclassification re
quires us to use the Positive Predictive Value (FP) and the Negative Pre
dictive Value (NFV). Positive Predictive Value (FFV) is the proportion
of subjects with a positive test result from the inferior method of expo
sure ase.sment, who actually is exposed, determined by superior method
of exposure assessment. Similarly, Negative Predictive Value (NPV) is the
proportion of subjects with a negative test result from the inferior method
of exposure assessment, who actually is unexposed, as indicated by supe
rior method of exposure assessment. These two quantities can be calculated
from a 2 x 2 table. By implementing Bayes’ Rule as discussed in Equation
(3.1), the relationships of (ri, SN, SF,) with FFT4 and NFV are derived
as follows:

PPV, = P(V=1IV* =1,Y=i)
— P(V* = iV= 1,Y=i)P(V=1IY=i)
— P(V = 1V= 1,Y=i)P(V=1IY =i)+P(V = 1IV=O,Y=i)P(V=OIY=i)

SNr
1 4

SNr + (1 — SP)(1 —

NPV P(V=OIV* =O,Y=i)
— P(V* =OIV=O,Y=i)P(V=OIY=i)
— P(V*=0IV=o,Y=i)P(V=0IY=i)+P(V*=1IV=o,Y=i)P(V=OJY=i)

SP(1—r)
(15

— SP(1—r)+(1--SN)r

However, unlike the implication of nondifferential misclassification with
respect to sensitivity SN and specificity SF, FFV0 does not have to be equal
to PPV1, nor does NPV0 has to be equal to NPV1 under nondifferential
misclassification.

9
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1.6 Existing Literature on Misclassification

Nondifferentiality is a recurring assumption in the epidemiologic literature
due to some of its interesting results. Bross [1954] discussed the difficulties
of inferences on a single proportion or the difference between two propor
tions from a 2 x 2 classification table in the presence of misclassification. He
indicated the distortion of estimation and the power reduction in hypothesis
testing. He justified his statements under the assumption of nondifferential
misclassification. Newell [1962] further substantiated the fact that nondif
ferential misclassification errors will always tend to produce results biased
towards the null (that is, the difference between the two rates will shrink
while applying inferential procedures on the data with nondifferential mis
classification). Also, Gullen et al. [1968] suggested that under broad as
sumptions, classification error never results in the apparent difference being
larger than the real difference in rates. Dosemeci et al. [1990] and Diamond
and Lilienfeld [1962a, b] showed with some numerical examples that excep
tions are possible and that nondifferentiality is not always tenable. Keys and
Kihlberg [1963] tried to identify the reasons of such unusual deviation. To
implement this result, the measurement error has to be independent of all
other errors. A few good reviews of such unusual phenomenon are available
in the literature, such as Thomas [1995] and Jurek et al. [2005].

Roih7nan et al. [2008] discussed misuse of the “bias toward the null”
result, mostly when the assumptions for this result are not met. Even if
the assumptions are met, it is not necessarily true for hypothesis testing: p
values need not have upward bias as reported by Greenland and Gustafson
[2006].

The situation gets even more complicated for more than two categories,
i.e., when exposure is polytomous. [Gladen and Rogan, 1979] provided ex
pressions for bias under nondifferential assumption. Early literature on the
impact of misclassification includes Koch [1969] and Goldberg [1975]. Most
of these describe the effect on association measures obtained from a 2 x 2
exposure-disease classification table. Goldberg [1972] discusses the issue with
regard to hypothesis testing.

Historically, the development of adjustments for mismeasurement were
mostly under the nondifferentiality assumption. Copeland et al. [1977] sug
gested extension of the “bias toward the null” result to ratio effect measures
of association, such as the risk ratio and odds ratio and derived adjust

10



1.6. Existing Literature on Misclassification

ment formulas to correct for misclassification given the nondifferential as
sumption. Barron [1977] suggested a matrix method for such adjustment.
Greenland [1980] further extended the adjustment to difference effect mea
sures and also considered the possibility of misclassification of confounders.
Greenland [1988b] discussed the basic methods for constructing variance
estimators for the various parameters after adjusting for misclassification.
Marshall [1990] proposed inverse matrix methods by reparameterizing the
misclassification problem. Morrissey and Spiegelman [1999] discussed both
the matrix and inverse matrix methods under various circumstances. Lyles
[2002] reparameterized the likelihood of the problem and suggested a rela
tively more convenient solution to the problem which does not require nu
merical optimization. If all the parameters are unknown, nonidentifiability
makes the inference impossible. A reasonable estimate of the misclassifi
cation probabilities is required to carry on the inference. Adjustments for
misclassification using replicated samples are provided by Walter and Irwig
[1988]. Greenland [1988a] provided formulas for adjustment when a valida
tion sample is present. More recent works include Greenland and Gustafson
[2006], Greenland [2008] and Marshall [1997]. Marshall [1989] pointed out
that the estimates of measures of association that adjust for misclassifica
tion are very sensitive to the estimates of misclassification probabilities and
even small discrepancies with actual probabilities can lead to misadjustment.

Recent developments in the rapidly advancing field of computing made it
possible to use the numerical approaches and simulation techniques to solve
these problems in a more elegant way. The problems of mismeasurement
were explored from a Bayesian context in Rahme et al. [2000], Joseph et al.
[1995] and Prescott and Garthwaite [2002]. Gustafson et al. [2001] checked
the point made by Marshall [1989] and suggested a Bayesian solution of
the problem by incorporating some uncertainty about the misclassification
probabilities by means of having a prior distribution of those parameters
instead of a particular guess. Gustafson and Greenland [2006] showed that
implementing such prior may provide narrower interval estimates of measure
of association. Chu [2005] incorporated such uncertainty or randomness by
implementing various prior distributions on the prevalence and misclassi
fication probabilities and assessed the Bayesian adjustment of estimates of
various parameters of misclassified data under various assumptions when val
idation data is available. Estimates obtained from the Bayesian approach
is then compared with estimates from previously developed methods such
as the maximum likelihood estimates [Lyles, 2002] and SIMEX (simulation
extrapolation method).

11



1.7. Motivation and Outline of the Current Work

A general overview of the methods for misclassified categorical data and
some extensions to higher dimensions are provided in Willett [1989] and
Chen [1989]. Overall general discussion of these issues and the ways to
combat such problems are documented in chapters 3 and 5 of Gustafson
[2004].

1.7 Motivation and Outline of the Current Work

Although comparisons between the frequentist method with specific esti
mates of parameters (misclassification probabilities and prevalences) and
the Bayesian method with prior distributions on parameters (to incorporate
uncertainty) provided in the literature, such comparisons have not yet been
made for hypothesis testing. In this thesis, we will assess the impact of mis
classification of dichotomous exposure on hypothesis testing for two settings
- without considering validation data and its counterpart after adjustments
using the estimates from validation data - under the nondifferential misclas
sification assumption. The Bayesian adjustments for hypothesis testing will
be compared with standard frequentist methods.

In Chapter 1, we have discussed the historical developments, basic def
initions and terminologies for misclassification error. The motivations for
correction and some methods of adjusting for such errors are also discussed.
The problem under investigation is specified. In Chapter 2 and 3, we will
explain the models and methodologies of hypothesis testing in the presence
of misclassification error from the frequentist and Bayesian points of view
respectively. In chapter 4 we will show the simulation results under a set
of scenarios and compare the classical and Bayesian methods. We use some
real epidemiological datasets to implement these methods in Chapter 5 and
conclude with general findings and further recommendations for future re
searches in Chapter 6.

12



Chapter 2

Frequentist Adjustment

2.1 Introduction

Maximum likelihood estimation (MLE) is a popular method used for fitting
a statistical model to data. Pioneered by various statisticians including R. A.
Fisher at the beginning of the last century, it has widespread applications in
various fields. If the sample observations are available, this estimation proce
dure searches over various possible population characteristics and eventually
obtains the most likely value as the estimate of that population character
istic. Having drawn a sample of ri values x1, x2, ..., z from a distribution
where 4 is the parameter of interest, we form L(çb) = f(xi, x2,.. . , x,j. The
method of maximum likelihood estimates ‘ by finding the value of that
maximizes L() or, more commonly, the logarithmic transformed version of
it. The solution can be found numerically using various optimization al
gorithms. The popular alternatives to this estimation procedure are least
squares procedure and method of moments. However, those estimates are
not very efficient in various circumstances, whereas maximum likelihood
estimates possess various desirable features such as consistency and asymp
totically efficiency, if solution exists. The maximum likelihood estimation
procedure can also be used on non-random samples, if certain adjustments
are made, such as conditioning on the clusters or correlated groups, etc.

2.2 Likelihood Functions

Previously in §1.2, we discussed the impact of misclassification. The es
timates of (So, 9) obtained from the entire sample will be biased toward
the null, under certain conditions. As described in §1.3, there are various
methods suggested in the literature for adjusting the consequences of mis
classification. We will use the method that uses a validation sub-sample.
By using validation data, we can have an estimate of ro, r1, SN and SF.
Therefore, given the observed data, under nondifferential misclassification,
we can consider (ro, ri) or (So, Si) as the unknown parameters in the statis
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2.2. Likelihood Functions

tical models. As mentioned in §1.5, the true exposure prevalence is defined
as r = P (V = iY = i), whereas, the apparent exposure prevalence is ex
pressed as 8 P(V*

= 1Y = i). From Equation (1.1), we can see that O
can be expressed as a linear function of (ri, SN, SF). For the same dataset -

when r, SN and SF remains fixed, we can use H0 : = i for without val
idation data settings (by ignoring all the true exposure status V, but using
all the apparent exposure status V* obtainable from the entire sample) and
equivalently, H0 : ro = r1 for with validation data settings (by incorporating
the true exposure status V from the validation sub-sample and the apparent
exposure status V* obtainable from the entire sample). Since both of these
hypotheses are applied on the same dataset, the total number of subjects
under consideration are the same in each test. The stated hypotheses are
simply variants of the following hypotheses respectively: H0 : ‘I’ 1 and
H0 : =1.

The notable distinction between these two models is that r can take any
value between (0, 1), whereas é1 can take values between min(SN, 1 — SF)
and max(SN, 1 — SF). We will discuss the likelihoods and the solution
methods in the following subsections.

