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Abstract

The growing complexity of energy markets requires the introduction of in
creasingly sophisticated tools for the analysis of market structures and for
the modeling of the dynamics of spot market and forward prices. In order for
market participants to use these markets in an efficient way, it is important
to employ good mathematical models of these markets. This has proved to
be particularly difficult for electricity, where markets are complex, and ex
hibit a number of unique features, mainly due to the problems involved in
storing electricity.

In this thesis we propose three models for electricity prices. All are multi-
factor models, that is, as well as an observable spot price they assume the
existence of an unobservable long term mean’ process. The introduction
of such additional processes helps to explain the relation between spot and
futures prices. In the first part of the thesis we introduce a two factor Gaus
sian model for prices. Using the Kalman filter, and based on both spot and
forward prices, we successfully estimate parameters for simulated data. We
then estimate parameters for the German EEX market, and compare our
fitted model with the observed prices. We find that this model does capture
some features of the EEX market, but it fails to exhibit the price spikes which
are a prominent feature of true spot prices. We therefore introduce a second
model, which includes jumps. The inclusion of jumps has the potential to
give a better explanation of the behavior of electricity prices, but it creates
difficulties in the estimation of parameters. This is because as the model
noise is non-Gaussian the Kalman filter cannot be applied satisfactorily. We
implement the particle filter adopting the Liu & West approach for the jump
model. This method allows us to identify the hidden process in the model,
and to estimate a small number of parameters. The third model is a new
model for electricity prices based on the inverse Box-Cox transformation.
This model is non-linear with Gaussian noise, and can generate price spikes
using fewer parameters than a multi-factor jump-diffusion model. In this
context, we successfully applied the Unscented Kalman filter to estimate the
parameters.
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Chapter 1

Introduction

In this thesis we are interested in the commodity futures markets, and in
particular in electricity futures markets.

1.1 Commodity markets

In this section we are going to describe some of the unique characteristics
present only in commodities markets. Figure 1.1 shows the three fundamen
tals groups of commodities.

Commodities

Agricultural Metals Energy I

Vegetable Animal Industrial Precious Upstream Downstream
Goods Goods

• Corn • Live Cattle • Caper • Gold • Crude Oil
• Coffe • Pork Bellies • Aluminium • Silver • Heating Oil • Electricity
• Cotton • Lean Hogs • Lead • Platinum • Natural Gas

Figure 1.1: Classification of commodity markets.

Commodities markets exhibit some characteristics that are not present in
financial markets due to physical constraints and also due to the variation of
demand due to changes in consumption. The commodity spot price is defined
by the intersection of supply and demand curves. Thus the spot price can be
affected by changes in consumption, production or inventory. Unlike financial
assets, which are traded for investment purposes, commodities are traded
in order to be consumed or used in an industrial process, with the partial
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Chapter 1. Introduction

35.000

30000

20,000

19,554::::
10,000

3004 2010

Figure 1.2: World net electricity consumption 2004-2030.

exception of some precious metals. This close link with the real economy
causes commodities prices to have seasonal behavior and also mean-reversion
[31]. This is one reason why many of the standard financial theories may not
be applicable to commodities markets.

1.2 Electricity markets

Among the various commodities the energy market is the most recent market
to be transformed. Since the early 1990s, electricity markets have been and
continue to be developed as a result of the deregulation of electricity markets
worldwide. In many regions the market structure has moved from a monop
olistic to a competitive one. Traditionally, there was only one company or
government agency that produced, moved, distributed, and sold electricity
power and services. This transformation has been already taken place in
the Americas (parts of Canada and US, Argentina, Chile, Peru, Paraguay
and Colombia) in Europe (Norway, Finland, Denmark, Germany, France,
Netherlands, Spain, Poland, and Romania) and in the Asia/Pacific region
(Australia, New Zealand and Japan).

In theory, deregulating the electricity market should increase the effi
ciency of the industry by producing electricity at lower costs and passing
those cost savings on to customers [39]. Electricity is a growing market. In
1973 electricity consumption accounted for 11% of the total world energy

Year
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Chapter 1. Introduction

0

Figure 1.3: If the total load is low, the plants with the lowest variable pro
duction costs are used (nuclear, hydro); if the total load is high, gas or oil
fired plants with high fuel cost are running additionally, producing a huge
effect on the price.

demand and has grown to 18% today. The absolute growth rate of electricity
consumption in the future is estimated at an average of 2.4% per year. The
projected growth in electricity consumption is shown in Figure 1.2.

Electricity is considered a secondary energy source, which means it is
created from the conversion of other sources of energy, such as coal, oil,
natural gas, nuclear power, or hydropower, all of which are referred to as
primary energy sources. To understand the behavior of electricity prices we
have to note that electricity possesses a unique feature; it is very difficult and
expensive to store and quite difficult to transmit from one region to another.

As a result of this, the spot price of electricity is set by the short-term
supply-demand equilibrium, and supply and demand must be in balance at
each time. Figure 1.3 displays a schematic supply-demand curve. The sup
ply and demand are affected by many factors that influence the seasonality
and volatility of prices. For example, supply may be affected for transition
constraints (breakdowns) or fluctuation of fuel prices (oil, gas). Demand
exhibits seasonal fluctuations, which are due to climate conditions. In ad

1 (ETA) System for the Analysis of Global Energy Markets (2007).

Demand

Capacity
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(a) Hours average price from Jan-Dec 2002. (b) Daily average log-price throughout the
week from 12/2002 to 05/2005.

Figure 1.4: Seasonal patterns by hours and by week for the German market.
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Figure 1.5: Average daily spot price in German market for years 2002-2007
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Chapter 1. Introduction

dition, electricity demand is also not uniform through the week. It peaks
during weekday working hours and is low during nights, holidays and week
ends due to lower industrial activity, see Figure 1.4. Also unexpected weather
conditions can cause abrupt and dramatic disruptions, producing jumps and
spikes in the spot price. Finally the constraints on transmission mean that
power markets are geographically distinct. In some markets (such as Alberta
or Norway), demand is higher in the winter months due to the use of power
for heating. In other markets, such as California power, usage peaks in the
summer due to use of electricity for air conditioners. Figure 1.6 shows the
factors that influence the determination of electricity prices.2

Long-term factors

• Economic cycle

• Politcal decisions

• Capacity expansionfcloaures

ThameS power plants

plonta
Electricity

Power

prices

I
Lighting end consumer behavior

4)i Vacations

PnblIe hotidays
Cloudiness

Time a? day

l Factors of a.ipply

Factors of demand

Factors of supply and demand

Figure 1.6: The factors exerting a major influence on electricity wholesale
price.

The most unusual feature of electricity spot prices is the presence of “price
spikes”; a phenomenon which does not have any parallel in other commodity
markets. See for example Figure 1.5 which shows that in some days in July

2Source: (RWE AG) Shares of Primary Energy Sources in Total Electricity Generation
in Europe (2008).
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Chapter 1. Introduction

2006 the spot price in Germany reached 300 €/MWh, compared with a
normal daily price of 30-50 €/MWh.

If such an event occurred for a conventional commodity, such as say cop
per, holders of the material would be able to made substantial profits by
selling the commodity during the spike, and then repurchasing it at a nor
mal price a few days later. But, because, it cannot easily be stored, this is
not possible with electricity.

1.3 The relationship between spot and
futures prices

The relationship between the spot price and the futures (forward) prices
is important for risk management and option pricing theory [30]. Across all
these commodities ranging from agricultural products to pure financial assets
certain common principles of futures valuation and futures price behavior
apply.

Let (, F, IP) be a complete probability space endowed with the natural
filtration {}>o. In the financial world, the relation between spot and future
prices, under the risk-neutral measure Q, is given by the formula

Q/ I T ‘1
F(t,T)=E ISTexpj’ rdnj} (1.1)

where r is the risk-free interest rate. The proof is based on the no-arbitrage
argument (see [9]), which proceeds by comparing returns on a portfolio con
sisting of the future contract with one consisting of cash and the commodity.

However, unlike financial assets, storage of commodities is costly. Con
sequently, physical ownership of the commodity carries an associated flow
of services. On the one hand, the owner enjoys the benefit of direct access,
which is important if the commodity is to be consumed. On the other hand,
postponing consumption and storing the commodity means that storage ex
penses have to be paid. The net flow of these services per unit of time is
called the convenience yield Ct. Since the convenience yield is the result
of subtracting the cost of storage from the benefit attached to the physi
cal commodity it can be both positive or negative at different times. (A
positive convenience yield implies an instantaneous benefit from holding the
commodity, a negative one an instantaneous cost.)

6



Chapter 1. Introduction

Again, by a no-arbitrage argument, the relationship between the spot and
forward price is given by:

F(t, T) = (ST exp { ftT(ru
— cu)du}), (1.2)

where c is the instantaneous forward convenience yield [31]. Note that the
convenience yield plays the same role as dividends play for stocks.

Some authors have argued that as a consequence of the non-storability
of electricity the notion of convenience yield is irrelevant in power markets.
Therefore the relation between spot and futures (forward) prices cannot be
established through the no-arbitrage argument (see [14, 32, 33]). For exam
ple, Geman and Roncoroni comment in [32]:

“Our view is that a convenience yield does not really make sense in the
context of electricity: since there is no available technique to store power
(outside of hydro), there cannot be a benefit from holding the commodity,
nor a storage cost. Hence, the spot price process should contain by itself
most of the fundamental properties of power.”

Other financial theories view the futures (forward) prices F(t, T) and the
expected future spot price Et(ST) as related but not identical. The difference
is the risk premium, i.e.

F(t, T) Et(ST) + ir(t, T). (1.3)

The full specification is not straightforward to establish. The theory of a
positive risk premium is termed normal backwardation. The opposite situa
tion where the futures prices is set above the expected future spot price (a
negative risk premium) is called contango.

An alternative approach is the actuarial one, which values a forward con
tract as its discounted expected real world payoff, see [44]. This is the ap
proach we will adopt in this thesis: we will assume that the relation between
spot and futures prices is given by (1.2), and that the risk free interest rate
r,, and convenience yield c are constant.

7



Chapter 1. Introduction

1.4 Previous work

The main motivation for the development of models for electricity prices is the
need for such models by market participants. For example, a power company
has the choice of selling its power either on the spot or forward market, and
would wish to make the optimum choice. In addition there is the need to
price derivatives such as forwards, options and swaps. Hence the model
should be sufficiently sophisticated for realistic modelling but sufficiently
simple for pricing of derivatives. This issue is very important for computing
risk measures, testing hedging strategies and evaluating investment policies.

Various approaches have been developed to describe the stochastic price
process in energy markets. There are significant parallels between corrimodity
markets and interest rate markets. For commodity markets, the traded assets
are both the spot and various forward or future contracts. For interest rates,
the main traded assets are futures (represented by different types of bonds),
while the spot or instantaneous rate of interest plays a more minor role.
Given these parallels, it is natural to use the interest rate theory as a base
for electricity price models.

In general, interest rate models can be separated into two categories:
short-rate model and forward-rate models. The short-rate models describe
the evolution of the instantaneous interest rate as stochastic process, and
the forward-rate models capture the dynamics of the whole forward curve
(Heath-Jarrow-Morton models). These interest rate models are then applied
to arrive to arbitrage-free pricing of bonds or other derivative products.

The same division of models arises for power prices, where the models
may be broadly divided into two groups:3 statistical models (spot price based
models) and fundamental models (forward based models).

For the forward based models, the futures prices are the main objects
of study, and the dynamics of the whole futures prices curve is modeled
using the Heath-Jarrow-Morton [42] theory for interest rates. See for exam
ple, Clewlow and Strickland (1999) [19] and Manoliu and Tompaidis (2002)
[61], and for more recent papers see Borovkova (2006) [10], Koekebakker and
Ollmar (2005) [55].

3There is another approach based on econometric time series model that we will not
consider in this work (see [56, 63])

8



Chapter 1. Introduction

A general discussion of HJM-type models in the context of power futures
is given in Benth and Koekebakker (2008) [8]. They dedicate a large part of
their analysis to the relation of spot, forward and swap-price dynamics and
derive no-arbitrage conditions in power future markets and conduct a statis—
tical study comparing a one-factor model with several volatility specifications
using data from the Nord Pool market.

The disadvantage of such approaches is that futures prices do not reveal
information about price behavior on a daily timescale and provide a poor
approximation to the complex observed spot behavior in power markets.

In this thesis, following most of the literature, and the philosophy outlined
by Geman and Roncoroni above, we will consider spot based models. In
principle these models should provide a reliable description of the evolution
of electricity prices. Moreover, these models are versatile in the sense that it
is relatively simple to aggregate characteristics to an existing family or class
of models by for example adding a seasonality function.

Securities (stocks) are usually modeled by Geometric Brownian Motion
with drift

S, = Soexp{at+aW},

as in the famous Black-Scholes model.
This model is not found suitable for commodities, since ‘mean reversion’

is typical feature of these markets [30, 31, 66].

The simplest stochastic process with mean-reverting behavior is the Ornstein
Uhlenbeck process [661. Here the process X, is a diffusion process satisfying
the stochastic differential equation

dX = —A(X — a)dt + crdWt (1.4)

where W is a standard Brownian motion, a the volatility of the process, and
A the velocity with which the process reverts to its long term mean a. Many
electricity price models use this process or variants as a basic building block.

For example, Lucia and Schwartz (2002) [59], give models of the form

St = h(t) + X (1.5)

or
S = exp {h(t) + X} (1.6)

9



Chapter 1. Introduction

where S is the spot price, X, is an Ornstein-Uhlenbeck process, and h(t)
is a deterministic component, intended to account for seasonal and weekly
effects. Benth et al. (2008) [6] called models like (1.5) ‘arithmetic models’
and (1.6) ‘geometric models’, i.e. geometric models represent the logarithmic
prices by a sum of processes.

The incorporation of a deterministic component of this kind is an im
portant feature of nearly all spot price models. Spot prices are higher on
weekdays than on weekends, due to higher demand, so a correction h(t)
which compensates for this is essential. See for example Figure 1.4b.

Spot price models can be divided into ‘single’ factor or multi-factor mod
els. For single factor models the spot price is itself a Markov process, while in
multi-factor models the spot price is a function S = g(X’, ..., X) of a. mul
tidimensional Markov process. Here g : IRk R+, and as g is not one-to-one
these models have unknown or hidden components.

As well as the model of Lucia and Schwartz mentioned above, other single
factor models are in Cartea and Figueroa (2005) [16], Barlow (2002) [3],
Kanamura and Ohashi (2007) [49], and Geman and Roncoroni (2006) [32].

Many of these models, unlike that of Lucia and Schwartz, include mecha
nisms to take account of price spikes. One of the simplest of these is in Cartea
and Figueroa [16], which adds a jump term to the Ornstein-Uhlenbeck pro
cess:

log St = h(t) + Y,

d = —cYdt + crdWt + JdN, (1.7)

where W, is a Brownian motion, h(t) is assumed to capture the seasonal
patterns of the spot price, and the third term JdN enables the process to
have discrete random spikes: these are a combination of a Poisson process,
which determines the jump frequency, and a jump-size distribution, which
gives the jump magnitude conditional on a jump occurring.

In (1.7) the process dN is approximated by a Bernoulli process with
parameter ldt and J is log-Normal, i.e. log J N(—u2/2,u2). Cartea and
Figueroa apply this one-factor mean-reverting jump diffusion model for the
electricity spot price, adjusted to incorporate seasonality effects and derive
the corresponding forward in closed-form to the England and Wales market.

10



Chapter 1. Introduction

However, the rather short period for which electricity prices were available
and the small number of spikes caused difficulties with parameter estimation.

Such models require a high speed of mean reversion in order to reduce the
spot price following a large positive jump, and this has the effect of removing
too much variability in the series over the non-jump time-periods.

Barlow [3] introduces a nonlinear Ornstein-Uhlenbeck model for spot
power prices.

The price is obtained by matching the demand level with a deterministic
supply function which must be nonlinear to account for price spikes. He
proposes the inverse function of the Box-Cox transformation.

I fa(Kt)’ 1+tX > E0
St

=
, 1 +

dX —..\(Xt—a)dt+udWt,

where
f(x) (1 + x)’, 0 fo(x) e.

When o = 0, an exponential Ornstein-Uhlenbeck process is retrieved for St.
The case — 1 yields a regular Ornstein-Uhlenbeck process. The model
has been estimated by maximum likelihood on the Alberta and California
markets.

Another paper sharing the same theoretical idea is found in Kanamura
and Ohashi [49]. Instead of using the inverse function of the Box-Cox trans
formation they assume that the supply curve has a ‘hockey stick’ shape.
Setting X = D

— D, D describes the seasonal component and

s —

f (a1 +b1D), D D0
—

(a2 +b2D), D > D0

dX = (—\X)dt+udW.

This model captures the observed mean-reverting behavior of electricity mar
kets and it accounts very well for the observed price spikes, allowing for a
better fit to market data. But the assumption of a deterministic supply

11
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function is probably too restrictive since this implies that spikes can only be
produced by surges in demand.

