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Abstract

ChIP-Seq is a technology for detecting in vivo transcription factor binding
sites or histone modification sites on a genome wide scale. How to utilize
the large scale data and find out biological insights is a challenging question
for us.

Here, we analyzed three ChIP-Seq data sets for human HeLa cell, includ
ing data of a transcription factor called STAT1, data of RNA polymerase II
(Po12), and data of histone monomethylation (Mel). With these data sets,
we looked into the spacial relationship between STAT1 binding sites, Po12
binding sites, Mel flanked regions and the gene transcription start sites;
we checked the intersection of locations of STAT1 binding sites, Po12 bind
ing sites and Mel flanked regions; we did de novo motif discovery for the
sequences around the STAT 1 binding sites, and predicted several transcrip
tion factors whose binding sites may form cis-regulatory module with STAT1
binding site; we put the STAT1-centered sequences into different categories
based on their spacial relationship with Po12 binding sites and Mel flanked
regions, and found that the de novo discovered motifs’ occurrence rates are
different in sequences of different categories; we also analyzed the ChIP-Seq
data along with gene expression data, and found that STAT1 binding may
be related with genes’ differential expression under IFN-gamma stimulation.

We suggest that further ChIP-Seq experiment be carried out for TFs
corresponding to the de novo predicted motifs, and that gene expression be
characterized for the IFN-gamma stimulated HeLa cell on the whole genome
scale.
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Chapter 1

Introduction

1.1 Transcription factors

Transcription factors (TFs) are proteins which regulate the transcription
of a gene by binding to its promoter or enhancer region (Blackwood et al.
[7], Latchman [36]). There are about 25,000 genes in the human cell, and
more than 2,000 of these genes encode TFs (Babu et al. [21, Messina et al.
[45], Pennisi [50]).

1.1.1 Gene expression in a nutshell

In human haploid genome, there are totally just over 3 billion DNA base
pairs. The information of genes is encoded within DNA.

Gene expression is the process by which a gene guides the production
of functional gene product. It includes two steps: the genetic information
being transfered to mRNA via transcription, and then, mRNA guides the
synthesis of protein via translation.

1.1.2 Role of transcription factor (TF) in regulating gene
expression

A TF has specific 3-D DNA binding domain, which lets it recognize and bind
to specific DNA sequence. And TFs are usually classified on the basis of
their DNA binding domains, such as Zinc finger domain, Homebox domain,
Ets domain, etc (Latchman [361, Pabo [481).

While many transcription factors can bind to diverse genic and intergenic
genomic locations, when they bind to upstream of the transcription start
site (TSS) of a gene they can be associated directly with changes in the
genes expression levels (i.e., the transcription level of mRNA). TFs usually
cooperate with each other collectively in regulating the gene expression in
eukaryotic cell (Berman et al. [6], Davidson [131).

Within a TF, there are domains effecting activation or repression on
recruitment of basal transcriptional complex, so that the TF can promote
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1.1. Transcription factors

(as an activator) or block (as a repressor) a gene’s transcription. The ac
tivation domains function by either stimulating the assembly of the basal
transcriptional complex or stimulating its activity once it has assembled.
The basal transcriptional complex is composed of RNA polymerase II and
various transcription factors, such as TFIIB and TFIID (Roeder [551). The
repression domains function either by interfering with the action of a posi
tively acting factor (indirect repression) or by interacting directly with the
basal transcriptional complex (direct repression) (Latchman D.S. [37]).

1.1.3 DNA motif for transcription factor

DNA binding sites are distinctive short DNA sequences which can be rec
ognized and bound by specific TFs. The pattern of a set of recurring short
DNA sequences of one binding site is called “motif’ (D’haeseleer [491)

There is variability in sites for a motif, and a motif for a specific TF is
usually well conserved in most of the positions, but not in all the positions.
For example, it is known that in yeast, although the consensus binding site
for the TATA binding protein (TBP) is TATAAAA, a wide variety of A/T
rich sequences, such as TATATAT or TATATAA, can function as TATA
boxes and can interact with TBP (Chen et al. [11], Singer et al. [63]).
Moreover, different binding sites for a TF have different affinity in binding
with the TF (Bulyk et al. [10]).

For that reason, it is not appropriate to simply represent a motif with a
fixed DNA sequence. Instead, a motif is usually represented with position
weight matrix (PWM), where each column represent a position in the motif,
and each entry of the matrix is the occurrence rate of A, C, G and T at a
specific position. A motif can also be visualized in a way which is easy
for human to recognize a motif’s component and conservation level at each
position (Crooks et al [12], Gorodkin et al. [22]). For example, WebLogo
is a popular software for motif visualization (Crooks et al [12]). We will
further discuss the PWM and WebLogo representation in the method section
“Visualization of de novo predicted motif’.

1.1.4 De novo motif discovery

Summary of de novo motif discovery from sequences

The basic idea of de novo motif discovery is to identify one or more sets
of well conserved, and over-represented subsequences, from a set of DNA
sequences, and at the same time identify the motif corresponding to these
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1.1. Transcription factors

subsequences. “De novo” means, the motif discovery is done with no prior
knowledge of the composition of the motif.

De novo motif discovery is often carried out as an important step for
studying gene regulation: for instance, it can discover over-represented mo
tifs that are common to promoters of genes with similar expression patterns.
After discovering the motifs, we can tell which TFs have binding sites like
the de novo discovered motifs, and predict these TFs as regulators of the
genes under study. Our prediction can be used as “prior knowledge” for wet
lab experiments carried out to identify the true TFs that regulate the genes.

Overview of software available for de novo motif discovery

Many software are freely available for de novo motif discovery, for example,
A1ineACE (Roth et al. [56]), Gibbs Motif Sampler (Thompson et al. [69])
and MEME (Bailey et al. [3, 4]) are some of the well known software, and
GADEM (Li [39]) is a recently developed software we used for this thesis
work. EM (expectation maximization) and Gibbs sampling are the two
major algorithms used by de novo motif discovery tools, the former learns
the latent variable and PWM through EM updating (applied by GADEM,
MEME, etc.), the latter learns PWM through Gibbs sampling (applied by
AlineACE, Gibbs Motif Sampler, etc.).

Details about GADEM in de novo motif prediction

GADEM can be viewed as an extension of the well known motif discov
ery tool MEME. We chose to use it because it is fast, user friendly and
gives competitive prediction for motifs. The main step GADEM takes in
predicting motif is summarized in the following:

• GADEM runs in the unit of cycle and each cycle contains several gener
ations. Within each cycle, GADEM does the following things:

• finds out top-ranked k-mers from the sequences;

• initializes the PWMs using spaced dyad, which is two over-represented
k-mers separated by spacers;

• uses EM iteration to update the PWMs and latent variable, stop iter
ation when the likelihood converges or the number of iteration reaches
user defined number;

3



L2. ChIP-Seq experiment

• after EM iteration, transforms the PWM so that each entry of it is
integer, and use the integerized PWM to scan for binding sites in the
sequences; and declare a subsequence as binding site when the p-value
of its score with respect to the PWM is below a threshold;

• aligns the binding sites declared to have the same motif; calculates
entropy score and corresponding statistical significance for the align
ment, and us it as the fitness score for the spaced dyad from which
the PWM is initialized;

• mutate or crossover all the spaced dyads except for the best performing
ones, and train PWM based on them again;

• repeats the previous steps until the maximal number of generations is
reached;

• outputs motifs and masks them in the original data.

1.1.5 Database for motifs of known TFs

There are several databases containing motifs of known TFs, such as TRANS
FAC (Wingender et al. [71]) database, JASPAR (Sandelin et al. [58])
database, et al. And, in order to compare the similarity between de novo
discovered motifs and the motifs of known TFs, we can use tool such as
STAMP (Mahony [43]), which provides an interface for uploading PWM
of de novo motif and searching for the motif in the database which is most
similar to the de novo motif.

1.2 ChIP-Seq experiment

A ChIP-Seq experiment is initially designed to identify the in vivo binding
sites of a TF on the whole genome scale, which is a key step in understanding
gene regulation. ChIP-Seq is also used to identify RNA Polymerase binding
sites and histone modification sites on the whole genome scale.

1.2.1 The procedure of ChIP-Seq experiment

Here, we summarize how ChIP-Seq is used to find out binding sites of a TF.
ChIP-Seq is an combination of chromatin immunoprecipitation (ChIP)

and next-generation sequencing. In the ChIP part of the process, TFs are
cross-linked to the DNA in the cell, then the DNA is sheared into small
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1.2. ChIP-Seq experiment

fragments by sonication. After that, an antibody which binds specifically to
the TF to he studied will be added to the solution of DNA fragments, so that
the DNA fragments bound by the TF to be studied are precipitated. In the
sequencing part of the process, DNA fragments and the TFs are reverse
corss linked, and DNA fragments are sent to next generation sequencing
machine. Short reads at one or both end(s) of DNA fragments are sequenced
and the reads are then mapped onto genomic locations by a read-alignment
algorithm (Mardis [44]). A ChIP-Seq experiment typically generates tens
of millions of short reads during each instrument run.

In the ChIP-Seq experiment, the DNA fragments bound by transcription
factor are the most frequently sequenced fragments, and short reads obtained
for them form peaks at TF binding sites when mapped back to the genome.
Given the short reads being mapped back to genome, TF binding sites are
predicted at regions where the short reads are enriched.

We also know that ChIP-Seq characterizes the DNA fragments in the
immunoprecipitated ‘reagent’, and this will contain not just protein-bound
DNA fragments but also other (‘background’ or ‘noise’) fragments.

Figure 1.1 illustrates the main steps of ChIP-Seq and Figure 1.2 shows
a schematic diagram of short reads mapped back to the genome, at a region
with two TF binding sites.

1.2.2 ChIP-Seq’s advantage over ChIP-chip

The main difference between ChIP-Seq and ChIP-chip is that the former se
quences the protein-bound DNA fragments, the latter hybridizes the protein-
bound DNA fragments to a tiling microarray.

The main advantages of ChIP-Seq over ChIP-chip includes higher spacial
resolution and less input material requirement as well as independence from
design and manufacture of tiled microarray (Mardis [44], Robertson et al.
[53]).

1.2.3 Identifying TF binding site through analyzing
ChIP-Seq data

Summary of identifying TFBS through analyzing ChIP-Seq data

Through analyzing ChIP-Seq data, we can detect genomic regions that are
enriched for immuno-precipitated DNA fragments, and predict them as TF
binding sites. We some times call enrichment profiles ‘peaks’ because the
accumulated short reads look like peaks.
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Figure 1.1: Main steps of ChIP-Seq experiment: chromatin immunoprecip
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1.2. ChIP-Seq experiment

The common way to detect binding sites in ChIP-Seq data is to first
scan the genome with a sliding window and select regions having more read
counts than a user defined cutoff. The binding sites will then be predicted
for those regions.

Distinguishing and removing false positive enriched regions is also nec
essary. ChIP-Seq data usually comes with control data. With control data,
the signal in the ChIP-Seq sample and the signal in corresponding region
of a control sample can be compared. A binding site will be called if the
signal coming from ChIP-Seq is significantly stronger than that coming from
control sample at the same region, and a local p-value will be calculated.
Most of the peak-finding software authors claim that performance will be
better when a control sample is analyzed with the ChIP-Seq sample, and if
there is no control sample to use, background will be simulated.

Overview of software for analyzing ChIP-Seq data

There are several software available for analysing the ChIP-Seq data and
predicting TF binding sites, such as CisGenome (Ji et al. [27]), FindPeaks
(Fejes et al.. [16]), MACS (Zhang et al. [74]), PICS(Zhang et al. [73]) and
QuEST (Valouev et al. [70]). All are freely available.

The major difference between these software is in the way they model the
ChIP-Seq reads: CisGenome model the merged forward and reverse reads
with either a Poisson distribution or a negative binomial distribution (they
suggest that the negative binomial model performs better); FindPeaks does
not assume any distribution for the reads; MACS uses Poisson distribution
to model the merged forward and reverse reads; PICS uses t-distributions
to jointly model the forward and reverse reads, where each pair of close-
by peaks are linked with a parameter telling the distance between them;
QuEST is based on kernel density estimates of the forward and reverse
reads separately.

Since a short read can come from either end of a sonicated DNA frag
ment, the short reads around a true binding site show a bimodal enrichment
pattern. The peak-finding software merge the two peaks formed by for
ward/reverse short reads into one peak in either arbitrary or more statistical
way, and the binding site is predicted as the summit of merged peak.