One important point is worth mentioning: even in absence of validation
data (that is, when true r0, ri , SN and SF are not estimable), due to the
equivalence of hypotheses mentioned above, we can test H0 : = = 0
and we can conclude the same about H0 : ro = r1 = r. However, when
validation data is not present, such equivalence is not true for estimation
purposes, because when SN and SF are unknown, the relationship between

(Oo, 0) and (ro, ri) is not known respectively (see Equation 1.1). Therefore,
when a validation sub-sample is not available, we can not estimate (ro,r1),
but from the entire sample we can estimate (Oo, O).

14



2.2. Likelihood Functions

2.2.1 Without Validation Data

A standard way to express the likelihood in terms of the parameters (6o, 6)
for problems consisting of misclassified data without validation part is:

L(60,9iIV, Y)

cc = 1Y = o)(flol+flo3+flo5)x P(V = OY = O)(flO2+flO4+flOG) x
P(V* = iY = i)(flhl+fl13+fl15) x P(V* OY = i)(fl12+fl14+fl16)

= 6nol+no3+no5)
< {i. — 0 }(flO2+flO4+flO) x

6(nn+n13+n15) x {i —6}(fl12+fl14+fl16) (2.1)

The maximum likelihood estimates of 6, 61 respectively are given by:

floi+fl03+fl05
=

fl01 + flhJ2 + no3 + no4 + no5 + no6
flu + ri3 + 9215

il + fl12 + fll3 + fl14 + fll5 + Th16

Under the null hypothesis H0 : 6 = 6 0, the maximum likelihood
estimate is given by -

— flOi+fl03+flQ5+flhl +nl3+fll5
— Oi +flo2 +fl03 +fl04 +flo5 +9206 +flui +fli2 +fll3 +fl14 + l5 + l6

2.2.2 With Validation Data

A standard way to express the likelihood in terms of the parameters (ro, r1,
SN, SP) for problems consisting of misclassified data with validation part
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2.2. Likelihood Functions

is provided in Equation (2.2) under nondifferential misclassification:

L(ro, r, SN, SPV*, V Y)

{P(v = 1Y = O)P(V* 0V 1,Y = 0)}01

{P(v 1IY = O)P(V* = 1V 1,Y = 0)}02

{P(v = OY = O)P(V* 1V = 0, Y =

{P(v 0Y 0)P(V* OV = 0, Y = 0)}T04

{P(v = 1Y = 1)P(V* 0V = 1,Y = 1)}nul

{P(v 1Y 1)P(V* = 1V ,Y i)}712

{P(v 0Y 1)P(V* 1V = 0, Y =

{P(v = 0Y = 1)P(V* = 0,Y =

{P(v* = 1IY = 0)}0{1 — (P(v* iY =

{P(v* = 1Y 1)}’{1 — (P(v* = 1IY = l))}16

= {roSN}’°’{ro(1 — SN)}’°{(1 — ro)(1 — SP)}’°3 x

{(i — ro)SP}°{riSN}Th11{ri(l — SN)}Th12 x

{(i — ri)(1 — SP)}”3{(i — ri)SP}’ x

{r0SN + (1
— ro)(1 — SP)}’205 x

{i — (r0SN + (1 —r0)(1 — SP))}?06 x

{r1SN + (1 — ri)(1 — SP)}’15 x

{i— (riSN+(1—ri)(1—SP))}’’6. (2.2)

This likelihood does not lead to a closed form for the maximum likelihood
estimates of ro, r1, SN and SF. In quasi-Newton methods, the Hessian ma
trix of second derivatives of the function to be optimized is not required.
That is why, a general-purpose optimization based on quasi-Newton methods
or a variable metric algorithm is used to optimize Equation (2.2), specifically
the algorithm that was published simultaneously in 1970 by Broyden [1970],
Fletcher [1970], Goldfarb [1970] and Shanno [1970] (that is the origin of
the name Broyden - Fletcher - Goldfarb - Shanno or BFGS method). This
algorithm uses function values and gradients to build up a picture of the
surface to be optimized.

However, for differential misclassification, we do have closed form ex
pression for the maximum likelihood estimates of ro, ri, SN and SF.
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2.3. Variance Estimates

2.3 Variance Estimates

The numerical approximation to the Hessian matrix can be obtained from
the BFGS algorithm (implemented in opt im function of R). The negative of
the Hessian matrix is the observed Fisher information matrix. The inverse
of the observed Fisher information matrix yields the asymptotic covariance
matrix of the maximum likelihood estimates. By the use of multivariate
delta method, one can easily obtain the asymptotic variance of the log odds
ratio, given the estimated prevalence rates.

2.4 Likelihood-ratio Tests

A likelihood-ratio test is a statistical test for making a decision between two
hypotheses based on the value of the ratio of the likelihood under two differ
ent hypotheses. The null hypothesis is often stated by saying the parameter

is in a specified subset ‘I of the parameter space . The likelihood func
tion is L() = L(çbx) is a function of the parameter with x held fixed at
the value that was actually observed, i.e., the data. The likelihood ratio is

A
— sup L(q5Ix) :
— supLx):E

The numerator corresponds to the maximum likelihood of the observed re
sult under the null hypothesis H0. The denominator corresponds to the
maximum likelihood of the observed result under the alternative hypothesis
H1. Lower values of the likelihood ratio mean that the observed result was
less likely to occur under the null hypothesis. Higher values mean that the
observed result was more likely to occur under the null hypothesis. The
likelihood ratio A is between 0 and 1. The likelihood ratio test rejects the
null hypothesis if A is less than a critical value which is chosen to obtain
a specified significance level c. Usually it is difficult to determine the ex
act distribution of the likelihood ratio for a specific problem. However, as
the sample size n approaches , the test statistic —2 log(A) will be asymp
totically x2 distributed with degrees of freedom equal to the difference in
dimensionality of o and I. In the current context, for without valida
tion data, I = 6 and I = (6o, 6k). Similarly, for with validation data,

(r, SN, SP) and 1 = (ro, r1, SN, SF). Eventually from these tests, we
obtain p-values.

A convenient measure of the performance of any hypothesis test is to find
the probability of not making type II errors (1

—

3), or in other words, not
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2.4. Likelihood-ratio Tests

making the error of “not rejecting null hypothesis when it is false” - power
of the test. Powers can be thought as the ability of the hypothesis test to
detect a false null hypothesis. In Chapter 4, we will use the power curve
as a tool to compare the tests based on with and without validation data.
Also we will try to identify whether frequentist methods perform better than
Bayesian methods or not. We will discuss relevant Bayesian methodology
in Chapter 3.
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Chapter 3

Bayesian Adjustment

3.1 Introduction

3.1.1 Bayes’ Theorem

Bayes’ Theorem is a simple mathematical formula used for calculating con
ditional probabilities of random events. For the random variable X, that is
distributed as L@5x), where is the parameter of interest, let fx(x) is the
marginal distribution and hence a function of the observed X alone, while
g() is the distribution of before observing X. Then Bayes’ Theorem says
that the form of posterior distribution is:

ir@Ix)
= f(x,)

fx(x)
— g()L(Ix)

fx(x)
c g()LQx). (3.1)

Although Equation (3.1) seems simple, it is a fundamental theorem which
has deep impact in statistical theory. It is often the case that the posterior
‘w(ØJx) is non-standard or high dimensional, involving a lot of parameters.
Then it is difficult to evaluate summaries such as the mean, variance, mo
ments, etc. which require integration. Although analytically this is a dif
ficult problem, algorithms discussed in the following sections help us find
solutions numerically. It should be noted that simpler methods such as
Laplace approximation can also be used to evaluate such summary quanti
ties, but they require restrictive assumptions such as normal approximation
to the posterior distribution and so on. Therefore, we consider algorithms
that can be applied in broader contexts.

3.2 MCMC Algorithms

From §2.4, frequentist likelihood ratio test results are based on the asymp
totic assumption, that is, a x2 approximation for the sampling distribution
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3.2. MCMC Algorithms

of the test statistic —2 log(A), since the exact distribution of the statistic is
hard to determine and varies from problem to problem. Monte Carlo meth
ods can be an alternative to this approach. These methods can even be
applied in the cases where the distributions are not in conventional format
or unknown.

To explain the idea of Monte Carlo, suppose that is a collection of
model parameters or unknowns, and h() is a function of . We want to
evaluate the expected value of the given function h() over a pdf ir(). In
other words, we want to evaluate E(h()) fh(b)Tr(q)db. If ir has a
very complex form, we proceed with the Monte Carlo integration technique.
Here, we draw samples (2), (n) independently from Tr(). Then
we estimate h()), which can be made as accurate as
desired by increasing sample size. Therefore, the fundamental idea behind
Monte Carlo methods is that, by repeatedly drawing random samples from
the target population ir(), we can gain insight regarding the behavior of a
statistic. When we observe the behavior for a very long time, we obtain an
estimate of the sampling distribution of the statistic. But this added advan
tage is not without a price - time and computer resources are big issues for
these algorithms. However, recent advances in computing technologies have
led to enormous popularity of Monte Carlo simulation as a powerful alter
native to formula-based analytic approaches, especially where the solution
requires a lot of assumptions.

In the Bayesian context, this Tr() is the posterior density Tr(Ix), which
may have a nonstandard, complicated form. Here x denotes the observed
information, and is high dimensional. Sampling independently from the
posterior density ir(Ix) is generally not feasible, and closed form solutions
are not usually possible. Therefore, we generate a chain or dependent sam
ples (1), (2), (‘) from the posterior using a Markov Chain scheme.
This Markov chain generates each iteration ) taking into account of the
previous value (i_1) only. We want to create a Markov Chain whose station
ary or limiting or equilibrium distribution is the desired posterior Tr(q5 x).
Here the posterior distribution ir(g5Ix) is the target distribution. To obtain
the stationary distribution of the Markov Chain, we need to run the burn-in
for a long time. Here, burn-in refers to the series of initial samples that are
not expected to have yet converged to the target distribution and are hence
excluded from any subsequent analysis. In brief, the basic idea of Markov
Chain Monte Carlo is to iteratively produce parameter values that are rep
resentative samples from the joint posterior. For large number of iterations,
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3.2. MCMC Algorithms

this scheme will provide samples ) from its stationary distribution, that
is, when the successive samples becomes uncorrelated. This way, it is sur
prisingly easy to approximate the posterior distribution ir(Ix). However,
one added disadvantage to this entire procedure is that we have to monitor
convergence. We will discuss this further in §3.3.