Geman and Roncoroni [32] built up a jump-reversion model for electricity
spot prices. The model assumes that the natural logarithm of power price
dynamics is described by a stochastic differential equation

dE(t) = [h(t) + 8(t(t) — E(t))]dt + crdW(t) + f(E(t))dJ(t), (1.8)

where h(t) is a deterministic seasonality function, 8 is the mean reversion
speed, and o is a constant instantaneous volatility, i(t) is the mean rever
sion level. The process reverts to a deterministic mean level rather than the
stochastic pre-spike value. The last term in equation (1.8) represents the
discontinuous part of the model featuring price spikes. This effect is charac
terized by three quantities defining occurrence, direction, and size of jumps.

f is a function which is ±1 depending on the level of the spot price.

E1t — f +1, if E(t) <r(t)
‘ “ “

—

—1, if E(t) r(t)

The process J(t) is a time-inhomogeneous compound Poisson process with
intensity function

A(t) =

(1 + I sin[n(t
- 7)/61I _i)

where the expected maximum number of jumps per year is represented by
Ic. Jump sizes are modeled by a sequence of independent and identically
distributed truncated exponential variables.

This model generates trajectories similar to those observed in the elec
tricity market, and also it gives a good fit of the empirical moments of order
1, 2 and 4, i.e. mean, variance and kurtosis.4

Neither of the last two models includes the convenience yield as a factor,
nor considers the valuation of futures contracts or any other kind of deriva
tive. The single factor models are quite tractable and their parameters are

4The kurtosis of a random variable X with mean m and variance a2 is defined by:
E((X-m)4) When i is much greater than 3, it means that the density in the tail is

higher than that which prevails for a Gaussian distribution.

12
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relatively easy to estimate. However they have a serious limitation: they do
a poor job explaining the relation between spot and futures prices, see [3]
and [12]. This limitation can be avoided if changes in spot prices are allowed
to depend on more than one factor.

The copper mine example of Brennan and Schwartz (1985) [11] assumed
that the spot price followed a geometric Brownian motion arid incorporated
a convenience yield to their model, assuming it was proportional to the spot
price.

dS = ,LtSdt+uSdz,

C(S,t) = cS.

The idea of a constant convenience yield only holds under restrictive assump
tions, since the theory of storage is rooted in an inverse relationship between
the convenience yield and the level of inventories. Gibson and Schwartz
(1990) [35] take an important step to a more realistic model of the econ
omy by introducing a stochastic convenience yield rate. The spot price S
of the commodity is described by a geometrical Brownian motion and the
convenience yield rate cY is described by an Ornstein-Uhlenbeck process with
equilibrium level a and rate of mean-reversion f:

dS = (—öt)Stdt+ciiStdzi,

dc5t = ic(cr
— S)dt +u2dz2,

dz1dz2 = pdt.

Significant contributions have been made by Schwartz (1997) [73]. He
reviewed one and two factor models and developed a three factor model
under stochastic convenience yield and interest rates. Including the interest

13
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as a third factor makes forward and futures prices different.

dS = (rt — 6)Sdt + uiSdzi,

d5 = ii(a’—c5t)dt+u2dz2,

dr = a(m
— rt)dt + cr3dz3,

dz1dz2 pidt, dzdz3 = p2dt, dz1dz = p3dt.

This model was originally developed for two commercial commodities (copper
and oil). He used the Kalman filter algorithm to estimate the parameters in
the models.

In the paper by Lucia and Schwartz [59], where they analyze the Nordic
Power market, the spot price is modeled by

=

dX = —.AXdt+uxdWx,

dY = ,udt+ciydWy,

dWxdWy = pdt.

The function h(t) is deterministic, and it is intended to capture the pre
dictable component in the spot price, i.e. seasonal effects. This function
distinguishes between weekdays, and includes a monthly seasonal compo
nent employing dummy variables. The idea of this model is to have a non-
stationary process for the long-term equilibrium price level Y and short-term
mean-reverting component X. They estimated all the parameters simulta
neously by nonlinear least squares methods.

The multi-factor models described so far do not capture one of the most
characteristic feature of power prices, jumps or spikes. Several authors, Deng
(2000) [24], Villaplana (2003) [80], and Xiong (2004) [82] extend such models
to even more factors with both diffusion and jumps. In the work of Villaplana
power prices are modeled according to non-observable state variables that
account for the short-term movements and long-term trends in electricity

14



Chapter 1. Introduction

prices.

inSt = h(t)+X+Y

dX ‘cxXtdt + uxdWi + JdN()) — JddN(\d)

dY = —ky(i—)dt+uydW2

dW1dW2 = pdt.

The jump components are characterized by N(\), and N(Ad), i.e. Poisson
processes with intensities )4, and ‘\d respectively, and by random jumps of
size J,, and Jd with some specified distribution (Gaussian/Exponential).

Deng (2000) and Villaplana (2003) set their models in the affine jump
diffusion (AJD) framework which enables them to use transform results of
Duffie et al. (2000) [27] to derive tractable closed-form solutions for a variety
of contracts. Deng proposes more sophisticated mean-reverting jump dif
fusion models with deterministic/stochastic volatility and regime switching,
which may be a good way of addressing the dramatic changes in spot prices.
However the trajectories produced by the model are fairly different from the
ones observed in the market.

Cartea and Villaplana (2008) [17] build a model for wholesale power prices
explained by two state variables (demand and capacity) and calculate the
forward premium. Writing D, C for the demand and capacity, they model
D and C by

= fD(t)+XP,

C = f0(t)+X,

where fD, fc are deterministic functions, and X, X° are independent
Ornstein-Uhlenbeck processes. They then take the spot price as given by

St exp{D +‘yG}.

They perform empirical research embracing PJM, England and Wales, and
Nord Pool markets. They find that, depending on the market and the period
under study, the volatility of capacity and the market price of capacity risk
could either put upward or downward pressure on forward prices. They also
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find that the forward premium follows a seasonal pattern, being positive in
the months of high volatility of demand and close to zero or even negative
in the months of low volatility of demand.

Inspired by Cartea and Villaplana (2008), Lyle and Elliott (2009) [60]
present an hybrid model that uses a supply-demand approach for price elec
tricity derivatives. They assume that the system demand D(t) is given by

D(t) = f(t) + b(t)

where .b(t) is an Ornstein-Uhlenbeck process and f(t) a deterministic func
tion. For the supply side, they model the curve S(t, P) which gives the supply
at time t if the price is P. They consider curves of the form

S(t, P) = aSb(t) + blog(cP + )
where Sb(t) is the base portion of the system supply and a, b, c, and are
positive constants. They consider two different models for Sb(t): a mean-
reversing model, and a Markov chain model. The equilibrium price is given
by

P(t) = (exp
{_aSb(t) - D(t) })

Using these equations Lyle and Elliott are able to obtain closed-form solutions
for European options. They test the model on Alberta prices data calculating
the first four empirical moments. The model gives a good fit for the mean
and standard deviation but not for the skewness and kurtosis.

Benth et al. (2007) [7] propose a non-Gaussian Ornstein-Uhlenbeck pro
cess which takes into account seasonality and price spikes. Their model is

S(t) = h(t) + X(t)

where S(t) is the spot price, h(t) is a deterministic periodic function and
X(t) is a sum of independent Levy-driven Ornstein-Uhlenbeck components.

X(t)

d}4(t) = —cY(t)dt + u(t)dL(t), Y(0) yj.
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Here the processes L(t) are independent, possibly time inhomogeneous pure
jump Levy processes with E(L(1)) < oc. L(t) can be written in terms of
their jump measures N2(dt, dz), i = 1, ..., n.

ft foo

Li(t)=J J zN(ds,dz).
00

The deterministic predictable compensator of N(ds, dz) which is the
jump measure of L(t) is of the form:

v(dt,dz) = p(t)dtv(t)dz.

Here p(t) is a deterministic function that contrOls seasonal variation of the
jump intensity, u(t) controls the seasonal variation of the jump sizes, cx is the
level of mean reversion, and L(t) controls the variation of price such as the
daily volatile variation and price spikes. Benth et al. (2007) provide closed-
form and semi-closed form solutions for forwards and options on forwards.
This model, coupled with a good description of price seasonality, provides
a precise characterization of electricity spot price behavior. In addition,
due to its arithmetic structure, it is analytically tractable when it comes to
futures and other derivatives pricing. Although the model seems to capture
the stylized facts of spot prices market such as mean reversion, seasonality
and price spikes, the authors did not make a precise statistical analysis of the
quality of the model. However, they suggested the particle filter as a possible
method to estimate the parameters in the model. Parameter estimation for
this model would appear to be a significant challenge.

Hikspoors and Jaimungal (2007) [44] consider two models for oil prices.
The first is a two factor version of the model of Schwartz:

= exp{h(t) + X},

dX = ).x(Y — X)dt + crxdWt, (1.9)

d = )y(b — Y)dt + ydZ,

dWdZ pdt.

(In fact, in order to value spread options, they consider two different com
modities satisfying (1.9)). The second is a modification of (1.9) with an
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additional jump component to handle price spikes:

= exp{h(t) + Xt + J}, (1.10)

where X, is given by (1.9), and

dJ = —,cJt-dt+dQt (1.11)

with Q a compound Poisson process, and t denotes the instant immediately
before time t. Through measure changes induced by a pseudo-numeraire,
they obtained, for both models, exchange option and futures prices in closed
form both under real-world and risk-neutral measures. Also they consider
the problem of model calibration. For the jump model (1.10) they suggest
a modification of the procedure of [20]. This is to identify the price jump
by searching for days with a price change more than 3 times the standard
deviation of the daily price change. (This procedure is then run several times
to produce a ‘despiked’ series).

They do not apply this method to electricity prices, but do estimate
parameters for their first model for oil, from a period of about 3 years of
data. They consider parameters built under the real world probability IP, and
a risk neutral probability Q. Let us write a bar on the model parameters to
denote parameters with respect to Q. If P Q on the filtration generated
by both X and , then one has

0XJX, OyJy, pp.

The parameter estimation proceeded in a number of steps:

1. Using least squares, the risk neutral parameters were estimated from
the forward data, as is the unknown process Y.

2. Given (Xe, Y), the remaining real world parameters Ax, Ay, were
estimated by regression.

One surprising feature of the estimates is that they obtain p = —0.96, so
that the long-term process adds little extra randomness.

The advantage of two or more factor models is that they allow for a good
mathematical description of the problem. Furthermore they have a better
fit to historical data and provide a better relation between spot and futures
prices, see [73].
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Many of the models in the literature incorporate ‘regime switching’ com
ponents. For example, the basic model of Nomikos and Soldatos (2008) [64]
for Nord Pool prices, is similar to that of Hikspoors and Jaimungal:

S =h(t)+exp{Xt+}, (1.12)

where X is an Ornstein-Uhlenbeck type process, and Y, is a jump process
intended to take account of price spikes. However, both X and incorporate
regime dependent terms. X, is given by

dX = — X)dt + uxdW, (1.13)

where R is the water reservoir level, and is assumed to follow a two-state
Markov chain with state space {wet, dry}. (Much of the Nord Pool electricity
production is by hydro.) is driven by a ‘jump process’, and satisfies

dY = ,c2Ytdt + dLi. (1.14)

Here L is a jump process, with rates and jump distribution dependent on
the season.

Davison et al. (2002) [22] they propose a hybrid model based on the ratio
a(t) between demand and capacity. At each time step t the spot price S is
drawn from a distribution P(t) which is a mixture of Gaussian distributions
given by

P(t) = (1- t)))PL(t) + f(c(t))PH(t).

Here PH(t) is the price-spike distribution, PL(t) is the low-price distribution,
and is is a function of c that represents a relative demand-capacity ratio.
The distribution e plays the role of a switching variable that determines
whether the price is to be drawn from PL(t) or PH(t), i.e. the probability of
a spike. They assumed

(t) = tanh(20 * (a(t) — 0.85)) +

where the constants are determined by historical PJM spot prices. The
distributions PL and PH are taken to be Gaussian and the function (t) is
deterministic.

It appears that each time step t independent samples are taken from
the distribution PL, PH. The choice of independent samples from PL would
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lead to highly oscillation prices, and in Anderson and Davison (2008) [1]
they replace FL by a Brownian motion. To test the model, they simulated
trajectories and compare statistical moments. Applying the Kolmogorov
Smirnov test, they concluded that their model is able to simulate data that
are from a similar distribution to the observed prices.

Eriwein et al. (2008) [29] develop and analyze an exponential Ornstein
Uhienbeck process with an added jump process based on hidden Markov
model (HMM) setting.The jump component is a Poisson process where the
mean and variance are controlled by a discrete time HMM. That is, the spot
price, that is partially observed (the underlying economic state is hidden) is
given by

S = D exp{Xt}

where D is a deterministic function and

dX = a(z)(/3(zt) — X)dt + a(zt)dW + JdN.

Here Zt is a Markov chain with 2 or 3 states, and the jump sizes J are
conditional Gaussian distributed, i.e.

JIZt N((zt),u2(zt)).

They apply the EM algorithm to estimate the parameters in the model
using data from the Nord Pool market. The model captures some of the spikes
presents in the real data for the 2 and 3-state Markov chain. A puzzling
feature of this paper is that the estimates for the transition matrix of zt
suggest that Zt are close to i.i.d. random variables.

In the same theoretical framework a continuous-time process is derived by
Kholodnyi (2001) [52], where self-reversing non-Markovian spikes are added
to a Markovian regular price process.

One sees in the literature the need to balance two competing demands.
Simple models, particularly simple one factor models, have relatively few pa
rameters, and these parameters may be relatively easy to estimate. However,
these models generally fail to capture one or more features of real markets
of which the most difficult are the existence of price spikes, and the relation
between spot and future prices.
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The need for a better fit with data leads to more complicated models,
usually with hidden variables, and sometimes with multiple regimes. How
ever introducing more factors requires introducing more parameters into the
model. Parameter estimation then becomes a significant challenge. Benth et
al. (2008) [6] remark:

“The question of estimating such models on data is not an easy one... For
multi-factor models this may be an even more challenging problem, involving
highly sophisticated estimation techniques”.

Such parameter estimation is, of course, an essential preliminary to the
valuation of options or derivatives based on the commodity. Table 1.1 sum
marize some of the statistical models.

Although the standard statistical procedure for estimation of a partly
unobserved process involves filtering methods, few of the papers in the liter
ature use those techniques. An exception is Culot et al. (2006) [21]. They
consider a model of the form

log St = h(t) + + yTX,

where h(t) is deterministic, and X, and X are spikes and long-term fac
tors. The spike process X is an m state Markov regime switching pro
cess, while X is a 3-dimensional Ornstein-Uhlenbeck type process given by

= (X1),X2),X3)), where

dX = —kdt + udW,

and W are independent Brownian motions. After estimating the jump
term X and subtracting this from the series, the authors combine Kalman
filtering techniques with maximum likelihood estimation, using both spot
and forward prices, to estimate the parameters for X.

Another exception is Kellerhals (2001) [51]. He developed a model for
short-term electricity forwards. The suggested stochastic volatility model
uses the non-tradeable spot price St of electricity and its variance rate Vt as
state variables. The stochastic specification of the processes is given by

dS = Sdt + S

dvt = udt + a/dZ,

dWdZ = pdt.
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[ SPOT PRICE BASED MODELS

Authors Model Specification
Gibson / dS = (i — S)Sdt + aiStdzi
Schwartz (1990) =

— ö)dt + cx2dz2
dz1dz2 = pdt

Schwartz (1997) dS = (rt — 6)Sdt + uiStdzi
dö =

— ö)dt + cr2dz2
drt a(m

— rt)dt +j3dz3
dz1dz2 = pidt,__dz2dz3=p2dt,__dz1dz3= p3dt

Lucia/ S=h(t)+X+Y
Schwartz (2002) dX = —,\Xdt + cxx dWx

dY, = pdt + crydWy
dWxdWy = pdt

1 (1 + X)’1, 1 + crX >
Barlow (2002) St c 1/cr

L. o 1+aXteo

dX = —)(Xt — a) dt + crdWt
Villaplana (2003) ln St h(t) + X, +

dX = —icxXtdt + cxxdWi + JdN\) — JddN2d)

dY = —Icy(p — Yt)dt + aydW2
dW1dW2= pdt

Geman / S(t) = exp{E(t)}
Roncoroni (2006) dE(t) = [h(t) + O((t) — E(tj)]dt + crdW(t) + f(E(tj)dJ(t)
Hikspoors / St = exp{h(t) + Xt + J}
Jaimungal (2007) dX = ).x(Yt — X)dt + cxxdWt

dY = \y(q$
— Y)dt + crydZ

dJ_=_—,cJt-dt_+_dQt
Benth / S(t) = h(t) + X(t)
et al. (2007) X(t) (t)

dY(t)_=_—)ç’Yj(t)dt_+_dL2(t),__Y(0)_=

Table 1.1: Models for electricity prices.

Using maximum likelihood estimation based on Kalman filtering he reports
empirical results on electricity data from the California market.

Given observations which derive from hidden state process u1, ‘u2, ...,

one may distinguish ‘online’ methods from ‘batch’ methods. The online
methods provide an estimate ii which can easily be updated given an addi
tional observation vt+i; while the batch methods estimate the whole series
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(ui, ...,Ut) from (vi, ...,Vt).

Following most of the literature in this thesis, we have used online meth
ods (such as the Kalman filter and particle filter), rather than batch methods
such as the EM algorithm. One motivation for doing this is the need of mar
ket participants to update their models in real time.

As is clear from the survey above, many authors have attempted to de
sign models which capture the typical properties of electricity prices, namely
seasonalities, spikes, and stochastic mean-reversion, but none of the models
proposed so far has commanded wide assent.

