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Abstract

After an introduction to Hilbert spaces and convex analysis, the proximal

average is studied and two smooth operators are provided. The first is a

new version of an operator previously supplied by Goebel, while the second

one is new and uses the proximal average of a function and a quadratic to

find a smooth approximation of the function.

Then, the kernel average of two functions is studied and a reformulation

of the proximal average is used to extend the definition of the kernel aver-

age to allow for any number of functions. The Fenchel conjugate of this new

kernel average is then examined by calculating the conjugate for two spe-

cific kernel functions that represent two of the simplest cases that could be

considered. A closed form solution was found for the conjugate of the first

kernel function and it was rewritten in three equivalent forms. A solution

was also found for the conjugate of the second kernel function, but the two

solutions do not have the same form which suggests that a general solution

for the conjugate of any kernel function will not be found.
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Chapter 1

Introduction

When averaging functions the most natural place to start is the arithmetic

average, defined by

A := λf1 + (1− λ)f2, (1.1)

where 0 ≤ λ ≤ 1. This works well if both functions f1 and f2 are every-

where defined. But if the functions are not differentiable at some points

or if their domains do not intersect, then the arithmetic average will not

be differentiable or will be +∞ everywhere. In [2] Bauschke, Lucet, and

Trienis define a new average, the proximal average, and discuss the benefits

of using the proximal average for these types of cases. In particular, the

proximal average produces a continuous and differentiable function even if

the original functions are non-smooth and their domains do not intersect,

provided at least one of the functions is differentiable with a full domain.

From the definition of the proximal average, the more general kernel av-

erage [3] was defined for averaging two functions based on a kernel function.

Both the arithmetic and proximal averages can be derived as special cases of

the kernel average. This thesis extends the definition of the kernel average

to an arbitrary number of functions and examines the convex conjugate of

the kernel average for n functions.
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Chapter 2

Hilbert Spaces

In this chapter we give some background material on inner product spaces.

The notion of vector spaces and their extensions are central to much of the

following thesis, so a quick reminder of some concepts from linear algebra is

also included to refresh the reader’s memory. For more on vector spaces see

[7, Chapters 1 and 7] or [11, Chapter 4].

2.1 General Vector Spaces

Definition 2.1.1 (Vector Space) A vector space consists of a set V with

elements called vectors, along with two operations such that the following

properties hold:

(1) Vector addition: Let u, v ∈ V , then there is a vector u + v ∈ V and the

following are satisfied.

(i) Commutativity: u + v = v + u, ∀u, v ∈ V.

(ii) Associativity: u + (v + w) = (u + v) + w, ∀u, v, w ∈ V.

(iii) Zero: there is a vector 0 ∈ V such that 0+u = u = u+0, ∀u ∈ V.

(iv) Inverses: for each u ∈ V , there is a vector −u such that u+(−u) =

0.
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2.1. General Vector Spaces

(2) Scalar multiplication: Let u, v ∈ V and r, s ∈ R, then the following are

satisfied.

(i) Left distributivity: (r + s)v = rv + sv.

(ii) Associativity: r(sv) = (rs)v.

(iii) Right distributivity: r(u + v) = ru + rv.

(iv) Neutral element: 1v = v.

(v) Absorbing element: 0v = 0.

(vi) Inverse neutral element: (−1)v = −v.

Example 2.1.2 The space Rn consists of vectors v = (v1, · · · , vn) with vi ∈
R for 1 ≤ i ≤ n and operations defined by

(u1, · · · , un) + (v1, · · · , vn) := (u1 + v1, · · · , un + vn)

r(v1, · · · vn) := (rv1, · · · , rvn),

where r ∈ R.

Definition 2.1.3 A subspace of a vector space V is a subset W of V with

W 6= ∅ and W is a vector space using the operations of V .

Definition 2.1.4 Let S ⊆ V , the span of S is the smallest subspace con-

taining S and is denoted by spanS.

Fact 2.1.5 The subspace spanned by a nonempty set S ⊆ V consists of all

linear combinations of the elements of S.

3



2.2. Inner Product Spaces

Definition 2.1.6 A linear transformation A from a vector space V to a

vector space W is a function A : V → W satisfying

A(r1v1 + r2v2) = r1Av1 + r2Av2, ∀v1, v2 ∈ V and ∀r1, r2 ∈ R.

2.2 Inner Product Spaces

We recall the definitions of a norm and an inner product.

Definition 2.2.1 A norm on a vector space V is a function ‖ · ‖ : V →
[0,+∞[ with the following properties.

(i) Positive definite: ‖x‖ = 0 if, and only if, x = 0,

(ii) Homogeneous: ‖αx‖ = |α|‖x‖, ∀x ∈ V and α ∈ R,

(iii) Triangle inequality: ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V .

Definition 2.2.2 An inner product on a vector space V is a function 〈·, ·〉 :

V × V → R satisfying the following properties.

(i) Positive definite: 〈x, x〉 ≥ 0, ∀x ∈ V and 〈x, x〉 = 0 only if x = 0;

(ii) Symmetry: 〈x, y〉 = 〈y, x〉, ∀x, y ∈ V ;

(iii) Bilinearity 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉, ∀x, y, z ∈ V and α, β ∈ R.

We call a vector space paired with an inner product and norm induced by

‖x‖ := 〈x, x〉1/2, an inner product space.

Definition 2.2.3 In a normed vector space (V, ‖ · ‖), a sequence (vn)∞n=1

converges to v ∈ V if lim
n→∞ ‖vn − v‖ = 0.
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2.2. Inner Product Spaces

Definition 2.2.4 A sequence (vn)∞n=1 is called a Cauchy sequence if for

every ε > 0, there is an integer N > 0 such that ‖vn − vm‖ < ε for all

n,m ≥ N .

Remark 2.2.5 While every convergent sequence is a Cauchy sequence, the

converse is not true. For example, consider the sequence

1,
14
10

,
141
100

,
1414
1000

,
14142
10000

, · · ·

in Q approaching
√

2. This sequence does not converge in Q.

Definition 2.2.6 An inner product space V is complete if every Cauchy

sequence in V converges to some vector v ∈ V .

Definition 2.2.7 A complete inner product space is called a Hilbert space.

Example 2.2.8 The following inner product spaces are Hilbert spaces:

(i) [7, Theorem 4.2.5] Rn paired with the inner product 〈x, y〉 = x1y1 +

· · ·+ xnyn.

(ii) [7, Theorem 7.5.8] The space `2, consisting of all sequences x = (xn)∞n=1

such that ‖x‖2 :=
( ∞∑

n=1
x2

n

)1/2

is finite, with the inner product 〈x, y〉 =
∞∑

n=1
xnyn.

(iii) [10, Example 2.2-7] The space L2[0, 1], consisting of all (equivalence

classes of) functions f on [0, 1] such that ‖f‖2 := (
∫ 1
0 |f(x)|2dx)

1
2 <

+∞, paired with the inner product 〈f, g〉 =
∫ 1
0 f(x)g(x)dx.
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2.2. Inner Product Spaces

Definition 2.2.9 [4, Section 1.1] Let X,V be vector spaces and let A : X →
V be a linear operator. The corresponding adjoint linear transformation

from V to X is the unique operator A∗ such that the following identity holds

〈Ax, y〉 = 〈x,A∗y〉 (2.1)

for all x ∈ X and y ∈ V .

Example 2.2.10 Let X be a vector space and λ1, · · · , λn ∈ R. Let A :

Xn → X be the linear operator defined by x = (x1, · · · , xn) 7→ λ1x1 +

· · · + λnxn. Then the adjoint of A is the operator A∗ : X → Xn such that

z 7→ (λ1z, · · · , λnz).

Proof. Let x ∈ Xn and y ∈ X, then

〈Ax, y〉 = 〈λ1x1 + · · ·+ λnxn, y〉 =
n∑

i=1

λi〈xi, y〉.

On the other hand,

〈x,A∗y〉 = 〈(x1, · · · , xn), (λ1y, · · · , λny)〉

= 〈x1, λ1y〉+ · · ·+ 〈xn, λny〉 =
n∑

i=1

λi〈xi, y〉.

Since 〈Ax, y〉 = 〈x,A∗y〉 ∀x ∈ Xn, y ∈ X and the adjoint is unique then A∗

is the adjoint of A. ¥
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2.3. Facts on Maximization and Minimization

2.3 Facts on Maximization and Minimization

In this section, we assume that X is an inner product space.

Fact 2.3.1 Let x ∈ X then

sup
y∈X

〈x, y〉 =





0, if x = 0;

+∞, otherwise.

Fact 2.3.2 Let f and g be functions from X → ]−∞, +∞], then

(i) sup
x,y∈X

(f(x) + g(y)) = sup
x∈X

(f(x)) + sup
y∈X

(g(y))

(ii) inf
x,y∈X

(f(x) + g(y)) = inf
x∈X

(f(x)) + inf
y∈X

(g(y)) .

Fact 2.3.3 Let x, y ∈ X then

(i) sup
x∈X

sup
y∈X

f(x, y) = sup
y∈X

sup
x∈X

f(x, y)

(ii) inf
x∈X

inf
y∈X

f(x, y) = inf
y∈X

inf
x∈X

f(x, y)

These will be used frequently later on.
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Chapter 3

Convex Analysis

Let H denote a real Hilbert space with inner product 〈·, ·〉, norm ‖ · ‖, and

identity mapping Id. We’ll now introduce some necessary convex analysis,

for a more in-depth look at convex analysis please see [12].

3.1 Convex Sets

Definition 3.1.1 A set A ⊆ H is affine if x ∈ A, y ∈ A, and θ ∈ R imply

that θx + (1− θ)y ∈ A.

Definition 3.1.2 A set C ⊆ H is convex if x ∈ C, y ∈ C, and 0 ≤ θ ≤ 1

imply that θx + (1− θ)y ∈ C.

This means that for any two points in a convex set C, the line segment

joining the two points is also contained in C.

Example 3.1.3 The following sets are convex:

(i) Affine sets;

(ii) Halfspaces: A set H is a halfspace if for some b ∈ H and β ∈ R,

H = {x ∈ H : 〈x, b〉 ≤ β};

8



3.1. Convex Sets

(iii) Closed ball of radius r > 0 centered at a point xc: B(xc, r) := {x ∈ H :

‖xc − x‖ ≤ r}.

The following definitions describe some important properties of sets that are

frequently used in convex analysis.

Definition 3.1.4 The indicator function of a set C ⊆ H is the function

ιC : H → [0, +∞] defined by

ιC(x) =





0, if x ∈ C;

+∞, otherwise.

Definition 3.1.5 The support function of a set C ⊆ H is the function

σC : H → ]−∞,+∞] defined by

σC(x) = sup
u∈C

〈x, u〉.

3.1.1 Cones

A set C is called a cone if for every x ∈ C and θ > 0 we have θx ∈ C. A

set C is a convex cone if it is both convex and a cone. That is, for every

x1, x2 ∈ C and θ1, θ2 ≥ 0 then θ1x1 + θ2x2 ∈ C.

Definition 3.1.6 The conical hull of a set C ⊆ H is the set

cone C =
⋃

λ>0

{λx : x ∈ C}.

9



3.1. Convex Sets

Fact 3.1.7 [5, Section 2.1.5] The conical hull of C is the smallest convex

cone that contains the set C.

Example 3.1.8 Let D = {z = (x, y, 0) ∈ R3 : ‖z‖ ≤ 1} be a closed unit

disc in R3, then coneD = R2 × {0}.

Definition 3.1.9 Let C be a nonempty convex set in H. We say that C

recedes in the direction of y, y 6= 0, if and only if x+λy ∈ C for every λ ≥ 0

and x ∈ C. Directions in which C recedes are also called the directions of

recession.

Definition 3.1.10 The recession cone of a set C is the set of all vectors

y ∈ H such that for each x ∈ C, x + λy ∈ C for all λ ≥ 0. The recession

cone of C is denoted by 0+C.

Fact 3.1.11 [12, Theorem 8.1] Let C be a non-empty convex set. Then the

recession cone, 0+C, is a convex cone containing the origin.

3.1.2 Interiors of Sets

Definition 3.1.12 The interior of a set C ⊆ H is the set

intC = {x ∈ H : ∃ε > 0 such that B(x, ε) ⊆ C},

where B(x, ε) = {y : ‖y − x‖ < ε}.

Definition 3.1.13 The relative interior of a convex set C ⊆ H is the set

riC = {x ∈ H : cone(C − x) = span(C − x)}.

10



3.2. Convex Functions

The following example illustrates the need to distinguish between the interior

and the relative interior of a set.

Example 3.1.14 Consider again the closed disc D = {z = (x, y, 0) ∈ R3 :

‖z‖ ≤ 1}.We get that intD = ∅ since no ball in R3 can be contained in D,

however riD = {z = (x, y, 0) ∈ R3 : ‖z‖ < 1}.

Definition 3.1.15 A point x is a limit point of a subset C ⊆ H if there

is a sequence (xn)∞n=1 with xn ∈ C such that x = lim
n→∞xn. A set C ⊆ H is

closed if it contains all of its limit points.

Definition 3.1.16 The closure of a set C ⊆ H is the smallest closed set

containing C, and is denoted by clC.

3.2 Convex Functions

The effective domain of a function f : H →]−∞,+∞] is the set of points:

dom f = {x ∈ H : f(x) < +∞}. (3.1)

The set of global minimizers of f is denoted by argminx∈H f(x).

Definition 3.2.1 We call a function f proper if it never takes on the value

of −∞ and is not identically equal to +∞.

Definition 3.2.2 A function f is lower semicontinuous at a point x0 if

lim inf
x→x0

f(x) ≥ f(x0),

11



3.2. Convex Functions

where lim inf is as defined in [13, Definition 1.5]. The function is said to be

lower semicontinuous if it is lower semicontinuous at every point x0 ∈ H.

Definition 3.2.3 A function f is coercive if

lim
‖x‖→∞

f(x) = ∞.

A function is supercoercive if

lim
‖x‖→∞

f(x)
‖x‖ = ∞.

Definition 3.2.4 The epigraph of a function f : H → ]−∞, +∞] is the set

epi f = {(x, t) ∈ H × R : f(x) ≤ t}.

This is illustrated in Figure 3.1.

Definition 3.2.5 A function f : H → ]−∞, +∞] is convex if epi f is a

convex set.

We denote the set of proper, lower semicontinuous, convex functions in H
by Γ0(H). While Definition 3.2.5 conveniently ties the notion of a convex

function to that of a convex set, in practice a convex function is usually

synonymous with the following result.

12



3.2. Convex Functions

Figure 3.1: Epigraph of a function
[5, Figure 3.5]

Theorem 3.2.6 [12, Theorem 4.1] A function f : H → ]∞, +∞] is convex

if and only if for x, y ∈ H and 0 < θ < 1,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y).

A function is said to be strictly convex if the inequality in Theorem 3.2.6 is

strict; that is, that f(θx + (1 − θ)y) < θf(x) + (1 − θ)f(y) provided that

x 6= y.

Fact 3.2.7 [14, Theorem 2.5.1(ii) and Proposition 2.5.6] If a function f is

both coercive and strictly convex then it has a unique minimizer, x̄. That is,

argminx∈H f(x) = {x̄}.

13



3.2. Convex Functions

Definition 3.2.8 A function f : H → ]∞, +∞] is concave if −f is convex.

Definition 3.2.9 A function f : H → ]∞, +∞] is affine if f is finite and

both convex and concave.

Example 3.2.10 Let f : H → ]∞, +∞] be defined by x 7→ 〈a, x〉 − b where

a ∈ H and b ∈ R. Then f is an affine function.

Proof. Let x, y ∈ H and θ ∈ R, then

f(θx + (1− θ)y) = 〈a, θx + (1− θ)y〉 − b

= θ(〈a, x〉 − b) + (1− θ)(〈a, y〉 − b)

= θf(x) + (1− θ)f(y).

Therefore the conditions for convexity and concavity are both satisfied and

f is affine. ¥

Another method of determining if a function is convex is by checking the

first and second order conditions for convexity.

Fact 3.2.11 (First order condition) [5, Section 3.1.3] Let f : Rn →
]−∞, +∞] be a differentiable function; that is, its gradient ∇f exists at

each point of its open domain. Then f is convex if and only if its domain

is convex and

f(y) ≥ f(x) + 〈∇f(x), y − x〉

holds for all x, y ∈ dom f .

This condition says that for a convex function the first-order Taylor series

approximation is a global underestimator of the function, and conversely if

14



3.2. Convex Functions

the Taylor approximation is a global underestimator then the function is

convex.

Fact 3.2.12 (Second order condition) [5, Section 3.1.4] Let f : Rn →
]−∞, +∞] be a twice differentiable function; that is, its Hessian or second

derivative ∇2f(x) exists at each point of it open domain. Then f is convex

if and only if dom f is convex and its Hessian is positive semidefinite:

∇2f(x) º 0.

Remark 3.2.13 A matrix A ∈ Rm×n is positive semidefinite if yT Ay ≥ 0

for all y ∈ Rn, and is denoted by A º 0.