The Markov Chain Monte Carlo algorithms that are used in the Bayesian
version of the test under consideration are described in §3.2.3. But for
detailed understanding of the procedure, we start with a general description
of the Metropolis-Hastings algorithm and Gibbs algorithm. However, for
basic terminologies and definitions used in these Markov Chain Monte Carlo
algorithms, we refer the readers to Gelman [2004].

3.2.1 Metropolis-Hastings Algorithm

Suppose we need to estimate a parameter vector with k-elements, E 4
and the posterior, 1r(c). When the chain reaches the position at the ttI

step, we draw ‘ from a distribution over the same support and we name
it the proposal or jumping distribution, Pt(4I), according to which a new
value ‘ (candidate point) is proposed given the new current value ]. One
thing to keep in mind is that P(’I) should be easy to sample from. We
are producing a multidimensional candidate value. The condition here is
that the reverse function value, Pt(I’) should also exist. In the literature,
the acceptance ratio is defined as follows:

/ ir(’)Pt(’)
32(.)

The Metropolis-Hastings algorithm does not necessarily move on every it
eration. The probabilistic rule that decides whether the candidate point is
accepted or not, i.e., transition from t to (t + l)th point, is:

— f ‘ with probability min{a(, [t1), l}
— [tj with probability 1 — min{c(’, [t1), 1}

We only need to know the posterior distribution ir() up to a constant of
proportionality. This is considered as the most attractive feature of the
Metropolis-Hastings sampler.

A single Metropolis-Hastings iteration proceeds with the following steps:

1. Initialize the chain with any arbitrary value.
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3.2. MCMC Algorithms

2. Generate a candidate point // from (‘I), where is the current
location.

3. Sample u from uniform (0, 1) distribution.

4. If cYç/) > u then accept ‘.

5. Otherwise keep 4 as the new location and repeat until convergence.

From the obtained chain, we truncate burn-in samples, and the rest of the
chain is used to estimate the posterior distribution.

3.2.2 Gibbs Algorithm

The Gibbs sampler is a special case of Metropolis-Hastings where we always
accept a candidate value. The idea of Gibbs sampling is that, given a multi-
variate distribution, sample from a conditional distribution. This sampling
is generally simpler than integrating over a joint distribution. Hence, the
Gibbs sampler is simply a Markovian updating scheme, based on a sequence
of conditional probabilistic statements.

We will give a brief outline of Gibbs algorithm in its simplest form.
Let the joint distribution of interest be ir(), where is a vector of of k
parameters. The aim is to create a Markov chain that cycles through some
conditional statements. A requirement for use of this sampler is that we
must know the full conditional distributions. This is a major limitation of
this algorithm, especially for the cases where the conditional distributions
are hard to derive. The full set of required conditional distributions for
are denoted by and defined by 7r() = ir(iI&, 2, . . . j4, j+1,. . . k) for
i = 1, .. . , k. It should be possible to draw samples from these conditional
distributions. At each iteration of the Gibbs sampling, the algorithm cycles
througn these conditionals based on the most recent version of all other
parameters. The order is not important, but it is important that the most
recent draws from the other samples be used. The algorithm is as follows:

1. Decide on the starting values: =
[01, .. ,

2. At the ttI iteration, a single cycle is completed by drawing values from
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the following k distributions:

_ijtl ,4jti A.It1 _t—•1 ,4j11
‘P1 ‘P2 ‘ ‘P3 , ‘P4 ‘ ‘ ‘Pki ‘ ‘Pk

[tj
[t] jt—i] [t—1] [t—i1 [t—i]

2 Y2 , ‘P3 , , ‘ ‘Pk

[tj jt] [t] [t—i] jt—i] [t—1]
P3 ‘P1 ‘ ‘P2 ‘ ‘P4 ‘ •‘ Pk—1 ‘ ‘Pk

[tj ,[t] ,[t] ,[tj [tJ ,[t—i)
“k—i pk—1 ‘P1 , ‘P2 ‘ ‘P3 ‘ “‘ ‘Pk—2, ‘Pk

[tJ
,[t] ,4[tl ,[tj ,[t] ,,[tj

k ‘Pk ‘P1 ‘ ‘P2 ‘P3 , ‘ ‘Pk2, ‘Pk1

Here çb can be a multidimensional vector.

3. Set t = (t + 1) and repeat until convergence.

If the Gibbs sampler has run for sufficiently long time, it produces samples
from the desired stationary distribution. The attractive feature of the Gibbs
sampling algorithm is that these conditional distributions contain enough in
formation to eventually produce samples from the desired joint distribution.

3.2.3 Mixed Algorithm

With Validation Data

Likelihood Function: First, we define the parameter space:

(ro,ri,SN,SP),

where r0 is the exposure prevalence for controls and r1 is the same for
cases, SN is the sensitivity and SF is the specificity under nondifferential
classification.

The cell counts u of the main data as shown by Table 1.1 are gener
ated from a binomial distribution. To be more specific, the actual number
of subjects that are in positive exposure status (u1) amongst those who
are exposed in the groups of cases or controls (n5) follows a binomial with
parameters n5 and PPI4 (as defined in Equation (1.4)). Likewise, condi
tioning on the number of cases or controls with negative exposure status
(ri6), the number of truly unexposed subjects (u4) follows a binomial with
parameters j6 and NPV (as defined in Equation (1.5)).

The likelihood function for this setting is given in Equation (3.3). Here,
the data Y is updated as Y = {Y, Y} = {(m1,n,2, fl3, n4), (u1,u2,u3,
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3.2. MCMC Algorithms

U4)

f(Y,,YI2) L(ro,ri,SN,SPIYn,Yu)

ñ [pv = iv = i,Y = i)P(V =

{P(v* OV 1,Y = i)P(V 1Y
{P(v* = 1V = O,Y = i)P(V = OY =

{P(v* OV = O,Y i)P(V = OY

{P(v* iV = 1,Y = i)P(V = 1Y
— j)}Uil

{F(v* OV = 1,Y = i)P(V 1Y

{P(v* 1V = O,Y = i)P(V = OJY = j)}U3

{P(v* OV = O,Y = i)P(V OY
= i)}Ui4]

[{SNjr}n x {(i - SN)r}’2 x {(1 - SP)(1 —

{SP(1 — x {SNrI}” x {(i — SNj)rj}U2

{(i — SP1)(1 — r)}us3 x {SP(1 — rj)}U4]

[{sNjri}
+Ul x {(i — SNj)rj}Th2+2

{(i — SP)(1 — x {SP(1 — ri)}44]

=

x (1 — x SN’”

X (1 — SN)2+2 x (1_ X SP4+4].

Under nondifferential misclassification, SN0 = SN1 — SN and SF0 =

SP1 = SF (according to the definition that we used). Therefore, in Equation
(3.3), we could have used SN and SF, instead of SN and SP. But we
preferred to keep the general format to present the likelihood function for
the broader context.

Prior Specification: We are interested in (ro, ri, SN, SF), as de
fined in section 3.2.3. Each of these parameters can possibly range from 0
to 1. To cover the whole real line from —oo to , we make a logit transfor
mation of each of these parameters. To keep the problem manageable, we

24



3.2. MCMC Algorithms

assume the following:

/ “ II
__\

// \ / 2
( H = ( LO9r \ N I ( /L0

‘ I °o P°oi
“ H ) — \ logy ) ) ‘k puoui

F (log1
N)

N(2,u),

I
(iog1Sp)

(34)

where H, H, F, I are just the logit transformed versions of ro, r1, SN, SF
respectively. Here (ll, Hi)’ is assumed to follow a bivariate normal distri
bution with hyperparameters o, and cr0, u1, p. Similarly, F and I follow
independent normals with hyperparameters ,u2,2 and j, u3.

Also conditional distribution of a bivariate normal variable remains nor
mal, therefore, given F, I, we have

Holili N({[Lo+p(Hi _1L1)},U(l_p2))

flub N({,u + p-(Ho — io)}, (1 — p2))

It should be noted that these assumptions of independence among the
parameters and normal distribution structures of them are purely based on
mathematical convenience. Researchers can think of other possible distribu
tions if they find them suitable for the purpose. Also if one thinks that the
assumption of independence of the parameters is inappropriate, it is possible
to impose correlation among the parameters by means of some multivariate
distribution with defined correlation structure.

We assume that the analyst’s prior beliefs about the logit transformed
parameters can be represented by the hyperparameters mentioned in Equa
tion (3.4). These beliefs may be gained from relevant examples from the
given subject area. Under fairly general conditions, we have empirical rea
son to believe that both ro and ru usually lie between Tmjn = 0.02 and
Tmax 0.50; we will assume a median being 0.125. Then i = ILi =

0.125. Within 2 standard deviation, on logit scale, we have orj = i =

{logit(u) — logit(rmjn)}/3 under normality with 95% probability. Also as
sume a mild value for p, say, 0.3 to allow relatively large standard deviation
of log OR around the mean of 0. For SN and SF, we usually see them lying
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between 0.60 and 0,99; we will assume median of 0.80. Using the same logic
as before, we determine the hyperparameters. It should be emphasized that
the user can choose any hyperparameters of interest. The above is just an
example of how we can construct the prior from the mentioned empirical
beliefs. Often the posterior is robust to the assumed prior. We will discuss
this point further in Chapter 5.

Posterior: Since Equation (3.3) is a complex one, simulating 1 directly
from the joint posterior distribution is troublesome. Therefore, we will sam
ple sequentially from the conditional distributions as follows:

(ro, riI, SN, SF) cc fr(ro, ri) fi [r1+ 2+Uul+Ui2 (1 — rj)nh3+4+3+ui4],

(SNI,ro,ri,SP) cc fsN(SN)fl[SN’1 x(1_SN)22],

(SP, SN, r0, ri) cc fsp(SP) fl [5pi4+ui4 x (1 — SP)Thi3+Ui3] (35)

using the prior distribution fT, fsN and fs as already described.