In this thesis we consider some relatively simple multi-factor models, with
a relatively small parameters. A second emphasis is the use of both spot and
forward prices for parameter estimation, and a third is the use of filtering
techniques to estimate the hidden processes, and hence the model parameters.

We will introduce three different spot price models from which we can
also extract the futures prices. All of these models are capable of capturing
some of the features of the spot price dynamics and imply certain dynamics
for futures prices.

The first model (MROU model) is a Gaussian two-factor model where the
spot prices is an mean reversion process which reverts to a stochastic mean,
also fluctuating as Ornstein-Uhlenbeck process.

Since the presence of spikes is a fundamental feature of electricity prices,
and any relevant spot price model should take this feature into account, we
introduce a second model, an extension of the MROU model with a jump
component (MROU with jumps).

However, the inclusion of the jump component introduces two kinds of
problems in parameter estimation. The first is that the inclusion of jumps
adds several new parameters, to describe the jump frequency and distribu
tion. The second is that the jump models are non-Gaussian, and the best
known filtering technique for these models, the particle filter, is not easily
adapted to handle parameter estimation.

To avoid this problem, we introduce the third model (NLMROU model)
based on the MROU model that produce spikes introducing only one more
parameter.
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In general terms, a statistical model is good if it successfully captures
the main features of the observed data. Various statistical tests (such as
the Kolmogorov-Smirnov goodness of fit) can be used to test and compare
statistical models.

From this viewpoint, the theory of electricity prices is rather undeveloped.
No systematic comparison of the various models in the literature has been
made. One reason for this it that in many cases authors have proposed
models, but have not yet developed techniques for parameter estimation.

In this thesis, we have followed other workers in this area in using fairly
simple tests for our models. We have compared moments and sample paths
of simulated and real data. Even these simple tests indicate that our models
do not capture all the features of real prices.

24



Chapter 2

Filtering

2.1 State space formulation

A state space model is a representation of the joint dynamic evolution of an
observable random vector Vt and a unobservable state vector Ut. It is based on
two important sets of system equations: the measurement equation and the
transition equation. The transition equation describes the evolution of the
state vector and the measurement equation reflects how the state interacts
with the vector of observations. The evolution of the state is assumed to be
autonomous, that is it does not depend on the measurement equation.

We consider the non-linear and non-Gaussian state-space model, which
is represented in the following general form: For t 1, 2, ...,

ftQut_i, qt—i) (transition equation), (2.1)

Vt = h(u, rt) (measurement equation), (2.2)

where ft : Rn” x Thq
H-> IR’ and h : R x R i—* are vector functions,

which are assumed to be known and possibly non-linear. The process and
measurement noises, qt and rt respectively, are independent with known but
arbitrary densities. In addition, we assume that the initial distribution of ‘u0
is available, that is pQuo) := p(UOIVO).

Associated with a state-space model is the problem of estimating the
unobservable state using a set of observations. To do so, from a Bayesian
perspective we need to estimate the filtering density p(utIVit), where Vi,t

{V1,V2, ..., Vt} is the past history of the observed process up to time t. If
possible, we wish to do this recursively, so that, p(utlvi:t) can be calculated
by updating the estimate p(Utvit_i) with the new observation Vt. The esti
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mate of the filtering density can be obtained in two stages (prediction and
updating) as follows.

Applying the Chapman-Kolrnogorov equation we can write the time up
date iteration as:

p(utlvi.t_i) Vi:t_i)P(Ut_iIVi.t_i)dUt_i

= fP(uut_i)P(ut_lIVl:t_l)dut_i (2.3)

by using in the last equation the Markov property. Now, after the observation
Vt 1S available we use the Bayes rule to have

p(VitIU)p(ut)
p(utIVi;t) = /

PPi:t

— p(Vt, V1:t_i Iu)p(u)
— p(vt,V:t_i)

= p(Vt IV1:t_i, ut)p(Vi:t_i Iut)p(ut)
P(VtIVI:t_i)p(Vi:t_i)

= p(VtI Vi:t_i, Ut)P(UtIV1:t_i)P(Vi:t_i)P(Ut)

p(VtIV1t_1)p(V1:t_1)p(ut)

— p(VtInt)p(utIVit_i)
2 4)

— p(VtIVIt_i)

where the denominator could be written as

= J p(vtlut)p(utlvit_i)dut. (2.5)

Unfortunately, in general there do not exist closed-form expressions for
equations (2.3) and (2.4). The main exception to this is where (2.1) and
(2.2) are linear and the noise processes qt, rt are Gaussian, and in this case
the solution is given by the Kalman Filter [48].
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2.2 The Kalman filter

Equations (2.1) and (2.2) reduce to the following special case where a linear
Gaussian state-space model is considered. To include a more general case
we have included two additive components C, and A to the transition and
measurement equation respectively. We have

Ut = C + D Uti + q_ , (2.6)
(nx1) (nxn,) (nx1)

Vt = A + B u + rt , (2.7)
(nx1) (n,xn,,) (mx1)

where the process and measurement noises are normally distributed

(:) N(() (q )). (2.8)

The initial condition becomes

no ‘—‘ NQZZo,o) (2.9)

and the matrices G, D, A, B, q, and r are assumed to be known.
N(p ) denotes a Gaussian density with mean p. and covariance , that is:

N(p., ) := 2I_1/2 exp{—(x — p.)’’(x
—

p.)}. (2.10)

Here . denotes the determinant.

For the model above (2.6)-(2.9), it follows that the transition density
p(ut+iut) and the measurement density p(VtI’ut) are normal. It can be shown
that this implies that also the prediction and filtering densities are normal,
see [77] for details. We have

p(ut Ivi:t_i) = N(u1_1, (2.11)

p(’ut Vt) = ]V(’ut1t, (2.12)

p(vtIVit_1) = ]VQOtit.....i,F1_1), (2.13)
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where the conditional means tIti, ut(t, tit_i and conditional covariances

tit_, >tit and F1_1 are computed by the following pseudo code of the
Kalman filter.

Algorithm 1 (Kalman filter)

• Step 1, Initialization
Set

‘U010 = , = z0,
and set t = 1.

• Step 2, Prediction
Compute

= D D +

• Step 3, Innovation
Define

et = Vt
—

tt_i (2.14)

with
= A + B u_i (2.15)

and compute
F1_1 = B B + (2.16)

• Step 4, Updating
Compute

K = t_i B F’1, (2.17)

= u-i + Dtt_i B F’1 Ct, (2.18)

= —

B F’ B (2.19)

• Step 5, Looping
if t <n, set t = t + 1 and go to Step 2; else stop.
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In the linear Gaussian case, the Kalman filter has strong optimality prop
erties. (2.11)-(2.13) give the maximum likelihood estimator of u given Vit,

and this is also the minimum mean square error estimator. That is, in the
mean square sense no other algorithm can perform better than the Kalman
filter in the Gaussian environment; see [40] for details.

In cases where the measurement or the transition equation are nonlinear,
sub-optimal solutions such as the extended Kalman filter (EKF) and the un
scented Kalman filter (EKF) are commonly used to solve the problem. The
extended Kalman filter simply linearize all nonlinear transformations and
substitutes a Jacobian matrix for the linear transformations in the Kalman
filter equations [41]. Although it is easy to implement it has a number of
limitations especially if the system nonlinearities are severe or the true dis
tribution is multimodal or highly skewed - see [75]. The unscented Kalman
filter gives a more accurate performance for nonlinear equations, but does
rely on the noise being Gaussian.

2.3 The unscented Kalman filter

An alternative filter with performance superior to the extended Kalinan filter
is the unscented Kalman filter.

Unlike the extended Kalman filter it does not approximate the nonlin
ear function of the process and the observation, it uses the true nonlinear
models to approximate the distribution of the state variable ut by applying
an ‘unscented transformation to it. The unscented transformation uses the
so-called sigma-points that capture the mean and covariance of the original
distributions and, when propagated through the true nonlinear system, cap
ture the posterior mean and covariance accurately to third order. For more
details see [47, 75]. Unlike the particle filter considered in the next section,
which requires a large number of points, the unscented transform only re
quires 2n + 1 points to capture the mean and covariance of a probability
distribution in ll’.

Let us consider a simplified version of the UKF formulation, where we as
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sume that both the transition and measurement noises are additive Gaussian,
that is,

Ut = f(ut_i)+qt_i, (2.20)

Vt h(n) + rt, (2.21)

where qt—i N(0,q) and rt ‘- N(O,). Here Ut e R, Vt E R.

The algorithm can be described as follows:

Algorithm 2 (Unscented Kalman filter)

• Step 1, Initialization

Set
= E(uo) and o E[(uo — i7o)(uo —z)’].

Set t = 1.

• Step 2, Unscented transformation

Compute the sigma points and weights.

i = 0 Xt_i(O) =

(m) ,\
Wo

=

i = 1,...,n Xt_1(i) flt_i + (V(n+)t_1),

(m) (c) 1
—

— 2(n+)’

i = n + 1,..., 2n Xt-i(i) = flt_i — (Vn +

(m) (c)_ 1
—

— 2(n+A)

Here the subscripts i and i—n correspond to the jth and j_flth columns
of the square-root matrix (Cholesky factorization). ..\ = a2(n + ic) — n
is a scaling parameter. a determines the spread of the sigma points
around and is usually set to a small positive value. frC is a secondary
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scaling parameter which is usually set to 0, and is used to incorporate
prior knowledge of the distribution of

Step 3, Time update

Fori=O,1,...,2n,

XtIt_i(i) — f(t_i(i))

Vtt_i (i) = h(x1_1(i))

2n
— (m)
UtIt_1 W Xtjt—i (%)

=

Wc(xtt_, (i)
— (XtIt-i (i)

— tIt-1)’ + q

tt-i = Wm)VI_1(j) (2.22)

w ( VI_1 (i)
— i-i) (Vtit_i (z)

— Vtit-i)’ + (2.23)

w (xtit-1(i) —
(Vt1t_(1)

—-1)’.

• Step 4, Measurement update
Calculate

K = (2.24)

Ut = tt_i + K(v (2.25)

Zt = —
(2.26)

• Step 5, Looping
if t < n, set t = t + 1, update Ut and > and go to Step 2; else stop.
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2.4 Particle filter

A different approach to filtering has recently become popular [26, 79]. In this
approach, we use Monte Carlo simulations instead of Gaussian approxima
tions for p(utlvt), as in the Kalman filter. This method allows for a complete
representation of the filtering distribution, so that any statistical estimate
can be easily calculated. This filter has the advantage that it allows one to
deal with fundamentally non-Gaussian situations.

The idea is based on the importance sampling technique [70, 76]. Recall
that UOt = {uo,ui, ...,ut} is the (unknown) true state of the system, and

{vi, v2, ..., Vt} are the observations. Suppose we wish to calculate the
conditional expectation

E(f(uo.t) IUi:t)
= f f(ü:t)p(0:tVi:t)dU0:t. (2.27)

Inmost non-Gaussian or non-linear situations, the true distribution p(uotvit)

will be impossible to calculate. Importance sampling works by instead sam
pling from a proposal distribution q(uotlvit), which can be easily sampled
from. The support of q(uo:tIvit) is assumed to cover that of p(uotvit).

We can write

E(f(uot) Ivi:t)
= f f(UO:t) 0:tl

q(uotvmt)duot,

f p(vi.tI’uo.t)pQuo.t)
= i f(ot) q(uo:tvi:t)duo:t,

J pVi:t)qtUO;t V1.t)

= f f(uo:t)
W(UO:t)

q(uotIvit)duot (2.28)
p(vi;t)

where

W(UO:t)
= p(vi.tluo.t)p(uo.t) (2.29)q(notlvit)

is defined as the filtering non-normalized weight at step t. Now
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E(f(uo:t)Ivi.t)
= f f(uot)w(uo:t)q(uo;tvit)duo:t

p(vit)

— f f(uo:t)w(uot)q(uotIvi:t)duot
q(uo.tIvi.,)I p(vi;t uo:t)p(uo:t) q(uo.t Ivi.i) du0,

— f f(uot)w(uot)q(uo:tvit)duot

— J W (U:t) q(uo;t,ji. ) duo

— Eq(f(uo:t)w(uo:t))
— Eq(w(uo:t))

= Eq(f(uo:t)’th(uo:t)),

where

= Eq(w(uo:t))
(2.30)

is defined to be the filtering normalized weight at step t.

Now let u, i = 1, 2, ..., n7, be a Monte-Carlo sample from q(uotvit).
Then by the law of large numbers

E(f(uo.t) Ivi:t) f(())) (2.31)

where now

i) =
. (2.32)

w(u)

Note that (2.31) is correctly normalized: if f 1 then both sides of (2.31)
equal 1.
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Thus, provided we can sample from the proposal distribution q(UotIvi;t),
and calculate the weights W(UO:t) given by (2.29), then we can estimate
E(f(uo:t)Ivi:t). Note also, that if we can only calculate w(.) to a multi
plicative constant c, which can depend on Vi:t, then this constant drops out
when we calculate z7 in (2.32), and so the procedure will still work.

Suppose that the importance density is chosen to factorize, so that

q(uo:tIvi:t) = q(utuot_ivit)q(uot_iIvit_i). (2.33)

Then

(i) (i)
/ (i)\ — p(Vit1U0:t)P(U0.t)

WUo.t)
— (i)

q(u0. Vit)

(i) (i) (i) (i) (i)
= p(vt, V1:t_1UO.t_i, u )P(ut Uo:t_i)P(Uo.t_i)

q(r4 Iz4_i, vi:t)q(U_1IVi:t_i)

The measurement equation (2.2) implies that Vt depends on O:t only
through t and that v1,v2, ..., ‘Vt are conditionally independent given ‘UO:t.

Therefore

(i) (i) (i) (i)
p(Vt, Vi:t_1 IUO:t_i,Ut ) = p(VtJU )p(Vi:t_i 1U0:t_i)

Further, (2.1) implies that Ut is lVlarkov, so

p(UIU1)= p(uU1).

Combining these eqilations,

(j) = p(Vi;t1 Iui)P(u i)p(VtIu)p(r4IUi)

q(u_1v1;_1)q(4t)Iu_i, Vi:t)

— (i) p(vt )p(u Iu1)
—w_1

(i) (i) ( .

q(U UO:t_i, Vit)
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Thus, the importance weights defined in (2.34) can be updated in a simple
way at each time step. (2.31) implies that the filtering density p(UtIVit) can
be approximated by

p(utlvit) (ui) (2.35)

where S() denote the point mass at u. The success of this operation de
pends on how close the proposal distribution is to the posterior and whether
the resulting point-mass approximation is an adequate representation of the
distribution of interest. Although sequential importance sampling poses only
one restriction on the importance density, equation (2.33), with the number
of choices being unlimited, the design of the appropriate proposal function
is, in fact, one of the most critical issues in importance sampling algorithms
[79]. Poor choice leads to poor approximation in (2.35), and to poor algo
rithm performance in general. See [26, 69] for more details and variants of
the particle filter.

One major problem with this algorithm is that the variance of the weights
increases steadily over time. If one starts with a fixed number n,., of particles,
then in practice after a while nearly all the mass of the distribution in (2.35)
is concentrated at one particle. Not surprisingly, this leads to poor algorithm
performance. In order to solve this, we resample the points to create copies of
particles with large importance weights and to remove those with negligible
importance weights. This ensures that there are sufficient particles exploring
regions of high probability in the next time step [37]. Various methods have
been suggested for this [2, 13, 58]. In the particle filter literature four basic
resampling algorithms can be identified:

1. Multinomial resampling

Generate n, ordered uniform random numbers

a = aj+i, = with — U[O, 1)

and use them to select the new particles (1) according to the multino
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mial distribution. That is,

—

(i) with i s.t. a E
s) s))

where F’ denotes the generalized inverse of the cumulative probability
distribution of the normalized particle weights.

2. Stratified resampling

Generate n ordered random numbers

a=
(i—i)+

witha1U[O,1)
rip

and use them to select () according to the multinomial distribution.

3. Systematic resampling

Generate ni,, ordered numbers

(j—1)+a
with a U[O, 1)

np

and use them to select according to the multinomial distribution.

4. Residual resampling

Allocate n = copies of particle to the new distribution.
Additionally, resample rn = n, — n particles from {u) } by mak
ing n,’ copies of particle where the probability for selecting n is

(i) /proportional to w = rlw — n2 using one of the resampling schemes
mentioned earlier.

A illustration of generic particle filter is shown in Figure 2.1. The whole
particle filter algorithm can be implemented in the following way:
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i1 rplO particles

0 . (u
1}

*

np

A /
u,

. • • • • (u .w

Figure 2.1: A graphical representation of the particle filter with importance
sampling and resampling.

Algorithm 3 (Generic Particle Filter)

Step 1, Initialization
For time step t = 0, choose u0 and for each i between 1 and n (number
of particles), take

p(uo)

where p(. ) is the initial distribution. Also take

(importance weights).
np

While 1 < t < n (number of observations)

• Step 2, Prediction
For each index i sample

q(utlu2i,vit).
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Step 3, Importance sampling
Calculate the probabilities

p(vt u) (likelihood distribution),

Iu2) (prior distribution), (2 36)

q u21,Vit) (proposal distribution),

and the associated weights for each i

(i) (i) p(vt Iu )p(u u1)
wt = ‘wt_i (i) (i)

q( IUt_i,Vi:t)

• Step 4, Normalizing
Normalize the weights

(i)

_____

wt
Z,;=lWt

• Step 5, Resampling

Resample the points z4 and reset w =
= 1/np.