Besides the difference in modeling short reads, the peak-finders are also
different in shifting the reads toward the real binding site and detecting
peak summits, using control data and calculating FDR. We summarize and
compare the features of them all in Table 1.1.
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1.2. ChIP-Seq experiment

Table 1.1: Summary of ChIP-Seq data analysis software

Software Density profile for Peak shift method Use of control data Global FDR control
short reads

CisGenom negative binomial dis- shift size is half of the use all the control data direct FDR control
tribution or Poisson dis- medium distance be- as background if avail
tribution tween paired peaks able

FindPeaks no specific density pro- Not available use all the control data no direct FDR control
file as background if avail

able
MACS Poisson distribution shift size is half of use all the control data direct FDR control

the average distance be- as background if avail
tween the high qual- able
ity forward and reverse
peaks

PICS t-distribution shift size for each pair use all the control data direct FDR control
of peaks is based on as background if avail-
the density model of the able
paired peaks

QuEST kernel density estimate shift size is half of half of the control used direct FDR control
the average distance be- as background, half of
tween forward peaks the control used as
and reverse peaks pseudo ChIP-Seq data

Details about MACS in analyzing ChIP-Seq data

In our analysis, we chose to use MACS, because it is fast and easy to use.
The main steps of MACS in analyzing ChIP-Seq data is summarized in the
following:

• slides a window across the genome to identify regions where number
of reads from ChIP-Seq sample is mfold more than number of reads
from the control sample;

• randomly selects top 1,000 high quality peaks, and calculates the av
erage distance between the forward peaks and reverse peaks (d);

• shifts all reads d/2 toward 3’;

8



1.3. ChIP-Seq data of STATI, Po12 and Mel

• models the reads in the whole control data, and get a uniform param
eter of Poisson distribution for control data, ABG;

• for each ChIP-Seq region selected by sliding window, calculates Aiocai

based on )‘BG and the distribution of reads in the corresponding control
sample, calculate the p-value of the region with respect to ?‘local;

• call a binding site in the region if p-value of the region is less than
default cutoff (i.e., lOs);

• for a region with called binding site, extend every read position d bases
from its center, and use the location with the highest fragment pileup
as the precise binding site;

• uses the same p-value cutoff on ChIP-Seq data and control data, and
calculates FDR for the regions as Number of control peaks / Number
of ChIP peaks.

1.2.4 Current methods of comparing the accuracy of
software for analyzing ChIP-Seq data

On one hand, software for analyzing ChIP-Seq data is still new, and is
continuing to evolve. On the other hand, little is known about the true
TF binding sites, and the research community lacks a convincing way of
evaluating the performance of peak detection software.

One empirical method for comparing different peak detection software
is the false discovery rate (FDR), which is calculated as number of control
peaks / number of ChIPSeq peaks detected at the same threshold.

Another method for comparison is checking the motif occurrence within
certain distance of of the peak center detected, the higher occurrence implies
the better performance of the peak detection software (Zhang et al. [74]).

1.3 ChIP-Seq data of STAT1, Po12 and Mel

ChIP-Seq can be used to identify RNA Polymerase binding sites, histone
modification sites as well as TF binding sites on the whole genome scale.
In the thesis, we analyzed the ChIP-Seq data for STAT1 (a transcription
factor), RNA polymerase II and histone monomethylation.
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1.3. ChIP-Seq data of STATI, Po12 and Mel

1.3.1 STAT1

Signal transducer and activator of transcription 1 (STAT1) is a well studied
transcription factor which is involved in IFN-dependent and growth factor-
dependent signaling (Ramana [52]). One of the pathways STAT 1 partic
ipate in is IFN--y - Janus tyrosine kinase (JAK) - STAT1: Under normal
conditions, STAT1 binds to the IFN-7 receptor, which locates on the cy
toplasm. When cell gets stimulated by IFN-7, the conformation of IFN-’y
receptor changes, which causes the phosphorylation of JAK1 and JAK2, and
later the phosphorylation of STAT1 (Schroder et al. [59]).

Most of the time, the phosphorylated STAT 1 form homodimer and translo
cate from cytoplasm into the nucleus. The homodimer activates or represses
transcription primarily by binding to IFN-gamma activation site (GAS) ele
ments and it regulates the gene expression through collaboration with other
TFs. Also, STAT1 can form heterodimer (STAT1 with STAT2) and bind
to interferon-stimulated response elements (ISREs) with IRF-9 (Schroder et
al. [59]).

A ChIP-Seq experiment indicated that in the IFN--y stimulated cell, the
5TAT1 bound sites are about fourfold more than in the unstimulated cell
(Robertson et al. [53]).

1.3.2 RNA Polymerase II

RNA Polymerase II (Po12) is a protein of 515k Daltons. It is able to bind to
the TATA region of the gene, unwind DNA, synthesize RNA according to
the DNA when sliding through the DNA, and rewind DNA (Brooker [9]).
Po12 alone is not capable of recognizing the TATA region. To recognize
the promoter and initialize transcription, Pol2 works with general transcrip
tion factors, such as TFIIB and TFIID, and together, they form the basal
transcription complex (Kornberg [33]).

Pol2 not only accumulates at the actively transcribed gene region, but
also accumulates at inactive genes. For example, /3-globin gene is actively
transcribed in immature cell, while the transcription can not be detected in
the mature cell. Gariglio et al. found that Po12 are evenly distributed along
the ,8-globin gene in immature cell, while Po12 accumulates at the promoter
region of /3-globin gene in the mature cell (Gariglio [21]).

It was reported that Po12 can also bind to distant control elements, such
as enhancers, and eventually associate with co-activators and general tran
scription factors. For example, using an in vitro reconstructed nucleosomal
PSA enhancer, Louie et al. showed that Po12 can be recruited to the en-
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1.3. ChIP-Seq data of STAT1, Po12 and Mel

hancer independent of the promoter (Louie et al. [40]). In a paper by
Blackwood et al., the mechanism that Po12 or TFs recruited at a distant
enhancer acting on the promoter by DNA looping or tracking along the
chromatin was discussed (Blackwood et al. [7]).

Po12 also binds to intergenic regions. For example, a ChIP-chip exper
iment on stationary phase (SF) yeast and mid-log (ML) yeast showed that
Po12 in SP is more predominantly located on inter gene regions (IGRs),
whereas Po12 in ML is more predominantly located on gene coding regions
(GCRs); also, Po12 is found at some GCRs in SP yeast, which facilitates the
rapid transcriptional engagement when the SP exits (Radonjic et al. [51]).

1.3.3 Mel

Nucleosomes are the fundamental structures of chromatin. The nucleosome
core particle is approximately 146 base pairs of DNA wrapping around a
histone octamer, which is composed of two copies of the core histones: H2A,
H2B, H3 and H4. The histone octamer and DNA is stabilized by the linker
histone Hi (Luger et al. [42]).

Eukaryotic gene transcription is accompanied by acetylation and methy
lation of nucleosomes near promoters and enhancers. For example, Heintz
man et al. carried out a ChIP-chip experiment on ENCODE regions, reveal
ing that the TSS of active promoters are marked by both monomethylation
and trimethylation of Lys4 of histone H3 (Mel, Me3), whereas enhancers
are marked by Mel, not Me3 (Heintzman et al. [25]); a recent analysis
of Mel, Me3, TF STAT1 in HeLa cell, and TF FOXA2 in mouse liver cell
showed that Mel, not Me3, is the dominant modification for STAT1 sites
and FOXA2 sites far away from the TSS (Robertson et al. [54]). Result
from these two experiments also indicated that there were bimodal distri
bution of histone modification centered around the Po12 binding sites or the
TF binding sites, e.g., for the regions centered around the Pol2 binding sites
or the TF binding sites, the modification signals are always detected about
200-l,000bp away from each other. In our analysis, we focused on the Mel
flanked regions, which are the regions between two Mel sites located about
200-l,000bp from each other.
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1.4. GO analysis of genes potentially regulated by a pair of TFs

1.4 GO analysis of genes potentially regulated by
a pair of TFs

1.4.1 The GO project

The Gene Ontology (GO) project provides an ontology of defined terms
representing gene product properties. Three structured vocabularies (on
tologies) have been developed in a species-independent manner, and they
describe gene products in terms of their associated biological processes, cel
lular components and molecular functions separately (Ashburner et al. [1]).

The structure of GO is directed acyclic graph (DAG). In GO, each an
notation is a node in the DAG, and an annotation may have more than one
parent and have more than one child. The more we know about a gene
product, the deeper its annotation lies in the DAG.

1.4.2 Finding out the enriched GO terms (biological
process) for genes potentially regulated by a pair of
TFs

By checking whether there is binding site for a specific TF in the promoter
region of a gene, we can predict whether the gene is potentially regulated
by that TF.

We know that in eukaryotic cell, the regulation of gene is typically
achieved by several TFs which bind onto its promoter region simultaniously.
Therefore, a gene is potentially regulated by one or more TFs if there is
binding site(s) for the TF(s) in its promoter region.

For a group of genes which are potentially regulated by one or more
TFs, we can find out whether there are GO terms significantly enriched
in these genes, i.e., whether the genes potentially regulated by the TF(s)
code proteins participating in the same biological processes more often than
randomly selected genes. The finding of enriched GO terms can give support
that the genes studied are really regulated by the same TF (s).

Several software packages are available to do this, such as GOrilla (Eden
et al. [15]) and Ontologizer (Bauer et al. [5]).

The basic idea for finding out enriched GO term in n target genes is: 1)
given n genes, within which b genes have a specific GO term; 2) given a set
of N genes as background, which has B genes with that specific GO term; 3)
assume that the n target genes are randomly sampled from these N genes,
and calculate the probability that at least b out of n genes have that specific
GO term.
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Using hypergeometric distribution for solving the problem is a popular
solution (Bluthgen et al. [8]), which is illustrated in the formula below:

min(n,B) 1B’1N—B’

p(x >= b) = (1.1)
x=b (m)

For a specific GO term, if p(x >= b) is smaller than the given significance
level in the target genes, it is declared to be enriched in the target genes.

1.5 Overall goals and significance

1.5.1 What we expect to know by analyzing the spacial
relationship between TSS, STAT1, Po12 and Mel

TF binding, Po12 binding and Mel flanked regions are all related to gene
transcription: the binding of a TF to the promoter region can regulate
the corresponding gene’s transcription by either stimulating / repressing
the assembly of the basal transcriptional complex or stimulate / repress its
activity once it has assembled; Po12 is a must for the protein coding gene
transcription, it slides along the DNA when synthesizing RNA from DNA;
the Mel flanked region is found in the promoter and enhancer of actively
transcribed genes (Heintzman et al. [25], Robertson et al. [54]).

The transcription start site (TSS) is the site within a gene where the
transcription of DNA into RNA begins. Immediately upstream to TSS,
there is gene promoter region, where the transcription factors and basal
transcriptional complex bind to (Kutach et al. [35], Ohier et al. [47]).

As far as we know, there is no paper talking about how the TF binding
sites, Po12 binding sites and Mel flanked regions are located with respect
to the TSS (where the transcription begins) in the human genome. Here we
checked, whether they all tend to occur in the upstream of TSS instead of
in the downstream of TSS, and whether they are all located very close to
the TSS.

We are also interested in how the locations of TF binding sites, Po12
binding sites and Mel flanked regions are related with each other in the
genome. Through studying the ChIP-Seq data sets for STAT1, Po12 and Mel
together, we can check the proportion of locations of STAT1 binding sites,
Po12 binding sites and Mel flanked regions intersecting with each other, i.e.,
to which extent, these three factors are related with each other. Moreover,
we will put STAT1 binding sites into different categories according to their
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spacial relationship with Po12 and Mel flanked regions, and we will check
whether the motif occurrence rate is different in different categories.

1.5.2 Predicting the TFs that may collaborate with STAT1
in regulating the gene transcription

We know that in eukaryotes, the TFs always collaborate with each other in
regulating the gene transcription. Here, we want to find out which TFs may
collaborate with STAT 1 in regulating the gene transcription through de novo
motif discovery for sequences around STAT1 binding sites. We hope that
our prediction will give a direction to the potential ChIP-Seq experiment for
other TFs in the future, so that the ChIP-Seq experiment is more oriented
and money can be saved for the experiment of more interest.

We will verify our prediction through the literature review and the GO
analysis of the genes potentially regulated by STAT1 and the predicted TFs.