Since the densities are not conditionally conjugate, we implement uni
variate Metropolis-Hastings jumps embedded in the Gibbs sampling. This
algorithm will update each component in the pairs of parameters, (ro, r1),
and the same for SN and SP. For satisfactory performance of the MCMC,
we need o make suitable choice of jumping distribution. If we examine the
likelihood function in Equation (3.3), and think of r, SN and SF sepa
rately, it looks similar to a beta density. Hence we assume a beta jumping
distribution. This simplifies calculation of the acceptance rate by cross can
celing the ratio of proposed versus current likelihoods and the ratio between
two jumping densities. For example, consider the acceptance probability for
the one-dimensional M-H jump on ro in Equation (3.5). The jumping rule is
specified as r’0 ‘-‘s Beta(noi +fl02 +U1+u2+ 1, rio3 +n04 +u3+u4+ 1), close
to the conditional sampling distribution, where t is the index for iteration
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number. The ratio in Equation (3.2) becomes

ir(r,lri ,SNt,SPt,Yt)

— 7r(rIr,SNt,SPt,Yt)

— Pt(rbr,r,SNt,SPt)

Pt(rIrb,r,SNt,SPt)

r(r’o Ir ,SNt ,SPt)L(rb,r ,SNt,SPt)

— 7r(r Ir ,SNt ,SPt)L(r,r ,SNt ,SPt)

— L(ro,r ,SNt ,SPt)
L(r ,r ,SNt ,SPt)

— 7r(r’oIr, SNt, SPt)

— rIr, SNt, SPt)

— ir(rbr)
— ir(rr

Therefore, we are left with merely the ratio between two prior distributions.
Thus, using this mixed algorithm, we proceed as follows:

1. Set starting values of (r, r?, SN°, SP°).

2. At the tt/ iteration,

• Given parameters Qt
= (ri, r, SNt, SPt), generate new data as

unobserved actual exposure data = {u} based on binomial
distributions, for i = 0,1, j = 1,2,3,4.

• Based on the updated cell counts {u} at the tt iteration, model
parameters are generated as follows:

(1) Simulate r conditioning on (r,SNt_l,SPt_) using the
M-H algorithm, the proposed jumping rule is rj Beta(noi+

nO2tui,no3+no4+u3),with acceptance rate mm { }.
(ii) Similate r conditioning on (r,, SNt_l, Spt_1) using the M

H algorithm. The proposed jumping rule is r’1 “.‘ Beta(nii +
fl12 +U1+U2+ 1, nla + ri14 +u3+u4+ 1), with acceptance

I ir(r’ir)rate mini
Iir(r1 Iro,1)

(iii) Simulate SNt conditioning on (ri, r, SPt_1) using the M-H
algorithm. The proposed jumping rule is SN ‘- Beta(noi +
U11 +7111 +1-41 + 1, no2+u2+n12+u2+ 1), with acceptance

I ir(SVSN’’)rate mlnr(SNt_1ISNt_1)

(iv) Simulate 5pt conditioning on (r,, r, SNt) using the M-H
algorithm. The proposed jumping rule is SF Beta(no4+
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3.2. MCMC Algorithms

Uj4 + fl14 + U4 + 1, o3 +u3 + flj3 +u3 + 1), with acceptance
I r(S7VSP’)rate mlncr(SPt_1ISPt_1)

. Calculate the log odds ratio at the tt iteration.

3. Repeat the step (2) at subsequent iterations, for t = 1,. . . , m + n, to
simulate target parameters using the hybrid algorithm.

The procedure is run for sufficiently long m + n iterations, where m is the
number of burn-in iterations and n is the number of target iterations.

Without Validation Data

Likelihood Function: At first, we define the parameter space:

(8o,9i),

where 8o is the apparent exposure prevalence for controls and 9i is the same
for cases.

As for validation data case, let us assume that the cell counts from the
main data as shown by Table 1.1 are generated from a binomial distribution.

The likelihood function from this setting becomes

L( = {o91}Y, Y) H1+fl3+flh5(1 — .)fl2+fl4+fl6

= 8fl01+fl03+fl05 (1 —00)fl02+fl04+fl06 x

91111+fl13+fl15(l —80)fl12+fl14+fl16

Prior Specification: We are interested in (8o, Ox). Each of these
parameters ranges from 0 to 1. To cover the whole real like from —oo to oo,
we make a logit transformation of each of these parameters. To keep the
problem manageable, we assume the following:

(0 - (1og
N ° I

e1) logy-)’ 1)’0o1 o? ))‘

where e0, e1 are just the logit transformed versions of 6, 6i respectively.
Here (Os, 1) is assumed to follow bivariate normal distribution with h.y
perparameters Jo, iti and o, 8i, . For the hyperparameters, the logic is the
same as for the prior of (fl,Hi) in §3.2.3. The conditional distributions of
a bivariate normal can be similarly derived.
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Posterior: Similar to the case of data with a validation sub-sample, we
proceed as follows for the mixed algorithm:

1. Set starting values of (08, 9).

2. At the tt iteration,

a Given parameters = (0, 0), update the unobserved actual
exposure data.

• Based on the updated cell counts {uj} at the tth iteration, model
parameters are generated as follows:

(i) Simulate 0 conditioning on 0’ using the M-H algorithm.
The proposed jumping rule is 9 Beta(noi + no3 + 7105 +

1, no2+no4+no6+1), with acceptance rate mm { (Ot_1t_1)}
(ii) Simulate 14 conditioning on 0. The proposed jumping rule

is 0 Beta(nn + fl13 + n15 + 1, n12 + nl4 + fl16 + 1), with
I r(O’iI)acceptance rate mini

1 0’

• Calculate the log odds ratio at the tth iteration.

3. Repeat step (2) at subsequent iterations, for t = 1,.. .,m + n, to
simulate target parameters alternately using the hybrid algorithm.

3.3 MCMC Diagnostics

Formal convergence diagnostic techniques are addressed here, to identify
various frequently occurring issues regarding mixing and coverage of the
MCMC algorithms discussed in §3.2. There are several common issues as
discussed by Gill [2008]:

• There is no formal way to ensure that the chain at currently in the
target distribution for a given Markov chain at a given time.

• It is not possible to ensure that a Markov chain will explore all areas
of the target distribution in finite time.

• Slow convergence. Although theoretically this is not a problem, it is a
practical issue.

Fundamentally these concerns can be summarized as setting up the param
eters of the process appropriately, ensuring satisfactory mixing throughout
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3.3. MCMC Diagnostics

the whole sample space, and obtaining convergence at some point. There are
some design issues that must be taken into consideration before constructing
and running the chain. Some of these considerations are taking decisions
like determining where to start the chain, judging how long to burn-in the
chain before recording values for inference, and determining whether to thin
the chain values by discarding portions of the output.

1. Initialization: When little is known about the process, some researchers
randomly distribute initial values through the state space. Usually it
is best to try several different starting points in the state space and
observe whether they lead to noticeably different descriptions of the
posteriors. This is an obvious sign of non-convergence of the Markov
chain. Unfortunately the reverse is not true: it is not the case that if
one starts several Markov chains in different places in the state space
and they congregate for a time in the same region that this is the re
gion that characterizes the stationary distribution. It is possible that
all of the chains are influenced by the same local maxima.

2. Burn-In: The beginning set of runs are discarded as they are not
expected to be representative of the target distribution. Unfortunately,
there is no formal way to calculate the appropriate length of the burn-
in period. Assessing diagnostic plots or other convergence statistics
described in the literature are the usual ways to determine the burn-in
period.

3. Mixing: A chain that has not fully explored the stationary distribution
will tend to give biased results since it is based on only a subset of
the state space. Often slow mixing through the target distribution can
be attributed to high correlation between model parameters - hence
checking autocorrelation is a good idea. This is particularly the case
with the Gibbs sampling algorithm. High intra-parameter correlation
is also an issue with the Metropolis-Hastings algorithm since it will
also induce slow mixing, due to observing too many rejected candidate
values.

4. Chain thinning: In the very long simulations, storage of the observed
values on the computer becomes a huge problem. Not only the stor
age, but also the process of storing the high dimensional parameter
realizations will slow down the computation. The idea of thinning the
chain is to run the chain in an usual fashion, but record only every c-th
value of the chain, thus reducing the storage demands while still pre
serving the general trend of the Markov process. Here c is some small
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integer. It is worth mentioning that this approach does not improve
the quality of the estimate, speed up the chain or help in convergence -

rather it is the other way around - the variance estimate will be some
what distorted due to use of less observations. Still, it is a tool for
dealing with possibly limited computer resources. Given the tradeoffs
between storage and accuracy as well diagnostic ability, the value of c
should be carefully chosen in any given problem.

Keeping all the above aspects in mind, we still need to find the number
of iterations that would be sufficient for approximating the convergence to
the target distribution or the length of burn-in sample. Various methods are
proposed in the literature for monitoring the convergence of Markov Chain
Monte Carlo chains; see Cowles and Garlin [1996], Brooks et al. [1997],
Geyer [1992], Raftery and Lewis [1992], Hastings [1970], Robert [1995] and
Rizzo [2007] for more detailed discussion. We will discuss the graphical
diagnosis and the approach suggested by Gelman and Rubin [1992] and gel;
Gelman [2004].

3.3.1 Conventional Graphical Diagnosis

Graphically, trace plots are the most popular way to assess convergence. If
the iterations are run for fairly long time, the trend will move from initial
values to the desired density. Other plots that are popularly used include
the mean graph - which plots the mean scores of the previous values versus
the iteration number. If the chain is stable, a flat line will be produced.
This does not evidently prove convergence, but if the chain is not producing
a fiat line, this indicates that the chain has not yet converged. Also, density
plots of the estimates after burn-in can be drawn.

3.3.2 Gelman-Rubin Method for Monitoring Convergence

gel suggested that the lack of convergence can be appropriately detected
by comparing multiple sequences (at least two) with initial points being
widely dispersed in the target distribution. The Gelman-Rubin statistic R
(shrink factor) of monitoring convergence of a Markov chain is based on
comparing the behavior of a group of chains with respect to the variance
of a given scalar summary statistic. The estimates of the variance of the
statistic are analogous to estimates based on between-sample and within
sample mean squared errors in a one-way analysis of variance. It uses the
between sequence variation of the summary statistic as an upper bound
and the within-sequence variance as a lower bound. The idea behind this
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3.3. MCMC Diagnostics

method is that, if the chain converges to the target distribution, both the
variances will also converge. It is recommended that the sequence be run
until R for all the summaries are less than 1.2 at most. If it is less than 1.1,
the convergence is even better.
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Chapter 4

Simulation Results

4.1 Data Generation

To generate data for our setting as described in Table 1.1 and Table 1.2, the
steps are:

1. We independently generate the true exposure status (V = 0 and 1)
at Y i for i = 0, 1. The generating distribution is Bernoulli with
parameter r.