• Step 6, Looping
Increment t and go back to Step 2. Stop at the end of the While ioop.

2.5 Parameter estimation via maximum
likelihood

Up to this point we have assumed that the functions f and h, with the
distribution of the noise qt, Tt are fully known. We have discussed the filtering
problem - that is how to estimate Uot from observations V1t. But in many
applications, and in particular nearly all financial applications f, h, q,, and
rt, will depend on unknown parameters. In this case the structure of the
nonlinear state-space model becomes
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ut = ft(ut_i, qt_i, 61) (transition equation), (2.37)

Vt = ht(ut, Tt, 61) (measurement equation), (2.38)

where 0 e e C Rn0 denotes the parameters in the model.

Given the above structure, in this section we addresses the problem of
estimating the parameters 0 from the observed data. The parameter estima
tion problem for state-space models has generated a lot of interest over the
past few years and many techniques have been proposed to solve it. These
methods could be broadly classified as Maximum Likelihood or Bayesian.

Using a Maximum Likelihood formulation the estimate of 0 is the maxi
mizing argument of the likelihood of the observed data, i.e.

=argmaxp9(Vi,v2,...,Vt) (2.39)
OEO

where po(’ui, V2, ..., ‘Vt) denotes the joint density of the observations up to time
t. In a more convenient form we can rewrite (2.39) as

0= argmax J(Vi:t), Co(Vi.) = log po(Vi:t) (2.40)
oee

where V1t = {v, ‘v2, ..., ‘Vt}. The joint density can be written as the product
of the conditional densities:

pe(Vi:t) = fJP9(VkIV1:k_1), (2.41)

where pe(viJVo) = po(Vi). Thus the log-likelihood function is

= logpo(VkIV1k_1). (2.42)

The material presented up to here has dealt with the state-space model
using a quite general formulation. The algorithm described above is in prin
ciple the full answer to the problem of parameter estimation. Now, from
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a classical approach we can use some numerical optimization search proce
dure (Newton’s method, Nelder-Mead) on (2.42) in order to calculate the
maximum likelihood estimate 8.

Maximum likelihood estimation (MLE) of 6 is particularly simple in
the linear Gaussian state-space model (2.6)-(2.7), since the density func
tion Po(VkIVl:k_1) is the normal distribution with mean VkIIc-1 and covariance
matrix FkIk_1 given by equations (2.15) and (2.16) respectively. Thus,

po(vkIvl:k_1) = I(2)IFkIk_1II”2exp{—(vt
— kIk_1)’F_l(vt — VkIk_1)}

and the log-likelihood function becomes

£O(Vi:t) — [log IFkIk_1I + (Vk VkIk_1)Fl(Vk
— i’)] (2.43)

where FkIk_1I denotes the determinant of FkIk_1. Thus finding the MLE is
quite straightforward for the Kalman filter.

In the general nonlinear case this approach is non-trivial, since the distri
bution Po (v1,v2, ..., Vt) 1S generally not available in closed form. However, if we
are using the UKF algorithm then, one can approximate the true (non Gaus
sian) distribution Po(VkIV1.k_1) by a Gaussian distribution NQikIk_1, VkVk),

where vkIkl and Zvkvk are given by equations (2.22) and (2.23). Hence one
obtains

— [log IVkVkI + (Vk
— VkIk_1)’vk(Vk —

Since the UKF algorithm is based on the equations of a Kalman filter, the
maximization of the log-likelihood can be done exactly as in the Kalman
filter.

For the general nonlinear case, with non Gaussian noise, we have seen that
the particle filter provides a technique for filtering with known parameters. In
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general, we can approximate (2.42) using equation (2.5). Given the likelihood
at step k,

po(VkV1:k_1) = fPo(vkIuk)Po(ukIvl:k_1)duk

this could be written as

I Po(ukIVl:k_1)
PO(VkI’01:k_1) = i e(v’I’) qe(ukIuk_1,v1:k)duk,

qoukuk_1,v1:k)

and given that by construction the u’s are distributed according to q, we
can write the Monte Carlo approximation

po(vkIvlk_1) ± (2.44)

Thus, we can estimate £(&) by

slog (± Ew). (2.45)
k=1 ‘ j=1

While this does give an approximation to the log-likelihood, this approach
has several problems if we try to use it to obtain the MLE. For a fixed 9
equation (2.45) gives a random variable, where the randomness comes from
the particle filter. See Chapter 4 below for an account of the difficulties this
causes.

An alternative approach to maximize the likelihood is employed the Ex
pectation Maximization (EM) algorithm [74]. The objective of the algorithm
is to maximize the likelihood of the observed data (2.42) in the presence of
the hidden variables (Uot = {uo,u1,.. . , Ut}). The basic idea is that if we
could observe UOt, in addition to the observations Vi,t then we would con
sider {UOt, Vi:t} as the complete data with the joint density

po(uo:t,vi:t) po(uo)llpo(ukIuk_1)llpo(vkuk) (2.46)
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and seek the maximum log-likelihood estimate of & via

6= argmax £O(Vi:t, Uo:t), Q(Vi:t, uot) logpo(vi:t, flo:t) (2.47)
oEe

The EM algorithm for maximizing L(Vit, u) is a two step procedure.

1. (E-Step) Computes the expected value of £0(Vi:t, flit) over the hidden
(missing) data i:t based on the current value of the parameters 6C)

and the observations V1:t

Q(616(i))
= E(L0(Vi:t, UO:t)IV1:t,

e())

= flogp (UOt, v1:t)Pe(,) (UO:t IVi:t)

2. (M-Step) Update the parameter estimate maximizing Q(&j6())
with respect to 6,

argmax Q(&1&()) (2.48)
0

and we repeat this two-step process until a fixed point of Q is obtained.

Unfortunately, there are very few situations where an exact and tractable
solution exists for these two steps. One exception is the linear Gaussian state-
space. The algorithm is described in [71]. Work applying the EM algoi’ithin
to nonlinear dynamical systems in the form of (2.20) and (2.21) is reported
in [23, 34, 41].

To use the EM algorithm for a general nonlinear state-space the sequential
Monte Carlo (particle filter) methods are employed to approximate Q(&1&())
numerically. For the maximization step there is no standard method to solve
this problem, and so it is necessary to proceed on case-by-case basis. In
one general approach we calculate gradients with respect to 6, and use a
gradient-based search procedure to find the maximum. Recent works that
use this technique are in [36, 65, 81]. None of these methods is simple.
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2.6 Parameter estimation via Bayesian
methods

Because of these difficulties one would like an alternative to the MLE approx
imation. One Bayesian approach, described in ([43, 53, 57]) is to consider a
Bayesian estimation by concatenating the state vector u with the unknown
parameter 0, and introduce an artificial dynamic on the parameter. That is,
we replace 0 by Ot and define a new state vector

Yt
(Ut) (2.49)

where Ot - p(Ot—i Vit). Then one applies the particle filter to this augmented
state-space. However this method has a number of difficulties and problems
[50]. At a theoretical level it is not altogether satisfactory to replace a fixed
parameter 0 by a random evolution process Ot. In addition, there are various
practical problems associated with the choice of the artificial dynamic of 0.
Thirdly, there are problems with the performance of the algorithm. These
difficulties have been discussed in the literature, for example, in [18, 50].

Under the Bayesian framework, more sophisticated and new methods are
being proposal. See [50] for an overview of particle filters methods for param
eter estimation considering a nonlinear non-Gaussian state-space models.
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MROU model

In this chapter we present a Gaussian two-factor model known as Mean-
Reverting to Ornstein-Uhlenbeck model (MROU) for the spot price and the
convenience yield that captures some of the characteristics that we had de
scribed above of the power market and the dynamics of the futures prices.

3.1 Double mean-reversion model

There are many parallels between interest-rate models and modeling com
modity prices, so many models originally developed for stock and interest
rate markets have been applied to the energy market. We implement, for the
valuation of electricity futures contracts, a two-factor mean-reverting model
originally proposed in [5], and considered previously in [44] for oil commodity
prices.

Let (p2, F, {}>o Q) be a complete filtered probability space where Q
is the risk-neutral measure. If S is the spot price then

= exp{Xt + h(t)}, (3.1)

dX —)‘x(X — L) dt + x dW’, (3.2)

dL = —AL(Lt — L) dt + L dW2. (3.3)

Here X, is the observed deseasonal log spot price, and L is a non-observed
long-term mean process. We assume that both processes are given under
the risk-neutral measure and the two Brownian motions, W’ and TT/2 satisfy

d(T’V1,W?) = pdt. h(t) is an arbitrary deterministic function that accounts
for seasonality.

The difference between this model and the Gibson and Schwartz model
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is that here, both the log spot price and the convenience yield follow an
Ornstein-Uhlenbeck type process.

The seasonal component h(t) combines trend and seasonality. Usually it
consists of sum of sinusoidal functions which incorporate predictable daily
and annual periodicity and dummy variables which incorporate predictable
workday/weekend and holiday effects. In this thesis, we consider a sum of
two cosine functions with distinct periods with a linear trend, that is

h(t) = + 0t + cos
(Ti +2nt)

(3.4)

where m represent the seasonality period and the parameter

=

needs to be estimated.

The seasonalities have been discussed extensively in the literature, see for
example Lucia and Schwartz [59], Cartea and Figueroa [16], and Benth et
al. [7]. Although there are several ways of deseasonalising the data, usually
it is estimated by means of non-linear regression methods. That is, if t =

t1, t2, ..., t we estimate the seasonality function by fitting h(t) to the log-
prices using least squares estimation

2

= argmin (i(tj) — log(Sti))
,2,rl ,T2)

Write (t) for the estimate. The deseasonalized log-spot price is given by:

= logS .-(t).

3.2 Radon-Nikodym theorem for
Ornstein-Uhlenbeck processes

Before we continue with parameter estimation for the MROU model, we
consider a simple case, that is the problem of parameter estimation for the
Ornstein-Uhlenbeck process OU(A, a, a) defined by

dX = —A(X — a)dt + crdWt. (3.5)
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If one observes the whole process x = {X, 0 t T} the parameter o

can be estimated exactly, using the quadratic variation of X, but ) and a
cannot.

The simplest statistical problem is when one has two alternatives:

H0: a=a0,)=A0 vs. H1: a=a1,)=)1

Denoting Po, P for the probability measures for (3.5) associated with H0
and H1, the Radon-Nikodym theorem gives the optimal test for this in terms
of the likelihood ratio. If

— L(xIHi) — dP1
T

L(xlHo) dIP0

then the test takes the form

Reject H0 if ZT c(a),

where c(cl) is given by

IP0(reject H0) = IPo(ZT c(c)) = c.

The power of the test is given by

p = IP1(accept H1) = IP1(ZT c(a)).

Using the result in [44] (Thm. 3.2) we obtain

log(ZT) =

=
+c1X)dW3— fco + ciX5)2ds.

The constants c0, and c1 satisfy

— Ao
—

c0= , c1= . (3.6)
ci ci

We used Monte Carlo simulation to find the power of the test for these
sample tests - see Table 3.1.
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H-J 1 N-S 1 N-S 2 H-J 2

A0 0.73 5.78 5.78 0.73
a0 4.21 4.83 4.83 4.21
A 0.15 5.78 5.78 0.66
a1 3.27 5.43 5.43 4.60

0.63 1.03 1.03 0.63
T 3 1 0.5 25

0.10 0.05 0.10 0.10
p 100% 95% 86% 90%

Table 3.1: The data are taken from Hikspoors & Jaimungal (columns 1 and
4), and Nomikos Soldatos (columns 2 and 3).

Given A0, A1, a0, a1, a, and T we calculated c0, and c1 from (3.6). We
performed n = 2000 simulations of a standard OU(A, a, a) under IP0 and IP
to estimate the power of the test.

Using these simulations, we can estimate how much data is needed to
obtain reliable parameter estimation for the OU process.

We began by looking at some parameter values for OU processes found
in the literature.

In [44] Hikspoors & Jaimungal study the MROU model (1.9). Having
used futures data to estimate the parameters for X, and }‘ in the risk neu
tral measure, and also estimate the process i’ itself, they then estimate
parameters for }‘ in the real world measure.

The column H-J 1 of Table 3.1 gives the values of those parameters.
Considering these values, we have that the distribution of H0 and H1 are sig
nificantly different taking 3 years of observations, i.e. we distinguish (A0, ao)
from (A1, ai) almost perfectly.

Nomikos Soldatos [64] consider a regime switching model for the Nord
Pool market - see (1.12)-(1.14). The parameters a, i = 0, 1 differ according
to whether the weather is wet’ or dry’. We can ask how long a period of
observations is necessary to distinguish reliably between a a0 and a a1,
in this situation. Simulation results shows that if T = 1 then this is possible
at the 95% confidence level but if T = 0.5 then the power of the test is only
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86% at = 0.1.

If we imagine data to be split into fixed periods in which the regime is
constant and the task is to distinguish which regime holds during the period,
then one can do so reliably if the period is 1 year, but shrinking the period
to 6 months will give rise to an error probability of about 10%.

In the fourth column we consider two sets of parameters which differ by
about 10%: the first set being similar to the values of ao) in H-J 1.

In this case we see that even 25 years of data is not enough to reliably
distinguish between the two parameter sets. Figure 3.1 plots the distribution
of log ZT under the two hypotheses: a substantial overlap in the distribution
is apparent.

Null hypothesis distribution
0.1 i I I I I I I

0.16

0.14 -

0.12

0.1 -

0.08 -

0.06

0.04

0.02 -

—8 —8 —2 2

Alternative hypothesis distribution
0.Z

. I I I I I I I I

0.18

0.16

0.14

0.12

0.1

0.06

0.06

0.04

0.02

I I — -
10 —8 —6 4 —2

Figure 3.1: Sampling distributions with (column 4) where we add 10% devi
ation from Hikspoors & Jaimungal’s parameters (column 1).

---I
—10

I I I I
4 8 8 10—4
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It would be interesting to perform an analysis using the Radon-Nikodym
theorem for hypothesis testing with the MROU model. Calculating the like
lihood ZT with respect to the u-field u(X3,L3, 0 s T) is straightforward
- see [44] (Thm. 3.2). However, we need to calculate E(ZTIXS, 0 s T),
and this would require calculating conditional expectations of the form

E (exp
{JT

+ ciL5)dW —

fT

+c1L3)2ds} x8, o s T).

This does not seen to be an easy problem.

However, from the results for the fourth column, it seems clear that many
decades of data would be needed for an accurate estimate of the parameters
for the hidden process L.

Financial time series have one significant property which makes them
unique in a statistical sense. As well as the data itself (e.g. the spot prices),
we also have available prices of various derivatives of the product. These
produce a substantial amount of extra information.

In the context of the IvIROU model, we will therefore use futures as well
as spot prices in our parameter estimation.

3.3 Future price

This model is an special case of Affine Jump-Diffusion model (AJD), so to
obtain closed form formula for the price of futures contracts we use the results
by Duffie et al. (2000) [27], see Appendix A.

The model can be rewritten as

d
— 0

dt
—A ‘X dt

L — LL
+ 0 ‘L L

+ — p2x pux dW
(3 7)

0 dW?

Thus, U [Xe, Li]’, and we have

dU = (K0 +K1U)dt + dW,

49



Chapter 3. MROU model

where dW is a Brownian motion with covariance H0 and

— 0 — —)‘ )‘x — PxLK0 — , K1 — , H0 — 2 (3.8)
?LL 0 —AL PxL L

The functions H1 and lo given in the Appendix A satisfy H1 = 0 and 1 = 0.
Duffie et al. gave expressions for various functionals of U, and in particular
for

‘(u, t, T, U) := E[exp{u. UT}IUt]. (3.9)

By setting u = (1,0)’ in (3.9) one can obtain the future price of U

(t, T) := I1((1, 0)’, t, T, U) exp{h(T)} (3.10)

= E[exp{XT}Utjexp{h(T)}. (3.11)

By equation (A-3) in Appendix A, the future price is of the form

E[exp{XT + h(T)}IUj

= exp{h(T)} exp{M((1, 0)’, t, T) + N1(1, t, T)X + N2(0, t, T)L}, (3.12)

where M((1,0)’,t,T), N1(1,t,T) and N2(0,t,T) satisfy the following equa
tions:

= AxN1, (3.13)

AxN1 + ALN2, (3.14)

= LLN2— (uN? + N) —N1N2pUXJL, (3.15)

with the boundary conditions

M((1,0)’,T,T) =0, N1(1,T,T) = 1, and N2(0,T,T) =0.
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Solving the initial value problem, we have

N1(t,T) = et_T), (3.16)

N2(t, T) = e(tT)m — e)t_T)m, (3.17)

M(t, T) = (e(t_T)
— 1)mi + (et_T)

—
1)m2 + (e2_T)

— 1)m3

+ (et_T)
— 1)m4 + (e2t_T)

— 1)m5, (3.18)

where

_______

m2cx rnpcrxcrL
m = — rn4 + 7722 Lrn

)\X+L )‘X+,\L

)\LLm / u om mpuxuLN m2cr
m1=— m3=—j—————+ + J 1725=—

\4-\X 4x 2.Ax .j 4’\L

Thus, we have that the price of the futures contract is given by

F(t,T) = exp{M(t,T) +N1(t,T)X +N2(t,T)L}exp{h(T)}, (3.19)

where the functions Ni(t,T), N2(t,T), and M(t,T) are as (3.16)-(3.18). The
deseasonalized log-future price is given by

log F(t, T) F(t, T) exp{—h(T)}. (3.20)

3.4 Formulation in Kalman filter terms

We assume that data are available in the form of the spot price S and various
futures or forward prices F(t, Ti), i 1,2, ..., m. Most data sets are available
in the form of daily prices. Spot prices are traded for all hours of the week,
but final2cial markets, which trade future contracts, are only open Monday-
Friday. Since in any case, due to low consumption at the weekend (see Figure

5 Appendix B for the calculations)

51



Chapter 3. MROU model

1.4b), spot prices on Saturdays and Sundays exhibit a different behavior to
the rest of the week, we will disregard weekends and also holidays, and just
consider weekday data. Given this data, we wish to estimate the parameters

X, L, X, L, L and p.