Fact 3.2.14 (Composition with affine mapping) [5, Section 3.2.2] Sup-

pose f : Rn → R, A ∈ Hm×n, and b ∈ Rn. Define g : Rn → R by

g(x) = f(Ax + b);

with dom g = {x : Ax + b ∈ dom f}. Then if f is convex, so is g; if f is

concave, so is g.

Definition 3.2.15 Given two functions f, g from H → ]−∞, +∞], f is said

to majorize g if f(x) ≥ g(x) ∀x ∈ H.

Definition 3.2.16 Let f be a function from H → R. The lower semi-

continuous hull of f is the greatest lower semi-continuous function majorized

by f , i.e, the function whose epigraph is the closure of the epigraph of f .
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3.2. Convex Functions

Definition 3.2.17 Let f ∈ Γ0(H). The recession function of f is the func-

tion f∞ : H → ]−∞, +∞] whose epigraph is the recession cone of the epi-

graph of f , 0+(epi f).

Fact 3.2.18 [14, Theorem 2.1.5 (ii)] Let f ∈ Γ0(H) be such that int(dom f) 6=
∅ and let t0 ∈ dom f . The function ϕt0 : dom f\{t0} → R defined by

ϕt0 :=
f(t)− f(t0)

t− t0
,

is nondecreasing; if f is strictly convex then ϕt0 is increasing.

Proposition 3.2.19 Let f ∈ Γ0(H) and x0 ∈ dom f , then the recession

function of f is

f∞(u) = lim
t→∞

f(x0 + tu)− f(x0)
t

for all u ∈ H.

Proof. Using Definition 3.2.17 and Definition 3.1.10 we have

(u, λ) ∈ 0+(epi f) ⇔ ∀t > 0 : (x0, f(x0)) + t(u, λ) ∈ epi f

⇔ f(x0 + tu)− f(x0)
t

≤ λ

⇔ sup
t>0

f(x0 + tu)− f(x0)
t

≤ λ.

Fix u ∈ H, the function t 7→ f(x0+tu)−f(x0)
t is nondecreasing on ]0, +∞] due

to the convexity of f and Fact 3.2.18. Then,

(u, λ) ∈ 0+(epi f) ⇔ lim
t→∞

f(x0 + tu)− f(x0)
t

= sup
t>0

f(x0 + tu)− f(x0)
t

≤ λ.

16



3.2. Convex Functions

Therefore for all u ∈ H, f∞(u) = lim
t→∞

f(x0+tu)−f(x0)
t . ¥

3.2.1 Subgradients

In order to deal with nonsmooth convex functions, we will now introduce a

concept that is analogous to a derivative of a differentiable function.

Definition 3.2.20 We say that y ∈ H is a subgradient of a convex function

f at the point x if

f(x) + 〈y, z − x〉 ≤ f(z) (∀z ∈ H). (3.2)

The set of all subgradients of f at x is called the subdifferential of f at x and

is denoted by ∂f(x). That is,

∂f(x) := {y ∈ H : f(x) + 〈y, z − x〉 ≤ f(z) ∀z ∈ H}. (3.3)

Example 3.2.21 Let f(x) = |x|, then

∂f(x) =





{−1}, if x < 0;

[−1, 1], if x = 0;

{1}, if x > 0.

Fact 3.2.22 [12, Theorem 26.1] Let f : H → ]−∞, +∞] be a differentiable

function. Then ∂f = {∇f}.

Fact 3.2.23 [14, Theorem 2.5.7] If f is a proper convex function, then

x ∈ dom f is a minimum point for f if and only if 0 ∈ ∂f(x). In particular,

17



3.2. Convex Functions

if f is differentiable at x then x is a minimum if ∇f(x) = 0.

Fact 3.2.24 (Bronstead-Rockafellar) [14, Theorem 3.1.2] Let H be a

Hilbert space and f ∈ Γ0(H). Then dom f ⊆ dom ∂f and dom f∗ ⊆ ran ∂f .

3.2.2 Fenchel Conjugate

Definition 3.2.25 Let f : H → ]−∞, +∞]. The Fenchel conjugate, or

convex conjugate, of f is defined as

f∗(y) = sup
x∈dom f

(〈x, y〉 − f(x)) ,

for all y ∈ H.

It is interesting to note that since 〈x, y〉 − f(x) is affine with respect to y

for a fixed x, then f∗ is the supremum of a set of convex functions and

is therefore convex regardless of whether f is convex or not. In the case

where f is a finite, coercive and twice continuously differentiable function,

the Fenchel conjugate is also referred to as the Legendre transform of f [13,

Example 11.9].

Proposition 3.2.26 (Fenchel-Young Inequality) Let f : H → ]−∞,+∞].

The following holds

f(x) + f∗(x∗) ≥ 〈x, x∗〉 (3.4)

for all x, x∗ ∈ H.

Proof. Follows directly from the definition of the conjugate function. ¥

Proposition 3.2.27 If f1 ≤ f2 then f∗1 ≥ f∗2 .

18



3.2. Convex Functions

Proof. Let y ∈ H, since f1 ≤ f2 then 〈x, y〉 − f1(x) ≥ 〈x, y〉 − f2(x) for all

x ∈ H. Taking the supremum over x of each side yields

sup
x∈H

(〈x, y〉 − f1(x)) ≥ sup
x∈H

(〈x, y〉 − f2(x)) .

Therefore f∗1 (y) ≥ f∗2 (y). ¥

Proposition 3.2.28 Let f : H → ]−∞,+∞] and c ∈ R be a constant.

Then

(f(· − c))∗(x∗) = 〈x∗, c〉+ f∗(x∗).

Proof. Let x∗ ∈ H, then (f(· − c))∗(x∗) = sup
x

(〈x∗, x〉 − f(x− c)). Letting

x− c = x′, this becomes

(f(· − c))∗(x∗) = sup
x′

(〈x∗, x′ + c〉 − f(x′)
)

= 〈x∗, c〉+ sup
x′

(〈x∗, x′〉 − f(x′)
)

= 〈x∗, c〉+ f∗(x∗).

¥

Example 3.2.29 Let q = 1
2‖ · ‖2, then q∗ = q and this is the only self-

conjugate function, i.e. f = f∗.

Proof. From the definition of the conjugate we get that

q∗(y) = sup
x

(
〈x, y〉 − 1

2
‖x‖2

)

Setting h(x) = 〈x, y〉 − 1
2‖x‖2 and differentiating, we get h′(x) = y − x and

h′′(x) = − Id, which is negative definite: Hence, h is strictly concave and
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3.2. Convex Functions

therefore the critical point x = y is the maximizer. Setting x = y in the

equation above yields q∗(y) = 1
2‖y‖2.

On the other hand, suppose f is a convex function satisfying f = f∗. Then

f is proper and using Proposition 3.2.26 we get

〈x, x〉 ≤ f(x) + f∗(x) = 2f(x)

⇔ q(x) ≤ f(x)

Then by Fact 3.2.27 f∗ ≤ q∗ = q. Since f∗ = f , we get q ≤ f ≤ q, therefore

f = q. ¥

Due to its frequent use, from here on we will use the notation that

q :=
1
2
‖ · ‖2. (3.5)

Example 3.2.30 Let f : R→ R be defined by f(x) = 1
p |x|p then for p = 1

f∗(x∗) =





0, if − 1 ≤ x∗ ≤ 1;

+∞, otherwise.

And when p > 1

f∗(x∗) =
1
q
|x∗|q

where 1
p + 1

q = 1.

Proof. When p = 1, f(x) = |x| and f∗(x∗) = sup
x∈R

(xx∗ − |x|)
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3.2. Convex Functions

If x∗ ≥ 0, f∗(x∗) = sup
x∈R+

(xx∗ − x) = sup
x∈R+

(x(x∗ − 1)) =





+∞, if x∗ > 1;

0, if x∗ ≤ 1.

If x∗ < 0, f∗(x∗) = sup
x∈R−

(xx∗ + x) = sup
x∈R−

(x(x∗ + 1)) =





0, if x∗ ≥ −1;

+∞, if x∗ < −1.

Altogether,

f∗(x∗) =





0, if − 1 ≤ x∗ ≤ 1;

+∞, otherwise.

When p > 1, f(x) = 1
p |x|p and f∗(x∗) = sup

x∈R

(
xx∗ − 1

p |x|p
)

Differentiating to find the critical point,

d

dx
(xx∗ − 1

p
|x|p) = x∗ − |x|p−1 sgn(x) = 0,

where sgn(x) denotes the sign of x. Then solving for x yields

x∗ = |x|p−1 sgn(x) ⇒ |x∗| = |x|p−1 ⇒ |x| = |x∗| 1
p−1 .

Substituting this back into the definition of the conjugate,

x|x|p−1 sgn(x)− 1
p
|x|p = |x||x|p−1 − 1

p
|x|p = |x|p − 1

p
|x|p

= (
p− 1

p
)|x|p = (

p− 1
p

)(|x∗| 1
p−1 )p = (

p− 1
p

)|x∗| p
p−1 .

Letting q = p
p−1 , we get that f∗(x∗) = 1

q |x∗|q where 1
p + 1

q = 1. ¥
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3.2. Convex Functions

Example 3.2.31 Let f(x) = 1
p |x − c|p for some constant c with p > 1.

Then f is convex.

Proof. Let

g(z) = (
1
q
|z|q)∗ =

1
p
|z|p,

where 1
p + 1

q = 1. Then g(z) is convex since it is a conjugate function and

f(x) is convex by Fact 3.2.14. ¥

Fact 3.2.32 (Biconjugate theorem) [14, Theorem 2.3.3] Assume that

f : H → ]−∞, +∞] is a proper function. Then f∗∗ := (f∗)∗ = f if and

only if f ∈ Γ0(H).

Fact 3.2.33 (Conjugate of the difference of functions) [8, Theorem 2.1]

Let g ∈ Γ0(H) and let h ∈ Γ0(H) such that h and h∗ both have full domain.

Then

(∀x∗ ∈ H)(g − h)∗(x∗) = sup
y∗∈H

(g∗(y∗)− h∗(y∗ − x∗)) (3.6)

Definition 3.2.34 Let f : H → ]−∞,+∞], and A be a linear transforma-

tion from H to H. Define

Af(x) := inf{f(y) : Ay = x}.

Proposition 3.2.35 Let f : H → ]−∞, +∞], and A be a linear transfor-

mation from H to H. Then

(Af)∗ = f∗ ◦A∗.
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3.2. Convex Functions

Proof. Let x∗ ∈ H, then

(Af)∗(x∗) = sup
x∈H

(〈x, x∗〉 −Af(x)) = sup
x∈H

(
〈x, x∗〉 − inf

{y:Ay=x}
f(y)

)

= sup (〈x, x∗〉 − f(y) : (x, y) ∈ H ×H, Ay = x)

= sup (〈Ay, x∗〉 − f(y) : y ∈ H)

= sup (〈y,A∗x∗〉 − f(y) : y ∈ H)

= f∗(A∗x∗) = (f∗ ◦A∗)(x∗).

¥

Fact 3.2.36 (Fenchel’s Duality Theorem) [12, Theorem 31.1] Let f and

g be a proper convex functions on H. Suppose at least one of the following

holds:

(i) ri(dom f) ∩ ri(dom g) 6= ∅,

(ii) f and g are lower semicontinuous, and ri(dom f∗) ∩ ri(dom g∗) 6= ∅.

Then

inf
x

(f(x) + g(x)) = sup
x∗

(−g∗(−x∗)− f∗(x∗)) .

Fact 3.2.37 [14, Theorem 2.3.1] Let f : H → ]−∞,+∞] and α, β ∈ R.

If α > 0 then (αf)∗(x∗) = αf∗(α−1x∗) for every x∗ ∈ H; if β 6= 0 then

(f(β·))∗(x∗) = f∗(β−1x∗) for every x∗ ∈ H.
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3.2. Convex Functions

3.2.3 Epi-addition and Epi-multiplication

Definition 3.2.38 Let f1, f2 ∈ Γ0(H). The infimal convolution, or epi-

addition, is defined by

(f ¤ g)(x) := inf
x1+x2=x

(f1(x1) + f2(x2)) (3.7)

for all x ∈ H.

The infimal convolution is said to be exact at a point x if the infimum is

attained.

Definition 3.2.39 Let f ∈ Γ0(H) and α ≥ 0. We define epi-multiplication

by

α ? f =





αf(·/α), if α > 0;

ι{0}, if α = 0.

(3.8)

Proposition 3.2.40 [1, Proposition 3.1] Let f, f1, · · · , fn ∈ Γ0(H). Then

the following properties hold:

(i) dom(α ? f) = α(dom f)

(ii) dom(f1 ¤ · · ·¤ fn) = (dom f1) + · · ·+ (domfn)

Proposition 3.2.41 Let α ≥ 0. Then the following hold:

(i) (αf)∗ = α ? f∗;

(ii) (α ? f)∗ = αf∗;

(iii) (f1 ¤ · · ·¤ fn)∗ = f∗1 + · · ·+ f∗n.
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3.2. Convex Functions

Proof. (i) Let x∗ ∈ H, then we consider two cases.

(1) If α > 0,

(αf)∗(x∗) = sup
x

(〈x, x∗〉 − αf(x)) = α sup
x

(〈x, x∗/α〉 − f(x))

= αf∗(x∗/α).

(2) If α = 0

(αf)∗(x∗) = sup
x

(〈x, x∗〉 − 0]) =





0, if x∗ = 0;

+∞, otherwise

= ι{0}(x∗) = (α ? f∗)(x∗).

(3.9)

Altogether, (αf)∗(x) = (α ? f∗)(x∗).

(ii)

(α ? f)∗ =





sup
x

(〈x, x∗〉 − αf(x/α)) if α > 0

sup
x

(〈x, x∗〉 − ι{0}(x)
)

if α = 0

=





α sup
x

(〈x/α, x∗〉 − f(x/α)) if α > 0

0 if α = 0

= αf∗(x∗).
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(iii)

(f1 ¤ · · ·¤ fn)∗(x∗) = sup
x

(
〈x, x∗〉 − inf

x1+···+xn=x
(f1(x1) + · · ·+ fn(xn))

)

= sup
x

(
〈x1 + · · ·+ xn, x∗〉+ sup

x1+···+xn=x
(−f1(x1)− · · · − fn(xn))

)

= sup
x1

(〈x1, x
∗〉 − f1(x1)) + · · ·+ sup

x1

(〈x1, x
∗〉 − f1(x1))

= (f∗1 + · · ·+ f∗n)(x∗).

¥

Fact 3.2.42 [1, Fact 3.4] The following hold.

(i) If int dom f1 ∩ · · · int dom fn−1 ∩ dom fn 6= ∅, then (f1 + · · · + fn)∗ =

f∗1 ¤ · · ·¤ f∗n and the infimal convolution is exact.

(ii) If int dom f∗1 ∩· · · int dom f∗n−1∩dom f∗n 6= ∅, then f1 ¤ · · ·¤ fn is exact

and epi(f1 ¤ · · ·¤ fn) = (epi f1) + · · ·+ (epi fn).

Lemma 3.2.43 (λ1 ?(f1 + q) ¤ · · ·¤λn ?(fn + q))∗ = λ1(f∗1 ¤ q) + · · · +

λn(f∗n ¤ q)

Proof. Using Proposition 3.2.41(iii), Proposition 3.2.41(i), Fact 3.2.42, and

Example 3.2.29, we get that

(λ1 ?(f1 + q) ¤ · · ·¤λn ?(fn + q))∗ = (λ1 ?(f1 + q))∗ + · · ·+ (λn ?(fn + q))∗

= λ1(f1 + q)∗ + · · ·+ λn(fn + q)∗

= λ1(f∗1 ¤ q∗) + · · ·+ λn(f∗n ¤ q∗)

= λ1(f∗1 ¤ q) + · · ·+ λn(f∗n ¤ q).

(3.10)
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¥

The following lemma illustrates the beauty of the epi-multiplication no-

tation and will be used for a couple of proofs in the following chapters.

Lemma 3.2.44 Let fi : H → ]−∞,+∞] for 1 ≤ i ≤ n. Let f = (f1, · · · , fn),

x = (x1, · · · , xn) and f̃(x) =
∑

λifi(xi): Then f̃∗(x∗) =
n∑

i=1
λi ? f∗i (x∗i ).

Proof.

f̃∗(x∗) = sup
x∈H

{〈x, x∗〉 − f̃(x)}

= sup
x=(x1,··· ,xn)∈H

{〈x1, x
∗
1〉+ · · · 〈xn, x∗n〉 −

∑
λifi(xi)}

= λ1 sup
x1

{〈x1, x
∗
1/λ1〉 − f1(x1)}+ · · ·+ λn sup

xn

{〈xn, x∗n/λn〉 − fn(xn)}

= λ1f
∗
1 (

x∗1
λ1

) + · · ·+ λnf∗n(
x∗n
λn

) = λ1 ? f∗1 (x∗1) + · · ·+ λn ? f∗n(x∗n).

¥

3.3 Proximity Operators

Definition 3.3.1 The proximity operator, or proximal mapping, of a func-

tion f ∈ Γ0(H) is defined by

(∀x ∈ H) Proxf x = argminy∈H (f(y) + q(x− y)) . (3.11)

Fact 3.3.2 [6, Section 2.2] For all x ∈ H and for all p ∈ H

p = Proxf x ⇔ x− p ∈ ∂f(p),
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and

Proxf = (Id+∂f)−1.