1.5.3 Relating microarray data with ChIP-Seq data

Under normal conditions, the amount of various proteins in the cell is in
an equilibrium, and together, the proteins make the cell function normally.
When a cell gets stimulated (e.g. chemical treatment, temperature change,
exposure to X-ray), the equilibrium inside it no longer exists: the mRNA
level of certain genes will change, which leads to the change in amount of
corresponding proteins. Microarray analysis is a technique for monitoring
mRNA level on a genomic scale.

We know that the differential expression is caused by the binding of
transcription factor in promoter region. Therefore, we want to check whether
the STAT1 binding is related with genes’ differential expression after IFN
gamma stimulation, i.e., whether it occurs more often in the promoters of
genes whose expression level change after IFN-gamma stimulation than in
the promoters of all the genes.
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Chapter 2

Methods

2.1 ChIP-Seq data set

2.1.1 STAT1, Po12 ChIP-Seq data

The STAT1 and Po12 ChIP-Seq data with controls were published by Ro
zowsky et al.: STAT1 ChIP-Seq was done for the whole genome of IFN
gamma stimulated HeLa cell, while Pol2 ChIP-Seq was done for whole
genome of unstimulated HeLa cell (Rozowsky et al. [57]). The data set
was downloaded from:
http://www.gersteinlab.org/proj/PeakSeq/

2.1.2 Predicted Mel binding sites from ChIP-Seq data

The Mel data set we used was generated by Robertson et al., who carried
out a genom-wide ChIP-Seq for Mel in IFN-gamma stimulated HeLa cell
(Robertson et al. [541). Their Mel ChIP-Seq data did not come with
control. MACS method claims to have better performance when control
data is provided. For that reason, we used the Mel binding sites predicted
by the data generator, which can be downloaded from the following website:
http: //www.bcgsc.ca/downloads/histone/human/HeLa/H3K4mel /stimulated/

2.2 De novo motif discovery for sequences
around STAT1 binding sites

2.2.1 Obtaining DNA sequences around high confidence
STAT1 binding sites

We selected the top 10,000 STAT1 binding sites for analysis, that’s because
we wan to focus on these high confidence binding sites, also, we want to save
computation time.

For the selected STAT1 binding sites, we obtained 4Olbp DNA sequences
around each of them (i.e., 200bp upstream and 200bp downstream). That
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2.2. De novo motif discovery for sequences around STAT1 binding sites

is, we composed a bed file containing chromosome, start location and end
location for each binding site, then load the bed file to UCSC database and
obtained the corresponding DNA sequences (Kent et al. [30]).

2.2.2 Handling the repeating regions

Repeats are typically masked out for ChIP-chip experiment simply because
they occur too often in the genome, and one could never tell where within
the repeat region is being bound by a TF. This was standard Affymetrix
design at an earlier time, and even now on tiled arrays. Even with sequencing
approaches, most people do not deal with repeats for the same reason. When
obtaining the DNA sequences, we also tend to avoid the repeats.

When obtaining sequences from UCSC Genome Browser, we let the se
quence which overlaps with simple tandem repeats in more than 50% of
its regions be filtered out. By doing this, we obtained 9,992 4Olbp STAT1
sequences for the top 10,000 STAT1 binding sites.

For the 9,992 sequences obtained, we further masked out the simple tan
dem repeats within them using DecoyMasker, which is one of the packages
provided by CREAD project (Smith et al. [62]). The settings we used for
Decoymasker are in the appendix.

2.2.3 De novo motif discovery with GADEM

Reason of choosing GADEM for de novo motif discovery

GADEM can be viewed as an extension of MEME, and the major difference
between them .is the way they initialize the starting PWM: MEME uses
all the subsequences as potential starting PWM, and after running EM for
one iteration, the subsequence giving largest likelihood is chosen as starting
PWM; GADEM initializes the PWM using spaced dyad, which is two over
represented k-mers separated by spacers, and that is a more efficient way
for initialization.

The large amount of sequences we need to handle is the main reason
for choosing GADEM: a comparison of GADEM and several well known
methods, such as GAME, MEME and Weeder, showed that GADEM can
detect motifs much faster than the other methods. What is more, in a
simulation study, the motifs GADEM predicted was at competitive accuracy
(Li [39]).
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Parameter setting in GADEM

The settings are in the appendix.
Here are some important parameter settings: 1) We set the parameter

minN to 200; this restriction let the binding site corresponding to each
predicted motif occur at least 200 times in the sequences (which is 5% of
the total number of STAT1 sequences). 2) We set p-value for declaring a
subsequence as motif to 0.0002. The way GADEM calculates p-value is: it
transforms PWM into an integer score matrix, the exact score distribution
is then determined for a fixed-length subsequence (i.e. each possible score
corresponding to a fixed-length subsequence can be calculated given the
score matrix), as discussed by Staden (Staden et al. [64]). With the score
distribution, the p-value of a specific sequence can be easily obtained.

We noticed that GADEM purposely allows site overlapping to avoid a
site being assigned to a unique motif, and that leads to overlapping issue
where two motifs are assigned to the same location. In order to keep the
proportion of two motifs’ overlapping locations in a reasonable range, we
tuned th parameter SIMILARITYALPHA in defines.h from 0.35 to 0.40.
After getting de novo predicted motifs, we checked the overlapping of pre
dicted binding sites between each pair of motifs. We found that overlapping
exits, but there were less than 30% of overlapping between the sites of any
two motifs. We did not combine the overlapping binding sites, as the over
lapping may be of biological importance, instead of being the “useless side
product”. This will be further discussed in the result part.

2.2.4 Visualization of de novo predicted motifs

De novo discovered motifs in PWM form

GADEM represent a de novo discovered motif with position weight matrix
(PWM). In a PWM, each column represent a position in the motif, and each
entry of the matrix is the occurrence rate of A, C, G and T at a specific
position.

For example, the following matrix is a PWM of STAT1 GAS motif.
The matrix shows that the motif consists of 11 nucleotides. It also shows
that 52% of the binding sites declared to have this motif have nucleotide
T in the first position, and 48% of them have other nucleotides in the first
position; more than 96% of the binding sites declared to have this motif
have nucleotide T in the second position; more than 94% of the the binding
sites declared to have this motif have nucleotide T in the third position; and
so on. We can tell that in this motif, the second and the third positions are
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2.2. De novo motif discovery for sequences around STATI binding sites

more conserved than the first position, because nucleotide T occur most of
the time at second and third position.

> STATLTTTCyrGGAAA
A 0.064 0.009 0.011 0.081 0.048 0.441 0.019 0.010 0.966 0.971 0.501
C 0.208 0.019 0.013 0.874 0.593 0.012 0.002 0.004 0.015 0.008 0.045
G 0.205 0.006 0.027 0.014 0.009 0.352 0.970 0.973 0.011 0.013 0.227
T 0.523 0.966 0.949 0.032 0.350 0.195 0.009 0.014 0.007 0.009 0.226

Using WebLogo to visualize de novo predicted motif

PWM ot a motif can be visualized in a way that is easier for human to rec
ognize it and tell the sequence component and conservation at each position
within it.

For example, with WebLogo application (Crooks et al [12]), a motif is
represented with a series of stacks of nucleotides: the overall height of one
stack indicates the motif conservation at the corresponding position, which
is the difference between maximum possible entropy and the entropy of the
observed symbol distribution.

Entropy of a discrete variable X is calculated in the following way:

H(X) = E(I(X)) (2.1)

Where 1(X) is the information content of X: I(x) = — log2p(Xj).
For a position within a DNA motif, the maximum possible entropy is

reached when the occurrence rate of each one of the four nucleotides equals
to

(—log2)=2 (2.2)

The entropy of the observed symbol distribution for a position can be
calculated as:

p(— log2p) (2.3)
4

Here, p is the probability that a position have nucleotide n. And =

1.
In the WebLogo, the height of a position is calculated as:

(— log2 ) — p,(— log2p) = 2— p,(— log2p) (2.4)
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STkTL

Figure 2.1: WebLogo representation of STAT1

Therefore, in the WebLogo representation, the maximum height of a
position is 2 bits when probability of observing a specific type of nucleotide
in that position is 1, and probability of observing the other three type of
nucleotide in that position is 0; and the minimum height of a position is 0 bit
when p=O.25 for each type of possible nucleotide observed in that position.
The higher a stack, the more conserved the motif is in the corresponding
position of that stack; and the height of symbols within the stack indicates
the relative frequency of each nucleic acid at that position. Figure 2.1 is the
WebLogo visualization of STAT1 GAS motif corresponding to the PWM
we showed previous text. We can tell from the logo that the GAS motif is
composed of 11 nucleotides, it is well conserved at position 2, 3, 4, 7, 8, 9
and 10.

2.3 Obtaining gene information data set

We obtained the gene information data set from UCSC website. UCSC
known gene is for protein coding genes and each know gene is substantiated
by at least a transcript record (either a GenBank mRNA or a NCBI RefSeq)
and a UniProt protein record (Hsu et al. [26], Kent et al. [30]).

We chose to use UCSC known gene information for our analysis because:
1) it has larger coverage of human genome compared with other gene infor
mation, such as RefSeq from NCBI, Ensembl Genes from EMBL-EBI; 2)
The genes are substantiated by both transcript record and protein record,
which made the information reliable. Prom UCSC website, we downloaded
two tables, knownGene.txt and kgXref.txt, for Human genomel8:
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http://hgdownload.cse.ucsc.edu/goldenPath/hg18/databasei
The most useful information is: 1) a gene’s TSS is in the 4th column of

knownGene.txt (if it is coded on forward strand) or in the 5th column of
knownGene.txt (if it is coded on reverse strand). 2) a gene’s gene symbol
is in the 5th column of table kgXref.txt. 3) knownGene.txt and kgXref.txt
are related with each other by the gene name column.

For some genes, their chromosome names are followed by _random or
_hap. ‘random’ is for unassembled chromosome, and ‘hap’ is for haplotype
chromosome. We did not use those genes in the analysis. Also, many genes
have the same TSS, we did not use duplicated promoter regions in the anal
ysis.

2.4 Relating STAT1 binding with DE genes

2.4.1 Genes differentially expressed in IFN-gamma
stimulated HeLa cell

In the work of Hartman et al., 63 genes that show differential expression
(DE) after the IFN-gamma stimulation were identified on Chromosome 22
of HeLa cell . We used the DE genes they reported (Hartman et al. [241).

2.4.2 Genes differentially expressed in other three types of
IFN-gamma stimulated human cells

Microarray data sets for different types of human cells
stimulated by IFN-gamma

We searched for IFN-gamma stimulated human cell time series microarray
data from GEO web site. We got microarray data set for other three types
of human cells, which was carried out for all the known human genes. The
name of data sets are listed below:
microarray dataset 1: Anti-IFN antibody 16 array set (Peripheral Blood
Mononuclear Cell)
microarray dataset 2: Interferon gamma effect on keratinocytes: time course
(skin cell)
microarray dataset 3: IFN-gamma-inducible gene expression in Toxoplasma
infected human fibroblasts (fibroblast cell)

We decided to get differentially expressed DE genes ourselves because
we could not get the txt format file of the DE genes reported in the papers.
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Also, when selecting the DE genes ourselves, we applied same FDR criteria
for the three data sets, which made the results consistent and comparable.

Handling the missing data

We used R package EMV to handle the missing data, which used k-nearest
neighbor method (we set the nearest neighbor as 5). EMV can be down
loaded from CRAN project webpage:
http://cran.r_project.org/src/contrib/Archive/EMVi

Microarrayl and microarray3 data sets are cDNA microarray experi
ments, and they both have experiments at 4 time points. Microarrayl has
one experiment in each time point, while microarray3 has two replicated
experiments at each time point. For these two data sets, we selected the
genes whose expression value is available in 3 out of 4 (or 6 out of 8) ex
periments. We then used knn method to fix the missing values, setting the
nearest neighbour as 5.

Microarray2 data set is from Affymetrix platform, which is carried out
in 4 time points after IFN-gamma stimulation. At each time point, the
mRNA level of stimulated cell and control cell was detected with separate
arrays. Totally, there are 8 arrays. We selected the genes who has at least
6 expression value in the 8 arrays (i.e., genes with ABSCALL as Present).
We used the microarray data as it was, and did not use KNN to fix the value
whose ABSCALL is Absent or Marginal.