The Kalman filter method has been applied previously to electricity mod
els [14, 51]. To use the Kalman filter we need a discrete time set of equations,
so we replace (4.2)-(4.4) with the forward Euler approximation:

St e, (3.21)

= X_1 — )x(Xt_i — L_1)At + — p2uxAWtl + pcxxAW/, (3.22)

L = — AL(Lt_l — L)At + JLAW. (3.23)

Here we have made a slight abuse of notation, in writing X,, X_1 for the
successive values of X. More precisely, in (3.22) we should write

X
— —L1)At + — p2uxAW + puxAW,

but to avoid two levels of subscripts we have used the form (3.22)-(3.23).

Here At 1/250 (the number of trading days in a year), and AW1, AW?
are independent Gaussian random variables with mean 0 and variance At.

To apply the Kalman filter, the model must be expressed in its state
space form. Taking the state variable as u = (Xe, Li)’ a discretization of the
time t = t, t2, . . . , and At = (t — t_1) the transition equation becomes:

ut=Ct+Dtut_i +qt_i, (3.24)

where

( 0 ‘ (1—At AAt
Ct =

LLAt j’ = 0 1—
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and the process noise covariance matrix is

/ 2A
°X’- PxL t

Zq cov(qt_i) = . (3.25)

The measurement equation is given by the functions M, N1, and N2
calculated according to equations (3.16)- (3.18):

Vt
= ( ) = A+B( ) +r. (3.26)

We write X for the observed deseasonalized log-spot price, and Zt,T for the
observed deseasonalized log price at time t of a future contract with maturity
T > t. We will assume that there is some noise in the measurement of X,
and Zt,T, so that

X=X+, (3.27)

= log F(t, T) + (3.28)

Here are iid N(O, o) random variables and are iid N(O, cr) random
variables. We have two reasons for making this assumption about non-zero
noise. First, at a fundamental level, it is reasonable to allow for some pricing
errors due to large bid-ask spreads. (This may be particularly relevant in
the futures markets, which are not always heavily traded.) Secondly, the
Kalman filter involves matrix inversion - see (2.17), where has to be
computed. If the model has degeneracy, then severe numerical problems can
arise. Adding the noise in (3.27) and (3.28) avoids this difficulty.

Using (3.19) we can write (3.28) as

= M(t,T) +XN1(t,T) +LN2(t,I)+. (3.29)

The measurement equation is therefore given by

xt*
ZtT

Vt =
1

= A + B L, ) + rt, (3.30)

Zt,Trn
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where

0 1 0
= M(t,T1)

B
= N1(t,T1) N2(t,T1)

(3.31)

M(t,Tm) Ni(t,Tm) N2(t,)

and the measurement noise rt has covariance matrix

J 0 ... 0
o cj ... 0

= cov(rt)
= : o

(3.32)

o •.. 0 Zm

Simulated trajectories of the MROU model using equations (3.24) and
(3.26) with parameters ‘x = 130, )\L = 3, ux = 5, = 0.5, L = 3.5,
p = 0.3 and Zt 1/250 can be seen in Figure 3.2. The long-term mean
process L reverts towards the mean L, and as we expected, the spot price
St and the future price F(t, T1) mimic the long-term mean process but with
different volatility.

The observation and state equation matrices C,, D, q, A, B, and
depend on the unknown parameters of the model. Based on this state-space
formulation the parameters that we need to estimate are:

& = {x,L,ux,JL,L,p,Js,uz}.

Note that if we use two different maturity contracts then rn 2, and we will
have and crz2 in the parameter vector 6.

The log-likelihood function Jü(Vit) for the linear Gaussian space-state
is given by equation (2.43). This function can be maximized with respect
to 0 using an appropriate numerical optimization procedure. O(Vi.t) only
depends on the prediction error Ct and its covariance matrix F1_1. Both in
turn are outputs of the Kalman filter, equations (2.14) and (2.16). Thus the
maximum likelihood estimate of & can be obtained as follows:
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0

Spot S and Future F(t,T1)processes

Figure 3.2: The upper graph shows the simulated spot price S and the future
price F(t, T1) with maturity of one month. The lower graph is the long-term
mean process L.

Algorithm 4 (Kalman Filter optimization)

• Step 1
Choose a initial value for 6, say 6o.

• Step 2
Run the Kalman Filter (Algorithm 1) and use the sequences et and

F1_1 to compute the log-likelihood £(Vit) by (2.43).

• Step 3
Employ an optimization procedure that repeats Steps 1-2 until a max
imizer 6 of (2.43) has been found.

Days

Long—term process L

Days
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Some practical problems arise with the optimization procedure, and so
the performance and accuracy of the Kalman Filter are affected since the
problem may be poorly scaled. An optimization problem is poorly scaled
if changes in the decision variables produce large changes in the objective
function for some components and not for others [25]. We solved this problem
by rescaling the variables.

There are several numerical search algorithms available to maximize the
log-likelihood (Step 3). Barlow et al. [4] used the Nelder-Mead method6
to minimize £Q(Vi.t). Here we decided to apply a quasi-Newton algorithm,
the so-called BFGS method7 (which is similar to the method used by [51])
to get the initial point, and then used the Nelder-Mead method to find the
optimum.

3.5 Empirical results

In this section we report some empirical results based on simulated and real
data to examine the Kalman filter method applied to the model described in
the previous section.

3.5.1 Simulated data

We first ran the algorithm on deseasonalized simulated data. To analyze
the algorithm performance, first we simulated series with 100 and 800 ob
servations respectively using equations (3.24) and (3.26), considering only
the nearest monthly futures contracts in the log-future price, i.e. Zt,T1 with
T1 = 30 days. In this case we have a 8 dimensional parameter space. We
started the maximization procedure with a different initial values each time.
Examples of some runs are given in Table 3.2.

Since we are searching for the maximum likelihood, we did 25 runs and
we took the one which gave the largest value for £(8). Repeating the same

6The Nelder-Mead method is used to minimize a function of multiple variables without
derivatives [see Nelder and Mead (1965)].
7Details and derivation of the BroydenFletcherGoldfarbShanno method in the context

of filtering can be found in [28].
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Ti = 300
True Value Run 1 Run 2 Run 3 Run 4 Run 5

Ax 130 129.032 127.923 126.335 138.586 130.232

AL 3 3.478 3.301 2,348 2.788 2.985
5 4.917 4.845 4.658 4.795 5.123

0.5 0.522 0.489 0.453 0.522 0.509
L 3.5 3.495 3.509 3.503 3.499 3.497
p 0.3 0.318 0.313 0.247 0.382 0.311

0 0.004 0 0.005 0.000 0

crz1 0 0.009 0.002 0 0.000 0
-620.952 -629.702 -643.223 -631.359 -601.72

CPU time 163.141 192.954 152.183 155.216 123.2167

Table 3.2: Five different maximization runs, on the same set of simulated

data.

n=1000 m=300
True value Estimator Std. Estimator Std.

Ax 130 129.369 1.055 129.042 4.221

AL 3 2.954 0.237 2.968 0.643

x 5 4.998 0.098 4.862 0.127

L 0.5 0.493 0.004 0.489 0.023
L 3.5 3.507 0.001 3.502 0.009
p 0.3 0.308 0.018 0.301 0.077

°s 0 0.0003 0.0007 0.001 0.002

z1 0 0 0.003 0 0.001

Table 3.3: Estimation using one futures contract (average of 50 simulations).

procedure with 50 different series we obtained the following results, which

are given in Table 3.3.

We can see that the estimation results recover the true values reasonably

well in both cases. As expected, the standard deviation increases for all

estimators when we reduce the number of days. Note that the estimator is
close to zero for variables s and z1• This is not surprising since we are
estimating the true model that generated the data and the noise in the model
only comes from two sources.

Next, we simulated 25 new series with 300 data, but this time we included
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log-futures prices with two different maturities, T1 = 30 and T2 = 60. In this
case we have an extra parameter to estimate, az2. In Table 3.4 we summarize
the results, repeating the same procedure as before.

TL 300
True value Estimator Std.

130 129.801 0.436
3 3.000 0.000

ax 5 4.845 0.178
aL 0.5 0.499 0.001
L 3.5 3.505 0.017
p 0.3 0.294 0.102
as 0.010 0.009
az1 0.001 0
az2 0 0

Table 3.4: Estimation using two futures contracts (n=300).

Thus we obtained good approximations for all the parameters using only
a short data series. This could be useful due to the scarcity of data in the
electricity markets. One example is [16] where the authors comment that
there is too little data for parameter estimation in the UK market. We
remark that if we tried to estimate the model parameters just using the spot
price, then it will require many decades of data to make accurate estimates.

Notice that we used an alternative Kalman filter formulation (U-D fil
tering) since numerical problems arise when we include more parameters to
estimated. During one of the recursions of the filter the covariance matrix
failed to be positive semi-definite and consequently the estimated parameter
differed from the true values. This problem arose because the matrices

.

and Zq were ill-conditioned. Since we are minimizing a fixed function, it is
legitimate to discard runs which fail in this fashion. For further details about
the U-D filter refer to [15, 38, 75].

3.5.2 The German electricity market

We now wish to apply these techniques to real data. While there are many
markets in which electricity is traded, the data we require (that is, both spot
and futures prices) in many cases are not available. For example, the Alberta
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Power Pool makes spot prices available, but forward prices are known only
to market participants. One market for which both sets of data are available
is the German EEX market.

The European Energy Exchange (EEX) is Germany’s energy exchange.
It is one of the biggest power markets in Europe. EEX emerged in 2002
from the merger of EEX Leipzig Power Exchange and EEX European En
ergy Exchange Frankfurt. Both exchanges initially started spot trading for
physical contracts in 2000. In 2001 EEX Frankfurt also introduced trading
of standardized financial contracts. Commonly traded products in the power
markets are baseload, peakload and hourly contracts. At the German market
the times for peakload are defined as weekdays between 8:00am and 8:00pm.
In the futures market contracts on both baseload and peakload are traded.
The usual delivery periods are one month, one quarter and one year. In the
spot market of the EEX baseload, peakload and hourly contracts up to the
next weekday are traded.

The estimates are based on historical daily average spot price and monthly
baseload futures price covering the period from July 2002, when the EEX
and LPX markets merged, until the end of June 2007, almost five years of
historical data. This data contains prices for 1267 days.

Figure 3.3 depicts the price trajectories of the spot and the nearby monthly
futures prices between July 1, 2002 and June 29, 2007 for the EEX market.
From the graph we note that there is a strong mean reversion and the spot
prices show extreme spikes as well as high volatility which changes rapidly
over short time periods. Moreover there is an linear drift over the years in
the spot and futures prices.

Figure 3.3 shows much greater volatility, and more price spikes, for the
period Jan 2005-June 2007 than in the earlier period, Jul 2002-Dec 2004. We
therefore split the data into two parts (7/1/02-12/31/04, 1/1/05-6/29/07),
and repeated the runs on each of these.

Following [8], we removed the seasonality by representing it as a linear
combination of cosines including a trend, a weekly, and a yearly cycle of the
form

(r1+2irt’\ 1r2+2irt\
h(t)=r+/3ot+/3cosç

250 ) +j32cos ). (3.33)
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Figure 3.3:
market.

Electricity spot and nearby monthly futures price in German

Assuming 250 trading days in a year, we estimate the seasonality by fitting
the h(t) function to the log-price series by ordinary least squares. The results
can be seen in Table 3.5 and Figures 3.4, and 3.5. We see less strong season
ality in the EEX market that in the more hydro-dependent Nordic electricity
market that depends more on hydro. The seasonal component is highest in
winter.

Parameter ñ i

Est. value 3.2965 0.0005 -0.0695 23.5235 0.0224 0.8218

Table 3.5: Estimated values for f(t) by least-squares fitting.

Based on equations (3.24) and (3.26) we estimated the model using the
spot price and one futures contract with one month maturity, for both peri
ods. Also we estimated using two futures contracts with one and two month

—Fl —SpoL Price

7/1/2002 1/1/2003 7/1/2003 1/1/2004 7/1/2004 1/1/2005 7/1/2005 1/1/2006 7/1/2006 1/1/2007
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.c)

5.5

4.5

3.5

2.5

Log—spot price Iog(S) = X + h(t)

Figure 3.4: The upper graph shows the log spot-price of the EEX market
and the seasonal component h(t) and the lower graph the deseasonal series

= logSt — h(t).

maturities. The results of the parameter estimation ale shown in Tables 3.6
and 3.7.

For all the periods the estimates of p are quite small - the largest value
being 0.115 for Part 1 when estimated using one future contract. This may
be compared with the estimate —0.96 obtained in [44] in the context of the
oil market.

Unlike the case of simulated data, the parameter estimates using two
futures prices differ somewhat from those obtained with just one future. The
explanation is presumably that the model does not perfectly describe the
real data.

Iog(S,)

h(t) fitted

200 400 600 800 1000 1200

Days

Deseasonalized log—spot price X = log (Se) — h(t)

600

Days
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Spot price S and exp(h(t))

Figure 3.5: The upper shows the spot price S with exp{I(t)} and and the
lower graph the deseasonal spot price St = exp{Xt}.

In the absence of noise, the model (4.2)-(4.4) gives exponential decay
toward the long run mean L. We can therefore interpret

as the ‘half lives’ of the processes X and L (measured in years). For the X
process the estimates in Tables 3.6 and 3.7 give a half life 1.5 — 4 days, while
for the L process the half life estimates vary from about 6—12 months. Thus
the estimated process X and L do play a satisfactory role in separating out
short and long-term fluctuation in the spot price.

The long run standard deviation of the OrnsteinUhlenbeck process L is
(aL/2,\L)1/2.Using the numerical values for the whole period from Table 3.7,

q)

Days

Deseasonalized spot price S

q)

600

Days

log 2
TX =

Ax

log 2
TL =

AL
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Whole Part 1 Part 2
Estimator Estimator Estimator

Ax 65.030 42.439 77.509
AL 0.544 1.319 1.060

1.719 1.172 2.013
0.517 0.410 0.586

L 3.108 3.105 3.156

p 0.101 0.115 0.065
0.177 0.193 0.167

Q.z1 0.000 0.000 0.000
CPU time 613.88 485.99 312.33

Table 3.6: Estimated values for the EEX market using S, and F(t, T1).

Whole Part 1 Part 2
Estimator Estimator Estimator

Ax 98.507 116.807 98.227
AL 0.441 1.231 0.579

3.161 3.191 2.965
cxL 0.537 0.337 0.507
L 3.169 3.168 3.222
p 0.021 0.019 0.114

us 0.000 0.001 0.047
0.089 0.074 0.065

__________

0.000 0.006 0.024
CPU time 1440.58 1208.56 703.68

Table 3.7: Estimated values for the EEX market using S, F(t, T1) and
F(t, T2).

this gives an standard deviation of 0.57. The corresponding quantity for the
X, process is 0.23, so both components contribute significantly to the long
run variance of the log-spot price.

In order to investigate if the estimated parameters make sense, we sim
ulated a path of the spot price, future prices and long-term mean process
that describe the model using the estimated values from Table 3.6 Part 1,
see Figure 3.6.

We now compare those simulations with Figure 3.5, which gives the real
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Spot S and Future F(t,T1)processes

3.u I I I I I

L,

L

3.

0 100 200 300 400 500 600 700

Figure 3.6: Simulation of spot and future prices (upper graph) and long-term
mean process (lower graph) using estimate values for part 1.

deseasonalized data. The generated trajectories differ somewhat from those
observed in the EEX market. The most notable difference is the absence of
price spikes: the simulated data is all in the range €10

- €401 while the real
deseasonalized data has about 6 spikes with prices above €70. The absence
of such spikes is not surprising since the model contains no mechanism for
generating them.

The second feature is that, as with the real data, the spot and futures
price do tend to follow each other. This is not surprising, since both prices do
relate to the same commodity. Since the long run process L is available for
the simulated data, we have also plotted this - see lower graph in Figure 3.6.
Comparing this with the future price in upper graph we noted that for those
parameters, the dominant effect on the future price is from the oscillations

a
•0

Days

Long—term process L

3.6

3.4

28

2.6

Days
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of the long-term mean.

The graphs in Figure 3.6 and Table 3.7 together show that while this
model does capture some features of the real data, it does have significant
defects, in that it does a poor job of capturing the extreme events, spikes or
jumps, which appear in the real market.

Another test for the appropriateness of the model is to compare empirical
moments for the real data with those from simulated data.