Remark 3.3.3 Note that since the function y 7→ f(y) + q(x− y) is strictly

convex and supercoercive, it has a unique minimizer, p = Proxf (x).

3.4 Minimax Theory

Minimax problems are optimization problems that involve both minimiza-

tion and maximization. Let X and Y be arbitray subsets of H with X 6= ∅

and Y 6= ∅, and let F be a function from X × Y to [−∞,+∞]. Minimax

theory deals with problems of the form sup
x∈X

inf
y∈Y

F (x, y) or inf
y∈Y

sup
x∈X

F (x, y).

For more on minimax theory please see chapters 36 and 37 in [12].

Definition 3.4.1 If sup
x∈X

inf
y∈Y

F (x, y) = inf
y∈Y

sup
x∈X

F (x, y) then the common

value is called the minimax or the saddle-value of F .

Definition 3.4.2 F is a concave-convex function if F (·, y) is a concave

function on X for all y ∈ Y and F (x, ·) is convex on Y for all x ∈ X.

Similarly, F is a convex-concave function if F (·, y) is convex on X for all

y ∈ Y and F (x, ·) is concave on Y for all x ∈ X.

The following fact gives us conditions for determining whether the saddle-

value exists.

Fact 3.4.3 [12, Theorem 37.3] Let F : Rm × Rn → ]−∞,+∞] be a proper

concave-convex function with effective domain X × Y . Then either of the
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3.4. Minimax Theory

following conditions implies that the saddle-value of F exists. If both condi-

tions hold, the saddle-value must be finite.

(a) The convex functions F (x, ·) for x ∈ riX have no common direction of

recession.

(b) The convex functions −F (·, y) for y ∈ riY have no common direction

of recession.
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Chapter 4

The Proximal Average

When averaging functions, the traditional arithmetic average

λ1f1 + · · ·+ λnfn (4.1)

is the natural place to begin. However, when the domains of the functions do

not intersect then the result of (4.1) is a function that is everywhere infinity.

The proximal average provides a useful method of averaging functions, even

when their domains do not intersect.

In this chapter, we give a new proof to the self-duality of the proximal

average:

(P(f , λ))∗ = P(f∗, λ).

We also supply two self-dual smooth operators, Sβf and Tβf .

For this chapter, let f1, · · · , fn ∈ Γ0(H), and λ1, · · · , λn be strictly pos-

itive real numbers such that
n∑

i=1
λi = 1.
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4.1 Definitions

Definition 4.1.1 (Proximal Average) Let f = (f1, · · · , fn) and λ = (λ1, · · · , λn).

The λ-weighted proximal average of n functions fi, 1 ≤ i ≤ n, is

P(f , λ) = λ1 ?(f1 + q)¤ · · ·¤λn ?(fn + q)− q. (4.2)

That is,

(∀x ∈ H) P(f ,λ)(x) = inf
n∑

i=1
xi=x

n∑

i=1

(
λi(fi(xi/λi) + q(xi/λi))

)
− q(x).

This can be reformulated in two different ways.

Proposition 4.1.2 The proximal average can be equivalently defined by

(i) P(f ,λ)(x) = inf∑
λiyi=x

(∑
i

λifi(yi) +
∑
i

λiq(yi)
)
− q(x)

(ii) P(f ,λ) = (λ1(f1 + q)∗ + · · ·+ λn(fn + q)∗)∗ − q.

Proof. Using the change of variables yi = xi/λi in Definition 4.1.1 we im-

mediately get (i).

For (ii), first note that by Proposition 3.2.40(ii),

(∀i ∈ N) dom(f∗i ¤ q) = (dom f∗i ) + (dom q) = H.
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Then Fact 3.2.42(i), Proposition 3.2.41(i), and Fact 3.2.32 yield

(λ1(f1 + q)∗ + · · ·+ λn(fn + q)∗)∗ = (λ1(f1 + q)∗)∗¤ · · ·¤(λn(fn + q)∗)∗

= λ1 ?(f1 + q)∗∗¤ · · ·¤λn ?(fn + q)∗∗

= λ1 ?(f1 + q) ¤ · · ·¤λn ?(fn + q).

¥

4.2 Properties

Theorem 4.2.1 (Domain)

domP(f ,λ) = λ1 dom f1 + · · ·+ λn dom fn

Proof. Using Proposition 3.2.40i and Proposition 3.2.40 ii

domP(f , λ) = dom(λ1 ?(f1 + q) ¤ · · ·¤λn ?(fn + q))

= dom(λ1 ?(f1 + q)) + · · ·+ dom(λn ?(fn + q))

= λ1 dom(f1 + q) + · · ·+ λn dom(fn + q)

= λ1 dom f1 + · · ·+ λn dom fn.

(4.3)

¥

Corollary 4.2.2 If at least one function fi has full domain and λi > 0 then

P(f , λ) has full domain.
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4.2.1 Fenchel Conjugate

Next we examine the conjugate of the proximal average. The purpose of

this section is to give a new proof for (P(f , λ))∗ = P(f∗, λ) without using

Toland’s Duality Theorem. First we must prove the following lemma, which

will also be used later to reformulate the proximal average.

Lemma 4.2.3 The following identity holds

n∑

i=1

λiq(yi)− q(
n∑

i=1

λiyi) =
1
4

n∑

i=1

n∑

j=1

λiλj‖yi − yj‖2. (4.4)

Proof. Consider first the left hand side of (4.4),

n∑

i=1

λiq(yi)− q(
n∑

i=1

λiyi)

=
1
2

n∑

i=1

λi‖yi‖2 − 1
2
‖

n∑

i=1

λiyi‖2

=
1
2

n∑

i=1

λi‖yi‖2 − 1
2

n∑

i=1

λ2
i ‖yi‖2 −

∑

i6=j

λiλj〈yi, yj〉. (4.5)

On the other hand, from the right hand side we get,
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4.2. Properties

1
4

n∑

i=1

n∑

j=1

λiλj‖yi − yj‖2

=
1
4

n∑

i=1

λi

( n∑

j=1

λj‖yi − yj‖2

)

=
1
4

n∑

i=1

λi

( n∑

j=1

(λj‖yi‖2 − 2λj〈yi, yj〉+ λj‖yj‖2)
)

=
1
4

n∑

i=1

λi

( n∑

j=1

λj‖yi‖2 − 2
n∑

j=1

λj〈yi, yj〉+
n∑

j=1

λj‖yj‖2

)

=
1
4

n∑

i=1

λi

(
‖yi‖2 − 2

n∑

j=1

λj〈yi, yj〉+
n∑

j=1

λj‖yj‖2

)

=
1
4

( n∑

i=1

λi‖yi‖2 − 2
n∑

i=1

n∑

j=1

λiλj〈yi, yj〉+
n∑

i=1

λi

( n∑

j=1

λj‖yj‖2

))

=
1
2

n∑

i=1

λi‖yi‖2 − 1
2

n∑

i=1

n∑

j=1

λiλj〈yi, yj〉

=
1
2

n∑

i=1

λi‖yi‖2 − 1
2

n∑

i=1

λ2
i ‖yi‖2 −

∑

i6=j

λiλj〈yi, yj〉. (4.6)

Since (4.5) and (4.6) are equal, the proof is complete. ¥

The following lemma is new.

Lemma 4.2.4 Let

g(y1, · · · , yn) = λ1q(y1) + · · ·+ λnq(yn)− q(λ1y1 + · · ·+ λnyn),
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4.2. Properties

for (y1, · · · , yn) ∈ Hn and
n∑

i=1
λn = 1. Then

g∗(x∗1, · · · , x∗n) =





λ1 ? q(x∗1) + · · ·+ λn ? q(x∗n), if x∗1 + · · ·+ x∗n = 0;

+∞, otherwise.

Proof. For every (x∗1, · · · , x∗n) ∈ Hn we have

g∗(x∗1, · · · , x∗n) = sup
y1,··· ,yn

(
〈x∗1, y1〉+ · · ·+ 〈x∗n, yn〉 − λ1q(y1)− · · · − λnq(yn)

+ q(λ1y1 + · · ·+ λnyn)
)

. (4.7)

In light of Lemma 4.2.3, the equation within the supremum is concave and

therefore solving for critical points will yield the supremum. Taking the

partial derivatives, with respect to yi for i = 1...n, and setting them equal

to zero gives

x∗1 − λ1y1 + (λ1y1 + · · ·+ λnyn)λ1 = 0

... (4.8)

x∗n − λnyn + (λ1y1 + · · ·+ λnyn)λn = 0.

Then taking the sum of all of the above equations yields

n∑

i=1

x∗i −
n∑

i=1

λiyi +
n∑

i=1

λi(
n∑

i=1

λiyi) = 0

⇔
n∑

i=1

x∗i −
n∑

i=1

λiyi +
n∑

i=1

λiyi ⇔
n∑

i=1

x∗i = 0.
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4.2. Properties

So x∗1 + · · · + x∗n = 0 and if we let y1 = x∗1/λ1, · · · , yn = x∗n/λn then

(y1, · · · , yn) is a solution to (4.8). Consequently, λ1y1 + · · · + λnyn = 0

and 〈x∗i , x∗i /λi〉 = 2λiq(x∗i /λi) = 2(λi ? q)(x∗i ) for i = 1 · · ·n. This gives us

that

〈x∗1, y1〉+ · · ·+ 〈x∗n, yn〉 − λ1q(y1)− · · · − λnq(yn)

= 2
n∑

i=1

λi ? q(x∗i )− λ1 ? q(x∗1)− · · · − λn ? q(x∗n)

= λ1 ? q(x∗1) + · · ·+ λn ? q(x∗n)

If
∑
i

x∗i 6= 0 then let y1 = y2 = · · · = yn = y and then (4.7) becomes

g∗(x∗1, · · · , x∗n) ≥ sup
y

(
〈

n∑

i=1

x∗i , y〉 − λ1q(y)− · · · − λnq(y) + q(y)
)

≥ sup
y

(
〈

n∑

i=1

x∗i , y〉 − q(y) + q(y)
)

≥ sup
y

(
〈

n∑

i=1

x∗i , y〉
)

= +∞.

Thus,

g∗(x∗1, · · · , x∗n) =





λ1 ? q(x∗1) + · · ·+ λn ? q(x∗n), if x∗1 + · · ·+ x∗n = 0;

+∞, otherwise.

¥

Remark 4.2.5 It can be noted that ∂g
∂yi

= λiyi − (λ1y1 + · · · + λnyn)λi for
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4.2. Properties

i = 1 · · ·n so that ∂g
∂y1

+ · · ·+ ∂g
∂yn

= 0. This means that

ran ∂g ⊆ {(x∗1, · · · , x∗n) : x∗1 + · · ·+ x∗n = 0}.

Conversely, if x∗1 + · · ·+x∗n = 0 and we let y1 = x∗1/λ1, · · · , yn = x∗n/λn then

∇g(y1, · · · , yn) = (x∗1, · · · , x∗n) and

{(x∗1, · · · , x∗n) : x∗1 + · · ·+ x∗n = 0} ⊆ ran ∂g.

Therefore ran ∂g = {(x∗1, · · · , x∗n) : x∗1 + · · · + x∗n = 0}. Now since ran ∂g ⊆
dom g∗ ⊆ ran ∂g by Fact 3.2.24 and we have ran ∂g = ran ∂g then dom g∗ =

{(x∗1, · · · , x∗n) : x∗1 + · · ·+ x∗n = 0}, as we saw in the previous lemma.

Theorem 4.2.6 (Fenchel Conjugate) [1, Theorem 5.1]

(P(f ,λ))∗ = P(f∗, λ) (4.9)

Proof. Let

f(x) = P(f , λ)(x) = inf
n∑

i=1
λiyi=x

(
λ1f1(y1) + · · ·λnfn(yn) + λ1q(y1) + · · ·+ q(yn)

− q(λ1y1 + · · ·+ λnyn)
)

,

and let A : Hn → H be a linear operator defined by A =
(

λ1, · · · , λn

)
,

i.e. A(x1, · · · , xn) =
n∑

i=1
λixi. Then A∗ : H → Hn, the adjoint of A, is
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4.2. Properties

A∗ =




λ1

...

λn




, i.e. A∗(z) = (λ1z, · · · , λnz). Then we can write f as f = AF

where

F (y) = λ1f1(y1)+· · ·+λnfn(yn)+λ1q(y1)+· · ·+λnq(yn)−q(λ1y1+· · ·+λnyn)

and

AF (y) := inf
{x:Ax=y}

F (x).

For ease of notation, say that F = j + g where j(y) = λ1f1(y1) + · · · +
λnfn(yn) and g(y) = λ1q(y1) + · · · + λnq(yn) − q(λ1y1 + · · · + λnyn). By

Proposition 3.2.35,

f∗(x∗) = (AF )∗(x∗) = (F ∗ ◦A∗)(x∗).

Since j ∈ Γ0(H) and dom g = H×· · ·×H, then int(dom f)∩ int(dom g) 6= ∅

and we can use Fact 3.2.42(i) and Lemma 3.2.44 to get

f∗(x∗) = (j∗¤ g∗)A∗(x∗)

=
(

(λ1 ? f∗1 + · · ·+ λn ? f∗n) ¤ g∗
)

A∗(x∗).
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4.2. Properties

Then using Lemma 4.2.4 we get

f∗(x∗) =
(

(λ1 ? f∗1 + · · ·+ λn ? f∗n) ¤ g∗
)

(λ1x
∗, · · · , λnx∗)

= inf
y1,··· ,yn

(
λ1f

∗
1 (y1/λ1) + · · ·+ λnf∗n(yn/λn) + g∗(λ1x

∗ − y1, · · · , λnx∗ − yn)
)

= inf
λ1x∗−y1+···+λnx∗−yn=0

(
λ1f

∗
1 (y1/λ1) + · · ·+ λnf∗n(yn/λn)

+ λ1q(
λ1x

∗ − y1

λ1
) + · · ·+ λnq(

λnx∗ − yn

λn
)
)

= inf
x∗=y1+···+yn

(
λ1f

∗
1 (y1/λ1) + · · ·+ λnf∗n(yn/λn) + λ1q(x∗ − y1

λ1
) + · · ·

+ λnq(x∗ − yn

λn
)
)

.

Expanding the last set of terms in the above equation yields

λiq(x∗ − yi

λi
) =

λi

2
‖x∗ − yi

λi
‖2 =

λi

2
‖x∗‖2 − 〈x∗, yi〉+

λi

2
‖ yi

λi
‖2

= λiq(x∗)− 〈x∗, yi〉+ λiq(
yi

λi
)

for all i = 1 · · ·n. Taking the sum of all of these terms and substituting back

into the infimum equation produces

f∗(x∗) = inf
x∗=y1+···+yn

(
λ1f

∗
1 (y1/λ1) + · · ·+ λnf∗n(yn/λn) + q(x∗)− 〈x∗, y1 + · · ·+ yn〉

+ λ1q(
y1

λ1
) + · · ·+ λnq(

yn

λn
)
)

= inf
x∗=y1+···+yn

(
λ1f

∗
1 (y1/λ1) + · · ·+ λnf∗n(yn/λn) + λ1q(

y1

λ1
) + · · ·+ λnq(

yn

λn
)

− q(x∗)
)

.
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4.2. Properties

Making the simple change of variable zi = yi/λi for i = 1 · · ·n generates

f∗(x∗) = inf
x∗=λ1z1+···+λnzn

(
λ1f

∗
1 (z1) + · · ·+ λnf∗n(zn) + λ1q(z1) + · · ·λnq(zn)− q(x∗)

)

= P(f∗, λ).

¥

Example 4.2.7 Let f = (f, f∗) and λ =
(

1
2 , 1

2

)
, then P(f ,λ) = q.

Proof. By Fact 4.2.6,

(P(f , λ))∗ = P(f∗, λ).

Since f∗ = (f∗, f∗∗) = (f∗, f), then we get that P(f∗,λ) = P(f , λ). There-

fore, using Example 3.2.29 we see that (P(f , λ))∗ = q. ¥

Corollary 4.2.8 P(f ,λ) is convex, lower semicontinuous, and proper.

Proof. We can apply Fact 4.2.6 twice to see that

(P(f , λ))∗∗ = (P(f∗, λ))∗ = P(f , λ).

Therefore, in light of Fact 3.2.32 P(f , λ) ∈ Γ0(H). ¥

Definition 4.2.9 (Moreau Envelope) The Moreau envelope of f ∈ Γ0(H)

with parameter µ > 0 is

eµf = f ¤µ ? q.

Fact 4.2.10 (Moreau Envelope of the Proximal Average) [1, Theo-

rem 6.2]
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4.3. Applications

(i) eµP(f ,λ) = λ1eµf1 + · · ·+ λneµfn

(ii) (eµP(f ,λ))∗ = λ1 ?(eµf1)∗¤ · · ·¤λn ?(eµfn)∗

Fact 4.2.11 (Proximal Mapping) [1, Theorem 6.7]

ProxP(f ,λ) = λ1 Proxf1 + · · ·+ λn Proxfn

4.3 Applications

4.3.1 Self-dual Smooth Approximations

A function f in Rn is smooth if f is finite and differentiable everywhere in

Rn. It can be helpful in cases of nondifferentiable convex functions to find

a smooth approximation of the function. Here, two smooth approximations

are defined using the proximal average. The first smooth operator, Sβf ,

has a simple expression in terms of the Moreau envelope which can be seen

in [9]. The second smooth operator, Tβf , has a simple expression in terms

of the proximal average and is new. Both approximations are ”self-dual”

in the sense that the conjugate of the approximation of f is equal to the

approximation of the conjugate of f .