2. We generate surrogate measurements V* IV from Bernoulli based on
the fact that

P(V*=1IV=0) = 1-SN

F(V*=1IV=1) = SF,

where r1 is the exposure prevalence, SN is the seusitivity and SF is the
specificity under nondifferential classification. Now we cross-tabulate to get
the validation table. The main data generation is exactly the same - but in
this case we omit the true exposure status (V) from the classification - it is
only about apparent measurements.

4.2 Scenario Settings Under Frequentist
Adjustment

While dealing with frequentist adjustments, we utilize all the n’s (observed
values) but not the u’s (unobserved values) as mentioned in Tables 1.1 and
1.2. Tn the model without validation data or the two parameter model (these
two names of this model will be used interchangeably throughout the entire
work) discussed in §2.2.1, we simply use the column totals from the tables.
But in the model with validation data (or four parameter model) discussed
in §2.2.2, we also use the n’s that are inside the validation table. Hence,
when we make comparison, for example - say, for sample size 2000 where
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4.2. Scenario Settings Under Frequentist Adjustment

200 are in the validation and 1800 are in the main (unvalidated) part, then
for without validation data we use the 2000 subjects aggregately as if there
were no validation part (marginal total for the surrogate variable are known
for both parts and the without validation model uses just these marginal
totals). But with the validation model, we can recognize 200 subjects as
comprising the validation part and the rest as the main part.

To understand the performance of frequentist adjustment for nondiffer
ential misclassification in the simplest possible way, several scenarios are
considered, as shown in Table 4.1, varying the level of exposure prevalence,
or sensitivity and specificity, or sample size, or sample proportion of the
validation and main parts of the data. Notice that, the whole process is
very complex. Here, the factors are merely assessed in an uni-dimensional
way in all these cases, that is, all other factors are held constant when we
switch from one scenario setting to another, so we will not be able to assess
the possibility of interactions among the factors. That would require more
combinations of scenarios and a huge amount of data would have to be gen
erated. However, there would be some limitations to that approach as well
- such as computing time and storage and, above all, comprehending and
interpreting all those data would be challenging. As our objective of assess
ing impacts on hypothesis testing is a relatively new one in epidemiologic
research, this simplified approach should provide some rough ideas about
the effects which will suffice as a first step in the process.

We use power curves as the tool of comparison for this frequentist ap
proach. Therefore, the null hypothesized value (difference between the ex
posure prevalences is zero) is the mid-value on the horizontal axis. On the
right and left side of it, four other equidistant difference points are selected
in each direction based on the difference of the exposure prevalences from
case and control groups, according to alternative hypothesis. In this work,
the considered absolute difference between exposure prevalences from case
and control groups were 0.05, 0.10, 0.15, 0.20 (fixing r0 and changing r1 to
achieve the desired difference). Therefore, we have nine points in total in
one power curve. The process of getting the estimated power is as follows
for any one point: 10,000 datasets are generated according to the hypothe
sized difference in exposure prevalence from two groups. We implement the
hypothesis test on each dataset and evaluate the p-value. The estimated
power is given by the proportion of the datasets that provide a p-value less
than the chosen level of significance 0.05. In theory, with a large number
of datasets, the lowest point of the power should be the chosen level of sig
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nificance at the null hypothesized point. This is under the assumption that
asymptotic cut offs are accurate.

Power curves from the hypotheses of H0 : = 6i = 6 (from without
validation data) and H0 : r0 = r1 = r (from with validation data) are shown
together in each graph because of their equivalence as described in §2.2. On
a technical note, to allow reproducibility of the results, the seed is chosen
arbitrarily and kept the same throughout the entire analysis.

Table 4.1: Scenarios under consideration

Factor changed SN, SF Sample Size
Scenarios A B C D B F C B

Validated data 200 200 200 200 200 200 200 200
Unvalidated data 1800 1800 1800 1800 200 400 800 1800

To = Ti 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40
SN = SF 0.60 0.70 0.80 0.90 0.70 0.70 0.70 0.70

Factor changed Exposure Prevalence Proportion of data
Scenarios I J K B B N 0 P

Validated data 200 200 200 200 200 500 1000 1500
Unvalidated data 1800 1800 1800 1800 1800 1500 1000 500

r0 = 0.25 0.30 0.35 0.40 0.40 0.40 0.40 0.40
SN SF 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

4.2.1 Under Different Values of Sensitivity and Specificity

We generated 10,000 datasets with exposure prevalence 0.4 for both case
and control groups, where, in each dataset, 200 were in the validation part
(50% in the case group, and the rest in the control group) of the data as
was described in Table 1.2, and 1800 were in the main dataset (again 50%
in the case group and the rest are in the control group) as was described
in Table 1.1. Four different sets of sensitivity and specificity values were
considered: 0.60, 0.70, 0.80 and 0.90. We implemented the likelihood ratio
test (discussed in §2.2) for the two parameter (6o, 6) model for data with
out validation part and the four parameter (ro, Ti, SN, SF) model for data
with validation part. The estimated power curves out of these tests for all
the cases under consideration are shown in Figure 4.1. From the figure, it
is evident that the power of the two parameter model is always dominated
by that of the four parameter model. The situation is much exacerbated
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when the values of sensitivity and specificity are low. However, when the
misclassification is at least 0.8, the powers of both tests are almost the same.

According to the theory, for the exact tests, the power at the null point
(where the difference between the exposures of case and control groups are

zero) should be equal to the level of significance, which is 0.05. Due to
simulation error, this might deviate a bit. From the Figure 4.1, we can
also see that the lowest point of powers do match at 0.05 in each setting.
Therefore, the number of simulations considered here are adequate to show
the power curves nicely.

4.2.2 Under Different Sample Sizes

Like the previous scenario, we generated 10,000 datasets. The exposure
prevalence for both case and control groups was 0.4. Sensitivity and speci
ficity of both groups was 0.7. The sample sizes varied in this scenario as
follows: 400, 600, 1000 and 2000, where in each situations, we had 200 as
the validation part of the data and rest were the main part of the data
(again half are allocated in case group, and rest are in control group in each
setting). Still the four parameter model is superior considering the power of
the likelihood ratio tests, as shown in Figure 4.2. Naturally, as the sample
size increases, the power of both the tests increases.

4.2.3 Under Different Exposure Prevalence Rates

In this scenario, we considered 10,000 datasets. Again sensitivity and speci
ficity were set to be 0.7. In each dataset, we had 200 as the validation part
of the data and 1800 as the main part of the data (50% in case group, and
rest are in control group). The hypothesis regarding the exposure prevalence
was always H0 : ro = = r or equivalently H0 : = 0, where r-j = — ri.

Alternative hypothesis in this case would be that the difference of r0 and r1
is not zero. To draw a complete power curve, we assume that the possible
differences in horizontal axis are 0.05, 0.10, 0.15, 0.20 in both directions, so
that we get nine points in total to draw a power curve. There were four
values of r under consideration: r = 0.25, r = 0.30, r = 0.35 and r = 0.40.
From Figure 4.3, in all the cases, the power of the two parameter model is
less than the four parameter models, and the power does not seem to vary
much under different exposure prevalence values r. In practical situations,
sometimes we see much less prevalence. Hence, we construct power curves
for lower prevalence rates such as r = 0.005, r = 0.01, r = 0.05 and r 0.10,

36



42. Scenario Settings Under Frequentist Adjustment

Figure 4.1: Power curves under different sensitivity and specificity values: 0.6,
0.7, 0.8 and 0.9 respectively
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Figure 4.2: Power curves under different sample sizes: 400, 600, 1000 and 2000
respectively (validation sub-sample size is fixed at 200 in each situation)

Parameter Difference

Parameter Difference Parameter Difference

38



4.2. Scenario Settings Under Frequentist Adjustment

which are shown in Figure 4.4. In all the case, we find the previous conclu
sion is still valid.

One point we should mention is that, for lower exposure prevalence
such as 0.005, while finding the maximum likelihood estimators, sometimes
the optim function goes out of bound. Therefore, for finding maximum
likelihood estimators of 10,000 simulations in the null hypothesis situation
(rO = r1 = r), we had to iterate the process of generating new datasets
132,134 times for r = 0.005, 42,798 times for r 0.01, 10,859 times for
r = 0.05 and 10,047 times for r = 0.10. However, for higher exposure
prevalence rates, we never had this problem of non-convergence.

4.2.4 Under Different Proportion of Validation and Main
Part of the Data

As for all the other scenarios, we generated 10,000 datasets, with sensitivity
and specificity 0.7 and exposure prevalence 0.4. But, keeping the total
sample size fixed at 2000, we changed the proportions of the validation and
the main (unvalidated) part of the dataset, — which are 1:9 (200:1800), 1:3
(500:1500), 1:1 (1000:1000) and 3:1 (1500:500) respectively. From Figure
4.5, the two parameter model has an identical power curve in all situations,
but as the proportion of main data decreases for the four parameter model,
power increases sharply.

4.2.5 Comparison under Budgetary Constraint

Cost effectiveness is obviously an important measure of the ultimate worth
of a study design. While designing a study, we aim to obtain the best qual
ity of information for a given resource, say, in terms of money or time. Of
course, the optimal solution for a given study design is hard to obtain, be
cause not all the parameters are usually known and there might be external
constraints. Nonetheless, for our study, by considering the stated assump
tions and the parameters of the described models, we tried to find which
model performs better under a fixed budgetary constraint.