If we compare the first four empirical central moments of the log-return8
of the sequence of the simulated and real spot prices we can see that there
is a good fit for the mean value and for the standard deviation, see Table
3.8. The empirical distribution has fatter tails than the normal distribution
(kurtosis > 3), indicating a higher occurrence of extreme events, i.e. jumps.

Real data (1) Sim. data (1) Real data (2) Sim. data (2)

Mean -0.0019 -0.0002 0.0000 0.0002
Std Dev. 0.2214 0.1770 0.2066 0.20402
Skewness -1.3125 -0.0037 -0.0800 -0.0160
Kurtosis 29.8250 2.9855 8.1288 2.9313
n data 634 634 631 631

Table 3.8: The table shows the first four moments of the logarithmic de
seasonalized price returns of observed data and the average of 50 simulated
trajectories.

8Log-return for a sequence of prices S are defined as i 1n(Sj+j./S)
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MROU with jumps

In this chapter we consider a jump-diffusion model. This model is similar
to the ones considered by Hikspoors and Jaimungal [44] and Nomikos and
Soldatos [64]. [44] considers a model of the form

= exp{h(t) + Xt + J}, (4.1)

where X is the first component of a pair (Xe, Y) satisfying (1.9), and J is
an independent jump process, see equation (1.11).

In one respect our model represents a simplification of the model in [44],
in that there is only one Gaussian factor. However, unlike the model given
by (4.1), the Gaussian and jump component in our model are not easily
separated into independent processes.

There are several reasons for considering a jump-diffusion model. First,
actual spot prices do exhibit spikes - see Figure 3.3, and adding jumps to the
process is one way of modeling this. Second, data for spot prices show that
the fourth central moment (kurtosis) of the log-returns is much bigger than
3 (see Table 3.8). Diffusion models such as the MROU model in Chapter 3
tend to give the kurtosis close to 3.

4.1 Description of the model

Let (Q, F, Q) be a complete filtered probability space. The dynam
ics of the state variables are given by the following stochastic differential
equations:

= (4.2)

dX = —)x(X — L) dt + x dW’ + JdN — (4.3)

dL = —AL(Lt — L) dt + L dW2. (4.4)
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As before S is the spot price. Here the Brownian motions W’ and W? are
independent. The jump behavior of X is governed by two types of jumps:
upward jumps and downward jumps. The upward jumps J are exponentially
distributed with positive mean i/i, and the downward jumps J are also
exponentially distributed with mean 1/nd. In this model, N and N are two
independent Poisson processes with arrival rates A and respectively. The
function h(t) denotes a deterministic seasonality function.

4.2 Valuation of electricity futures

This model also belongs to the class of (AJD) process. We can rewrite
equations (4.3) and (4.4) according to equation (A-i) in Appendix A to
obtain:

d
—

dt ‘X ‘X X
dt x 0 dW

L — LL
+

0 L L
+

0 L dW?

JdN1
— J?dN
0

Again defining U = (Xi, Li)’, the expressions for

K0, K1, H0, and, H1

remain the same as for the MROU, see equation (3.8). However we now have

10 = >u + ‘d. (4.5)

To obtain the formula for the future contracts F(t, T) we need to calculate
the jump transform function in order to include them in the ODE for M(t, T).
The other two equations N1(t, T) and N2(t, T) are the same: see equations
(3.16) and (3.17).

The density of the distribution of jumps of X is given by
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x>O
vX(X) =

d x < 0

The transform for the jumps is given by (A-4),

= f eN1z1+N2z2d(zi,z2), (4.6)

where (•) is the jump distribution on R2, and N1, N2 are such that the
integral (4.6) converges. However, since L does not have jumps, is con
centrated on the subspace z2 0 and we have

(N1,N2)= feN1zd(z), (4.7)

wherever this integral converges, that is, wherever —‘rid < N1 <
.

Then

= f:exp{Nlz}v(z)dz

00 0
= u f e_(_N1)zdz +

d f de1)dZ

0 u+d -

— ( 7u d ( 7?d

— u+Adu—Nl) +Add+N1

Therefore

= -ALLN2(JN+uN)

A ( —1—A ( d
U

U—Nl(tT)
d
d+Nl(tT) )‘

with the boundary condition M((1, 0)’, T, T) = 0.
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The equations for N(t, T) are, as before,

\xNi, and = —\XN1+;\LN2.

We can solve the system with the corresponding boundary conditions to
obtain

M(t, T) = mi(et_T)
— 1) +m2(e(t_T)

— 1) +m3(e2t_T)
— 1)

+ — 1) +m5(e2t_T)
— 1)

(4.8)

+ in (?7u_— e__(t_T1

+ in (‘1d + eX(t_T)’

?]—1 / \x ??d+l /

where the constants m1,m2, ..., m5 and the solution for N1(t, T) and N2(t, T)
are given by equations (3.16) and (3.17). See Appendix B for the calculation
of M(t, T).

Thus, the expression for the future prices is given by

E(t,T) = exp{h(T)}exp{M(t,T) +N1(t,T)X +N2(t,T)L}, (4.9)

where the functions M(t, T), N1 (t, T) and N2(t, T) are given by equations
(3.16), (3.17), and (4.8).

Note that (4.8) requires that < 1. This restriction is to be expected,
since the future price is given by

(t,T) = E(STI) = E(e)TT)IT). (4.10)

Since XT contains, in general, terms involving jumps with an exponential
distribution, the expectation in (4.10) will diverge if the upper tail of the
jump distribution is sufficiently large. See [44].
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4.3 Particle filter setup

Since this model is non-Gaussian, due to the jump process JdN — JdN,
we cannot employ the IKalman filter to estimate the parameters )‘, ‘d,

71d We therefore wish to employ the particle filter, which is in principle able
to handle quite general distributions.

As for the MROU model, we assume the data is given by

X, Z1, t= 1,2,...,n.

(For simplicity we just considered one future price). Here X7 is the deseason
alized log-spot price, and Zt,T1 the deseasonalized log-future price F(t, T1).

The first step is discretise the model. Let to, t1, ..., t, be the times, and
= t, — t_1. As before for simplicity we abuse notation slightly, and write

X for X1. Then we have, using the forward Euler approximation:

Xt = — x(Xt_i — L_i)L\t + uxAW + JN — jdNd

= L_1 — L(Lt_l — L)t + JLW.

Here J are exponential random variables with parameters , ‘rid respec
tively and

N(O,tu), N(O,zto).

zNu, /N1 are Poisson random variables with parameters )At, )\dAt re
spectively. Since

P(/N 2) = 1 —et— /te_>t

the probability of two or more jumps in one day is small. We therefore
approximate AN by a Bernoulli random variable with parameter
that is we take

P(AN = 1) = P(z\N = 0) = 1 —
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with similar approximation for AN.

The transition equation is therefore

(Xt N 1 0 N (1— AxAt AxAt NI X_1
Ut= L ) LLAt 0 1—ALAt ) L_1

411
+

As before, we assume the measurements are subject to noise, so the mea
surement equation is

Ix*N / 0 N / 1 0 N/X
Vt = M(t,T) ) + N(t,T) N2(t,T)) L

(us 0 NI 412)
+ ü (.

where °, , and are standard normal random variables.

For the particle filter we initially assume the parameter 6 is known, and set
it up by writing in the following way. We write i4(k) for the kth component
(k = 1,2) of the ith particle (i = 1,2, ..., ni,) at time t.

A key part of the implementation of the particle filter is the choice of the
proposal density q(utut_i,vt). One choice would be to simply take q() to
be the transition density p(utIuti) arising from (4.11). However, this choice
is not likely to be optimal. Most of the time, we will have AN AN = 0,
so most particles will not make a jump at time t. If the observed process X,
does make a jump at time t, then most particles will be left behind by this
jump. It is therefore better to choose q(ututi, Vi:t) to exploit the information
available in Vt. (We remark that the optimal choice of q(ututi, Vit) would
be the distribution p(utIuti, Vit), but it is not feasible to calculate this
distribution).

We therefore choose q(.) so that the particles are propagated according
to the following equation:

71



Chapter 4. MROU with jumps

u(1) X + u3t, (4.13)

u(2) = —(u1(1) — L)At + JL/tt. (4.14)

Note this means that the second component of u just follows the evo
lution equation of L, but we use the new data available in X to move the
first coordinate of the particles close to X. Here are independent N(O, 1)

random variables (i = 1, 2).

We now calculate the likelihood and prior densities. We have

p(vtU) = p(X, Zt,TIU(1), r4(2))

= p(XIU(1))p(Zt,TIU(2)), (4.15)

where

xIu(1) N(U(1),u) and Zt,TIU(2) N(mz,u) (4.16)

with mz = M(t, T) + N1(t, T)U(1) + N1(t, T)U(2).

Now, for the prior density or transition density,

(i) (i) (i) (i) (i) (i)
it Iu_1) = P(Ut (1), Ut(2)Iu_1(1),u_1(2))

(4.17)

=

Here

U(2)IU1(2) N(mL,SL) (4.18)

with mL = L(1 — e_t) +U1(2)e_t and SL = (u/2L)(1 — e_2t),

since L is an Ornstein-Uhlenbeck process.
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Ohapter 4. MROU with jumps

Using the Bernoulli approximation for and AN, and neglecting the
O((At)2)probability of both and upward and downward jump in the same
period,

p(u(1)Iu1(1)) = (1- )At
- dAt)fO(U(1)IU2l(1))

+ + AUtfd(ut(1)Iutl(1)). (4.19)

Here fo denotes the density corresponding to the jump-free case and f and

fd correspond to the case of a single upward and downward jump respectively.
Set

/x u1(1)
— (11(1) — Lx)t, and s2 =

then

fo(u(1)Iui(1)) = (2ns2)h/2exp{(_(u(1) - x)2/2s2)}. (4.20)

f and fd are obtained by the convolution of fo with the distributions of
JU and jd So

f(u (1) u1(1)) = (4.21)

Now
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(i)(i)
(u (1)

—

y — x)2/2s2+ uY = (2s2)’ (( —

(U (1)
— x))2 + 2s2y)

= y — (u (1)
— x))2 + 2s2y)(2s2)’ (( (t)

(i)
= (2b2)’ (( — (u (1)

—

— s2))2

—(s4 — 2(u(1) — x)s2))

/ (%)
—

(y
—

(1)
—

—

— 2s2

2 2 (i)—s T/ + (u (1)
— x)u.

(i) 2Hence writing A(x) = (u (1)
—

— s

(i) (i)
f(u (1) Iu_1(1)) = ue322e_1)_

P00

I0

P00

J (2)_1/2et2/2dt

A(x)/s
= e82/2e_+(1)_) I (2)_h/2e_t2/2dt

-00

=

where J(.) is the normal cumulative distribution function. So

(i) (i)
f(u (1)Iut_1(l)) = ue822e_1)_

(4.22)

—
—

(z)Let u” = —Ut (1). To get the distribution fd we use the calculations for

f,
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(z)
fd(ut (1)I21(1)) = f(2ns2)_h/2e(_1)_2/2s2dedy

0

T= (27rs2)_1/2e(_(u’_Y_Px)2/2s2)e_??dYdy

0

=

So

(i) (i)
fd(ut (l)u_i(l)) =

(4.23)
—

—s2d)/(ux(At)’12)).

(i)(i)Combining (4.19), (4.20), (4.22), and (4.23) gives p(u(l)Iu_, ).
Finally, the proposal density is

z) (i)q(u Iu_,,v) = p(u(1),u(2)Iu,(1),u(2),v)

= p(u(1)Iu1(1),vt) p(u(2)Iu,(2)), (4.24)

(i)with P(t (2)Iu1(2)) given as (4.18) and

p(u(1)Iu,(1), Vt) = (2nu1l2 exp{(-(u(1) -X)2/2u)}. (4.25)

Combining (4.15), (4.17), and (4.24) we calculate the associated weights

(i) (i) (i)
(i) p(VtIu ) P(’Ut u._,)

wt (i) (i)q(ut Iu_i,Vt)

(i) (i)
= (2)u,(2))

p(u(1)Iu1(1),Vt) p(u(2)u,(2))

(i)
= p(Zt,Ttu(2)) P(Ut (1)1(1)).
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Here the first term is given by (4.16), and the second by combining (4.19),
(4.20), (4.22), and (4.23).

4.4 Simulated data with known parameters

We tested the implementation of the particle filter presented in Section (4.3)
for the MROU jump model to estimate the long-term mean process L. We
simulated a series of 100 time data points according to (4.3), (4.4), and (4.9),
taking

and = 1. Figure 4.1 shows the particle filter estimates of the state using
100 particles.

Figure 4.1: Plot of the true state L and estimate of the particle filter.

As is clear from Figure 4.1 the particle filter does a good job of estimating
the transition state for this example even using just a few particles, provided
the parameters are known.

76



Chapter 4. MROU with jumps

4.5 Likelihood function estimation

Using the particle filter for a fixed parameter 0, one can obtain an estimate of
the likelihood function Jü(Vit) by (2.45). However, as we already mentioned
above, severe difficulties arise when one tries to optimize this function since,
for each value of 0 one is using a different randomization.

To investigate the problem, we fixed all the parameters except A at their
correct value (Ax = 110), and estimated £x(Vit) for simulated data. Taking
1000 points and 2000 particles, we estimated £ (Vi:t) for Ax in integer steps
between 102 and 120. As is clear from Figure 4.2, there is little prospect of
satisfactory use of a hill-climbing algorithm given the level of noise. We
repeated this estimation with 15000 particles and obtained a similar curve,
but with oscillations roughly 10 times smaller. These oscillations however
were still large enough so that a hill-climbing algorithm would have difficulties
in locating the optimum.

It seems likely that increasing the number of particles by a factor of k
will increase accuracy of the estimates of the log-likelihood by If so, one

Figure 4.2: The log-likelihood for different Ax values.
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might need 1O61O8 particles in order to use a hill-climbing approach even in
one dimension.

4.6 Sequential parameters

Our goal is to estimate the long-term mean process together with the 11-
dimensional parameter vector 0 given by

according to the information available at a given time t, i.e. Vit. As we
explained in Section 2.6, from a Bayesian point of view we concatenate the
state vector and the parameters and apply the filter to this augmented state.
Then we define

Yt
(Ut) (4.26)

where Ot is the particle approximation to 0. It is useful to add some noise to
the transition for 0

19t Ot—1 + ct_i (4.27)

where {t—1}t1 is a small artificial noise with a decreasing variance A with
t.

A wide variety of choices of and A are possible. It is clear that some
care has to be taken in the choice of A. If A is too large, then particles
& will oscillate too much to give a satisfactory estimate of 0 (the larger the
covariance, the more quickly older data are discarded). If A is too small,
then unless the initial value is nearly correct, 0 will not move enough to
reach the correct value.

The literature contains a number of suggestions on how A should be
chosen. In [43] the author suggested to be white noise. Others proposed

91f not, we oniy sample particles in 0 space at time 1 and never modify their locations,
then after a few time steps p(9IVit) is approximated by a single particle.
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to set A as a diagonal matrix annealing to zero - see [41, 53, 68] for more
options.

First we take a fairly simple approach. We will take A to be diagonal,
and write t9t, for the j-th component of &, and for the j-th element in
the diagonal of A. We set

t,j =b (4.28)

where b and cj are constants. Note that var(t,j) = 00. The ‘annealing’
given by (4.28) is not fast enough to make Oj converge almost surely.

Later we use the Liu and West [57] approach. They suggest approximat
ing the distribution p(OIvit) by using a mixture of Gaussian distributions,
that is

p(OIV1:t) n8m,h2At. (4.29)

The quantity m = + (1 — a) is the kernel location for the i—th
component of the mixture where

= (4.30)

and the matrix A is an estimate of the posterior variance covariance-matrix,
i.e.

= — )(&
— t)’. (4.31)

The constants h and a, that measure the extent of the shrinkage and the
degree of over-dispersion of the mixture, are given by h2 = 1— ((2y— 1)/2)2,

a = — h2, where the discount factor ranges between 0.95 - 0.99. In this
case the artificial dynamic of the parameter is given by

(i) 1/2
= m + hA Et+1, ‘ n(0,I), (4.32)
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where n(xIp u2) denotes the density of the Gaussian distribution. With these

specifications the likelihood, prior and proposal densities for z4 now depend

on 8. So we have

p(vtIy) = n(XIu(1),u)x

n(Zt,TIMt(6) + Ni,)u(1) +N2t(O)’u(2), ui), (4.33)

(i) (i) (1) (i) (i) (i)
P(Yt I-) =P(ut (1)Jut_i(1),ut_i(2),Ot_i)

x p(u(2)Ju1(2),6) fln(IO,, (4.34)

(i) (i) (i)(1) * 2 (i) (i) (i)
q(yt y_1,vt) = n(u IX ,us)p(Ut (2)I_1(2),_1)

x fln(OIO). (4.35)

Substituting (4.33)-(4.35) into the weights formula gives

(i) — p(vt iu) p(uJu1)
‘wt

— (i) (i)q(u u_1,vt)

= n(Zt,TIMt(O) + Ni,t(O)u (1) +N2,t(O)u (2),

x p(u(1)Iu21(1),u2(2), O2). (4.36)

The last density in (4.36) is given by (4.17).