Get the differentially expressed genes

For each microarray dataset, we used an R package, EBarrays, to detect the
differentially expressed genes, and controlled the FDR at 0.05. Here, a DE
gene is a gene having mRNA level variation in at least one time point out
of the four time points.

2.4.3 Checking STAT1 binding site in promoter region of
DE genes

We used the files knownGene.txt to relate the location of STAT1 binding
sites and promoter of DE genes. As the TSS and the direction of gene
coding is known, we obtained -4,000’-’+2,000bp region of each TSS as the
promoter region. For each promoter region, we checked whether there is
STAT1 binding site in it.
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2.5 Multiple test for proportions

We have several sets of samples, and for each sample, we know the sample
size and proportion of the sample with a specific character. We use multiple
test for proportion to decide whether there is significant difference between
proportions from each pair of samples.

2.5.1 Testing proportion of two samples

Suppose that we have two sets of samples, X and Y, and we know that the
sample sizes are n and fly, each x and y either has a specific character or
does not have it.

We know that j = where p is proportion of samples in X having
the specific character. Our sample size and the number of sample with/
without specific character is large enough (i.e., number of STAT1 sequences
with/ without motiLx is always greater than 50). Therefore according to
central limit theorem, approaches normal distribution with mean equaling
to p and variance equaling to We can make the same inference
for 15y• Therefore, we can test whether p is significantly different from p9
with z test, as described in the book by Simonoff (Simonoff [61]).

2.5.2 Multiple test with Bonferroni adjustment

As we have several samples and need to do test for each pair of samples
here, we adjusted the p-values for multiple testing using a Bonferonni type
control (Simes [60]).

Another thing to mention is that the pooled estimate of the common
proportion () is used for every pair-wise hypothesis test: j3 =

where g is total number of samples we have, Cj is the number of individuals
from sample with the specific character.
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Chapter 3

Results

3.1 Analyzing ChIP-Seq data

3.1.1 Prediction of STAT1, Po12 binding sites from
ChIP-Seq data

Several software packages are available for analyzing ChIP-Seq data. Ini
tially, we wanted to use PICS to analyze the ChIP-Seq data of STAT1 and
Po12. However, at that time PICS was still under development, and it did
not give result fast enough.

We used MACS (Zhang et al. [74]) to analyze STAT1 and Po12 ChIP-
Seq data with control data. We chose to use MACS for two main reasons:
1) MACS is easy to use and gives out result in fairly short time. 2) MACS
performs better than other peak-finding software as for FDR and the motif
occurrence within 50 bp of the peak centers, as described in the paper by
Zhang et al.

The settings for MACS that we used are specified in the appendix.
Table 3.1 shows the number of ChIP-Seq reads, the number of control

reads and the predicted binding sites for STAT1 binding sites and Po12
binding sites.

In order to focus our analysis on the high confidence STAT 1 binding
sites and save the computational time, we selected the top 10,000 STAT1
binding sites (according to FDR) for further analysis.

3.1.2 Prediction of Mel flanked regions of biological
interest

We obtained the predicted Mel sites for IFN-garnma stimulated HeLa cell
that was provided by Dr. Robertson (Robertson et al. [54]).

Heintzman et al. reported that there was Mel occurring in a large pro
portion of active promoters and active enhancers. Moreover, they reported
the bimodal distribution of Mel centered around the TSS (Heintzman et al.
[25]).
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Table 3.1: Summary of ChIP-Seq reads and binding site predicted for STAT1
and Po12

STAT1 Po12
Number of reads from ChIP-Seq experiment 26,731,492 29,060,928
Number of reads from control experiment 23,435,631 29,840,987
Number of binding sites predicted 24,751 33,067

Based on their finding, we checked the distance between each of two near
by Mel sites (Figure 3.1 shows the distance distribution). If the distance
between two Mel sites was in the range of 200’-’4,000bp, we recorded the
positions of these two Mel sites as the ends of a biologically meaningful Mel
flanked region. We decided that the Mel flanked region is a good indication
of active promoter or enhancer (i.e., promoter or enhancer for a gene actively
transcribed).

In total, we recorded 90,113 Mel flanked regions as biologically mean
ingful flanks from 301,493 predicted Mel binding sites, and used them in
the following analysis.

3.2 Relationship between STAT1, Po12 binding
site, Mel flanked region and TSS

STAT1, Po12 binding and Mel flanked regions are important factors related
to the transcription of genes.

We think that is interesting to know how these three factors are located
with respect to the transcription start site (TSS). For example, it is inter
esting to know whether they all tend to occur in the upstream of a TSS
instead of the downstream of a TSS, and whether they are all located very
close to the TSS.

Here, we analyzed the length of the upstream or downstream region of
TSS versus the number of non-redundant regions with at least one STAT1
binding site. We did a similar analysis for the Po12 binding sites and Mel
flanked regions.

Also, we checked the intersection of locations of these three factors in the
whole genome. The work by Robertson et al. showed that large proportion
of STAT1 binding sites were related to Mel binding sites (Robertson et al.
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Figure 3.1: Distribution of the distance between nearby Mel binding sites.
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[54]). Therefore we expected that the locations of many STAT1 binding
sites would intersect with Pol2 binding sites and Mel flanked regions.

3.2.1 Relationship between the length of region upstream
or downstream of TSS and the number of regions
having STAT1, Po12 binding site and Mel flanked
region

We used all non-redundant TSS (42645 TSS in total), and got their up or
downstream regions with lengths of 200, 400, 600, ... , 40,000bp. Then we
checked the total number of regions with at least one STAT1 binding site
detected by ChIP-Seq.

We found that the increase in the length of a region upstream or down
stream of TSS leads to the increase in the number of regions with at least
one STAT 1 binding site, which indicated that TF binding is not restricted to
the regions around the TSS, instead, TF occurs every where in the genome.
Also, at the same length, the number of upstream regions with STAT1
binding site is always greater than the number of downstream regions with
STAT1 binding site. Result is shown in Figure 3.2.

We did similar analysis for Pol2 binding sites and Mel flanked regions
(For each Mel flanked region, we used the center of the region as its loca
tion). Result is shown in Figure 3.3 and 3.4.

Figure 3.2 shows that at the same length, there are more upstream re
gions than downstream regions have STAT1 binding site. This phenomenon
can be explained by STAT1’s function: as a TF, STAT1 regulates the gene’s
expression by binding to its upstream region.

Figure 3.3 shows that at the same length, more downstream regions
than upstream regions have Pol2 binding site. As a comparison, Rozowsky
et al. had aggregated the short reads of Pol2 over regions proximal to TSS
of all consensus coding sequences human genes, and their analysis showed
that Pol2 reads from ChIP-Seq occur more often in upstream regions of
TSS than in downstream regions of TSS(Rozowsky et al. [57]). It seemed
that our finding on Po12 binding sites was not consistent with their finding
on Po12 reads. Initially, we thought this may be caused by the control
reads highly enriched in upstream of TSS. Therefore, we ran MACS on Pol2
ChIP-Seq data without giving it the control data, and then checked the Pol2
binding sites’ occurrence in the upstream or downstream regions again. In
this way, we found that when the region length is shorter than 15,000bp,
there are always more downstream regions with Pol2 binding sites than the
upstream regions with Pol2 binding sites; when the region length is greater
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Figure 3.2: Relationship between length of upstream or downstream region
of TSS and the number of regions with at least one STAT1 binding site.
On the left, the upstream or downstream regions of length between 200bp
and 1O,000bp. On the right, the upstream or downstream regions of length
between 200bp and 40,000bp.
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Figure 3.3: Relationship between length of upstream or downstream region
of TSS and the number of regions with at least one Po12 binding site. On
the left, the upstream or downstream regions of length between 200bp and
10,000bp. On the right, the upstream or downstream regions of length
between 200bp and 40,000bp.
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3.2. Relationship between STAT1, Pol2 binding site, Mel flanked region and TSS
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Figure 3.4: Relationship between length of upstream or downstream region
of TSS and the number of regions with at least one Mel flanked region.
On the left, the upstream or downstream regions of length between 200bp
and lO,000bp. On the right, the upstream or downstream regions of length
between 200bp and 40,000bp.
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3.2. Relationship between STATI, Pol2 binding site, Mel flanked region and TSS

than 15,000bp, there are always more upstream regions with Po12 binding
sites than the downstream regions with Po12 binding sites. The result is
shown in Figure 3.5.

We think a possible explanation for the inconsistency of our finding for
Po12 binding sites and Rozowsky’s finding for Pol2 reads regarding the TSS
is: There are lots of reads that are mapped back to the upstream regions
of TSS, however, for many upstream regions, the density of reads are not
intense enough to be called as peaks by MACS. In contrast, the total number
of reads that are mapped back to the downstream of TSS is not that large,
but for many downstream regions, the density of these reads are intense
enough to be called as peaks.

Furthermore, we know that Po12 synthesize RNA by binding to a gene’s
promoter region and sliding along the gene, which explains our finding well.
Another two possible explanations for why Po12 binding sites occur more
frequently in downstream region are: 1) Po12 stalling occur more often in
the downstream of TSS than in the upstream of TSS (Zeitlinger et al. [72]).
2) There are many unknown TSS (an alternative promoter) downstream of
the reported TSS where Pol2 can bind to.

Figure 3.4 shows that at the same length, there are more downstream
regions than upstream regions which have Mel flanked region. We are not
sure how to explain this phenomenon. Maybe biologists can help to explain
this phenomenon.

3.2.2 The inconsistency in the increase in number of
regions having STAT1, Po12 binding sites and Mel
flanked regions with respect to the increase in the
length of regions

In our study, the increase in the length of a region is 200bp at each interval,
while the increase in the number of regions with STAT1 binding site is not
at a consistent rate. We plotted the increase in the number of regions with
STAT1 with respect to the region length. The result is shown in Figure 3.6.
A similar analysis was done for Po12 binding sites and Mel flanked regions,
which is shown in Figure 3.7 and 3.8.

Figure 3.6 shows that, for the downstream region, as the region length
increases, the number of regions with STAT 1 also increases; when the region
length is less than 2,000bp, the increase in the number of regions with STAT1
binding site is always greater than 50 as the region length increases 200bp;
when the region length is more than 2,000bp, the increase in the number
of regions with STAT1 binding sites is always less than 50 as the region
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Figure 3.5: Relationship between length of upstream or downstream re
gion of TSS and the number of regions with at least one Po12 binding site
detected without control data. On the left, the upstream or downstream
regions of length between 200bp and 1O,000bp. On the right, the upstream
or downstream regions of length between 200bp arid 40,000bp.
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Figure 3.7: Increase of number of upstream or downstream region of TSS
with Po12 with respect to the region length; the region length increases by
200bp for each pair of neighboring points (i.e., the first data point shows
the increase in the number of regions having Po12 binding site as the region
length increases from 200bp to 400bp).
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3.2. Relationship between STATI, Po12 binding site, Mel flanked region and TSS

length increases 200bp. For the upstream region, the boundary appears at
4,000bp (in the figure, 2,000bp and 4,000bp are indicated with green line
and blue line seperately). We conclude that STAT1 binding sites are located
everywhere in the genome, and many of them are located near TSS.

Prom Figures 3.7 and 3.8, we got a similar conclusion for Po12 binding
sites and Mel flanked regions: they are located everywhere on the genome,
and they occur more often in regions close to TSS than in regions distant
from TSS.

What is more, Figure 3.8 shows that as the region length increases,
the number of upstream or downstream regions with Mel flanked regions
increases, and the rate of the increase in number of regions turns faster at
first and turns slower later. It is known that Mel occurs in enhancer regions
as well as at promoter regions. That explains why the rate turned faster at
first for the upstream region. Yet, it is hard to explain why the rate turns
faster at first for the downstream region. Maybe this phenomenon can be
explained with further investigation on Mel.

3.2.3 Intersection of locations of STAT1 binding sites, Po12
binding sites and Mel flanked regions

We checked the intersection of location of STAT1, Po12 binding sites and
Mel flanked regions.

Here we define that, a STAT1 binding site and a Po12 binding site have in
tersection if the distance between them is less than 2,500 bp; a STAT1/Po12
binding site and Mel flanked region have intersection if the STAT1/Po12
binding site locates in a 200’-l,000bp Mel flanked region; a STAT1 bind
ing site, a Po12 binding site and a Mel flanked region have intersection if
both the STAT1 and the Po12 binding site are located within a Mel flanked
region (in this case, the distance between the STAT1 binding site and the
Pol2 binding site is shorter than 1,000 bp).