Validation data is costly to collect. The high cost of validation data
limits the size of the validation sub-sample in a fixed cost design. From the
previous scenarios we considered, the model without validation data could
be at best as good as the model with validation data given favorable condi
tions, but never better. The critical issue we wanted to investigate here is to
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Figure 4.3: Power curves under different Exposure Prevalences: 0.25, 0.30, 0.35
and 0.4 respectively
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Figure 4.4: Power curves under smaller Exposure Prevalences: 0.005, 0.01, 0.05
and 0.10 respectively
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Figure 4.5: Power curves under different proportions of validation part and main
part of the data: (1:9, 1:3, 1:1 and 3:1) respectively
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find out whether there is any point where the model without validation data
becomes superior to the model with validation data. In other words, how
costly the validation data have to be to abandon the model with validation
data, or whether a researcher can always choose the model with validation
data without any trade-off. We investigated using a particular example as
follows.

Say, we have $2400 as a budget for designing a retrospective study using
either the model with validation data or the model without validation data.
We arbitrarily set $1 as the cost of an unvalidated observation. We consider
three pricing choices:

1. Collecting validated data costs three (3) times cost as much as collect
ing unvalidated (main) data. The allocations of validated and unvali
dated data considered are provided in Table 4.2.

2. Collecting validated data costs five (5) times cost as much as collecting
unvalidated (main) data. The allocation of validated and unvalidated
data considered are provided in Table 4.3.

3. Collecting validated data costs ten (10) times cost as much as collecting
unvalidated (main) data. The allocations of amount of validated and
unvalidated data considered are provided in Table 4.4.

Table 4.2: Scenarios under constant cost = $2400, assuming that collecting vali
dated data costs three (3) times as much as collecting unvalidated (main) data

Scenario Validated data Unvalidated data Cost
Q.S 2 x 50 2 x 1050 2 x (3 x 50 + 1050) = 2400
R.S 2 x 100 2 x 900 2 x (3 x 100 + 900) = 2400
S.3 2 x 200 2 x 600 2 x (3 x 200 + 600) = 2400
T.3 2x300 2x300 2x(3x300+300)=2400

In Tables 4.2, 4.3 and 4.4, we only consider situations where sample sizes
are equal for cases and controls in both validated and unvalidated parts.

From Figure 4.6, the with validation data model is still superior in all
scenarios despite the fact that validation sample costs three times more to
collect compared to an unvalidated sample. However, when the cost is five
times as much, both models have almost the same utility, as shown in Figure
4.7. But from Figure 4.8, it is evident that the model without validation
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Figure 4.6: Power curves under fixed amount of cost = $2400 assuming that
collecting validated data costs three (3) times as much as collecting unvalidated
(main) data
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Table 4.3: Scenarios under constant cost = $2400, assuming that collecting vali
dated data costs five (5) times as much as collecting unvalidated (main) data

Scenario Validated data Unvalidated data Cost
Q.5 2 x 50 2 x 950 2 x (5 x 50 +950) =2400
R.5 2x100 2x700 2x(5x 100+700)=2400
S.5 2 x 150 2 x 450 2 x (5 x 150 + 450) 2400
T.5 2 x 200 2 x 200 2 x (5 x 200 + 200) = 2400
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Figure 4.7: Power curves under fixed amount of cost = $2400 assuming that
collecting validated data costs five (5) times as much as collecting unvalidated
(main) data
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Table 4.4: Scenarios under constant cost = $2400, assuming that collecting vali
dated data costs ten (10) times as much as collecting unvalidated (main) data

Scenario Validated data Unvalidated data Cost
Q.1O 2x25 2x950 2x(10x25+950)=2400
R.1O 2x50 2x700 2x(10x50+700)=2400
Sb 2x75 2x450 2x(10x75+450)=2400
T.bO 2 x 100 2 x 200 2 x (10 x 100 + 200) = 2400
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Figure 4.8: Power curves under fixed amount of cost = $2400 assuming that
collecting validated data costs ten (10) times as much as collecting unvalidated
(main) data
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data can be superior to the with validation data model, given a fixed total
cost and a much higher cost for validation data. This is the only case among
the scenarios we have considered, where the model without validation data
can possibly be superior - when the cost of a validated observation is much
higher than the cost of an unvalidated observation. This is one practical
limitation of the model with validation data that the researchers should
keep in mind when designing a study.
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4.3 Scenario Settings Under Bayesian
Adjustment

While dealing with Bayesian adjustments, we utilize all the n’s (observed
values) and the u’s (unobserved values) in Tables 1.1 and 1.2, and the mod
els (two parameter for data without validation part and four parameter
models for data with validation part) discussed in §3.2.3 are utilized. As
for frequentist adjustment, for the two parameter model, we simply use the
column totals from the tables, while in the four parameter model, we use
the n’s that are inside the validation table as they are observed. To ensure
comparability, both models in Bayesian adjustment utilize the same amount
of data. The only difference is that the four parameter model recognizes the
validation part, while the two parameter model ignores the true classifica
tion information of the validation part.

Exactly the same scenarios discussed in §4.2 are considered to understand
the performance of Bayesian adjustment to nondifferential misclassification,
varying the level of exposure prevalence, or sensitivity and specificity, or
sample size, or sample proportion of the validation and the main (unvali
dated) part of the data.

We used the power curve from the likelihood ratio tests as the compar
ison tool in assessing the frequentist adjustments. However, finding such
a tool for Bayesian adjustment models was not straightforward. Instead,
this is what we have done: Once we have generated the data (as discussed
in §4.1), we implemented the mixed algorithm as described in §3.2.3 for
10,000 Markov Chain Monte Carlo iterations. Half of the Markov Chain
Monte Carlo iterations were discarded as burn-in (we will justify the length
of chain and burn-in in §4.3.5). Using the retained chains, we constructed
a 95% credible interval for the odds-ratio and checked whether this credible
interval contained the null value (OR = 1) or not (where OR is a function
of r0 and r1 for four parameter model as given in Equation (1.2), and also,
for two parameter model, OR is a function of 9o and f as given in Equation
(1.3)). One other way of serving this same purpose would be to construct
95% credible interval for the logarithmic transformation of the odds-ratio
and test whether the constructed credible interval contains the null value
(log OR 0) or not. 2,000 datasets for each set of parameters in a particu
lar case of the scenario. To produce a graph for the cases of each scenario,
we do it for nine points (corresponding to the differences of the alternative
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hypothesis, as was discussed in §4.2 for the frequentist approach of power
curve construction procedure) for each of the models. This information of
what proportion of credible intervals excluded the null value was used to find
a probabilistic solution of the problem of comparison. This tool could also
be labeled as a kind of power curve since this also uses the similar theme “re
ject H0 if the credible interval excludes null value”, instead of the statement
“reject H0 if the p-value is less than significance level”. From the deviation
from one model’s curve to another, one can have some understanding of the
performance of the two models in these situations.

Again, to allow reproducibility of the results, the seed is chosen arbi
trarily and kept the same throughout the entire analysis. Initial values need
to be provided for Markov Chain Monte Carlo algorithms. Experience sug
gests that the initial values does not have much impact on the final results.
Details of this comment are shown in §4.3.5.

4.3.1 Under Different Values of Sensitivity and Specificity

The same cases as considered in frequentist adjustment are carried out.
From the Figure 4.9, it is evident that the two parameter model is always
dominated by the four parameter model.

4.3.2 Under Different Sample Sizes

Figure 4.10 shows that the tests get better as the sample size increases, but
the four parameter model is always better than the two parameter model.

4.3.3 Under Different Exposure Prevalence Rates

The graphs under consideration are shown in Figure 4.11. In all the cases,
two parameter models are dominated by the four parameter models, and the
graphs of credible intervals excluding null values do not seem to vary much
for the various prevalence rates under consideration.

4.3.4 Under Different Proportion of the Validation Data

From Figure 4.12, the two parameter model in all cases have almost similar
curves, but the powers increase sharply as the proportion for the validation
part increases for four parameter model.

49



4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.9: Bayesian analysis results for different sensitivity and specificity values
(.6, .7, .8, .9): Proportion of credible intervals excluding null value
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Figure 4.10: Bayesian analysis results for different sample sizes (400, 600, 1000,
2000): Proportion of credible intervals excluding null value
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4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.11: Bayesian analysis results for different exposure prevalence (.25, .3,
.35, .4): Proportion of credible intervals excluding null value
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Figure 4.12: Bayesian analysis results for different ratio of data splits (1:9, 1:3,
1:1, 3:1 respectively for validation and main part): Proportion of credible intervals
excluding null value
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4.3. Scenario Settings Under Bayesian Adjustment

In all four situations considered here, we have the same conclusion about
the respective situations from both the frequentist and Bayesian approaches.
In fact, if we compare Figure 4.9 with Figure 4.1 and Figure 4.10 with Figure
4.2 and Figure 4.11 with Figure 4.3 and Figure 4.12 with Figure 4.5, the
shapes of curves from the respective situations are strikingly similarity.

4.3.5 Diagnostics

For diagnostic purposes, we generate datasets with exposure prevalence 0.3
for both case and control groups and sensitivity and specificity both equals
to 0.7. As shown in Figures 4.13, 4.14, 4.15 and 4.16 for 10,000 MCMC
iterations, the trace plot of all the parameters r, r1, SN and SF look sta
ble after the burn-in in four chains with different starting values (0.2, 0.4,
0.6, 0.8 for each parameters). All these figures are obtained using one single
dataset as an example. The burn-in is colored as grey and after burn-in, the
estimates are colored as black in each of these graphs.

Sometimes graphical diagnostics are not very reliable, Therefore, we re
sort to some statistics that are used for such chain diagnosis, such as Gelman
and Rubin’s convergence diagnostic statistic which was discussed in §3.3.2.
This statistic requires more than one chain, and hence we used the four
chains with four different set of initial values. Theory says that the statistic
should not go beyond 1.2. For this particular dataset, for the parameters
r0, r1, SN and SF, we had the Gelman and Rubin’s convergence diagnostic
statistic, R 1.011, 1.003, 1.011 and 1.008 respectively, for 10,000 itera
tions in each. Figure 4.21 indicates the evolution of Gelman and Rubin’s
convergence diagnostic statistic as the number of iterations increases. From
this figure, it is evident that the chain is very satisfactory after burn-in.