4.7 Empirical results

In this section we report some empirical results based on simulated data to
show the performance of the method. The true parameters were fixed to be:
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)x=l’O x3 \i=s L=3.2 L’

1?1.5 A=5 7d=3 d=’

For simplicity we took us = 0.1 and z = 0.1 to be fixed and assumed to be
known.

Figures 4.3 and 4.4 show a simulation of a MROU with jumps process
using the parameter values as above.The upper graph in Figures 4.3 shows
the simulated spot price and the future price with maturity of one month.
The lower graph is the long-term mean process L. Figure 4.4 shows the
upward and downward jump processes. For this data set the skewness and
kurtosis is -1.8895, and 21.069 respectively.

Considering the first approach (4.28) and using 1000 particles we ran the
particle filter to optimize all the parameters, but the filter failed to obtain
good results on most of the parameters.

Difficulties of this kind in a high-dimensional situation are not surprising.
Even in the case of the Kalman filter, where we optimized a deterministic
function, the hill-climbing algorithm sometimes failed to find a point close
to the true maximum.

The particle filter replaces the hill-climbing point with a cloud of particles,
where the weights w are higher when the particles are close to the true
value. This should mean that the particle cloud drifts towards the true value
of the parameters, but it seems intuitively unlikely that it will perform as
well as a hill-climbing algorithm.

A known weakness of optimization algorithms is the following. The higher
the number of parameters, the worse the performance of the algorithm. This
means that a one-parameter optimization should perform best. To test this,
we allowed in turn each of the parameters to vary. Thus in each run we fixed
all but one parameter at its correct value, and ran the particle filter with
just one 0t,j varying. We took the number of particles to be 1000, and the
number of time steps to be 1200. We chose as in (4.28), with cj = 100

The Figure 4.5 shows the dynamic under the artificial noise (4.28) of
the parameter := for t = 1, 2, ..., 1200 using 1000 particles and its
optimal value (110). To test the particle filter, we started the parameter
some way away from its correct value. The noise is decreasing quite slowly,
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Figure 4.3: The graph shows a simulated trajectory of the MROU model
with jumps.

and hence the variance of the process remains large. Figure 4.5 suggests that
there is little “push” in the particle filter towards the correct value, and this
is confirmed by Table 4.1, which shows a fairly wide dispersion of estimates
around the true value, for different runs of the filter on the same data set.

A similar pattern arises for the other parameters.

We ran the particle filter 25 times for each parameter. Let O(k) be
the value of 8t,j in the kth run, where k = 1, 2, ..., 25. For each run k, we
estimated by taking its average over the last 400 observations, that is,

Sexp(X1)’

F(t,Ti)=Et(exp(Xri))

200 400

Long—term mean Lt I dLt = — 2L ( Lt — L ) dt + cYL dW2

600 800 1000 12
Days

Days
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Figure 4.4: The graph shows the upward and downward jumps for the sim
ulated trajectory of the MROU model with jumps.

1200

= ZOt,j(k).

We then calculated the mean and standard deviation of (k), k = 1, 2, ..., 25.
Table 4.2 summarizes the outcome of the whole procedure. The first column
is the true value of the parameters. The second column is the initial value
of
,

that is b in (4.31). The third and fourth columns give the mean and
standard deviation of the estimates (O(k), k = 1, 2, ..., 25).

As we can seen from the Table 4.1, the performance results are rather
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Figure 4.5: Sample particle filter trajectories for the estimate of Ax.

True ri r2 r3 r4 r5 r6 r7 r8

Ax 110 126.13 161.49 102.76 87.72 76.41 105.29 124.15 83.71

Table 4.1: Sample of 8 estimated values for Ax.

True value b mean value std.

Ax 110 30 99.29 19.64

x 3 1 3.26 0.048
AL 5 2 8.147 0.729

L 1 1 1.16 0.017
L 3.2 1 3.37 0.037
, 1.5 0.5 2.444 0.754
A 5 0.5 8.301 2.983
rid 3 1 14.87 6.917
Ad 1 0.5 4.218 1.817

Table 4.2: Individual estimates for parameters in MROU with jumps model.

limo step
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mixed. In some cases the particle filter was able to obtain a reasonable
estimate for the parameter, but in others, particularly for the parameters
associated with the jumps, the estimates are far from the true value. The
particle filter literature suggests that even with a very large number of par
ticles one may not be able to obtain accurate results.

Next we tested the Liu and West approach. We used 4000 particles
to approximate the distribution of interest. A problem that we noticed is
that the estimated posterior variance-covariance matrix A collapses to zero
after a few hundred iterations. We solved this problem choosing an efficient
resampling scheme that kept low the variance in the particle filter algorithm.
We found that the residual resampling kept the covariance matrix positive.

We ran two examples. In the first one we fixed all but one parameter at
its correct value, and ran the algorithm choosing a reasonable initial point for
the free parameters. We obtained good results even for the jump parameters.
(For simplicity we consider again a5 = 0,1 and z = 0.1). The results are
displayed in Figure 4.6.

It is interesting to note that the algorithm detects precisely the parameters
Xi,, A, r, 71d associated with extreme events (spikes).

For the second example, we took the vector parameter to estimate as

0 = {Ax,AL,ax,uL,L}

while the rest of the parameters were fixed to their optimal values. Again,
we started the algorithm choosing a reasonable initial point for the free pa
rameters 0 as well a small initial variance. Figure 4.7 presents part of the
results.

From this example, we noticed that the algorithm implemented gave ac
curate estimates for the parameters L, crL, and

More difficulties arose when estimating the speed reversion for long and
short-term process Ax, and AL. There are slightly under and over estimated
respectively.

Overall, the algorithm provided more precise estimated values but diffi
culties arose for the parameters related to the jump process. Further, the
algorithm required a significant amount of tuning, i.e. choosing the initial
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value and variance of the artificial noise. However the graphs in Figures 4.6
- 4.7 indicate a significantly better performance than that obtained by using
(4.28). Given these difficulties, we did not feel confident that the algorithm
would perform satisfactorily on real data.
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Figure 4.6: Sample particle filter trajectories for the estimate of , and T)d

using Liu and West approach.

2.
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100 200 0 400 505 600 000 500 900 1000

Figure 4.7: Sample particle filter trajectories for the estimate of ux and L

using Liu and West approach.
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NLMROU model

Our difficulties with the particle filter led us to look for more tractable models
which have the potential for explaining price spikes. While the incorporation
of jumps is the most natural way to account for price spikes in the spot
price, other explanations have been offered. Barlow [3] proposed a non-linear
diffusion model, which can produce price spikes similar to those observed in
real data. This single factor model is unlikely to provide a good explanation
for the observed relation between spot and future prices. Here we present a
two-factor model of the same kind. The model is estimated using data from
the European Energy Exchange.

5.1 The model

The nonaffine term structure two-factor model for futures prices is known as
the Non-Linear Mean-Reversion Ornstein-Uhlenbeck model (NLMROU). It
uses the inverse of the Box-Cox transformation to generate price spikes that
fit the observed data observed in the power market.

Let (Q, F, {}t>o, Q) be a filtered probability space. The dynamic of the
spot price under the risk-neutral measure Q is the following:

= f(X)h(t)

where X is an Ornstein-Uhlenbeck process which reverts to a stochastic
mean L, also fluctuating as Ornstein-Uhlenbeck processes and fa is the
inverse of the Box-Cox transformation. This transformation was introduced
in the context of electricity markets in [3]. The deterministic component h(t)
incorporates the seasonality effects in the model.

More precisely,
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I (1+aX)’/, 1+aXt > 6o
S = h(t) x 1/a 1

(5.1)
1+aA.tEo

dX = —Ax(X — L) dt + x dW, (5.2)

dL = \L(Lt — L) dt + 01 dW. (5.3)

where the two Brownian motions W’, and W2 have correlation p and a 0.
If a = 0 then S, is the MROU model, see Chapter 3, with a cutoff at e0. If
a < 0, the function (1 + aXt)1/a increases more rapidly that an exponential
function.

An important advantage of this approach compared to other methods for
produce spikes in the spot price process is the inclusion of just one more
parameter a in the model to be estimated. The deterministic seasonality
function is the same as is described by equation (3.33) and its components
are estimated by least-square fitting exactly as in Chapter 3. We denote the
deseasonalized spot price by St, that is

= S/h(t).

where as before h(t) is the estimated seasonal correction.

5.2 Future price

Based on the risk neutralized process (5.1)-(5.3) we calculate the Future price.
Assuming a deterministic interest rate the Future price is the expected future
spot price under the risk neutral measure Q, i.e.

fr(t,T) h(T)E(fa(XT)IXt = x,L = 1)

=
h(T)f faWy’2()ex{_

(w_(:x1))2}d
(5.4)

where i(s, x, 1), and a(s) are the mean and variance of XT respectively.
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Taking y = (w — t(s, x, l))/u(s)

(t, T) = h(T) f(s, x, 1) + u(s)y)e_Y2/2dy, (5.5)

=

1d1

+ a((s, x, 1) u(s)y))1e_Y2/2dy

+ A0
f°°

*e_Y2/2dy, (5.6)
d1V

=

1d1

+ ((s, x, 1) + u(s)y))1e_Y2/2dy

+A0I(—d1), (5.7)

with
A i/ —

— 1 (s, x, 1)
j-j0—C0 , ui— —

______

u(s)ci u(s)

and (.) denotes the cumulative normal distribution function.

Using the fact that

E(e’) = eJ2/2 with Y N(t, cr2)

we are able to calculate the mean (s, x, 1), and variance u(s) of XT in (5.4).
Let

and s=T—t.
—

From previous calculations, see equation (3.9) and Appendix (6.1)

E(exp{(u1,u2) (XT, LT)’}I(Xt, Li)’) = exp{M(s) +N1(s)X +N2(s)Lt}

where

Ni(s) = uOx(s), N2(s) =

and
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M(s) = — 1) +
(rLuio_ LLU2)

(8() — 1)

+( — — 2PcrxJLuao)
(&2X(S) — 1)

+
(_J

— ou + 2ouiu2co

)
0( — 1)

+ (‘ — JLU1U2a0 + PJxJLU?ao — pJxJLUlU2’\

X + L )(8x+(s)—1).

Taking u2 = 0

E(exp{u1Xr}J(X = x, L = 1)’) =

exp{u1(M11(s)+ Nii(s)x + N21(s)1) + Mi2(s)} (5.8)

where

LLO
&X(8) — 1)

ALL0O
+ (&L(s) — 1),Mu(s)

=
(

,XL

Na(s) =

N21(s) = cio(Ox(s)

and

M12(s) — —

—2PXLO (&2 — 1)— 2

___

— 1)+
2u +2PuxuLao(0

() 1).(02L(S)
(Ax + AL)

Therefore the mean and variance of XT are respectively

x, 1) = Mn(s) + Nn(s)x + N21(s)l
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and

u(s) = M12(s).

Unfortunately the integral in (5.7) does not admit a closed-form solution.
However, this is not a significant obstacle, since these integrals can be evalu
ated quickly by numerical methods. The Futures prices have been calculated
for this model, though in a rather non-explicit fashion - see [78].

5.3 Unscented Kalman filter setup and
estimation procedure

This model is non-linear but has Gaussian noise, so an appropriate technique
is to use the Extended Kalman filter (EKF) or the Unscented Kalman filter
(UKF), see Section 2.3.

The starting point of our inferential procedure involves an Euler dis
cretization. The model is thus evaluated at a set of discrete times {t : i =

0, 1, ..., n} such that At = t — t_1. Writing X for X as before, the Euler
scheme for equations (5.1)-(5.3) can be written as:

= f(Xt), (5.9)

X = X_1
— x(X_1— L_1)At + —p2uXAT’/ + puxAW2, (5.10)

= L_1 — AL(Lt_i — L)At + uLAW2. (5.11)

In order to apply the Unscented Kalman filter, we use the state-space repre
sentation for the NLMROU model. We defined the state equation as

( X N 1 0 N I 1—AxAt )xAt NI X_

L ) =
ALLAt 0 1LAt ) L_1

+ I ‘ —P2x”1+ puxA
(5 12)

uLfW? .

The observations we have available, after seasonal correction, are the
spot and filture prices (S F(t, T)). However, the UKF allows us to take as
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our measurement any transformation of these observations. To reduce non
linearity in the model we therefore took our measurement equation as

— ( logS N (/AW’ N
Vt — logF(t,T) ) +

uzW2)

( log f(Xt)
=

log{ f(i + (s, x, 1) + u(s)y))1/ae_Y2/2dy+A0(—d1)}

I usvW1 N+

(5.13)

where St denotes the deseasonalized spot price, and F(t, T) is the deseasonal
ized future price at time t with maturity T. In this case the noise covariances
are given by

— ( /1
—p2ax/M4’ç’ + puxzW N — I u%At PJXULAt N

q — coy ) —

PJXJL/t p
and

1us/M’V’\ (cT. 0
= coy

Aw) = 0 4
We set up the specific characteristics of the state-space model for the spot

and future prices using the transition and measurement equations (5.12) and
(5.13). The UKF parameters were set to c = 0.001, = 2, and ‘ 0. Based
on this state-space formulation we are able to run the unscented Kalman filter
algorithm in order to estimate the parameter set

&={)\x,)L,ux,uL,L,p,a,us,uz}

by means of maximum likelihood according to Section (2.5). We run Algo
rithm 4 in Section 3.4, but using the UKF instead of the Kalman filter in
(Step 2) to obtain 0.
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The log-likelihood function is calculated as

£O(VLn) — [log IvkvkI + (Uk
— VkIk_1) — VkIk_1)] (5.14)

where EVkVk, and tikIk1 are given by (2.23) and (2.22).

5.4 Simulation results

Assuming the parameters are known, and using the Euler scheme discretiza
tion in (5.9)-(5.11) we simulated a path of the deseasonalized spot and future
price with n 800 observations of the NLMROU model using A = 100,
AL = 3, ux 1.7, L = 0.4, L = 1.9, p = 0, c = —0.4 and = 800a with

= 1/250. Figure 5.1 shows the trajectories.

As we can see in Figure 5.2 the UKF is able to recover the ‘hidden’ states.

For simplicity we fixed the parameters p = 0, s = 0.1, and og = 0.01.
The optimization method was repeated 25 times with random re-initialization
for each run to obtain:

= argmax£9(i). (5.15)
8e0

and we proceeded in the same way with 50 different trajectories to obtain
the following results. See Tables 5.1, and 5.2: this shows that the algorithm
is able to obtain quite good estimates of the parameters for simulated data.

5.5 Parameter estimation based on
historical data

For our empirical analysis we again use the data from the European Energy
Exchange (EEX) in Leipzig, Germany. In our analysis we considered the
spot price of the EEX baseload index and monthly baseload futures prices.
The spot price is an equally weighted average of all 24 hourly spot prices
for that particular day. Holidays and weekends have been removed from the
data set.
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SpotS=f(X) I
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Figure 5.1: The graph shows a simulated trajectory of the NLMROU model.

n = 800
True Value Run 1 Run 2 Run 3 Run 4 Run 5

Ax 100 102.562 105.627 101.162 104.041 106.12
AL 3 3.523 2.871 3.466 3.540 3.618
clx 1.7 1.582 1.530 1.845 1.728 1.652

L 0.4 0.419 0.457 0.420 0.380 0.379
L 1.9 1.951 1.875 1.952 1.803 1.974
c -0.4 -0.402 -0.382 -0.461 -0.389 -0.406

—(6) -186.276 -179.261 -197.417 -186.248 -191.87

Table 5.1: Five different maximization runs with 800 observations.

Our data comprise almost five years baseload day prices from July 1,
2002 to June 29, 2007, totaling 1267 observations. The dynamics of the spot
prices for the considered period are shown in Figure 3.3.

Days

Future F(t,T)E(STSt) I S =f (X)
tco t

400
Days

MROU process X & L

Days
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Figure 5.2: Plot of the true and estimated processes L and X of the NLM
ROU model (first 80 observations).

n = 800
‘Iue value Estimator Std.

Ax 100 102.4069 4.340
AL 3 2.964 0.795
x 1.7 1.786 0.216
L 0.4 0.3954 0.0921
L 1.9 1.8968 0.0216
a -0.4 -0.4009 0.038

Table 5.2: Estimation using one futures contract (n = 800).

To estimate the parameters of the deterministic part

IT1 + 2irtN T2 + 2irt
h(t)=r+/3ot+/3icos

250
)+/32cos(

5 ),

tine Lep
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we ran the least squares method as we did in Chapter 3. See Table 3.5 for
the estimated values of , , 2, r1, and r2.

In the following we will analyze the three time series of the EEX market
for the periods July 1, 2002 - December 31, 2004, January 1, 2005 - June 29,
2007, and the whole series. The seasonalities have been removed.

For simplicity and to reduce the number of parameters to estimate, we
fixed the noise parameters to be constants. s = 0.1 and crz = 0.01. In view
of the low correlation found between the processes X and L in Chapter 3,
we took the covariance p = 0.

The results on the parameter estimates are shown in the Table 5.3.

Part 1 Part 2 Whole
Estimator Estimator Estimator

Ax 127.599 116.036 121.557
AL 0.11178 0.753711 0.203681
ox 1.25847 0.756485 1.15815
0L 0.0834349 0.0730882 0.0901108
L 1.86049 1.77443 1.79335
c -0.438183 -0.489661 -0.414042

Table 5.3: Estimated values for the EEX market using S, and F(t, T1).