Recall that,

P(f1, λ1, · · · , fn, λn) := (λ1(f1 + q)∗ + · · ·+ λn(fn + q)∗)∗ − q.

For 0 ≤ β ≤ 1 and a proper lower-semicontinuous function f , define Sβf :
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4.3. Applications

Rn → ]−∞,+∞] by

Sβf(x) := (1 + β)2P(f,
1− β

1 + β
, q,

2β

1 + β
)(

x

1 + β
) (4.10)

for all x ∈ Rn.

Theorem 4.3.1 (i) (Sβf)∗ = Sβf∗

(ii) When 0 < β ≤ 1, we have

Sβf = (1 + β)P(1− β, f, β, 0) + βq = (1− β)2(f ¤ 1
β

q) + βq. (4.11)

Therefore when β → 0, Sβf → lim
β→0+

(f ¤ 1
β q) = f .

Proof. (i) By Theorem 4.2.6, we have

(Sβf)∗ =
(

(1 + β)2P(f,
1− β

1 + β
, q,

2β

1 + β
)(

·
1 + β

)
)∗

By Fact 3.2.37 and Proposition 3.2.41(i) we then get

(Sβf)∗ =
(

(1 + β)2P(f,
1− β

1 + β
, q,

2β

1 + β
)
)∗

((1 + β)·)

= (1 + β)2
(
P(f,

1− β

1 + β
, q,

2β

1 + β
)
)∗

(
(1 + β)·
(1 + β)2

)

= (1 + β)2P
(

f∗,
1− β

1 + β
, q,

2β

1 + β

)
(

·
(1 + β)

)

= Sβf∗.

(ii) For every x, by the definition of the proximal average, Proposi-
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4.3. Applications

tion 3.2.41(i), and Example 3.2.29

Sβf(x) = (1 + β)2
[(

1− β

1 + β
(f + q)∗ +

2β

1 + β
(q + q)∗

)∗
(

x

1 + β
)− 1

2
‖x‖2

(1 + β)2

]

= (1 + β)2
(

1− β

1 + β
(f + q)∗ +

β

1 + β
q

)∗
(

x

1 + β
)− q(x)

= (1 + β)
(

(1− β)(f + q)∗ + βq

)∗
(x)− q(x)

= (1 + β)
[(

(1− β)(f + q)∗ + βq

)∗
(x)− q(x)

]
+ βq(x).

This is the first equality in (4.11). To continue, apply Fact 3.2.42(i), Fact 3.2.32,

Example 3.2.29, and Proposition 3.2.41(i) to

Sβf = (1 + β)
(

(1− β)(f + q)∗ + βq

)∗
(x)− q(x),

to get

Sβf(x) = (1 + β) [((1− β)(f + q)∗)∗¤(βq)∗] (x)− q(x)

= (1 + β)
[
((1− β)(f + q)(

·
1− β

))¤ 1
β

q

]
(x)− q(x).

Using Definition 3.2.38,

Sβf(x) = (1 + β) inf
u

[
(1− β)(f + q)(

u

1− β
) +

1
β

q(x− u)
]
− q(x)

= (1 + β) inf
u

[
(1− β)f(

u

1− β
) + (1− β)q(

u

1− β
) +

1
β

q(x− u)
]
− q(x)

= (1− β2) inf
u

[
f(

u

1− β
) + q(

u

1− β
) +

1
β(1− β)

q(x− u)− 1
1− β2

q(x)
]

.

(4.12)
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4.3. Applications

Simplifying the portion of (4.12) containing q and using 1
(1−β)2

+ 1
β(1−β) =

1
β(1−β)2

and 1
β(1−β) − 1

(1−β2)
= 1

β(1−β2)

q(
u

1− β
) +

1
β(1− β)

q(x− u)− 1
1− β2

q(x)

=
1

(1− β)2
‖u‖2

2
+

1
β(1− β)

‖x‖2

2
− 1

β(1− β)
〈x, u〉+

1
β(1− β)

‖u‖2

2
− 1

1− β2

‖x‖2

2

=
1

β(1− β)2
‖u‖2

2
− 1

β(1− β)
〈x, u〉+

1
β(1− β2)

‖x‖2

2

=
1
2β

(
‖u‖2

(1− β)2
− 2〈x,

u

1− β
〉+ ‖x‖2) + (

1
β(1− β2)

− 1
β

)
‖x‖2

2

=
1
2β
‖x− u

1− β
‖2 +

β

1− β2

‖x‖2

2
.

Plugging this back into (4.12) gives

Sβf(x) = (1− β2) inf
u

(
f(

u

1− β
) +

1
β

q(x− u

1− β
) +

β

1− β2
q(x)

)

= (1− β2) inf
w

(
f(w) +

1
β

q(x− w)
)

+ βq(x)

= (1− β2)
(

f ¤ 1
β

q

)
(x) + βq(x),

which is the second equality of (4.11). The convergence result follows from

[13, Theorem 1.25]. ¥

Another smooth operator is defined by

Tβf := P(f, 1− β, q, β). (4.13)

Theorem 4.3.2 (i) (Tβf)∗ = Tβf∗
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4.3. Applications

(ii) When 0 < β ≤ 1, we have

Tβf = (1− β)
(

f ¤ 2− β

β
q

)
(

2
2− β

·) +
β

2− β
q.

Proof. (i) This follows from Theorem 4.2.6 and Example 3.2.29

(Tβf)∗ = (P(f, 1− β, q, β))∗ = P(f∗, 1− β, q∗, β) = P(f∗, 1− β, q, β)

= Tβf∗

(ii) Applying Proposition 4.1.2(ii), Proposition 3.2.41(i), Example 3.2.29,

Fact 3.2.42(i), and Definition 3.2.38,

Tβf(x) = ((1− β)(f + q)∗ + β(2q)∗)∗(x)− q(x)

=
(
(1− β)(f + q)∗ + β

q

2

)∗
(x)− q(x)

=
(

(1− β)(f + q)(
·

1− β
) ¤ 2

β
q

)
(x)− q(x)

= inf
u

(
(1− β)f(

u

1− β
) + (1− β)q(

u

1− β
) +

2
β

q(x− u)
)
− q(x).

This is equivalent to,

Tβf(x) = (1−β) inf
u

(
f(

u

1− β
) + q(

u

1− β
) +

2
β(1− β)

q(x− u)− 1
1− β

q(x)
)

.

(4.14)
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4.3. Applications

Note that

q(
u

1− β
) +

2
β(1− β)

q(x− u)− 1
1− β

q(x)

=
1

(1− β)2
‖u‖2

2
+

2
β(1− β)

‖x‖2 − 2〈x, u〉+ ‖u‖2

2
− 1

1− β

‖x‖2

2

=
2− β

β(1− β)2
‖u‖2

2
− 2〈x, u〉

β(1− β)
+

2− β

β(1− β)
‖x‖2

2

=
2− β

2β

( ‖u‖2

(1− β)2
− 2〈 2x

2− β
,

u

1− β
〉+ ‖ 2x

2− β
‖2

)
+

(
2− β

β(1− β)
− 4

β(2− β)

) ‖x‖2

2

=
2− β

2β
‖ 2x

2− β
− u

1− β
‖2 +

β

(1− β)(2− β)
‖x‖2

2
.

Substitute this back into (4.14) to get

Tβf(x) = (1− β) inf
u

(
f(

u

1− β
) +

2− β

2β
‖ 2x

2− β
− u

1− β
‖2

)
+

β

2− β

‖x‖2

2

= (1− β) inf
w

(
f(w) +

2− β

β
q(

2x

2− β
− w)

)
+

β

2− β
q(x)

= (1− β)
(

f ¤ 2− β

β
q

)
(

2x

2− β
) +

β

2− β
q(x),

which proves the desired equality. ¥

46



Chapter 5

The Kernel Average of Two

Functions

5.1 Definition

The kernel average for two functions is given by Bauschke and Wang in

[3] as a generalization of the proximal average. A natural extension of the

definition of the proximal average, the kernel average replaces the use of q

with any kernel function g. Using the same notation as the previous chapter,

we assume f1, f2, and g are functions in Γ0(H), and λ1, λ2 are strictly positive

real numbers such that λ1 + λ2 = 1.

Definition 5.1.1 (Kernel Average) Let f = (f1, f2) and λ = (λ1, λ2),

we define P (f , λ, g) : H → [−∞, +∞] at x ∈ H by

P (f ,λ, g)(x) := inf
λ1y1+λ2y2=x

(λ1f1(y1) + λ2f2(y2) + λ1λ2g(y1 − y2))

= inf
x=z1+z2

(
λ1f1(

z1

λ1
) + λ2f2(

z2

λ2
) + λ1λ2g(

z1

λ1
− z2

λ2
)
)

.

(5.1)

We call this the average of f1 and f2 with respect to the kernel g, or the

g-average of f1 and f2.
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5.1. Definition

Example 5.1.2 (Arithmetic Average) Set g = ι{0}, then

P (f , λ, g)(x) = inf
λ1y1+λ2y2=x

(λ1f1(y1) + λ2f2(y2) + λ1λ2ι0(y1 − y2))

= inf
λ1y1+λ2y1=x

(λ1f1(y1) + λ2f2(y1))

= λ1f1(x) + λ2f2(x)

is the arithmetic average.

Lemma 5.1.3 The following equality holds when λ1 + λ2 = 1.

λ1λ2‖y1 − y2‖2 = λ1‖y1‖2 + λ2‖y2‖2 − ‖λ1y1 + λ2y2‖2.

Proof. Let y1, y2 ∈ H then by Lemma 4.2.3,

λ1‖y1‖2 + λ2‖y2‖2 − ‖λ1y1 + λ2y2‖2 = 2
(

1
4

2∑

i=1

2∑

j=1

λ1λj‖yi − yj‖2

)

= 2
(

1
4
λ1λ2‖y1 − y2‖2 +

1
4
λ2λ1‖y2 − y1‖2

)

= λ1λ2‖y1 − y2‖2

¥

Example 5.1.4 (Proximal Average) If g = q, then

P (f , λ, g)(x) = inf
λ1y1+λ2y2=x

(
λ1f1(y1) + λ2f2(y2) + λ1λ2

1
2
‖y1 − y2‖2

)
.
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Applying Lemma 5.1.3

P (f , λ, g) = inf
λ1y1+λ2y2=x

(
λ1f1(y1)+λ2f2(y2)+

1
2
λ1‖y1‖2+

1
2
λ2‖y2‖2−1

2
‖x‖2

)
,

which is the proximal average with n = 2.

Example 5.1.5 Let f1 = ι{a} and f2 = ι{b}, with a, b ∈ R. Then

P (f ,λ, g) =





λ1λ2g(a− b) if x = λ1a + λ2b

+∞ otherwise.

5.2 Properties

Fact 5.2.1 (Fenchel Conjugate) [3, Theorem 2.2] Let f1, f2, g ∈ Γ0(H).

For every x∗ ∈ H,

(P (f , λ, g))∗(x∗) = (clϕ)(λ1x
∗, λ2x

∗) (5.2)

where

ϕ(u, v) = inf
λ1z1+λ2z2=u+v

(
λ1f

∗
1 (z1) + λ2f

∗
2 (z2) +

1
2
λ1λ2(g∗(

u

λ1λ2
− z1

λ2
) + g∗(

−v

λ1λ2
− z2

λ1
))

)
.

Furthermore, if (ri dom f1− ri dom f2)
⋂

ri dom g 6= ∅ then the closure oper-

ation in (5.2) can be omitted and we get that

(P (f , λ, g))∗(x∗) = P (f∗, λ, (g∗)∨) (5.3)
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5.2. Properties

where for a given function g ∈ Γ0(H), let g∨(x) = g(−x), and the infimum

in Definition 5.1.1 is attained, that is

P (f∗, λ, (g∗)∨)(x∗) = min
x∗=λ1z1+λ2z2

(λ1f
∗
1 (z1) + λ2f

∗
2 (z2) + λ1λ2g

∗(z2 − z1)) .

(5.4)

Corollary 5.2.2 Let f1, f2, g ∈ Γ0(H), and assume that both g and g∗ have

full domain. Then both P (f , λ, g) and P (f∗, λ, (g∗)∨) are in Γ0(H) and

(P (f , λ, g))∗ = P (f∗, λ, (g∗)∨). (5.5)

In particular, for g = 1
p‖ · ‖p with p > 1, we have

(P (f , λ,
1
p
‖ · ‖p))∗ = P (f∗, λ,

1
q
‖ · ‖q) (5.6)

where 1
p + 1

q = 1.

Can the definition of the kernel average be generalized for n functions?

What is the reformulation of Definition 5.1.1? This will be addressed in the

next chapter.
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Chapter 6

The Kernel Average of n

Functions

6.1 Motivation

In this chapter, we look at another reformulation of the proximal average

and see how that reformulation can be used to extend the definition of the

kernel average to n functions. Similar to the previous chapters, we assume

f1, · · · , fn and g are functions in Γ0(H), and λ1, · · · , λn are strictly positive

real numbers such that
n∑

i=1
λi = 1. First we will prove a new reformulation

of the proximal average.

Theorem 6.1.1 Let f = (f1, · · · fn) with f1, · · · , fn ∈ Γ0(H), and λ =

(λ1, · · · , λn) with λ1, · · · , λn ≥ 0 and
n∑

i=1
λi = 1. Define

f := P(f ,λ) =
(
λ1(f1 + q)∗ + · · ·+ λn(fn + q)∗

)∗ − q.

Then for every x ∈ H,

f(x) = inf
λ1y1+···λnyn=x

λ1f1(y1) + · · ·+ λnfn(yn) +
1
2

∑

i<j

λiλj‖yi − yj‖2.
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6.1. Motivation

Proof. By Proposition 4.1.2(i) and Lemma 4.2.3

f(x) = inf
n∑

i=1
λiyi=x

( n∑

i=1

λifi(yi) +
n∑

i=1

λiq(yi)− q(x)
)

= inf
n∑

i=1
λiyi=x

( n∑

i=1

λifi(yi) +
n∑

i=1

λiq(yi)− q(
n∑

i=1

λiyi)
)

= inf∑
λiyi=x

(∑
λifi(yi) +

1
4

n∑

i=1

n∑

j=1

λiλj‖yi − yj‖2
)

= inf∑
λiyi=x

(∑
λifi(yi) +

∑

i<j

λiλj
1
2
‖yi − yj‖2

)
.

¥

This reformulation of the proximal average suggests a generalization

where 1
2‖ · ‖2 is replaced by a function g. We’ll call this generalization

the kernel average of n functions, defined by

Qg(f , λ)(x) := inf∑
λiyi=x

( ∑
λifi(yi) +

∑

i<j

λiλjg(yi − yj)
)
. (6.1)

This definition is the same as the kernel average when n = 2, but extends

the kernel average definition by allowing more than two functions. We’ll now

explore the kernel average for n functions in a bit more detail, and from here

on when we refer to the kernel average we mean Qg(f , λ).
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6.2. The Kernel Average Conjugate

6.2 The Kernel Average Conjugate

We will now consider the kernel average as

Qg(f , λ)(x) = inf
Ay=x

{h(y) := f̃(y) + g̃(y)} = (Ah)(x),

where

A(x1, · · · , xn) =
n∑

i=1

λixiAh = inf{Ay = x}{h(x)},

f̃(y) =
∑

λifi(yi), and

g̃(y) =
∑

i<j

λiλjg(yi − yj).

In light of Proposition 3.2.35, we get

Q∗
g(x

∗) = (h∗ ◦A∗)(x∗)

=
(

(f̃ + g̃)∗ ◦A∗
)

(x∗),

so we can see that to get Q∗
g we need to compute h∗ = (f̃ + g̃)∗, which by

Fact 3.2.42 we have h∗ = f̃∗¤ g̃∗. It is quite simple to compute f̃∗, and this

was done in Lemma 3.2.44, but g̃∗ is more challenging.

To consider g̃∗ =
( ∑

i<j
λiλjg(yi − yj)

)∗, we’ll first begin with the case

which gives us the proximal average, where g = q, with the hope that this

will allow us to find a general formula for any g.

Proposition 6.2.1 Let x = (x1, · · · , xn) and g1(x) =
n∑

i=1

n∑
j=1

1
2‖xi − xj‖2 =
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6.2. The Kernel Average Conjugate

2
∑
i<j

1
2‖xi − xj‖2 then

g∗1(x
∗) =





1
8n2

n∑
i=1

n∑
j=1

‖x∗i − x∗j‖2, if x∗1 + · · ·x∗n = 0;

+∞, otherwise.