A Venn diagram for the intersection of STAT1 binding sites, all Pol2
binding sites and all Mel flanked regions is shown in Figure 3.9.

We found that there are intersections for these three factors. Especially,
there are 370 Mel flanked regions which have both STAT1 and Po12 bind
ing sites located within them. We think that STAT 1 in these regions is
likely to actively regulate the gene transcription. Further analysis for these
STAT1 binding sites showed that 137 of them are located in 6,00lbp pro
moter regions (4,000bp upstream and 2,000bp downstream) of genes; as a
comparison, 2,307 of the total 9,992 STAT1 binding sites are located within
the promoter regions. We found that the proportion of the STAT1 in pro
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3.2. Relationship between STATI, Po12 binding site, Mel flanked region and TSS

STAT1 peaks, Po12 peaks and Mel flanks

Figure 3.9: Intersection of STAT1 binding sites, all Pol2 binding sites and
all Mel flanked regions. Out of the 9,992 STATibinding sites, 5,364 of them
are not in the Mel flanked regions and far from Po12 binding sites, 3,469
of them are close to Po12 binding sites, 1,529 of them are in Mel flanked
regions, and 370 of them are in Mel flanked regions and close to Po12 binding
sites.

moter region is higher for the STAT1 belonging to the 370 regions than for
all the STAT1, with p-value less than 0.05. The p-value was calculated as
described in the method section.

There are large number of STAT 1 binding sites far from Pol2 binding
site and not in Mel flanked region. Three possible reasons can explain this
phenomenon: 1) These STAT1 binding do not cause Po12 binding or Mel
flanked region, i.e., they did not change the DNA character with respect to
Po2 and Mel. 2) A lot of Pol2 binding sites and Mel binding sites have not
been detected through ChIP-Seq experiments or the analysis on ChIP-Seq
data. 3) The Po12 experiment was carried out for unstimulated HeLa cell.
It is possible that if the Pol2 binding sites are detected for the IFN-gamma
stimulated HeLa cell, the intersection of Po12 and STAT1 will be larger.
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3.2. Relationship between STATI, Po12 binding site, Mel flanked region and TSS

STATI, top 10K Po12 and top 20K Mel

Figure 3.10: Intersection of STAT1 binding sites, top 10K Po12 binding
sites and top 20K Mel flanked regions.

We then selected 10,000 high confidence Po12 binding sites according to
the FDR predicted by MACS; and got the top ‘--20,000 Mel flanked regions
for high confidence Mel binding sites which have large number of reads in
them. We checked the intersection of location of STAT1 binding sites, top
Pol2 binding sites and top Mel flanked regions again. The result is shown
in Figure 3.10.

Comparing Figure 3.9 and Figure 3.10, we found that as the number
of Pol2 binding sites selected decreased from 33,066 to 10,017, the number
of STAT1 binding sites which are close to Po12 binding site decreased from
3,469 to 1,202 (33,055/10,017 is slightly larger than 3,469/1,202); as the
number of Mel flanked regions selected decreased from 90,113 to 20,008, the
number of STAT1 binding sites which are in Mel flanked region decreased
from 1,529 to 909 (90,113/20,008 is much larger than 1,529/909).

The intersection between Pol2 and STAT 1 decreased a little slower than
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3.3. De novo motif discovery for STATI sequences

the decrease of the number of Po12 binding sites; while the intersection
between Mel and STAT1 decreased much slower than the decrease of the
number of Mel flanked regions. The Venn diagram indicates that we may
have some false positive Pol2 binding sites, and we may have more false
positive Mel flanked regions: if there is no false positive discovery in Po12 or
Mel, we should expect that as the number of P012/Mel selected decreases,
the intersection between Pol2 or Mel and STAT1 should decrease at the
same rate. Therefore, it is necessary to find out and use binding sites with
higher confidences in the future.

3.3 De novo motif discovery for STAT1 sequences

Here, we predicted which TFs may collaborate with STAT1 in regulating
the gene transcription through de novo motif discovery for sequences around
STAT1 binding sites. To do this, we utilized the information of STAT1
binding sites predicted through ChIP-Seq data, and the information of the
human genome sequence.

For 4Olbp (i.e., 200bp upstream and 200bp downstream) regions flank
ing 9,992 STAT1 binding sites, we got 13 de novo motifs predicted by GA
DEM. We will collectively refer to the de novo discovered motifs as motiLx
(x=l,2,3,...,13), and their corresponding TFs as “TFx”.

3.3.1 Frequency of the binding sites corresponding to de
novo discovered motifs occurring in the STAT1
sequences

For each de novo discovered motif, GADEM predicts the occurrence of its
corresponding binding site in the STAT1 sequences.

We checked the number of times that binding site of each motif occurring
in the 9,992 STAT1 sequences. The result is shown in Figure 3.11.

As Figure 3.11 shows, most motifs’ binding sites occur in more than 4,000
out of the 9,992 STAT1-centered sequences. It indicates that the binding
sites of de novo discovered motifs co-occur very often, and that these binding
sites may form cis-regulatory module in promoter regions of genes.

We noticed that binding site of a motif sometimes occur more than once
in a sequence. For example, binding site of STAT1 occurs in 6,678 of the
9,992 STAT1 sequences, and the binding site occur 8,940 times in total.

The proportion of the STAT1 sequences with binding sites corresponding
to the STAT1 motif (6,678 out of 9,992) is not high. There are two main
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Figure 3.11: Number of times the binding sites of de novo motifs are found
in 9,992 401-bp STAT1 sequences. We obtained the occurrence time with
or without redundant counts: a binding site may occur more than once in
a sequence. “with redundant” means that we count the exact times that a
binding site occur; “without redundant” means that we count the number
of sequences having at least one binding site of motiLx. The five de novo
predicted motifs selected for in depth analysis are highlighted in red.
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3.3. De novo motif discovery for STAT1 sequences

reasons which can explain this result. Firstly, there was noise in the pre
diction of STAT1 binding sites through analyzing ChIP-Seq data. Secondly,
the STAT1 may not bind to the DNA sequence of the detected sites directly
i.e., it may bind to Po12 or other TF which binds to the DNA sequence.

3.3.2 Visualizing the de novo discovered motifs

We used WebLogo for visualizing de novo discovered motifs and their most
similar counterpart in STAMP. We also plotted the histogram for the dis
tribution of locations of the de novo motifs in the 401-bp regions flanking
STAT1 binding sites. Results are in Table 3.2.

MotiLx and its most similar counterpart in STAMP

For each motiLx, we looked for the known motif which is most similar to
it: for a given motif, STAMP compares it with all the known motifs in
database, and gives the top ranking matches; at the same time, STAMP
provides e-value which indicates the similarity between the query motif and
the corresponding motif in database: more similar two motifs are, smaller
the e-value is.

In the first column of Table 3.2, we put motiLx’s lable. In the second
column of the table, we put each motiLx’s WebLogo on top of the WebLogo
of its corresponding STAMP motif, and put e-value at the bottom.

The distribution for the locations of binding sites of de novo
discovered motifs

We checked the distribution for the locations of each motif’s binding site in
the 4Olbp sequence around the STAT1 binding site identified: we recorded
the location of a motif in the 4Olbp STAT1 sequence if the motif is predicted
to be in that region, and we represented the distribution for the location of
a motif’s binding site in all the sequences with histogram. The histogram is
in the third column of Table 3.2.

In the histogram, the peak of the distribution indicates the region where
the motiLx occurs most frequently. A high peak in the center of the 4Olbp
region indicates that binding site corresponding to motiLx occur close to the
STAT1 binding site most of the time. The motif’s location is an important
factor for selecting motifs which are most likely to cooperate with STAT 1
in the following analysis.

40



3.3. De novo motif discovery for STATI sequences

Table 3.2: De novo motifs predicted for 4Olbp sequences
around the STAT1 binding sites.
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3.3. De novo motif discovery for STAT1 sequences

Table 3.2 — continued from the previous page
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3.3. De novo motif discovery for STAT1 sequences

Table 3.2 — continued from the previous page
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3.3. De novo motif discovery for STAT1 sequences

Table 3.2 — continued from the previous page
Motif_x predicted by GADEM logo of motif_x location distribution of motif_x
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3.3.3 Location overlapping issue of binding sites
corresponding to de novo detected motifs

We had 13 de novo motifs in total. For each pair of the motifs, we checked
the frequency of their binding site locations overlapping with each other
(here, we define two motif locations as overlapping if their centre are within
5bp in a sequence). Result is shown in Figure 3.12.

Figure 3.12 shows that the pair of motifl&motif3 and the pair of mo
tifl&motif4 have more than 1,000 overlapping locations. In the STAT1-
centered sequences, motifi occurs 8,940 times; motif3 occurs 5,772 times;
motif4 occurs 6,476 times.

As Table 3.2 shows, the PWM of motifi, motif3 and motif4 are similar to
each other to some extent. Figure 3.14 illustrates a region of Chromosome
1, where the locations of motifi, motif3 and motif4 overlaps.

We are not sure whether the overlapping locations are a side-product of
motif-discovery tool (i.e., they correspond to the same motif, but GADEM
identified them as separate motifs because of the initialization), or whether
it has a biological meaning.

It has been reported that two TFs bind to their binding sites whose
locations overlap with each other, which makes it more convenient for the
TFs to interact with each other. For example, Ganster et al. identified a
region with NF-icB and STAT1 binding sites overlapping with each other in
the -5.8Kb promoter region of inducible nitric oxide synthase gene (iNOS)
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Figure 3.12: Number of times the location of two motifs overlapping with
each other. (In total, we have 13 motifs, and 78 (13*12/2) motif pairs). The
pairs, motifl&motif3 and motifl&motif4, are highlighted in red.
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N FB

-5.8 kb AGC?TTCCCAGAACCA

STAT1

Figure 3.13: The overlapping of the STAT1 binding site and the NF-,cB
binding site in the genomic region of -5.8kb in iNOS promoter (as reported
by Ganster et al. [19]).

(Figure 3.13). They conducted a mutation experiment on iNOS promoter-
reporter plasmid, which is -7.2kb of the upstreaqm DNA of iNOS linked to
the luciferase reporter gene. They reported that mutations in both the NF
iB and STAT1 binding sites at -5.8kb completely eliminated the expression
of cytokine-induced luciferase, while mutation of either NF-,cB or STAT1
sites individually failed to inhibit the promoter activity. Also, their result
of gel shift analysis suggested that the region with NF-,cB and STAT1 motif
is bifunctional, and can be bound by both NF-,cB and STAT1 (Ganster et
al. [19]). Another example is given by Kang et al. (Kang et al. [29]), who
found that there is Egr-1 motif, and potential motifs of YY1 and SP1 in the
TGF-responsive region of Idl promoter, and the motifs of Egr-1, YY1 and
SP1 are overlapping with each other.

We believe that a genome-wide ChIP-chip or ChIP-Seq experiment on
motiLx will help to answer our question about the biological significance of
overlapping.

3.4 Selection of motif.x whose corresponding
TFs are most likely to cooperate with STAT1

By comparing the PWM with motifs of known genes, we know that motifl
is STAT1 GAS motif. It is known that STAT1 activates or represses gene
transcription primarily by binding to GAS motif as a homodimer, and it
also binds to interferon-stimulated response elements (ISRE motif). In our
de novo motif prediction, only GAS motif was obtained.

For the remaining 12 de novo discovered motiLx, we filtered out the
motifs which look like a noise, and kept motifs whose corresponding TFs are
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Figure 3.14: An example of three motifs whose predicted binding sites are
overlapping with each other.

most likely to cooperate with STAT1. In this way, we kept the number of
motifs for further inspection small, so that we can explore in more detail for
the selected motifs.

The filtering was done according to the motif’s component and location
distribution. Basically, we filtered out a motif if it has repeating nucleotides
or if it is not very conserved in most positions; Also, we want to get the
motifs which are always located very close to STAT 1. If the distribution
of a motif’s location does not have a high peak in the middle of the 4Olbp
STAT1 sequence, we decided that it does not always occur very close to
STAT1 binding site, and filtered it out.

After filtering, we obtained 5 motifs (including STAT1 GAS motif),
which are listed in Table 3.3. Note that:

- in the first column, we put the label of motiLx, the potential name(s)
of motiLx (we list names of all STAMP motifs which are similar to motiLx
with e-value less than 1e6, ordered by similarity between STAMP motif
and motiLx). Below each name, we list whether there is evidence (from the
literature or the data set) showing the co-occurrence of motiLx’s STAMP
match and STAT binding site, i.e., the cooperation of the two TFs.