Also, to check whether the initial value has any effect on estimates, we
plotted the means of each of the four chains which started from different
initial values. As shown in Figures 4.17, 4.18, we can see that both converge
to 0.3, which was the original exposure prevalence value used to generate
the considered dataset. Similarly, from Figures 4.19, 4.20, we see that both
the sensitivity and specificity eventually converge to 0.7, which was the
parameter value used to generate the datasets under consideration.
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4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.13: Diagnosis of convergence of Bayesian analysis results: Trace Plots
for ro in 4 chains with different starting values (for 10,000 iterations, with half
burn-in) for a single dataset
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43. Scenario Settings Under Bayesian Adjustment

Figure 4.14: Diagnosis of convergence of Bayesian analysis results: Trace Plots
for r1 in 4 chains with different starting values (for 10,000 iterations, with half
burn-in) for a single dataset

O 20O 400 doo 8d00 ioOoo

9!
iLii Ii

!P1

g

Jihihi.
I I! ‘J

-

- it: -1: -r_‘Li’
0 2000 4000 0000

Ii

0 00 4000 00oo 00oo io00

111111
‘I I iiII1’ I’ll!

6000 10 2000 4000

Ii

0000 0000 10000

56



4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.15: Diagnosis of convergence of Bayesian analysis results: Trace Plots
for SN in 4 chains with different starting values (for 10,000 iterations, with half
burn-in) for a single dataset
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rI9
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Figure 4.16: Diagnosis of convergence of Bayesian analysis results: Trace Plots
for SF in 4 chains with different starting values (for 10,000 iterations, with half
burn-in) for a single dataset
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4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.17: Sequence of the mean of posterior for ro for the four Markov Chain
Monte Carlo Chains for 10,000 iterations
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Figure 4.18: Sequence of the mean of posterior for r1 for the four Markov Chain
Monte Carlo Chains for 10,000 iterations

r1 r1
C 0

d 0

d 0

CD

0
a- a

(‘1’

0

0 0
c,J C.,
° a 2d00 4000 60h0 8d00 ioöoo O 2d00 4d00 6d00 8OO bOa

Chain 1 Chain 2

r1

0

0
0

0

0

0

_______________

0

-

a 2d00 4000 60h0 8d00 ioôoo 0 2000 4000 6000 8000 10000
Chain 3 Chain 4

60



4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.19: Sequence of the mean of posterior for SN for the four Markov Chain
Monte Carlo Chains for 10,000 iterations
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4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.20: Sequence of the mean of posterior for SP for the four Markov Chain
Monte Carlo Chains for 10,000 iterations
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4.3. Scenario Settings Under Bayesian Adjustment

Figure 4.21: Sequence of the Celman-Rubin E for the four Markov Chain Monte
Carlo Chains for 10,000 iterations
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Chapter 5

Application in
Epidemiological Studies

5.1 Introduction

In almost all epidemiological studies, some amount of error in assessment is
inevitable. The extent of such error depends on various factors, such as the
nature of the exposure, and the instrument error associated with collecting
the information. In this chapter, we will consider two epidemiologic datasets
where challenges specifically arise in accurately identifying the outcome of
exposure. The methods discussed in the previous chapters are considered
and applied to these datasets.

5.2 Study of Sudden Infant Death Syndrome
(SIDS)

The performance of the methods described in the previous chapters are
illustrated using a case-control study of antibiotic prescription during preg
nancy and subsequent occurrence of Sudden Infant Death Syndrome (SIDS)
[Greenland, 1988b, a, 2008], [Marshall, 1990, 1997], [Kraus et al., 1989].
The association of interest is between the prescription of antibiotics during
pregnancy (V) and SIDS (Y). The surrogate exposure or error-prone mea
surement (V*) was an interview response, whereas the true exposure (V)
was derived from medical records. The validation studies, in cases (Y = 1)
and controls (Y = 0), were joint (V*, V) designs done as sub-studies that
resulted in the data presented in Table 5.1.

Frequentist estimates of parameters of the two models under considera
tion for the SIDS study data are reported in Table 5.2. From this table, we
can see that the apparent prevalence rates are close estimates of the preva
lence rates obtained while considering the validation data. The validation
data model shows that the data has low sensitivity (0.6), but high speci
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5.2. Study of Sudden Infant Death Syndrome (SIDS)

Table 5.1: Data from the study of sudden infant death syndrome (SIDS) and
antibiotic prescription

Y Cases (Y = 1) J Controls (Y = 0)

Validated Part V* = 1 V = 0 V* = 1 V = 0
V=r1 29 17 21 16
V=0 22 143 12 168

Unvalidated (main) 122 442 101 479

Total 173 602 134 663

ficity (0.9). The log-odds ratios in both groups are positive numbers. For
without validation data, the estimate of odds ratio is 1.422 and 95% Wald
confidence limits are (1.11, 1.83), calculated using the formula provided by
Marshall [1997]. Not surprisingly, the likelihood ratio p-value obtained from
this model is small (0.006). These results match with the case discussed by
Greenland [2008]. On the other hand, for with validation data model, the
estimated odds ratio is 1.49 with 95% Wald confidence limits (1.02, 2.16),
which is coherent with the findings of Greenland and Gustafson [2006]. The
likelihood ratio p-value is also small in this model (0.035). Therefore, the
conclusions from both models are the same. They suggest that the hypoth
esis H0 : r0 Ti is rejected at cv 0.05. That is, the true log(OR) is
significantly far away from 0 based on the evidence provided by the SIDS
study data.

Table 5.2: Frequentist Estimates of the model parameters in the SIDS study

Not considering_Validation data Considering Validation data

Parameters Estimate S.E. Parameters Estimate S.E.

9o 0.168 0.013. r0 0.163 0.021
8 0.223 0.015 r1 0.225 0.024

SN 0.603 0.047
SP 0.903 0.013

log(OR) 0.352 0.128 log(OR) 0.398 0.191
P-value 0.006 P-value 0.035

The Bayesian estimates and standard errors are reported in Table 5.3.
The priors used here are very general and similar to those described in §3.2.3.
These results are very similar to those obtained using maximum likelihood.
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5.2. Study of Sudden Infant Death Syndrome (SIDS)

Both the 95% credible intervals of the odds ratio obtained from the with
and without validation data model fail to include the null value 1 inside
the interval. Moreover, the estimates and credible intervals are very similar
to those obtained by frequentist methods. Therefore, the null hypothesis is
still rejected by the Bayesian tools. That means the data suggests a positive
association between the prescription of antibiotic and consequent incidence
of SIDS, under the assumption of equality of misclassification probabilities.

For the Bayesian estimates and hypothesis testing results reported in Ta
ble 5.3 and trace plots in Figure 5.1, the initial values of r0, r1, SN and SP
were set to 0.4, 0.4, 0.7 and 0.7 respectively. For 6o and 6, it was 0.2 and 0.2.

One interesting issue needs to be addressed here. Other than a few spa
cial cases, it is well known that under the nondifferential misclassification
assumption, in absence of any other errors, the estimates of measure of as
sociation, such as odds ratio should be biased towards the null ‘on average’.
However, in this particular data, we notice that the estimate of odds ratio
slightly goes away from null (1.42 to 1.49), as the theory suggests, but the
p-value from Wald test gives us the opposite message - it increases from
0.0029 to 0.0184 respectively (which dictates towards the null behavior after
adjustment). This might be due to the fact that the posterior variance is
being iinrierestimated in the without validation data situation, and hence
the posterior variance increases after adjustment, providing an even wider
credible interval. Such phenomenon of increment of uncertainty even though
the odds ratio moves away from null after adjustment, is already noted by
Gustafson and Greenland [2006]. The likelihood ratio test acts similarly to
the approximate Wald test. This might be one indication that the assump
tion of nondifferentiality was not completely satisfied, if we rule out the
explanation of random variation due to chance in this particular example.
Since both p-values are small enough to reject the null hypothesis, this does
not alter the conclusion in this example.

The Gelman and Rubin convergence diagnostic statistic, 1? value for the
four parameters ro, r, SN and SP are 1.002, 1.003, 1.045 and 1.009 respec
tively. Also, for 8 and 8o, R gives 1.002 and 1.003 respectively. All these
values are much less than 1.2. Here, various initial values were set to check
the convergence - such as 0.2, 0.4, 0.6 and 0.8 for each of the parameters un
der consideration. 10, 000 iterations were performed and half were retained
after burn-in to estimate each parameters. Also, from Figure 5.2, we can
see that the posterior distributions does not have any multimodality, which
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5.2. Study of Sudden Infant Death Syndrome (SIDS)

Figure 5.1: MCMC for the with and without validation data model parameters
in the SIDS study
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5.3. Cervical Cancer and Herpes Simplex Virus Study

Table 5.3: Bayesian Estimates of the model parameters in the SIDS study

Not considering Validation setting J Considering Validation setting
Parameters Estimate SD Parameters Estimate SD

o 0.168 0.013 r0 0.161 0.020
9 0.222 0.015 r1 0.221 0.024

SN 0.609 0.046
SP 0.901 0.012

log(OR) 0.351 0.129 log(OR) 0.395 0.186
95%C.I. Does not include H0 value 95%C.I. Does not include Ho value

(OR) (1.103, 1.830) (OR) (1.038, 2.153)

is a sign of good convergence.

5.3 Cervical Cancer and Herpes Simplex Virus
Study

This data is listed in Carroll et al. [1993] and discussed in Prescott and
Garthwaite [2002], Carroll et al. [2006]. The research question is whether
exposure to herpes simplex virus contributes to the risk of cervical cancer.
The response variable Y is an indicator of cervical cancer, V is exposure
to type 2 herpes simplex virus (HSV-2) measured by a refined western blot
procedure and V* is exposure to HSV-2 measured by the western blot pro
cedure. The data is provided in Table 5.4.