Proof. Let λi = 1
n for i = 1 · · ·n, then g1 can be rewritten as

g1(x) =
n∑

i=1

n∑

j=1

1
2
‖xi − xj‖2 = (2n2) · 1

4

n∑

i=1

n∑

j=1

‖xi − xj‖2.

Using Lemma 4.2.3,

g1(x) = 2n2

( n∑

i=1

λiq(xi)− q(
n∑

i=1

λixi)
)

= 2n2 · g(x),

where g(x) is as defined in Lemma 4.2.4. Then by Proposition 3.2.41(i) and

Lemma 4.2.4

g∗1(x
∗) = 2n2g∗(

x∗

2n2
)

=





2n2

(
n∑

i=1
λi ? q( x∗i

2n2 )
)

, if x∗1
2n2 + · · ·+ x∗n

2n2 = 0;

+∞, otherwise.
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6.2. The Kernel Average Conjugate

Now, λi ? q( x∗i
2n2 ) = 1

nq(nx∗i
2n2 ) = 1

4n3 q(x∗i ) so

2n2

( n∑

i=1

λi ? q(
x∗i
2n2

)
)

=
1
2n

n∑

i=1

q(x∗i )

=
1
2

( n∑

i=1

1
n

q(x∗i )
)

=
1
2

( n∑

i=1

λiq(x∗i )
)

.

Applying Lemma 4.2.3

2n2

( n∑

i=1

λi ? q(
x∗i
2n2

)
)

=
1
2

(
q(

n∑

i=1

λix
∗
i ) +

1
4

n∑

i=1

n∑

j=1

λiλj‖x∗i − x∗j‖2

)
.

Since x∗1
2n2 + · · ·+ x∗n

2n2 = 0 ⇔ 1
2n

(
λ1x

∗
1 + · · ·+ λnx∗n

)
= 0 ⇔

n∑
i=1

λix
∗
i = 0, we

get

2n2

( n∑

i=1

λi ? q(
x∗i
2n2

)
)

=
1
2

(
1
4

n∑

i=1

n∑

j=1

λiλj‖x∗i − x∗j‖2

)

=
1

8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2.

Altogether,

g∗1(x
∗) =





1
8n2

n∑
i=1

n∑
j=1

‖x∗i − x∗j‖2, if x∗1 + · · ·+ x∗n = 0;

+∞, otherwise.

¥

Proposition 6.2.1 can also be proven directly using critical points. Proof.
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6.2. The Kernel Average Conjugate

By definition,

g∗1(x
∗) = sup

x1,··· ,xn

(
〈x∗1, x1〉+ · · ·+ 〈x∗n, xn〉 −

n∑

i=1

n∑

j=1

1
2
‖xi − xj‖2

)
.

Let ĝ1(x) = 〈x∗1, x1〉 + · · · + 〈x∗n, xn〉 −
n∑

i=1

n∑
j=1

1
2‖xi − xj‖2. Since ∂g1

∂xi
=

2
n∑

j=1
(xi − xj), we get

∇ĝ1(x) = (x∗1 − 2
n∑

l=1

(x1 − xl), · · · , x∗n − 2
n∑

l=1

(xn − xl)).

Setting this equal to zero to solve for the critical points, we see

(x∗1, · · · , x∗n) = (2
n∑

l=1

(x1 − xl), · · · , 2
n∑

l=1

(xn − xl)),

and therefore that x∗1 + · · ·+ x∗n = 0. And we also get

(x∗i − x∗j ) = 2
n∑

l=1

(xi − xl)− (xj − xl) = 2
n∑

l=1

(xi − xj) = 2n(xi − xj),

which implies that (xi − xj) = 1
2n(x∗i − x∗j ) for all i, j with 1 ≤ i, j ≤ n.

Since ĝ1 is a sum of linear and concave functions, then ĝ1 is concave. Thus,

the critical point is a maximum and we can substitute into g∗1 to find the

supremum.
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6.2. The Kernel Average Conjugate

Doing this, we find

g∗1(x
∗) = 〈x∗1, x1〉+ · · ·+ 〈x∗n−1, xn−1〉+ 〈−x∗1 − · · · − x∗n−1, xn〉

−
n∑

i=1

n∑

j=1

1
2
( 1
2n

)2‖x∗i − x∗j‖2

= 〈x∗1, x1 − xn〉+ · · ·+ 〈x∗n−1, xn−1 − xn〉 − 1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

= 〈x∗1,
1
2n

(x∗1 − x∗n)〉+ · · ·+ 〈x∗n−1,
1
2n

(x∗n−1 − x∗n)〉 − 1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

=
1
2n

(〈x∗1, x∗1〉+ · · ·+ 〈x∗n−1, x
∗
n−1〉)−

1
2n
〈x∗1, x∗n〉 − · · · −

1
2n
〈x∗n−1, x

∗
n〉

− 1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

=
1
2n

(‖x∗1‖2 + · · ·+ ‖x∗n−1‖2 +
1
2n
〈−x∗1 − · · · − x∗n−1, x

∗
n〉 −

1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

=
1
2n

n∑

i=1

‖x∗i ‖2 − 1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

=
1
2n

n∑

i=1

‖x∗i ‖2 − 1
2
‖x∗1 + · · ·+ x∗n

n
‖2 − 1

8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2.

Then using (4.2.3), we get that

g∗1(x
∗) =

1
4n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2 − 1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

=
1

8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2

when x∗1 + · · ·+ x∗n = 0. If x∗1 + · · ·+ x∗n 6= 0 then set x1 = · · · = xn = x and
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6.2. The Kernel Average Conjugate

get that

g∗1(x
∗) ≥ sup

x

(
〈

n∑

i=1

x∗i , x〉
)

= +∞.

¥

This formula can be written in several equivalent forms using the fact

that
n∑

i=1
x∗i = 0. Using this, we can see that

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2 =
n∑

i=1

n∑

j=1

(‖x∗i ‖2 + ‖x∗j‖2 − 2〈x∗i , x∗j 〉)

=
n∑

i=1

( n∑

j=1

(‖x∗i ‖2 + ‖x∗j‖2)− 2〈x∗i ,
n∑

j=1

x∗j 〉
)

=
n∑

i=1

( n∑

j=1

(‖x∗i ‖2 + ‖x∗j‖2)− 0
)

=
n∑

i=1

( n∑

j=1

(‖x∗i ‖2 + ‖x∗j‖2) + 2〈x∗i ,
n∑

j=1

x∗j 〉
)

=
n∑

i=1

n∑

j=1

‖x∗i + x∗j‖2.

And from the first proof of Proposition 6.2.1 we also see that

g∗1(x
∗) =

1
8n2

n∑

i=1

n∑

j=1

‖x∗i − x∗j‖2 =
1
2n

n∑

i=1

1
2
‖x∗i ‖2.

So that the following three formulations for the conjugate of g1 are equiva-

lent:

(1) g∗1(x
∗) = 1

8n2

n∑
i=1

n∑
j=1

‖x∗i − x∗j‖2 =
n∑

i=1

n∑
j=1

1
2‖

x∗i−x∗j
2n ‖2

(2) g∗1(x
∗) = 1

8n2

n∑
i=1

n∑
j=1

‖x∗i + x∗j‖2 =
n∑

i=1

n∑
j=1

1
2‖

x∗i +x∗j
2n ‖2
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(3) g∗1(x
∗) = 1

2n

n∑
i=1

1
2‖xi‖2

when x∗1 + · · ·+ x∗n = 0 and g∗1(x
∗) = +∞ otherwise.

The next step we wish to consider is the case where g = 1
2

n∑
i=1

n∑
j=1

1
p‖xi−

xj‖p for both general p > 1 and general n > 1. The conjugate is known for

general p > 1 and n = 2, so in the next section we begin looking at general

p with n = 3.

Example 6.2.2 (General p, n = 2) Let f(x1, x2) = 1
p‖x1−x2‖p with p >

1. Then,

f∗(y1, y2) = sup
x1,x2

(
〈x1, y1〉+ 〈x2, y2〉 − 1

p
‖x1 − x2‖p

)

= sup
x1,x2

(
〈x1 − x2, y1〉+ 〈x2, y1 + y2〉 − 1

p
‖x1 − x2‖p

)
.

And using Example 3.2.30, with 1
p + 1

q = 1, we get

f∗(y1, y2) =





1
q‖y1‖q, if y1 + y2 = 0;

+∞, otherwise.

6.3 P-norm Kernel Conjugate for General p Case

when n = 3

We now wish to consider the case where g2 = 1
2

3∑
i=1

3∑
j=1

1
p‖xi − xj‖p, that is

g2(x1, x2, x3) =
1
p
‖x1 − x2‖p +

1
p
‖x2 − x3‖p +

1
p
‖x3 − x1‖p.
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Then g∗2(y1, y2, y3) is equal to

sup
x1,x2,x3

{x1y1 + x2y2 + x3y3 − 1
p
‖x1 − x2‖p − 1

p
‖x2 − x3‖p − 1

p
‖x3 − x1‖p}

= sup
x1,x2

{x1y1 + x2y2 − 1
p
‖x1 − x2‖p + sup

x3

(x3y3 − 1
p
‖x2 − x3‖p − 1

p
‖x3 − x1‖p)}

(6.2)

Recognizing that sup
x3

{x3y3 − 1
p‖x2 − x3‖p − 1

p‖x3 − x1‖p} = (1
p‖x1 − ·‖p +

1
p‖x2 − ·‖p)∗(y3), then applying Fact 3.2.42(i)

sup
x3

{x3y3− 1
p
‖x2−x3‖p− 1

p
‖x3−x1‖p} = ((

1
p
‖·−x1‖p)∗¤(

1
p
‖·−x2‖p)∗)(y3)

(6.3)

Using Proposition 3.2.28 and Example 3.2.30 we get

(
1
p
‖x− z‖p)∗(y) = 〈y, z〉+

1
q
‖y‖q. (6.4)

Combining (6.4) and (6.3)

((
1
p
‖ · −x1‖p)∗¤(

1
p
‖ · −x2‖p)∗)(y3) = (

1
q
‖ · ‖q + 〈x1, ·〉) ¤(

1
q
‖ · ‖q + 〈x2, ·〉)

= inf
u+v=y3

{1
q
‖u‖q +

1
q
‖v‖q + 〈x1, u〉+ 〈x2, v〉}.

(6.5)

Substituting (6.5) back into (6.2) and setting v = y3 − u yields

g∗2(y1, y2, y3) = sup
x1,x2

inf
u

[〈x1, y1〉+ 〈x2, y2〉 − 1
p
‖x1 − x2‖p +

1
q
‖u‖q +

1
q
‖u− y3‖q

+ 〈x1, u〉+ 〈x2, y3 − u〉].
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Looking at the above equation we can see that

F ((x1, x2), u) = 〈x1, y1〉+〈x2, y2〉−1
p
‖x1−x2‖p+

1
q
‖u‖q+

1
q
‖u−y3‖q+〈x1, u〉+〈x2, y3−u〉

is concave-convex since F ((x1, x2), ·) is a sum of linear and convex functions

and F (·, u) is a sum of linear and concave functions.

Fix x = (x1, x2) ∈ H × H, and let F ((x1, x2), u) = Fx(u). Using

Fact 3.4.3 we show that a saddle value exists by showing that 0+(epiFx) =

{(0, λ) : λ ≥ 0}.
By definition, 0+(epiFx) = epiF∞

x , so

(u, λ) ∈ 0+(epiFx) ⇔ (u, λ) ∈ epiF∞
x

⇔ λ ≥ F∞
x (u).

Using Proposition 3.2.19 to compute F∞
x (u) yields

F∞
x (u) = lim

λ→∞

(
Fx(λu)− Fx(0)

λ

)

= lim
λ→∞

( 1
q‖λu‖q + 1

q‖λu− y3‖q + 〈x1, λu〉+ 〈x2, y3 − λu〉 − 1
q‖y3‖q − 〈x2, y3〉

λ

)

= lim
λ→∞

(
λq 1

q‖u‖q + λq 1
q‖u− y3

λ ‖q + λ〈x1, u〉+ λ〈x2,
y3

λ − u〉
λ

)

=





+∞, if u 6= 0;

0, if u = 0.

Therefore (u, λ) ∈ epi F∞
x ⇔ u = 0. Since there is no common nonzero

direction of recession for Fx, we can use Fact 3.4.3 to swap the positions of
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the infimum and supremum, and combining the appropriate inner product

terms produces

g∗2(y1, y2, y3) = inf
u

sup
x1,x2

(
〈x1, y1+u〉+〈x2, y2+y3−u〉−1

p
‖x1−x2‖p+

1
q
‖u‖q+

1
q
‖u−y3‖q

)
.

(6.6)

Considering the inner supremum first, we will fix x1 and let x2−x1 = z.

Then (6.6) becomes

inf
u

(
1
q
‖u‖q +

1
q
‖u− y3‖q + sup

x1

〈x1, y1 + u〉+ sup
z
〈x1 + z, y2 + y3 − u〉 − 1

p
‖z‖p

)

= inf
u

(
1
q
‖u‖q +

1
q
‖u− y3‖q + sup

x1

〈x1, y1 + y2 + y3〉+ sup
z
〈z, y2 + y3 − u〉 − 1

p
‖z‖p

)
.

Here we can see that the supremum on the right is the definition of (1
p‖·‖p)∗

evaluated at y2+y3−u. Using Example 3.2.30 and the fact that y1+y2+y3 =

0 we then get

g∗2(y1, y2, y3) = inf
u

(
1
q
‖u‖q +

1
q
‖u− y3‖q +

1
q
‖y2 + y3 − u‖q

)

where y1 + y2 + y3 = 0 and 1
p + 1

q = 1.

Since g2 is symmetric under permutation of its variables, we interchange

y1 and y3 so that the previous description of g∗2 turns into the more sym-

metric form

g∗2(y1, y2, y3) = inf
x

(
1
q
‖x−y1‖q +

1
q
‖x−(y1 +y2)‖q +

1
q
‖x−(y1 +y2 +y3)‖q

)

where y1 + y2 + y3 = 0 and 1
p + 1

q = 1.
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In R, the problem becomes

min
x∈R

(
1
q
|x− y1|q +

1
q
|x− (y1 + y2)|q +

1
q
|x|q

)
(6.7)

with 1
p + 1

q = 1 and y1 + y2 + y3 = 0. We will define

h(x) :=
1
q
|x− y1|q +

1
q
|x− (y1 + y2)|q +

1
q
|x|q, (6.8)

so that we are solving min
x∈R

h(x). Since the case with p = 2 and q = 2 was

already solved, we consider this problem with the next simplest case, q = 3

which corresponds to p = 3
2 .

6.4 P-norm Kernel Conjugate when p = 3
2, q = 3,

and n = 3

Considering (6.8) with q = 3 gives the problem

min
x∈R

h(x) (6.9)

where

h(x) =
1
3
|x− y1|3 +

1
3
|x− (y1 + y2)|3 +

1
3
|x|3, (6.10)

and y1, y2 are constants.

In order to find the optimal value of (6.9) we need to consider eight

cases, which cover all possible values of the three absolute values in (6.10).

The eight cases are as follows:
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(1) x ≥ y1, x ≥ y1 + y2, and x ≥ 0

(2) x ≤ y1, x ≥ y1 + y2, and x ≥ 0

(3) x ≥ y1, x ≤ y1 + y2, and x ≥ 0

(4) x ≥ y1, x ≥ y1 + y2, and x ≤ 0

(5) x ≤ y1, x ≤ y1 + y2, and x ≥ 0

(6) x ≤ y1, x ≥ y1 + y2, and x ≤ 0

(7) x ≥ y1, x ≤ y1 + y2, and x ≤ 0

(8) x ≤ y1, x ≤ y1 + y2, and x ≤ 0

We now consider each case in depth, and set y = (y1, y2).

6.4.1 Case 1: x ≥ y1, x ≥ y1 + y2, x ≥ 0

Using the constraints of this case, we define the function to be minimized as

h1,y(x) =
1
3
(x− y1)3 +

1
3
(x− (y1 + y2))3 +

1
3
x3,

and we minimize h1,y over the region where max{y1, y1+y2, 0} ≤ x. Because

h1,y(x) is convex with respect to x, see Example 3.2.31, then by Fact 3.2.23

any critical point will be the minimizer. Differentiating to solve for critical

points yields

∂h1,y

∂x
= (x− y1)2 + (x− (y1 + y2))2 + x2.
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Setting ∂h1,y

∂x = 0 and solving for x, we get the critical points

x1 =
1
3
y2 +

2
3
y1 +

1
3

√
−2y2

2 − 2y1y2 − 2y2
1

x2 =
1
3
y2 +

2
3
y1 − 1

3

√
−2y2

2 − 2y1y2 − 2y2
1.

To see if the critical points are real, the value of −2y2
2 − 2y1y2 − 2y2

1 must

be examined and we see that

−2y2
2 − 2y1y2 − 2y2

1 = −(y2
1 + y2

2)− (y2
1 + 2y1y2 + y2

2)

= −(y2
1 + y2

2)− (y1 + y2)2 ≤ 0.

Since −2y2
2 − 2y1y2 − 2y2

1 ≤ 0 for all values of y1 and y2 then there are

no real critical points of h1,y, so we next check the boundary points, x ≥
max{0, y1, y1 + y2}.