- in the second column, we put the logo of de novo predicted motif on the
top, and put its corresponding STAMP match(s) beneath it (all the matches
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3.4. Selection of motiLx whose corresponding TFs are most likely to cooperate with STAT1

with e-value less than 1e6 are shown).
- in the third column, we put the distribution of locations of binding

site corresponding to motiEx, in the -2OO”.+2OObp sequence flanking the
identified STAT1 binding site.

Table 3.3: Five selected de novo motifs predicted for 4Olbp
sequences around the STAT1 binding sites.
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3.4. Selection of motiLx whose corresponding TFs are most likely to cooperate with STATJ

Table 3.3 — continued from the previous page
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Table 3.3 — continued from the previous page
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Table 3.3 — continued from the previous page
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c-value: 7.8747e-lO

3.5 Literature review for the cooperation of
STAT1 and selected motifx

3.5.1 Cooperation of STAT1 and Nanog

Sun et al. compared the expressions of human and mouse genes which are
critical in the pathways for embryonic stem cell differentiation, and they got
cross-species conserved co-expression gene clusters.

Through analyzing the promoters of the conserved co-expression genes,
they found that STAT, Nanog, and several other TFs had binding sites in
most of the promoter of co-expressed genes in all the examined pathways.
They concluded that these TFs conduct key regulatory mechanisms under
lying the evolutionary conserved co-expression (Sun et al. [65]).
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Table 3.4: High confidence HEB regions with STAT1 GAS binding site on
Chromosome 19

HEB region’s start on Chrl9 HEB region’s end on Chrl9 in a promoter region or not
1083120 1083513 in promoter of ZNF181
5938429 5939109 not in promoter region

39916349 39916987 in promoter of SBNO2
40619367 40619805 not in promoter region
45801040 45801577 not in promoter region
49403136 49403820 not in promoter region

3.5.2 Cooperation of STAT1 and HEB

Through searching GEO database, we found that there is ChIP-chip done
for HEB on human chromosome 19 (Gardini et al. [18]).

Gardini et al. predicted 1,023 HEB binding site regions on Chromosome
19 of human cell (U937) in normal condition, and the regions of binding
sites are summarized in table S9 of their paper.

Among the 9,992 STAT1 binding sites gained from ChIP-Seq experiment,
283 of them were located in Chromosome 19.

We found that 21 HEB binding site regions have at least one STAT
binding site within them.

Furthermore, we required that the HEB binding site region being used
should actually have a subsequence like HEB motif (we used Motiflocator
( Thijs et al. [68])to check whether a region has HEB motif.); we also
required STAT1 binding site used to have a subsequence like STAT1 GAS
motif in the -200+200bp region around it (GADEM result is used to judge
whether there is subsequence like STAT1 GAS motif). With that stringent
criteria, we found 6 HEB binding regions have at least one STAT1 binding
site within them, and we refer to them as high confidence intersection, which
is shown in Table 3.4. Two of the six HEB binding regions are located in
-4,000-+2,000 promoter regions.

Our findings indicate that there are binding sites of HEB and STAT1
located close to each other on Chromosome 19, and these two TFs may
cooperate in regulating the genes.

53
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3.5.3 Cooperation of STAT1 and Te12 (or TFs from the
ETS family)

Te12 is the motif the most similar to de novo predicted motif_lO. We searched
for the cooperation between STAT1 and Te12, but did not find any literature
regarding the subject.

We noticed that motif_lO is also similar to several TFs from ETS fam
ily. Therefore, we searched for the literature discussing the cooperation of
STAT1 and TFs from the ETS family.

STAT1 and Ets-1 binding site in promoter of bcl-x

Fuijo et al. carried out electrophoretic mobility shift assay with STE as probe
for the promoter region of bcl-x gene. They found that the formation of SIE
STAT1 complex was inhibited by oligonucleotide containing the GAS motif,
and they concluded that there is a GAS motif of STAT1 at -4lbp of the
bcl-x gene. Moreover, they constructed bcl-x promoter-luciferease reporter
plasmid by linking -161 lObp promoter region of human bcl-x and luciferase
gene, then conducted mutagenesis analysis. The analysis showed, mutation
of the GAS motif will result in the reduction of the promoter activity under
LIF stimulation (Fuijo et al. [17]).

The alignment of mouse and human bcl-x gene promoter region showed
that there is consensus Ets-1 binding site in -425bp -437bp of human bcl-x
promoter and Ets-1 binding site in -419bp -431bp of mouse bcl-x promoter
(Grillot et al. [23]).

STAT1 and Ets-2 binding sites in promoter of ICAM-1

Launoit et al. conducted transient tranfection assays on human ICAM-1
gene, and found that two Ets proteins, Ets-2 and ERM significantly acti
vate the transcription of ICAM-1 promoter. With electrophoresis assay and
DNAse footprinting, they identified two Ets binding sites at positions -158
and -138 from the TSS of ICAM-1 (Launoit et al. [38]).

Duff et al. showed that pervanadate treatment of human cell stimulates
the protein complex formation on pI7RE motif (located -76’-’.’-66bp of the
ICAM-1 TSS), and that the complex containes STAT1. The treatment also
induced the activation of the ICAM-1 gene (Duff et al. [14]).

3.5.4 Cooperation of STAT1 and APi

We found several literatures indicating the cooperation of STAT1 and APi.
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STAT1 and APi binding site in iNOS promoter

Ganster et al. used gel shift assay for the -5.2kb region of the human iNOS
promoter, they found that IFN-gamma or cytokin mixure induced a protein-
DNA complex; mutation of the STAT 1 site abolished the protein-DNA bind
ing. Using a supershift assay with antibody for STAT 1, they also confirmed
that STAT1 binds to the DNA at -5.2kb in the iNOS promoter (Ganster et
al. [19]).

Kristof et al reported that there are two AP-1 motifs in the -5155 -5131bp
human iNOS promoter, which is bound by heterodimer. Removal of the
two AP-1 sites decreased iNOS’s response to LPS or IFN-gama stimulation
3.5 fold. They concluded that activation of the human iNOS promoter by
cytokines (i.e., tumor necrosis factor-alpha, interleukin-lbeta, IFN-gamma)
required downstream and upstream AP-1 transcription factor binding sites
(Kristof et al. [34]).

Interestingly, there are both STAT 1 and APi binding sites in the pro
moter of iNOS in the mouse cell: Gao et al reported that iNOS gene ex
presses when the mouse macrophage cell is stimulated by IFN-gamma or
lipopolysaccharide (LPS). The binding of STAT1 to the iNOS promoter’s
GAS site is necessary for the expression of iNOS gene inducted by IFN
gamma or LPS (Gao et al. [20]). Lowenstein et al found that with minimal
promoter construct, luciferase reporter gene expressed little when the cells
were stimulated by LPS or IFN-gamma. While the expression of luciferase
reporter gene increased notably under the stimulation of LPS or IFN-gamma
when the NOS 5’ flanking region, which contains motif of APi, was placed
upstream of the gene (Lowenstein et al. [41]).

STAT1 and APi binding site in VIP promoter

Researchers found that 1 ,330bp upstream of the TSS of vasoactive intesti
nal peptide gene (VIP), there is cytokine response element (CyRE), which
contains STAT and AP-1 binding sites. Symes et al. found that in one of
the regions within the CyRE, cytokine treatment induces binding of a pro
tein complex composed of the members of STAT transcription factor fam
ily (STAT1o and STAT3). Mutation of this STAT-binding site attenuates
cytokine-mediated transcriptional activation. And activation of STAT tran
scription factors contributes to the induction of the VIP gene(Symes et al.
[66]). In another experiment, they constructed luciferase reporter plasmid,
which is i8Obp CyRE linked to the luciferase reporter gene. They found that
mutation in the AP-i proteins did not bind to the CyRE with mutated AP-1
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binding site, and the mutation of APi site reduced the CNTF-mediated in
duction of luciferase by 50% compared with the reporter plasmid with wild
type CyRE (Symes et al. [67]).

STAT 1 and APi binding site in bcl-x promoter

As described, before, there is STAT1 binding site in the promoter region of
bcl-x (F’uijo et al. [17]).

The alignment of mouse and human bcl-x gene promoter region showed
a consensus APi binding site in -270bp -260bp of human bcl-x promoter and
APi binding site in -266bp -256bp of mouse bcl-x promoter (Grillot et al.
[23j).

As ‘the literature review indicates, there are STAT1, Ets-i and APi
binding site in the promoter of bcl-x, and these three binding sites are located
close to each other. In our de novo prediction, we also got some STAT1
sequences having these three motifs predicted within them. We think that
binding sites of STAT1, Ets-1 and APi may form cis-regulatory element in
some promoters and regulate the gene expression together.

STAT1 and APi binding site in beta-defensin-2 promoter

Mineshiba et al. reported that there are subsequences like tandem STAT
binding site and AP-i binding site in the promoter of human beta-defensin-2
(hBD-2). They suspected that the STAT binding site may play a role in the
regulation of the promoter activity (Mineshiba et al. [46]).

Kanda et al. reported recently that antisense oligonucleotides against
AP- 1 components suppresses hBD-2 production; antisense oligonucleotide
against STAT1 also suppressed hBD-2 production (Kanda et al. [28]).

3.6 Genome-wide analysis on function of genes
potentially regulated by STAT1 and TFx

Inspired by the work of Kielbasa et al. (Kielbasa et al. [31]), we checked
whether genes potentially regulated by STAT1 and other TFx (TFs cor
responding to motiLx are collectively referred to as TFx) participate in
the same biological process. We believe that genes potentially regulated by
STAT1 and other TFx participating in the same biological process can pro
vide further evidence to support our prediction that STAT 1 may cooperate
with TFx in regulating the gene transcription level.
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Table 3.5: Total number of genes in each group of genes potentially regulated
by STAT1 and TFx

Group Number of genes in the group
genes potentially regulated by STAT1 and Nanog 3,745
genes potentially regulated by STAT1 and HEB 3,111
genes potentially regulated by STAT1 and Tel2 3,783
genes potentially regulated by STAT 1 and APi 1,431

We first extracted 1 ,000bp upstream and 200bp downstream sequence of
the non-redundant TSS, and used these sequences as the promoter regions
of genes.

After getting the PWMs of STAT1 GAS motif and other 4 motiLx
(Nanog, HEB, Tel2 and APi) predicted by GADEM, we used Cluster-Buster
to identify whether there is cluster of STAT1 GAS motif and one of the four
motiLx in a gene’s promoter region (with default setting). In that way, we
got 4 groups of genes which have cluster of binding sites corresponding to
STAT1 GAS motif and motiLx in their promoter regions, and the genes in
a group are potentially regulated by STAT1 and one of the TFx.

The number of genes in each group is listed in Table 3.5.
For each of the 4 groups, we used GOrilla to test whether the genes

belonging to it have enriched Gene Ontology (GO) term(s) of biological
process, compared with all the genes as background. We found: a), 3
groups have enriched GO biological process terms with p-value less than
1e9; b), the groups of genes potentially regulated by different combinations
of STAT1 and motiLx have different GO enrichment terms. The Gene On
tology highlighting the biological processes that are significantly enriched in
genes potentially regulated by STAT1&Nanog, STAT1&HEB, STAT1&Tel2,
STAT1&iAP1 are shown in Figure 3.16, Figure 3.17, Figure 3.18, and Fig
ure 3.19 respectively. Note that in the GOrilla output, each node in the
graph is a biological process term; the darker the color the smaller the p
value, and the more significantly enriched a biological process term is (the
color and corresponding p-value is shown in Figure 3.15).

We applied same method on human genes by giving Cluster-Buster
STAT1 PWM only. The result is shown in Figure 3.20.

Figure 3.20 shows there are some enriched biological process for the
genes potentially regulated by STAT1, but there is no biological process
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Figure 3.15: The color and corresponding p-value of enriched term used by
GOrilla.

Figure 3.16: Gene Ontology highlighting the biological process significantly
enriched in genes which are potentially regulated by STAT 1 and Nanog.
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Figure 3.17: Gene Ontology highlighting the biological process significantly
enriched in genes which are potentially regulated by STAT1 and HEB.

with p-value less than 1e9. This could be due to the fact that STAT1 is a
fairly general TF, and it can regulate transcription of large number of genes,
which are involved in diverse biological processes.