Table 5.4: Data from Herpes Simplex Virus-2 study

Y Cases (Y = 1) ] Controls (Y = 0)

Validated Part V* 1 V = 0 V = 1 V 0
V=1 18 5 16 16
V=0 3 13 11 33

[ Unvalidated (main) 375 318 535 701

[ Total 396 336 562 750

Frequentist estimates of parameters of the two models under considera
tion for the HSV-2 study data are reported in Table 5.5. From this table, we
can see that the apparent prevalence rates and estimates of the prevalence
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5.3. Cervical Cancer and Herpes Simplex Virus Study

Figure 5.2: Prior and Posterior Distributions of all the Parameters under Con
sideration in the SIDS study
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5.3. Cervical Cancer and Herpes Simplex Virus Study

rates for the case group obtained in the presence of the validation data are
not in complete agreement. Especially the prevalence rates for case group
are much higher than the control group, both in the before and after ad
justments. For without validation data, the estimated odds ratio is 1.57
and 95% Wald confidence limits are (1.31, 1.89). Also, the likelihood ratio
p-value obtained from this model is very small. On the other hand, for
the with validation data model, the estimated odds ratio is 2.61 with 95%
Wald confidence limits (1.62, 4.18). The likelihood ratio p-value is also very
small in this model. Since the p-values obtained from both models are very
small, the conclusions from both models are the same. They suggest that
the hypothesis H0 : To = r is rejected at c = 0.05. The validation data
model shows that the exposure assessment has moderate sensitivity, as well
as moderate specificity.

Table 5.5: Frequentist Estimates of the model parameters in the HSV-2 study

Not considering Validation setting] Considering Validation setting

Parameters Estimate S.E. Parameters Estimate S.E.
9 0.428 0.014 0.418 0.046
9 0.541 0.018 r1 0.652 0.053

SN 0.679 0.041
SP 0.743 0.043

log(OR) 0.453 0.093 log(OR) 0.958 0.237
P-value 9.966 x iO P-value 1.48 x 10

The Bayesian estimates and standard errors are reported in Table 5.6.
For the model without validation data, these results are almost the same as
those obtained using maximum likelihood. However, the estimates obtained
from the model with validation data are not nearly as close. Nonetheless,
both the 95% credible intervals of the odds ratio obtained from the with
and without the validation data model fail to include the null value 1 inside
the interval. Therefore, even with the Bayesian method, the null hypothesis
is rejected. Moreover, the conclusions obtained from hypothesis testing are
very similar to those obtained by frequentist methods. As a result, we can
conclude that the exposure of HSV-2 is positively associated with increased
risk of developing cervical cancer.

Using the same prior that we used in simulations in chapter 4, we can
see that the exposure prevalences are greatly underestimated in prior den
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5.3. Cervical Cancer and Herpes Simplex Virus Study

sities. The posterior exposure prevalences are very different than suggested
in the prior. From Figure 5.4 it is evident that the posterior results are not
dominated by the given prior.

Table 5.6: Bayesian Estimates of the model parameters in the HSV-2 study

Not considering Validation setting j Considering Validation setting

Parameters Estimate SD Parameters Estimate SD
8 0.426 0.014 0.383 0.046
8 0.537 0.018 0.605 0.052

SN 0.700 0.043
SF 0.733 0.041

log(OR) 0.445 0.092 log(OR) 0.912 0.233
95%C.I. Does not include H0 value 95%C.I. Does not include H0 value

(OR) (1.302, 1.870) (OR) (1.654, 4.085)

For the Bayesian estimates and the trace plots, the initial values of r0,
r1, SN and SP were set to 0.4, 0.4, 0.7 and 0.7 respectively. For 8o and 8,
it was 0.45 and 0.45.

The Gelman and Rubin convergence diagnostic statistic, 1? value for the
four parameters r0, r1, SN and SF are 1.23, 1.16, 1.11 and 1.26 respec
tively. Also, for 8 and 8, R gives 1.26 and 1.28 respectively. Notice that,
most of these values are over 1.2 for 10, 000 iterations considering half of
these as burn-in. Hence we can conclude that the convergence is not good
for the cases under consideration for 10, 000 iterations. If we increase the
number of iterations to 40,000 and R value for the four parameters r0, r1,
SN and SF becomes 1.19, 1.16, 1.05 and 1.15 respectively. For 8o and 8, R
now gives 1.01 and 1.10 respectively. As all of these R values are less than
1.2, we can conclude that the convergence is satisfactory for the cases under
consideration for 40, 000 iterations, Therefore, we report the trace plots and
the Bayesian estimates of the parameters for 40, 000 iterations in Table 5.6
and Figure 5.3. However, it should be noted that the changes in estimation
are very small (changes mostly in third decimal places) and the standard
errors are almost the same despite the larger number of iterations.

As before, the initial values were set to be 0.2, 0.4, 0.6 and 0.8 for each
of the parameters under consideration. One possible reason for this analysis
requiring such large number of iterations could be due to the fact that some
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Figure 5.3: MCMC for the with and without validation data model parameters
in the HSV-2 study
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5.3. Cervical Cancer and Herpes Simplex Virus Study

cell counts of the Table 5.4 are 5 or less. Another possibility is that the
nondifferential assumption does not hold in this case.
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Figure 5.4: Prior and Posterior Distributions of all the Parameters under Con
sideration in the HSV-2 study
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Chapter 6

Conclusions and Further
Research

6.1 Overall Conclusions

Various practical issues force researchers to use inferior measures of expo
sure assessment. When an ideal exposure measurement is replaced by an
operational method or a surrogate variable, it is well known in the litera
ture that due to the disparity between these two measures, there are several
consequences of such compromise. Of course the extent of disparity plays a
role in the consequences. To understand the extent to which the measure of
association differs, a validation sub-sample is used to get some insight about
the misclassification probabilities. Using the added information obtained
from a validation sub-sample, adjustment measures are possible to correct
for such bias and the subsequent power loss in hypothesis testing procedures.

The nondifferentiality assumption is very popular in the epidemiologic
literature due to its various attractive features. Two adjustment techniques
are considered in this thesis under this assumption. One is based on fre
quentist methods, power curves were derived for the likelihood ratio test
both with and without validation data. This is basically a standard rou
tine, used here as a benchmark. The detailed procedure is discussed in
Chapter 2. The main goal is to evaluate the Bayesian counterpart which
is based on a MCMC algorithm after reasonable diagnostic checks as dis
cussed in Chapter 3. Both these methods are implemented in two settings:
considering validation data and without considering validation data. In the
frequentist method, estimates from the validation sub-sample are used to
adjust for exposure misclassification, but in the Bayesian implementation,
instead of having specific estimates of parameters, a set of priors are used
so that some randomness or uncertainty is induced in the inferential process
amongst cases and controls.
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6.1. Overall Conclusions

The main focus of this research is to identify the adjustment methodology
that performs better under fairly general conditions in hypothesis testing.
A set of scenarios are considered so that both methods can be compared
using simulation study. These scenarios were constructed by varying the
level of misclassification, prevalence, sample size, proportion of validation
part ii1 the whole sample and under fixed cost constraint. Since a lot of
scenarios are in possible, to simplify the problem, only the one dimensional
effects due to the one of the parameters, sample size or sample composition
change is considered at a time. Both methods are applied on all of these
scenarios. Details are provided in Chapter 4. As a tool of evaluation, power
curves are drawn for the frequentist method and the proportion of credible
intervals that exclude the null value are plotted for Bayesian method. From
these plots, it is clear that the with validation data model is always better.
The without validation data (two parameter) model can be as good as with
validation data (four parameter) model in extreme cases, but can never get
better. We showed that this is true for hypothesis testing settings. The
only case when the without validation data model can be superior to the
with validation data model is under fixed budget, if the cost of collecting
validated data is much higher than collecting usual unvalidated data. How
high is high? This depends on the various parameters, considered sample
sizes, composition of sample and budget for the study. We just showed by
example that such an exception is possible.

It is worth mentioning that the settings considered by Greenland and
Gustafson [2006] are slightly different than those considered in this work,
although they also address the issue of adjusting for misclassification in the
context of hypothesis testing. In that paper, it is shown that given known or
reasonably assumed (say, from educated guesses) values of sensitivity and
specificity, the power does not improve after adjustment under nondiffer
ential misclassification error (assumed to be free from any other sources of
errors). This suggestion was based on the analysis of a single dataset. In
contrast, in the current work, we showed that in presence of validation data,
which enables us to estimate the true exposure prevalences, sensitivity and
specificity, we have more power after adjustment, subject to the condition
that the nondifferential misclassification assumption is satisfied.

If the plots of the frequentist and the Bayesian method results for respec
tive scenario are superimposed, they are almost indistinguishable. Compar
ing these plots under each scenario, it is evident that both methods perform
exactly the same way. Having both methods producing the same conclusion,
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it is worth mentioning that the Bayesian framework, although very easy to
generalize to other extensions of this problem, are very demanding in terms
of resources and computing time to attain results without any MCMC di
agnostic anomaly. On the other hand, with the frequentist methods used
here, although closed forms are not always attainable, simple numerical rou
tines can optimize these likelihoods very quickly. To give real life flavor, two
epidemiologic datasets are also analyzed using the above methodologies in
chapter 5, which are coherent with the simulation results.

6.2 Further Research and Recommendations

Further research could focus on extending some of the simplistic assump
tions that were considered, adapting the proposed models for problems with
similar specifications and generalizing the simulation scenario to broader
contexts.

• One can consider larger combinations of the scenario setting than con
sidered in this work to describe the effects in a broader sense. One
could organize this effort by developing an experimental design (e.g.,
a fractional factorial design) involving the factors of interest.

• One immediate extension of the work is to go beyond nondifferential
assumption and check the results under differential misclassification,
which is more realistic in many fields. For Bayesian adjustment, this
can be easily done by considering the general model where the mis
classification probabilities are different with respect to case and control
and imposing a joint prior for those parameters with an assumed co
variance structure.

• To make the problem more realistic, additional exposures that are cor
rectly measured are worth adding in the model. A logistic regression
model can be a start in this direction.

• This dissertation only deals with dichotomous exposure misclassifica
tion. Polytomous exposure misclassification can also be another exten
sion to this research. Instead of binomial assumption of misclassified
exposure, a multinomial assumption will be used in that case.
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• The models used in this work can be modified to allow using repli
cated sub-set of data or data obtained from an alternative source in
the absence of a benchmark scorer or gold standard method of expo
sure assessment, instead of validation data, which could be more cost
effective, especially when the cost of validation data is very high.

• It is also worth investigating other tools to analyze the continuous ex
posure data directly, instead of dichotomizing it to make it categorical,
and try to identify how much sensitivity does one loose by categorizing
the exposure variable. Spline analysis can be one way to move in this
direction.

• The Bayesian hypothesis testing could be accomplished by using the
Bayes factor, and then compared with the standard likelihood tech
niques to find out whether there is any discrepancy in those two
methodologies.
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