If max{0, y1, y1 + y2} = y1 + y2, i.e. when y1 ≥ 0 and y2 ≥ 0, or when

y2 ≥ 0 and −y2 ≤ y1 ≤ 0, then the minimum value of h1
y1,y2

(x) is

h1,y(y1 + y2) =
1
3
y3
2 +

1
3
(y1 + y2)3.

If max{0, y1, y1 + y2} = y1, or rather when y1 ≥ 0 and y2 ≤ 0, then we get

a minimum value at

h1,y(y1) =
1
3
|y2|3 +

1
3
y3
1.

If max{0, y1, y1 + y2} = 0, i.e. if y1 ≤ 0 and y2 ≤ 0, or y2 ≥ 0 and y2 ≤ −y1,
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then the minimum value is

h1,y(0) =
1
3
|y1|3 +

1
3
|y1 + y2|3.

This case is summarized graphically in Figure 6.1.

Figure 6.1: Case 1 summary
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6.4.2 Case 2: x ≤ y1, x ≥ y1 + y2, x ≥ 0

The conditions for this case give the following function,

h2,y(x) =
1
3
(y1 − x)3 +

1
3
(x− (y1 + y2))3 +

1
3
x3,

for minimization on the region where max{0, y1 + y2} ≤ x ≤ y1. Again,

differentiating to find the critical points gives us

∂h2,y

∂x
= −(y1 − x)2 + (x− (y1 + y2))2 + x2.

And solving ∂h2,y

∂x = 0 yields the two critical points

x1 = y2 +
√
−2y1y2

x2 = y2 −
√
−2y1y2.

Considering the constraints, we see that y1 ≥ x ≥ 0 and y1+y2 ≤ x ≤ y1,

so that y1 ≥ 0 and y2 ≤ 0 is the region of interest. This makes −2y1y2 ≥ 0

so that the critical points are real. We need x ≥ 0, but x2 ≤ 0 for all y1, y2

in this region, and if x2 = 0 then y2 = y1 = 0 and x1 = x2 = 0. Hence, it

suffices to consider only x1.

Next, we check that x1 satisfies the three conditions of this case: x ≥ 0,

x ≤ y1, and x ≥ y1 + y2. For x1 = y2 +
√−2y1y2 ≥ 0, it is required that

−y2 = |y2| ≤
√
−2y1y2 ⇔ y2

2 ≤ −2y1y2 ⇔ |y2| ≤ 2y1 ⇔ 1
2
|y2| ≤ y1.
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For x1 ≤ y1, this is equivalent to

y2 +
√
−2y1y2 ≤ y1 ⇔ −2y1y2 ≤ (y1 − y2)2 ⇔ 0 ≤ y2

1 + y2
2.

Therefore this condition is always true. For x1 ≥ y1 + y2, we get

y2 +
√
−2y1y2 ≥ y1 + y2 ⇔

√
−2y1y2 ≥ y1 ⇔ 2|y2| ≥ y1.

Since h2,y is convex with respect to x, then if these three conditions hold

then x1 is the minimizer. So if 1
2 |y2| ≤ y1 ≤ 2|y2| then the critical point is

the minimizer and we get the minimum value of h2,y(x) is

h2,y(x1) = −1
3
y1y2(3y1 − 3y2 − 4

√
−2y1y2)

If the conditions for the critical point are not satisfied then we must check

the boundary conditions. In this case the boundary points are max{y1 +

y2, 0} ≤ x ≤ y1, and we consider two subcases:

Subcase 1: y1 + y2 ≥ 0

To determine which is the minimum, we evaluate the difference between the

upper boundary value and the lower boundary value. When y1 + y2 ≥ 0,

the max{y1 + y2, 0} = y1 + y2 so we look at the difference

h2,y(y1)− h2,y(y1 + y2) =
1
3
(−y2)3 +

1
3
y3
1 −

1
3
(−y2)3 − 1

3
(y1 + y2)3

=
1
3
y3
1 −

1
3
(y1 + y2)3 = −1

3
y3
2 − y1y2(y1 + y2).
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Since y1 ≥ 0, y2 ≤ 0 and y1 + y2 ≥ 0 the above difference is always positive.

This means that the minimum value is

h2,y(y1 + y2) =
1
3
(y1 + y2)3 − 1

3
y3
2.

Subcase 2: y1 + y2 ≤ 0

With y1 + y2 ≤ 0 the max{y1 + y2, 0} = 0 so we calculate the difference

h2,y(y1)− h2,y(0) =
1
3
y3
1 +

1
3
(−y2)3 − 1

3
y3
1 −

1
3
(−y1 − y2)3

=
1
3
(−y2)3 − 1

3
(−y1 − y2)3 =

1
3
y3
1 + y1y2(y1 + y2).

Again, because of the signs of y1, y2, and y1 + y2 the difference is positive

so the minimum is

h2,y(0) =
1
3
y3
1 −

1
3
(y1 + y2)3.

Case 2 is summarized graphically in Figure 6.2.

6.4.3 Case 3: x ≥ y1, x ≤ y1 + y2, x ≥ 0

For this case, the function we are looking to minimize is

h3,y =
1
3
(x− y1)3 +

1
3
(y1 + y2 − x)3 +

1
3
x3,

over the region where max{y1, 0} ≤ x ≤ y1 + y2. Differentiating h3,y yields

∂h3,y

∂x
= (x− y1)2 − (y1 + y2 − x)2 + x2.
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Figure 6.2: Case 2 summary

And setting ∂h3,y

∂x = 0 and solving for x gives us the critical points

x1 = −y2 +
√

2y2
2 + 2y1y2

x2 = −y2 −
√

2y2
2 + 2y1y2.

Looking at the constraints for this case we can see that y1 + y2 ≥ x ≥ y1,

so we must have y2 ≥ 0. And y1 + y2 ≥ x ≥ 0 gives us that y1 + y2 ≥ 0.

Knowing that y2 ≥ 0, it is obvious that x2 ≤ 0 and when x2 = 0 then

y2 = y1 = 0 and x1 = x2 = 0. So this case can be covered by considering

only x1.

For x1 to be a real critical point, we need 2y2
2+2y1y2 ≥ 0 ⇔ 2y2(y1+y2) ≥

0. Since both y1 ≥ 0 and y1 + y2 ≥ 0 always holds for this case then this is
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always true. We also require that the critical point x1 satisfies the conditions

for this case. For x1 ≥ 0,

−y2 +
√

2y2
2 + 2y1y2 ≥ 0 ⇔ 2y2

2 + 2y1y2 ≥ y2
2 ⇔ 2y1y2 ≥ −y2

2 ⇔ 2y1 ≥ −y2

For x1 ≥ y1

−y2+
√

2y2
2 + 2y1y2 ≥ y1 ⇔

√
2y2

2 + 2y1y2 ≥ y1+y2 ⇔ 2y2
2+2y1y2 ≥ y2

1+2y1y2+y2
2

⇔ y2
2 ≥ y2

1 ⇔ y2 ≥ |y1|

And for x1 ≤ y1 + y2

− y2 +
√

2y2
2 + 2y1y2 ≤ y1 + y2 ⇔ 2y2

2 + 2y1y2 ≤ y2
1 + 4y1y2 + 4y2

2

⇔ 0 ≤ y2
1 + 2y1y2 + 2y2

2 ⇔ 0 ≤ (y1 + y2)2 + y2
2

So x1 ≤ y1 + y2 is always true, and x1 ≥ 0 and x1 ≥ y1 hold when 2y1 ≥
−y2 and y2 ≥ |y1|, respectively. This means that when both 2y1 ≥ −y2 and

y2 ≥ |y1| are true, the critical point x1 will produce the minimum,

h3,y(x1) =
1
3
y2(y1 + y2)(3y1 + 6y2 − 4

√
2y2(y1 + y2)).

Next, we will need to consider two subcases of y1 ≥ 0 and y1 ≤ 0

separately in order to find the minimum value for each region where the

critical point does not satisfy the conditions of this case.
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Subcase 1: y2 ≥ 0, y1 ≤ 0

If y1 ≤ 0 and 2y1 ≥ −y2 then the critical point x1 is the minimizer and

the minimum value is as stated above. If 2y1 < −y2 then there are no

critical points and we look at the boundary points, which in this subcase

are max{0, y1} = 0 ≤ x ≤ y1 +y2. Taking the difference of the two potential

minimums yields

h3,y(y1 + y2)− h3,y(0) =
1
3
y3
2 +

1
3
(y1 + y2)3 − 1

3
|y1|3 − 1

3
(y1 + y2)3

=
1
3
y3
2 −

1
3
|y1|3.

Since y1 + y2 ≥ 0 ⇔ y2 ≥ −y1 ⇔ y2 ≥ |y1|, then h3,y(0) ≤ h3,y(y1 + y2) and

the lower bound is the minimizer and the minimum value is

h3,y(0) =
1
3
(y1 + y2)3 − 1

3
y3
1.

Subcase 2: y2 ≥ 0, y1 ≥ 0

Since both y1 and y2 are always positive then 2y1 ≥ −y2 always holds.

Therefore the critical point is good everywhere within the region where

y2 ≥ y1. When y1 ≥ y2 then the boundary points are max{0, y1} = y1 ≤
x ≤ y1 + y2. Taking the difference produces

h3,y(y1 + y2)− h3,y(y1) =
1
3
y3
2 +

1
3
(y1 + y2)3 − 1

3
y3
2 −

1
3
y3
1

=
1
3
(y1 + y2)3 − 1

3
y3
1 ≥ 0.
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So the minimum value is

h3,y(y1) =
1
3
y3
2 +

1
3
y3
1.

Case 3 is summarized graphically in Figure 6.3.

Figure 6.3: Case 3 summary

6.4.4 Case 4: x ≥ y1, x ≥ y1 + y2, x ≤ 0

For this case we minimize the function

h4,y(x) =
1
3
(x− y1)3 +

1
3
(x− y1 − y2)3 − 1

3
x3
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over the region where max{y1, y1 + y2} ≤ x ≤ 0. Solving ∂h4
∂x = (x− y1)2 +

(x− y1 − y2)2 − x2 = 0 yields the critical points

x1 = 2y1 + y2 +
√

2y1y2 + 2y2
1

x2 = 2y1 + y2 −
√

2y1y2 + 2y2
1.

The constraints for this case lead us to the inequalities y1 ≤ 0 and y1+y2 ≤ 0,

or y2 ≤ −y1 = |y1|. In order for the critical points to be real, we require

2y1y2 + 2y2
1 ≥ 0 ⇔ |y1| ≥ y2 which is always true in this case. Therefore the

critical point will give the minimum value. To satisfy x ≤ 0 and determine

which critical point is the one we want, we need x1, x2 ≤ 0. Looking first at

x1:

y2 + 2y1 +
√

2y1y2 + 2y2
1 ≤ 0 ⇔ (−y2 − 2y1)2 ≥ 2y1y2 + 2y2

1

⇔ y2
2 + 4y1y1 + 4y2

1 ≥ 2y1y2 + 2y2
1 ⇔ y2

2 + 2y1y1 + 2y2
1 ≥ 0

⇔ (y1 + y2)2 + y2
1 ≥ 0.

This always holds, so we check the next condition, x1 ≥ y1 + y2:

y2 + 2y1 +
√

2y1y2 + 2y2
1 ≥ y1 + y2 ⇔ y1 +

√
2y1y2 + 2y2

1 ≥ 0

⇔ 2y1y2 + 2y2
1 ≥ y2

1 ⇔ 2y1y2 + y2
1 ≥ 0 ⇔ y1(2y2 + y1) ≥ 0

⇔ 2y2 + y1 ≤ 0 ⇔ y2 ≤ 1
2
|y1|.
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And the final condition, x1 ≥ y1, yields

y2 + 2y1 +
√

2y1y2 + 2y2
1 ≥ y1 ⇔ y1 + y2 +

√
2y1y2 + 2y2

1 ≥ 0

⇔ 2y1y2 + 2y2
1 ≥ (−y1 − y2)2 ⇔ 2y1y2 + 2y2

1 ≥ y2
1 + 2y1y2 + y2

2

⇔ y2
1 − y2

2 ≥ 0 ⇔ |y1| ≥ |y2|.

So the critical point x1 is in the region of interest when y2 ≤ 1
2 |y1| and

|y1| ≥ |y2| both hold.

Next looking at x2, if we look at the condition x2 ≥ y1 we see that

2y1 + y2 −
√

2y1y2 + 2y2
1 ≥ y1 ⇔ (y1 + y2)−

√
2y1y2 + 2y2

1 ≥ 0.

This only holds if y1 = y2 = 0, in which case x1 = x2 so this point is not

in the interior of the region and we do not need to consider it. So when

y2 ≤ 1
2 |y1| and |y1| ≥ |y2| both hold then the minimum value is

h4,y(x1) = −1
3
y1(y1 + y2)(6y1 + 3y2 + 4

√
2y1(y1 + y2)).

Next, we examine the boundary conditions max{y1, y1 + y2} ≤ x ≤ 0 for

the two subcases y2 ≥ 0 and y2 ≤ 0, to determine the minimum when the

constraints needed for the critical point do not hold.
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Subcase 1: y2 ≥ 0

When y2 ≥ 0 then the max{y1, y1+y2} = y1+y2, so we look at the difference

h4,y(0)− h4,y(y1 + y2) = −1
3
y3
1 −

1
3
(y1 + y2)3 − 1

3
y3
2 +

1
3
(y1 + y2)3

=
1
3
|y1|3 − 1

3
y3
2.

Since |y1| ≥ y2 then the above difference is positive, so the minimum is

h4,y(y1 + y2) =
1
3
y3
2 −

1
3
(y1 + y2)3.

Subcase 2: y2 ≤ 0

When y2 ≤ 0 then the max{y1, y1 + y2} = y1, so we look at the difference

h4,y(0)− h4,y(y1) =
1
3
|y1|3 +

1
3
|y1 + y2|3 − 1

3
|y2|3 − 1

3
|y1|3

=
1
3
|y1 + y2|3 − 1

3
|y2|3.

Since |y1 + y2| ≥ |y2| then the difference is positive and the minimum is

h4,y(y1) =
1
3
|y1|3 +

1
3
|y2|3.

Case 4 is summarized graphically in Figure 6.4.
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Figure 6.4: Case 4 summary

6.4.5 Case 5: x ≤ y1, x ≤ y1 + y2, x ≥ 0

For this case we look at minimizing

h5,y(x) =
1
3
(y1 − x)3 +

1
3
(y1 + y2 − x)3 +

1
3
x3,

over the region where 0 ≤ x ≤ min{y1, y1 + y2}. Differentiating h5,y with

respect to x yields

∂h5,y

∂x
= −(y1 − x)2 − (y1 + y2 − x)2 + x2.
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Then solving ∂h5,y

∂x = 0 gives us the critical points

x1 = 2y1 + y2 +
√

2y1y2 + 2y2
1

x2 = 2y1 + y2 −
√

2y1y2 + 2y2
1.

These critical points are the same as in the previous case, but must be re-

examined using the new constraints of this case. We see that y1 ≥ x ≥ 0, so

y1 ≥ 0 and similarly y1 + y2 ≥ 0. In order for the critical points to be real,

we need 2y1y2 + 2y2
1 ≥ 0 ⇔ y1 + y2 ≥ 0 which always holds for this case.

Next, we check where the critical points are valid.

When we check x1 ≤ y1, we see that 2y1 + y2 +
√

2y1y2 + 2y2
1 ≤ y1 ⇔

y1 + y2 +
√

2y1y2 + 2y2
1 ≤ 0, but since y1 + y2 ≥ 0 and

√
2y1y2 + 2y2

1 ≥ 0

then this does not hold except when y1 = y2 = 0, and it that situation

x1 = x2. Therefore, for this case we need only consider x2.

Looking at x2, we see for x2 ≥ 0,

2y1 + y2 −
√

2y1y2 + 2y2
1 ≥ 0 ⇔ (2y1 + y2)2 ≥ 2y1y2 + 2y2

1

⇔ 4y2
1 + 4y1y2 + y2

2 ≥ 2y1y2 + 2y2
1 ⇔ 2y2

1 + 2y1y2 + y2
2 ≥ 0

⇔ y2
1 + (y1 + y2)2 ≥ 0.

This always holds, so next we check x2 ≤ y1:

2y1 + y2 −
√

2y1y2 + 2y2
1 ≤ y1 ⇔ (y1 + y2)2 ≤ 2y1y2 + 2y2

1

⇔ y2
1 + 2y1y2 + y2

2 ≤ 2y1y2 + 2y2
1 ⇔ y2

2 − y2
1 ≤ 0 ⇔ |y1| ≥ |y2|.
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And checking the last condition we see that for x2 ≤ y1 + y2,

2y1 + y2 −
√

2y1y2 + 2y2
1 ≤ y1 + y2 ⇔ y1 −

√
2y1y2 + 2y2

1 ≤ 0

⇔ 2y1y2 + 2y2
1 ≥ y2

1 ⇔ 2y1y2 + y2
1 ≥ 0

⇔ y1(2y2 + y1) ≥ 0 ⇔ 2y2 + y1 ≥ 0

So the critical point x2 is in the region of interest when both |y1| ≥ |y2| and

2y2 + y1 ≥ 0 hold, and the minimum value is

h5,y(x2) = −1
3
y1(y1 + y2)(−6y1 − 3y2 + 4

√
2y1(y1 + y2)).