We admit that it is possible for a gene which is not regulated by a TF
to have subsequence like motif of that TF in its promoter region, and there
could be many false positive for the genes predicted to be regulated by
STAT1. We also know that in eukaryotic cell, the regulation of gene is typ
ically achieved by binding of several TFs onto its promoter region. There
fore, in a gene’s promoter region, if there are two or more subsequences
that are similar to motifs of TFs and are located close to each other, the
probability that the gene is regulated by these TFs is larger.. Comparing
Figures 3.16, 3.17, 3.18, 3.19 and 3.20, we found many genes with combina
tion of motifs for STAT1&Nanog or STAT1&HEB or STAT1&Te12 in the
promoter regions participate in several specific biological processes. We infer
that STAT1 cooperates with Nanog/HEB/Te12 in regulating genes’ expres
sion, and binding sites of STAT1 and Nanog/HEB/Tel2 are likely to be in
cis-regulatory element.

r
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Figure 3.18: Gene Ontology highlighting the biological process significantly
enriched in genes which are potentially regulated by STAT 1 and Te12.
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Figure 3.19: Gene Ontology highlighting the biological process significantly
enriched in genes which are potentially regulated by STAT1 and APi.

Figure 3.20: Gene Ontology highlighting the biological process significantly
enriched in genes which are potentially regulated by STAT1.
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3.7 The occurrence rate of binding sites
corresponding to de novo discovered motifs

Here we checked whether the occurrence of binding sites corresponding to de
novo discovered motifs are influenced by the location feature of the STAT 1
sequences.

3.7.1 Categories of STAT1 sequences

For each STAT1 binding site detected by ChIP-Seq, we knew whether it is
in a meaningful Mel flanked region or whether it is close to a Po12 bind
ing site (i.e., have a Po12 binding site within 2,500 bp). Therefore, we put
the corresponding STAT1 sequences into four categories: Category 1 ,in Mel
flanked region and close to Po12; Category 2, in Mel flanked region and far
from Po2; Category 3, NOT in Mel flanked region and close to Pol2; Cate
gory 4, NOT in Mel flanked region and far from Po12. Here, we used 9,992
STAT1 binding sites, and all the Po12 binding sites detected by MACS and
the 200’-’-’l,OOObp Mel flanked regions from all Mel binding sites predicted
by Robertson et al. (Robertson2008). The number of STAT 1 binding sites
belonging to each category can be visualized in the Venn diagram shown
before (Figure 3.9).

3.7.2 Occurrence rate of binding sites corresponding to de
novo motifs in STAT 1 sequence of different categories

For each de novo predicted motif, we know whether it occurs in each one of
the STAT1 sequence. Therefore, after putting the STAT1 sequences in dif
ferent categories, we can check the occurrence rate of the binding sites corre
sponding to each motif in all the STAT1 sequences and in STAT1 sequences
belonging to each of the four categories. Here, the occurrence rate of binding
site corresponding to a motiLx is defined as #sequences checked which have
binding site corresponding to motiLx / total # sequences checked. Result
is shown in Figure 3.21.

Figure 3.21 shows: 1) binding site corresponding to STAT1 motif has
highest over all occurrence rate, followed by Nanog, HEB, Te12 and AP1.
2) the occurrence rate of binding sites corresponding to different motifs are
different. For example, binding site of STAT1 motif has highest occurrence
rate (0.68) in the STAT1 sequences belonging to category “STAT1 not in
flank and far from Po12”, binding site of APi motif has highest occurrence
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Figure 3.21: Occurrence rate of binding sites corresponding to de novo
discovered motifs in all of the STAT 1 sequences and in STAT1 sequences of
different categories (categories are based on all predicted Po12 binding sites
and all predicted Mel flanked regions).
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rate (0.38) in the STAT1 sequences belonging to category “STAT1 in flank
and close to Po12”.

Furthermore, for each motif, we did hypothesis test to check whether
the occurrence rate of its corresponding binding site corresponding is signif
icantly different in STAT1 sequences belonging to each pair of categories (we
have 4 categories, so we did () =6 hypothesis tests for each motif_x). Basi
cally, we assume that the number of occurrence of binding site corresponding
to motiLx in a category follows a Binomial distribution with parameters n
(total number of sequences in the category) and p (occurrence rate); the
null hypothesis is that p of two categories of STAT1 sequences under test
are the same. More details of this method are discussed in “Multiple test
for proportions” of the Method chapter.

We found that at the significance level of 0.05, binding site of Te12 has
significantly different occurrence rate in STAT1 sequences belonging to the
four different categories; binding site of STAT1 have significantly different
occurrence rate in the five comparisons we did, except for the comparison
between the sequence category “in Mel flanked region and close to Po12
binding site” and the sequence category “in Mel flanked region and far
from Po12 binding site”. We conclude that the occurrence of binding sites
corresponding to de novo discovered motifs are influenced by the location
feature of the STAT1 sequences. Results are shown in Table 3.6.

Table 3.6: Comparison of each motf’s occurrence rate in STAT1 sequences
of different categories.

Significant difference of binding site’s occurrence rate Motif
in two categories of STAT1 sequences STAT1 Nanog HEB Te12 APi
InMelClosetoPol2 vs InMelFarfromPol2 NO NO NO YES YES
InMelflankClosetoPol2 vs NotinMeiflankClosetoPol2 YES NO NO YES YES
InMelflankClosetoPol2 vs NotinMeiflankFarfromPol2 YES NO NO YES YES
InMelflankFarfromPol2 vs NotinMeiflankClosetoPol2 YES NO NO YES YES
InMelflankFarfromPol2 vs NotinMeiflankFarfromPol2 YES YES NO YES YES
NotinMelflankClosetoPol2 vs NotinMeiflankFafromPol2 YES YES NO YES NO
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3.7.3 Occurrence rate of binding sites corresponding to de
novo motifs in STAT 1 sequence of different categories
(categories based on Mel flanked regions and Po12
sites with more stringent criteria)

We selected top l0,00O Po12 binding sites according to the FDR for the
Po12 binding site predicted by MACS; and got top -.20,000 Mel anks for top
Mel binding sites with large number of short reads in them. We put STAT1
binding sites into four categories based on their location relationship with
top Po12 sites and top Mel flanked regions. We checked the occurrence rate
of binding sites corresponding to de novo motifs in STAT1 sequence of dif
ferent categories again, in order to see whether the binding sites’ occurrence
rate change. Result is shown in Figure 3.22.

Comparing Figure 3.22 and Figure 3.21, we found: as we selected top
Po12 and top Mel flanked regions, the criteria for the category STAT1 bind
ing sites in Mel flanked region and close to Po12 became stringent, and the
occurrence rate of the binding sites in this category changed. For example,
the occurrence rate of binding site of STAT 1 in this category dropped from
0.54 to 0.45; the occurrence rate of binding site of Tel2 increased from 0.45
to 0.55.

3.8 The occurrence rate of binding sites
corresponding to different combinations of de
novo discovered motifs

We have 5 motifs, so there are 32 (2) unique combinations of these motifs’
occurrence or not within a sequence. We are interested to know, within
each category, how the binding sites corresponding to different motif com
binations occur.

We checked occurrence rate of binding sites corresponding to these com
binations in all the sequences and in sequences belonging to different cate
gories (occurrence rate of binding site corresponding to a motif combination
= #sequence with binding site corresponding to motif combination in a
category / total #sequences in a category). Result is shown in Figure 3.23.

Figure 3.23 shows that: 1) 15 out of the 32 combinations have high
est occurrence rate in the category of “STAT1 in Mel flanked region and
close to Po12” compared with other categories; and combination with all the
motifs (combination 15) has the highest occurrence rate for this category
comparing with other categories, showing that the DNA region within Mel
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Figure 3.22: Occurrence rate of binding sites corresponding to de novo
discovered motifs in all of the STAT1 sequences and in STAT1 sequences of
different categories (categories are based on top predicted Pol2 binding sites
and top predicted Mel flanked regions).
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flanked region and with Po12 is where the binding sites are located most
often. 2) Many combinations whose occurrence rate is highest in the cate
gory “STAT1 in Mel flanked region and close to Po12” have Te12 and APi,
suggesting that Te12 and APi may be important transcription factors. 3)
Some combinations have highest occurrence rate in the category “STAT 1
not in flank and far from Po12”. We are not sure whether the predicted
binding sites in this category really have biological function. 4) The com
bination with no motif in it has high occurrence rate in all the categories,
indicating that our prediction on STAT1 binding site probably have noise,
i.e. some of the locations predicted to be bound by STAT1 with ChIP-Seq
are not actually bound by STAT1, and there is no binding site predicted for
sequences around these locations.

3.9 Relating STAT1 binding sites with DE genes

Robertson et al. reported that the amount of STAT1 binding sites after
IFN-gamma stimulation is about 4 times the amount of STAT1 binding
sites before IFN-gamma stimulation (Robertson et al. [53]).

We know that TF regulates the transcription of a gene through binding to
its promoter or enhancer region. We want to check in the IFN-gamma stim
ulated cell, whether the STAT1 binding is related with DE, i.e., whether the
proportion of DE gene having STAT1 binding site in the promoter regions
is higher than the proportion of all genes having STAT 1 in the promoter
regions.

3.9.1 DE genes detected on Chromosome 22 of IFN-gamma
stimulated HeLa cell

In the work of Hartman et al., 63 genes showing differential expression (DE)
after the IFN-gamma stimulation were identified on Chromosome 22 of HeLa
cell. (Hartman et al. [24]).

3.9.2 DE genes detected for other three types of human
cells under IFN-gamma stimulation

We also obtained time series microarray data for other three types of IFN
gamma stimulated human cells. These microarray data studied the gene
expression on the whole genome scale. For each of three data set, we iden
tified the DE genes as described in method section.
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Table 3.7: Summary of number of total genes and number of DE genes in
three microarray data sets

Array_bloodcell Arrayskincell Array fibroblastcell
Total genes 11,680 8,759 14,319
DE genes 534 452 1,452

Table 3.7 summarizes the total number of genes studied in each microar
ray experiment (genes with too many missing value are not considered), and
the number of DE genes detected from each microarray data set.

3.9.3 Intersection of DE genes in HeLa cell and DE genes
in other three types of cells

The gene symbols for the genes studied with microarray experiment are
known. We checked the intersections of gene symbols of DE genes in HeLa
cell and in cells from the other three different tissues (peripheral blood
mononuclear cell, skin cell and fibroblast cell).

Among the 63 DE genes detected for Chromosome 22 of HeLa cell, three
show differential expression in the blood cell, none shows differential expres
sion in the skin cell, six show differential expression in fibroblast cell. Here,
the DE genes were only checked for Chromosome 22, therefore, we were not
sure whether they can represent all the known genes in HeLa cell.

The number of DE genes detected for other three cell types are relatively
large. We further checked the intersection of DE genes detected for the other
three cell types. Only 6 genes are differentially expressed in all these types
of cells, and none of the 6 genes are detected to be differentially expressed in
HeLa cell. Figure 3.24 shows the intersection of the DE genes in the other
three cells.

3.9.4 Proportion of DE gene promoters having STAT1
binding sites and proportion of all gene promoters
having STAT1 binding sites

We checked whether the STAT1 binding detected by ChIP-Seq occurs more
often in the promoters of DE genes than in promoters of all the genes.

We obtained 6,00lbp promoter regions of DE genes detected on Chro
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Intersection of DE genes from cell of 3 tissues

Figure 3.24: Intersection of DE genes found in three types of cells after
IFN-gamma stimulation.
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Table 3.8: Proportion of promoter of all genes with STAT1 binding sites
and proportion of promoter of DE genes with STAT1 binding sites. (Note
that a gene symbol may correspond to more than one predicted promoter,
and we used all the non-redundant promoters)

Promoters of all the genes Promoters of DE genes
Number of promoters with STAT1 binding site 2,599 361

Total number of promoters 42,648 3,913
Proportion of promoters with STAT1 binding site 6.0% 9.2%

mosome 22 of HeLa cell and all the DE genes detected for other three types
of cells (by merging the DE genes from three types of cells) and checked
how many of them have STAT1 binding site; also, we obtained 6,00lbp
(4,000bp upstream and 2,000bp downstream) promoter regions of all the
genes and counted how many of them have STAT 1 binding site. Here, we
used the 6,00lbp region length because we found that as the downstream
region length grows to 2,000 bp and the upstream region length grows to
4,000bp, the number of regions with STAT1 grows quickly (shown in Fig
ure 3.6), and we wanted to use region which is long enough for finding most
of the TF and at reasonable length at the same time.