The parameters A and AL relate, as in Chapter 3, to the ‘half-life’ of
the mean reversion of the short-term and long-term processes. We obtained
similar results for TX log 2/Ax, showing a half life of 1 — 2 days. The
estimated half-lives for L differ significantly for the two periods, being about
6 years for the first period, and about 8 months for the second. While
the MROU and NLMROU models give similar estimates for the speed of
mean reversion of the short-term component X, the NLMROU model gives
significantly slower mean reversion for the long-run process L.

The estimates of the nonlinearity parameter c are quite similar for the
two periods.

As in the case of the MROU process, comparison of the variances VL =

o/2AL, Vx = 4/2Ax show that the dynamics of X, and L contribute
significantly to the long run variation of S. As before the long run process
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gives a somewhat greater contribution. We obtain the following results:

w
Period 1 0.18 0.08

Period 2 0.06 0.05

Note that because we are applying a different function (f() rather than
exp{.}) to X to obtain the spot price, it does not make sense to directly
compare the values of x and crL with those obtained in Chapter 3.

In order to investigate if the estimated parameters make sense, we simu
lated a path of the spot price, future prices and long and short term mean
process that describe the model using the estimated values from Table 5.3
considering the whole data, see Figure 5.3. Empirical moments of the EEX
spot price versus simulated moments (averaged over 50 simulation paths) are
shown in Table 5.4.

Comparing the real spot price with the price produced by the model,
we see that the model is able to produce significant price spikes with values
similar to those for the real data. As with the real data, the spikes tend
to bunch together. As well, the model exhibits periods of high variance -

compare for example the period 700 — 950 in Figure 3.5, and 750 — 950 in
Figure 5.3. The estimated parameters for the long-run mean process give
quite slow mean reversion, and Figure 5.3 shows a process of this kind.

This model will tend to generate more spikes when the L process is large,
and one sees this at the end of the simulation, when the simulated spot has
many small spikes in the range from €150 on. Similar features are seen in
the real data - in the period 800 to 1100 in Figure 3.5.

The model does however have some defects. The first is that the skewness
of the log returns is close to zero - see Table 5.4 (this is likely to be a feature
of any model without jumps). Then this model is not able to capture the
skewness which is present in the real data. It also appears that the model
underestimates the kurtosis, compared with the real data.

In spite of these problems, this model appears to offer a significant im
provement over the MROU model at a quite moderate ‘cost’ - the cost being
in terms of additional parameters and complications of parameter estimation.
Although the model is far from perfect, its performance suggests that it is
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SpotS=f(X) I

Figure 5.3: Simulation of spot and future prices price using estimated values
for the whole data set.

Real data (1) Sim. data (1) Real data (2) Sim. data (2)

Mean 0.0019 0.0000 0.0000 -0.00037
Std Dev. 0.2214 0.60029 0.2066 0.46088
Skewness -1.3125 -0.02066 -0.0800 0.04927
Kurtosis 29.8250 4.77539 8.1288 3.99024
n data 634 634 631 631

Table 5.4: The table shows the first four moments of the logarithmic de
seasonalized price returns of observed data and the average of 50 simulated
trajectories.

well worth considering more elaborate models of this type in the search for
a good description of electricity prices.

50

30

20

Days

Future F(t,T)E(STISt) I Sf(X)

100 200 300 400 500 600
Days

MROU process X & L

I I I
700 800 900 11 I0

500
Days

100



Chapter 6

Conclusions

In this thesis, based on the specific properties of electricity we have proposed
three process models that incorporate various features of power prices. We
calibrate these models, using both spot and futures prices, to artificial and
historical data applying three filtering methods.

The first model is a two-factor linear Gaussian model. This models the
log-spot price as mean-reverting process, where the mean reversion is to a sec
ond (unobservable) “long run mean” process. This second process is modeled
by an Ornstein-Uhlenbeck process. In this thesis (unlike the work reported
in [4]) we used both the spot and future prices to estimate parameters. The
space-state formulation of this model is suitable to the application of Kalman
filtering techniques, and we used a maximum likelihood estimator based on
the Kalman filter. This worked well for simulated data, and we then applied
it to estimate parameters for the German EEX market. Simulations suggest
that this model, with the fitted parameters, does fit some features of the real
data. However, it definitely fails to exhibit some features of the real data,
such as the jumps or price spikes seen in Figure 3.3.

This defect in the first model led us to consider a second model, which
incorporates jumps. We kept the same basic form of a log-spot price, and
a long-term mean process, but added jumps to the log-spot price. For sim
plicity we took the distribution of both the upward and downward jumps to
be exponential, with possibly different rates and parameters. The standard
Kalman filter cannot be applied satisfactory in this case, since the model is
non-Gaussian. One alternative, which requires rather weak assumptions on
the distribution involved, is the particle filter. We developed code to use the
particle filter for the second (jump diffusion) model based on the kernel ap
proximation of the posteriori suggested by Liu & West (2001). An empirical
application on simulated data is presented to study the performance of the
implemented algorithm. In general we observed that while the particle filter
can work satisfactorily in estimating the unknown parameters, it is very sen
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sitive to the particular form of dynamics for the artificial parameters used in
the parameter estimation. In view of this it is hard to apply to real data.

The third model we presented is an extension of the nonlinear Ornstein
Uhienbeck model (NLOU) proposed in Barlow [3]. While Barlow used only
one factor to describe the dynamics of the spot price in this thesis we consider
a two-factor model and the same nonlinear transformations to model the spot
price. The model captures the mean-reversion, jumps and spikes behavior
observed in real market. The model has the advantage over jump-diffusion
models that it is Gaussian. Hence we can use the unscented Kalman filter
algorithm to estimate the NLMROU model. We calibrate the models to
daily EEX market obtaining similar simulated trajectories with the estimated
parameters.

6.1 Future work

1. In Chapter 5 we analyzed a NLMROU model of the form

= h(t)f(X)

where (Xe, L) is given by (5.2)-(5.3). The original model in [3] was
justified by considerations of supply and demand curves, and so it might
be more realistic to consider a model of the form

= f(Xt + h(t)) (6.1)

where h(t) is a deterministic seasonal correction. This model would
have the merit of generating spikes during periods of high demand,
without the need to consider different regimes, as is done in [45, 72].

The main obstacle to parameter estimation for (6.1) is that, since c is
unknown, it is no longer possible to estimate h(t) by a least squares
method.

One possible approach is an iterative method. One would first apply the
UKF to the uncorrected series (Si, F(t, T)), to obtain an initial estimate
&i. One then applies least squares to the series f’(St), to obtain
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an estimate h1. Given h1, the spot component of the measurement
equation is

v(’(t) = log (f(Xt +

which can be calculated as in Section 5.2. Using this, and a similar
expression for the futures component, one can then apply the UKF
to obtain a second round of parameter estimates, and in particular
an improved estimate &2 for c. Iterating, one would hope to obtain
estimates for o and h(t).

This procedure seems feasible to implement, but its convergence prop
erties and stability are at this point not clear.

2. Improved parameter estimation using the particle filter.

In this thesis we applied the Bayesian approach where an augmented
state variable which includes the parameters is processed by the particle
filter for the NLMROU model. We adopted the on-line estimation of
parameters and state developed by Liu West (2001). The main
feature of this approach is that the variance matrix A shrinks step by
step and it finally converges towards 0. Hence the parameters could
converges towards a wrong value because the A converges towards 0
before reaching the true parameter value. This problem cannot be
avoided when we do not have prior knowledge about the parameters.
That is why the method is very sensitive to the initial values of the
added noise in the parameters.

Along the same lines, another method that can we use is the ‘practical
filter’ proposed by Polson et al. (2008) [46, 67]. Their approach is
based on approximating the target posterior by a mixture of fixed-lag
smoothing distributions. According to the authors, unlike the parti
cle filter approaches, it provides independent samples from the target
distribution, does not suffer from particle degeneracies, and handles
outliers and high dimensional problems well.

Meyer-Brandis T. & Tankov P. (2008) [62] comment:

“Sequential filtering makes less sense when the complete series is avail
able for estimation”.
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Although computationally more intensive, the difficulties encountered
in implementing the particle filter suggest this may be the correct ap
proach. An approach used by Olsson et al. (2008) [65] and Wills et al.
(2008) [81) is an off-line method performing maximum likelihood esti
mation via the EM algorithm. An essential component in the E-step is
to approximate the ‘smoothing distribution’, that is {po(utlvi:n);t =

1,.. . ,n}. In the general nonlinear and non-Gaussian case various
schemes have been proposed. The fixed-lag approximation is the sim
pies approach and it was first proposed in [54]. In [65] they apply
the particle filter technique to smooth additive functionals based on a
fixed-lag smoother. The method exploits the forgetting properties on
the conditional hidden chain and is not affected by the degeneracy of
the particle trajectories.

Approaches of this kind are well worth investigating for jump models
of the type considered in Chapter 4.
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Appendix A

An Affine Jump-Diffusion process (AJD) is a jump-diffusion process for which
the drifts and covariances and jump intensities are linear in the state vec
tor U. Duffie et al. (2000) [27] show that AJD processes are analytically
tractable in general.

Let U be a strong Markov process with realizations {U, 0 t < oo} in
some state space D C R’2, which solves the following stochastic differential
equation

U U0 + f (U5,s)ds + f u(U, s)dW + Z. (A-i)

The jump behavior of U is governed by m types of jump processes. Each
jump type Z is a pure jump process with a stochastic arrival intensity

t) for some : (D, t) —* R and jump amplitude distribution v
on R”, where v only depends on time t. The functions : (D, t) F—*

and u (D, t) —* are assumed to be Lipschitz continuous in order to
guarantee that (A-i) has a unique solution. The process W.. is a standard
Brownian motion in IRA.

The process U defined by (A-i), is said to be an affine jump-diffusion
process if

(U,t) = K0(t) +K1(t)U,

u(U, t)u’(U, t) = Ho(t) + H(t)Uk,

=

where for each 0 t < no, K0(t) E RTh, K1(t) R”, H0(t) RT1 and
is symmetric, H1(t) e Also, for k = 1,... ,n, H(t), defined to be
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the matrix obtained by fixing the third index of H1 (t) to be k is in R and
is symmetric. Finally l(t) R

Notice that given an initial condition U0, the tuple (K0,K1,H0,H1, l)
can be used to determine a transform ‘J : x [0, cc) x [0, cc) x D C of
UT conditional on Ut, 0 <t <T, defined by

‘I(u,t,T,U) := E[exp{u . U}U] (A-2)

where E denotes the expectation under the distribution of UT determined
by (K0,K1,H0,H1, 1w). If we suppose (K0,K1,H0,H1, 1) is well-behaved at
(u, T), then the transform ‘V of Ut, 0 < t <T, defined by (A-2) exists and
is given by:

P(u, t, T, U) = exp{M(u, t, T) + N(u, t, T) U}. (A-3)

Here M(.) and N(.) satisfy the following complex-valued Riccati equations:

aM(u,t,T)
= -A(N(u,t,T),t), M(u,T,T) = 0,

aN(u,t,T)
= -B(N(u,t,T),t), N(u,T,T) = u,

where, for any c e C’,

A(c, t) = Ko(t) . c + c’Ho(t)c + lj(c) — 1),

B(c,t) = K1(t)’c+ c’H1(t)c.

Here (c) is the “jump transform” for the i-th jump. It is given by

= f exp{c. U}dv(U) (A-4)

whenever the integral is well defined.
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We define the extended transform 1 : R x C x [0, oc) x [0, oc) x D H—* C
of UT conditional on U, by

u, t, T, U) E[(v UT) exp{u. UT}IUt]. (A-5)

Given sufficient regularity the “extended transform” P can be computed
by differentiation of the transform \J1 Hence

1(v, u, t, T, U) = ‘I’(u, t, T, U){C(t) + D(t) U} (A-6)

where ‘I’ is given by (A-3), and C(.) and D(.) satisfy

0
= —Ko(t)’D — N’Ho(t)D — 1o(t)Vo(N)D, (A-7)

= —K1(t)’D — N’H1(t)D, (A-8)

with the boundary conditions

C(T)=0, D(T)=v. (A-9)

Here V(c) is the gradient of (c) with respect to c C.
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In this appendix we solve the ODEs (3.13)-(3.15) which arise in the calcula
tion of futures prices in the AJD model.

We begin with the ODEs arising from the MROU model. Recall that

(B-i)

= —xNi + ALN2, (B-2)

= — (uN + uN)
—N1N2pUXUL. (B-3)

We begin with (B-i). We have N1 = N1(t, T) and

Ni(ui,T,T)=ui. (B-4)

If we fix T, so regard N1,N2 as function of t only, then (B-1)-(B-3) are ODEs
and (B-4) has solution

N1 = etA.

Since

A = uie_T,

therefore
Ni(ui,t,T) = uie>(t_T). (B-5)

We now treat (B-3):

= + N2, N2(u2,T,T) = u2. (B-6)
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Substituting for N1, and multiplying by a factor t we obtain

dN2
— /J)LN (B-7)

So

(N2) dN2

dt
[L-—/LALN2,

N2 PLN2,

dp.

_

—

—ALdE,
I1

ij, e.

Substituting for in equation (B-?), we obtain

d(etN2)
_Axuie(t_T)e_t (B-8)

dt

— _Axuietx_e_T (B-9)

so,

AXU1 etx_e_T + C, (B-b)eLN2
—

— AL

e(t_T) + Cet. (B-il)N2
— —

AL

Now, solving for C

An1
‘u2=N2(u2,T,T)rr_ +CeT (B-12)

—
AL
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therefore

AXU1
e_T. (B-13)C = U2CL +

—

Substituting C in equation (B-li) gives

N2(u2,t, — eAx(t_T) + et(u2e_T +
Xl e_T) (B-14)T)——

Axu1

_____

AX—AL AX—AL

Axui Xl et_T). (B-15)e(t_T) +u2e)(t_T) +
A — AL= AX — AL

Finally we solve (B-3).

= —ALN2— + uN)
—N1N2pJXJL (B-16)

with M((ui,u2),T,T) 0.

Let c —Au1/(Ax — AL). Replacing the solution for N1 and N2 given
by equations (B-5) and (B-15) in (B-16) we have

dM
= ALL(e + u2e (t—T)

— e(t_T)) — [uue2(t_T)
dt 2

+(aet_T) + u2e
(t—T)

— ce)t_T))2]

= _ALLe (t—T)
— ALLU2e (t_T) + ALLe(t_T)

_°e2_T) —

U
e2A_T) —

_Je2t_T) — u u2etT) +uu2e2(t_T)

+L )(t—T)
— puxuLcu1e

(t—T)

+puxuLulu2e
+L)(tT) + puxuLu1e

+L)(t-T)
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Integrating both sides gives

_____

x(t—T) — LLU2 t_T) + e(t_T)e

le2At_T) —

_____

— 2A(t—T)

— 4\x 4’\x

e2(t_T) —

U
+ U2e2t_T)

— 4AL

u2a2__e(t_T)
— PxL1

(x+AL)(t-T) +
PUXULU1 Xx+L)(t-T) + c.e e

Since M((ui,u2),t,T) 0,

M = —1)—
ALLU2(

____ _____

AL(t-T)
— 1) + (et_T)

— 1)

UxU1(e2A(t_T)
— 1) — UL (e2At_T)

— 1)
— ULU2(e2L(t_T)

— 1)
4’\x 4AX 4’L

—

(e
(t—T)

— 1)
—

(e(t_T)
— 1 + (e2At_T)

— 1)
4)’L 2-AL

+ (e(t_T)
— 1)

— puxuLaUl
(e(t_T)

— 1)
)X+AL

PUxULQU1U2(e(Ax+L)ct_T)
— 1)

PUxULclu1

X + L
+

X + L

(et_T)
— 1).

Now, taking (ui,u2)= (1,0) and defining m = —)‘x/’x
— )L) we obtain
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M(t,T) = mi(e (t_T)_,) +m2(et_T)_1) +m3(e2(t_T)_1)

+m4(et_T)
— 1) +m5(e2)t_T)

— 1), (B-17)

where

2 2 m2u2
m2 Lrn m4

= m crL
+

mpcrx L
m5 = —

_______

AX+AL AX+AL 4AL

ALLm =

—

(-k- +
m2 mpuxaj\

m1=— m3
Ax 4Ax 4Ax

+
2Ax )

We now turn to the case of the jump model. Here N1 and N2 are as
before, but M has two more components due to the jumps. We can write
M(t) = M(t) + M1(t), where M(t) is given by (B-17) and M1(t) satisfies:

dM1 N1
Mi(u,T,T) = 0. (B-18)

dt — N1’

Integrating both sides we have

— f— ,u_uie(t_T)dt
(B-19)

I_ ‘
= dt. (B-20)

%eAxT_AXt
— 1

Ui

Applying the formula

I dx 1

J = —[cx — ln(a + be)], (B-21)
a+be ac

with a = 1, b = (?7ueT)/Ul and c = —A we get
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1
M1 = — in (—i + ((ueT)/ui)e_t)] + C. . (B-22)

Since Mi(u,T,T) = 0,

C = T + in(—1 + (B-23)
U1

Therefore

M1 = —(t—T)—-----1n(—1+
x \ nieAx(t_T))

+
Ax \ ni)

= —(t — T) — —-- (in
(_uie(t_T) +N I—u1

______________

— in
AX uieAx(t_T) )

= in
1

(u

— uie)(t_T)

— u—U1
)•
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