Now we look at the boundary conditions 0 ≤ x ≤ min{y1, y1 + y2} in

the two subcases y2 ≥ 0 and y2 ≤ 0 to determine the minimum when the

critical point is not in the region of interest. That is, when |y1| < |y2| and

2y2 + y1 < 0.

Subcase 1: y2 ≥ 0

With y2 ≥ 0 the min{y1, y1 + y2} = y1 and the difference that we need to

consider is

h5,y(y1)− h5,y(0) =
1
3
y3
2 +

1
3
y3
1 −

1
3
y3
1 −

1
3
(y1 + y2)3

=
1
3
y3
2 −

1
3
(y1 + y2)3 = −1

3
y3
1 − y1y2(y1 + y2) ≤ 0
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So the upper bound is the minimizer and the minimum value is

h5,y(y1) =
1
3
y3
1 +

1
3
y3
2.

Subcase 2: y2 ≤ 0

When y2 ≤ 0 then the min{y1, y1+y2} = y1+y2 and we look at the difference

h5,y(y1 + y2)− h5,y(0) =
1
3
(−y2)3 +

1
3
(y1 + y2)3 − 1

3
y3
1 −

1
3
(y1 + y2)3

=
1
3
(−y2)3 − 1

3
y3
1

Since y2 ≤ 0, y1 ≥ 0, and y1 + y2 ≥ 0 then y1 ≥ |y2| and the above equation

is always less than or equal to zero, which makes the upper bound, y1 + y2

the minimizer with a minimum value of

h5,y(y1 + y2) =
1
3
(y1 + y2)3 − 1

3
y3
2.

Case 5 is summarized graphically in Figure 6.5.

6.4.6 Case 6: x ≤ y1, x ≥ y1 + y2, x ≤ 0

For this case we have the function

h6,y(x) =
1
3
(y1 − x)3 +

1
3
(x− y1 − y2)3 +

1
3
(−x)3

to minimize. Differentiating with respect to x to get our critical points yields

∂h6,y

∂x
= −(y1 − x)2 + (x− y1 − y2)2 − x2
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Figure 6.5: Case 5 summary

Setting this equal to zero and solving for x then gives us the critical points

x1 = −y2 +
√

2y2
2 + 2y1y2

x2 = −y2 −
√

2y2
2 + 2y1y2.

Looking at the constraints of the case, notice that y1 + y2 ≤ x ≤ y1 and

y1 + y2 ≤ x ≤ 0 imply that both y1 + y2 ≤ 0 and y2 ≤ 0. For the critical

points to be real we need 2y2
2 + 2y1y2 ≥ 0 ⇔ 2y2(y1 + y2) ≥ 0, which is

always true since y2 and y1 + y2 are both always negative. It is easy to see

that critical point x1 is always positive, so it does not satisfy the conditions

of this case, except when y1 = y2 = 0 which makes x1 = x2. So it suffices

to check only x2 for this case.
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Checking the condition x2 ≥ y1 + y2,

y1 + y2 ≤ −y2 −
√

2y2
2 + 2y1y2 ⇔

√
2y2

2 + 2y1y2 ≤ −y1 − 2y2

⇔ 2y2
2 + 2y1y2 ≤ y2

1 + 4y1y2 + 4y2
2

⇔ 0 ≤ y2
1 + 2y1y2 + 2y2

2 ⇔ 0 ≤ (y1 + y2)2 + y2
2.

This condition always holds. Next, we check x2 ≤ y1,

−y2 −
√

2y2
2 + 2y1y2 ≤ y1 ⇔ −y1 − y2 ≤

√
2y2

2 + 2y1y2

⇔ y2
1 + 2y1y2 + y2

2 ≤ 2y2
2 + 2y1y2

⇔ y2
1 ≤ y2

2 ⇔ |y1| ≤ |y2|.

And the last condition is x2 ≤ 0,

−y2 −
√

2y2
2 + 2y1y2 ≤ 0 ⇔ −y2 ≤

√
2y2

2 + 2y1y2

⇔ y2
2 ≤ 2y2

2 + 2y1y2 ⇔ 0 ≤ y2
2 + 2y1y2

⇔ 0 ≤ y2(y2 + 2y1) ⇔ y2 + 2y1 ≤ 0 ⇔ 2y1 ≤ |y2|.

So x2 is the minimizer when both |y1| ≤ |y2| and 2y1 ≤ |y2| hold and the

minimum value is

h6,y(x2) = −1
3
y2(y1 + y2)(3y1 + 6y2 + 4

√
2y2(y1 + y2)).

Outside this region we check the boundary conditions y1 + y2 ≤ x ≤
min{0, y1} to determine the minimizer.
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Subcase 1: y1 ≥ 0

With y1 ≥ 0 the min{y1, 0} = 0 so we look at the difference

h6,y(0)− h6,y(y1 + y2) =
1
3
y3
1 +

1
3
(−y1 − y2)3 − 1

3
(−y2)3 − 1

3
(−y1 − y2)3

=
1
3
y3
1 −

1
3
(−y2)3 =

1
3
y3
1 −

1
3
|y2|3.

Since y1 + y2 ≤ 0 we know that |y2| ≥ y1 and the above equation is less

than or equal to zero. This makes the upper boundary the minimum and

the minimum value is

h6,y(0) =
1
3
y3
1 −

1
3
(y1 + y2)3.

Subcase 2: y1 ≤ 0

When y1 ≤ 0 the min{y1, 0} = y1 and we consider the difference

h6,y(y1)− h6,y(y1 + y2) =
1
3
(−y2)3 +

1
3
(−y1)3 − 1

3
(−y2)3 − 1

3
(−y1 − y2)3

=
1
3
|y1|3 − 1

3
|y1 + y2|3.

Because y1 and y2 are both negative then |y1 + y2| ≥ |y1| and the equation

above is less than or equal to zero, giving us a minimum value of

h6,y(y1) = −1
3
y3
1 −

1
3
y3
2.

Case 6 is summarized graphically in Figure 6.6.

83



6.4. P-norm Kernel Conjugate when p = 3
2 , q = 3, and n = 3

Figure 6.6: Case 6 summary

6.4.7 Case 7: x ≥ y1, x ≤ y1 + y2, x ≤ 0

In this case the equation to be minimized is

h7,y(x) =
1
3
(x− y1)3 +

1
3
(y1 + y2 − x)3 +

1
3
(−x)3,

over the region where y1 ≤ x ≤ min{0, y1 + y2}. Differentiating h7,y with

respect to x yields

∂h7,y

∂x
= (x− y1)2 − (y1 + y2 − x)2 − x2.
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Setting ∂h7,y

∂x = 0 and solving for x gives us the critical points

x1 = y2 +
√
−2y1y2

x2 = y2 −
√
−2y1y2.

Looking at the constraints we see that y1 ≤ x ≤ 0 and y1 ≤ x ≤ y1 + y2

so we have y1 ≤ 0 and y2 ≥ 0 for this case. For the critical points to be real,

−2y1y2 ≥ 0 must hold, and because of the signs of y1 and y2 this is always

true. The critical point x1 ≤ 0 so it does not lie in the interior of the region

of interest. And when x1 = 0 then y1 = y2 = 0 and so x1 = x2. Therefore

we need only consider x2, and we check x2 against the constraints. First,

x2 ≥ y1,

y2 −
√
−2y1y2 ≥ y1 ⇔ (y2 − y1)2 ≥ −2y1y2 ⇔ y2

2 + y2
1 ≥ 0.

This will always hold, so next we look at x2 ≤ 0

y2 −
√
−2y1y2 ≤ 0 ⇔ y2

2 ≤ −2y1y2 ⇔ y2
2 + 2y1y2 ≤ 0 ⇔ y2(y2 + 2y1) ≤ 0

⇔ y2 + 2y1 ≤ 0 ⇔ 2|y1| ≥ y2.

And finally at x2 ≤ y1 + y2,

y2 −
√
−2y1y2 ≤ y1 + y2 ⇔ y2

1 ≤ −2y1y2 ⇔ |y1| ≤ 2y2 ⇔ 1
2
|y1| ≤ y2.

Then the critical point x2 is the minimizer if 1
2 |y1| ≤ y2 ≤ 2|y1|, and the
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minimum value is

h7,y =
1
3
y1y2(3y1 − 3y2 + 4

√
−2y1y2).

Outside this region, we look at the boundary conditions y1 ≤ x ≤ min{0, y1+

y2} to determine the minimizer.

Subcase 1: y1 + y2 ≥ 0

When y1 + y2 ≥ 0 the min{0, y1 + y2} = 0 so we look at the difference

h7,y(0)− h7,y(y1) =
1
3
(−y1)3 +

1
3
(y1 + y2)3 − 1

3
y3
2 −

1
3
(−y1)3

=
1
3
(y1 + y2)3 − 1

3
y3
2 =

1
3
y3
1 + y1y2(y1 + y2).

Because y1 ≤ 0, y2 ≥ 0, then y1 + y2 ≤ y2 and (y1 + y2)3 ≤ y3
2 so that the

above equation is always negative and therefore the minimum value is

h7,y(0) =
1
3
(y1 + y2)3 − 1

3
y3
1.

Subcase 2: y1 + y2 ≤ 0

Here the min{0, y1 + y2} = y1 + y2 so the difference to consider is

h7,y(y1 + y2)− h7,y(y1) =
1
3
y3
2 +

1
3
(−y1 − y2)3 − 1

3
y3
2 −

1
3
(−y1)3

=
1
3
(−y1 − y2)3 − 1

3
(−y1)3 = −1

3
y3
2 − y1y2(y1 + y2)
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Again, because of the signs of y1 and y2, we get that (−y1 − y2) ≤ −y1

and (−y1 − y2)3 ≤ (−y1)3 so that this equation is always negative so the

minimum value is

h7,y(y1 + y2) =
1
3
y3
2 −

1
3
(y1 + y2)3.

Case 7 is summarized graphically in Figure 6.7.

Figure 6.7: Case 7 summary
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6.4.8 Case 8: x ≤ y1, x ≤ y1 + y2, x ≤ 0

For the final case the function we minimize is

h8,y(x) =
1
3
(y1 − x)3 +

1
3
(y1 + y2 − x)3 +

1
3
(−x)3,

over the region where x ≤ min{0, y1, y1 + y2}. Differentiating h8,y with

respect to x yields

∂h8,y

∂x
= −(y1 − x)2 − (y1 + y2 − x)2 − x2.

Setting this equal to zero and solving for x gives the critical points

x1 =
2
3
y1 +

1
3
y2 +

1
3

√
−2y2

1 − 2y1y2 − 2y2
2

x2 =
2
3
y1 +

1
3
y2 − 1

3

√
−2y2

1 − 2y1y2 − 2y2
2.

As we saw in case 1,

−2y2
1 − 2y1y2 − 2y2

2 = −(y2
1 + y2

2)− (y1 + y2)2 ≤ 0

so the critical points are only real when y1 = y2 = 0. Thus we are only left

with the boundary conditions x ≤ min{0, y1, y1+y2}. If min{0, y1, y1+y2} =

0 then the minimum value is

h8,y(0) =
1
3
y3
1 +

1
3
(y1 + y2)3.
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When the min{0, y1, y1 + y2} = y1 then the minimum value is

h8,y(y1) =
1
3
y3
2 +

1
3
(−y1)3.

And finally, if min{0, y1, y1 + y2} = y1 + y2, the minimum value is

h8,yy1 + y2) =
1
3
(−y2)3 +

1
3
(−y1 − y2)3.

Case 8 is summarized graphically in Figure 6.8.

Figure 6.8: Case 8 summary
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6.4.9 Combining the Eight Cases

Now that each possibility has been examined, each case must be compared

against the others to determine the global minimum in each region. Cases

2,3, and 4 and Cases 5,6, and 7 can be plotted without any overlap, as seen

in Figure 6.9 on page 97. This leaves 12 regions each with four possible

minimizers.

Since we can see from equation (6.10) that h(x) is convex with respect

to x, the critical point will be the minimum in regions where there is a valid

critical point. Combining all of the eight cases, we can see that there is

a valid critical point for every possible region. We therefore have only six

regions, as seen in Figure 6.10 on page 98. The regions are divided by the

lines y1 − y2 = 0, 2y1 + y2 = 0, and y1 + 2y2 = 0, and each region has a

critical point minimizer.

The six regions are defined as follows. Let y = (y1, y2), then

y ∈ A if − 1
2
y1 ≤ y2 ≤ y1, (6.11)

y ∈ B if − 1
2
y2 ≤ y1 ≤ y2,

y ∈ C if − 2y2 ≤ y1 ≤ −1
2
y2,

y ∈ D if y1 ≤ y2 ≤ −1
2
y1,

y ∈ E if y2 ≤ y1 ≤ −1
2
y2, and

y ∈ F if − 2y1 ≤ y2 ≤ −1
2
y1.

The minimum for each region is outlined below
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(A) When y ∈ A, then the minimizer is the critical point x2 from Case 5,

and the minimum value is

h5,y(x2) = h5,y(2y1 + y2 −
√

2y1y2 + 2y2
1)

= −1
3
y1(y1 + y2)(−6y1 − 3y2 + 4

√
2y1(y1 + y2)).

(B) When y ∈ B, the minimizer is the critical point x1 from Case 3, and

the minimum value is

h3,y(x1) = h3,y(−y2 +
√

2y2
2 + 2y1y2)

= −1
3
y2(y1 + y2)(−3y1 − 6y2 + 4

√
2y2(y1 + y2)).

(C) When y ∈ C, the minimizer is the critical point x2 from Case 7, and

the minimum value is

h7,y(x2) = h7,y(y2 −
√
−2y1y2)

=
1
3
y1y2(3y1 − 3y2 + 4

√
−2y1y2).

(D) When y ∈ D, the minimizer is the critical point x1 from Case 4, and

the minimum value is

h4,y(x1) = h4,y(2y1 + y2 +
√

2y1y2 + 2y2
1)

= −1
3
y1(y1 + y2)(6y1 + 3y2 + 4

√
2y1(y1 + y2)).

(E) When y ∈ E, the minimizer is the critical point x2 from Case 6, and
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the minimum value is

h6,y(x2) = h6,y(−y2 −
√

2y2
2 + 2y1y2)

= −1
3
y2(y1 + y2)(3y1 + 6y2 + 4

√
2y2(y1 + y2)).

(F) And when y ∈ F , the minimizer is the critical point x1 from Case 2,

and the minimum value is

h2,y(x1) = h2,y(y2 +
√
−2y1y2)

=
1
3
y1y2(−3y1 + 3y2 + 4

√
−2y1y2).

6.4.10 Bringing It All Together

If you recall, the goal was to solve

min
x∈R

h(x) = min
x∈R

(
1
3
|x− y1|3 +

1
3
|x− (y1 + y2)|3 +

1
3
|x|3,

)
.

in order to get g∗2(y1, y2, y3), where y1 + y2 + y3 = 0

g2(x1, x2, x3) =
2
3
‖x1 − x2‖

3
2 +

2
3
‖x2 − x3‖

3
2 +

2
3
‖x3 − x1‖

3
2

The minimizer of h(x) has been found for each of the six regions, and so
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we have found that g2(y1, y2,−y1 − y2) =





−1
3y1(y1 + y2)(−6y1 − 3y2 + 4

√
2y1(y1 + y2)), if y ∈ A;

−1
3y2(y1 + y2)(−3y1 − 6y2 + 4

√
2y2(y1 + y2)), if y ∈ B;

1
3y1y2(3y1 − 3y2 + 4

√−2y1y2), if y ∈ C;

−1
3y1(y1 + y2)(6y1 + 3y2 + 4

√
2y1(y1 + y2)), if y ∈ D;

−1
3y2(y1 + y2)(3y1 + 6y2 + 4

√
2y2(y1 + y2)), if y ∈ E;

1
3y1y2(−3y1 + 3y2 + 4

√−2y1y2), if y ∈ F,

(6.12)

where the regions A, · · · , F are as defined in (6.11) on page 90.

Examining a plot of the above function and its contour plot, in Fig-

ure 6.11 on page 98, we see that g∗2 is convex which is what we would

expect from a conjugate function, even though g∗2 is not obviously convex

upon inspection.

Recall from (6.7) on page 63 that we had three conjugate variables,

y1, y2, and y3 such that y1 + y2 + y3 = 0.

Making the substitution y3 = −(y1 +y2) allows us to write (6.12) in the
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more symmetric form

g∗2(y1, y2, y3) =





1
3y1y3(3y3 − 3y1 + 4

√−2y1y3), if (y1, y2) ∈ A;

1
3y2y3(3y3 − 3y2 + 4

√−2y2y3), if (y1, y2) ∈ B;

1
3y1y2(3y1 − 3y2 + 4

√−2y1y2), if (y1, y2) ∈ C;

1
3y1y3(3y1 − 3y3 + 4

√−2y1y3), if (y1, y2) ∈ D;

1
3y2y3(3y2 − 3y3 + 4

√−2y2y3), if (y1, y2) ∈ E;

1
3y1y2(3y2 − 3y1 + 4

√−2y1y2), if (y1, y2) ∈ F,

(6.13)

where the regions A, · · · , F are as defined in (6.11) on page 90.