None of the 63 DE genes detected on Chromosome 22 of HeLa cell have
STAT1 binding in their promoter regions, while some DE genes detected
for other three types of cells have STAT 1 binding site in their promoter
regions. Table 3.8 shows the proportion of DE genes with STAT1 binding
in the promoter regions and proportion of all the human genes with STAT1
binding in the promoter regions. In the IFN-gamma stimulated cells, the
proportion of DE promoter regions with STAT1 binding site is significantly
higher than that of all promoter regions (we compared the two proportions
with one tail z test at significance level of 0.05, as mentioned in the method
section “Testing proportion of two samples”).

There are only 6 genes that are differentially expressed in all three types
of cells. We further checked whether there is STAT 1 binding site occurring
in the promoter region of these 6 genes ( the promoter region we used is
-400bp+2,000bp of TSS). We found that 2 of these 6 genes have STAT1
binding in their promoter region, as shown in Table 3.9.

We acknowledge that no DE gene detected for Chromosome 22 in HeLa
cell has STAT1 binding in the promoter region. However, through the anal
ysis of STAT1 binding and the DE genes in cells other than HeLa, we infer
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3.9. Relating STAT1 binding sites with DE genes

Table 3.9: Genes differentially expressed in all 3 types of cells and whether
there is STAT1 binding site in their promoter regions

gene symbol of DE gene with STAT1 binding site in the promoter region
OAS2 NO

IFRD1 NO
INDO YES

INHBA YES
MGLL NO
DUSP6 NO

that STAT1 binding is related with gene’s differential expression. Our anal
ysis on DE genes and STAT1 binding is limited here, because many DE
genes in the HeLa cell may be different from the DE genes we detected for
the other three types of cells.

We hope that gene expression experiment can be done for all the known
genes in IFN-gamma stimulated HeLa cell in the future, so that the STAT1
ChIP-Seq data and the gene expression data are more comparable.
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Chapter 4

Discussion

4.1 The binding sites of TFs

The ChIP-Seq experiment enables us to find binding sites of a specific TF
(STAT1 in our study) on the whole genome scale. Based on the 4Olbp
sequences around STAT1 binding sites, we predicted several de novo mo
tifs which may be corresponding to TFs collaborating with STAT 1 in gene
regulation.

4.1.1 The overlap of binding site locations of de novo
predicted motifs

It has been verified in the wet lab experiment that the binding sites of two
TFs can overlap with each other. In our analysis, we found that there are
overlaps between locations of binding sites corresponding to STAT 1 GAS
motif and other motiLx. For example, the predicted binding site of STAT1
and Nanog overlap in almost 2,000 locations. We are not sure whether TFs
bind to the overlapping sites as often as predicted.

4.1.2 What are the non-coding regions in the genome? Are
TF binding in regions far from genes regulating the
gene transcription?

The haploid human genome has just over 3 billion DNA base pairs. In the
genome, there are about 25,000 genes whose medium length is 20,000 base
pairs. The genes occupy only about 1/6 of the genome. Moreover, there are
introns and other untranslated regions in the genes.

Through analysis, we found that many STAT1, Pol2 binding sites and
Mel flanked regions are distal from TSS, i.e., they are not located in any
gene regions. We want to know what fraction of the TF binding in the
non-coding regions of the genome are functional in regulating the genes’
expression, and what fraction of them are “junk” in view of regulating gene
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4.2. Uncertainty in the specificity of TF binding

transcription. More expression experiments need to be done to answer the
question.

4.2 Uncertainty in the specificity of TF binding

GO analysis of the genes potentially regulated by STAT1 and TFnc, as well
as literature review gave us evidence that the binding sites corresponding
to motiLx found in the STAT1 sequences form cis-regulatory module with
STAT binding sites. However, it is not clear to us which TFs actually
correspond to the motiLx.

4.2.1 Uncertainty in deciding which TF has binding site
similar to the de novo predicted motif

We are not certain about what exact TF has the binding site similar to the
de novo predicted motif: transcription factors with similar binding domain
are put into the same family, and some TFs in the same family have similar
DNA binding sites/motifs. For example, the motifs of STAT1 and STAT5
from STAT family are very similar, the motifs of APi and Bach2 from bZIP
family are very similar (refer to Table 3.3).

In our analysis, we call the motiLx using the name of TF whose binding
site motif is most similar to motiLx. But it is possible that several TFs
whose binding site motifs are similar to motiLx cooperate with STAT1 in
regulating different genes.

4.2.2 Uncertainty in the specificity of how TFs collaborate

It is not clear to us, whether the TFs collaborate in a very precise way (e.g.,
transcription factor A collaborate with transcription factor B, and they reg
ulates a gene’s expression by binding to its promoter region together), or
whether a TF can sometimes collaborate with several TFs from another
family in regulating a gene’s transcription (e.g., transcription factor A can
collaborate with several transcription factors from the same family of tran
scription factor B in regulating gene transcription).

ChIP--PCR can help to answer our question for a specific gene and ChIP
Seq can help to answer our question on the whole genome scale.
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4.3. The condition of TF binding

4.3 The condition of TF binding

We know Uhere are many factors influencing the TF binding to DNA. For
instance, STAT1 can bind to DNA after it is phosphorylated; binding of a
TF may depend on the availability of its cofactors; promoter and enhancer
of genes actively transcribed are marked by histone methylation. Therefore,
given the genome sequence and the predicted binding sites of a TF, it is still
difficult to tell whether the TF binds to the predicted binding sites. Further
studies on the mechanism of TF binding need to be conducted.

4.4 Potential wet-lab experiment

4.4.1 Potential ChIP-Seq experiment

By de novo motif prediction on 9,992 4Olbp STAT1 sequences, we obtained 4
motifs, whose corresponding TFs potentially cooperate with STAT1 in gene
regulation. The TFs that have motifs most similar to the de novo predicted
motifs are: APi, Nanog, HEB and Te12. It is probable that the binding sites
of motiLx constitute cis regulatory module with binding sites of STAT 1, and
that TFx collaborate with STAT1 in regulating gene transcription.

We looked for ChIP-Seq or ChIP-chip experiment for the TFs corre
sponding to these motifs in GEO database. We only found ChIP-chip data
for HEB. Analyzing HEB data and STAT1 data, we found 21 regions on
Chromosome 19 that have HEB and STAT1 binding sites close to each other.

Result through literature review showed that Nanog, TFs from Ets fam
ily, APi collaborate with STAT1 in regulating gene expression, which ver
ified our prediction to some extent. Yet, searching for papers is a time-
consuming process, and usually the regulation of only one gene is discussed
in a paper. Therefore, the literature review can not provide us enough in
formation of how two TFs collaborate with each other on a whole genome
scale.

Therefore, we found it necessary and helpful to carry out ChIP-Seq anal
ysis for the TFs corresponding to de novo predicted motiLx (TFx). With
more ChIP-Seq experiment on the TFs, we can get to know the binding
sites of TFx and check: 1) whether there is real transcription factor bind
ing for the predicted binding site of motiLx; 2) how the spacial relationship
of TFx and STAT1’s binding sites is, and how often their binding site lo
cations overlap.

Note that through analyzing the microarray data, we found the DE genes
in different cell types under IFN-gamma stimulation are different. Therefore,
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the binding of transcription factors in the promoter regions which leads to
DE may be different for different types of cell. In order to make the new
experiment consistent with STAT 1 ChIP-Seq experiment, we suggest that
ChIP-Seq experiment be carried out for the IFN-gamma induced HeLa cell.

4.4.2 Potential gene expression experiment

The ChIP-Seq experiment for STAT1 was done for the HeLa cell under IFN
gamma stimulation. In our analysis, we have used gene expression data
of HeLa cell under IFN-gamma stimulation, but it was only for genes on
Chromosome 22. Besides that data set, we have also used gene expression
data of other types of IFN-gamma stimulated human cells.

Our analysis showed that no DE gene detected for Chromosome 22 in
HeLa cell has STAT1 binding in the promoter region. However, some DE
genes detected for other three types of human cells have STAT 1 binding site
in their promoter regions and the proportion of DE gene promoter regions
with STAT1 binding site is higher than that of all promoter regions. We
inferred that STAT1 binding may be related with gene’s differential expres
sion.

Our analysis also showed that the intersection of DE genes occurring
in different cell types after IFN-gamma stimulation is small. Therefore,
we hope that time-course microarray experiment for all the genes in IFN
gamma stimulated HeLa cell will be available in the future. By studying the
microarray data of IFN-gamma stimulated HeLa cell and ChIP-Seq data of
STAT1 binding in IFN-gamma stimulated HeLa cell together, we can: 1)
check the proportion of the differentially expressed genes having STAT1
binding in the promoter region; 2) look into the gene coding region and pos
sible enhancer region of the differentially expressed genes and check whether
there is STAT1 binding; 3) compare the frequency of STAT1 binding in up-
regulated and down-regulated genes; 4) identify whether there is cis-module
in the promoter region of genes with similar expression pattern; 5) compare
the DE genes in HeLa cell and the DE gene in other IFN-gamma stimulated
cell, and identify which genes always show differential expression regardless
of the cell type.

4.5 Use of R, Pen and SQL

In this thesis, we used R, Pen and mySQL to do data analysis. All the
software packages are available for free.
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4.5. Use of R, Pen and SQL

We used R and packages based on R to perform statistical analysis and
visualization for large scale data; we used Perl to extract useful contents from
the program output or from data tables; database is useful and efficient for
handling data tables, such as storing, extracting and combining information
of different tables.
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Appendix A

Parameter setting for
running MACS

The parameter setting for running MACS is list below:
#default setting of mfold will give warning Fewer paired peaks (250)

than 1000! Model may not be build well! Lower your MFOLD parameter
may erase this warning. So I will use 250 pairs to build model!
macs -t ../../rawdata/STATLstimulated/STATlistimulated.bed -c ../. ./raw
data/STAT Linput/STAT1 input .bed —name=mfold25 —mfold=25 —tsize=28
macs -t . ./. . /rawdata/Po12.stimulated/Po12..stimulated.becl -c . ./. ./raw
data/Pui2iuput/Pol2input.bed —tsize=28
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Appendix B

Parameter setting for
running DecoyMasker

The parameter setting for running DecoyMasker is list below:
CREADBINDIR= /export/home/kaida/cread/cread-O.84/bin

FADIR=/export/home/kaida/seqs
FA=length400all

# Three-stage decoymasking
R=2
W=7
DMFA2=$FA. lststagedecoymaskerw$Wr$R.fa
echo “Decoymasker, w=7, r=2 >“

echo $CREADBINDIR/decoymasker $FADIR/$FA -w $W -r $R -l $FADIR/
$FA.dmiogr2 -o $FADIR/$DMFA2
$CREADBINDIR/decoymasker $FADIR/$FA -w $W -r $R -o $FADIR/$DMFA2
R=3
WrrrlO
DMFA3=$FA. 2stagedecoymaskerw$W$R.fa
echo “Decuymasker, w=15, r=3 >“

echo $CREADBINDIR/decoymasker $FADIR/$DMFA2 -w $W -r $R -l
$FADIR/$FA.dmiogr3 -o $FADIR/$DMFA3
$CREADBINDIR/decoymasker $FADIR/$DMFA2 -w $W -r $R -o $FADIR/$DMFA3
R=4
W=13
DMFA4=$FA .3rdstag&dmaskerw$W$R.fa
echo “Decoymasker, w=15, r=3 >“

echo $CREADBINDIR/decoymasker $FADIR/$DMFA3
-w $W -r $R -1 $FADIR/$FA.drniogr4 -o $FADIR/$DMFA4
$CREADBINDIR/decoymasker $FADIR/$DMFA3 -w $W -r $R -o $FADIR/$DMFA4
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Appendix C

Parameter setting for
running GADEM

The parameter setting for running GADEM is list below:
MAXGAP=2

EM=40
FRACEM=O.3
PV=O.0002
INPUT=refined400all.fa
REPORT=$INPUT.fracEM$FRACEM.minN$MINN.pv$PV.maxgap
$MAXGAP.de.novo
nice -n 19 ./. ./kaidasoftware/bin/gadem -fseq $INPUT -fout $REPORT
-em $EM -fracEM $FRACEM -pv $PV -maxgap $MAXGAP -verbose 1 -

minN 200
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