With the y3 variable added back into the equation, we can then recognize

that the three boundaries y1 − y2 = 0, 2y1 + y2 = 0, and y1 + 2y2 = 0 are

equivalent to y1 = y2, y1 = y3, and y2 = y3. If we consider region A defined

by y1 ≥ y2 ≥ −1
2y1, and look at the difference,

y2 − y3 = y2 − (−y1 − y2) = y1 + 2y2

≥ y1 + 2(−1
2
y1) = 0,

so min{y1, y2, y3} = y3 and max{y1, y2, y3} = y1. Thus, we can rewrite using

ymax = max{y1, y2, y3} and ymin = min{y1, y2, y3}

g∗2(y1, y2, y3) =
1
3
y1y3(3y3 − 3y1 + 4

√
−2y1y3)

= ymaxy2
min − y2

maxymin +
4
3
ymaxymin

√
−2ymaxymin,

if (y1, y2) ∈ A.
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Similarly, all of the other regions can be rewritten in the same manner

so that (6.13) can be rewritten using ymax = max{y1, y2, y3} and ymin =

min{y1, y2, y3} as

g∗2(y1, y2, y3) = ymaxy2
min − y2

maxymin +
4
3
ymaxymin

√
−2ymaxymin, (6.14)

without the need to specify the region.

Remark 6.4.1 Although g∗2 does not look convex, it is because it arose as a

conjugate function. Convexity can also be shown with calculus if you proceed

as follows.

We have three variables such that ymax ≥ y0 ≥ ymin and ymax + y0 +

ymin = 0, so y0 = −ymax − ymin and hence

ymax ≥ −ymax − ymin ≥ ymin.

Equivalently, 2ymax + ymin ≥ 0 and −2ymin − ymax ≥ 0. Now define x :=

ymax and y := −ymin, then both x ≥ 0 and y ≥ 0 and we care about the

region where

2x− y ≥ 0 and 2y − x ≥ 0. (6.15)

Then we get the function

f(x, y) = xy2 + yx2 − 4
3
xy

√
2xy,
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with

∇2f(x, y) =




(2
√

xy−√2y)y√
xy

2y
√

xy+2x
√

xy−3
√

2xy√
xy

2y
√

xy+2x
√

xy−3
√

2xy√
xy

(2
√

xy−√2x)x√
xy




It can be shown that the (1, 1) and (2, 2) elements of ∇2f(x, y) are pos-

itive using the constraints in (6.15). The determinant of ∇2f(x, y) can be

shown to be positive by assuming x = a2 and y = b2, factoring the resulting

equation, and considering the signs of each of the factors. Since the Hessian

is positive semidefinite then f is convex.
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(a) Case 1 (b) Cases 2, 3, and 4

(c) Cases 5, 6, and 7 (d) Case 8

Figure 6.9: Overview of the eight cases
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Figure 6.10: The six regions

(a) The function g∗2(y1, y2,−y1 − y2) (b) The contour plot of g∗2(y1, y2,−y1− y2)

Figure 6.11: Plots of g∗2(y1, y2,−y1 − y2)
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Chapter 7

Conclusion

The kernel average was previously only defined for two functions. We have

used the identity

n∑

i=1

λiq(yi)− q(
n∑

i=1

λiyi) =
1
4

n∑

i=1

n∑

j=1

λiλj‖yi − yj‖2,

and the definition of the proximal average to define the kernel average for n

functions,

Qg(f ,λ)(x) := inf∑
λiyi=x

(∑
λifi(yi) +

∑

i<j

λiλjg(yi − yj)
)
.

We then examined a specific case of the kernel average, namely the prox-

imal average, and its conjugate and calculated that for

g1(x) =
n∑

i=1

n∑

j=1

1
2
‖xi − xj‖2 = 2

∑

i<j

1
2
‖xi − xj‖2,

the conjugate function is

g∗1(x
∗) =





1
8n2

n∑
i=1

n∑
j=1

‖x∗i − x∗j‖2, if x∗1 + · · ·+ x∗n = 0;

+∞, otherwise.
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Chapter 7. Conclusion

This can also be written using any of the following equivalent formulations

when x∗1 + · · ·+ x∗n = 0:

(i) g∗1(x
∗) = 1

8n2

n∑
i=1

n∑
j=1

‖x∗i − x∗j‖2 =
n∑

i=1

n∑
j=1

1
2‖

x∗i−x∗j
2n ‖2

(ii) g∗1(x
∗) = 1

8n2

n∑
i=1

n∑
j=1

‖x∗i + x∗j‖2 =
n∑

i=1

n∑
j=1

1
2‖

x∗i +x∗j
2n ‖2

(iii) g∗1(x
∗) = 1

2n

n∑
i=1

1
2‖xi‖2.

Next, we computed the conjugate when

g2(x1, x2, x3) =
2
3
‖x1 − x2‖

3
2 +

2
3
‖x2 − x3‖

3
2 +

2
3
‖x3 − x1‖

3
2 ,

and found that

g∗2(y1, y2, y3) =





1
3y1y3(3y3 − 3y1 + 4

√−2y1y3), if (y1, y2) ∈ A;

1
3y2y3(3y3 − 3y2 + 4

√−2y2y3), if (y1, y2) ∈ B;

1
3y1y2(3y1 − 3y2 + 4

√−2y1y2), if (y1, y2) ∈ C;

1
3y1y3(3y1 − 3y3 + 4

√−2y1y3), if (y1, y2) ∈ D;

1
3y2y3(3y2 − 3y3 + 4

√−2y2y3), if (y1, y2) ∈ E;

1
3y1y2(3y2 − 3y1 + 4

√−2y1y2), if (y1, y2) ∈ F,

where the regions A,B, C,D, E, and F are as defined in (6.11), or equiva-

lently using ymax = max{y1, y2, y3} and ymin = min{y1, y2, y3},

g∗2(y1, y2, y3) = ymaxy2
min − y2

maxymin +
4
3
ymaxymin

√
−2ymaxymin. (7.1)
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It was expected that we might find a similar form for g∗2 as was found for

g∗1, which would help formulate a closed form solution for g̃∗ in the general

case where

g̃(x) =
n∑

i=1

n∑

j=1

λiλjg(xi − xj),

for any function g. However, due to the fact that there does not appear

to be any correlation between the solutions for g∗1 and g∗2, it seems unlikely

that a general solution will be found.
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Appendix A

Maple Code

The following is the Maple code used to verify the calculations for chapter

6.

>r e s t a r t : with ( p l o t s ) :

Case 1 :

> h1 := x−> (1/3)∗ ( x−y [1 ] ) ˆ3+(1/3 )∗ ( x−y [1]−y [2 ] )ˆ3+(1/3)∗ x ˆ3 ;

x− >
1
3
(x− y1)3 +

1
3
(x− y1 − y2)3 +

1
3
x3

> dh1 := d i f f ( h1 (x ) , x ) ; c r i t i c a l p o i n t s 1 := so l v e ( dh1 = 0 , x ) ;

1
3
y2 +

2
3
y1 +

1
3

√
−2y2

2 − 2y1y2 − 2y2
1,

1
3
y2 +

2
3
y1 − 1

3

√
−2y2

2 − 2y1y2 − 2y2
1

Case 2 :

> h2 := x−> (1/3)∗ ( y [1]−x )ˆ3+(1/3)∗(x−y [1]−y [2 ] )ˆ3+(1/3)∗ x ˆ3 ;

x− >
1
3
(y1 − x)3 +

1
3
(x− y1 − y2)3 +

1
3
x3

> dh2 := d i f f ( h2 (x ) , x ) : c r i t i c a l p o i n t s 2 := so l v e ( dh2 = 0 , x ) ;
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y2 +
√
−2y1y2, y2 −

√
−2y1y2

> h2so ln1 := f a c t o r ( s imp l i f y ( h2 ( c r i t i c a l p o i n t s 2 [ 1 ] ) ) ) ;

−1
3
y1y2(3y1 − 3y2 − 4

√
2
√−y1y2)

> h2so ln2 := f a c t o r ( s imp l i f y ( h2 ( c r i t i c a l p o i n t s 2 [ 2 ] ) ) ) ;

−1
3
y1y2(3y1 − 3y2 + 4

√
2
√−y1y2)

Case 3 :

> h3 := x−> (1/3)∗ ( x−y [1 ] ) ˆ3+(1/3 )∗ ( y [1 ]+y [2]−x)ˆ3+(1/3)∗x ˆ3 ;

x− >
1
3
(x− y1)3 +

1
3
(y1 + y2 − x)3 +

1
3
x3

>dh3 := d i f f ( h3 (x ) , x ) : c r i t i c a l p o i n t s 3 := so l v e ( dh3 = 0 , x ) ;

−y2 +
√

2y2
2 + 2y1y2,−y2 −

√
2y2

2 + 2y1y2

>h3so ln1 := f a c t o r ( s imp l i f y ( h3 ( c r i t i c a l p o i n t s 3 [ 1 ] ) ) ) ;

−1
3
y2(y2 + y1)(−3y1 − 6y2 + 4

√
2
√

y2(y2 + y1))

>h3so ln2 := f a c t o r ( s imp l i f y ( h3 ( c r i t i c a l p o i n t s 3 [ 2 ] ) ) ) ;
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1
3
y2(y2 + y1)(3y1 + 6y2 + 4

√
2
√

y2(y2 + y1))

Case 4 :

> h4 := x−> (1/3)∗ ( x−y [1 ] ) ˆ3+(1/3 )∗ ( x−y [1]−y [2 ] )ˆ3 − (1/3)∗x ˆ3 ;

x− >
1
3
(x− y1)3 +

1
3
(x− y1 − y2)3 +

1
3
x3

>dh4 := d i f f ( h4 (x ) , x ) : c r i t i c a l p o i n t s 4 := so l v e ( dh4 = 0 , x ) ;

y2 + 2y1 +
√

2y1y2 + 2y2
1, y2 + 2y1 −

√
2y1y2 + 2y2

1

>h4so ln1 := f a c t o r ( s imp l i f y ( h4 ( c r i t i c a l p o i n t s 4 [ 1 ] ) ) ) ;

−1
3
y1(y2 + y1)(3y2 + 6y1 + 4

√
2y1(y2 + y1))

>h4so ln2 := f a c t o r ( s imp l i f y ( h4 ( c r i t i c a l p o i n t s 4 [ 2 ] ) ) ) ;

1
3
y1(y2 + y1)(−3y2 − 6y1 + 4

√
2y1(y2 + y1))

Case 5 :

> h5 := x−> (1/3)∗ ( y [1]−x )ˆ3+(1/3)∗( y [1 ]+y [2]−x)ˆ3+(1/3)∗x ˆ3 ;

x− >
1
3
(y1 − x)3 +

1
3
(y1 + y2 − x)3 +

1
3
x3
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>dh5 := d i f f ( h5 (x ) , x ) : c r i t i c a l p o i n t s 5 := so l v e ( dh5 = 0 , x ) ;

y2 + 2y1 +
√

2y1y2 + 2y2
1, y2 + 2y1 −

√
2y1y2 + 2y2

1

>h5so ln1 := f a c t o r ( s imp l i f y ( h5 ( c r i t i c a l p o i n t s 5 [ 1 ] ) ) ) ;

1
3
y1(y2 + y1)(3y2 + 6y1 + 4

√
2y1(y2 + y1))

>h5so ln2 := f a c t o r ( s imp l i f y ( h5 ( c r i t i c a l p o i n t s 5 [ 2 ] ) ) ) ;

−1
3
y1(y2 + y1)(−3y2 − 6y1 + 4

√
2y1(y2 + y1))

Case 6 :

> h6 := x−> (1/3)∗ ( y [1]−x )ˆ3+(1/3)∗(x−y [1]−y [2 ] )ˆ3 − (1/3)∗x ˆ3 ;

x− >
1
3
(y1 − x)3 +

1
3
(x− y1 − y2)3 − 1

3
x3

dh6 := d i f f ( h6 (x ) , x ) : c r i t i c a l p o i n t s 6 := so l v e ( dh6 = 0 , x ) ;

−y2 +
√

2y2
2 + 2y1y2,−y2 −

√
2y2

2 + 2y1y2

>h6so ln1 := f a c t o r ( s imp l i f y ( h6 ( c r i t i c a l p o i n t s 6 [ 1 ] ) ) ) ;

1
3
y2(y2 + y1)(−3y1 − 6y2 + 4

√
2y2(y2 + y1))

107



Appendix A. Maple Code

>h6so ln2 := f a c t o r ( s imp l i f y ( h6 ( c r i t i c a l p o i n t s 6 [ 2 ] ) ) ) ;

−1
3
y2(y2 + y1)(3y1 + 6y2 + 4

√
2y2(y2 + y1))

Case 7 :

> h7 := x−> (1/3)∗ ( x−y [1 ] ) ˆ3+(1/3 )∗ ( y [1 ]+y [2]−x)ˆ3−(1/3)∗x ˆ3 ;

x− >
1
3
(x− y1)3 +

1
3
(y1 + y2 − x)3 − 1

3
x3

>dh7 := d i f f ( h7 (x ) , x ) : c r i t i c a l p o i n t s 7 := so l v e ( dh7 = 0 , x ) ;

y2 +
√
−2y1y2, y2 −

√
−2y1y2

>h7so ln1 := f a c t o r ( s imp l i f y ( h7 ( c r i t i c a l p o i n t s 7 [ 1 ] ) ) ) ;

−1
3
y1y2(3y2 − 3y1 + 4

√
−2y1y2)

>h7so ln2 := f a c t o r ( s imp l i f y ( h7 ( c r i t i c a l p o i n t s 7 [ 2 ] ) ) ) ;

1
3
y1y2(3y1 − 3y2 + 4

√
−2y1y2)

Case 8 :

> h8 := x−> (1/3)∗ ( y [1]−x )ˆ3+(1/3)∗( y [1 ]+y [2]−x)ˆ3−(1/3)∗x ˆ3 ;
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x− >
1
3
(y1 − x)3 +

1
3
(y1 + y2 − x)3 − 1

3
x3

>dh8 := d i f f ( h8 (x ) , x ) : c r i t i c a l p o i n t s 8 := so l v e ( dh8 = 0 , x ) ;

1
3
y2 +

2
3
y1 +

1
3

√
−2y2

2 − 2y1y2 − 2y2
1,

1
3
y2 +

2
3
y1 − 1

3

√
−2y2

2 − 2y1y2 − 2y2
1

Plo t t i ng :

>r e s t a r t : with ( p l o t s ) :

> f 1 := (y1 , y2)−> −(1/3)∗y1 ∗( y2+y1)∗(−6∗y1−3∗y2+4∗ s q r t (2)∗
s q r t ( y1 ∗( y2+y1 ) ) ) :

> f 2 := (y1 , y2)−> −(1/3)∗y2 ∗( y2+y1)∗(−3∗y1−6∗y2+4∗ s q r t (2)∗
s q r t ( y2 ∗( y2+y1 ) ) ) :

> f 3 := (y1 , y2)−> (1/3)∗ y1∗y2 ∗(3∗y1−3∗y2+4∗ s q r t (2)∗ s q r t (−y1

∗y2 ) ) :

> f 4 := (y1 , y2)−> −(1/3)∗y1 ∗( y2+y1 )∗ (6∗ y1+3∗y2+4∗ s q r t (2)∗
s q r t ( y1 ∗( y2+y1 ) ) ) :

> f 5 := (y1 , y2)−> −(1/3)∗y2 ∗( y2+y1 )∗ (3∗ y1+6∗y2+4∗ s q r t (2)∗
s q r t ( y2 ∗( y2+y1 ) ) ) :

> f 6 := (y1 , y2)−> (1/3)∗ y1∗y2∗(−3∗y1+3∗y2+4∗ s q r t (2)∗ s q r t (−y1

∗y2 ) ) :

> f p i e c e := (y1 , y2)−> p i e c ew i s e (0 <= y1 and −(1/2)∗y1 <= y2

and y2 <= y1 , f 1 ( y1 , y2 ) , 0 <= y2 and −(1/2)∗y2 <= y1 and

y1 <= y2 , f 2 ( y1 , y2 ) , y1 <= 0 and −(1/2)∗y1 <= y2 and y2 <=

−2∗y1 , f 3 ( y1 , y2 ) , y1 <= 0 and y1 <= y2 and y2 <= −(1/2)∗y1 ,
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f 4 ( y1 , y2 ) , y2 <= 0 and y2 <= y1 and y1 <= −(1/2)∗y2 ,

f 5 ( y1 , y2 ) , 0 <= y1 and −2∗y1 <= y2 and y2 <= −(1/2)∗y1 ,

f 6 ( y1 , y2 ) ) :

>plot3d ( f p i e c e ( y1 , y2 ) , y1=−10..10 , y2=−10..10 , axes=normal ) ;

>p l o t s [ contourp lo t ] ( f p i e c e ( y1 , y2 ) , y1=−10..10 , y2=−10..10 ,

contours =100);
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